Semester – VI

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956) Coimbatore – 641 021.

		L T P C
17PHU602	MATHEMATICS-II	4 4

Scope: Mathematics is an important tool for the study of physics. Basic mathematical tools like Fourier analysis, Fourier transform, Laplace Transform, differential equations etc. are explained in this paper.

Objective: This paper gives the clear idea about Fourier series & transforms, Laplace transforms, differential equations and numerical methods. The integration involved is very useful in the application of mathematics.

UNIT I

Ordinary Differential Equations: Equations of First Order and of Degree Higher than one – Solvable for p, x, y – Clairaut's Equation – Simultaneous Differential Equations with constant coefficients of the form $i)f_1D(x) + g_1D(y) = \phi_1(t)$ ii) $f_2D(x) + g_2D(y) = \phi_2(t)$, where f_1, g_1, f_2 and g_2 are rational functions $D = \frac{d}{dt}$ with constant coefficients ϕ_1 and ϕ_2 explicit functions of t.

UNIT II

Finding the solution of Second and Higher Order with constant coefficients with Right Hand Side is of the form Ve^{ax} , where V is a function of x – Euler's Homogeneous Linear Differential Equations– System of simultaneous linear differential equations with constant coefficients.

UNIT III

Partial Differential Equations: Formation of Partial Differential Equation by eliminating arbitrary constants and arbitrary functions – Solutions of Partial Differential Equations by direct integration – Solution of standard types of first order partial differential equations.

UNIT IV

Laplace transforms: Definition – Laplace Transforms of standard functions – First Shifting Theorem – Transform of $tf(t), \frac{f(t)}{t}, f'(t), f''(t)$ - Inverse Laplace Transforms – Applications to solutions of First Order and Second Order Differential Equations with constant coefficients.

UNIT V

Interpolation with unequal intervals – Lagrange's interpolation – Newton's divided difference interpolation – Interpolation with equal intervals – Newton's forward and backward difference formulae.

SUGGESTED READINGS

- 1. Treatment as in Kandasamy. P, Thilagavathi. K "Mathematics for B.Sc Branch I Volume III", S. Chand and Company Ltd, New Delhi, 2004.
- 2. S. Narayanan and T.K. ManickavasagamPillai, Calculus, S. Viswanathan (Printers and Publishers) Pvt. Ltd, Chennai 1991
- 3. N.P. Bali, Differential Equations, Laxmi Publication Ltd, New Delhi, 2004
- 4. Dr. J. K. Goyal and K.P. Gupta, Laplace and Fourier Transforms, PragaliPrakashan Publishers, Meerut, 2000.
- 5. SankaraRao K., Numerical methods for scientists and Engineers, Prentice Hall of India Private, 3rd Edition, New Delhi, 2007.

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

LECTURE PLAN DEPARTMENT OF MATHEMATICS

Staff name: R.Gayathri Subject Name: Mathematics-II Semester: VI

Sub.Code:17PHU602 Class: III B.Sc.Physics

S.No	Lecture Duration Period	Topics to be Covered	Support Material/ Page Nos
	·	UNIT-I	
1	1	Equations of First Order and Degree Higher than one – Solvable for p.	S1:Chapter-1, Pg.No : 1-16
2	1	Problems on Equations of First Order and of Degree Higher than one – Solvable for x.	S1:Chapter-1, Pg.No : 1-16
3	1	Problems on Equations of First Order and of Degree Higher than one – Solvable for y .	S1:Chapter-1, Pg.No : 1-16
4	1	Clairaut's Equation problems.	S1:Chapter-1, Pg.No : 17-28
5	1	Continuation on Clairaut's Equation problems.	S1:Chapter-1, Pg.No : 17-28
6	1	Simultaneous Differential Equations with constant coefficients of the form $i)f_1D(x) + g_1D(y) = \phi_1(t)$ where f_1, g_1, f_2 and g_2 are rational functions $D = \frac{d}{dt}$ with constant coefficients ϕ_1 and ϕ_2 explicit functions of t .	S1:Chapter-1, Pg.No : 28-41
7	1	Simultaneous Differential Equations with constant coefficients of the form ii) $f_2D(x) + g_2D(y) = \phi_2(t)$, where f_1, g_1, f_2 and g_2 are rational functions $D = \frac{d}{dt}$ with constant coefficients ϕ_1 and ϕ_2 explicit functions of t .	S1:Chapter-1, Pg.No : 28-41
8	1	Recapitulation and discussion of possible questions	
Total I	No. of Lectur	e hours planned-8Hours	
	•	UNIT-II	
1	1	Finding the solution of Second and Higher Order with constant coefficients with Right Hand Side is of the form $V e^{ax}$, where V is a function of x	S3:Chapter-3, Pg.No : 222-235
2	1	Continuation onFinding the solution of Second and Higher Order with constant coefficients with Right Hand Side is of the form $V e^{ax}$, where V is a function	S3:Chapter-3, Pg.No : 222-235

Prepared by R.Gayathri ,Department of Mathematics ,KAHE

		of x		
2	1	Eular's Homogonoous Linear Differential Equations	S3:Chapter-5,	
3	1	Euler's Homogeneous Linear Differential Equations	Pg.No : 286-313	
4	1	Continuation on Euler's Homogeneous Linear	S3:Chapter-5,	
4	1	Differential Equations	Pg.No : 286-313	
5	1	Continuation on Euler's Homogeneous Linear	S3:Chapter-5,	
3	1	Differential Equations	Pg.No : 286-313	
6	1	Problems on System of simultaneous linear	S3:Chapter-9,	
0	1	differential equations with constant coefficients.	Pg.No : 417-428	
7	1	Problems on System of simultaneous linear	S3:Chapter-9,	
/	1	differential equations with constant coefficients.	Pg.No : 417-428	
8	1	Recapitulation and discussion of possible questions		
Total N	No. of Lectur	re hours planned-8 Hours		
	1	UNIT-III		
1	1	Formation of Partial Differential Equation by	S1 : Chapter 5,	
-	-	eliminating arbitrary constants and arbitrary functions.	Pg.No :117-126	
		Continuation on Formation of Partial Differential	S1 : Chapter 5,	
2	1	Equation by eliminating arbitrary constants and	Pg.No :117-126	
		arbitrary functions.		
3	1	Solutions of Partial Differential Equations by direct	S2 : Chapter 8, $170, 105$	
		Integration	Pg.No :1/9-185	
4	1	Continuation on Solutions of Partial Differential	SZ Chapter 8, Dr No. 170, 195	
		Equations by uncer integration	Fg.N0.179-103 $S1:Chapter 5$	
5	1	differential equations	ST. Chapter 5, P_{0} No $\cdot 133$ 150	
		Continuation on Solution of standard types of first	S1 : Chapter 5	
6	1	order partial differential equations	Pσ No ·133-150	
_		Continuation on Solution of standard types of first	S1 · Chapter 5	
7	1	order partial differential equations.	Pg.No :133-150	
8	1	Recapitulation and discussion of possible questions	0	
Total N	No. of Lectur	e hours planned-8 Hours		
		UNIT-IV		
1	1	Lanlace Transforms: Definition and Problems	S4 : Chapter 1,	
1	1	Laplace Transforms. Definition and Troblems	Pg.No: 9-10	
2	1	Problems on Laplace Transforms of standard	S4 : Chapter 1,	
	1	functions	Pg.No: 9-10	
3	1	Linearity property	S4 : Chapter 1,	
-	_	FF	Pg.No: 10-11	
4	1	First Shifting Theorem	S4 : Chapter 1,	
			Pg.No: 11-12	
5	1	Transform of $tf(t), \frac{f(t)}{2}, f'(t), f''(t)$ Problems	S4 : Chapter 1, $D = N_{0}$, 12, 22	
		$\frac{t}{t} = \frac{t}{t}$	rg.1N0. 12-23	
6	1	Inverse Laplace Transforms: Definitions and	S4 : Chapter 1,	
-		Problems	Pg.No: 99-110	
7	1	Applications to solutions of First Order and Second	54: Chapter 1,	
rg.No: 114-140				
0	1	Coefficients.		
		here a here a leave a		
i otai f	NO. OI Lectur	e nours planned-o Hours		

Prepared by R.Gayathri ,Department of Mathematics ,KAHE

		UNIT-V		
1	1	Interpolation with unequal intervals problems	S5 : Chapter 6,	
-	-		Pg.No :94-96	
2	2 1 Lagrange's internolation problems		S5 : Chapter 6,	
_	-		Pg.No :96-112	
3	1	Newton's divided difference interpolation problems	S5 : Chapter 6,	
5	1	Newton's divided unreferee interpolation problems	Pg.No :113-116	
1	1 Nowton's forward and backward difference problems		S5 : Chapter 6,	
-	1	Newton's forward and backward difference problems	Pg.No :116-125	
5	5 1 Recapitulation and discussion of possible questions			
6	1	Discussion of previous year ESE question papers		
7 1 Discussion of previous year ESE question papers				
8 1 Discussion of previous year ESE question papers				
Total I	Total No. of Lecture hours planned-8 Hours			
	Total Planned Hours 40			

SUGGESTED READINGS

- 1. Treatment as in Kandasamy. P, Thilagavathi. K "Mathematics for B.Sc Branch I Volume III", S. Chand and Company Ltd, New Delhi, 2004.
- 2. S. Narayanan and T.K. Manickavasagam Pillai, Calculus, S. Viswanathan (Printers and Publishers) Pvt. Ltd, Chennai 1991
- 3. N.P. Bali, Differential Equations, Laxmi Publication Ltd, New Delhi, 2004
- 4. Dr. J. K. Goyal and K.P. Gupta, Laplace and Fourier Transforms, PragaliPrakashan Publishers, Meerut, 2000.
- 5. Sankara Rao K., Numerical Methods for scientists and Engineers, Prentice Hall of India Private, 3rdEdition, New Delhi, 2007.

Signature student Representative

Signature of the Course Faculty

Signature of the Class Tutor

Signature of Coordinator

Head of the Department

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-IIUNIT: IBATCH-2017-2020

Ordinary Differential Equations: Equations of First Order and of Degree Higher than one – Solvable for p, x, y – Clairaut's Equation – Simultaneous Differential Equations with constant coefficients of the form i) $f_1D(x) + g_1D(y) = \phi_1(t)$ ii) $f_2D(x) + g_2D(y) = \phi_2(t)$, where f_1, g_1, f_2 and g_2 are rational functions $D = \frac{d}{dt}$ with constant coefficients ϕ_1 and ϕ_2 explicit functions of t.

CLASS: III B.Sc Physics COURSE CODE: 17PHU602 COURSENAME: MATHEMATICS-IIUNIT: IBATCH-2017-2020

DEFINITION:

Differential equations which involve only one independent variable are called Ordinary Differential Equations.

1.1 HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS.

1.1(a) General form of a linear differential equation of the nth order with constant coefficients is

$$\frac{d^n y}{dx^n} + k_1 \frac{d^{n-1} y}{dx^{n-1}} + k_2 \frac{d^{n-2} y}{dx^{n-2}} + \dots + k_n y = X \dots \dots \dots (1)$$

Where $k_1, k_2, ..., k_n$ are constants. Such equations are most important in the study of electro –mechanical vibrations and other engineering problems.

1.1(b). General form of the linear differential equation of second order is

$$\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R \text{ Or } \qquad D^2y + PDy + Qy = R \text{ Where } D' = \frac{d}{dx}$$

Where P and Q are constants and R is a function of x or Constants.

Complete Solution = Complementary Function + Particular Integral

To Find the Complementary Functions:

S.No.	Roots of Auxillary Equation	Complementary Functions
1	Roots are Real and Different	$y = Ae^{m_1 x} + Be^{m_2 x}$
	$m_1, m_2 \ (m_1 \neq m_2)$	
2	Roots are real and equal	$y = (Ax + B)e^{mx}$ Or $y = (A + Bx)e^{mx}$
	$m_1 = m_2 = m(\text{say})$	
3	Roots are imaginary $\alpha \pm i\beta$	$y = e^{\alpha x} (A\cos\beta x + B\sin\beta x)$

To Find the Particular Integral: $P.I = \frac{1}{f(D)}X$

S.No	X	P.I
1.	e^{ax}	$\mathbf{P}.\mathbf{I}=\frac{1}{f(D)}e^{ax}=e^{ax}\frac{1}{f(D)}, D=a, D'=b$
2.	x ⁿ	P.I = $\frac{1}{f(D)}x^n$, Expand $[f(D)]^{-1}$ and then operate.

CLASS: III B.Sc Physics COURSE CODE: 17PHU602 COURSENAME: MATHEMATICS-II BATCH-2017-2020

UNIT: I m = 1 is a root (m-1)(m-2)(m-3) = 0m = 1, 2, 3Hence the Solution is $y = Ae^x + Be^{2x} + Ce^{3x}$ 1.1.2 Problems based on P.I $=\frac{1}{f(D)}e^{ax}$ \longrightarrow Replace D by a 1. Solve $(4D^2 - 4D + 1)y = 4$ [AU, March 1996] Solution: Given $(4D^2 + 4D + 1)y = 4$ $4m^2 - 4m + 1 = 0$ $4m^2 - 2m - 2m + 1 = 0$ 2m(2m-1) - 1(2m-1) = 0 $(2m-1)^2 = 0$ m = 1/2, 1/2Complementary function = $(Ax + B) e^{1/2x}$ **Particular Integral** = $\frac{1}{(4D^2 - 4D + 1)} 4e^{0x}$ $=\frac{4}{1}e^{0x}$ = 4Y = C.F + P.I $y = (Ax + B)e^{1/2x} + 4$ 2. Solve $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = -2 \cosh x$ [AU, April 2002] Solution. Given $(D^2 + 4D + 5)v = -2coshx$ The Auxillary Equations is $m^2 + 4m + 5 = 0$ $m=\frac{-4\pm\sqrt{16-20}}{2}$ $m=\frac{-4\pm 2i}{2}$ m = -2 + iComplimentary Function = $e^{-2x}[Acosx + B sinx]$ **Particular Integral P.I** = $\frac{1}{D^2 + 4D + 5}(-2 \cosh x)$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602 COURSENAME: MATHEMATICS-II UNIT: I BATCH-2017-2020

$$= \frac{-2}{D^2 + 4D + 5} \frac{[e^x + e^{-x}]}{2}$$
$$= \frac{-1}{D^2 + 4D + 5} [e^x + e^{-x}]$$
$$= \frac{-1}{D^2 + 4D + 5} e^x + \frac{-1}{D^2 + 4D + 5} e^{-x}$$
$$= \frac{-1}{1 + 4 + 5} e^x + \frac{1}{1 - 4 + 5} e^{-x}$$
$$= \frac{-1}{10} e^x - \frac{1}{2} e^{-x}$$

Y= Complementary Function + Particular value

$$Y = e^{-2x} [A\cos x + B\sin x] + \frac{-1}{10}e^{x} - \frac{1}{2}e^{-x}$$

3. Solve
$$(D^2 - 1)y = \sinh x$$
.

Solution:

The given ODE is
$$(D^2 - 1)y = \sinh x = \frac{e^x - e^{-x}}{2}$$
-----(1)

The A.E of (1) is
$$m^2 - 1 = 0 \Rightarrow m^2 = 1 \Rightarrow m = \pm 1$$

 $\therefore C.F = Ae^{x}x + Be^{-x}$

 $= \frac{1}{2} \left(\frac{1}{D^2 - 1} e^x - \frac{1}{D^2 - 1} e^{-x} \right) \{ \text{replace } D \text{ by } a \}$

 $= \frac{1}{2} \left(\frac{1}{1^2 - 1} e^x - \frac{1}{(-1)^2 - 1} e^{-x} \right) \quad \text{(orf in I \& II terms)}$

$$= \frac{1}{2} \left(x \frac{1}{2D} e^{x} - x \frac{1}{2D} e^{-x} \right) \qquad \{ \text{replace } D \text{ by } a \} \\ = \frac{1}{2} \left(x \frac{1}{2(1)} e^{x} - x \frac{1}{2(-1)} e^{-x} \right) \\ \cdot = \frac{x}{2} \left(\frac{e^{x} + e^{-x}}{2} \right) = \frac{x}{2} \cosh x$$

:. The general solution is $y = C.F + P.I = Ae^{x}x + Be^{-x} + \frac{x}{2}\cosh x$.

Prepared by R. Gayathri, Asst Prof, Department of Mathematics KAHE

 $P.I = \frac{1}{D^2 - 1} \left(\frac{e^x - e^{-x}}{2} \right)$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc PhysicsCOURSENAME: MATHEMATICS-IICOURSE CODE: 17PHU602UNIT: IBATCH-2017-2020

3. Solve $(D^2 + 16)y = \cos^3 x$.(AU Dec 2010) Solution:

The given ODE is
$$(D^2 + 16)y = \cos^3 x = \frac{1}{4}(\cos 3x + 3\cos x) - \dots - (1)$$

The A.E of (1) is
$$m^2 + 16 = 0 \Rightarrow m^2 = -16 \Rightarrow m = \pm 4i$$

$$\therefore C.F = e^{0z} [A\cos 4x + B\sin 4x] = A\cos 4x + B\sin 4x$$

$$P.I = \frac{1}{D^2 + 16} \left[\frac{1}{4} (\cos 3x + 3\cos x) \right]$$

$$= \frac{1}{4} \left[\frac{1}{D^2 + 16} \right] \cos 3x + \frac{3}{4} \left[\frac{1}{D^2 + 16} \right] \cos x$$

$$= \frac{1}{4} \left[\frac{1}{-3^2 + 16} \right] \cos 3x + \frac{3}{4} \left[\frac{1}{-1^2 + 16} \right] \cos x \{ \text{Replace } D^2 \text{ by } - a^2 \}$$

$$= \frac{1}{4} \left[\frac{1}{7} \right] \cos 3x + \frac{3}{4} \left[\frac{1}{15} \right] \cos x$$

$$= \frac{1}{28} \cos 3x + \frac{1}{20} \cos x$$

 \therefore The general solution is

$$y = C.F + P.I = A\cos 4x + B\sin 4x + \frac{1}{28}\cos 3x + \frac{1}{20}\cos x.$$

1.1.4 Problems based on R.H.S = $e^{ax} + sinax(or)e^{ax} + cosax$

1. Solve $(D^2 - 4D + 4)y = e^{2x} + \cos 2x$

Solution:

Given
$$(D^2 - 4D + 4)y = e^{2x} + \cos 2x$$

The Auxillary Equation is $m^2 - 4m + 4 = 0$

$$(m-2)^2 = 0$$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc Physics COURSENAME: MATHEMATICS-II COURSE CODE: 17PHU602 UNIT: I **BATCH-2017-2020** m = 2, 2Complementary Function = $(Ax + B)e^{2x}$ **Particular Integral** = $\frac{1}{D^2-4D+4}e^{2x} + \frac{1}{D^2-4D+4}\cos 2x$ $= \frac{1}{4-8+4}e^{2x} + \frac{1}{-2^2-4D+4}\cos 2x$ $=\frac{1}{0}e^{2x}$ $+\frac{1}{-4D}\cos 2x$ $=x\frac{1}{2D-4}e^{2x}-\frac{1}{4D}\cos 2x$ $=x\frac{1}{0}e^{2x}-\frac{1}{4}\left[\frac{1}{D}\cos 2x\right]$ $=x^2\frac{1}{2}e^{2x}-\frac{1}{4}\left[\frac{\sin 2x}{2}\right]$ $=x^2\frac{1}{2}e^{2x}-\left[\frac{\sin 2x}{8}\right]$ Y = C.F + P.I $Y = (Ax + B)e^{2x} + x^2 \frac{1}{2}e^{2x} - \left[\frac{\sin 2x}{8}\right]$ 2. Solve $(D^2 - 3D + 2)y = 2\cos(2x + 3) + 2e^x$. (Jan. 2005, Nov/ Dec. 2009Solution:

The given ODE is $(D^2 - 3D + 2)y = 2\cos(2x + 3) + 2e^x$ -----(1)

•

The A.E of (1) is
$$m^2 - 3m + 2 = 0$$

 $(m-1)(m-2) = 0$
 $m = 1, m = 2$
C.F= $Ae^x + Be^{2x}$.
P.I= $2\frac{1}{f(D)}\cos(2x+3) + 2\frac{1}{f(D)}e^x = 2P.I_1 + 2P.I_2$
Now $P.I_1 = \frac{1}{D^2 - 3D + 2}\cos(2x+3) = \frac{1}{-2^2 - 3D + 2}\cos(2x+3)$

UNIT: I

CLASS: III B.Sc Physics COURSE CODE: 17PHU602 COURSENAME: MATHEMATICS-II BATCH-2017-2020

$$=\frac{1}{-(3D+2)}\cos(2x+3) = -\frac{(3D-2)}{(3D)^2 - 2^2}\cos(2x+3)$$
$$= -\frac{(3D-2)}{9D^2 - 2^2}\cos(2x+3) = -\frac{(3D-2)}{-40}\cos(2x+3)$$
$$= \frac{[-6\sin(2x+3) - 2\cos(2x+3)]}{40} = -\frac{[3\sin(2x+3) + \cos(2x+3)]}{20}$$

$$P.I_{2} = \frac{1}{D^{2} - 3D + 2}e^{x} = \frac{1}{1 - 3 + 2}e^{x}$$
(Ordinary rule fails)
$$= x\frac{1}{2D - 3}e^{x} = -xe^{x}$$

$$\therefore P.I = 2P.I_1 + 2P.I_2 = -\frac{[3\sin(2x+3) + \cos(2x+3)]}{10} - 2xe^{-\frac{1}{2}}$$

The general solution of (1) is y(x) = C.F+P.I

$$= Ae^{x} + Be^{2x} - \frac{[3\sin(2x+3) + \cos(2x+3)]}{10} - 2xe^{x}$$

1.1.5 Problems based on R.H.S = x

The following formulae are important.

 $(1+x)^{-1} = 1 - x + x^{2} - x^{3} + ..., \qquad (1-x)^{-1} = 1 + x + x^{2} + x^{3} + ...,$ $(1-x)^{-2} = 1 + 2x + 3x^{2} + 4x^{3} + ..., \qquad (1+x)^{-2} = 1 - 2x + 3x^{2} - 4x^{3} + ...,$ $1. Solve <math>\frac{d^{2}y}{dx^{2}} - 5\frac{dy}{dx} + 6y = x^{2} + 3$ Solution: Given $\frac{d^{2}y}{dx^{2}} - 5\frac{dy}{dx} + 6y = x^{2} + 3$ i.e., $(D^{2} - 5D + 6)y = x^{2} + 3$

Auxillary Equation is $m^2 - 5m + 6 = 0$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: I BATCH-2017-2020

(m-2)(m-3) = 0

m = 2, m = 3

Complimentary function is $Ae^{2x} + Be^{3x}$

Particular Integral =
$$\frac{1}{D^2 - 5D + 6}(x^2 + 3)$$

= $\frac{1}{6\left[1 + \frac{D^2 - 5D}{6}\right]}(x^2 + 3)$
= $\frac{1}{6}\left[1 - \left(\frac{D^2 - 5D}{6}\right) + \left(\frac{D^2 - 5D}{6}\right)^2 - \dots, \right](x^2 + 3)$
= $\frac{1}{6}\left[1 - \frac{D^2}{6} + \frac{5D}{6} + \frac{D^4}{36} + \frac{25D^2}{36} - \frac{10D^3}{36} - \dots, \right](x^2 + 3)$
= $\frac{1}{6}\left[(x^2 + 3) - \frac{2}{6} + \frac{5(2x)}{6} + 0 + \frac{25(2)}{36}\right]$
= $\frac{1}{6}\left[(x^2 + 3) - \frac{1}{3} + \frac{5x}{3} + 0 + \frac{25}{18}\right]$
= $\frac{1}{108}\left[18x^2 + 30x + 73\right]$
The Complete Solution is $y = C.F + P.I$
 $y = Ae^{2x} + Be^{3x} + \frac{1}{108}\left[18x^2 + 30x + 73\right]$

2. Find the Particular Integral of $(D^2 - 1)y = x$ Solution: Given $(D^2 - 1)y = x$

Auxillary Equation $m^2 - 1 = 0$ $m^2 = 1$ $m = \pm 1$

Complementary function is $Ae^{-x} + Be^{x}$

Particular Integral = $\frac{1}{D^2 - 1}x$

$$= \frac{-1}{1 - D^2} x$$
$$= -1(1 - D^2)^{-1} x$$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: I BATCH-2017-2020

 $= -[1 + D^{2} + (D^{2})^{2} +]x$ = -[x + 0 + 0 +]= -x

The Complete Solution is $y = Ae^{-x} + Be^{x} - x$.

1.1.6 Problems based on R.H.S = $e^{ax}x$. Particular Integral =	$=\frac{1}{f(D)}e^{ax}x=e^{ax}$	$\frac{1}{f(D+a)}x$
--	---------------------------------	---------------------

1. Solve: $(D^2 + 4D + 3)y = e^{-x} \sin x + xe^{3x}$

Solution:

Given
$$(D^2 + 4D + 3)y = e^{-x} \sin x + xe^{3x}$$

A.E is
$$m^2 + 4m + 3 = 0$$

(m+1)(m+3) = 0

m = -1, m = -3

$$C.F = Ae^{-x} + Be^{-3x}$$

$$P.I_{1} = \frac{1}{D^{2} + 4D + 3} e^{-x} \sin x$$
$$= e^{-x} \frac{1}{(D-1)^{2} + 4(D-1) + 3} \sin x$$
$$= e^{-x} \frac{1}{D^{2} - 2D + 1 + 4D - 4 + 3} \sin x$$
$$= e^{-x} \frac{1}{D^{2} + 2D} \sin x$$
$$= e^{-x} \frac{1}{-1 + 2D} \sin x$$

Take Conjugate we get,

$$= e^{-x} \frac{2D+1}{(2D)^2 - 1} \sin x$$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602	UNIT: I	COURSENAME: MATHEMATICS-II BATCH-2017-2020
$= e^{-x} \frac{2D+1}{4D^2-1} \sin x$		
$= e^{-x} \frac{2D+1}{-4-1} \sin x$		
$=\frac{e^{-x}}{-5}(2D+1)\sin x$		
$P.I_1 = \frac{e^{-x}}{-5} (2\cos x + \sin x)$		
$P.I_2 = \frac{1}{D^2 + 4D + 3} x e^{3x}$		
$= e^{3x} \frac{1}{(D+3)^2 + 4(D+3) + 3} x$		
$= e^{3x} \frac{1}{D^2 + 6D + 9 + 4D + 12 + 3}$	x	
$= e^{3x} \frac{1}{D^2 + 10D + 24} x$		
$= \frac{e^{3x}}{24} \frac{1}{\left[\frac{D^2}{24} + \frac{10}{24}D + 1\right]} x$		
$= \frac{e^{3x}}{24} \left[1 + \frac{5}{12}D + \frac{D^2}{24} \right]^{-1} x$		
$= \frac{e^{3x}}{24} \left[1 - \left(\frac{5}{12}D + \frac{D^2}{24}\right) + \dots, \right] x$		
$=\frac{e^{3x}}{24}\left[x-\frac{5}{12}\right]$		
v = C.F + P.I		
$y = Ae^{-x} + Be^{-3x} - \frac{e^{-x}}{5}(2\cos x + \sin x) + \frac{1}{5}e^{-x}(2\cos x + \sin x) + \frac{1}$	$-\frac{e^{3x}}{24}\left[x-\frac{5}{12}\right]$	$\overline{2}$
2. Solve $(D^2 - 2D + 2)y = e^x x^2 + 5 + e^{-1}$	2 <i>x</i>	
Solution:		

DASS: III B.SC Physics DURSE CODE: 17PHU602	UNIT. I	OURSENAME: MATHEMATICS-II
	UNILLI	BATCH-2017-2020
	2~	
Given $(D^2 - 2D + 2)y = e^x x^2 + 5 + 5$	$+e^{-2x}$	
A.E is $m^2 - 2m + 2 = 0$		
$=1\pm i$		
$F = e^x (A\cos x + B\sin x)$		
$I_1 = \frac{1}{D^2 - 2D + 2} e^x x^2$		
$=e^{x}\frac{1}{(D+1)^{2}-2(D+1)+2}x^{2}$		
$= e^{x} \frac{1}{D^{2} + 2D + 1 - 2D - 2 + 2},$	x ²	
$= e^x \frac{1}{D^2 + 1} x^2$		
$= e^{x}(D^{2}+1)^{-1}x^{2}$		
$= e^x (1 - D^2 + \dots) x^2$		
$I_1 = e^x (x^2 - 2)$		
$I_2 = \frac{1}{D^2 - 2D + 2} 5e^{0x}$		
$I_2 = \frac{5}{2}$		•
$I_3 = \frac{1}{D^2 - 2D + 2}e^{-2x}$		
$= \frac{1}{4+4+2}e^{-2x}$		
$I_3 = \frac{1}{10}e^{-2x}$		
$\mathbf{y} = \mathbf{C}.\mathbf{F} + \mathbf{P}.\mathbf{I}$	5 1	
$=e^{x}(A\cos x+B\sin x)+e^{x}(x^{2}-2)$	$1 + \frac{3}{2} + \frac{1}{10}e^{-2x}$	
Solve $(D^2 + 4D + 3)y = e^{-x} \sin x + $	$-xe^{3x}$. (Nov./Dec.	2002)
Solution:		

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc PhysicsCOURSENAME: MATHEMATICS-IICOURSE CODE: 17PHU602UNIT: IBATCH-2017-2020

The A.E of (1) is
$$m^2 + 4m + 3 = 0$$

 $(m+1)(m+3) = 0$
 $m = -1, m = -3$
 $C.F = Ae^{-x} + Be^{-3x}$.
 $P.I = \frac{1}{f(D)}e^{-x}\sin x + \frac{1}{f(D)}xe^{3x} = P.I_1 + P.I_2$
Now $P.I_1 = \frac{1}{D^2 + 4D + 3}e^{-x}\sin x = e^{-x}\frac{1}{(D-1)^2 + 4(D-1) + 3}\sin x$
 $= e^{-x}\frac{1}{D^2 + 2D}\sin x = e^{-x}\frac{1}{-1 + 2D}\sin x = e^{-x}\frac{(2D+1)}{(2D)^2 - 1^2}\sin x$
 $= e^{-x}\frac{(2D+1)}{-4-1}\sin x = -\frac{e^{-x}}{5}(2\cos x + \sin x)$
 $P.I_2 = \frac{1}{f(D)}xe^{3x} = \frac{1}{D^2 + 4D + 3}e^{3x}x = e^{3x}\frac{1}{(D+3)^2 + 4(D+3) + 3}x$
 $= e^{3x}\frac{1}{D^2 + 10D + 24}x = \frac{e^{3x}}{24}\left[1 + \left(\frac{D^2 + 10D}{24}\right)\right]^{-1}x$
 $= \frac{e^{3x}}{24}\left[1 - \left(\frac{D^2 + 10D}{24}\right) + \left(\frac{D^2 + 10D}{24}\right)^2 - \dots\right]x$
 $= \frac{e^{3x}}{24}\left[1 - \frac{5}{12}D\right]x$ omitting Higher order derivatives
 $= \frac{e^{3x}}{24}\left[x - \frac{5}{12}\right] \therefore P.I = P.I_1 + P.I_2 = -\frac{e^{-x}}{5}(2\cos x + \sin x) + \frac{e^{3x}}{24}\left[x - \frac{5}{12}\right]$

The general solution of (1) is y(x) = C.F+P.I

UNIT: I

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

 $=Ae^{-x} + Be^{-3x} - \frac{e^{-x}}{5}(2\cos x + \sin x) + \frac{e^{3x}}{24} \left[x - \frac{5}{12}\right].$

4.Solve $(D^2 - 2D + 2)y = e^x x^2 + 5 + e^{-2x}$. (April/May 2003) Solution:

The given ODE is $(D^2 - 2D + 2)y = e^x x^2 + 5 + e^{-2x}$ ----(1)

The A.E of (1) is $m^2 - 2m + 2 = 0$

$$m = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(2)}}{2} = 1 \pm i$$

 $C.F = e^x (A\cos x + B\sin x).$

P.I=
$$\frac{1}{f(D)}e^{x}x^{2} + \frac{1}{f(D)}5 + \frac{1}{f(D)}e^{-2x} = P.I_{1} + P.I_{2} + P.I_{3}$$

Now
$$P.I_1 = \frac{1}{D^2 - 2D + 2} e^x x^2 = e^x \frac{1}{(D+1)^2 - 2(D+1) + 2} x^2$$

$$= e^x \frac{1}{D^2 + 1} x^2 = e^x (1 + D^2)^{-1} x^2 = e^x (1 - D^2 + (D^2)^2 - ...) x^2$$
$$= e^x (1 - D^2) x^2 = e^x (x^2 - 2)$$

$$= e^{x}(1 - D^{2})x^{2} = e^{x}$$

$$P.I_{2} = 4\frac{1}{D^{2} - 2D + 2}e^{0x} = 4\frac{1}{2} = 2$$

$$P.I_3 = \frac{1}{D^2 - 2D + 2}e^{-2x} = \frac{1}{(-2)^2 - 2(-2) + 2}e^{-2x} = \frac{e^{-2x}}{10}$$
$$P.I = P.I_1 + P.I_2 + P.I_3$$

$$= e^{x}(x^{2}-2)+2+\frac{e^{-2x}}{10}$$

The general solution of (1) is y(x) = C.F+P.I

$$=e^{x}(A\cos x + B\sin x) + e^{x}(x^{2} - 2) + 2 + \frac{e^{-2x}}{10}$$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II BATCH-2017-2020

1.1.7 Problems based on $f(x) = x^n \sin ax$ or $x^n \cos ax$

UNIT: I

To find Particular Integral when

$$f(x) = x^{n} \sin ax \quad or \ x^{n} \cos ax \ P.I = \frac{1}{f(D)} x^{n} \sin ax \quad (or) \ x^{n} \cos ax$$
$$\frac{1}{f(D)} (xV) = x \frac{1}{f(D)} V + \left[\frac{d}{dD} \frac{1}{f(D)}\right] V$$
$$\frac{1}{f(D)} (x.V) = x \frac{1}{f(D)} V - \left[\frac{f'(D)}{f(D)} \frac{1}{f(D)}\right] V$$
$$\frac{1}{f(D)} xV = x \frac{1}{f(D)} V - \left[\frac{f'(D)}{[f(D)]^{2}}\right] V$$

1. Solve $(D^2 - 4D + 4)y = 8x^2e^{2x}\sin 2x$ Solution: Given $(D^2 - 4D + 4)y = 8x^2e^{2x}\sin 2x$ A.E is $m^2 - 4m + 4 = 0$ $(m-2)^2 = 0$

The roots are m = 2, 2.

Complementary Function is $(c_1x + c_2)e^{2x}$

Particular Integral $= \frac{1}{D^2 - 4D + 4} 8x^2 e^{2x} \sin 2x$

$$= 8e^{2x} \frac{1}{(D-2)^2} x^2 \sin 2x$$

= $8e^{2x} \frac{1}{D} \left\{ x^2 \left(\frac{-\cos 2x}{2} \right) - 2x \left(\frac{-\sin 2x}{4} \right) + 2 \left(\frac{\cos 2x}{8} \right) \right\}$
= $e^{2x} \left\{ \frac{1}{D} \left(-4x^2 \cos 2x \right) + \frac{1}{D} (4x \sin 2x) + \frac{1}{D} (2 \cos 2x) \right\}$
= $e^{2x} \left[\left\{ \left(-4x^2 \frac{\sin 2x}{2} \right) - 2x \left(\frac{-\cos 2x}{4} \right) + 2 \left(\frac{-\sin 2x}{4} \right) \right\} + 4 \left\{ x \left(\frac{-\cos 2x}{2} \right) - \left(\frac{-\sin 2x}{4} \right) + \sin 2x \right\} \right]$
= $e^{2x} \left[\left\{ (3-2x^2) \sin 2x - 4x \cos 2x \right\} \right]$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc Physics COURSENAME: MATHEMATICS-II

COURSE CODE: 17PHU602

UNIT: I BATCH-2017-2020

The general Solution is y = C.F + P.I. $y = (c_1 x + c_2)e^{2x} + e^{2x}(3 - 2x^2)\sin 2x - 4x\cos 2x$ 2. Solve the differential equation $(D^2 + 4)y = x^2 \cos 2x$ (May/ June 2009) Solution: The given ODE is $(D^2 + 4)y = x^2 \cos 2x$ ----(1) The A.E of (1) is $m^2 + 4 = 0 \Rightarrow m^2 = -4 \Rightarrow m = \pm 2i$ $C.F = A \cos 2x + B \sin 2x$ P.I= $\left|\frac{1}{f(D)}\right| x^2 \cos 2x = \left[\frac{1}{D^2 + 4}\right] x^2 R.P \text{ of } e^{i2x}$ $= R.P \text{ of } e^{i2x} \left[\frac{1}{(D+2i)^2 + 4} \right] x^2 = R.P \text{ of } e^{i2x} \left[\frac{1}{D^2 + 4Di} \right] x^2$ $= R.P of \left| \frac{e^{i2x}}{4Di \left(1 + \frac{D^2}{4Di} \right)} \right| x^2$ $= R.P of \frac{-i^2 e^{i2x}}{4Di} \left(1 + \frac{D}{4i}\right)^{-1} x^2$ $= R.P \text{ of } \frac{-ie^{i2x}}{4D} \left(1 - \frac{D}{4i} + \left(\frac{D}{4i}\right)^2 - \left(\frac{D}{4i}\right)^3 + \dots \right) x^2$ $= R.P of - \frac{ie^{i2x}}{4} \left(\frac{1}{D} - \frac{1}{4i} + \left(-\frac{D}{16} \right) - \left(-\frac{D^2}{64i} \right) \right) x^2$ $= R.P \text{ of } \frac{e^{i2x}}{4} \left(-\frac{i}{D} + \frac{1}{4} + \left(\frac{Di}{16} \right) - \left(\frac{D^2}{64} \right) \right) x^2$ $= R.P \text{ of } \frac{e^{i2x}}{4} \left(-i\left(\frac{x^3}{3}\right) + \frac{x^2}{4} + \left(\frac{2xi}{16}\right) - \left(\frac{2}{64}\right) \right)$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-IIUNIT: IBATCH-2017-2020

$$= R.P of \frac{(\cos 2x + i\sin 2x)}{4} \left(\left(\frac{x^2}{4} - \frac{1}{32} \right) - i \left(\frac{x^3}{3} - \frac{x}{8} \right) \right)$$

 $=\frac{1}{4}\left[\left(\frac{x^{2}}{4}-\frac{1}{32}\right)\cos 2x+\left(\frac{x^{3}}{3}-\frac{x}{8}\right)\sin 2x\right]$

The general solution of (1) is y(x) = C.F+P.I

$$= A\cos 2x + B\sin 2x + \frac{1}{4} \left[\left(\frac{x^2}{4} - \frac{1}{32} \right) \cos 2x + \left(\frac{x^3}{3} - \frac{x}{8} \right) \sin 2x \right].$$

1.1.8 Problems based on $\frac{1}{D-a}f(x) = e^{ax}\int e^{-ax}f(x)dx$ Type. [General Method of finding the Particular Integral of any function f(x)]

1. Solve
$$(D^2 + a^2)y = \sec ax$$
.
Solution:
Given $(D^2 + a^2)y = \sec ax$
A. E. is $m^2 + a^2 = 0$
The Roots are $m = \pm ia$
Complementary function = $A \cos ax + B \sin ax$.
 $P.I = \frac{1}{(D^2 + a^2)} \sec ax$
 $P.I = \frac{1}{(D^2 + a^2)} \sec ax$
 $= \left(\frac{\frac{1}{2ia}}{D - ia} - \frac{\frac{1}{2ia}}{D + ia}\right) \sec ax$
 $= \left(\frac{\frac{1}{2ia}e^{iax}\int e^{-iax} \sec axdx - \frac{1}{2ia}e^{-iax}\int e^{iax} \sec axdx \quad [\frac{1}{D-m}X = e^{mx}\int Xe^{-mx}dx]$
 $= \frac{1}{2ia}e^{iax}\int (1 - i\tan ax)dx - \frac{1}{2ia}e^{-iax}\int (1 + i\tan ax)dx$
 $= \frac{1}{2ia}e^{iax}(x - \frac{i}{a}\log \sec ax) - \frac{1}{2ia}e^{-iax}(x + \frac{i}{a}\log \sec ax)$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602 COURSENAME: MATHEMATICS-II UNIT: I BATCH-2017-2020

$$= \frac{x}{a} \left(\frac{e^{iax} - e^{-iax}}{2i} \right) - \frac{1}{a^2} \log \sec ax \left(\frac{e^{iax} + e^{-iax}}{2i} \right)$$
$$= \frac{x}{a} \sin ax - \frac{1}{a^2} \log \sec ax \cos ax$$

General Solution is y = C.F + P.I

 $y = A\cos ax + B\sin ax + \frac{x}{a}\sin ax - \frac{1}{a^2}\log\sec ax\cos ax$

Simultaneous First Order Linear Equations With Constant Coefficients

Linear differential equation in which there are two or more dependent variables and a single independent variable. Such equations are known as simultaneous linear equations. Here we shall deal with systems of linear equations with constant coefficients only. Such a system of equations is solved by eliminating all but one of the dependent variables and then solving the resulting equations as before. Each of the depend variables is obtained in a similar manner.

Problems Based on Simultaneous First Order Linear Equations With Constant coefficients

1. Solve the simultaneous equations
$$\frac{dx}{dt} + 2x + 3y = 2e^{2t}$$
, $\frac{dy}{dt} + 3x + 2y = 0$

Solution:

Given
$$\frac{dx}{dt} + 2x + 3y = 2e^{2t} \frac{dy}{dt} + 3x + 2y = 0$$

(i.e.,) $Dx + 2x + 3y = 2e^{2t}$ $Dy + 3x + 2y = 0$
 $(D+2)x + 3y = 2e^{2t}$ (1) $(D+2)y + 3x = 0$ (2)
 $(1)X(D+2) => (D+2)^2x + 3(D+2)y = 2(D+2)e^{2t}$ (3)
 $(2)X3 => 9x + 3(D+2)y = 0$ (4)
 $(3) - (4) => [(D+2)^2 - 9]x = 2(D+2)e^{2t}$
 $(D^2 + 4D + 4 - 9]x = 2(2+2)e^{2t}$
 $(D^2 + 4D - 5]x = 8e^{2t}$

It's Auxillary equation is $m^2 + 4m - 5 = 0$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: I BATCH-2017-2020

$$(m + 5)(m - 1) = 0$$

 $m = -5, m = 1$

Complementary Function = $Ae^{-5t} + Be^{t}$

Particular Integral = $\frac{1}{(D^2 + 4D - 5]} 8 e^{2t}$ = $8 \frac{1}{(D^2 + 4D - 5]} e^{2t}$ = $8 \frac{1}{((2)^2 + 4(2) - 5]} e^{2t}$ = $\frac{8}{7} e^{2t}$ x = A $e^{-5t} + Be^t + \frac{8}{7} e^{2t}$

Differentiate with respect to 't'

$$\frac{dx}{dt} = -5Ae^{-5t} + Be^t + \frac{16}{7}e^{2t}$$

Substitute above values in (1) we get,

$$[-5Ae^{-5t} + Be^{t} + \frac{16}{7}e^{2t}] + 2[5Ae^{-5t} + Be^{t} + \frac{8}{7}e^{2t}] + 3y = 2e^{2t}$$

$$-5Ae^{-5t} + Be^{t} + \frac{16}{7}e^{2t} + 2Ae^{-5t} + 2Be^{t} + \frac{16}{7}e^{2t} + 3y = 2e^{2t}$$

$$-3Ae^{-5t} + 3Be^{t} + \frac{32}{7}e^{2t} + 3y = 2e^{2t}$$

$$-Ae^{-5t} + Be^{t} + \frac{6}{7}e^{2t} + y = 0$$

$$y = Ae^{-5t} + Be^{t} - \frac{6}{7}e^{2t}$$

Hence the desired solutions are

$$x = Ae^{-5t} + Be^{t} + \frac{8}{7}e^{2t}, y = Ae^{-5t} + Be^{t} - \frac{6}{7}e^{2t}.$$

1. Solve the simultaneous equations $\frac{dx}{dt} + 2y = 5e^t$; $\frac{dy}{dt} - 2x = 5e^t$ given that x = -1, y = 3 at t = 0.

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc PhysicsCOURSENAME: MATHEMATICS-IICOURSE CODE: 17PHU602UNIT: IBATCH-2017-2020

Solution:

The given simultaneous equations are
$$\frac{dx}{dt} + 2y = 5e^t$$
; $\frac{dy}{dt} - 2x = 5e^t$

i.e. $Dx + 2y = 5e^t$ -----(1) $Dy - 2x = 5e^t$ -----(2)

Eliminate x from (1) and (2)

 $(1) \times 2 \Longrightarrow \qquad 2Dx + 4y = 10e^t -----(3)$

 $(2) \times D \Longrightarrow D^2 y - 2Dx = 5e^t - \dots (4)$

$$(3)+(4) \Rightarrow (D^2+4)y = 15e^t -----(5)$$

The A.E of (5) is
$$m^2 + 4 = 0$$

$$\Rightarrow m^2 = -4 \Rightarrow m = \pm 2i$$

 \therefore C.F = $A\cos 2t + B\sin 2t$

$$\mathbf{P}.\mathbf{I} = \left[\frac{1}{D^2 + 4}\right](15e^t)$$

$$=15\left[\frac{1}{1^{2}+4}\right]e^{t}=15\frac{1}{5}e^{t}=3e^{t}$$

The general solution of (5) is $y(t) = C.F + P.I = A\cos 2t + B\sin 2t + 3e^{t}$

$$(2) \Longrightarrow 2x(t) = y'(t) - 5e^{t}$$

 $=-2A\sin 2t+2B\cos 2t+3e^t-5e^t$

$$= -2A\sin 2t + 2B\cos 2t - 2e^t$$

$$\therefore x(t) = -A\sin 2t + B\cos 2t - e^t$$

 \therefore The solutions of (1) and (2) are $x(t) = -A\sin 2t + B\cos 2t - e^t$ and

 $y(t) = A\cos 2t + B\sin 2t + 3e^t.$

Given $x(0) = -1 = -A(0) + B(1) - e^0 \implies B = 0$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: I BATCH-2017-2020

Given
$$y(0) = 3 = A(1) + B(0) \Longrightarrow A = 0$$

- :. The solutions of (1) and (2) are $x(t) = -e^t$ and $y(t) = 3e^t$.
 - 1. Solve $(D+5)x + y = e^{t}; (D+3)y x = e^{2t}$. Solution

The given simultaneous equations

are
$$(D+5)x + y = e^t - - -(1); -x + (D+3)y = e^{2t} - - -(2)$$

Eliminate x from (1) and (2)

$$(1) \times 1 \Longrightarrow (D+5)x + y = e^t -----(3)$$

(2) × (D+5)
$$\Rightarrow$$
 - (D+5)x + (D+5)(D+3)y = (D+5)e^{2t} -----(4)

(3)+(4) ⇒
$$(1 + (D + 3)(D + 5))y = e^t + (D + 5)e^{2t}$$

$$(D^2 + 8D + 16)y = e^t + 2e^{2t} + 5e^{2t}$$

$$(D^2 + 8D + 16)y = e^t + 7e^{2t}$$
 (5)

The A.E of (5) is $m^2 + 8m + 16 = 0 \implies m = -4, -4$

C.F=
$$(At + B)e^{-4}$$

$$\therefore P.I = \left[\frac{1}{(D+4)^2}\right] (e^t + 7e^{2t})$$
$$= \left[\frac{1}{(1+4)^2}\right] e^t + 7\left[\frac{1}{(2+4)^2}\right] e^{2t}$$
$$= \frac{1}{25}e^t + \frac{7}{36}e^{2t}$$

The general solution of (5) is $y(t) = (At + B)e^{-4t} + \frac{1}{25}e^{t} + \frac{7}{36}e^{2t}$

(2)
$$\Rightarrow x(t) = Dy + 3y - e^2$$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: I BATCH-2017-2020

$$= Ae^{-4t} - 4Ate^{-4t} - 4Be^{-4t} + \frac{e^{t}}{25} + \frac{14e^{2t}}{36} + 3Ate^{-4t} + 3Be^{-4t}$$
$$+ \frac{3}{25}e^{t} + \frac{21}{36}e^{2t} - e^{2t}$$
$$x(t) = Ae^{-4t}(1-t) - Be^{-4t} + \frac{4e^{t}}{25} - \frac{e^{2t}}{36}$$

Thesolutions of (1) and (2) are $y(t) = (At + B)e^{-4t} + \frac{1}{25}e^t + \frac{7}{36}e^{2t}$ and $x(t) = Ae^{-4t}(1-t) - Be^{-4t} + \frac{4e^t}{25} - \frac{e^{2t}}{36}$

2. Solve the simultaneous equations $\frac{dx}{dt} + 2x - 3y = t$; $\frac{dy}{dt} - 3x + 2y = e^{2t}$. (Jan. 2006) Solution:

The given simultaneous equations are $\frac{dx}{dt} + 2x - 3y = t$; $\frac{dy}{dt} - 3x + 2y = e^{2t}$

i.e
$$Dx + 2x - 3y = t$$
; $Dy - 3x + 2y = e^2$

$$(D+2)x - 3y = t - - - (1) \qquad (D+2)y - 3x = e^{2t} - - - (2)$$

Eliminate x from (1) and (2)

$$(1) \times 3 \Longrightarrow \qquad 3(D+2)x - 9y = 3t - \dots (3)$$

$$(2) \times (D+2) \Rightarrow (D+2)^2 y - 3(D+2)x = (D+2)e^{2t} - \dots - (4)$$

$$(3)+(4) \Rightarrow -9y + (D+2)^2 y = 3t + (D+2)e^{2t}$$

$$\Rightarrow -9y + (D^2 + 4D + 4)y = 3t + 2e^{2t} + 2e^{2t}$$

$$\Rightarrow (D^{2} + 4D - 5)y = 3t + 4e^{2t} -(5)$$

The A E of (5) is $m^{2} + 4m - 5 = 0$

$$\Rightarrow (m+5)(m-1) = 0 \Rightarrow m = 1, -5$$

$$\therefore$$
 C.F= $Ae^{t} + Be^{-5t}$

KARPAGAM ACADEMY OF HIGHER EDUCATIONSc PhysicsCOURSENAME: MATHEMATICS-II

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

UNIT: I **BATCH-2017-2020**

$$P.I= 3\left[\frac{1}{D^{2}+4D-5}\right]t + 4\left[\frac{1}{(D+5)(D-1)}\right]e^{2t}$$
$$= \frac{3}{-5}\left[\frac{1}{1-\left(\frac{D^{2}+4D}{5}\right)}\right]t + 4\left[\frac{1}{(2+5)(2-1)}\right]e^{2t}$$
$$= -\frac{3}{5}\left[1-\left(\frac{D^{2}+4D}{5}\right)\right]^{-1}t + \frac{4}{5}e^{2t}$$

$$5 \begin{bmatrix} (5) \end{bmatrix} 7$$
$$= -\frac{3}{5} \left[1 + \left(\frac{D^2 + 4D}{5} \right) + \left(\frac{D^2 + 4D}{5} \right)^2 + \dots \right] t + \frac{4}{7} e^{\frac{1}{5}} e^{\frac{1}{5}} + \frac{1}{5} e^{\frac{1}{5}} e^{\frac{1}{5}} e^{\frac{1}{5}} + \frac{1}{5} e^{\frac{1}{5}} e^{\frac{1}{5}} e^{\frac{1}{5}} + \frac{1}{5} e^{\frac{1}{5}} e^{\frac{1}{5}}$$

$$= -\frac{3}{5} \left[1 + \frac{4D}{5} \right] t + \frac{4}{7} e^{2t}$$

$$= -\frac{3}{5} \left[t + \frac{4}{5} \right] + \frac{4}{7} e^{2t}$$

The general solution of (5) is $y(t) = C.F + P.I = Ae^{t} + Be^{-5t} - \frac{3}{5}\left[t + \frac{4}{5}\right] + \frac{4}{7}e^{2t}$

$$(2) \Longrightarrow 3x(t) = (D+2)y(t) - e^{-t}$$

$$= (D+2)\left(Ae^{t} + Be^{-5t} - \frac{3}{5}t - \frac{12}{25} + \frac{4e^{2t}}{7}\right) - e^{2t}$$
$$= \left(Ae^{t} - 5Be^{-5t} - \frac{3}{5} + \frac{8e^{2t}}{7}\right) + \left(2Ae^{t} + 2Be^{-5t} - \frac{6}{5}t - \frac{24}{25} + \frac{8e^{2t}}{7}\right) - e^{2t}$$

$$=3Ae^{t}-3Be^{-5t}+\frac{9e^{2t}}{7}-\frac{6}{5}t-\frac{39}{25}$$

 $\Rightarrow x(t) = Ae^{t} - Be^{-5t} + \frac{3e^{2t}}{7} - \frac{2}{5}t - \frac{13}{25}$

 \therefore The solutions of (1) and (2) are

KARPAGAM ACADEMY OF HIGHER EDUCATION **CLASS: III B.Sc Physics COURSENAME: MATHEMATICS-II COURSE CODE: 17PHU602 UNIT: I BATCH-2017-2020** $x(t) = Ae^{t} - Be^{-5t} + \frac{3e^{2t}}{7} - \frac{2}{5}t - \frac{13}{25}$ and $y(t) = Ae^{t} + Be^{-5t} - \frac{3}{5}\left[t + \frac{4}{5}\right] + \frac{4}{7}e^{2t}$. 3. Solve $\frac{dx}{dt} - y = t$; $\frac{dy}{dt} + x = t^2$. (Nov./Dec. 2003) (Nov./Dec. 2006). Solution: The given simultaneous equations are $\frac{dx}{dt} - y = t$; $\frac{dy}{dt} + x = t^2$ i.e Dx - y = t - - - (1) $Dy + x = t^{2} - - - (2)$ Eliminate y from (1) and (2) $(1) \times D \Longrightarrow \qquad D^2 x - D y = Dt -----(3)$ $(2) \times 1 \Longrightarrow \qquad Dy + x = t^2 - \dots - (4)$ $D^2 x + x = Dt + t^2$ $(3)+(4) \Rightarrow$ i.e $(D^2 + 1)x = 1 + t^2$ -----(5) The A.E of (5) is $m^2 + 1 = 0$ $\Rightarrow m = \pm i$ Here $\alpha = 0; \beta = 1$ $\therefore C.F = e^{0t} (A\cos t + B\sin t) = A\cos t + B\sin t$ P.I = $\left[\frac{1}{D^2 + 1}\right](1 + t^2) = (1 + D^2)^{-1}(1 + t^2)$

$$= [1 - D^{2} + (D^{2})^{2} - ...](1 + t^{2})$$

= $[1 - D^2](1 + t^2)$ omitting Hr,. derivatives

$$= [1 + t^2 - 2] = t^2 - 1$$

The general solution of (5) is $x(t) = C.F + P.I = A\cos t + B\sin t + t^2 - 1$

$$(1) \Rightarrow y(t) = Dx(t) - t = -A\sin t + B\cos t + 2t - t$$

 $= -A\sin t + B\cos t + t$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc PhysicsCOURSENAME: MATHEMATICS-IICOURSE CODE: 17PHU602UNIT: IBATCH-2017-2020

 $\therefore \text{ The solutions of (1) and (2) are } x(t) = A\cos t + B\sin t + t^{2} - 1 \text{ and}$ $y(t) = -A\sin t + B\cos t + t.$ 4. Solve the simultaneous equations $\frac{dx}{dt} + 2x - 3y = 5t; \frac{dy}{dt} - 3x + 2y = 0$ given that x(0) = 0, y(0) = -1. Solution: The given simultaneous equations are $\frac{dx}{dt} + 2x - 3y = 5t; \frac{dy}{dt} - 3x + 2y = 0$ i.e (D+2)x - 3y = 5t - --(1) (D+2)y - 3x = 0 ------(2) Eliminate x from (1) and (2) (1) $\times 3 \Rightarrow 3(D+2)x - 9y = 15t$ ------(3) (2) $\times (D+2) \Rightarrow (D+2)^{2}y - 3(D+2)x = 0$ -------(4) (3)+(4) $\Rightarrow (D+2)^{2}y - 9y = 15t$ i.e $(D^{2} + 4D - 5)y = 15t$ ------(5) The A.E of (5) is $m^{2} + 4m - 5 = 0$

 $\Rightarrow (m+5)(m-1) = 0$

 \Rightarrow *m* = -5 or *m* = 1

 \therefore C.F= $Ae^{t} + Be^{-5t}$

$$P.I = \frac{1}{D^2 + 4D - 5} (15t)$$

$$= 15 \left[\frac{1}{-5 \left(1 - \left(\frac{D^2 + 4D}{5} \right) \right)} \right] t$$
$$= -3 \left[1 - \left(\frac{D^2 + 4D}{5} \right) \right]^{-1} t$$
$$= -3 \left[1 + \left(\frac{D^2 + 4D}{5} \right) + \left(\frac{D^2 + 4D}{5} \right)^2 + \dots \right] t$$

KARPAGAM ACADEMY OF HIGHER EDUCATION **CLASS: III B.Sc Physics COURSENAME: MATHEMATICS-II COURSE CODE: 17PHU602** UNIT: I **BATCH-2017-2020** $=-3\left|1+\frac{4D}{5}\right|t$ $=-3\left[t+\frac{4}{5}\right]$ The general solution of (5) is $y(t) = C.F + P.I = Ae^{t} + Be^{-5t} - 3t - \frac{12}{5}$ $(2) \Longrightarrow (D+2)v - 3x = 0$ $\Rightarrow 3x(t) = (D+2)(Ae^{t} + Be^{-5t} - 3t - \frac{12}{5})$ $= Ae^{t} - 5Be^{-5t} - 3 + 2Ae^{t} + 2Be^{-5t} - 6t - \frac{24}{5}$ $=3Ae^{t}-3Be^{-5t}-6t-\frac{39}{5}$ $\Rightarrow x(t) = Ae^t - Be^{-5t} - 2t - \frac{13}{5}.$ \therefore The solutions of (1) and (2) are $x(t) = Ae^t - Be^{-5t} - 2t - \frac{13}{5}$ and $y(t) = Ae^{t} + Be^{-5t} - 3t - \frac{12}{5}$ Given $x(0) = 0 = A(1) - B(1) - 0 - \frac{13}{5} \Longrightarrow A - B = \frac{13}{5} - \dots - (6)$ Given $y(0) = -1 = A(1) + B(1) - 0 - \frac{12}{5} \implies A + B = \frac{7}{5} - \dots - (7)$ $(6)+(7) \Longrightarrow 2A = 4 \Longrightarrow A = 2$ $(7) \Longrightarrow B = \frac{7}{5} - 2 = -\frac{3}{5}$:. The solutions of (1) and (2) are $x(t) = 2e^{t} + \frac{3}{5}e^{-5t} - 2t - \frac{13}{5}$ and

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-IIUNIT: IBATCH-2017-2020

 $y(t) = 2e^{t} - \frac{3}{5}Be^{-5t} - 3t - \frac{12}{5}$

5. Solve $(2D-3)x + Dy = e^t$, $Dx + (D+2)y = \cos 2t$. (April/May 2005) Solution

The given simultaneous equations are $(2D-3)x + Dy = e^t$ -----(1)

and $Dx + (D+2)y = \cos 2t$ -----(2)

Eliminate x from (1) and(2)

$$(1) \times D \Longrightarrow D(2D-3)x + D^2y = D(e^t) - \dots - (3)$$

 $(2) \times (2D-3) \Longrightarrow (2D-3)Dx + (2D-3)(D+2)y = (2D-3)\cos 2t ---- (4)$

$$(3)-(4) \Longrightarrow D^2 y - (2D-3)(D+2)y = D(e^t) - (2D-3)\cos 2t$$

$$\Rightarrow D^2 y - (2D^2 + 4D - 3D - 6)y = e^t - (2(-2\sin 2t) - 3\cos 2t)$$

 $\Rightarrow -(D^2 + D - 6)y = e^t + 4\sin 2t + 3\cos 2t$

$$\Rightarrow (D^2 + D - 6)y = -e^t - 4\sin 2t - 3\cos 2t$$

=

=

The A.E of (5) is $m^2 + m - 6 = 0 \Rightarrow m = -3, 2$

C.F=
$$Ae^{-3t} + Be^{2t}$$

 $\therefore P.I = \left[\frac{1}{D^2 + D - 6}\right] \left[-(e^t + 4\sin 2t + 3\cos 2t)\right]$

$$= -\left[\frac{1}{D^2 + D - 6}\right]e^t - 4\left[\frac{1}{D^2 + D - 6}\right]\sin 2t - 3\left[\frac{1}{D^2 + D - 6}\right]\cos 2t$$
$$-\left[\frac{1}{1^2 + 1 - 6}\right]e^t - 4\left[\frac{1}{-2^2 + D - 6}\right]\sin 2t - 3\left[\frac{1}{-2^2 + D - 6}\right]\cos 2t$$
$$\frac{1}{4}e^t - 4\left[\frac{1}{D - 10}\right]\sin 2t - 3\left[\frac{1}{D - 10}\right]\cos 2t$$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602 UNIT: I

COURSENAME: MATHEMATICS-II I BATCH-2017-2020

$$\begin{aligned} &= \frac{1}{4}e^{t} - 4\left[\frac{(D+10)}{D^{2}-100}\right]\sin 2t - 3\left[\frac{(D+10)}{D^{2}-100}\right]\cos 2t \\ &= \frac{1}{4}e^{t} - 4\left[\frac{(D+10)}{-4-100}\right]\sin 2t - 3\left[\frac{(D+10)}{-4-100}\right]\cos 2t \\ &= \frac{1}{4}e^{t} + 4\frac{(2\cos 2t+10\sin 2t)}{104} + 3\frac{(-2\sin 2t+10\cos 2t)}{104} \\ &= \frac{1}{4}e^{t} + \frac{(8\cos 2t+40\sin 2t)}{104} + \frac{(-6\sin 2t+30\cos 2t)}{104} \\ &= \frac{1}{4}e^{t} + \frac{(38\cos 2t+34\sin 2t)}{104} \\ \text{The general solution of (5) is } y(t) = Ae^{-3t} + Be^{2t} + \frac{1}{4}e^{t} + \frac{1}{104}(38\cos 2t+34\sin 2t) \\ &(1) \times 1 - (2) \times 2 \Rightarrow -3x - Dy - 4y = e^{t} - 2\cos 2t \\ &\Rightarrow -3x - \left[-3Ae^{-3t} + 2Be^{2t} + \frac{1}{4}e^{t} + \frac{1}{104}(-76\sin 2t+68\cos 2t)\right] \\ &-4\left[Ae^{-3t} + Be^{2t} + \frac{1}{4}e^{t} + \frac{1}{104}(38\cos 2t+34\sin 2t)\right] = e^{t} - 2\cos 2t \\ &\Rightarrow -3x - Ae^{-3t} - 6Be^{2t} - \frac{5}{4}e^{t} - \left[\frac{1}{104}(60\sin 2t+228\cos 2t)\right] \\ &x(t) = \frac{1}{3}Ae^{-3t} - 2Be^{2t} - \frac{5e^{t}}{12} - \left(\frac{20\cos 2t+76\sin 2t}{104}\right) \end{aligned}$$

The solutions of (1) and (2) are

$$y(t) = Ae^{-3t} + Be^{2t} + \frac{1}{4}e^{t} + \frac{1}{104}(38\cos 2t + 34\sin 2t)$$

and $x(t) = \frac{1}{3}Ae^{-3t} - 2Be^{2t} - \frac{5e^{t}}{12} - \left(\frac{20\cos 2t + 76\sin 2t}{104}\right)$

6. Solve $Dx + y = \sin t$, $x + Dy = \cos t$ given that x = 2, y = 0 at t = 0. (April/May 2006, May/June 2009) Solution:

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc PhysicsCOURSENAME: MATHEMATICS-IICOURSE CODE: 17PHU602UNIT: IBATCH-2017-2020

The given simultaneous equations are $Dx + y = \sin t - --(1) x + Dy = \cos t - --(2)$ $(1) \times 1 \Rightarrow Dx + y = \sin t - - - - - -(3)$ $(2) \times D \Rightarrow Dx + D^2 y = D(\cos t) - - - - - -(4)$ $(3) - (4) \Rightarrow (1 - D^2) y = \sin t + \sin t = 2\sin t$ $(1 - D^2) y = 2\sin t - - - - - (5)$ The A.E of (5) is $1 - m^2 = 0 \Rightarrow m = \pm 1$ C.F= $Ae^t + Be^{-t}$ $\therefore P.I = \left[\frac{1}{1 - D^2}\right] 2\sin t = 2\left[\frac{1}{1 - (-1^2)}\right] \sin t = \sin t$

The general solution of (5) is $y(t) = Ae^{t} + Be^{-t} + \sin t$

$$\Rightarrow Dy = Ae^t - Be^{-t} + \cos t$$

(2)
$$\Rightarrow x = \cos t - Dy = -Ae^t + Be^{-t}$$

Thesolutions of (1) and (2) are $y(t) = Ae^{t} + Be^{-t} + \sin t$ and $x(t) = -Ae^{t} + Be^{-t}$

Given $x(0) = 2 = -Ae^0 + Be^{-0} \Rightarrow -A + B = 2$ -----(6)

$$y(0) = 0 = Ae^{0} + Be^{-0} + \sin 0 \Rightarrow A + B = 0$$
(6)+(7) $\Rightarrow 2B = 2 \Rightarrow B = 1$ and (7) $\Rightarrow A = -1$

The solutions of (1) and (2) are $x(t) = e^t + e^{-t}$ and

 $y(t) = -e^t + e^{-t} + \sin t$

7. Solve
$$\frac{dx}{dt} + y = \sin t + 1$$
; $\frac{dy}{dt} + x = \cos t$ given that $x = 1, y = 2$ at $t = 0$.
Solution:

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc PhysicsCOURSENAME: MATHEMATICS-IICOURSE CODE: 17PHU602UNIT: IBATCH-2017-2020

The given simultaneous equations are $\frac{dx}{dt} + y = \sin t + 1; \frac{dy}{dt} + x = \cos t$
i.e $Dx + y = \sin t + 1(1)$ $Dy + x = \cos t(2)$
Eliminate x from (1) and (2)
(1)×1 \Rightarrow $Dx + y = \sin t + 1$ (3)
(2)× $D \Rightarrow D^2 y + Dx = D(\cos t)$ (4)
(3)-(4) \Rightarrow $y - D^2 y = \sin t + 1 - D(\cos t)$
i.e $(1-D^2)y = \sin t + 1 + \sin t$
$(1-D^2)y = 2\sin t + 1$ (5)
The A.E of (5) is $1 - m^2 = 0$
$\Rightarrow m^2 = 1 \Rightarrow m = \pm 1$
$\therefore C.F = Ae^{t} + Be^{-t}$
$P.I = \left[\frac{1}{1-D^2}\right](2\sin t + 1)$
$=2\left[\frac{1}{1-D^2}\right]\sin t + \left[\frac{1}{1-D^2}\right]e^{0t}$
$= 2 \left[\frac{1}{1 - (-1^2)} \right] \sin t + \left[\frac{1}{1 - 0^2} \right] e^{0t}$
$= 2\left[\frac{1}{2}\right]\sin t + 1$
$=\sin t + 1$
The general solution of (5) is $y(t) = C.F + P.I = Ae^{t} + Be^{-t} + \sin t + 1$

 $(2) \Longrightarrow x(t) = \cos t - D[Ae^{t} + Be^{-t} + \sin t + 1]$
KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-IIUNIT: IBATCH-2017-2020

$$(1) \times 1 \Longrightarrow Dx + y = \sin 2t -----(3)$$

$$(2) \times D \Longrightarrow -Dx + D^2 y = D(\cos 2t) -----(4)$$

$$(3)+(4) \Longrightarrow (1+D^2)y = \sin 2t + D(\cos 2t)$$

$$= \sin 2t - 2\sin 2t = -\sin 2t$$

$$(D^2 + 1)y = -\sin 2t$$
 -----(5)

The A.E of (5) is $m^2 + 1 = 0 \Longrightarrow m = \pm i$

C.F=
$$A\cos t + B\sin t$$

$$\therefore P.I = \frac{1}{D^2 + 1} (-\sin 2t)$$

i.e $(D^2 + 4)v = -3\sin t$ -----(5)

Prepared by R. Gayathri, Asst Prof, Department of Mathematics KAHE

Page 33/30

The A.E of (5) is $m^2 + 4 = 0$ $\Rightarrow m = \pm i2$ Here $\alpha = 0$; $\beta = 2$ $\therefore C.F = e^{0t} (A \cos 2t + B \sin 2t)$ $= A \cos 2t + B \sin 2t$ $P.I = \left[\frac{1}{D^2 + 4}\right](-3\sin t)$ $= -3\left[\frac{1}{-1^2+4}\right]\sin t$ $=-\sin t$ \therefore The solutions of (1) and (2) are $y(t) = A\cos\sqrt{2} t + B\sin\sqrt{2} t - \sin t.$

Given
$$x(0) = 1 = -A(0) + B(1) - \frac{(1)}{2} \Rightarrow B = \frac{3}{2}$$

Given
$$y(0) = 0 = A(1) + B(0) - 0 \Longrightarrow A = 0$$
.

 \therefore The solutions of (1) and (2) are

and

$$y(t) = \frac{3}{2}\sin 2t - \sin t.$$

$$x(t) = \frac{3}{2}\cos 2t - \frac{\cos t}{2}$$

The general solution of (5) is
$$y(t) = C.F + P.I = A \cos 2t + B \sin 2t - \sin 2t$$

$$(2) \Rightarrow D[A\cos 2t + B\sin 2t] - 2x = \cos t$$

$$\Rightarrow 2x = 2[-A\sin 2t + B\cos 2t] - \cos t$$

$$\Rightarrow x = -A\sin 2t + B\cos 2t - \frac{\cos t}{2}$$

$$= -A\sin 2t + B\cos 2t - \frac{\cos t}{2}$$
 and

$$x(t) = -A\sin 2t + B\cos 2t -$$

$$\Rightarrow A = 0$$
.

$$\begin{array}{|c|c|c|c|c|} \hline \textbf{CLASS: HI ESC Physics} & \textbf{COURSENAME: MATHEMATICS-II} \\ \hline \textbf{COURSE CODE: ITPHU602} & \textbf{UNIT: I} & \textbf{COURSENAME: MATHEMATICS-II} \\ \hline \textbf{BATCH-2017-2020} \\ \hline \end{array} \\ = -\frac{1}{2} \left[\frac{D}{D^{-1}} \right] \cos 2t + \left[\frac{D}{D^{-1}} \right] \sin 2t \\ = -\frac{1}{2} \left[\frac{D^{-1}}{D^{-1}-1^{2}} \right] \cos 2t + \left[\frac{D^{-1}}{D^{2}-1} \right] \sin 2t \\ = -\frac{1}{2} \left[\frac{D^{-1}}{-2^{-1}-1^{2}} \right] \cos 2t + \left[\frac{D^{-1}}{-2^{-1}} \right] \sin 2t \\ = -\frac{1}{2} \left[\frac{-2\sin 2t - \cos 2t}{-5} \right] + \left[\frac{2\cos 2t - \sin 2t}{-5} \right] \\ = -\frac{1}{10} \left[2\sin 2t + \cos 2t \right] - \frac{1}{5} \left[2\cos 2t - \sin 2t \right] \\ = -\frac{1}{10} \left[2\sin 2t + \cos 2t + 4\cos 2t - 2\sin 2t \right] \\ = -\frac{1}{10} \left[5\cos 2t \right] \\ = -\frac{1}{10} \left[5\cos 2t \right] \\ = -\frac{1}{2} \left[\cos 2t \right] \\ = -\frac{1}{2} \left[\cos 2t \right] \\ D = \frac{1}{2} \left[\cos 2t \right] \\ D = \frac{1}{2} \left[\cos 2t \right] \\ = 2y - \cos 2t + \sin 2t + 2x - 2\frac{dx}{dt} \\ \Rightarrow 2y - \cos 2t + \sin 2t + 2x^{2} - \frac{dx}{dt} \\ \Rightarrow 2y - \cos 2t + \sin 2t + 2e^{t} (A\cos t + B\sin t) - \cos 2t \\ -2 \left[(A\cos t + B\sin t)e^{t} + e^{t} (-A\sin t + B\cos t) \right] - 2\frac{1}{2} (-2\sin 2t) \\ \Rightarrow 2y - \sin 2t + 2e^{t} (A\cos t + B\sin t) \\ \Rightarrow 2y - \sin 2t + 2e^{t} (A\cos t + B\sin t) \\ -2 \left[(A\cos t + B\sin t)e^{t} + e^{t} (-A\sin t + B\cos t) \right] - 2\frac{1}{2} (-2\sin 2t) \\ \end{array}$$

$$\Rightarrow 2y = \sin 2t + 2e^t (A\cos t + B\sin t)$$

$$-2[(A\cos t + B\sin t)e^{t} + e^{t}(-A\sin t + B\cos t)] - 2\frac{1}{2}(-2\sin 2t)$$

$$y = e^t (A\cos t - B\sin t) - \frac{\sin 2t}{2}$$

 \therefore The solutions of (1) and (2) are

$$x(t) = e^{t} (A\cos t + B\sin t) + \frac{(-2\sin 2t - \cos 2t)}{10} - \frac{(2\cos 2t - \sin 2t)}{5}$$

and
$$y(t) = e^t (A\cos t - B\sin t) - \frac{\sin 2t}{2}$$

11. Solve
$$\frac{dx}{dt} + 2y = \sin 2t$$
; $\frac{dy}{dt} - 2x = \cos 2t$ (Nov. Dec/2009)
Solution:

The given simultaneous equations are

$$\frac{dx}{dt} + 2y = \sin 2t; \quad \frac{dy}{dt} - 2x = \cos 2t$$

i.e $Dx + 2y = \sin 2t - --(1) \quad Dy - 2x = \cos 2t - --(2)$

Eliminate x from (1) and (2)

$$(1) \times 2 \Longrightarrow \qquad 2Dx + 4y = 2\sin 2t -----(3)$$

(2)×
$$D \Rightarrow D^2 y - 2Dx = D(\cos 2t)$$
-----(4)

$$(3)+(4) \Rightarrow \qquad 4y + D^2 y = 2\sin 2t - 2\sin 2t$$

i.e
$$(D^2 + 4)y = 0$$
-----(5)

The A.E of (5) is $m^2 + 4 = 0$

 $\Rightarrow m = \pm 2i$ Here $\alpha = 0; \beta = 2$

 $\therefore C.F = e^{0t} (A \cos 2t + B \sin 2t) = A \cos 2t + B \sin 2t$

The general solution of (5) is $y(t) = C.F = A\cos 2t + B\sin 2t$

 $(2) \Longrightarrow 2x = Dy - \cos 2t - - -(2)$

 $= (-2A\sin 2t + 2B\cos 2t) - \cos 2t$

$$x(t) = -A\sin 2t + B\sin 2t - \frac{1}{2}\cos 2t$$

 \therefore The solutions of (1) and (2) are $x(t) = -A\sin 2t + B\sin 2t - \frac{1}{2}\cos 2t$ and

 $y(t) = A\cos 2t + B\sin 2t$.

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po),

Coimbatore -641 021

Subject: MATHEMATICS-II

Class : III - B.Sc. Physics

Subject Code: 17PHU602

Semester : VI

Unit I

Part A (20x1=20 Marks) (Question Nos. 1 to 20 Online Examinations) Possible Questions									
									Question
Question		Opt 2	Opt 5	Opt 4	Answei				
An equation involving one or more dependent variables with respect to one or more independent variables is called	differential equations	intergral equation	constant equation	Eulers equation	differential equations				
An equation involving one or more variables with respect to one or more independent variables is called differential equations	single	dependent	independent	constant	dependent				
An equation involving one or more dependent variables with respect to one or morevariables is called differential equations	dependent	independent	single	different	independent				
A differential equation involving ordinary derivatives of one or moredependentvariables with respect to single independent variables is called	differential equations	partial differential equations	ordinary differential equations	total differential equations	ordinary differential equations				

A differential equation involving ordinary derivatives of one or more dependent variables with respect to independent variables is called ordinary differential equations	zero	single	different	one or more	single
A differential equation involving derivatives of one or more dependent variables with respect to single independent variables is called ordinary differential equations	partial	different	total	ordinary	ordinary
A differential equation involving partial derivatives of one or more dependent variables with respect to oneor more independent variables is called	differential equations	partial differential equations	ordinary differential equations	total differential equations	partial differential equations
A differential equation involving partial derivatives of one or more dependent variables with respect to independent variables is called partial differential equations	zero	single	different	one or more	oneormore
A differential equation involving derivatives of one or more dependent variables with respect to one or more independent variables is called partial differential equations	partial	different	total	ordinary	partial
The order ofderivatives involved in the differential equations is called order of the differential equation	zero	lowest	highest	infinite	highest
The order of highest derivatives involved in the differential equations is called of the differential equation	order	power	value	root	order
The order of highest involved in the differential equations is called order of the differential equation	derivatives	intergral	power	value	derivatives
The order of the differential equations is $(d^2 y)/[[dx]]^2 +xy(dy/dx)^2=1$	0	1	2	4	2
A non linear ordinary differential equation is an ordinary differential equation that is not	linear	non linear	differential	intergral	linear

Aordinary differential equation is an ordinary differential equation that is not linear	linear	non linear	differential	intergral	non linear
A non linear ordinary differential equation is an differential equation that is not linear	ordinary	partial	single	constant	ordinary
ordinary differential equations are further classified according to the nature of the coefficients of the dependent variables and its derivatives	linear	non linear	differential	intergral	linear
Linear differential equations are further classified according to the nature of the coefficients of the dependent variables and its derivatives	ordinary	partial	single	constant	ordinary
Linear ordinary differential equations are further classified according to the nature of the coefficients of thevariables and its derivatives	single	dependent	independent	constant	dependent
Linear ordinary differential equations are further classified according to the nature of the coefficients of the dependent variables and its	integrals	constant	derivatives	roots	derivatives
Both explicit and implicit solutions will usually be called simply	solutions	constant	equations	values	solutions
Both solutions will usually be called simply solutions.	general and particular	singular and non singular	ordinary and partial	explicit and implicit	explicit and implicit
Let f be a real function defined for all x in a real interval I and having nth order derivatives then the function f is calledsolution of the differential equations	constant	implicit	explicit	general	explicit
Let f be a real function defined for all x in a real interval I and havingorder derivatives then the function f is called explicit solution of the differential equations	1st	2nd	nth	(n+1)th	nth

The relation $g(x,y)=0$ is called thesolution of $F[x,y,(dy/dx)(dy/dx)^n]=0$	constant	implicit	explicit	general	implicit
---	----------	----------	----------	---------	----------

UNIT-II

Finding the solution of Second and Higher Order with constant coefficients with Right Hand Side is of the form $V e^{ax}$, where V is a function of x – Euler's Homogeneous Linear Differential Equations– System of simultaneous linear differential equations with constant coefficients.

$$= e^{-x} \frac{2D+1}{-4-1} \sin x$$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602	COURSENAME: MATHEMATICS-II UNIT: II BATCH-2017-2020
$=\frac{e^{-x}}{5}(2D+1)\sin x$	
$P.I_1 = \frac{e}{-5}(2\cos x + \sin x)$	
DL 1 3x	
$PI_2 = \frac{1}{D^2 + 4D + 3} xe^{-1}$	
$= e^{3x} \frac{1}{(1-x)^2 + (1-x)^2}$	x
$(D+3)^2 + 4(D+3) + 3$	
$=e^{3x}\frac{1}{D^2+6D+9+4D+12+1}$	$\frac{1}{x}$
. 1	
$= e^{3x} \frac{1}{D^2 + 10D + 24} x$	
e^{3x} 1	
$=\frac{1}{24}\left[\frac{D^2}{D^2}+\frac{10}{D+1}\right]^{x}$	
$-\frac{e^{3x}}{1+5}D+\frac{D^2}{1-1}r$	
$= \frac{1}{24} \begin{bmatrix} 1 + \frac{1}{12} & \frac{1}{24} \end{bmatrix}^{-1} $	
$e^{3x} \begin{bmatrix} 5 \\ D \end{bmatrix} D^2 \end{bmatrix}$	
$-\frac{1}{24}\left[1-\left(\frac{1}{12}D+\frac{1}{24}\right)^{+\dots,-1}\right]^{x}$	
e^{3x} $\begin{bmatrix} 5 \end{bmatrix}$	
$-\frac{1}{24}\begin{bmatrix}x-\frac{1}{12}\end{bmatrix}$	
y = C.F + P.I	
$v = 4e^{-x} + Be^{-3x} - \frac{e^{-x}}{2}(2\cos x + \sin x)$	r) + $\frac{e^{3x}}{x}$ $\left[x - \frac{5}{3} \right]$
$y = 2c$ $+ bc$ $-\frac{1}{5}(2\cos x + \sin x)$	$24 \begin{bmatrix} x & 12 \end{bmatrix}$
2. Solve $(D^2 - 2D + 2)y = e^x x^2 + 5 + 5$	e^{-2x}
Solution:	
Given $(D^2 - 2D + 2)y = e^x x^2 + 5 + $	$-e^{-2x}$

KARPAGAM AC	CADEMY OF HIGHER EDUCATION
CLASS: III B.Sc Physics	COURSENAME: MATHEMATICS-II
COURSE CODE: 1/1 HU002	UNII: II BAICH-2017-2020
$C.F = e^x (A\cos x + B\sin x)$	
$P.I_1 = \frac{1}{D^2 - 2D + 2} e^x x^2$	
$=e^{x}\frac{1}{(D+1)^{2}-2(D+1)+2}x^{2}$	
$= e^{x} \frac{1}{D^{2} + 2D + 1 - 2D - 2 + 2} x$.2
$= e^x \frac{1}{D^2 + 1} x^2$	
$= e^{x}(D^{2}+1)^{-1}x^{2}$	
$= e^x(1-D^2+)x^2$	
$P.I_1 = e^x(x^2 - 2)$	
$P.I_2 = \frac{1}{D^2 - 2D + 2} 5e^{0x}$	
$P.I_2 = \frac{5}{2}$	
$P.I_3 = \frac{1}{D^2 - 2D + 2}e^{-2x}$	
$=\frac{1}{4+4+2}e^{-2x}$	
$P.I_3 = \frac{1}{10}e^{-2x}$	
y = C.F + P.I	
$y = e^x (A\cos x + B\sin x) + e^x (x^2 - 2)$	$+\frac{5}{2}+\frac{1}{10}e^{-2x}$
3. Solve $(D^2 + 4D + 3)v - e^{-x} \sin x + \frac{1}{2}$	2 10 re^{3x} (Nov./Dec. 2002)
Solution:	
The given ODE is $(D^2 + 4D)$	$(+3)y = e^{-x} \sin x + xe^{3x}$ (1)
The A.E of (1) is $m^2 + 4m + 4$	+3 = 0
(m+1)(m+3) = 0	
m = -1 $m = -3$	

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc PhysicsCOURSENAME: MATHEMATICS-II

COURSE CODE: 17PHU602

UNIT: II BATCH-2017-2020

$$C.F=Ae^{-x} + Be^{-3x}.$$

$$P.I = \frac{1}{f(D)}e^{-x}\sin x + \frac{1}{f(D)}xe^{3x} = P.J_1 + P.J_2$$
Now $P.J_1 = \frac{1}{D^2 + 4D + 3}e^{-x}\sin x = e^{-x}\frac{1}{(D-1)^2 + 4(D-1) + 3}\sin x$

$$=$$

$$e^{-x}\frac{1}{D^2 + 2D}\sin x = e^{-x}\frac{1}{-1 + 2D}\sin x = e^{-x}\frac{(2D+1)}{(2D)^2 - 1^2}\sin x$$

$$= e^{-x}\frac{(2D+1)}{-4 - 1}\sin x = -\frac{e^{-x}}{5}(2\cos x + \sin x)$$

$$P.J_2 = \frac{1}{f(D)}xe^{3x} = \frac{1}{D^2 + 4D + 3}e^{3x}x = e^{3x}\frac{1}{(D+3)^2 + 4(D+3) + 3}x$$

$$= e^{3x}\frac{1}{D^2 + 10D + 24}x = \frac{e^{3x}}{24}\left[1 + \left(\frac{D^2 + 10D}{24}\right)\right]^{-1}x$$

$$= \frac{e^{3x}}{24}\left[1 - \left(\frac{D^2 + 10D}{24}\right) + \left(\frac{D^2 + 10D}{24}\right)^2 - ...\right]x$$

$$= \frac{e^{3x}}{24}\left[1 - \frac{5}{12}D\right]x \text{ omitting Higher order derivatives}$$

$$= \frac{e^{3x}}{24}\left[x - \frac{5}{12}\right] \therefore P.I = P.I_1 + P.I_2 = -\frac{e^{-x}}{5}(2\cos x + \sin x) + \frac{e^{3x}}{24}\left[x - \frac{5}{12}\right]$$

The general solution of (1) is y(x) = C.F+P.I

$$=Ae^{-x} + Be^{-3x} - \frac{e^{-x}}{5}(2\cos x + \sin x) + \frac{e^{3x}}{24} \left[x - \frac{5}{12}\right].$$

4.Solve $(D^2 - 2D + 2)y = e^x x^2 + 5 + e^{-2x}$. (April/May 2003) Solution:

The given ODE is $(D^2 - 2D + 2)y = e^x x^2 + 5 + e^{-2x}$ ----(1) The A.E of (1) is $m^2 - 2m + 2 = 0$ $m = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(2)}}{2} = 1 \pm i$ C.F= $e^x (A\cos x + B\sin x)$. $P.I = \frac{1}{f(D)}e^{x}x^{2} + \frac{1}{f(D)}5 + \frac{1}{f(D)}e^{-2x} = P.I_{1} + P.I_{2} + P.I_{3}$ Now $P.I_1 = \frac{1}{D^2 - 2D + 2}e^x x^2 = e^x \frac{1}{(D+1)^2 - 2(D+1) + 2}x^2$ $=e^{x}\frac{1}{D^{2}+1}x^{2}=e^{x}(1+D^{2})^{-1}x^{2}=e^{x}(1-D^{2}+(D^{2})^{2}-...)x^{2}$ $= e^{x}(1-D^{2})x^{2} = e^{x}(x^{2}-2)$ $P.I_2 = 4 \frac{1}{D^2 - 2D + 2} e^{0x} = 4 \frac{1}{2} = 2$ $P.I_3 = \frac{1}{D^2 - 2D + 2}e^{-2x} = \frac{1}{(-2)^2 - 2(-2) + 2}e^{-2x} = \frac{e^{-2x}}{10}$ $P.I = P.I_1 + P.I_2 + P.I_3$ $= e^{x}(x^{2}-2)+2+\frac{e^{-2x}}{10}$ The general solution of (1) is y(x) = C.F+P.I

 $=e^{x}(A\cos x + B\sin x) + e^{x}(x^{2} - 2) + 2 + \frac{e^{-2x}}{10}$

1.1.7 Problems based on $f(x) = x^n \sin ax$ or $x^n \cos ax$

To find Particular Integral when $f(x) = x^n \sin ax$ or $x^n \cos ax$ $P.I = \frac{1}{f(D)} x^n \sin ax \quad (or) \ x^n \cos ax$ $\frac{1}{f(D)} (xV) = x \frac{1}{f(D)} V + \left[\frac{d}{dD} \frac{1}{f(D)}\right] V$ $\frac{1}{f(D)} (xV) = x \frac{1}{f(D)} V - \left[\frac{f'(D)}{f(D)} \frac{1}{f(D)}\right] V$ $\frac{1}{f(D)} xV = x \frac{1}{f(D)} V - \left[\frac{f'(D)}{[f(D)]^2}\right] V$

1. Solve $(D^2 - 4D + 4)y = 8x^2e^{2x}\sin 2x$ Solution: Given $(D^2 - 4D + 4)y = 8x^2e^{2x}\sin 2x$ A.E is $m^2 - 4m + 4 = 0$ $(m-2)^2 = 0$ The roots are m = 2, 2.

Complementary Function is $(c_1x + c_2)e^{2x}$

Particular Integral
$$= \frac{1}{D^2 - 4D + 4} 8x^2 e^{2x} \sin 2x$$
$$= 8e^{2x} \frac{1}{(D-2)^2} x^2 \sin 2x$$
$$= 8e^{2x} \frac{1}{D} \left\{ x^2 \left(\frac{-\cos 2x}{2} \right) - 2x \left(\frac{-\sin 2x}{4} \right) + 2 \left(\frac{\cos 2x}{8} \right) \right\}$$
$$= e^{2x} \left\{ \frac{1}{D} \left(-4x^2 \cos 2x \right) + \frac{1}{D} (4x \sin 2x) + \frac{1}{D} (2 \cos 2x) \right\}$$
$$= e^{2x} \left[\left\{ \left(-4x^2 \frac{\sin 2x}{2} \right) - 2x \left(\frac{-\cos 2x}{4} \right) + 2 \left(\frac{-\sin 2x}{4} \right) \right\} + 4 \left\{ x \left(\frac{-\cos 2x}{2} \right) - \left(\frac{-\sin 2x}{4} \right) + \sin 2x \right\} \right]$$
$$= e^{2x} \left[\left\{ (3 - 2x^2) \sin 2x - 4x \cos 2x \right] \right]$$

The general Solution is y = C.F + P.I.

 $y = (c_1 x + c_2)e^{2x} + e^{2x}(3 - 2x^2)\sin 2x - 4x\cos 2x$

2. Solve the differential equation $(D^2 + 4)y = x^2 \cos 2x$ (May/ June 2009) Solution:

The given ODE is $(D^2 + 4)y = x^2 \cos 2x$ ----(1)

The A.E of (1) is $m^2 + 4 = 0 \Rightarrow m^2 = -4 \Rightarrow m = \pm 2i$ C.F= $A \cos 2x + B \sin 2x$

$$P.I = \left[\frac{1}{f(D)}\right] x^{2} \cos 2x = \left[\frac{1}{D^{2} + 4}\right] x^{2} R.P \text{ of } e^{i2x}$$
$$= R.P \text{ of } e^{i2x} \left[\frac{1}{(D + 2i)^{2} + 4}\right] x^{2} = R.P \text{ of } e^{i2x} \left[\frac{1}{D^{2} + 4Di}\right] x$$

$$= R.P of \left[\frac{e^{i2x}}{4Di \left(1 + \frac{D^2}{4Di} \right)} \right] x^2$$

$$= R.P \text{ of } \frac{-i^2 e^{i2x}}{4Di} \left(1 + \frac{D}{4i}\right)^{-1} x^2$$
$$= R.P \text{ of } \frac{-i e^{i2x}}{4D} \left(1 - \frac{D}{4i} + \left(\frac{D}{4i}\right)^2 - \left(\frac{D}{4i}\right)^3 + \dots\right) x^2$$

$$= R.P \text{ of } -\frac{ie^{i2x}}{4} \left(\frac{1}{D} - \frac{1}{4i} + \left(-\frac{D}{16} \right) - \left(-\frac{D^2}{64i} \right) \right) x^2$$
$$= R.P \text{ of } \frac{e^{i2x}}{4} \left(-\frac{i}{D} + \frac{1}{4} + \left(\frac{Di}{16} \right) - \left(\frac{D^2}{64} \right) \right) x^2$$
$$= R.P \text{ of } \frac{e^{i2x}}{4} \left(-i \left(\frac{x^3}{3} \right) + \frac{x^2}{4} + \left(\frac{2xi}{16} \right) - \left(\frac{2}{64} \right) \right)$$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc PhysicsCOURSENAME: MATHEMATICS-II

CLASS: III B.Sc PhysicsCOURSENAME: MATHEMATICS-IICOURSE CODE: 17PHU602UNIT: IIBATCH-2017-2020

$$=\frac{x}{a}\left(\frac{e^{iax}-e^{-iax}}{2i}\right)-\frac{1}{a^2}\log\sec ax\left(\frac{e^{iax}+e^{-iax}}{2i}\right)$$

$$= \frac{x}{a}\sin ax - \frac{1}{a^2}\log \sec ax \cos ax$$

General Solution is y = C.F + P.I

 $y = A\cos ax + B\sin ax + \frac{x}{a}\sin ax - \frac{1}{a^2}\log\sec ax\cos ax$

Homogeneous Equations of Euler Type [Cauchy's Type]

Linear Differential Equations with Variable Co-efficient

An Equation of the form

$$a_0 x^n \frac{d^n y}{dx^n} + a_1 x^{n-1} \frac{d^{n-1} y}{dx^n} + a_2 x^{n-2} \frac{d^{n-2} y}{dx^{n-2}} + \dots + a_n y = f(x)$$
(1)

Where $a_1, a_2, \dots a_n$ re constants and f(x) is a function of x.

Equation(1) can be reduced to linear differential equation with constant

Co - efficient by putting the substitution.

$$x = e^{z}(or)z = logx$$

 $x \frac{dy}{dx} = \frac{dy}{dz} = D'y$ $D' = \frac{d}{dz}$

$$x^2 \frac{d^2 y}{dx^2} = x^2 \frac{d^2 y}{dz^2} - \frac{dy}{dz}$$

$$= (D'^2 - D')y \qquad \text{where} \qquad D' = \frac{d}{dz}$$
(3)

Similarly,

$$x^{2} \frac{d^{2} y}{dx^{2}} = D'(D'-1)(D'-2)y$$
(4)

Prepared by R.Gayathri, Asst Prof, Department of Mathematics KAHE

(2)

and so on, substituting (2), (3), (4) and so on in (1) we get a differential equation with constant coefficients and can be solved by any one of the known methods.

PROBLEMS BASED ON CAUCHY'S TYPE

1. Solve $x^2 y'' + 2xy' + 2y = 0$. Solution:

The given ODE is
$$x^2y'' + 2xy' + 2y = 0$$
. i.e $(x^2D^2 + 2xD + 2)y = 0$ ---(1)

To solve (1) use $x = e^z \Rightarrow z = \log x$, xD = D'; $x^2D^2 = D'(D'-1)$

:. (1) becomes
$$(D'(D'-1)+2D'+2)y = 0$$
, where $D = \frac{d}{dx}$; $D' = \frac{d}{dz}$

The A.E of (2) is $m^2 + m + 2 = 0$

$$\Rightarrow m = \frac{-1 \pm \sqrt{(1)^2 - 4(1)(2)}}{2(1)} = \frac{-1 \pm i\sqrt{7}}{2}$$

C.F=
$$e^{-\frac{1}{2}z} (A\cos{\frac{\sqrt{7}}{2}z} + B\sin{\frac{\sqrt{7}}{2}z})$$

 \therefore The general solution of (1) is y(x) = C.F

$$= e^{-\frac{1}{2}\log x} \left[A\cos\left(\frac{\sqrt{7}}{2}\log x\right) + B\sin\left(\frac{\sqrt{7}}{2}\log x\right) \right]$$

$$= \frac{1}{\sqrt{x}} \left[A \cos\left(\frac{\sqrt{7}}{2}\log x\right) + B \sin\left(\frac{\sqrt{7}}{2}\log x\right) \right].$$

2. Solve $x^2 y'' - xy' + y = x$. (June 2004) Solution:

The given ODE is
$$x^2y'' - xy' + y = x$$
. i.e $(x^2D^2 - xD + 1)y = x$ ---(1)

To solve (1) use $x = e^z \implies z = \log x$, xD = D'; $x^2D^2 = D'(D'-1)$

:. (1) becomes $(D'(D'-1) - D'+1)y = e^z$, where $D = \frac{d}{dx}$; $D' = \frac{d}{dz}$

$$\Rightarrow (D'^2 - 2D' + 1)y = e^z - (2)$$

The A.E of (2) is $m^2 - 2m + 1 = 0 \Rightarrow (m-1)^2 = 0 \Rightarrow m = 1,1$

 \therefore C.F= $(Az + B)e^{z}$

Now P.I= $\frac{1}{f(D')}e^{z} = \frac{1}{(D'-1)^{2}}e^{z} = \frac{1}{0}e^{z}$ (Ordinary rule fails)

=
$$z \frac{1}{2(D'-1)} e^z$$
 (Ordinary rule fails)

$$= z^2 \frac{1}{2} e^z$$

The general solution of (2) is $y(z) = C.F+P.I = (Az + B)e^{z} + z^{2}\frac{1}{2}e^{z}$. y(x) =

$$(A\log x + B)e^{\log x} + (\log x)^2 \frac{e^{\log x}}{2}$$

= $(A \log x + B)x + (\log x)^2 \frac{x}{2}$ is the required general Solution of (1)

3. Solve $(x^2D^2 - 7xD + 12)y = x^2$. Solution:

The given ODE is $(x^2D^2 - 7xD + 12)y = x^2 - (1)$

To solve (1) use $x = e^z \implies z = \log x$, xD = D'; $x^2D^2 = D'(D'-1)$

: (1) becomes
$$(D'(D'-1) - 7D'+12)y = e^{2z}$$
, where $D = \frac{d}{dx}$; $D' = \frac{d}{dz}$

$$\Rightarrow (D'^2 - 8D' + 12)y = e^{2z} - \dots - (2)$$

The A.E of (2) is
$$m^2 - 8m + 12 = 0 \Rightarrow (m - 6)(m - 2) = 0 \Rightarrow m = 2,6$$

$$\therefore$$
 C.F= $Ae^{2z} + Be^{6z}$

Now P.I= $\frac{1}{f(D')}e^{2z} = \frac{1}{D'^2 - 8D' + 12}e^{2z} = \frac{1}{0}e^{2z}$ (Ordinary rule fails)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: II BATCH-2017-2020

 $= z \frac{1}{2D'-8} e^{2z} = -\frac{z e^{2z}}{4}$

The general solution of (2) is $y(z) = C.F+P.I = Ae^{2z} + Be^{6z} - \frac{ze^{2z}}{4}$. y(x) =

 $Ax^{2} + Bx^{6} - \frac{x^{2} \log x}{4}$ is the required general Solution of (1)

4. Solve $(x^2D^2 + 4xD + 2)y = \log x$ given that when $x = 1, y = 0, \frac{dy}{dx} = 0$.

Solution:

The given ODE is
$$(x^2D^2 + 4xD + 2)y = \log x ---(1)$$

To solve (1) use $x = e^z \Rightarrow z = \log x$, xD = D'; $x^2D^2 = D'(D'-1)$

:. (1) becomes
$$(D'(D'-1) + 4D'+2)y = z$$
 $D = \frac{d}{dx}; D' = \frac{d}{dz}$

 $\Rightarrow (D'^2 + 3D' + 2)y = e^z z - ----(2)$

The A.E of (2) is $m^2 + 3m + 2 = 0 \Rightarrow (m+1)(m+2) = 0 \Rightarrow m = -1, -2$

$$\therefore \text{ C.F= } Ae^{-2} + Be^{-22}$$
Now P.I= $\frac{1}{f(D')}z = \frac{1}{D'^2 + 3D' + 2}z = \frac{1}{2\left(1 + \frac{D'^2 + 3D}{2}\right)}z$

$$= \frac{1}{2}\left[1 + \left(\frac{D'^2 + 3D}{2}\right)\right]^{-1}z = \frac{1}{2}\left[1 - \left(\frac{D'^2 + 3D}{2}\right) + \left(\frac{D'^2 + 3D}{2}\right)^2 - \dots\right]z$$

$$= \frac{1}{2}\left[1 - \frac{3D}{2}\right]z \text{ omitting second and Higher derivatives}$$

$$= \frac{1}{2}\left[z - \frac{3}{2}\right]$$

The general solution of (2) is $y(z) = C.F+P.I = Ae^{-z} + Be^{-2z} + \frac{1}{2}\left[z - \frac{3}{2}\right]$. $y(x) = (z - \frac{1}{2}) = \frac{1}{2} \int \frac{1}{2$

 $Ax^{-1} + Bx^{-2} + \frac{1}{4} [2\log x - 3]$ is the required general solution of (1).

Given that y(1) = 0; y'(1) = 0

$$y(1) = 0 = A + B + \frac{1}{4} [0 - 3] \Longrightarrow A + B = \frac{3}{4}$$
-----(3)

$$y'(x) = -Ax^{-2} - 2Bx^{-3} + \frac{1}{2x}$$

$$y'(1) = -A - 2B + \frac{1}{2} = 0 A + 2B =$$

5. Solve
$$x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = x \log x$$
. (Nov./Dec. 2006)

Solution:

The given ODE is
$$(x^2D^2 + 4xD + 2)y = x \log x ---(1)$$

To solve (1) use $x = e^z \implies z = \log x$, xD = D'; $x^2D^2 = D'(D'-1)$

:. (1) becomes $(D'(D'-1) + 4D'+2)y = ze^z$, where $D = \frac{d}{dx}$; $D' = \frac{d}{dz}$

$$\Rightarrow (D'^2 + 3D' + 2)y = e^z z - (2)$$

The A.E of (2) is $m^2 + 3m + 2 = 0 \Rightarrow (m+1)(m+2) = 0 \Rightarrow m = -1, -2$

$$\therefore$$
 C.F= $Ae^{-z} + Be^{-2z}$

Now P.I=
$$\frac{1}{f(D')}e^{z}z = \frac{1}{D'^{2}+3D'+2}e^{z}z = e^{z}\frac{1}{(D'+1)^{2}+3(D'+1)+2}z$$

= $e^{z}\frac{1}{D'^{2}+5D'+6}z$

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: II BATCH-2017-2020

$$= e^{z} \frac{1}{6} \frac{1}{\left[1 + \left(\frac{D'^{2} + 5D'}{6}\right)\right]} z = e^{z} \frac{1}{6} \left[1 + \left(\frac{D'^{2} + 5D'}{6}\right)\right]^{-1} z$$
$$= e^{z} \frac{1}{6} \left[1 - \left(\frac{D'^{2} + 5D'}{6}\right) + \left(\frac{D'^{2} + 5D'}{6}\right)^{2} - \dots\right] z$$

 $= e^{z} \frac{1}{6} \left[1 - \frac{5D'}{6} \right] z$ omitting second and Hr. order derivatives

 $=e^{z}\frac{1}{6}\left[z-\frac{5}{6}\right]$

The general solution of (2) is $y(z) = C.F+P.I = Ae^{-z} + Be^{-2z} + e^{z} \frac{1}{6} \left[z - \frac{5}{6} \right] \therefore y(x) = Ax^{-1} + Bx^{-2} + \frac{x}{6} \left[\log x - \frac{5}{6} \right]$ is the required general solution of (1).

6. Solve $(x^2D^2 - 2xD - 4)y = 32(\log x)^2$. (April/May 2005) Solution:

The given ODE is
$$(x^2D^2 - 2xD - 4)y = 32(\log x)^2 - --(1)$$

To solve (1) use $x = e^z \Rightarrow z = \log x$, xD = D'; $x^2D^2 = D'(D'-1)$

:. (1) becomes $(D'(D'-1) - 2D'-4)y = 32z^2$, where $D = \frac{d}{dx}$; $D' = \frac{d}{dz}$

 $\Rightarrow (D'^2 - 3D' - 4)y = 32z^2 - ----(2)$

The A.E of (2) is
$$m^2 - 3m - 4 = 0 \Rightarrow (m - 4)(m + 3) = 0 \Rightarrow m = -3, 4$$

$$\therefore$$
 C.F= $Ae^{-3z} + Be^{4z}$

Now P.I=
$$\frac{1}{f(D')}$$
 $32z^2 = \frac{1}{D'^2 - 3D' - 4}$ $32z^2 = \frac{1}{-4\left[1 - \frac{(D'^2 - 3D')}{4}\right]}$ $32z^2$

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: II BATCH-2017-2020

$$= \frac{1}{-4} \left[1 - \left(\frac{D'^2 - 3D'}{4} \right) \right]^{-1} 32z^2$$

$$= \frac{32}{-4} \left[1 + \left(\frac{D'^2 - 3D'}{4} \right) + \left(\frac{D'^2 - 3D'}{4} \right)^2 \dots \right] z^2$$

$$= -8 \left[1 + \left(\frac{D'^2 - 3D'}{4} \right) + \frac{1}{16} (D'^4 + 9D'^2 - 6D'^3) + \dots \right] z^2$$

$$= -8 \left[1 + \left(\frac{D'^2 - 3D'}{4} \right) + \frac{1}{16} (9D'^2) \right] z^2 \text{ Omitting Hr. Derivatives}$$

$$= -8 \left[z^2 + \frac{1}{4} (2) - \frac{3}{4} (2z) + \frac{1}{16} [9(2)] \right]$$

$$= -8 \left[z^2 - \frac{3}{2} z + \frac{13}{8} \right]$$

The general solution of (2) is $y(z) = C.F+P.I = Ae^{-3z} + Be^{4z} + -8\left[z^2 - \frac{3}{2}z + \frac{13}{8}\right]$

$$\therefore y(x) = Ax^{-3} + Bx^4 - 8\left[(\log x)^2 - \frac{3}{2}\log x + \frac{13}{8}\right]$$
 is the required general solution of (1).

7. Solve
$$(x^2D^2 - xD + 1)y = \left(\frac{\log x}{x}\right)^2$$
. (Nov./Dec 2005)

Solution:

The given ODE is
$$(x^2D^2 - xD + 1)y = \left(\frac{\log x}{x}\right)^2 - --(1)$$

To solve (1) use $x = e^z \implies z = \log x$, xD = D'; $x^2D^2 = D'(D'-1)$

:. (1) becomes
$$(D'(D'-1) - D'+1)y = (ze^{-z})^2 = e^{-2z}z^2$$
, where $D = \frac{d}{dx}$; $D' = \frac{d}{dz}$

$$\Rightarrow (D'^2 - 2D' + 1)y = e^{-2z} z^2$$
-----(2)

The A.E of (2) is
$$m^2 - 2m + 1 = 0 \Rightarrow (m - 1)^2 = 0 \Rightarrow m = 1,1$$

 \therefore C.F= $(Az + B)e^z$
Now P.I= $\frac{1}{f(D')}e^{-2z}z^2 = \frac{1}{(D'-1)^2}e^{-2z} = \frac{1}{0}e^z$ (Ordinary rule fails)
 $= z\frac{1}{2(D'-1)}e^z$ (Ordinary rule fails)
 $= z^2\frac{1}{2}e^z$
The general solution of (2) is $y(z) = \text{C.F+P.I} = (Az + B)e^z$

$$\therefore y(x) = (A \log x + B)e^{\log x} + (\log x)^2 \frac{e^{\log x}}{2}$$

$$y(x) = (A \log x + B)x + (\log x)^2 \frac{x}{2}$$
 is the required general Solution of (1)

8. i)Solve $(x^2D^2 - 2xD - 4)y = x^2 + 2\log x$. (AU June 2010) Solution:

The given ODE is
$$(x^2D^2 - 2xD - 4)y = x^2 + 2\log x - --(1)$$

To solve (1) use $x = e^z \implies z = \log x$, xD = D'; $x^2D^2 = D'(D'-1)$

:. (1) becomes $(D'(D'-1) - 2D'-4)y = e^{2z} + 2z$, where

$$\Rightarrow (D'^2 - 3D' - 4)y = 32z^2 - \dots$$
 (2)

 $z^2 \frac{1}{2}e^z$

 $D = \frac{d}{dx}; D' = \frac{d}{dz}$

The A.E of (2) is
$$m^2 - 3m - 4 = 0 \implies (m - 4)(m + 1) = 0 \implies m = -1, 4$$

$$\therefore$$
 C.F= $Ae^{-z} + Be^{4z}$

Now P.I= $\frac{1}{f(D')}(e^{2z}+2z) = \frac{1}{D'^2-3D'-4}e^{2z} + \frac{1}{D'^2-3D'-4}2z$

KARPAGAM A	CADEMY OF HIGI	HER EDUCATION	
CLASS: III B.Sc Physics	COURSENAM	E: MATHEMATICS-II DATCH 2017 2020	
COURSE CODE: 17PHU602	UNII:II	BAICH-201/-2020	
$= P.I_1 + P.I_2$			
$P.I_1 = \frac{1}{D'^2 - 3D' - 4}e^{2z}$			
$=\frac{1}{2^2-3(2)-4}e^{2z}$			
$=-\frac{e^{2z}}{6}$.			
$P.I_2 = \frac{1}{D'^2 - 3D' - 4} 2z$			
	$=\frac{2}{-4}\frac{1}{\left[1-\left(\frac{D'^2-3D'}{4}\right)\right]}$		
	$=\frac{-1}{2} \left[1 - \left(\frac{D'^2 - 3D'}{4} \right) \right]^{-1}$	I Z	
	$= \frac{-1}{2} \left[1 + \left(\frac{D'^2 - 3D'}{4} \right) + \right]$	$-\left(\frac{D'^2-3D'}{4}\right)^2+\dots\bigg]z$	
	$= \frac{-1}{2} \left[1 - \frac{3D'}{4} \right] z $ {Omit	tting Hr. Derivatives}	
$=\frac{-1}{2}\left[z-\frac{3}{4}\right]$			
$P.I = P.I_1 + P.I_2$			
$= -\frac{e^{2z}}{6} - \frac{1}{2} \left[z - \frac{3}{4} \right]$			
The general solution of (2) i	s $y(z) = C.F + P.I = Ae^{-z} +$	$-Be^{4z} - \frac{e^{2z}}{6} - \frac{1}{2}\left[z - \frac{3}{4}\right]$	

$$\therefore y(x) = Ax^{-1} + Bx^4 - \frac{x^2}{6} - \frac{\log x}{2} + \frac{3}{8}$$
 is the required general solution of (1).

ii) Solve $x^2y''+3xy'+5y = x\cos(\log x)+3$. (Nov./Dec. 2006, May / June 2009)

Solution:

The given ODE is
$$(x^2D^2 + 3xD + 5)y = x\cos(\log x) + 3 - --(1)$$

To solve (1) use $x = e^z \implies z = \log x$, xD = D'; $x^2D^2 = D'(D'-1)$

:. (1) becomes
$$(D'(D'-1) + 3D'+5)y = e^z \cos z + 3$$
, where $D = \frac{d}{dx}$; $D' = \frac{d}{dz}$

$$\Rightarrow (D'^2 + 2D' + 5)y = e^z \cos z + 3$$
-----(2)

The A.E of (2) is
$$m^2 + 2m + 5 = 0 \Rightarrow m = \frac{-2 \pm \sqrt{4 - 4(5)}}{2} = -1 \pm 2i$$

 $-e^{0z}$

$$\therefore \text{ C.F} = e^{-z} (A\cos 2z + B\sin 2z)$$

Now P.I= $\frac{1}{f(D')} (e^{z} \cos z + 3) = \frac{1}{f(D')} e^{z} \cos z + 3\frac{1}{f(D')}$
= P.L + P.L

Now
$$P.I_1 = \frac{1}{D'^2 + 2D' + 5} e^z \cos z$$

$$= e^{z} \frac{1}{(D'+1)^{2} + 2(D'+1) + 5} \cos z$$

=
$$e^{z} \frac{1}{D'^{2} + 4D' + 8} \cos z$$
 Replace $D'^{2} by - a^{2}$

$$=e^{z}\frac{1}{-1+4D'+8}\cos z$$

$$= e^z \frac{1}{-1+4D'+8} \cos z$$

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: II BATCH-2017-2020

$$=e^{z} \frac{1}{4D'+7} \cos z = e^{z} \frac{4D'-7}{16D'^{2}-49} \cos z$$
$$= e^{z} \frac{(-4\sin z - 7\cos z)}{-65}$$
$$= e^{z} \frac{(4\sin z + 7\cos z)}{65}$$

The general solution of (2) is

$$y(z) = \text{C.F+P.I} = e^{-z} \left(A\cos 2z + B\sin 2z\right) + e^{z} \frac{(4\sin z + 7\cos z)}{65}$$

$$\therefore y(x) = \frac{1}{x} [A\cos(\log x^2) + B\sin(\log x^2)] + \frac{x(4\sin(\log x) + 7\cos(\log x))}{65}$$

is the required general solution of (1).

9. Solve
$$(x^2D^2 - 3xD + 4)y = x^2 \cos(\log x)$$
. (AU Dec 2010)
Solution:

The given ODE is
$$(x^2D^2 - 3xD + 4)y = x^2 \cos(\log x)$$
. ---(1)

To solve (1) use $x = e^z \implies z = \log x$, xD = D'; $x^2D^2 = D'(D'-1)$

 $\therefore (1) \text{ becomes } (D'(D'-1) - 3D'+4)y = e^{2z} \cos z \text{ ,where } D = \frac{d}{dx}; D' = \frac{d}{dz}$

$$\Rightarrow (D'^2 - 4D' + 4)y = e^{2z} \cos z - ----(2)$$

The A.E of (2) is $m^2 - 4m + 4 = 0 \implies (m-2)^2 = 0$

$$\Rightarrow (m-2)(m-2) = 0 \Rightarrow m = 2, 2$$

$$\therefore \text{ C.F= } e^{2z}(Az+B)$$

Now P.I =
$$\frac{1}{f(D')}(e^{2z}\cos z)$$

= $\left[\frac{1}{D'^2 - 4D' + 4}\right]e^{2z}\cos z$

KARPAGAM ACADEMY OF HIGHER EDUCATIONSc PhysicsCOURSENAME: MATHEMATICS-II

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

BATCH-2017-2020 UNIT: II

$$= e^{2z} \left[\frac{1}{(D'+2)^2 - 4(D'+2) + 4} \right] \cos z$$
$$= e^{2z} \frac{1}{D'^2} \cos z$$
$$= -e^{2z} \cos z$$

The general solution of (2) is $y(z) = C.F+P.I=e^{2z}(Az+B) - e^{2z}\cos z$

 $\therefore y(x) = x^2 [A \log x + B] - x^2 \cos(\log x)$ is the required general solution of (1).

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po),

Coimbatore -641 021

Subject: MATHEMATICS-II

Class : III - B.Sc. Physics

Subject Code: 17PHU602

Semester : VI

Unit II

Part A (20x1=20 Marks) (Question Nos. 1 to 20 Online Examinations)

Possible Questions							
Question	Opt 1	Opt 2	Opt 3	Opt 4	Answer		
If f1,f2fm are m given functions and c1,c2cm are m constants then the expressionis called a linear combination of f1,f2fm.	c1 f1+c2 f2++c m fm	c1 f1*c2 f2**c m fm	c1 f1/c2 f2//cm fm	c1 f1-c2 f2- cm fm	c1 f1+c2 f2++cm fm		
If f1,f2fm are m given functions and c1,c2m are m constants then the expression c1 f1+c2 f2++cm fm is called a of f1,f2fm.	non linear combination	homogeneous equation	non homogeneous equation	linear combination	linear combination		
Any combination of solutions of the homogeneous linear differential equation is also a solution of homogeneous equation.	linear	nonlinear	zero	separable	linear		
Any lienar combination of solutions of the linear differential equation is also a solution of homogeneous equation.	homogeneous	non homogeneous	singular	non singular	homogeneous		
Any lienar combination of solutions of the homogeneous linear differential equation is also a of homogeneous equation.	value	separable	solution	exact	solution		

The n functions f1,f2fn are called fn are called on $a \le x \le b$ if there exists a constants c1,c2cn not all zero, such that c1 f1(x)+c2 f2(x)++cn fn (x)=0 for all x.	linearly dependent	linearly independent	finite	infinite	linearly dependent
The n functions f1,f2fn are called linearly dependent on $a \le x \le b$ if there exists a constants c1,c2such notsuch that c1 f1(x)+c2 f2(x)++cn fn (x)=0 for all x.	all zero	one zero	two zero	n zero	all zero
The n functions f1,f2 fn are called linearly dependent on $a \le x \le b$ if there exists a constants c1,c2 cn not all zero, such that c1 f1(x)+c2 f2(x)+ for fn (x)= for all x.	1	2	3	0	0
The functions f1,f2fn are called fn are called fn are called f1(x)+c2 f2(x)+fn are called f1(x	linearly dependent	linearly independent	finite	infinite	linearly independent
The functions f1,f2fn are called linearly independent on $a \le x \le b$ if the relation c1 f1(x)+c2 f2(x)++cn fn (x)=0 for all x implies that c1=c2==cn=	0	1	2	3	0
The functions f1,f2fn are called linearly independent on $a \le x \le b$ if the relation c1 f1(x)+c2 f2(x)++cn fn (x)for all x implies that c1=c2==cn=0	equal to 0	< 0	> 0	not equal to 0	equal to 0
The nth orderlinear differential equations always possess n solutions that are linealy independent.	homogeneous	non homogeneous	singular	non singular	homogeneous

The nth order homogeneous linear equations always possess n solutions that are linealy independent.	differential	integral	bernoulli	euler	differential
The nth order homogeneous linear differential equations always possess solutions that are linealy independent.	zero	finite	inifinite	n	n
The nth order homogeneous linear differential equations always possess n solutions that are	linearly dependent	linearly independent	finite	infinite	linearly independent
Let f1, f2, fn be nfunctions each of which has an (n-1)st derivative on real interval a $\leq x \leq b$	real	complex	finite	infinite	real
Let f1, f2, fn be n real functions each of which has anderivative on real interval $a \le x \le b$	n	n-1	n+1	n+2	n-1
Let f1, f2, fn be n real functions each of which has an (n-1)st derivative on interval $a \le x \le b$	real	complex	finite	infinite	real
Thesolution of homogeneous equation is called the complementary function of equation.	explicit	implicit	general	particular	general
The general solution of equation is called the complementary function of equation.	homogeneous	non homogeneous	singular	non singular	homogeneous
The general solution of homogeneous equation is called the function of equation.	real	complex	complementary	particular	complementary
Anysolution of linear differential equation involving no arbitrary constants is called particular integralof this equation.	explicit	implicit	general	particular	particular
Any particular solution of linear differential equation involving arbitrary constants is called particular integralof this equation.	finite	infinite	no	one	no

Any particular solution of linear differential equation involving no arbitrary constants is called integralof this equation.	general	particular	finite	infinite	particular
The soluation is called the general solutions of linear differential equations.	ус-ур	yc+yp	ус*ур	yc/yp	yc+yp
The soluation yc+yp is called the solutions of linear differential equations.	explicit	implicit	general	particular	general
In general solution yc+yp where yc isfunction	real	complex	complementary	particular	complementary
In general solution yc+yp where yp isfunction	explicit	implicit	general	particular	particular
KARPAGAM ACADEMY OF HIGHER EDUCATIONSc PhysicsCOURSENAME: MATHEMATICS-II

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

UNIT: III BATCH-2017-2020

UNIT-III

Partial Differential Equations: Formation of Partial Differential Equation by eliminating arbitrary constants and arbitrary functions – Solutions of Partial Differential Equations by direct integration – Solution of standard types of first order partial differential equations.

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc PhysicsCOURSENAME: MATHEMATICS-IICOURSE CODE: 17PHU602UNIT: IIIBATCH-2017-2020

INTRODUCTION:

If z=f(x,y), then z is the dependent variable and x and y are independent variables. The

partial derivatives of z w.r.to x and y are $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial x \partial y}, \frac{\partial^2 z}{\partial y^2}$ etc. we shall employ the following

notations: $\frac{\partial z}{\partial x} = p, \frac{\partial z}{\partial y} = q, \quad \frac{\partial^2 z}{\partial x^2} = r, \frac{\partial^2 z}{\partial x \partial y} = s, \frac{\partial^2 z}{\partial y^2} = t$

A partial differential equation in z is one which contains the variable z and its partial derivatives

3.1 FORMATION OF P.D.E BY ELIMINATING ARBITRARY CONSTANTS

3.1.1 Form a partial differential equation by eliminating the arbitrary constants a & b from z = a(x + y) + b

Solution:

Given z = a(x + y) + b ...(1)

Differentiate (1) partially with respect to x, we get

$$\frac{\partial z}{\partial x} = a$$
$$= a \dots (2)$$

Differentiate (1) partially with respect to y, we get

р

$$\frac{\partial z}{\partial y} = a$$
$$q = a \dots (3)$$

From equation (2) & (3) we get

p = q

CLASS: III B.Sc PhysicsCOURSENAME: MATHEMATICS-IICOURSE CODE: 17PHU602UNIT: IIIBATCH-2017-2020

3.1.2 Form a partial differential equation by eliminating the arbitrary constants a & b from

$$z = ax + by$$

Solution:

Given z = ax + by ...(1)

Differentiate (1) partially with respect to x, we get

$$\frac{\partial z}{\partial x} = a$$
$$n = a$$

Differentiate (1) partially with respect to y, we get

$$\frac{\partial z}{\partial y} = k$$

$$q = b$$

Substituting in equation (1) we get

z = px + qy

3.1.3 Find the PDE of all planes having equal intercepts on the x and y axis.

Solution:

Intercept form of the plane equation is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$

Given a = b [since equal intercepts on the x and y- axis]

$$\frac{x}{a} + \frac{y}{a} + \frac{z}{c} = 1 \qquad \dots (1)$$

Here a and c are the two arbitrary constants.

Differentiate (1) partially with respect to x,

CLASS: III B.Sc Physics

 COURSE CODE: 17PHU602

 WIT: III
 BATCH-2017-2020

 we get,
$$\frac{1}{a} + 0 + \frac{1}{c} \frac{\partial z}{\partial x} = 0$$
 $\frac{1}{a} + \frac{1}{c} \frac{\partial z}{\partial x} = 0$
 $\frac{1}{a} + \frac{1}{c} \frac{\partial z}{\partial x} = 0$
 $\frac{1}{a} + \frac{1}{c} \frac{\partial z}{\partial x} = 0$

 Differentiate (1) partially with respect to y, we get

 $0 + \frac{1}{a} + \frac{1}{c} \frac{\partial z}{\partial y} = 0$
 $\frac{1}{a} + \frac{1}{c} q = 0$
 $\frac{1}{a} = -\frac{1}{c} q \dots (3)$

From equation (2) & (3) we get

$$-\frac{1}{c}p = -\frac{1}{c}q$$
$$p = q$$

3.1.4 Form partial differential equation by eliminating the arbitrary constants a and b from the equation $(x - a)^2 + (y - b)^2 + z^2 = 1$

Solution:

Given
$$(x - a)^2 + (y - b)^2 + z^2 = 1$$
 ...(1)

Differentiate (1) partially with respect to x, we get

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: III BATCH-2017-2020

$$2(x-a) + 0 + 2z\frac{\partial z}{\partial x} = 0$$
$$(x-a) + zp = 0 \qquad \dots (2)$$

Differentiate (1) partially with respect to y, we get

 $0 + 2(y - b) + 2z \frac{\partial z}{\partial y} = 0$ $(y - b) + zq = 0 \qquad \dots (3)$

Substituting (2) & (3) in equation (1) we get

$$(-zp)^{2} + (-zq)^{2} + z^{2} = 1$$

 $z^{2}(p^{2} + q^{2} + 1) = 1$

3.1.5 Form partial differential equation by eliminating the arbitrary constants a and b from the equation $(x - a)^2 + (y - b)^2 = z^2 cot^2 \alpha$

Solution:

Given
$$(x - a)^2 + (y - b)^2 = z^2 cot^2 \alpha$$
 ...(1)

Differentiate (1) partially with respect to x,

we get, $2(x-a) + 0 = 2z \frac{\partial z}{\partial x} cot^2 \alpha$

$$(x-a) = zpcot^2 \alpha \dots (2)$$

Differentiate (1) partially with respect to y, we get

$$0 + 2(y - b) = 2z \frac{\partial z}{\partial y} \cot^2 \alpha$$
$$(y - b) = zq \cot^2 \alpha \dots (3)$$

Substituting (2) & (3) in equation (1) we get

CLASS: III B.Sc Physics COURSE CODE: 17PHU602 COURSENAME: MATHEMATICS-IIUNIT: IIIBATCH-2017-2020

$$(zpcot^{2}\alpha)^{2} + (zqcot^{2}\alpha)^{2} = z^{2}cot^{2}\alpha$$
$$z^{2}cot^{4}\alpha(p^{2} + q^{2}) = z^{2}cot^{2}\alpha$$
$$p^{2} + q^{2} = \frac{1}{cot^{2}\alpha}$$
$$p^{2} + q^{2} = tan^{2}\alpha$$

3.1.6 Eliminate the arbitrary constants a & b from $z = (x^2 + a)(y^2 + b)$

Solution:

Given $z = (x^2 + a)(y^2 + b)$...(1)

Differentiate (1) partially with respect to x, we get

$$p = \frac{\partial z}{\partial x} = 2x(y^2 + b)$$
$$p = 2x(y^2 + b)$$
$$\frac{p}{2x} = y^2 + b \dots (2)$$

Differentiate (1) partially with respect to y, we get

$$q = \frac{\partial z}{\partial y} = 2y(x^2 + a)$$
$$q = 2y(x^2 + a)$$
$$\frac{q}{2y} = x^2 + a \dots (3)$$

Substituting (2) & (3) in equation (1) we get

$$z = \left(\frac{q}{2y}\right) \left(\frac{p}{2x}\right)$$

4xyz = pq

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc PhysicsCOURSENAME: MATHEMATICS-IICOURSE CODE: 17PHU602UNIT: IIIBATCH-2017-2020

3.1.7 Form partial differential equation by eliminating the arbitrary constants a and b from the equation $z = ax^n + by^n$

Solution:

 $Given z = ax^n + by^n \qquad \dots (1)$

Differentiate (1) partially with respect to x, we get

$$p = \frac{\partial z}{\partial x} = anx^{n-1}$$
$$\frac{px}{n} = ax^n \dots (2)$$

Differentiate (1) partially with respect to y, we get

$$q = \frac{\partial z}{\partial y} = bny^{n-2}$$

$$\frac{qy}{n} = by^n \dots (3)$$

Substituting (2) & (3) in equation (1) we get

$$z = \frac{px}{n} + \frac{qy}{n}$$

$$zn = px + qy$$

3.1.8 Form a partial differential equation by eliminating a and b from the expression $(x-a)^2 + (y-b)^2 + z^2 = c^2$

Solution:

Given $(x - a)^2 + (y - b)^2 + z^2 = c^2 \dots (1)$

Here a and b are two arbitrary constants

Differentiate (1) with respect to x, we get

CLASS: III B.Sc PhysicsCOURSENAME: MATHEMATICS-IICOURSE CODE: 17PHU602UNIT: IIIBATCH-2017-2020

 $2(x-a) + 0 + 2z\frac{\partial z}{\partial x} = 0$

(x-a) + zp = 0

 $(x-a) = -zp \dots (2)$

Differentiate (1) with respect to y, we get

$$0 + 2(y - b) + 2z\frac{\partial z}{\partial y} = 0$$

$$(y-b) + zq = 0$$

 $(y-b) = -zq \dots (3)$

Eliminating a and b from (1), (2) and (3) we get

$$(-zp)^2 + (-zq)^2 + z^2 = c^2$$

$$z^2p^2 + z^2q^2 + z^2 = c^2$$

 $z^2(p^2 + q^2 + 1) = c^2$

3.2.1 Form the partial differential equation by eliminating the arbitrary function $z = f\left(\frac{x}{y}\right)$

Solution:

Given $z = f\left(\frac{x}{y}\right)$...(1)

Differentiate (1) partially with respect to x, we get

$$p = \frac{\partial z}{\partial x} = f'\left(\frac{x}{y}\right)\left(\frac{1}{y}\right)\dots(2)$$

Differentiate (1) partially with respect to y, we get

CLASS: III B.Sc Physics COURSE CODE: 17PHU602_____

COURSENAME: MATHEMATICS-IIUNIT: IIIBATCH-2017-2020

$$q = \frac{\partial z}{\partial y} = f'\left(\frac{x}{y}\right)\left(\frac{-x}{y^2}\right)\dots(3)$$
$$\frac{(2)}{(3)} \Rightarrow \frac{p}{q} = \frac{f'\left(\frac{x}{y}\right)\left(\frac{1}{y}\right)}{f'\left(\frac{x}{y}\right)\left(\frac{-x}{y^2}\right)}$$
$$\frac{p}{q} = -\frac{y}{x}$$
$$px = -qy$$
$$px + qy = 0$$

3.2.2 Form the partial differential equation by eliminating the arbitrary function $z = xy + f(x^2 + y^2)$

Solution:

Given $z = xy + f(x^2 + y^2)$...(1)

Differentiate (1) partially with respect to x, we get

$$p = \frac{\partial z}{\partial x} = y + f'(x^2 + y^2)(2x)$$
$$p - y = f'(x^2 + y^2)(2x) \dots (2)$$

Differentiate (1) partially with respect to y, we get

$$q = \frac{\partial z}{\partial y} = x + f'(x^2 + y^2)(2y)$$

$$q - x = f'(x^2 + y^2)(2y) \dots (3)$$

$$\frac{(2)}{(3)} \Rightarrow \frac{p - y}{q - x} = \frac{f'(x^2 + y^2)(2x)}{f'(x^2 + y^2)(2y)}$$

$$\frac{p - y}{q - x} = \frac{x}{y}$$

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: III B.Sc Physics

 COURSENAME: MATHEMA

COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-IIUNIT: IIIBATCH-2017-2020

(p-y)y = (q-x)x

 $py - qx = y^2 - x^2$

3.2.3 Form the PDE by eliminating the arbitrary function from $z = f(x^2 + y^2)$ Solution:

Given $z = f(x^2 + y^2)$...(1)

Differentiate (1) partially with respect to x, we get

$$p = \frac{\partial z}{\partial x} = f'(x^2 + y^2)(2x)$$
$$p = f'(x^2 + y^2)(2x) \dots (2)$$

Differentiate (1) partially with respect to y, we get

$$q = \frac{\partial z}{\partial y} = f'(x^2 + y^2)(2y)$$
$$q = f'(x^2 + y^2)(2y) \dots (3)$$
$$\frac{(2)}{(3)} \Rightarrow \frac{p}{q} = \frac{f'(x^2 + y^2)(2x)}{f'(x^2 + y^2)(2y)}$$
$$\frac{p}{q} = \frac{x}{y}$$
$$py = qx$$

3.2.4 Form the PDE from z = f(2x - 6y)

Solution:

Given z = f(2x - 6y) ...(1)

Differentiate (1) partially with respect to x, we get,

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: III BATCH-2017-2020

$$p = \frac{\partial z}{\partial x} = f'(2x - 6y)(2)$$
$$p = 2f'(2x - 6y) \dots (2)$$

Differentiate (1) partially with respect to y, we get,

$$q = \frac{\partial z}{\partial y} = f'(2x - 6y)(-6)$$

$$q = -6f'(2x - 6y) \qquad \dots (3)$$

$$\frac{(2)}{(3)} \Rightarrow \frac{p}{q} = \frac{-f'(2x-6y)}{-6f'(2x-6y)}$$

$$\frac{p}{q} = \frac{-1}{3}$$

$$3p = -q$$

$$3p + q = 0$$

3.2.5 Form the PDE from z = x + y + f(xy)

Solution: Given z = x + y + f(xy) ...(1)

Differentiate (1) partially with respect to x, we get

$$p = \frac{\partial z}{\partial x} = 1 + f'(xy)(y)$$

$$p-1 = yf'(xy) \dots (2)$$

Differentiate (1) partially with respect to y, we get

$$q = \frac{\partial z}{\partial y} = 1 + f'(xy)(x)$$

KARPAGAM ACADEMY OF HIGHER EDUCATION					
CLASS: III B.Sc Physics		OURSENAME: MATHEMATICS-II			
COURSE CODE: 1/PHU602	UN11:111	BAICH-2017-2020			
	$q-1=xf'(xy)\dots$	(3)			
	$\frac{(2)}{(3)} \Rightarrow \frac{p-1}{q-1} = \frac{yf'}{xf'}$	$\frac{(xy)}{(xy)}$			
	$\frac{p-1}{q-1} = \frac{y}{x}$				
	x(p-1) = y(q -	1)			
	xp - x = yq - 2	V			
xp - yq = x - y					

3.2.6 Form the PDE by eliminating the functions from z = f(x+t) + g(x-t)

Solution:

Given z = f(x + t) + g(x - t) ...(1)

Differentiate (1) partially with respect to x, we get

$$\frac{\partial z}{\partial x} = f'(x+t) + g'(x-t) \dots (2)$$
$$\frac{\partial^2 z}{\partial x^2} = f''(x+t) + g''(x-t) \dots (3)$$
$$\frac{\partial z}{\partial t} = f'(x+t) - g'(x-t) \dots (4)$$
$$\frac{\partial^2 z}{\partial t^2} = f''(x+t) + g''(x-t) \dots (5)$$

From equation (3) & (4) we get

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial t^2}$$

3.2.7 Form the partial differential equation by eliminating the arbitrary function

KARPAGAM ACADEMY OF HIGHER EDUCATION **CLASS: III B.Sc Physics COURSENAME: MATHEMATICS-II COURSE CODE: 17PHU602 UNIT: III BATCH-2017-2020** from $\varphi\left(z^2 - xy, \frac{x}{z}\right) = 0$ Solution: Given $\varphi\left(z^2 - xy, \frac{x}{z}\right) = 0$ Let $u = z^2 - xy, v = \frac{x}{2}$ $\frac{\partial u}{\partial x} = 2z\frac{\partial z}{\partial x} - y = 2zp - y$ $\frac{\partial u}{\partial y} = 2z\frac{\partial z}{\partial y} - x = 2zq - x$ $\frac{\partial v}{\partial x} = \frac{z(1) - x\frac{\partial z}{\partial x}}{z^2} = \frac{z - px}{z^2}$ $\frac{\partial v}{\partial y} = -\frac{x}{z^2} \frac{\partial z}{\partial x} = \frac{-xq}{z^2}$ $\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} \end{vmatrix} = 0$ $\begin{vmatrix} 2zp - y & \frac{z - px}{z^2} \\ 2zq - x & \frac{-xq}{z^2} \end{vmatrix} = 0$ $(2zp-y)\left(\frac{-xq}{z^2}\right) - (2zq-x)\left(\frac{z-px}{z^2}\right) = 0$ $-\frac{2xpq}{z} + \frac{xyq}{z^2} - (2zq - x)\left(\frac{z - px}{z^2}\right) = 0$ $x^2p - (xv - 2z^2)q = xz$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc PhysicsCOURSENAME: MATHEMATICS-IICOURSE CODE: 17PHU602UNIT: IIIBATCH-2017-2020

3.2.8 Form the P.D.E by eliminating f and φ from $z = xf\left(\frac{y}{x}\right) + y\varphi(x)$ Solution:

Given
$$z = xf\left(\frac{y}{x}\right) + y\varphi(x)$$
 ...(1)

$$p = \frac{\partial z}{\partial x} = xf'\left(\frac{y}{x}\right)\left(-\frac{y}{x^2}\right) + f\left(\frac{y}{x}\right) + y\varphi'(x) \dots (2)$$

$$q = \frac{\partial z}{\partial y} = xf'\left(\frac{y}{x}\right)\left(\frac{1}{x}\right) + \varphi(x) = f'\left(\frac{y}{x}\right) + \varphi(x) \dots (3)$$

$$s = \frac{\partial^2 z}{\partial x \partial y} = f''\left(\frac{y}{x}\right)\left(-\frac{y}{x^2}\right) + \varphi'(x) \dots (4)$$

$$t = \frac{\partial^2 z}{\partial y^2} = f''\left(\frac{y}{x}\right)\left(\frac{1}{x}\right) \dots (5)$$

(2)x + (3)yimplies

$$px + qy = -yf'\left(\frac{y}{x}\right) + xf\left(\frac{y}{x}\right) + xy\varphi'(x) + yf'\left(\frac{y}{x}\right) + y\varphi(x)$$
$$= xy\varphi'(x) + xf\left(\frac{y}{x}\right) + y\varphi(x)$$
$$px + qy = xy\varphi'(x) + z \dots (6)$$

Use (5) in (4), we get

$$s = -\frac{y}{x}t + \varphi'(x)$$
$$\frac{xs + yt}{x} = \varphi'(x)$$

Use in (6) we get

$$px + qy = xy\left[\frac{xs + yt}{x}\right] + z$$
$$px + qy = xys + y^{2}t + z$$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602 COURSENAME: MATHEMATICS-II UNIT: III BATCH-2017-2020

 $z = px + qy - xys - y^2t$

3.2.9 Form the partial differential equation by eliminating the arbitrary function f and g in $z = x^2 f(y) + y^2 g(x)$

Solution:

Given
$$z = x^2 f(y) + y^2 g(x) \dots (1)$$

$$p = \frac{\partial z}{\partial x} = 2xf(y) + y^2 g'(x) \dots (2)$$

$$q = \frac{\partial z}{\partial y} = x^2 f'(y) + 2yg(x) \dots (3)$$

$$r = \frac{\partial^2 z}{\partial x^2} = 2f(y) + y^2 g''(x) \dots (4)$$

$$s = \frac{\partial^2 z}{\partial x \partial y} = 2xf'(y) + 2yg'(x) \dots (5)$$

$$t = \frac{\partial^2 z}{\partial y^2} = x^2 f''(y) + 2g(x) \dots (6)$$

$$(2)x + (3)yimplies$$

$$px + qy = 2x^2 f(y) + xy^2 g'(x) + yx^2 f'(y) + 2y^2 g(x)$$

$$px + qy = 2[x^2 f(y) + y^2 g(x)] + xy[yg'(x) + xf'(y)]$$

$$px + qy = 2z + xy(\frac{s}{2})$$

$$2px + 2qy = 4z + xys$$

$$4z = 2px + 2qy - xys$$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc PhysicsCOURSENAME: MATHEMATICS-IICOURSE CODE: 17PHU602UNIT: IIIBATCH-2017-2020

3.2.10 Form a partial differential equation by eliminating arbitrary functions from z = xf(2x + y) + g(2x + y)

Solution: Given z = xf(2x + y) + g(2x + y)

$$p = \frac{\partial z}{\partial x} = x[f'(2x + y)2] + f(2x + y)(1) + g'(2x + y)2$$
$$r = \frac{\partial^2 z}{\partial x^2} = 2x[f''(2x + y)2] + f'(2x + y)2$$
$$+ f'(2x + y)2 + 2g''(2x + y)2]$$

$$= 4xf''(2x + y) + 4f'(2x + y) + 4g''(2x + y)$$

$$r = \frac{\partial^2 z}{\partial x^2} = 4[xf''(2x + y) + g''(2x + y)] + 4f'(2x + y) \dots (1)$$
$$q = \frac{\partial z}{\partial y} = xf'(2x + y) + g'(2x + y)$$
$$t = \frac{\partial^2 z}{\partial y^2} = xf''(2x + y) + g''(2x + y) \dots (2)$$
$$s = \frac{\partial^2 z}{\partial x \partial y} = 2xf''(2x + y) + f'(2x + y) + 2g''(2x + y) \dots (3)$$

Equation (1) implies

$$\frac{\partial^2 z}{\partial x^2} = 4 \frac{\partial^2 z}{\partial y^2} + 4f'(2x+y)\dots(4)$$

Equation (3) implies

$$\frac{\partial^2 z}{\partial x \partial y} = 2 \frac{\partial^2 z}{\partial y^2} + f'(2x + y) \dots (5)$$

(4) - 2(5) implies

CLASS: III B.Sc Physics COURSE CODE: 17PHU602 COURSENAME: MATHEMATICS-II UNIT: III BATCH-2017-2020

$$\frac{\partial^2 z}{\partial x^2} - 4\frac{\partial^2 z}{\partial x \partial y} = 4\frac{\partial^2 z}{\partial y^2} + 4f'(2x+y) - 8\frac{\partial^2 z}{\partial y^2} - 4f'(2x+y)$$

$$\frac{\partial^2 z}{\partial x^2} - 4 \frac{\partial^2 z}{\partial x \partial y} = -4 \frac{\partial^2 z}{\partial y^2}$$

 $\frac{\partial^2 z}{\partial x^2} - 4\frac{\partial^2 z}{\partial x \partial y} + 4\frac{\partial^2 z}{\partial y^2} = 0$

SOLUTION OF STANDARD TYPES OF FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

3.4.1 Complete integral:

A solution containing as many arbitrary constants as there are independent variables is called complete integral.

3.4.2 Singular integral:

The equation of the envelop of the surface represented by the complete integral of given PDE is called its singular integral.

Thus if f(x,y,z,a,b)=0 is the complete integral of given PDE then the singular integral is obtained by eliminating a,b from f(x,y,z,a,b)=0

$$\frac{\partial f}{\partial a} = 0$$
$$\frac{\partial f}{\partial b} = 0$$

3.4.3 General solution:

If f(x,y,z,a,b)=0 is the complete integral of PDE g(x,y,z,p,q)=0 then put $b=\phi(a)$ and eliminate 'a' from $f(x,y,z,a, \phi(a))=0$ and $\frac{\partial f}{\partial a}=0$.

CLASS: III B.Sc Physics COURSE CODE: 17PHU602 COURSENAME: MATHEMATICS-IIUNIT: IIIBATCH-2017-2020

SOLUTION OF STANDARD TYPES OF FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

1. Solve
$$\frac{\partial^2 z}{\partial x \partial y} = 0$$

Solution:

$$\operatorname{Given}_{\frac{\partial^2 z}{\partial x \partial y}} = 0$$

$$\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = 0$$

Integrating with respect to x we get

$$\frac{\partial z}{\partial y} = f(y)$$

Integrating with respect to y we get

$$z = x f(y) + g(x)$$
$$z = +x f(y) + g(x)$$

Where f(y) and g(y) are arbitrary.

2. Solve $\frac{\partial^2 z}{\partial x^2} = \sin y$

Solution:

Given

$$\frac{\partial^2 z}{\partial x^2} = \sin y$$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602 COURSENAME: MATHEMATICS-II UNIT: III BATCH-2017-2020

$$\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = \sin y$$

Integrating with respect to x we get

$$\frac{\partial z}{\partial x} = x \sin y + f(y)$$

Integrating with respect to x we get

$$z = \sin y \frac{x^2}{2} + x f(y) + g(y)$$
$$z = \frac{x^2}{2} \sin y + x f(y) + g(y)$$

Where f(y) and g(y) are arbitrary.

TYPE I

3.4.1 PROBLEM BASED ON FIRST ORDER P.D.E F[p,q]=0

1. Find the complete solution of the partial differential equation $\sqrt{p} + \sqrt{q} = 1$

Solution:

Given $\sqrt{p} + \sqrt{q} = 1$...(1)

This equation is of the form f(p,q)=0

Hence the trial solution is z = ax + by + c

To get the complete integral we have to eliminate any one of the arbitrary constants.

Since in a complete integral

Number of arbitrary constant = number of independent variable

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc Physics COURSENAME: MATHEMA

COURSENAME: MATHEMATICS-II UNIT: III BATCH-2017-2020

z = ax + by + c

$$p = \frac{\partial z}{\partial x} = a$$
$$q = \frac{\partial z}{\partial y} = b$$

Substituting in equation (1) we get

COURSE CODE: 17PHU602

 $\sqrt{a} + \sqrt{b} = 1$ $\sqrt{b} = 1 - \sqrt{a}$

$$b = (1 - \sqrt{a})^2$$

Hence the complete solution is

$$z = ax + (1 - \sqrt{a})^2 y + c$$

2. Find the complete integral of p - q = 0

Solution:

Given
$$p - q = 0$$

This equation is of the form f(p,q)=0

Hence the trial solution is z = ax + by + c

To get the complete integral we have to eliminate any one of the arbitrary constants.

...(1)

Since in a complete integral

Number of arbitrary constant = number of independent variable

$$z = ax + by + c$$

KARPAGAM AG	CADEMY OF H	IGHER EDUCATION	
CLASS: III B.Sc Physics	(COURSENAME: MATHEMATICS-II	
COURSE CODE: 17PHU602	UNIT: III	BATCH-2017-2020	
$p = \frac{\partial z}{\partial x} = 1$	а		
$q = \frac{\partial z}{\partial y} =$	b		
Substituting in equation (1)	we get		
a - b =	: 0		
a = b			
Hence the complete solution is			
7	$-ax \pm ay \pm c$		

3. Find the complete solution of the partial differential equation $p^2 + q^2 - 4pq = 0$ Solution:

Given $p^2 + q^2 = 4pq$

This equation is of the form f(p,q)=0

Hence the trial solution is z = ax + by + c

To get the complete integral we have to eliminate any one of the arbitrary constants.

Since in a complete integral

Number of arbitrary constant = number of independent variable

$$z = ax + by + c$$

$$p = \frac{\partial z}{\partial x} = a$$
$$q = \frac{\partial z}{\partial y} = b$$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: III BATCH-2017-2020

Substituting in equation (1) we get

$$a^{2} + b^{2} - 4ab = 0$$

$$b = \frac{4a \pm \sqrt{16a^{2} - 4a^{2}}}{2}$$

$$= \frac{4a \pm \sqrt{12a^{2}}}{2}$$

$$= \frac{4a \pm 2\sqrt{3}a}{2}$$

$$= 2a \pm \sqrt{3}a$$

$$b = a(2 \pm \sqrt{3})$$

Hence the complete solution is

$$z = ax + a(2 \pm \sqrt{3}) y + c$$

TYPE II

3.4.2 PROBLEM BASED ON F(x,p,q)=0

1. Find the complete integral of p = 2qx

Solution:

Given p = 2qx

This equation is of the form f(x, p, q) = 0

Let q = a

Then p = 2ax

We know that

 $dz = p \, dx + q \, dy$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: III BATCH-2017-2020

dy

dz = 2ax dx + a dy

Integrating on both sides

$$\int dz = \int 2ax \, dx + \int a$$
$$z = 2a\left(\frac{x^2}{2}\right) + ay + c$$

 $z = ax^2 + ay + c$

This is the required complete integral.

2. Solve $p(1-q^2) = q(1-z)$

Solution:

Given
$$p(1-q^2) = q(1-z)$$
 ...(1)

The equation is of the form f(z, p, q) = 0

Let u = x + ay

$$\frac{\partial u}{\partial x} = 1, \qquad \qquad \frac{\partial u}{\partial y} = a$$

$$p = \frac{dz}{du}$$
, $q = a \frac{dz}{du}$

Substituting in equation (1) we get

$$\frac{dz}{du} \left[1 - a^2 \left(\frac{dz}{du} \right)^2 \right] = a \frac{dz}{du} [1 - z]$$
$$1 - a^2 \left(\frac{dz}{du} \right)^2 = a(1 - z)$$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc Physics
COURSE CODE: 17PHU602COURSE CODE: 17PHU602UNIT: IIIBATCH-2017-20201 - $a(1-z) = a^2 \left(\frac{dz}{du}\right)^2$ $1 - a(1-z) = a^2 \left(\frac{dz}{du}\right)^2$ $1 - a + az = a^2 \left(\frac{dz}{du}\right)^2$ $\left(\frac{dz}{du}\right)^2 = \frac{1}{a^2}[1-a+az]$ $\left(\frac{dz}{du}\right)^2 = \frac{1}{a^2}[1-a+az]$ $\left(\frac{dz}{du} = \frac{1}{a}\sqrt{1-a+az}\right)$ $\left(\frac{dz}{du} = \frac{1}{a}\sqrt{1-a+az}\right)$ $\left(\frac{dz}{\sqrt{1-a+az}} = u+c\right)$ $4(1-a+az) = (u+c)^2$ $4(1-a+az) = (x+ay+c)^2$

This is the complete integral of the given equation.

3. Solve p(1+q) = qz

Solution: Given p(1 + q) = qz

The equation is of the form f(z, p, q) = 0

Let u = x + ay

$$\frac{\partial u}{\partial x} = 1, \qquad \qquad \frac{\partial u}{\partial y} = a$$

$$p = \frac{dz}{du}, \qquad q = a \frac{dz}{du}$$

Substituting in equation (1) we get

CLASS: III B.Sc Physics	С	OURSENAME: MATHEMATICS-II
COURSE CODE: 17PHU602	UNIT: III	BATCH-2017-2020
$\frac{dz}{du}\Big(1+a$	$\left(\frac{dz}{du}\right) = a\frac{dz}{du}z$	
1+0	$a\frac{dz}{du} = az$	
$a \frac{dz}{du}$	$\frac{1}{2} = az - 1$	
	$\frac{dz}{du} = \frac{az - 1}{a}$	
	$\frac{du}{dz} = \frac{a}{az - 1}$	
du	$u = \frac{a}{az - 1} dz$	
Integration on both sides $\int du = \int du = \int du$	$\frac{a}{dz}$ dz	

 $u = \log(az - 1) + \log c$ $x + ay = \log c(az - 1)$

This is the complete integral of the given equation.

4. Solve $z^2 = 1 + p^2 + q^2$

Solution:

Given $z^2 = 1 + p^2 + q^2$ ------(1)

The equation is of the form f(z, p, q) = 0

Let u = x + ay

KARPAGAM ACADEMY OF HIGHER EDUCATION				
CLASS: III B.Sc Physics	CO	URSENAME: MATHEMATICS-II		
COURSE CODE: 17PHU602	UNIT: III	BATCH-2017-2020		
$\frac{\partial u}{\partial x} = 1,$	$\frac{\partial u}{\partial y} = a$			
	$p = \frac{dz}{du}, \qquad q = a \frac{dz}{dt}$	dz du		
Substituting in equation (1) we get	t			
	$z^2 = 1 + \left[\frac{dz}{du}\right]^2 + a^2 \left[\frac{dz}{du}\right]^2$	$\left[\frac{dz}{du}\right]^2$		
$z^2 - 1 = \left[\frac{dz}{du}\right]$	$\left[\frac{z}{u}\right]^2 \left[1+a^2\right]$			
	$\left[\frac{dz}{du}\right]^2 = \frac{z^2 - 1}{1 + a^2}$			
Integration on both sides	$\frac{dz}{du} = \sqrt{\frac{z^2 - 1}{1 + a^2}}$ $\frac{dz}{\sqrt{z^2 - 1}} = \frac{du}{\sqrt{1 + a^2}}$			
	$\int \frac{dz}{\sqrt{z^2 - 1}} = \int \frac{du}{\sqrt{1 + u^2}}$	$\overline{a^2}$		
$\cosh^{-1}z = \frac{1}{\sqrt{1+1}}$	$\frac{1}{1-a^2}u+b$			
$\cosh^{-1}z = \frac{1}{\sqrt{1+z}}$	$\frac{1}{a^2}(x+ay)+b$			
This is the com	plete integral			

CLASS: III B.Sc Physics COURSE CODE: 17PHU602 COURSENAME: MATHEMATICS-II UNIT: III BATCH-2017-2020

TYPE III

3.4.3 PROBLEM BASED ON f(x,p,)=g(y,q)

1. Find the complete integral of pq = xy

Solution:

Given pq = xy

$\frac{p}{x} = \frac{y}{q}$

This equation is of the form f(x, p) = g(y, q)

$$\frac{p}{x} = \frac{y}{q} = a$$

$$\therefore p = ax and q = \frac{y}{a}$$

We know that

dz = pdx + qdy

 $dz = ax \, dx + \frac{y}{a} dy$

Integrating on both sides

$$z = \frac{ax^2}{2} + \frac{y^2}{2a} + c$$

$$2az = a^2x^2 + y^2 + b$$

This is the required complete integral.

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc PhysicsCOURSENAME: MATHEMATICS-IICOURSE CODE: 17PHU602UNIT: IIIBATCH-2017-2020

2. Find the complete solution of the PDE $p^2 + q^2 = x + y$

Solution:

Given $p^2 + q^2 = x + y$

 $p^2 - x = -q^2 + y$

This equation is of the form f(x, p) = g(y, q) $p^2 - x = -q^2 + y = a$ $p^2 - x = a$ $-q^2 + y = a$

а

$$p^2 = x + a \qquad \qquad q^2 = y -$$

$$p = \sqrt{x + a} \qquad \qquad q = \sqrt{y - a}$$

We know that

dz = pdx + qdy

$$dz = (x+a)^{\frac{1}{2}}dx + (y-a)^{\frac{1}{2}}dy$$

Integrating on both sides

$$z = \frac{(x+a)^{3/2}}{3/2} + \frac{(y-a)^{3/2}}{3/2} + c$$
$$z = \frac{2}{3}(x+a)^{3/2} + \frac{2}{3}(y-a)^{3/2} + c$$

This is the required complete integral.

3. Find the solution of px - qy = x

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc Physics **COURSENAME: MATHEMATICS-II** COURSE CODE: 17PHU602 UNIT: III **BATCH-2017-2020 Solution:** Given px - qy = xpx - x = qyx(p-1) = qy $p-1=\frac{a}{r}$ qy = a $p = \frac{a}{x} + 1$ $q = \frac{a}{v}$ We know that dz = pdx + qdy $dz = \left(\frac{a}{x} + 1\right) \, dx + \left(\frac{a}{y}\right) dy$ Integrating on both sides $z = a \log x + x + a \log y + b$

 $z = a \log xy + x + b$

This is the required complete integral.

4. Solve $\sqrt{p} + \sqrt{q} = x + y$

Solution:

Given $\sqrt{p} + \sqrt{q} = x + y$

$$\sqrt{p} - x = y - \sqrt{q}$$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: III BATCH-2017-2020

Let
$$\sqrt{p} - x = y - \sqrt{q} = a$$

 $\sqrt{p} - x = a$ and $y - \sqrt{q} = a$
 $\sqrt{p} = x + a$ and $-\sqrt{q} = a - y$
 $p = (x + a)^2$ and $q = (y - a)^2$

We know that dz = p dx + q dy

$$dz = (x+a)^2 dx + (y-a)^2 dy$$

Integrating on both sides

$$\int dz = \int (x+a)^2 dx + \int (y-a)^2 dy$$

$$z = \left(\frac{(x+a)^3}{3}\right) + \frac{(y-a)^3}{3} + c$$

This is the required complete integral.

TYPE IV

3.4.4 CLAIRAUT'S FORM z=px + qy + f (p,q)

1. Find the complete solution of the partial differential equation $z = px + qy + p^2 + q^2$

Solution:

Given
$$z = px + qy + p^2 + q^2$$

This is of form
$$z = px + qy + f(p,q)$$

Hence the complete integral is $z = ax + by + a^2 + b^2$

Where a and b are arbitrary constants

2. Find the complete solution of the partial differential equation $z = px + qy + (pq)^{3/2}$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602 COURSENAME: MATHEMATICS-II UNIT: III BATCH-2017-2020

(or)

Find the complete solution of the partial differential equation $\frac{z}{pq} = \frac{x}{p} + \frac{y}{q} + \sqrt{pq}$

Solution:

Given $\frac{z}{pq} = \frac{x}{p} + \frac{y}{q} + \sqrt{pq}$

$$\frac{z}{pq} = \frac{px + qy + pq\sqrt{pq}}{pq}$$

$$z = px + qy + (pq)^{3/2}$$

This is of form z = px + qy + f(p,q)

Hence the complete integral is $z = ax + by + (ab)^{3/2}$

Where a and b are arbitrary constants

3. Find the singular solution of the partial differential equation $z = px + qy + p^2 - q^2$ Solution:

Given $z = px + qy + p^2 - q^2$

This is of form z = px + qy + f(p,q)

Hence the complete integral is $z = ax + by + a^2 - b^2$...(1)

Where a and b are arbitrary constants

Differentiating (1) p.w.r.to a we get

$$0 = x + 2a$$

$$a = -\frac{x}{2}$$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc PhysicsCOURSENAME: MATHEMATICS-IICOURSE CODE: 17PHU602UNIT: IIIBATCH-2017-2020

Differentiating (1) p.w.r.to b we get

$$0 = y - 2b$$

 $b = \frac{y}{2}$

Substituting a and b value in equation (1) we get

This is the required singular solution.

4. Find the singular solution of the partial differential equation z = px + qy + 3pqSolution:

Given z = px + qy + 3pq

This is of form z = px + qy + f(p,q)

Hence the complete integral is z = ax + by + 3ab ...(1)

Where a and b are arbitrary constants

Differentiating (1) p.w.r.to a we get

CLASS: III B.Sc PhysicsCOURSENAME: MATHEMATICS-IICOURSE CODE: 17PHU602UNIT: IIIBATCH-2017-2020

0 = x + 3b

 $b = -\frac{x}{3}$

Differentiating (1) p.w.r.to b we get

0 = y + a $a = -\frac{y}{3}$

Substituting a and b value in equation (1) we get

$$z = \left(-\frac{y}{3}\right)x + \left(-\frac{x}{3}\right)y + \left(-\frac{y}{3}\right)\left(-\frac{x}{3}\right)$$
$$z = -\frac{yx}{3} - \frac{xy}{3} + \frac{xy}{9}$$

9z = -5xy

9z + 5xy = 0

This is the required singular solution.

5. Find the singular solution of the partial differential equation z = px + qy + pq

Solution:

Given z = px + qy + pq

This is of form z = px + qy + f(p,q)

Hence the complete integral is z = ax + by + ab ...(1)

Where a and b are arbitrary constants

Differentiating (1) p.w.r.to a we get

0 = x + b

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc Physics COURSENAME: MATHEMA

COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: III BATCH-2017-2020

b = -x

Differentiating (1) p.w.r.to b we get

0 = y + a

a = -y

Substituting a and b value in equation (1) we get

$$z = (-y)x + (-x)y + (-y)(-x)$$

$$z = -yx - xy + xy$$

z = -xy

$$z + xy = 0$$

This is the required singular solution.

6. Solve z = px + qy + pq

Solution:

Given z = px + qy + pq

This is of form z = px + qy + f(p,q)

Hence the complete integral is z = ax + by + ab

Where a and b are arbitrary constants

Singular solution is found as follows

 $z = ax + by + ab \qquad \dots (1)$

Differentiating with respect to 'a', we get

$$0 = x + b$$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc Physics **COURSENAME: MATHEMATICS-II COURSE CODE: 17PHU602** UNIT: III BATCH-2017-2020 b = -xDifferentiating (1) with respect to 'b', we get 0 = y + aa = -ySubstituting in equation (2) we get z = -yx - xy + xyz = -xyz + xy = 0This is the singular integral To get the general integral Put $b = \varphi(a)$ in equation (1), we get $z = ax + \varphi(a)y + a\varphi(a)$...(2) Differentiating w.r.to a we get $0 = x + \varphi'(a)y + a\varphi'(a) + \varphi(a)$...(3) Eliminate a between (2) & (3) we get the general solution. pq

7. Solve
$$z = px + qy + (pq)^{\frac{1}{2}}(or)\frac{z}{pq} = \frac{x}{q} + \frac{y}{p} + \sqrt{\frac{1}{2}}$$

Solution:

Given $z = px + qy + (pq)^{\frac{3}{2}}$

This is of form z = px + qy + f(p,q)

Hence the complete integral is $z = ax + by + (ab)^{\frac{3}{2}}$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: III BATCH-2017-2020

Where a and b are arbitrary constants

Singular solution is found as follows

$$z = ax + by + (ab)^{\frac{3}{2}}$$
 ...(1)

Differentiating with respect to 'a', we get

$$0 = x + \frac{3}{2}a^{\frac{1}{2}}b^{\frac{3}{2}}$$
$$x = -\frac{3}{2}a^{\frac{1}{2}}b^{\frac{3}{2}}$$
$$x^{3} = -\frac{27}{8}a^{\frac{3}{2}}b^{\frac{9}{2}}$$

Differentiating with respect to 'b', we get

$$0 = y + \frac{3}{2} a^{\frac{3}{2}} b^{\frac{1}{2}}$$
$$y = -\frac{3}{2} a^{\frac{3}{2}} b^{\frac{1}{2}}$$
$$\frac{x^3}{y} = \frac{-\frac{27}{8} a^{\frac{3}{2}} b^{\frac{9}{2}}}{-\frac{3}{2} a^{\frac{3}{2}} b^{\frac{1}{2}}}$$
$$\frac{x^3}{y} = \frac{9}{4} b^4$$
$$b^4 = \frac{4}{9} \frac{x^3}{y}$$
$$b = \sqrt[4]{\frac{4x^3}{9y}}$$
$\frac{x}{y^3} = \frac{-\frac{3}{2}a^{\frac{1}{2}}b^{\frac{3}{2}}}{\frac{27}{8}a^{\frac{9}{2}}b^{\frac{3}{2}}}$ $a^4 = \frac{4}{9}\frac{y^3}{x}$ $a = \sqrt[4]{\frac{4}{9}\frac{y^3}{x}}$

Substituting a and b value in equation (1) we get

$$z = \left(\frac{4}{9}\frac{y^3}{x}\right)^{\frac{1}{4}}x + \left(\frac{4}{9}\frac{x^3}{y}\right)^{\frac{1}{4}} + \left[\left(\frac{4}{9}\frac{y^3}{x}\frac{4}{9}\frac{x^3}{y}\right)^{1/4}\right]^{3/2}$$
$$z = \left(\frac{4}{9}\right)^{\frac{1}{4}}y^{\frac{3}{4}}x^{\frac{3}{4}} + \left(\frac{4}{9}\right)^{\frac{1}{4}}x^{\frac{3}{4}}y^{\frac{3}{4}} + \left(\frac{4}{9}xy\right)^3$$
$$z = 2\left(\frac{4}{9}\right)^{\frac{1}{4}}(xy)^{\frac{3}{4}} + \left(\frac{4}{9}xy\right)^3$$

This is the required singular integral.

8. Solve $z = px + qy + p^2 q^2$

Solution:

Given $z = px + qy + p^2q^2$

This is of form z = px + qy + f(p,q)

Hence the complete integral is $z = ax + by + a^2b^2$

Where a and b are arbitrary constants

Singular solution is found as follows

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc Physics **COURSENAME: MATHEMATICS-II**

COURSE CODE: 17PHU602

UNIT: III BATCH-2017-2020

 $z = ax + by + a^2b^2$...(1)

Differentiating with respect to 'a', we get

 $0 = x + 2ab^2$

$$x = -2ab^2 \qquad \dots (2)$$

 $\frac{x}{h} = -2ab$

Differentiating with respect to 'b', we get

 $0 = y + 2a^2b$

 $y = -2a^{2}b$

$$\frac{y}{a} = -2ab \qquad \dots (3)$$
$$\frac{x}{b} = \frac{y}{a} = -2ab = \frac{1}{k}(say)$$
$$= ky; \quad b = kx$$

Put in equation (2) we get

а

$$x = -2k^3yx^2$$

$$k^3 = -\frac{1}{2xy}$$

Put a & b in equation (1) we get

$$z = kxy + kxy + k^4x^2y^2$$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: III BATCH-2017-2020

$$z = 2kxy + x^{2}y^{2}\left(-\frac{1}{2xy}\right)$$
$$z = 2kxy - \frac{k}{2}xy = \frac{3}{2}kxy$$
$$z^{3} = \frac{27}{8}k^{3}x^{3}y^{3} = \frac{27}{8}\left(-\frac{1}{2xy}\right)x^{3}y^{3}$$
$$z^{3} = -\frac{27}{16}x^{2}y^{2}$$

$$16z^3 + 27x^2y^2 = 0$$

This is the singular solution.

To get the general integral

Put $b = \varphi(a)$ in equation (1), we get

$$z = ax + \varphi(a)y + a^2(\varphi(a))^2$$
 ... (4)

Differentiating w.r.to a we get

$$0 = x + \varphi'(a)y + a^2 2\varphi(a)\varphi'(a) + [\varphi(a)]^2 2a \dots (5)$$

Eliminate a between (4) & (5) we get the general solution.

9. Solve $z = px + qy + \sqrt{1 + p^2 + q^2}$

Solution:

Given
$$z = px + qy + \sqrt{1 + p^2 + q^2}$$

This is of form z = px + qy + f(p,q)

Hence the complete integral is $z = ax + by + \sqrt{1 + a^2 + b^2}$

Where a and b are arbitrary constants

Singular solution is found as follows

$$z = ax + by + \sqrt{1 + a^2 + b^2} \qquad ...(1)$$

Differentiating with respect to 'a', we get

$$0 = x + 0 + \frac{1}{2} \frac{0 + 2a + 0}{\sqrt{1 + a^2 + b^2}}$$
$$0 = x + \frac{a}{\sqrt{1 + a^2 + b^2}}$$
$$x = -\frac{a}{\sqrt{1 + a^2 + b^2}} \qquad \dots (2)$$

Differentiating (1) with respect to 'b', we get

$$0 = 0 + y + \frac{1}{2} \frac{0 + 2b + 0}{\sqrt{1 + a^2 + b^2}}$$
$$0 = y + \frac{b}{\sqrt{1 + a^2 + b^2}}$$
$$y = -\frac{b}{\sqrt{1 + a^2 + b^2}} \qquad \dots (3)$$
$$x^2 + y^2 = \frac{a^2 + b^2}{1 + a^2 + b^2}$$
$$1 - (x^2 + y^2) = 1 - \frac{a^2 + b^2}{1 + a^2 + b^2}$$

$$1 - x^{2} - y^{2} = \frac{1 + a^{2} + b^{2} - a^{2} - b^{2}}{1 + a^{2} + b^{2}}$$

KARPAGAM ACADEMY OF HIGHER EDUCATIONSc PhysicsCOURSENAME: MATHEMATICS-II

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

BATCH-2017-2020 UNIT: III

$$1 - x^{2} - y^{2} = \frac{1}{1 + a^{2} + b^{2}}$$
$$\sqrt{1 - x^{2} - y^{2}} = \frac{1}{\sqrt{1 + a^{2} + b^{2}}}$$
$$\sqrt{1 + a^{2} + b^{2}} = \frac{1}{\sqrt{1 - x^{2} - y^{2}}}$$

Substituting in equation (2) we get

$$x = -a\sqrt{1 - x^2 - y^2}$$
$$a = -\frac{x}{\sqrt{1 - x^2 - y^2}}$$

Substituting in equation (3) we get

$$y = -b\sqrt{1 - x^2 - y^2}$$
$$b = -\frac{y}{\sqrt{1 - x^2 - y^2}}$$

Substituting in equation (1) we get

$$z = -\frac{x^2}{\sqrt{1 - x^2 - y^2}} - \frac{y^2}{\sqrt{1 - x^2 - y^2}} + \frac{1}{\sqrt{1 - x^2 - y^2}}$$
$$z = \frac{1 - x^2 - y^2}{\sqrt{1 - x^2 - y^2}}$$
$$z = \sqrt{1 - x^2 - y^2}$$
$$z^2 = 1 - x^2 - y^2$$
$$x^2 + y^2 + z^2 = 1$$

This is the required singular solution

To get the general integral

Put $b = \varphi(a)$ in equation (1), we get

$$z = ax + \varphi(a)y + \sqrt{1 + a^2 + [\varphi(a)]^2} \qquad ... (4)$$

3.4.5 EQUATIONS REDUCIBLE TO STANDARD FORM

1. Find the complete integral of $x^2p^2 + y^2q^2 = z^2$

Solution:

Given $x^2p^2 + y^2q^2 = z^2$

$$(xp)^2 + (yq)^2 = z^2$$
 (1)

This equation is of the form $f(z, x^m p, y^n q) = 0$

Here m = 1, n = 1

Put $X = \log x$

$$\frac{\partial X}{\partial x} = \frac{1}{x}$$

$$P = \frac{\partial z}{\partial X}$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial X} \frac{\partial X}{\partial x}$$

$$p = P \frac{1}{x}$$

$$xp = P$$

CLASS: III B.Sc Physics COURSE CODE: 17PHU602	CO UNIT: III	DURSENAME: MATHEMATICS-II BATCH-2017-2020
Put $Y = \log y$		
	$\frac{\partial Y}{\partial y} = \frac{1}{y}$	
	$Q = \frac{\partial z}{\partial Y}$	
	$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial Y} \frac{\partial}{\partial t}$	$\frac{Y}{y}$
	$q = Q \frac{1}{y}$	
yq = Q		
Substituting in equat	ion (1) we get	
$P^2 + Q^2 = z^2$	(2)	
This equation is of the	the form $f(z, P, Q) = 0$	
Let $u = X + aY$		

Substituting in equation (1) we get

$$\left[\frac{dz}{du}\right]^2 + a^2 \left[\frac{dz}{du}\right]^2 = z^2$$
$$\left[\frac{dz}{du}\right]^2 [1 + a^2] = z^2$$
$$\left[\frac{dz}{du}\right]^2 = \frac{z^2}{1 + a^2}$$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc Physics **COURSENAME: MATHEMATICS-II** COURSE CODE: 17PHU602 UNIT: III **BATCH-2017-2020** $\frac{dz}{du} = \frac{z}{\sqrt{1+a^2}}$ $\frac{dz}{z} = \frac{du}{\sqrt{1+a^2}}$ Integration on both sides $\int \frac{dz}{z} = \int \frac{du}{\sqrt{1+a^2}}$ $\log z = \frac{1}{\sqrt{1+a^2}}u + b$ $\log z = \frac{1}{\sqrt{1+a^2}}(X+aY) + b$ $\log z = \frac{1}{\sqrt{1+a^2}}(\log x + a\log y) + b$ This is the complete integral

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: III BATCH-2017-2020

Part – A: Questions

- 1. Family of sphere having their centre on the line x = y = z
- 2. z = ax + by
- 3. centre lie on xy plane with radius "r" (or) $(x a)^2 + (y b)^2 + z^2 = r$
- 4. $z = (x+a)^2 + (y+b)^2$.

5.
$$z = (x^2 + a^2) (y^2 + b^2)$$

6. $z = x^2 f(y) + y^2 g(x)$

7.
$$z = f(y) + \phi (x+y+z)$$

8. Eliminate the arbitrary function f from z = f(xy/z)

9. Solve
$$\frac{\partial^2 z}{\partial x^2} = \sin y$$

10. Form a PDE by eliminating the arbitrary constants a and b from the equation

$$(x-a)^{2} + (y-b)^{2} = z^{2} \cot^{2} \alpha$$
.

11. Form a partial differential equation by eliminating arbitrary constants a and b from $z = (x + a)^2 + (y + b)^2$

12.
$$p + q = p q$$

13.
$$z = px + qy + p^2 - q^2$$

- 14. $z = px + qy + \sqrt{pq}$
- 15. p + q = x + y
- 16. $z = 1 + p^2 + q^2$
- 17. (1-x)p + (2-y)q = 3-z.
- 18. Solve :pq=y
- 19. Define General and Complete intégrals of a partial differential equaitons.
- 20. Define singular integral of a partial differential equations.

CLASS: III B.Sc Physics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-IIUNIT: IIIBATCH-2017-2020

Part – B : Questions

1. Form a P.D.E by eliminating arbitrary functions from z = xf(2x+y) + g(2x+y). Solve : $p^2y(1+x^2) = qx^2$ 2 3. Find the singular integral of $z = px+qy+p^2-q^2$ 4. Solve: $x(z^2-y^2)p + y(x^2-z^2)q = z(y^2-x^2)$ 5. Solve: $\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = e^{x+2y} + 4sin(x+y)$ 6. x(y-z)p + y(z-x)q = z(x-y)7. (3z - 4y)p + (4x - 2z)q = 2y - 3x8. (y-z) p - (2x + y) q = 2x + z9. $px(y^2+z)+qy(x^2+z)=z(x^2-y^2)$ 10. $v^2 p - xv q = x (z - 2v)$ 11. $(x^2 - y^2 - z^2) p + 2xy q = 2zx$ 12. $(D^3 - 3DD'^2 + 2D'^3)Z = 0$ 13. $(D^2 - DD' + D' - 1)z = 0$ 14. $(D^2-2DD'+D'^2)z = 0$ 15. $4\frac{\partial^2 z}{\partial r^2} - 12\frac{\partial^2 z}{\partial r \partial v} + 9\frac{\partial^2 z}{\partial v^2} = 0$ 16. $(D^2 - D D' - 20 D'^2) Z = e^{5x + y} + \sin(4x - y)$ 17. $(D^2 - DD' - 2D'^2) = 2x + 3y + e^{3x+4y}$ 18. $(D^3 - 7DD^{2} - 6D^{3})Z = e^{2x+y} + sin(x+2y)$ 19. $(D^2 + 4DD' - 5D'^2)z = 3e^{2x-y} + \sin(x-2y)$ 20. $(D^2 - 2DD' + D'^2 - 3D + 3D' + 2)z = (e^{3x} + 2e^{-2y})^2$ 21. $(2D2 - 5DD' + 2D'2)Z = 5\sin(2x + y)$ 22. $(D^2 - 2DD')Z = x^3 v + e^{2x}$ 23. $(D^2 + 2DD' + D'^2)z = x^2v + e^{x-y}$ 24. $(D^2 - 5DD' + 6D'^2)z = y \sin x$ 25. Solve $(D^2 + 3DD' - 4D'^2)z = x + \sin y$

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po),

Coimbatore -641 021

Subject: MATHEMATICS-II

Subject Code: 17PHU602

Class : III - B.Sc. Physics

Semester : VI

Unit III

Part A (20x1=20 Marks) (Question Nos. 1 to 20 Online Examinations)

Possible Questions						
Question	Opt 1	Opt 2	Opt 3	Opt 4	Answer	
In a PDE, there will be one dependent variable and						
independent variables	only one	two or more	no	infinite number of	two or more	
The of a PDE is that of the highest order						
derivative occurring in it	degree	power	order	ratio	order	
The degree of the a PDE is of the higest order						
derivative	power	ratio	degree	order	power	
Afirst order PDE is obtained if	Number of arbitrary constants is equal Number of independent variables	Number of arbitrary constants is lessthan Number of independent variables	Number of arbitrary constants is greater than Number of independent variables	Number of arbitrary constants is not equal to Number of independent variables	Number of arbitrary constants= Number of independent variables	
In the form of PDE, $f(x,y,z,a,b)=0$. What is the order?	1	2	3	4	1	
What is form of the z=ax+by+ab by eliminating the arbitrary constants?	z=qx+py+pq	z=px+qy+pq	z=px+qy+p	z=py+qy+q	z=px+qy+pq	
General solution of PDE F(x,y,z,p,q)=0 is any arbitray function F of specific functions u,v issatisfying given PDE	F(u,v)=0	F(x,y,z)=0	F(x,y)=0	F(p,q)=0	F(u,v)=0	

The PDE of the first order can be written as	F(x,y,s,t)	F(x,y,z,p,q)=0	F(x,y,z,1,3,2)=0	F(x,y)=0	F(x,y,z,p,q)=0
The complete solution of clairaut's equation is	z=bx+ay+f(a,b)	z=ax+by+f(a,b)	z=ax+by	z=f(a,b)	z=ax+by+f(a,b)
The Clairaut's equation can be written in the form	z=px+qy+f(p,q)	z=(p-1)x+qy+f(x,y)	z=Pp+Qq	Pq+Qp=r	z=px+qy+f(p,q)
From the PDE by eliminating the arbitrary function from $z=f(x^2 - y^2)$ is	xp+yq=0	p=-(x/y)	q=yp/x	yp+xq=0	yp+xq=0
Which of the following is the type $f(z,p,q)=0$?	p(1+q)=qx	p(1+q)=qz	p(1+q)=qy	p=2x f(y+2x)	p(1+q)=qz
The equation (D^2 z+2xy(Dz)^2+D'=5 is of order and degree	2 and 2	2 and 1	1 and 1	0 and 1	2 and 1
The complementry function of (D ² -					
$4DD'+4D'^2)z=x+y$ is	f(y+2x)+xg(y+2x)	f(y+x)+xg(y+2x)	f(y+x)+xg(y+x)	f(y+4x)+xg(y+4x)	f(y+2x)+xg(y+2x)
The solution of xp+yq=z is	f(x^2,y^2)=0	f(xy,yz)	f(x,y)=0	f(x/y,y/z)=0	f(x/y, y/z)=0
The solution of $p+q=z$ is	f(xy,ylogz)=0	f(x+y, y+logz)=0	f(x-y, y-logz)=0	f(x-y,y+logz)=0	f(x-y, y-logz)=0
A solution which contains the maximum possible number of arbitrary functions is called integral.	singular	complete	general	particular	general
The lagrange's linear equation can be written in the form	Pq+Qp=r	Pq+Qp=R	Pp+Qq=R	F(x,y)=0	Pp+Qq=R
The complete solution of the PDE 2p+3q =1 is	z=ax+[(1- 2a)/3]y+c	z=ax+y+c	z=ax+(1-2x)/y+c	z=ax+b	z=ax+[(1-2a)/3]y+c
The complete solution of the PDE pq=1 is	z=ax+(1/a)y+b	z=ax+y+b	z=ax+ay/b+c	z=ax+b	z=ax+(1/a)y+b
The solution got by giving particular values to the arbitrary constants in a complete integral is called a	general	singular	particular	complete	particular
The general solution of Lagrange's equation is denoted as	f(u,v)=0	ZX	f (x,y)	F(x,y,s,t)=0	f(u,v)=0
The subsidiary equations are px+qy=z is	dx/y=dy/z=dz/x	dx/x=dy/y=dz/z	xdx=ydy=zdz	dz/z=dx/y=dy/x	dx/x=dy/y=dz/z
The general solution of equation p+q=1 is	f(xyz,0)	f(x-y,y-z)	f(x-y,y+z)	F(x,y,s,t)=0	f(x-y,y-z)
The separable equation of the first order PDE can be written in the form of	f(x,y)=g(x,y)	f(a,b)=g(x,y)	f(x,p)=g(y,q)	f(x)=g(a)	f(x,p)=g(y,q)

Complementary function is the solution of	f(a,b)	f(1,0)=0	f(D,D')z=0	f(a,b)=F(x,y)	f(D,D')z=0
C.F+P.I is called solution	singular	complete	general	particular	general
Particular integral is the solution of	f(a,b)=F(x,y)	f(1,0)=0	[1/f(D,D')]F(x,y)	f(a,b)=F(u,v)	[1/f(D,D')]F(x,y)
Which is independent varible in the equation $z=$ 10x+5y	x&y	Z	x,y,z	x alone	x&y
Which is dependent varible in the equation $z=2x+3y$	х	Z	У	x&y	z
Which of the following is the type $f(z,p,q)=0$	p(1+q)=qx	p(1+q)=qz	p(1+q)=qy	$p=2xf'(x^2)-(y^2))$	p(1+q)=qz
Which is complete integral of $z=px+qy+(p^2)(q^2)$	z=ax+by+(a^2)(b ^2)	z=a+b+ab	z=ax+by+ab	z=a+f(a)x	z=ax+by+(a^2)(b^2)
The complete integral of PDE of the form $F(p,q)=0$ is	z=ax+f(a)y+c	z=ax+f(a)+b	z=a+f(a)x	z=ax+f(a)	z=ax+f(a)y+c
The relation between the independent and the dependent variables which satisfies the PDE is called	solution	complet solution	general solution	singular solution	solution
A solution which contains the maximum possible number of arbitrary constant is called	general	complete	solution	singular	complete
The equations which do not contain x & y explicitly can be written in the form	f(z,p,q)=0	f(p,q)=0	(p,q)=0	f(x,p,q)=0	f(z,p,q)=0
The subsidiary equations of the lagranges equation 2y(z-3)p + (2x-z)q = y(2x-3)	dx/2y(z-3) = dy/(2x-z) = dz/y(2x-3)	dx/(2x-z) =dy/2y(z-3) =dz/y(2x-3)	dx/2y=dz/(z-3)	dx/2y=dz/(z- 3)=dy/2x	dx/2y(z-3) = dy/(2x-z) = $dz/y(2x-3)$
A PDE ., the partial derivatives occuring in which are of the first degree is said to be	linear	non-linear	order	degree	linear
A PDE., the partial derivatives occuring in which are of the 2 or more than 2 degree is said to be	linear	non-linear	order	degree	non-linear
If $z=(x^2+a)(y^2+b)$ then differentiating z partially with respect to x is	2x	3x(y^2+b)	2x(y^2+b)	3x+y	2x(y^2+b)
If z=ax+by+ab then differentiating z partially with respect to y is	a	a+b	0	b	b

The complete solution of the PDE p=2qx is	z=ax+ay+c	ax+b	$z = ax^2+ay+c$	z=ax+(b+c)	$z = ax^2+ay+c$
The general solution of px-qy=xz is	f(u,v)=0	f(xy,x-logz)=0	f(x-y,y-z)=0	f(x-y,y+z)=0	f(xy,x-logz)=0
If $z = f(x^2+y^2)$ then differentiating z partially with respect to x is	p=2xf' (x^2+y^2)	$p=2xf(x^2+y^2)$	p=2xf [°] (x^2- y^2)	p(1+q)=qy	p=2xf'(x^2+y^2)
If $z = f(x^2+y^2+z^2)$ then differentiating z partially with respect to y is	$q=2xf(x^{2}+y^{2})$	q=(2y+2zz') f'(x^2+y^2 +z^2)	q=2y	q=0	q=(2y+2zz') f(x^2+y^2+z^2)
The solution of differentiating z partially with respect to x twice gives	ax	ax+by+c	ax+b	ax=p	ax+b
The general solution of PDE is of the form	C.F+P.I	C.F-P.I	C.F*P.I	C.F/P.I	C.F+P.I
The Equation is of the form $Z=px+qy+f(p,q)$ is	alairaut	ahamit	arout	conoroblo	alairaut
$\frac{\text{called}}{\text{f}(x, p) = g(x, p) \text{ is called}}$		charpit	crout	separable	cialiaut
$\frac{1(x,p)-g(y,q)}{p}$ is called <u>equation</u>	clairaut	charpit	crout	separable	separable
factors.	linear	nonlinear	polynomial	recursive	linear
The order of PDE to be the order of the derivative of order occurring in it.	lowest	highest	first	second	highest
The solution of the PDE consists main parts	2	3	4	5	2

KARPAGAM ACADEMY OF HIGHER EDUCATIONSc PhyicsCOURSENAME: MATHEMATICS-II

CLASS: III B.Sc Phyics COURSE CODE: 17PHU602

UNIT: IV **BATCH-2017-2020**

UNIT-IV

Laplace Transforms: Definition – Laplace Transforms of standard functions – Linearity property – First Shifting Theorem – Transform of $tf(t), \frac{f(t)}{t}, f'(t), f''(t)$. Inverse Laplace Transforms – Applications to solutions of First Order and Second Order Differential Equations with constant coefficients.

LAPLACE TRANSFORM

Definition

Let a function f(t) be continuous and defined for all positive values of 't'. The Laplace transform of f(t) associates a function by the equations

$$\varphi(s) = \int_0^{-st} f(t).\,dt$$

t>0

Here $\varphi(s)$ is said to be the Laplace Transform of f(t) and it is written as L[f(t)].

Thus $\varphi(s) = L[f(t)] = \int_0^\infty e^{-st} f(t) dt$,

PROPERTIES OF LAPLACE TRANSFORMS

Property 1: Change of scale property

If

$$L[f(t)] = \Phi(s)$$
, then $L[f(at)] = \frac{1}{a} \cdot F(\frac{s}{a})$

Property 2: First shifting Property

If
$$L[f(t)] = F(s)$$
 then (i) $L[e^{-at}f(t)] = F(s+a)$

(ii)
$$L[e^{at}f(t)] = F(s-a)$$

Property 3: (i) Laplace Transform of Derivative

$$L[f'(t)] = sL[f(t)] - f(0).$$

(ii) Laplace Transform of derivative of order n.

 $L[f''(t)] = s^{n}L[f(t)] - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0)$

Property 4: Laplace Transform of integrals.

If L[f(t)] = F(s) then $L\left[\int_0^t f(t)dt\right] = \frac{F(s)}{s}$

Property 5: Laplace Transform of t - f(t)

If

$$L[f(t)] = F(s)$$
. then $L[t.f(t)] = \frac{-d}{ds} \cdot F(s)$

Note: In general

$$L[t^n.f(t)] = (-1)^n \frac{d^n}{ds^n} \cdot F(s)$$

Property 6: Laplace Transform of $\left[\frac{f(t)}{t}\right]$

If L[f(t)] = F and if $\lim_{t\to 0} \frac{f(t)}{t}$ exists then.

$$L\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} F(s).\,ds$$

UNIT: IV **BATCH-2017-2020**

Find the Laplace transform of $\frac{e^{at} - \cos bt}{t}$ and $\sin t \mu_{\pi}(t)$ where $\mu_{\pi}(t)$ is the unit step function.

Solution:

$$L\left(\frac{e^{at} - \cos bt}{t}\right) = \int_{s}^{\infty} \left(\frac{1}{s-a} - \frac{s}{s^{2} + b^{2}}\right) ds$$
$$= \log\left(\frac{s-a}{\sqrt{s^{2} + b^{2}}}\right)_{s}^{\infty}$$
$$= \log\left(\frac{\sqrt{s^{2} + b^{2}}}{s-a}\right)$$
$$L^{-1}\left(\sin t\mu_{\pi}(t)\right) = L^{-1}\left(\sin(\pi - t)\right)$$
$$= e^{-\pi s} \frac{1}{s^{2} + 1}$$

Verify the initial value theorem for the function $1 + e^{-2t}$.

CLASS: III B.Sc Phyics	COURSENA	ME: MATHEMATICS-II
COURSE CODE: 17PHU602	UNIT: IV	BATCH-2017-2020
	$\lim_{t\to 0}f(t)$	$= \lim_{s \to \infty} sF(s)$
	$\lim_{t\to 0}f(t)$	$= \lim_{t \to 0} (1 + e^{-2t}) = 1 + 1 = 2$
	$\lim_{s\to\infty} sF(s)$	$= \lim_{s \to \infty} s L[f(t)]$
		$= \lim_{s \to \infty} s L[1 + e^{-2t}]$
		$= \lim_{s \to \infty} s \left[L(1) + L(e^{-2t}) \right]$
		$= \lim_{s \to \infty} s \left[\frac{1}{s} + \frac{1}{s+2} \right]$
		$= \lim_{s \to \infty} \left[s \frac{1}{s} + s \frac{1}{s+2} \right]$
		$= \lim_{s \to \infty} \left[1 + \frac{s}{s\left(1 + \frac{2}{s}\right)} \right]$
Initial value theorem:		=1+1
		= 2
Hence initial value theorem is	verified.	
Tence initial value dicorent is	, vonnou.	

Verify the final value theorem for the function $f(t) = L^{-1} \left[\frac{1}{s(s+2)^2} \right]$

Solution:

$$f(t) = L^{-1} \left[\frac{1}{s(s+2)^2} \right] = \int_0^t t e^{-2t} dt = \left(t \frac{e^{-2t}}{-2} - \frac{e^{-2t}}{4} \right)_0^t = \left(t \frac{e^{-2t}}{-2} - \frac{e^{-2t}}{4} + \frac{1}{4} \right)$$

FVT: $\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$

LHS:
$$\lim_{t \to \infty} \left(t \frac{e^{-2t}}{-2} - \frac{e^{-2t}}{4} + \frac{1}{4} \right) = \frac{1}{4}$$

CLASS: III B.Sc Phyics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: IV BATCH-2017-2020

$$sF(s) = \left[\frac{s}{s(s+2)^2}\right] = \frac{1}{(s+2)^2}$$

Lim $sF(s) = \frac{1}{4} = RHS$

Hence Proved

CONVOLUTION THEOREM

5.3.1 Using convolution theorem, find the inverse Laplace transform of

a.
$$\frac{1}{s^2(s^2+25)}$$

Solution:

$$L^{-1}\left[\frac{1}{s^2}\frac{1}{(s^2+25)}\right] = L^{-1}\left[\frac{1}{s^2}\cdot\frac{1}{(s^2+25)}\right]$$
$$= L^{-1}\left[\frac{1}{s^2}\right]*L^{-1}\left[\frac{1}{(s^2+25)}\right]$$
$$= t*\frac{\sin 5t}{5}$$
$$= \frac{1}{5}\int_{0}^{t}(t-u)\sin 5u \ du$$
$$= \frac{1}{5}\left[(t-u)\left(\frac{-\cos 5u}{5}\right) - (-1)\left(\frac{-\sin 5u}{25}\right)\right]_{0}^{t}$$
$$= \frac{1}{5}\left(\frac{-\sin 5t}{25} + \frac{t}{5}\right)$$

b. $\frac{1}{s^3(s+5)}$

Solution:

$$L^{-1}\left[\frac{1}{s^{3}(s+5)}\right] = L^{-1}\left[\frac{1}{s^{3}}\frac{1}{(s+5)}\right]$$
$$= L^{-1}\left[\frac{1}{s^{3}}\right] * L^{-1}\left[\frac{1}{(s+5)}\right]$$
$$= \frac{t^{2}}{2} * e^{-5t}$$
$$= \frac{1}{2}\int_{0}^{t} u^{2} e^{-5(t-u)} du$$
$$= \frac{1}{2}e^{-5t}\int_{0}^{t} u^{2}e^{5u} du$$
$$= \frac{1}{2}e^{-5t}\left[u^{2}\frac{e^{5u}}{5} - (2u)\frac{e^{5u}}{25} + (2)\frac{e^{5u}}{125}\right]_{0}^{t}$$
$$= \frac{e^{-5t}}{250}\left[25t^{2}e^{5t} - 10te^{5t} + 2e^{5t} - 2\right]$$

 $\mathbf{c} \cdot \frac{1}{(s^2 + a^2)^2}$

Solution:

$$L^{-1}\left[\frac{1}{(s^{2}+a^{2})^{2}}\right] = L^{-1}\left[\frac{1}{(s^{2}+a^{2})}, \frac{1}{(s^{2}+a^{2})}\right]$$
$$L^{-1}\left[F(s)G(s)\right] = \int_{0}^{t} f(u).g(t-u)du$$
$$F(s) = \frac{1}{s^{2}+a^{2}} \Rightarrow f(t) = \frac{\sin at}{a}$$
$$G(s) = \frac{1}{s^{2}+a^{2}} \Rightarrow g(t) = \frac{\sin at}{a}$$
$$\therefore L^{-1}\left[\frac{1}{(s^{2}+a^{2})^{2}}\right] = \frac{1}{a^{2}}\int_{0}^{t} \sin au.\sin a(t-u)du$$
$$= \frac{1}{2a^{2}}\int_{0}^{t} [\cos(2au-at) - \cos at]du$$

KARPAGAM ACADEMY OF HIGHER EDUCATIONSc PhyicsCOURSENAME: MATHEMATICS-II

CLASS: III B.Sc Phyics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: IV BATCH-2017-2020

$$L^{-1}\left[\frac{1}{\left(s^{2}+a^{2}\right)^{2}}\right] = \frac{1}{2a^{2}}\left[\left(\frac{\sin(2au-at)}{2a}\right)_{0}^{t}-\cos at\left(u\right)_{0}^{t}\right]$$
$$= \frac{1}{2a^{2}}\left[\frac{\sin at}{2a}+\frac{\sin at}{2a}-t\cos at\right]$$
$$= \frac{\sin at-at\cos at}{2a^{3}}$$

d. $\frac{s}{(s^2 + a^2)^2}$

Solution:

$$L^{-1}\left[\frac{s}{(s^{2}+a^{2})^{2}}\right] = L^{-1}\left[\frac{s}{(s^{2}+a^{2})}, \frac{1}{(s^{2}+a^{2})}\right]$$
$$L^{-1}[F(s)G(s)] = \int_{0}^{t} f(u).g(t-u)du$$
$$F(s) = \frac{s}{s^{2}+a^{2}} \Rightarrow f(t) = \cos at$$
$$G(s) = \frac{1}{s^{2}+a^{2}} \Rightarrow g(t) = \frac{\sin at}{a}$$
$$\therefore L^{-1}\left[\frac{s}{(s^{2}+a^{2})^{2}}\right] = \frac{1}{2a}\int_{0}^{t} \cos au.\sin\frac{a(t-u)}{a}du$$
$$= \frac{1}{2a}\int_{0}^{t} [\sin(at) - \sin(2au - at)]du$$
$$= \frac{1}{2a}\left[\sin at.(u)_{0}^{t} + \left[\frac{\cos(2au - at)}{2a}\right]_{0}^{t}\right]$$
$$= \frac{1}{2a}\left[t\sin at + \frac{1}{2a}[\cos at - \cos(-at)]\right]$$
$$= \frac{1}{2a}\left[t\sin at + \frac{1}{2a}[\cos at - \cos at]\right]$$
$$= \frac{t\sin at}{2a}$$

e.
$$\frac{s^2}{(s^2 + a^2)(s^2 + b^2)}$$

Solution:

$$L^{-1}\left[\frac{s^{2}}{(s^{2}+a^{2})(s^{2}+b^{2})}\right] = L^{-1}\left[\frac{s}{(s^{2}+a^{2})}\cdot\frac{s}{(s^{2}+b^{2})}\right]$$
$$= L^{-1}\left[F(s).G(s)\right]$$
$$F(s) = \frac{s}{s^{2}+a^{2}} \Rightarrow f(t) = L^{-1}\left[\frac{s}{s^{2}+a^{2}}\right] = \cos at$$
$$G(s) = \frac{s}{s^{2}+b^{2}} \Rightarrow g(t) = L^{-1}\left[\frac{s}{s^{2}+b^{2}}\right] = \cos bt$$
$$\therefore L^{-1}\left[\frac{s^{2}}{(s^{2}+a^{2})(s^{2}+b^{2})}\right] = \int_{0}^{t} \cos au \cdot \cos b(t-u) \, du$$
$$= \frac{1}{2}\int_{0}^{t} [\cos((a-b)u+bt) + \cos((a+b)u-bt)] \, du$$
$$= \frac{1}{2}\left[\frac{\sin[(a-b)u+bt]}{(a-b)} + \frac{\sin[(a+b)u-bt]}{(a+b)}\right]_{0}^{t}$$
$$= \frac{1}{2}\left[\frac{\sin at}{a-b} + \frac{\sin at}{a+b} - \frac{\sin bt}{a-b} + \frac{\sin bt}{a+b}\right]$$
$$= \frac{1}{2}\left[\frac{2a\sin at - 2b\sin bt}{a^{2}-b^{2}}\right]$$

f.
$$\frac{1}{s^2(s+5)}$$
. (May/June 2005)

solution:

KARPAGAM ACADEMY OF HIGHER EDUCATIONSc PhyicsCOURSENAME: MATHEMATICS-II

CLASS: III B.Sc Phyics COURSE CODE: 17PHU602

BATCH-2017-2020 UNIT: IV

$$L^{-1}\left[\frac{1}{s^2(s+5)}\right] = \int_0^t \int_0^t e^{-5t} dt \ dt = \int_0^t \left(\frac{e^{-5t}}{-5}\right)_0^t dt$$
$$= \int_0^t \left(\frac{-e^{-5t}+1}{5}\right) dt$$
$$= \frac{1}{5} \left(\frac{-e^{-5t}}{-5} + t\right)_0^t$$
$$= \frac{1}{25} \left(e^{-5t} + 5t - 1\right)$$

g. $\frac{s+2}{(s^2+4s+13)^2}$. (May/June 2006)

solution:

$$\frac{s+2}{\left(s^{2}+4s+13\right)^{2}} = \frac{s+2}{\left((s+2)^{2}+9\right)^{2}}$$
$$L^{-1}\left[\frac{s+2}{\left(s^{2}+4s+13\right)^{2}}\right] = L^{-1}\left[\frac{s+2}{\left((s+2)^{2}+9\right)^{2}}\right]$$
$$= e^{-2t}L^{-1}\left[\frac{s}{\left(s^{2}+9\right)^{2}}\right]$$
$$= e^{-2t}\left(\frac{t\sin 3t}{6}\right)$$

h.
$$\frac{1}{s(s^2 - a^2)}$$

solution

$$L^{-1}\left[\frac{1}{s(s^2 - a^2)}\right] = \int_0^t \frac{\sinh at}{a} dt$$
$$= \frac{1}{a} \left(\frac{\cosh at}{a}\right)_0^t$$
$$= \frac{1}{a^2} (\cosh at - 1)$$

INVERSE LAPLACE TRANSFORM

Definition: If F(s) is the Laplace transform of a function f(t)i.e., L[f(t)] = F(s), then f(t) is called the inverse Laplace transform of the function F(s) and is written as

 $f(t) = L^{-1}[F(s)]L^{-1}$ is called the inverse Laplace transform operator.

Important Results in Laplace Transform

Result 1. Linearly property:

If a and b are any constant while F(s) and G(s) are the Laplace transform of f(t) and g(t) respectively.

Then $L^{-1}[a, F(s) + b, G(s)] = a L^{-1}[F(s)] + b L^{-1}[G(s)]$

Result 2. First shifting property:

(i)
$$L^{-1}[F(s+a)] = e^{-at}L^{-1}[F(s)]$$

(ii)
$$L^{-1}[F(s-a)] = e^{at}L[F(s)]$$

WORKED EXAMPLE

Ex.1. Find $L^{-1} \left[\frac{1}{s-2} \right]$ Sol. $L^{-1} \left[\frac{1}{s-2} \right] = e^{2t} L^{-1} \left[\frac{1}{s} \right] = e^{2t} (1) = e^{2t}$ Ex.2. Find $L^{-1} \left[\frac{1}{s^2 + 25} \right]$ Sol. $L^{-1} \left[\frac{1}{s^2 + 25} \right] = \frac{1}{5} L^{-1} \left[\frac{5}{s^2 + 25} \right] = \frac{1}{5} \sin 5t$ Ex.3. Find $L^{-1} \left[\frac{s}{s^2 + 9} \right]$ Sol. $L^{-1} \left[\frac{s}{s^2 + 9} \right] = L^{-1} \left[\frac{s}{s^2 + 3^2} \right] = \cos 3t$

Ex.4. Find
$$L^{-1}\left[\frac{1}{s^2+9}\right]$$

Sol. $L^{-1}\left[\frac{1}{s^2+9}\right] = L^{-1}\left[\frac{1}{s^2+3^2}\right] = \frac{1}{3}L^{-1}\left[\frac{3}{s^2+3^2}\right] = \frac{1}{3}\sinh 3t$

SOLUTION OF LINEAR ODE OF SECOND ORDER WITH CONSTANT COEFFICIENTS USING LAPLACE TRANSFORMATION TECHNIQUES.

Using Laplace transform solve $\frac{dy}{dt} - 3y = e^{2t}$ subject to y(0) = 1.

Solution:

$$\frac{dy}{dt} - 3y = e^{2t}$$

Taking L.T. on both sides,

$$L\left(\frac{dy}{dt}\right) - 3L(y) = L(e^{2t})$$

$$s\overline{y} - y(0) - 3\overline{y} = \frac{1}{s-2} \Rightarrow s\overline{y} - 1 - 3\overline{y} = \frac{1}{s-2}$$

$$\overline{y}(s-3) = \frac{1}{s-2} + 1$$

$$\overline{y} = \frac{s-1}{(s-2)(s-3)}$$

$$y = L^{-1} \left(\frac{s-1}{(s-2)(s-3)} \right)$$

Now consider $\frac{s-1}{(s-2)(s-3)} = \frac{A}{s-2} + \frac{B}{s-3} \Rightarrow A = -1, B = 2$

$$y = L^{-1} \left(\frac{s-1}{(s-2)(s-3)} \right) = L^{-1} \left(\frac{-1}{s-2} \right) + L^{-1} \left(\frac{2}{s-3} \right)$$
$$y = -e^{2t} + 2e^{3t}$$

Solve the following initial value problem using Laplace transforms $\frac{d^2y}{dt^2} + 6\frac{dy}{dt} + 9y = 2e^{-3t}, y = 0, y'(0) = -2$.

Solution:

$$\frac{d^2 y}{dt^2} + 6\frac{dy}{dt} + 9y = 2e^{-3t} \Rightarrow s^2 \overline{y} - sy(0) - y'(0) + 6(s\overline{y} - y(0)) + 9\overline{y} = \frac{2}{s+3}$$

$$\overline{y}(s^2 + 6s + 9) + 2 = \frac{2}{s+3}$$

$$\overline{y} = \frac{\frac{2}{s+3} - 2}{(s+3)^2} = \frac{A}{s+3} + \frac{B}{(s+3)^2} + \frac{C}{(s+3)^3}$$

$$-2s - 4 = A(s+3)^2 + B(S+3) + C$$
when $s = -3 \Rightarrow C = 2$

Comparing the coefficients of s^2 , A = 0

 $\Rightarrow C = -4 + 6 = 2$

Comparing the coefficient of s, $6A + B = -2 \Rightarrow B = -2$ Comparing the constant coefficient, 9A + 3B + C = -4

$$\overline{y} = \frac{-2}{(s+3)^2} + \frac{2}{(s+3)^3}$$
$$y = L^{-1} \left(\frac{-2}{(s+3)^2} \right) + L^{-1} \left(\frac{2}{(s+3)^3} \right)$$
$$\Rightarrow y = 2e^{-3t} \left(\frac{t^2}{2} - t \right)$$

Solve using Laplace transforms $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = te^{-t}$, y(0) = 0, y'(0) = -1.

Solution:

$$y'' + 4y' + 4y = te^{-t}$$

$$s^{2}\overline{y} - y(0) - y'(0) + 4[s\overline{y} - y(0)] + 4\overline{y} = \frac{1}{(s+1)^{2}}$$

 $\frac{\overline{y}(s^2 + 4s + 4)}{Prepared by R. Gayathri, A (st Prof)^2 Department of Mathematics KAHE}$

Page 13/30

$$\overline{y} = \frac{1}{\left(s+1\right)^2 \left(s+2\right)^2} = \frac{A}{s+1} + \frac{B}{\left(s+1\right)^2} + \frac{C}{\left(s+2\right)} + \frac{D}{\left(s+2\right)^2}$$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc Phyics COURSENAME: MATHEMATICS-II

COURSE CODE: 17PHU602

COURSENAME:MATHEMATICS-IIUNIT: IVBATCH-2017-2020

when $s = -1 \Rightarrow B = 1$ when $s = -2 \Rightarrow D = 1$ Comparing s^2 coefficients, $5A + B + 4C + D = 1 \Rightarrow 5A + 4C = -1$ Comparing s^3 coefficients, $A + C = 0 \Rightarrow C = 1 \Rightarrow A = -1$ $v = L^{-1} \left(\frac{1}{1 + 1} \right) = L^{-1} \left(\frac{-1}{1 + 1} \right) + L^{-1} \left(\frac{1}{1 + 1} \right) + L^{-1} \left(\frac{1}{1 + 1} \right)$

$$y = L^{-1} \left(\frac{1}{\left(s+1\right)^{2} \left(s+2\right)^{2}} \right) = L^{-1} \left(\frac{-1}{s+1} \right) + L^{-1} \left(\frac{1}{\left(s+1\right)^{2}} \right) + L^{-1} \left(\frac{1}{\left(s+2\right)} \right) + L^{-1} \left(\frac{1}{\left(s+2\right)^{2}} \right)$$
$$y = e^{-t} \left(-1 + t \right) + e^{-2t} \left(1 + t \right)$$

Using Laplace transform solve y''+2y'-3y = 3, y(0) = 4, y'(0) = -7.

Solution:

$$y''+2y'-3y = 3,$$

$$s^{2}\overline{y} - sy(0) - y'(0) + 2(s\overline{y} - y(0)) - 3\overline{y} = \frac{3}{s}$$

$$\overline{y}(s^{2} + 2s - 3) - 4s + 7 - 8 = \frac{3}{s}$$

$$\overline{y}(s^{2} + 2s - 3) = \frac{3}{s} + 1 + 4s$$

CLASS: III B.Sc Phyics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: IV BATCH-2017-2020

$$\overline{y} = \frac{\frac{3}{s} + 1 + 4s}{(s+3)(s-1)} = \frac{3 + s + 4s^2}{s(s+3)(s-1)} = \frac{A}{s} + \frac{B}{s+3} + \frac{C}{(s-1)}$$

when $s = 0 \Rightarrow -3A = 3 \Rightarrow A = -1$
when $s = 1 \Rightarrow 4C = 8 \Rightarrow C = 2$
when $s = -3 \Rightarrow 12B = 36 \Rightarrow B = 3$

$$\overline{y} = \frac{3+s+4s^2}{s(s+3)(s-1)} = \frac{-1}{s} + \frac{3}{s+3} + \frac{2}{(s-1)}$$
$$y = L^{-1}\left(\frac{-1}{s}\right) + L^{-1}\left(\frac{3}{s+3}\right) + L^{-1}\left(\frac{2}{(s-1)}\right)$$
$$y = -1 + 3e^{-3t} + 2e^t$$

Using Laplace transform solve $y''+3y'+2y = e^{-t}$, y(0) = 1, y'(0) = 0.

Solution:

$$y''+3y'+2y = e^{-t}$$

$$s^{2}\bar{y} - sy(0) - y'(0) + 3(s\bar{y} - y(0)) + 2\bar{y} = \frac{1}{s+1}$$

$$\bar{y}(s^{2} + 3s + 2) - s - 3 = \frac{1}{s+1}$$

$$\bar{y} = \frac{\frac{1}{s+1} + s + 3}{(s+1)(s+2)} = \frac{s^{2} + 4s + 4}{(s+1)^{2}(s+2)} = \frac{s+2}{(s+1)^{2}} = \frac{A}{s+1} + \frac{B}{(s+1)^{2}}$$

when $s = -1 \Rightarrow B = 1$

Comparing cons tan *t coefficients*, $A + B = 2 \Rightarrow A = 1$

$$\overline{y} = \frac{s+2}{(s+1)^2} = \frac{1}{s+1} + \frac{1}{(s+1)^2}$$
$$y = L^{-1} \left(\frac{1}{s+1}\right) + L^{-1} \left(\frac{1}{(s+1)^2}\right) = e^{-t} (1+t)$$

Using Laplace transform solve $\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + y = e^x$ with $y = 2, \frac{dy}{dx} = -1$ at x = 0.

Solution:

$$\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + y = e^x \implies s^2 \overline{y} - sy(0) - y'(0) - 2(s\overline{y} - y(0)) + \overline{y} = \frac{1}{s-1}$$
$$\overline{y}(s^2 - 2s + 1) - 2s + 1 + 4 = \frac{1}{s-1}$$
$$\overline{y} = \frac{\frac{1}{s-1} - 5 + 2s}{(s-1)^2} = \frac{2s^2 - 7s + 6}{(s-1)^3} = \frac{A}{s-1} + \frac{B}{(s-1)^2} + \frac{C}{(s-1)^3}$$
But $2s^2 - 7s + 6 = A(s-1)^2 + B(s-1) + C$

when $s = 1 \Rightarrow C = 6$

Comparing the coefficients of s^2 , A = 2Comparing the coefficients of s, $-2A + B = -7 \Rightarrow B = -7 + 4 \Rightarrow B = -3$

$$\overline{y} = \frac{2}{s-1} + \frac{-3}{(s-1)^2} + \frac{6}{(s-1)^3}$$
$$y = L^{-1} \left(\frac{2}{s-1} + \frac{-3}{(s-1)^2} + \frac{6}{(s-1)^3} \right) = 2e^t - 3te^t + 3t^2e^t = e^t(2-3t+3t^2)$$

Solve by using Laplace transform y - 3y + 2y = 4 given that y(0) = 0, y'(0) = 0.

Solution:

CLASS: III B.Sc Phyics COURSE CODE: 17PHU602

COURSENAME:MATHEMATICS-IIUNIT: IVBATCH-2017-2020

$$\begin{aligned} \ddot{y} - 3\dot{y} + 2y &= 4 \Rightarrow s^{2}\bar{y} - sy(0) - y'(0) - 3(s\bar{y} - y(0)) + 2\bar{y} = \frac{4}{s} \\ \bar{y}(s^{2} - 3s + 2) &= \frac{4}{s} \\ \bar{y} &= \frac{4}{s(s-1)(s-2)} = \frac{4}{s} + \frac{B}{s-1} + \frac{C}{s-2} \Rightarrow 1 = A(s-1)(s-2) + B(s)(s-2) + C(s)(s-1) \\ When \ s = 0 \Rightarrow A = \frac{1}{2} \\ When \ s = 1 \Rightarrow B = -1 \\ when \ s = 2 \Rightarrow C = \frac{1}{2} \\ \bar{y} &= \frac{4}{s(s-1)(s-2)} = \frac{\frac{1}{2}}{s} + \frac{-1}{s-1} + \frac{\frac{1}{2}}{s-2} \\ y &= L^{-1} \left(\frac{\frac{1}{2}}{s} + \frac{-1}{s-1} + \frac{\frac{1}{2}}{s-2}\right) = \frac{1}{2} - e^{t} + \frac{1}{2}e^{2t} \end{aligned}$$

Solve the differential equation using Laplace transform $y''+4y'+4y = e^{-t}$ given that y(0) = 0, y'(0) = 0.

Solution:

$$y''+4y'+4y = e^{-t}$$

$$s^{2}\overline{y} - y(0) - y'(0) + 4[s\overline{y} - y(0)] + 4\overline{y} = \frac{1}{s+1}$$

$$\overline{y}(s^{2} + 4s + 4) = \frac{1}{s+1}$$

$$\overline{y} = \frac{1}{(s+1)(s+2)^{2}} = \frac{A}{s+1} + \frac{B}{(s+2)} + \frac{C}{(s+2)^{2}}$$

CLASS: III B.Sc Phyics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: IV BATCH-2017-2020

when
$$s = -1 \Rightarrow A = 1$$

when $s = -2 \Rightarrow C = -1$
Comparing s^2 coefficients, $A + B = 0 \Rightarrow B = -1$
 $y = L^{-1} \left(\frac{1}{(s+1)(s+2)^2} \right) = L^{-1} \left(\frac{1}{s+1} \right) + L^{-1} \left(\frac{-1}{(s+2)} \right) + L^{-1} \left(\frac{-1}{(s+2)^2} \right)$
 $y = e^{-t} - e^{-2t} - te^{-2t}$

Using Laplace transform technique, solve $\frac{d^2 y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t} \sin t$, y = 0, y'(0) = 0 when t = 0.

Solution:

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t}\sin t$$

Taking Laplace equation on both sides,

$$s^{2}\overline{y} - sy(0) - y'(0) + 2(s\overline{y} - y(0)) + 5\overline{y} = \frac{1}{(s+1)^{2} + 1}$$
$$\overline{y}(s^{2} + 2s + 5) = \frac{1}{(s^{2} + 2s + 2)}$$
$$\overline{y} = \frac{1}{(s^{2} + 2s + 2)(s^{2} + 2s + 5)}$$
$$\Rightarrow y = L^{-1}\left(\frac{1}{((s+1)^{2} + 1)((s+1)^{2} + 4)}\right)$$
$$y = e^{-t}L^{-1}\left(\frac{1}{(s^{2} + 1)(s^{2} + 4)}\right)$$
$$\frac{1}{(s^{2} + 1)(s^{2} + 4)} = \sin t^{*}\frac{\sin 2t}{2}$$
$$= \frac{1}{2}\int_{0}^{t}\sin 2u\,\sin(t-u)du$$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc Phyics COURSENAME: MATHEMATICS-II

COURSE CODE: 17PHU602

COURSENAME:MATHEMATICS-IIUNIT: IVBATCH-2017-2020

$$\sin 2u \, \sin(t-u) = \frac{1}{2} \big[\cos(3u-t) - \cos(u+t) \big]$$

$$\sin t^* \frac{\sin 2t}{2} = \frac{1}{2} \int_0^t \frac{1}{2} \left[\cos(3u - t) - \cos(u + t) \right] du$$
$$= \frac{1}{4} \left(\frac{\sin(3u - t)}{3} - \sin(u + t) \right)$$
$$= \frac{1}{4} \left[\left(\frac{\sin(2t)}{3} - \sin 2t \right) - \left(\frac{-\sin t}{3} - \sin t \right) \right]$$
$$= \frac{1}{4} \left[\left(\frac{-2\sin(2t)}{3} \right) - \left(\frac{-4\sin t}{3} \right) \right]$$

$$y = e^{-t} L^{-1} \left(\frac{1}{\left(s^2 + 1\right) \left(s^2 + 4\right)} \right) = e^{-t} \frac{1}{12} \left[4\sin t - 2\sin 2t \right] = e^{-t} \frac{1}{6} \left[2\sin t - \sin 2t \right]$$

Using convolution, solve the initial value problem $y''+9y = \sin 3t$, y(0) = 0, y'(0) = 0.

Solution:

CLASS: III B.Sc Phyics COURSE CODE: 17PHU602

 \Rightarrow

COURSENAME: MATHEMATICS-II UNIT: IV BATCH-2017-2020

$$y''+9y = \sin 3t$$

$$L(y'')+9L(y) = L(\sin 3t)$$

$$s^{2}\overline{y} - sy(0) - y'(0) + 9\overline{y} = \frac{3}{s^{2} + 9}$$

$$(s^{2} + 9)\overline{y} = \frac{3}{s^{2} + 9}$$

$$\Rightarrow \overline{y} = \frac{3}{(s^{2} + 9)^{2}}$$

$$y = L^{-1}\left(\frac{3}{(s^{2} + 9)^{2}}\right)$$

$$= L^{-1}\left(\frac{1}{2s} \cdot \frac{6s}{(s^{2} + 9)^{2}}\right)$$

$$= \frac{1}{2}\int_{0}^{t} t\sin 3t \ dt$$

$$\frac{1}{2}\int_{0}^{t} t\sin 3t \ dt = \frac{1}{2}\left[t\left(\frac{-\cos 3t}{3}\right) - 1\left(\frac{-\sin 3t}{9}\right)\right]_{0}^{t}$$

$$= \frac{1}{2}\left[\frac{-3t\cos 3t + \sin 3t}{9}\right]$$

Using Laplace transform find the solution of $y'+3y+2\int_{0}^{t} ydt = t$, y(0) = 1

Solution:

$$y'+3y+2\int_{0}^{t} ydt = t$$

Taking L. T. on both sides,

Prepared by R. Gayathri, Asst Prof, Department of Mathematics KAHE

Page 20/30

KARPAGAM A	KARPAGAM ACADEMY OF HIGHER EDUCATION				
CLASS: III B.Sc Phyics	COURSENAME:	MATHEMATICS-II PATCH 2017 2020			
COURSE CODE: 1/FHU802	UNII:IV	DATCH-2017-2020			
L(y')+3L($f(y) + 2L\left(\int_{0}^{t} y dt\right) = L(t)$				
$s \overline{y} - y(0) - $	$+3\overline{y}+2\frac{1}{s}\overline{y}=\frac{1}{s^2}$				
$\overline{\mathcal{Y}}$	$\left(s+3+\frac{2}{s}\right) = \frac{1}{s^2} + 1$				
$\overline{\mathcal{Y}}\left(\frac{\mathcal{S}}{\mathcal{S}}\right)$	$\left(\frac{s^2+3s+2}{s}\right) = \frac{1+s^2}{s^2}$				
$\overline{y} = \frac{1}{(s^2)^2}$	$\frac{1+s^2}{s^2+3s+2} = \frac{1+s^2}{s(s+1)(s+2)}$				
$\frac{1+s^2}{s(s+1)(s+2)}$	$=\frac{A}{s} + \frac{B}{s+1} + \frac{C}{s+2}$				
Using partial fractions, A	$A = \frac{1}{2}, B = -2, C = \frac{5}{2}$				
$\overline{y} = \frac{1}{\left(s^2\right)}$	$\frac{1+s^2}{+3s+2)s}$				
$\Rightarrow y(t) = L^{-1} \bigg($	$\left(\frac{1+s^2}{s(s+1)(s+2)}\right)$				
$L^{-1}\left(\frac{1+s^2}{s(s+1)(s+2)}\right) = L^{-1}\left(\frac{1+s^2}{s(s+1)(s+2)}\right)$	$\left(\frac{\frac{1}{2}}{s}\right) + L^{-1}\left(\frac{-2}{s+1}\right) + L^{-1}\left(\frac{\frac{5}{2}}{s+1}\right)$	$\overline{2}$			
$y(t) = \frac{1}{2}$ (1)	$()-2 e^{-t}+\frac{5}{2}e^{-2t}$				

Find the inverse Laplace transform of $\frac{1}{(s+1)(s^2+4)}$ (May / June 2009)

Solution:

$$L^{-1}\left[\frac{1}{(s^2+4)(s+1)}\right] = L^{-1}\left(\frac{1}{s^2+4} \cdot \frac{1}{s+1}\right)$$

KARPAGAM ACADEMY OF HIGHER EDUCATION **CLASS: III B.Sc Phyics COURSENAME: MATHEMATICS-II COURSE CODE: 17PHU602 BATCH-2017-2020 UNIT: IV** $=L^{-1}[F(s), G(s)]$ $= f(t) * g(t) = \sin 2t * e^{-t}$ $=\int_{a}^{t}f(u)g(t-u)du$ $=\int_{0}^{\infty}\sin 2u \ e^{-(t-u)}du$ $=e^{-t}\int_{0}^{t}\sin 2u\ e^{u}du$ $=e^{-t}\frac{e^{u}}{1+4}(\sin 2u-2\cos 2u)_{0}^{t}$ $=e^{-t}\left[\frac{e^{t}}{5}\left(\sin 2t-2\cos 2t\right)+\frac{2}{5}\right]$ $=\frac{1}{5}(\sin 2t - 2\cos 2t) + \frac{2e^{-t}}{5}$ Solve the equation $y''+9y = \cos 2t$, y(0) = 1, $y\left(\frac{\pi}{2}\right) = -1$, using Laplace transform(*May/ June*

2009)

Solution:

Given

Prepared by R. Gayathri, Asst Prof, Department of Mathematics KAHE

 $y''+9y = \cos 2t$
KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc Phyics

COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: IV BATCH-2017-2020

$$L(y'') + 9L(y) = L(\cos 2t)$$

$$s^{2}L(y(t)) - sy(0) - y'(0) + 9L(y(t)) = \frac{s}{s^{2} + 4}$$

$$s^{2}Y(s) - s(1) - k + 9Y(s) = \frac{s}{s^{2} + 4}, \quad Assume \quad L(y(t)) = Y(s) \ \& \ y'(0) = k$$

$$Y(s)(s^{2} + 9) = \frac{s}{s^{2} + 4} + s + k$$

$$Y(s) = \frac{\frac{s}{s^{2} + 4} + s + k}{(s^{2} + 9)} = \frac{s}{(s^{2} + 4)(s^{2} + 9)} + \frac{s + k}{(s^{2} + 9)}$$

$$y(t) = L^{-1} \left[\frac{s}{(s^{2} + 4)(s^{2} + 9)} + \frac{s + k}{(s^{2} + 9)} \right] = L^{-1} \left[\frac{1}{5} \left(\frac{s}{(s^{2} + 4)} - \frac{s}{(s^{2} + 9)} \right) + \frac{s + k}{(s^{2} + 9)} \right]$$

$$y(t) = L^{-1} \left(\frac{s}{(s^{2} + 4)(s^{2} + 9)} \right) + L^{-1} \left(\frac{s}{(s^{2} + 9)} \right) + L^{-1} \left(\frac{k}{(s^{2} + 9)} \right)$$

$$y = \frac{1}{5} \cos 2t + \frac{4}{5} \cos 3t + \frac{k}{3} \sin 3t$$

$$Given \ y\left(\frac{\pi}{2}\right) = -1 \Rightarrow k = \frac{12}{5}$$

$$y = \frac{1}{5} \cos 2t + \frac{4}{5} \cos 3t + \frac{4}{5} \sin 3t$$

Using Convolution theorem find $L^{-1}\left[\frac{1}{(s^2+1)(s+1)}\right]$ (Nov/ Dec. 2009)

Solution:

$$L^{-1}\left[\frac{1}{(s^{2}+1)(s+1)}\right] = L^{-1}\left(\frac{1}{s^{2}+1} \cdot \frac{1}{s+1}\right)$$

Prepared by R. Gayathri, Asst Prof, Department of Mathematics KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc Phyics COURSE CODE: 17PHU602

COURSENAME: MATHEMATICS-II UNIT: IV BATCH-2017-2020

$$= L^{-1} [F(s) \cdot G(s)]$$

= $f(t) * g(t) = \sin t * e^{-t}$
= $\int_{0}^{t} f(u)g(t-u)du$
= $\int_{0}^{t} \sin u e^{-(t-u)}du$
= $e^{-t} \int_{0}^{t} \sin u e^{u}du$
= $e^{-t} \frac{e^{u}}{1+1} (\sin u - \cos u) \int_{0}^{t}$
= $e^{-t} \left[\frac{e^{t}}{2} (\sin t - \cos t) + \frac{1}{2} \right]$
= $\frac{1}{2} (\sin t - \cos t) + \frac{e^{-t}}{2}$

Solve the differential equation $\frac{d^2y}{dt^2} + y = \sin 2t$, y(0) = 0, y'(0) = 0 by using Laplace transform method(*Nov/Dec. 2009*)

Solution:

Given
$$\frac{d^2 y}{dt^2} + y = \sin 2t$$

Applying Laplace on both sides,

$$L(y'') + L(y) = L(\sin 2t)$$

$$s^{2}L(y(t)) - sy(0) - y'(0) + L(y(t)) = \frac{2}{s^{2} + 4}$$
Let $L(y(t)) = Y(s) \Rightarrow s^{2}Y(s) - sy(0) - y'(0) + Y(s) = \frac{2}{s^{2} + 4}$

Prepared by R. Gayathri, Asst Prof, Department of Mathematics KAHE

Prepared by R. Gayathri, Asst Prof, Department of Mathematics KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po),

Coimbatore -641 021

Subject: MATHEMATICS-II

Class : III - B.Sc. Physics

Subject Code: 17PHU602

Semester : VI

Unit IV

Part A (20x1=20 Marks) (Question Nos. 1 to 20 Online Examinations)

Possible Questions						
Question	Opt 1	Opt 2	Opt 3	Opt 4	Answer	
The operator L that transforms $f(t)$ into $F(s)$ is called the						
operator.	Fourier	Hankel	Laplace operator	Ζ	Laplace operator	
The Laplace transform is said to exist if the integral is						
for some value of s; otherwise it does not exist.	discontinuous	divergent	closed	convergent	convergent	
If $f(t)$ is on every finite interval in $(0,\infty)$ and is						
of exponentialorder 'a' for t>0, then the Laplace						
transform of f(t) exists for all s>a, ie F(s) exists for	unifromly	piecewise				
every s>a.	continuous	continuous	convergent	divergent	piecewise continuous	
If f(t) is piecewise continuous on every and is of						
exponentialorder 'a' for t>0, then the Laplace transform	closed interval	Half open interval	infinite interval in			
of f(t) exists for all s>a, ie F(s) exists for every s>a.	[0,1]	[0,1)	$(\infty, 0)$	finite interval in $(0,\infty)$	finite interval in $(0,\infty)$	
If f(t) is piecewise continuous on every finite interval in						
$(0,\infty)$ and is of 'a' for t>0, then the Laplace						
transform of f(t) exists for all s>a, ie F(s) exists for						
every s>a.	exponential order	quadratic order	cubic order	n th order	exponential order	

If f(t) is piecewise continuous on every finite interval in					
$(0,\infty)$ and is of exponential order'a' for t>0, then the					
Laplace transform of $f(t)$ exists for all s>a, ie $F(s)$ exists				both necessary and	
for every s>a. This condition is	necessary	non sufficient	Sufficient	sufficient	Sufficient
L[1] =	n! / s^(n+1)	1/s, s > 0	1/(t+1)	1/ (s-a)	1/s, s > 0
$L[t^n] =$	2/(s-1)	n!	1/ s^(n+1)	n! / s^(n+1)	n! / s^(n+1)
$L[e^{(at)}] =$	1/ (s-a)	1/s, $s > 0$	n! / s^(n+1)	a/(s-a)	1/ (s-a)
		s^2 F(s)-s f(0)- f			
$L[e^{(-at)}] =$	F(s-a)	'(0)	1/ (s+a)	n! / s^(n+1)	1/ (s+a)
L[sinat]=	$a/(s^2 + a^2)$	1/(s^2 +a^2)	(s^2 +a^2)	a/(s^3+a^3)	a/(s^2 +a^2)
L[cosat]=	n! / s^(n+1)	s^(n+1)	t^(n+1)	s/(s^2 +a^2)	s/(s^2 +a^2)
L[coshat]=	s/(s^2 -a^2)	1/(s^3 -a^3)	s/(s^2 +a^2)	1/a F(s/a)	s/(s^2 -a^2)
L[af(t) + bg(t)] =	aF(s)+bG(s)	aF(s)-bG(s)	bF(s)-aG(s)	bF(s) * aG(s)	aF(s)+bG(s)
L[af(t) + bg(t)] = aF(s)+bG(s) is calledproperty	quasi linear	non-linear	Linearity	homogenous	Linearity
	L[af(t) + bg(t)] =	L[af(t) + bg(t)] =		L[af(t) + bg(t)] = aF(s)	L[af(t) + bg(t)] =
Lineraity property is	aF(s) * bG(s)	aF(s)+bG(s)	1/a F(s/a)	bG(s)	aF(s)+bG(s)
If $L[f(t)]=F(s)$ then $L[e^{t} f(t)]=$	aF(s)+bG(s)	F(s+a)	1-s	F(s-a)	F(s-a)
	$L[e^{t} f(t)] = F(s-t)$	L[f(at)] = 1/a	s^2 F(s)-s f(0)- f		
First Shifting property is if $L[f(t)] = F(s)$ then	a)	F(s/a)	'(0)	s^(n+1)	$L[e^{t} f(t)]=F(s-a)$
If $L[f(t)]=F(s)$ then $L[e^{t} f(t)]=F(s-a)$ is called			First shifting		
property	linear	convolution	property	non homogenous	First shifting property
If $L[f(t)] = F(s)$ then $L[f(at)] = 1/a F(s/a)$ is called			First shifting		
property.	Change of scale	convolution	property	non homogenous	Change of scale
If $L[f(t)] = F(s)$ then $L[f(at)] =$	F(s/a)	1/a F(s/a)	F(s-a)	a F(s/a)	1/a F(s/a)
		$L[f(at)] = 1/(s^3 - 1)$	L[f(at)] = 1/a		
is called the change of scale property	L[f(at)] = t-1	a^3)	F(s/a)	$L[e^{t} f(t)]=F(s-a)$	L[f(at)] = 1/a F(s/a)
	L[f(at)] = 1/a				
Change of scale property is	F(s/a)	L[f(at)] = F(s/a)	L[f(at)] = F(a/s)	L[f(at)] = a F(s/a)	L[f(at)] = 1/a F(s/a)
If $L[f(t)] = F(s)$ then $L[f'(t)] =$	F(s)-f(0)	s F(s)-+(0)	s F(s)-f(0)	F(s)+f(0)	s F(s)-f(0)
		s^2 F(s)-s f(0)- f	s^2 F(s)-s f(0)+ f		
If $L[f(t)] = F(s)$ then $L[f''(t)] =$	s^2 F(s)-s f(0)	'(0)	'(0)	s^2 F(s)+s f(0)+ f '(0)	s^2 F(s)-s f(0)- f '(0)
$L[5(t^{3})] =$	1	1/s, s > 0	3/ (s^4)	30/ (s^4)	30/ (s^4)
L[6 t] =	6	6/(s^2)	6/s	6-s	6/(s^2)
$L[2 e^{(-6 t)}] =$	2/(s+6)	2	2/(s-6)	2/s	2/(s+6)
L[7] =	7/s	$1/s$, $s > \overline{0}$	(-7/s)	7	7/s

L[10 sin2t]=	20/(s^2-4)	2/(s^2+4)	2/(s^2-4)	20/(s^2+4)	20/(s^2+4)
$L[7 \cosh 3t] =$	7s/(s^2-9)	7/(s^2-9)	s/(s^2-9)	7s/(s^2+9)	7s/(s^2-9)
The inverse laplace transform of 1/s is =	0	-1	s+a	1	1
The inverse laplace transform of $1/(s-a)$ is =	e^(-at)	1/e^(at)	e^(at)	1/e^(-at)	e^(at)
The inverse laplace transform of $1/(s+a)$ is =	e^(-at)	1/e^(at)	1/e^(-at)	e^(at)	e^(-at)
If L[f(t)]=F(s) then f(t) is called laplace					
transform of F(s)	Linear	non-linear	inverse	quasi linear	inverse
If L is linear then is Linear.	L+1	L^(-1)	1/L	(-1/L)	L^(-1)
If L is linear then L inverse is	non-linear	Linear	divergent	quasi linear	Linear
The convolution of f^*g of $f(t)$ and $g(t)$ is defined as	$(f^*g)(t)=\int (from 0)$ to t) f(u) g(t+u) du	$(f^*g)(t)=\int (from 0)$ to t) f(u) du	$(f^*g)(t) = \int \text{from } 0$ to t f(u) g(t-u) du	$(f^*g)(t)=\int (\text{from } 0 \text{ to } t)$ g(t-u) du	$(f^*g)(t)=\int (from 0 \text{ to } t)$ f(u) g(t-u) du
	$(f^*g)(t) = \int \text{from } 0$				$(f^*g)(t) = \int \text{from } 0 \text{ to } t$
is called the convolution theorem.	to t f(u) g(t-u) du	$(f^*g)(t)=1-t$	$(f^*g)(t)=e^{(-at)}$	$(f^*g)(t)=L^{(-1)}(1)$	f(u) g(t-u) du
A function f(t) is said to bewith period T>0 if					
f(t+T)=f(t) for all t	even	projection	odd	peroidic	periodic
L[k] =	k/s	k/s, $s > 0$	(-1/s)	k	k/s
L[sinhat]=	$a/(s^{2}-a^{2})$	$1/(s^{3}-a^{3})$	$a/(s^{2}+a^{2})$	1/a F(s/a)	a/(s^2 -a^2)
$L[e^{(8t)}] =$	1/ (s-8)	1/s, $s > 0$	n! / s^(n+1)	8/(s-8)	1/ (s-8)

UNIT-V

Interpolation with unequal intervals problems-Lagrange's interpolation problems-Newton's divided difference interpolation problems-Newton's forward and backward difference problems

Introduction

Interpolation means the process of computing intermediate values of a function a given set of tabular values of a function. Suppose the following table represents a set of values of x and y.

$\mathbf{x}:\mathbf{x}_1$	X ₂	x ₃ x _n
$\mathbf{y}:\mathbf{y}_1$	y ₂	y3yn

We may require the value of $y = y_i$ for the given $x = x_i$, where x_i is between x_0 to x_n Let y = f(x) be a function taking the values $y_0, y_1, y_2, ..., y_n$ corresponding to the *values* $x_0, x_1, x_2, ..., x_n$. Now we are trying to find $y = y_i$ for the given $x = x_i$ under assumption that the function f(x) is not known. In such cases , we replace f(x) by simple fan arbitrary function and let $\Phi(x)$ denotes an arbitrary function which satisfies the set of values given in the table above . The function $\Phi(x)$ is called interpolating function or smoothing function or interpolation formula.

Newton's forward interpolation formula(or) Gregory-Newton forward interpolation formula (for equal intervals)

Let y = f(x) denote a function which takes the values $y_0, y_1, y_2, \dots, y_n$ corresponding to the values $x_0, x_1, x_2, \dots, x_n$.

Let suppose that the values of x i.e., $x_0, x_1, x_2, \ldots, x_n$ are equidistant .

 $x_1 = x_0 + h$; $x_2 = x_1 + h$; and so on $x_n = x_{n-1} + h$;

Therefore xi = x0 + ih, where $i = 1, 2, \dots, n$

Let $P_n(x)$ be a polynomial of the nth degree in which *x* is such that

 $y_I = f(x_i) = P_n(x_i), I = 0, 1, 2, \dots, n$

Let us assume Pn(x) in the form given below

$$P_n(\mathbf{x}) = a_0 + a_1 (\mathbf{x} - \mathbf{x}_0)^{(1)} + a_2 (\mathbf{x} - \mathbf{x}_0)^{(2)} + \dots + a_r (\mathbf{x} - \mathbf{x}_0)^{(r)} + \dots + a_r (\mathbf{x} - \mathbf{$$

+...... +
$$a_n (x - x_0)^{(n)} \dots \dots (1)$$

This polynomial contains the n + 1 constants $a_0 a_1 a_2 \dots a_n$ can be found as

follows :

 $P_n(x_0) = y_0 = a_0$ (setting x = x0, in (1))

Similarly $y_1 = a_0 + a_1 (x_1 - x_0)$

$$y_2 = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)$$

From these, we get the values of $a_0, a_1, a_2, \dots, a_n$

i.e.,

Therefore, $a_0 = y_0$

 $\Delta y_0 = y_1 - y_0 = a_1 (x_1 - x_0)$

 $= a_1 h$

 $\Rightarrow a_1 = \Delta y_0 /h$ $=>a_2 = (\Delta y_1 - \Delta y_0) / 2h^2 = \Delta^2 y_0 / 2! h^2$ lly $=> a_3 = \Delta^3 y_0 / 3! h^3$

lly

Putting these values in (1), we get

$$P_{n}(\mathbf{x}) = y_{0} + (x - x_{0})^{(1)} \Delta y_{0} / h + (x - x_{0})^{(2)} \Delta^{2} y_{0} / (2! h^{2}) + \dots + (x - x_{0})^{(r)} \Delta^{r} y_{0} / (r! h^{r}) + \dots + (x - x_{0})^{(n)} \Delta^{r} y_{0} / (n! h^{n})$$

 $x - x_0$

By substituting = u, the above equation becomes

h

 $y(x_0 + uh) = y_u = y_0 + u \Delta y_0 + u (u-1) \Delta^2 y_0 + u (u-1)(u-2) \Delta^3 y_0 + \dots$

2!

By substituting $u = u^{(1)}$,

 $u (u-1) = u^{(2)},$ $u(u-1)(u-2) = u^{(3)}, ... in the above equation, we get$

31

$$P_n(x) = P_n y(x_0 + uh) = y_0 + u^{(1)} \Delta y_0 + u^{(2)} \Delta^2 y_0 + u^{(3)} \Delta^3 y_0 + \dots + u^{(r)} \Delta^r y_0 + \dots + u^{(n)} \Delta^n y_0$$

$$2! \quad 3! \qquad r! \qquad n!$$

The above equation is known as **Gregory-Newton forward formula or Newton's** forward interpolation formula.

Note: 1. This formula is applicable only when the interval of difference is uniform.

2. This formula apply forward differences of y_0 , hence this is used to interpolate the values of y nearer to beginning value of the table (i.e., x lies between x0 to^x1 or x1 to x_2)

Example.

Prepared by R.Gayathri, Asst Prof, Department of Mathematics, KAHE Page 3/19

Find the values of y at x = 21 from the following data.

X:	20	23	26
X:	0.3420	0.3907	
		0.4384	
		29	
		0.4848	

Solution.

Step 1. Since x = 21 is nearer to beginning of the table. Hence we apply Newton's

forward formula.

Step 2. Construct the difference table

х	У	Δy_0	$\Delta^2 y_0$	$\Delta^3 y_0$
20	0.3420	(0.3420-0.390	07)	
		0.0487	(0.0477 - 0.0487)	
23	0.3907		-0.001	
		0.0477		-0.0003
26	0.4384		-0.0013	
		0.0464		
29	0.4848			

Step 3. Write down the formula and put the various values :

$$P_{n}(x) = P_{n}y(x_{0} + uh) = y_{0} + u^{(1)}\Delta y_{0} + u^{(2)}\Delta^{2}y_{0} + u^{(3)}\Delta^{3}y_{0} + \dots + u^{(r)}\Delta^{r}y_{0} + \dots + u^{(n)}\Delta^{n}y_{0}$$

$$2! \qquad 3! \qquad r! \qquad n!$$

Where $u^{(1)} = (x - x_0) / h = (21 - 20) / 3 = 0.3333$ u(2) = u(u - 1) = (0.3333)(0.6666)

 $P_n (x=21) = y(21) = 0.3420 + (0.3333)(0.0487) + (0.3333)(-0.6666)(-0.001) + (0.3333)(-0.6666)(-1.6666)(-0.0003)$

=**0.3583**

Example: From the following table of half yearly premium for policies maturing at different ages, estimate the premium for policies maturing at age 46.

Age	X:	45	50	55	60	65
Premium	y:	114.84	96.16	83.32	74.48	68.48

Solution.

Step1.Since x = 46 is nearer to beginning of the table and the values of x is equidistant i.e., h = 5...Hence we apply Newton's forward formula.

Step 2. Construct the difference table

x	у	Δy_0	$\Delta^2 y_0$	$\Delta^3 y_0$	$\Delta^4 y_0$
45	114.84	-18.68			
50	96.16	-12 84	5.84	-1 84	
55	83.12	-8.84	4.00	-1.16	0.68
60	74.48	-0.04	2.84	-1.10	
65	68.48	-6.00			

Step 3. Write down the formula and put the various values : $P_n(x) = P_n y(x_0 + uh) = y_0 + u^{(1)} \Delta y_0 + u^{(2)} \Delta^2 y_0 + u^{(3)} \Delta^3 y_0 + \dots + u^{(r)} \Delta^r y_0 + \dots + u^{(n)} \Delta^n y_0$ 3! 21 r!n! Where $u = (x - x_0) / h = (46 - 45) / 5 = 01/5 = 0.2$ $P_n(x=46) = y(46) = 114.84 + [0.2(-18.68)] + [0.2(-0.8)(5.84)/3]$ + [0.2 (-0.8) (-1.8)(-1.84)/6] + [0.2 (-0.8) (-1.8)(-2.8)(0.68)]= 114.84 - 3.7360 - 0.4672 - 0.08832 - 0.228

= 110.5257

Example. From the following table, find the value of $\tan 45^{\circ} 15^{\circ}$ \mathbf{x}^{0} : 45 46 47 48 49 50 \mathbf{x}^{0} : 1.0 1.07237 1.03553 1.11061 1.15037 1.19175 tan

Solution.

Step 1.Since $x = 45^{\circ} 15$ is nearer to beginning of the table and the values of x is equidistant i.e., h = 1. Hence we apply Newton's forward formula.

Step 2. Construct the difference table to find various Δ 's

$\Delta^5 y_0$ $\Delta^2 v_0$ $\Delta^3 v_0$ $\Delta^4 y_0$ Х У Δv_0

Prepared by R.Gayathri, Asst Prof, Department of Mathematics, KAHE

Page 6/19

ASS: III B.Sc PHYSICS		COUR	SE NAME:MAT	FHEMATICS-II
RSE CODE: 17PHU602	UNIT: V		BATCH:201	17-2020
$45^{0}1.0000$ $460 1.03553$ $47^{0} 1.07237$ $48^{0}1.11061$ $49^{0} 1.15037$ $50^{0} 1.19175$	0.03553 0.03684 0.03824 0.03976 0.04138	0.00131 0.00140 0.00152 0.00162	0.00009 0.00012 0.00010	0.00003 -0.00005 -0.00002
$P_n(x) = P_n v(x_0 + uh)$	$v_0 = v_0 + u^{(l)} \Lambda v_0 - v_0$	$+ u^{(2)} \Lambda^2 v_0 +$	$u^{(3)} \wedge^3 v_0 + \dots +$	$+ u^{(r)} \wedge^r v 0 + \dots + u^{(n)} \wedge^n v 0$
- " (") - ", (")	, <u>, , , , , , , , , , , , , , , , , , </u>		<u>3!</u>	r! n!
Where u =	$(45^{o} 15' - 45^{0})/$	1 ⁰		
=	15' / 1 ⁰			
=	0.25	\dots (since 1 ⁰ =	= 60 ')	
$y(x=45^{\circ}15')=P_5(4)$	$(5^{\circ}15') = 1.00$	+ (0.25)(0.)3553) + (0.25))(- 0.75)(0.00131)/2

+(0.25)(-0.75)(-1.75)(0.00009)/6

+(0.25)(-0.75) (-1.75) (-2.75) (0.0003)/24

+(0.25)(- 0.75) (-1.75) (-2.75) (-3.75) (-0.00005)/120

= 1.000 + 0.0088825 - 0.0001228 + 0.0000049

=1.00876

Newton's backward interpolationformula(or) Gregory-Newton backward interpolation formula (for equal intervals)

Let y = f(x) denote a function which takes the values $y_0, y_1, y_2, \dots, y_n$ corresponding to the values $x_0, x_1, x_2, \dots, x_n$.

Let suppose that the values of x i.e., $x_0, x_1, x_2, \dots, x_n$ are equidistant . $x_1 = x_0 + h$; $x_2 = x_1 + h$; and so on $x_n = x_{n-1} + h$;

Therefore xi = x0 + ih, where $i = 1, 2, \dots, n$

Let $P_n(x)$ be a polynomial of the nth degree in which x is such that $y_I = f(x_i) = P_n(x_i), I = 0, 1, 2, \dots n$

$$P_n(\mathbf{x}) = a_0 + a_1 (\mathbf{x} - \mathbf{x}_n)^{(1)} + a_2 (\mathbf{x} - \mathbf{x}_n) (\mathbf{x} - \mathbf{x}_{n-1})^{\prime} + \dots + a_n (\mathbf{x} - \mathbf{x}_n) (\mathbf{x} - \mathbf{x}_{n-1}) \dots (\mathbf{x} - \mathbf{x}_{1}) \dots (\mathbf{1})$$

This polynomial contains the n + 1 constants $a_{0,a_{1,a_{2,}}}$ a_n can be found as follows :

 $P_{n}(x_{n}) = y_{n} = a_{0} \text{ (setting } x = xn, \text{ in (1))}$ Similarly $y_{n-1} = a_{0} + a_{1}(x_{n-1} - x_{n})$ $y_{n-2} = a_{0} + a_{1}(x_{n-2} - x_{n}) + a_{2}(x_{n-2} - x_{n})$

From these, we get the values of $a_0, a_1, a_2, \dots, a_n$ Therefore, $a_0 = y_n$ $y_n = y_n - y_n - 1 = a_1 x_1 - x_n$

$$= a_{1}h$$

$$= a_{1}h$$

$$= y_{n}/h$$

$$= (y_{1}-y_{n})/2h^{2} = y_{n}/2!h^{2}$$

$$= y_{n}/2!h^{2}$$

$$= y_{n}/2!h^{2}$$

$$= y_{n}/2!h^{2}$$

Prepared by R.Gayathri, Asst Prof, Department of Mathematics, KAHE Page 8/19

Putting these values in (1), we get $P_{n}(\mathbf{x}) = = y_{n} + (x - x_{n})^{(n)} y_{n} / h + (x - x_{n})^{(2)} y_{n} / (2! h^{2}) + (x - x_{n})^{(r)} y_{n} / (r! h^{r})$ +..... + $(x - x_n)^{(n)} y_n/(n! h^n)$ By substituting = v, the above equation becomes $y(x_n + vh) = y_n + v \, y_n + v \, (v+1) \, \frac{2}{2!} y_n + v \, (v+1)(v+2) \, \frac{3}{2!} y_n + \dots$ By substituting $v = v^{(1)}$, $v(v+1) = v^{(2)}$ $v(v+1)(v+2) = v^{(3)}, \dots$ in the above equation, we get $P_{n}(x) = P_{n}y(x_{n} + vh) = y_{n} + v^{(1)}y_{n} + v^{(2)}y_{n} + v^{(3)}y_{n} + \dots + v^{(r)}y_{n} + \dots + v^{(n)}\Delta^{n}y_{n}$ $2! \qquad 3! \qquad r!$ n! The above equation is known as Gregory-Newton backward formula or Newton's

The above equation is known as Gregory-Newton backward formula or Newton's backward interpolation formula.

Note: 1. This formula is applicable only when the interval of difference is uniform.

2. This formula apply backward differences of y_n , hence this is used to interpolate the values of y nearer to the end of a set tabular values. (i.e., x lies between xn to xn-1 and xn-1 to x_{n-2})

Example: Find the values of y at x = 28 from the following data.

X:	20	23	26	29
у	0.3420	0.3907	0.4384	0.4848

Solution.

Step 1.Since x = 28 is nearer to beginning of the table. Hence we apply Newton's backward formula.

Step 2. Construct the difference table

X	У	Ŭ Yn	$\int_{0}^{2} y_{n}$	$\int_{y_n}^{3} y_n$
20	0.3420 (0.3420-0.3907)		
23	0 3907	0.0487 (0.0477-0.0487)	
25	0.5707	0.0477	0.001	0.0002
26	0.4384			-0.0003
29	0.4848	0.0464	-0.0013	

Step 3. Write down the formula and put the various values :

$$P_{3}(x) = P_{3}y(x_{n} + vh) = y_{n} + v^{(1)} y_{n} + v^{(2)} y_{n} + v^{(3)} y_{n}$$

$$2! \qquad 3!$$
Where $v^{(1)} = (x - x_{n}) / h = (28 - 29) / 3 = -0.3333$
 $v^{(2)} = v(v+1) = (-0.333)(0.6666)$
 $v^{(3)} = v(v+1) (v+2) = (-0.333)(0.6666)(1.6666)$

$$P_n(x=28) = y(28) = 0.4848 + (-0.3333)(0.0464) + (-0.3333)(0.6666)(-0.0013)/2$$

+(-0.3333) (0.6666)(1.6666) (-0.0003)/6

= 0.4848 - 0.015465 + 0.0001444 + 0.0000185

= **0.4695**

Example: From the following table of half yearly premium for policies maturing at different ages, estimate the premium for policies maturing at age 63.

Age	x:	45	50	55	60	65
Premium	y:	114.84	96.16	83.32	74.48	68.48

Solution.

Step 1.Since x = 63 is nearer to beginning of the table and the values of x is equidistant i.e., h = 5...Hence we apply Newton's backward formula. Step 2. Construct the difference table

Х	у	~yo	$^{2}y0$	$\frac{3}{y_0}$	${}^{\mathcal{A}}\mathcal{Y}_0$
45	114.84	-18.68			
50	96.16	-12.84	5.84	-1 84	
55	83.12	-8.84	4.00	1.16	-
60	74.48	-6.00	2.84		
65	68.48	0.00			0.00

0.68

Step 3. Write down the formula and put the various values :

$$P_{3}(x) = P_{3}y(x_{n} + vh) = y_{n} + v^{(1)} y_{n} + v^{(2)} y_{n} + v^{(3)} y_{n} + v^{(4)} y_{n}$$

$$2! \qquad 3! \qquad 4!$$

Where
$$v^{(1)} = (x - x_n) / h = (63 - 65) / 5 = -2/5 = -0.4$$

 $v(2) = v(v+1) = (-0.4)(1.6)$
 $v(3) = v(v+1) (v+2) = (-0.4)(1.6) (2.6)$

Prepared by R.Gayathri, Asst Prof, Department of Mathematics, KAHE Page 11/19

v(4) = v(v+1) (v+2) (v+3) = (-0.4)(1.6) (2.6)(3.6)

 $P_4 (x=63)=y(63) = 68.48 + [(-0.4) (-6.0)] + [(-0.4) (1.6) (2.84)/2] + [(-0.4) (1.6) (2.6)(-1.16)/6] + [(-0.4) (1.6) (2.6)(3.6) (0.68)/24]$

= 68.48 + 2.40 - 0.3408 + 0.07424 - 0.028288

= 70.5852

Example: From the following table , find the value of $\tan 49^{\circ} 15$ '

x⁰: 45 46 47 48 49 50 tan x⁰: 1.0 1.03553 1.07237 1.11061 1.15037 1.19175

Solution.

Step 1.Since $x = 49^{\circ} 45$ is nearer to beginning of the table and the values of x is equidistant i.e., h = 1. Hence we apply Newton's backward formula.

	Step 2. 0	Construct the	difference table	to find various	s Δ's		
	X	у	y0	² y0	³ У0	${}^{\mathcal{A}}y_0$	5 Y0
Prepared by R.Gayathri, Asst Prof, Department of Mathematics, KAHE Page 12/19							

LASS: III B.Sc P	HYSICS		COUR	SE NAME:MA	FHEMATICS-II
URSE CODE:	17PHU602	UNIT:	V	BATCH:20	17-2020
45 ⁰	1.0000				
46	1.03553	0.03553	0.00131		
47 ⁰	1.07237	0.03684	0.00131	0.00009	0 00003
48^{0}	1.11061	0.03824	0.00152	0.00012	-0.00005
49 ⁰	1.15037	0.03976	0.00152	0.00010	-0.00002
50^{0}	1.19175	0.04138	0.00102		

Step 3. Write down the formula and substitute the various values :

$$P_{5}(x) = P_{5}y(x_{n} + vh) = y_{n} + v^{(1)} y_{n} + v^{(2)} y_{n} + v^{(3)} y_{n} + v^{(4)} y_{n} + v^{(5)} y_{n}$$

$$2! \quad 3! \quad 4! \quad 5!$$
Where $v = (49^{\circ} 45' - 50^{\circ}) / 1^{\circ}$

$$= -15' / 1^{\circ}$$

$$= -0.25 \dots (\text{since } 1^{\circ} = 60')$$

$$v(2) = v(v+1) \qquad = (-0.25) (0.75)$$

$$= (-0.25) (0.75)(1.75)$$

$$v(3) = v(v+1) (v+2)$$

v(4) = v(v+1) (v+2) (v+3) = (-0.25)(0.75) (1.75) (2.75) $y (x=49^{\circ}15') = P_5 (49^{\circ}15') = 1.19175 + (-0.25)(0.04138) + (-0.25)(0.75) (0.00162)/2 + (-0.25) (0.75)(1.75) (0.0001)/6$

 $+(-0.25)(\ 0.75)\ (1.75)\ (2.75)\ (-0.0002)/24$ $+(-0.25)(\ 0.75)\ (1.75)(2.75)\ (3.75)\ (-0.00005)/120$ $= 1.19175 - 0.010345 - 0.000151875 + 0.000005 + \dots$ = 1.18126

Lagrange's Interpolation Formula

Interpolation means the process of computing intermediate values of a function a given set of tabular values of a function. Suppose the following table represents a set of values of x and y.

We may require the value of $y = y_i$ for the given $x = x_i$, where x_i is between x_0 to x_n Let y = f(x) be a function taking the values $y_0, y_1, y_2, ..., y_n$ corresponding to the *values* $x_0, x_1, x_2, ..., x_n$. Now we are trying to find $y = y_i$ for the given $x = x_i$ under assumption that the function f(x) is not known. In such cases, x_i 's are not equally spaced we use *Lagrange*'s *interpolation formula*.

Newton's Divided Difference Formula:

The divided difference $f[x_0, x_1, x_2, ..., x_n]$, sometimes also denoted $[x_0, x_1, x_2, ..., x_n]$, on n + 1 points

 $X_0, x_1, ..., x_n$ of a function f(x) is defined by $f[x_0] \equiv f(x_0)$ and

Prepared by R.Gayathri, Asst Prof, Department of Mathematics, KAHE Page 14/19

$$f[x_0, x_1, ..., x_n] = \frac{f[x_0, ..., x_{n-1}] - f[x_1, ..., x_n]}{x_0 - x_n}$$

for $n \ge 1$. The first few differences are

$$f[x_0, x_1] = \frac{f_0 - f_1}{x_0 - x_1}$$

 $f[x_0, x_1, x_2] = \frac{f[x_0, x_1] - f[x_1, x_2]}{x_0 - x_2}$

$$f[x_0, x_1, ..., x_n] = \frac{f[x_0, ..., x_{n-1}] - f[x_1, ..., x_n]}{x_0 - x_n}$$

Defining

 $\pi_{\mu}(x) \equiv (x - x_0) (x - x_1) \cdots (x - x_n)$ and taking the derivative

 $\pi'_{k}(x_{k}) = (x_{k} - x_{0}) \cdots (x_{k} - x_{k-1}) (x_{k} - x_{k+1}) \cdots (x_{k} - x_{n}) \text{ gives the identity}$

$$f[[x_0, x_1, ..., x_n]] = \sum_{k=0}^{n} \frac{f_k}{\pi'_n(x_k)}.$$

Lagrange's interpolationformula(for unequal intervals)

Let y = f(x) denote a function which takes the values $y_0, y_1, y_2, \dots, y_n$ corresponding to the values $x_0, x_1, x_2, \dots, x_n$.

Let suppose that the values of x *i.e.*, x_0 , x_1 , x_2 ..., x_n . are not equidistant.

 $y_I = f(x_i)$ I = 0, 1, 2, ..., N

Now, there are (n+1) paired values (x_i, y_i) , I = 0, 1, 2, ..., n and hence f(x) can be represented by a polynomial function of degree n in x.

Prepared by R.Gayathri, Asst Prof, Department of Mathematics, KAHE Page 15/19

Let us consider f(x) as follows

$$f(\mathbf{x}) = a_0(x - x_1)(x - x_2)(x - x_3) \dots (x - x_n) + a_1 (x - x_0)(x - x_2)(x - x_3) \dots (x - x_n) + a_2 (x - x_0)(x - x_3)(x - x_4) \dots (x - x_n) \dots \\+ a_n (x - x_0)(x - x_2)(x - x_3) \dots (x - x_{n-1}) \dots \dots \dots (1)$$

Substituting $x = x_0$, $y = y_0$, in the above equation

 $y_0 = a_0(x - x_1)(x - x_2)(x - x_3)...(x - x_n)$

which implies Similarly

$$a_{0} = y_{0}/(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})...(x_{0} - x_{n})$$

$$a_{1} = y_{1}/(x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3})...(x_{1} - x_{n})$$

$$a_{2} = y_{2}/(x_{2} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})...(x_{2} - x_{n})$$
....

$$a_n = y_n (x_n - x_0) (x_n - x_2) (x_n - x_3) \dots (x_n - x_{n-1})$$

 x_n

Putting these values in (1), we get

$$(x - x_1)(x - x_2)(x - x_3)...(x - x_3)$$

 y_0

$$(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3}) \dots (x_{0} - x_{n})$$

$$+ (x - x_{0})(x - x_{2})(x - x_{3}) \dots (x - x_{n})$$

$$+ (x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3}) \dots (x_{1} - x_{n})$$

$$+ (x - x_{0})(x - x_{1})(x - x_{3}) \dots (x - x_{n})$$

$$+ (x_{2} - x_{0})(x_{2} - x_{2})(x_{1} - x_{3}) \dots (x_{1} - x_{n})$$

+

Prepared by R.Gayathri, Asst Prof, Department of Mathematics, KAHE Page 16/19

$$+ \frac{(x-x_0)(x-x_2)(x-x_3)\dots(x-x_{n-1})}{(x_n-x_0)(x_n-x_2)(x_n-x_3)\dots(x_n-x_{n-1})}$$

The above equation is called *Lagrange's interpolation formula* for unequal intervals.

Note : 1. This formula is will be more useful when the interval of difference is not uniform.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc PHYSICS COURSE CODE: 17PHU602

UNIT: V

COURSE NAME:MATHEMATICS-II BATCH:2017-2020

POSSIBLE QUESTIONS

1.	Prove	that $E\Delta =$	$\Delta = \nabla E$.

- 2. Write Gregory Newton backward interpolation formulae.
- 3. Define Inverse Lagrange's interpolation
- 4. Prove that $\mu = (1 + \frac{\delta^2}{4})^{\frac{1}{2}}$
- 5. Prove that $\Delta \nabla = \Delta \nabla = \delta^2$.
- 6. From the following table, find the value of tan 45°15′
 - x°: 45 46 47 48 49 50
- tan x° : 1.0000 1.0355 1.072 1.1106 1.1503 1.1917
- 7. Using inverse interpolation formula, find the value of x when y=13.5.
 - x: 93.0 96.2 100.0 104.2 108.7 y: 11.38 12.80 14.70 17.07 19.91
- 8. From the following table find f(x) and hence f(6) using Newton interpolation formula.
- 9. Find the values of y at X=21 and X=28 from the following data.
 - X:20232629Y:0.34200.39070.43840.4848
- 10. Using Newton's divided difference formula. Find the values of f(2), f(8) and f(15) given the following table

x:	4	5	7	10	11	13
f(x):	48	100	294	900	1210	2028

11. Using Lagrange's interpolation formula find the value corresponding to x = 10 from the following table

x : 5	6	9	11
y : 12	13	14	16

12. From the following table of half-yearly premium for policies maturing at different ages. Estimate the premium for policies maturing at age 46 & 63. Age x : 45 50 55 60 65

Premium y : 114.84 96.16 83.32 74.48 68.48

13. Find the value of y at x = 1.05 from the table given below.

x :	1.0	1.1	1.2	1.3	1.4	1.5	
y :	0.841	0.891		0.932	0.964	0.985	1.01

5

COURSE CODE: 17PHU60	2 UNIT: V	COURSE NAME:MATHEMATICS-II BATCH:2017-2020
Using inverse interpolation fo x: 93.0 96 r: 11.38 12.80 14.76 Find the age corresponding to	ormula, find the value of 6.2 100.0 104.2 0 17.07 19.91 o the annuity value 13.6	x when y=13.5. 2 108.7 given the table
Age(x) : 30 35 Annuity Value(y): 15	40 45 5 .9 14.9 14.1 13	0 .3 12.5

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po),

Coimbatore -641 021

Subject: MATHEMATICS-II

Class : III - B.Sc. Physics

Subject Code: 17PHU602

Semester : VI

Unit V

Part A (20x1=20 Marks) (Question Nos. 1 to 20 Online Examinations)

Possible Questions								
Question	Opt 1	Opt 2	Opt 3	Opt 4	Answer			
The process of computing the value of the function								
inside the given range is called	Interpolation	extrapolation	reduction	expansion	Interpolation			
If the point lies inside the domain $[x_0, x_n]$, then the								
estimation of f(y) is called	Interpolation	extrapolation	reduction	expansion	Interpolation			
The process of computing the value of the function								
outside the given range is called	Interpolation	extrapolation	reduction	expansion	extrapolation			
If the point lies outside the domain $[x_0, x_n]$, then the								
estimation of f(y) is called	Interpolation	extrapolation	reduction	expansion	extrapolation			
In the forward difference table y_0 is called								
element.	leading	ending	middle	positive	leading			
In the forward difference table forward symbol $((y_0))$,								
forward symbol(^2(y_0)) , are called								
difference.	leading	ending	middle	positive	leading			
The difference of first forward difference is called								
	divided difference	2nd forward differ	3rd forward differe	4th forward difference	2nd forward difference			
Gregory Newton forward interpolation formula is also								
called as Gregory Newton forward								
formula.	Elimination	iteration	difference	distance	difference			

Gregory Newton backward interpolation formula is also					
called as Gregory Newton backward					
formula	Elimination	iteration	difference	distance	difference
Gregory Newton backward interpolation formula is also					
called as Gregory Newton backward					
formula .	Elimination	iteration	difference	distance	difference
The divided differences are in their					
arguments.	constant	symmetrical	varies	singular	symmetrical
In Gregory Newton forward interpolation formula 1st					
two terms of this series give the result for the					
interpolation.	Ordinary linear	ordinary differenti	parabolic	central	Ordinary linear
Gregory Newton forward interpolation formula 1st					
three terms of this series give the result for the					
interpolation.	Ordinary linear	ordinary differenti	parabolic	central	parabolic
Gregory Newton forward interpolation formula is					
mainly used for interpolating the values of y near the					
of the set of tabular values.	beginning	end	centre	side	beginning
Gregory Newton backward interpolation formula is					
mainly used for interpolating the values of y near the					
of the set of tabular values.	beginning	end	centre	side	end
From the definition of divided difference (u-u_0)/(x-					
x_0) we have =	(y,y_0)	(x,y)	(x_0, y_0)	(x,x_0)	(x_0, y_0)
If $f(x) = 0$, then the equation is called	Homogenous	non-homogenous	first order	second order	Homogenous
The order of $y_{(x+3)} - 5 y_{(x+2)} + 7y_{(x+1)} + y_x =$					
10x is	2	0	1	3	3
A function which satisfies the difference equation is a					
of the difference equation.	Solution	general solution	complementary so	particular solution	Solution
The degree of the difference equation is	The highest powe	The difference be	The difference be	The highest value of	The highest powers of
The degree of the difference equation is	2	0	1	3	1
The order of y (x+3) -y (x+2) = $5x^{2}$ is	3	2	1	0	1
The difference between the highest and lowest					
subscripts of y are called of the difference					
equation	degree	order	power	value	order

E-1=	backward differen	forward symbol	μ	δ	forward symbol
Which of the following is the central difference					
operator?	backward differen	forward symbol	μ	δ	δ
1+(forward symbol)=	backward differen	E	μ	δ	E
μ is called the operator	Central	average	backward	displacement	average
The other name of shifting operator is					
operator	Central	average	backward	displacement	displacement
The difference of constant functions					
are	0	1	2	3	0
The nth order divided difference of x_n will be a					
polynomial of degree	0	1	2	3	2
The operator forward symbol is	homogenous	heterogeneous	linear	a variable	linear

