## **MATHEMATICS-II - PRACTICAL**

| Instruction Hours / week: L: 0 T: 0 P: 4 | Marks: Internal: 40 | External: 60 Total: 100    |
|------------------------------------------|---------------------|----------------------------|
|                                          |                     | End Semester Exam: 3 Hours |

## **Course Objectives**

Semester-II 19CHU611

This course enables the students to learn

- To solve simultaneous linear algebraic equations using various methods.
- To evaluate definite integrals using numerical techniques.
- Problem-solving through (computer language) programming.

## **Course Outcomes (COs)**

On successful completion of this course, the student will be able to

- Familiarize with the programming environment for numerical methods.
- Develop proficiency in skills to solve the algebraic equations.
- Evaluate the definite integrals using computer programming techniques

## **List of Practical**

- 1. Compute Fourier Coefficients.
- 2. Solution of simultaneous linear algebraic equations Gauss Elimination method
- 3. Solution of simultaneous linear algebraic equations Gauss Jordan method
- 4. Solution of simultaneous linear algebraic equations Gauss Jacobi method
- 5. Solution of simultaneous linear algebraic equations Gauss Seidal method
- 6. Numerical Integration Simpson's one third rule
- 7. Numerical Integration Simpson's three eighth rule
- 8. Numerical Integration Trapezoidal rule

UNiT - 2FOURIER SERIES PART - A 1. State the Sufficient Conditions for a function f(x) to be expressed as a fourier Series [M]J2017, NID2016, NID2014 A function fix defined in C<x<c+2l can be expanded as an infinite trigonmetric series of the form  $\frac{a_{6}}{2} + \frac{s}{n=1} a_{n} \cos(n\pi x) + \frac{s}{n=1} b_{n} \sin(n\pi x)$ Statisfied conditions are (1) f(x) is periodic, Single Valued and finite in (c, c+2l) (ii) of (20) is continuous with finite number of discontinuities in (C, C+2l) (iii) fisi) has atmost a finite number of maxima or minima in (c, c+2l)

2. If the fourier series of the function  $f(x) = x + x^2$ , in the interval  $(-\pi, \pi)$  is  $\frac{\pi}{3} + \frac{1}{n} \left( -D^n \right) \frac{4}{n^2} \left( \cos nx - \frac{2}{n} \sin nx \right)$ [M/J2017 Ans: Given f(x) = x+x2 = 12+ = (-1) \$4 cosnx-2 sinnxy Put x=TT, which is an end point of the interval ". The sum of the series  $= \frac{1}{2} \left[ \frac{1}{2} (-\pi) + \frac{1}{2} (-\pi) \right]$  $=\frac{1}{2}\left[-\pi+\pi^{2}+\pi+\pi^{2}\right]=\pi^{2}$  $\begin{array}{c} \textcircled{} \textcircled{} \textcircled{} \textcircled{} \textcircled{} \textcircled{} \textcircled{} \end{array} = \underbrace{\Pi^2}_{3} + \underbrace{\blacksquare}_{n=1}^{\infty} \underbrace{\square^n}_{n^2} \underbrace{\underbrace{\square}_{n^2}}_{n^2} \underbrace{\square^n}_{n^2} \underbrace{\underbrace{\square}_{n^2}}_{n^2} \underbrace{\square^n}_{n^2} \underbrace{\underbrace{\square}_{n^2}}_{n^2} \underbrace{\square^n}_{n^2} \underbrace{\underbrace{\square}_{n^2}}_{n^2} \underbrace{\square^n}_{n^2} \underbrace{\square^n}_{n^2}$  $\Rightarrow \pi^2 \pi^2 = \frac{1}{2} = \frac{1}{2} \left[ -1^n \right] \frac{1}{n^2} \left[ -0^n \right]$  $\Rightarrow \frac{2\pi^2}{3} = \frac{2\pi}{n^2} \left(-1\right)^{2n} \times \frac{4}{n^2}$  $\Rightarrow \frac{\sqrt{n^2}}{3} = \frac{2}{N} \frac{\frac{\sqrt{n^2}}{\sqrt{n^2}}}{\frac{1}{n^2}} \left( \frac{1}{(-1)^2} + \frac{1}{(-1)^2} \right)$  $\Rightarrow \underline{T}^2 = \underbrace{=}_{n=1}^{l} \frac{1}{n^2}$  $\Rightarrow \frac{1}{1} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$ 

S 7. If the fourier series of the function f(x) = x,  $-\pi < x < \pi$  with period  $2\pi$ is given by f(x) = 2 S sinx - sin2x + sin3x - sin4x + )Then find sum of the series 1-13+15-1+... E A/M 2015 Ans: Given: 412) = x 10 (-11,1) 4 f(x) = 2 Srinx - 2012x + 2013x - 2014x To find sum of the series Put  $x = \frac{\pi}{2}$  in  $\bigcirc$  (:: It is continuous)  $\bigcirc \Rightarrow i' \qquad \underline{T} = 2 \begin{cases} xin\underline{T} - 0 + xin\underline{3}\underline{T} - 0 \\ \underline{3} \end{cases}$ 4 . . . 4 ⇒ +<u>⊤</u> 2  $= 2 \left\{ 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{7} \right\}$ ⇒ · サ ×1 = f1-3+5+1+···  $\implies 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots = \frac{11}{4}$ 

Find the value of by in the ferries 5. Series expansion of find = Jorin in (mo) - X+II in toin) [MIJ-2016 Ansé-Gjiven  $f(x) = \sum_{-x+1} in (-\pi i)$ f(x) = 5 9,00 in (-110) ) 9,00 in (017) Where  $\varphi_1(x) = x + \pi, \quad \varphi_2(x) = -x + \pi$  $\varphi_1(-x) = -x + \pi = \varphi_2(x)$ (-x) = (-x) = (-x)The given function find is an even quention. i. bn=0 6. Find the root mean square value of  $f(m) = \pi(1-m)$  in  $0 \leq m \leq l \in \mathbb{N}$  [NID 2015 Ans:- Given fix) = x(l-x) in (oil)  $(\frac{1}{2}(x))^2 = (xl - x^2)^2 = x^2l^2 + x^2 + 2x^3l$ To find : RMS = J (fix))2dsk 

(3)

3. Expand 
$$f(x) = 1$$
 in (0,T) as a half range  
Sine series. E NID 2016, NID 2015  
Ans:- Given:  $f(x) = 1$  in (0,T)  
To expand that france sine series in (0,T)  
of given  $f(x)$   
(e)  $f(x) = \sum_{n=1}^{\infty} b_n \sin nx$   
where  $b_n = \frac{2}{\pi} \int f(x) \sin nx dx$   
 $= \frac{2}{\pi} \int sinnx dx$   
 $= \frac{2}{\pi} \int [-\frac{\cos n\pi}{n} + \frac{\cos 0}{n}]$   
 $= \frac{2}{\pi} \int (-\frac{\cos n\pi}{n} + \frac{\cos 0}{n})$   
 $= \frac{2}{\pi} \int (-\frac{\cos n\pi}{n} + \frac{\cos 0}{n})$   
 $= \frac{2}{\pi} \int (-\frac{\cos n\pi}{n} + \frac{\cos 0}{n})$   
 $= \frac{2}{\pi} \int (-\frac{1}{n} + \frac{1}{n} + \frac{1}{n})$   
 $b_n = \int A_n \quad \text{if } n \text{ is an odd}$   
 $\int (x) = \int_{n=0}^{\infty} A_n \quad \text{if } n \text{ is an even}$   
 $\int (x) = \int_{n=0}^{\infty} A_n \quad \text{if } n \text{ is an even}$   
 $= A_n \quad \int_{n=0}^{\infty} A_n \quad \text{innx}$ 

4. Find the Value of the fourier series of  

$$f(x) = \int_{1}^{0} \int_{1}^{1} (-c, 0) d the point$$
  
a discontinuity  $x = 0$  [M]J 2016  
Ans:- Given  $f(x) = \int_{1}^{0} \int_{1}^{1} (-c, 0) d the fourier series
Ans:- Given  $f(x) = \int_{1}^{0} \int_{1}^{1} (0, c)$   
Tofind: The value of the fourier series  
at the point of discontinuity  
 $x = 0$   
But the fourier series of given  
 $f(x) = \frac{1}{2} + \frac{2}{c} \int_{1}^{2} \sin(\frac{\pi}{c}) + \frac{\sin(\pi x/c)}{3} + \frac{\sin(5\pi x/c)}{3} + \frac{\sin(5\pi x/c)}{3} + \frac{\sin(5\pi x/c)}{5} + \dots$   
Put  $x = 0$$ 

• •

$$f(x) = \frac{1}{2} + 0 + 0 = \frac{1}{2}$$

$$f(x) = \frac{1}{2}$$

THE REPORT OF A DESCRIPTION OF A

3. If 
$$(T-x)^2 = \frac{T^2}{3} + 4 \stackrel{\infty}{=} \frac{connx}{n^2}, ocx L2TI,$$
  
then deduce that the value of  $\equiv \frac{1}{n^2}$   
ENID 2014  
Ans:  $(T-x)^2 = \frac{T^2}{3} + 4 \stackrel{\infty}{\equiv} \frac{cosnx}{n^2}$   
Put  $x = 0$   
 $\Rightarrow TT^2 = \frac{TT^2}{3} + 4 \stackrel{\infty}{=} \frac{cos0}{n^2}$   
 $\Rightarrow TT^2 - \frac{TT^2}{3} = 4 \stackrel{\infty}{=} \frac{1}{n^2}$   
 $\Rightarrow 3TT^2 - TT^2 = \frac{\pi}{3} \stackrel{\infty}{=} \frac{1}{n^2}$   
 $\Rightarrow 3TT^2 - TT^2 = \frac{\pi}{3} \stackrel{\infty}{=} \frac{1}{n^2}$ 

$$UNIT - 2$$
FOURIER SERIES
PART - B
  
Find the fourier series of period 2T
for the function  $f(x) = x \cos x$  in  $0 < x / 2T$ 
  
Solution:-
  
Given:  $f(x) = x \cos x$  in  $(0, 2T)$ 
  
The fourier series of  $f(x)$  in  $(0, 2T)$ 
  
defined as
 $f(x) = \frac{1}{2} + \frac{2}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2}$ 

A REPRESENTATION OF A REPORT OF A

A STATE

$$\begin{aligned} \Omega_{n} &= \frac{1}{\pi} \int f(x) \cos x \sin x \, dx \\ &= \frac{1}{\pi} \int_{0}^{2\pi} \cos x \cos x \cos x \, dx \\ &= \frac{1}{\pi} \int_{0}^{2\pi} \cos x \cos x \, dx \\ &= \frac{1}{\pi} \int_{0}^{2\pi} \int x \cos x \, (x \sin x) \, dx \\ &= \frac{1}{\pi} \int_{0}^{2\pi} \int x \int (x \sin (n+1)x + \cos (n-1)x) \, dx \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \int x \int (x \sin (n+1)x + \cos (n-1)x) \, dx \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \int x \cos (n+1)x + \cos (n-1)x \, dx \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \int x \cos (n+1)x \, dx + \int x \cos (n-1)x \, dx^{2} \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \int x \cos (n+1)x \, dx + \int x \cos (n-1)x \, dx^{2} \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \int x \cos (n+1)x \, dx + \int x \cos (n-1)x \, dx^{2} \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \int \frac{x \cos (n+1)x}{(n+1)x} \quad dx = x, \quad u^{1} = 1 \\ &= \frac{1}{2\pi} \int \left[ (x \sin (n+1)x) \int_{0}^{2\pi} + (\cos (n+1)x) \int_{0}^{2\pi} \int \frac{1}{(n+1)^{2}} \int_{0}^{2\pi} \int \frac{x \sin (n+1)x}{(n+1)^{2}} \int_{0}^{2\pi} \int \frac{x \sin (n+1)x}{(n+1)^{2}} \int_{0}^{2\pi} \int \frac{x \sin (n+1)x}{(n+1)^{2}} \int_{0}^{2\pi} \int \frac{x \cos (n+1)x}{(n+1)^{2}} \int \frac{x \cos (n+1)x}{(n+1)^{2}} \int_{0}^{2\pi} \int \frac{x \cos (n+1)x}{(n+1)^{2}} \int \frac{x \cos (n+1)x}{(n+1)^{2}} \int_{0}^{2\pi} \int \frac{x \cos (n+1)x}{(n+1)^{2}} \int_{0}^{2\pi} \int \frac{x \cos (n+1)x}{(n+1)^{2}} \int \frac{$$

=  $\frac{1}{2\pi}$   $\frac{1}{(n+1)^2}$   $\frac{-1}{(n+1)^2}$   $\frac{-1}{(n-1)^2}$ 

 $=\frac{1}{2} - \frac{3}{2} - \frac{3}{2}$ 

 $= \frac{-1}{(h-1)^2}$ 

(·: cos(277+2077)

0

- $= \cos n\pi = 1$  $\cos n\pi = 1$  $= + \cos (n-1) \pi$ 
  - = LOS (1-1)2M
  - = cos (211-2n1) = - ws2n1)

= - 1

 $a_n = \frac{-1}{(n-1)^2}$  $b_n = \frac{1}{\pi} \int \frac{2\pi}{f(n)} \sin nx \, dx$ 

$$= \frac{1}{TT} \int x \cos x \sin nx dx$$

$$\frac{1}{T} \frac{x_1}{z_2} \propto \left[ sin(n+1) \times + sin(n-1) \times \right] dx$$

= 1 SJ 211 an Sinen+Oxdx + Jxsinen-Oxdx

$$U = x, u'=1$$

$$=\frac{1}{2\pi i} \left[ \left( -\frac{1}{2} \cos(n+i) \right) + \left( +\frac{1}{2} \sin(n+i) \right) + \left( +\frac{1}{2} \sin(n+i) \right) \right] + \left( +\frac{1}{2} \sin(n+i) \right) \right]$$

$$+\left(\frac{x\cos(n-\partial x)}{(n-1)^2}\right)_0^{-1}+\left(\frac{xin(n-\partial x)}{(n-1)^2}\right)_0^{-1}$$

-

$$=\frac{1}{2\pi}\left\{\frac{-2\pi\cos\left(n+D\left(2\pi\right)\right)}{n+1}+0+\left(\frac{-2\pi\cos\left(n-D\left(2\pi\right)\right)}{n+1}\right)+0\right\}$$

$$=\frac{1}{211}\int \frac{-211}{n+1} + \frac{211}{n-1}$$

$$\frac{1}{3\pi} \times 3\pi \left\{ \frac{-1}{n+1} + \frac{1}{n-1} \right\} = \left\{ \frac{1}{2} \frac{1}{n^2 - 1} \right\}$$

$$= \frac{2}{n^2 - 1} \quad \text{if } n \neq 1$$
  

$$b_1 = \frac{4}{\pi} \int_{-\pi}^{2\pi} f(x) x \, \text{in } x \, dx = \frac{1}{\pi} \int_{-\pi}^{2\pi} x \cos x \, x \, \text{in } x \, dx$$

$$f = \int_{2\pi}^{2\pi} \int_{0}^{2\pi} x \left[ x \sin 2x \right] dx$$

$$u = x_{1}, \quad u^{1} = 1$$

$$V_{1} = -\frac{\cos x^{2}}{2}, \quad V_{2} = -\frac{x \sin 2x}{4}$$

$$= \int_{2\pi} \int_{0}^{2\pi} \left( -\frac{x \cos 2x}{2} \right)_{0}^{2\pi} + \left( \frac{2 \sin x}{4} \right)_{0}^{2\pi} \int_{0}^{2\pi} \int_{0}^{$$

(8)

TO STATES SET OF THE PARTY OF T

Find the complex form of the former series  
of 
$$f(x) = e^{ax}$$
 in  $-l < x < l$   $[A|_{M-2017}$   
Solue:  $G_{1}(x) = e^{ax} - l < x < l$   
The complex form of  $f(x)$  is  
 $f(x) = e^{ax} - l < x < l$   
The complex form of  $f(x)$  is  
 $f(x) = \frac{e^{ax}}{n=-a} C_n e^{in\pi x}$   
 $where  $C_n = \frac{1}{al} \int_{a}^{l} f(x) e^{-in\pi x} dx$   
 $= \frac{1}{al} \int_{a}^{l} e^{-ax} e^{-in\pi x} dx$   
 $f(x) = \frac{1}{al} e^{-ax} e^{-in\pi x} dx$   
 $f(x) = \frac{1}{al} e^{-ax} e^{-in\pi x} dx$   
 $f(x) = \frac{1}{al} e^{-ax} e^{-in\pi x} e^{-ax} e^{-in\pi x}$   
The complex formion series is  
 $\frac{(a-in\pi)(c-0)^n}{a^2 + n^2\pi^2}$$ 

FOURIER SERIES AN THE INTERVAL (-2, 2)  
2.2.1 Find the fourier series of 
$$f(x) = x$$
 in -H exet  
Solus: Given:  $f(x) = x$  in  $(-\pi, \pi)$  [M[J20]]  
Put  $x \to -\pi$   
 $f(-\pi) = -\pi = -f(\pi)$   
 $\therefore f(x)$  is an odd function in  $(-\pi, \pi)$   
Here  $a_0$ ,  $a_1 = 0$   
 $\therefore$  The fourier series is  
 $f(x) = \frac{2}{n=1} b_n sinnx$   
 $a bhere  $b_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) sinnx dx$   
 $= \frac{2}{\pi} \int_{0}^{\pi} x sinnx dx$   
 $u = \frac{2}{\pi} \int_{0}^{\pi} x sinnx dx$   
 $U = x$ ,  $U' = 1$   
 $V_1 = -\frac{cosnx}{n}$ ,  $V_2 = -\frac{sinnx}{n^2}$   
 $= \frac{2}{\pi} \left\{ (-\pi cosnx) \int_{0}^{\pi} + (\frac{sinyx}{n}) \int_{0}^{\pi} \right\}$   
 $= \frac{2}{\pi} \left\{ -\frac{\pi}{n} cosn\pi + o \int_{0}^{2} = \frac{2}{\pi} \int_{0}^{\pi} \frac{-f(-1)^n}{n} \right\}$$ 

. The required fourier series is  $f(x) = \frac{2}{n=1} \frac{2(-1)^{n+1}}{n} sin nx$  $= 2 \stackrel{\infty}{=} \frac{(-1)^{n+1}}{n} \stackrel{\text{sinnx.}}{=}$ 2. 2. 2 Find the fourier series of x2 in -TIZX2TI Hence deduce the Value of 2 1 and  $\frac{1}{14} + \frac{1}{24} + \frac{1}{34} + \cdots = \frac{\pi^4}{90} \quad [(N | D 2014), (M | J 2013)]$ NID 20H Solns: Gliven:  $f(x) = x^2$  cu  $(-\pi, \pi)$ Put x -> -x  $f(-x) = (-x)^{2} = x^{2} = f(x)$  $\implies f(-x) = f(x)$ ·· f(x) is an even function in (-TT, TT) The required the fourier series be  $f(n) = \frac{\alpha_0}{2} + \frac{z}{n=1} \frac{\alpha_1 \cos nz}{n=1} \quad (Here bn = 0)$ where  $q_0 = \frac{2}{T} \int f(x) dx$  $= \frac{2}{\pi} \int x^2 dx = \frac{2}{\pi} \left[ \frac{x^3}{3} \right]_0^{\pi}$  $= \frac{2}{\pi} \left[ \frac{\pi^{3}}{3} \right] = \frac{2\pi^{2}}{3}$  $Q_0 = \frac{2\pi}{3}$ 

$$\begin{aligned} (I) \\ (In) &= \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos x \sin dx \\ &= \frac{2}{\pi} \int_{0}^{\pi} \frac{1}{x^{2}} \cos x \sin dx \\ &= \frac{2}{\pi} \int_{0}^{\pi} \frac{1}{x^{2}} \cos x \sin dx \\ &= \frac{2}{\pi} \int_{0}^{\pi} \frac{1}{x^{2}} \cos x \sin dx \\ &= \frac{2}{\pi} \int_{0}^{\pi} \frac{1}{x^{2}} \int_{$$

By parsaval's theorem  

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} (\frac{1}{2}(x))^{2} dx = \frac{q_{0}^{2}}{4} + \frac{1}{2} \frac{s}{\alpha_{21}} \left[ \frac{\alpha_{0}^{2} + k_{0}^{2}}{\alpha_{0}^{2} + k_{0}^{2}} \right]$$

$$\Rightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} (x^{2})^{4} dx = \frac{\alpha_{0}^{2}}{4} + \frac{1}{2} \frac{s}{\alpha_{21}} \left[ \frac{\alpha_{0}^{2} + k_{0}^{2}}{\mu_{0}^{2} + 1} \right]$$

$$\Rightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} x^{4} dx = \frac{k\pi^{4}}{q} + \frac{1}{2} \frac{s}{\alpha_{21}} \frac{1}{n^{4}} \left[ \frac{\delta^{n}}{\mu_{0}^{2}} \right]$$

$$\Rightarrow \frac{1}{2\pi} \left[ \frac{\pi^{5}}{5} \right]_{-\pi}^{\pi} = \frac{\pi^{4}}{q} + \frac{1}{2} \frac{s}{\alpha_{21}} \frac{1}{n^{4}} \left[ \frac{\delta^{n}}{\mu_{0}^{2}} \right]$$

$$\Rightarrow \frac{1}{2\pi} \left[ \frac{\pi^{5}}{5} \right]_{-\pi}^{\pi} = \frac{\pi^{4}}{q} + \frac{1}{2} \frac{s}{n_{21}} \frac{1}{n^{4}} \left[ \frac{\delta^{n}}{\mu_{0}^{2}} \right]$$

$$\Rightarrow \frac{1}{2\pi} \left[ \frac{\delta^{n}}{5} + \frac{1}{5} \right]_{-\pi}^{\pi} = \frac{\pi^{4}}{q} + \frac{1}{2} \frac{s}{n_{21}} \frac{1}{n^{4}} \left[ \frac{\delta^{n}}{\mu_{0}^{2}} \right]$$

$$\Rightarrow \frac{1}{2\pi} \left[ \frac{\delta^{n}}{5} + \frac{1}{2} \right]_{-\pi}^{\pi} = \frac{\pi^{4}}{q} + \frac{1}{2} \frac{s}{n_{21}} \frac{1}{n^{4}} + \frac{1}{2} \frac{s}{n^{4}} + \frac{1}{2} \frac{s}{n^{4}} \right]$$

$$\Rightarrow \frac{1}{n^{4}} \left[ \frac{\delta^{n}}{5} + \frac{1}{5} \right]_{-\pi}^{\pi} = \frac{\pi^{4}}{q} + \frac{1}{2} \frac{s}{n_{21}} \frac{1}{n^{4}} + \frac{1}{2} \frac{s}{n^{4}} + \frac{1}{2} \frac{s}{n^{4}} + \frac{1}{2} \frac{s}{n^{4}} \right]$$

$$\Rightarrow \frac{1}{n^{4}}} \left[ \frac{\delta^{n}}{5} + \frac{1}{3} \right]_{-\pi}^{\pi} = \frac{\pi^{4}}{q} + \frac{1}{2} \frac{s}{n_{21}} \frac{1}{n^{4}} + \frac{1}{2} \frac{s}{n^{4}} + \frac{1}{2} \frac{s}{n^{$$

\* (3) 2.52 Find the fourier sinces as far as & The second harmonic to represent the fundion fix) with the poind 6. growthe following [[NID 2009], (NID 2010), (MID 2012), table . (NID 2012) [Alm - 2017] × 0 1 2 3 4 5 [NID 2016] - (x) 9 18 24 28 26 20 Solns' Griven: Here six Values of x are given. which are loft and values of the subintervals of the interval (0,6) Here 21 = 6 => l=3 and m=6, and h=1

then the fornier series is

T(x) = Qo + Q1 contex + Q2 context

+ b, sin m + b2 sin mx

 $= \frac{\alpha_0}{2} + \alpha_1 \cos \frac{\pi x}{3} + \alpha_2 \cos \frac{\pi \pi x}{3}$ + 6, sin 1x + b2 sin 27x

Put 0 = mx, Then - Values of O

 $\frac{4\pi}{3}, \frac{5\pi}{3}$  is  $h = \frac{\pi}{3}$ 

| s'e The fourier series is given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |        |         |                   |          |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|---------|-------------------|----------|-------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $f(x) = \frac{q_0}{q_1} + q_1 \cos \theta + q_2 \cos \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |         |                   |          |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| + bising + basina0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |        |         |                   |          |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| where $a_0 = \frac{2}{m} \leq y$ , $a_n = \frac{2}{m} \leq y$ where $a_0 = \frac{2}{m} \leq y$ and $b_n = \frac{2}{m} \leq y$ and |    |        |         |                   |          |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| y sinz 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0  | 15.588 | -20-784 | 0                 | 22-516   | -11-32      | 0      | ¥[]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| y 10120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | σ  | 6-1    | -12     | 28                | 1 [3]    | 01-         | F      | Contraction of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| y sine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0  | 15-588 | 20.784  | 0                 | -22.516  | -17-32      | -3-464 | 1<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| y 10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0  | 0      | -12     | - 28              | <u>1</u> | 0           | -25    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0- | 18     | 24      | 28                | 26       | 20          | 125    | The second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Sinzo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0  | 0.866  | -0.866  | 0                 | 0.866    | -0.866      | Total  | (125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125)<br>(125) |  |
| (0)220)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1  | 1 0.2  | - 0.5   | -4                | 9.0-     | 1<br>0<br>1 |        | = 2<br>0000 = 6<br>2<br>0000 = 000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Sing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0  | 0.866  | 0*866   | 0                 | - 0.866  | -0-8%       |        | W W W W W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| CONO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -  | 0.5    | -0.5    | <del>-</del><br>1 | -0.5     | 0.0         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 0= <u>1</u> X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0  | 1=100  | 問       | 动                 | 型ろ       |             |        | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  |        | 6       | M                 | 4        | 10          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |

Find the half range sine series of 
$$f(x)$$
 (2)  
=  $\int x_1$ ,  $0 \le x \le T/2$  [Hence deduce the sum  $(T_1 - x_1, T/2 \le x \le T_1 = T_1 = T_1 = T_1 = T_2 = T_2 = T_1 = T_1 = T_2 = T_2 = T_2 = T_1 = T_2 = T_2 = T_1 = T_$ 

$$= \frac{2}{\pi} \left\{ \left( -\frac{2}{n} \frac{\cos n\pi}{n} \right)^{\frac{1}{2}} + \left( \frac{\sin n\pi}{n^2} \right)^{\frac{1}{2}} + \left( \frac{\sin n\pi}{n^2} \right)^{\frac{1}{2}} + \left( -\frac{\sin n\pi}$$

$$= 2 \int_{T} \left[ \frac{\pi}{2} \frac{\cosh \pi}{n^2} - 0 \right] + \left( \frac{\sinh \pi}{n^2} - 0 \right] \\ + \left[ \frac{0}{n^2} + \frac{\pi}{2} \frac{\cosh \pi}{n^2} - \frac{\sinh \pi}{n^2} - \frac{\sinh \pi}{n^2} + \frac{\sinh \pi}{n^2} \right] \\ + \left[ \frac{0}{n^2} + \frac{\pi}{2} \frac{\cosh \pi}{n^2} - \frac{\sinh \pi}{n^2} + \frac{\sinh \pi}{n^2} \right]$$

$$= \frac{2}{TI} \begin{cases} 2 sin nTt/2 \\ n2 \end{cases}$$

$$b_{n} = \frac{4}{\pi n^{2}} \frac{\sin n\pi t}{2} \quad \text{if } n \text{ is an odd}$$

$$b_{n} = \frac{1}{\pi n^{2}} \quad \text{if } n \text{ is an even}$$

$$b_{n} = \frac{1}{\pi n^{2}} \quad \text{if } n \text{ is an even}$$

$$f(\pi) = \frac{1}{\pi n^{2}} \frac{1}{\pi n^{2}}$$

$$f(x) = \frac{4}{Tf} = \frac{1}{n^2} \frac{1}{n^2} \frac{1}{2} \frac{1}{2$$

2.36 Obtain the fourier series of comme (2)  
expansion of xeriox in (0,17) and hence  
find the value of 
$$1 + \frac{2}{12} - \frac{2}{25} + \frac{2}{27} - \frac{2}{77}$$
  
Solns:  
EN/D 2013  
Given:  $f(x) = x \sin x$  in (0,17)  
Half xange cosine series expansion of  
 $f(x) = \frac{\alpha_0}{2} + \frac{\alpha_0}{\pi_{21}} \quad \alpha_1 \cos nx$   
Where  $\alpha_0 = \frac{2}{\pi} \int_{-\pi}^{\pi} f(x) dx$   
 $= \frac{2}{\pi} \left[ x(-\cos x) + \sin x \right]_{0}^{\pi}$   
 $= \frac{2}{\pi} \left[ -\pi \cos \pi \right]$   
 $= \frac{2}{\pi} \left[ -\pi \cos \pi \right]$   
 $= \frac{2}{\pi} \left[ -\pi \cos \pi \right]$   
 $= \frac{2}{\pi} \left[ \pi (x) \cos nx dx$   
 $= \frac{2}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$   
 $= \frac{2}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$ 

$$= \frac{2}{\pi} \int_{0}^{\pi} x \cos nx \sin x \, dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} x \left\{ \sin (n+1) x - \sin (n-1) x^{2} \right\} \, dx$$

$$= \frac{1}{\pi} \left\{ \int_{0}^{0} \int_{0}^{\pi} x \sin (n+1) x \, dx - \int_{0}^{\pi} x \sin (n-1) x \, dx \right\}$$

$$= \frac{1}{\pi} \left\{ \left( -x \frac{\cos (n+1) x}{n+1} + \frac{s^{0} n}{(n+1)^{2}} \right)_{0}^{\pi} - \left( -\frac{x \cos (n-1) x}{n-1} + \frac{x \sin (n-1) x}{(n-1)^{2}} \right)_{0}^{\pi} \right\}$$

$$= \frac{1}{\pi} \left\{ -\frac{\pi \cos (n+1) \pi}{n+1} + \frac{\pi \cos (n-1) \pi}{n-1} \right\}$$

$$= \frac{1}{\pi} \left\{ -\frac{\pi \cos (n+1) \pi}{n+1} + \frac{\pi \cos (n-1) \pi}{n-1} \right\}$$

$$= \frac{1}{\pi} \left\{ -\frac{\pi \cos (n+1) \pi}{n+1} - \frac{\pi \cos (n-1) \pi}{n-1} \right\}$$

$$= \frac{1}{\pi} \left\{ -\frac{\pi \cos (n+1) \pi}{n+1} - \frac{\pi \cos (n-1) \pi}{n-1} \right\}$$

$$= (-1)^{n} \left\{ \frac{x(-1-x^{n}-1)}{n^{2}-1} \right\} = (-1)^{n} (-2) - (-1)^{n} (-2)^{n} (-2) - (-1)^{n} (-2)$$

STREAM B

A CONTRACTOR OF THE OWNER OWNER

$$(1) = \frac{2}{\pi} \int_{-\pi}^{\pi} f(x) \cos x dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} x \sin x \cos x dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} x \sin x dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} x \sin x dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} -\pi \frac{\cos x dx}{2} + \frac{\sin 2x}{4} \int_{0}^{\pi}$$

$$= \frac{1}{\pi} \int_{0}^{\pi} -\pi \frac{\cos x dx}{2} + o^{2} \int_{0}^{\pi}$$

$$= \frac{1}{\pi} \int_{0}^{\pi} -\pi \frac{\cos x dx}{2} + o^{2} \int_{0}^{\pi}$$

$$= \frac{1}{\pi} \int_{0}^{\pi} -\pi \frac{\cos x dx}{2} + o^{2} \int_{0}^{\pi}$$

$$= \frac{2}{2} + a_{1} \cos x + \sum_{n=2}^{\infty} a_{n} \cos nx$$

$$= \frac{2}{2} + a_{1} \cos x + \sum_{n=2}^{\infty} a_{n} \cos nx$$

$$= 1 - \frac{1}{2} \cos x + \sum_{n=2}^{\infty} a_{n} \cos nx$$
Put  $x = 0$  proved Deduce put

2.37 Find the half range sine series of first here  
in the interval (0, h) here deduce the value of  
the series 
$$\frac{1}{1^3} \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \infty$$
 [M|3 20H] (3)  
Solns:  
Griven:  $q(x) = 4x - x^2$  in (0,1h)  
Half range sine series expansion  
 $q = f(x) = \frac{x}{n-1} = \frac{b_n \sin(\frac{n\pi x}{2})}{b_n \sin(\frac{n\pi x}{2})}$   
Where  $b_n = \frac{2}{x} \int_{0}^{1} f(x) \sin(\frac{n\pi x}{2}) dx$   
 $(0, k) = (0, h)$   
 $\Rightarrow l = h$   
 $= \frac{2}{x} \int_{0}^{1} (hx - x^2) \sin(\frac{n\pi x}{2}) dx$   
 $= \frac{1}{2} \left\{ (\frac{hx - x^2}{4}) \left( -\frac{\cos(n\pi x)}{m} \right) \right\}_{0}^{1} + \left( \frac{h-2x}{4} \right) \frac{\sin(n\pi x)}{1b} \right]$   
 $= \frac{1}{x} \int_{0}^{1} 0 + 0 - \left[ 2\cos n\pi (\frac{bh}{n^3\pi}) - \frac{3\cos(\frac{bh}{n\pi\pi})}{n\pi} \right]$ 

and the second second

かけた

A STATE OF A STATE OF

$$= \frac{1}{2} \int \left( \frac{x}{x} \frac{\sin \left(\frac{n\pi x}{A}\right)}{\left(\frac{n\pi}{A}\right)} \right)_{0}^{A} + \left( \frac{\cos \left(\frac{n\pi x}{A}\right)}{\frac{n^{2}\pi^{2}}{16}} \right)_{0}^{A} \right)$$
$$= \frac{1}{2} \int \left( \cos n\pi \right) \frac{x}{16}}{\frac{n^{2}\pi^{2}}{16}} - \frac{\cos n \left(\frac{n^{2}\pi^{2}}{16}\right)_{0}^{A}}{\frac{n^{2}\pi^{2}}{16}} \right)$$
$$= \frac{1}{2} \frac{x}{16} \frac{n^{2}\pi^{2}}{16} \int (-1)^{n} - 1 \int$$
$$= \frac{n^{2}\pi^{2}}{32} (-2) = -\frac{2n^{2}\pi^{2}}{32716} \text{ if } n \text{ is an odd}$$
$$= 0 \quad \text{if } n \text{ is an oven}$$

$$i = \frac{1}{2} + \frac{1}{2} + \frac{1}{16} = \frac{1}{16} \cos\left(\frac{n\pi^2}{4}\right)$$

$$R: 3.9 \text{ Find the half range sine series of } (P)$$

$$R: 3.9 \text{ Find the half range sine series of } (P)$$

$$f(x) = 1x \cdot x^{2} \text{ in } (0,1) \quad [N|D = 0]3$$
Solus:
$$G\text{[iven: } f(x) = 1x \cdot x^{2} \text{ in } (0,1)$$

$$Half \text{ range sine series exepansion}$$

$$af f(x) = \sum_{n=1}^{\infty} b_{n} \text{ sin } nx$$

$$where b_{n} = \frac{a}{1} \int_{0}^{1} f(x) \sin(\frac{n\pi x}{2}) dx$$

$$= \frac{2}{2} \int_{0}^{1} (1x \cdot x^{2}) \sin(\frac{n\pi x}{2}) dx$$

$$= \frac{2}{2} \int_{0}^{1} (1x \cdot x^{2}) \sin(\frac{n\pi x}{2}) dx$$

$$= \frac{2}{2} \int_{0}^{1} (1x \cdot x^{2}) \sin(\frac{n\pi x}{2}) dx$$

$$= \frac{2}{2} \int_{0}^{1} (1x \cdot x^{2}) \sin(\frac{n\pi x}{2}) dx$$

$$= \frac{2}{2} \int_{0}^{1} (1x \cdot x^{2}) - \cos(\frac{n\pi x}{2}) x \frac{1}{n\pi}$$

$$u' = 1 \cdot 2x \quad y_{2} = -\sin(\frac{n\pi x}{2}) x \frac{1}{n\pi}$$

$$u'' = -2 \quad y_{3} = +\cos(\frac{n\pi x}{2}) x \frac{1}{n^{3}\pi^{3}}$$

$$= \frac{2}{2} \left\{ \left[ (1x \cdot x^{2}) \left( -\cos(\frac{n\pi x}{2}) x \frac{1}{n\pi} \right] \right]_{0}^{2} + \left[ (12 \cdot 2x) \sin(\frac{n\pi x}{2}) x \frac{1}{n^{3}\pi^{3}} \right]_{0}^{2} \right]$$

 $=\frac{2}{2}\left\{-2\cos\left(\frac{n\pi k}{k}\right)\times\frac{1^{3}}{n^{3}\pi^{3}}+2\cos\left(\frac{n^{3}}{n^{3}\pi^{3}}\right)\right\}$  $= \frac{2}{2} \int -2\cos n\pi \times \frac{1^{3}}{\sqrt{3\pi^{3}}} + 2\cos \times \frac{1^{3}}{\sqrt{3\pi^{3}}} \int \frac{1}{\sqrt{3\pi^{3}}} \frac{1}{\sqrt{3\pi^{3}}} + \frac{1}{\sqrt{3\pi^{3}}} \int \frac{1}{\sqrt{3\pi^{3}}} \frac{1}{\sqrt{3\pi^{3}}} \int \frac{1}{\sqrt{3\pi^{3}}} \frac{1}{\sqrt{3\pi^{3}}} \frac{1}{\sqrt{3\pi^{3}}} \int \frac{1}{\sqrt{3\pi^{3}}} \frac{1}{\sqrt{3\pi^{3}}$  $= \frac{2}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \int -\frac{2}{\sqrt{2}} \cos \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{2}} \frac{1}{\sqrt$  $= -\frac{4l^2}{n^3\pi^3} \int (-1)^n - 1^3$  $b_n = \frac{81^2}{n^3 \pi^3} \quad \text{if } n \text{ is an odd}$ if h is an even. = 0  $\therefore \quad f(x) = \sum_{n = \text{odd } n^3 n^3} \frac{81^2}{n^3 n^3} \left( \frac{n \pi x}{x} \right)$ 

$$x \quad e^{\frac{\pi}{2}}$$
  
**Regare** Find the complex form of the formula  
Series of  $f(x) = e^{-x}$  in  $-1 \in x \leq 1$   
(NID 2009) (Alm 2016)  
Solus: Given  $f(x) = e^{-x}$ ,  $-1 \leq x \leq 1$   
Here  $l = 1$   
The complex form of  $f(x)$  is  
 $f(x) = \frac{\pi}{2}$   $C_n e^{-\frac{\pi}{2}}$   
 $f(x) = \frac{\pi}{2}$   $C_n e^{-\frac{\pi\pi}{2}}$   
where  $C_n = \frac{1}{\sqrt{2}} \int_{-\frac{\pi\pi}{2}}^{1} f(x) e^{-\frac{\pi\pi\pi}{2}} dx$   
 $= \frac{1}{2} \int_{-\frac{\pi}{2}}^{1} f(x) e^{-\frac{\pi\pi\pi}{2}} dx$   
 $= \frac{1}{2} \int_{-\frac{\pi}{2}}^{1} e^{-x} e^{-\frac{\pi\pi\pi\pi}{2}} dx$   
 $= \frac{1}{2} \int_{-\frac{\pi}{2}}^{1} e^{-x} e^{-\frac{\pi\pi\pi\pi}{2}} dx$   
 $= \frac{1}{2} \int_{-\frac{\pi}{2}}^{1} e^{-(1+\frac{\pi\pi}{2})x} dx$   
 $= \frac{1}{2} \int_{-\frac{\pi}{2}}^{1} e^{-(1+\frac{\pi\pi}{2})x} dx$ 

$$= \frac{1}{2(1+init)} \int e^{-(1+init)} = e^{(1+init)}$$

$$= \frac{1}{-\alpha(1+in\pi)} \int e^{-i} e^{-in\pi} = e^{-in\pi}$$

$$= \underbrace{(1-in\pi)}_{-2(1+n^2\pi^2)} \begin{cases} \overline{e}^{-1} \\ \\ \end{cases} \\ \underbrace{(1+n^2\pi^2)}_{-2(1+n^2\pi^2)} \end{cases} \\ = \underbrace{(1+n^2\pi^2)}_{-2(1+n^2\pi^2)} \\ \end{cases} \\ \underbrace{[i]_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}}_{-2(1+n^2\pi^2)} \\ \underbrace{[i]_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}}_{-2(1+n^2\pi^2)}}_{-2(1+n^2\pi^2)} \\ \underbrace{[i]_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}}_{-2(1+n^2\pi^2)} \\ \underbrace{[i]_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2)}_{-2(1+n^2\pi^2$$

$$= - (1 - inf) \left[ (e^{-1} - e^{-1}) \cos nf \right]$$

$$= 2 (1 + n^2 f^2) \left[ (e^{-1} - e^{-1}) \cos nf \right]$$

$$= \underbrace{(1 - inti)c \cdot 0^{n}}_{1 + n^2 tt^2} \operatorname{sinh}(0) \quad \begin{cases} \vdots \quad \underline{e^{-}e^{-}}_{2} = \operatorname{sinh}(0) \\ \vdots \\ \vdots \\ \end{cases}$$

The complexe fourier series is  

$$f(x) = \underbrace{\mathcal{E}}_{n=-\infty} \underbrace{(1-int)}_{1+n^2 t^2} \underbrace{(1-int)}_{\infty} \underbrace{(-0)}_{n=-\infty}^{n} \underbrace{(1-int)}_{n=-\infty} \underbrace{(1-int)}_{n=-\infty}^{\infty} \underbrace{(1-int)}_{n=-\infty}^{n=+\infty} \underbrace{(1-int)}_{n=+\infty}^{\infty} \underbrace{(1-int)}_{n=+\infty}^{n=+\infty} \underbrace{(1-int)}_{n=+\infty}^{\infty} \underbrace{(1-int)}_{n=+\infty}^{n=+\infty} \underbrace{(1-int)}_{n=+\infty}^{n=+\infty}$$

$$p e = - \sin n = -\infty + 1 + n^2 \pi^2$$

www.Vidyarthiplus.com

$$\Rightarrow C_n = \frac{1}{2\pi} \int sinx \cdot e^{-inx} dx$$

-

2

$$= \frac{1}{2\pi i} \int \frac{-inx}{\frac{e}{i^2n^2 + a^2}} \left[ -insinx \pm \cos x \right]_{-\pi}^{\pi}$$

$$= \frac{1}{2\pi (a^2 - n^2)} \begin{cases} -in\pi \left[ -insin\pi + \cos\pi \right] \\ -e^{in\pi \left[ -insin(-\pi) + \cos(-\pi) \right]} \end{cases}$$

$$\frac{1}{a^2 - n^2} \begin{cases} (\cos n\pi - isignit)(\omega s\pi) \\ + (\cos n\pi + isignit)(\cos \pi) \\ + (\cos n\pi + isignit)\cos \pi \end{cases}$$

$$= \frac{1}{a^2\pi (a^2 - n^2)} \begin{cases} \cos n\pi \cos n\pi \cos \pi + \cos n\pi \cos \pi \\ \cos n\pi \cos \pi \\ \cos n\pi \cos \pi \end{cases}$$

$$= \frac{2'\cos n\pi t \cos \pi t}{2} = \frac{(-1)^{n} (-1)^{n+1}}{(a^{2}-n^{2})} = \frac{(-1)^{n+1}}{(a^{2}-n^{2})}$$

of the complex form of fourier series  
is 
$$f(x) = \sum_{n=-\infty}^{\infty} \frac{(-1)^{n+1}}{\pi (a^2 - n^2)} e^{inx}$$
  
 $= \frac{1}{\pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n+1}}{a^2 - n^2} e^{inx}$ .

51

2.4

Solus:  
Given: 
$$f(n) = |\cos x| - \pi < x < \pi$$
  
 $f(-n) = |\cos(-n)|$   
 $= |\cos x|$   
 $= f(n)$ 

$$f(x)$$
 is an even function  
The required fourier series  
 $f(x) = \frac{\alpha_0}{2} + \frac{\alpha}{n=1} - \frac{\alpha}{2} + \frac{\alpha}{n=1} - \frac{\alpha}{n=1$ 

$$bn = 0$$

Where 
$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx$$

$$q_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos x dx.$$

$$\frac{q_0}{t_1} = \frac{2}{t_1} \int |w_{3x}| dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} |\mathbf{C} \cos x| dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} |\mathbf{C} \cos x| dx + \int_{0}^{\pi} \cos x dx| = \int_{0}^{\infty} \cos x i \int_{0}^{\infty} \cos x i \int_{0}^{\pi} \sin x \sin x dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \int_{0}^{\pi} \sin x \cos x \sin x dx + \int_{0}^{\pi} \cos x \cos x dx \int_{0}^{\pi} \sin x \cos x \sin x dx$$

. .
$$=\frac{1}{\Pi}\begin{cases}\int_{0}^{T_{1}} \frac{1}{2} \frac{1}{$$

$$= \frac{2}{\pi} \int \frac{\omega_{0,h}}{\frac{\omega_{1}}{m+1}} - \frac{\omega_{0,h}}{\frac{\omega_{1}}{m+1}} \int \left( -Ain \left( \frac{m\pi}{2} - \frac{\pi}{2} \right) \right)$$

$$= \frac{2}{\pi} \left( \frac{\omega_{0,h}}{2} - \frac{\pi}{n+1} - \frac{1}{n-1} \right) \left( -Ain \left( \frac{m\pi}{2} - \frac{\pi}{2} \right) \right)$$

$$= \frac{2}{\pi} \left( \frac{\omega_{0,h}}{2} - \frac{\pi}{n+1} - \frac{1}{n-1} \right) = \frac{2}{\pi} \left( \frac{2}{\pi} - \frac{\pi}{n+1} \right)$$

$$= \frac{2}{\pi} \left( \frac{\omega_{0,h}}{2} - \frac{\pi}{n+1} - \frac{1}{n-1} \right)$$

$$= -\frac{2}{\pi} \left( \frac{\omega_{0,h}}{2} - \frac{\pi}{n+1} \right)$$

$$= -\frac{2}{\pi} \left( \frac{2}{\pi} - \frac{\pi}{n+1} - \frac{1}{n-1} \right)$$

$$= -\frac{2}{\pi} \left( \frac{2}{\pi} - \frac{\pi}{n+1} - \frac{1}{n-1} \right)$$

$$= -\frac{2}{\pi} \left( \frac{2}{\pi} - \frac{\pi}{n+1} - \frac{1}{n-1} - \frac{1}{n-1} \right)$$

$$= -\frac{2}{\pi} \left( \frac{2}{\pi} - \frac{\pi}{n+1} - \frac{1}{n-1} - \frac{1}{n-1} - \frac{1}{n-1} \right)$$

$$= -\frac{2}{\pi} \left\{ \frac{\pi}{n+1} - \frac{1}{n-1} - \frac{1}{n-1} - \frac{\pi}{n-1} - \frac{\pi}{n-1} - \frac{\pi}{n-1} - \frac{\pi}{n-1} \right\}$$

$$= -\frac{2}{\pi} \left\{ \frac{\pi}{n+1} - \frac{\pi}{n-1} - \frac{\pi}{n-1} - \frac{\pi}{n-1} - \frac{\pi}{n-1} - \frac{\pi}{n-1} - \frac{\pi}{n-1} \right\}$$

$$= \frac{2}{\pi} \left\{ \int_{0}^{\pi} \frac{1}{\omega_{0,h}} - \frac{\pi}{n-1} - \frac{\pi}{n-1} - \frac{\pi}{n-1} - \frac{\pi}{n-1} - \frac{\pi}{n-1} \right\}$$

$$= \frac{2}{\pi} \left\{ \int_{0}^{\pi} \frac{1}{\omega_{0,h}} - \frac{\pi}{n-1} - \frac{$$

Si

$$= \frac{1}{\Pi} \int \left( x + x \frac{dn a x}{2} \right)_{0}^{\Pi/2} - \left( x + \frac{sin a x}{2} \right)_{\Pi/2}^{\Pi} \int_{\Pi/2}^{\Pi} \left( \frac{\pi}{2} + \frac{sin x \sqrt{2} \pi}{2} \right) + 0 \neq \left( \left( \pi + \frac{sin x \sqrt{2} \pi}{2} \right) - \left( \frac{\pi}{2} + \frac{sin x \sqrt{2} \pi}{2} \right) \right) \\ = \frac{1}{\Pi} \int \left( \frac{\pi}{2} + \frac{sin x \sqrt{2} \pi}{2} \right) + 0 \neq \left( \left( \pi + \frac{sin x \sqrt{2} \pi}{2} \right) \right) \\ = \frac{1}{\Pi} \int \left( \frac{\pi}{2} + \frac{sin x \sqrt{2} \pi}{2} \right) + 0 \neq \left( \left( \pi + \frac{sin x \sqrt{2} \pi}{2} \right) \right) \\ = \frac{1}{\Pi} \int \left( \frac{\pi}{2} + \frac{sin x \sqrt{2} \pi}{2} \right) + 0 \neq \left( \left( \pi + \frac{sin x \sqrt{2} \pi}{2} \right) \right) \\ = \frac{1}{\Pi} \int \left( \frac{\pi}{2} + \frac{sin x \sqrt{2} \pi}{2} \right) = 0 \\ (\pi + \frac{\pi}{2}) = 0 \\ (\pi + \frac{\pi}{2$$

\* Complex form of fourier Series: 2.4.1 Find the complexe form of the fourier Series of  $f(x) = e^{ix}$ ,  $-\pi < x < \pi [A|M 2010]$ NID 2016 Solns: Given fix) = e , - TKX LT [N/D 2015] The complexe form of fourier series in (-TI,T) is  $f(x) = \sum_{n=-\infty}^{\infty} C_n e^{inx}$ Where  $C_n = \frac{1}{2\pi} \int f(x) e^{-inx} dx$  $= \frac{1}{2\pi} \int e^{-inx} dx$  $= \frac{1}{2\pi} \int e^{\pi} dx$  $= \frac{1}{2\pi i} \begin{bmatrix} (a-in)x \\ e \\ a-in \end{bmatrix}_{-\pi i}^{\pi}$  $= \frac{1}{2\pi (a-in)} \begin{cases} (a-in)\pi - (a-in)\pi \\ -e \end{cases}$ = atin fatin fatint att inthe att inthe fating for the second sec

$$= \frac{a+in}{a\pi (a^{2}+n^{2})} \int_{e}^{a\pi T} \int$$

· Half range Fourier Series: A. 2-3-1 Find the half range Covine Series af the founction f(x) = x (T-x) in the introval OLXII Hence Ledner Wat 1 +1 +1 + = T Selmis [A/M 2019] Gruen: f(x) = x(TT-x) in (in T) To find : Half range cosine Series in 10m)  $(\omega) = \frac{\alpha_e}{2} + \frac{\omega}{\alpha_{\pm 1}} \Omega_{\alpha} \cos n \times$ Where as = # fordx  $= \frac{3}{4} \int x (74-x) dx = \frac{3}{4} \int (274-x^2) dx$  $=\frac{2}{7}\left[\frac{x^{2}\pi}{2}-\frac{x^{3}}{3}\right]^{2}$  $=\frac{2}{11}\left[\frac{1}{2}\frac{1}{3}-\frac{1}{3}\frac{3}{3}\right]=\frac{2}{11}\left[\frac{3}{3}\frac{3}{3}\frac{3}{3}\frac{3}{3}\right]$  $= \frac{2}{1} \times \frac{1}{1} = \frac{1}{3}$  $a_0 = \frac{\pi^2}{3}$ 

$$\begin{aligned} O_n &= \frac{2}{\pi} \int_{-\pi}^{\pi} f(x) \cosh x \, dx \\ &= \frac{2}{\pi} \int_{0}^{\pi} x(\pi - x) \cosh x \, dx \\ &= \frac{2}{\pi} \int_{0}^{\pi} x(\pi - x) \cosh x \, dx \\ &= \frac{2}{\pi} \int_{0}^{\pi} x(\pi - x) \cosh x \, dx \\ &= \frac{2}{\pi} \int_{0}^{\pi} x(\pi - x) \cosh x \, dx \\ &= \frac{2}{\pi} \int_{0}^{\pi} x(\pi - x) \int$$

Deduce part:  

$$\frac{1}{1^{A}} + \frac{1}{2^{A}} + \frac{1}{3^{4}} + \dots = \frac{\pi^{h}}{90}$$
Using parsonal's theorem:  

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^{2} dx = \frac{q_{0}^{2}}{4} + \frac{1}{2} \sum_{n=1}^{\infty} Q_{n}^{2} - 0$$
Now  

$$\int_{-\pi}^{0} (x) = x (\pi - x) = x\pi - x^{2}$$

$$(f(x))^{2} = (x\pi - x^{2})^{2} = x^{2}\pi^{2} + x^{h} - 2x^{3}\pi$$

$$(f(x))^{2} = (x\pi - x^{2})^{2} = x^{2}\pi^{2} + x^{h} - 2x^{3}\pi$$

$$\int_{-\pi}^{\pi} (x^{2}\pi^{2} + x^{h} - 2x^{3}\pi) dx$$

$$= (\frac{\pi^{5}}{3} + \frac{\pi^{5}}{5} - \frac{2x^{h}}{4}\pi)_{0}^{\pi}$$

$$= (\frac{\pi^{5}}{3} + \frac{\pi^{5}}{5} - \frac{2\pi^{h}}{4}) - 0 = \frac{\pi^{3}}{30}$$

$$(f) \Rightarrow \frac{1}{\pi} \left\{ \frac{\pi^{h}}{30} \right\} = \frac{\pi^{h}}{36} + \frac{1}{2} \frac{\infty}{n \text{ seccen } n^{h}}$$

$$\Rightarrow \frac{\pi^{h}}{30} - \frac{\pi^{h}}{36} = 8 \frac{\infty}{n z} \frac{1}{(2n)^{h}}$$

$$\Rightarrow \frac{\pi^{h}}{180} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{h}}$$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{h}} = \frac{\pi^{h}}{10}$$

$$\Rightarrow \frac{1}{1} + \frac{1}{2^{h}} + \frac{1}{3^{h}} + \frac{\pi^{h}}{10} = \frac{\pi^{h}}{10}$$

$$\Rightarrow \frac{1}{1^{h}} + \frac{1}{2^{h}} + \frac{1}{3^{h}} + \frac{\pi^{h}}{10} = \frac{\pi^{h}}{10}$$

$$2 \cdot 3 \cdot 2$$
Find the half range former come some some of  $\frac{1}{1^{h}} + \frac{1}{2^{h}} + \frac{1}{3^{h}} + \frac{\pi^{h}}{10} = \frac{\pi^{h}}{10}$ 
hence find the sum of the series  $\frac{1}{1^{h}} + \frac{1}{2^{h}} + \frac{1}{$ 

$$= \frac{2}{\pi} \left[ \frac{(\pi - x)^{2}}{3(-1)} \right]_{0}^{\pi}$$

$$= \frac{2}{\pi} \left\{ 0 + \frac{\pi^{3}}{3} \right\}$$

$$= \frac{2}{\pi} \left\{ 0 + \frac{\pi^{3}}{3} \right\}$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \left\{ (x) \cos nx dx \right\}$$

$$= \frac{2}{\pi} \int_{0}^{\pi} (\pi - x)^{2} \cos nx dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} (\pi - x)^{2} \cos nx dx$$

$$U = (\pi - x)^{2}, \quad U' = 2(\pi - x)(-1) \quad U'' = 2$$

$$= -2(\pi - x)$$

$$= -2(\pi - x)$$

$$V_{1} = \frac{\sin nx}{n} \quad V_{2} = -\frac{\cos nx}{n^{2}} \neq \quad V_{3} = -\frac{\sin nx}{n^{3}}$$

$$= \frac{2}{\pi} \left\{ ((\pi - x)^{2} \frac{\sin nx}{n})_{0}^{\pi} + ((2\pi + 2x) \frac{\cos nx}{n^{2}})_{0}^{\pi} - (\frac{2 \sin nx}{n^{3}})_{0}^{\pi} \right\}$$

$$= \frac{2}{\pi} \left\{ 0 - (2\pi + 0) \frac{\cos n^{2}}{n^{2}} = \frac{2}{\pi} \times 2\pi \times \frac{1}{n^{3}} \right\}$$

$$= \frac{2}{\pi} \left\{ 0 - (2\pi + 0) \frac{\cos n^{2}}{n^{2}} = \frac{2}{\pi} + \frac{2}{n^{3}} + \frac{\cos nx}{n^{3}} \right\}$$

Using parsaval's theorem  $\frac{1}{T} \int (f(x))^2 dx = \frac{q^2}{4} + \frac{1}{2} + \frac{$  $\Rightarrow \frac{1}{11} \int \left( \left( \pi - \pi \right)^2 \right)^2 d\pi = \left( \frac{4\pi \pi^4}{9} \right) + \frac{1}{2\pi} \frac{2}{n=1} \left( \frac{4\pi}{n^2} \right)^2 d\pi = \left( \frac{4\pi}{9} \right) + \frac{1}{2\pi} \frac{2}{n=1} \left( \frac{4\pi}{n^2} \right)^2 d\pi = \left( \frac{4\pi}{9} \right)^2 d\pi = \left( \frac{4\pi}{$  $\Rightarrow \pm \int \left( f(-x)^{\dagger} dx = \frac{\pi^{\dagger}}{q} + \frac{16}{2} = \frac{1}{n^{\dagger}} \right)^{\dagger}$  $\Rightarrow \frac{1}{\pi} \left[ \left( \frac{\pi}{1-x} \right)^5 \right] \stackrel{\pi}{=} \frac{\pi^4}{9} + 8 \begin{cases} \frac{1}{1+2} + \frac{1}{2} + \frac{1}{2} \\ \frac{1}{2} + \frac{1}{2} \end{cases}$  $= \frac{1}{\pi} \left\{ 0 + \frac{\pi}{5} \right\} = \frac{\pi^{4}}{9} = 8 \left\{ \frac{1}{14} + \frac{1}{34} + \frac{1}{140} \right\}$  $= \frac{\pi 4}{5} - \frac{\pi 4}{9} = 8 \int_{1}^{1} \frac{1}{4} + \frac{1}{24} + \dots + \frac{1}{2} \int_{1}^{1} \frac{1}{4} + \frac{1}{24} + \dots + \frac{1}{2} \int_{1}^{1} \frac{1}{4} + \frac{1}{24} + \dots + \frac{1}{2} \int_{1}^{1} \frac{1}{4} + \frac{1}{2} + \frac{1}{2$  $\rightarrow \frac{4\pi^{4}}{45} \times \frac{1}{8_{2}} = \frac{1}{14} + \frac{1}{24} + \dots + \infty$  $\rightarrow \frac{1}{14} + \frac{1}{24} + \dots + \infty = \frac{1}{14} + \frac{1}{24} + \dots + \infty = \frac{1}{14} + \frac{1}{24} + \dots + \frac{1}{14} + \frac{1}{24} + \dots + \frac{1}{14} + \frac{1}{24} + \dots + \frac{1}{14} + \frac{1}{14} + \frac{1}{24} + \dots + \frac{1}{14} + \frac{1}{14} + \frac{1}{14} + \dots + \frac{1}{14} + \frac{1$ 

437 233 Ablain the fourier Cosine Series of (x-)2, 02×21 and hence show that (M | J 2013) (N | D2014)  $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{6} = \frac{\pi^2}{6}$ <u>Solar</u> Gjiven: f(m) = (x-1)<sup>2</sup>, (0,1) i half range cosine Series in (01) is defined as  $f(x) = \frac{\alpha_0}{2} + \frac{\alpha}{n-1} \alpha_n \cos\left(\frac{n\pi x}{x}\right)$ have (0,2) = (0,) ⇒ l=1 where  $a_0 = \frac{1}{2} \int_{-\infty}^{\lambda} f(x) dx$  $= \frac{2}{1} \int (x-1)^2 dx$  $= \left(2\left(\frac{x-1}{3}\right)^{2} - \frac{1}{3}\right)^{2}$  $=\frac{2}{3}(0-(-0))^{2}=\frac{2}{3}$ a. = 2

$$\begin{aligned} Q_{n} &= \frac{2}{2} \int_{0}^{Q} \frac{(x-1)^{2} \cos\left(\frac{n\pi i x}{2}\right) dx}{\left(\frac{x-1}{2}\right)^{2} \cos\left(\frac{n\pi i x}{2}\right) dx} \\ &= \frac{2}{1} \int_{0}^{1} \frac{(x-1)^{2} \cos\left(\frac{n\pi i x}{2}\right) dx}{\left(\frac{y}{2}\right)^{2} dy} \\ &= \frac{2}{1} \int_{0}^{1} \frac{(x-1)^{2}}{\left(\frac{y}{2}\right)^{2} dy} \\ U &= (x-1)^{2} \\ U^{1} &= 2(x-1)(4) \\ U^{1} &= \frac{2in\left(\frac{n\pi i x}{2}\right)}{\left(\frac{n\pi i x}{n\pi i}\right)} + \sqrt{2} = -\frac{\cos\left(\frac{\pi i \pi x}{2}\right)}{\left(\frac{n\pi i x}{n^{2}\pi^{2}}\right)^{2}} \\ &= 2 \int_{0}^{1} \frac{(x-1)^{2} \sin(n\pi i x)}{n\pi i} + \frac{2(x-1)\left(\frac{\cos(n\pi i x)}{n^{2}\pi^{2}}\right)^{1}}{\left(\frac{n\pi i x}{n^{2}\pi^{2}}\right)^{2}} \\ &= 2 \int_{0}^{1} \frac{\cos(n\pi i x)}{n^{2}\pi^{2}} + \frac{2(x-1)^{2}}{n^{2}\pi^{2}} \\ &= 2 \int_{0}^{1} \frac{\cos(n\pi i x)}{n^{2}\pi^{2}} + \frac{2(x-1)^{2}}{n^{2}\pi^{2}} \\ &= \frac{2}{n^{2}\pi^{2}} \\ &= \frac{2}{n^{2}\pi^{2}} + \frac{2}{n^{2}\pi^{2}} \\ &= \frac{2}{n^{2}\pi^{2}} \\ &= \frac{2}{n^{2}\pi^{2}} + \frac{2}{n^{2}\pi^{2}} \\ &= \frac{2}{n^{2}\pi^{2}} + \frac{2}{n^{2}\pi^{2}} + \frac{2}{n^{2}\pi^{2}} \\ &= \frac{2}{n^{2}\pi^{2}} + \frac{2}{n^{2}\pi^{2}} + \frac{2}{n^{2}\pi^{2}} + \frac{2}{n^{2}\pi^{2}} \\ &= \frac{2}{n^{2}\pi^{2}} + \frac{2}{n^{2}\pi^{2}} +$$

 $(x-1)^2 = \frac{1}{3} + \frac{4}{11^2} = \frac{5}{n_{21}} + \frac{5}{n_{22}} = \frac{1}{n_{21}} + \frac{4}{n_{22}} + \frac{5}{n_{21}} + \frac{5}{n_{22}} + \frac{5}{n_{21}} + \frac{5}{n_{22}} + \frac{5}{n_{21}} + \frac{5}{n_{22}} + \frac{5}{n_{21}} + \frac{5}{n_{22}} + \frac$ Put x = 0, there x = 0 is a finite point of continuity in the middle  $1 = \frac{1}{3} + \frac{4}{112} = \frac{1}{n=1} \frac{1}{n^2} \cos \theta$  $1 - \frac{1}{3} = \frac{4}{112} \int \frac{1}{12} + \frac{1}{2^2} + \cdots + \frac{1}{2^2}$  $\Rightarrow \frac{1}{3} \times \frac{1}{42} = \frac{1}{12} + \frac{1}{2^2} + \cdots + \infty$  $\implies \frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \infty$  $= \frac{1}{1^2} + \frac{1}{2^2} + \cdots + \infty = \frac{\pi^2}{6}$ 2.3.4 Obtain the half range coisene series for fix) = x in (ent) [[(N]] 2010] (N]] NID 2013 Solns' Gjiven fin = x in (017)  $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1$ 

Where 
$$Q_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(w) dx$$
  
 $= \frac{1}{\pi} \int_{-\pi}^{\pi} x dx$   
 $= \frac{1}{\pi} \int_{-\pi}^{\pi} x dx$   
 $= \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}$ 

A. 
$$\partial 3$$
  
Obtain the fourier series of  $f(x) = x \sin x \sin (-\pi, \pi)$   
Solar: Given:  $f(x) = x \sin x (-\pi, \pi)$   
Full  $x \rightarrow -x$   
 $f(-x) = (-x) \sin(-x)$   
 $= -x (-\sin x)$   
 $= -x (-\sin x)$   
 $= f(x)$   
 $\Rightarrow f(-x) = f(x)$  is an even function  
The required fourier series be  
 $= \frac{\alpha_0}{2} + \frac{\alpha}{\pi - 1} - \alpha \cos \pi x$  (Here  $b_{\pi} = 0$ )  
Where  $\alpha_0 = \frac{\alpha}{\pi} \int_{0}^{\pi} f(x) dx$   
 $= \frac{2}{\pi} \int_{0}^{\pi} \frac{1}{x} \sin x dx$   
 $u = x$ ,  $u^{1} = 1$   
 $V_{1} = -\cos x$ ,  $V_{2} = -\sin x$   
 $= -2 \cos \pi = -2 (-x) = 2$   
 $[\alpha_{0} = 2]$ 

$$\begin{aligned} Q_{x} &= \frac{a}{\pi} \int_{0}^{\pi} f(x) \cos nx \, dx \\ &= \frac{a}{\pi} \int_{0}^{\pi} f(x) \cos nx \, dx = \frac{a}{\pi} \int_{0}^{\pi} x \cos nx \sin nx \, dx \\ &= \frac{a}{\pi} \int_{0}^{\pi} x \sin nx \cos nx \, dx = \frac{a}{\pi} \int_{0}^{\pi} x \cos nx \sin nx \, dx \\ &= \frac{a}{\pi} \int_{0}^{\pi} x \sin nx \cos nx \, dx = \frac{a}{\pi} \int_{0}^{\pi} x \sin nx \sin nx \, dx \\ (x \sin nx + a) &= x \sin 4 \cos 8 + \cos 4 \sin 8 \\ f(x \sin nx + a) &= x \sin 4 \cos 8 + \cos 4 \sin 8 \\ f(x \sin nx + a) &= x \sin 4 \cos 8 + \cos 4 \sin 8 \\ f(x \sin nx + a) &= x \sin (nx - a) \\ f(x \sin nx + a) &= x \sin (nx - a) \\ f(x \sin nx + a) &= x \sin (nx - a) \\ f(x \sin nx + a) &= x \sin (nx - a) \\ f(x \sin nx + a) &= x \sin (nx - a) \\ f(x \sin nx + a) &= x \\ f(x \sin nx + a) \\ f(x \sin nx + a) &= x \\ f(x \sin nx + a) \\ f(x \sin nx +$$

$$= \frac{1}{\pi} \int_{0}^{1} \frac{1}{n+1} \frac{1}{n+1} \frac{1}{n-1} \frac{1}{n-1} \frac{1}{n-1}$$

$$= \frac{1}{\pi} \left[ \frac{\pi(\cdot)^{n}}{n+1} - \frac{\pi(\cdot)^{n}}{n-1} \right] \qquad (\cdot \cdot \cos(n+1)\pi) = \cos(\pi + \pi) = \cos(\pi + \pi)$$

$$= -\frac{1}{\pi} \left[ \frac{\pi(\cdot)^{n}}{n+1} - \frac{\pi(\cdot)^{n}}{n-1} \right] \qquad (o_{0} (n-1)\pi) = \cos(\pi + \pi)$$

$$= \frac{1}{\pi} \sqrt{\pi((-1)^{n}} \int_{0}^{1} \frac{1}{n+1} - \frac{1}{n+1} \right] \qquad = \cos(\pi + \pi)$$

$$= \frac{1}{\pi} \sqrt{\pi((-1)^{n}} \int_{0}^{1} \frac{1}{n+1} - \frac{1}{n+1} \int_{0}^{1} \frac{1}{n+1} = -\cos(\pi + \pi)$$

$$= -\frac{2}{n^{2}-1} (-1)^{n}$$

$$= -\frac{2}{\pi^{2}-1} (-1)^{n}$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \frac{1}{\pi} \sin(x) \cos x \, dx = \frac{\pi}{\pi} \int_{0}^{\infty} \frac{x \sin(2x)}{x} \, dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \frac{1}{\pi} \sin(x) \cos x \, dx = \frac{\pi}{\pi} \int_{0}^{\infty} \frac{x \sin(2x)}{x} \, dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \frac{1}{\pi} \sin(x) \cos x \, dx = \frac{\pi}{\pi} \int_{0}^{\infty} \frac{x \sin(2x)}{x} \, dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} (\frac{x \cos(2x)}{2})^{n} + (\frac{x \cos(2x)}{4})^{n} \int_{0}^{\pi} \int_{0}^{\pi} \frac{1}{\pi} \int_{0}^{\pi} \frac{1}$$

The fourier series is  

$$\frac{1}{2}(x) = \frac{a_0}{2} + \frac{a_0}{n=1} a_n \cos nx$$

$$= 1 - \frac{1}{2}\cos x - 2 = \frac{a_0}{n=2} - \frac{1}{n^2-1} \cos nx$$
2.2.4  
Obtain the fourier series to represent

The function 
$$f(x) = |x|$$
,  $-\pi \leq x \leq \pi$   
deduce  $= \frac{1}{n=1} = \frac{\pi^2}{(2n-1)^2} = \frac{\pi^2}{8} \qquad [M]J = 2012]$   
NID 2015

Solns' Given: 
$$f(x) = |x| - \pi < x < \pi$$
  
 $f(-x) = |-x| = |x| = f(x)$   
 $f(x)$  is an even function.  
The required formier series  
 $\int dx = \frac{\infty}{2} = \frac{1}{2} \int dx = \frac{1}{2} \int dx$ 

Where 
$$a_0 = \frac{2}{\pi} \int f(x) dx$$
  
=  $\frac{2}{\pi} \int |x| dx$ 

$$= \frac{2}{\pi} \int_{0}^{\pi} x \, dx \quad \left( \therefore |x| = x \, i \, y \, x \ge 0 \right)$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \frac{x^{2}}{2} \int_{0}^{\pi}$$

$$= \frac{2}{\pi} \int_{\pi}^{\pi} \left[ \frac{\pi^{2}}{2} - 0 \right] = \frac{x}{\pi} \left[ \frac{\pi^{2}}{2} \right] = \pi$$

$$= \frac{2}{\pi} \int_{\pi}^{\pi} \int_{\pi}^{\pi} f(x) \cosh x \, dx$$

$$= \frac{2}{\pi} \int_{\pi}^{\pi} \int_{\pi}^{\pi} |x| \cosh x \, dx$$

$$= \frac{2}{\pi} \int_{\pi}^{\pi} |x| \cosh x \, dx$$

$$= \frac{2}{\pi} \int_{\pi}^{\pi} |x| \cosh x \, dx$$

$$= \frac{2}{\pi} \int_{\pi}^{\pi} x \cosh x \, dx$$

$$= \frac{2}{\pi} \int_{\pi}^{\pi} x \cosh x \, dx$$

$$= \frac{2}{\pi} \int_{\pi}^{\pi} x \cosh x \, dx$$

$$= \frac{2}{\pi} \int_{\pi}^{\pi} (x) \cosh$$

$$\begin{aligned} Q_n &= \begin{cases} -\frac{h}{n^{2}n} & \text{if } n \text{ is an odd} \\ 0 & \text{if } n \text{ is an odd} \end{cases} \\ The forwiser series is \\ f(x):h = \frac{\pi}{2} + \frac{\pi}{n^{2}} = -\frac{h}{n^{2}} + \frac{\cos nx}{n^{2}} \\ |x| = \frac{\pi}{2} - \frac{h}{\pi} + \frac{\cos nx}{n^{2}} \\ |x| = \frac{\pi}{2} - \frac{h}{\pi} + \frac{\cos nx}{n^{2}} + \frac{\cos nx}{n^{2}} \\ |x| = \frac{\pi}{2} - \frac{h}{\pi} + \frac{\cos nx}{n^{2}} + \frac{\cos nx}{n^{2}} \\ \text{Aud } x = 0 \\ \Rightarrow 0 = \frac{\pi}{2} - \frac{h}{\pi} + \frac{\cos n}{n^{2}} + \frac{\cos n}{n^{2}} + \frac{\cos n}{62} + \frac{\cos n}{62} \\ \Rightarrow -\frac{\pi}{2} = -\frac{h}{\pi} + \frac{1}{2} + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \frac{1}{3^{2}} \\ \Rightarrow \frac{\pi^{2}}{8} = \frac{1}{n^{2}} + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \frac{1}{3^{2}} \\ \Rightarrow \frac{\pi^{2}}{8} = \frac{1}{n^{2}} + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \frac{1}{3^{2}} \\ \Rightarrow \frac{\pi^{2}}{8} = \frac{1}{n^{2}} + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \frac{1}{3^{2}} \end{aligned}$$

\*\* Plarmonic analysis  
\*\* Plarmonic analysis  
\*\* 5.1 Compute upto Second harmonics of the focusion  
Series of f(x) given by the following lable  

$$x = 0$$
 76  $\frac{7}{3}$   $\frac{7}{2}$   $\frac{27}{3}$   $\frac{57}{6}$   $\frac{7}{192}$   
 $\frac{1}{2}$   $\frac{1}{2}$   $\frac{7}{2}$   $\frac{57}{6}$   $\frac{7}{192}$   
 $\frac{1}{2}$   $\frac{1}{2}$   $\frac{7}{2}$   $\frac{57}{6}$   $\frac{7}{192}$   
Solution:  
Given the length of the interval is T  
\*\*  $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   
number of subintervals  $m = 6$   
\*\*  $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   
 $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   
 $A = \frac{a_0}{2} + a_1 \cos 2\pi t + a_2 \cos 3\pi t + b_1 \sin 2\pi t + b_2 \sin 4\pi t + b_3 \sin 2\pi t + b_2 \sin 4\pi t + b_3 \sin 2\pi t + b_4 \sin 2\pi t + b_4 \sin 2\pi t + b_5 \sin 4\pi t + b$ 

| y since | 0     | 1-126  | 606.0-  | 0     | - a. 7 62     | 6.217   | 0.328  |  |
|---------|-------|--------|---------|-------|---------------|---------|--------|--|
| yano    | 36-1  | - 0.65 | -0.625  | 1.30  | 0.44          | 0.125   | 2.67 - |  |
| gring   | 0     | 1-126  | 606-0   | 0     | 0.762         | 0.217   | 3.014  |  |
| y cano  | 1. 78 | 0.65   | - 0.525 | -1.30 | 0.44          | -0-125  | 1.12   |  |
| A=4     | 1.98  | 1.30   | 1.05    | 1-30  | - 0.88        | -0.25   | 4.5    |  |
| Sinzo   | Q     | 0.866  | -0.866  | 0     | <b>6.</b> 866 | - 0.866 | Total  |  |
| COALO   | 1     | - Q.S  | 10.01   | 1     | 10.0          | 10.01   |        |  |
| Sine    | 0     | 0.866  | 0.866   | 0     | -0.866        | -0,866  |        |  |
| (10%G)  | 1     | 6-21   | 5.0-    | ī     | 5.01          | 0.5     |        |  |
| BEINE   | 0     | 1=10   | E e     | F     | 4 <u>1</u>    | 国の      |        |  |
|         | 0     | 1-)-0  | H-m     | FIA   | 4/0           | 10/0    |        |  |

 $Q_0 = \frac{2}{6} (4.5) = 1.5$ 

. 0

$$Q_{1} = \frac{2}{6} (1.12) = 0.373, \quad Q_{2} = \frac{2}{6} (2.67) = 0.87$$
  
$$b_{1} = \frac{2}{6} (3.04) = 1.005, \quad b_{2} = \frac{2}{6} (-0.328) = -0.109$$

 $A = \frac{1.5}{2} + 0.373 curse + 0.89 curse + 1.005 sine - 0.109 sine 0$ 

0.75 + 0.273 who + 0.89 who + 1.005 sind - 0.109 sing Ĩi

2.53 Find the foreier carsene series up to Third harmonic to represent the function given by the following data EMIJ2013

X O I 2 3 A 5

fix) 9 18 24 28 26 20

Sdos Gjiven

Here size values of x are given, which are left end values of the subintervals of the interval (0,6)

Here 21=6 -> l=3 and m=6, and h=1

Then the fourier Casine Sories is

 $\int (\mathbf{x}) = \frac{Q_0}{2} + Q_1 \cos \frac{\pi \mathbf{x}}{2} + Q_2 \cos \frac{2\pi \mathbf{x}}{2} + Q_3 \cos \frac{2\pi \mathbf{x}}{2}$ 

 $= \frac{Q_0}{2} + Q_1 \cos \frac{\pi x}{3} + Q_2 \cos \frac{\pi x}{3} + Q_3 \cos \frac{\pi x}{3}$ 

 $= \frac{\alpha_p}{2} + \alpha_1 \cos \frac{\pi x}{3} + \alpha_2 \cos \frac{2\pi x}{3} + \alpha_3 \cos \frac{\pi x}{3}$ 

Put O = IX, Then Values of O cossesponding to Value of x are O.J. IIII 47 . 50 . . . h= II

| e<br>L      | o T | he.<br>fr | for<br>20)<br>10 = | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | n /<br>ao<br>2<br>zy | 8er<br>+ 0 | ies<br>), wa<br>hy = | is given by<br>30+ 0, 00300+ 0,00300<br>2 = y 00300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|-----|-----------|--------------------|---------------------------------------|----------------------|------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>y coaso | σ-  | -18       | 24                 | - 28                                  | 26                   | - 20       | 1<br>1               | DE VOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| y cos20     | 0-  | 6         | - 12               | 28                                    | 1                    | - 10       | H+ 1                 | 41.67<br>- 8.33<br>- 8.33<br>- 2.33<br>2.33<br>2.33<br>2.33<br>2.33<br>2.33<br>2.33<br>2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| y curso     | 0-  | 0-        | -12                | - 28                                  | -13                  | 01         | 1 20                 | 25) = -25) = -25) = -25) = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -33300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -3300 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -33000 = -2 -330000 |
| 7           | σ   | 8         | 24                 | 28                                    | 26                   | 20         | 19                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| co/2 30     | -+  |           | 1                  | 1                                     | 1                    | 1 -        | Total                | Ayuesic Ryuesic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COASE       | 1   | - 0.5     | 10.01              | -                                     | 10.5                 | - 0.5      |                      | W W 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cose        | -   | 0.5       | - 0.5              | ī                                     | 10.5                 | 0.5        |                      | " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| B=TX        | 0   | 1=10      | tam                | 811 = T                               | AT                   | 5/0        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ×           | 0   | -         | N                  | m                                     | +                    | 10         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |     |           |                    |                                       |                      |            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

2.54 Find the fourier Series up to second hamme yor y = for from the following Values ×: 0 मा आ भा मा आ देखा देखा Y: 1.0 1.4 1.9 1.7 1.5 1.2 1.0 E (AIM 2010 (NID 2013), (MIJ2014), ( A/M 2015) Solns: The Values are given in the interval (0,=) I with he I With normber of intervals m=6 and width h= II The fourier series upto second harmonic  $y = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + b_1 \sin x + b_2 \sin 2x$ where  $a_0 = \frac{2}{m} \leq \frac{2}{m}$ ,  $a_n = \frac{2}{m} \leq \frac{2}{m}$  grownse,  $b_n = \frac{p}{m} \leq \frac{q}{strange}$ To find the co-efficients we shall use the left end values. So we shall take the first size values and display the computations in a table.

| 00 = 2 × 8.7 | , e. e.<br>e. e. e. | 91 = 2 Eyeosx | =       | a==0.367<br>a==2 Syconsx | = <u>2</u> (-0.3)<br><u>6</u> | 03 = 2 = 4 masx | (1.0) <u>2</u> = | 1 0.033                                                             |
|--------------|---------------------|---------------|---------|--------------------------|-------------------------------|-----------------|------------------|---------------------------------------------------------------------|
| YSinzy       | 0                   | 212.1         | -1.65   | 0                        | 1.299                         | -1.039          | -0.178           | 10<br>13300537<br>1028                                              |
| YEANY        |                     | 1.0 -         | - 0.95  | 1.7                      | - 0.75                        | - 0.6           | 5.0-             | - 145<br>- 0 0593<br>- 0 0593<br>- 0 0593<br>- 2 + 0.0<br>- 2 + 0.0 |
| Y sinx       | 0                   | 1.212         | 1.65    | 0                        | -1.299                        | - 1.039         | 0.524            | 24) = (42<br>= (42<br>= (42) = -                                    |
| y why        | 1                   | 0.7           | - 0, 95 | 1.1                      | - 0.75                        | 9.0             | - :-             | the this                                                            |
| Y            | -                   | 4.1           | 6 - 1   | 1.7                      | 10<br>-                       | 1.2             | 8.7              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                               |
| XENIS        | 0                   | 0.866         | - 0.866 | 0                        | 0.866                         | -0.866          | Total            | y sines                                                             |
| COA2K        | -                   | - 0.5         | - 0.5   | -                        | -0.0                          | - 0.9           |                  | JE JE W<br>,                                                        |
| Sinx         | 0                   | 0.866         | 0.866   | 0                        | - 0.866                       | - 0.89          |                  | 6 = = = = = = = = = = = = = = = = = = =                             |
| XSOJ         | -                   | 0.5           | - 0.5   | ī                        | د<br>۱<br>۰                   | 0 .01           |                  | **                                                                  |
| ×            | 0                   | FIM           | tala    | to to                    | 人一一                           | n all n         | >                |                                                                     |

FOURIER TRANSFORM main PART-A. 1) Find the Fourier size transform of 1/20 [A/M2015] [N/10 2016] [A/M 2017] soluction. put i= 0  $Fs[f(x)] = \sqrt{\frac{2}{\pi}} \int f(x) s^{\circ}nsx dn$  $= \sqrt{\frac{2}{\pi}} \int \frac{1}{\pi} \operatorname{Sin}_{n} \operatorname{Sin}_{n} \operatorname{dn}_{n}$   $= \sqrt{\frac{2}{\pi}} \times \frac{\pi}{2}$   $\int \frac{\sin n}{\pi} \operatorname{dn}_{n} = \frac{\pi}{2}$ - VT/2 @ If FIST is the Fourier transform of fize Hour.  $F[f(x-a)] = e^{isa}F(s)$ [AM 2017] freve soluction.  $F[f(x-a)] = \frac{1}{\sqrt{2\pi}} \int f(x-a) e^{iSx} dh$ 

 $b = \alpha - \alpha \Rightarrow dt = dn$ 

$$= \frac{1}{\sqrt{2\pi}} \int_{\sigma} f(t) e^{is(t+\alpha)} dt$$
$$= e^{is\alpha} \frac{1}{\sqrt{2\pi}} \int_{\sigma} f(t) e^{ist} dt$$

$$= e^{iSQ}F(S)$$

state change of scale property of Fourior. 3 Fransforms . [N/D 2016] [N/D 2015] [N/D 2014] soluction.  $F[f(ax)] = \frac{1}{\sqrt{2\pi}} \int f(ax) e^{isx} dx$ put t=ax ⇒olt=adri  $\frac{1}{\sqrt{2\pi}}\int_{T}^{\infty}f(t)e^{is(ta)}dt$  $= \frac{1}{\alpha} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) Q t(\frac{1}{\alpha}) t dt$  $= \frac{1}{2} F(\frac{1}{2})$ @ State Fourier Integral theorem [M/J 2016] Soluction A function. fin satisfies the Dirichlet's Hen conditions in (-l,l)  $f(x) = \frac{1}{\pi} \int \int f(t) \cos \lambda (t-x) dt d\lambda$ If the Fourier transform of fire is F [fix]=F(s)  $\bigcirc$ then show that F[f(x-a)] = e iax F(s) [A/M 2015] Soluction,  $F[f(x-a)] = \int_{\sqrt{2\pi}}^{A} \int f(x-a) e^{isx} dx$ put t= 2-9 => dt= dx  $= \frac{1}{\sqrt{2}} \int f(t) e^{i S(t+q)} dt$ = e<sup>isq</sup> <u>A</u> J fleveist dt. = e<sup>isq</sup> F(s)

State and prove modulation theorem on Fourier Eransform [N/D 2014] solución. If F[for] = F(s) then  $F[f(n)\cos(n)] = \frac{1}{2} [F(s-a) + F(s+a)]$  $F[f(x)\cos \alpha x] = \frac{1}{\sqrt{2\pi}} \int f(x)\cos \alpha x e^{isx} dx$  $= \frac{1}{\sqrt{2}} \int f(x) \left( \frac{e^{i\alpha x} + e^{i\alpha x}}{2} \right) e^{i\beta x} dx$  $= \frac{1}{2} \left[ \frac{1}{\sqrt{2\pi}} \int \frac{1}{f(x)} e^{i(s+a)x} dn + \frac{1}{\sqrt{2\pi}} \int \frac{1}{f(x)} e^{i(s-a)x} dn \right]$  $= \frac{1}{2} \left[ f(s+q) + F(s-q) \right]$ kirite Fourier transform pair [M/J 2013] solution.  $F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\infty} f(x) e^{isx} dx$  $f(x) = \frac{1}{\sqrt{2\pi}} \int F[f(x)] e^{iSx} ds$ 

Ŧ

$$pART-B:$$
() Find the Fourier transform of  $f(x) = \int_{0}^{1} (11) x/2$   
hence evaluate  $\int_{0}^{\infty} \frac{\sin x}{x} dx \quad and \quad \int_{0}^{\infty} \frac{(\sin x)^{2}}{x} \frac{dx}{2} dx$   
 $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-2}^{2} [\cos x + i \sin x] dx$   
 $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} [\cos x + i \sin x] dx$   
 $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} \cos x dx = \sqrt{\frac{2}{\pi}} \int_{0}^{2} \cos x dx$   
 $= \sqrt{\frac{2}{\pi}} \left[ \frac{\sin x}{2} \right]_{0}^{4} = \sqrt{\frac{2}{\pi}} \left[ \frac{\sin 2 x}{5} \right]$   
uning Enverse Fourier transform of  $f(x)$   
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{1}{2\pi} \left[ \frac{\sin 2 x}{5} \right] [\tan x] ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \left[ \frac{\sin 2 x}{5} \right] [\tan x] ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \left[ \frac{\sin 2 x}{5} \right] [\tan x] ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \left[ \frac{\sin 2 x}{5} \right] [\tan x] ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \left[ \frac{\sin 2 x}{5} \right] [\tan x] ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \left[ \frac{\sin 2 x}{5} \right] ds$ .  
 $put x = 0$   
 $1 = \frac{A}{\pi} \int_{0}^{\infty} \left[ \frac{\sin 2 x}{5} \right] ds$ .  
 $put x = 0$   
 $1 = \frac{A}{\pi} \int_{0}^{\infty} \left[ \frac{\sin 2 x}{5} \right] ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .  
 $f(x) = \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\sin 2 x}{5} ds$ .

 $\int \frac{\sin t}{t} dt = \pi/2$ pul- $\int \underline{Sin x} dx = \overline{N_2}$ parsavel's Idwitity. aning  $\int |f(\alpha)|^2 d\alpha = \int |F(s)|^2 ds$  $\int (1)^2 dx = \int \left[ \sqrt{\frac{2}{\pi}} \left( \frac{S^{(n)} 2S}{s} \right) \right] ds,$  $\frac{2}{2}\int dn = \frac{2}{2} \times \frac{2}{T} \int \left[\frac{\sin 2S}{S}\right]^2 dS$  $2(\chi)^{2} = \frac{A}{\pi} \int \left[ \frac{2^{2}n^{2}}{2} \int \frac{A}{\sqrt{2}} \right]^{2} ds$  $A \times \frac{\pi}{A} = \int \left[\frac{\sin 2s}{s}\right] ds$ put 25=6 ⇒  $\pi = \left[ \frac{\sinh t}{1 \tan t} \right] \frac{dt}{2}$  $\pi = \int_{a}^{\infty} \pi \left[ \frac{\sin t}{t} \right]^{2} \frac{dt}{2}$  $\int \int \frac{\sin t}{t} \int dt = \overline{N_2}$  $\int \int \frac{\sin x}{x} \int \frac{\sin x}{x} = \frac{1}{2}$ 

Find the Fourier co-sine bransform of fix) = e jaro

FA/M 2017]

soluction.  $Fe [f(x)] = \sqrt{\frac{2}{\pi}} \int f(x) \cos x \, dx$ =  $\sqrt{\frac{2}{\pi}} \int e^{-a^2 \pi^2} R \cdot p e^{iSR} dh$ =  $\sqrt{\frac{2}{\pi}} R \cdot P \int e^{-q^2 \chi^2 + i s \chi} dx$  $= \sqrt{\frac{2}{\pi}} R \circ p \int e^{-\int (\alpha_x)^2 - i \cdot x \cdot J} dn$ =  $1\frac{2}{3}R \cdot p_{2}^{2}\int e^{-\int (ax)^{2} - \frac{29}{20}i(x)}$  $= \sqrt{\frac{2}{3}} R \cdot p^{\frac{1}{2}} \int e^{-\frac{1}{2}} \left[ (ax) - 2(ax) \left( \frac{ix}{2a} \right) \right]$  $= \sqrt{\frac{2}{\pi}} \frac{R \circ p^{\frac{1}{2}} \int Q}{Q \circ Q} \int \frac{Q}{Q} = \frac{Q}{Q} \left(\frac{1}{2} + \frac{1}{2}\right)^{\frac{2}{2}} \left(\frac{1}{2} + \frac{1}{2}\right)^{\frac{2}{2}} \int \frac{Q}{Q} \int \frac{Q}{$  $= \sqrt{\frac{2}{3}} R^{0} p^{\frac{1}{2}} e^{\frac{\alpha}{2}} \left[ \alpha x - \frac{1^{\frac{3}{2}}}{2\alpha} \right]^{\frac{2}{2}} - \frac{s^{2}}{4\alpha^{2}} dx$  $= \sqrt{\frac{2}{\pi}} R \cdot p e^{-\frac{s^2}{4a^2}} \int e^{-(ax - i\frac{s}{2a})^2} dx$ put  $u = a_{21} - \frac{i_{22}}{2a} \Rightarrow \frac{d_{11}}{d_{12}} = a$  $\frac{du}{R \cdot p} e^{-s^2/a^2} \int e^{-u^2} \frac{du}{q}$ = R. pe - s/2a2 Je-u2du. 125  $= R \cdot P \frac{e^{-s^2/4a^2}}{a\sqrt{2}\sqrt{t}} \left( \frac{1}{\sqrt{t}} \right)$   $= \frac{e^{-s^2/4a^2}}{a\sqrt{2}} \left( \frac{1}{\sqrt{t}} \right)$ 

Find Individe Fourier's transform of 
$$f(x) = \frac{-qx}{x}$$
  
Florte deduce the infinite Fourier simulation of  $\frac{1}{2}x$   
solution:  
Let  $f(x) = \frac{-qx}{x}$   
Fs [ $f(x) = \sqrt{\frac{\pi}{x}} \int_{0}^{\frac{\pi}{x}} \int_{0}^{\frac{\pi}{x}} \frac{e^{-qx}}{x} \sin sx \, dx$   
 $= \sqrt{\frac{\pi}{x}} \int_{0}^{\frac{\pi}{x}} \frac{e^{-qx}}{x} \sin sx \, dx$   
Diff Wirt "s" We get.  
 $\frac{d}{dx}$  Fs [ $\frac{1}{2}x$ ]  $= \sqrt{\frac{\pi}{x}} \int_{0}^{\frac{\pi}{x}} \frac{e^{-qx}}{2x} (\sin sx) dx$   
 $= \sqrt{\frac{\pi}{x}} \int_{0}^{\frac{\pi}{x}} \frac{e^{-qx}}{2x} (\cos sx) (x) dx$ 

And the second second

\* · ·

- Maria

and a second s

وفارتهما والمراجع والمستاوين فالمحم مستموقي المرسم والمراجع والمراجع

(3) Find the Fourier transform of 
$$f(x) = \int_{0}^{1} \frac{1-|x|}{|x||^{1}}$$
  
and thence deduce that  $\int_{0}^{\infty} \left[\frac{\sin t}{E}\right]^{\frac{1}{2}} dt = \frac{7}{3}$ .  
Selection  $\begin{bmatrix} M/T = 2016 \end{bmatrix}$   
 $F \left[\frac{1}{2}(x)\right] = \frac{4}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{1}{2}(x)e^{is\alpha} dx$   
 $= \frac{4}{\sqrt{2\pi}} \int_{0}^{\infty} (1-x) e^{is\alpha} dx$   
 $= \sqrt{\frac{2}{\pi}} \int_{0}^{1} (1-x) \frac{secx}{2} dx$   
 $= \sqrt{\frac{2}{\pi}} \int_{0}^{1} (1-x) \frac{secx}{2} dx$   
 $= \sqrt{\frac{2}{\pi}} \left[\frac{1-x}{x^{2}}\right] - (-x) \left(\frac{-\cos xx}{x^{2}}\right) \int_{0}^{1}$   
 $= \sqrt{\frac{2}{\pi}} \left[\frac{1-\cos sx}{x^{2}}\right]$   
 $= \sqrt{\frac{2}{\pi}} \left[\frac{2sin^{2}(x)}{x^{2}}\right]$   
using parsovel's Tolumtity  
 $\int_{0}^{\infty} 1F(x) e^{isn} dx = 2 \int_{0}^{1} (1-x)^{2} dx$   
 $\frac{2}{\pi} \int_{-\infty}^{\infty} \frac{\sin^{4}(x)}{x^{4}} dx = 2 \int_{0}^{1} (1-x)^{5} \int_{0}^{1}$ 

10.00
(a) solve the integral equation 
$$\int_{0}^{\infty} f(x) \cos \lambda x dx = e^{-\lambda}$$
,  $\lambda > 0$   
Soluction:  $\infty$   
Griven  $\int_{0}^{\infty} f(x) \cos \lambda x dx = e^{-\lambda}$   
Insteed of Variable 5 the latter  $\lambda$  is used  
marked  $\sqrt{\frac{\pi}{\pi}} \int_{0}^{\infty} f(x) \cos \lambda x dx = \sqrt{\frac{\pi}{\pi}} e^{-\lambda}$   
Fe ( $\lambda$ ) =  $\sqrt{\frac{2\pi}{\pi}} e^{-\lambda}$   
Invoice Fourier-transform.  
 $f(x) = \sqrt{\frac{\pi}{\pi}} \int_{0}^{\infty} Fe(\lambda) \cos \lambda d\lambda$   
 $= \sqrt{\frac{\pi}{\pi}} \int_{0}^{\infty} \sqrt{\frac{2\pi}{\pi}} e^{-\lambda} \cos \lambda d\lambda$   
 $= \sqrt{\frac{\pi}{\pi}} \int_{0}^{\infty} \sqrt{\frac{2\pi}{\pi}} e^{-\lambda} \cos \lambda d\lambda$   
 $= \frac{2}{\pi} \int_{0}^{\infty} \sqrt{\frac{2\pi}{\pi}} e^{-\lambda} \cos \lambda d\lambda$   
 $= \frac{2}{\pi} \left[ \frac{e^{-\lambda}}{1+\pi^{2}} \left( -\cos x \lambda dx + \pi \sin x \lambda \right) \right]_{0}^{\infty}$   
 $= \frac{2}{\pi} \left[ \frac{1}{1+\pi^{2}} \left( -\cos x \lambda dx + \pi \sin x \lambda \right) \right]_{0}^{\infty}$ 

1. 10 C

Find Fourier transform of 
$$f(x) = e^{-a^2x^2}$$
 aso Hunce  
show that the function  $e^{-x^2/2}$  is solf factorized.  
Solution:  

$$\begin{bmatrix} A | M \text{ dets } \end{bmatrix} \begin{bmatrix} M/J \text{ actb} \end{bmatrix} \begin{bmatrix} N/D \text{ actb} \end{bmatrix} \\ \begin{bmatrix} N/D \text{ actb} \end{bmatrix} \\ \begin{bmatrix} N/D \text{ both} \end{bmatrix} \end{bmatrix}$$

$$F \begin{bmatrix} \frac{1}{\sqrt{2\pi}} \end{bmatrix} = \frac{A}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-a^2x^2} e^{\frac{1}{2}x} dx$$

$$= \frac{A}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-a^2x^2} e^{\frac{1}{2}x} dx$$

$$= \frac{A}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\left[(ax)^2 - \frac{2A}{A}\right]^2 \times \frac{1}{2}} dx$$

$$= \frac{A}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\left[(ax)^2 - \frac{2A}{A}\right]^2 \times \frac{1}{2}} dx$$

$$= \frac{A}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\left[(ax)^2 - 2(ax)\left(\frac{1}{4}\right)\right]} dx$$

$$= \frac{A}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\left[(ax)^2 - 2(ax)\left(\frac{1}{4}\right) + \left(\frac{1}{4}\right) - \left(\frac{1}{26}\right)\right]} dx$$

$$= \frac{A}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\left[(ax - \frac{1}{4}x)^2\right] - \frac{S^2}{4a^2}} dx$$

$$= \frac{A}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\left[(ax - \frac{1}{4}x)^2\right] - \frac{S^2}{4a^2}} dx$$

$$= \frac{A}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\left[(ax - \frac{1}{4}x)^2\right] - \frac{S^2}{4a^2}} dx$$

$$= \frac{e^{-\frac{S^2}{4a^2}}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\left[(ax - \frac{1}{4}x)\right]} dx$$

$$F \left[e^{-a^2x^2}\right] = \frac{e^{-\frac{S^2}{2}}}{a\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-u^2} du = \frac{e^{-\frac{S^2}{4a^2}}}{a\sqrt{2\pi}} (\sqrt{\pi})$$

$$Put \quad u = ax - \frac{1}{4} = \frac{e^{-\frac{S^2}{4a^2}}}{a\sqrt{2\pi}} (\sqrt{\pi})$$

$$Put \quad a = \frac{\sqrt{4\pi}}{\sqrt{2\pi}}$$

Ð

Find the fourier sine and co-sine transform   
of 
$$f(x) = e^{-qx}$$
,  $x > 0$ , as the time deduce that.  

$$\int_{0}^{\infty} \frac{\cos x}{x^{2} + a^{2}} dx \text{ and } \int_{0}^{\infty} \frac{\sin x}{x^{2} + a^{2}} dx \cdot [M/J \text{ poll } J]$$
Solution:  
 $f(x) = e^{-qx}$   
 $f(x) = e^{-qx}$   
 $f(x) = e^{-qx} = \sqrt{\frac{\pi}{\pi}} \left(\frac{s}{x^{2} + a^{2}}\right) \text{ and } Fe(e^{-qx}) = \sqrt{\frac{\pi}{\pi}} \left(\frac{a}{x^{2} + a^{2}}\right)$   
Inverse Fourier co-sine transform.  
 $f(x) = \sqrt{\frac{\pi}{\pi}} \int_{0}^{\infty} Fe [e^{-qx}] \cos x ds.$   
 $e^{-qx} = \sqrt{\frac{\pi}{\pi}} \int_{0}^{\infty} \sqrt{\frac{\pi}{\pi}} \left(\frac{a}{x^{2} + a^{2}}\right) \cos x ds.$   
 $\int_{0}^{\infty} \frac{\cos x}{x^{2} + a^{2}} dx = \frac{\pi}{2sa} e^{-qx}$   
 $\int_{0}^{\infty} \frac{\cos x}{x^{2} + a^{2}} dx = \frac{\pi}{2sa} e^{-qx}$   
Inverse Fourier sine transform.  
 $f(x) = \sqrt{\frac{\pi}{\pi}} \int_{0}^{\infty} Fs [e^{-qx}] f(x) s x ds.$   
 $\int_{0}^{\infty} \frac{\cos x}{x^{2} + a^{2}} dx = \frac{\pi}{2sa} e^{-qx}$   
Inverse Fourier sine transform.  
 $f(x) = \sqrt{\frac{\pi}{\pi}} \int_{0}^{\infty} \sqrt{\frac{\pi}{\pi}} \left(\frac{s}{x^{2} + a^{2}}\right) \sin x ds.$   
 $\int_{0}^{\infty} \frac{s \sin x}{x^{2} + a^{2}} ds = \frac{\pi}{2s} e^{-qx}$   
 $\int_{0}^{\infty} \frac{s \sin x}{x^{2} + a^{2}} ds = \frac{\pi}{2s} e^{-qx}$   
 $\int_{0}^{\infty} \frac{s \sin x}{x^{2} + a^{2}} ds = \frac{\pi}{2s} e^{-qx}$   
 $\int_{0}^{\infty} \frac{s \sin x}{x^{2} + a^{2}} ds = \frac{\pi}{2s} e^{-qx}$   
 $\int_{0}^{\infty} \frac{s \sin x}{x^{2} + a^{2}} ds = \frac{\pi}{2s} e^{-qx}$   
 $\int_{0}^{\infty} \frac{s \sin x}{x^{2} + a^{2}} ds = \frac{\pi}{2s} e^{-qx}$   
 $\int_{0}^{\infty} \frac{s \sin x}{x^{2} + a^{2}} ds = \frac{\pi}{2s} e^{-qx}$   
 $\int_{0}^{\infty} \frac{s \sin x}{x^{2} + a^{2}} ds = \frac{\pi}{2s} e^{-qx}$   
 $\int_{0}^{\infty} \frac{s \sin x}{x^{2} + a^{2}} ds = \frac{\pi}{2s} e^{-qx}$ 

and the second second second

\* \* \*

5

ł

(\*) Find the Fourier co-sine basistom of the dunction  

$$\frac{1}{4(\pi)} = \frac{e^{-\alpha \chi}}{2} e^{-b\chi}, \quad x > 0 \quad [N/D \ 2015]$$
Selection:  

$$\frac{1}{4et} = \frac{1}{2} e^{-\alpha \chi}, \quad x > 0 \quad [N/D \ 2015]$$
For  $[4\pi\pi] = \frac{e^{-\alpha \chi}}{2}$ 
For  $[4\pi\pi] = \frac{1}{2} \int_{-\infty}^{\infty} \int_{0}^{\pi} f(\pi) \cos x \, d\mu$   

$$s \quad \sqrt{\frac{2}{\pi}} \int_{0}^{\pi} \left(\frac{e^{-\alpha \chi}}{2}\right) \cos x \, d\mu$$
Diff where  $x''$  will get:  

$$\frac{1}{2dt} \text{ For } [4\pi\pi] = \sqrt{\frac{2}{\pi}} \int_{0}^{\pi} \left(\frac{e^{-\alpha \chi}}{2}\right) \frac{\partial}{\partial x} (\cos x) \, d\mu$$

$$= -\sqrt{\frac{2}{\pi}} \int_{0}^{\pi} e^{-\alpha \chi} \sin x \, d\mu$$

$$= -\sqrt{\frac{2}{\pi}} \int_{0}^{\pi} e^{-\alpha \chi} \sin x \, d\mu$$
For  $[4\pi\pi]^{2} = -\sqrt{\frac{2}{\pi}} \int_{0}^{\pi} \left(\frac{e^{-\alpha \chi}}{2^{2} + \alpha^{2}}\right) ds$ 

$$= -\sqrt{\frac{2}{\pi}} \sqrt{\frac{2}{\pi}} \int_{0}^{\pi} \left(\frac{e^{-\alpha \chi}}{2}\right) ds$$
For  $\left[\frac{e^{-\alpha \chi}}{2} - \frac{b^{\chi}}{2}\right] = Fe \left[\frac{e^{-\beta \chi}}{2\pi}\right] - Fe \left[\frac{e^{-\beta \chi}}{2\pi}\right]$ 

$$= -\frac{A}{\sqrt{2\pi}} \log \left(x^{2} + \alpha^{2}\right) + \frac{A}{\sqrt{2\pi}} \log (x^{2} + \alpha^{2})$$

E - 4

1.

ę

111111

Find the Fourier to-sine transform of 
$$x^{n-1}$$
  
[Alm 2015]  
Selection:  
WI-K -T.  $\int_{0}^{\infty} e^{-dx} x^{n-1} dx = \frac{\pi}{a^{n}}$ .  
put  $a = is$ .  
 $\int_{0}^{\infty} e^{-isx} a^{n-1} dx = \frac{\pi}{(is)^{n}}$ .  
 $\int_{0}^{\infty} a^{n-1} [\cos sx - isin sx] dx = \frac{\pi}{s^{n}} [-isin \pi \sqrt{s}]^{n}$ .  
 $= \frac{\pi}{s^{n}} [\cos \pi \sqrt{s} - isin \pi \sqrt{s}]^{n}$ .  
 $= \frac{\pi}{s^{n}} [\cos \pi \sqrt{s} - isin \pi \sqrt{s}]^{n}$ .  
Equative oral part.  
 $\int_{0}^{\infty} a^{n-1} \cos sx dx = \frac{\pi}{s^{n}} \cos \pi \sqrt{s}_{2}$ .  
Multiply  $\sqrt{s}_{1}$  on both side.  
 $\sqrt{\frac{\pi}{3}} \int_{0}^{\infty} x^{n-1} \cos sx dx = \sqrt{\frac{\pi}{3}} \frac{\pi}{s^{n}} \cos \pi \sqrt{s}_{2}$ .  
Fe [ $x^{n-1}$ ] =  $\sqrt{\frac{\pi}{3}} \frac{\pi}{s^{n}} \cos (\frac{n\pi}{2})$ .

-

Find the Fourier transform of 
$$f(x) = \begin{cases} 1 - |x|, |x| \\ 0, |there } \end{cases}$$
  
Hence deduce that  $\int_{0}^{\infty} \frac{\sin^{2} t}{t^{2}} dt \cdot [N/D \ 2014]$   
 $\int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} dx$   
 $= \frac{A}{\sqrt{2\pi}} \int_{0}^{\infty} (1 - |x|) \{ \cos s\pi + i \sin s\pi \} dx$   
 $= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} (1 - |x|) \{ \cos s\pi + i \sin s\pi \} dx$   
 $= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} (1 - x) \cos s\pi dx$   
 $= \sqrt{\frac{2}{\pi}} \left[ \frac{1 - \cos s}{s^{2}} \right]$   
 $\int_{0}^{\infty} \frac{1 - \cos s}{\pi} \left[ \frac{2 \sin^{2}(y_{2})}{s^{2}} \right]$   
 $\lim_{x \to \infty} \lim_{x \to \infty} \frac{1 - \cos s}{s^{2}} \int_{0}^{1} \frac{1 - \cos s\pi}{s^{2}} dx$   
 $= \sqrt{\frac{2}{\pi}} \left[ \frac{2 \sin^{2}(y_{2})}{s^{2}} \right]$   
 $\lim_{x \to \infty} \lim_{x \to \infty} \frac{1 - \cos s\pi}{s^{2}} dx$   
 $\int_{0}^{\infty} \frac{1 - \cos s}{\sqrt{\pi}} \int_{0}^{1} \frac{1 - \cos s\pi}{s^{2}} dx$   
 $\int_{0}^{\infty} \frac{1 - \cos s\pi}{\sqrt{\pi}} \int_{0}^{1} \frac{1 - \cos s\pi}{s^{2}} dx$   
 $\int_{0}^{\infty} \frac{1 - \cos s\pi}{\sqrt{\pi}} \int_{0}^{1} \frac{1 - \cos s\pi}{s^{2}} dx$   
 $\int_{0}^{\infty} \frac{1 - \cos s\pi}{\sqrt{\pi}} \int_{0}^{1} \frac{1 - \cos s\pi}{s^{2}} dx$   
 $\int_{0}^{1} \frac{1 - \sin s\pi}{\sqrt{\pi}} \int_{0}^{1} \frac{1 - \cos s\pi}{s^{2}} dx$   
 $\int_{0}^{1} \frac{1 - \sin s\pi}{\sqrt{\pi}} \int_{0}^{1} \frac{1 - \cos s\pi}{s^{2}} dx$   
 $\int_{0}^{1} \frac{1 - \sin s\pi}{\sqrt{\pi}} \int_{0}^{1} \frac{1 - \cos s\pi}{s^{2}} dx$ 

Find 
$$f(x)$$
 if its sine transform is  $\frac{e^{-5q}}{s}$ .  
Hence Find  $F_s^{-1}(\frac{1}{s}) [x/D 2013]$   
Soluction:  
 $F_s[f(x)] = \frac{e^{-5q}}{s}$ .  
By Invoise Formula the get  
 $f(x) = \sqrt{\frac{\pi}{2}} \int \frac{e^{-5q}}{s} \sin sx \, ds$   
 $f(x) = \sqrt{\frac{\pi}{2}} \int \frac{e^{-5q}}{s} \sin sx \, ds$   
 $\frac{d}{dx} f(x) = \sqrt{\frac{\pi}{2}} \int \frac{e^{-sq}}{s} \sin sx \, ds$   
 $= \sqrt{\frac{\pi}{2}} \int \frac{e^{-sq}}{s} \cos sx \, ds$   
 $= \sqrt{\frac{\pi}{2}} \int \frac{e^{-sq}}{s} \cos sx \, ds$   
 $= \sqrt{\frac{\pi}{2}} \int \frac{e^{-sq}}{s^2} \cos sx \, ds$   
 $= \sqrt{\frac{\pi}{2}} \int \frac{a}{x^2 + a^2} \, dn$ .  
 $\int \frac{1}{\sqrt{\frac{\pi}{2}}} \int \frac{a}{x^2 + a^2} \, dn$ .  
 $\int \frac{1}{\sqrt{\frac{\pi}{2}}} \int \frac{a}{x^2 + a^2} \, dn$ .  
 $\int \frac{1}{\sqrt{\frac{\pi}{2}}} \int \frac{1}{\sqrt{\frac{\pi}{2}}} \int \frac{\pi}{2} = \sqrt{\frac{\pi}{2}}$ .

 $(\mathfrak{F})$ 

a shere

(F) wing transform Methods evaluate 5 dr [N/D 20137 soluction. Let  $f(x) = e^{-qx}$  $Fe \left[ f(x) \right] = \sqrt{\frac{2}{\pi}} \int f(x) \cos x \, dx$  $= \int_{-\pi}^{2} \int_{-\pi}^{\infty} e^{\alpha x} \cos x dx$  $= \sqrt{\frac{2}{s}} \left[ \frac{\alpha}{s^2 + \alpha_2} \right]$ uning parsavel's Identity  $\int |f(x)|^2 dx = \int |Fe[f(x)J|^2 ds.$  $\int (e^{-q_{\chi}})^2 d\mu = \int \left[ \sqrt{\frac{2}{T}} \left( \frac{a}{s^2 + a^2} \right)^2 ds \right].$  $\int_{R}^{\infty} e^{-2qn} dn = \frac{2q^2}{\pi} \int \frac{ds}{(r^2/r^2)}$  $\int \frac{e^{-2ax}}{-2a} \int \frac{a^2}{2a^2} \int \frac{ds}{(s^2+a^2)}$  $\begin{bmatrix} 0 - 1 \\ -2a \end{bmatrix} = \frac{2a^2}{\pi} \int \frac{ds}{(s^2 + 2s)}$  $\int \frac{ds}{(s^2 + \alpha^2)} = \left(\frac{\overline{x}}{2\alpha^2}\right) \left(\frac{5}{3\alpha}\right) = \frac{\overline{x}}{4\alpha^2}$ pup- s= x  $\int \frac{dn}{\ln^2 \pm n^2} = \frac{\pi}{4n^2}$ 

#### UNIT –III

#### LAPLACE TRANSFORM

#### Def. Exponential order

A function f(t) is said to be of exponential order if

$$\operatorname{Lt}_{t \to \infty} e^{-\mathrm{st}} f(t) = 0$$

**Example 1** Show that  $x^n$  is of exponential order as  $x \to \infty$ , n > 0. Solution :

Lt 
$$e^{-ax} x^n = \operatorname{Lt}_{x \to \infty} \frac{x^n}{e^{ax}} \left[ \frac{\infty}{\infty} \text{ i.e., Indeterminant form} \right]$$
  

$$= \operatorname{Lt}_{x \to \infty} \frac{n x^{n-1}}{a e^{ax}} \left[ \frac{\infty}{\infty} \text{ i.e., Indeterminant form} \right]$$
[Apply L' Hospital Rule]  

$$= \operatorname{Lt}_{x \to \infty} \frac{n (n-1) \dots 1}{a^n e^{ax}} \text{ [Repeating this process we get]}$$

$$= \operatorname{Lt}_{x \to \infty} \frac{n!}{a^n e^{ax}} \text{ [Applying L'Hospital's rule]}$$

$$= \frac{n!}{\infty} = 0$$

Hence  $x^n$  is of exponential order.

Example Show that  $t^2$  is of exponential order. Solution : Lt  $e^{-st} t^2 = Lt \frac{t^2}{t \to \infty} \left[ \frac{\infty}{\infty} \text{ i.e., Indeterminant form} \right]$ [Apply L'Hospital's rule]  $= Lt \frac{2t}{t \to \infty} \frac{2t}{se^{st}} \left[ \frac{\infty}{se^{st}} \text{ form} \right]$ [Apply L'Hospital's Rule]  $= Lt \frac{2}{t \to \infty} \frac{2}{s^2} e^{st} = \frac{2}{se^{st}}$ = 0

Hence  $t^2$  is of exponential order. Example Show that the function  $f(t) = e^{t^2}$  is not of exponential order.

Solution: Lt  $e^{-st} e^{t^2} = Lt e^{-st + t^2}$ =  $e^{\infty} = \infty$ 

So  $f(t) = e^{t^2}$  is not of exponential order.

# Define function of class A.

Solution : A function which is sectionally continuous over any finite interval and is of exponential order is known as a function of class A.

- Important Result
- (1)  $L[1] = \frac{1}{s}$ where s > 0(2)  $L[t^n] = \frac{n!}{n+1}$  where n = 0, 1, 2, ...(3)  $L[t^n] = \frac{\Gamma n+1}{e^{n+1}}$  where n is not a integer. (4)  $L[e^{at}] = \frac{1}{s-a}$  where s > a or s-a > 0(5)  $L[e^{-at}] = \frac{1}{s+a}$  where s+a > 0(6)  $L[\sin at] = \frac{a}{s^2 + a^2}$  where s > 0(7)  $L[\cos at] = \frac{s}{s^2 + a^2}$  where s > 0(8) L[sinh at] =  $\frac{a}{s^2 - a^2}$  where s > |a| or  $s^2 > a^2$ (9) L[cosh at] =  $\frac{s}{s^2 - a^2}$  where  $s^2 > a^2$ (10)  $L[af(t) \pm bg(t)] = a L[f(t)] \pm b L[g(t)]$  [Linearity property] Note : (1)  $e^x = 1 + \frac{x}{11} + \frac{x^2}{12} + \dots$  $e^{\infty} = 1 + \frac{\infty}{11} + \frac{\infty^2}{12} + \dots$

(2) 
$$e^{-\infty} = \frac{1}{e^{\infty}} = \frac{1}{\infty} = 0$$

$$(3) \Gamma_{n+1} = n!$$

(4) 
$$\Gamma_{n+1} = \int_{0}^{x^{n}} e^{-x} dx$$
  
(5)  $\Gamma_{n+1} = n \Gamma_{n}$   
(6)  $\Gamma_{\nu_{2}} = \sqrt{\pi}$   
(7)  $\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^{2} + b^{2}} [a \sin bx - b \cos bx]$   
(8)  $\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^{2} + b^{2}} [a \cos bx + b \sin bx]$   
(9)  $\sin^{3}\theta = \frac{1}{4} [3 \sin \theta - \sin 3\theta]$   
(10)  $\cos^{3}\theta = \frac{1}{4} [\cos 3\theta + 3 \cos \theta]$   
(11)  $\sin A \cos B = \frac{1}{2} [\sin (A + B) + \sin (A - B)]$   
(12)  $\cos A \sin B = \frac{1}{2} [\sin (A + B) - \sin (A - B)]$   
(13)  $\cos A \cos B = \frac{1}{2} [\cos (A + B) - \cos (A - B)]$   
(14)  $\sin A \sin B = -\frac{1}{2} [\cos (A + B) - \cos (A - B)]$ 

## 5.2 TRANSFORMS OF ELEMENTARY FUNCTIONS -BASIC PROPERTIES

Result (1) : Prove that  $L[1] = \frac{1}{s}$  where s > 0Proof : We know that  $L[f(t)] = \int_{0}^{\infty} e^{-st} f(t) dt$ Here f(t) = 1

$$\therefore L[1] = \int_{0}^{\infty} e^{-st} dt = \left[\frac{e^{-st}}{-s}\right]_{0}^{\infty}$$
$$= -\frac{1}{s} \left[e^{-st}\right]_{0}^{\infty} = -\frac{1}{s} \left[e^{-\infty} - e^{-0}\right]$$
$$= -\frac{1}{s} \left[0 - 1\right] \text{ by note } (2)$$
$$= \frac{1}{s}, s > 0$$

Result (2) : Prove that L  $[t^n] = \frac{n!}{s^{n+1}} [n = 0, 1, 2, ...]$ Proof : We know that

 $L[f(t)] = \int_{0}^{\infty} e^{-st} f(t) dt$  $L[t^{n}] \qquad = \int_{0}^{\infty} e^{-st} t^{n} dt = \int_{0}^{\infty} t^{n} d\left[\frac{e^{-st}}{-s}\right]$  $= t^{n} \left( \frac{e^{-st}}{-s} \right) \bigg|_{0}^{\infty} - \int_{0}^{\infty} \frac{e^{-st}}{-s} n t^{n-1} dt$  $= (0-0) + \frac{n}{s} \int_{0}^{\infty} e^{-st} t^{n-1} dt$ i.e.,  $L[t^n] = \frac{n}{s} L[t^{n-1}]$ Similarly  $L[t^{n-1}] = \frac{n-1}{s} L[t^{n-2}]$  $L[t^{n-2}] = \frac{n-2}{s} L[t^{n-3}]$  $L[t^{n-(n-1)}] = \frac{n-(n-1)}{s} L[t^{[n-(n-1)]-1]}]$  $=\frac{1}{s}L[t^{o}] = \frac{1}{s}L[1] = \frac{1}{s}\frac{1}{s}$  $\therefore L[t^{n}] = \frac{n}{s} \frac{n-1}{s} \dots \frac{2}{s} \frac{1}{s} \frac{1}{s} = \frac{n!}{s} \frac{1}{s}$  $= \frac{n!}{e^{n+1}}$  where [n = 0, 1, 2, ...]

Result (3) Prove that  $L[t^n] = \frac{\Gamma_{n+1}}{s^{n+1}}$  where *n* is not a integer.

**Proof**: We know that 
$$L[f(t)] = \int_{0}^{\infty} e^{-st} f(t) dt$$
  
 $L[t^n] = \int_{0}^{\infty} e^{-st} t^n dt$ 

Put st = x s dt = dx  $= \int_{0}^{\infty} e^{-x} \left(\frac{x}{s}\right)^{n} \frac{dx}{s}$   $= \int_{0}^{\infty} e^{-x} \frac{x^{n}}{s^{n+1}} dx$   $= \frac{1}{s^{n+1}} \int_{0}^{\infty} x^{n} e^{-x} dx$ i.e.,  $L[t^{n}] = \frac{\Gamma_{n+1}}{s^{n+1}}$  [ $\therefore \int_{0}^{\infty} x^{n} e^{-x} dx = \Gamma_{n+1}$ ]

when n is a positive integer.

we get  $\Gamma_{n+1} = n!$  $L[t^n] = \frac{n!}{r^{n+1}}$ 

### II. PROBLEMS BASED ON TRANSFORMS OF ELEMENTARY FUNCTIONS - BASIC PROPERTIES

Example 1 Find L[t]

Solution : L[t<sup>n</sup>]

$$= \frac{n!}{s^{n+1}}$$
 [we know that]

$$L[t] = \frac{1!}{s^{1+1}} = \frac{1}{s^2}$$

Example 2 Find  $L[t^3]$ 

**Solution :** We know that  $L[t^n] = \frac{n!}{e^{n+1}}$ 

$$L[t^3] = \frac{3!}{s^{3+1}} = \frac{6}{s^4}$$

Example 3 Find  $L[\sqrt{t}]$ 

**Solution**: We know that  $L[t^n] = \frac{\Gamma_{n+1}}{s^{n+1}}$ 

$$L[\sqrt{t}] = L[t^{\nu_2}] = \frac{\Gamma_{\nu_2+1}}{s^{\nu_2+1}}$$

$$= \frac{\frac{1}{2}\Gamma_{\nu_2}}{s^{3/2}} \qquad [:: \Gamma_{n+1} = n \Gamma_n ; \Gamma_{\nu_2} = \sqrt{\pi}]$$
$$= \frac{\Gamma_{\nu_2}}{2s^{3/2}} = \frac{\sqrt{\pi}}{2s^{3/2}}$$

Example 4. Find L  $[t^{3/2}]$ 

Solution :

We know that  $L[t^n] = \frac{\Gamma_{n+1}}{s^{n+1}}$ 

$$L[t^{3/2}] = \frac{\Gamma_{3/2+1}}{s^{3/2}+1} = \frac{\frac{3}{2}\Gamma_{3/2}}{s^{5/2}}$$
$$= \frac{\frac{3}{2}\Gamma_{1/2+1}}{s^{5/2}} = \frac{\left(\frac{3}{2}\right)\left(\frac{1}{2}\right)\Gamma_{1/2}}{s^{5/2}}$$
$$= \frac{\left(\frac{3}{4}\right)\sqrt{\pi}}{s^{5/2}} \qquad [\because \Gamma_{1/2} = \sqrt{\pi}]$$
$$= \frac{3\sqrt{\pi}}{4s^{5/2}}$$

Example 5.2.5. Find  $L\left[\frac{1}{\sqrt{t}}\right]$ Solution : We know that  $L[t^n] = \frac{\Gamma_{n+1}}{s^{n+1}}$  $L\left[\frac{1}{\sqrt{t}}\right] = L\left[t^{-\nu_2}\right] = \frac{\Gamma_{-1/2}+1}{s^{-1/2}+1}$  $= \frac{\Gamma_{\nu_2}}{s^{\nu_2}}$ 

$$= \frac{\sqrt{\pi}}{\sqrt{s}} = \sqrt{\frac{\pi}{s}} \qquad [:: \Gamma_{\nu_2} = \sqrt{\pi}]$$

Result 4. Prove that  $L[e^{at}] = \frac{1}{s-a}$  where s > a.

**Proof** : We know that

$$\mathbf{L}[f(t)] = \int_{C}^{\infty} e^{-\mathrm{st}} f(t) dt$$

$$L\left[e^{at}\right] = \int_{0}^{\infty} e^{-st} e^{at} dt = \int_{0}^{\infty} e^{-(s-a)t} dt$$
$$= \left[\frac{e^{-(s-a)t}}{-(s-a)}\right]_{0}^{\infty} = -\frac{1}{s-a} \left[e^{-(s-a)t}\right]_{0}^{\infty}$$
$$= \frac{-1}{s-a} [0 - 1] = \frac{1}{s-a} \text{ where } s - a > 0$$

**Example** 6. Find the value  $L\left[e^{3t}\right]$ Solution : We know that

$$L[e^{at}] = \frac{1}{s-a}$$
$$L[e^{3t}] = \frac{1}{s-3}$$

Example 7 Find L [e<sup>3t+5</sup>] Solution :

W.K.T  $L[e^{at}] = \frac{1}{s-a}$   $L[e^{3t+5}] = L[e^{3t} e^{5}]$   $= e^{5} L[e^{3t}] = e^{5} \left[\frac{1}{s-3}\right] = \frac{e^{5}}{s-3}$ Example 8 Find  $L\left[\frac{e^{at}}{a}\right]$ Solution : W.K.T  $L[e^{at}] = \frac{1}{s-a}$   $L\left[\frac{e^{at}}{a}\right] = \frac{1}{a} L[e^{at}] = \frac{1}{a} \left[\frac{1}{s-a}\right]$ Example 9 Find  $L[2^{t}]$   $= W.K.T. L[e^{at}] = \frac{1}{s-a}$   $L[2^{t}] = L\left[e^{\log 2^{t}}\right]$   $= L\left[e^{t\log 2}\right]$   $= L\left[e^{(\log 2)t}\right]$  $= \frac{1}{s-\log 2}$  **Result 5.** Prove that  $L[e^{-at}] = \frac{1}{s+a}, (s+a) > 0$ 

Proof : W.K.T.  $L[f(t)] = \int_{0}^{\infty} e^{-st} f(t) dt$   $L[e^{-at}] = \int_{0}^{\infty} e^{-st} e^{-at} dt$   $= \int_{0}^{\infty} e^{-(s+a)t} dt$   $= \frac{e^{-(s+a)t}}{-(s+a)} \Big]_{0}^{\infty} = -\frac{1}{s+a} \Big[ e^{-(s+a)t} \Big]_{0}^{\infty}$   $= -\frac{1}{s+a} [0 - 1]$  $= \frac{1}{s+a}$  where (s+a) > 0

10. Find L  $[e^{-bt}]$ Example **Solution :** W.K.T  $L[e^{-at}] = \frac{1}{s+a}$  $L[e^{-bt}] = \frac{1}{s+b}$ Example 11. Find L  $[2e^{-3t}]$ Solution : W.K.T.  $L[e^{-at}] = \frac{1}{s+a}$  $L[2e^{-3t}] = 2L[e^{-3t}]$  $= 2 \left[ \frac{1}{s+3} \right] = \left[ \frac{2}{s+3} \right]$ Result 6. Prove that L [sin at] =  $\frac{a}{s^2 + a^2}$  (s > 0) but the formula  $\frac{1}{s^2 + a^2}$  (s > 0) Proof : W.K.T. L[f(t)] =  $\int_{0}^{\infty} e^{-st} f(t) dt$ L [sin at] =  $\int_{0}^{\infty} e^{-st} sin at dt$   $\int e^{ax} b(x) dx$   $= \frac{e^{ax}}{a^2 + b^2} [a sin bx - b cos bx]$   $= \left[\frac{e^{-st}}{s^2 + a^2} [-s sin at - a cos at]\right]_{0}^{\infty}$  by Note 7.

$$= 0 - \left[\frac{(-a)}{s^2 + a^2}\right] = \frac{a}{s^2 + a^2} \text{ where } s > 0.$$

Example 5.2.12. Find L [sin 2t]

Solution : W.K.T L[sin at] =  $\frac{a}{a^2 + a^2}$ L[sin 2t] =  $\frac{2}{s^2 + 2^2}$ =  $\frac{2}{s^2 + 4}$ 

Example 5.2.13. Find L [sin  $\pi$  t]

**Solution :** W.K.T L[sin at] =  $\frac{a}{s^2 + a^2}$ 

$$L[\sin \pi t] = \frac{\pi}{s^2 + \pi^2}$$

Result : 7. Prove that  $L[\cos at] = \frac{s}{s^2 + a^2} (s > 0)$ 

**Proof** : W.K.T.  $L[f(t) = \int_{0}^{\infty} e^{-st} f(t) dt$ 

$$L[\cos at] = \int_{0}^{\infty} e^{-st} \cos at \, dt$$
$$= \left[ \frac{e^{-st}}{s^2 + a^2} \left[ -s \cos at + a \sin at \right] \right]_{0}^{\infty}$$
$$= 0 - \left[ \frac{1}{s^2 + a^2} \left( -s \right) \right]$$
$$= \frac{s}{s^2 + a^2} \left( s > 0 \right)$$

Example 5.2.14. Find L [cos 2t]

Solution : W.K.T.  $L[\cos at] = \frac{s}{s^2 + a^2}$ 

$$L[\cos 2t] = \frac{s}{s^2 + 4}$$

#### 15 Prove that L [cos at] = $\frac{s}{s^2 + a^2}$ and L [sin at] = $\frac{a}{s^2 + a^2}$ Example

Solution : By Euler's theorem

$$e^{ix} = \cos x + i \sin x$$

$$e^{iat} = \cos at + i \sin at$$

$$L[e^{iat}] = L[\cos at + i \sin at]$$

$$= L[\cos at] + i L[\sin at]$$

$$L[\cos at] + i L[\sin at] = L[e^{iat}]$$

$$L[\cos at] + i L[\sin at] = L[e^{iat}]$$

$$= \frac{1}{s - ia}$$
$$= \left[\frac{1}{s - ia}\right] \quad \left[\frac{s + ia}{s + ia}\right]$$
$$= \frac{s + ia}{s^2 + a^2}$$

Equating real & Imaginary parts we get

$$L[\cos at] = \frac{s}{s^2 + a^2}$$
$$L[\sin at] = \frac{a}{s^2 + a^2}$$

Example 16 Find L  $[\cos(at + b)]$ 

**Solution :**  $L[\cos(at + b)]$ 

$$= L[\cos at \cos b - \sin at \sin b]$$

$$= \cos b L [\cos at] - \sin b L [\sin at]$$

$$= \cos b \left[\frac{s}{s^2 + a^2}\right] - \sin b \left[\frac{a}{s^2 + a^2}\right]$$

$$= \frac{s \cos b - a \sin b}{s^2 + a^2}$$

Example 17 Find L [sin<sup>2</sup> 2t]

Solution : 
$$L[\sin^2 2t] = L\left[\frac{1-\cos 4t}{2}\right] = \frac{1}{2}L[1-\cos 4t]$$
  
=  $\frac{1}{2}\left[L[1]-L[\cos 4t]\right]$   
=  $\frac{1}{2}\left[\frac{1}{s}-\frac{s}{s^2+16}\right]$ 

Example 18 Find L [sin 5t cos 2t]

Solution : 
$$L[\sin 5t \cos 2t] = \frac{1}{2} L[\sin 7t + \sin 3t]$$
 by Note 11  
=  $\frac{1}{2} \left[ \frac{7}{s^2 + 49} + \frac{3}{s^2 + 9} \right]$ 

Example 19 Find L[(sin t - cos t)<sup>2</sup>] Solution : L[(sin t - cos t)<sup>2</sup>] = L[sin<sup>2</sup> t + cos<sup>2</sup> t - 2 sin t cos t] = L [1 - sin 2 t] = L[1] - L[sin 2t] =  $\frac{1}{s} - \frac{2}{s^2 + 4}$ 

Result 8. Prove that L[sinh at] =  $\frac{a}{s^2 - a^2}$  where s > |a|

Proof : 
$$\sinh at = \frac{e^{at} - e^{-at}}{2}$$
  
L[ $\sinh at$ ] = L  $\left[\frac{e^{at} - e^{-at}}{2}\right]$   
=  $\frac{1}{2}$  L  $[e^{at} - e^{-at}]$  =  $\frac{1}{2}$   $\left[$  L  $[e^{at}] - L [e^{-at}]$  $\right]$   
=  $\frac{1}{2}$   $\left[\frac{1}{s-a} - \frac{1}{s+a}\right]$  =  $\frac{1}{2}$   $\left[\frac{s+a-s+a}{s^2-a^2}\right]$   
=  $\frac{1}{2}$   $\left[\frac{2a}{s^2-a^2}\right]$  =  $\frac{a}{s^2-a^2}$ ,  $s > |a|$ 

Result 9. Prove that L [cosh at] =  $\frac{s}{s^2 - a^2}$ , s > |a|

Proof: 
$$\cosh at = \frac{e^{at} + e^{-at}}{2}$$
  
 $L[\cosh at] = L\left[\frac{e^{at} + e^{-at}}{2}\right]$   
 $= \frac{1}{2}L[e^{at} + e^{-at}] = \frac{1}{2}\left[L[e^{at}] + L[e^{-at}]\right]$   
 $= \frac{1}{2}\left[\frac{1}{s-a} + \frac{1}{s+a}\right] = \frac{1}{2}\left[\frac{s+a+s-a}{s^2-a^2}\right]$   
 $= \frac{1}{2}\left[\frac{2s}{s^2-a^2}\right] = \frac{s}{s^2-a^2}, s > |a|$ 

Result 10. Linearity property.

Prove that L [a f(t) ± bg (t)] = a L [f (t)] ± b L [g (t)] Proof : W.K.T. L [f (t)] =  $\int_{0}^{\infty} e^{-st} f(t) dt$ L[a f (t) ± bg (t)] =  $\int_{0}^{\infty} e^{-st} [af(t) ± bg(t)] dt$ =  $\int_{0}^{\infty} e^{-st} af(t) dt \pm \int_{0}^{\infty} e^{-st} bg(t) dt$ =  $a \int_{0}^{\infty} e^{-st} f(t) dt \pm b \int_{0}^{\infty} e^{-st} g(t) dt$ =  $a L [f(t)] \pm b L [g(t)]$ 

Example  $L[e^{4t} + t^4 + 7]$ 

Solution :  $L[e^{4t} + t^4 + 7]$ 

$$= L [e^{4t}] + L [t^{4}] + L [7]$$
$$= \frac{1}{s-4} + \frac{4!}{s^{5}} + 7 L [1]$$
$$\frac{1}{s-4} + \frac{24}{s^{5}} + 7 \left[\frac{1}{s}\right]$$

Example 5.2.26. Find L [f(t)] if f(t) =  $\begin{cases} e^{-1}, & 0 < t < 4 \\ 0, & t > 4 \end{cases}$ 

Solution : W.K.T.  $L[f(t)] = \int_{0}^{\infty} e^{-st} f(t) dt$ 

$$= \int_{0}^{4} e^{-st} e^{-t} dt + \int_{4}^{\infty} e^{-st} 0 dt$$
$$= \int_{0}^{4} e^{-(s+1)t} dt + 0$$
$$= (s+1)t]^{4}$$

$$= \frac{e^{-1}}{-(s+1)} \bigg|_{0} = \frac{-1}{(s+1)} \bigg|_{0}^{+}$$
$$= \frac{-1}{s+1} \bigg[ e^{-4(s+1)} - 1 \bigg] = \frac{1}{s+1} [1 - e^{-4(s+1)}]$$

Result 11. Prove that 
$$L[f'(t)] = s L[f(t)] - f(0)$$
  
Proof : W.K.T.  $L[f(t)] = \int_{0}^{\infty} e^{-st} f(t) dt$   
 $L[f'(t)] = \int_{0}^{\infty} e^{-st} f'(t) dt$   
 $= \int_{0}^{\infty} e^{-st} d[f(t)]$   
 $= e^{-st} f(t) \Big]_{0}^{\infty} - \int_{0}^{\infty} f(t) (-s) e^{-st} dt$   
 $= [0 - f(0)] + s \int_{0}^{\infty} e^{-st} f(t) dt$   
 $= -f(0) + s L[f(t)]$ 

Result 12. Prove that  $L[f''(t)] = s^2 L[f(t)] - s f(0) - f'(0)$ Proof : W.K.T.  $L[f(t)] = \int_{0}^{\infty} e^{-st} f(t) dt$   $L[f''(t)] = \int_{0}^{\infty} e^{-st} f'(t) dt$   $= \int_{0}^{\infty} e^{-st} d[f'(t)]$  $= e^{-st} f'(t) \Big]_{0}^{\infty} - \int_{0}^{\infty} f'(t) (-s) e^{-st} dt$ 

$$= [0 - f'(0)] + s \int_{0}^{\infty} e^{-st} f'(t) dt$$
  
=  $-f'(0) + s L[f'(t)]$   
=  $-f'(0) + s [sL[f(t)] - f(0)]$  by result (1.1)  
=  $s^{2} L[f(t)] - sf(0) - f'(0)$ 

Note : (15)

 $L[f^{n}(t)] = s^{n} L[f(t)] - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{n-1}(0)$ 

Result : 13. FIRST SHIFTING THEORE\*\*

- If L  $[f(t)] = \varphi(s)$  then L $[e^{at}f(t)] = \varphi(s-a)$
- If L  $[f(t)] = \varphi(s)$  then  $L[e^{-at}f(t)] = \varphi(s+a)$

**Proof**: W.K.T  $L[f(t)] = \varphi(s) = \int_{0}^{\infty} e^{-st} f(t) dt$ 

$$L[e^{at}f(t)] = \int_{0}^{\infty} e^{-st} e^{at}f(t) dt$$
$$= \int_{0}^{\infty} e^{-(s-a)t}f(t) dt$$
$$= \varphi (s-a)$$
$$L[e^{-at}f(t)] = \int_{0}^{\infty} e^{-st} e^{-at}f(t) dt$$

$$= \int_{0}^{\infty} e^{-(s+a)t} f(t) dt$$
$$= \int_{0}^{\infty} e^{-(s+a)t} f(t) dt$$
$$= \varphi(s+a)$$

#### III. PROBLEMS BASED ON FIRST SHIFTING THEOREM AND SECOND SHIFTING THEOREM

Example Find L [t<sup>n</sup> e<sup>-at</sup>]  
Solution : L[t<sup>n</sup> e<sup>-at</sup>] = 
$$[L(t^n)]_{s \to (s+a)}$$
  
=  $\left[\frac{n!}{s^{n+1}}\right]_{s \to (s+a)}$   
=  $\frac{n!}{(s+a)^{n+1}}$ 

----

Example Find L  $[e^{-at} \cos bt]$ Solution :  $L[e^{-at} \cos bt] = [L [\cos bt]]_{s \to (s+a)}$  $= \left[\frac{s}{s^2 + b^2}\right]_{s \to (s+a)}$  $= \frac{s+a}{(s+a)^2 + b^2}$ 

Example Find L [e<sup>at</sup> sinh bt]  
Solution : L[e<sup>at</sup> sinh bt] = 
$$\left[L [\sinh bt]\right]_{s \to (s-a)}$$
  
 $= \left[\frac{b}{s^2 - b^2}\right]_{s \to (s-a)} = \frac{b}{(s-a)^2 - b^2}$   
Example Find L  $\left[e^t t^{-1/2}\right]$   
Solution : L $\left[e^t t^{-1/2}\right] = \left[L [t^{-1/2}]\right]_{s \to (s-1)}$   
 $= \left[\frac{\Gamma - \frac{1}{2} + 1}{s^{-1/2} + 1}\right]_{s \to (s-1)} = \left[\frac{\Gamma \frac{1}{2}}{s^{1/2}}\right]_{s \to (s-1)}$   
 $= \left[\frac{\sqrt{\pi}}{\sqrt{s}}\right]_{s \to (s-1)} = \left[\sqrt{\frac{\pi}{s}}\right]_{s \to (s-1)}$ 

Result 14. Second shifting theorem.

• If 
$$L[f(t)] = \varphi(s)$$
 and  $G(t) = \begin{cases} f(t-a), t > a \\ 0, t < a \end{cases}$   
then  $L[G(t)] = e^{-as} \varphi(s)$   
Proof:  $L[G(t)] = \int_{0}^{\infty} e^{-st} G(t) dt$   
 $= \int_{0}^{a} e^{-st} 0 dt + \int_{a}^{\infty} e^{-st} f(t-a) dt$   
 $= \int_{0}^{\infty} e^{-st} f(t-a) dt$   
Put  $t-a = u$   $t + a \Rightarrow u + 0$   
 $dt = du$   $t + \infty \Rightarrow u + \infty$   
 $= \int_{0}^{\infty} e^{-s} (u+a) f(u) du$   
 $= e^{-sa} \int_{0}^{\infty} e^{-su} f(u) du$   
 $= e^{-sa} \int_{0}^{\infty} e^{-su} f(t) at$  ['.'u is a olummy variable']  
 $= e^{-sa} L[f(t)]$   
 $= e^{-sa} \varphi(s)$ 

Result : 15. If  $L[F(t)] = \varphi(s)$  and C > 0 then  $L[F(t - c) H(t - c)] = e^{-cs} \varphi(s)$  where  $H(t) = \begin{cases} 1, t > 0 \\ 0, t < 0 \end{cases}$ Proof :  $L[f(t)] = \int_{0}^{s} e^{-st} f(t) dt$  $L[F(t - c) H(t - c) = \int_{0}^{\infty} e^{-st} F(t - c) H(t - c) dt$ 

## DERIVATIVES AND INTEGRALS OF TRANSFORMS -TRANSFORMS OF DERIVATIVES AND INTEGRALS

**Result : 17. Transforms of Derivatives** 

If 
$$L[f(t)] = \varphi(s)$$
 then  $L[tf(t)] = -\frac{d}{ds}\varphi(s) = -\varphi'(s)$   
Proof :  $\varphi(s) = L[f(t)]$   
 $\frac{d}{ds}\varphi(s) = \frac{d}{ds}L[f(t)]$ 

$$\varphi'(s) = \frac{d}{ds} \left[ \int_0^\infty e^{-st} f(t) dt \right] = \int_0^\infty \frac{\partial}{\partial s} \left( e^{-st} \right) f(t) dt$$
$$= \int_0^\infty e^{-st} \left( -t \right) f(t) dt = -\int_0^\infty e^{-st} t f(t) dt$$
$$= -L \left[ t f(t) \right]$$

Put t - c = u  $t \to 0 \Rightarrow u \Rightarrow -c$ dt = du  $t \to \infty \Rightarrow u \to \infty$ 

$$= \int_{-c}^{\infty} e^{-s(u+c)} F(u) H(u) du$$

$$= e^{-sc} \int_{-c}^{\infty} e^{-su} F(u) H(u) du$$

$$= e^{-\mathrm{sc}} \int_{0}^{\infty} e^{-\mathrm{su}} F(u) 0 \, du + \int_{0}^{\infty} e^{-\mathrm{su}} F(u) \, du$$
$$= e^{-\mathrm{sc}} \int_{0}^{\infty} e^{-\mathrm{su}} F(u) \, du$$

 $= e^{-sc} \int_{0}^{\infty} e^{-st} F(t) dt [: u \text{ is a dummy variable}]$ 

$$= e^{-sc} L[F(t)] = e^{-sc} \varphi(s)$$

 $L[tf(t)] = -\varphi'(s)$ Corollary :- If  $L[f(t)] = \varphi(s)$  then  $L[t^{n} f(t)] = (-1)^{n} \varphi^{n}(s)$ . **Proof** : W.K.T.  $L[tf(t)] = -\varphi'(s)$  $L[t^{2}f(t)] = L[t . tf(t)]$  $= -\frac{d}{ds} L[tf(t)]$  $= -\frac{d}{ds} \left[\frac{-d}{ds} Lf(t)\right]$  $= (-1)^{2} \frac{d^{2}}{ds^{2}} [Lf(t)]$ 

$$= (-1)^{2} \frac{d^{2}}{ds^{2}} [Lf(t)]$$
$$= (-1)^{2} \frac{d^{2}}{ds^{2}} \varphi(s)$$

$$L[t^{n} f(t)] = (-1)^{n} \frac{d^{n}}{ds^{n}} \varphi(s) = (-1)^{n} \varphi^{n}(s)$$

.....

PROBLEMS BASED ON TRANSFORMS OF DERIVATIVES

Example 1. Find L [t sin 2t]

Solution : W.K.T.  $L[t^n f(t)] = (-1)^n \varphi^n(s)$ 

$$L(t \sin 2t) = -\frac{d}{ds} [L (\sin 2t)] = -\frac{d}{ds} \left[ \frac{2}{s^2 + 4} \right]$$
$$= -\left[ \frac{-4s}{(s^2 + 4)^2} \right] = \frac{4s}{(s^2 + 4)^2}$$

Example 2. Find L  $[t^2 e^{-3t}]$ 

Solution : W.K.T  $L[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} [\varphi(s)]$ 

$$L[t^2 e^{-3t}] = (-1)^2 \frac{d^2}{ds^2} L[e^{-3t}] = \frac{d^2}{ds^2} \left[\frac{1}{s+3}\right]$$
$$= \frac{d}{ds} \left[\frac{-1}{(s+3)^2}\right] = \frac{2}{(s+3)^3}$$

Example .3. Find L [te<sup>-21</sup> sin t]

Solution :  $L[t e^{-2t} \sin t] = -\frac{d}{ds} [L(e^{-2t} \sin t)]$  $= -\frac{d}{ds} \left[ [L[\sin t]]_{s \to (s+2)} \right] = -\frac{d}{ds} \left[ \left[ \frac{1}{s^2 + 1} \right]_{s \to (s+2)} \right]$   $= -\frac{d}{ds} \left[ \frac{1}{(s+2)^2 + 1} \right] = \frac{2(s+2)}{[(s+2)^2 + 1]^2}$ 

Example Find L [t sin 3t cos 2t]

Solution :  $L[t \sin 3t \cos 2t] = -\frac{d}{ds} [L(\sin 3t \cos 2t)]$ 

$$= -\frac{d}{ds} \left[ \frac{1}{2} \left[ L \left( \sin 5t \right) + L \left( \sin t \right) \right] \right] = -\frac{1}{2} \frac{d}{ds} \left[ \frac{5}{s^2 + 25} + \frac{1}{s^2 + 1} \right]$$
$$= \frac{5s}{\left(s^2 + 25\right)^2} + \frac{s}{\left(s^2 + 1\right)^2}$$

Example 5. Given that L [sin  $\sqrt{t}$ ] =  $\frac{1}{2s}\sqrt{\frac{\pi}{s}}e^{-1/4s}$  find L.T. of

 $\frac{1}{\sqrt{t}} \cos \sqrt{t}$ 

Solution : Let  $f(t) = \sin \sqrt{t}$ 

$$f'(t) = \frac{1}{2\sqrt{t}} \cos \sqrt{t}$$

$$L[f''(t)] = sL[f(t)] - f(0)$$

$$L\left[\frac{1}{2\sqrt{t}} \cos \sqrt{t}\right] = L[f'(t)]$$

$$= s\frac{1}{2s}\sqrt{\frac{\pi}{s}} e^{-1/4s} - 0 [\therefore f(0) = 0]$$

$$= \frac{1}{2}\sqrt{\frac{\pi}{s}} e^{-1/4s}$$

$$\frac{1}{2}L\left[\frac{1}{\sqrt{t}} \cos \sqrt{t}\right] = \frac{1}{2}\sqrt{\frac{\pi}{s}} e^{-1/4s}$$

$$L\left[\frac{1}{\sqrt{t}} \cos \sqrt{t}\right] = \sqrt{\frac{\pi}{s}} e^{-1/4s}$$

Example 6 show that  $\int_{0}^{\infty} e^{-t} t \cos t dt = 0$ 

Solution  

$$t \, dt = \left[ L\left[t\cos t\right] \right]_{s=1} = \left[ -\frac{d}{ds} \left( \frac{s}{s^2 + 1} \right) \right]_{s=1} = \left[ -\left[ \frac{\left(s^2 + 1\right)\left(1\right) - s\left(2s\right)}{\left(s^2 + 1\right)^2} \right] \right]_{s=1} = \left[ -\left[ \frac{\left(s^2 + 1\right)\left(1\right) - s\left(2s\right)}{\left(s^2 + 1\right)^2} \right] \right]_{s=1} = \left[ -\left[ \frac{s^2 + 1 - 2s^2}{\left(s^2 + 1\right)^2} \right]_{s=1} = \left[ -\left[ \frac{1 - s^2}{\left(s^2 + 1\right)^2} \right] \right]_{s=1} = \left[ -\left( 0 \right) \right] = 0$$

Example 7 Find L [te<sup>-t</sup> cosh t]

Solution : 
$$\begin{bmatrix} -t \cosh t \end{bmatrix} = -\frac{d}{ds} L [e^{-t} \cosh t]$$
  
=  $-\frac{d}{ds} \left[ \frac{s+1}{(s+1)^2 - 1} \right] = -\left[ \frac{[(s+1)^2 - 1] - (s+1) 2 (s+1)]}{[(s+1)^2 - 1]^2} \right]$   
=  $-\left[ \frac{(s+1)^2 - 1 - 2 (s+1)^2}{[(s+1)^2 - 1]^2} \right] = \frac{(s+1)^2 + 1}{(s^2 + 2s)^2} = \frac{s^2 + 2s + 2}{s^4 + 4s^2 + 4s^3}$ 

**Result 18. Integrals of transform** 

If L 
$$[f(t)] = \varphi(s)$$
 and  $\frac{1}{t}f(t)$  has a limit as  $t \to 0$  then  
L  $\left[\frac{1}{t}f(t)\right] = \int_{s}^{\infty} \varphi(s) ds$   
Proof :  $\varphi(s) = L [f(t)]$   
 $\int_{s}^{\infty} \varphi(s) ds = \int_{s}^{\infty} L [f(t)] ds$   
 $= \int_{s}^{\infty} \int_{0}^{\infty} e^{-st} f(t) dt ds = \int_{0}^{\infty} \int_{s}^{\infty} e^{-st} f(t) ds dt$ 

1

[since s and t are independent variables and hence the order of integration in the double integral can be interchanged]

$$= \int_{0}^{\infty} f(t) \left[ \int_{s}^{\infty} e^{-st} ds \right] dt = \int_{0}^{\infty} f(t) \left[ \frac{e^{-st}}{-t} \right]_{s}^{\infty} dt$$
$$= \int_{0}^{\infty} f(t) \left[ 0 + \frac{e^{-st}}{t} \right] dt = \int_{0}^{\infty} f(t) \frac{e^{-st}}{t} dt$$
$$= \int_{0}^{\infty} e^{-st} \frac{f(t)}{t} dt = L \left[ \frac{1}{t} f(t) \right]$$

i.e., 
$$L\left[\frac{1}{t}f(t)\right] = \int_{s}^{\infty} \varphi(s) ds$$

PROBLEMS BASED ON INTEGRALS OF TRANSFORM

Example 8 Find L 
$$\left[\frac{1-e^{t}}{t}\right]$$
  
Solution :  $L\left[\frac{1}{t}f(t)\right] = \int_{s}^{\infty} \varphi(s) ds = \int_{s}^{\infty} L[f(t)] ds$   
L  $\left[\frac{1-e^{t}}{t}\right] = \int_{s}^{\infty} L[1-e^{t}] ds = \int_{s}^{\infty} \left[\frac{1}{s} - \frac{1}{s-1}\right] ds$   
 $= \left[\log s - \log (s-1)\right]_{s}^{\infty} = \left[\log \frac{s}{s-1}\right]_{s}^{\infty}$   
 $= \left[\log \frac{s}{s(1-1/s)}\right]_{s}^{\infty} = \left[\log \frac{1}{1-1/s}\right]_{s}^{\infty}$   
 $= 0 - \log \frac{s}{s-1} = \log \left(\frac{s-1}{s}\right)$ 

Example 9 Find L 
$$\left[\frac{\sin at}{t}\right]$$
 [A.U., March 1996]  
Solution : L  $\left[\frac{1}{t}f(t)\right] = \int_{s}^{\infty} L\left[f(t)\right] ds$   
 $L\left[\frac{\sin at}{t}\right] = \int_{s}^{\infty} L\left[\sin at\right] ds = \int_{s}^{\infty} \frac{a}{s^{2} + a^{2}} ds$   
 $= a \left[\frac{1}{a} \tan^{-1}\left(\frac{s}{a}\right)\right]_{s}^{\infty} = \left[\tan^{-1}\frac{s}{a}\right]_{s}^{\infty}$   
 $= \frac{\pi}{2} - \tan^{-1}\left(\frac{s}{a}\right) = \cot^{-1}\left[\frac{s}{a}\right] = \tan^{-1}\left[\frac{a}{s}\right]$   
Note :  $\cot^{-1}\left(\frac{s}{a}\right) = \frac{\pi}{2} - \tan^{-1}\left(\frac{s}{a}\right)$   
 $= \tan\left[\frac{\pi}{2} - \tan^{-1}\left(\frac{s}{a}\right)\right]$   
 $= \tan\left[\tan^{-1}\left(\frac{s}{a}\right)\right] = \frac{s}{a}$ 

# PROBLEMS BASED ON INITIAL VALUE AND FINAL VALUE THEOREM

Example 5.4.1. If L [f(t)] =  $\frac{1}{s(s+a)}$ , find Lt f(t) and Lt f(t) Solution : Lt f(t) = Lt s. F(s)  $t \to 0$   $s \to \infty$ = Lt s  $\frac{1}{s(s+a)} = Lt \frac{1}{s+\infty} \frac{1}{s+a} = \frac{1}{\infty} = 0$ Lt f(t) = Lt s F(s) = Lt  $\frac{1}{s+\alpha} \frac{1}{s(s+a)}$ = Lt  $\frac{1}{s+\alpha} \frac{1}{s+a} = \frac{1}{a}$ 

Example 2. Verify the initial and final value theorem for the function  $f(t) = 1 + e^{-t} (\sin t + \cos t)$ 

Solution : Initial value theorem states that

$$\lim_{t \to 0} f(t) = \lim_{s \to \infty} s F(s)$$

$$L[f(t)] = F(s) = \frac{1}{s} + L[\sin t + \cos t]_{s \to s+1}$$

$$= \frac{1}{s} + \frac{1}{(s+1)^2 + 1} + \frac{s+1}{(s+1)^2 + 1}$$

$$= \frac{1}{s} + \frac{s+2}{(s+1)^2 + 1}$$

$$L.H.S = \lim_{t \to 0} f(t) = 1 + 1 = 2$$

$$R.H.S = \lim_{s \to \infty} \left[ \frac{1}{s} + \frac{s+2}{(s+1)^2 + 1} \right]$$

$$= \lim_{s \to \infty} \left[ 1 + \frac{s(s+2)}{(s+1)^2 + 1} \right] = \lim_{s \to \infty} \left[ 1 + \frac{s^2(1+\frac{2}{s})}{s^2\left[1+\frac{2}{s}+\frac{2}{s^2}\right]} \right]$$

$$= \lim_{s \to \infty} \left[ 1 + \frac{1+\frac{2}{s}}{1+\frac{2}{s}+\frac{2}{s^2}} \right] = 1 + 1 = 2$$

$$L.H.S. = R.H.S.$$

Initial value theorem verified.

Final value theorem states that

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s F(s)$$

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s F(s)$$

$$\lim_{t \to \infty} f(t) = 1$$

$$= 1 + 0 = 1$$
R.H.S. = 
$$\lim_{s \to 0} \left[ 1 + \frac{s(s+2)}{(s+1)^2 + 1} \right]$$

$$= 1 + 0 = 1$$
L.H.S. = R.H.S.

Final value theorem verified.

Example 3. Verify the initial and final value theorems for  $f(t) = 3e^{-2t}$ Solution :  $f(t) = 3e^{-2t}$ 

$$F(s) = L[f(t)] = L[3e^{-2t}] = \frac{3}{s+2}$$

Initial value theorem : Lt  $f(t) = Lt \ s F(s)$  $t \to 0$   $s \to \infty$ 

L.H.S. = 
$$\underset{t \neq 0}{\text{Lt}} f(t) = \underset{t \neq 0}{\text{Lt}} 3 e^{-2t} = 3$$
  
R.H.S =  $\underset{s \neq \infty}{\text{Lt}} s F(s) = \underset{s \neq \infty}{\text{Lt}} s \left(\frac{3}{s+2}\right) = \underset{s \neq \infty}{\text{Lt}} \frac{3s}{s+2}$   
=  $\underset{s \neq \infty}{\text{Lt}} \frac{3s}{s+2}$   
=  $\underset{s \neq \infty}{\text{Lt}} \frac{3s}{(1+\frac{2}{s})}$   
=  $\underset{s \neq \infty}{\text{Lt}} \frac{3}{(1+\frac{2}{s})} = 3$   
L.H.S = R.H.S.

Hence Initial value theorem verified.

Final value theorem Lt f(t) = Lt s F(s) $t \to \infty$   $s \to 0$ 

L.H.S. = 
$$\underset{t \to \infty}{\text{Lt } f(t)} = \underset{t \to \infty}{\overset{1}{\text{Lt } 3}} e^{-2t} = 0$$
 [:  $e^{-\infty} = 0$ ]

R.H.S. = 
$$\underset{s \to 0}{\text{Lt } s F(s)} = \underset{s \to 0}{\text{Lt } s} \left(\frac{3}{s+2}\right) = 0$$

L.H.S. = R.H.S.

Hence Final value theorem verified.

## TRANSFORMS OF UNIT STEP FUNCTION AND IMPULSE FUNCTION

UNIT STEP FUNCTION (OR) HEAVISIDE'S UNIT STEP FUNCTION

#### PROBLEMS BASED ON UNIT STEP FUNCTION

Example 1. Define the unit step function.

Solution :

The unit step function, also called Heavi side's unit function is defined as

÷

$$U(t-a) = \begin{cases} 0 \text{ for } t < a \\ 1 \text{ for } t > a \end{cases}$$

This is the unit step functions at t = a

It can also be denoted by H (t - a).

Example 2. Give the L.T. of the unit step function. [M.U. Oct., 96] Solution :

The L.T. of the unit step function is given by

L [U 
$$(t-a)$$
] =  $\int_{0}^{\infty} e^{-st} U (t-a) dt$   
=  $\int_{0}^{a} e^{-st} 0 dt + \int_{a}^{\infty} e^{-st} (1) dt$   
=  $\int_{a}^{\infty} e^{-st} dt = \left[\frac{e^{-st}}{-s}\right]_{a}^{\infty}$   
=  $0 - \left(\frac{e^{-sa}}{-s}\right) = \frac{e^{-as}}{s}$ 

## TRANSFORM OF PERIODIC FUNCTIONS

Define periodic function and state its Laplace transform formula.

#### Def. Periodic

A function f(x) is said to be "periodic" if and only if f(x + p) = f(x) is true for some value of p and every value of x. The smallest positive value of p for which this equation is true for every value of x will be called the period of the function.

The Laplace Transformation of a periodic function f(t) with period p

given by 
$$\frac{1}{1 - e^{-ps}} \int_{0}^{p} e^{-st} f(t) dt$$
  
Proof :  $L[f(t)] = \int_{0}^{\infty} e^{-st} f(t) dt$   

$$= \int_{0}^{p} e^{-st} f(t) dt + \int_{p}^{\infty} e^{-st} f(t) dt$$

Put t = u + p in the second integral

i.e., 
$$u = t - p$$
  
i.e.,  $du = dt$   

$$t \Rightarrow p \Rightarrow u \Rightarrow 0$$
  
i.e.,  $du = dt$   

$$t \Rightarrow \infty \Rightarrow u \Rightarrow \infty$$
  

$$= \int_{0}^{p} e^{-st} f(t) dt + \int_{0}^{\infty} e^{-(u+p)s} f(u+p) du$$
  

$$= \int_{0}^{p} e^{-st} f(t) dt + e^{-sp} \int_{0}^{\infty} e^{-su} f(u) du \quad [\because f(u+p) = f(u)]$$
  

$$= \int_{0}^{p} e^{-st} f(t) dt + e^{-sp} \int_{0}^{\infty} e^{-st} f(t) dt \quad [\because u \text{ is a dummy variable}]$$
  

$$L[f(t)] = \int_{0}^{p} e^{-st} f(t) dt + e^{-sp} L[f(t)]$$
  

$$[1 - e^{-sp}] L[f(t)] = \int_{0}^{p} e^{-st} f(t) dt$$
  

$$L[f(t)] = \frac{1}{1 - e^{-sp}} \int_{0}^{p} e^{-st} f(t) dt$$

Example1 Find the Laplace transform of the Half wave rectifier function

$$I(t) = \begin{cases} \sin \omega t, \ 0 < t < \frac{\pi}{\omega} \\ 0, \ \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases}$$
  
Solution : This function is a periodic function with period  $\frac{2\pi}{\omega}$  in the interval  $\left(0, \frac{2\pi}{\omega}\right)$   
$$U[f(t)] = \frac{1}{1 - e^{-\frac{2\pi s}{\omega}}} \int_{0}^{\frac{2\pi}{\omega}} e^{-st} f(t) dt$$
$$= \frac{1}{1 - e^{-\frac{2\pi s}{\omega}}} \left[ \int_{0}^{\pi/\omega} e^{-st} \sin \omega t dt + 0 \right]$$
$$= \frac{1}{1 - e^{-\frac{2\pi s}{\omega}}} \left[ \frac{e^{-st}}{s^2 + \omega^2} \left[ -s \sin \omega t - \omega \cos \omega t \right] \right]_{0}^{\pi/\omega}$$
$$= \frac{1}{1 - e^{-\frac{2\pi s}{\omega}}} \left[ \frac{e^{-s\pi/\omega} \omega + \omega}{s^2 + \omega^2} \right]$$
$$= \frac{\omega \left[ 1 + e^{\frac{-s\pi}{\omega}} \right]}{\left[ 1 - e^{-s\pi/\omega} \right] \left[ 1 + e^{-s\pi/\omega} \right] (s^2 + \omega^2)} 1$$
$$= \frac{\omega}{(s^2 + \omega^2) \left( 1 - e^{-s\pi/\omega} \right)}$$

Example 2 Find the Laplace Transform of  

$$f(t) = \begin{cases} 1 & , \ 0 < t < a \\ 2a-t, \ a < t < 2a \text{ with } f(t+2a) = f(t) \end{cases}$$
Solution :  $L[f(t)] = \frac{1}{1-e^{-2as}} \int_{0}^{2a} e^{-st} f(t) dt$   

$$= \frac{1}{1-e^{-2as}} \left[ \int_{0}^{a} e^{-st} t dt + \int_{a}^{2a} e^{-st} (2a-t) dt \right]$$

$$= \frac{1}{1-e^{-2as}} \left[ \left[ t \left( \frac{e^{-st}}{-s} \right) - (1) \left( \frac{e^{-st}}{s^2} \right) \right]_{0}^{a} + \left[ (2a-t) \left( \frac{e^{-st}}{-s} \right) - (-1) \left( \frac{e^{-st}}{s^2} \right) \right]_{a}^{2a} \right]$$

$$= \frac{1}{1-e^{-2as}} \left[ \left[ -t \frac{e^{-st}}{s} - \frac{e^{-st}}{s^2} \right]_{0}^{a} + \left[ -(2a-t) \frac{e^{-st}}{s} + \frac{e^{-st}}{s^2} \right]_{a}^{2a} \right]$$

$$= \frac{1}{1-e^{-2as}} \left[ \left[ -a \frac{e^{-as}}{s} - \frac{e^{-as}}{s^2} \right]_{0}^{a} + \left[ \left( \frac{e^{-2as}}{s^2} - \left( -\frac{ae^{-as}}{s} + \frac{e^{-as}}{s^2} \right) \right] \right]$$

$$= \frac{1}{1-e^{-2as}} \left[ \left[ -a \frac{e^{-as}}{s} - \frac{e^{-as}}{s^2} \right]_{0}^{a} + \left[ \left( \frac{e^{-2as}}{s^2} - \frac{e^{-as}}{s} - \frac{e^{-as}}{s^2} \right]_{a}^{a} \right]$$

$$= \frac{1}{1-e^{-2as}} \left[ \left( -a \frac{e^{-as}}{s} - \frac{e^{-as}}{s^2} + \frac{1}{s^2} + \frac{e^{-2as}}{s^2} + a \frac{e^{-as}}{s} - \frac{e^{-as}}{s^2} \right]$$

$$= \frac{1}{1-e^{-2as}} \left[ \frac{1+e^{-2as}-2e^{-as}}{s^2} \right]$$

$$= \frac{1}{1-e^{-2as}} \left[ \frac{1+e^{-2as}-2e^{-as}}{s^2} + \frac{1}{s^2} + \frac{e^{-as}}{s^2} + \frac{1}{s^2} + \frac{e^{-as}}{s} - \frac{e^{-as}}{s^2} \right]$$
# INVERSE LAPLACE TRANSFORM

Now we obtain f(t) when  $\phi(s)$  is given, then we say that inverse Laplace transform of  $\phi(s)$  is f(t).

(1) If  $L[f(t)] = \phi(s)$ , then  $L^{-1}[\phi(s)] = f(t)$ where  $L^{-1}$  is called the inverse Laplace transform operator. (2) If  $\varphi_1(s)$  and  $\varphi_2(s)$  are L.T. of f(t) and g(t) respectively then  $L^{-1} [C_1 \varphi_1 (s) + C_2 \varphi_2(s)] = C_1 L^{-1} [\varphi_1 (s)] + C_2 L^{-1} [\varphi_2 (s)]$ **Proof** : Given :  $L[f(t)] = \varphi_1(s)$  $f(t) = L^{-1}[\varphi_1(s)]$  $L[g(t)] = \varphi_{\gamma}(s)$  $g(t) = L^{-1}[\varphi_2(s)]$ W.K.T.  $L[C_1 f(t) + C_2 g(t)] = C_1 L[f(t)] + C_2 L[g(t)]$  $= C_1 \varphi_1(s) + C_2 \varphi_2(s)$  $C_1 f(t) + C_2 g(t) = L^{-1} [C_1 \varphi_1(s) + C_2 \varphi_2(s)]$ i.e.,  $L^{-1}[C_1\varphi_1(s) + C_2\varphi_2(s)] = C_1f(t) + C_2g(t)$  $= C_1 L^{-1} \varphi(s) + C_2 L^{-1} \varphi_2(s)$ Note : (1) If  $L[f(t)] = \varphi(s)$  then  $L[e^{at}f(t)] = \varphi(s-a)$ i.e., If  $L^{-1}[\varphi(s)] = f(t)$  then  $L^{-1}[\varphi(s-a)] = e^{at}f(t) = e^{at}L^{-1}[\varphi(s)]$ Note : (2) If L [f(t)] =  $\varphi(s)$  then L[ $e^{-at}f(t) = \varphi(s+a)$ i.e., If  $L^{-1}[\varphi(s)] = f(t)$  then  $L^{-1}[\varphi(s+a)] = e^{-at}f(t) = e^{-at}[L^{-1}\varphi(s)]$ 

#### UNIT-V

### SOLUTIONS OF SYSTEM OF EQUATIONS

### Introduction

We come across, very often simultaneously linear algebraic equations for its solutions, especially, in the fields of science and engineering. In lower classes, we have solved such equations by Cramer's rule (determinant methods) or by matrix methods. These methods become tedious when the number of unknown in the system is large. After the availability of computers, we go to numerical methods which are suited for computer operations. These numerical methods are of two types namely: (*i*) direct and (*ii*) iterative.

We will study a few methods below deals with the solution of simultaneous Linear Algebraic Equations

#### **Gauss Elimination Method (Direct Method)**

This is a direct method based on the elimination of the unknowns by combining equations such that the n unknowns are reduced to an equation upper triangular system which could be solved by back substitution.

Consider the *n* linear equations in *n* unknowns, viz.

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\dots$$

$$a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} = b_{n} \quad \dots (1)$$

Where  $a_{ij}$  and  $b_i$  are known constants and  $x_i$ 's are unknowns.

The system (1) is equivalent to AX=B .....(2)

Where 
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} X = x_2 \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 and  $B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ 

Now our aim is to reduce the augmented matrix (A,B) to upper triangular matrix.

$$(\mathbf{A},\mathbf{B}) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & \dots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} & b_n \end{pmatrix} \dots (3)$$

 $a_{i1}$ 

Now, multiply the first row of (3) (if  $a_{11} \neq 0$ ) by -  $a_{11}$  and add to the ith row of (A,B), where i=2,3,...,n. By thia, all elements in the first column of (A,B) except  $a_{11}$  are made to zero. Now (3) is of the form

Now take the pivot  $b_{22}$ . Now, considering  $b_{22}$  as the pivot, we will make all elements below  $b_{22}$  in the second column of (4) as zeros. That is, multiply second

row of (4) by -  $\frac{b_{i_2}}{b_{2_2}}$  and add to the corresponding elements of the ith row (i=3,4,...,n). Now all elements below  $b_{22}$  are reduced to zero. Now (4) reduces to

| ( | $a_{11}$ | $a_{12}$ | $a_{13}$ $a_{1n}$                             | $\begin{vmatrix} b_1 \end{pmatrix}$ |     |
|---|----------|----------|-----------------------------------------------|-------------------------------------|-----|
|   | 0        | $b_{22}$ | $b_{23}b_{2n}$                                | <i>C</i> 2                          |     |
|   | 0        | 0        | <i>C</i> <sub>23</sub> <i>C</i> <sub>3n</sub> | $d_3$                               |     |
|   | •••••    |          |                                               | -                                   |     |
|   | 0        | 0        | Cn3 Cnn                                       | $d_n$                               | (5) |

Now taking  $c_{33}$  as the pivot, using elementary operations, we make all elements below  $c_{33}$  as zeros. Continuing the process, all elements below the leading diagonal elements of A are made to zero.

Hence, we get (A,B) after all these operations as



From,  $(\delta)$  the given system of linear equations is equivalent to

$$a_{11}x_{1}+a_{12}x_{2}+a_{13}x_{3}+\ldots+a_{1n}x_{n}=b_{1}$$

$$b_{22}x_{2}+b_{23}x_{3}+\ldots+b_{2n}x_{n}=c_{2}$$

$$c_{33}x_{3}+\ldots+c_{3n}x_{n}=d_{3}$$

$$\ldots$$

$$\alpha_{nn}x_{n}=k_{n}$$

$$k_{n}$$

Going from the bottom of these equation, we solve for  $x_n = \overline{\alpha_{nn}}$ . Using this in the penultimate equation, we get  $x_{n-1}$  and so. By this back substitution method for we solve  $x_n$ ,  $x_{n-1}$ ,  $x_{n-2}$ , ...,  $x_2$ ,  $x_1$ .

#### **Gauss – Jordan Elimination Method (Direct Method)**

This method is a modification of the above Gauss elimination method. In this method, the coefficient matrix A of the system AX=B is brought to a diagonal matrix or unit matrix by making the matrix A not only upper triangular but also lower triangular by making the matrix A not above the leading diagonal of A also as zeros. By this way, the system AX=B will reduce to the form.

$$\begin{pmatrix} a_{11} & 0 & 0 & 0 & \dots & a_{1n} & b_1 \\ 0 & b_{22} & 0 & 0 & \dots & b_{2n} & c_2 \\ \dots & \dots & \dots & \dots & \dots & \dots & d_3 \\ 0 & 0 & 0 & 0 & \dots & \alpha_{nn} & k_n \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \end{pmatrix} \dots (7)$$

Fro

$$x_n = \frac{k_n}{\alpha_{nn}}, \dots, x_2 = \frac{c_2}{b_{22}}, x_n = \frac{b_1}{a_{11}}$$

Note: By this method, the values of  $x_1, x_2, \dots, x_n$  are got immediately without using the process of back substitution.

**Example 1.** Solve the system of equations by (i) Gauss elimination method (ii) Gauss – *Jordan method.* 

x+2y+z=3, 2x+3y+3z=10, 3x-y+2z=13.

## **Solution.** (By Gauss method)

This given system is equivalent to

$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 3 \\ 3 & -1 & 2 \end{pmatrix} \begin{pmatrix} \chi \\ y \\ Z \end{pmatrix} = \begin{pmatrix} 3 \\ 10 \\ 13 \end{pmatrix}$$
$$A X = B$$
$$(A,B) = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 2 & 3 & 3 & 10 \\ 3 & -1 & 2 & 13 \end{bmatrix} \dots \dots \dots \dots (1)$$

Now, we will make the matrix A upper triangluar.

$$(A,B) = \begin{bmatrix} 1 & 2 & 1 & | & 3 \\ 2 & 3 & 3 & | & 10 \\ 3 & -1 & 2 & | & 13 \\ 0 & -1 & 1 & | & 4 \\ \sim & 0 & -7 & -1 & | & 4 \\ \end{bmatrix}$$

. .

Now, take  $b_{22}$ =-1 as the pivot and make  $b_{32}$  as zero.

$$(A,B) \sim \begin{bmatrix} 1 & 2 & 1 & & 3 \\ 0 & -1 & 1 & & 4 \\ 0 & 0 & -8 & & -24 \end{bmatrix}_{R_{32}(-7) \dots(2)}$$

From this, we get

$$x+2y+z = 3$$
,  $-y+z=4$ ,  $-8z = -24$   
 $z = 3$ ,  $y = -1$ ,  $x = 2$  by back substitution.  
 $x = 2$ ,  $y = -1$ ,  $z = 3$ 

**Solution.** (Gauss – Jordan method)

In stage 2, make the element, in the position (1,2), also zero.

$$(A,B) \sim \begin{bmatrix} 1 & 2 & 1 & | & 3 \\ 0 & -1 & 1 & | & 4 \\ 0 & 0 & -8 & | & -24 \end{bmatrix}$$
$$\begin{pmatrix} 1 & 0 & 3 & | & 11 \\ 0 & -1 & 1 & | & 4 \\ -24 \end{bmatrix} R_{12}(2)$$
$$\begin{pmatrix} 1 & 0 & 3 & | & 11 \\ 0 & 0 & -1 & | & -3 \\ 0 & 0 & -1 & | & -3 \end{bmatrix} R_{3}(\frac{1}{8})$$
$$\sim \begin{bmatrix} 1 & 0 & 0 & | & 2 \\ 0 & -1 & 0 & | & -3 \\ 0 & 0 & -1 & | & -3 \end{bmatrix} R_{13}(3), R_{23}(1)$$
$$x = 2, y = -1, z = 3$$

Example 2 Solve the system by Gauss- Elimination method

2x+3y-z = 5; 4x+4y-3z = 3 and 2x-3y+2z = 2.

Solution. The system is equivalent to

i.e.,

$$\begin{pmatrix} 2 & 3 & -1 \\ 4 & 4 & -3 \\ 2 & -3 & 2 \end{pmatrix} \begin{pmatrix} \chi \\ y \\ Z \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix}$$

$$A \qquad X = B$$

$$(A,B) = \begin{bmatrix} 2 & 3 & -1 \\ 4 & 4 & -3 \\ 2 & -3 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 2 \end{bmatrix}$$

Step 1. Taking  $a_{11}=2$  as the pivot, reduce all elements below that to zero.

$$(A,B) = \begin{bmatrix} 2 & 3 & -1 & 5 \\ 0 & -2 & -1 & -7 \\ 0 & -6 & 3 & -3 \end{bmatrix} R_{21}(-2), R_{31}(-1)$$

*Step 2.* Taking the element -2 in the position (2,2) as pivot, reduce all elements all elements below that to zero.

$$(A, B) = \begin{bmatrix} 2 & 3 & -1 & 5 \\ 0 & -2 & -1 & -7 \\ 0 & 0 & 6 & 18 \end{bmatrix} \qquad R_{32}(-3)$$

Hence 2x+3y-z = 5-2y-z = -76z = 18

 $\therefore$  z = 3, y = 2, x = 1. By back substitution

Example 3 Solve the following system by Gauss - Jordan method

$$5x_1 + x_2 + x_3 + x_4 = 4; \quad x_1 + 7x_2 + x_3 + x_4 = 12$$
$$x_1 + x_2 + 6x_3 + x_4 = -5; \quad x_1 + x_2 + x_3 + 4x_4 = -6$$

**Solution.** Interchange the first and the last equation, so that coefficient of  $x_1$  in the first equation is 1. Then we have

$$(A,B) = \begin{pmatrix} 1 & 1 & 1 & 4 & | & -6 \\ 1 & 7 & 1 & 1 & | & 12 \\ 1 & 1 & 6 & 1 & | & -5 \\ 5 & 1 & 1 & 1 & | & 4 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 1 & 4 & | & -6 \\ 0 & 6 & 0 & -3 & | & 18 \\ 0 & 0 & 5 & -3 & | & 1 \\ 0 & -4 & -4 & -19 & | & 34 \end{pmatrix} R_{21}(-1), R_{31}(-1), R_{41}(-5)$$
$$\sim \begin{pmatrix} 1 & 1 & 1 & 4 & | & -6 \\ 0 & 1 & 0 & -0.5 & | & 3 \\ 0 & 0 & 5 & -3 & | & 1 \\ 0 & -4 & -4 & -19 & | & 34 \end{pmatrix} R_{2}(\frac{1}{6}) \text{ to make the pivot as 1}$$

$$\sim \begin{pmatrix} 1 & 0 & 1 & 4.5 & | & -9 \\ 0 & 1 & 0 & -0.5 & | & 3 \\ 0 & 0 & 5 & -3 & | & 1 \\ 0 & 0 & -4 & -21 & | & 46 \end{pmatrix} \quad R_{12}(-1), R_{42}(4)$$

$$\sim \begin{pmatrix} 1 & 0 & 1 & 4.5 & -9 \\ 0 & 1 & 0 & -0.5 & 3 \\ 0 & 0 & 1 & -0.6 & 0.2 \\ 0 & 0 & -4 & -21 & 46 \end{pmatrix} \quad R_{3}^{\left(\frac{1}{5}\right)}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 5.1 & | & -9.2 \\ 0 & 1 & 0 & -0.5 & | & 3 \\ 0 & 0 & 1 & -0.6 & | & 0.2 \\ 0 & 0 & 0 & -23.4 & | & 46.8 \end{pmatrix} \quad R_{12}(-1), R_{43}(4)$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 5.1 & | & -9.2 \\ 0 & 1 & 0 & -0.5 & | & 3 \\ 0 & 0 & 0 & -23.4 & | & 46.8 \end{pmatrix} \quad R_{12}(-1), R_{43}(4)$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 5.1 & | & -9.2 \\ 0 & 1 & 0 & -0.5 & | & 3 \\ 0 & 0 & 1 & -0.6 & | & 0.2 \\ 0 & 0 & 0 & -1 & | & 2 \end{pmatrix} \quad R_{4}^{\left(\frac{1}{23.4}\right)}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & 0 & | & 2 \\ 0 & 0 & 1 & 0 & | & -1 \\ 0 & 0 & 0 & -1 & | & 2 \end{pmatrix} R_{34} \left(-\frac{3}{5}\right)_{, R_{24}} \left(-\frac{1}{2}\right)_{, R_{14}(5.1)}$$

 $x_1 = 1$ ,  $x_2 = 2$ ,  $x_3 = -1$ ,  $x_4 = -2$ 

**Example 4.** Solve the system of equations by Gauss – Jordan method:

$$x + y + z + w = 2$$
  

$$2x - y + 2z - w = -5$$
  

$$3x + 2y + 3z + 4w = 7$$
  

$$x - 2y - 3z + 2w = 5$$

Solution.

$$(A,B) = \begin{pmatrix} 1 & 1 & 1 & 1 & | & 2 \\ 2 & -1 & 2 & -1 & | & -5 \\ 3 & 2 & 3 & 4 & | & 7 \\ 1 & -2 & -3 & 2 & | & 5 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 2 \\ 0 & -3 & 0 & -3 & -9 \\ 0 & -1 & 0 & 1 & 1 \\ 0 & -3 & -4 & 1 & 3 \end{pmatrix} \qquad \begin{array}{c} R_2 - 2R_1 \\ R_3 - 3R_1 \\ R_4 - R_1 \\ R_4 - R_1 \\ \end{array}$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & -1 & 0 & 1 & 1 \\ 0 & -3 & -4 & 1 & 3 \end{pmatrix} \qquad \begin{array}{c} R_2 - \frac{1}{3} \\ R_2 \left(-\frac{1}{3}\right) \\ R_2 \left(-\frac{1}{3}\right) \\ \end{array}$$

 $\therefore$  x = 0, y = 1, z = -1, w = 2

**Example 5.** Apply Gauss – Jordan method to find the solution of the following system:

$$10x + y + z = 12; \ 2x + 10y + z = 13; \ x + y + 5z = 7.$$

**Solution.** since the coefficient of x in the last equation is unity, we rewrite the equations interchanging the first and the last. Hence the augmented matrix is

$$(A,B) = \begin{pmatrix} 1 & 1 & 5 & 7 \\ 2 & 10 & 1 & 13 \\ 10 & 1 & 1 & 12 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 1 & 5 & 7 \\ 0 & 8 & -9 & -1 \\ 0 & -9 & -49 & -58 \end{pmatrix} \xrightarrow{R_2+(-2)R_1} R_3+(-10)R_1$$

$$\sim \begin{pmatrix} 1 & 1 & 5 & 7 \\ 0 & 1 & -\frac{9}{8} & \frac{1}{-8} \\ 0 & -9 & -49 & -58 \end{pmatrix} \xrightarrow{R_2(\frac{1}{8})} R_2(\frac{1}{8})$$

$$\sim \begin{pmatrix} 1 & 1 & 5 & 7 \\ 0 & 1 & -\frac{9}{8} & \frac{1}{-8} \\ 0 & 0 & -9 & -49 & -58 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 5 & 7 \\ 0 & 1 & -\frac{9}{8} & \frac{1}{-8} \\ 0 & 0 & -\frac{473}{8} & \frac{473}{-8} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 5 & 7 \\ 0 & 1 & -\frac{9}{8} & \frac{1}{-8} \\ 0 & 0 & -\frac{473}{8} & \frac{473}{-8} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 5 & 7 \\ 0 & 1 & -\frac{9}{8} & -\frac{1}{8} \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$R_3(-\frac{8}{473})$$

 $\sim$ 

$$\sim \begin{pmatrix} 1 & 0 & \frac{49}{8} & | & \frac{57}{8} \\ 0 & 1 & -\frac{9}{8} & | & \frac{1}{8} \\ 0 & 0 & 1 & | & 1 \end{pmatrix} \qquad R_1 + (-1)R_2$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 1 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & 1 \end{pmatrix} \qquad R_2^+ \begin{pmatrix} 9 \\ 8 \end{pmatrix} R_3$$

$$R_1^+ \left( -\frac{49}{8} \right)_{R_3}$$

$$\therefore x = l, y = l, z = l$$

## Method Of Triangularization (Or Method Of Factorization) (Direct Method)

This method is also called as *decomposition* method. In this method, the coefficient matrix A of the system AX = B, decomposed or factorized into the product of a lower triangular matrix L and an upper triangular matrix U. we will explain this method in the case of three equations in three unknowns.

Consider the system of equations

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$
$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$
$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

This system is equivalent to AX = B

Where 
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad B = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Now we will factorize *A* as the product of lower triangular matrix

$$L = \begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix}$$

And an upper triangular matrix

$$U = \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{32} \end{pmatrix} \text{ so that}$$

$$LUX = B \text{ Let} \qquad UX = Y \text{ And hence} \qquad LY = B$$

$$\begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$y_1 = b, \ l_{21}y_1 + y_2 = b_2, \ l_{31}y_1 + l_{32}y_2 + y_3 = b_3$$

By forward substitution,  $y_1$ ,  $y_2$ ,  $y_3$  can be found out if L is known.

Fre

а.

om (4), 
$$\begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

$$u_{11}x_1 + u_{12}x_2 + u_{13}x_3 = y_1$$
,  $u_{22}x_2 + u_{23}x_3 = y_2$  and  $u_{33}x_3 = y_3$ 

From these,  $x_1$ ,  $x_2$ ,  $x_3$  can be solved by back substitution, since  $y_1$ ,  $y_2$ ,  $y_3$  are known if U is known.Now L and U can be found from LU = A

$$\begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ l_{21} & \mathbf{1} & \mathbf{0} \\ l_{31} & l_{32} & \mathbf{1} \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ \mathbf{0} & u_{22} & u_{23} \\ \mathbf{0} & \mathbf{0} & u_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

i.e.,

Equating corresponding coefficients we get nine equations in nine unknowns. From these 9 equations, we can solve for 3 *l*'s and 6 *u*'s.

That is, L and U re known. Hence X is found out. Going into details, we get  $u_{11} = a_{11}$ .  $u_{12} = a_{12}$ ,  $u_{13} = a_{13}$ . That is the elements in the first rows of U are same as the elements in the first of A.

Also, 
$$l_{21}u_{11} = a_{21}$$
  $l_{21}u_{12} + u_{22} = a_{22}$   $l_{21}u_{13} + u_{23} = a_{23}$   
 $l_{21} = \frac{a_{21}}{a_{11}}, u_{22} = a_{22}$   $\frac{a_{21}}{a_{11}}, a_{12}$  and  $u_{23} = a_{23} - \frac{a_{21}}{a_{11}}, a_{13}$ 

again,  $l_{31}u_{11} = a_{31}$ ,  $l_{31}u_{12} + l_{32}u_{22} = a_{32}$  and  $l_{31}u_{13} + l_{32}u_{23} + u_{33} = a_{32}$ 

solving,  $l_{31} = \frac{a_{31}}{a_{11}}, l_{32} = \frac{a_{32} - \frac{a_{21}}{a_{11}} \cdot a_{12}}{a_{22} - \frac{a_{21}}{a_{11}} \cdot a_{12}}$ 

$$u_{33} = a_{32} \cdot \begin{bmatrix} a_{31} \\ a_{11} \\ a_{13} \end{bmatrix} = \begin{bmatrix} a_{32} - a_{21} \\ a_{22} - a_{11} \\ a_{11} \\ a_{11} \end{bmatrix} \cdot a_{12} \\ a_{32} \cdot a_{11} \\ a_{32} \cdot a_{11} \\ a_{13} \end{bmatrix} a_{32} \cdot a_{13} \\ a_{33} \cdot a_{13} \\ a_$$

Therefore L and U are known.

**Example 1:** By the method of triangularization, solve the following system.

$$5x - 2y + z = 4$$
,  $7x + y - 5z = 8$ ,  $3x + 7y + 4z = 10$ .

Solution. The system is equivalent to

$$\begin{pmatrix} 5 & -2 & 1 \\ 7 & 1 & -5 \\ 3 & 7 & 4 \end{pmatrix} \begin{pmatrix} \chi \\ y \\ Z \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \\ 10 \end{pmatrix}$$
$$A \quad X = B$$

Now, let LU = A

That is, 
$$\begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ l_{21} & \mathbf{1} & \mathbf{0} \\ l_{31} & l_{32} & \mathbf{1} \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ \mathbf{0} & u_{22} & u_{23} \\ \mathbf{0} & \mathbf{0} & u_{33} \end{pmatrix} = \begin{pmatrix} \mathbf{5} & -\mathbf{2} & \mathbf{1} \\ \mathbf{7} & \mathbf{1} & -\mathbf{5} \\ \mathbf{3} & \mathbf{7} & \mathbf{4} \end{pmatrix}$$

Multiplying and equating coefficients,

$$u_{11} = 5, \quad u_{12} = -2, \quad u_{13} = 1$$

$$l_{21}u_{11} = 7 \quad l_{21}u_{12} + u_{22} = 1 \quad l_{21}u_{13} + u_{23} = -5$$

$$l_{21} = \frac{7}{5}, \quad u_{22} = 1 \quad -\frac{7}{5}, \quad (-2) = \frac{19}{5} \text{ and}$$

$$u_{23} = -5 - \frac{7}{5}, \quad (1) = -\frac{32}{5}$$

Again equating elements in the third row,

$$l_{31}u_{11} = 3, \ l_{31}u_{12} + l_{32}u_{22} = 7 \text{ and } l_{31}u_{13} + l_{32}u_{23} + u_{33} = 4$$

$$\frac{7 - \frac{3}{5} \cdot (-2)}{\frac{19}{5}} = \frac{41}{19}$$

$$u_{33} = 4 - \frac{3}{5} \cdot \left(1\right) - \frac{41}{19} \left(-\frac{32}{5}\right) = 4 - \frac{3}{5} + \frac{1312}{95}$$
$$= \frac{1635}{95} = \frac{327}{19}$$

Now *L* and *U* are known.Since LUX = B, LY = B where UX = Y. From LY = B,

$$\begin{pmatrix} \frac{1}{7} & \mathbf{0} & \mathbf{0} \\ \frac{3}{5} & \frac{41}{19} & \mathbf{1} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} \frac{4}{8} \\ 1 & \mathbf{0} \end{pmatrix}$$
$$y_1 = 4, \ \frac{7}{5} y_1 + y_2 = \mathbf{8}, \ \frac{3}{5} y_1 + \frac{41}{19} \ y_2 + y_3 = \mathbf{10}$$
$$y_2 = 8 - \frac{28}{5} = \frac{12}{5}$$
$$y_3 = 10 - \frac{12}{5} - \frac{41}{19} \times \frac{12}{5} = 10 - \frac{12}{5} - \frac{492}{95} = \frac{46}{19}$$
$$\begin{pmatrix} 5 & \frac{19}{5} & -\frac{32}{5} \\ \mathbf{0} & \frac{19}{5} & -\frac{32}{5} \\ \mathbf{0} & \mathbf{0} & \frac{327}{19} \end{pmatrix} \begin{pmatrix} \chi \\ y \\ Z \end{pmatrix} = \begin{pmatrix} \frac{41}{25} \\ \frac{46}{19} \\ \frac{46}{19} \end{pmatrix}$$
$$UX = Y \text{ gives}$$

$$5x - 2y + z = 4$$

$$\frac{19}{5}y - \frac{32}{5}z = \frac{12}{5}$$

$$\frac{327}{19}z = \frac{46}{19}$$

$$z = \frac{46}{327}$$

$$\frac{19}{5}_{y} = \frac{12}{5}_{+} \frac{32}{5} \left(\frac{46}{327}\right)$$

$$y = \frac{284}{327}$$

$$5x = 4 + 2y - z = 4 + 2 \left(\frac{568}{327}\right) - \frac{46}{327}$$

$$\therefore \qquad x = \frac{366}{327}$$

$$x = \frac{366}{327}$$

$$x = \frac{366}{327}, \quad y = \frac{284}{327}, \quad z = \frac{46}{327}$$

**Example 2:** Solve, by triangularization method, the following system:

x + 5y + z = 14, 2x + y + 3z = 13, 3x + y + 4z = 17.

Solution. this is equivalent to

$$\begin{pmatrix} 1 & 5 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \end{pmatrix} \begin{pmatrix} \chi \\ y \\ Z \end{pmatrix} = \begin{pmatrix} 14 \\ 13 \\ 17 \end{pmatrix}$$

$$A \qquad X = B$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix} = \begin{pmatrix} 1 & 5 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \end{pmatrix}$$
Now, let  $LU = \begin{pmatrix} 1 & 0 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & 0 & u_{33} \end{pmatrix} = \begin{pmatrix} 1 & 5 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \end{pmatrix}$ 

By seeing, we can write  $u_{11} = 1$ ,  $u_{12} = 5$ ,  $u_{13} = 1$ 

$$\begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ l_{21} & \mathbf{1} & \mathbf{0} \\ l_{31} & l_{32} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{5} & \mathbf{1} \\ \mathbf{0} & u_{22} & u_{23} \\ \mathbf{0} & \mathbf{0} & u_{33} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{5} & \mathbf{1} \\ \mathbf{2} & \mathbf{1} & \mathbf{3} \\ \mathbf{3} & \mathbf{1} & \mathbf{4} \end{pmatrix}$$

Hence,  $l_{21} = 2$ ,  $5l_{21}+u_{22} = 1$   $l_{21}+u_{23} = 3$  $l_{21} = 2$ ,  $u_{22} = -9$ ,  $u_{23} = 1$ 

again,  $l_{31} = 3$ .  $5l_{31}+l_{32}u_{22} = 1$  and  $l_{31}+l_{32}u_{23}+u_{33} = 4$ 

$$l_{32} = \frac{1 - 15}{-9} = \frac{14}{9}; \ u_{33} = 4 - 3 - \frac{14}{9} = -\frac{5}{9}$$

$$LY = B, gives,$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & \frac{14}{9} & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}_{=} \begin{pmatrix} 14 \\ 13 \\ 17 \end{pmatrix}$$

$$y_1 = 14, \ 2 \ y_1 + y_2 = 13, \ 3 \ y_1 + \frac{14}{9} \ y_2 + y_3 = 17$$

$$y_1 = 14, \ y_2 = -15, \ y_3 = -\frac{5}{3}$$

$$UX = Y \text{ gives} \begin{pmatrix} 1 & 5 & 1 \\ 0 & 0 & -\frac{5}{9} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{=} \begin{pmatrix} 14 \\ -15 \\ -\frac{5}{3} \end{pmatrix}$$

$$x + 5y + z = 14$$

$$-9y + z = -15$$

$$-\frac{5}{9}z = -\frac{5}{3}$$

$$\therefore \qquad x = 1, \ y = 2, \ z = 3$$

LUX = B implies LY = B where UX = Y.

# Jacobi Method Of Iteration or Gauss – Jacobi Method

Let us explain this method in the case of three equations in three unknowns.

Consider the system of equations,

|               | $a_1x+b_1y+c_1z=d_1$                              |
|---------------|---------------------------------------------------|
|               | $a_2x + b_2y + c_2z = d_2$                        |
|               | $a_3x+b_3y+c_3z=d_3  \dots \dots \dots \dots (1)$ |
| Let us assume | $ a_1  >  b_1  +  c_1 $                           |
|               | $ b_2  >  a_2  +  c_2 $                           |
|               | $ c_{a}  >  a_{a}  +  b_{a} $                     |

Then, iterative method can be used for the system (1). Solve for x, y, z (whose coefficients are the larger values) in terms of the other variables. That is,

$$x = \frac{1}{a_{1}} (d_{1} - b_{1}y - c_{1}z)$$

$$y = \frac{1}{b_{2}} (d_{2} - a_{2}x - c_{2}z)$$

$$z = \frac{1}{c_{2}} (d_{3} - a_{3}x - b_{3}y) \dots (2)$$

If  $x^{\circ}$ ,  $y^{\circ}$ ,  $z^{\circ}$  are the initial values of x, y, z respectively, then

$$x^{(1)} = \frac{1}{a_1} (d_l - b_l y^{(0)} - c_l z^{(0)})$$
$$y^{(1)} = \frac{1}{b_2} (d_2 - a_2 x^{(0)} - c_2 z^{(0)})$$

Again using these values  $x^{(2)}, y^{(2)}, z^{(2)}$  in (2), we get

$$\begin{aligned} x^{(2)} &= \frac{1}{a_1} (d_1 - b_1 y^{(1)} - c_1 z^{(1)}) \\ y^{(2)} &= \frac{1}{b_2} (d_2 - a_2 x^{(1)} - c_2 z^{(1)}) \\ z^{(2)} &= \frac{1}{c_2} (d_3 - a_3 x^{(1)} - b_3 y^{(1)}) \dots (4) \end{aligned}$$

Proceeding in the same way, if the rth iterates are  $\chi^{\sigma}$ ,  $\gamma^{\sigma}$ ,  $Z^{\sigma}$ , the iteration scheme reduces to

$$\begin{aligned} x^{(r+1)} &= \frac{1}{a_1} (d_l - b_l y^{(r)} - c_l z^{(r)}) \\ y^{(r+1)} &= \frac{1}{b_2} (d_2 - a_2 x^{(r)} - c_2 z^{(r)}) \\ z^{(r+1)} &= \frac{1}{c_2} (d_3 - a_3 x^{(r)} - b_3 y^{(r)}) \dots (5) \end{aligned}$$

The procedure is continued till the convergence is assured (correct to required decimals).

Note 1: To get the (r+1)th iterates, we use the values of the rth iterates in the scheme (5).

Note 2: In the absence of the initial values of x, y, z we take, usually, (0, 0, 0) as the initial estimate.

## **Gauss – Seidel Method of Iteration:**

This is only a refinement of Guass – Jacobi method. As before,

$$x = \frac{\mathbf{1}}{a_1} (d_1 - b_1 y - c_1 z)$$
$$y = \frac{\mathbf{1}}{b_2} (d_2 - a_2 x - c_2 z)$$
$$z = \frac{\mathbf{1}}{c_2} (d_3 - a_3 x - b_3 y)$$

We start with the initial values  $\mathcal{Y}^{\circ}$ ,  $Z^{\circ}$  for y and z and get  $\chi^{(1)}$  from the first equation. That is,

$$x^{(1)} = \frac{1}{a_1} (d_l - b_l y^{(0)} - c_l z^{(0)})$$

While using the second equation, we use  $Z^{(0)}$  for z and  $x^{(1)}$  for x instead of  $x^{\circ}$  as in Jacobi's method, we get

$$y^{(1)} = \frac{1}{b_2} (d_2 - a_2 x^{(1)} - c_2 z^{(0)})$$

Now, having known  $x^{(1)}$  and  $y^{(1)}$ , use  $x^{(1)}$  for x and  $y^{(1)}$  for y in the third equation, we get

$$Z^{(1)} = \frac{1}{C_{a}} (d_{3} - a_{3} \chi^{(1)} - b_{3} \gamma^{(1)})$$

In finding the values of the unknowns, we use the latest available values on the right hand side. If  $x^{\sigma_2}$ ,  $y^{\sigma_2}$ ,  $z^{\sigma_2}$  are the rth iterates, then the iteration scheme will be

$$\begin{aligned} \mathbf{x}^{(r+1)} &= \frac{1}{a_1} (d_1 - b_1 \mathcal{Y}^{(r)} - c_1 Z^{(r)}) \\ \mathcal{Y}^{(r+1)} &= \frac{1}{b_2} (d_2 - a_2 \mathcal{X}^{(r+1)} - c_2 Z^{(r)}) \\ Z^{(r+1)} &= \frac{1}{C_2} (d_3 - a_3 \mathcal{X}^{(r+1)} - b_3 \mathcal{Y}^{(r+1)}) \end{aligned}$$

This process of iteration is continued until the convergence assured. As the current values of the unknowns at each stage of iteration are used in getting the values of unknowns, the convergence in Gauss – seidel method is very fast when compared to Gauss – Jacobi method. The rate of convergence in Gauss – Seidel method is roughly two times than that of Gauss – Jacobi method. As we saw the sufficient condition already, the sufficient condition for the convergence of this method is also the same as we stated earlier. That is, *the method of iteration will converge if in each equation of the given system, the absolute value of the largest* coefficient is greater than the sum of the absolute values of all the remaining coefficients. (The largest coefficients must be the coefficients for different unknowns).

**Note 1:** For all systems of equations, this method will not work (since convergence is not assured). It converges only for special systems equations.

**Note 2:** Iteration method is self – correcting method. That is, any error made in computation, is corrected in the subsequent iterations.

**Note 3:** The iteration is stopped when the values of *x*, *y*, *z* start repeating with the required degree of accuracy.

Example 1. Solve the following system by Gauss – Jacobi and Gauss – Seidel methods:

10x-5y-2z = 3; 4x-10y+3z = -3; x+6y+10z = -3.

**Solution:** Here, we see that the diagonal elements are dominant. Hence, the iteration process can be applied.

That is, the coefficient matrix  $\begin{bmatrix} 10 & -5 & -2 \\ 4 & -10 & 3 \\ 1 & 6 & 10 \end{bmatrix}$  is diagonally dominant, since  $\begin{vmatrix} 10 \end{vmatrix} > \begin{vmatrix} -5 \end{vmatrix} + \begin{vmatrix} -2 \end{vmatrix}$ .

|-10| > |4| + |3|,|10| > |1| + |6|

Gauss – Jacobi method, solving for x, y, z we have

First iteration: Let the initial values be (0, 0, 0).

Using these initial values in (1), (2), (3), we get

$$x^{(1)} = \frac{1}{10} (3 + 5(0) + 2(0)) = 0.3$$
$$y^{(1)} = \frac{1}{10} (3 + 4(0) + 3(0)) = 0.3$$
$$z^{(1)} = \frac{1}{10} (-3 - (0) - 6(0)) = -0.3$$

Second iteration: using these values in (1), (2), (3), we get

Third iteration: using these values of  $x^{(2)}$ ,  $y^{(2)}$ ,  $z^{(2)}$  in (1), (2), (3), we get,

$$x^{(3)} = \frac{1}{10} (3 + 5(0.33) + 2(-0.51)) = 0.363$$
$$y^{(3)} = \frac{1}{10} (3 + 4(0.39) + 3(-0.51)) = 0.303$$
$$z^{(3)} = \frac{1}{10} (-3 - (0.39) - 6(0.33)) = -0.537$$

Fourth iteration:

$$x^{(4)} = \frac{1}{10} (3 + 5(0.303) + 2(-0.537)) = 0.3441$$
$$y^{(4)} = \frac{1}{10} (3 + 4(0.363) + 3(-0.537)) = 0.2841$$
$$z^{(4)} = \frac{1}{10} (-3 - (0.363) - 6(0.303)) = -0.5181$$

Fifth iteration:

$$x^{(5)} = \frac{1}{10} (3 + 5(0.2841) + 2(-0.5181)) = 0.33843$$
$$y^{(5)} = \frac{1}{10} (3 + 4(0.3441) + 3(-0.5181)) = 0.2822$$

$$z^{(5)} = \frac{1}{10} (-3 - (0.3441) - 6(0.2841)) = -0.50487$$

Sixth iteration:

$$\begin{aligned} x^{(6)} &= \frac{1}{10} (3 + 5(0.2822) + 2 (-0.50487)) = 0.340126 \\ y^{(6)} &= \frac{1}{10} (3 + 4(0.33843) + 3(-0.50487)) = 0.283911 \\ z^{(6)} &= \frac{1}{10} (-3 - (0.33843) - 6(0.2822)) = -0.503163 \end{aligned}$$

Seventh iteration:

$$x^{(7)} = \frac{1}{10} (3 + 5(0.283911) + 2(-0.503163)) = 0.3413229$$
$$y^{(7)} = \frac{1}{10} (3 + 4(0.340126) + 3(-0.503163)) = 0.2851015$$
$$z^{(7)} = \frac{1}{10} (-3 - (0.340126) - 6(0.283911)) = -0.5043592$$

Eighth iteration:

$$x^{(8)} = \frac{1}{10} (3 + 5(0.2851015) + 2(-0.5043592))$$
$$= 0.34167891$$
$$y^{(8)} = \frac{1}{10} (3 + 4(0.3413229) + 3(-0.5043592))$$
$$= 0.2852214$$

$$z^{(8)} = \frac{1}{10} (-3 - (0.3413229) - 6(0.2851015))$$
$$= - 0.50519319$$

Ninth iteration:

$$\begin{aligned} \boldsymbol{x}^{(9)} &= \frac{1}{10} \left( 3 + 5(0.2852214) + 2 \left( -0.50519319 \right) \right) \\ &= 0.341572062 \end{aligned}$$

$$y^{(9)} = \frac{1}{10} (3 + 4(0.34167891) + 3(-0.50519319))$$
  
= 0.285113607  
$$z^{(9)} = \frac{1}{10} (-3 - (0.34167891) - 6(0.2852214)) = -0.505300731$$

Hence, correct to 3 decimal places, the values are

x = 0.342, y = 0.285, z = -0.505

**Gauss – Seidel method**: Initial values : y = 0, z = 0.

First iteration:  

$$\begin{aligned} \chi^{(1)} &= \frac{1}{10} (3 + 5(0) + 2(0)) = 0.3 \\ y^{(1)} &= \frac{1}{10} (3 + 4(0.3) + 3(0)) = 0.42 \\ z^{(1)} &= \frac{1}{10} (-3 - (0.3) - 6(0.42)) = -0.582 \end{aligned}$$

Second iteration:

$$\begin{aligned} x^{(2)} &= \frac{1}{10} (3 + 5(0.42) + 2(-0.582)) = 0.3936 \\ y^{(2)} &= \frac{1}{10} (3 + 4(0.3936) + 3(-0.582)) = 0.28284 \\ z^{(2)} &= \frac{1}{10} (-3 - (0.3936) - 6(0.28284)) = -0.509064 \end{aligned}$$

Third iteration:

 $x^{(3)} = \frac{1}{10} (3 + 5(0.28284) + 2(-0.509064)) = 0.3396072 y^{(3)} = \frac{1}{10} (3 + 4(0.3396072) + 3(-0.509064)) = 0.28312368$ 

$$\boldsymbol{z^{(3)}} = \frac{1}{10} (-3 - (0.3396072) - 6(0.28312368))$$
$$= -0.503834928$$

Fourth iteration:

$$\begin{aligned} \mathbf{x}^{(4)} &= \frac{\mathbf{1}}{\mathbf{10}} \left( 3 + 5(0.28312368) + 2(-0.503834928) \right) \\ &= 0.34079485 \end{aligned}$$

$$y^{(4)} = \frac{1}{10} (3 + 4(0.34079485) + 3(-0.503834928))$$
  
= 0.285167464  
$$z^{(4)} = \frac{1}{10} (-3 - (0.34079485) - 6(0.285167464))$$
  
= - 0.50517996

Fifth iteration:

$$x^{(5)} = \frac{1}{10} (3 + 5(0.285167464) + 2(-0.50517996)))$$
  
= 0.34155477  
$$y^{(5)} = \frac{1}{10} (3 + 4(0.34155477) + 3(-0.50517996)))$$
  
= 0.28506792  
$$z^{(5)} = \frac{1}{10} (-3 - (0.34155477) - 6(0.28506792)))$$
  
= - 0.505196229

Sixth iteration:

$$\begin{aligned} x^{(6)} &= \frac{1}{10} (3 + 5(0.28506792) + 2(-0.505196229)) \\ &= 0.341494714 \\ y^{(6)} &= \frac{1}{10} (3 + 4(0.341494714) + 3(-0.505196229)) \\ &= 0.285039017 \\ z^{(6)} &= \frac{1}{10} (-3 - (0.341494714) - 6(0.28506792)) \\ &= -0.5051728 \end{aligned}$$

Seventh iteration:

$$\begin{aligned} \boldsymbol{x}^{(7)} &= \frac{\mathbf{1}}{\mathbf{10}} \left( 3 + 5(0.285039017) + 2(-0.5051728) \right) \\ &= 0.3414849 \end{aligned}$$

$$\mathcal{Y}^{(7)} = \frac{1}{10} (3 + 4(0.3414849) + 3(-0.5051728))$$
$$= 0.28504212$$
$$\mathbf{Z}^{(7)} = \frac{1}{10} (-3 - (0.3414849) - 6(0.28504212))$$

= - 0.5051737

| Itera<br>tion | Gauss - jacobi method |        |         | Gauss – seidel method |        |         |  |
|---------------|-----------------------|--------|---------|-----------------------|--------|---------|--|
|               | x                     | У      | Z.      | x                     | У      | Z       |  |
| 1             | 0.3                   | 0.3    | -0.3    | 0.3                   | 0.42   | -0.582  |  |
| 2             | 0.39                  | 0.33   | -0.51   | 0.3936                | 0.2828 | -0.5090 |  |
| 3             | 0.363                 | 0.303  | -0.537  | 0.3396                | 0.2831 | -0.5038 |  |
| 4             | 0.3441                | 0.2841 | -0.5181 | 0.3407                | 0.2851 | -0.5051 |  |
| 5             | 0.3384                | 0.2822 | -0.5048 | 0.3415                | 0.2850 | -0.5051 |  |
| 6             | 0.3401                | 0.2839 | -0.5031 | 0.3414                | 0.2850 | -0.5051 |  |
| 7             | 0.3413                | 0.2851 | -0.5043 | 0.3414                | 0.2850 | -0.5051 |  |
| 8             | 0.3416                | 0.2852 | -0.5051 |                       |        |         |  |
| 9             | 0.3411                | 0.2851 | -0.5053 |                       |        |         |  |
|               |                       |        |         |                       |        |         |  |

The values at each iteration by both methods are tabulated below:

The values correct to 3 decimal places are

$$x = 0.342, y = 0.285, z = -0.505$$

**Example 2.** Solve the following system of equations by using Gauss – jacobi and Gauss – Seidel methods (correct to 3 decimal places):

$$8x - 3y + 3z = 20$$
  
 $4x + 11y - z = 33$   
 $6x + 3y + 12z = 35.$ 

**Solution:** since the diagonal elements are dominant in the coefficient matrix, we write x, y, z as follows

# **Gauss – Jacobi method:**

*First iteration:* Let the initial values be x = 0, y = 0, z = 0

Using the values x = 0, y = 0, z = 0 in (1), (2), (3) we get,

$$x^{(1)} = \frac{1}{8} (20 + 3(0) - 2(0)) = 2.5$$
$$y^{(1)} = \frac{1}{11} (33 + 4(0) + (0)) = 3.0$$
$$z^{(1)} = \frac{1}{12} (35 - 6(0) - 3(0)) = 2.916666$$

Second iteration: using these values of  $x^{(2)}$ ,  $y^{(2)}$ ,  $z^{(2)}$  in (1), (2), (3), we get,

$$x^{(2)} = \frac{1}{8} (20 + 3(3.0) - 2(2.916666)) = 2.895833$$
$$y^{(2)} = \frac{1}{11} (33 + 4(2.5) + (2.916666)) = 2.356060$$
$$z^{(2)} = \frac{1}{12} (35 - 6(2.5) - 3(3.0)) = 0.916666$$

Third iteration:

$$\begin{aligned} \boldsymbol{x^{(3)}} &= \frac{1}{8} \left( 20 + 3(2.356060) - 2(0.916666) \right) = 3.154356 \\ \boldsymbol{y^{(3)}} &= \frac{1}{11} \left( 33 + 4(2.895833) + (0.916666) \right) = 2.030303 \boldsymbol{z^{(3)}} = \frac{1}{12} \left( 35 - 6(2.895833) - 3(2.356060) \right) = 0.879735 \end{aligned}$$

Fourth iteration:

$$\begin{aligned} \boldsymbol{x}^{(4)} &= \frac{\mathbf{1}}{\mathbf{8}} \left( 20 + 3(2.030303) - 2(0.879735) \right) = 3.041430 \\ \boldsymbol{y}^{(4)} &= \frac{\mathbf{1}}{\mathbf{11}} \left( 33 + 4(3.154356) + (0.879735) \right) = 2.932937 \\ \boldsymbol{z}^{(4)} &= \frac{\mathbf{1}}{\mathbf{12}} \left( 35 - 6(3.154356) - 3(2.030303) \right) = 0.831913 \end{aligned}$$

Fifth iteration:

$$x^{(5)} = \frac{1}{8} (20 + 3(2.932937) - 2(0.831913)) = 3.016873$$
$$y^{(5)} = \frac{1}{11} (33 + 4(3.041430) + (0.831913)) = 1.969654$$
$$z^{(5)} = \frac{1}{12} (35 - 6(3.041430) - 3(2.932937)) = 0.912717$$

Sixth iteration:

$$x^{(6)} = \frac{1}{8} (20 + 3(1.969654) - 2(0.912717)) = 3.010441$$
$$y^{(6)} = \frac{1}{11} (33 + 4(3.016873) + (0.912717)) = 1.985930$$
$$z^{(6)} = \frac{1}{12} (35 - 6(3.016873) - 3(1.969654)) = 0.915817$$

Seventh iteration:

$$x^{(7)} = \frac{1}{8} (20 + 3(1.985930) - 2(0.915817)) = 3.015770$$
$$y^{(7)} = \frac{1}{11} (33 + 4(3.010441) + (0.915817)) = 1.988550$$
$$z^{(7)} = \frac{1}{12} (35 - 6(3.010441) - 3(1.985930)) = 0.914964$$

Eighth iteration:

$$x^{(8)} = \frac{1}{8} (20 + 3(1.988550) - 2(0.914964)) = 3.016946$$
$$y^{(8)} = \frac{1}{11} (33 + 4(3.015770) + (0.914964)) = 1.986535$$
$$z^{(8)} = \frac{1}{12} (35 - 6(3.015770) - 3(1.988550)) = 0.911644$$

Ninth iteration:

$$\chi^{(9)} = \frac{1}{8} (20 + 3(1.986535) - 2(0.911696)) = 3.017039$$

$$y^{(9)} = \frac{1}{11} (33 + 4(3.016946) + (0.911696)) = 1.985805$$
  
 $z^{(9)} = \frac{1}{12} (35 - 6(3.016946) - 3(1.986535)) = 0.911560$ 

Tenth iteration:

$$x^{(9)} = \frac{1}{8} (20 + 3(1.985805) - 2(0.911560)) = 3.016786$$
$$y^{(9)} = \frac{1}{11} (33 + 4(3.017039) + (0.911560)) = 1.985764$$
$$z^{(9)} = \frac{1}{12} (35 - 6(3.017039) - 3(1.985805)) = 0.911696$$

In  $8^{\text{th}}$ ,  $9^{\text{th}}$  and  $10^{\text{th}}$  iterations the values of *x*, *y*, *z* are same correct to 3 decimal places. Hence, we stop at this level.

# Gauss – Seidel method:

We take the initial values are y = 0, z = 0 and use equations (1)

First iteration:

$$\begin{aligned} x^{(1)} &= \frac{1}{8} (20 + 3(0) - 2(0)) = 2.5 \\ y^{(1)} &= \frac{1}{11} (33 + 4(2.5) + (0)) = 2.090909 \\ z^{(1)} &= \frac{1}{12} (35 - 6(2.5) - 3(2.090909)) = 1.143939 \end{aligned}$$

Second iteration:

$$\begin{aligned} x^{(2)} &= \frac{1}{8} \left( 20 + 3(2.090909) - 2(1.143939) \right) = 2.998106 \\ y^{(2)} &= \frac{1}{11} \left( 33 + 4(2.998106) + (1.143939) \right) = 2.013774 \\ z^{(2)} &= \frac{1}{12} \left( 35 - 6(2.998106) - 3(2.013774) \right) = 0.914170 \end{aligned}$$

Third iteration:

$$\chi^{(3)} = \frac{1}{8} (20 + 3(2.013774) - 2(0.914170)) = 3.026623$$

$$y^{(3)} = \frac{1}{11} (33 + 4(3.026623) + (0.914170)) = 1.982516Z^{(3)} = \frac{1}{12} (35 - 6(3.026623) - 3(1.982516)) = 0.907726$$

Fourth iteration:

$$x^{(4)} = \frac{1}{8} (20 + 3(1.982516) - 2(0.907726)) = 3.016512$$
$$y^{(4)} = \frac{1}{11} (33 + 4(3.026623) + (0.907726)) = 1.985607$$
$$z^{(4)} = \frac{1}{12} (35 - 6(3.016512) - 3(1.985607)) = 0.912009$$

Fifth iteration:

$$x^{(5)} = \frac{1}{8} (20 + 3(1.985607) - 2(0.912009)) = 3.016600$$
$$y^{(5)} = \frac{1}{11} (33 + 4(3.016600) + (0.912009)) = 1.985964$$
$$z^{(5)} = \frac{1}{12} (35 - 6(3.016600) - 3(1.985964)) = 0.911876$$

Sixth iteration:

$$x^{(6)} = \frac{1}{8} (20 + 3(1.985964) - 2(0.911876)) = 3.016767$$
$$y^{(6)} = \frac{1}{11} (33 + 4(3.016767) + (0.911876)) = 1.985892$$
$$z^{(6)} = \frac{1}{12} (35 - 6(3.016767) - 3(1.985892)) = 0.911810$$

(The values of *x*, *y*, *z* got by jacobi method correct to 3 decimal places are got even in the  $6^{\text{th}}$  iteration by Gauss – seidel method.)

Seventh iteration:

$$x^{(7)} = \frac{1}{8} (20 + 3(1.985892) - 2(0.911810)) = 3.016757$$
$$y^{(7)} = \frac{1}{11} (33 + 4(3.016757) + (0.911810)) = 1.985889$$

$$Z^{(7)} = \frac{1}{12} (35 - 6(3.016757) - 3(1.985889)) = 0.911816$$

Since the seventh and eighth iterations give the same values for x, y, z correct to 4 decimal places, we stop here.

• 
$$x = 3.0168, y = 1.9859, z = 0.9118$$

The values of x, y, z by both methods at each iteration are tabulated below:

| Iter | Gauss – jacobi |        |        | Gauss – seidel |        |        |
|------|----------------|--------|--------|----------------|--------|--------|
| atio | method         |        | method |                |        |        |
| n    | x              | У      | Z.     | x              | У      | z      |
| 1    | 2.5            | 3.0    | 2.9166 | 2.5            | 2.0909 | 1.1439 |
| 2    | 2.8958         | 2.3560 | 0.9166 | 2.9981         | 2.0137 | 0.9141 |
| 3    | 3.1543         | 2.0303 | 0.8797 | 3.0266         | 1.9825 | 0.9077 |
| 4    | 3.0414         | 1.9329 | 0.8319 | 3.0165         | 1.9856 | 0.9120 |
| 5    | 3.0168         | 1.9696 | 0.9127 | 3.0166         | 1.9859 | 0.9118 |
| 6    | 3.0104         | 1.9859 | 0.9158 | 3.0167         | 1.9858 | 0.9118 |
| 7    | 3.0157         | 1.9885 | 0.9149 | 3.0167         | 1.9858 | 0.9118 |
| 8    | 3.0169         | 1.9865 | 0.9116 |                |        |        |
| 9    | 3.0170         | 1.9858 | 0.9115 |                |        |        |
| 10   | 3.0167         | 1.9857 | 0.9116 |                |        |        |

This shows that the convergence is rapid in Gauss – seidel method when compared to Gauss – Jacobi method. We see that 10 iterations are necessary in jacobi method to get the same accuracy as got by 7 iterations in Gauss – Seidel method.

**Example 3.** Since the diagonal elements in the coefficient matrix are not dominant, we arrange the equations, as follows, such that the elements in the coefficient matrix are dominant.

28x + 4y - z = 32, x + 3y + 10z = 24, 2x + 17y + 4z = 35

*Solution:* Since the diagonal elements in the coefficient matrix are not dominant, we rearrange the equations, as follows, such that the elements in the coefficient matrix are dominant.

$$28x + 4y - z = 32$$
$$2x + 17y + 4z = 35$$
$$x + 3y + 10z = 24$$

Hence,  $x = \frac{1}{28} (32 - 4y + z)$  .....(1)

setting y = 0, z = 0, we get

First iteration:

$$x^{(1)} = \frac{1}{28} (32 - 4(0) + 0) = 1.1429$$
$$y^{(1)} = \frac{1}{17} (35 - 2(1.1429) - 4(0)) = 1.9244$$
$$z^{(1)} = \frac{1}{10} (24 - 1.1429 - 3(1.9244)) = 1.8084$$

Second iteration:

$$x^{(2)} = \frac{1}{28} (32 - 4(1.9244) + 1.8084) = 0.9325$$
$$y^{(2)} = \frac{1}{17} (35 - 2(0.9325) - 4(1.8084)) = 1.5236$$
$$z^{(2)} = \frac{1}{10} (24 - 0.9325 - 3(1.5236)) = 1.8497$$

Third iteration:

$$x^{(3)} = \frac{1}{28} (32 - 4(1.5236) + 1.8497) = 0.9913$$
$$y^{(3)} = \frac{1}{17} (35 - 2(0.9913) - 4(1.8497)) = 1.5070$$

$$z^{(3)} = \frac{1}{10} (24 - 0.9913 - 3(1.5070)) = 1.8488$$

Fourth iteration:

$$x^{(4)} = \frac{1}{28} (32 - 4(1.5070) + 1.8488) = 0.9936$$
$$y^{(4)} = \frac{1}{17} (35 - 2(0.9936) - 4(1.8488)) = 1.5069$$
$$z^{(4)} = \frac{1}{10} (24 - 0.9936 - 3(1.5069)) = 1.8486$$

Fifth iteration:

$$x^{(5)} = \frac{1}{28} (32 - 4(1.5069) + 1.8486) = 0.9936$$
$$y^{(5)} = \frac{1}{17} (35 - 2(0.9936) - 4(1.8486)) = 1.5069$$
$$z^{(5)} = \frac{1}{10} (24 - 0.9936 - 3(1.5069)) = 1.8486$$

Since the values of x, y, z in the  $4^{th}$  and  $5^{th}$  iterations are same, we stop the process here.

Hence, x = 0.9936, y = 0.5069 and z = 1.8486

#### **Numerical Integration**

We know that  $\int_{a}^{b} f(x) dx$  represents the area between y = f(x), x - axis and the ordinates x = a and x = b. This integration is possible only if the f(x) is explicitly given and if it is integrable. The problem of numerical integration can be stated as follows: Given as set of (n+1) paired values  $(x_i, y_i)$ , i = 0, 1, 2, ..., n of the function y=f(x), where f(x) is not known explicitly, it is required to compute  $\int_{x_0}^{x_n} y dx$ .

As we did in the case of interpolation or numerical differentiation, we replace f(x) by an interpolating polynomial  $P_n(x)$  and obtain  $\int_{x_0}^{x_n} P_n(x) dx$  which is approximately taken as the value for  $\int_{x_0}^{x_n} f(x) dx$ .

# A general quadrature formula for equidistant ordinates (or Newton – cote's formula)

For equally spaced intervals, we have Newton's forward difference formula as

$$y(x) = y(x_0 + uh) = y_0 + u\Delta y_0 + \frac{u(u-1)}{2!}\Delta^2 y_0 + \dots \quad \dots \dots (1)$$

Now, instead of f(x), we will replace it by this interpolating formula of Newton.

Here,  $u = \frac{x - x_0}{h}$  where *h* is interval of differencing.

Since 
$$x_n = x_0 + nh$$
, and  $u = \frac{x - x_0}{h}$  we have  $\frac{x - x_0}{h} = n = u$ .  

$$\int_{x_0}^{x_n} f(x) dx = \int_{x_0}^{x_n + nh} f(x) dx$$

$$= \int_{x_0}^{x_n + nh} P_n(x) dx \text{ where } P_n(x) \text{ is interpolating polynomial}$$

$$= \int_0^n \left( y_0 + u \,\Delta y_0 + \frac{u(u - 1)}{2!} \,\Delta^2 y_0 + \frac{u(u - 1)(u - 2)}{3!} \,\Delta^3 y_0 + \dots \right) (hdu)$$

Since dx = hdu, and when  $x = x_0$ , u = 0 and when  $x = x_0+nh$ , u = n.

$$=h\left[y_{0}(u)+\frac{u^{2}}{2}\Delta y_{0}+\frac{\left(\frac{u^{3}}{3}-\frac{u^{2}}{2}\right)}{2}\Delta^{2}y_{0}+\frac{1}{6}\left(\frac{u^{4}}{4}-u^{3}+u^{2}\right)\Delta^{3}y_{0}+\cdots\right]_{0}^{n}$$
$$\int_{x_{0}}^{x_{n}}f(x)dx=h\left[ny_{0}+\frac{n^{2}}{2}\Delta y_{0}+\frac{1}{2}\frac{n^{3}}{3}-\frac{n^{2}}{2}\Delta^{2}y_{0}\right]+\frac{1}{6}\left(\frac{n^{4}}{4}-n^{3}+n^{2}\right)\Delta^{3}y_{0}+\cdots(2)$$

The equation (2), called Newton-cote's quadrature formula is a general quadrature formula. Giving various values for n, we get a number of special formula.

## **Trapezoidal rule**

By putting n = 1, in the quadrature formula (i.e there are only two paired values and interpolating polynomial is linear).

$$\int_{x_0}^{x_n+nh} f(x) dx = h \left[ 1.y_0 + \frac{1}{2} \Delta y_0 \right] \text{ since other differences do not exist if } n = 1.$$
$$= \int_{x_0}^{x_n} f(x) dx = \int_{x_0}^{x_n+nh} f(x) dx$$

$$= \int_{x_0}^{x_0+h} f(x) dx + \int_{x_0+h}^{x_n+2h} f(x) dx + \dots + \int_{x_0+(n-1)h}^{x_n+nh} f(x) dx$$
$$= \frac{h}{2} \left[ (y_0+y_n) + 2(y_1+y_2+y_3+\dots+y_{n-1}) \right]$$
$$= \frac{h}{2} \left[ (\text{sum of the first and the last ordinates}) + 2(\text{sum of the remaining ordinates}) \right]$$

This is known as Trapezoidal Rule and the error in the trapezoidal rule is of the order  $h^2$ .

#### Note

Though this method is very simple for calculation purposes of numerical integration; the error in this case is significant. The accuracy of the result can be improved by increasing the number of intervals and decreasing the value of h.

### **Truncating error on Trapezoidal rule**

In the neighborhood of  $x = x_0$ , we can expand  $y = f(x_0)$  by Taylor series in power of  $x - x_0$ . That is,

$$y(x) = y_0 + (x-x_0) y'_0 + (x-x_0)2y''_0 + \dots +$$

where  $y(x) = y_0 + \frac{(x - x_0)}{1!} y_0' + \frac{(x - x_0)^2}{2!} y_0'' + \dots \dots (1)$  where  $y_0' = [y'(x)] x = x_0$ 

$$\int_{x_0}^{x_1} y \, dx = \int_{x_0}^{x_1} \left[ y_0 + \frac{(x - x_0)}{1!} y_0' + \frac{(x - x_0)^2}{2!} y_0'' + \dots dx \right]$$
  
=  $\left[ y_0 x + \frac{(x - x_0)^2}{2!} y_0'' + \frac{(x - x_0)^3}{3!} y_0'' + \dots \right]_{x_0}^{x_1}$   
=  $y_0 (x_1 - x_0) + \frac{(x - x_0)^2}{2!} y_0' + \frac{(x - x_0)^3}{3!} y_0'' + \dots$ 

$$= h y_0 + \frac{h^2}{2!} y_0' + \frac{h^3}{3!} y_0'' + \dots \qquad \dots \dots \dots (2)$$

If h is the equal interval length.

Also 
$$\int_{x_0}^{x_1} y \, dx = \frac{h}{2} (y_0 + y_1) = \text{area of the first trapezium} = A_0....(3)$$

Putting  $x = x_1$  in (1)

$$y(x_l) = y_l = y_0 + \frac{(x_1 - x_0)}{1!} y_0' + \frac{(x_2 - x_0)^2}{2!} y_0'' + \dots$$

*i.e.*, 
$$y_1 = y_0 + \frac{h}{1!} y_0' + \frac{h^2}{2!} y_0'' + \dots \quad \dots \quad (4)$$
  
$$A_0 = \frac{h}{2} \left[ y_0 + y_0 + \frac{(x - x_0)}{1!} y_0' + \frac{(x - x_0)^2}{2!} y_0'' + \dots \right]$$

Using (4) in (3).

$$= h y_0 + \frac{h^2}{2} y_0' + \frac{h^3}{2*2!} y_0'' + \dots$$

Subtracting A<sub>0</sub> value from (2),

$$\int_{x_0}^{x_1} y \, dx - A_0 = h^3 y_0 \, '' \left[ \frac{1}{3!} - \frac{1}{2*2!} \right]^+ \dots \dots$$
$$= -\frac{1}{12} h^3 y_0 \, '' + \dots \dots$$

Therefore the error in the first interval  $(x_0, x_1)$  is  $-\frac{1}{12}h^3y_0$ '' (neglecting other terms)

Similarly the error in the *i*th interval = 
$$-\frac{1}{12}h^3y_{i-1}$$

Therefore, the total cumulative error (approx.),

$$E = -\frac{1}{12} h^{3} (y_{0}'' + y_{1}'' + y_{2}'' + \dots + y_{n-1}'')$$

$$|E| < \frac{nh^{3}}{12} (M) \text{ where M is the maximum value of } |y_{0}''|, |y_{1}''|, |y_{2}''|, \dots$$

$$< \frac{(b-a)h^{2}}{12} (M) \text{ if the interval is } (a,b) \text{ and}$$
$$h = \frac{b-a}{n}$$

Hence, the error in the trapezoidal rule is of the order  $h^2$ .

## Simpson's one-third rule

Setting n = 2 in Newton- cote's quadrature formula, we have  $\int_{x_0}^{x_n} f(x) dx = h$   $\left[ 2y_0 + \frac{4}{2} \Delta y_0 + \frac{1}{2} \left( \frac{8}{3} - \frac{4}{2} \right) \Delta^2 y_0 \right]$  (since other terms vanish)  $= \frac{h}{3} (y_2 + y_1 + y_0)$ 

Similarly,  $\int_{x_2}^{x_4} f(x) dx = \frac{h}{3} (y_2 + 4y_3 + y_4)$ 

$$\int_{x_2}^{x_4} f(x) dx = \frac{h}{3} (y_i + 4y_{i+1} + y_{i+2})$$

If n is an even integer, last integral will be

$$\int_{x_{n-2}}^{x_n} f(x) dx = \frac{h}{3} (y_{n-2} + 4y_{n-1} + y_n)$$

Adding all the integrals, if *n* is an even positive integer, that is, the number of ordinates  $y_0$ ,  $y_1$ ,  $y_2$ ..., $y_n$  is odd, we have

$$\int_{x_0}^{x_n} f(x) dx = \int_{x_0}^{x_2} f(x) dx + \int_{x_2}^{x_4} f(x) dx + \dots + \int_{x_{n-2}}^{x_n} f(x) dx$$
$$= \frac{h}{3} \left[ (y_0 + y_n) + 2(y_2 + y_4 + \dots) + \dots + 4(y_1 + y_3 + \dots) \right]$$
$$h$$

 $= \frac{1}{3} [(\text{sum of the first and the last ordinates}) + 2(\text{sum of remaining odd ordinates}) + 2(\text{sum of even ordinates})]$ 

**Note.** Though *y*<sub>2</sub> has suffix even, it is third ordinate (odd).

#### Simpson's three-eighths rule

Putting n = 3 in Newton – cotes formula

Equation (2) is called *Simpson's three* – *eighths rule* which is applicable only when n is a multiple of 3.Truncation error in simpson's rule is of the order h

Note 1: In trapezoidal rule , y(x) is a linear function of x. The rule is the simplest one but it is least accurate.

Note 2: In simpson's one – third rule, y(x) is a polynomial of degree two. To apply this rule n, the number of intervals must be even. That is, the number of ordinates must be odd.

Note 3: In weddle's rule, y(x) is a polynomial of degree six and this rule is applicable only if n, the number of intervals, is a multiple of six. A minimum number of 7 ordinates is necessary.

#### Truncation error in simpson's rule

By taylor expansion of y=f(x) in the neighborhood of  $x = x_0$  we get,

Putting  $x = x_1$  in (1)

Putting  $x = x_2$  in (1)

$$y_1 = y_0 + \frac{2h}{1!} y_0' + \frac{4h^2}{2!} y_0'' + \dots$$
 (5)

substituting (4) in (5), in (3),

$$A_1 = 2hy_0 + 2h^2 y_0' + \frac{4}{3} h^3 y_0'' + \frac{2h^4}{3} y_0''' + \frac{5h^5}{18} y_0''' + \dots \qquad \dots (6) \text{ equations } (2) - \frac{5h^5}{18} y_0''' + \dots$$

(6) give

$$\int_{x_0}^{x_2} y \, dx - A_1 = \left(\frac{4}{15} - \frac{5}{18}\right) h^5 y_0 \cdots + \dots$$
$$= -\frac{h^5}{90} y_0 \cdots + \dots$$

Leaving the remaining terms involving  $h^6$  and higher powers of h, principal part of the error in  $(x_0, x_2)$  is

$$=-\frac{h^{5}}{90}y_{0},...+...$$

Similarly the principal part of the error in  $(x_2, x_4)$  is

$$=-\frac{h^5}{90}y_2$$
, and so far each interval.

Hence the total error in all the intervals is given by

$$\mathbf{E} = -\frac{\hbar^5}{90} (y_0, \dots, y_2, \dots, y_1, \dots)$$

 $|E| < \frac{n\hbar^5}{90}$  (M) where M is the numerically greater value of  $y_0, y_2, y_2, \dots, y_{2n-2}$ 

since  $(x_{2n}, x_{2n})$  is the last paired value because we require odd number of ordinates to apply simpson's one – third rule. (i.e., 2n intervals).

If the interval is(a,b) then b - a = h(2n). using this,  $|E| < \frac{(b-1)h^4}{180}$  (M).

Hence, the error in simpson's one – third rule is of the order h

### **Example 1**

Evaluate  $\int_{-3}^{3} x^4 dx$  by using (1) trapezoidal rule (2)simpson's rule. Verify your results by actual integration.

### Solution

Here  $y(x) = x^4$ . Interval length(b - a) = 6. So, we divide 6 equal intervals with  $h = \frac{6}{6} = 1$ .

We form below the table

| x | -3 | -2 | -1 | 0 | 1 | 2  | 3  |
|---|----|----|----|---|---|----|----|
| y | 81 | 16 | 1  | 0 | 1 | 16 | 81 |

# (i) By trapezoidal rule:

 $\int_{-3}^{3} y \, dx = \frac{h}{2} \left[ (\text{sum of the first and the last ordinates}) + \right]$ 

2(sum of the remaining ordinates)]

$$=\frac{1}{2} [(81+81)+2(16+1+0+1+16)]$$
$$=115$$

(ii) By Simpson's one - third rule (since number of ordinates is odd):

$$\int_{-3}^{3} y \, dx = \frac{1}{3} \left[ (81 + 81) + 2(1 + 1) + 4(16 + 0 + 16) \right]$$
  
= 98.

(iii) Since n = 6, (multiple of three), we can also use simpson's three - eighths rule. By this rule,

$$\int_{-3}^{3} y \, dx = \frac{1}{3} \left[ (81 + 81) + 3(16 + 1 + 1 + 16) + 2(0) \right]$$

= 99

## (iv) By actual integration,

$$\int_{-3}^{3} x^{4} dx = 2 * \left[ \frac{x^{5}}{5} \right]_{0}^{3} = \frac{2 * 243}{5} = 97.2$$

From the results obtained by various methods, we see that simpson's rule gives better result than trapezoidal rule

| X                    | 0 | 0.2         | 0.4         | 0.6     | 0.8         | 1.0      |
|----------------------|---|-------------|-------------|---------|-------------|----------|
| y=1/1+x <sup>2</sup> | 1 | 0.961<br>54 | 0.8620<br>7 | 0.73529 | 0.609<br>76 | 0.5<br>0 |

## Example 2

Evaluate  $\int_0^1 \frac{dx}{1+x^2}$ , using Trapezoidal rule with h = 0.2. hence obtain an approximate value of  $\pi$ . Can you use other formulae in this case.

## Solution.

Let 
$$y(x) = \frac{1}{1+x^2}$$

Interval is (1-0) = 1. Since the value of y are calculated as points taking h =0.2

(i) By Trapezoidal rule,

$$\int_{0}^{1} \frac{dx}{1+x^{2}} = \frac{h}{2} \left[ (y_{0}+y_{n}) + 2(y_{1}+y_{2}+y_{3}+\dots+y_{n-1}) \right]$$
  
=  $\frac{0.2}{2} [(1+0.5)+2(0.96154+0.8620+0.73529+0.60976)]$   
=  $(0.1)[1.5+6.33732]$   
=  $0.783732$ 

By actual integration,

$$\int_{0}^{1} \frac{dx}{1+x^{2}} = (\tan^{-1} x)_{0}^{1} = \frac{\pi}{4}$$
$$\frac{\pi}{4} \approx 0.783732$$
$$\pi \approx 3.13493 \text{ (approximately).}$$

In this case, we cannot use simpson's rule (both) and weddle's rule. (since number of intervals is 5).

# Example 3

From the following table, find the areas bounded by the curve and the x-axis from x = 7.47 to x = 7.52.

| X      | 7.47 | 7.48 | 7.49 | 7.50 | 7.51 | 7.52 |
|--------|------|------|------|------|------|------|
| y=f(x) | 1.93 | 1.95 | 1.98 | 2.01 | 2.03 | 2.06 |

## Solution

Since only 6 ordinates (n = 5) are given, we cannot use Simpson's rule. So, we will use trapezoidal rule.

Area=
$$\int_{7.47}^{7.52} f(x) dx$$
  
= $\frac{0.01}{2}[(1.93+2.06)+2(1.95+1.98+2.01+2.3)]$   
= 0.09965.

### **Example 4**

Evaluate  $\int_0^6 \frac{dx}{1+x}$ , using (i) Trapezoidal rule (ii) Simpson's rule (both). Also, check up by direct integration.

## Solution

Take the number of intervals as 6.

$$h = \frac{6-0}{6} = 1$$

| Х | 0 | 1   | 2   | 3   | 4   | 5   | 6   |
|---|---|-----|-----|-----|-----|-----|-----|
| У | 1 | 0.5 | 1/3 | 1/4 | 1/5 | 1/6 | 1/7 |

i) By Trapezoidal rule

$$\begin{pmatrix} \frac{1}{7} \end{pmatrix} = \frac{1}{2} \left( \left( 1 + \frac{1}{7} \right) + 2 \left( \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} \right) \right)$$
  
= 2.02142857

ii) By Simpsons's one - third rule,

$$I = \frac{1}{3} \left( \left( 1 + \frac{1}{7} \right) + 2 \left( \frac{1}{3} + \frac{1}{5} \right) + 4 \left( \frac{1}{2} + \frac{1}{4} + \frac{1}{6} \right) \right)$$
$$= \frac{1}{3} \left( 1 + \frac{1}{7} + \frac{16}{15} + \frac{22}{6} \right) = 1.95873016$$

iii) By Simpsons's three - eighths rule,

$$I = \left(\frac{3*1}{8} \left(1 + \frac{1}{7}\right) + 3\left(\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{6}\right) + 2\left(\frac{1}{4}\right)$$
$$= 1.96607143$$

iv) By actual integration,

$$\int_0^6 \frac{1}{1+x} = [\log(1+x)]_0^6 = \log_e 7 = 1.94591015$$

## Example 5

By dividing the range into ten equal parts, evaluate  $\int_0^{\pi} \sin x \, dx$  by trapezoidal and Simpson's rule. Verify your answer with integration.

| Х      | 0      | π/10   | 2π/10   | 3π/10  | 4π/10  | 5π/10 |
|--------|--------|--------|---------|--------|--------|-------|
|        |        |        |         |        |        |       |
| y=sinx | 0      | 0.3090 | 0.58878 | 0.8090 | 0.9511 | 1.0   |
| •      |        |        |         |        |        |       |
| Х      | 6π/10  | 7π/10  | 8π/10   | 9π/10  | π      |       |
|        |        |        |         |        |        |       |
| y=sinx | 0.9511 | 0.8090 | 0.578   | 0.3090 | 0      |       |
|        |        |        |         |        |        |       |

## Solution

Range =  $\pi - 0 = \pi$ Hence h =  $\frac{\pi}{10}$ 

We tabulate below the values of y at different x's

Note that the values are symmetrical about  $x = \frac{\pi}{2}$ 

(i) By Trapezoidal rule,  
I = 
$$\frac{\pi}{20}$$
 [ (0 + 0) + 2(0.3090+0.5878+0.8090+

$$0.9511+1.0+0.9511+0.8090+0.5878+0.3090)$$
]

= 1.9843 nearly.

(ii) By Simpsons's one – third rule,

$$I = \frac{1}{3} \left(\frac{\pi}{10}\right) \left[ (0+0) + 2(0.5878 + 0.9511 + 0.5878 + 0.9511) + 4(0.3090 + 0.8090 + 1 + 0.3090 + 0.8090) \right]$$
$$= 2.00091$$

Note: We cannot use Simpson's three eighth's rule.

(iii) By actual integration,  $I = (-\cos x)_0^{\pi} = 2$ . Hence, Simpson's rule is more accurate than the trapezoidal rule.

### **Example 6**

Evaluate  $\int_0^1 \frac{dx}{1+x^2}$ , using Romberg's method. Hence obtain an approximate value of  $\pi$ .

## Solution

To use the method, we shall give various values of h and evaluate the integral.

By taking h=0.5, tabulate the values of  $y=1/1+x^2$ 

x: 0 0.5 1

y: 1 0.80 0.50

By Trapezoidal rule

Therefore I = 0.5/2[1.5+2(0.8)] = 0.775

By taking h=0.25, we have the table

| x: 0    | 0.2                                                    | 5      | 0.5    |     | 0.75   | 1    |        |  |  |
|---------|--------------------------------------------------------|--------|--------|-----|--------|------|--------|--|--|
| y: 1    | 0.9                                                    | 412    | 0.8    |     | 0.64   | 0.5  |        |  |  |
| Therefo | Therefore I = $0.25/2[1.5+2(0.9412+0.8+0.64)]=0.78280$ |        |        |     |        |      |        |  |  |
| By taki | By taking h=0.125, we have the table                   |        |        |     |        |      |        |  |  |
| x: 0    | 0.125                                                  | 0.250  | 0.375  | 0.5 | 0.625  | 0.75 | 0.875  |  |  |
| y: 1    | 0.9846                                                 | 0.9412 | 0.8767 | 0.8 | 0.7191 | 0.64 | 0.5664 |  |  |

Therefore

I = 0.125/2[1.5+2(0.9846+0.9412+0.8767+0.8+0.7191+0.64+0.5664)] = 0.78475

The different values got by Trapezoidal rule for various h's are

0.775 0.78280 0.78280

Applying the formula  $I = I_2 + 1/3[I_2 - I_1]$ , we will get two important values, namely 0.7828+1/3[0.7828-0.7750]=0.7854

0.78475+1/3[0.78475-0.7750] =0.7854

As these two values happen to be equal, we finalise the result.

Hence I = 0.7854.

By actual integration,

$$\int_0^1 \frac{dx}{1+x^2} = (\tan^{-1} x)_0^1$$
$$= \frac{\pi}{4} = 0.7854$$
$$= \pi = 3.1416$$

1

0.5

#### **POSSIBLE QUESTIONS:**

- 1. Applying Gauss Elimination method to find the solution of the following system 10x+y+z = 12;2x+10y+z = 13;x+y+5z = 7
- By the Gauss Jordan method solve the following equations.
   5x-2y+z=4; 7x+y-5z=8; 3x+7y+4z=10
- 3. By the Method of Triangularization solve the following system 5x-2y+z = 4; 7x+y-5z = 8; 3x+7y+4z = 10
- 4. Solve the system of equation by Gauss Jacobi method.
  5x-2y+z= -4; x+6y-2z= -1; 3x+y+5z=13
- Solve the system of equation by Gauss Seidel method 10x-5y-2z =3; 4x-10y+3z =-3; x+6y+10z =-3
- Solve the system of equations by Gauss Seidel method correct to 3 decimal places. 8x-3y+2z=20; 4x+11y-z=33; 6x+3y-12z=35
- Applying Gauss Jacobi method to find the solution of the following system 10x+2y+z=9; 2x+20y-2z= - 44; -2x+3y+10z=22
- Solve the following system by Relaxation method.
   10x-2y-2z =6; -x+10y+-2z =7; -x-y+10z =8
- Solve the following system of equations by relaxation method 10x-2y+z=12, x+9y-z = 10, 2z-y+11z=20.
- 10. By dividing the range into 10 equal parts evaluate  $\int_0^{\pi} sinxdx$  by Trapezoidal & Simpson's rule. Verify your answer with integration.
- 11. Evaluate  $\int_0^6 \frac{dx}{1+x^2}$  using Trapezoidal rule.
- 12. Evaluate  $\int_{-3}^{3} x^4 dx$  using Simpson's rule.