
UNIT– I

SYLLABUS

Angular momentum: Angular momentum operators – Angular momentum commutation

relations – Eigen values and Eigen functions of L2 and Lz – General angular momentum –

Eigen values of J2 and Jz – Ladder operators (J+ and J-) – Angular momentum matrices –

Matrices for J2, Jz, J+, J-, Jx and Jy – Spin angular momentum – Spin ½ systems – Spin vectors

for spin ½ systems – Addition of angular momentum – Clebsh-Gordan coefficients.

ANGULAR MOMENTUM OPERATORS

The Angular Momentum Operator:

In classical physics the angular momentum of a particle with momentum p and

position r is defined by

L =r × p = (ypz- zpy) i + (zpx–xpz) j + (xpy- ypx) k

The orbital angular momentum operator L can be obtained at once by replacing r

and p by the corresponding operators in the position representation, R and P = -ihΔ where q

is the coordinate expression for the operators of Lx ,Ly , Lz.

The Cartesian components  of L are

Lx = -iħ(y d/dz-z d/dy)

Ly= -iħ(z d/dx-x d/dz)

Lz= -iħ(x d/dz-y d/dx)

Clearly, angular momentum does not exist in a one-dimensional space. We should mention

that the components
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L2 = -ħ2[1/sinθ d/dθ(sinθd/dθ)+1/sin2θ d2/dφ2]

ANGULAR MONENTEUM COMMUTATION RELATION:

The commutation relation of the component of L can easily be obtained in Cartesian

coordinates

[Lx ,Ly]=[(ypz- zpy),(zpx–xpz)]

=[ypz,zpx] – [ypz,xpz ] – [zpy , zpx] + [zpy , xpz]

in these commutations pqstants for –iħd/dq.In the second and third teems on the right side of

the equation all the variables involved commute with each other. Hence both of them vanish.

Since y and px commute with z and pz

[(ypz- zpy] = ypx[pz,z]= -iħypx

based on similar arguments  , we get

[zpx–xpz] = pyx [z,pz] = -iħxpy

Hence
[Lx,Ly]=iħ(xpy-ypx)=iħLz

the commutators [Ly,Lz] and [Lz,Lx] can be obtaioned in the same way and we have

[Lx,Ly]=iħLz,,[Ly,Lz]=iħLx ,[Lz,Lx]=iħLy

that is the components of angular momentum do not commute with one another and therefore

they are not measurable simultaneously. In other words if the system is an eigenstate of one

angular momentum component, it will not be simultaneously in an eigenstate of either of the

others. These commutations relation hold for the components of total angular momentum

L=Σ Li of a system of particle also. The commutation relation in can be written in a compact

form as
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L×L=iħL

In the usual sence the vector product of a vector with itself is zero . Hence we have to

consider L as a vector operator and not as a usual vector. the left hand side to be consider as

a determinatedans has to be expanded before the term by term comparison with the

commutator of L2 with the component of L

[L2, Lx]=[Lx2,Lx]+[Ly2 ,Lx]+[Lz2 ,Lx]

=0+Ly[Ly,Lx]+[Ly,Lx}Ly+Lz[Lz,Lx]+[Lz,Lx]Lz

=Ly(-iħLz)+(-iħLz)Ly+_iħLzLy+iħLyLz

Hence we conclude that

[L2, Lx]=[L2,Ly]=[L2,Lz]=0

the square of the angular momentum commutes with its components, That is the total angular

momentum can be measured by simultaneously with any one component. As the components

among themselves are noncommuting one cannot measure L2, Lx,Ly,Lz simultaneously.

Therefore we cannot have a representations in

which all the four are diagonal.

L+ =Lx+ iLy , L- =Lx-iLy

The operator L+ is called the rasing operator and L-,the lowering operator.

the reason for the names would be clear in section.

[L2, L+]=0, [L2,L-]=0

and

[Lz,L+] = [Lz,Lx]+i[Lz,Ly]

=iħLy+ ħLx

=ħL+

the other commutators can alsoi be evaluated in the same way and we have the relations

[Lz,L-]=-ħL-

[Lx,L+]=-ħLz

[Lx,L-]=ħLz

[Ly,L+]=-ħLz
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[Ly,L-]=iħLz

we also have

[L+,L-]=2ħLz

and

L+L-=L2 –Lz2+ħLz ,L-L+ =L2-Lz2-ħLz

EIGENVALUES AND EIGENFUNTIONS OF L2 AND LZ:

The eigen value equation for L2 in spherical polar coordinates can be written as

-ħ[1/sinθ d/dθ(sinθ d/dθ)+1/sin2θ d2/dφ2]Y=λħ2Y

where λħ2 is the eigen value of L2 and Y is the corresponding eigen function rearranging we

get

[1/sinθ(d/dθsin d/dθ)+1/sin2θ d2/dφ2]Y+λY=0

which is the same as the as angular part of the schrodinger equation of a system moving in a

potential V(r).The solution gives λ=l(l+1) with eigenfunction

Y=Ylm(.θ,φ)=έ[2l+1/4π (l-ImI)! / (l+lml)!]1/2 p1
lml(cosθ)eimφ

where

l=0,1,2,3,… and  m=0,±1,±2,±3…±l

and έ=(-1)mfor m> 0 and έ=1 for m ≤0.
The form of Lz , immediatel y gives

L zY lm=-I ħ d/dθYlm(θ,φ)

=mħYlm(θ,φ)

thus the spherical harmonic Ylm(θ,φ) are eigenfunction of L2 and Lz with eigen value l(l+1)ħ2

and mħ respectively

GENERAL ANGULAR MOMENTUM:

Number of experimental result such as spectra of alkali metals anomalous
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zeeman effect , stern gerlach experiment   ,etc,…could be explained only by invoking the

concept that the electron   in an atom possesses an additional intrinsic angular momentum

involving half integral quantum numbers. However the definition of angular momentum

based on classical physics let to the 2l+1integral values

mħ,m=0,±1,±2,…,±l for  the  z component of angular  momentum . In other  words

the difinision of angular momentum L=r×p is not general enough  to include half

integral quantum number and therefore one may take the definition of general angular

momentum as the commutation relation given by

[Jx,Jy]=iħJz, [Jy,Jz]=iħJx, [Jz,Jx]=iħJy

where the J symbol is used for the general angular momentum.

EIGEN VALUES OF J2 AND JZ,

The square of the general angular momentum J commutes with its components

Jx,Jy,Jz

.However the components among themselves are noncommutting. Therefore J2 and one

component, say Jz can have simultaneous eigenkets at a time.Denoting the simultaneous

eigenkets by lλm> the eigenvalue equation for J2

is given by

Jzlλm>=mlλm>

and

equation 1 can be written as

Jx2 + Jz2 lλm> + m2lλm>=λlλm>

multiplying from left by bra <λml and rearranging

<λml J2 lλm> + <λml J2 lλm>=(λ-m2)
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since Jx and Jy are hermitian their eigenvalues must be real and therefore the left side of must

be positive. Hence

λ-m2 ≥0 or λ≥m2

operating eq 1 from left byu J+, we get

J+J2lλm> = λJ+lλm>

that is lλm>and J+lλm> are eigenkets of J2 with the same eigenvalues λ premultiplying by J+

we have

J+Jzlλm> =mJ+ lλm>

but [Jz ,J+] =ħJ+ or J+Jz=JzJ+ -ħJ+.replacing J+Jz in the above equation

we get

(JzJ+ -ħJ+) lλm> =mJ+lλm>

or

JzJ+ lλm>=(m+ħ)J+ lλm>

thus J+ lλm> is an eigenkets of Jz with the eigenvalue (m+ħ) and of J2 with the same

eigenvalue λ. Since operatation by J+ generatesa a state with the same magnitude of angualr

momentum but with z component higher by ħ, it is called raising operator .

Repeated operation by J+ increases the eigenvalue of Jz in steps.This has to be stoped at

some point otherwise the condition eq 4 be µ . Then

Jz lλµ> = µlλµ >

operation by J+ from left gives

JzJ+ lλµ> =(µ + ħ)J+ lλµ>
eigenvalue of (µ + ħ) is not possible since µis the highest eigenvalue. Hence,

J+lλµ> = 0

premultiplying by J- and usiong the result

J_J+ = J2 -Jz2-ħJz

we get

J_J+lλµ>=0 or (J2 -Jz2-ħJz) lλµ> =0

therefore
(λ-µ 2-ħµ) |λµ>=0

as
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(λ-µ 2-ħµ)=0 so

λ=µ(µ+ħ)

operating eq Jz lλµ> = µlλµ> from left by J_,we get

J_Jz lλµ> =µJ_ lλµ>

or

JzJ_lλµ> = (µ-ħ) J_lλµ>

For the maximum eigenvalue µ we have

j2 lλµ> = λ lλµ>

that is J_lλµ>eigenkets of j2 and jz with the eigenvalues λ and µ-ħ respectively.

Hence J_  is called  a lowering operator.J+ and J_together is  often reffered  to as  ladder

operator.repeating the lowering operation by J_,n times we get

JzJ_n+1 lλµ> =(µ-(n+1)ħ]j_n+1 lλµ> =0

again there must be a cut off value of m without violating the condition λ≥m2 be

µ -nħ then

JzJ_n+1 lλµ> =[µ -(n+1)ħ]J_n+1 lλµ>=0

since [µ -(n+1)ħ] ǂ0

J_n+1 lλµ> =0

or

J_Jn_ lλµ>=0

or

J+J_J_n lλµ>=0

Replacing J+J_,we have

(J2-Jz2 +ħJz)Jn_lλµ> =0

or

[λ-(µ -nħ)2+ħ(µ-nħ)]Jn
- lλµ> =0

As Jn
- lλµ> ǂ 0 ,λ -(µ -nħ)2+ħ(µ-nħ)=0,substituting the value of λ from
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we find

since (n+1)ǂ0

(n+1)(2µ -nħ)=0

2µ -nħ=0 or µ=nħ/2

where n is the number of steps from the maximum eigenvalue µ to the manimum eigenvalue

µ -nħ. The number of steps n is always an integer including zero.Writting j for n/2 the

maximum and minimun eigenvalues of Jz are jħ and –jħ respectively . In other words for a

given value   of j the integer the possible value of j are 0, ½, 1,3/2, …thus half integral

quantum number have emerged automatically from the general treatment of angular

momentum a result we have been looking for denoting the simultaneous eigenvector of the

operator J2 and Jz with eigenvalues j(j+1)ħ22 and mħ by ljm> we get

J2 ljm> =j(j+1)ħ2 ljm>

and

J2 ljm> =mħ ljm>

where j=0,1/2,1,3/2,… and m=-j,-j+1,….j

ANGULAR MOMENTUM MATRICES:

The states I jm> form a complete orthonormal set and they can be used as a basis for matrix

representation of an angular momentum .In this representation of angular momentum

components can be represented matrix with elements <j’m’|F|jm>.The rows of the matrix

will be labelled by the j’ and m’ values and the column by the j,m values.

Matrices for J2 and Jz:

As J2commute with Jz the matrices for J2and Jz will be diagonal. In that representation Jx

and Jy. Multiplication of eqJ2 ljm> =j(j+1)ħ2 ljm> and J2 ljm> =mħ ljm> from left by <j’m’l
gives

<j’m’|J2|jm>=j(j+1)ħ2ᵟjj’,ᵟmm’
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and

<j’m’|Jz|jm> =mħᵟjj’.ᵟmm’

the presence of the factor ᵟjj’.δ mm’ indicate that the matrices are given they are of infinite
dimentions

Matrices for J+,J_,Jx and Jy:

JzJ+ ljm> = (m+1)ħJ+ljm>

this implies that J+ ljm> is an eigenvalue of Jz ,the eigen vectores can differ at the most by a

multiplicative constant  say am

J+ |jm> =am |j,m+1>
similar we get

J_ |jm>=bm|j,m-1>
where
am =<j,m+1lJ+ljm>     or     a*m  =<jm lJ_lj,m+1>

bm=<j,m-1lJ_ ljm> or b*m+1 =<jm lJ_lj,m+1>

compare the two equations gives

a*m = bm+1

operating of eq from left by J_,we have

J_J+ ljm> =am J_lj,m+1>

replacing J_J+ we get

(J2-Jz2–ħJz> =am bm+1 ljm>

or

[j(j+1))-m2-m]ħ2ljm> =lam l2ljm>

or

am =[j(j+1) –m(m+1)]1/2 ħ

with the value of am

J+ ljm> =[J(j+1)-m(m+1)]1/2 ħ lj,m+1>

or

<j’m’lJ+ljm> =[j(j+1)- m(m+1)]1/2ħᵟ jj’.ᵟm’m+1

similarly

<j’m’lJ_ ljm>=[(j(j+1)-m(m-1)]1/2 ħᵟjj’.δ m’m+1

last two give equation give the matrix element for J+ and J_ they are infinte dimentisional
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matrices like the j2 and Jz matrices.The nature of the kronecker deltas in last two equation

indicates that all nonvanishing element occure in bloges along the diagonal corresponding to

j’=j.The block matrices corresponding to j=0,1/2 and are given below .The rows are labelled

by the value of m’ and the columns by the values of m .the nonvanishing matrixes for Jx and

Jy are evaluated using the relation

Jx=1/2(J++J_) and Jy=1/2i(J+-J_)

for j=0

for j=1/2

J+=0, J_=0, Jx=0, Jy=0

J+ =ħ( 0   1) J_ =(0   0)

( 0   0), (1   0),
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Jx=1/2ħ(0    1) Jy=1/2ħ (0 -i)

(1    0) (i     0)

for j=1

J+=ħ (0   √2   0) J_=ħ(0   0   0)

(0    0 √2) (√2 0   0)

(0    0   0 ) (0 √2 0)

Jx=1/√2 ħ(0 1 0) Jy=1/√2 ħ(0 -i 0)

(1 0 1) (i o -i)

(0 1 0) (0 I -i)

without a word about the eigenvector the disscussion would not be complete .The eigenvector

with respect to the ljm> basis will be the column vector would be used for perticular cases:

j=0,j=1/2,j=1,…

SPIN ANGULAR MOMENTUM:

To account for the multiplicity of atomic states uhlebeck and goudsmit proposed in

1925 that an electron in an atom possesses an intrinsic angular momentum in addition to

orbital angular momentum. This intrinsic angular momentum S is called the spin angular

momentum whose projection on the z axis can have the value

sz =msħ, ms=±1/2. the maximum measurable component of spin angular momentum in units

of ħ is called the spin of the particle and is usually denoted by s .They also suggested that the

spin angular momentum gives rise to an intrinsic magnetic moment µ s gives by

µ s= - e/m S

assuming that all the stable and unstable particles to have spin angular momentum
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S , we expect its components Sx, Sy and Sz to obey the general commutation relation and

S2and Sz to have the eigen values s(s+1)ħ2 and msħ, ms= -s, -s+1,…s respectively

spin –(1/2) systems

most of the stable elementry particles,electrons,protons,neutrons,etc..come under this

category.the matrices representing Sx, Sy and Sz are obtained from the Jx, Jy,and Jz matrices

by taking the part corresponding to j=1/2,hence

Sx=1/2ħ ( 0   1) Sy=1/2 ħ (0 -i) Sz=1/2ħ(1    0)

(1    0) (I 0) (0 -1)

often it is convinient to work with a matrix ϭ defined by

S=1/2ħϭ

where

ϭx=( 0   1) ϭy= (0 -i) ϭz=(1 0)

(1    0) (I 0)                (0 -1)

the ϭx,ϭy and ϭz matrices are called the pauli’s spin matrices.From the difinition it is obvious

that their eigenvalues are +1.These matrices satisfy the relation

ϭx =ϭy

ϭxϭy=iϭz, ϭyϭz=iϭx , ϭxϭz =iϭy

ϭxϭy + ϭy ϭx = ϭy ϭz + ϭz ϭy = ϭz ϭx + ϭx ϭz =0

pauli was the first to recognize the necessity of two component state vectors explain certain

observed features to atomic spectra.

spin vectors for spin –(1/2) system:

Including spin the  spin –(1/2)system has how four degree  of freedom,the  three

position coordinates (x,y,z) and another observable pertaining  to spin.Taking the z

component Sz as the fourth observable the electron wave function can be written as φ(r,Sz)
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or φ(r,ms) the coordinate m takes the values +1/2 or -1/2. When the interaction between the

spin and space parts is negligible the wave function

φ(r,ms )=ϕ(r) χ(ms, )
where ϕ(r) represented that depends on the space coorinates and χ(ms, ) the part the depends

on the spin coordinates

The eigenvectors of the spin matrices Sx, Sy and Sz, can easily by obtained by writing the

eigenvalue equation.Since the matrices are 2x2 the eigenvectors must be column vector with

two components. the eigenvalue equation for Sz with eigenvalue ħ/2 is

1/2ħ(1   0)(a1) =1/2ħ(a1)

(0 -1)(a2)(a2)

it is evident that a2=0 the normalization condition gives

la2l
2=1 or a1 =1

the eigenvector of thr matrix Sz corrsponding to eigenvalue ħ/2 is than

(1)

(0)

processing on similar lines the eigenvector for the eigenvalue -ħ/2  is

(0)

(1)

these eigenvector are denoted by α and βand are usually called the spin up and spin down

states respectively

α=(1) β=(0)

(0) (1)

the two component eigenvectors of spin –(1/2) particles are sometimes called spinors.

Eigenvectors of Sx and Sy can also be found in the same way. the spin materials of a spin –

(1/2) system along with eigenvalue and eigenvectors.

Addition of Angular momentum
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The operators, Jˆ1 , Jˆ2 , Jˆ3 which satisfy the “standard angular momentum

commutation relations”

Jˆj , Jˆk   = i jkl Jˆl  , j, k, l = 1, 2, 3 or x, y, z ,

and all results will be equally. in which Jˆ3 points is called the “quantization axis”, and its

choice is arbitrary. This ‘axis’ makes sense as a direction in the usual space only if Jˆ is an

actual angular momentum vector operator—orbital, spin or a combination.

Clebsh – Gordon Coefficient

Clebsch–Gordan (CG) coefficients are numbers that arise in angular momentum

coupling in quantum mechanics. They appear as the expansion coefficients of total angular

momentum eigenstates in an uncoupled tensor product basis. In more mathematical terms, the

CG coefficients are used in representation theory, particularly of compact Lie groups, to

perform the explicit direct sum decomposition of the tensor product of two irreducible

representations (i.e., a reducible representation) into irreducible representations, in cases where

the numbers and types of irreducible components.

From a vector calculus perspective, the CG coefficients associated with the SO(3) group can be

defined simply in terms of integrals of products of spherical harmonics and their complex

conjugates. The addition of spins in quantum-mechanical terms can be read directly from this

approach as spherical harmonics are eigenfunctions of total angular momentum and projection

thereof onto an axis, and the integrals correspond to the Hilbert space inner product. From the

formal definition of angular momentum, recursion relations for the Clebsch–Gordan

coefficients can be found. There also exist complicated explicit formulas for their direct

calculation.
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which is valid only if the coefficient of each term vanishes separately. This leads to one

of the rules of vector atom model , that is,
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m=m1+m2

the various m and j values arise from the values of m1 and m2. For given values of j1 and j2, can

have values from j1 to - j1 and j2 to – j2 m1 in integral step.

The smallest value w of j

occurs for

which is the triangle rule of the vector atom model.
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Possible Questions

PART B ( 4 Marks each)

1. State the commutation relations obeyed by the components of angular momentum and

express them in vector notation.

2. What are ladder operators and why are they so called?

3.   The definition of angular momentum given by L= r x p is not a general one. Why?

Define a general angular momentum operator.

4.   Explain spin-up and spin-down states. What are spinors?

5. What are Clebsh-Gordon coefficients? Explain their significance.

6. Write a short note spin of an electron

7.   if J1 and J2 are angular momentum operators, are J1 + J2 and J1 – J2 angular momenta?

Explain.

8. State the eigen value-eigen vector relations for the operators J2 and Jz. Hence obtain

the matrices for J2 and Jz.

9. Show that the raising and lowering operators J+ and J- operators are Hermitian

conjugates.

10. Prove that the spin matrices Sx and Sy are ħ/2 eigen values.

Part C (10 marks each)

1. What are angular momentum operators? Derive the commutation relations between

the different components of the angular momentum.

2. a. Explain the difference between the orbital angular momentum L and general

angular momentum J. Write down the commutation relations between the

components of general angular momentum. (5 Marks)

b. Derive the eigen values of J2 and Jz.  (5 Marks)

3.   Explain the matrix formulation of angular momenta. Derive the matrix forms of J+, J-,
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Jx and Jy

4.   Explain how concept of spin was introduced and how spin angular momenta

contributes to the total angular momentum of the atom.   Obtain the spin angular

momenta in terms of matrices. What are Pauli matrices?

5.   Discuss  the various aspects  of addition  of angular momenta. What are Clebsh-

Gordon coefficients and how are they determined?
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Scattering: Scattering cross-section – Scattering amplitude – Partial waves – Scattering by a

central potential: partial wave analysis – Significant number of partial waves – Scattering by

an attractive square-well potential – Briet-Wigner formula – Scattering length – Expression

for phase shift – Integral equation – The Born approximation – Scattering by screened

coulomb potential – Validity of Born approximation - Laboratory and center of mass co-

ordinate systems.

Scattering cross-section

When two particles interact, their mutual cross section is the area transverse to their

relative motion within which they must meet in order to scatter from each other. If the particles

are hard inelastic spheres that interact only upon contact, their scattering cross section is related

to their geometric size. If the particles interact through some action-at-a-distance force, such

as electromagnetism or gravity, their scattering cross section is generally larger than their

geometric size. When a cross section is specified as a function of some final-state variable, such

as particle angle or energy, it is called a differential cross section. When a cross section is

integrated over all scattering angles (and possibly other variables), it is called a total cross

section. Cross sections are typically denoted σ (sigma) and measured in units of area.

Scattering cross sections may be defined in nuclear, atomic, and particle physics for

collisions of accelerated beams of one type of particle with targets (either stationary or moving)

of a second type of particle. The probability for any given reaction to occur is in proportion to

its cross section. Thus, specifying the cross section for a given reaction is a proxy for stating the

probability that a given scattering process will occur. The measured reaction rate of a given

process depends strongly on experimental variables such as the density of the target material,

the intensity of the beam, the detection efficiency of the apparatus, or the angle setting of the

detection apparatus. However, these quantities can be factored away, allowing measurement of

the underlying two-particle collisional cross section.

Differential and total scattering cross sections are among the most important measurable

quantities in nuclear, atomic, and particle physics.

Scattering amplitude

The differential cross section, dσ/dΩ, can be written in terms of a scattering amplitude,
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f(θ, φ). If the interaction is spherically symmetric, then there is no φ dependence for f. So

where f(θ) is a complex number with units of length. In our application, f(θ) will have units of

fm2 . For non-relativistic energies, f(θ) can be determined from the Schroedinger equation with

the appropriate scattering boundary conditions at r = ∞. If the interaction is spherically

symmetric, i.e. V (~r = V (r), then the Schroedinger equation can be separated into the different

orbital angular momentum quantum numbers l.

with an equation for each value of l. The same separation holds for scattering problems. One

will obtain a scattering amplitude for each value of orbital angular momentum l, which we label

as fl . The complete scattering solution will have a Ylm(θ, φ) added on for each l. For spherical

symmetry, where there is no φ dependence, so the Ylm reduce to Legendre polynomicals in

cos(θ), Pl(θ). The scattering amplitude therefore becomes

The scattering amplitude f(θ) and the fl are complex numbers, with a real and an imaginary part.

The sum over orbital angular momentum l in the expression for the scattering amplitude goes to

infinity. The contribution from large l goes to zero, and one only needs to sum over a few

values of l. The maximum value needed for l is roughly Rpc, where R is the size of the target

and p is the momentum of the projectile.

Partial waves

Partial wave refers to a technique for solving scattering problems by decomposing each

wave into its constituent angular momentum components and solving using boundary

conditions.

Scattering by a central potential, partial wave analysis

Partial wave expansion the scattering amplitude is represented as a sum over the partial

waves,
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where fℓ is the partial scattering amplitude and Pℓ are the Legendre polynomials.

The partial amplitude can be expressed via the partial wave S-matrix element

Then the differential cross section is given by

and the total elastic cross section becomes

where Im f(0) is the imaginary part of f(0).

Scattering by an attractive square well potential

The Schrodinger equation for the perturbed system can be written as

(Ĥ0 + γĤp )|φi = E|φi (1)

where Ĥ0 is the Hamiltonian of the unperturbed system whose solution is known,

and γĤ p is due to the small perturbation where γ is a small parameter. Here, Ĥ0 can

be the Hamil- tonian of the infinite potential well, for instance. In the above equation,

|φi and E are both
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Figure    1: The triangle functions for a piecewise linear approximation of a

function. This is a basis that is  not orthogonal but yet can be used to seek

approximate solutions .

Figure 2:  The  infinite  potential well on the  left represents  the  unperturbed problem. The

middle figure represents  a perturbation due to a tiny electric field. The right figure represents  a

perturbation due to imperfection  in fabrication or impurities.

unknowns,  but  we can write them  in a perturbation series or expansion,  namely

|φi =|φ(0) i + γ|φ(1) i + γ2 |φ(2) i+ . . . (2)

E = E(0) + γE(1) + γ2 E(2) + . . . (3) ,(4)

Upon substituting the above series into (1), we obtain The left-hand side of (4) can

be expanded and rewritten on a power series in γ

These two power series in γ are equal only if ai = bi , i = 0, 1, ...,∞.2

Equating the coefficients of the power series on both  sides of (4) we have the following

equations:

Zeroth Order:
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Ĥ 0 |φ(2) i + Ĥp |φ(1) i = E(0) |φ(2) i + E(1) |φ(1) i + E(2) |φ(0) i

assume that the zeroth order equation is known in terms of an eigenstate |ψm i with

energy

Em . In other words

|φ(0) i = |ψm i, E(0) = Em (7)

note is in order regarding the uniqueness of the eigenvalue problem (1). An eigenvector is

known only within a multiplicative factor. Hence, its length is indeterminate. This non-

uniqueness in its length manifests in the non-uniqueness of the value of the perturbation

series (2). To achieve uniqueness, it is best to pin down the length of the total eigenvector

given by (2). length of the eigenvector |φi by requiring that

hψm |φi = 1 (8)

With this requirement, we substitute (2) into the above. Since hψm |φ(0) i = 1,

because

|φ(0) i = |ψm i, it is easy to show that hψm |φ(i) i = 0, i > 0. As a

consequence, |φ(i) i is orthogonal to |ψm i. The perturbation series is not

necessarily normalized, but it can be normalized later after the series has been

calculated. Next, to find the first order corrections to the eigenvalue and the

eigenvector, we move the unknowns |φ(1) i to the left of (8). We then have

Ĥ 0 ­Em |φ(1) i = E(1) |ψm i ­ Ĥp |ψm i (9)

since the operator Ĥ 0 ­Em has a null space with a null space vector |ψm i.

hψm |Hˆ 0 - Em |φ(1) i = E (1) ­ hψm |Hˆ p
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|ψm i (10)

the first order correction to the energy of the perturbed system.

First, testing the equation (10) with hψi |, we have

hψi |Ĥ0 ­Em |φ(1) i = E(1) hψi |ψm i ­ hψi |Ĥp |ψm i (11)

Upon substituting (11) into the above, the left-hand side evaluate

choose a(1) = 0 for a number of m reasons: It makes the correction term

unique since |ψ(1) i is orthogonal to |ψ(0) i. It makes the normalization of the

eigenvector |φi accurate to second order even though the correction is first order. It

will also make the second order corrections much simpler to find.

To find the second order corrections, we rewrite (9) with the unknown |φ(2) i on the

left hand side. Then (9) becomes

Ĥ 0 ­Em |φ(2) i = E(1) |φ(1) i + E(2) |ψm i ­ Ĥp |φ(1) i (12)

Testing the above with hψm |, the left hand side becomes zero as before.3 Since

we have made |φ(1) i orthogonal to |ψm i, on the right-hand side, only the last

two terms remain.

Consequently,

0 = E(2) ­ hψm |Ĥ p |φ(1) i (13)

E(2) = hψm |Hˆ p |φ(1) i (14)

The  above  procedure   can  be generalized  to  arbitrary order.   By induction,  we notice that

the equivalence  of to p-th order is
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Ĥ 0 |φ(p) i + Ĥp |φ(p­1) i = E(0) |φ(p) i + E(1) |φ(p­1) i+ E(p) |φ(0) i (15)

The above can be rewritten as

Ĥ 0 ­ E(0) |φ(p) i = E(1) |φ(p­1) i + E(p) |φ(0) i ­ Ĥp |φ(p­1) i (16)

It is to be noted that with modern advent of computer technology, and given

the avail- ability of numerical methods, the calculation of perturbation theory to

very  high  order  is laborious and  not  necessary.  However, a perturbation correction can give

us insight on how a small change in the Hamiltonian  can change the solution.

The tight binding model can be used to find the approximate eigenstates of two quantum

wells that are weakly coupled to each other.

Breit-Wigner formula

The condition is equivalent to the condition that a spherical well of depth possesses a bound

state at zero energy. Thus, for a potential well which satisfies, the energy of the scattering

system is essentially the same as the energy of the bound state. In this situation, an incident

particle would like to form a bound state in the potential well. However, the bound state is not

stable, since the system has a small positive energy. Nevertheless, this  sort of resonance

scattering is best understood as the capture of an incident particle to form a metastable bound
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state, and the subsequent decay of the bound state and release of the particle. The cross-section

for resonance scattering is generally much larger than that for non- resonance scattering.

The relativistic Breit–Wigner distribution (after the 1936 nuclear resonance formula

of Gregory Breit and Eugene Wigner) is a continuous probability distribution with the

following probability density function

where k is a constant of proportionality, equal to

The form of the relativistic Breit–Wigner distribution arises from the propagator of an unstable

particle,[4] which has a denominator of the form p2 − M2 + iMΓ. (Here, p2 is the square of

the four-momentum carried by that particle in the tree Feynman diagram involved.) The

propagator in its rest frame then is proportional to the quantum-mechanical amplitude for the

decay utilized to reconstruct that resonance,

The resulting probability distribution is proportional to the absolute square of the amplitude, so

then the above relativistic Breit–Wigner distribution for the probability density function.

The form of this distribution is similar to the amplitude of the solution o the classical equation

of motion for a driven harmonic oscillator damped and driven by a sinusoidal external force. It
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has the standard resonance form of the Lorentz, or Cauchy distribution, but involves relativistic

variables s=p ², here =E 2. The distribution is the solution of the differential equation for the

amplitude squared w.r.t. the energy energy (frequency), in such a classical forced oscillator,

This is the famous Breit-Wigner formula. The variation of the partial cross-section with the

incident energy has the form of a classical resonance curve.

THE BORN APPROXIMATION:

The wave function ϕ(r’) required the evaluate the equation. Born used an interaction is

procedure for its evaluation. In the first born approximation ϕ(r’) in the integral equation is

replaced by the incoming plane wave exp (iK.r’). This leads to an improved value for the

wave function ϕ(r) which is used the integral in the second born approximation. This interactive

procedure is continued till both the input and output ϕ’ s are almost equal . As higher order

approximation are complicated we shall restrict our discussion only to first born approximation

replacing ϕ(r’)  in the integral the equation by exp (iK.r’) ,we get

f(θ) = -1/4π∫ exp [(i(k-k’).r’]U(r’) d θ      (1)

where k and k’ are the wave vector in the incident and scattered direction respectively. The

quantity (k-k’)ħ=qħ is then the momentum transfer from the incident particle to the scattering

potential. In other words the change in momentum qħ due to collision is given by

qħ = (k-k’)ħ or │q│ =2 │k│ sin θ/2           (2)

replacing (k-k’) by q in eq 1 we get

f(θ) = - 1/4π∫exp (iq.r’) U(r’) d θ’ (3)

the angular integration in equation 3 can easily be carried out by talking the direction of q
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and r’ by θ as the polar axis. Denoting the angle between q and r’ by θ’

f(θ) = -1/4π∫0∞∫0π∫ 2π exp (iq r’ cos θ’)U(r’) r’2sin θ’ dφ’ dθ’ dr’              (4)

integration over φ gives 2π. The θ integral can easily be evaluated by writing

-cos θ’ =x or -sin θ’ dθ’ =dx

we get

∫0πexp (iqr’ cosθ’ ) sin θ’ dθ’ = ∫1-1 exp  (iqr’x)dx

=exp(iqr’)-exp(-iqr’) (5)

substitiutibg the value of the angular part in equ (4)

f(θ) = -2µ /ħ2∫0∞ sin (qr’)/qr’ V(r’)r’2 dr’

from which ϭ(θ) can be calculated. It may be noted from eq   (5)   that the only variable

parameter in f(θ) is magnitude of the momentum transfer qħ where q is given by eq (2) thus the

scattering cross section depends on the momentum of the incident particle kħ and the

scattering angle θ through  the combination q= 2k sin (θ/2)

Scattering by screened coulomb potential

The cross section σ (θ) for the scattering of protons by a screened Coulomb potential is
evaluated using the numerical solution of the classical equations of motion.

Let the potential energy of a screened Coulomb potential interacting with a positive charge be
given by

V(r) = k Ze2 exp(- μr )/r (1-a)

= C exp(- μr )/r (1-b)

where C = k Ze2 .

In SI units , k=9.00 E9 Nm2/C2, Z is the atomic number of the nuclei , e =1.602E-19 C , μ ~/length~ m-1

the equations of motion and find θ for a varying set of impact parameters.
An approximation to σ(θ) would be
σ(θi ) ≈ - γi ( γi - γi-1 )/ [ sin ( θi-1 ) (θi - θi-1 ) ] ~ m2 (2)
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Using eq (1-b) we have

d2 x/dt2 = (1/m) {-∂ V/∂x } ( 3 )

d2 y/dt2 = (1/m) {-∂ V/∂y } . ( 4 )

The finite difference solution are

xn =2.*xn-1-xn-2 + ( (∆t)2 /m) C exp(-μrn-1 ) xn-1 {μ /rn-1
2 + 1/ r n-1

3 } , ( 5 )

and

y n =2.*yn-1- yn-2 + ( (∆t)2 /m) C exp(-μrn-1 ) yn-1 {μ /rn-1
2 + 1/ r n-1

3 } . ( 6 )

Validity of Born approximation
Born approximation replaces ψ by φ in Lippmann–Schwinger equation, which is

integrated together with  the potential. Therefore, in order for Born ap- proximation to

be good, the difference between ψ and φ must be small where the potential exists. The

self-consistency requires that

where V (~x) is sizable, and the l.h.s. can be evaluated within Born approximation itself. From

Lippmann–Schwinger equation

we require this condition at x = 0 where the potential is the

strongest presumably.

For a smooth central potential, with a magnitude of order V and a range of order a, we can

qualitatively work out the validity constraint. Taking

~

k along the z axis, and looking at x ' 0 where the potential is most

important presumably (and relabeling x = 0 as ~x), the condition is
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When  k << a−1, we can ignore the  phases  in the  integral,  and  it  is given roughly by

Numerical  coefficients are  not to  be  trusted.   On  the  other  hand,  when k >> a−1 ,  the

phase  factor  oscillates rapidly  and  we can  use  stationary phase approximation.  The

exponent  is ikr + ikz, and it is stationary only along  the negative  z-axis  z  = − r.   Expanding

around  this  point,   it  is ikr + ikz  = ik(x2   + y2)/r + O(x3, y3 ).   The  Gaussian  integral  over

x,  y then  gives a factor of πr/k, while z is integrated along the stationary phase direction from

− a to 0. Therefore, the validity condition is given roughly by

On the other  hand,  we can estimate  the  total  cross section  in both  limits.

For a large momentum  transfer,  say along the x axis, y and z integral  each gives a factor of a

because of no phase variation,  while x integral  oscillates rapidly and cancels mostly; it leaves

only∼ 1/q contribution from non-precise cancellation.  Therefore,

Because the momentum transfer q is of the order of k (except the very forward region which we

neglect from this  discussion),  the  total  cross sections are roughly
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It  is interesting   to  note  that, once the  validity condition is satisfied,  the  total cross section

is always smaller than  the geometric  cross section 4πa2

Laboratory and centre of Mass co-ordinate system

Unlike the two-body case, there is no gain in simplicity if we use relative coordinates

for the N body system in general.  For  two  bodies,  there  is  only  one  set  of  relative

coordinates, while there are two sets of particle coordinates, one for each particle. For three

bodies, there are three combinations of separations between individual particles, just as there are

three sets of particle coordinates. For all higher values of, the number of relative separations is

always larger than the number of particles. In conclusion, from onward, it makes more sense to

define the positions and velocities with respect to a given coordinate system. Although not

necessary, it is often convenient to use the center of mass system for our orbit calculations. The

center of mass is defined in any coordinate system.

In a one-dimensional system of weights hanging from a beam in the Earth's gravitational field,

the left and right parts of the beam will be in equilibrium if we support the beam exactly at the

center of mass. The same is true for a two- dimensional plank with masses. With three

dimensions, we have no room left in an extra dimension for external support, but an analogous

result still holds: the motion of the center of mass is the same as if the entire mass of the system

was concentrated there and acted upon by the resultant of all external forces.

Prepared by V. Thayanithi, Asst. Prof, Dept. of PHYSICS, KAHE                  Page 13 of 15

KARPAGAM ACADEMY OF HIGHER EDUCATION 
CLASS: II M.Sc  PHYSICS COURSE NAME:QUANTUM MECHANICS II

COURSECODE:18PHP301 UNIT II (Scattering) BATCH-2018-2020



Possible Questions

Part B (4 Marks each)

1. Write a note on Scattering Amplitude.

2. Briefly explain Neutron Proton scattering with relevant expression.

3.   Describe scattering cross section.

4. What is the difference between differential scattering cross section and total scattering

cross section? Explain.

5. Write a short note on partial waves.

6.   Define scattering length. How is related to zero energy cross-section?

7.   Discuss the validity conditions for Born approximation.

8. What is phase shift? Explain the nature of phase shift in the case of repulsive and

attractive potentials.

9.   Discuss about the scattering by screened Coulomb potential.

10. Write a short note on laboratory coordinate system and centre of mass coordinate

system.

Part C (10 marks each)

1.   Explain scattering amplitude and scattering cross section. Derive expressions for

them.

2.   Discuss in detail about the scattering by a central field, using partial wave analysis

and obtain equations for scattering cross section an scattering amplitude.

3.   Deduce optical theorem

4. What is meant by Ramsaur-Townsend effect?

5.   Discuss the theory of scattering by an attractive square well potential well.

6.    Derive Breit-Wigner formula for resonant cross sections.
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7.   Explain phase shift during a scattering. Obtain relation for Born approximation for

phase shift.

9.  Discuss the validity of Born Approximation.

10. Explain the difference between laboratory coordinate system and centre of mass

coordinate system.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

UNIT-III

SYLLABUS

Many Electron Problem: Indistinguishable particles, Pauli principle – Inclusion of spin –

Spin functions for two electrons – Spin functions for three electrons – The Helium atom –

Central field approximation – Thomas-Fermi model of the atom – Hartree equation –

Hartree-Fock equation – Molecular orbital theory: Hydrogen molecule ion H2
+- Valence

bond theory

Indistinguishable Particles

These basis functions does not solve the Schrodinger equation yet, but they have to

satisfy certain symmetry conditions depending on the kind of particles they represent.

1. Non-identical Particle Case:

Let us assume that we have N particles, and M modes to fit this N particles. We can

construct a state for non-identical particles that looks like

|ψdiff i = |1, ai |2, bi |3, ci ... |N, ni

In terms of basis function, we may express the above as

|ψab· · · n i = |1, ai|2, bi|3, ci · · · |N, ni (1)

Or

ψab· · · n (r1 , r2 , · · · , rN ) = ψa (r1 )ψb (r2 ) · · · ψn (rN ) (2)

We can fit the N particles in n modes, and these n modes can be repeating or non-

repeating. For non-repeating case, it is necessary for M > N .

However, the above wavefunction cannot be used for bosons and fermions, as we will

get a new wavefunction when we swap the positions of two particles. But bosons and

fermions are indistinguishable particles. We will consider them separately.

2. Boson Case:
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For the N boson particle case, we can write the legitimate wavefunction, which can be

used as a basis function, as

|ψidentical-bosons i ∝|ψidentical-bosons i ∝X
P̂ |1, ai|2, bi|3, ci · · · |N, ni (3)

where Pˆ  is a permutation operator,  and  the  above summation is over all possible per

mutations of the coordinate ri over the one-particle eigenstates a, b, c, · · · , n. The

above

wavefunction remains unchange when we permute the positions of two particles, because

for every |1, ai· · · |i, li · · · |j, pi · · · |N, ni, there is a |1, ai· · · |j, li · · · |i, pi · · · |N, ni in

above summation. Hence, swapping of i and j will not change the sign of the above

wavefunction. The above can also be written as a basis function as

|ψab•••n i ∝ Pˆ|1, ai|2, bi|3, ci • • • |N, ni                       (4)

3. Fermion Case:

For the N fermion case, we can write the wavefunction, which can be used as a

basis function, as

where the “+” sign is chosen for even permutation while the “­” sign is chosen for odd

permutation. A permutation involves a unique pairwise exchange of two particles  . The

permutation is even or odd depending on the number of pairwise exchanges  that have taken

place.

Therefore, given a term |1, ai · · · |i, li · · · |j, pi · · · |N, ni, there always exists another term:

­|1, ai · · · |j, li · · · |i, pi · · · |N, ni in the above summation since they differ by one per-

mutation. If i = j, the two terms cancel each other implying that they cannot  be in the

same position. Likewise all the terms in the sum cancel each other since every term that
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contains i and j can be paired up with every other terms in the sum. Moreover, If l = p, all

terms in the summation above cancel as well implying that they cannot be in the same

mode or state. Therefore, the above is a legitimate basis function that represents the

fermions as it obeys Pauli’s exclusion principle. Also, there is a sign change when the

position  of two particles are swapped.

Pauli exclusion principle

The inter- actions between electrons and only consider their Coulomb

repulsion by empirical rules.

Consider two identical particle system (e.g., two electrons in a Helium atom).

Suppose their wavefunction is ψ (x1 , x2) , where xi is the coordinate of the ith

particle, e.g., x = (r, σ) with r the spatial position and σ =↑, ↓ the spin of the particle,

etc.

Consider the exchange operation P̂ : exchanging the coordinates of the two

particles,

P̂1↔2ψ (x1 , x2 ) = ψ (x2 , x1 ) .

If we choose ψ (x1 , x2 ) as an eigenstate of P̂1↔2 with eigenvalue p, then the

eigen equation is

P̂1↔2ψ (x1 , x2) = pψ (x1 , x2) .

Acting P̂1↔2 second time we get back to the original state,

p2ψ (x1 , x2) = ψ (x1 , x2) , or p2 = 1

Therefore,  p can only has two values

p = ±1.

The quantum particles with  p = 1 are referred to as Boson particles, or simply

Bosons; The quantum particles with p = −1 are referred to as Fermion   particles, or

simply Fermions. A more general analysis shows that with  integer spin are always
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Bosons, and particles   with half-odd-integer spins are always Fermions. For

example, electrons and protons are Fermions, and photons (light quanta) are Bosons;

Helium-4 is Boson because its spin is zero, but  Helium-3 atom is Fermion with spin 1/2.

For a general quantum many-body wavefunction, the exchange operation is

P̂n↔mψ (· · · , xn , · · · , xm, · · · ) = ±ψ (· · · , xm , · · · , xn , · · · ) ,

where + corresponds to Boson system, and − to Fermion system. This is a

exact property of a quantum many-body system.

Spin function for  two  electrons

Spin is a special property of atomic or subatomic particles that has no

classical analogue. Electron has spin. We can think of it as being due to the self

spinning of the electron, but we should not let our imagination run further than that.

Spin of an electron gives it a spin angular momentum in addition to the orbital angular

momentum   it possesses. The spin also endows an electron with a magnetic dipole

moment that causes it to interact with a magnetic field.

The spin of some  particles is found to have binary values of “spin up” and “spin

down” experimentally by the famous Stern-Gerlach experiment. This binary nature, as

we  shall see, fits nicely in the mathematical structure of angular momentum in

quantum mechanics, but it cannot be described  by a wavefunction or wave mechanics.

Instead, it can be represented by matrix mechanics.

Spin functions for three electrons

The z component of the orbital angular momentum, represented by the

operator Lˆz , is quantized to be m~ where −l 6 m 6 l, l being an integer related to the

total

angular momentum square operator Lˆ2 with eigenvalue l (l + 1)~2 .

It can be shown that the relationship between the total angular momentum number l

and the z-component of the angular number m is not   restricted to orbital angular

momenta. It can be established for all quantum mechanical angular momenta, as is
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shown in Appendix A. A more general framework for angular momentum is that for

Jˆ2 = Jˆ2 + Jˆ2 + Jˆ2 , an operator x y z that represents the square of the

total angular momentum, and Jˆx , Jˆy , Jˆz , operators that represent the x, y, and z

components of angular momenta, then

Jˆ2 |L, M i = L (L + 1) ~2 |L, M i (1)

Jˆz |L, M i = M ~2 |L, M i , −L 6 M 6 L (2)

The above results for orbital angular momentum by using wave mechanics

and wavefunctions, but they can be proven for general angular momentum by using

rotational symmetry of 3D coordinate space, and mathematics of raising and lowering

operators. Spin angular momentum operators also fit under the framework of general

angular momentum operator, and can be thought of as a special case of the above

framework. For spins, we let Sˆ represent the total angular momentum operator, while

Sˆz represents the   z component of the spin angular momentum. As a result, the

corresponding z component of the spin angular momentum, represented by the

operator Sˆz , has only two eigenvalues and two eigenstates: an up state with angular

momentum
The  corresponding     x  and y  components     of  the  spin  angular    momentum

can  be represented by operators  Sˆx  and Sˆy . Together  with Sˆz , they satisfy the

following  commutation  relations

hSˆx  ,  Sˆy  i  =  i~Sˆz  hSˆy  ,  Sˆz  i  = i~Sˆx  ,                hSˆz  ,  Sˆx  i  =  i~Sˆy

The above is similar   to the commutation relations satisfied by Lˆx , Lˆy , and Lˆz ,

where they have been motivated by wave mechanics. That if an operator is to represent

an angular momentum, then their x, y, and z components have to satisfy the above

commutation relations by rotational symmetry of the 3D coordinate space.

The Helium atom

The essence of this  approximation   is  to  keep  the  quantum   nature    of particles
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but ignoring their dynamic  interactions due  to  Coulomb repulsion by empirical  Hund’s rule,

Single-particle Schrodinger equation,

Hˆ1 Φk (x1 ) = Ek Φk (x1 )

the total wavefunction may be written as

Ψ (x1 , x2, · · · , xN ) ∝Φk1 (x1 ) Φk2 (x2 ) · · · ΦkN (xN )

not taking the exchange symmetry into account. In order to include this

important quantum symmetry, consider first a 2-particle system, N = 2, 1

ψB (x1 , x2 ) = [ϕn1 (x1)ϕn2 (x2 ) + ϕn1 (x2 )ϕn2 (x1 )]    for Boson

or [ϕn1(x1 )ϕn1(x2 ) .....]   so  that   ψB  (x1 , x2)   =  ψB  (x2, x1 )  for  Bosons

(x2 , x1 ) for Fermions. One can also construct a symmetric wavefunction for two

Bosons by a single wavefunction as ψB (x1 , x2 ) = ϕn1 (x1 )ϕn1 (x2), or ϕn2 (x1)ϕn2
(x2 ).
Notice that  if k1  = k2, ψF  (x1, x2 ) = 0, but  not ψB  (x1 , x2) This indicates  that two
Fermions cannot  occupy the same state,  but it two bosons are allowed to occupy the same
state.

A state can only be occupied by at most a single Fermion; But it can be occupied by

any number of Bosons.

The first above statement is Pauli exclusion principle. The second statement is the

property    that    leads  to the  so-called  Bose-Einstein condensation  of  bosons  at  low

temperature.   As active   ingredients   in atoms   and   molecules are electrons which are

fermions, we will mainly use Pauli  principle.  It is obvious that  in the independent- particle

approximation (e.g.,   ignoring particle   interactions), the   ground   state of an N -

electronsystem is given by the Slater determinant constructed from the lowest N single

particle states.     For   atoms,   these single particles   states   are   naturally the eigenstates   of

hydrogenlike  atoms  as we discussed previously.   For molecules, these single particle  states

are  constructed  by  a  linear combinations  of  atomic   different  nuclear states at

configurations.
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Ψ(x1 , · · · , xN ) = ψ(r1, · · · , rN)χ(σ1 , · · · , σN ).

Hence, if spin wavefunction χ is antisymmetric, the spatial wavefucntion ψ must be

symmetric in order for the total  wavefunction Ψ to be antisymmetric, vice versa.

Now we apply this simple analysis to atoms, the elements on the periodical table,

where the identical fermions are electrons with spin-1/2. We will qualitatively discuss the

ground states of the atoms. In the next section, we will attempt to calculate the ground-state

energy value of the two electron system, helium atom. By solving the Schro¨dinger equation

of hydrogenlike atoms in the previous section, we know the elec- tron’s states in an atom can

be characterized by four quantum numbers (n, l, m, ms ): n - principle quantum number

specified main energy levels (shells), l - (orbital) angu- lar momentum   quantum number,

and m - (orbital) magnetic quantum number and - spin magnetic quantum number. We

extend this to many-electron’s state ig- noring the interactions, spin-orbit couplings, etc.,

by using the independent-particle approximation. Using notation

l = 0 → s state,     1 → p state,     2 → d state  · · ·

and noticing m and ms are degenerate quantum numbers, we conclude that s shell

can take up to two electrons (single orbital with m = 0 but one electron with spin up ms =

1/2, the other electron with spin down ms = −1/2); p shell can take up to 6 electrons (three

states  specified by m = 1, 0, −1, each can take one electron with spin up and one electron

with spin down); d shell can take up to 10 electrons (5 states with m = 2, 1, 0, −1, −2, each

can take two electrons), etc. These energy levels are ordered as total  possible maximal

number of electrons.

In this independent-particle picture, the way each electron of an atom occupies a

particular hydrogen state is called electron configuration. In the ground state,   the electron

configuration of an atom is given by filling these hydrogen orbitals from the lowest, in the

ordered series as
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(1s)(2s)(2p)(3s)(3p)(4s)(3d)(4p)(5s) · · · .

ies (such as total angular momentum, spins etc.) of the corresponding atom. More

information can be specified by using the so called atomic spectral term (or atomic term)

to represent states of an atoms. Some correction to independent-particle approximation for

the ground-state atomic term due to Coulomb repulsion will be considered by the

empirical rules.

Atomic spectral terms. We use notation  (2S+1) LJ to denote a particular atomic state

where S is its total spin, L its total  orbital angular momentum and J the total angular

momentum (spins and orbitals). We use capital Latin letters for each

value of orbital  quantum number as

L = 0 1 2 3 4 5 6 7 8 9 10 · · ·

S P D F G H I K L M N · · ·

For example, 2 P3/2 denotes levels with L = 1, S = 1/2 and J = 3/2. The difference in

energy   between atomic levels having   different L and S but the same electron

configuration is due repulsive Coulomb interaction between electrons. These energy

differences are small. We have the following empirical Hund’s rules (F.Hund, 1925)

concerning relative position of levels with the same configuration but different L and S:

(i) For a given shell (configuration), the term with greatest possible value of S gives

the lowest energy;

(ii)  The greatest  possible value of L (for this S) has the lowest energy;

(iii) For half or less than half filling shell, J = |L − S| gives lowest energy; For more

than  half-filling shell, J = L + S gives lowest energy.

The origin of the first rule is obvious: the largest total spin corresponds to symmetric
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(parallel) spin wavefunction and antisymmetric orbital wavefunction, the later reduces

electron-electron repulsive interaction energy.

Example. Helium (Z = 2) has a simple configuration  (1s)2.  Hence S = 0 and

L = 0. The ground state term is 1S0 with J = 0. We will use this term to construct an

approximate wavefunction to calculate its ground-state energy in the next section.

Example. Carbon (Z = 6) has electron configuration as (1s)2(2s)2(2p)2. There are
three p orbitals with m = 1, 0, −1 as l = 1.   Two electrons with both spin equal to 1/2

(corresponding to total largest spin S = 1) are in orbital m = 1, 0 with total maximal M = 1

+ 0 = 1, corresponding to L = 1. Hence the ground state term is 3P0 . It is less than half-

filling, J = |L − S| = 0. The other two possible terms are 1S and 1D. They correspond to

higher energies.

Example. Nitrogen (Z = 7): He(2s)2 (2p)3. Three electrons with total spin S =

3/2 are in states m = 1, 0, −1 with total maximal M = 0 corresponding to L = 0. Ground

state term is therefore 4 S3/2 . Other terms are 2 P and 2 D.

Example. Oxygen (Z = 8): He(2s)2(2p)4.  Equivalent to two holes (two missing

electrons for filled shell) in 2p orbitals. Its ground state term is therefore same as

carbon, 3P . However, as it is more than half-filling, J = L + S = 2. So we have 3 P2 for its

ground state.

Example. Boron (Z = 5) and fluorine (Z = 9) have similar term but different J values,

due to electron-hole symmetry.

Thomas-Fermi model of the atom

The theory for the electronic structure of many-body systems developed semiclassically

shortly after the introduction of the Schrödinger equation. It stands separate from wave

function theory as being formulated in terms of the electronic density alone and as such is

viewed as a precursor to modern density functional theory. The TF model is correct only in the

limit of an infinite nuclear charge. Using the approximation for realistic systems yields poor

quantitative predictions, even failing to reproduce some general features of the density such as

shell structure in atoms and Friedel oscillations in solids. It has, however, found modern

applications in many fields through the ability to extract qualitative trends analytically and with

the ease at which the model can be solved. The kinetic energy expression of Thomas–Fermi
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theory is also used as a component in more sophisticated density approximation to the kinetic

energy within modern orbital-free density functional theory. The electrons are distributed

nonuniformly in an atom, an approximation was made that the electrons are distributed

uniformly in each small volume element but the electron density can still vary from one small

volume element.

Hydrogen molecule ion H2+

The electronic Schrödinger wave equation for the hydrogen molecular ion H2+with two
fixed nuclear centers, labeled A and B, and one electron can be written as

where V is the electron-nuclear Coulomb potential energy function

and E is the (electronic) energy of a given quantum mechanical state (eigenstate), with the

electronic state function ψ = ψ(r) depending on the spatial coordinates of the electron. An

additive term 1/R, which is constant for fixed internuclear distance R, has been omitted from the

potential V, since it merely shifts the eigenvalue.

The Hartree-Fock method

The kinetic energy term and the nucleus-electron interaction term are sums

of single-particle operators, each of which act on a single electronic coordinate. The

electron-electron interaction term on the other hand is a pair interaction and acts on pairs

of electrons.

The Hartree-Fock method is a variational, wavefunction-based approach.

Although it is a many-body technique, the

approach followed  is that of a single-particle picture, i.e. the electrons are

considered as occupying single-particle orbitals making up the wavefunction. Each electron

feels the presence of the other electrons indirectly through an effective potential.

Each orbital, thus, is affected by the presence of electrons in other orbitals.
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The starting point of the Hartree-Fock method is to write a variational

wavefunction, which is built from these single- particle orbitals. Once we make a suitable

ansatz to the wavefunction, all that is left is the application of the variational principle .

. The simplest wavefunction that can be formed from these orbitals is their direct
product
Φ(~x1   ,   •     •     •      ,   ~xN   )   =  φ1   (~x1   )φ2   (~x2   )   •     •     •     φN   (~xN
).  (1)
This is the Hartree  approximation and it  is a straightforward  task to calculate  the

variational lowest energy from Eq. 1

However, the Hartree wavefunction has a very important shortcoming, which is that

it fails to satisfy antisymmetry, which states that a fermion wavefunction changes  sign

under odd permutations of the electronic variables. The permutation

operator is defined by its action on the wavefunction

P̂ij Φ(~x1 , · · · , ~xi , · · · , ~xj , · · · , ~xN ) = Φ(~x1 , · · · , ~xj , · · · , ~xi , · · · , ~xN ) = −Φ(~x1

, · · · , ~xi , · · · , ~xj , · · · , ~xN ) (2)

If an odd number of such permutation operators are applied to the wavefunction, it

picks up a minus sign while no change

in  sign occurs under an even  number of permutations. In order to satisfy the

antisymmetry condition, a more sophisticated form than that of the Hartree wavefunction

is needed.

II. THE SLATER DETERMINANT

If, for example, we have a two-electron system with orbitals φ1 (~x1 ) and φ2 (~x2 ),

the following variational wavefunction satisfies the antisymmetry condition, at the same

time preserving the single-particle picture

Φ(~x1 , ~x2 ) = c [φ1 (~x1 )φ2 (~x2 ) − φ1 (~x2 )φ2 (~x1 )] (3)

where c is the normalization constant. For three electrons, the equivalent
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antisymmetrized wavefunction would be

Φ(~x1 , ~x2 , ~x3 ) = c φ1 (~x1 )φ2 (~x2 )φ3 (~x3 ) − φ1 (~x1 )φ2 (~x3 )φ3 (~x2 ) +

φ1(~x3)φ2   (~x1 )φ3 (~x2 )

−φ1 (~x2 )φ2 (~x1 )φ3 (~x3 ) + φ1 (~x3 )φ2 (~x2 )φ3 (~x1 ) − φ1 (~x2 )φ2 (~x3 )φ3

(~x1 )     (4)

where ~xi is now a generalized coordinate that includes spatial as well as

spin degrees of freedom.

The Hartree-Fock method is a variational, wavefunction-based

approach. Although it is a many-body technique, the

approach followed is that of a single-particle picture, i.e. the electrons are

considered as occupying single-particle orbitals making up the wavefunction.

Each electron feels the presence of the other electrons indirectly through an

effective potential.

Each orbital, thus, is affected by the presence of electrons in other

orbitals.

The starting point of the Hartree-Fock method is to write a variational

wavefunction, which is built from these single- particle orbitals. Once we make

a suitable ansatz to the wavefunction, all that is left is the application of the

variational principle as described in Lecture 1. The simplest wavefunction that

can be formed from these orbitals is their direct product

Φ(~x1 ,   · · · , ~xN ) = φ1 (~x1 )φ2 (~x2 ) · · · φN (~xN ).

(4) This is the Hartree approximation and it is a straightforward task to calculate

the variational lowest energy from Eq. 4.

However, the Hartree wavefunction has a very important shortcoming,

which is that it fails to satisfy antisymmetry, which states that a fermion

wavefunction changes sign under odd permutations of the electronic variables.

The permutation
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operator is defined by its action on the wavefunction

Pˆij Φ(~x1 , · · · , ~xi , · · · , ~xj , · · · , ~xN ) = Φ(~x1 , · · · , ~xj , · · · ,

~xi , · · · , ~xN ) = −Φ(~x1 , · · · , ~xi , · · · , ~xj , · · · , ~xN ) (5)

If an odd number of such permutation operators are applied to the

wavefunction, it picks up a minus sign while no change

in sign occurs under an even number of permutations. In order to satisfy

the antisymmetry condition, a more sophisticated form than that of the Hartree

wavefunction is needed.

THE  HARTREE-FOCK EQUATIONS

The variational principle that we will apply here is rather different from the

linear variation. There the form of  our approximate wavefunction was written as an

expansion over a collection of predetermined functions and we minimized the expectation

value (at the same time obeying the normalization constraint) with respect to the

coefficients of the basis functions. Here however we employ  a much more general

treatment where we minimize with respect to the basis functions themselves! Needless to

say, this requires functional differentiation where any change affected in the expectation

value in Eq. 1 due to an infinitesimal change in any of the orbitals φk should be zero

φk → φk + δφk ⇒ δhΦ|Ĥ e |Φi = 0

In addition, we demand through Lagrange multipliers that the set of oritals φk

remain orthogonal throughout the minimization process.

where the first and the second term are straightforward, single-body operators and

the third term is an integral operator. This is now a set  of interdependent single-particle

eigenvalue equations. The operator Ĵ corresponds to the classical interaction of an

electron distributions given by |φi |2 and |φk |2 and  is called the direct term while K̂

, called the exchange term, has no classical analogue and is a direct result of

the antisymmetry property of the wavefunction.
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For each k there is an equivalent equation defining   a system of

Schrödinger-like, one-particle equations. Although it’s tempting to interpret the

eigen values ǫk as the energy levels  of an interacting system, this is in fact not

justified because the single-electron picture is not correct. However, if interpreted

correctly the Hartree-Fock eigen values do correspond to certain physical entities.

MOLECULAR ORBITAL THEORY

Electrons have certain properties of particles and certain properties of waves. Electrons

have mass and charge like particles. Because they are so small and are moving so fast, electrons

have no defined position. Their location is best described by wave mechanics (i.e. a three-

dimensional wave) and a wave equation called the Schrödinger equation. Solutions of the

Schrödinger equation are called wave functions and are represented by Ψ.

The sign of the wave function can change from positive (+) to negative (-) in different parts of the

same orbital. This is analogous to the way that waves can have positive or negative amplitudes. The

sign of the wave function does not indicate anything about charge.

The value of the square of the wave function is proportional to the probability of finding

electron density at a given point in an orbital. Note that the sign of square of the wave function

is always positive, because the square of even a negative value is still positive.

In a 2p orbital, it is just as probable to find electron density in the negative lobe as it is to find

electron density in the positive lobe. A node is any place in an orbital at which the value of the

wave function is zero.

A nodal surface or nodal plane are surfaces or planes where the value of the wave function is

zeor. There is absolutely no electron density at a node, a nodal surface, or a nodal plane. The

Schrödinger equation can in principle describe covalent bonding, but, even with powerful

computers the equation is too complicated to be solved exactly for large molecules.

Valence bond Theory

The two-electron system with orbitals φ1 (~x1 ) and φ2 (~x2 ), the following

variational wavefunction satisfies the antisymmetry condition, at the same time preserving

the single-particle picture
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Φ(~x1 , ~x2 ) = c [φ1 (~x1 )φ2 (~x2 ) − φ1 (~x2 )φ2 (~x1 )] (1)

where c is the normalization constant. For three electrons, the equivalent antisymmetrized

wavefunction would be

Φ(~x1 , ~x2 , ~x3 ) = chφ1 (~x1 )φ2 (~x2 )φ3 (~x3 ) − φ1 (~x1 )φ2 (~x3 )φ3 (~x2 ) + φ1

(~x3 )φ2 (~x1 )φ3 (~x2 ) −φ1 (~x2 )φ2 (~x1 )φ3 (~x3 ) + φ1 (~x3 )φ2 (~x2 )φ3 (~x1 ) −

φ1(~x2 )φ2 (~x3 )φ3 (~x1 )i. (2)

Upon closer inspection, we notice that the same permutations of orbitals with matching signs

are obtained by the following determinant

φ1 (~x1 )  φ2 (~x1 )  φ3 (~x1 ) (3)

φ1 (~xN )  φ2 (~xN )  • • •  φN (~xN )

where the factor in front ensures normalization. For an arbitrary number of electrons the

wavefunction can be shown to satisfy the desired antisymmetry condition.  The determinant,

referred to as a Slater determinant in literature, has N ! terms each multiplied by -1 or 1

depending on the parity of the permutation.  Each term has each orbital φi  only once and each

of the arguments ~xi  only once. Thus, each term may be written as follows where the indices

i1 , i2, • • • take values between 1 and N and the exponent of -1 in front refers to the order of

appearance of the orbital indices in the term. The term picks up a -1 in front if the

corresponding permutation is odd and +1 if it is even. For ease of notation, we replace P (i1 ,

i2 , • • • , iN ) by the shorthand notation P (i),  where i now refers to a particular arrangement

(or sequence) of the N  indices. The Slater determinant may then be written as

where the sum i runs over the N ! terms. Nothing has been said so far about the form of the

orbitals φi (~xj ) and they are left to be found as a result of the minimization procedure

associated by the variation.  In order to achieve that we now calculate the expectation value of

the Hamiltonian for this variational wavefunction

EH = hΦ|Hˆ e |Φi.                                                              (4)
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Possible Questions

Part B (4 Marks each)

1. What is particle exchange operator? What are its eigen values? Show that it is a

constant of motion.

2. Illustrate exchange degeneracy with examples.

3. What is Slater determinant? How does it incorporate Pauli principle?

4.   Explain Fermi hole and Fermi heap.

5. What are orthohelium and parahelium?

6.   Explain why the ground state of helium exists in the para form whereas the excited

states come in both forms.

7.   Explain central field approximation.

8.   How did Hartree obtain the central field in his theory of many electron atom?

9.   Explain self consistent potential.

Part C (10 marks each)

1. a. Explain what is meant by indistinguishable particles. (5 marks)

b. Explain symmetric and antisymmetric wave functions (5 marks)

2. a. Using symmetric and antisymmetric wave functions explain Pauli’s exclusion

principle. (5 marks)

b. Discuss the inclusion of spin of electrons. (5 marks)

3.   Using the theory of indistinguishable particles, explain the ground state and first

excited state of Helium atom.  Distinguish between parahelium and orthohelium.

4. a. Explain central field approximation. (5 marks)

b. Discuss Thomas-Fermi model of the atom. (5 marks)

5. a. Derive Hartree equation and obtain expression for total energy of the system.

b. Derive Hartree Fock equation. (5 marks)
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UNIT– IV

SYLLABUS

Relativistic quantum mechanics: Klein-Gordan equation – Interpretation of the Klein-

Gordan equation – Particle in a coulomb field – Dirac’s equation for a free particle – Dirac

matrices – Covariant form of Dirac equation – Probability density – Negative energy states–

Spin of the Dirac particle – Magnetic moment of the electron – Spin-orbit interaction –

Radial equation for an electron in a central potential – Hydrogen atom – Lamb shift.

Klein-Gordan Equation

The Klein-Gordon equation fullfills the laws of special relativity, but contains two

fundamental problems, which have to be taken care of for the equation to be physically

meaningful. The problem becomes obvious when considering the solutions of the different

equations.

from which follows

Prepared by V. Thayanithi, Asst. Prof, Dept. of PHYSICS, KAHE 1/ 15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II M.Sc PHYSICS COURSE NAME: QUANTUM MECHANICS II

COURSE CODE: 18PHP301 UNIT: IV (RELATIVISTIC QUANTUM MECHANICS)  
BATCH-2018-2020



This means that the Klein-Gordon equation allows negative energies as solution. Formally,

one can see that from the square of the information about the sign is lost. However, when

starting all solutions have to be considered, and there is the problem of the physical

interpretation of negative energies. The second problem with the Klein-Gordon equation is

less obvious. It occurs when interpreting the function ψ(x) as probability amplitude.

Interpretation of (x) as probability amplitude is only possible if there exists a probability

�density ρ(x) and a current j (x) that ful a continuity equation

which guarantees that no "probability" is lost. Since we deal with a covariant equation,

and obtain the covariant form

Non-relativistically one has

and thus one expects in the relativistic case also bilinear expressions in for ψ, ρ and j. It is

easy to show that this density does not fulfill a continuity equation.
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Consider

Ψ the Klein-Gordon equation, the right-hand side of vanishes, and the continuity equal

Since the Klein-Gordon equation denotes a partial differential equation of hyperbolic type,
one has the option to arbitrarily choose the functions

at the starting time (t = 0), and thus obtain, e.g., negative values for ρ(x;t = 0). An

interpretation of ρ as probability density would mean that the theory allows negative

probabilities. This is the problem of the indenite probability density.

Interpretation of the Klein- Gordan equation

The electromagnetic interactions into the KG equation
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where the generalized potential U(x) consists of a scalar and vector

that the symmetrized from of the vector terms is required in order to maintain the hermicity of
the interaction. For the electromagnetic case they are related

Using the standard form, the KG equation can be written as

Substituting the positive and negative energy

as starting point and use it with more general potentials V

which looks like a Schrodinger equation with the equivalent energy dependent potential

The other potential is considered as the Lorentz scalar. The KG equation with coupling to the

scalar potential
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Particle in a coulomb field

Coulomb's law is a law of physics for quantifying the amount of force with which

stationary electrically charged particles repel or attract each other.

where ke is Coulomb's constant (ke = 9.0×109 N m2 C−2), q1 and q2 are the signed magnitudes

of the charges, and the scalar r is the distance between the charges.

Coulomb's law and Coulomb's constant can also be interpreted in various terms:

 Atomic units. In atomic units the force is expressed in hartrees per Bohr radius, the

charge in terms of the elementary charge, and the distances in terms of the Bohr radius.

 Electrostatic units or Gaussian units. In electrostatic units and Gaussian units, the unit

charge (esu or statcoulomb) is defined in such a way that the Coulomb constant kdisappears

because it has the value of one and becomes dimensionless.

 Lorentz–Heaviside units (also called rationalized). In Lorentz–Heaviside units the

Coulomb constant is ke = 1/4π and becomes dimensionless.

An electric field is a vector field that associates to each point in space the Coulomb force

experienced by a test charge. In the simplest case, the field is considered to be generated

solely by a single source point charge. The strength and direction of the Coulomb force F on a

test charge qt depends on the electric field E that it finds itself in, such that F = qtE. If the field

is generated by a positive source point charge q, the direction of the electric field points along

lines directed radially outwards from it, i.e. in the direction that a positive point test

charge qtwould move if placed in the field. For a negative point source charge, the direction is

radially inwards.

The magnitude of the electric field E can be derived from Coulomb's law. By choosing one of

the point charges to be the source, and the other to be the test charge, it follows from
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Coulomb's law that the magnitude of the electric field E created by a single source point

charge q at a certain distance from it r in vacuum is given by

Dirac’s equation for a free particle.

Dirac attempted to overcome some of the problems of relativistic quantum mechanics

by introducing a first-order wave equation.1

iγµ ∂µ ψ − mψ = 0. (1)

Here, the γµ are some suitably chosen operators acting locally on the wave function ψ.

This wave equation can be viewed as a factorisation of the second-order Klein–Gordon

equation as follows:

(iγν ∂ν + m)(iγµ∂µ − m)ψ = (− γν γµ∂ν ∂µ − m2)ψ = 0. (2)

The latter form becomes the Klein–Gordon equation  provided that  the γ’s satisfy

the Clifford algebra 2 3

{γµ , γν } = γµ γν  + γν γµ = − 2ηµν . (3)

This means that every solution of the Dirac equation also satisfies the Klein–Gordon

equation and thus  describes a particle of mass m.

The Dirac equation is a relativistic wave equation. Translational invariance is evident,

but we have not yet shown its Lorentz covariance (although the resulting Klein–Gordon

equation certainly is covariant).

Dirac Matrices

Consider a Lorentz transformation

x0 = Λ− 1 x with Λ(ω) = exp(ω). Suppose ψ is a solution of the Dirac equation. It is not
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sufficient to use the transformation rule for scalar fields ψ0(x0) = ψ(x). In analogy to vectors

we should also transform  spinors. We make the ansatz

ψ0(x0) = S(ω)ψ(x), (1)

where S(ω) is a matrix that acts on Dirac spinors. We then  substitute ψ0(x) = Sψ(Λx) into

the Dirac equation

0 = iγµ ∂µ − m ψ0(x) = iγµ ∂µ − m Sψ(Λx)

= iγν SΛµν ∂µψ − Smψ (Λx)

= S iS− 1 γν SΛµ ν ∂µ ψ − iγµ ∂µψ (Λx)

= iS Λµν S− 1γν S − γµ (∂µψ)(Λx). (2)

So the term in the bracket must vanish for invariance of the Dirac equation. Indeed, the

canonical Lorentz transformation of gamma-matrices

γ0µ = (Λ− 1)µν Sγν S− 1, (3)

where not only the vector index is transformed by Λ− 1, but also the spinor matrix is

conjugated by the corresponding spinor transformation S.8 In analogy to the

invariance of the Minkowski metric, η0 = η, the Dirac equation  is invariant if the

gamma-matrices are invariant

γ0µ = γµ. (4)

to gamma-matrices, and we make the ansatz δS = 1 αδωµν γµγν . Substituting this

into the invariance condition and using

[γργσ , γµ ] = γρ{γσ , γµ} − {γρ, γµ }γσ , (5)

arrive at (2α − 1)δωµν γν = 0. We conclude that a Lorentz transformation for spinors is
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given by the matrix

the  Dirac  spinor ψ = (ψL , ψR ) transforms in the  direct sum of two (irreducible)

representations of the Lorentz group. The 2-spinors ψL and ψR are called left-chiral and

right-chiral spinors. The massive Dirac equation, however,   mixes these two

representations

iσ¯ µ ∂µψL − mψR = 0. (7)

It is therefore convenient to use Dirac spinors for massive spinor particles whereas massless

spinor particles can also be formulated using 2-spinors;

The decomposition into chiral parts is not just valid in the Weyl representation of the

Clifford algebra.
In the Weyl representation it reads γ5 = diag(− 1, +1), it therefore measures the chirality

of spinors. In general, it anti-commutes  with all the other gamma-matrices,

{γ5, γµ} = 0. (9)

This property implies that a single gamma-matrix maps between opposite chiralities, i.e. it

inverts chirality. The property   is also sufficient to prove commutation with M µν .

Alternatively, it follows by construction   of γ5 as a (pseudo)-scalar combination   of

gamma-matrices.

Covariant form of Dirac equation

The matrices

the Dirac equation in the covariant form can be written as,

in the Klein-Fock-Gordon equation, in the form of the inverse Compton wave length.

ħ=C=1, and using the Feynman slash, the dirac equation can be rewritten as
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Probability density

Probability density function or density of a continuous random variable, is a function,

whose value at any given sample in the sample space, the PDF is used to specify the

probability of the random variable falling within a particular range of values, as opposed to

taking on any one value. This probability is given by the integral of this variable’s PDF over

that range—that is, it is given by the area under the density function but above the horizontal

axis and between the lowest and greatest values of the range. The probability density function

is nonnegative everywhere, and its integral over the entire space is equal to one. The terms

"probability distribution function and "probability function have also sometimes been used

to denote the probability density function.

Negative energy states

If E < 0, the coefficient −2mE/ħ2 be written as

Dirac's goal had been to find a relativistic equation for electrons which was free of the

negative probabilities and the ``negative energy'' states of the Klein-Gordon equation. By

developing and equation that was first order in the time derivative, he hoped to have an

equation that behaved like the Schrödinger equation, an equation for a single particle.

The Dirac equation also has ``negative energy'' solutions. While the probability is positive,

the flux that we have derived is in the opposite direction of the momentum vector for the

``negative energy'' solutions.

Dirac applies the Pauli-principle, where every quantum state can only be occupied

with one electron. For each momentum p = j ~p j, there exist only four electrons, namely two

with the same sign for the energy, one with spin + 1/2 and one with spin 1/2 . According to

Dirac the states with the negative energies is completely. Thus, one has an "underworld," the

Dirac sea with the following properties:

total energy : 1

total charge : 1

total momentum : 0
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total angular momentum

Then there would be a hole in the Dirac sea. If the original electron in the sea had the

properties

then one obtains the hole rotation. Thus the "hole" represents the antiparticle to the electron e-

with the mass me and a positive charge +|e| , namely the positron e+ . According to the

preceding consideration, it should be created with a high energy -particle. To full momentum

conservation one needs, e.g., the nucleus of an atom, the, namely the positron e+ .

Magnetic moment of the electron

The electron is a charged particle of charge −1e, where e is the unit of elementary

charge. Its angular momentum comes from two types of rotation: spin and orbital motion.

From classical electrodynamics, a rotating electrically charged body creates a magnetic

dipole with magnetic poles of equal magnitude but opposite polarity. This analogy holds as

an electron indeed behaves like a tiny bar magnet. One consequence is that an

external magnetic field exerts a torque on the electron magnetic moment depending on its

orientation with respect to the field.

Spin-orbit interaction

The  spin–orbit interaction for an electron bound to an atom, up to first order in

perturbation theory, using some semiclassical electrodynamics and non-relativistic

quantum mechanics. This gives results that agree reasonably well with observations. A

more rigorous derivation of  the same result would start with the Dirac equation, and

achieving a more precise result would involve calculating small corrections from quantum

electrodynamics.

Radial equation for an electron in a central potential

The kinetic energy operator in spherical polar coordinates is
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The spherical harmonics satisfy

Substituting this into the Schrödinger equation

the radial equation becomes

which is precisely a Schrödinger equation for the function u(r) with an effective potential

given by

where the radial coordinate r ranges from 0 to ∞. The correction to the potential V(r) is called

the centrifugal barrier term.

Hydrogen atom

Spectral lines of H found to be composed of closely spaced doublets. Splitting is due

to interactions between electron spin s and the orbital angular momentum l. Spin-orbit

coupling produces fine-structure splitting of ~0.016 nm corresponds to an internal magnetic

field on the electron of about 0.4 Tesla.

Orbital and spin angular momenta couple together via the spin-orbit interaction Internal

magnetic field produces torque which results precession of l and s about their sum, the

total angular momentum:

This kind of coupling is called L-S coupling or Russell-Saunders coupling
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The Hydrogen Atom

A hydrogenic (hydrogen-like) atom is a two-particle system consisting of a nucleus

and an electron. The two particles interact through the potential given by Coulomb's law:

where

 ε0 is the permittivity of the vacuum,

 Z is the atomic number (eZ is the charge of the nucleus),

 e is the elementary charge (charge of the electron),

 r is the distance between the electron and the nucleus.

The mass m0, introduced above, is the reduced mass of the system. Because the electron mass

is about 1836 smaller than the mass of the lightest nucleus (the proton), the value of m0 is very

close to the mass of the electron me for all hydrogenic atoms.

A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom

contains a single positively charged proton and a single negatively charged electron bound to

the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75%of

the baryonic mass of the universe.

In everyday life on Earth, isolated hydrogen atoms (called "atomic hydrogen") are extremely

rare. Instead, hydrogen tends to combine with other atoms in compounds, or with itself to

form ordinary (diatomic) hydrogen gas, H2.

Lamb Shift in Atomic Hydrogen

To measure the Lamb shift in the Balmer α transition of atomic hydrogen.

The Lamb shift cannot be explained by the Schrödinger or Dirac formulations   of

quantum mechanics. It can be explained by a theory known as quantum

electrodynamics—a theory whose development was intimately linked to experimental

observation of the Lamb shift.
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The spectrum of the hydrogen atom was the first to be described quantitatively

and modeled from first principles. In 1885 Balmer discovered that the wavelengths of

the then  known  lines in the hydrogen  spectrum.

In 1890 Rydberg   discovered a more general form of Balmer’s formula

which, when applied to the hydrogen spectrum. In 1887 Michelson, using   his

interferometer to investigate the shape of spectral lines, discovered that the Balmer α

line consisted of not a single line but of two lines separated by a fraction of an

angstrom. Bohr’s  simple model of the atom had no  means of accounting for this

feature.

In 1916 Arnold Sommerfeld presented a model of the hydrogen atom allowing

for the possibility of elliptical in addition to strictly circular electron orbits.

Applying relativistic corrections to these elliptical orbits, Sommerfeld’s model

predicted the Balmer α line to consist of  more than one component, just as

Michelson had observed. But, being an ad hoc combination of classical and quantum

physics, the Sommerfeld model was restricted in scope and left much to be desired.

Quantitatively it was unable to account for features such as magnetic effects or the

different intensities of the components of the Balmer α line.
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POSSIBLE QUESTIONS

PART B ( 4 Marks each)

1.   Derive Klein-Gordon equation for a relativistic particle

2.   Explain how Klein-Gordon equation leads to positive and negative probability

density values.

3.   Derive Dirac’s relativistic equation for a free particle.

4.   Explain the concept of negative energy states and Dirac’s explanation for it.

5. Write a short note on Lamb shift.

6. Prove that the operator cα, where α is the Dirac’s matrix, can be interpreted as the

velocity operator.

7.   Give the energy spectrum of a free Dirac particle and explain pair production and pair

annihilation

8.   Give the physical interpretation of Dirac’s α-matrix.

9. Starting from Klein-Gordon equation, obtain the equation of continuity.

10. Derive expressions for probability density and probability current density in the

Dirac theory.

PART C ( 10 Marks each)

1.   Discuss the relativistic motion of a particle in a Coulomb field and derive

expression for energy.

2. a. Obtain Dirac’s equation for a free particle, and deduce the co-variant form of the

Dirac equation. (5 Mark)
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b. Explain Dirac matrices for α and β. (5 Mark)

3. a. Discuss the magnetic moment of an electron. (5 Mark)

b. Explain spin-orbit interaction. (5 Mark)
4.   Derive the radial equation for a relativistic electron in a central potential.

5.   Using the radial equations in a central potential, derive the energy eigen values of a

hydrogen atom.
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Field theory: Introduction – Classical approach to field theory – Relativistic Lagrangian and

Hamiltonian of a charged particle  in an electromagnetic field – Field: Lagrangian and

Hamiltonian formulations – Quantum equation for the field – Second quantisation –

Quantisation of non-relativistic Schrodinger equation – Creation, annihilation and number

operators.

CLASSICAL THEORY OF ELECTROMAGNETIC FIELDS

The classical electrodynamics is based on Maxwell’s equations for the electric and

magneticfields E and B .In rationalised units ,also called Hearyside Lorentz units, these

equations can be written as:

= ......(1)

......(2)

......(3)

+ j ......(4)

Here is the charge density and current density j(x,t) is the current density.Instead of E

and B, the field equations can also be expressed in terms of a vector potential A and a scalar

potential . Equation (3) implies

B = ......(5)

With this definition of B, Equation (2) takes the form :

.....(6)

Since the curl of the gradient of a scalar function is zero, from Equation (6) We have

E+ ( )

E=- - ....(7)
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Which gives the electric field in terms of the potential A and .

The other twon equations, Eqs (1) and (4) can also be expressed in terms A and .

Substituting the value of E in Eq(1)

( )= - .....(8)

Substituting Eqs (5) and(7) in Eq (4), we have

+ =j

+ + =j

- =-j .....(9)

The solution of Maxwell’s equations is thus reduced to solving the coupled equation (8) and

(9) for A and .

A A’= A+ .....(10)

.......(11)

Where ^ an arbitrary scalar function leaves B and E unchanged.The fact that

leaves B unchanged by the transformation .The electric field E , Eq (7)

E= (A+ )-

=-

=0 (12)

The freedom available in the definition of Eqs (10) and (11) together is called gauge

transformation and the condition in Eq (12) is known as Lorentz gauge condition.
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Eqn(12)can we written as:

+ + + =0

+ + + =0

=0 or .......(13)

It can easily be shown that the three components of vector j and charge density from the

four vector

j=(j,ic ) ........(14)

The components of the vector potential A and the scalar potential form the four-vector

potential:

A= (A,i ) .......(15)

From eq we have

= - ......(16)

= - .........(17)

= - .......(18)
From equ

= - or i = -

i = - =

....... i = - =
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..... i = - =

In general

=-i ,

=0 if two indices are equal

=1 if i,j,k are distinct and in cyclic order

= -1 if i,j,k are distinct and not in cyclic order.

These are component of the anti symmetric tensor defined by

[ 0 ]

Which is the electromagnetic field four tensor.

Relativistic Lagrangian and Hamiltonian of  a  charged particle  in  an  electromagnetic

field

The action is the Lagrangian integrated over time, so the units of action are just the units

of the Lagrangian multiplied by the units of time. The Lagrangian has units of energy, so the

units of action are

the action Snr for a free non-relativistic particle is given by the time integral of the kinetic

energy
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The equation of motion following by Hamilton’s principle is

The free particle moves with constant velocity. Since even a free relativistic particle must move

with constant velocity. The velocity of light does not even appear in this action. Snr cannot be

the action for a relativistic point particle. The path traced out in spacetime by the motion of a

particle is called its world-line. It would be inconsistent for one observer to state that a certain

motion is allowed and for another to state that the same motion is forbidden. If the equations of

motion hold in a fixed Lorentz frame, they must hold in all Lorentz frames. If the action is a

Lorentz scalar, the equations of motion will be Lorentz invariant.

Lagrangian and Hamiltonian formulations

Lagrange function or Lagrangian to be L=T-V

where

is the total kinetic energy for the system, and V is its potential energy.

The correct path of motion of a mechanical system with holonomic constraints and conservative

external forces, from time t1 to t2, is a stationary solution of the action. Indeed, the correct path

of motion q = q(t), with q = (q1, . . . , qn)T , necessarily and sufficiently satisfies Lagrange’s
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equations of motion for j = 1, . . . , n

it is Hamilton’s form of the principle of least action, because in many cases the action of q = q(t)

is not only an extremal but also a minimum value of the action functional. Hamilton’s principle

the equations of motion are given by Lagrange’s equations, which here, taking the generalized

coordinates to be q1 = r and q2 = θ, are the pair of ordinary differential equation

Using the form for the Lagrangian,

Substituting these expressions into Lagrange’s equations

Hamiltonian mechanics

Consider mechanical systems that are holonomic and and conservative (or for which the

applied forces have a generalized potential). For such a system we can construct a Lagrangian

L(q, q˙ , t), where q = (q1, . . . , qn) T , which is the difference of the total kinetic T and potential

V energies. These mechanical systems evolve according to the n Lagrange equations
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for j = 1, . . . , n. These are each second order ordinary differential equations and so the system

is determined for all time once 2n initial conditions q(t0), q˙(t0)  are specified (or n conditions at

two different times). The state of the system is represented by a point q = (q1, . . . , qn) T in

configuration space.

Lagrange’s equations of motion imply Hamilton’s canonical equations, for i = 1, . . . , n

Constraint

Mechanical systems with some types of non-holonomic constraints can also be treated, in

particular constraints of the form

For  k = 1, . . . , m, where q = (q1, . . . , qn) T . Note the assumption is that these equations are

not integrable, in particular not exact, otherwise the constraints would be holonomic.

Quantum equation for the field

Field equation is a partial differential equation which determines the dynamics of

a physical field, specifically the time evolution and spatial distribution of the field. The

solutions to the equation are mathematical functions which correspond directly to the field, as

functions of time and space. Since the field equation is a partial differential equation, there are
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families of solutions which represent a variety of physical possibilities. Usually, there is not just

a single equation, but a set of coupled equations which must be solved simultaneously. Field

equations are not ordinary differential equations since a field depends on space and time, which

requires at least two variables.

Whereas the "wave equation", the "diffusion equation", and the "continuity equation" all have

standard forms (and various special cases or generalizations), there is no single, special equation

referred to as "the field equation".

The topic broadly splits into equations of classical field theory and quantum field theory.

Classical field equations describe many physical properties like temperature of a substance,

velocity of a fluid, stresses in an elastic material, electric and magnetic fields from a current, etc.

They also describe the fundamental forces of nature, like electromagnetism and gravity.

In quantum field theory, particles or systems of "particles" like electrons and photons are

associated with fields, allowing for infinite degrees of freedom (unlike finite degrees of freedom

in particle mechanics) and variable particle numbers which can be created or annihilated.

Non-Relativistic Field Theory and Second Quantization

The problem of an N-particle system as a nonrelativistic field theory. The procedure

described in the previous section is commonly known as Second Quantization. If the (identical)

particles are bosons, the operators ˆa(φ) obey canonical commutation relations. If the (identical)

particles are Fermions, the operators ˆa(φ) obey canonical anticommutation relations. In position

space, it is customary to represent ˆa†(φ) by the operator ψˆ(x) which obeys the equal-time

algebra
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the one-particle Schrodinger equation becomes classical field equation

The Hamiltonian Hˆ for this system is

For Fermions the fields ψˆ and ψˆ† satisfy equal-time canonical anticommutation relations

while for Bosons they satisfy

The Fock space picture of the many-body problem is equivalent to the Grand Canonical

Ensemble of Statistical Mechanics. Thus, instead of fixing the number of particles we can

introduce a Lagrange multiplier µ, the chemical potential, to weigh contributions from different

parts of the Fock space.

Second Quantization: Creation and Annihilation Operators

A basis state can be completely specified in terms of the occupation number nα

for each member of a complete set of orthonormal  single-particle states,  {|αi,   α = 1, 2 3, .

.}. The set of occupation numbers contains all the information necessary to

construct an appropriately symmetrized or antisymmetrized basis vector, denoted

|Φi = |n1 , n2 , . . . , nα , . . .i.
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α

α

a†

For bosons, nα must be a non-negative integer; for fermions, the Pauli exclusion prin-

ciple restricts nα to be either 0 or 1.

The vector space spanned by the set of all such basis states is called the Fock

space. A feature of the Fock space is that the total number of particles is not a fixed

parameter, but rather is a dynamical variable associated with a total number operator

X
N = nα.

α

There is a unique vacuum or no-particle state:

|0i = |0, 0, 0, 0, . . .i.

The single-particle states can be represented

|αi = |0, 0, . . . , 0, nα = 1, 0, . . .i ≡ |01, 02, . . . , 0α−1, 1α, 0α+1, . . .i.

Bosonic operators. Let us define the bosonic creation operator
and the corresponding annihilation operator aα

Equations (1) and (2) allow us to define the number operator Nα = a† aα, such that

Nα|n1 , n2 , . . . , nα, . . .i = nα|n1 , n2 , . . . , nα, . . .i

The simplest application of the creation and annihilation operators involves the
single-particle states:

α|0i = |αi, aα |β i = δα,

When applied to multi-particle states, the properties of the creation and annihila-

tion operators must be consistent with the symmetry of bosonic states under pairwise

interchange of particles. It  is clear from Eqs. (1) and (2) that for any pair of single

particle state,

The properties described in the preceding paragraph can be summarized in the

commutation relations

One consequence of these commutation relations is that any multi-particle basis state

can be written
or equally well, as any permutation of the above product of operators acting on the

vacuum.
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cα|n1, n2 , . . . , nα−1, 1α, nα+1, . . .i = (−1) να |n1 , n2 , . . . , nα−1, 0α, nα+1, . . .i,

cα|n1, n2 , . . . , nα−1, 0α, nα+1, . . .i = 0.

α

c†

Equations (1)–(3)  define the key properties of bosonic creation and annihilation

operators. Note the close formal similarity to the properties of the harmonic oscillator

raising and lowering operators.

Fermionic operators. The fermionic case is a little trickier than the bosonic one

because we have to enforce antisymmetry under all possible pairwise interchanges. We

define the fermionic creation operator c† by

c† να

α|n1 , n2 , . . . , nα−1, 0α, nα+1, . . .i = (−1)

α|n1 , n2 , . . . , nα−1, 1α, nα+1, . . .i = 0,

and the annihilation operator cα by

|n1 , n2 , . . . , nα−1, 1α, nα+1, . . .i,
(4)

(5)

In both Eqs. (4) and (5),
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βνα =
X

β<α
Nβ , where Nβ = c† cβ , (6)

measures the total number of particles in single-particle states having an index β < α.

It is straightforward to check that Eqs. (4)–(6) are self-consistent, in the sense that

with the phase factor (−1)να as defined above,

Nα|n1 , n2 , . . . , nα, . . .i = nα|n1 , n2 , . . . , nα, . . .i for nα = 0 or 1. (7)

αcα|Ψi = 0 = −cαcα|Ψi. Similarly, cαcβ |Ψi = −cβ cα|Ψi for α = β, and cαcα

|Ψi = 0.

ny c† † †

†basis state |Φi, whereas cαcα|Φi = (1 − nα)|Φi.

Thus,for any |Ψi in the Fock space.

The properties above can be summarized in the anticommutation relations
where

{A, B} = AB + BA is the anticommutator of A and B. These

anticommutation properties fundamentally distinguish the fermionic operators  from

their commuting bosonic counterparts. The (−1)να phase factors entering Eqs.

(4) and (5) were chosen specifically to ensure that Eqs. (7) are satisfied.

Alternative     phase conventions can be adopted, so long as the

anticommutation relations are preserved.

Given the anticommutation relations, any multi-particle basis state can be or

equally well, as any permutation of the above product  of creation  operators  with a

sign change for each pairwise interchange  of adjacent operators.

For example,
Equations (4)–(7) define the key properties of fermionic creation and annihilation

operators.

Basis transformations.
Creation and annihilation operators defined above were constructed for a particular

basis of single-particle  states  {|αi}.  We will use the notation  b† α nd bα to represent  these
operators  in situations  where it is unnecessary to distinguish  between the bosonic and
fermionic cases.
Consider an alternative  single-particle  basis {|α˜i}, which—like {|αi}—is  complete and
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orthonormal.  The Fock space can be spanned by many-particle  basis states  of the
form
|Φ˜ i = |n˜1 , n˜2 , . . . , n˜α˜ , . . .i,
It is important to note that the vacuum state |0i can (and will) be chosen to be the same in

both the original and new bases.

all consistent with the unitary transformation

An important special case of a basis transformation involves single-particle basis states

of well-defined position r and spin z component σ: {|α̃i} = {|r, σi}, where hr, σ|r0, σ0 i

= δ(r − r0 )δσ, σ0 .

The corresponding operators are called the field creation and annihilation operators, and

are given the special notation Ψ† (r) and Ψσ (r). For bosons or fermions,

where ψα(r, σ) is the wave function of the single-particle state |αi. The field operators

create/annihilate a particle of spin-z σ at position r:

Dynamical variables.
Now we consider how to represent dynamical variables in terms of the

creation and annihilation operators introduced above
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j

j

α

The simplest dynamical variables are additive one-particle  operators of the form

Ω = n Ωj , where Ωj acts just on the j’th particle. Examples of one-

j= particle

1

quantities include the momentum P =
P

j Pj , the kinetic energy K =
P

Kj ,

where

Kj = |Pj |2/2m, and the external potential V =
P

Vj , where Vj = v(rj ).

If we choose a single-particle basis {|α̃i} in which Ωj is diagonal (e.g., momentum

eigenstates in the cases of Pj and Kj , position eigenstates for Vj ), then the

P
total operator can be represented Ω = α̃ ωα̃ Ñα̃ .

In any other basis {|αi}, related to {|α̃i} by Eq. (8), the most general form of an

additive one-particle operator is

X
Ω =

α,β
hα|Ω1|β i b† bβ .

We will also consider additive two-particle operators, most commonly encountered

P
as a pairwise interaction potential U = i<j u(ri , rj ).

Note the reversal of the order of the operators bγ and bδ in Eq. (9), which allows

the same expression to be used for bosons and fermions.

We are now in a position to consider applications of the formalism outlined above

to many-boson and many-fermion systems.

QUANTIZATION OF THE FIELD

To quantize the field ,we regard the field variables and as operator functions. Just as the

quantum conditions.
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[qi,qj] = [Pi,Pj]=0; [qi,qj] = i ij ............ (1)

Were used for the transition from classical to quantum particle mechanics , we achieve the

transition from classical to quantum field theory by requiring that

......... (2)

Assuming the cell volumes are very small, Eq. (2) can be rewritten in terms of and in

the following forms:

[ , ] = [ ] = 0 ............ (3)

[ , ] = iħ .............(4)

Where if r and r’ are in the same cell and zero otherwise in the limit, the cell

volume approach zero , can be replaced by the three dimensional Dirac

(r-r’). The quantum conditions for the canonical field variables

[ , ] = [ ] = 0 ............ (5)

[ , ] = iħ .............(6)

By making non –commuting operators, we convert H, L etc.., also into operators

which have eigenvalues , eigenstates , etc.

The equation of motion for any quantum dynamical variable F is obtained from by replacing

the Poisson bracket by the commutater bracket divided by iħ or from Eq.

+ [F,H] ..............(7)

Equations (5) and (7) completely describe the behaviour of the quantized field specified

bythe Hamiltonian.
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Quantization Of Schrodinder Equation

As an example of the field quantization technique ,we shall consider the quantization

of the non-relativistic Schrodinger equation inthis section. The name Schrodinger field is

used for a field (r , t) satisfying the Schrodinger equation.

Iħ = - + V ..............(1)

Equation (1) is the quantized equation of motion of a particle of mass m moving in a

potential V. Here is thought of as a classical field , which can be quantized by

converting it into an operator using the procedure described earlier. Since it is the second

time the equation is being quantised , it is referred to as the second quantization.

To start with, we note that the Lagrangian density taken in the form:

ℒ = iħ ........(2)

Reduce the classical field equation to the familiar Schrodinger equation , Eq (1). and

can be considered as independent fields giving the Lagrange’s equations of

motion. The variation with respect to gives Eq(1) while variation with

respect in gives the complex conjugate of Eq(1).

-iħ + V ..............(3)

The momentum canonically conjugate to is :

= iħ .................(4)

Where we have used the expression for ℒ given in Eq 2.Using Equation (2)

and(4),the
Hamiltonian densityℋ now becomes

ℋ = Ψ - ℒ = . + V (r ,t) ..........(5
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= - . V - V(ih )

Using Eq (5), the Hamiltonian H is given by

H= r = . + V )

The classical field equation in the Hamiltonian form are given by eq it follow from the

discussed on function derivation eq

Ψ= = - . .......(7)

=- = -( - ) ......(8)

These equations can be expressed in the familiar form by substituting the value of from

equ now

Ψ = - VΨ+ .........(9)

Multiplying by iħ,

Iħ = - + VΨ

Replacement of in eq this equation

= V -

Since =iħ this equation becomes

-iħ = - ........(10)

Equation (9) and (10) are the familiar classical equation and its complex conjugate for the

Schrodinger field. This validates the expressed for Lagrangian density
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Since Ψ is now an operator , is to be interpreted as the Hamiltonian adjoint of Ψ rather

than its complex conjugate and its usually denoted by .

[Ψ(r,t), ] = (r-r’).

QUANTIZATION OF THE FIELD

To quantize the field ,we regard the field variables and as operator functions. Just as the

quantum conditions.

[qi,qj] = [Pi,Pj]=0; [qi,qj] = i ij ............ (1)

Were used for the transition from classical to quantum particle mechanics , we achieve the

transition from classical to quantum field theory by requiring that

......... (2)

Assuming the cell volumes are very small, Eq. (2) can be rewritten in terms of and in

the following forms:

[ , ] = [ ] = 0 ............ (3)

[ , ] = iħ .............(4)

Where if r and r’ are in the same cell and zero otherwise in the limit, the cell

volume approach zero , can be replaced by the three dimensional Dirac

(r-r’). The quantum conditions for the canonical field variables

[ , ] = [ ] = 0 ............ (5)

[ , ] = iħ .............(6)
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By making non –commuting operators, we convert H, L etc.., also into operators ;

which have eigenvalues , eigenstates , etc.

The equation of motion for any quantum dynamical variable F is obtained from by replacing

the Poisson bracket by the commutater bracket divided by iħ or from Eq.

+ [F,H] ..............(7)

Equations (5) and (7) completely describe the behaviour of the quantized field specified by

the Hamiltonian.

QUANTIZATION OF THE SCHRODINDER EQUATION

As an example of the field quantization technique ,we shall consider the quantization of the

non-relativistic Schrodinger equation inthis section. The name Schrodinger field is used for a

field (r , t) satisfying the Schrodinger equation.

Iħ = - + V                              ..............(1)

Equation (1) is the quantized equation of motion of a particle of mass m moving in a

potential V. Here is thought of as a classical field , which can be quantized by

converting it into an operator using the procedure described earlier. Since it is the second

time the equation is being quantised , it is referred to as the second quantization.

To start with, we note that the Lagrangian density taken in the form:

ℒ = iħ ........(2)

Reduce the classical field equation to the familiar Schrodinger equation , Eq (1). and

can be considered as independent fields giving the Lagrange’s equations of
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motion. The variation with respect to gives Eq(1) while variation with

respect in gives the complex conjugate of Eq(1).

-iħ + V ..............(3)

The momentum canonically conjugate to is :

= iħ .................(4)

Whrere we have used the expression for ℒ given in Eq 2.Using Equation (2) and(4),the

Hamiltonian densityℋ now becomes

ℋ = Ψ - ℒ = . + V (r ,t) ..........(5)

= - . V - V(ih )

= -

Using Eq (5), the Hamiltonian H is given by

H= r = . + V ) r

The classical field equation in the Hamiltonian form are given by eq it follow from the

discussed on function derivation eq

Ψ= = - . .......(7)

=- = -( - ) ......(8)

These equations can be expressed in the familiar form by substituting the value of from

eq now
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Ψ = - VΨ+ .........(9)

Multiplying by iħ,

Iħ = - + VΨ

Replacement of in eq this equation

= V -

Since =iħ this equation becomes

-iħ = - ........(10)

Equation (9) and (10) are the familiar classical equation and its complex conjugate for the

Schrodinger field. This validates the expressed for Lagrangian density .

Since Ψ is now an operator , is to be interpreted as the Hamiltonian adjoint of Ψ rather

than its complex conjugate and its usually denoted by .

[Ψ(r,t), ] = (r-r’).
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POSSIBLE QUESTIONS

PART B ( 4 Marks each)

1. State and explain the classical field equation in Hamiltonian form.

2. State the classical field equation and explain the quantities involved therein.

3. What is meant by a conjugate field? Explain.

4. What are creation, annihilation and number operators? Why are they called so?

Explain.

5. What is meant by second quantization? Why is it called so? Explain

6. Explain quantization of non-relativistic Schrodinger equation.

7. Write a short note on Lagrangian density

8. Explain what is meant by functional derivative.

9. Explain the need of quantization of fields. What is the necessity of quantizing fields?

In what context is it important?

10. For a system of fermions, define the number operator Nk and show that its eigen

values are zero and one.

PART C ( 10 Marks each)

1. Derive the classical field equation in the Hamiltonian form, and explain quantization

of fields. Explain the terms Hamiltonian density, functional density and conjugate

field.

2. Explain quantization of Schrodinger equation. Explain creation and annihilation

operators and their significance.

3. Explain in detail Dirac field.

4. Explain classical theory of electromagnetic fields.

5. Explain quantization of electromagnetic fields.
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