

(Deemed to be University) (Established Under Section 3 of UGC Act 1956) **COIMBATORE-21** (For the candidates admitted from 2016 onwards)

DEPARTMENT OF PHYSICS

SUBJECT: NANO MATERIALS AND APPLICATIONS (PRACTICAL) SEMESTER: VI SUB.CODE: 17PHU611A CLAS

CLASS: III B.Sc PHYSICS

Any 7 experiments

- 1. Synthesis of metal nanoparticles by chemical route.
- 2. Synthesis of semiconductor nanoparticles.
- 3. Surface Plasmon study of metal nanoparticles by UV-Visible spectrophotometer.
- 4. XRD pattern of nanomaterials and estimation of particle size.
- 5. To study the effect of size on color of nanomaterials.
- 6. To prepare composite of CNTs with other materials.
- 7. Growth of quantum dots by thermal evaporation.
- 8. Prepare a disc of ceramic of a compound using ball milling, pressing and sintering, and study its XRD.
- 9. Fabricate a thin film of nanoparticles by spin coating (or chemical route) and study transmittance spectra in UV-Visible region.
- 10. Prepare a thin film capacitor and measure capacitance as a function of temperature or frequency.
- 11. Fabricate a PN diode by diffusing Al over the surface of N-type Si and study its V-I characteristic.

Reference Books:

- 1. C.P.Poole, Jr. Frank J.Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.). S.K. Kulkarni,
- 2. Nanotechnology: Principles & Practices (Capital Publishing Company). K.K. Chattopadhyay and A.N. Banerjee,
- 3. Introduction to Nanoscience & Technology (PHI Learning Private Limited).
- 4. Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).

CLASS: III B.Sc., Physics COURSE CODE: 17PHU611A COURSE NAME: Nanomaterials and Applications PracticalsLab ManualBATCH-2017-2020

SYNTHESIS OF SILVER NANOPARTICLES

Expt No:

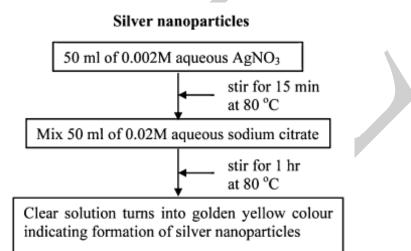
Date:

Aim: To synthesize metal nanoparticles of silver.

Chemicals

- 1. Silver nitrate (AgNO3) for silver particles
- 2. Trisodium citrate (C6H5O7Na3)
- 3. Double distilled water

14.2.2 Equipments


- 1. Round bottom flask
- 2. Magnetic stirrer cum heater
- 3. Optical absorption spectrometer (_250-700 nm)

Synthesis Procedure

Procedures to synthesis silver nanoparticles are given in the flow chart form. Synthesis can be carried out using the glass apparatus or set up as shown in Fig.

CLASS: III B.Sc., Physics COURSE CODE: 17PHU611A COURSE NAME: Nanomaterials and Applications Practicals Lab Manual BATCH-2017-2020

Results

The magenta red and yellow colors for silver solutions respectively indicate the formation of nanoparticles. Changing the concentrations, reaction time, temperature etc. one can obtain different shapes/sizes of the particles. This changes the solution color or shades. There is large literature on these aspects. Typical photograph of gold and silver particles obtained using above procedure.

Silver

CLASS: III B.Sc., Physics COURSE CODE: 17PHU611A

COURSE NAME: Nanomaterials and Applications PracticalsALab ManualBATCH-2017-2020

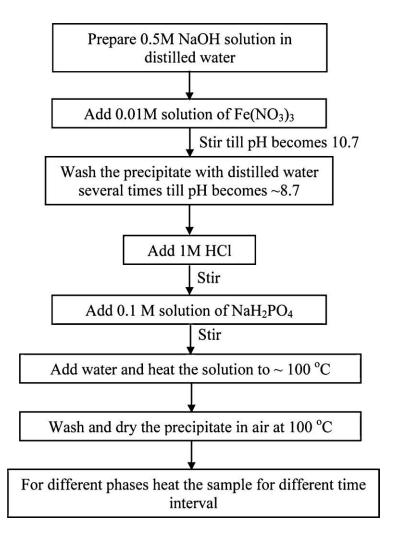
Expt No:

Date:

SYNTHESIS OF Fe₂O₃ NANOPARTICLES

Aim: To synthesize iron oxide particles of different shapes.

Chemicals


- 1. Sodium hydroxide (NaOH)
- 2. Iron chloride (FeCl3)
- 3. Sodium hexametaphosphate (NaH2PO4)
- 4. Double distilled water

Equipments

- 1. Round bottom flask
- 2. Magnetic stirrer cum heater

Synthesis Procedure

Results

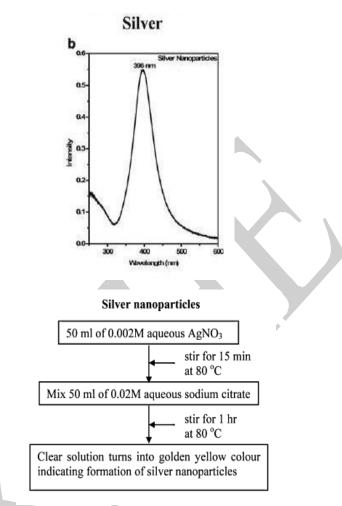
The Fe2O3 nanoparticles were synthesized successfully.

CLASS: III B.Sc., Physics COURSE CODE: 17PHU611A

COURSE NAME: Nanomaterials and Applications PracticalsIALab ManualBATCH-2017-2020

Expt No:

Date:


OPTICAL ANALYSIS OF SILVER NANOPARTICLES

Aim: To study the optical properties of Ag nano-particles using UV-Vis absorption spectrum.

Chemicals

- 1. Chloro auric acid (HAuCl4) for gold particles
- 2. Silver nitrate (AgNO3) for silver particles
- 3. Trisodium citrate (C6H5O7Na3)
- 4. Double distilled water

Synthesis Procedure

Results

Optical absorption spectra can be recorded using a simple absorption spectrometer. Figure illustrates typical spectra obtained for the synthesis described here. It can be seen that peak for silver appears at approximately 396 nm.

Prepared by Dr.S.Sharmila & Dr.A.Nagamani Prabu, Asst Prof, Department of Physics, KAHE 5/8

Expt No:

Date:

XRD pattern of Nanomaterials

Aim:

To determine the lattice parameter and grain size of nanomaterials by XRD pattern.

Formula

 $a=d\sqrt{(h^2+k^2+l^2)}$

 $D=0.9\lambda/\beta \cos\theta$

Where

a- lattice parameter (A)

d-grain size (nm)

h,k,l – miller indices

 λ – wavelength of copper

 $\beta-$ full width half maximum

Tabulation

Lattice Parameter

20	h	k	L	d spacing	β	

Grain Size

2θ	θ	β	β	θ	cos θ	β cos θ	$D=0.9\lambda/\beta cos\theta$			

Result

The lattice parameter and grain size of the given material is calculated as _____

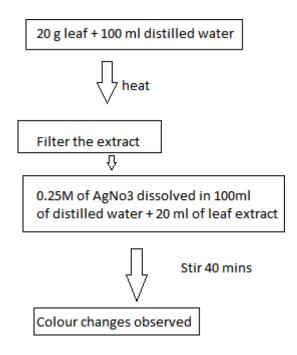
Prepared by Dr.S.Sharmila & Dr.A.Nagamani Prabu, Asst Prof, Department of Physics, KAHE 6/8

CLASS: III B.Sc., Physics COURSE CODE: 17PHU611A COURSE NAME: Nanomaterials and Applications PracticalsLab ManualBATCH-2017-2020

Expt. No.

Date:

SILVER NANOPARTICLES BY GREEN SYNTHESIS METHOD


Aim

To synthesis silver nanoparticles by Green synthesis method.

Chemicals and Equipment

Green leaf, Distilled water, Silver nitrate, Beaker, Magnetic Stirrer and Heater.

Synthesis Procedure

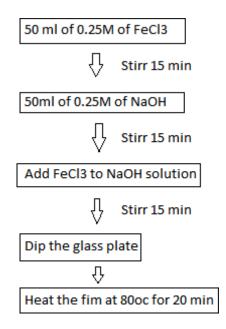
Result

Silver nanoparticles have been prepared by green synthesis method and the colour changes have been observed.

Expt No:

Date:

PREPARATION OF FeCl₃ THIN FILM


Aim

To prepare a FeCl₃ thin film.

Chemicals and Equipment

FeCl₃, NaOH, Beaker, Magnetic Stirrer, Distilled water, Glass Plate

Synthesis Procedure

Result

FeCl₃ thin film prepared in glass plate.