

Half adder and Half subtractor

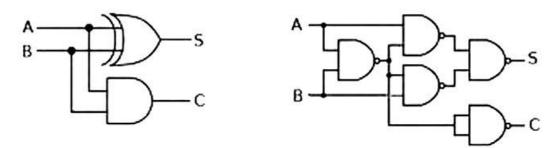
AIM

- 1. To design and set up half adder and half subtractor using a. EXOR gates and AND gates
- b. NAND gates

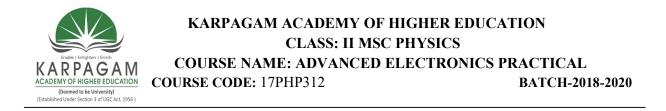
COMPONENTS REQUIRED

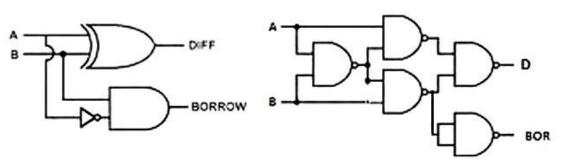
IC Trainer kit, IC 7400, IC 7486

PROCEDURE


The simplest binary adder is called half adder. Half adder has two input bits and two output bits. One output bit is the sum and the other is the carry. They are represented by'S' and 'C' respectively in logic symbol.

The simplest binary subtractor is called half Subtractor. It has two input bits and two output bits. One output bit is the Difference and the other is borrowed. They are represented by 'D' and 'B' respectively in logic symbol


Truth	table of H	Half Adde	r	Truth table of Half Subtractor				
Inputs		Output		Inputs		Output		
A	В	S	С	Α	В	D	BOR	
0	0	0	0	0	0	0	0	
0	1	1	0	0	1	1	1	
1	0	1	0	1	0	1	0	
1	1	0	1	1	1	0	0	


Truth table of Half Adder and Half Subtractor

Logic Gate circuits of Half adder for NAND gate

Logic Gate circuits of Half subtractor for NAND gate

RESULT

Half adder and Half subtractor are constructed and their truth tables are verified.

Full adder and Full subtractor

AIM

- 1. To design and set up full adder and full subtractor using
- a. EXOR gates and AND gates
- b. NAND gates

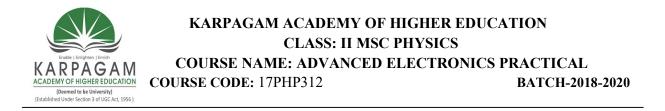
COMPONENTS REQUIRED

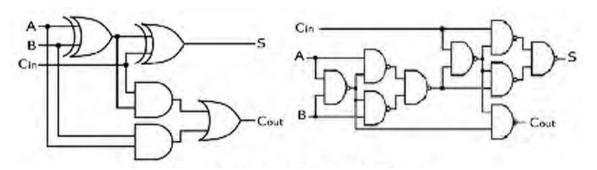
IC Trainer kit, ICS 7400, IC 7486

PRINCIPLE

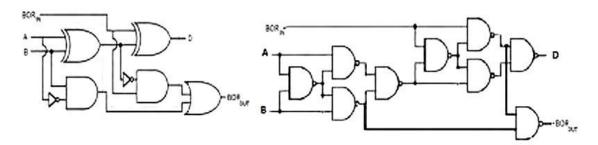
A half adder has no provision to add a carry from the lower order bits when binary numbers are added. When two input bits and a carry are to be added the number of input bits becomes three and the input combination increases to eight. For this full adder is used. Like half adder it also has a sum bit and a carry bit. The new carry generated is represented by 'Cout' and the carry generated from the previous addition is represented by 'Cin'

When two input bits and a borrow have to be subtracted the number of input bits equal to three and the input combinations increases to eight, for this a full subtractor is used.


Trut	Truth table of Full Adder					Truth table of Full Subtractor				
Inpu	ts		Outp	out	Inpu	ts		Outj	out	
A	В	Cin	S	Cout	Α	B		D		
0	0	0	0	0	0	0	0	0	0	
0	0	1	1	0	0	0	1	1	1	
0	1	0	1	0	0	1	0	1	1	


Truth table of Full Adder and Full Subtractor

Prepared by Dr.S.Esakki Muthu and Dr.A.Saranya, Asst Prof, KAHE



0	1	1	0	1	0	1	1	0	1
1	0	0	1	0	1	0	0	1	0
1	0	1	0	1	1	0	1	0	0
1	1	0	0	1	1	1	0	0	0
1	1	1	1	1	1	1	1	1	1

Logic Gate circuits of Full adder for NAND gate

Logic Gate circuits of Full subtractor for NAND gate

PROCEDURE

- 1. Verify whether all the wires and components are in good condition
- 2. Set up full adder circuit and feed all the input combinations
- 3. Observe the output corresponding to input combinations and enter it in the Truth table
- 4. Repeat the above steps for Full subtractor circuits

RESULT

Full adder and Full subtractor circuit was constructed and the truth table was verified

Digital Comparator

AIM

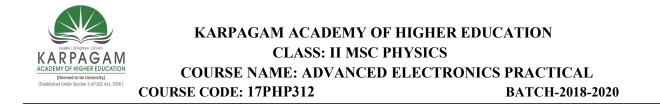
To design and setup single bit comparator using logic gates and verify the truth table. **PRINCIPLE**

Digital or Binary Comparators compares the digital signals present at their input terminals and produce an output depending upon the condition of those inputs.

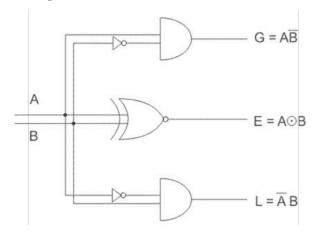
The digital comparator accomplishes this using several logic gates that operate on the principles of Boolean algebra. The purpose of a Digital Comparator is to compare a set of variables or unknown numbers, for example A (A1, A2, A3, An, etc) against that of a constant or unknown value such as B (B1, B2, B3, Bn, etc) and produce an output condition or flag depending upon the result of the comparison. There are two main types of Digital Comparator available and these are.

Identity Comparator - an *Identity Comparator* is a digital comparator that has only one output terminal for when the inputs A = B

Magnitude Comparator - a *Magnitude Comparator* is a type of digital comparator that has three output terminals, one each for equality (A = B), greater than (A > B) and less than (A < B)


This is useful if we want to compare two variables and want to produce an output when any of the above three conditions are achieved. For example, produce an output from a counter when a certain count number is reached. Consider the truth table of simple 1-bit

INPUT		OUTPU	OUTPUT				
В	Α	A>B	A=B	A <b< th=""></b<>			
0	0	0	1	0			
0	1	1	0	0			
1	0	0	0	1			


Truth table of digital- comparator

comparator.

Prepared by Dr.S.Esakki Muthu and Dr.A.Saranya, Asst Prof, KAHE

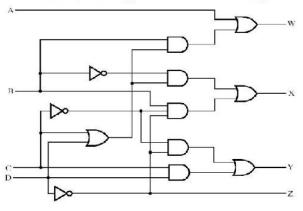
Digital comparators actually use Exclusive-NOR gates within their design for comparing their respective pairs of bits. When we are comparing two binary or BCD values or variables against each other, we are comparing the "magnitude" of these values, logic "0" against a logic "1" which is where the term Magnitude Comparator comes from.

RESULT

Designed and setup single bit comparator using logic gates and verified the truth table.

BCD to Excess - 3 code convertor

AIM


To design and set up the circuit of BCD to Excess-3 converter

COMPONENTS REQUIRED

IC Trainer kit,IC 7486, IC 7408, IC 7404, IC 7432

PRINCIPLE

The Excess-3code for a decimal digit is the binary combination corresponding to the decimal digit plus 3. For example, the excess-3 code for decimal digit 5 is the binary combination for 5+3=8, which is 1000. Each BCD digit four bits with the bits with the bits, from most significant to least significant, abelled A,B,C,D. As the same for excess-3 labeled W,X,Y,Z.

BCD Logic circuit

Truth Table of BCD Logic circuit

Inp	Input (BCD)				Output (Excess-3)				
Α	B	С	D	W	X	Y	Z		
0	0	0	0	0	0	1	1		
0	0	0	1	0	1	0	0		
0	0	1	0	0	1	0	1		
0	0	1	1	0	1	1	0		
0	1	0	0	0	1	1	1		

0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

PROCEDURE

- 1. Test all the components using multi meter and digital IC tester
- 2. Verify the truth table of the circuit by feeding input bit combinations

RESULT

The circuit of BCD to Excess-3 converter has set up and verified the result.

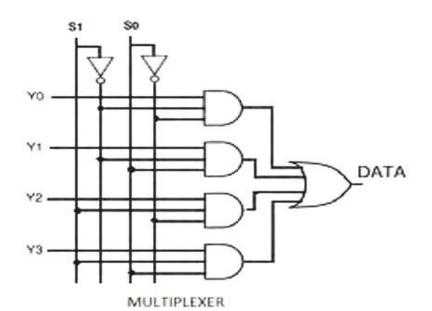
Multiplexer and de Multiplexer

AIM

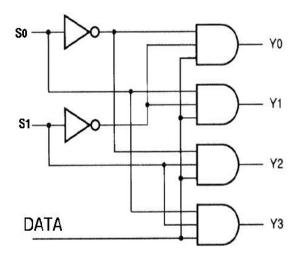
To design Multiplexer and Demultiplexer and verify their truth tables.

COMPONENTS REQUIRED: -

Digital IC trainer kit, IC


PRINCIPLE

In electronics, a multiplexer (or mux) is a device that selects one of several analog or digital input signals and forwards the selected input into a single line. A multiplexer of 2^n inputs has n select lines, which are used to select which input line to send to the output. An electronic multiplexer can be considered as a multiple-input, single-output switch. Multiplexers are mainly used to increase the amount of data that can be sent over the network


within a certain amount of time and bandwidth. A multiplexer is also called a data selector.

Conversely, a demultiplexer (or demux) is a device taking a single input signal and selecting one of many data-output-lines, which is connected to the single input. An electronic demultiplexer can be considered as a single-input, multiple-output switch. A multiplexer is often used with a complementary de multiplexer on the receiving end.

TRUTH TABLE						
S1	S0	DATA				
0	0	Y0				
0	1	Y1				
1	0	Y2				
1	1	Y3				

	TRUTH TABLE							
INI	INPUTS			OUTPUTS				
DATA	S 1	S0	Y3	Y2	Y1	Y0		
1	0	0	0	0	0	1		
1	0	1	0	0	1	0		
1	1	0	0	1	0	0		
1	1	1	1	0	0	0		

DEMULTIPLEXER

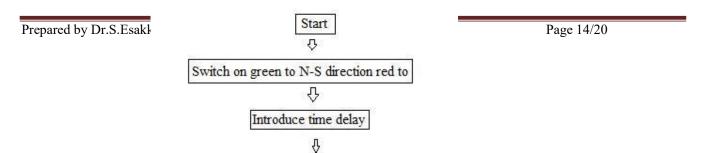
PROCEDURE:

. Connections are made as per the circuit diagram

2. Switch on the power supply

3. Apply different combinations of inputs and observe the outputs; compare the outputs with the truth tables.

Prepared by Dr.S.Esakki Muthu and Dr.A.Saranya, Asst Prof, KAHE



RESULT:

Multiplexer and Demultiplexer are constructed and verified the truth tables.

MICROPROCESSOR - TRAFFIC CONTROL STIMULATION

Aim : To interfaces traffic light controller with microprocessor 8085

MEMORY		NEMONICS	COMMENTS
ADDRESS 8500	OPCOD MVI	OPERAN A, 30	All ports as o/p
8502	OUT	25	1 1
8504	MVI	A, 0F	For prides for program
8506	OUT	21	
8508	MVI	A, 8D	For green
850A	CAL Introduce	Amber delay	
850C	L	8569	Sequence delay
850F	CAL	885F	Amber delay
8512	L L	S direction & gree A _I	<u>m in E-N sides</u> For stopping N –
8514	MVI Intro	dud time delay	side Sequence
8516	OUT	20	delay Amber
8519	CAL	uce Amber delay	delay
Swit	ch on Red for N-S	& right	eten free-loftitheal sides and stopping
851C	CAL	心	F-W sides for right turn in N sides
851E	L Introduce Amb	er signal and Amb A, 49	er delay
8520 Swite	hGARed for N-S	dz Oction & right t	rn in E-N sides
8522	L	A, 01	
8524	Introduce tim	e delay and Ambe 20 _п	r delay
8527 Sw	viteh Von Red for al	∨ 1 &569ion & green	for pedestor
8529	OUT	A, 00	
852B	MVI	roduce time delay 22	e
852E	OUT	855	For amber delay
8530	CAL	F	For stopping vehicle in N-S direction
8532	L	А,	
8534	MVI	89	For right turn in t-w sides
8536	OUT	20	
8539	CAL	A, 02	Sequence delay
853B	L	22	
853D	MVI	8569	

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II MSC PHYSICS

COURSE NAME: ADVANCED ELECTRONICS PRACTICAL COURSE CODE: 17PHP312 BATCH-2018-2020

COURSE COL			Diffen 2010 2020
854E	MVI	C, 10	
8550	CALL	856F	
8553	MVI	A, 30	
8555	OUT	20	
8557	MVI	C, 08	
8559	CALL	856F	
855C	JMP	850 A	
855F	MVI	A, 39	For amber signal all sides
8561	OUT	20	
8563	MVI	C, 08	
8565	CALL	856F	Delay count
8568	RET		

Delay program :

MEMORY	M	NEMONICS
ADDRESS		
	OPCODE	OPERAND
8569	MVI	B, 40
856B	CALL	856F
856E	RET	
856F	MVI	C, FF
8571	MVI	A, FF
8573	NOP	
857A	DCR	А
8575	JNZ	8573
8578	DCR	С
8579	MOV	A,B
857C	JNZ	8571
857D	ORA	В
857E	JZ	8583
8581	DCR	В
8582	JZ	856F
8585	RET	

Result : The traffic control system is stimulated using microprocessor 8085

