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 COIMBATORE-21 

(For the candidates admitted from 2019 onwards) 

           DEPARTMENT OF PHYSICS 
 

SUBJECT: MATHEMATICAL PHYSICS           

SEMESTER: I        

SUB.CODE:19PHP104     CLASS:  I M.Sc PHYSICS 

 

Course Objectives 

 It is necessary for a physics student to be familiar with different methods in 

mathematics.   

 Give a basic idea about different methods of mathematics, used in Physics. 

Course Outcomes (COs)  

1. Students will be able to apply integral transform (Fourier and Laplace) to solve 

mathematical problems of interest in physics, use Fourier transforms as an aid for 

analyzing  experimental data. 

2. Students can formulate and express a physical law in terms of tensors, and simplify it 

by use of coordinate transforms (example: principal axes of inertia). 

3. Students will be able to solve some simple classical variation problems. 

 

UNIT I - VECTOR SPACE           

Definition of vector space – Linear dependence – Linear independence – Basis – Dimension 

of a vector space – Representation of Vectors and linear operators with respect to basis – 

Schmidt orthogonalization process – Inner product. 

Tensors : Transformation of coordinates – Summation convention – Contravariant Tensor – 

Covariant Tensor – Mixed Tensor – Rank of a Tensor – Kronecker delta symbol – symmetric 

and antisymmetric tensors – Invariant tensors. 

 

UNIT  II- COMPLEX VARIABLE         

Functions of a complex variable – single and multivalued functions – Cauchy-Riemann 

differential equation – analytical – line integrals of complex function – Cauchy’s integral 

theorem and integral formula – derivatives of an analytic function – Liouville’s theorem - 

Taylor’s series – Laurent’s series - Residues and their evaluation - Cauchy’s residue theorem 

– application to the evaluation of definite integrals.  



 SYLLABUS 2019-2021 
BATCH 

 

Department of Physics, Karpagam Academy of Higher Education,  Page 2/2 
 
 

UNIT  III- FOURIER TRANSFORM       

Properties of Fourier transform – Fourier transform of derivatives – Fourier sine and cosine 

transforms of derivatives – Fourier transform of functions of two or three variables – Finite 

Fourier transforms – Simple Applications of FT 

Laplace transform – Properties of Laplace transforms – Laplace Transform of derivative of a 

function – Laplace transform of integral – Laplace transform of periodic functions - Inverse 

Laplace Transform – Fourier Mellin Theorem - Properties of inverse Laplace Transform – 

Convolution theorem – Evaluation of Laplace Transform using Convolution theorem. 

 

UNIT  IV- FOURIER SERIES          

Dirichlet’s theorem – change of interval – complex form – Fourier series in the interval (0, T) 

– Uses of Fourier series - Legendre’s polynomials and functions – Differential equations and 

solutions – Rodrigues formula – Orthogonality – relation between Legendre polynomial and 

their derivatives – recurrence relations – Lagurae Polynomials – recurrence relations 

 

UNIT  V- BESSEL’S FUNCTIONS         

Differential equation and solution – generating functions – recurrence relations – Bessel 

function of second order – Spherical Bessel function -  

Hermite differential equation and Hermite polynomials: Generating function of Hermite 

polynomials – Recurrence formulae for Hermite polynomials – Rodrigue’s formula for 

Hermite Polynomials – Orthogonality of Hermite Polynomials – Dirac’s Delta Function. 

SUGGESTED READINGS 

 

1. Satya Prakash.,2002. Mathematical Physics , 4
th

 edition, S.Chand & Co, New Delhi.  

2. Gupta.B.D., 2002, .Mathematical Physics, 2
nd

 edition, Vikas publishing company, 

New Delhi. 

3. Singaravelu.V., 2008. Numerical methods, 2
nd

 edition, Meenakshi publications, 

Sirkali. 

4. Rajput.B.S., 2003. Mathematical Physics, 16
th

 edition, Pragati Prakashan, Meerut. 

5. Gupta. P.P., Yadav., and Malik.,2012. Mathematical Physics, Kedar Nath & Ram 

Nath, Meerut.                                              

6. Venkataraman.M.K., 2003. Numerical methods in Science & Engineering, 5
th

 edition, 

The National Publishing Company, Chennai. 

7. Butkov, 2007, Mathematical Physics, Addison Wesley, New York 

8. A.W. Joshi, 2008, Tensors and Matrices, reprint, Wiley Interscience, New York. 
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UNIT-I 

 

SYLLABUS 

 

 

 

 

 

 

 

 

 

Definition of Vector Space 

 

A vector space  is a set that is closed under finite vector addition and scalar multiplication. The 

basic example is -dimensional Euclidean space , where every element is represented by a list 

of  real numbers, scalars are real numbers, addition is component wise, and scalar 

multiplication is multiplication on each term separately. 

For a general vector space, the scalars are members of a field , in which case  is called a 

vector space over . 

Euclidean -space  is called a real vector space, and  is called a complex vector space. 

In order for  to be a vector space, the following conditions must hold for all 

elements  and any scalars : 

1. Commutativity: 

 

(1) 

2. Associativity of vector addition: 

 

(2) 

3. Additive identity: For all , 

 

(3) 

4. Existence of additive inverse: For any , there exists a  such that 

 

(4) 

5. Associativity of scalar multiplication: 

 

(5) 

6. Distributivity of scalar sums: 

 

(6) 

7. Distributivity of vector sums: 

 

(7) 

8. Scalar multiplication identity: 

 

Vector Space - Definition of vector space – Linear dependence – Linear independence – 

Basis – Dimension of a vector space – Representation of Vectors and linear operators with 

respect to basis – Schmidt orthogonalization process – Inner product. Tensors : 

Transformation of coordinates – Summation convention – Contravariant Tensor – Covariant 

Tensor – Mixed Tensor – Rank of a Tensor – Kronecker delta symbol – symmetric and 

antisymmetric tensors – Invariant tensors.  

http://mathworld.wolfram.com/VectorAddition.html
http://mathworld.wolfram.com/ScalarMultiplication.html
http://mathworld.wolfram.com/EuclideanSpace.html
http://mathworld.wolfram.com/Field.html
http://mathworld.wolfram.com/RealVectorSpace.html
http://mathworld.wolfram.com/ComplexVectorSpace.html
http://mathworld.wolfram.com/Scalar.html
http://mathworld.wolfram.com/Commutative.html
http://mathworld.wolfram.com/Associative.html
http://mathworld.wolfram.com/VectorAddition.html
http://mathworld.wolfram.com/Associative.html
http://mathworld.wolfram.com/Distributive.html
http://mathworld.wolfram.com/Distributive.html
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Linear Independence and dependence 

 

Let  kvvvS ,,, 21   and WSspan )( . Is it possible to find a smaller (or even smallest) set, 

for example,  121 ,,, 

  kvvvS  , such that  

)span(SWspan(S)   

To answer this question, we need to introduce the concept of linear independence and linear 

dependence. 

 

Definition of linear dependence and linear independence: 

The vectors  in a vector space V are said to linearly dependent if there exist 

constants, kccc ,,, 21  , not all 0, such that  

02211  kkvcvcvc  . 

 are linearly independent if  

0   0 212211  kkk cccvcvcvc  . 

 

The procedure to determine if  are linearly dependent or linearly independent: 

 

1. Form equation 02211  kkvcvcvc  , which lead to a homogeneous system. 

2. If the homogeneous system has only the trivial solution, then the given vectors are linearly 

independent; if it has a nontrivial solution, then the vectors are linearly dependent.  

 

 

Example: 

 

 321321 ,,  and  ,

1

0

0

  ,

0

1

0

  ,

0

0

1

eeeSeee 





















































 . Are 21,ee  and 3e  linearly 

independent? 

 

[solution:] 

kvvv ,,, 21 

kvvv ,,, 21 

kvvv ,,, 21 
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0
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c

c

c

cccececec  





































0

0

0

  

3

2

1

c

c

c

. 

Therefore, 21,ee  and 3e  are linearly independent. 

 

 

 

Example: 

 

.

10

6

8

  ,

1

1

2

  ,

3

2

1

321





















































 vvv . Are 21 ,vv  and 3v  linearly independent? 

 

[Solution:] 

 

0

1013

612

821

10

6

8

1

1

2

3

2

1

3

2

1

321332211 































 

























































c

c

c

cccvcvcvc  

Rtt

c

c

c







































  ,

1

2

4

  

3

2

1

. 

Therefore, 21 ,vv  and 3v  are linearly dependent. 

Example: 

 

Determine whether the following set of vectors in the vector space consisting of all 22  

matrices is linearly independent or linearly dependent. 

 


































02

01
,

12

03
,

10

12
,, 321 vvvS . 

 

[solution:] 
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. 

Thus, 

0                     

022               

        0                           

          0   32      

21

32

1

321









cc

cc

c

ccc

      















































































0

0

0

0

0

2

0

1

1

2

0

3

1

0

1

2

321 ccc
. 

 

The homogeneous system is  























































0

0

0

0

011

220

001

132

3

2

1

c

c

c

. 

The associated homogeneous system has only the trivial solution  



































0

0

0

3

2

1

c

c

c

.  

Therefore, 21 ,vv  and 3v  are linearly independent. 

 

Example: 

 

Determine whether the following set of vectors in the vector space consisting of all polynomials 

of degree n  is linearly independent or linearly dependent. 

. 

[solution:] 

 

      022322 2

3

2

2

2

1332211  xxcxxcxxcvcvcvc . 

Thus, 

02        2

02     

032  

31

321

321







cc

ccc

ccc

      







































































0

0

0

2

2

3

0

1

2

2

1

1

321 ccc
. 

The associated homogeneous system is  






































00

00

02

01

12

03

10

12
321332211 cccvcvcvc



   223 ,2 ,2,, 222

321  xxxxxxvvvS
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0

0

0

202

211

321

3

2

1

c

c

c

. 

The homogeneous system has infinite number of solutions,  

.  ,

1

1

1

3

2

1

Rtt

c

c

c







































 

Therefore, 21 ,vv  and 3v  are linearly dependent since  

Rttvtvtv    ,0321 . 

 

Note: 

In the examples with ,

10

6

8

  ,

1

1

2

  ,

3

2

1

321





















































 vvv  or with 

, 21 ,vv  and  are linearly 

dependent. Observe that 3v  in both examples are linear combinations of 21 ,vv , 

 

233 24

1

1

2

2

3

2

1

4

10

6

8

vvv 





















































  

and  

    21

222

3 22223 vvxxxxxxv  .  

As a matter of fact, we have the following general result. 

 

Important result: 

The nonzero vectors  in a vector space V are linearly dependent if and only if one of 

the vectors 2 , jv j , is a linear combination of the preceding vectors 121 ,,, jvvv  . 

Note: 

Every set of vectors containing the zero vector is linearly dependent. That is, kvvv ,,, 21   are k 

vectors in any vector space and iv  is the zero vector, then kvvv ,,, 21   are linearly dependent. 

 

Basis and Dimension 

   223 ,2 ,2,, 222

321  xxxxxxvvvS
3v

kvvv ,,, 21 
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Definition of basis: 

The vectors kvvv ,,, 21   in a vector space V are said to form a basis of V if  

(a) kvvv ,,, 21   span V (i.e., Vvvvspan k ),,,( 21  ). 

(b) kvvv ,,, 21   are linearly independent. 

Example: 

 

 321321 ,,  and  ,

1

0

0

  ,

0

1

0

  ,

0

0

1

eeeSeee 





















































 . Are 21,ee  and 3e  a basis in 
3R ? 

[solution:] 

21,ee  and 3e  form a basis in 
3R  since  

(a) 
3

321 ),,()( ReeespanSspan   (see the example in the previous section). 

(b) 21,ee  and 3e  are linearly independent (also see the example in the previous section). 

Example: 





























4

3
  ,

1

0
  ,

0

1
321 vvv . Are 21 ,vv  and 3v  a basis in 

2R ? 

[solution:] 

21 ,vv  and 3v  are not a basis of 
2R  since 21 ,vv  and 3v  are linearly dependent,  

043 321  vvv . 

Note that 
2

321 ),,( Rvvvspan  .  

Example: 
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.
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  ,
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  ,

3

2

1

321





















































 vvv . Are 21 ,vv  and 3v  a basis in 3R ? 

[solution:] 

21 ,vv  and 3v  are not a basis in 
3R  since 21 ,vv  and 3v  are linearly independent,  

233 24

1

1

2

2

3

2

1

4

10

6

8

vvv 





















































 .  

Example: 

Let  

 321321 ,,  and  ,

0

1

1

  ,

2

0

1

  ,

1

2

1

vvvSvvv 





















































 . 

Are S a basis in 
3R ? 

[solution:] 

(a)
3)( RSspan      For any vector 

3R

c

b

a

v 

















 , there exist real numbers 321 ,, ccc  such 

that  

332211321

0

1

1

2

0

1

1

2

1

vcvcvcccc

c

b

a

v 







































































 . 

  we need to solve for the linear system  



















































c

b

a

c

c

c

3

2

1

021

102

111

. 
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The solution is  

3

24
  ,

3
  ,

3

22
321

cba
c

cba
c

cba
c








 . 

Thus, 

321
3

24

33

22
v

cba
v

cba
v

cba
v 







 








 








 
 . 

That is, every vector in 3R  can be a linear combination of 321 ,, vvv  and  
3)( RSspan  . 

(b) Since  

0    

0

0

0

2

2 321

21

31

321

332211 









































 ccc

cc

cc

ccc

vcvcvc
, 

321  , , vvv  are linearly independent.  

By (a) and (b), 321  , , vvv  are a basis of 
3R .  

Important result: 

If  kvvvS ,,, 21   is a basis for a vector space V, then every vector in V can be written in an 

unique way as a linear combination of the vectors in S.  

 

Example: 

 

 321321 ,,  and  ,

1

0

0

  ,

0

1

0

  ,

0

0

1

eeeSeee 





















































 . S is a basis of 
3R . Then, for any 

vector 



















c

b

a

v , 
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321

1

0

0

0

1

0

0

0

1

cebeaecba

c

b

a

v 







































































   

is uniquely determined.  

Important result: 

Let  kvvvS ,,, 21   be a set of nonzero vectors in a vector space V and let  

 kvvvspanW ,,, 21  . Then, some subset of S is a basis of W.  

How to find a basis (subset of S) of W: 

There are two methods: 

Method 1: 

The procedure based on the proof of the above important result. 

Method 2: 

Step 1: Form equation 

02211  kk vcvcvc  . 

Step 2: Construct the augmented matrix associated with the equation in step 1 and transform this 

augmented matrix to the reduced row echelon form. 

 

Step 3: The vectors corresponding to the columns containing the leading 1’s form a basis. For 

example, if 6k  and the reduced row echelon matrix is  

































0000000

0000000

01000

0100

01



, 

then the 1’st, the 3’nd, and the 4’th columns contain a leading 1 and thus  
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431 ,, vvv  are a basis of  621 ,,, vvvspanW  . 

Example: 

 

Let 

 


































































































2

3

1

,

1

0

0

,

0

3

2

,

0

1

0

,

0

0

1

,,,, 23121 aeaeeS
 

and   3RSspan  . Please find subsets of S which form a basis of 
3R . 

[solution:] 

Method1:  

We first check if 1e  and 2e  are linearly independent. Since they are linearly independent, we 

continue to check if 1e , 2e  and 1a  are linearly independent. Since 

032 121  aee , 

we delete 1a  from S and form a new set 1S ,  23211 ,,, aeeeS  . Then, we continue to check if 1e

, 2e  and 3e  are linearly independent. They are linearly independent. Thus, we finally check if 1e

, 2e  3e  and 2a   are linearly independent. Since  

023 2321  aeee , 

we delete 1a  from 1S  and form a new set 2S ,  3212 ,, eeeS  . Therefore,  

 3212 ,, eeeS   

is the subset of S which form a basis of form a basis of
3R . 

Method 2: 

Step 1: 

The equation is  
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0

3

2

1

1

0

0

0

3

2

0

1

0

0

0

1

54321 

























































































ccccc
. 

Step 2: 

The augmented matrix and its reduced row echelon matrix is   

















031000

020310

010201

. 

The 1’st, the 2’nd and 4’th columns contain the leading 1’s. Thus,  

 321 ,, eee  forms a basis.  

Representation of Vectors and linear operators with respect to basis  

Let  nvvvS ,,, 21   be a basis for a vector space V and let   rwwwT ,,, 21   is a 

linear independent set of vectors in V. Then, nr  . 

Corollary: 

Let  nvvvS ,,, 21   and  mwwwT ,,, 21   be two bases for a vector space V. 

Then, mn  . 

 

Note:  

For a vector space V, there are infinite bases. But the number of vectors in two different bases 

are the same.  

Example: 

For the vector space 
3R ,  
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 321321 ,,  ,

0

1

1

  ,

2

0

1

  ,

1

2

1

vvvSvvv 





















































  is a basis for 3R  (see the previous 

example). Also, 

 321321 ,,  ,

1

0

0

  ,

0

1

0

  ,

0

0

1

eeeTeee 





















































  is basis for 
3R .  

   There are 3 vectors in both S and T. 

Schmidt orthogonalization process 

Gram-Schmidt orthogonalization, also called the Gram-Schmidt process, is a procedure 

which takes a nonorthogonal set of linearly independent functions and constructs an orthogonal 

basis over an arbitrary interval with respect to an arbitrary weighting function . 

Applying the Gram-Schmidt process to the functions 1, , , ... on the interval 

 with the usual  inner product gives the Legendre polynomials (up to constant multiples; Reed 

and Simon 1972, p. 47). 

Given an original set of linearly independent functions , let  denote the 

orthogonalized (but not normalized) functions,  denote the orthonormalized functions, and 

define 

   

(1) 

  

 

(2) 

Then take 

 

(3) 

where we require 

 

 

 

(4) 

   

(5) 

By definition, 

http://mathworld.wolfram.com/LinearlyIndependent.html
http://mathworld.wolfram.com/OrthogonalBasis.html
http://mathworld.wolfram.com/OrthogonalBasis.html
http://mathworld.wolfram.com/OrthogonalBasis.html
http://mathworld.wolfram.com/WeightingFunction.html
http://mathworld.wolfram.com/InnerProduct.html
http://mathworld.wolfram.com/LegendrePolynomial.html
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(6) 

so 

 

(7) 

The first orthogonalized function is therefore 

 

(8) 

and the corresponding normalized function is 

 

(9) 

By mathematical induction, it follows that 

 

(10) 

where 

 

(11) 

and 

 

(12) 

If the functions are normalized to  instead of 1, then 

 

(13) 

 

(14) 
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(15) 

Orthogonal polynomials are especially easy to generate using Gram-Schmidt orthonormalization. 

Use the notation 

 

 

 

(16) 

  

 

(17) 

where  is a weighting function, and define the first few polynomials, 

   

(18) 

  

 

(19) 

As defined,  and  are orthogonal polynomials, as can be seen from 

 

 

 

(20) 

  

 

(21) 

   

(22) 

   

(23) 

Now use the recurrence relation 

 

(24) 

to construct all higher order polynomials. 

To verify that this procedure does indeed produce orthogonal polynomials, examine 

 

 

 

(25) 

http://mathworld.wolfram.com/OrthogonalPolynomials.html
http://mathworld.wolfram.com/WeightingFunction.html
http://mathworld.wolfram.com/Polynomial.html
http://mathworld.wolfram.com/OrthogonalPolynomials.html
http://mathworld.wolfram.com/RecurrenceRelation.html
http://mathworld.wolfram.com/Polynomial.html
http://mathworld.wolfram.com/OrthogonalPolynomials.html
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(26) 

  

 

(27) 

  

 

(28) 

   

(29) 

  

 

(30) 

   

(31) 

since . Therefore, all the polynomials  are orthogonal. 

Inner product 

An inner product is a generalization of the dot product. In a vector space, it is a way to 

multiply vectors together, with the result of this multiplication being a scalar. 

More precisely, for a real vector space, an inner product  satisfies the following four 

properties. Let , , and  be vectors and  be a scalar, then: 

1. . 

2. . 

3. . 

4.  and equal if and only if . 

The fourth condition in the list above is known as the positive-definite condition. Related 

thereto, note that some authors define an inner product to be a function  satisfying only the 

first three of the above conditions with the added (weaker) condition of being (weakly) non-

degenerate (i.e., if for all , then ). In such literature, functions satisfying all four 

such conditions are typically referred to as positive-definite inner products (Ratcliffe 2006), 

though inner products which fail to be positive-definite are sometimes called indefinite to avoid 

confusion. This difference, though subtle, introduces a number of noteworthy phenomena: For 

example, inner products which fail to be positive-definite may give rise to "norms" which yield 

an imaginary magnitude for certain vectors (such vectors are called spacelike) and which induce 

"metrics" which fail to be actual metrics. The Lorentzian inner product is an example of an 

indefinite inner product. 

http://mathworld.wolfram.com/Polynomial.html
http://mathworld.wolfram.com/DotProduct.html
http://mathworld.wolfram.com/VectorSpace.html
http://mathworld.wolfram.com/Vector.html
http://mathworld.wolfram.com/Scalar.html
http://mathworld.wolfram.com/RealVectorSpace.html
http://mathworld.wolfram.com/PositiveDefiniteQuadraticForm.html
http://mathworld.wolfram.com/Spacelike.html
http://mathworld.wolfram.com/LorentzianInnerProduct.html
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A vector space together with an inner product on it is called an inner product space. This 

definition also applies to an abstract vector space over any field. 

Examples of inner product spaces include: 

1. The real numbers , where the inner product is given by 

 

(1) 

2. The Euclidean space , where the inner product is given by the dot product 

 

(2) 

3. The vector space of real functions whose domain is an closed interval  with inner product 

 

(3) 

When given a complex vector space, the third property above is usually replaced by 

 

(4) 

where  refers to complex conjugation. With this property, the inner product is called 

a Hermitian inner product and a complex vector space with a Hermitian inner product is called 

a Hermitian inner product space. 

Every inner product space is a metric space. The metric is given by 

 

(5) 

If this process results in a complete metric space, it is called a Hilbert space. What's 

more, every inner product naturally induces a norm of the form 

 

(6) 

whereby it follows that every inner product space is also naturally a normed space. As noted 

above, inner products which fail to be positive-definite yield "metrics" - and hence, "norms" - 

which are actually something different due to the possibility of failing their respective positivity 

conditions. For example, -dimensional Lorentzian Space (i.e., the inner product space 

consisting of  with the Lorentzian inner product) comes equipped with a metric tensor of the 

form 

http://mathworld.wolfram.com/VectorSpace.html
http://mathworld.wolfram.com/InnerProductSpace.html
http://mathworld.wolfram.com/AbstractVectorSpace.html
http://mathworld.wolfram.com/RealNumber.html
http://mathworld.wolfram.com/EuclideanSpace.html
http://mathworld.wolfram.com/DotProduct.html
http://mathworld.wolfram.com/RealFunction.html
http://mathworld.wolfram.com/Domain.html
http://mathworld.wolfram.com/ClosedInterval.html
http://mathworld.wolfram.com/ComplexVectorSpace.html
http://mathworld.wolfram.com/ComplexConjugate.html
http://mathworld.wolfram.com/HermitianInnerProduct.html
http://mathworld.wolfram.com/ComplexVectorSpace.html
http://mathworld.wolfram.com/HermitianInnerProduct.html
http://mathworld.wolfram.com/HermitianInnerProductSpace.html
http://mathworld.wolfram.com/MetricSpace.html
http://mathworld.wolfram.com/Metric.html
http://mathworld.wolfram.com/CompleteMetricSpace.html
http://mathworld.wolfram.com/HilbertSpace.html
http://mathworld.wolfram.com/NormedSpace.html
http://mathworld.wolfram.com/LorentzianSpace.html
http://mathworld.wolfram.com/MetricTensor.html
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(7) 

and a squared norm of the form 

 

(8) 

for all vectors . In particular, one can have negative infinitesimal 

distances and squared norms, as well as nonzero vectors whose vector norm is always zero. As 

such, the metric (respectively, the norm) fails to actually be a metric (respectively, a norm), 

though they usually are still called such when no confusion may arise. 

Tensor  

In n-dimensional space Vn  (called a "manifold" in mathematics), points are specified by 

assigning values to a set of n continuous real variables     x
1
, x

2
. .. ..x

n
 called the coordinates. In 

many cases these will run from -∞ to +∞, but the range of some or all of these can be finite. 

Examples: In Euclidean space in three dimensions, we can use cartesian coordinates x, y and z, 

each of which runs from -∞ to +∞. For a two dimensional Euclidean plane, Cartesians may again 

be employed, or we can use plane polar coordinates r,  whose ranges are 0 to ∞ and 0 to 2 

respectively.  

Coordinate transformations 

The coordinates of points in the manifold may be assigned in a number of different ways. If 

we select two different sets of coordinates,     x
1
, x

2
. .. ..x

n
 and     x 

1
, x 

2
, ..... x 

n
, there will 

obviously be a connection between them  of the form  

       x 
r
 f

r
(x

1
, x

2
....x

n
)
  r = 1, 2........n. (1) 

where the f's are assumed here to be well behaved functions. Another way of expressing the 

same relationship is  

       x 
r
 x 

r
(x

1
, x

2
.. ..x

n
)
  r = 1, 2........n. (2) 

where     x 
r

(x
1
,x

2
. .. .x

n
)  denotes the n functions     f

r
(x

1
,x

2
....x

n
) , r = 1, 2......n. 

Recall that if a variable z is a function of two variables x and y,  i.e. z = f (x, y), then the 

connection between the differentials dx, dy and dz is  

      

dz 
f

x
dx 

f

y
dy

.     (3) 
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Extending this to several variables therefore, for each one of the new coordinates we have 

        

d x 
r


 x r

x
ss 1

n

 dx
s

.  r=1, 2........n.  (4) 

The transformation of the differentials of the coordinates is therefore linear and 

homogeneous, which is not necessarily the case for the transformation of the coordinates  

themselves. 

Range and Summation Conventions.   Equations such as (4) may be simplified by the use 

of two conventions: 

Range Convention: When a suffix is unrepeated in a term, it is understood to take all values 

in the range 1, 2, 3.....n. 

Summation Convention: When a suffix is repeated in a term, summation with respect to 

that suffix is understood, the range of summation being  1, 2, 3.....n. 

With these two conventions applying, equation (4) may be written as  

      

d x 
r

 x r

x
s

dx
s

.     (5) 

Note that a repeated suffix is a "dummy" suffix, and can be replaced by any convenient 

alternative. For example, equation (5) could have been written as  

      

d x 
r

 x r

x
m

dx
m

.     (6) 

where the summation with respect to s has been replaced by the summation with respect to 

m. 

Contravariant vectors and tensors. Consider two neighbouring points P and Q in the 

manifold whose coordinates are xr and xr + dxr respectively. The vector   


P Q  

is then described by the quantities dxr which are the components of the vector in this 

coordinate system. In the dashed coordinates, the vector   


P Q  is described by the components  

  d x 
r

which are related to dxr by equation (5), the differential coefficients being evaluated at 

P. The infinitesimal displacement represented by dxr or   d x 
r

is an example of a contravariant 

vector. 
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Defn. A set of n quantities T r associated with a point P are said to be the components of  a 

contravariant vector if they transform, on change of coordinates, according to the equation 

      

T 
r

 x r

x
s

T
s

.     (7) 

where the partial derivatives are evaluated at the point P. (Note that there is no requirement 

that the components of a contravariant tensor should be infinitesimal.) 

Defn. A set of n 2 quantities T rs associated with a point P are said to be the components of  a 

contravariant tensor of the second order if they transform, on change of coordinates, 

according to the equation 

      

T 
rs

 x r

x
m

 x s

x
n

T
mn

.    (8) 

Obviously the definition can be extended to tensors of higher  order. A contravariant 

vector is the same as a contravariant tensor of first order.  

Defn. A contravariant tensor of zero order transforms, on change of coordinates, according to 

the equation 

      T  T ,      (9) 

i.e. it is an invariant whose value is independent of the coordinate system used. 

Covariant vectors and tensors. Let  be an invariant function of the coordinates, i.e. its 

value may depend on position P in the manifold but is independent of the coordinate system 

used. Then the partial derivatives of   transform according to  

      



 x 
r



x
s

xs

 x 
r

     (10) 

Here the transformation is similar to equation (7) except that the partial derivative 

involving the two sets of coordinates is  the other way up. The partial derivatives of an 

invariant function provide an example of the  components of a covariant  vector.  

Defn. A set of n quantities   Tr  associated with a point P are said to be the components of  a 

covariant vector if they transform, on change of coordinates, according to the equation 

      

T 
r

xs

 x 
r

T
s

.     (11) 
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By convention, suffices indicating contravariant character are placed as superscripts, and 

those indicating covariant character as subscripts. Hence the reason for writing the 

coordinates as xr.  (Note however that it is only the differentials of the coordinates, not the 

coordinates themselves, that always have tensor character. The latter may be tensors, but this 

is not always the case.) 

Extending the definition as before, a covariant tensor of the second order is defined by 

the transformation  

      

T 
rs

xm

 x 
r

xn

 x 
s

T
mn

    (12) 

and similarly for higher orders. 

Rank of Tensor 

The total number of contravariant and covariant indices of a tensor. The rank  of 

a tensor is independent of the number of dimensions  of the underlyingspace. 

An intiative way to think of the rank of a tensor is as follows: First, consider intuitively 

that a tensor represents a physical entity which may be characterized by magnitude and multiple 

directions simultaneously (Fleisch 2012). Therefore, the number of simultaneous directions is 

denoted  and is called the rank of the tensor in question. In -dimensional space, it follows that 

a rank-0 tensor (i.e., a scalar) can be represented by  number since scalars represent 

quantities with magnitude and no direction; similarly, a rank-1 tensor (i.e., a vector) in -

dimensional space can be represented by numbers and a general tensor by  numbers. 

From this perspective, a rank-2 tensor (one that requires  numbers to describe) is equivalent, 

mathematically, to an  matrix. 

rank object 

0 scalar  

1 vector 

2  matrix 

 

tensor 

The above table gives the most common nomenclature associated to tensors of various rank. 

Some care must be exhibited, however, because the above nomenclature is hardly uniform across 

the literature. For example, some authors refer to tensors of rank 2 as dyads, a term used 

http://mathworld.wolfram.com/ContravariantTensor.html
http://mathworld.wolfram.com/CovariantTensor.html
http://mathworld.wolfram.com/Tensor.html
http://mathworld.wolfram.com/Tensor.html
http://mathworld.wolfram.com/Dimension.html
http://mathworld.wolfram.com/Space.html
http://mathworld.wolfram.com/Scalar.html
http://mathworld.wolfram.com/Vector.html
http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/Scalar.html
http://mathworld.wolfram.com/Vector.html
http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/Tensor.html
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completely independently of the related term dyadic used to describe vector direct 

products (Kolecki 2002). Following such convention, authors also use the terms triad, tetrad, 

etc., to refer to tensors of rank 3, rank 4, etc. 

Some authors refer to the rank of a tensor as its order or its degree. When defining tensors 

abstractly by way of tensor products, however, some authors exhibit great care to maintain the 

separation and distinction of these terms. 

Mixed tensors and Kroneckar Delta.  These are tensors with at least one covariant suffix and 

one contravariant suffix. An example is the third order tensor 
  
T

st
r

 which transforms according to  

      

T 
st
r

 x r

x
m

x n

 x 
s

x
p

 x 
t

T
np
m

    (13) 

Another example is the Kronecker delta defined by 

        
s

r
 1, r  s

 

              
 0, r  s

     (14) 

It is a tensor of the type indicated because (a) in an expression such as     
Bpq..

mn..
m

t
, which 

involves summation with respect to m, there is only one non-zero contribution from the 

Kronecker delta, that for which m = t, and so     
Bpq..

mn..
m

t
Bpq..

tn..
; (b) the coordinates in any 

coordinate system are  necessarily independent of each other, so that
  

xr

x
s
 s

r
  and 

  

 x r

 x 
s
 s

r
; 

so these two properties taken together imply that  

      


s
r

 x r

x
m

xn

 x 
s

n
m

.    (15) 

Notes.  1. The importance of tensors is that if a tensor equation is true in one set of 

coordinates it is also true in any other coordinates. e.g. if 
    
T

mn
 0  (which, since m and n are 

unrepeated, implies that the equation is true for all m and n, not just for some particular choice of 

these  suffices), then 
    
T 
rs

 0  also, from the transformation law. This illustrates the fact that any 

tensor equation is covariant, which means that it has the same form in all coordinate systems. 

2. A tensor may be defined at a single point P within the manifold, or along a curve, or 

throughout a subspace, or throughout the manifold itself. In the latter cases we speak of a tensor 

field. 

Tensor algebra 

http://mathworld.wolfram.com/Dyadic.html
http://mathworld.wolfram.com/VectorDirectProduct.html
http://mathworld.wolfram.com/VectorDirectProduct.html
http://mathworld.wolfram.com/VectorDirectProduct.html
http://mathworld.wolfram.com/Triad.html
http://mathworld.wolfram.com/Tetradic.html
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Addition of tensors.  Two tensors of the same type may be added together to give another 

tensor of the same type, e.g. if 
  
A

st
r

 and 
  
B

st
r

 are tensors of the type indicated, then we can 

define  

      
C

st
r
 A

st
r
 B

st
r

.     (16) 

It is easy to show that the quantities 
  
C

st
r

 form the components of a tensor. 

Symmetric and antisymmetric tensors.    A
rs

  is a symmetric contravariant tensor if   A
rs
 A

sr
 

and antisymmetric if   A
rs
 A

sr
. Similarly for covariant tensors. Symmetry properties are 

conserved under transformation of coordinates, e.g. if   A
rs
 A

sr
, then 

     
A 
mn


 x m

xr

 x n

x s
A

rs

 x m

x r

 x n

x s
A

sr
 A 

nm

.  (17) 

Note however that for a mixed tensor, a relation such as   Ar
s
 As

r
 does not transform to give 

the equivalent relation in the dashed coordinates. The concept of symmetry (with respect to a 

pair of suffices which are either both subscripts or both superscripts) can obviously be extended 

to tensors of higher order. 

Any covariant or contravariant tensor of  second order may be expressed as the sum of a 

symmetric tensor and an antisymmetric tensor, e.g. 

      
A

rs


1

2
(A

rs
A

sr
)

1

2
(A

rs
A

sr
)
.    (18) 

Multiplication of tensors.  In the addition of tensors we are restricted to tensors of a single 

type, with the same suffices (though they need not occur in the same order). In the multiplication 

of tensors there is no such restriction. The only condition is that we never multiply two 

components with the same suffix at the same level in each. (This would imply summation with 

respect to the repeated suffix, but the resulting object  would not have tensor character - see 

later.)  

To multiply two tensors e.g.    
Ars  and   

Bn
m

 we simply write  

      Crsn
m

 ArsBn
m

.     (19) 
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It follows immediately from their transformation properties that the quantities   Crsn
m

 form a 

tensor of the type indicated. This tensor, in which the symbols for the suffices are all different, is 

called the outer product of   Ars  and   Bn
m

.  

Contraction of tensors.  Given a tensor   
Tnp

m

, then 

     

T np
m

 x m

x
r

x s

 x 
n

xt

 x p
Tst

r

.    (20) 

Hence replacing n by m (and therefore implying summation with respect to m) 

     

T mp
m


 x m

x
r

x s

 x 
m

xt

 x p
Tst

r

 

              


x s

x
r

x t

 x p
Tst

r

 

              
 r

s xt

 x p
Tst

r

 

              

xt

 x p
Tst

s

      (21) 

so we see that   
Tmp

m
 behaves like a tensor   

Ap . The upshot is that contraction of a tensor (i.e. 

writing the same letter as a subscript and a superscript) reduces the order of the tensor by 2 and 

yields a tensor whose type is indicated by the remaining suffices. 

Note that contraction can only be applied successfully to suffices at different levels. We may 

of course construct, starting with a tensor 
  
Aqrs

p
  say, a new set of quantities 

  
Aqrr

p
; but these do 

not have tensor character (as one can easily check) so are of little interest. 

Having constructed the outer product   
Crsn

m
 ArsBn

m

 in the example above, we can form the 

corresponding inner products   Cmsn
m

 AmsBn
m

 and   Crmn
m

 ArmBn
m

. Each of these forms a 

covariant tensor of second order. 
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Possible questions –(Part –B- 6 Marks) 

1. Explain the properties of Kronecker delta.  Prove that Kronecker delta is a mixed     

tensor of rank 2, and is invariant. 

2. Explain Schmidt’s orthogonalization method 

3. Show that the symmetry properties of a tensor are invariant         

4. Describe the operations of outer product and inner product of tensors     

5. Show that the set of vectors r1, r2, r3 given by 

 r1= j-2k, r2= i-j+K, r3 = i+2j+K is linearly independent 

6. Show that vectors (u+v), (u –v) and (u-2v+w) are linearly independent provided (u,v,w) 

are linearly dependent. 

7. Show that Kronecker delta is an invariant mixed tensor of rank 2. 

8. Show that in Cartesian coordinate system the contravariant and covariant components of 

a vector are identical. 

9. Explain about the symmetric and antisymmetric tensors. 

10. Explain orthogonal and orthonormal vectors.  Explain Schmidt’s orthogonalization 

procedure. 

11. Explain Einstein’s summation convention of tensors 

Possible questions –(Part –C- 10 Marks) 

1. Explain Schmidt’s orthogonalization process and give their properties 

2. Show that the symmetry properties of a tensor are invariant        

3. Describe the operations of outer product and inner product of tensors     

4. Show that the set of vectors r1, r2, r3 given by 

 r1= i+j-5k, r2= 2i-j+K, r3 = 8i+2j+K is linearly independent 

5. Show that vectors (u+v), (u –v) and (u-2v+w) are linearly independent provided (u,v,w) 

are linearly dependent. 

6. Show that in Cartesian coordinate system the contravariant and covariant components of 

a vector are identical. 

7. Explain about the symmetric and antisymmetric tensors with few examples 

8. Explain orthogonal and orthonormal vectors with orthogonolization process. 
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9. Explain covariant and contravariant tensors and einstein’s summation convention of 

tensors 



Questions opt1 opt2 opt3

UNIT I

The union of two subspaces of a vector space need not be a sub space cyclic an abelian

If { Vi} is an orthonormal set, then the vectors {Vi} are
linearly 
dependent

commutativ
e

linearly 
independent

Kronecker delta symbol is
covariant 
tensor

a 
contravarian
t tensor an invariant

The rank of the tensor Aij
klm is 4 5 3

The rank of the outer product of the tensors Cij and Dk is 1 3 2

In an n-dimensional vector space, the number of  linearly 
dependent vectors is n 2n n + 1

The rank of the outer product of the tensors Cij and Dk
lm is 3 5 2

The dimension of vector space is always

greater than 
number of 
linearly 

Equal to 
linearly 
independent 

Less than  
linearly 
independent 

The vectors are said to be orthogonal when the scalar 
product of

two null 
vector is one

two null 
vector is 
zero

two non-
null vector 
is zero

The set of all position vectors forms
an abelian 
group vector space sub space

Example of real vector space is

4 – 
dimensional 
 space

3 – 
dimensional 
 space

n – 
dimensional 
 space

An important example of mixed tensor of rank two is covariant
Kronecker 
delts Invariant

If x1, x2, ….. xn are independent variables, then

MULTIPLE CHOICE QUESTIONS
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 If f = f, the function of f is said to be a scalar invariant
tensor of 
rank two

 The tensors of rank zero are scalars invariant
either (a) or 
(b)

 The tensors of rank one are scalars vectors invariant

A symmetric tensor of rank two is n-dimensional space has 
independent components

If Al
mns = - Al

msn, then tensor Al
mns is antisymmetric with 

respect to indices n and s m and s m and n

A antisymmetric tensor of rank two is n-dimensional space 
has independent components (n+1)/2 n(n+1)/2 n(n-1)/2

If Aij is antisymmetric tensor, then the component A11 is 1 0 2

An antisymmetric tensor of rank ‘r’ is n-dimensional space 
will have independent components

If aik is a tensor of rank two, its independent components in 
4-dimensional space are 4 2 8

The total number of components aik tensor of rank two in 4-
dimensional space are 4 16 2

The total number of components aik tensor of rank two in n-
dimensional space are n n2 (n-1)

 As aijkl is a tensor of rank 4, the number of components in 
in 4-dimensional space is 1 0 4
 If Aij is antisymmetric tensor, of second order and Ui is a 

tensor of rank one, then AijU
i Uj is equal to 1 0 2

 The sum of one contravariant and one covariant AmBm is invariant
contravarian
t  covariant

Kronecker delta is the best example for covariant mixed invariant

 A tensor of rank ‘r’ in n-dimensional space has components nr
rn n / r

 Al
mns are the components of a mixed tensor of rank 1 3 4

In an n-dimensional vector space, the number of  linearly 
dependent vectors is n 2n n+1
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UNIT-II 

 

SYLLABUS 

 

Functions of a complex variable – single and multivalued functions – Cauchy-Riemann 

differential equation – analytical – line integrals of complex function – Cauchy’s integral theorem 

and integral formula – derivatives of an analytic function – Liouville’s theorem - Taylor’s series – 

Laurent’s series - Residues and their evaluation - Cauchy’s residue theorem – application to the 

evaluation of definite integrals. 

 

Complex Algebra 

Formally, the set of complex numbers can be de¯ned as the set of two-dimensional 

real vectors, f(x; y)g, with one extra operation, complex multiplication: 

(x1; y1) ¢ (x2; y2) = (x1 x2 ¡ y1 y2; x1 y2 + x2 y1) : (1) 

Together with generic vector addition 

(x1; y1) + (x2; y2) = (x1 + x2; y1 + y2) ; (2) 

.With the rules (1)-(2), complex numbers include the real numbers as a subset f(x; 0)g with usual 

real number algebra. This suggests short-hand notation (x; 0) ´ x; in particular: (1; 0) ´  

Complex algebra features commutatively, distributive and associa-tivity. 

The two numbers, 1 = (1; 0) and i = (0; 1) play a special role. They form a basis in 

the vector space, so that each complex number can be represented in a unique way as [we 

start using the notation (x; 0) ´ x] 

(x; y) = x + iy : (3) 

Terminology: The number i is called imaginary unity. For the complex number z = (x; y), 

the real umbers x and y are called real and imaginary parts, respectively; corresponding 

notation is: x = Re z and y = Im z. 

 

The following remarkable property of the number i, 

i
2
  = -1  (4) 

renders the representation (3) most convenient for practical algebraic ma-nipulations with 

complex numbers.|One treats x, y, and i the same way as the real numbers. 

 

Single and Multi valued function 

In a multi-valued function every input is associated with one or more outputs. Strictly 

speaking, a "well-defined" function associates one, and only one, output to any particular input. The 

term "multi-valued function" is, therefore, a misnomer: usually true functions are single-valued. 

If only one value of corresponds to each value of z then is of z.single valued function 
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If more than one values of correspond to each value of z then is of z. i.e. A multi-valued 

function assumes two or more distinct values in its range for at least one point in its domain. 

Cauchy Riemann Differential Eqution 

Let 

 

(1) 

 

Where 

 

(2) 

So 

 

(3) 

The total derivative of  with respect to  is then 

 

 

 

(4) 

  

 

(5) 

 

In terms of  and , (5) becomes 

 

 

 

(6) 

  

 

(7) 

 

Along the real, or x-axis, , so 

 

(8) 

 

Along the imaginary, or y-axis, , so 

 

(9) 

 

If  is complex differentiable, then the value of the derivative must be the same for a 

given , regardless of its orientation. Therefore, (8) must equal (9), which requires that 

 

(10) 

and 

 

(11) 

These are known as the Cauchy-Riemann equations. 

They lead to the conditions 

 

 

 

(12) 

http://mathworld.wolfram.com/Cauchy-RiemannEquations.html#eqn5
http://mathworld.wolfram.com/x-Axis.html
http://mathworld.wolfram.com/y-Axis.html
http://mathworld.wolfram.com/ComplexDifferentiable.html
http://mathworld.wolfram.com/Cauchy-RiemannEquations.html#eqn8
http://mathworld.wolfram.com/Cauchy-RiemannEquations.html#eqn9


KARPAGAM ACADEMY OF HIGHER EDUCATION 
                 CLASS: I MSC PHYSICS COURSE NAME: MATHEMATICAL PHYSICS 

                 COURSE CODE: 19PHP104   UNIT: II (COMPLEX VARIABLE) BATCH-2019-2021   

 

Prepared by Dr.S.Sharmila, Asso Prof, Department of Physics, KAHE  Page 3of 16 

 

 

 

 

(13) 

 

The Cauchy-Riemann equations may be concisely written as 

 

 

 

(14) 

  

 

(15) 

  

 

(16) 

   

(17) 

where  is the complex conjugate. 

If , then the Cauchy-Riemann equations become 

 

 

 

(18) 

 

 

 

(19) 

 

Cauchy Integral Formula 

 

 

Cauchy's integral formula states that 

 

(1) 

where the integral is a contour integral along the contour  enclosing the point . 

It can be derived by considering the contour integral 

 

(2) 

defining a path  as an infinitesimal counterclockwise circle around the point , and defining the 

path  as an arbitrary loop with a cut line (on which the forward and reverse contributions cancel 

each other out) so as to go around . The total path is then 

 

(3) 

so 

http://mathworld.wolfram.com/ComplexConjugate.html
http://mathworld.wolfram.com/ContourIntegral.html
http://mathworld.wolfram.com/Contour.html
http://mathworld.wolfram.com/ContourIntegral.html
http://mathworld.wolfram.com/Circle.html
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(4) 

From the Cauchy integral theorem, the contour integral along any path not enclosing 

a pole is 0. Therefore, the first term in the above equation is 0 since  does not enclose the pole, 

and we are left with 

 

(5) 

Now, let , so . Then 

 

 

 

(6) 

  

 

(7) 

But we are free to allow the radius  to shrink to 0, so 

 

 

 

(8) 

  

 

(9) 

  

 

(10) 

   

(11) 

giving (1). 

If multiple loops are made around the point , then equation (11) becomes 

 

(12) 

where  is the contour winding number. 

A similar formula holds for the derivatives of , 

  

 

(13) 

  

 

(14) 

  

 

(15) 

  

 

(16) 

http://mathworld.wolfram.com/CauchyIntegralTheorem.html
http://mathworld.wolfram.com/ContourIntegral.html
http://mathworld.wolfram.com/Pole.html
http://mathworld.wolfram.com/Pole.html
http://mathworld.wolfram.com/CauchyIntegralFormula.html#eqn11
http://mathworld.wolfram.com/ContourWindingNumber.html


KARPAGAM ACADEMY OF HIGHER EDUCATION 
                 CLASS: I MSC PHYSICS COURSE NAME: MATHEMATICAL PHYSICS 

                 COURSE CODE: 19PHP104   UNIT: II (COMPLEX VARIABLE) BATCH-2019-2021   

 

Prepared by Dr.S.Sharmila, Asso Prof, Department of Physics, KAHE  Page 5of 16 

 

  

 

(17) 

Iterating again, 

 

(18) 

Continuing the process and adding the contour winding number , 

 

 

Cauchy Integral Theorem 

If  is analytic in some simply connected region , then 

 

(1) 

for any closed contour  completely contained in . Writing  as 

 

(2) 

and  as 

 

(3) 

then gives 

 

 

 

(4) 

  

 

(5) 

From Green's theorem, 

 

 

 

(6) 

 

 

 

(7) 

so (◇) becomes 

 

(8) 

http://mathworld.wolfram.com/ContourWindingNumber.html
http://mathworld.wolfram.com/AnalyticFunction.html
http://mathworld.wolfram.com/Contour.html
http://mathworld.wolfram.com/GreensTheorem.html
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But the Cauchy-Riemann equations require that 

 

 

 

(9) 

 

 

 

(10) 

so 

 

 

Liouville's theorem 

 

Liouville's theorem from complex analysis states that a holomorphic function f(z)f(z) on the 

plane that is bounded in magnitude is constant. The usual proof uses the Cauchy integral formula 

Assume that f(z) is nonconstant. The fact that)f(z) is holomorphic at every point implies that 

at any given point, there is a direction such that moving in that direction makes |f(z)| larger. But this 

doesn't prove that |f(z)| is unbounded, because a priori its magnitude could behave like 5−1|z| or 

some such thing. 

In the case of f(z)=1P(z) where P(z) is a polynomial, one knows that |f(z)| tends 

toward 0 as |z|→∞ so that there's some closed disk such that if |f(z)||f(z)| is bounded, then it has a 

maximum in the interior of the disk, which contradicts the fact that one can always make f(z) larger 

by moving in a suitable direction. But for general f(z), one doesn't have this argument. 

One can try to reason based on the power series expansion of a holomorphic function f(z) 

that is not a polynomial. Because polynomials are unbounded as |z|→∞ and grow in magnitude in a 

way that's proportional to their degree, one might think that a power series, which can be regarded 

as an infinite degree polynomial, would also be unbounded as |z|→∞. This is of course false: 

take f(z)=sin(z), then as |z|→∞ along the real axis, f(z) remains bounded. The point is that the 

dominant term in the partial sums of the power series varies with |z|, and that the relevant 

coefficients change, alternating in sign and tending toward zero rapidly, so that the gain in size 

corresponding to moving to the next power of z is counterbalanced by the change in coefficient. But 

there's some direction that one can move in for which f(z) is unbounded: in particular, 

for f(z)=sin(z), f(z) is unbounded along the imaginary axis. 

 

http://mathworld.wolfram.com/Cauchy-RiemannEquations.html
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Taylor’s Series 

A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor 

series is an expansion of a real function  about a point  is given by 

 

(1) 

If , the expansion is known as a Maclaurin series. 

Taylor's theorem (actually discovered first by Gregory) states that any function satisfying 

certain conditions can be expressed as a Taylor series. 

The Taylor (or more general) series of a function  about a point  up to order  may be 

found using Series[f, x, a, n ]. The th term of a Taylor series of a function  can be computed in 

the Wolfram Language using SeriesCoefficient[f, x, a, n ] and is given by the inverse Z-transform 

 

(2) 

Taylor series of some common functions include 

 

 

 

(3) 

  

 

(4) 

  

 

(5) 

  

 

(6) 

  

 

(7) 

  

 

(8) 

To derive the Taylor series of a function , note that the integral of the 

st derivative  of  from the point  to an arbitrary point  is given by 

 

(9) 

where  is the th derivative of  evaluated at , and is therefore simply a constant. Now 

integrate a second time to obtain 

http://mathworld.wolfram.com/SeriesExpansion.html
http://mathworld.wolfram.com/Function.html
http://mathworld.wolfram.com/RealFunction.html
http://mathworld.wolfram.com/MaclaurinSeries.html
http://mathworld.wolfram.com/TaylorsTheorem.html
http://reference.wolfram.com/language/ref/Series.html
http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/SeriesCoefficient.html
http://mathworld.wolfram.com/Z-Transform.html
http://mathworld.wolfram.com/Derivative.html
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(10) 

where  is again a constant. Integrating a third time, 

 

(11) 

and continuing up to  integrations then gives 

 

(12) 

Rearranging then gives the one-dimensional Taylor series 

  

 

(13) 

  

 

(14) 

Here,  is a remainder term known as the Lagrange remainder, which is given by 

 

(15) 

Rewriting the repeated integral then gives 

 

(16) 

Now, from the mean-value theorem for a function , it must be true that 

 

(17) 

http://mathworld.wolfram.com/LagrangeRemainder.html
http://mathworld.wolfram.com/RepeatedIntegral.html
http://mathworld.wolfram.com/Mean-ValueTheorem.html
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for some . Therefore, integrating  times gives the result 

 

(18) 

so the maximum error after  terms of the Taylor series is the maximum value of (18) running 

through all . Note that the Lagrange remainder  is also sometimes taken to refer to the 

remainder when terms up to the st power are taken in the Taylor series  

Taylor series can also be defined for functions of a complex variable. By the Cauchy integral 

formula, 

  

 

(19) 

  

 

(20) 

  

 

(21) 

In the interior of , 

 

(22) 

so, using 

 

(23) 

it follows that 

  

 

(24) 

  

 

(25) 

Using the Cauchy integral formula for derivatives, 

 

(26) 

An alternative form of the one-dimensional Taylor series may be obtained by letting 

 

(27) 

http://mathworld.wolfram.com/TaylorSeries.html#eqn18
http://mathworld.wolfram.com/ComplexNumber.html
http://mathworld.wolfram.com/CauchyIntegralFormula.html
http://mathworld.wolfram.com/CauchyIntegralFormula.html
http://mathworld.wolfram.com/CauchyIntegralFormula.html
http://mathworld.wolfram.com/CauchyIntegralFormula.html
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so that 

 

(28) 

Substitute this result into (◇) to give 

 

(29) 

A Taylor series of a real function in two variables  is given by 

 

(30) 

This can be further generalized for a real function in  variables, 

 

(31) 

Rewriting, 

 

 

Laurent’s Series 

If  is analytic throughout the annular region between and on the concentric circles 

 and  centered at  and of radii  and respectively, then there exists a unique series 

expansion in terms of positive and negative powers of , 

 

(1) 

where 

  

 

(2) 

  

 

(3) 

 

 

 

http://mathworld.wolfram.com/RealFunction.html
http://mathworld.wolfram.com/RealFunction.html
http://mathworld.wolfram.com/Analytic.html
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Let there be two circular contours  and , with the radius of  larger than that of . 

Let  be at the center of  and , and  be between  and . Now create a cut line 

 between and , and integrate around the path , so that the plus and minus 

contributions of cancel one another, as illustrated above. From the Cauchy integral formula, 

  

 

(4) 

  

 

(5) 

  

 

(6) 

Now, since contributions from the cut line in opposite directions cancel out, 

  

 

(7) 

  

 

(8) 

  

 

(9) 

For the first integral, . For the second, . Now use the Taylor 

series (valid for ) 

 

(10) 

to obtain 

  

 

(11) 

  

 

(12) 

  

 

(13) 

where the second term has been re-indexed. Re-indexing again, 

 

(14) 

http://mathworld.wolfram.com/CauchyIntegralFormula.html
http://mathworld.wolfram.com/TaylorSeries.html
http://mathworld.wolfram.com/TaylorSeries.html
http://mathworld.wolfram.com/TaylorSeries.html
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Since the integrands, including the function , are analytic in the annular region defined by 

 and , the integrals are independent of the path of integration in that region. If we replace paths of 

integration  and  by a circle  of radius  with , then 

  

 

(15) 

  

 

(16) 

  

 

(17) 

Generally, the path of integration can be any path  that lies in the annular region and encircles 

 once in the positive (counterclockwise) direction. 

The complex residues  are therefore defined by 

 

Cauchy Residue Theorem 

An analytic function  whose Laurent series is given by 

 

(1) 

can be integrated term by term using a closed contour  encircling , 

 

 

 

(2) 

  

 

(3) 

The Cauchy integral theorem requires that the first and last terms vanish, so we have 

 

(4) 

where  is the complex residue. Using the contour  gives 

 

(5) 

so we have 

http://mathworld.wolfram.com/ComplexResidue.html
http://mathworld.wolfram.com/AnalyticFunction.html
http://mathworld.wolfram.com/LaurentSeries.html
http://mathworld.wolfram.com/Contour.html
http://mathworld.wolfram.com/CauchyIntegralTheorem.html
http://mathworld.wolfram.com/ComplexResidue.html
http://mathworld.wolfram.com/Contour.html
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(6) 

If the contour  encloses multiple poles, then the theorem gives the general result 

 

(7) 

where  is the set of poles contained inside the contour. This amazing theorem therefore says that 

the value of a contour integral for any contour in the complex plane depends only on the properties 

of a few very special points inside the contour. 

 

 

 

 

 

 

The diagram above shows an example of the residue theorem applied to the illustrated contour 

 and the function 

 

(8) 

Only the poles at 1 and  are contained in the contour, which have residues of 0 and 2, respectively. 

The values of the contour integral is therefore given by 

 
 

Application to evaluation of definite integral 

Definite Integrals 

We now know how to integrate simple polynomials, but if we want to use this technique to 

calculate areas, we need to know the limits of integration. If we specify the limits x = a to x = b, 

we call the integral a definite integral.  

http://mathworld.wolfram.com/ContourIntegral.html
http://mathworld.wolfram.com/ComplexPlane.html
http://mathworld.wolfram.com/Contour.html
http://mathworld.wolfram.com/ContourIntegral.html
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To solve a definite integral, we first integrate the function as before, then feed in the 2 values of the 

limits. Subtracting one from the other gives the area. 

Example 

1. What is the area under the curve y(x) = 2x
2
 between x=1 and x=3? (Note: this is the same 

problem we did graphically earlier). 

Area =  we write the limits at the top and bottom of the integration sign 

=  we use square brackets to indicate we've calculated the indefinite integral 

= (18 + k) - (2/3 + k) feed in the larger value, then the smaller, and subtract the two. 

= 18 - 2/3 

= 17.33 sq. unit 
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Possible questions (Part B- 6 Marks) 

1. State and prove Cauchy Residue theorem.       

2. Define and derive Cauchy’s integral formula. 

3. Derive Cauchy-Riemann equation. 

4. Derive and prove Taylor’s series.  

5. Define and prove Laurent’s series 

6. Use Cauchy’s integral theorem to evaluate 

∮
𝑐

𝑑𝑧

𝑧
. 

7. Find the Laplace transform of the following functions. 

(i) Sin
2
t, (ii) Cos

2
t, (iii) e

at
cosωt and (iv) e

at
sinωt. 

       8. Explain the complex form of Fourier series 

       9. State and Explain Dirichlet conditions. 

     10. Define  Laplace Transform. Explain the linearity and change in scale property of   

           Laplace transform. 

 

Possible questions (Part B- 10 Marks) 

1. State and prove Cauchy Residue theorem.  Explain how it is extended for the case of an 

isolated first order pole lying on the contour of integration. Using this   

 theorem.  show that  

 
𝒆𝒂𝒙

𝟏+𝒆𝒙
𝒅𝒙 =

𝝅

𝒔𝒊𝒏𝝅𝒂

+∞

−∞
  where 0 <  a < 1. 

  

2. Derive Cauchy-Riemann equation and deduce the same in polar form. 

3. Derive and prove Taylor’s series.  

4. Use Cauchy’s integral theorem to evaluate 

∮
𝑐

𝑑𝑧

𝑧
. 

5. Find the Laplace transform of the following functions. 

(i) Sin
2
t, (ii) Cos

2
t, (iii) e

at
cosωt and (iv) e

at
sinωt. 

       8. Explain the complex form of Fourier series 

       9. Explain how the Dirichlet conditions used to find the functions in physics. 
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Questions opt1 opt2
 The function                        has       a simple pole at z = 1 a simple pole at z = -1
 If a given number is wholly real, it is found in/ona real axis imaginary axis
 A set which entirely consists of interior points is known asan open set a closed set

If a contour is a unit circle around the origin, then  |z| is1 0
A connected open set is called an open set a closed set

Which is the analytic function of complex variable z = x + iy|Z| Re Z
Which is the analytic function of complex variable  Z=x +iy| Z | Sin Z

Which is the analytic function of complex variable z=X+iY|Z| e sinz  

Which is not the analytic function of complex variable z=X+iYz –1 Z

 Which is not the analytic function of complex variable z=X+iYZ –1 e Sin Z

Which is not the analytic function of complex variable z=X+iYZ –1 log Z
The function                       has a simple pole at  Z= a a simple pole at  Z=_ a

The symbol i  with the property i 2=1 was introduced by  Euler Gauss
arg (Z1 / Z2) is equal to arg Z1+ arg Z2 arg Z1 - arg Z2

A single valued function f(z) which is differentiable at z = zo it is said to beirregular function analytic function
The function                          is analyticat all points y = x at all points, except z = 1

In order that the function f(z) = |Z|2 / Z, Z ¹ 0, be continuous at z = 0. we should define f(0) equal to2 –1
Any function which satisfies the Laplace equation is known asharmonic function analytic function
The value of                            , C : |Z| = 1 is2pi -2pi
If f(z) is analytic in a closed curve ‘C’ except at a finite number of poles within C, then 2pi 2p
The conjugate of 1/1+i is 1–i       1-i/√ 2     
The conjugate of (1+i) (3+4i) is 1+7i        1-7i         
The Conjugate of 1/i   is –i            i              

The value of i2 + i3 + i4 is i         –i          

If Z= a+ib, then real part of Z-1 is ---- a/ a2+b2   –b/ a2+b2   

If Z= a+ib, then Im( Z-1) is ---- b/ a2+b2   b/√ a2+b2  

The modulus and argument of √ 3  - i   are2,  ∏/6     2, -∏/6      
If Z1 = r1(cos θ1 + isin θ1)  and   Z2= r2θ1 +  θ2             θ1 -  θ2           

The argument of -1 + I is --- - ∏/4      3∏/4    

 (1+ e-i θ ) / (1+ ei θ )    = ------- cos θ + isin θ      sin θ -icos θ       

If X =  cos θ + isin θ  then the value of X2 cos nθ   2i sin nθ   

The value of  (cos θ + isin θ )-1 is -------cos θ - sin θ     sin θ -  icos θ    

 ( sin ∏ /3+ i cos ∏ /3)3 is equal to -1 1

(cos ∏ /4+ i sin ∏ /4)4  is ------ 1/√2  + 1i/√2         b)1          
In the Argand diagram, the fourth roots of unity forms a -------Straight line  circle    

)1)(1(

1

 zz

 C z

dz

2


C

f(



 The sum of nth roots of unity are ------0 1
If z1 = 2 + ι, z2 = 1 + 3ι, then ι Re ( z1 - z1 i

Polar form of a complex number is r ( tanθ + ιcotθ ) r(secθ + ιcosecθ )

|z1 + z2 | = |Z1| + |Z2 ≤|Z1| + |Z2|

The exponential form of a complex number isz = reiq z = eiq 
3)1( z 2z



opt3 opt4 Answer
a pole at z = 1 of order 2 a simple pole at z = 1 of order 3a simple pole at z = 1 of order 3
x-y plane space x-y plane
a banded set domain an open set

eiq eiq 1
a banded set domain an open set

Z-1 Log Z Z-1

Log z Re Z Sin Z

  log Z Re Z e sinz  

e sinz Sin Z Z

Re Z SinZ   Re Z

e Sin Z SinZ log Z
a pole at z=a of order  2 a pole at z=a of order  3a pole at z=a of order  3

   Cauchy Reimann   Euler
real imaginary arg Z1 - arg Z2

periodic function all the above analytic function
at all points, except z = -1at all points, except z = ± 1at all points, except z = ± 1

0 1 0
periodic function conjugate function harmonic function
4pi 0 0
p ip 2pi
1-i/2         1+i 1-i/√ 2     
7-i       -1-7i -1-7i
1 -1 –i            

1 0 –i          

a/ √a2+b2   –b/√a2+b2  a/ a2+b2   

-b/ a2+b2  –b/√a2+b2  -b/ a2+b2  

4, ∏/3       4, -∏/3 2, -∏/6      
θ1  θ2        θ1 /  θ2 θ1 +  θ2             

∏/4    ∏/2   3∏/4    

cos θ - isin θ         sin θ + icos θ cos θ - isin θ         

2 sin nθ    2i cos nθ 2 cos nθ   

cos θ + sin θ    sin θ/2 +  icos θ/2 sin θ -  icos θ    

–i       i  i  

-1 i -1
rectangle    square square



2 3 0
2i 2 1

 r(cosθ + ιsinθ ) r (sinθ + ιcosθ) r (sinθ + ιcosθ)

≤ Z1 + Z2

> Z1 + 
Z2 ≤|Z1| + |Z2|

z = cos q / r z = r / cos q z = reiq 
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UNIT-III 

 

SYLLABUS 

Fourier Transform – Properties of Fourier transform – Fourier transform of derivatives – 

Fourier sine and cosine transforms of derivatives – Fourier transform of functions of two or three 

variables – Finite Fourier transforms – Simple Applications of FT Laplace transform – Properties 

of Laplace transforms – Laplace Transform of derivative of a function – Laplace transform of 

integral – Laplace transform of periodic functions - Inverse Laplace Transform – Fourier Mellin 

Theorem - Properties of inverse Laplace Transform – Convolution theorem – Evaluation of 

Laplace Transform using Convolution theorem. 
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Fourier Transform  

The Fourier transform is a generalization of the complex Fourier series in the limit 

as . Replace the discrete  with the continuous  while letting . Then change 

the sum to an integral, and the equations become 

  

 

(1) 

  

 

(2) 

Here, 

   

(3) 

  

 

(4) 

is called the forward ( ) Fourier transform, and 

  

 

(5) 

  

 

(6) 

is called the inverse ( ) Fourier transform. The notation  is introduced and 

 and  are sometimes also used to denote the Fourier transform and inverse Fourier transform, 

respectively. 

Properties of Fourier Transform 

The properties of the Fourier transform are summarized below. The properties of the Fourier 

expansion of periodic functions discussed above are special cases of those listed here. In the 

following,  

Linearity  

 

Time shift  

 

 

 
 

 

  

http://mathworld.wolfram.com/ComplexNumber.html
http://mathworld.wolfram.com/FourierSeries.html
http://mathworld.wolfram.com/Integral.html
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Frequency shift  

 

 

 

 

 

  

  
 

 

  

Time reversal  

 

 

Proof:  

 

Replacing  by , we get  

 

and  

 

Fourier Sine and cosine transform of derivative  

The Fourier cosine transform of a real function is the real part of the full complex Fourier 

transform, 

 

  

(1) 

http://mathworld.wolfram.com/RealPart.html
http://mathworld.wolfram.com/FourierTransform.html
http://mathworld.wolfram.com/FourierTransform.html
http://mathworld.wolfram.com/FourierTransform.html
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(2) 

The Fourier cosine transform  of a function  is implemented as Fourier Cosine 

Transform[f, x, k], and different choices of  and  can be used by passing the optional Fourier 

Parameters -> a, b  option. In this work,  and . 

Derivative 

 

This formula shows that the Fourier cosine transform of an even-order derivative gives the 

product of the power function with the Fourier cosine transform plus some even polynomial.  

 

This formula shows that the Fourier cosine transform of an odd-order derivative gives the 

product of a power function with the Fourier sine transform plus some even polynomial. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://reference.wolfram.com/language/ref/FourierCosTransform.html
http://reference.wolfram.com/language/ref/FourierCosTransform.html
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Laplace Transform  

The Laplace transform is an integral transform perhaps second only to the Fourier transform in its 

utility in solving physical problems. The Laplace transform is particularly useful in solving 

linear ordinary differential equations such as those arising in the analysis of electronic circuits. 

The (unilateral) Laplace transform  (not to be confused with the Lie derivative, also commonly 

denoted ) is defined by 

http://mathworld.wolfram.com/IntegralTransform.html
http://mathworld.wolfram.com/FourierTransform.html
http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/LieDerivative.html
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(1) 

where  is defined for  (Abramowitz and Stegun 1972). The unilateral Laplace transform is 

almost always what is meant by "the" Laplace transform, although a bilateral Laplace transform is 

sometimes also defined as 

 

Properties of Laplace transform 

The properties of Laplace transform are: 

Linearity Property 

If x(t)⟷L.T X(s)x(t)⟷L.TX(s) 

 

& y(t)⟷L.T Y(s)y(t)⟷L.TY(s) 

 

Then linearity property states that 

ax(t)+by(t)⟷L.T aX(s)+bY(s)ax(t)+by(t)⟷L.T aX(s)+bY(s) 

 

Time Shifting Property 

If x(t)⟷L.T X(s)x(t)⟷L.TX(s) 

 

Then time shifting property states that 

x(t−t0)⟷L.T e−st0X(s)x(t−t0)⟷L.Te−st0X(s) 

 

Frequency Shifting Property 

If x(t)⟷L.T X(s)x(t)⟷L.T X(s) 

 

Then frequency shifting property states that 

es0t.x(t)⟷L.T X(s−s0)es0t.x(t)⟷L.T X(s−s0) 

 

Time Reversal Property 

If x(t)⟷L.TX(s)x(t)⟷L.TX(s) 

 

Then time reversal property states that 

x(−t)⟷L.TX(−s)x(−t)⟷L.TX(−s) 

http://mathworld.wolfram.com/BilateralLaplaceTransform.html
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Time Scaling Property 

If x(t)⟷L.TX(s)x(t)⟷L.TX(s) 

 

Then time scaling property states that 

x(at)⟷L.T1|a|X(sa) 

 

Laplace Transform of periodic function 
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Convolution theorem 
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Evaluation of Laplace Transform using Convolution theorem 

 

 

 

 

 

 

 

Laplace transform of integral 

The Laplace transform satisfied a number of useful properties. Consider exponentiation. 

If  for  (i.e.,  is the Laplace transform of ), then 

 for . This follows from 

  

  

  

  

  

 

 

The Laplace transform also has nice properties when applied to integrals of functions. If 

 is piecewise continuous. 

http://mathworld.wolfram.com/ExponentialFunction.html
http://mathworld.wolfram.com/Integral.html
http://mathworld.wolfram.com/PiecewiseContinuous.html
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Fourier Mellin theorem 
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Possible questions (Part B- 6 marks) 

1. Define Laplace Transform and explain their property. 

2. Explain the linearity and change in scale property of Laplace transform. 

3. State and explain shifting property of Fourier Transform. 

4. Find the Fourier transforms of the following functions, and in each case draw graphs for 

the function and its transform 

f(x) = 1; │x│ │< a 

f(x) = 0; │x│ │> a 

5. Define Inverse Laplace Transform. Find the inverse Laplace transform of 

)134)(1(

1
2 



SSS

S
         

6. Discuss about the change of interval from (-π,π) to (-l, l) in Fourier expansion. 

7. Derive  any two properties of Fourier transform.  

8. State and prove Cauchy’s Integral theorem. 

Use Cauchy’s integral theorem to evaluate 

∮
𝑐

𝑑𝑧

𝑧
. 

9. Explain the Taylor’s Series with proof. 

Possible questions (Part C- 10 marks) 

1. Derive four properties of Laplace Transform 

2. State and explain shifting property of Fourier Transform. 

3. Find the Fourier transforms of the following functions, and in each case draw graphs for 

the function and its transform 

f(x) = x; │x│ │< a 

f(x) = x
2
; │x│ │> a 

4. Define Inverse Laplace Transform. Find the inverse Laplace transform of 

)134)(1(

1
3 



SSS

S
         

5. Discuss about the change of interval from (-π,π) to (-k, k) in Fourier expansion. 

6. Derive all properties of Fourier transform.  

7. Explain the Taylor’s Series with proof.  



BATCH:2

Questions opt1 opt2 opt3

UNIT III

Which of the following functions has the period 2p? cos nx sin nx    tan nx      

If f(x) = -x for -p< x£ 0then its Fourier coefficient a0 is π p/4        p/3            

Which of the following is an odd function? sin x       cos x       x2       

Which of the following is an even function? x3       cos x      sin x      

The function f(x) is said to be an odd function of x if f(-x) = f( x)     
b)f(x) = - 
f( x)  

f(-x) = - 
f( x)   

 The function f(x) is said to be an even function of x if f(-x) = f( x)     
b)f(x) = - 
f( x)   

f(-x) = - 
f( x)   

 If a periodic function f(x) is odd, it’s Fourier expansion 
contains no ------ terms. coefficient an      sine                   

coefficient 
 a0         

If a periodic function f(x) is even, it’s Fourier expansion 
contains no ------ terms. cosine      sine                   

coefficient 
 a0         

 In Fourier series, the function f(x) has only a finite number of 
maxima and minima. This condition is known as ------- Dirichlet          

Kuhn 
Tucker     Laplace       

 In dirichlet condition, the function f(x) has only a finite 
number of finite dis continuities and no ------- discontinuities        semi finite         continuous           infinite         

 If  f(x) is even, then it’s Fourier co- efficient -------- is zero. a0                         an                               bn                       
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 If the periodic function f(x) is odd, then it’s Fourier co- 
efficient -------- is zero. a0                        an                               bn                          

The period of cos nx where n is the positive integer is π/n            π/2n              2π            

The Fourier co efficient  a0   in f(x) = x for 0< x£ π is π               π/2               2π             

If the function f (x) = -π  in the interval -π x< 0, the coefficient 
a0 is π2/3          2π2/3             2π/3            

If the function  f(x) = x sin x, the Fourier coefficient bn = 0       a0 = 1           a0 = π2/3     

For the cosine series, which of the Fourier coefficient 
variables will be vanish? an             bn                a0              

For a function f(x) =  x3, the Fourier coefficient bn  = 0          an  = 0              a0  = 0            

The function x sin x be a   ------- function. even       odd      
continuou
s    

The function x cos x be a   ------- function. even       odd       
continuou
s    

Lt         F(s) = ------    s® ¥ 0 1 ¥       

The Laplace transform of f(t) is denoted by L { F(s) }      L { f (t) }      L { F(t) }     

L (e-at) = --- 1/s+a            1/s-a                1/s * a                

L (cos h at) = ---- a/s2 - a2               s/s2 *a2                   s/s2 - a2                     



L (sinh at) = ---- a/s2 -a2               s/s2 - a2                    a/s2 + a2                     

L (cosat) = ---- s/s2 -a2              a/s2 +a2                    a/s2 - a2                     

L (sinat) = ---- s/s2 +a2              a/s2 +a2                    a/s2 - a2                     

L (tn) =  ---- é(n+1)/sn+1             é(n-1)/sn+1             é(n+1)/sn-1      

é(n+1) = ---- (n-1)!              n!                    (n+1)!           

L(1) = ---- 1 s                       1/s                

L(t) = ----- 1/s                   1/s2                   t                               

L(t2) = ----- 2/s3                  1/t2                  2/t3                 

é1/2 = --- ÖP/2  ÖP/4  ÖP

L (eat) = ---- 1/s+a      1/s-a    1/s*a

L (t sinat) = ----- 2as/ (s2-a2)      2as/ (s2a2)           

2as/ 

(s2+a2)          

L (tcos at ) = ----- s2-a2/(s2+a2)2         

s2 

+a2/(s2+a2)2        

s2-

a2/(s2+a2)2     

If L-1{1/(s+a)2 }= ------ t e at                             t e -at                    e a t                         



L-1 (1 /(s2 + 4) ) is equal to e-4t          cos2t/2                  sin2t/2                 

L-1 (1/s) = -------- 1 0 t                   

L-1 [ 1/(s+a) ] =   ---------- e s  t                e a t                               e-s t                 

The function x sin x be a   ------- function. even       odd      
continuou
s     

The function x cos x be a   ------- function. even       odd       
continuou
s     

Which of the following is an odd function?   sin x        cos x          x2       

Which of the following is an even function x3 cos x       sin x

The function f(x) is said to be an odd function of x if f(-x) = f( x)
f(x) = - f( 
x) 

f(-x) = - 
f( x)

The function f(x) is said to be an EVEN function of x if f(-x) = f( x)
f(x) = - f( 
x) 

f(-x) = - 
f( x)

 If a periodic function f(x) is odd,  Fourier expansion contains 
no ------ terms  cosine      sine  

coefficient 
 a0         

 If a periodic function f(x) is even,  Fourier expansion 
contains no ------ terms  cosine      sine  

coefficient 
 a0         

In Fourier series, the function f(x) has only a finite number of 
maxima and minima  Dirichlet          

Kuhn 
Tucker     Laplace      

In dirichlet condition, the function f(x) has  no --------
discontinuities semi finite         continuous  infinite 



If  f(x) is odd, then it’s Fourier co- efficient -------- is zero.  a0                         an  bn                                    



opt4 Answer

tan x sin nx    

p/2 p/2

sin2x sin x       

tan X cos x      

None f(-x) = - f( x)   

None f(-x) = f( x)     

cosine sine                   

coefficient 
an cosine      

None Dirichlet          

finite infinite         

none bn                       



none an                               

nπ 2π            

0 π/2               

(- π/2 )  (- π/2 )  

a0 = -1 bn = 0       

Both a0  
and an bn                

an = bn = 0 an  = 0              

None even       

None odd       

None 0

L { f(s) } L { f (t) }      

1/s 1/s+a           

a/s2 +a2 s/s2 - a2                     



s/s2 +a2 a/s2 -a2               

s/s2 +a2 s/s2 +a2

s/s2 -a2 a/s2 +a2                    

None é(n+1)/sn+1             

None (n+1)!           

0 1/s                

1/t2 1/s2                   

1/s2 2/s3                  

ÖP/8 ÖP

None 1/s-a    

None 2as/ (s2+a2)          

None s2-a2/(s2+a2)2     

None t e -at                    



e4t sin2t/2                 

none. 1

e- a t e s  t                

None even       

None odd       

 sin2x   sin x        

sin2x cos x       

3 f(-x) = - f( x)

1 f(-x) = f( x)

coefficient 
an sine  

coefficient 
an  cosine      

None  Dirichlet          

finite infinite 



none an 
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UNIT-IV 

 

SYLLABUS 

 

Fourier series – Dirichlet’s theorem – change of interval – complex form – Fourier series in the 

interval (0, T) – Uses of Fourier series - Legendre’s polynomials and functions – Differential 

equations and solutions – Rodrigues formula – Orthogonality – relation between Legendre 

polynomial and their derivatives – recurrence relations – Lagurae Polynomials – recurrence relations  
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Fourier series 

A Fourier series is an expansion of a periodic function  in terms of an infinite sum 

of sines and cosines. Fourier series make use of the orthogonality relationships of 

the sine and cosine functions. The computation and study of Fourier series is known as harmonic 

analysis and is extremely useful as a way to break up an arbitrary periodic function into a set of 

simple terms that can be plugged in, solved individually, and then recombined to obtain the solution 

to the original problem or an approximation to it to whatever accuracy is desired or practical. 

Examples of successive approximations to common functions using Fourier series are illustrated 

above. 

In particular, since the superposition principle holds for solutions of a linear 

homogeneous ordinary differential equation, if such an equation can be solved in the case of a single 

sinusoid, the solution for an arbitrary function is immediately available by expressing the original 

function as a Fourier series and then plugging in the solution for each sinusoidal component. In some 

special cases where the Fourier series can be summed in closed form, this technique can even yield 

analytic solutions. 

Any set of functions that form a complete orthogonal system have a corresponding generalized 

Fourier series analogous to the Fourier series. For example, using orthogonality of the roots of 

a Bessel function of the first kind gives a so-called Fourier-Bessel series. 

The computation of the (usual) Fourier series is based on the integral identities 

 

  

(1) 

 

  

(2) 

 

  

(3) 

 

  

(4) 

 

  

(5) 

for , where  is the Kronecker delta. 

Using the method for a generalized Fourier series, the usual Fourier series involving sines and 

cosines is obtained by taking  and . Since these functions form a complete 

orthogonal system over , the Fourier series of a function  is given by 

 

(6) 

where 

  

 

(7) 

http://mathworld.wolfram.com/PeriodicFunction.html
http://mathworld.wolfram.com/Sine.html
http://mathworld.wolfram.com/Cosine.html
http://mathworld.wolfram.com/OrthogonalFunctions.html
http://mathworld.wolfram.com/Sine.html
http://mathworld.wolfram.com/Cosine.html
http://mathworld.wolfram.com/HarmonicAnalysis.html
http://mathworld.wolfram.com/HarmonicAnalysis.html
http://mathworld.wolfram.com/HarmonicAnalysis.html
http://mathworld.wolfram.com/SuperpositionPrinciple.html
http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/CompleteOrthogonalSystem.html
http://mathworld.wolfram.com/GeneralizedFourierSeries.html
http://mathworld.wolfram.com/GeneralizedFourierSeries.html
http://mathworld.wolfram.com/GeneralizedFourierSeries.html
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
http://mathworld.wolfram.com/Fourier-BesselSeries.html
http://mathworld.wolfram.com/KroneckerDelta.html
http://mathworld.wolfram.com/GeneralizedFourierSeries.html
http://mathworld.wolfram.com/CompleteOrthogonalSystem.html
http://mathworld.wolfram.com/CompleteOrthogonalSystem.html
http://mathworld.wolfram.com/CompleteOrthogonalSystem.html
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(8) 

  

 

(9) 

and , 2, 3, .... Note that the coefficient of the constant term  has been written in a special form 

compared to the general form for a generalized Fourier series in order to preserve symmetry with the 

definitions of  and . 

Dirichlet conditions 

A piecewise regular function that 

1. Has a finite number of finite discontinuities and 

2. Has a finite number of extrema 

can be expanded in a Fourier series which converges to the function at continuous points and the 

mean of the positive and negative limits at points of discontinuity. 

 

 

 

 

 

Def. Sectionally continuous (or piecewise continuous) function. A function f (x) is said to 

be sectionally continuous (or piecewise continuous) on an interval a  x  b if the interval can 

be subdivided into a finite number of intervals in each of which the function is continuous and has 

finite right and left hand limits. See Figure The requirement that a function be sectionally continuous 

on some interval [a, b] is equivalent to the requirement that it meet theDirichlet conditions on the 

interval. 

Fourier series. Let f (x) be a sectionally continuous function defined on an interval c < x < c + 2L. It 

can then be represented by the Fourier series 

 

 

 

http://mathworld.wolfram.com/GeneralizedFourierSeries.html
http://mathworld.wolfram.com/PiecewiseFunction.html
http://mathworld.wolfram.com/RegularFunction.html
http://mathworld.wolfram.com/Discontinuity.html
http://mathworld.wolfram.com/Extremum.html
http://mathworld.wolfram.com/FourierSeries.html
http://mathworld.wolfram.com/Positive.html
http://mathworld.wolfram.com/Negative.html
http://mathworld.wolfram.com/Discontinuity.html
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Where 

 

 
 

At a point of discontinuity f (x) is given a value equal to its mean value at the discontinuity 

i.e. if x = a is a point of discontinuity, f (x) is given the value 

 

                

 

Complex form of Fouries series 

  We show how a Fourier series can be expressed more concisely if we introduce 

the complex number i  where i2 = −1. By utilising the Euler relation: 

e iθ ≡ cos θ + i sin θ 

We can replace the trigonometric functions by complex exponential functions. By also combining 

the 

Fourier coefficients an and bn into a complex coefficient cn through 

Cn = (an-ibn) 

 

For a given periodic signal, both sets of constants can be found in one operation. We also 

obtain Parseval’s theorem which has important applications in electrical engineering. The complex 

formulation of a Fourier series is an important precursor of the Fourier transforms which attempts to 

Fourier analyse non-periodic functions. 

So far we have discussed the trigonometric form of a Fourier series i.e. we have represented 

functions of period T in the terms of sinusoids, and possibly a constant term, using  
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If we use the angular frequency 

 

 

 

We obtain the more concise form 

 

 

 

We have seen that the Fourier coefficients are calculated using the following integrals.  

 

 

 

 

 

An alternative, more concise form, of a Fourier series is available using complex q u a n t i t i e s . 

This form is quite widely used by engineers, for example in Circuit Theory and Control Theory, and 

leads naturally into the Fourier Transform which is the subject of            

Fourier series in the interval (0, T) 

We assume that the function f(x) is piecewise continuous on the interval [0,T]. Using the 

substitution x= Lyπ (−π≤x≤π), we can transform it into the function 

F(y)=f(Ly/π) 

which is defined and integrable on [−π,π]. Fourier series expansion of this function F(y) can be 

written as 

F(y)=f(Ly/π)=a0/2+ ∑ (ancosny+bnsinny). 

Uses of Fourier series 

Fourier series and frequencies 

The basic idea of Fourier series is that we try to express the given function as a combination 

of oscillations, starting with one whose frequency is given by the given function (either its 

periodicity or the length of the bounded interval on which it is given) and then taking multiples of 

this frequency, that is, using fractional periods. When we look at coefficients of the resulting 
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"infinite linear combination", we can expect that if some of them are markedly larger then the rest, 

then this frequency plays an important role in the phenomenon described by the given function. This 

detection of hidden periodicity can be very useful in analysis, since not every periodicity can be 

readily seen by looking at a function. In particular, this is true if there are several periods that 

interact. 

Imagine that a function f describes temperatures at time t over many many years. There is 

one period that should be easily visible, namely seasonal changes with period one year. We also 

expect another period going over this basic yearly period, namely 1-day period of cold nights and 

warm days. Now the interesting question is whether there are also other periods. This is very useful 

to know, since such knowledge would tell us something important about what is happening with 

weather and climate. Frequency analysis offers a useful tool for such an investigation, looking over 

long data sequences it may point out cold ages and other long term changes in climate. 

There are areas where decomposition into waves comes naturally, for instance storage of 

sound. When we are given a sound sample, Fourier transform allows us to decompose it into basic 

waves and store it in this way. Apart from data compression we also get further memory savings by 

simply ignoring coefficients that correspond to frequencies that a typical human ear does not hear. 

This is the basis of the mp3 format (it uses transform that is something like a fourth generation 

offspring of cosine Fourier series). 

Fourier decomposition can be also generalized to more dimensions and then it can be quite 

powerful in storing visual information - it is for instance the heart of the system used by F.B.I. to 

store their fingerprint database. Since this decomposition is so useful, one important aspect is the 

speed at which we can find the coefficients. This inspired further development and today we do not 

usually use the standard Fourier series but its more powerful offspring, for instance something called 

Fast Fourier Transform (FFT). Here also hardware helps, there are devices (integrators) that have 

this wired in, roughly speaking one feeds it a function and the device spits out a Fourier coefficient. 

Legendre Polynomial and differential equation 

The Legendre differential equation is the second-order ordinary differential equation 

 (1) 

which can be rewritten 

 (2) 
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The above form is a special case of the so-called "associated Legendre differential equation" 

corresponding to the case . The Legendre differential equation has regular singular points at 

, 1, and . 

If the variable  is replaced by , then the Legendre differential equation becomes 

 (3) 

Derived below for the associated ( ) case. 

Since the Legendre differential equation is a second-order ordinary differential equation, it has two 

linearly independent solutions. A solution  which is regular at finite points is called a Legendre 

function of the first kind, while a solution  which is singular at  is called a Legendre function 

of the second kind. If  is an integer, the function of the first kind reduces to a polynomial known as 

the Legendre polynomial. 

The Legendre differential equation can be solved using the Frobenius method by making a series 

expansion with , 

   (4) 

   (5) 

 

  (6) 

Plugging in, 

  (7) 

     (8) 

     (9) 

             (10) 
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            (11) 

            (12) 

           (13) 

 (14) 

so each term must vanish and 

 (15) 

   (16) 

   (17) 

Therefore, 

      (18) 

   (19) 

   (20) 

  (21) 

   (22) 

so the even solution is 

 (23) 
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Similarly, the odd solution is 

 (24) 

If  is an even integer, the series  reduces to a polynomial of degree  with 

only even powers of  and the series  diverges. If  is an odd integer, the series  reduces to 

a polynomial of degree  with only odd powers of  and the series  diverges. The general 

solution for an integer  is then given by the Legendre polynomials 

 

  (25) 

   (26) 

where  is chosen so as to yield the normalization  and  is a hypergeometric 

function. 

The associated Legendre differential equation is 

 (27) 

which can be written 

 (28) 

(Abramowitz and Stegun 1972; Zwillinger 1997, p. 124). The solutions  to this equation are 

called the associated Legendre polynomials (if  is an integer), or associated Legendre functions of 

the first kind (if  is not an integer). The complete solution is 

 (29) 

where  is a Legendre function of the second kind. 

The associated Legendre differential equation is often written in a form obtained by setting . 

Plugging the identities 

   (30) 
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   (31) 

   (32) 

   (33) 

into (◇) then gives 

 (34) 

  

Lagurae Polynomials: Definition 

Laguerre's Differential Equation is defined as: 

 

where  is a real number. When  is a non-negative integer, i.e., , the solutions of 

Laguerre's Differential Equation are often referred to as Laguerre Polynomials . 

Important Properties 

Rodrigues' Formula: The Laguerre Polynomials  can be expressed by Rodrigues' formula: 

 where  

Generating Function: The generating function of a Laguerre Polynomial is: 

 

Orthogonality: Laguerre Polynomials , , form a complete orthogonal set on 

the interval  with respect to the weighting function . It can be shown that: 
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By using this orthogonality, a piecewise continuous function  can be expressed in terms of 

Laguerre Polynomials: 

 

Where: 

 

This orthogonal series expansion is also known as a Fourier-Laguerre Series expansion or 

a Generalized Fourier Series expansion. 

Recurrence Relation: A Laguerre Polynomial at one point can be expressed in terms of neighboring 

Laguerre Polynomials at the same point. 

•  

•  

•  

Special Rsults 
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Where  is 0 order Bessel function of the first kind 
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Possible questions (Part-B-6 Marks) 

1. State and Explain Dirichlet conditions. 

2. Show that 
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 using Legendre polynomials 

3. Show that the Legendre function Pn(x) is the coefficient of z
n
 in the expansion of [1 –  2xz + 

z
2
]

-1/2
. 

From above, deduce the values of Pn(1).  Also, show that Pn(-x)=(-1)
n
Pn(x) 

4. Explain what is Fourier series. Find the Fourier series of the function in the interval –π < x < 

π 

5. Derive Rodrigue’s Formula. State and Explain Dirichlet conditions. 

6. Explain orthogonal properties of Legendre’s polynomials. 

7. Explain about the Cauchy Residue theorem 

8. Explain orthogonal properties of Legendre’s polynomials. 

9. Derive recurrence relation for Lagurae formula. 

 

Possible questions (Part-C-10 Marks) 

1. Show that 
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 using Legendre polynomials 

2. Show that the Legendre function Pn(x) is the coefficient of z
n
 in the expansion of [1 –  2xz + 

z
2
]

-1/2
. 

From above, deduce the values of Pn(1).  Also, show that Pn(-x)=(-1)
n
Pn(x) 

3. Explain what is Fourier series. Find the Fourier series of the function in the interval –2π < x 

<2 π 

4. Derive Rodrigue’s Formula for legendre polynomial. 

5. Explain orthogonal properties of Legendre’s polynomials. 

6. Derive Rodrigue’s Formula for lagurae polynomial  

7. Derive the recurrence relation for Legendre formula. 
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The value of J-1/2 (x) isThe Rodrigue formula 
for Pn(x), the 
Legendre polynomial 
of degree ‘n’ is 

The value of Jo(x) at 
the origin is 1 0 –1

The value of P1(x) is x 1 x 2 / 2

The identical roots of 
the Legendre’s 
functions are m = ± n m = ± 1  m = 0 or m = 1

The value of J1/2 (x) is
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If Jo and J1 are 
Bessel’s functions 
then J1’(x) is given by Jo(x) – 1/x J1(x) – Jo Jo(x) + 1/x J1(x)
The value of the 
integral where Jn(x) is 
the Bessel function of 
the first kind of order 0 -2 2

The integral                           
         is equal to xJ1(x) – Jo(x) xJ1(x) J1(x)If Jn+1(x) = (2/x) Jn(x) 
– Jo(x) where Jn is the 
Bessel function of first 
kind order ‘n’. Then 0 2 –1

The value of [J1/2 (x)]2  

+ [J-1/2 (x)]2 is

The value of Po(x) is 1 x 0

Let Pn(x) be the 
Legendre polynomial, 
then Pn(-x) is equal to (-1)n+1  Pn’(x) (-1)n  Pn’(x) (-1)n  Pn(x)

Legendre polynomial 

of order ‘n’, then 3x2 + 
3x + 1 can be 3P2 + 3P1 4P2+2P1 + Po 3P2+3P1 + Po

If                                         
      then ‘n’ is 1 0 –1Legendre polynomial 
is                                                  
               where K is 
equal to 63/2 63/5 63/10Let Pn(x) be Legendre 
polynomial of degree 
n>1, then                                   
             is equal to 0 1 / (2n+1) 2 / (2n+1)
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The value of                           
          is the third 
degree Legendre 
polynomial is 1 –1 2

The Legendre 
polynomial Pn(x) has

n real zeros between 0 
and 1

n zeros of which only 
one is between –1 and 
+1

2n-1 real zeros 
between –1 and 1

The incorrect equation 
among the following is Po(x) = 1 P1(x) = x Pn (-x) = (-1)n+1 Pn (x)

The value of Pn(-x) is - Pn (x) Pn (x) (-1)n Pn (x)

The value of 2Jn’ is Jn-1 – Jn+1 Jn-1 + Jn+1 Jn+1 – Jn+1

The root of x3 – 6x + 4 
lies between –1 and 0 1 and 2 –2 and 1
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1 0
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1 1
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0 0

none of these
n real zeros between 0 
and 1

 Pn (x) = (-1)n+1 Pn (x) Pn (-x) = (-1)n+1 Pn (x)

(-1)n Pn (-x) (-1)n Pn (x)

2 Jn+1 Jn+1 – Jn+1

0 and 1 –1 and 0
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UNIT-V 

 

SYLLABUS 

 

Bessel’s functions – differential equation and solution – generating functions – recurrence 

relations – Bessel function of second order – Spherical Bessel function - Hermite differential 

equation and Hermite polynomials – Generating function of Hermite polynomials – Recurrence 

formulae for Hermite polynomials – Rodrigue’s formula for Hermite Polynomials – 

Orthogonality of Hermite Polynomials – Dirac’s Delta Function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
                            CLASS: I MSC PHYSICS       COURSE NAME: MATHEMATICAL PHYSICS 

                COURSE CODE: 19PHP104   UNIT: V (BESSEL FUNCTION)  BATCH-2019-2021     

 

 

Prepared by Dr.S.Sharmila, Assoc Prof, Department of Physics, KAHE  Page 2of 24 

Bessel functions differential equations and solution 

The Bessel functions of the first kind  are defined as the solutions to the Bessel differential 

equation 

  

 

 

 

 

 

 

 

 

 

 

 

Which are nonsingular at the origin. They are sometimes also called cylinder functions or 

cylindrical harmonics. The above plot shows  for 1, 2, ..., 5. The notation  was first used 

by Hansen (1843) and subsequently by Schlömilch (1857) to denote what is now written 

 (Watson 1966, p. 14). However, Hansen's definition of the function itself in terms of 

the generating function 

 

(2) 

is the same as the modern one (Watson 1966, p. 14). Bessel used the notation  to denote what 

is now called the Bessel function of the first kind (Cajori 1993, vol. 2, p. 279). 

The Bessel function  can also be defined by the contour integral 

http://mathworld.wolfram.com/BesselDifferentialEquation.html
http://mathworld.wolfram.com/BesselDifferentialEquation.html
http://mathworld.wolfram.com/BesselDifferentialEquation.html
http://mathworld.wolfram.com/GeneratingFunction.html
http://mathworld.wolfram.com/ContourIntegral.html
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(3) 

where the contour encloses the origin and is traversed in a counterclockwise direction (Arfken 

1985, p. 416). 

The Bessel function of the first kind is implemented in the Wolfram Language as BesselJ[nu, z]. 

To solve the differential equation, apply Frobenius method using a series solution of the form 

 

(4) 

Plugging into (1) yields 

 

(5) 

 

(6) 

The indicial equation, obtained by setting , is 

 

(7) 

Since  is defined as the first nonzero term, , so . Now, if , 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

First, look at the special case , then (11) becomes 

http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/BesselJ.html
http://mathworld.wolfram.com/FrobeniusMethod.html
http://mathworld.wolfram.com/OftheForm.html
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html#eqn1
http://mathworld.wolfram.com/IndicialEquation.html
http://mathworld.wolfram.com/Nonzero.html
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html#eqn11
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(12) 

so 

 

(13) 

Now let , where , 2, .... 

  

 

(14) 

  

 

(15) 

  

 

(16) 

which, using the identity , gives 

 

(17) 

Similarly, letting , 

 

(18) 

which, using the identity , gives 

 

(19) 

Plugging back into (◇) with  gives 

  

 

(20) 

  

 

(21) 

  

 

(22) 

  

 

(23) 
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(24) 

The Bessel functions of order  are therefore defined as 

 

 

 

(25) 

 

 

 

(26) 

so the general solution for  is 

 

(27) 

Now, consider a general . Equation (◇) requires 

 

(28) 

 

(29) 

for , 3, ..., so 

   

(30) 

  

 

(31) 

for , 3, .... Let , where , 2, ..., then 

  

 

(32) 

   

(33) 

where  is the function of  and  obtained by iterating the recursion relationship down 

to . Now let , where , 2, ..., so 

  

 

(34) 

  

 

(35) 

  

 

(36) 

Plugging back into (◇), 

http://mathworld.wolfram.com/BesselFunction.html
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(37) 

  

 

(38) 

  

 

(39) 

  

 

(40) 

  

 

(41) 

Now define 

 

(42) 

where the factorials can be generalized to gamma functions for nonintegral . The above 

equation then becomes 

 

(43) 

Returning to equation (◇) and examining the case , 

 

(44) 

However, the sign of  is arbitrary, so the solutions must be the same for  and . We are 

therefore free to replace  with , so 

 

(45) 

and we obtain the same solutions as before, but with  replaced by . 

http://mathworld.wolfram.com/GammaFunction.html
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(46) 

We can relate  and  (when  is an integer) by writing 

 

(47) 

Now let . Then 

  

 

(48) 

  

 

(49) 

But  for , so the denominator is infinite and the terms on the left are zero. 

We therefore have 

  

 

(50) 

   

(51) 

Note that the Bessel differential equation is second-order, so there must be two linearly 

independent solutions. We have found both only for . For a general nonintegral order, 

the independent solutions are  and . When  is an integer, the general (real) solution is of 

the form 

 

(52) 

where  is a Bessel function of the first kind,  (a.k.a. ) is the Bessel function of the second 

kind (a.k.a. Neumann function or Weber function), and  and  are constants. Complex 

solutions are given by the Hankel functions (a.k.a. Bessel functions of the third kind). 

The Bessel functions are orthogonal in  according to 

http://mathworld.wolfram.com/Integer.html
http://mathworld.wolfram.com/Denominator.html
http://mathworld.wolfram.com/BesselDifferentialEquation.html
http://mathworld.wolfram.com/Second-OrderOrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/Integer.html
http://mathworld.wolfram.com/OftheForm.html
http://mathworld.wolfram.com/OftheForm.html
http://mathworld.wolfram.com/OftheForm.html
http://mathworld.wolfram.com/BesselFunctionoftheSecondKind.html
http://mathworld.wolfram.com/BesselFunctionoftheSecondKind.html
http://mathworld.wolfram.com/BesselFunctionoftheSecondKind.html
http://mathworld.wolfram.com/HankelFunction.html
http://mathworld.wolfram.com/OrthogonalFunctions.html
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(53) 

where  is the th zero of  and  is the Kronecker delta (Arfken 1985, p. 592). 

Except when  is a negative integer, 

 

(54) 

where  is the gamma function and  is a Whittaker function. 

In terms of a confluent hypergeometric function of the first kind, the Bessel function is written 

 

(55) 

A derivative identity for expressing higher order Bessel functions in terms of  is 

 

(56) 

where  is a Chebyshev polynomial of the first kind. Asymptotic forms for the Bessel 

functions are 

 

(57) 

for  and 

 

(58) 

for  (correcting the condition of Abramowitz and Stegun 1972, p. 364). 

A derivative identity is 

 

(59) 

An integral identity is 

 

(60) 

http://mathworld.wolfram.com/KroneckerDelta.html
http://mathworld.wolfram.com/NegativeInteger.html
http://mathworld.wolfram.com/GammaFunction.html
http://mathworld.wolfram.com/WhittakerFunction.html
http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheFirstKind.html
http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html
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Some sum identities are 

 

(61) 

(which follows from the generating function (◇) with ), 

 

(62) 

(Abramowitz and Stegun 1972, p. 363), 

 

(63) 

(Abramowitz and Stegun 1972, p. 361), 

 

(64) 

for  (Abramowitz and Stegun 1972, p. 361), 

 

(65) 

(Abramowitz and Stegun 1972, p. 361), and the Jacobi-Anger expansion 

 

(66) 

which can also be written 

 

(67) 

The Bessel function addition theorem states 

 

(68) 

Various integrals can be expressed in terms of Bessel functions 

http://mathworld.wolfram.com/Jacobi-AngerExpansion.html
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(69) 

which is Bessel's first integral, 

  

 

(70) 

  

 

(71) 

for , 2, ..., 

 

(72) 

for , 2, ..., 

 

(73) 

for . The Bessel functions are normalized so that 

 

(74) 

for positive integral (and real) . Integrals involving  include 

 

                                                   (75) 

 

                                                   (76) 

 

Bessel function of second order 

A Bessel function of the second kind  (e.g, Gradshteyn and Ryzhik 2000, p. 703, 

eqn. 6.649.1), sometimes also denoted  (e.g, Gradshteyn and Ryzhik 2000, p. 657, 

eqn. 6.518), is a solution to the Bessel differential equation which is singular at the origin. Bessel 

functions of the second kind are also called Neumann functions or Weber functions. The above 

plot shows  for , 1, 2, ..., 5. The Bessel function of the second kind is implemented in 

the Wolfram Language as BesselY[nu, z]. 

http://mathworld.wolfram.com/BesselsFirstIntegral.html
http://mathworld.wolfram.com/BesselDifferentialEquation.html
http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/BesselY.html
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Let  be the first solution and  be the other one (since the Bessel differential 

equation is second-order, there are two linearly independentsolutions). Then 

   

(1) 

   

(2) 

Take  (1) minus  (2), 

 

(3) 

 

(4) 

so , where  is a constant. Divide by , 

 

(5) 

 

(6) 

Rearranging and using  gives 

  

 

(7) 

   

(8) 

where  is the so-called Bessel function of the second kind. 

 can be defined by 

http://mathworld.wolfram.com/BesselDifferentialEquation.html
http://mathworld.wolfram.com/BesselDifferentialEquation.html
http://mathworld.wolfram.com/BesselDifferentialEquation.html
http://mathworld.wolfram.com/Second-OrderOrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/LinearlyDependentFunctions.html
http://mathworld.wolfram.com/BesselFunctionoftheSecondKind.html#eqn1
http://mathworld.wolfram.com/BesselFunctionoftheSecondKind.html#eqn2
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(9) 

(Abramowitz and Stegun 1972, p. 358), where  is a Bessel function of the first kind and, 

for  an integer  by the series 

 

(10) 

where  is the digamma function (Abramowitz and Stegun 1972, p. 360). 

The function has the integral representations 

  

 

(11) 

  

 

(12) 

(Abramowitz and Stegun 1972, p. 360). 

Asymptotic series are 

  

 

(13) 

  

 

 
 

For the special case ,  is given by the series 

 

Take the Helmholtz differential equation 

 

(1) 

http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
http://mathworld.wolfram.com/Series.html
http://mathworld.wolfram.com/DigammaFunction.html
http://mathworld.wolfram.com/AsymptoticSeries.html
http://mathworld.wolfram.com/HelmholtzDifferentialEquation.html
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in spherical coordinates. This is just Laplace's equation in spherical coordinates with an 

additional term, 

 

(2) 

Multiply through by , 

 

(3) 

This equation is separable in . Call the separation constant , 

 

(4) 

Now multiply through by , 

 

(5) 

This is the spherical Bessel differential equation. It can be transformed by letting , then 

 

(6) 

Similarly, 

 

(7) 

so the equation becomes 

 

(8) 

Now look for a solution of the form , denoting a derivative with respect to  by a 

prime, 

  

 

(9) 

http://mathworld.wolfram.com/SphericalCoordinates.html
http://mathworld.wolfram.com/LaplacesEquation.html
http://mathworld.wolfram.com/SphericalCoordinates.html
http://mathworld.wolfram.com/OftheForm.html
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(10) 

  

 

(11) 

so 

 

(12) 

 

(13) 

 

(14) 

 

(15) 

 

(16) 

But the solutions to this equation are Bessel functions of half integral order, so the normalized 

solutions to the original equation are 

 

(17) 

which are known as spherical Bessel functions. The two types of solutions are denoted 

 (spherical Bessel function of the first kind) or (spherical Bessel function of the second 

kind), and the general solution is written 

 

(18) 

where 

  

 

(19) 

  

 

 

 

 

Spherical Bessel function 

The second-order ordinary differential equation 

 

(1) 

http://mathworld.wolfram.com/BesselFunction.html
http://mathworld.wolfram.com/SphericalBesselFunction.html
http://mathworld.wolfram.com/SphericalBesselFunctionoftheFirstKind.html
http://mathworld.wolfram.com/SphericalBesselFunctionoftheSecondKind.html
http://mathworld.wolfram.com/SphericalBesselFunctionoftheSecondKind.html
http://mathworld.wolfram.com/Second-OrderOrdinaryDifferentialEquation.html
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This differential equation has an irregular singularity at . It can be solved using the series 

method 

 

(2) 

 

(3) 

Therefore, 

 

(4) 

and 

 

(5) 

for , 2, .... Since (4) is just a special case of (5), 

 

(6) 

for , 1, .... 

The linearly independent solutions are then 

  

 

(7) 

  

 

(8) 

These can be done in closed form as 

  

 

(9) 

  

 

(10) 

where  is a confluent hypergeometric function of the first kind and  is a Hermite 

polynomial. In particular, for , 2, 4, ..., the solutions can be written 

  

 

(11) 

  

 

(12) 

  

 

(13) 

http://mathworld.wolfram.com/HermiteDifferentialEquation.html#eqn4
http://mathworld.wolfram.com/HermiteDifferentialEquation.html#eqn5
http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheFirstKind.html
http://mathworld.wolfram.com/HermitePolynomial.html
http://mathworld.wolfram.com/HermitePolynomial.html
http://mathworld.wolfram.com/HermitePolynomial.html


KARPAGAM ACADEMY OF HIGHER EDUCATION 
                            CLASS: I MSC PHYSICS       COURSE NAME: MATHEMATICAL PHYSICS 

                COURSE CODE: 19PHP104   UNIT: V (BESSEL FUNCTION)  BATCH-2019-2021     

 

 

Prepared by Dr.S.Sharmila, Assoc Prof, Department of Physics, KAHE  Page 16of 24 

where  is the erfi function. 

If , then Hermite's differential equation becomes 

 

(14) 

which is of the form  and so has solution 

  

 

(15) 

  

 

(16) 

  

 

(17) 

 

Hermite Polynomial 

The Hermite polynomials  are set of orthogonal polynomials over the domain 

 with weighting function , illustrated above for , 2, 3, and 4. Hermite polynomials are 

implemented in the Wolfram Language as HermiteH[n, x]. 

The Hermite polynomial  can be defined by the contour integral 

 

(1) 

where the contour encloses the origin and is traversed in a counterclockwise direction (Arfken 

1985, p. 416). 

The first few Hermite polynomials are 

   

(2) 

   

(3) 

  

 

(4) 

  

 

(5) 

  

 

(6) 

  

 

(7) 

  

 

(8) 

  

 

(9) 

  

 

(10) 

 

 

 

(11) 

http://mathworld.wolfram.com/Erfi.html
http://mathworld.wolfram.com/OftheForm.html
http://mathworld.wolfram.com/OrthogonalPolynomials.html
http://mathworld.wolfram.com/WeightingFunction.html
http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/HermiteH.html
http://mathworld.wolfram.com/ContourIntegral.html
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(12) 

When ordered from smallest to largest powers, the triangle of nonzero coefficients is 1; 2; -2, 4; -

12, 8; 12, -48, 16; 120, -160, 32; ... (OEIS A059343). 

The values  may be called Hermite numbers. 

The Hermite polynomials are a Sheffer sequence with 

  

 

(13) 

  

 

(14) 

(Roman 1984, p. 30), giving the exponential generating function 

 

(15) 

Using a Taylor series shows that 

  

 

(16) 

  

 

(17) 

Since , 

  

 

(18) 

  

 

(19) 

Now define operators 

 

 

 

(20) 

 

 

 

(21) 

It follows that 

 

 

 

(22) 

  

 

(23) 

http://oeis.org/A059343
http://mathworld.wolfram.com/HermiteNumber.html
http://mathworld.wolfram.com/ShefferSequence.html
http://mathworld.wolfram.com/ExponentialGeneratingFunction.html
http://mathworld.wolfram.com/TaylorSeries.html
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(24) 

  

 

(25) 

  

 

(26) 

so 

 

(27) 

and 

 

(28) 

(Arfken 1985, p. 720), which means the following definitions are equivalent: 

 

 

 

(29) 

  

 

(30) 

  

 

(31) 

(Arfken 1985, pp. 712-713 and 720). 

The Hermite polynomials may be written as 

  

 

(32) 

  

 

(33) 

(Koekoek and Swarttouw 1998), where  is a confluent hypergeometric function of the 

second kind, which can be simplified to 

 

(34) 

in the right half-plane . 

The Hermite polynomials are related to the derivative of erf by 

 

(35) 

http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheSecondKind.html
http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheSecondKind.html
http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheSecondKind.html
http://mathworld.wolfram.com/Erf.html


KARPAGAM ACADEMY OF HIGHER EDUCATION 
                            CLASS: I MSC PHYSICS       COURSE NAME: MATHEMATICAL PHYSICS 

                COURSE CODE: 19PHP104   UNIT: V (BESSEL FUNCTION)  BATCH-2019-2021     

 

 

Prepared by Dr.S.Sharmila, Assoc Prof, Department of Physics, KAHE  Page 19of 24 

They have a contour integral representation 

 

(36) 

They are orthogonal in the range  with respect to the weighting function  

 

(37) 

The Hermite polynomials satisfy the symmetry condition 

 

(38) 

They also obey the recurrence relations 

 

(39) 

 

(40) 

By solving the Hermite differential equation, the series 

  

 

(41) 

  

 

(42) 

  

 

(43) 

  

 

(44) 

are obtained, where the products in the numerators are equal to 

 

(45) 

with  the Pochhammer symbol. 

Let a set of associated functions be defined by 

 

(46) 

then the  satisfy the orthogonality conditions 

http://mathworld.wolfram.com/ContourIntegral.html
http://mathworld.wolfram.com/WeightingFunction.html
http://mathworld.wolfram.com/RecurrenceRelation.html
http://mathworld.wolfram.com/HermiteDifferentialEquation.html
http://mathworld.wolfram.com/PochhammerSymbol.html
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(47) 

 

  

(48) 

 

 

 

(49) 

 

 

 

(50) 

 

 

 

(51) 

if  is even and , , and . Otherwise, the last integral is 0 (Szegö 1975, 

p. 390). Another integral is 

 

(52) 

where  and  is a binomial coefficient (T. Drane, pers. comm., Feb. 14, 2006). 

The polynomial discriminant is 

 

(53) 

http://mathworld.wolfram.com/EvenNumber.html
http://mathworld.wolfram.com/BinomialCoefficient.html
http://mathworld.wolfram.com/PolynomialDiscriminant.html
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Two interesting identities involving  are given by 

 

(54) 

and 

 

(55) 

(G. Colomer, pers. comm.). A very pretty identity is 

 

(56) 

where  (T. Drane, pers. comm., Feb. 14, 2006). 

They also obey the sum 

 

(57) 

as well as the more complicated 

 

(58) 

where  is a Hermite number,  is a Stirling number of the second kind, and  is 

a Pochhammer symbol. A class of generalized Hermite polynomials  satisfying 

 

(59) 

was studied by Subramanyan (1990). A class of related polynomials defined by 

 

(60) 

and with generating function 

 

(61) 

http://mathworld.wolfram.com/HermiteNumber.html
http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html
http://mathworld.wolfram.com/PochhammerSymbol.html
http://mathworld.wolfram.com/Polynomial.html
http://mathworld.wolfram.com/GeneratingFunction.html
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was studied by Djordjević (1996). They satisfy 

 

(62) 

defines a generalized Hermite polynomial  with variance . 

A modified version of the Hermite polynomial is sometimes (but rarely) defined by 

 

(63) 

The first few of these polynomials are given by 

   

(64) 

  

 

(65) 

  

 

(66) 

  

 

(67) 

  

 

(68) 

The polynomial  is the independence polynomial of the complete graph . 

Generating function 

 

 

 

 

 

Recurrence formulas 

 

 

 

 

 

Orthogonality of Hermite polynomials 

 

 

 

 

 

Rodrigue’s formula of Hermite polynomial 

http://mathworld.wolfram.com/IndependencePolynomial.html
http://mathworld.wolfram.com/CompleteGraph.html
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The first few Hermite polynomials are 

H0 (t)  1 H1 (t)  2 t , H2 (t)  4t
2
-2 H3 (t)  8t 12 t , H4 (t)  16 - 48t  12 t,   

H5 (t)  32 t5  160 t3   120 t, etc
 

Dirac delta function  

1. Definition as limit.  The Dirac delta function can be thought of as a rectangular pulse that 

grows narrower and narrower while simultaneously growing larger and larger.  

 

 

 

 

rect(x, b) =  

(x) = lim(b→0)  rect(x, b) 

Note that the integral of the delta function is the area under the curve, and has been held constant 

at 1 throughout the limit process. 

1)( 




x  

Shifting the origin.  Just as a parabola can be shifted away from the origin by writing y = (x – 

x0)
2
 instead of just y = x

2
, any function can be shifted by plugging in x – x0 in place of its usual 

argument x.  

 

(x - x0) =   

1)( 0 




xx  

Shifting the position of the peak doesn’t affect the total area if the integral is taken from – to . 

Possible questions – (Part B- 6 marks) 

x 

y 

width = b 

height = 1/b 

(so total area = 1) 

x 

y 
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1. State and prove the recurrence relations of Bessel’s function. 

2. Obtain the solution for Hermite Differential equation  

3. Write down Hermite differential equation and obtain Hermite polynomial from that.   

   (ii) Show that 𝐻𝑛 −𝑥 =  −1 𝑛𝐻𝑛 𝑥  

4. Derive the Recurrence relations for spherical Bessel functions. 

5. Derive Rodrigue’s Formula for Hermite polynomial.  

6. Discuss about the Dirac – Delta function. 

7. Discuss about the Spherical bessal function of zeroth order. 

8. Derive the recurrence formula for Hermite polynomial.  

9. Discuss about the Bessel’s differential equation for Bessel’s function of first kind. 

 

Possible questions – (Part C- 10 marks) 

 

1. State and prove the recurrence relations of Bessel’s function. 

2. Write down the Hermite Differential equation and obtain Hermite polynomial    

from that. 

3. Show that when n is integer,  

a. Jn(x) = 
1

𝜋
 cos 𝑛𝜃 − 𝑥𝑠𝑖𝑛𝜃 𝑑𝜃
𝜋

0
 

b. J0(x) = 
1

𝜋
 cos 𝑥𝑐𝑜𝑠𝜑 𝑑𝜑
𝜋

0
 

4. Derive the Recurrence relations for spherical Bessel functions. 

5. Derive Rodrigue’s Formula for Hermite polynomial.  

6. Discuss about the Dirac – Delta function. 

7. Derive the Rodrique’s formula for Hermite polynomial.  

8. Discuss about the Bessel’s differential equation for Bessel’s function of second kind. 
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Questions opt1 opt2 opt3
UNIT V
The value of J-1/2 (x) is

The Rodrigue formula for 
Pn(x), the Legendre 
polynomial of degree ‘n’ is 
The value of Jo(x) at the 
origin is 1 0 –1

The value of P1(x) is x 1 x 2 / 2

The identical roots of the 
Legendre’s functions are m = ± n m = ± 1  m = 0 or m = 1
The value of J1/2 (x) is

If Jo and J1 are Bessel’s 
functions then J1’(x) is 
given by Jo(x) – 1/x J1(x) – Jo

Jo(x) + 1/x 
J1(x)

The value of the integral 
where Jn(x) is the Bessel 
function of the first kind 
of order n, is equal to 0 -2 2
The integral                           
  is equal to xJ1(x) – Jo(x) xJ1(x) J1(x)

If Jn+1(x) = (2/x) Jn(x) – 
Jo(x) where Jn is the 
Bessel function of first 
kind order ‘n’. Then ‘n’ is 0 2 –1

The value of [J1/2 (x)]2 + 

[J-1/2 (x)]2 is

The value of Po(x) is 1 x 0
The value of the                                                  
                                if n = m n ¹ m n > m

The polynomial 2x2+x+3 
interms of Legendre 
polynomial is
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Let Pn(x) be the Legendre 
polynomial, then Pn(-x) is 
equal to (-1)n+1  Pn’(x) (-1)n  Pn’(x) (-1)n  Pn(x)

If Pn(x) is the Legendre 
polynomial of order ‘n’, 

then 3x2 + 3x + 1 can be 
expressed as 3P2 + 3P1 4P2+2P1 + Po 3P2+3P1 + Po

If                                         
then ‘n’ is 1 0 –1
Legendre polynomial is                                                  
                                            
where K is equal to 63/2 63/5 63/10
Let Pn(x) be Legendre 
polynomial of degree n>1, 
then                                   
is equal to 0 1 / (2n+1) 2 / (2n+1)
The value of                           
   is the third degree 
Legendre polynomial is 1 –1 2

The Legendre polynomial 
Pn(x) has

n real zeros between 0 and 
1

n zeros of 
which only 
one is 
between –1 
and +1

2n-1 real zeros 
between –1 
and 1

The incorrect equation 
among the following is Po(x) = 1 P1(x) = x

Pn (-x) = (-

1)n+1 Pn (x)

The value of Pn(-x) is - Pn (x) Pn (x) (-1)n Pn (x)

The value of 2Jn’ is Jn-1 – Jn+1 Jn-1 + Jn+1 Jn+1 – Jn+1

The root of x3 – 6x + 4 lies 
between –1 and 0 1 and 2 –2 and 1
Bessel’s functions also 
called cylindrical circular square

From Bessel’s functions, 
the value of Jn+1(x) is nJn(x) + Jn’(x)

(n / x) Jn(x) -
Jn’(x) nJn(x) - Jn’(x)

The value of J-1/2 (x) is (2/x) sinx (2/x) sinx (2/x) cosx

If Jn(x) is the Bessel 
function of the first kind, 
then x-2J2(x) + C x2J2(x) + C - x2J3(x) + C

When ‘n’ is an integer, 
Jn(x) and J-n(x) are harmonic

linearly 
independent orthonormal

Bessel’s functions are indeterminate
simple 
harmonic

oscillatory 
functions
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If Jn+1(x) = (2/x) Jn(x) – 
Jo(x) where Jn is the 
Bessel function of first 
kind order ‘n’. Then ‘n’ is 0 2 –1
Let f, g be polynomials of 
degrees a, b respectively. 
Let h(x) = f(g(x)). The 
degree of h is:

ab
a + b a*b*c

Let f, g, h be nonzero 
polynomials such that f(x) 
− g(x) = h(x) and deg f = 
deg h. Pick the
true statement:  deg g ≤ deg f deg g > deg f

deg g has no 
relation to deg f

Let f, g, h be polynomials 
such that f(x) = g(x) + x3 
h(x). Then f(j)(0) = g(j)(0) 
for

j = 0.
j = 1 j = 2

what is the value of 
d/dx[(x−nJn(x)] −x-nJn+1(x). Jn-1 + Jn+1 jn+1
In hermite polynomial 
what is value for H2(x) 4x2 −2 0 x2       





opt4 Answer

x 1
½ (x 2 –1) x

m = 0 or m = -1 m = ± 1

Jo(x) – 1/x2  
J1(x) Jo(x) – 1/x J1(x)

1 0

x 2Jn(x) xJ1(x)

1 1

–1 –1

n < m n ¹ m
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Pn”(x) (-1)n  Pn(x)

2P2+3P1 + 2Po 2P2+3P1 + 2Po

µ 0

63/8 63/8

n / (2n+1) n / (2n+1)

0 0

none of these n real zeros between 0 and 1

 Pn (x) = (-1)n+1  
Pn (x) Pn (-x) = (-1)n+1 Pn (x)

(-1)n Pn (-x) (-1)n Pn (x)

2 Jn+1 Jn+1 – Jn+1

0 and 1 –1 and 0

linear cylindrical

(n / x) Jn(x) +
Jn’(x) (n / x) Jn(x) - Jn’(x)

(2/x) cosx (2/x) cosx

- x-1J3(x) + C2 x-2J2(x) + C

linearly 
dependent harmonic function

critically 
damped oscillatory functions

3 3



1 1

a/b ab

deg g = deg f  deg g ≤ deg f

all the above all of above

jn −x-nJn+1(x).

x3 4x2 −2
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