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ANGULAR MOMENTUM OPERATORS

The Angular Momentum Oper ator:

In classical physics the angular momentum of a particle with momentum p and
position r is defined by

L=rxp=(ypr 20y i + (Z0Xp;) J + (Xpy- Ypx) K

The orbital angular momentum operator L can be obtained at once by replacing r
and p by the corresponding operators in the position representation, R and P = -ihA where q
is the coordinate expression for the operatorsof Ly,Ly, L,.

The Cartesian components of L are

Ly = -ih(y d/dz-z d/dy)
L,=-ih(z d/dx-x d/dz)
L= -ih(x d/dz-y d/dx)

Clearly, angular momentum does not exist in a one-dimensional space. We should mention

that the components
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L?= -h?[1/sinB d/dB(sinbd/d6)+1/sin’ d*/de?]

ANGULAR MONENTEUM COMMUTATION RELATION:

The commutation relation of the component of L can easily be obtained in Cartesian

coordinates

[Lx,Lyl=[ (P~ Zpy),(Z0x—XPJ)]

=[ypzzpx] — [yPXPz ] — [20y , Z0d + [Z0y , XPd

in these commutations pgstants for —ihd/dg.In the second and third teems on the right side of
the equation all the variables involved commute with each other. Hence both of them vanish.
Since y and px commute with z and p,

[(Yp Z0y] = Y[ P2.Z] = -inypy
based on similar arguments , we get

[Zo—xp] = pyx [z,p] = -ihxpy

Hence
[Lx,Ly]=ih(xpy-ypx)=ihLz

the commutators [Ly,Lz] and [Lz,Lx] can be obtaioned in the same way and we have

[Lx,Ly]=ihLz,,[Ly,Lz]=ihLx ,[LzLx]=ihLy
that is the components of angular momentum do not commute with one another and therefore
they are not measurable simultaneoudly. In other words if the system is an eigenstate of one
angular momentum component, it will not be simultaneously in an eigenstate of either of the
others. These commutations relation hold for the components of total angular momentum
L=2 Li of asystem of particle also. The commutation relation in can be written in a compact

form as
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LxL=ihL
In the usua sence the vector product of a vector with itself is zero . Hence we have to
consider L as avector operator and not as a usual vector. the left hand side to be consider as

a determinatedans has to be expanded before the term by term comparison with the

commutator of L% with the component of L

[L? Lx]=[LXZLX]+[LY? ,LX]+[LZ*'LX]
=0+Ly[Ly,Lx]+[Ly,Lx} Ly+LZz[Lz,Lx]+[LzLx]Lz

=Ly(-ihLz)+(-ihLz)Ly+_ihLzLy+ihLyL z

Hence we conclude that

[L? Lx]=[L?%Ly]=[L?LZ]=0
the square of the angular momentum commutes with its components, That is the total angular
momentum can be measured by simultaneously with any one component. As the components
among themselves are noncommuting one cannot measure L* Lx,Ly,L.z simultaneously.
Therefore we cannot have arepresentationsin
which all the four are diagonal.

L+ =Lx+iLy, L- =Lx-iLy

The operator L+ is called the rasing operator and L -,the lowering operator.
the reason for the names would be clear in section.

[L*L+]=0, [L?L-]=0

and

[Lz,L.] =[Lz,Lx]+i[LzLy]

=ihLy+ hLx

=hL+

the other commutators can alsoi be evaluated in the same way and we have the relations

[Lz,L-]=-hL-
[Lx,L+]=-hLz
[Lx,L-]=hLz
[Ly,L+]=-hLz
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. [Ly,L-]=ihLz
we also have
[L+,L-]=2hLz
and

L+L-=L?"LZ%+hLz ,L-L+ =L%LZ*hLz

EIGENVALUESAND EIGENFUNTIONSOF L? AND L :

The eigen value equation for L?in spherical polar coordinates can be written as

-h[1/sin® d/d8(sind d/dB)+1/sin% d*/dg?]Y =Ah2Y
where Ah? is the eigen value of L? and Y is the corresponding eigen function rearranging we
get
[1/sinB(d/d8sin d/dB)+1/sin’0 d*/de?]Y +AY =0
which is the same as the as angular part of the schrodinger equation of a system movingin a
potential V(r).The solution gives A=I(1+1) with eigenfunction
Y=Y im(.8,0)=¢[21+1/4n (I-Im1)! / (I+ImI)!1] ¥ p™(cosB)e™®
where
[=0,1,2,3,... and m=0,£1,+2,+3...%l

and €=(-1)"for m> 0 and é=1 for m <0.
Theform of Lz, immediatel y gives

L .Y im=-1h d/dBYm(6,9)
=mhY m(6,0)

thus the spherical harmonic Y (8,¢) are eigenfunction of L? and Lz with eigen vaue |(I+1)h?

and mh respectively

GENERAL ANGULAR MOMENTUM:

Number of experimenta result such as spectra of alkali metals anomalous
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zeeman effect , stern gerlach experiment ,etc,...could be explained only by invoking the
concept that the electron in an atom possesses an additional intrinsic angular momentum
involving half integra quantum numbers. However the definition of angular momentum
based on classical physics et to the 2I+1integral values

mh,m=0,£1,£2,...,#| for the z component of angular momentum . In other words
the difinision of angular momentum L=rxp is not genera enough to include half
integral quantum number and therefore one may take the definition of general angular

momentum as the commutation relation given by

[XN=ihdz,  [JyJZ=ihdx, [JzIx]=ihdy

where the J symbol isused for the general angular momentum.
EIGEN VALUES OF J? AND J;,

The square of the genera angular momentum J commutes with its components
XX, Jy,Jz

However the components among themselves are noncommutting. Therefore J* and one
component, say Jz can have simultaneous eigenkets at a time.Denoting the simultaneous

eigenkets by IAm> the eigenvalue equation for J*

isgiven by

JzIAm>=mIAm>

and

eguation 1 can be written as

X2+ 322 INm> + mPIAm>=AIAm>
multiplying from left by bra <Aml and rearranging
<Aml P Ixm> + <aml F IAm>=(\-m?)
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Under Secth

since Jx and Jy are hermitian their eigenvalues must be real and therefore the left side of must
be positive. Hence
A-m? 20 or A>m?
operating eq 1 from left byu J+, we get
FFIAm> = A\HAm>
that is IAm>and J+IAm> are eigenkets of J* with the same eigenvalues A premultiplying by J+
we have
JHIzZIAm> =mJ+ IAm>
but [Jz ,J+] =hJ+ or J+Jz=JzJ+ -hJ+.replacing J+Jz in the above equation
we get
(Jz3+ -hJ+) IAm> =mJI+HIAm>
or
JzJ+ IAm>=(m+h)J+ IAm>
thus J+ IAm> is an eigenkets of Jz with the eigenvalue (m+h) and of J* with the same
eigenvalue A. Since operatation by J+ generatesa a state with the same magnitude of angualr
momentum but with z component higher by h, it is called raising operator .
Repeated operation by J+ increases the eigenvalue of Jz in steps.This has to be stoped at
some point otherwise the condition eq 4 be . Then
Jz IA\u> = plAp>
operation by J+ from left gives

JzJ+ IAu> =(u + h)J+ IAp>
eigenvalue of (u + h) is not possible since pis the highest eigenval ue. Hence,

JHAp>=0
premultiplying by J- and usiong the result
J I+ =F Ihdz
we get
J JFHAu>=0 or (F I3z%-hiz) IA\u> =0
therefore
(A-p 2-hp) |Ap>=0

as
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(A-p 2-h)=0 so

A=p(p+h)
operating eq Jz IAu> = plAp> from left by J_,we get
J Jz IA\p>=pd_ IAp>
or
JzJ IA\u> = (p-h) J_IAp>
For the maximum eigenvalue 1 we have
2 IA> = A >
that isJ_IAu>eigenkets of j?and jz with the eigenvalues A and p-h respectively.
Hence J_is called a lowering operator.J+ and J together is often reffered to as ladder
operator.repeating the lowering operation by J_,n times we get
JzJ "> =(u-(n+)h]j_ " IAp> =0
again there must be a cut off value of m without violating the condition A>m? be
u-rh then
Jzd "> =[u-(n+1)h]I_"IAp>=0
since [u-(n+1)h] #0
J ™ \>=0
or
JJ" I\u>=0
or
J+J J "IAu>=0
Replacing J+J_,we have
(P-322 +hJz) 3" IAp> =0

or
[A-(W-nh) 2+h(-rh)] " IAL> =0
As I IA\u># 0 \-(u-nh)*h(u-rh)=0,substituting the value of A from
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we find

since (n+1)i0

(n+1)(2u-nh)=0

2u-rh=0 or p=nh/2

where n is the number of steps from the maximum eigenvalue pto the manimum eigenvalue
u-rh. The number of steps n is aways an integer including zero.Writting j for n/2 the
maximum and minimun eigenvalues of Jz are jh and —jh respectively . In other words for a
given value of | the integer the possible value of j are 0, Y%, 1,3/2, ...thus half integra
guantum number have emerged automatically from the genera treatment of angular
momentum a result we have been looking for denoting the simultaneous eigenvector of the
operator J* and Jz with eigenvalues j(j+1)h?2 and mh by |jm> we get

Fljm> =j(j+1)h? ljm>

and

F ljm> =mh ljm>
where j=0,1/2,1,3/2,... and m=-,-j+1,....]

ANGULAR MOMENTUM MATRICES:

The states | jm> form a compl ete orthonormal set and they can be used as a basis for matrix
representation of an angular momentum .In this representation of angular momentum
components can be represented matrix with elements <j’m’|F[jm>.The rows of the matrix

will be labelled by the j” and m’ values and the column by the j,m values.

Matrices for J?and Jz:

As Fcommute with Jz the matrices for J%and Jz will be diagonal. In that representation Jx
and Jy. Multiplication of eqd® [jm> =j(j+1)h? ljm> and J* ljm> =mh Ijm> from left by <j’m’|
gives

< m |Pm>=j (+1)h 3, S
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 (Deemed o be.
and

<’m’fIzm> =mhdj Sy

the presence of the factor 3; °mn indicate that the matrices are given they are of infinite
dimentions

Matricesfor J+,J_,Jx and Jy:

JzJ+ [jm> = (m+1)hJ+jm>

thisimplies that J+ Ijm> is an eigenvalue of Jz ,the eigen vectores can differ at the most by a
multiplicative constant say an

J jm> =g, |j,m+1>
similar we get
J_[jm>=bml|j,m-1>
where
am =<j,m+1lJ+ljm> or am =<m/lJ_lj,m+1>

b=<j,m-1J_Ijm> or b*p=<jmIJ_lj,m+1>
compare the two equations gives

a m = b+t
operating of eq from left by J_,we have

J J+1jm>=a,J |j,m+1>
replacing J_J+ we get

(P-J32°-nJz> =am bms1 [jm>

or

[i(i+1))-m*m]h2jm> =lay, 1%jm>
or
an=[j(j+1) -m(m+1)]"*h
with the value of an,

J+ ljm> =[J({+1)-m(m+1)]*? fr 1jm+1>

or
<’ mel3Hm> =[j(+1)- m(m+1)] Y20 Spr e
similarly
<l lim>=[( G+1)-m(m-1)] Y % Srimea

last two give equation give the matrix element for J+ and J_ they are infinte dimentisional
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matrices like the j and Jz matrices. The nature of the kronecker deltas in last two equation
indicates that al nonvanishing element occure in bloges aong the diagona corresponding to
J’=].The block matrices corresponding to j=0,1/2 and are given below .The rows are labell ed
by the value of m’ and the columns by the values of m .the nonvanishing matrixes for Jx and
Jy are evaluated using the relation

X=1/2(J++J ) and Jy=1/2i(I+-J )

for j=0
=0, J =0, Jx=0, Jy=0
for j=1/2
JH+=h(0 1) J =0 0)
(0 0), 1 0),
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X=U2H(0 1) J=UA0 -
(1 0 (i 0
forj=1
J+=h (0 V2 0) J=h(0 0 0)
(0 0v2) (V20 0)
(0 0 0) (0 v20)

X=UV2h(0 1 O0) Jy=1N2h(0 -i 0)
@ 01 i o -i)
o0 1 0 O I -i)
without aword about the elgenvector the disscussion would not be complete .The e genvector
with respect to the Ijm> basis will be the column vector would be used for perticular cases:
j=0,j=1/2,j=1,...

SPIN ANGULAR MOMENTUM:

To account for the multiplicity of atomic states uhlebeck and goudsmit proposed in
1925 that an electron in an atom possesses an intrinsic angular momentum in addition to
orbital angular momentum. This intrinsic angular momentum S is caled the spin angular
momentum whose projection on the z axis can have the value
s, =md, m=x1/2. the maximum measurable component of spin angular momentum in units
of h is caled the spin of the particle and is usually denoted by s .They also suggested that the
spin angular momentum gives rise to an intrinsic magnetic moment s gives by
H=-emS

assuming that all the stable and unstable particles to have spin angular momentum
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S, we expect its components Sx, Sy and Sz to obey the general commutation relation and
S%and Sz to have the eigen values s(s+1)h? and mdh, me= -s, -s+1,...S respectively

spin —(1/2) systems

most of the stable elementry particles,electrons,protons,neutrons,etc..come under this
category.the matrices representing Sx, Sy and Sz are obtained from the Jx, Jy,and Jz matrices
by taking the part corresponding to j=1/2,hence

Sx=1/hH (0 1) Sy=12h (0 -j) Sz=1/AH(1 0)
1 0 (0 O -1)
often it is convinient to work with a matrix 6 defined by
S=1/%he

where

6x=(0 1) 6y=(0 -i) 6~(1 0)
a 0 (1 0 (0 -1

the 6,6y and 6, matrices are called the pauli’s spin matrices.From the difinition it is obvious

that their eigenvalues are +1.These matri ces satisfy the relation

Gx =6y
6x6y=I6;  6,6,/=16x,  6x6; =I6y

6x6y + Gy Gy =6y 6;+ 6, Gy =6; 6x +6x 6, =0
pauli was the first to recognize the necessity of two component state vectors explain certain
observed features to atomic spectra.
spin vectorsfor spin —(1/2) system:

Including spin the spin —(1/2)system has how four degree of freedom,the three
position coordinates (X,y,z) and another observable pertaining to spin.Taking the z

component Sz as the fourth observable the el ectron wave function can be written as @(r,Sz)
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or @(r,ms) the coordinate m takes the values +1/2 or -1/2. When the interaction between the

spin and space parts is negligible the wave function

@(r,ms)=¢(r) x(ms,)
where ¢(r) represented that depends on the space coorinates and x(ms ) the part the depends

on the spin coordinates
The eigenvectors of the spin matrices Sx, Sy and Sz, can easily by obtained by writing the
eigenvalue egquation.Since the matrices are 2x2 the elgenvectors must be column vector with
two components. the eigenvalue equation for Sz with eigenvalue h/2 is
U2h(1 0)(aw) =U/2h(aw)
(0 -1)(2)(2)
it is evident that a=0 the normalization condition gives

lagl®=1 or &, =1
the eigenvector of thr matrix Sz corrsponding to eigenvalueh/2 is than
1)
)
processing on similar lines the eigenvector for the eigenvalue -h/2 is
)
1
these elgenvector are denoted by a and fand are usualy called the spin up and spin down
states respectively
o=(1) B=(0)
) 1)

the two component eigenvectors of spin —(1/2) particles are sometimes called spinors.
Eigenvectors of Sx and Sy can also be found in the same way. the spin materials of a spin —

(1/2) system aong with eigenvalue and eigenvectors.

Addition of Angular momentum
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The operators, J1, J2, J3 which satisfy the “standard angular momentum
commutation relations”
Jj,Jk =ijklJl, i k,1=1,230rx,y,z,

and all results will be equally. in which '3 points is caled the “quantization axis’, and its
choiceis arbitrary. This “axis’ makes sense as adirection inthe usua spaceonlyif J isan
actual angular momentum vector operator—orbital, spin or a combination.

Clebsh — Gordon Coefficient

Clebsch—Gordan (CG) coefficientsare  numbers that arise inangular momentum

coupling in guantum mechanics. They appear as the expansion coefficients of total angular
momentum eigenstatesin an uncoupled tensor product basis. In more mathematical terms, the
CG coefficients are used inrepresentation theory, particularly of compact Lie groups, to
perform the explicitdirect sum decomposition of thetensor product of two irreducible
representations (i.e., a reducible representation) into irreducible representations, in cases where
the numbers and types of irreducible components.
From avector calculus perspective, the CG coefficients associated with the SO(3) group can be
defined simply in terms of integrals of products of spherical harmonicsand their complex
conjugates. The addition of spins in quantum-mechanica terms can be read directly from this
approach as spherical harmonics are eigenfunctions of total angular momentum and projection
thereof onto an axis, and the integrals correspond to the Hilbert space inner product. From the
formal definition of angular momentum, recursion relations for the Clebsch—-Gordan
coefficients can be found. There also exist complicated explicit formulas for their direct
calculation.
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For the total angular momentum vector J=f;+/, ,
Jx J=1ihl
Also , it follows that
U%Jz =01, %051 = [J%,)5170
The orthonormal eigenkets of /* and Jzbe |jm>.Since J*commutes with J;Ji and J5 they
form another complete set and their simultaneous eigenkets will be | J;+]5 jm=>.
L =Y vz Cimmym, IMmymy>
The coefficient of this linear combination are called Clebsh- Gordon coefficient or Wigner
coefficients or vector coupling coefficients.

<mym; im>=Cimm, m,

>, g, IMymy ><mym, |jm>

imymy, > =%, <jm mm, > |jm>

Where the summation over m is form —j and j is form Ij; — j, | to j; — j;.The unitary of
Clebsh Gordon coefficients is expressed by the equation
Siw <mumy lim><jm m;'my">=<mym, im;'m;’ > =m;m,'ém,m,’

And

<jm Imymy>=< mym, ljm=>*

Second rules

Operating eq trom left by J; we have
Jz fm >=Fm m,Uhz + J2z) Imymy ><mym, Ijm >

mh 1jm >=Y,, m, (M +mu)h Imym, ><mym, Ijm >
replacing | jm > using eq and rearranging . we get
Xwym, (M—my—my) Imym; ><mym, Ijm >=0
which isvalid only if the coefficient of each term vanishes separately. This leads to one
of the rules of vector atom model , that is,

Prepared by V. Thayanithi, Asst. Prof, Dept. of PHY SICS, KAHE 15/ 18




KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: Il M.Sc PHY SICS COURSE NAME: QUATUM MECHANICSII
COURSE CODE: 18PHP301 UNIT: | (Angular momentum) BATCH-2018-2020

m=mi+mo

the various m and j values arise from the values of m; and m,. For given values of j; and j,, can
have valuesfromjito - j; and joto — j, myin integral step.
The smalest vaue w of |

occurs for
Ji-k = —jyor jo_k = —j;
U F-fa kbl Fle—= 1) (it e 2w g J ]

which isthe triangle rule of the vector atom model.
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Possible Questions
PART B (4 Markseach)

State the commutation relations obeyed by the components of angular momentum and

express them in vector notation.

2. What are ladder operators and why are they so called?

3. The definition of angular momentum given by L=r X p is not a general one. Why?

N o g A

Define ageneral angular momentum operator.

Explain spin-up and spin-down states. What are spinors?

What are Clebsh-Gordon coefficients? Explain their significance.

Write a short note spin of an electron

if J; and J, are angular momentum operators, are J; + J, and J; — J, angular momenta?
Explain.

State the eigen value-eigen vector relations for the operators J* and J,. Hence obtain
the matrices for J* and J,.

Show that the raising and lowering operators J. and J. operators are Hermitian

conjugates.

10. Prove that the spin matrices Sy and S, are £h/2 eigen values.

Part C (10 marks each)

1.

3.

What are angular momentum operators? Derive the commutation relations between
the different components of the angular momentum.

a. Explain the difference between the orbital angular momentum L and genera
angular momentum J.  Write down the commutation relations between the
components of general angular momentum. (5 Marks)

b. Derive the eigen values of * and J,. (5 Marks)

Explain the matrix formulation of angular momenta. Derive the matrix forms of J., J.,
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Jyand J,
4. Explan how concept of spin was introduced and how spin angular momenta
contributes to the total angular momentum of the atom. Obtain the spin angular

momentain terms of matrices. What are Pauli matrices?

5. Discuss the various aspects of addition of angular momenta. What are Clebsh-

Gordon coefficients and how are they determined?
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€ Scattering: Scattering cross-section — Scattering amplitude — Partial waves — Scattering bya
central potentid: partia wave analysis — Significant number of partial waves — Scattering by
an attractive square-well potential — Briet-Wigner formula — Scattering length — Expression
for phase shift — Integral equation — The Born approximation — Scattering by screened
coulomb potential — Validity of Born approximation - Laboratory and center of mass co-

Qrdi nate systems. )

Scattering cross-section

When two particles interact, their mutual cross section is the areatransverseto their
relative motion within which they must meet in order to scatter from each other. If the particles
are hard inelastic spheres that interact only upon contact, their scattering cross section is related
to their geometric size. If the particles interact through some action-at-a-distance force, such
as electromagnetism or gravity, their scattering cross section is generaly larger than their
geometric size. When a cross section is specified as a function of some final-state variable, such
as particle angle or energy, it is called adifferential cross section. When a cross section is
integrated over all scattering angles (and possibly other variables), it is called atotal cross
section. Cross sections are typically denoted o (sigma) and measured in units of area.

Scattering cross sections may be defined in nuclear, atomic, and particle physics for
collisions of accelerated beams of one type of particle with targets (either stationary or moving)
of a second type of particle. The probability for any given reaction to occur isin proportion to
its cross section. Thus, specifying the cross section for a given reaction is a proxy for stating the
probability that a given scattering process will occur. The measured reaction rate of a given
process depends strongly on experimental variables such as the density of the target material,
the intensity of the beam, the detection efficiency of the apparatus, or the angle setting of the
detection apparatus. However, these quantities can be factored away, allowing measurement of
the underlying two-particle collisional cross section.

Differential and total scattering cross sections are among the most important measurable
guantities in nuclear, atomic, and particle physics.
Scattering amplitude

The differential cross section, do/dQ, can be written in terms of a scattering amplitude,
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-i(:@,—'fzp)‘:ffrf!t?h"éiimteraction is spherically symmetric, then there is no ¢ dependence for f. So

do

5 f(&

where f(0) is a complex number with units of length. In our application, f(6) will have units of
fm? . For non-relativistic energies, f(0) can be determined from the Schroedinger equation with
the appropriate scattering boundary conditions at r = oo. If the interaction is spherically
symmetric, i.e. V (~r =V (r), then the Schroedinger equation can be separated into the different
orbital angular momentum gquantum numbers .

R Pu(r)  I(I+1)

2m " dr? 2

u(r)) + V(r)u(r) = Eu(r)

with an equation for each value of |. The same separation holds for scattering problems. One
will obtain a scattering amplitude for each value of orbital angular momentum |, which we |abel
as f; . The complete scattering solution will have a Y (0, @) added on for each I. For spherical
symmetry, where there is no ¢ dependence, so the Y, reduce to Legendre polynomicals in

cos(B), P(B). The scattering amplitude therefore becomes

£(8) =Y (21 + 1) fiF(cos(8))

=0

The scattering amplitude f(6) and the f; are complex numbers, with areal and an imaginary part.
The sum over orbital angular momentum | in the expression for the scattering amplitude goes to
infinity. The contribution from large | goes to zero, and one only needs to sum over a few
values of |. The maximum value needed for | is roughly Rpc, where R is the size of the target
and p is the momentum of the projectile.
Partial waves

Partial wave refers to a technique for solving scattering problems by decomposing each
wave into its constituent angular momentum components and solving using boundary
conditions.
Scattering by a central potential, partial wave analysis

Partial wave expansion the scattering amplitude is represented as a sum over the partia

waves,
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f= iEEH 1) f; P, (cos )
=0

where f, isthe partial scattering amplitude and P, are the Legendre polynomials.
The partial amplitude can be expressed viathe partial wave S-matrix element
Sr -1 E‘Efé'r -1 ﬂééf sin (Ej_

o= = Tk T R

Then the differential cross section is given by
12

e 4]
9 _10)] 5|26 + 1) sindy Py (cos f)
a0 <

and the total e astic cross section becomes

1‘I=2?Tj; g%ﬁinﬂdﬁ= 4Tijr-lrrn_;r"l[[il}

where Im f(0) isthe imaginary part of f(0).
Scattering by an attractive squar e well potential

The Schrodinger equation for the perturbed system can be written as
(Ho +yHp)lei = Elgi €y

where HQ is the Hamiltonian of the unperturbed system whose solution is known,

and yHp is due to the small perturbation where y is a small parameter. Here, HQ can
be the Hamil- tonian of the infinite potential well, for instance. In the above equation,

|oi and E are both
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Figure 1: The triangle functions for a piecewise linear approximation of a
function. This is a basis that is not orthogonal but yet can be used to seek

approximate solutions .

== 0 [==] ('] [= =]
|_| |, ———
0 I 0 ¥ 0

Figure 2: The infinite potential well on the left represents the unperturbed problem. The
middle figure represents a perturbation due to atiny electric field. The right figure represents a
perturbation due to imperfection in fabrication or impurities.

unknowns, but we can write them in a perturbation series or expansion, namely

l0i =0 i +yle(D i +y2 (D i+ ... )

E=EO +yE@D +y2E@) + (3.4
Upon substituting the above series into (1), we obtain  The left-hand side of (4) can
be expanded and rewritten on a power seriesiny
These two power seriesiny are equa only if a§ =bj,i =0,1, ..., 0.2
Equating the coefficients of the power series on both sides of (4) we have the following

equations:
Zeroth Order:
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Holo@ i +Aple@i = EO) @ + EMD (gD + £@ |p(O);

assume that the zeroth order equation isknown in terms of an eigenstate |ym i with
energy

Em. In other words

0@ i = |ymi, EO = Em @)

note is in order regarding the uniqueness of the eigenvalue problem (1). An eigenvector is
known only within a multiplicative factor. Hence, its length is indeterminate. This non-
uniqueness in its length manifests in the non-uniqueness of the value of the perturbation

series (2). To achieve uniqueness, it is best to pin down the length of thetotal eigenvector

given by (2). length of the eigenvector |@i by requiring that
hdmlei =1 (8)
With this requirement, we substitute (2) into the above. Since hym |90 i = 1,

because

190) i = |ymi, it is essy to show that hym e i =0 i >0 Asa
consequence, |(p(i) i is orthogonal to |Pm i. The perturbation series is not

necessarily normalized, but it can be normalized later after the series has been

calculated. Next, to find the first order corrections to the egenvalue and the

eigenvector, we move the unknowns |(p(1)i to the left of (8). We then have

Ho - Em l¢(Mi=E® |jymi-Hplymi 9

since the operator HQ — Em has a null space with a null space vector [ymi.

hgm |H " 0-Em|p(1)i=E (1) -hygm|H p
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the first order correction to the energy of the perturbed system.

First, testing the equation (10) with hyij

, we have

hi [Ho — Emloi = EMWhyi [gmi — i [Hplumi (12)

Upon substituting (11) into the above, the left-hand side evaluate

choose a(l) = 0 for a number of mreasons: It makes the correction term

unique since [P(D) i is orthogona to |Y(O) i. It makes the normalization of the

eigenvector |@i accurate to second order even though the correction is first order. It
will also make the second order corrections much simpler to find.

To find the second order corrections, we rewrite (9) with the unknown I(p(z)i on the
left hand side. Then (9) becomes

Ho—Em [9@i=E@ gD+ e |jymi-HApleDi (12)

Testing the above with hym|, the left hand side becomes zero as before3  Since

we have made |(p(1)i orthogonal to |ymi, on the right-hand side, only the last

two terms remain.

Consequently,

0=E®) —hym|HploMi (13)
E(2) =hym |H p jp(1) i (14)

The above procedure can be generalized to arbitrary order. By induction, we notice that

the equivalence of to p-th order is
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“Aole® i +HploP~Di = EO) [¢(P i + EMW) |p(P—Di+ EP) 9O (15)

The above can be rewritten as

Ho —E© 1o(PMi=E@ P+ EMP|pO)i-HpleP~D); (16)

It isto be noted that with modern advent of computer technology, and given
the avail- ability of numerical methods, the calculation of perturbation theory to
very high order islaboriousand not necessary. However, aperturbation correction can give

usinsight on how asmall change in the Hamiltonian can change the solution.
|

0

Ve
0
N
E1 -\"“:‘==__
Viignt
0
Y
E,
L]
T | == = = —
24E I Al
s __:._:—:-:‘:‘:"'_‘:—:—.-—-——-.

The tight binding model can be used to find the approximate eigenstates of two quantum
wells that are weakly coupled to each other.

Breit-Wigner formula

The condition is equivalent to the condition that a spherica well of depth possesses a bound
state at zero energy. Thus, for a potential well which satisfies, the energy of the scattering
system is essentially the same as the energy of the bound state. In this situation, an incident
particle would like to form a bound state in the potential well. However, the bound state is not
stable, since the system has a small positive energy. Nevertheless, this sort of resonance
scattering is best understood as the capture of an incident particle to form a metastable bound
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-&at?&?-éh@?’tﬁé&dbsequent decay of the bound state and release of the particle. The cross-section

for resonance scattering is generally much larger than that for non- resonance scattering.

Therelativistic Breit—-Wigner distribution (after the 1936 nuclear resonance formula
of Gregory Breit and Eugene Wigner) is a continuous probability distribution with the
following probability density function

k
(B? — M?)* + M2T?

f(E) =

where k is a constant of proportionality, equal to

2/2MT

s i

VM?(M?+T2) .

o=
¥

The form of the relativistic Breit-Wigner distribution arises from the propagator of an unstable
particle” which has a denominator of the form p?— M?+iMI. (Here, p®is the square of
the four-momentum carried by that particle in the tree Feynman diagram involved.) The
propagator in its rest frame then is proportional to the quantum-mechanical amplitude for the

decay utilized to reconstruct that resonance,

v’ﬁ
(E? — Mrz} + tMT

The resulting probability distribution is proportional to the absolute square of the amplitude, so
then the above relativistic Breit-Wigner distribution for the probability density function.

The form of this distribution is similar to the amplitude of the solution o the classical equation

of motion for adriven harmonic oscillator damped and driven by a sinusoida external force. It
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has the standard resonance form of the Lorentz, or Cauchy distribution, but involves relativistic
variables s=p 2, here =E %, The distribution is the solution of the differential equation for the

amplitude squared w.r.t. the energy energy (frequency), in such aclassical forced oscillator,

f'(E) ((E? = My I-EME) — 4Ef(E)(M — E)(E + M) = 0.

. Kk
EREIE

f(M)

This is the famous Breit-Wigner formula. The variation of the partial cross-section with the

incident energy has the form of a classical resonance curve.

THE BORN APPROXIMATION:

The wave function ¢(r’) required the evaluate the equation. Born used an interaction is
procedure for its evaluation. In the first born approximation ¢(r’) in the integral equation is
replaced by the incoming plane wave exp (iK.r’). This leads to an improved value for the
wave function ¢(r) which is used the integral in the second born approximation. This interactive
procedure is continued till both the input and output ¢’ s are amost equal . As higher order
approximation are complicated we shall restrict our discussion only to first born approximation
replacing ¢(r’) intheintegral the equation by exp (iK.r’) ,we get
f(0) = -L4nf exp [(i(k-K").r'JU(r’)d6 (1)
where k and k’ are the wave vector in the incident and scattered direction respectively. The

guantity (k-k”)h=gh is then the momentum transfer from the incident particle to the scattering

potential. In other words the change in momentum gh due to collision is given by
oh=(k-k)h  or |q| =2 | k| sin6/2 )
replacing (k-k’) by q in eq 1 we get
f(0) = - U4nfexp (ig.r’) U(r’) d 6’ (3)

the angular integration in equation 3 can easily be carried out by talking the direction of q
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f(8) = -1/4nfOoofOmf 21t exp (iq r” cos 87)U(r’) r’2sin 6° dg’ d8” dr’ (4)

integration over @ gives 2m. The 8 integral can easily be evaluated by writing
-cos 8’ =x or -sin 6’ dB” =dx

we get

Jo"exp (iqr’ cosd’ ) sin 8 de” = [*; exp (igr’x)dx

=exp(iqr’)-exp(-iqr’) ()

substitiutibg the value of the angular part in equ (4)

f(8) = -2uM3y™ sin (gr’)/or’ V(r')r'? dr’

from which 6(8) can be calculated. It may be noted from eq (5) that the only variable
parameter in f(8) is magnitude of the momentum transfer gh where q is given by eq (2) thusthe
scattering cross section depends on the momentum of the incident particle kh and the

scattering angle 6 through the combination g= 2k sin (8/2)
Scattering by screened coulomb potential

The cross section ¢ (0) for the scattering of protons by a screened Coulomb potential is
evaluated using the numerical solution of the classical equations of motion.

Let the potential energy of a screened Coulomb potential interacting with a positive charge be
given by

V(1) = k Z&? exp(- pr )/r (1-a)
=Cexp(- pr)lr (1-b)
whereC =k Z¢€° .
In Sl units, k=9.00 E9 Nm?/C?, Z is the atomic number of the nuclei , e =1.602E-19 C, p ~/length~ m™

the equations of motion and find 6 for a varying set of impact parameters.
An approximation to a(6) would be

o) = - Vi (Vi- Vi) [Sin(8i1) (8- Bi)]~m? (2
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Using eq (1-b) we have

d? x/dt? = (1/m) {-0 V/ox } (3)
d? y/dt> = (U/m) {-0 /oy } . (4)
Thefinite difference solution are
Xn =25 Xn1Xn2 + (A7 /M) C exp(-prne ) Xna M Mna® +Vrnd} (5)
and
Y n=2*Yna- Yoz + (Y7 /m) Cexp(-prns) Yo {B /e +Urns® } (6)

Validity of Born approximation
Born approximation replaces Y by ¢ in Lippmann-Schwinger equation, which is

integrated together with the potential. Therefore, in order for Born ap- proximation to
be good, the difference between ¢ and @ must be small where the potential exists. The
self-consistency requires that

|U(T) — o(T)| < |o(T)|
where V (~x) is sizable, and the |.h.s. can be evaluated within Born approximation itself. From
Lippmann-Schwinger equation
Jik|F—a' .

II_EIH‘} /I f_:' _i.,_{. _}:I ik’ ‘:g: 1
| o Y ——— € )e
| A® . drr|T — 2’

we require this condition at x = 0 where the potential isthe

strongest presumably.

For a smooth central potential, with a magnitude of order V and a range of order a, we can
qualitatively work out the validity constraint. Taking

k along the z axis, and looking at x ' O where the potential is most

important presumably (and relabeling x = 0 as ~x), the condition is
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Do | o _—
— | [ dZf—V(2)e™| <« 1
h? ] dnr .
When k << a1, we can ignore the phases in the integral, and it is given roughly by
24 CRRTET G | _
Fﬂhﬁ;ﬁl (k <at)
i 2

Numerical coefficients are not to be trusted. On the other hand, whenk >> a1, the
phase factor oscillates rapidly and we can use stationary phase approximation. The
exponent isikr +ikz, and it is stationary only along the negative z-axis z = —r. Expanding
around this point, it isikr+ikz =ik(x2 +y2)/r + O(x3,y3). The Gaussian integra over
X, Yy then gives a factor of nir/k, while z is integrated along the stationary phase direction from

— ato 0. Therefore, the validity condition is given roughly by

2m a
e ] k> a!
= 2l ( )
On the other hand, we can estimate the total cross section in both limits.
- 1 2m iy
O@EF) = =23 [arv(@)er
FO®E E) 7 | V@
1 2m_ 4w .
e ———_]I'F—”IS {‘-’i J'_]-
dr B2 " 3 4 %)

For alarge momentum transfer, say along the x axis, y and z integral each gives a factor of a
because of no phase variation, while x integral oscillates rapidly and cancels mostly; it leaves

only ~ 1/q contribution from non-precise cancellation. Therefore,

en o i 1 2m__ mwa? _
fl”{.rll'j.;\'j . __l_FP_IUT {(j > a 1]

Because the momentum transfer q is of the order of k (except the very forward region which we

neglect from this discussion), the total cross sections are roughly

2
2 r. a7 X =
L(BmVoka®) (k<a™)
(T ro 270 1 o ;
1 (2?.{:1_' mrj)‘3 k> ”—1}'
dr \n2 "0 q ’
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At -.:-i'éfif&.éﬁ“é‘étihgc. to note that, oncethe validity condition issatisfied, the total cross section
isaways smaller than the geometric cross section 4na?

< O (k< a!
o < 9 Ta ( & )

o & dra® (k>a1)

L aboratory and centre of Mass co-ordinate system

Unlike the two-body case, there is no gain in ssimplicity if we use relative coordinates
for the N body system in general. For two bodies, there is only one set of relative
coordinates, while there are two sets of particle coordinates, one for each particle. For three
bodies, there are three combinations of separations between individual particles, just as there are
three sets of particle coordinates. For all higher values of, the number of relative separations is
always larger than the number of particles. In conclusion, from onward, it makes more sense to
define the positions and velocities with respect to a given coordinate system. Although not
necessary, it is often convenient to use the center of mass system for our orbit calculations. The
center of mass is defined in any coordinate system.

In a one-dimensional system of weights hanging from a beam in the Earth's gravitational field,
the left and right parts of the beam will be in equilibrium if we support the beam exactly at the
center of mass. The same is true for a two- dimensional plank with masses. With three
dimensions, we have no room left in an extra dimension for external support, but an analogous
result still holds: the motion of the center of massis the same as if the entire mass of the system

was concentrated there and acted upon by the resultant of al external forces.
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Possible Questions

Part B (4 Marks each)

1. Write anote on Scattering Amplitude.

2. Briefly explain Neutron Proton scattering with relevant expression.

3. Describe scattering cross section.

4. What isthe difference between differential scattering cross section and total scattering
cross section? Explain.

5. Write a short note on partial waves.

6. Define scattering length. How isrelated to zero energy cross-section?

7. Discussthe validity conditions for Born approximation.

8. What is phase shift? Explain the nature of phase shift in the case of repulsive and

attractive potentials.

9. Discuss about the scattering by screened Coulomb potential.

10. Write a short note on laboratory coordinate system and centre of mass coordinate
system.

Part C (10 marks each)

1. Explain scattering amplitude and scattering cross section. Derive expressions for

them.

2. Discuss in detail about the scattering by a centra field, using partial wave analysis
and obtain equations for scattering cross section an scattering amplitude.

3. Deduce optical theorem
4. What is meant by Ramsaur-Townsend effect?
5. Discussthe theory of scattering by an attractive square well potential well.

6. Derive Breit-Wigner formulafor resonant cross sections.
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R

s T EXPlain phase shift during a scattering. Obtain relation for Born approximation for
phase shift.

9. Discussthe validity of Born Approximation.

10. Explain the difference between laboratory coordinate system and centre of mass

coordinate system.
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Hartree-Fock equation — Molecular orbital theory: Hydrogen molecule ion H2+- Valence
\_ bond theory -/

I ndistinguishable Particles

These basis functions does not solve the Schrodinger equation yet, but they have to
satisfy certain symmetry conditions depending on the kind of particles they represent.

1. Non-identical Particle Case:
Let us assume that we have N particles, and M modes to fit this N particles. We can
construct a state for non-identical particles that looks like
Wdiffi = [1,ai|2,bi[3,ci...|N, ni
In terms of basis function, we may express the above as
Wab---ni =|1,a|2, bi|3,ci- |N,ni (D)
Or
Yab--n(r1,r2,-,rN) = Wa(r1)yb (r2) - ¥wn(rN ) )

We can fit the N particles in n modes, and these n modes can be repeating or non-

repeating. For non-repeating case, it is necessary for M > N.

However, the above wavefunction cannot be used for bosons and fermions, as we will
get a new wavefunction when we swap the positions of two particles. But bosons and

fermions are indistinguishable particles. We will consider them separately.

2. Boson Case:
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For the N boson particle case, we can write the legitimate wavefunction, which can be

used as a basis function, as

|pidentical-bosonsi «|jdentical-bosonsi *><

P|1, ai[2, bi|3, ci - N, ni ©)

where P~ is a permutation operator, and the above summation is over all possible per

mutations of the coordinate rj over the one-particle eigenstates a, b,c,---,n. The

above

wavefunction remains unchange when we permute the positions of two particles, because
for every |L,ai---|i,li---|j,pi--|N,ni, there isa|l,a::[j,li---]i,pi-:-|N,niin

above summation. Hence, swapping of i and j will not change the sign of the above

wavefunction. The above can also be written as a basis function as

|pabeeen i o< P7|1, ai|2, bi|3, ci ® [N, ni 4)
3. Fermion Case:
For the N fermion case, we can write the wavefunction, which can be used as a

basis function, as

where the “+” sign is chosen for even permutation while the “-” sign is chosen for odd

permutation. A permutation involves a unique pairwise exchange of two particles . The

permutation is even or odd depending on the number of pairwise exchanges that have taken

place.
Therefore, givenaterm|[1,a ---|i,li --- |, pi - - - |N, ni, there always exists another term:
-G, a -l e i, pio- - - N, niin the above summation since they differ by one per-

mutation. If i = j, the two terms cancel each other implying that they cannot bein the

same position. Likewise all the terms in the sum cancel each other since every term that
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contains i and j can be paired up with every other terms in the sum. Moreover, If | = p, dl
terms in the summation above cancel as well implying that they cannot be in the same
mode or state. Therefore, the above is a legitimate basis function that represents the
fermions as it obeys Pauli’s exclusion principle. Also, there is a sign change when the

position of two particles are swapped.

Pauli exclusion principle

The inter- actions between electrons and only consider their Coulomb

repulsion by empirical rules.
Consider two identical particle system (e.g., two electrons in a Helium atom).
Suppose their wavefunction is ¢ (x1 , x2) , where xj is the coordinate of the ith

particle, e.g., x = (r, o) with r the spatia position and o =t, | the spin of the particle,
etc.

Consider the exchange operation P : exchanging the coordinates of the two
particles,

Plo 20 (x1,x2) =P (x2,X1).

If we choose | (X1 , X2 ) as an eigenstate of P1.2 with eigenvalue p, then the

eigen eguation is
P1. 20 (X1,X2) = py (X1,X2) .
Acting P1. 2 second time we get back to the origina state,

pzw (Xx1,x2) =Wy (x1,x2), or p2 =1

Therefore, p can only has two values
p =zl

The quantum particles with p = 1 are referred to as Boson particles, or simply
Bosons; The quantum particles with p = -1 are referred to as Fermion particles, or

simply Fermions. A more general anaysis shows that with integer spin are aways
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Bosons, and particles with half-odd-integer spins are aways Fermions. For
example, electrons and protons are Fermions, and photons (light quanta) are Bosons,
Helium-4 is Boson because its spin is zero, but Helium-3 atom is Fermion with spin 1/2.

For a general quantum many-body wavefunction, the exchange operation is

AFhquJ("'!Xn!"'!Xm!"'):iw("'ixm!"'1xn!"') ’
where + corresponds to Boson system, and — to Fermion system. This is a

exact property of a quantum many-body system.
Spin function for two electrons

Spin is a specia property of atomic or subatomic particles that has no
classical analogue. Electron has spin. We can think of it as being due to the self
spinning of the electron, but we should not let our imagination run further than that.
Spin of an electron gives it a spin angular momentum in addition to the orbital angular
momentum it possesses. The spin also endows an electron with a magnetic dipole
moment that causes it to interact with a magnetic field.

The spin of some particles is found to have binary values of “spin up” and “spin
down” experimentally by the famous Stern-Gerlach experiment. This binary nature, as
we shall see, fits nicely in the mathematical structure of angular momentum in
quantum mechanics, but it cannot be described by a wavefunction or wave mechanics.
Instead, it can be represented by matrix mechanics.

Spin functions for three electrons

The z component of the orbital angular momentum, represented by the
operator Lz , is quantized to be m~ where - 6 m 61, | being an integer related to the
total

angular momentum sguare operator L2 with eigenvalue | (I + 1)~2 .
It can be shown that the relationship between the total angular momentum number |
and the z-component of the angular number m is not restricted to orbital angular

momenta. It can be established for all quantum mechanical angular momenta, asis
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shown in Appendix A. A more general framework for angular momentum is that for
J2 =J2+J2+ J2, an operator x y z that represents the square of the
total angular momentum, and Jx ,Jy, Jz , operators that represent the x, y, and z
components of angular momenta, then

J2IL,Mi=L(L+1)~2|L,Mi @

JzZ|IL,Mi=M~2|L,Mi, -L6M6L )

The above results for orbital angular momentum by using wave mechanics
and wavefunctions, but they can be proven for genera angular momentum by using
rotational symmetry of 3D coordinate space, and mathematics of raising and lowering
operators. Spin angular momentum operators also fit under the framework of general
angular momentum operator, and can be thought of as a special case of the above
framework. For spins, we let S represent the total angular momentum operator, while
Sz represents the z component of the spin angular momentum. As aresult, the
corresponding z component of the spin angular momentum, represented by the
operator S’z , has only two eigenvalues and two eigenstates. an up state with angular

momentum
The corresponding x andy components of the spin angular momentum

can be represented by operators S'x and S°y . Together with S°z , they satisfy the
following commutation relations
hSx , Sy i =i~Sz hSy , Sz i = i~S'x , hS"z , Sx i = i~Sy

The above issimilar to the commutation relations satisfied by L'x ,L"y ,and L'z,
where they have been motivated by wave mechanics. That if an operator is to represent
an angular momentum, then their Xx,y, and z compongnts have to satisfy the above
commutation relations by rotational symmetry of the 3D coordinate space.

TheHeium atom

The essence of this approximation is to keep the quantum nature of particles
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but ignoring their dynamic interactions due to Coulomb repulsion by empirical Hund’s rule,
Single-particle Schrodinger equation,
H™1 ®k (x1) = EK ®k (x1)

the total wavefunction may be written as

W(Xx1,X2, XN ) x ®k1 (X1) Pk2 (X2) - PKN (XN )

not taking the exchange symmetry into account. In order to include this

important quantum symmetry, consider first a 2-particle system, N =2, 1
PB (x1,x2) =[dnl (xD)pn2 (x2) + ¢nl (x2)$pn2 (x1)] for Boson
or [¢nl(x1)$nl(x2)....] so that YB (x1,x2) = YB (x2,x1) for Bosons

(x2 ,x1) for Fermions. One can aso construct a symmetric wavefunction for two

Bosons by asingle wavefunction as B (X1,X2) = ¢n1 (X1)Pn1 (x2), or ¢n2 (Xx1)$n2
(x2).
Notice that if k1 = k2, YF (x1, x2 ) =0, but not yB (x1 , x2) This indicates that two
Fermions cannot occupy the same state, but it two bosons are allowed to occupy the same
state.

A state can only be occupied by at most a single Fermion; But it can be occupied by

any number of Bosons.

The first above statement is Pauli exclusion principle. The second statement is the

property that leads to the so-called Bose-Einstein condensation of bosons at low
temperature. As active ingredients in atoms and molecules are electrons which are
fermions, we will mainly use Pauli principle. It is obvious that in the independent- particle
approximation (e.g., ignoring particle interactions), the ground  state of an N -
electronsystem is given by the Slater determinant constructed from the lowest N single
particle states. For atoms, thesesingle particles states are naturaly the eigenstates of
hydrogenlike atoms as we discussed previously. For molecules, these single particle states
are constructed by a linear combinations of atomic  different nuclear states at
configurations.
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W1, -, xN)=0(rl, ---,rN)x(ol,---,0N).

Hence, if spin wavefunction x is antisymmetric, the spatial wavefucntion ¢ must be

symmetric in order for the total wavefunction W to be antisymmetric, vice versa.

Now we apply this simple analysis to atoms, the elements on the periodical table,
where the identical fermions are electrons with spin-1/2. We will qualitatively discuss the
ground states of the atoms. In the next section, we will attempt to calculate the ground-state
energy value of the two electron system, helium atom. By solving the Schro dinger equation
of hydrogenlike atoms in the previous section, we know the elec- tron’s states in an atom can
be characterized by four quantum numbers (n, I, m, ms): n - principle quantum number
specified main energy levels (shells), | - (orbital) angu- lar momentum quantum number,
and m - (orbital) magnetic quantum number and - spin magnetic quantum number. We
extend this to many-electron’s state ig- noring the interactions, spin-orbit couplings, etc.,
by using the independent-particle approximation. Using notation

=0 - sstate, 1 - pstate, 2 - ddtate - --

and noticing mand ms are degenerate quantum numbers, we concludethat s shell
can take up to two electrons (single orbital with m = 0 but one electron with spinup ms =
1/2, the other electron with spin downms = -1/2); p shell can take up to 6 electrons (three
states specified by m = 1, 0, -1, each can take one electron with spin up and one electron
with spin down); d shell can take up to 10 electrons (5 stateswithm=2, 1, 0, -1, -2, each
can take two electrons), etc. These energy levels are ordered as total possible maximal

number of electrons.

In this independent-particle picture, the way each electron of an atom occupies a
particular hydrogen state is called electron configuration. In the ground state, the electron
configuration of an atom is given by filling these hydrogen orbitals from the lowest, in the

ordered series as
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(15)(25)(2p)(3s)(3p) (45)(3d)(4p)(Ss) - - - -

ies (such as total angular momentum, spins etc.) of the corresponding atom. More
information can be specified by using the so called atomic spectral term (or atomic term)
to represent states of an atoms. Some correction to independent-particle approximation for
the ground-state atomic term due to Coulomb repulsion will be considered by the
empirical rules.
Atomic spectral terms. We use notation (2S+1) LJ to denote a particular atomic state
where Sisitstotal spin, L itstotal orbital angular momentum and J the total angular
momentum (spins and orbitals). We use capital Latin letters for each

value of orbital quantum number as

L=0 1 2 3 4 5 6 7 8 9 10
s p D F G H I K L M N

For example, 2 P3/2 denotes levelswith L =1, S=1/2 and J= 3/2. The differencein
energy between atomic levels having different L and S but the same electron
configuration  is due repulsive Coulomb interaction between electrons. These energy
differences are small. We have the following empirical Hund’s rules (F.Hund, 1925)

concerning relative position of levels with the same configuration but different L and S:

(i) For agiven shell (configuration), the term with greatest possible value of S gives
the lowest energy;

(i) The greatest possible value of L (for this S) has the lowest energy;

(iii) For haf or lessthan half filling shell, J=|L — S| gives lowest energy; For more
than half-filling shell, J=L + S gives lowest energy.

The origin of the first rule is obvious:. the largest total spin corresponds to symmetric
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(pardledl) spin wavefunction and antisymmetric orbital wavefunction, the later reduces
electron-electron repulsive interaction energy.

Example. Helium (Z = 2) hasasimple configuration (1s)2. Hence S=0 and

L = 0. The ground state term is1S0 with J= 0. We will use thisterm to construct an
approximate wavefunction to calculate its ground-state energy in the next section.

Example. Carbon (Z = 6) has electron configuration as (15)2(2s)2(2p)2. There are
three p orbitals withm =1, 0, -1 as| = 1. Two eectrons with both spin equal to 1/2

(corresponding to total largest spin S=1) arein orbital m =1, O with total maximal M =1
+0=1, corresponding to L = 1. Hencethe ground state term is3P0. Itislessthan half-
filling, J=|L -S| =0. Theother two possible terms are 1S and 1D. They correspond to
higher energies.
Example. Nitrogen (Z =7): He(2s)2 (2p)3. Three electrons with total spin S =
3/2 are instates m =1, 0, -1 with total maximal M = 0 corresponding to L = 0. Ground
state term istherefore 4 S3/2 . Other termsare2 P and 2 D.
Example. Oxygen (Z = 8): He(2s)2(2p)4. Equivalent to two holes (two missing
electrons for filled shell) in 2p orbitals. Its ground state term istherefore same as
carbon, 3P . However, asitismorethan half-filling, J=L + S= 2. So we have 3 P2 for its
ground stete.
Example. Boron (Z = 5) and fluorine (Z = 9) have similar term but different J values,
due to electron-hole symmetry.
Thomas-Fermi model of the atom
The theory for the electronic structure of many-body systems developed semiclassically
shortly after the introduction of the Schrédinger equation. It stands separate from wave
function theory as being formulated in terms of the electronic density adone and as such is
viewed as a precursor to modern density functional theory. The TF model is correct only in the
limit of an infinite nuclear charge. Using the approximation for realistic systems yields poor
guantitative predictions, even failing to reproduce some general features of the density such as
shell structure in atoms and Friedel oscillationsin solids. It has, however, found modern
applications in many fields through the ability to extract qualitative trends analytically and with

the ease at which the model can be solved. The kinetic energy expression of Thomas-Fermi
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theory is aso used as a component in more sophisticated density approximation to the kinetic
energy within modern orbital-free density functional theory. The electrons are distributed
nonuniformly in an atom, an approximation was made that the electrons are distributed
uniformly in each small volume element but the electron density can still vary from one small
volume element.

Hydrogen moleculeion H#

The electronic Schrodinger wave equation for the hydrogen molecular ion H**with two
fixed nuclear centers, labeled A and B, and one el ectron can be written as

2
(—h—vz + V) = By

2m

where V isthe electron-nuclear Coulomb potentia energy function
¢ 1 1
/A (— + —)
doreg \ Ty T

and E is the (electronic) energy of a given quantum mechanical state (eigenstate), with the

electronic state function ¢ = Y(r) depending on the spatia coordinates of the electron. An
additive term 1/R, which is constant for fixed internuclear distance R, has been omitted from the
potentia V, since it merely shifts the eigenvalue.
The Hartree-Fock method
The kinetic energy term and the nucleus-electron interaction term are sums

of single-particle operators, each of which act on a single eectronic coordinate. The
electron-electron interaction term on the other hand is a pair interaction and acts on pairs
of eectrons.

The Hartree-Fock method is a variational, wavefunction-based approach.
Although it is a many-body technique, the

approach followed is that of a single-particle picture, i.e. the €electrons are
considered as occupying single-particle orbitals making up the wavefunction. Each electron
feelsthe presence of the other electronsindirectly through an effective potential.

Each orbital, thus, is affected by the presence of electrons in other orbitals.
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The starting point of the Hartree-Fock method is to write a variationa
wavefunction, which is built from these single- particle orbitals. Once we make a suitable
ansatz to the wavefunction, al that is left is the application of the variationa principle.

. The simplest wavefunction that can be formed from these orbitals is their direct
product
P(~x1 , ¢ o o | ~xN ) =@l (-x1 )p2 (~x2 ) = < <+ N (~xN
)- (1)
Thisisthe Hartree approximation and it is astraightforward task to calculate the
variational lowest energy from Eq. 1

However, the Hartree wavefunction has a very important shortcoming, which is that
it fails to satisfy antisymmetry, which states that a fermion wavefunction changes sign
under odd permutations of the electronic variables. The permutation

operator is defined by its action on the wavefunction
IIII)XiJIII)XjIIII)XN) (2)

If an odd number of such permutation operators are applied to the wavefunction, it
picks up a minus sign whileno change

in sign occurs under an even number of permutations. In order to satisfy the
antisymmetry condition, a more sophisticated form than that of the Hartree wavefunction
is needed.
Il. THE SLATER DETERMINANT

If, for example, we have a two-eectron system with orbitals @1 (x1) and @2 (%2),
the followingvariational wavefunction satisfies the antisymmetry condition, at the same
time preserving the single-particle picture

D(x1,%2) =c[O1(%1)92 (%2) —01 (%2 )02 (*1)] (€))

where ¢ is the normalization constant. For three eectrons, the equivalent
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antisymmetrized wavefunction would be

O(~x1, ~x2,~x3) =c @1 (~x1)02 (~x2 )3 (~x3 ) — @1 (~x1 )2 (~x3 )3 (~x2) +
01(~x3)p2 (~x1)e3 (~x2)

=01 (=x2 )92 (=x1)@3 (~x3) + @1 (~x3 )02 (~x2 )3 (~x1) — ®1 (~X2 )92 (~x3 )3
(~x1) (4

where ~xi is now a generalized coordinate that includes spatial as well as
spin degrees of freedom.

The Hartree-Fock method is a variational, wavefunction-based
approach. Although it is a many-body technique, the

approach followed is that of a single-particle picture, i.e. the electrons are
considered as occupying single-particle orbitals making up the wavefunction.
Each electron feels the presence of the other electrons indirectly through an
effective potential.

Each orbital, thus, is affected by the presence of electrons in other
orbitals.

The starting point of the Hartree-Fock method is to write a variational
wavefunction, which is built from these single- particle orbitals. Once we make
a suitable ansatz to the wavefunction, al that is left is the application of the
variational principle as described in Lecture 1. The simplest wavefunction that
can be formed from these orbitalsis their direct product

d(~x1 , - - -, XN ) = 01 (x1 )92 (~x2 ) - - - N (=xN ).
(4) This is the Hartree approximation and it is a straightforward task to calculate
the variational lowest energy from Eg. 4.

However, the Hartree wavefunction has a very important shortcoming,
which is that it fails to satisfy antisymmetry, which states that a fermion
wavefunction changes sign under odd permutations of the electronic variables.

The permutation
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operator is defined by its action on the wavefunction
FT” cD(”“Xl,---,'*Xi ,"',"‘Xj ,--',"‘XN):q)(“‘Xl,"',"‘Xj AR
~Xi,"',"‘XN):_q)("’Xl,"',"‘Xi,"',"‘Xj,"',"‘XN) (5)

If an odd number of such permutation operators are applied to the
wavefunction, it picks up a minus sign while no change

in sign occurs under an even number of permutations. In order to satisfy
the antisymmetry condition, a more sophisticated form than that of the Hartree

wavefunction is needed.

THE HARTREE-FOCK EQUATIONS

The variational principle that we will apply here is rather different from the
linear variation. There the form of our approximate wavefunction was written as an
expansion over a collection of predetermined functions and we minimized the expectation
vaue (at the same time obeying the normalization constraint) with respect to the
coefficients of the basis functions. Here however we employ a much more genera
treatment where we minimize with respect to the basis functions themselves! Needless to
say, this requires functional differentiation where any change affected in the expectation

valuein Eq. 1 due to an infinitesmal change in any of the orbitals gk should be zero

Ok — Ok +dpk = OJhdHel®i=0

In addition, we demand through Lagrange multipliers that the set of oritals @k
remain orthogonal throughout the minimization process.

where the first and the second term are straightforward, single-body operators and
the third term is an integra operator. This is now a set of interdependent single-particle

eigenvalue equations. The operator J corresponds to the classical interaction of an
electron distributions given by [@j |2 and |pk |2 and is called the direct term while K

, cdled the exchange term, has no classical analogue and is a direct result of

the antisymmetry property of the wavefunction.
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For each k there is an equivalent  equation defining a system  of
Schrodinger-like, one-particle equations. Although it’s tempting to interpret the
eigen values gk as the energy levels of an interacting system, this is in fact not
justified because the single-electron picture is not correct.  However, if interpreted

correctly the Hartree-Fock eigen values do correspond to certain physical entities.
MOLECULAR ORBITAL THEORY

Electrons have certain properties of particles and certain properties of waves. Electrons
have mass and charge like particles. Because they are so small and are moving so fast, electrons
have no defined position. Their location is best described by wave mechanics (i.e. a three-
dimensional wave) and a wave equation called the Schrodinger equation. Solutions of the
Schrodinger equation are called wave functions and are represented by W.

The sign of the wave function can change from positive (+) to negative (-) in different parts of the
same orbital. This is analogous to the way that waves can have positive or negative amplitudes. The
sign of the wave function does not indicate anything about charge.

The value of the square of the wave function is proportional to the probability of finding
electron density at a given point in an orbital. Note that the sign of square of the wave function
is always positive, because the square of even a negative valueis still positive.

In a2p orbital, it isjust as probable to find electron density in the negative lobe as it is to find
electron density in the positive lobe. A node is any place in an orbital at which the value of the
wave function is zero.

A nodal surface or nodal plane are surfaces or planes where the value of the wave function is
zeor. There is absolutely no electron density at a node, a nodal surface, or a nodal plane. The
Schrodinger equation can in principle describe covalent bonding, but, even with powerful
computers the equation is too complicated to be solved exactly for large molecules.

Valence bond Theory

The two-electron system with orbitals ¢1 (~x1 ) and @2 (~x2 ), the following
variational wavefunction satisfies the antisymmetry condition, at the same time preserving

the single-particle picture
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O(~x1,~x2) =c[el (~x1)2 (~x2) - @1 (~x2 )92 (~x1)] (1)

where c is the normalization constant. For three electrons, the equivaent antisymmetrized
wavefunction would be

®d(~x1, %2, ~x3) = ch@l (~x1 )2 (~x2 )3 (~x3 ) — @1 (~x1)e2 (~x3 )3 (~x2) + @1
(=x3)92 (~x1 )3 (~x2) —01 (~x2 )2 (~x1 )3 (~x3) + @1 (~x3 )2 (~x2 )93 (~x1) -
O1(~x2)@2 (~x3)@3 (~x1)i. 2

Upon closer inspection, we notice that the same permutations of orbitals with matching signs

are obtained by the following determinant

@1 (~x1) 92(~x1) ¢3(~x1) ©)
@1 (~XN) @2 (~XN) e+ @N (~xN)

where the factor in front ensures normalization. For an arbitrary number of electrons the
wavefunction can be shown to satisfy the desired antisymmetry condition. The determinant,
referred to as a Slater determinant in literature, has N ! terms each multiplied by -1 or 1
depending on the parity of the permutation. Each term has each orbital @i only once and each
of the arguments ~xi only once. Thus, each term may be written as follows where the indices
i1, 12, « « « take values between 1 and N and the exponent of -1 in front refers to the order of
appearance of the orbital indices in the term. The term picks up a -1 in front if the
corresponding permutation is odd and +1 if it is even. For ease of notation, we replace P (i1,
i2, * e+ iN) by the shorthand notation P (i), where i now refers to a particular arrangement
(or sequence) of the N indices. The Slater determinant may then be written as

where the sum i runs over the N ! terms. Nothing has been said so far about the form of the
orbitals @i (~xj ) and they are left to be found as a result of the minimization procedure
associated by the variation. In order to achieve that we now calculate the expectation value of
the Hamiltonian for this variational wavefunction

EH = ho|H" e |®i. (4)
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Possible Questions

Part B (4 Marks each)

1. What is particle exchange operator? What are its eigen values? Show that it is a
constant of motion.

[llustrate exchange degeneracy with examples.

What is Slater determinant? How does it incorporate Pauli principle?

Explain Fermi hole and Fermi heap.

What are orthohelium and parahelium?

Explain why the ground state of helium exists in the para form whereas the excited

o g A~ WD

states come in both forms.
7. Explain centra field approximation.
8. How did Hartree obtain the central field in his theory of many electron atom?

9. Explain self consistent potential.

Part C (10 marks each)

1. a Explain what is meant by indistinguishable particles. (5 marks)
b. Explain symmetric and antisymmetric wave functions (5 marks)

2. a Using symmetric and antisymmetric wave functions explain Pauli’s exclusion
principle. (5 marks)
b. Discuss the inclusion of spin of electrons. (5 marks)

3. Using the theory of indistinguishable particles, explain the ground state and first
excited state of Helium atom. Distinguish between parahelium and orthohelium.

4. a Explain central field approximation. (5 marks)
b. Discuss Thomas-Fermi model of the atom. (5 marks)

5. a Derive Hartree equation and obtain expression for total energy of the system.

b. Derive Hartree Fock equation. (5 marks)
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Gordan equation — Particle in a coulomb field — Dirac’s equation for a free particle — Dirac
matrices — Covariant form of Dirac equation — Probability density — Negative energy states-
Spin of the Dirac particle — Magnetic moment of the electron — Spin-orbit interaction —

[Relativistic gquantum mechanics: Klein-Gordan equation — Interpretation of the Klen-

\Radial equation for an electron in a central potential — Hydrogen atom — Lamb shift. )

Klein-Gordan Equation

The Klein-Gordon equation fullfills the laws of special relativity, but contains two
fundamental problems, which have to be taken care of for the equation to be physically

meaningful. The problem becomes obvious when considering the solutions of the different

equations.

Wir) = &

from which follows
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This means that the Klein-Gordon equation alows negative energies as solution. Formally,
one can see that from the square of the information about the sign is lost. However, when
starting al solutions have to be considered, and there is the problem of the physica
interpretation of negative energies. The second problem with the Klein-Gordon equation is

less obvious. It occurs when interpreting the function yi(x) as probability amplitude.

Interpretation of (x) as probability amplitude is only possible if there exists a probability
density [ p(x) and acurrent j (x) that ful a continuity equation

%;; + V.7 =0

which guarantees that no "probability" islost. Since we deal with a covariant equation,

J'U[.l'] = cplz)
wiy o [40@)
£ 7 (x)

and obtain the covariant form

d
T = A =0

Non-relativistically one has

P = W W
= fi s

Inp = Tl [W* V ¢

and thus one expects in the relativistic case also bilinear expressions in for ¢, p and j. It is

easy to show that this density does not fulfill a continuity equation.
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A* 3% B .= A* (9"B) — (8"A%)B.
Consider
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de J1 = ﬂdﬁ (e. i L)
_ iR e i)
= .3_[*- (O] — (Ogr®)a]

A

W the Klein-Gordon equation, the right-hand side of vanishes, and the continuity equal

i
gi= = F
3
il i
= m—git g
2me
il ;8 g *
= — T — = —yl
2mct ot ot

Since the Klein-Gordon equation denotes a partial differential equation of hyperbolic type,
one has the option to arbitrarily choose the functions

w(f t = 0] and %e.‘[.f’.!‘ = 0

at the starting time (t = 0), and thus obtain, e.g., negative values for p(x;t = 0). An
interpretation of p as probability density would mean that the theory allows negative
probabilities. Thisis the problem of the indenite probability density.

Interpretation of the Klein- Gordan equation

The electromagnetic interactions into the KG equation

g — p* —ed”

. d Yig i ‘ .
— i — A R Y 1 2 (] =10
[ ( . f-lr,) ( oz, e ) m } Wir)

[ar.,ar'- t m? 4 .t.'[.r-]] U(z) =0,
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where the generalized potential U(x) consists of a scalar and vector

Ule) = ieo—d¥ +icdt— —Ar4,
i s :
= e VH - iVF—e— gt §
il ¥ ik

that the symmetrized from of the vector termsis required in order to maintain the hermicity of
the interaction. For the electromagnetic case they are related

5 = ée'A*A,
VE — e4*
Using the standard form, the KG equation can be written as

I

] 3 . ;
(-‘.— i K{I’) Tix t) = [[—-"‘F e REYF 4 m-] Wix, t)
it

Substituting the positive and negative energy

(B, 7 e®)' ¥ (x, 1) = [[;}: eA)? 4 mg] T lE (x t)
as starting point and use it with more general potentials V
(E? +V? —2EV)¥ = (p* + m?) ¥

(W2 4+ B0 = (2EV — V)0

which looks like a Schrodinger equation with the equivalent energy dependent potential

1__:.‘-.[__' EEI- = 1-_:'

2m

The other potential is considered as the Lorentz scalar. The KG equation with coupling to the
scalar potentia
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Particlein a coulomb field
Coulomb's law is alaw of physicsfor quantifying the amount of force with which
stationary electrically charged particles repel or attract each other.
g1 42
2
where ke is Coulomb's constant (k. = 9.0x10° N m? C™2), g, and q are the signed magnitudes

F=k

of the charges, and the scalar r is the distance between the charges.
Coulomb's law and Coulomb's constant can also be interpreted in various terms:
Atomic units. In atomic units the force is expressed in hartrees per Bohr radius, the
chargein terms of the elementary charge, and the distances in terms of the Bohr radius.
Electrostatic units or Gaussian units. In eectrostatic units and Gaussian units, the unit
charge (esu or statcoulomb) is defined in such a way that the Coulomb constant kdisappears
because it has the value of one and becomes dimensionless.
Lorentz—Heaviside units (also called rationalized). In Lorentz—Heaviside units the

Coulomb constant is k. = /41 and becomes dimensionl ess.

An dectric field is avector field that associates to each point in space the Coulomb force
experienced by atest charge. In the simplest case, the field is considered to be generated
solely by asingle source point charge. The strength and direction of the Coulomb force F on a
test charge q: depends on the electric field E that it findsitself in, such that F = gE. If the field
is generated by a positive source point charge g, the direction of the electric field points along
lines directed radialy outwards from it, i.e. in the direction that a positive point test
charge gywould move if placed in the field. For a negative point source charge, the direction is
radialy inwards.

The magnitude of the electric field E can be derived from Coulomb's law. By choosing one of

the point charges to be the source, and the other to be the test charge, it follows from
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Coulomb's law that the magnitude of the electric field E created by a single source point
charge g at acertain distance from it r in vacuum is given by

1l
dmeg r2

| E
Dirac’s equation for afree particle.

Dirac attempted to overcome some of the problems of relativistic quantum mechanics

by introducing afirst-order wave equation.1

iywopu g — my =0. ()

Here, the yu are some suitably chosen operators acting locally on the wave function (.
This wave equation can be viewed as a factorisation of the second-order Klein-Gordon

equation asfollows:

(iyv ov +m)(iypop — m)y = (= yv ypov op— m2)y = 0. 2

Thelatter form becomes the Klein—-Gordon equation provided that they’s satisfy
the Clifford algebra2 3

{YH, W E=YHYV +yVyH == 2nu. 3)

This means that every solution of the Dirac equation also satisfies the Klein-Gordon
equation and thus describes a particle of mass m.

The Dirac equation is a relativistic wave equation. Trandationa invariance is evident,
but we have not yet shown its Lorentz covariance (although the resulting Klein—-Gordon
equation certainly iscovariant).

Dirac Matrices
Consider a Lorentz transformation

X0 = A— 1 x with A(w) = exp(w). Suppose Y is a solution of the Dirac equation. It is not
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sufficient to use the transformation rule for scalar fields $0(x0) = Y(x). In analogy to vectors
we should aso transform spinors. We make the ansatz
PO(x0) = S(w)p(x), (1)
where S(w) is a matrix that actson Dirac spinors. We then substitute O(x) = SY(/AXx) into
the Dirac equation
O=iypop— m YoO(x) = iy o — m SY(AXx)
= Iyv SApv oy — Smy (Ax)
=SiS- 1y SAUVOU Y — iy oy (AX)
=iS AW S- 1yv S— yp (OUY)(AX). (2

So the term in the bracket must vanish for invariance of the Dirac equation. Indeed, the

canonical Lorentz transformation of gamma-matrices
yop =(A- Dpv Syv S 1, )

where not only the vector index is transformed by A— 1, but also the spinor matrix is

conjugated by the corresponding spinor transformation S.8 In analogy to the
invariance of the Minkowski metric, N0 = n, the Dirac equation isinvariant if the
gamma-matrices are invariant

YO =YL (4)

to gamma-matrices, and we make the ansatz 6S = 1 adwpv yuyv . Substituting this

into the invariance condition and using

[yeyo , yu ] =yp{yo, yu} — {vp, yH }yo, )
arriveat (2a — 1)dwpv yv = 0. We conclude that a Lorentz transformation for spinorsis
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the Dirac spinor ¢ = (YL , YR ) transforms in the direct sum of two (irreducible)
representations of the Lorentz group. The 2-spinors YL and YR are caled left-chiral and
right-chiral  spinors.  The massive Dirac equation, however, mixes these two
representations

io uopwL - myR =0. (7)

It is therefore convenient to use Dirac spinors for massive spinor particles whereas massless

spinor particles can also be formulated using 2-spinors;

The decomposition into chiral parts is not just valid in the Weyl representation of the

Clifford algebra.
In the Weyl representation it readsy5 = diag(— 1, +1), it therefore measures the chirality

of spinors. In generd, it anti-commutes with all the other gamma-matrices,

{v5, yu} =0. (9)

This property implies that a single gamma-matrix maps between opposite chiralities, i.e. it
inverts chirality. The property is aso sufficient to prove commutation with M pv .
Alternatively, it follows by construction of y5 as a (pseudo)-scalar combination of
gamma-matrices.
Covariant form of Dirac equation

The matrices

Y=8  F=pa
the Dirac equation in the covariant form can be written as,

(.'“_.“f'}r., I:ri) wiz) =10

1

in the Klein-Fock-Gordon equation, in the form of the inverse Compton wave length.

h=C=1, and using the Feynman slash, the dirac equation can be rewritten as
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Probability density
Probability density function or density of a continuous random variable, is afunction,
whose value at any given sample in the sample space, the PDF is used to specify the
probability of the random variable falling within a particular range of values, as opposed to
taking on any one value. This probability is given by the integral of this variable’s PDF over
that range—that is, it is given by the area under the density function but above the horizontal
axis and between the lowest and greatest values of the range. The probability density function
IS nonnegative everywhere, and its integral over the entire space is equal to one. The terms
"probability distribution function and "probability function have also sometimes been used

to denote the probability density function.

Negative energy states

If E < 0, the coefficient —-2mE/h* be written as
Dirac's goal had been to find a relativistic equation for electrons which was free of the
negative probabilities and the ""negative energy" states of the Klein-Gordon equation. By
developing and equation that wasfirst order in the time derivative, he hoped to have an
equation that behaved like the Schrodinger equation, an equation for a single particle.
The Dirac equation also has ""negative energy” solutions. While the probability is positive,
the flux that we have derived is in the opposite direction of the momentum vector for the
““negative energy" solutions.

Dirac applies the Pauli-principle, where every guantum state can only be occupied
with one electron. For each momentum p =j ~p |, there exist only four electrons, namely two
with the same sign for the energy, one with spin + 1/2 and one with spin 1/2 . According to
Dirac the states with the negative energies is completely. Thus, one has an "underworld,” the
Dirac sea with the following properties:
total energy : 1
total charge: 1

total momentum : O
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total angular momentum
Then there would be a hole in the Dirac sea. If the original electron in the sea had the

properties

momentum : p
energy :« E = — -.Ir.-";';'!  m?

charge : [ = —|r |

then one obtains the hole rotation. Thus the "hole" represents the antiparticle to the electron e
with the mass me and a positive charge +|g| , namely the positron €" . According to the
preceding consideration, it should be created with a high energy -particle. To full momentum
conservation one needs, e.g., the nucleus of an atom, the, namely the positron e+ .

M agnetic moment of the electron

The electron is acharged particle of charge —1e, where e is the unit of e ementary
charge. Its angular momentum comes from two types of rotation: spin and orbital motion.
From classical electrodynamics, a rotating electrically charged body creates a magnetic
dipole with magnetic poles of equal magnitude but opposite polarity. This analogy holds as
an electron indeed behaves like a tiny bar magnet. One consequence is that an
external magnetic field exerts atorque on the electron magnetic moment depending on its
orientation with respect to the field.

Spin-orbit interaction

The spin-orbit interaction for an electron bound to an atom, up to first orderin
perturbation theory, using some semiclassical eectrodynamics and non-relativistic
quantum mechanics. This gives results that agree reasonably well with observations. A
more rigorous derivation of the same result would start with the Dirac equation, and
achieving a more precise result would involve calculating small corrections from quantum
electrodynamics.
Radial equation for an electron in a central potential

The kinetic energy operator in spherical polar coordinatesis
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The spherical harmonics satisfy

Eiﬂm {E ‘3’) = {_

1 a a g%
W Gl Il W Yin (0, ¢) = I+ 1)Y;, (0, d).
sin® @ [Sm ﬂﬂ(sm § ) 3¢2]} im (0, ¢) = 11+ 1)¥im (6, ¢)

Substituting this into the Schrédinger equation

R d(,d R21(1+ 1)
- ) kel o e R(r) = ER
{ 2mgr? dr (r :i-r) O r? (r) o B(r) (r)

the radia equation becomes

h* d°u i
—mﬁ 4 Iq.;f{r}u.{r} = Eu{r]

which is precisely a Schrodinger equation for the function u(r) with an effective potential
given by
B+ 1)

Vert (r) = V(r) + ———
2mg e

where the radial coordinate r ranges from O to «. The correction to the potential V(r) is called
the centrifugal barrier term.
Hydrogen atom

Spectral lines of H found to be composed of closely spaced doublets. Splitting is due
to interactions between electron spin s and the orbital angular momentum |. Spin-orbit
coupling produces fine-structure splitting of ~0.016 nm corresponds to an internal magnetic
field on the electron of about 0.4 Tesla

Orbital and spin angular momenta couple together via the spin-orbit interaction Internal
magnetic field produces torque which results precession of | and sabout their sum, the

total angular momentum:

Thiskind of coupling is called L-S coupling or Russeall-Saunders coupling
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The Hydrogen Atom
A hydrogenic (hydrogen-like) atom is a two-particle system consisting of a nucleus
and an electron. The two particles interact through the potential given by Coulomb's law:

1 Ze*
dmey T

V(r) =

€o Isthe permittivity of the vacuum,

Z isthe atomic number (eZ is the charge of the nucleus),

eisthe elementary charge (charge of the electron),

r is the distance between the electron and the nucleus.
The mass my, introduced above, is the reduced mass of the system. Because the el ectron mass
isabout 1836 smaller than the mass of the lightest nucleus (the proton), the value of my is very
close to the mass of the electron me for al hydrogenic atoms.

A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom
contains a single positively charged proton and a single negatively charged el ectron bound to
the nucleus by theCoulomb force. Atomic hydrogen constitutes about — 75%of
the baryonic mass of the universe.

In everyday life on Earth, isolated hydrogen atoms (called "atomic hydrogen") are extremely
rare. Instead, hydrogen tends to combine with other atoms in compounds, or with itself to

form ordinary (diatomic) hydrogen gas, Ho.
Lamb Shift in Atomic Hydrogen

To measure the Lamb shift in the Balmer o transition of atomic hydrogen.
The Lamb shift cannot be explained by the Schrodinger or Dirac formulations of
quantum mechanics. It can be explaned by a theory known as quantum
electrodynamics—a theory whose development was intimately linked to experimental
observation of the Lamb shift.
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The spectrum of the hydrogen atom was the first to be described quantitatively
and modeled from first principles. In 1885 Bamer discovered that the wavelengths of
the then known linesin the hydrogen spectrum.

In 1890 Rydberg discovered a more general form of Balmer’s formula
which, when applied to the hydrogen spectrum. In 1887 Michelson, using his
interferometer to investigate the shape of spectral lines, discovered that the Bamer a
line consisted of not a single line but of two lines separated by a fraction of an
angstrom. Bohr’s simple model of the aom had no means of accounting for this
feature.

In 1916 Arnold Sommerfeld presented a model of the hydrogen atom allowing
for the possbility of eliptical in addition to strictly circular €electron orbits.
Applying relativistic corrections to these elliptical orbits, Sommerfeld’s model
predicted the Bame a line to consist of more than one component, just as
Michelson had observed. But, being an ad hoc combination of classica and quantum
physics, the Sommerfeld model was restricted in scope and left much to be desired.
Quantitatively it was unable to account for features such as magnetic effects or the
different intensities of the components of the Bamer o line.
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POSSIBLE QUESTIONS

PART B (4 Marks each)

1. Derive Klein-Gordon equation for arelativistic particle

2. Explain how Klein-Gordon equation leads to positive and negative probability

density values.

3. DeriveDirac’srelativistic equation for afree particle.

4. Explain the concept of negative energy states and Dirac’s explanation for it.
5. Write ashort note on Lamb shift.

6. Prove that the operator ca, where a is the Dirac’s matrix, can be interpreted as the
velocity operator.

7. Give the energy spectrum of a free Dirac particle and explain pair production and pair

annihilation
8. Givethe physical interpretation of Dirac’s a-matrix.
9. Starting from Klein-Gordon equation, obtain the equation of continuity.

10. Derive expressions for probability density and probability current density in the
Dirac theory.

PART C (10 Markseach)

1. Discuss the reativistic motion of a particle in a Coulomb field and derive

expression for energy.

2. a Obtain Dirac’s equation for afree particle, and deduce the co-variant form of the

Dirac equation. (5 Mark)
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b. Explain Dirac matrices for a and . (5 Mark)
3. a Discuss the magnetic moment of an electron. (5 Mark)

b. Explain spin-orbit interaction. (5 Mark)
4. Derivetheradia equation for arelativistic electron in acentral potential.

5. Using the radial equations in a central potential, derive the energy eigen values of a

hydrogen atom.
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Field theory: Introduction — Classical approach to field theory — Relativistic Lagrangian and
Hamiltonian of a charged particle in an electromagnetic field — Field: Lagrangian and
Hamiltonian formulations — Quantum equation for the field — Second quantisation -

Quantisation of non-relativistic Schrodinger equation — Creation, annihilation and number

\operators.

CLASSICAL THEORY OF ELECTROMAGNETIC FIELDS

The classical electrodynamicsis based on Maxwell’s equations for the electric and
magneticfields E and B .In rationalised units ,also caled Hearyside Lorentz units, these

equations can be written as:

ve, GV R .. )
VKE=>2 . k. 2)
v O . 3)
?XB=;+J' ...... 4)

Here p(x,t) isthe charge density and current density j(x,t) is the current density.Instead of E
and B, the field equations can also be expressed in terms of a vector potential A and a scalar

potential ¢. Equation (3) implies
B=vyx4 .. (5)

With thisdefinition of B, Equation (2) takes the form :

84
Vx(E+ g) =0 .. (6)
Sincethe curl of the gradient of a scalar function is zero, from Equation (6) We have
E+g—i] ==V¢ (¢ is scalar potential)

d
E=-— V¢ (7)
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Which givesthe electric field in terms of the potential A and ¢.

The other twon equations, Eqs (1) and (4) can aso be expressed in terms A and <.
Substituting the value of E in Eq(1)

, a
Vig+{(VA=-p .. (8)
Substituting Egs (5) and(7) in Eq (4), we have

wyl, v
vV (V XA ]+a—’ (E + V(..)—J

2 R op_.
V(V.4) — V4V ==

FrE
vid i‘:* -v(V.A+ %"}z-j ..... 9)

The solution of Maxwell’s equations i s thus reduced to solving the coupled equation (8) and
(9) for A and «.

A-A=Atvad L (10)
r_‘l.-.
Po0 =@ 0 e (11)
Where” an arbitrary scalar function leaves B and E unchanged.Thefact that VX VA =0

leaves B unchanged by the transformation . The electric field E , Eq (7)

. 8
EZE(A-'- V"‘)-v(q} — E]

v.A+22=0 (12)
The freedom available in the definition of Egs (10) and (11) together is called gauge
transformation and the conditionin Eq (12) is known as Lorentz gauge condition.

Prepared by V. Thayanithi, Asst. Prof, Dept. of PHY SICS, KAHE




@ KARPAGAM ACADEMY OF HIGHER EDUCATION
== CLASS: Il M.Sc PHY SICS COURSE NAME: QUATUM MECHANICSII

KARPAGAM COURSE CODE: 18PHP301 UNIT: V (FIELD THEORY) BATCH-2018-2020

[Toemad ba be Unvardty|
intabinbn Ui Section ) of WL

Egn(12)can we written as:

e : (ig)
gﬂ;+6ﬂn+ﬁﬂ5+afay:
dx, Ixy 8=y (it

BA, By By A
dx, 8x, Oxg dx,

24,
—20o0r 9,4,=0 .. (13)

Xy

It can easily be shown that the three components of vector j and charge density g from the

four vector
j=(.icp)

The components of the vector potential A and the scalar potential ¢ form the four-vector

potential:
A=A, T O . (15)
From eq we have
34; 84
Bl—; -y W @ (16)
w04, d4
LJf—d 33 ......... (17)
dA 84,
3_3,] '? ....... (18)
From equ
_ 84 ze = %4 _ 2ue)
E; s T 5o O | EF 30 —
fA, MAuip - . -
. ;'Ei Fyy
342 24
dx, Odx,
243 24

dx, Odxg
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..... |Ey= - =F,
In general

FerE, , F;-€; By

€, =0if twoindices are equal

€. =11if i,jk aredistinct and in cyclic order
€ = -1ifijkaredistinct and not in cyclic order.

These are component of the anti symmetric tensor £, , defined by

0 B B

k-4 ¥ —iEx ¢

f;“" ] _BZ a BI > i'E}',"IG
B, —B| 0-—iE,,

[ iE,,, iE,, iE, O]

Which isthe electromagnetic field four tensor.
Relativistic L agrangian and Hamiltonian of a charged particle in an electromagnetic
field
The action isthe Lagrangian integrated over time, so the units of action are just the units
of the Lagrangian multiplied by the units of time. The Lagrangian has units of energy, so the

units of action are

the action S, for afree non-relativistic particle is given by the time integral of the kinetic

energy
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dr

Tt

‘1 _
S = / E;Jre‘z[#jl dt., V*=v-7. 7=

The equation of motion following by Hamilton’s principle is

dif 8
dt

The free particle moves with constant velocity. Since even afree relativistic particle must move
with constant velocity. The velocity of light does not even appear in this action. Snr cannot be
the action for a relativistic point particle. The path traced out in spacetime by the motion of a
particle is called its world-line. It would be inconsistent for one observer to state that a certain
motion is allowed and for another to state that the same motion is forbidden. If the equations of
motion hold in a fixed Lorentz frame, they must hold in al Lorentz frames. If the action is a
Lorentz scalar, the equations of motion will be Lorentz invariant.
L agrangian and Hamiltonian formulations

Lagrange function or Lagrangian to be L=T-V
where

i

T= Z S v |*

i=1

isthetotal kinetic energy for the system, and V isits potential energy.
The correct path of motion of a mechanical system with holonomic constraints and conservative
external forces, from time t; to tp, is a stationary solution of the action. Indeed, the correct path

of motion q = q(t), with g = (q1, . . ., gn)" , necessarily and sufficiently satisfies Lagrange’s
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equations of motionforj=1,...,n

d (oL oL _,

dt \ dq, iq; B
it is Hamilton’s form of the principle of least action, because in many cases the action of q = q(t)
isnot only an extremal but also a minimum value of the action functional. Hamilton’s principle

the equations of motion are given by Lagrange’s equations, which here, taking the generalized

coordinatesto be g1 =r and g2 = 0, are the pair of ordinary differential equation

afony oL_,
dt h o or

d(oL\ oL _,
dt \ 96 e

Using the form for the Lagrangian,

oL aL .o pum  OL oL

—=mr, — =mrf*—-—, — = mr2f  and — =1
o i s 1] (e /)
Substituting these expressions into Lagrange’s equations
. .o :
mi —mrl” + — =0,
1 ohia ;
b (rn‘r’zfy'} =

dt

Hamiltonian mechanics

Consider mechanical systems that are holonomic and and conservative (or for which the
applied forces have a generalized potential). For such a system we can construct a Lagrangian
L(q,q ,t), whereq=(ql,...,qgn) T, which is the difference of the total kinetic T and potential

V energies. These mechanical systems evolve according to the n Lagrange equations
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forj=1,...,n These are each second order ordinary differential equations and so the system

is determined for all time once 2n initial conditions q(t0), g (t0) are specified (or n conditions at
two different times). The state of the system is represented by apoint q=(ql, ..., gn) T in
configuration space.
Lagrange’s equations of motion imply Hamilton’s canonical equations, fori=1,...,n

JOH

oH

Pp= —

g,

4 =

Constraint
Mechanical systems with some types of non-holonomic constraints can also be treated, in
particular constraints of the form

i Alq,t)i;q; + belq,t) =0,

i=1
For k=1,...,m,whereg=(ql, ..., gn) T.Note the assumption is that these equations are
not integrable, in particular not exact, otherwise the constraints would be holonomic.
Quantum equation for thefield

Field equationis apartia differential equation which determines the dynamics of
aphysica field, specifically the time evolution and spatial distribution of the field. The
solutions to the equation are mathematical functions which correspond directly to the field, as

functions of time and space. Since the field equation is a partial differential equation, there are
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families of solutions which represent a variety of physical possibilities. Usualy, thereis not just
a single equation, but a set of coupled equations which must be solved ssimultaneoudly. Field
equations are not ordinary differential equations since a field depends on space and time, which

requires at least two variables.

Whereas the "wave equation”, the "diffusion equation”, and the "continuity equation” al have
standard forms (and various special cases or generalizations), there is no single, special equation
referred to as "the field equation”.

The topic broadly splitsinto equations of classical field theory and quantum field theory.
Classical field equations describe many physical properties like temperature of a substance,
velocity of afluid, stressesin an elastic material, electric and magnetic fields from a current, etc.

They aso describe the fundamental forces of nature, like electromagnetism and gravity.
In quantum field theory, particles or systems of "particles” like electrons and photons are
associated with fields, allowing for infinite degrees of freedom (unlike finite degrees of freedom
in particle mechanics) and variable particle numbers which can be created or annihilated.

Non-Relativistic Field Theory and Second Quantization

The problem of an N-particle system as a nonrelativistic field theory. The procedure
described in the previous section is commonly known as Second Quantization. If the (identical)
particles are bosons, the operators “a(@) obey canonical commutation relations. If the (identical)
particles are Fermions, the operators “a(¢) obey canonical anticommutation relations. In position
space, it is customary to represent “at(@) by the operator Y”(x) which obeys the equal-time

algebra

[L'-{r]. n'-*{yj] = §e —y)

L

b2). ]] = [it@), dtay] =0
[ (y el ), ' (y 3
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the one-particle Schrodinger equation becomes classical field equation

. I'j jn‘z -5 -] =
Fiom + o 2 V()| 4 =0
[.' I:-.f'J'l' D le ?

The Hamiltonian H” for this system is

: B . ; i .
ff_[mxﬁhvﬁivr+rmuwmvm1

+ /n’"l.r /f.i"f_r'rl."[.e':Ilr."i".J'I,'lf'I:.r — 2"y (2" Wi ()
For Fermions the fields Y~ and "t satisfy equal-time canonical anticommutation relations
{i(x). P (x)} = 6(x — 2)

while for Bosons they satisfy

._LJ'{:I:]. r.‘-T{:n']] = §{z —2')

The Fock space picture of the many-body problem is equivalent to the Grand Canonical
Ensemble of Statistical Mechanics. Thus, instead of fixing the number of particles we can
introduce a Lagrange multiplier ., the chemical potential, to weigh contributions from different
parts of the Fock space.

Second Quantization: Creation and Annihilation Operators
A basis state can be completely specified in terms of the occupation number ng

for each member of a complete set of orthonormal single-particle states, {|ai, a=1,23, .
}. The set of occupation numbers contains all the information necessary to

construct an appropriately symmetrized or antisymmetrized basis vector, denoted

|1 =|n1,n2,...,Nq,.. ..
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For bosons, ng must be a non-negative integer; for fermions, the Pauli exclusion prin-

ciple restricts ng to be either 0 or 1.

The vector space spanned by the set of all such basis states is caled the Fock
gpace. A feature of the Fock space is that the total number of particles is not a fixed

parameter, but rather isa dynamica variable associated with atotal number operator

<
N = Ng.
a

There is a unique vacuum or no-particle state:
|0i =10,0,0,0,...i.
The single-particle states can be represented
loi = [0,0,...,0,ng=1,0,...i =[01,05,..., Og-1, Loty Og1, .ol

Bosonic operators. Let us define the bosonic creation operator
and the corresponding annihilation operator a,
Equations (1) and (2) allow us to define the number operator Ny = a*qa, such that

NC(lnlanI---)ndl"'i = nC(lnl!nZ)---)n(Xy---i

The simplest application of the creation and annihilation operators involves the
single-particle states:

&l0i = |oi, &y |Bi= 3,

When applied to multi-particle states, the properties of the creation and annihila-
tion operators must be consistent with the symmetry of bosonic states under pairwise
interchange of particles. It is clear from Egs. (1) and (2) that for any pair of single
particle state,

The properties described in the preceding paragraph can be summarized in the
commutation relations

One consequence of these commutation relations isthat any multi-particle basis state

can be written
or equally well, as any permutation of the above product of operators acting on the

vacuum.
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Equations (1)—(3) define the key properties of bosonic creation and annihilation
operators. Note the close formal similarity to the properties of the harmonic oscillator
raising and lowering operators.

Fermionic operators. The fermionic case is a little trickier than the bosonic one
because we have to enforce antisymmetry under all possible pairwise interchanges. We

define the fermionic creation operator ¢ by

CT Va

qlnl|n2|"')nG—llo(X)nC(+ls" -i = (_1) |n1|n2|'-'| n(X—ly 101 nG+11 "'i1

/ | (4)
qunlln2|---)nG—lll(X)nC(+ls---I N O|

and the annihilation operator ¢, by
C(Xlnl)nZ)---)n(X—l) 1d!nd+1! . I = (_1) Valnl,nz,...,na_l,oa,ncﬁ.l, |,
. (5)

CalP1, N2, ..oy Ng—1, Oy, N, ...l = 0.

In both Egs. (4) and (5),
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Vg = Ng, whereNg = CCs. (6)
B<a

measures the total number of particles in single-particle states having an index < a.
It is straightforward to check that Egs. (4)-(6) are self-consistent, in the sense that

with the phase factor (—1)V& as defined above,

Ng|ni, Mo,y Ngy oo il = NG N, Mo,y Ny forngy = 0 or 1. (7
oCal¥i = 0 = —c,cy|Wi. Similarly, caCs|Wi = —Cpcy|Wi for a =, and cyCq
|Wi =0.

ny d f f

basis state |Pi, whereas caC®i = (1 — Ng)|Pi.
Thus,for any |Wi in the Fock space.

The properties above can be summarized in the anticommutation relations
where

{A, B = AB + BA is the anticommutator of A and B. These
anticommutation properties fundamentally distinguish the fermionic operators from
their commuting bosonic counterparts. The (—1)'  phase factors entering Egs.
(4) and (5) were chosen specificaly to ensure that Egs. (7) are satisfied.
Alternative phase conventions can be adopted, so long as the
anticommutation relations are preserved.

Given the anticommutation relations, any multi-particle basis state can be or
equally well, as any permutation of the above product of creation operators with a
sign change for each pairwise interchange of adjacent operators.

For example,
Equations (4)-(7) define the key properties of fermionic creation and annihilation

operators.

Basis transformations.

Creation and annihilation operators defined above were constructed for a particular
basis of single-particle states {|ai}. We will use the notation bt o nd ba to represent these
operators in situations where it is unnecessary to distinguish between the bosonic and
fermionic cases.

Consider an adternative single-particle basis {|a"i}, which—Ilike {|ai}—is complete and

Prepared by V. Thayanithi, Asst. Prof, Dept. of PHY SICS, KAHE




KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: Il M.Sc PHY SICS COURSE NAME: QUATUM MECHANICSII
COURSE CODE: 18PHP301 UNIT: V (FIELD THEORY) BATCH-2018-2020

orthonormal. The Fock space can be spanned by many-particle basis states of the

form

[®i=|n"1,n2,...,n0a",...,

It isimportant to note that the vacuum state |0i can (and will) be chosen to be the same in

both theorigina and new bases.
all consistent with the unitary transformation
An important special case of a basis transformation involves single-particle basis states

of well-defined position r and spin z component o: {|di} = {|r, ai}, wherehr,o|r0, ol
= 3(r - r')3g, o0.
Thecorresponding operators are called thefieldcreation and annihilation operators, and

aregiven the specia notation Wt (r) and Wao (r). For bosons or fermions,
where Yq(r, o) is the wave function of the single-particle state |ai. The field operators

create/annihilate a particle of spin-z ¢ a position r:

Dynamical variables.
Now we consider how to represent dynamical variables interms of the

creation and annihilation operators introduced above

Prepared by V. Thayanithi, Asst. Prof, Dept. of PHY SICS, KAHE




KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: Il M.Sc PHY SICS COURSE NAME: QUATUM MECHANICSII
COURSE CODE: 18PHP301 UNIT: V (FIELD THEORY) BATCH-2018-2020

The simplest dynamical variables are additive one-particle operators of the form

Q= n Qj, where Qj acts just on the j’th particle. Examples of one-
J= particle
1
guantities include the momentum P = Pj Pj , the kinetic energy K = Pj Kj,
where
Kj =1PRj |2/2m, and the external potential V = Pj Vj , where Vj = v(rj).
If we choose a single-particle basis {|di} in which Qj is diagona (e.g., momentum

eigenstates in the cases of Pj and K|, position eigenstates for Vj), then the

P .
total operator can be represented Q = g wd@ Ng -

In any other basis {|ai}, related to {|Gi} by Eg. (8), the most general form of an

additive one-particle operator is

> .
Q =" ha|Q|Biblbg .
a,B

We will also consider additive two-particle operators, most commonly encountered

F)
as a pairwise interaction potential U = = j<j u(ri, rj).
Note the reversal of the order of the operators by and by in Eq. (9), which allows

the same expression to be used for bosons and fermions.

We are now in a position to consider applications of the formalism outlined above

to many-boson and many-fermion systems.

QUANTIZATION OF THE FIELD
To quantizethe field ,we regard thefield variables ¥ and  as operator functions. Just asthe

guantum conditions.
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[ai,q] =[Pi,A]=0; [ai,q]=iRa&] ... (1)

Were used for the transition from classical to quantum particle mechanics, we achieve the
transition from cl agg &l 1’3 quantum field theory by requiring that

[Pi,Pj]1 =0 and [¥i,Pj]=iA &ij ... 2)

Assuming the cell volumes are very small, Eq. (2) can be rewritten in termsof ¥and min

thefollowing forms:
[#(r.t), . 0)] = [mw(rt)ia(,.)] =0 ... (3
[P (r,t)n (-r-, t)] = S (rr) A L. (4)

Where &(r,r) = 1 seilibe and r’ arein the same cell and zero otherwisein the limit, the cell

volume approach zero, &(r,+ ) can be replaced by the three dimensional Dirac & — function

d(r-r’). The quantum conditions for the canonical field variables ¥ and x the become
[#(r.0), (. )=l alr.t)a(r,t]]=0 ... (5)
[P(r,t)m(r,t)] =iRé(rrY (6)

By making ¥ and = non —commuting operators, we convert H, L etc.., also into operators

which have eigenvalues, eigenstates, etc.

The equation of motion for any quantum dynamical variable F is obtained from by replacing
the Poisson bracket by the commutater bracket divided by ih or from Eq.

dF dF 1
—== +;[F,H] .............. @)

dt

Equations (5) and (7) completely describe the behaviour of the quantized field specified

bythe Hamiltonian.
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Quantization Of Schrodinder Equation

As an example of the field quantization technique ,we shall consider the quantization
of the non-relativistic Schrodinger equation inthis section. The name Schrodinger field is
used for afield %(r, t) satisfying the Schrodinger equation.

nE=-Zeweve o)

Equation (1) is the quantized equation of motion of a particle of mass m moving in a
potential V. Here ¥ (r,t) isthought of as a classical field , which can be quantized by
converting it into an operator using the procedure described earlier. Since it is the second

time the equation is being quantised, it is referred to as the second quantization.

To start with, we note that the Lagrangian density £taken in the form:

L=ihww g ve_virOww )

Reduce the classical field equation to the familiar Schrodinger equation , Eq (1). ¥ and
¥* in Eq.(2) can be considered as independent fields giving the Lagrange’s equations of
motion. The variation with respect to ¥* in Eq directly gives Eq(1) while variation with

respect in ¥ gives the complex conjugate of Eq(1).

-ih

aw* B o ®
= — e +V¥ (3)
The momentum canonically conjugateto ¥ is:

o 2L _. '
}r_aw_m‘f-’ ................. 4

Where we have used the expression for £ given in Eq 2.Using Equation (2)

Hamiltonian density 7 nio omes .
and(4),the y H Moy fre wr

H=mW-L=_ VEAV(IH 5
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=- V(iR P). VE -V (h ¥) ¥

m
Using Eq (5), the Hamiltonian H is given by

H=[ 7 d? r:jy(gvsv* VY ¥ d)

The classical field equation in the Hamiltonian form are given by eq it follow from the

discussed on function derivation eq

_8H X o 3H

w=h =T Vi L @)
_W6H._ ,8H a3

nm=- ﬁ_ = W 'Vﬁ) ...... (8)

These equations can be expressed in the familiar form by substituting the value of F from
equ now

w=-typi B ogzg )
h 2m
Multiplying by ih,

e = 2y vy
gt Zm
Replacement of ' in eq this equation
Syl g
A= V- oV T

Since w=ih¥* this equation becomes

A= gl sy (10)
at 2Zm

Equation (9) and (10) are the familiar classical equation and its complex conjugate for the

Schrodinger field. Thisvalidates the expressed for Lagrangian density
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Since W is now an operator , #* isto be interpreted as the Hamiltonian adjoint of W rather

than its complex conjugate and its usually denoted by #°.
[W(rY), & (r5t)] = a(r-r).
QUANTIZATION OF THE FIELD

To quantizethefield ,we regard the field variables ¥ and Tas operator functions. Just as the

quantum conditions.

iG] =[PLP]=0; [aig]=i"0j . o)

Were used for the transition from classical to quantum particle mechanics, we achieve the
transition from classical to quantum field theory by requiring that

[wi,%j] = [Pi,Pj] = 0 and [¥i,Pj] = ik §ij @)
Assuming the cell volumes are very small, Eq. (2) can be rewritten in terms of Fand Tin

thefollowing forms:
["P(-r,t)’ W(r,t =] n(r,t), n(r, =0
[‘:“('r',t)"}r[?"_,t]] — Ihé‘ (T,T’)

S(r,r) = 2 6ri
e

Wher if rand r’ arein the same cell and zero otherwisein the limit, the cell

volume approach zero , 5( ™) can be replaced by the three dimensional Dirac © — function

9(r-r"). The quantum conditions for the canonical field variables ¥ 2nd ™ the become

[‘P('r,t), ‘P’{r_,tj] = rr(r,t),u(r'_,t)] =0

(¥ n(rty=pd ey (6)
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¥andn

By making non —commuting operators, we convert H, L etc.., also into operators;

which have eigenvalues, eigenstates, etc.
The equation of motion for any quantum dynamical variable F is obtained from by replacing

the Poisson bracket by the commutater bracket divided by if or from Eq.

dF _ dF 1

ar Bt FAEH] (7)

Equations (5) and (7) completely describe the behaviour of the quantized field specified by

the Hamiltonian.
QUANTIZATIONOF THE SCHRODINDER EQUATION

As an example of the field quantization technique ,we shall consider the quantization of the

non-rel ativistic Schrodinger equation inthis section. The name Schrodinger field is used for a
field {P(r , 1) satisfying the Schrodinger equation.

aw R o
= vy
et ==2m ' T4y ¥

Equation (1) is the quantized equation of motion of a particle of mass m movingin a

potential V. Here *("*)is thought of asa classical field , which can be quantized by
converting it into an operator using the procedure described earlier. Sinceit is the second

time the equation is being quantised , it is referred to as the second quantization.
To start with, we note that the Lagrangian density £ taken in the form:

vy gy vy vy ey
L=ih am T TERDEEE L )

Reduce the classical field equation to the familiar Schrodinger equation , Eq (1). ¥ and

¥ inEq.(2) can be considered as independent fields giving the Lagrange’s equations of
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motion. The variation with respect to ¥ in Eq directly gives Eq(1) while variation with

respect in ¥ gives the complex conjugate of Eq(1).

aw* F oo
= —— V¥ .
qh ot o Y ©)
The momentum canonically conjugate to is:
w2
W —in ¥ (4)

Whrere we have used the expression for £ givenin Eq 2.Using Equation (2) and(4),the

Hamiltonian density H now becomes

f}z

if _ |- .
ik i
:_a\?’m?‘}’— \Lid S—— )
Using Eq (5), the Hamiltonian H is given by
[ wa [ v vy, e @
H="» r="v “2m . +V ) r

The classical field equation in the Hamiltonian form are given by eq it follow from the

discussed on function derivation eq

AH AX 8H
Y= dr 8= _v_a':?m\-' ....... (7)

LA
M__ jw— (8% - 'a'r-‘-I) ______ (8)

These equations can be expressed in the familiar form by substituting the value of Htrom

eq now
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Multiplying by ih,

L
Ihat=-2m V T4y

Replacement of Hin eg thisequation

ifi 2
e — b
T_n\yT_ 2m

since =ih?" this equation becomes

Jw* S 2
. — V* + VP
sih e =-2m (10)

Equation (9) and (10) are the familiar classical equation and its complex conjugate for the
Schrodinger field. Thisvalidatesthe expressed for Lagrangian density .

v isto beinterpreted as the Hamiltonian adjoint of ¥ rather

q}i

Since ¥ is now an operator ,

than its complex conjugate and its usually denoted by

ey, ¥ = Oy,
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POSSIBLE QUESTIONS

PART B (4 Markseach)

State and explain the classical field equation in Hamiltonian form.
State the classical field equation and explain the quantitiesinvolved therein.
What is meant by a conjugate field? Explain.

A WD PE

What are creation, annihilation and number operators? Why are they called so?
Explain.

What is meant by second quantization? Why isit called so? Explain

Explain quantization of non-relativistic Schrodinger equation.

Write a short note on Lagrangian density

Explain what is meant by functional derivative.

© © N o O

Explain the need of quantization of fields. What is the necessity of quantizing fields?
In what context isit important?

10. For a system of fermions, define the number operator Nk and show that its eigen
values are zero and one.

PART C (10 Markseach)

1. Derivethe classical field equation in the Hamiltonian form, and explain quantization
of fields. Explain the terms Hamiltonian density, functional density and conjugate
field.

2. Explain quantization of Schrodinger equation. Explain creation and annihilation
operators and their significance.

3. Explainin detail Dirac field.
4. Explain classical theory of electromagnetic fields.

5. Explain quantization of electromagnetic fields.
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