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(Deemed to be University) M.Sc Chemistry — Syllubus
Semester-I
17CHP103 PHYSICAL CHEMISTRY- I: 4H 4C
QUANTUM CHEMISTRY AND GROUP THEORY
Instruction Hours/week:L: 4 T:0 P:0 arks: Internal:40 External: 60 Total:100
Scope

This course presents the Basic principles of quantum chemistry which involves the failure of
classical mechanics, wave equations, approximation methods and basic concepts of Group
Theory.

Programme Outcome
1. To study the fundamentals and applications of classical mechanics and quantum chemistry.

2. To understand the structure of an atom and different approximation methods.
3. To learn the concept of Group theory and their applications.

Programme Learning Outcomes

Understand the basic principles of quantum mechanics.

Understand the path integral representation of quantum mechanics.
Understand the operator formulation of quantum mechanics.

Understand the form and construction of relativistic wave equations.
Understand the Molecular geometry and Structure.

Understand the Vibrational modes of Molecular and identify the molecules.

ogakrwdE

UNIT -1
Failure of classical mechanics and the success of quantum theory in explaining black body
radiation and photoelectric effect.

The time dependent and time independent Schrodinger equations - Born’s interpretation of the
wave function. Requirements of the acceptable wave function.

Algebra of operators. Sums and products of operators - commutator - linear operators- eigen
functions and eigen values - correspondence between physical quantities in classical mechanics
and operators in quantum mechanics - Hamiltonian operator - angular momentum operator.
Quantization of angular momentum and its spatial orientation - average values - postulates of
guantum mechanics.



UNIT -1l

Particle in a one-dimensional box - quantization of energy - normalization of wave function -
orthogonality of the particle in a one-dimensional box wave functions. lllustration of the
uncertainty principle and correspondence principle with reference to the particle in a one-
dimensional box - particle in a three dimensional box - separation of variables.

Solving of Schrodinger equation for one-dimensional harmonic oscillator. Harmonic oscillator
model of a diatomic molecule. Illustration of the uncertainty principle and correspondence
principle with reference to harmonic oscillator.

Solving of Schrodinger equation for a rigid rotor. Rigid rotor model of a diatomic molecule.

UNIT — 111

Schrodinger equation for the H-atom (or H-like species)- separation of variables - energy levels.
Radial distribution functions - orbitals and orbital shapes. Probability density and radial
distribution functions.

Need for approximation methods. The perturbation theory- application of perturbation method to
systems such as anharmonic oscillator and He-atom.

The variation method - application of variation method to systems such as anharmonic oscillator
and He-atom.

UNIT - IV

Symmetry elements and symmetry operations - definition of identical and equivalent elements
configurations - effect of performing successive operations commutative and non-commutative -
inverse operations.

Groups and their basic properties - definition of a group - basic properties of a group-definition
of abelian - cyclic- isomorphic, finite, infinite groups and subgroup. Symmetry classification of
molecules into point groups-Schoenflies symbol (only-difference between point group and space
group).

Matrices- Definition of matrix, square matrix, diagonal matrix, null matrix, unit matrix, row
matrix, column matrix, symmetric matrix, skew symmetric matrix and conjugate matrix.
Multiplication, commutative and non commutative-determination of inverse of a matrix, block
multiplication of matrices-addition and subtraction of matrices.

Matrix notations for symmetry operations of Czy and Cav groups-construction of character tables
for Cov and Cay point groups.

UNIT -V

Definition of reducible and irreducible representations - irreducible representations as orthogonal
vectors - direct product rule, the great orthogonality theorem and its consequences -
determinations of the characters for irreducible representation of C,y and Csy point groups using
the orthogonality theorem.



Group theory and Vibrational spectroscopy - vibrational modes as basis for group representation
- symmetry selection rules for IR and Raman spectra, Mutual exclusion principle - classification
of vibrational modes.

SUGGESTED READINGS:

Text Books:

1. Prasad, R. K. (2014). Quantum Chemistry (Il Edition). New Delhi: New Age International
Publishers Pvt. Ltd.

2. Cotton, F. A. (2002). Chemical Applications of Group Theory (Ill Edition). Texas: A
Wiley Inter Science Publication.

3. Chandra, A. K. (2012). Quantum Chemistry (I Edition). New Delhi: Tata McGraw — Hill
Publishing Company Ltd.

4.  House, J. E. (2013). Fundamental of Quantum Chemistry (Il Edition). New Delhi:
Academic Press.

5. S.Swarnalakshmi T.Saroja, R.M. Ezhilarasi, 2009, A Simple approach to group theory in

chemistry, University Press Pvt., Ltd., New Delhi.

Reference Books:

1.

2.

3.

Raman, K.V. (2002). Group Theory and its Applications to Chemistry. New Delhi: Tata
McGraw Publishing Company.
Puri, B. R., Sharma, L. R., & Pathania, M. S. (2013). Principles of Physical Chemistry
(46" Edition). Jalandar: Vishal Publishing Co.
Veera Reddy, K. (2009). Symmetry and Spectroscopy of Molecules. New Delhi:

New Age International Pvt. Ltd.
Atkins, P., & De Paula, J. (2014). Atkins Physical Chemistry (X Edition). Oxford: Oxford
University Press.
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Semester o Year o1
Course Code : 17CHP103
Unitl Total no. of hour’s: 12
S.No | Duratio Topic Reference
n
Hour (pe
riod)
1. 1 Failure of classical mechanics T2: 635-637
2. 1 The success of quantum theory in explaining black | T2: 638-645
body radiation and Photoelectric effect
3. 1 The time dependent and time independent Schrodinger | T1: 3-5, T2: 637-639
equations
4. 1 Born’s interpretation of the wave function T14-6
5. 1 . Requirements of the acceptable wave function. T17
6. 1 Algebra of operators. Sums and products of operators | T1:11-12
7. 1 commutator - linear operators- eigen functions and | T1: 12-14
eigen values
8. 1 correspondence between physical quantities in | T1:14-16
classical mechanics and operators in quantum
mechanics
9. 1 Hamiltonian operator - angular momentum operator. T1:16-17
10. |1 Quantization of angular momentum and its spatial | T1:17-20
orientation
1. |1 average values - postulates of quantum mechanics. T1: 10-21; T2:636-
637
12, |1 Recapitulations and discussion of important questions
Textbook

T1: A.K.Chandra, 2010, Introductory guantum Chemistry, Tata McGraw Hill Education Pvt., Ltd, New
Delhi
T2: Puri Sharma and Pathania, 2013, Elements of Physical Chemistry, Vishal Publishing Co., New Delhi



Unit 11 Total no. of hour’s: 12
S.No Lect Topic Reference
ure
Hour

1. 1 Particle in a one-dimensional box T1:39-41

2. 1 quantization of energy - normalization of wave function - | T1: 42-43

3. 1 orthogonality of the particle in a one-dimensional box | T1: 43
wave functions.

4, 1 [llustration of the uncertainty principle and | T1:43-45; T2: 640-641
correspondence principle with reference

5. 1 The particle in a one-dimensional box

6. 1 particle in a three dimensional box - separation of | T1:47-49; T2: 644-645
variables.

7. 1 Solving of Schrodinger equation for one-dimensional | T1:82-84
harmonic oscillator.

8. 1 Harmonic oscillator model of a diatomic molecule. T2: 645-646

9. 1 [llustration of the uncertainty principle and | T1:84-87; T2: 646
correspondence principle with reference to harmonic
oscillator,

10. 1 Solving of Schrodinger equation for a rigid rotor T1:52-55

11. 1 Rigid rotor model of a diatomic molecule. T1:52-55

12. 1 Revision & Discussion of possible questions

Textbook

T1: A.K.Chandra, 2010, Introductory quantum Chemistry, Tata McGraw Hill Education Pvt., Ltd, New

Delhi

T2: Puri Sharma and Pathania, 2013, Elements of Physical Chemistry, Vishal Publishing Co., New Delhi




Unit 111 Total no. of hour’s: 12

S.No | Lecture Topic Reference
Hour

1. 1 Schrodinger equation for the H-atom (or H-like | T1: 89-90; T2: 647-649
species)

2. 1 separation of variables - energy levels T1:91; T2: 648

3. 1 Radial distribution functions T1:91-93

4 1 Orbitals and orbital shapes T2: 651-653

S. 1 Probability density and radial distribution | T1:94-97
functions.

6. 1 Need for approximation methods T1:109-100

7. 1 The perturbation theory T1:111

8. 1 Application of perturbation method to systems | T1:115-116
such as anharmonic oscillator.

9. 1 Anharmonic oscillator of He atom T1:117

10. |1 The variation method - application of variation | T1: 115-117
method

11. |1 application of variation method to systems such | T1:118-120
as anharmonic oscillator and He-atom.

12, |1 Recapitulation and discussion of important questions

Textbook

T1: A.K.Chandra, 2010, Introductory quantum Chemistry, Tata McGraw Hill Education Pvt., Ltd, New
Delhi
T2: Puri Sharma and Pathania, 2013, Elements of Physical Chemistry, Vishal Publishing Co., New Delhi




Unit IV

Total no. of hour’s: 13

S.No | Lecture Topic Reference
Hour

1. 1 Symmetry elements and symmetry operations T1:288-291

2. 1 Definition of identical and equivalent elements | T1:291-293
configurations

3. 1 The operations commutative and non-commutative - | T1: 294-295
inverse operations.

4. 1 Groups and their basic properties - definition of a | T1: 295-302
group

S. 1 basic properties of a group-definition of abelian — | T1:303
non-abelian

6. 1 Cyclic- isomorphic, finite, infinite groups and | T1:304
subgroup.

7. 1 Symmetry classification of molecules into point | T1:304-306
groups-Schoenflies symbol

8. 1 Matrices- Definition of matrix, square matrix, | T2: 62-63
diagonal matrix, null matrix, unit matrix.

9. 1 Row matrix, column matrix, symmetric matrix, | T2: 63-64
skew symmetric matrix and conjugate matrix.

10. |1 Multiplication, commutative and non commutative- | T1: 306-307
determination of inverse of a matrix

11. |1 block multiplication of matrices-addition and | T1:308-309
subtraction of matrices.

12. |1 Matrix notations for symmetry operations of Coyand | T1: 309-310
Cav groups. construction of character tables for Coy
and Cay point groups.

13. |1 Revision & Discussion of important questions

Textbook

T1: A.K.Chandra, 2010, Introductory quantum Chemistry, Tata McGraw Hill Education Pvt., Ltd, New

Delhi

T2: S.Swarnalakshmi T.Saroja, R.M. Ezhilarasi, 2009, A Simple approach to group theory in chemistry,
University Press Pvt., Ltd., New Delhi.




Unit VvV

Total no. of hour’s: 13

S.No | Lecture Topic Reference
Hour

1. 1 Definition ~ of  reducible and irreducible | T1:310-311
representations

2. 1 irreducible representations as orthogonal vectors T2:82-83

3. 1 direct product rule, the great orthogonality theorem | T2:83-85
and its consequences

4, 1 Determinations of the characters for irreducible | T1:311-315
representation of Czy point groups using the
orthogonality theorem.

5. 1 irreducible representation of Csy point groups T1:312-315

6. 1 Group theory and Vibrational spectroscopy - | T2:117-118
vibrational modes as basis for group

7. 1 symmetry selection rules for IR and Raman spectra | T2:119-123

8. 1 Mutual exclusion principle - classification of | T2:119-121
vibrational modes.

9. 1 Group theory and dipole moment T2:60

10. |1 Revision & Discussion of important questions

1. |1 Discussion of end semester questions

12, |1 Discussion of end semester questions

13. |1 Discussion of end semester questions

Textbook

T1: A.K.Chandra, 2010, Introductory quantum Chemistry, Tata McGraw Hill Education Pvt., Ltd, New

Delhi

T2: S.Swarnalakshmi T.Saroja, R.M. Ezhilarasi, 2009, A Simple approach to group theory in chemistry,
University Press Pvt., Ltd., New Delhi.




Quantum Mechanics (2016-17 Batch)

UNIT -1
Quantum Mechanics

Failure of classical mechanics and the success of quantum theory in explaining black body
radiation and photoelectric effect.

The time dependent and time independent Schrodinger equations - Born’s interpretation of the
wave function. Requirements of the acceptable wave function.

Algebra of operators. Sums and products of operators - commutator - linear operators- eigen
functions and eigen values - correspondence between physical quantities in classical mechanics
and operators in quantum mechanics - Hamiltonian operator - angular momentum operator.
Quantization of angular momentum and its spatial orientation - average values - postulates of
guantum mechanics.

Failure of classical mechanics and the success of quantum theory in explaining black body
radiation and photoelectric effect.

The time dependent and time independent Schrodinger equations - Born’s interpretation of the
wave function. Requirements of the acceptable wave function.

Algebra of operators. Sums and products of operators - commutator - linear operators- eigen
functions and eigen values - correspondence between physical quantities in classical mechanics
and operators in quantum mechanics - Hamiltonian operator - angular momentum operator.
Quantization of angular momentum and its spatial orientation - average values - postulates of
guantum mechanics.

— Quantum mechanics

is the foundation of all modern fields of sciences, including chemistry, biology,
and material sciences; it is the ONLY way to TRULY understand

Structures and properties matters

Nature of atoms, chemical bonds, and molecules

Intermolecular forces (hydrogen bonds and van der Waals forces)
Enzymology, proteinomics, and genomics

Nanoscience and material science

Property of electromagnetic radiation (such as light)

Matter interaction with external electromagnetic fields

— Quantum chemistry is built up on the principles of quantum mechanics, and provides further
the

molecular understanding on the structures and properties of chemical compounds, materials, and
biological processes

— Statistical mechanics rests on the foundation of quantum mechanics (including quantum
chemistry) and provides the basis of hermodynamics

Dr. M. Gopalakrishnan, Department of chemistry, KAHE. 1/29



Quantum Mechanics (2016-17 Batch)

THE ORIGINS OF QUANTUM MECHANICS

Many experimental evidences merged around 1900, showing the fundamental failure of
(Newtonian)

classical mechanics,
including even some basic (daily-life) concepts/pictures about matter and light

» Electron in a hydrogen atom:
_ 1 _ Ze'
Kinetic energy =——(p7 + pi +pl): Potential energy V(r)=—
2m, : Argyr

Classical mechanics: Total energy = kinetic energy + potential energy, which can be any value.
Experimental observation: The optical spectrum of H consists of series of discrete lines.

Question/Suggestion: Does the energy of electron in H take discrete values ?

» Harmonic oscillator systems (e.g. vibration motion), with the same question/suggestion

2 P
L . 1 |
Kinetic energy _pP . Potential energy V(x) = Ekxz = —mo’x’
m

2
. s o - 2 i
Classical mechanics: 1) Vibration energy £, = P +=me°x” can take any value (=0)

2) Thermal average ( Eyy,) =/kzT (equipartition theorem)

Systems Relating to Harmonic Oscillators

(1) Heat capacity Cy,v of monatomic solid (contributed only by the oscillatory motion of atoms
around their equilibrium lattice positions )

5E ‘I_:-‘
— Cm,\" = JVA [ ! - osc/ }
°or ),
Classical mechanics: C,;,=3R atany T ( R=N kg the gas constant )
Experiments: Cuv—0asT — 0

Does the enerey of an oscillation motion take discrete values ?

Dr. M. Gopalakrishnan, Department of chemistry, KAHE. 2/29



Quantum Mechanics (2016-17 Batch)

(i) Blackbody radiation (radiation field is just a collection of electromagnetic oscillators: to be continued)

81,
2o

L

The density of states of blackbody radiation: p(A4,7) =

sc/

8T

Classical mechanics: p(A1.7) = FkBT. fails total at small A. Ultraviolet catastrophe !
L

Experiments: p(A, T)—=0as 2 — 0. atany finite temperature 7.

(i11) Light (being an electromagnetic field) is a harmonic oscillating wave traveling through space
The most important property of a wave is the interference phenomenon

Basic relations and knowledge (speed c. wavelength A. frequency v)
1) Av=c

2) circular frequency m=2mv

- V . -
3) wavenumber VvV =—= (unit: cm 1)

c

=

4) Light as an electromagnetic field. £(x.7) = exp(ik, . x —i®t) or E(F.1) = exp(ﬁ»—' -F —ion)
'I‘_x

5) Wavevector k= fc}, =(k,. fc}, I )ir
k.

- direction of & = direction of light propagation

: 2 .2 .2 2« ,.
-- magnitude k =, 2+ f»f +k2 = 2 olc

Dr. M. Gopalakrishnan, Department of chemistry, KAHE. 3/29



Quantum Mechanics (2016-17 Batch)

Fundamental Constant in Quantum Mechanics:
Planck constant 7 =6.626<10**Ts: also /i =h/(2m)=1.055x10""Ts

» In his study of blackbody radiation, Max Planck (1900) proposed that the permitted energies of an

electromagnetic oscillator of frequency v are IE =nhv, n=0,12, .. | , the single revolutionary

assumption led to a complete satisfactory interpretation of blackbody radiation experiment

~ This result suggests an electromagnetic radiation (wave) consists of #=0. 1. 2. ... particles, called

photons. each photon having an energy of
» With the concept of photon, Einstein (1905) successfully explained the photoelectric effect ( § 8.2(a))

» Since then, the Planck constant becomes a basic ingredient of quantum mechanics, containing in all

quantum equations, laws, relations, and consequences

» Planck constant plays no role in classical world: all quantum theory approaches to the classical physics
by setting the limit of # — 0. Therefore. quantum mechanics is said to generalize and supersede the

classical mechanics. and classical mechanics would still be useful if the value of Planck constant could

be considered to be negligibly small

Blackbody Radiation (1900, Max Planck)
i. Radiation wave is an electromagnetic (light) wave. created by electric oscillator at certain frequency (v = ¢/1)
ii. Blackbody is an ideal (theoretical) object that absorbs all the electromagnetic waves falling on it
iii. Blackbody radiation concerns about the energy (power) profile of the radiation wave emitted from a blackbody at

given temperature (i.e. in thermal equilibrium with radiation)

. e pelmoe , #modes in wavelength 87
iv. Radiation fields inside blackbody cavity are all standing waves . As a result, -

cavity volume A
: i 87, .
- Energy spectral density | p(L.7) = <k Eo:r )
Rayleigh—
— Maximum Jeans law
5 of p
Experimental

Increasing
temperature

Energy density, p

Detected

Energy distribution, p

radiation
Pinhole
Container at a =
temperature T Wavelength, 7 Wavelength, A
Fig. 8.4 Fig. 8.3 Fig. 8.6
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Quantum Mechanics (2016-17 Batch)

Photoelectric Effect (1905, Einstein)

When a metal exposed to a light of frequency v, free electrons can be ejected only when v is large
enough (i.e.. short wavelength) such that v = @, where @is the so-called “work function™ characterizing how
strong an electron is bound to the metal. The ejected free electron is found to have the Kinetic energy of

Eyinetic =hv—@ |. which does not depend on the light intensity.
Kinetic energy
s BE of ejected
= = electron
2 B8
5§ E§ .
S o b My’
I 7 Energy needed to
R} X remove electron
= i from metal
2 33
= ume
o oo

Kinetic energy of photoelectron, £,

@ @&
' hv

(b}

Increasing
£ work function
-

Energy supplied
by photon

s

Frequency of incident radiation, v

¢ Quantization
1) The dynamic observables (i.e., any functions of coordinates and momentums in classical mechanics) are
said being quantized. if possible results of individuiial measurement on them are of all or partly discrete

values

2) Quantization occurs in not only matter (such as electron, atom, molecules etc) but also for light, typically

concerning about the total energy. angular momentum, and spin

3) There are simple rules established, namely Quantum Mechanics (QM) — thanks to Erwin Schrédinger

(1925) and to Werner Heisenberg (1926) — to describe the quantization phenomena ( § 8.3)

4) A quantum system is completely described by the wavefunction that is governed by Schrodinger equation,

which goes also with Born interpretation of wavefunction ( § 8.4), as for wave-particle duality ( § 8.2)

Dr. M. Gopalakrishnan, Department of chemistry, KAHE. 5/29



Quantum Mechanics (2016-17 Batch)

¢ Uncertainty principle

In classical physics the observables characterizing a given system are assumed to be simultaneously
measurable (in principle) with arbitrarily small error. For instance, the position and momentum of a
Newtonian particle can be precisely characterized at both the initial time and any time later as the
classical trajectory. As a consequence, classical particle can have any (continuous) values of energy.
However, quantum mechanics leads to the following uncertainty relation (Heisenberg., 1926).
Therefore, if the momentum of the particle at the x-direction is measured accurately with no uncertainty
(Apyx = 0), its x-position will have to be completely random (Ax —=0), spreading allover of —» < x < =,

Another important uncertainty relation is between energy and time, |AEAt = 7i/2

¢ Zero-point energy
The lowest permitted energy of a quantum system is usually higher than the minimum potential energy
due to the uncertainty principle. The lowest permitted energy above the potential minimum is called the
zero-point energy. In contrast. the classically permitted lowest energy rests at the potential minimum. Zero-

point energy plays the crucial role in chemistry. especially in reactions related to electron and/or hydrogen

transfer dynamics

v 'Wave-particle duality

Einstein’s idea of photon (to explain the photoelectric effect) that E=hv gave rise of the particle
property of electromagnetic wave (light). Together with his famous £ = m¢”. the momentum of light
wave, p = mec, can then be related to the light wavelength A = ¢/v as
The above relation was experimentally verified in the Compton effect (1922), wherein the wavelengths
of x-rays are lengthened (while the electron gains momentum) by scattering from free electrons. The
change in wavelength is predicted quantitatively. assuming the scattering results from elastic collisions
between photons and electrons.

In 1924, Louis de Broglie suggested that not only photons. any particle traveling with a linear
momentum p, should exhibits wave property with wavelength
The wave property of particles, together with the de Broglie relation, were demonstrated first in electron
diffraction experiments (Clinton J. Davisson and Lester H. Germer. 1927). and later also with other
particles (neutron. H atom. He atom, and H, molecule) as diffraction beams. even with Cs, molecules

(Arndt et al., Nazure, 401 (1999) 680).

Dr. M. Gopalakrishnan, Department of chemistry, KAHE. 6/29



Quantum Mechanics (2016-17 Batch)

NOTE: Energy in terms of wave property
Often the discrete energies in matter (atoms, molecules. and solids, etc) are detected with light or
other forms of electromagnetic field by either absorption or emission a photon. The energy conservation
requires that . where AE denotes the energy change in the matter system due to it absorbs and

emits a photon of frequency v. As a result, the value of energy can be specified in terms of

(a) frequency: [1Hz © 6.626<107*17]

(b) wavenumber (1/A = v/c): [1em! o 1.986 <102 7|

Energy

Fig. §.12

SCHRODINGER EQUATION AND QUANTUM MECHANICS

In 1926. Erwin Schrédinger proposed that the quantum state of matter is described by the so-called wave
function ¥(r, 7), which in general is a complex function of the matter’s coordinates and time, and its evolution
is governed by (Schrédinger equation)

i V(r.1n)

= HY(r.1)
ct

Here. H is an operator that closely relate to the classical Hamiltonian: or. loosely speaking, the energy

expression, A = Kinetic energy + potential energy:

H = kinetic energy operator + potential energy operator

» Rule of Writing Operator (in real space or coordinate space)

Classical variable | Quantum operator | Operaftor in real space

Coordinator x 2 P
hé

Momentum : 5 ——
P Px iéx

Dr. M. Gopalakrishnan, Department of chemistry, KAHE. 7/29



Quantum Mechanics (2016-17 Batch)

» Hamiltonian Operator (e.g. a particle of mass m moving in one-dimensional space)

Classical expression | Operafor in real space
pz i PRRpS]
Kinetic energy 2m 2m éx
Potential energy V(x) H(x)
p pl g
- he 8°
o 2 vy L2 v

Hamiltonian 2m 2m gx-

# Schrédinger Equation for 1D-Systemn

wZEED {_ o, V(.r):l ¥(x.1)
ot 2m -

# Born Interpretation

¥(x.f) is a complex function describing the probability wave that

W(x.f)* dx o probability of finding the particle within [x. x + dx] at time ¢

» Property of Wave Function
(1) Single-valued (2) Both ¥(x.f) and &'¥(x,r)/dx continuous (3) Integrable

» WM¥(x,1) describes the same quantum state of ‘F(x,7). where A is an complex constant

» Normalized Wave Function F(x.n) normalization Y(x,1)
W(x, I)2 dx

\ jallspace

The normalized ‘F(x.7) satisfies Jm_pace‘\y(.\,j)l dv =1

» Property of Schriédinger Equation and Wave Functions
(i) If Wi(x.r) and ¥;(x.7) are solutions to the Schrédinger equation, ¢,'¥;(x.f) + ¢;Fa(x.f) (which is called
linear combination or coherent superposition of the composite wavefunctions) must also satisfy the
same Schrédinger equation, where ¢; and ¢, are arbitrary complex numbers.
(ii) Quantum interference (constructive vs. destructive inference)
21 (/A +vi)

. #7 1 —1s
Consider, for example, the plane waves, ¥_= 2" and ¥_ =¢ , where % and v are

the wavelength and frequency of the plane wave. (a) Show that both ¥_, and W are solutions to the
Schrodinger equation with P(x) = 0: (b) Show that the standing wave ¥_+¥._= 2cos(2nx/A)e ™ is
also a solution to the same Schrodinger equation: (c) Evaluate [P_[°, [¥_/% and [¥_+¥_|°. and

make comments on constructive and destructive interferences.

Dr. M. Gopalakrishnan, Department of chemistry, KAHE. 8/29



Quantum Mechanics (2016-17 Batch)

b4 dxdydz = /2 sin drd0d¢

/ y

» Stationary Schrédinger Equation versus Time-dependent Solution

¥(xt) o RO
F’%}:H R Sy
ot . 70x)

The steps to the formal solution to ;

P(x.,1)

(i) Consider first the space-time factorized form of wave function: \¥ (x.,7) =y (x)n(z)

Schrédinger equation becomes now i ( x)af?ff) - { H[ -\'-E_AE\].W(-V)} n(r)-
0 \iox)

Now dividing y(x) 7(f) to both sides = ; _L on@® — L [}( x\ﬁﬁ\ w(x) | - which must be a
nn o wx)| | iéx)

constant E to be determined that depends neither x nor z. We have therefore

i Lf’) —En) wd A2 (o= By
10X

J

U solution |} abbreviated as

7(t) = exp(—iEtih) fft;f = Ey/|also called Schrodinger equation (SE)

(i1) The time-independent SE determines both the permitted energy E value, which often turns out to be

quantized and thus denoted as E, with n the quantized number. and its associated n™ stationary wave
function y;,. Together with (i). we conclude that {¥,(x.f) = exp(~iE, /i) w,(x)} constitute the set of

solutions to the time-dependent SE (assuming we have solved all E, and v, for the given )

Dr. M. Gopalakrishnan, Department of chemistry, KAHE. 9/29



Quantum Mechanics (2016-17 Batch)

(ii1) The general solution to the time-dependent SE (superposition principle):

Y=Y Cne—fEnf -"'ffw” () where ¢, is complex coefficient

alln

(iv) ¥(r.f) is normalized if () is normalized and >, |2 =1
n

# Interpretation of E,, w;,(r), and ¥ (r.r)
® F. Eigenenergy — the permitted energy value (real) if a measurement is performed
® . (r): Eigenstate wave function — the stationary wave function being of defined energy value of E,
® Both E, and , are determined by the system Hamiltonian operator H via H v, = E, 5 . which is also
called the eigenequation of A

—iE,t/h

® For the system with wave function ‘¥(r.7) :Z ¢, (1) w(r), where ¢, (1) =c,e a single energy

i
measurement will only have a permitted value €{E,}. and the probability of obtaining the value £, is

c,(0)fF if ¥ and all w;, are normalized

® Expectation or mean value of energy and other dynamical variables in general

For normalized ¥ and w,: [E' = >le, |2 E, - This is the same as
I
¥ (r,0O[HY (r,t)]dr

{:'E:} _ all space

LS
Ja]lspaceqj (r,0)¥ (r,t)dr
More generally, we have
¥ (r,0)[A Y (r,0)]dr
Y (r,0)¥ (r,t)dr

'11:‘4}' = Ln e (to be proved in L Notes2)

Iall space

State is Described by a Wavefunction

Quantum Mechanics uses a wavefunction to describe the state of matter. In principle, the
wavefunction is not a direct observable. It describes the state in which the matter resides in
mathematical terms. From it we can derive physical observables such as energy and momentum
indirectly. To find these properties, we have to operate with an ’operator’ onto the wavefunction
to get the desired information out.
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Operators and Wavefunctions

An operator 0 performs a mathematical operation onto a function. An example
is () = %, which means: 'take the derivative to z of the function that follows’.
A special case occurs when the operator operates on a function which yields a
function proportional to the original:

QOf = wf
d axr
—€ = a-e

dx

ax
In other words, operating Q onto f vields the same function f multiplied by a
constant w. We define:

= operator

eigen function

£ - 2
I

eigenvalue

Operators may have more than one eigenfunction, each associated with an eigen-
value:

ﬁfn - U-’nfn

So more generally, operators may have a set of eigenfunctions. All the possible
eigenfunctions of a given operator together is what we call a complete set. These
sets play a central role in quantum mechanics, as we will see.

v Orthogonality. Eigenfunctions f,, in the complete set are orthogonal.
This implies that the overlap integral of two wavetunctions f, and f,,
taken over whole space 1s zero:

Sover!ap = / fnf;\bdpr =0

This orthogonality 1s much similar to the orthogonality of vectors such as
the orthogonal vectors (z,y, z) that define Cartesian space. The functions
in a complete set are therefore often said to span a complete (multidimen-
sional) space as well. The overlap integral of a (wave)function f, with
itself gives a finite value (see Born postulate for wavefunctions). If the
functions are normalized, this overlap integral yields 1:

[ tti = [15P =1
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Operator Forms

Important operators are the energy H . position ¥, and momentum p operators.
All these operators yield physical observables when operating onto a wavefune-
tion. What is the mathematical form of the operators? In position (z) space,
the operators are taking the following form:

r = = (multiply by z)
Pz = = O
=3 2 2
-~ . . p.IJ Eat ﬁ. 3 =
H=T4+V="24V=——— 4V
N 2m + 2m Ox? N

The operator V is the operator for the potential energy. For example, for a
coulomb potential it 1s given by:

2
i}:—ZE

dmregr
In three dimensions the Hamiltionian assumes the form:

O O SR R ~ N
" 2m {31’9 * dy? N 829} V= _ﬁv +V

-

Alternatively, we could have expressed the operators in momentum (p) space.
The position, momentum and energy operators then assume the forms:

- h O
Tz g dp
_ﬁz = p
= T+V=—4+V
2m

Commutation Relations

Operators operate on the function to the right. Hence, a product of two opera-
tors should be read as follows:
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where (§ f ) is the new function for A to operate on. Consequently, the product

operator AB is not necessarily the same as the operator BA. We now define
the commutator of A and B:

4.B] - AB-BA
The operators commute if
[A‘, EE] —0
It this condition does not hold, the operators are non-commutating. It can be

shown quite easily that operators that share the same set of eigenfunctions,
commute. We then have:

Af = af
Bf = bf

and thus

AB]r = A(Br)-B(4)

— bAf —aBf
= (ba—ab)f
- 0

Operators do not always share the same set of eigenfunctions. If they don’t, the
operators are non-commuting. An important example are the position and the
momentum operators:

" h o h d
R A A L
h af if hof
= ?“%‘(T*”E%)
— ih-f
from which we recognize
[x,p] = ik

this result is tightly connected to Heisenberg’s Uncertainty Principle, and relates
to the statement that position and momentum of a small particle cannot be
determined with great precision simultaneously. Instead, there is an uncertainty
of the order of i between the operators.
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Wave function

The wavefunction describes all the properties of a quantum mechanical system. It is, however, a
mathematical construct. What is its physical meaning? The following section sheds light on the
meaning of the wavefunction and the central equation in quantum mechanics: the Schrodinger
equation.

e The state of a system is fully described by a wavefunction ¥(ry,ro...., 1)

The wavetunction can encompass the state of multiple particles (1,2...) in
a system, such as a nucleus with its many electrons. The total wave-
function represents the state of the whole system. Remember that
a wavefunction can be described as a weighed sum of a complete set of
eigenfunctions ¢,, of an operator:

qj(?] = Z Cn@Pn(r)

Wavefunctions are often labeled as W, ; = with quantum numbers (a.b, ..),
which denote the different quantized states of the svstem. What 1s the
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The probability that a particle will be found in volume element
. . 2
dV is proportional to |[V(r)]

This postulate is known as the Born intepretation of the wavefunction. In
other words, the wavefunction is a probability amplitude and its square
modulus a probability density. Born’s intepretation of the wavefunction
is based on the notion that particle must be somewhere in space, so that
the overlap integral of the wavefunction with itself must be finite:

/|'I!{’r)|2tﬂf < oo

Hence, the wavefunction should be square integrable. For normalized
wavelunctions we get:

/|‘L’(’r)|2tﬂf =1

which means that if one attempts a measurement over whole space, the
chance of finding the particle is one. This postulate also reinforces the
meaning of the coefficient ¢,,. When we write the total wavefunction as
U =>" ¢, we have:

2 = O endn) O cmtm

L m
* [ * I
= Crhlm (If?n D

I

and thus

[lrar = S cien [iomav

T,

*
= E CrCm 571._m

n,m

= 2_leal®

n

For normalized wavetunctions we get

S el =1

T

In other words, |c,|? is the probability that the system is in a particular
eigenstate ¢,. The probability that the system resides in the collection of
all the available eigenstates, which is the sum over all |e,|?, is 1. This is
equivalent to saying that a sampling over the whole of '¢,-space’. must
give the probability one, because the system has to be somewhere in this
space.
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The Schrodinger Equation

The wavetunction W(r,t) fully describes a system in space and time. The full
evolution of the wavefunction is found from the time-dependent Schrodinger
Equation:

o
ih— = HW
ot
Here H is the Hamiltonian, the energy operator:

. B 2 -
A-_ T .y
2m dx? +

We can separate the time-dependent Schrodinger equation in a space-dependent
and a time-dependent part. Let’s write the wavefunction as:

W(a, 1) = ¥(2)0(1)

We now plug this into the Shrodinger Equation:

L 80(t) h? 9%y (x) ~”
ih - ¢ () o we -0(t) + Vo - ¥(x)6(1)
2 2.1, N
g LW R 1 ) o
6(t) ot 2m  Y(z) 022

Now comes the trick. Each side depends on a different variable, while they equal
each other at all times. Hence, each side equals a constant:

, L oagt)
@?‘1.-%T = F

B 1 9%(r) | o

“m U@ a2 e = F
which gives
L, 90(t)
Ti = FEo(t
th— (t)
B2 92 . =
PO LV = Biw) - i) = Bi)

" 2m  Ox?

The solution of the first, time-dependent equation is:
Q(t) oc e—iEt/ﬁ.

The solution of the second, time-independent Schrodinger equation is the sta-
tionary wavefunction (z):
Hvy = EvY
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We immediately recognize that this equation is an eigenvalue equation with
operator H, eigenfunctions ¥, and eigenvalues E. The values for E thus corre-
spond to the energy of the system. The total wavefunction can now be written
as:

U(z,t) = (x) - e H/R

The wavefunction has thus a space-dependent amplitude and time-dependent
phase. Note that in this formalism the phase has no influence on the probability
density of a particle at any time, as

¥z, 1) = (e@)e M) - (¥ (@) ) = v (2)(a) = ()]

Summary

We can find the wavefunction of a system by finding the eigenfunctions of the
Hamiltonian. The corresponding eigenvalues give the permissible energy levels
of the system. In summary we have:

Time-dependent Schriodinger equation

Time-independent Schridinger equation
E’?;‘J{;r) = E¢(x)

Wavefunction _
U(z,t) = p(x) - e /R
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We have learned that the wavefunction
e gives a full description of the system
e physical observables can be extracted from the wavetunction
e is not a physical observable itselt

e the probability distribution of finding the particle within volume element
dV' is given by |1( *r']|2 dV', postulated by Born

Not any given wavefunction is a good wavetunction. Born’s interpretation of the
wavefunction imposes some constraints onto what is an acceptable wavefunction.
Second, because the wavetunction is a solution of the Schrodinger equation,
which is a second order differential equation, there are further constraints on
what is an acceptable wavetunction.

1. The square modulus of the wavetunction must be single valued in order

to fulfill Born’s postulate that | (’r]|2 is the probability density.

Because the probability of finding a particle at dV can only be one value,
it follows that L{’r)|2 and thus () must be single valued.

2. The wavefunction must not be infinite over a finite region. If it were, it
would violate Born's postulate in the sense that the probability of finding
the particle somewhere must be a finite number. The wavefunction can be
come infinite only over an infinitesimal region, because then the integral
can still yield a finite value. The delta function is a good example of such
a case:

/5(:1!— a)dr =1

3. The wavefunction must be continuous everywhere. Discontinuous wave-
functions have ill-behaved second order derivatives, which violates the fact
that the wavefunction needs to be a solution of a second order differential
equation.

4. The wavelunction must have a continuous first order derivative. No sudden
kinks are allowed. This does not hold in regions of ill-behaved potential
energy
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Angular Momentum

In three dimensions, we can think of the angular momentum as a vector with
a magnitude and projections onto the x, y and z axes. Both the magnitude
and the projections are quantized. The magnitude of the angular momentum
depends solely on [ and 1s given by:

{a+0}y"n

Its projection on the z-axis is labeled by m;. The magnitude for the z-component
of the angular momentum can be found by operating with the E operator onto
the spherical harmonics.

LY s = 1001 Py = Opmy L®rny = 10172 Op 1y By = mufe Vi,

The projection of the angular momentum onto the z-axis thus takes on the val-
ues myh. It is restricted to only 2]+ 1 values for a given I. When the projection
on the z-axis is well-determined, we lose information on the = and y-components
of the angular momentum, Tl‘llb is a consequence of the fact that the E does
not commute with I or E , as we will see in the next chapter.
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The Radial Schrodinger Equation

The Coulombic potential energy is:

Ze?

Vir)=- dmegr

The full Hamiltonian of the electron-nucleus system is therefore:

e _, R _,  Ze?

H=_ _ _
2m, ™ 2m. "™ dmweyr

In order to solve the Schrédinger equation using this Hamiltonian, we need to
consider the following points:

1. Separating the degrees of freedom of the electron from those of the nucleus,
so that we are only dealing with electronic wavefunctions.

2. Separating the angular motion from the motion in the radial direction.
The Coulombic potential only depends on r and is independent of (8, ¢).
This suggests that we might be able to solve the problem considering only
the radial coordinate.

The first point is readily achieved by writing the Hamiltonian in terms of the
center-of-mass coordinates and the relative distance between the nucleus and
the electron. For the kinetic energy part it is found that:

M =m, + m., 1=i+L
TR T T

MeTe + MpTy

M ’
2 2 2 2
B, o, m:_, m_,

— — = — \vi
2m,, ™ 2m. "¢ 2M 2u "

R=

r=Tp —Te

The potential energy contribution is only dependent on relative distance r. We
then only solve for the relative distance and ignore the overall translational
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motion of the atom in space, in which case the Schrodinger equation becomes:

R,  Zeér ,_
_Ev v 4?“0?@ - By
1 d? 1 . Ze*n 2uE
ST _ﬂ? [ — W = | = /1
rdr? * 2o N QTI'E[]?:L?T'EH ( B2 ) ¢

To achieve the second point, we will write the wavefunction as ¢(r,8,¢) =
R(r)Y (6, ¢), where Y (8, ¢) are the spherical harmonics that are the solutions
in the angular dimension. If we substitute these functions into the Schrodinger
equation we get:

1 d? Il+1 Ze? 2uFE
Ld gy WA Dpy, Zek py _  (2E) gy
r dr? r2 2reoh’r h?
2 2
1d°(rR) N Zep U1 +1) R o— _ 2uE R
r dr? Imeohir rd 12

We first multiply this equation with r, and then define the function Il = rR.
We then can write the Schrodinger equation, which depends only on the radial

coordinate r, as: )
d-I1 TR 2uk
= () vam=- (57 ) n
where the effective potential 1s defined as:

Ze? U1+ 1)R?
_4?re[]r+ 2ur?

Verr =

Note the following:

e The angular part has been divided out in the Schrodinger equation. The
contribution from the angular dimension is implicitly present in the effec-
tive potential through the I(I + 1)A? term.

e The coulombic part provides an attractive (negative) potential. The an-
gular term, however, provides a repulsive (positive) potential. These two
effects will counterbalance depending on the quantum number [ and the
distance from the nucleus r.

e The angular centrifugal force is zero for [ = 0. This 1mplies that the
potential i1s purely attractive and thus that there is a finite chance of
finding the electron at the nuceus.

e Close to the nucleus, the angular centrifugal force for [ s 0 is larger than
the attractive coulombic force. Consequently, the electron is expelled from
the nucleus and the probability of finding the electron at the nulceus is

Zero. I
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Angular Momentum Operators

The angular momentum and its operators play a central role in quantum mechanics. The reason
for this is that the with the set of angular momentum operator properties we can investigate
quantum mechanical systems very thoroughly without turning to the Schr odinger equation, the
explicit form of the wavefunctions or even the explicit form of the operators. All we shall use are
the operators and their commutation relations, and with it we will be able to draw important
conclusions about the corresponding observables.

The Fundamental Postulates of Quantum Mechanics

Quantum Mechanics can be formulated in terms of a few postulates (i.e., theoretical principles
based on experimental observations). The goal of this section is to introduce such principles,
together with some mathematical concepts that are necessary for that purpose. To keep the
notation as simple as possible, expressions are written for a 1-dimensional system. The
generalization to many dimensions is usually straightforward.

: Any system in a pure state can be described by a wave-function, 1(t, x), where t is
a parameter representing the time and x represents the coordinates of the system. Such a function
W(t, ) must be continuous, single valued and square integrable.

Note 1: As a consequence of Postulate 4, we will see that P(t, ) = ¥*(t, )(t, x)dzr represents
the probability of finding the system between x and x + dx at time t.

Postulate 2|: Any observable (i.e., any measurable property of the system) can be described by
an operator. The operator must be linear and hermitian.

What is an operator

Definition 1. An operator O is a mathematical entity that transforms a function f(x) into another
function g(x) as follows, R4(96)
Of (z) = g(z),

where f and g are functions of .

What ia a linear operator
Definition 3: An operator O is linear if and only if (iff),

O(af(z) + bg(x)) = aOf(x) + bOg(x),
where a and b are constants.

What ia an Hermitian operator
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Definition 4: An operator O is hermitian iff,

=

[ s @) = | [ @O6n@)|
where the asterisk represents the complex conjugate.

What ia an eigen function. What is an eigen value
Definition 5: A function ¢,,(x) is an eigenfunction of O iff,

Odn(z) = Onoon(z),
where O, is a number called eigenvalue.

Property 1: The eigenvalues of a hermitian operator are real.
Proof: Using Definition 4, we obtain

*

/ dzd! (x)Odn(z) — { / d:rgb;(:r:)(jgﬁn(x)] =0,
therefore,
O, — O] ]dxqén(;r)*qﬁn(:r} =0.
Since ¢, (x) are square integrable functions, then,

On = O,

Property 2: Different eigenfunctions of a hermitian operator (i.e., eigenfunctions with different
eigenvalues) are orthogonal (i.e., the scalar product of two different eigenfunctions is equal to
zero). Mathematically, if O¢,, = O, ¢,, and O, = O,,¢,,, with O,, # O,, . then f dz ¢} o, = 0.

Proof: .
[ 6,00, { / dm:;é@m] o,

[On - O‘m] /dEO:n@n = 0.

and
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Postulate 3|2 The only possible experimental results of a measurement of an observable are the
eigenvalues of the operator that corresponds to such observable.

Postulate 42 The average value of many measurements of an observable O, when the system is
described by 1(x) as equal to the expectation value O, which is defined as follows,
L N Yoy
5 _ [ dzv(a)0v()
[ dzd(z) Y (z)

Postulate 5 :The evolution of 1(x,t) in time is described by the time-dependent Schrédinger
equation:

o(xz,t) -
ih———= = Hi(z,1),
5 Y(z,t),
where H = —%% + V(). is the operator associated with the total energy of the system, F =
Z V().

Particle in a box
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The particle in the box can be represented by the following diagram:R1(22)

Viz) © Box
1% / V=0 7 £ 00
z > T
0 a
Particle

The goal of this section is to show that a particle with energy E and mass m in the box-potential
V(x) defined as

<zr<a
V(:C):{[L when 0 <z <a,

o0, otherwise,

has stationary states and a discrete absorption spectrum (i.e., the particle absorbs only certain
discrete values of energy called quanta). To that end. we first solve the equation I;T@T(:c) = Eé(:}:),
and then we obtain the stationary states 1/(z, ) = ¢(z)exp(—1 Et).

Since é(:r) has to be continuous, single valued and square integrable (see Postulate 1), 5(0) and
o(a) must satisfy the appropriate boundary conditions both inside and outside the box. The bound-
ary conditions inside the box lead to:

2 Fa
9 ) = Bd(zx), = ()= ASin(K z). 6)
2m dz?
Functions ®(z) determine the stationary states inside the box. The boundary conditions outside the
box are,
h?

—%wfb(:c) + 00®(z) = E®(z), = O(z) =0,
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and determine the energy associated with ®(z) inside the box as follows. From Eq. (6), we obtain:
Qh—;AKQ =FA, and, ®(a) = ASin(K a) =0,

= Ka=mnm, with n=1,2,.. =
Note that the number of nodes of @ (i.e., the number of coordinates where ®(z) = 0), is equal to
n — 1 for a given energy, and the energy levels are,

?—‘2 2.2
E=—""T  Withn=1 2 ..
o2m a2
e.g.,
B2 w?
En=1)=5"72
h2 472
En=2) =2
(n ) 2m a?’

Conclusion: The energy of the particle in the box is quantized! (i.e., the absorption spectrum of
the particle in the box is not continuous but discrete).

Commutator

The commutator [A, B] is defined as follows:R4(97)

[A,B] = AB— BA.

Two operators A and B are said to commute when [A, B] = 0.

Schrodinger equation

Postulate 1.1 The quantum state of the system is a solution of the Schréodinger equation
hO (1)) = H|v(t)), (1.20)
where H s the quantum mechanical analogue of the classical Hamiltonian.

From classical mechanics, H 1s the sum of the kinetic and potential energy of a particle,
H= ip? + V(z). (1.21)
2m

Thus, using the quantum analogues of the classical x and p, the quantum H 1is

H= iﬁ? + V(2). (1.22)
2m

To evaluate V() we need a theorem that a function of an operator is the function evaluated
at the eigenvalue of the operator. The proof 1s straight forward, Taylor expand the function
about some point, If

V(z) = (V(0) + 2V'(0) + %v”(o)ﬁ ) (1.23)
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then
V(z) = (V(0) +zV'(0) + %V”(O):ﬁ'? o) (1.24)
Since for any operator
[f. fF]=09p (1.25)
Thus, we have
@V (@) = V(2)(z) (1.26)

So, in coordinate form, the Schrodinger Equation is written as

'y hoot )
?.ha@-(:c;t) = (—%w +V (1)) (x,t) (1.27)

Product of operators

An operator product is defined as
(AB)|¢)) = A[B|y)] (2.109)

where we operate in order from right to left. We proved that in general the ordering of the
operations 1s important. In other words, we cannot in general write AB = BA. An example of
this 1s the position and momentum operators. We have also defined the “commutator”

[A,B] = AB — BA. (2.110)

Let’s now briefly go over how to perform algebraic manipulations using operators and commu-
tators. These are straightforward to prove

Textbook

1. AK.Chandra, 2010, Introductory quantum Chemistry, Tata McGraw Hill Education Pvt., Ltd,

New Delhi
2. Puri Sharma and Pathania, 2013, Elements of Physical Chemistry, Vishal Publishing Co., New
Delhi
Possible Questions
PART- A Questions (Each question carries one mark)

1. Evidence in favour of the wave nature of radiation
a. Interference of radiation b. Photoelectric effect
c. Compton effect d. Black body radiation
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2. Black body radiation has a characteristic

a. Continuous spectrum b. Discontinuous spectrum
c. Narrow range of light d. Laser action
3. As per plancks law the characteristic continuous spectrum of radiation depends upon
a. Body’s temperature b. Nature of the body
c. Colour of the body d. Density of the body
4. Stefan Boltzmann law is based on
a. Diffraction of radiation b. Photoelectric effect
c. Compton effect d. Black body radiation
5. In one dimensional box problem the potential energy of the particle inside the box is
a. zero b. unity c. infinity d. fractional

6. The solution of the problem of the rigid rotator gives us directly the solution of the
a. angular momentum operator b. Lapalacian operator

c. Hermitian operator d. Position operator
7. A diatomic vibrating molecule can be represented by a simple model called
a. Simple harmonic oscillator b. Rigid rotor

c. Particle in one dimensional box  d. Particle in three dimensional box
8. The quantum number ‘n’ is called
a. Principal quantum number b. Azimuthal quantum number
c. Magnetic quantum number d. Angular momentum quantum number
9. The lowest energy orbital for the ammonia molecule is designated
a. 1s b. log c. las d. Cav
10. The benzene molecule CeHe has how many vibrational modes
a. 6 b. 12 c.24 d. 30
11. Zeeman effect is
a. the change in energy levels of an atom when it is placed in uniform external field
b. The change in energy levels of an atom when placed in non-uniform external field
c. The change in energy levels of an atom when placed in external electric field
d. The change in energy levels of an atom when placed in non-uniform electric field
12. The energy level belongs to Eqn=2n-1/2
a. Harmonic oscillator b. Hydrogen atom
c. particle in a box d. free particle in motion
13. For the symmetry operation “reflection” the corresponding symmetry element is
a. ldentity element b. Plane of symmetry
c. Centre of symmetry d. Proper axis of symmetry
14. An array of numbers arranged in rows and columns are called
a. Matrices b. determinants c. Space lattices d. Miller indices
15. A diagonal matrix will have
a. In a square matrix if all the elements other than those along the diagonal are zero
b. In a square matrix if all the elements other than those along the diagonal are unity
c. In a square matrix if all the elements along the diagonal are unity
d. In a square matrix if all the elements along the diagonal are zero
16. The molecule with Csy point group
a. acetylene b. water c. ammonia d. Boron trichloride
17. For a pyramidal molecule with point group Cay the number of theoretically predicted IR
fundamental bands
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a. Three b. Four c. Five d. Six
18. For chloro trifluoride molecule the number of observed Raman bands and IR bands are four
each, the predicted geometry is
a. Pyramidal b. planar c. T-shaped  d. bent
19. In case of molecules with a centre of symmetry the vibrational modes are anti-symmetric to
centre of inversion are
a. IR inactive b. IR active c. Raman inactive  d. Raman hyper active
20. For Raman activity the vibrations should involve a change in
a. polarizability b. magnetization
c. Magnetic susceptibility d. Surface tension

PART- B Questions (Each question carries Six mark)

21. (a) Explain the different postulates of Quantum mechanics.
(OR)
(b) Explain Heisenberg’s uncertainty principle .How it is experimentally verified?

22. (a) Set up Schrodinger wave equation for one dimensional harmonic oscillator and
solve the equation for its energy and wave equation.
(OR)
(b) Derive the Schrodinger equation for rigid rotor.
23. (a) Explain the applications of variation method.
(OR)
(b) (i) Apply the perturbation method to helium atom.
(if) Write a note on orbital and orbital shapes.
24. (a) Explain the different types of matrices with suitable examples.
(OR)
(b) Explain the following
(i) Square matrix (ii) diagonal matrix (iii) null matrix (iv) unit matrix
(v) Symmetric matrix
25. a. State and explain the great orthogonality theorem.
(OR)
b. Construct the character table Cy group.

PART- C Question (Each Question carries Ten mark)

26. (i) What are the relationships between reducible and irreducible representation of
the group.
(if) What are the Properties of irreducible representation?
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Multiple Choice Questions for Unit |

S.No | Question Option 1 Option 2 Option 3 Option 4 Answer
Unit-1

1 The definite region in three Atomic orbital | Molecular Nodal plane | Median lobes Atomic orbital
dimensional space around the nucleus orbital
where there is high probability of
finding an electron of a specific energy
E is called

2 This involves with the knowledge of Quantum Classical Newtonian | Fluid mechanics | Quantum
probability mechanics mechanics mechanics mechanics

3 The knowledge of quantum mechanics | Probability certainties uncertanities | possibility Probability
usually involves a knowledge of

4 Classical mechanics and quantum Correspondenc | Bohrs theory | Rutherford | Paulis exclusion | Correspondenc
mechanics tend to give the same e principle theory principle e principle
results when systems are in highly
excited quantum states. This is

5 Classical mechanics and quantum Normal states | Highly excited | Excited to When there is Highly excited
mechanics tend to give the same quantum low levels no excitation quantum states
results when systems are in states

6 In quantum mechanics the state of a Wave function | PV, T Gaseous Law of mass Wave function
system is defined by laws action




7 Simuntaneous specification of position | Stefan Weins Planck’s law | Heisenberg Heisenberg
and momentum is impossible for a Boltzmann displacement uncertainty uncertainty
microscopic particle. This is law law principle principle

8 According to Newtons second law of | F=ma V =ma F=mv F=Pv F=ma
motion

9 Which one of the following is correct | Both have The KE of Both have Both have same | Both have
in respect of an electron and a proton | same KE proton is more | same momentum same
having same de-Broglie wavelength of than that of velocity momentum
2A electron

10 The time independent Schrodinger's total binding total potential | total kinetic | total energy of | total energy of
equation of a system represents the energy of the | energy of the | energy of the system the system
conservation of the system system the system

11 According to Schrodinger, a particle is | wave packet single wave light wave magnetic wave | wave packet
equivalent to a

12 Matter waves are longititudinal | electromagneti | always show diffraction | show

C travel with diffraction
the speed of
light

13 The de-broglie hypothesis is associated | wave nature of | wave nature of | wave nature | wave nature of | wave nature of
with electron only | proton only of radiation | all material all material

particles particles

14 The de-broglie wavelength of a charge | A=h/NmqV | A= hm/\qV A=h/\2mqV | A=hmqV A=h/"N2mqV
g and accelerate through a potential
difference of V volts is

15 The de-broglie wavelength of a L=W(NEk) | A=NWO2mEk | A=hW~N(mEk | A==WNBmEk) |A=h/(V2mEk)
particle having KE Ek is given by ) )

16 The value of Kroneckers delta, is equal | i=j i isnotequal | 1/j=2 ij=0 i=]

to one when

toj




17 The value of Kroneckers delta, iszero |i=] I isnotequal | 1/j=2 i/]=0 I is not equal
when to ] to
18 The component of linear momentum Discrete Continuous Continuous | Line spectrum Continuous
about any axis forms a eigenspectrum | eigen spectrum eigen
spectrum spectrum
19 The component of angular momentum | Discrete Continuous Continuous | Line spectrum Discrete
about any axis forms a eigenspectrum | eigen spectrum eigenspectrum
spectrum
20 Momentum of a particle is Mass x Mass / Mass x M?/v Mass x
velocity velocity velocity x velocity
velocity
21 The eigen values for energy must be real imaginary Complex positive real
number
22 The eigen values for augular real imaginary Complex positive real
momentum must be number
23 Hermitian operator is Linear and has | Non linear and | Linear and Non linear and | Linear and has
real eigen real eigen has imaginary eigen | real eigen
values values imaginary values values
eigen values
24 The eigen values for observable real imaginary Complex positive real
physical quantities must be number
25 In using operators commutator means | Multiplying by | Additing 1 Dividing by | Multiplying by | Multiplying by
zero 2 2 Zero
26 The operators d/dx and multiplication | Do not commute Isnot a Results in a Do not
by x commute linear non-linear commute
function function
27 The classical expression for the total Hamilitonian | hermitian Laplacian Eigen function | Hamilitonian

energy of a single particle of mass m is




28

If in operating on the sum of two
functions an operator gives the same
result as the sum of the operations on
the two functions separately

Linear
operator

Addition
operator

Substracting
operator

Vector operator

Linear

29

If the results of two operations is same
regardless of the sequence in which the
operations are performed, the two
operators are said to

Commute

associate

Get squared

multiplied

commute

30

If the same operator is applied several
times in succession it is written with a

power

+ve sign

-ve sign

Division sign

power

31

The consequtive operations with two
or more operators on a function is
called as

Multiplication
operator

Addition
operator

Substracting
operator

Vector operator

Multiplication
operator

32

If the operator is integration with
respect to x on the operand x3, then
the result of the operation is

X414 +C

X3/2

Kx3

3x2

X414 +C

33

If the operator is differentiating with
respect to x on the operand x3, then
the result of the operation is

XG

X3/2

Kx®

3x2

3x2

34

If the operator is multiplying by a
constant on the operand x3, then the
result of the operation is

XS

X3/2

Kx®

3x?

Kx®

35

If the operator is taking the square root
on the operand x3, then the result of
the operation is

X6

X3/2

X3/2

36

If the operator is taking the square on
the operand x3, then the result of the
operation is

X6

X3/2

XG




37 For the operator differentiation with d/dx dx fdx udv d/dx
respect to x, the operator is
38 A function on which the operation by a | Operand derivative Physical Chemical Operand
operator is carried out is variable variable
39 An operator is a symbol for a certain One function | One property | One eigen One eigen One function
mathematical procedures which to another to another value to function to to another
transforms function another another function | function
value
40 According to Born interpretation the Same Different in May be or zero Same
result of the wave function implies that | wherever dx is | different may not be wherever dx is
the probability of finding the electron | situated places equal situated
in region dx is
41 An acceptable well behaved contineous Discontinuous | Do not Multiple valued | contineous
wavefunction (Psi) will be first derivative | vanish at
infinity
42 One of the properties of the acceptable | Never Discontinuous | Do not Multiple valued | Never
wavefunction (Psi) increases to first derivative | vanish at increases to
infinity infinity infinity
43 One of the properties of the acceptable | Single valued | Discontinuous | Do not Multiple valued | Single valued
wavefunction (Psi) first derivative | vanish at
infinity
44 At constant frequency, the Intensity of Kinetic energy | Quantum of | Particles of Intensity of
photoelectric current increases with incident of radiation radiation radiation incident
increasing radiation radiation
45 Increasing the intensity of incident Increase of KE | Increase the Decreases KE remains Increase the
radiation in photo electric effect is due | of light number of KE same number of
to electrons electrons

emitted in unit
time

emitted in unit
time




46 A process where ejection of electrons | Diffraction of | Photoelectric | Compton Black body Photoelectric
take place by the action of light is radiation effect effect radiation effect
called

47 The spectrum of black-body radiation | Stefan Weins Planck’s law | Jean’s law Weins
at any temperature is related to the Boltzmann displacement displacement
spectrum at any other temperature law law law

48 The power emitted per unit area of the | Stefan Weins Planck’s law | Jean’s law Stefan
surface of a black body is directly Boltzmann displacement Boltzmann
proportional to the fourth power of its | law law law
absolute temperature, the law is

49 Stefan Boltzmann law is based on Diffraction of | Photoelectric | Compton Black body Black body

radiation effect effect radiation radiation
50 Weins displacement law is based on Diffraction of | Photoelectric | Compton Black body Black body
radiation effect effect radiation radiation

51 As the black body is heated the Higher Lower Becomesa | Becomes a Higher

spectrum shift to frequency side | frequency side | narrower broad band frequency side
band

52 Black body radiation has a Planck’s law Faradays law | Boltzmann | Jeans law Planck’s law
characteristic continuous spectrum of law
radiation which depends upon the
body temperature, this is called

53 As per plancks law the characteristic Body’s Nature of the | Colour of Density of the Body’s
continuous spectrum of radiation temperature body the body body temperature
depends upon

54 Black body radiation has a Body’s Nature of the | Colour of Density of the Body’s
characteristic continuous spectrum of | temperature body the body body temperature
radiation which depends upon

55 Black body radiation has a Continuous Discontinuous | Narrow Laser action Continuous
characteristic spectrum spectrum range of spectrum




light

56 Evidence in favour of the particle Diffraction of | Compton polarisation | interference Compton
nature of radiation radiation effect effect

57 Evidence in favour of the particle Diffraction of | Black body polarisation | interference Photoelectric
nature of radiation radiation radiation effect

58 Evidence in favour of the particle Diffraction of | Photoelectric | polarisation | interference Photoelectric
nature of radiation radiation effect effect

59 Evidence in favour of the wave nature | Diffraction of | Photoelectric | Compton Black body Diffraction of
of radiation radiation effect effect radiation radiation

60 Evidence in favour of the wave nature | Interference of | Photoelectric | Compton Black body Interference of
of radiation radiation effect effect radiation radiation
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UNIT - 11
Wave Function y

Particle in a one-dimensional box - quantization of energy - normalization of wave function -
orthogonality of the particle in a one-dimensional box wave functions. Illustration of the
uncertainty principle and correspondence principle with reference to the particle in a one-
dimensional box - particle in a three dimensional box - separation of variables.

Solving of Schrodinger equation for one-dimensional harmonic oscillator. Harmonic oscillator
model of a diatomic molecule. Illustration of the uncertainty principle and correspondence
principle with reference to harmonic oscillator.

Solving of Schrodinger equation for a rigid rotor. Rigid rotor model of a diatomic molecule.
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1.5 Heisenberg uncertainty principle

Since a free particle is represented by the wave packet W(x, 7), we may regard
the uncertainty Ax in the position of the wave packet as the uncertainty in the
position of the particle. Likewise, the uncertainty Ak in the wave number is
related to the uncertainty A p in the momentum of the particle by Ak = Ap /.
The uncertainty relation (1.23) for the particle 1s, then
AxAp = h (1.44)
This relationship 1s known as the Heisenberg uncertainty principle.
The consequence of this principle is that at any instant of time the position

of the particle is defined only as a range Ax and the momentum of the particle
is defined only as a range A p. The product of these two ranges or ‘uncertain-
ties’ is of order £ or larger. The exact value of the lower bound is dependent on
how the uncertainties are defined. A precise definition of the uncertainties in
position and momentum is given in Sections 2.3 and 3.10.

The Heisenberg uncertainty principle is a consequence of the stipulation that
a quantum particle 1s a wave packet. The mathematical construction of a wave
packet from plane waves of varying wave numbers dictates the relation (1.44).
[t 1s not the situation that while the position and the momentum of the particle
are well-defined, they cannot be measured simultaneously to any desired degree
of accuracy. The position and momentum are, in fact, not simultancously
precisely defined. The more precisely one is defined, the less precisely is the
other, in accordance with equation (1.44). This situation is in contrast to
classical-mechanical behavior, where both the position and the momentum can,
in principle, be specified simultaneously as precisely as one wishes.

In quantum mechanics, if the momentum of a particle is precisely specified
so that p = py and Ap = 0, then the function A(p) is

A(p) = o(p — po)

The wave packet (1.37) then becomes

. < - | :
ll*'(:t‘, !) — j ()(p . }m)el(px—Er‘)/h dp _ el(pgx—E.f)/h

o 27th

1
V 27th
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which is a plane wave with wave number py/h and angular frequency E /.
Such a plane wave has an infinite value for the uncertainty Ax. Likewise, if the
position of a particle 1s precisely specified, the uncertainty in its momentum is
infinite.

Another Heisenberg uncertainty relation exists for the energy £ of a particle
and the time ¢ at which the particle has that value for the energy. The
uncertainty Aw 1n the angular frequency of the wave packet 1s related to the
uncertainty AE in the energy of the particle by Aw = AE/#h, so that the
relation (1.25) when applied to a free particle becomes

AEAL =1 (1.45)

Again, this relation arises from the representation of a particle by a wave
packet and is a property of Fourier transforms.

The relation (1.45) may also be obtained from (1.44) as follows. The
uncertainty AL is the spread of the kinetic energies in a wave packet. If Ap is
small, then AE is related to A p by

2
AE = A(i) —ZAp (1.46)
2m m

The time A7 for a wave packet to pass a given point equals the uncertainty in
its position x divided by the group velocity v,

Ax Ax m _

At =—=—=—Ax (1.47)

Ug v P
Combining equations (1.46) and (1.47), we see that AEA7 = AxA p. Thus, the
relation (1.45) follows from (1.44). The Heisenberg uncertainty relation (1.45)
is treated more thoroughly in Section 3.10.

Dr. M. Gopalakrishnan Department of Chemistry, KAHE
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2.1 The Schrodinger equation

In the previous chapter we introduced the wave function to represent the
motion of a particle moving in the absence of an external force. In this chapter
we extend the concept of a wave function to make it apply to a particle acted
upon by a non-vanishing force, i.e., a particle moving under the influence of a
potential which depends on position. The force F acting on the particle is
related to the potential or potential energy V(x) by

dV

As in Chapter 1, we initially consider only motion in the x-direction. In Section
2.7, however, we extend the formalism to include three-dimensional motion.
In Chapter 1 we associated the wave packet

W(x, 1) = I A(p)eP—E0/f q ) (2.2)

—0C

1
V 27th

with the motion in the x-direction of a free particle, where the weighting factor
A(p) 1s given by

A(p) =

: r W(x, r)e (PED/R gy (2.3)
V27h ) o
This wave packet satisfies a partial differential equation, which will be used as
the basis for the further development of a quantum theory. To find this
differential equation, we first differentiate equation (2.2) twice with respect to
the distance variable x to obtain

(’}le o —1 > 2 4y i( px—Et)/h '
Xt \2ahs j—ocp Ale v =

Differentiation of (2.2) with respect to the time 7 gives

g7 Tt -

owr -1 ™
it 27k’ I —co
The total energy E for a free particle (i.e., for a particle moving in a region of
constant potential energy V') is given by

EA(p)e'P—E/ g, (2.5)

Dr. M. Gopalakrishnan Department of Chemistry, KAHE
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E-2 Ly
2m
which may be combined with equations (2.4) and (2.5) to give
oW h? O*W
t— 2m Ox?
Schrodinger (1926) postulated that this differential equation is also valid

+ VW

when the potential energy is not constant, but is a function of position. In that
case the partial differential equation becomes
" OW(x, 1) h? PW(x, 1)
ot 2m  Ox?
which 1s known as the time-dependent Schridinger equation. The solutions

+ V(x)W(x, 1) (2.6)

W(x, 1) of equation (2.6) are the time-dependent wave functions. An important
zoal in wave mechanics is solving equation (2.6) for W(x, f) using various
>xpressions for V/(x) that relate to specific physical systems.

When V(x) is not constant, the solutions W(x, 7) to equation (2.6) may still
ye expanded in the form of a wave packet,

W(x, 1) =

1 < - .
\/ﬁj A(p, )P —E0/h g, (2.7)

I'he Fourier transform A( p, ¢) is then, in general, a function of both p and time
', and 1s given by

A(p, 1) = j W(x, r)e (PX—ED/ {5 (2.8)

1
V2ah ) -
By way of contrast, recall that in treating the free particle as a wave packet in
Chapter 1, we required that the weighting factor A(p) be independent of time
ind we needed to specify a functional form for A(p) in order to study some of

‘he properties of the wave packet.

2.2 The wave function

Interpretation

Before discussing the methods for solving the Schrodinger equation for specific
choices of V(x), we consider the meaning of the wave function. Since the wave
function W(x, 7) 1s 1dentified with a particle, we need to establish the connec-
1on between W(x, r) and the observable properties of the particle. As in the

Dr. M. Gopalakrishnan Department of Chemistry, KAHE
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case of the free particle discussed in Chapter 1, we follow the formulation of
Born (1926).

The fundamental postulate relating the wave function W(x, 7) to the proper-
ties of the associated particle is that the quantity |W(x, 7)|> = W (x, HW(x, 1)
gives the probability density for finding the particle at point x at time ¢. Thus,
the probability of finding the particle between x and x+ dx at time 7 is
[W(x, £)|*>dx. The location of a particle, at least within an arbitrarily small
interval, can be determined through a physical measurement. If a series of

measurements are made on a number of particles, each of which has the exact
same wave function, then these particles will be found in many different
locations. Thus, the wave function does not indicate the actual location at
which the particle will be found, but rather provides the probability for finding
the particle in any given interval. More generally, quantum theory provides the
probabilities for the various possible results of an observation rather than a
precise prediction of the result. This feature of quantum theory is in sharp
contrast to the predictive character of classical mechanics.

According to Born’s statistical interpretation, the wave function completely
describes the physical system it represents. There is no information about the
system that is not contained in W(x, 7). Thus, the state of the system is
determined by its wave function. For this reason the wave function is also
called the state function and 1s sometimes referred to as the state W(x, 7).

The product of a function and its complex conjugate is always real and is
positive everywhere. Accordingly, the wave function itself may be a real or a
complex function. At any point x or at any time 7, the wave function may be
positive or negative. In order that |W(x, 1)|> represents a unique probability
density for every point in space and at all times, the wave function must be
continuous, single-valued, and finite. Since W(x, ) satisfies a differential
equation that is second-order in x, its first derivative is also continuous. The
wave function may be multiplied by a phase factor e'*, where « is real, without
changing its physical significance since

[€9W(x, O] [e"W(x, 1)] = P (x, HW(x, 1) = |[W(x, 1)|?
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Normalization

The particle that 1s represented by the wave function must be found with
probability equal to unity somewhere in the range —oo = x = oo, so that
W(x, ) must obey the relation

j W(x, H*dx =1 (2.9)

— 0o

A function that obeys this equation is said to be normalized. 1If a function
P(x, 1) is not normalized, but satisfies the relation

[ d*(x, HP(x, t)dx = N

then the function W(x, ) defined by

Wir. 1) — —— d(x
P(x, 1) = \/N(I)(,\., 1)
is normalized.

In order for W(x, 7) to satisfy equation (2.9), the wave function must be
square-integrable (also called quadratically integrable). Therefore, W(x, ¢)
must go to zero faster than 1/ \/m as x approaches (4) infinity. Likewise, the
derivative 9W /0x must also go to zero as x approaches (+) infinity.

Once a wave function W(x, 7) has been normalized, it remains normalized as
time progresses. To prove this assertion, we consider the integral

oo
N = [ PP dx
— 0
and show that N is independent of time for every function W that obeys the
Schrodinger equation (2.6). The time derivative of N is
dN
T
where the order of differentiation and integration has been interchanged on the
right-hand side. The derivative of the probability density may be expanded as
follows

[ %\ly(x, 0[* dx (2.10)

—0C

OV l owp*
— P
Ot + ot

0 13
WPy 2 T apfgy
01‘ Pix, 1) 8:( =1
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so that

i 0 oW aw*) |
| 2 ! W
| Plx, 0" = 2m Ox (P Ox -V Ox (2.12)

Substitution of equatlon (2.12) into (2.10) and evaluation of the integral give
dn i_ﬁrc 0 ( w0y alp*) P [P* o a.lp*}
dt  2m Ox Ox Ox 2m ox Ox | -~

Since W(x, ) goes to zero as x goes to (&) infinity, the right-most term
vanishes and we have

dN
ds

Thus, the integral N is time-independent and the normalization of W(x, ¢) does

=0

not change with time.
Not all wave functions can be normalized. In such cases the quantity
|W(x, £)|> may be regarded as the relative probability density, so that the ratio

j W(x, 12 dx

aip

by
j (W(x, 7)*dx

by
represents the probability that the particle will be found between a; and a»
relative to the probability that it will be found between b; and b;. As an
example, the plane wave
W(x, [) — ei(;}x—Er)/ﬁ,

does not approach zero as x approaches (4) infinity and consequently cannot
be normalized. The probability density |W(x, 1)|? is unity everywhere, so that
the particle 1s equally likely to be found in any region of a specified width.
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Equation (£2.6) and 1ts complex conjugate may be written in the form

A Y B ih PV i s
ot 2mox2  h

ow* i PPr i I
Ot 2m Ox? ﬁ

so that O|W(x, 1)[? / Jt becomes

: 2\ AVAN I B
_‘qjh )P = i (q)*a VoY )

2.11)

2m Ox2 Ox?2
where the terms containing / cancel. We next note that
NP * 92\ P
) (P*a_y_q) OV ) _ g ? y_lpazy
Ox Ox Ox Ox Ox?

2.4 Time-independent Schrodinger equation

The first step in the solution of the partial differential equation (2.6) is to
express the wave function W(x, ) as the product of two functions
Wix, 1) = o) (2.27)

where 1(x) is a function of only the distance x and y(¢) is a function of only
the time ¢. Substitution of equation (2.27) into (2.6) and division by the product
Y(x)y(t) give

1 d /(!) 21 d*y((x)
y(1) dt 2m P(x) dx?
The left-hand side of equation (2.28) 1s a function only of 7, while the right-
hand side is a function only of x. Since x and ¢ are independent variables, each
side of equation (2.28) must equal a constant. If this were not true, then the
left-hand side could be changed by varying ¢ while the right-hand side
remained fixed and so the equality would no longer apply. For reasons that will

soon be apparent, we designate this separation constant by E and assume that
it is a real number.

ih

+ V() (2.28)

Equation (2.28) 1s now separable into two independent differential equations,
one for each of the two independent variables x and . The time-dependent
equation is
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and 1s called the time-independent Schrodinger equation. The solution of this
differential equation depends on the specification of the potential energy V(x).
Note that the separation of equation (2.6) into spatial and temporal parts is
contingent on the potential //(x) being time-independent.

The wave function W(x, 7) 1s then

W(x, 1) = p(x)e L/ (2.31)
and the probability density [W(x, 1)|? is now given by
Wi, 0P = W Wr, 1) =y @e B e N = (o)
Thus, the probability density depends only on the position variable x and does
not change with time. For this reason the wave function W(x, #) in equation
(2.31) 1s called a stationary state. 1If W(x, t) 1s normalized, then y(x) is also
normalized

f ()2 dr = 1 (2.32)

which is the reason why we set the integration constant in equation (2.29) equal
to unity.
The total energy, when expressed in terms of position and momentum, is

called the Hamiltonian, H, and is given by
2

H(x, p) = 2—+ V(%)

The expectation value (/) of the Hamiltonian may be obtained by applying
equation (2.22)

(H) = rc P (x ,)[ h2 P e ‘)} Wer. 1) de
) - 2m Ox? X X, 1)dx
For the stationary state (2.31), this expression becomes

= ) | = —a V() [ p(x) dx
o I—ocu ('1)[ 2;71('3):2+ ()| P(x) dx

[f we substitute equation (2.30) into the integrand, we obtain

Dr. M. Gopalakrishnan Department of Chemistry, KAHE



Wave Function wp (For the 2017 Batch)

oo

(H) = E[

where we have also applied equation (2.32). We have just shown that the
separation constant £ is the expectation value of the Hamiltonian, or the total
energy for the stationary state, so that ‘£’ 1s a desirable designation. Since the
energy 1s a real physical quantity, the assumption that £ is real is justified.

In the application of Schrodinger’s equation (2.30) to specific physical
examples, the requirements that 1(x) be continuous, single-valued, and square-
integrable restrict the acceptable solutions to an infinite set of specific functions
Yu(x), n=1,2,3, ..., each with a corresponding energy value £,. Thus, the
energy 1s quantized, being restricted to certain values. This feature 1s illustrated
in Section 2.5 with the example of a particle in a one-dimensional box.

Since the partial differential equation (2.6) is linear, any linear superposition

P 0 dr = E

— DO

of solutions is also a solution. Therefore, the most general solution of equation
(2.6) for a time-independent potential energy V(x) 1s

W(x, 1) =Y capulx)e B/ (2.33)
n
where the coefficients ¢, are arbitrary complex constants. The wave function
W(x, ) in equation (2.33) is not a stationary state, but rather a sum of
stationary states, each with a different energy E,,.

2.5 Particle in a one-dimensional box

As an illustration of the application of the time-independent Schrodinger
equation to a system with a specific form for V/(x), we consider a particle
confined to a box with infinitely high sides. The potential energy for such a
particle is given by
Vix)=0, 0=x=ua

= o0, x<0, x>a

and 1s illustrated in Figure 2.1.
Outside the potential well, the Schrodinger equation (2.30) 1s given by
h? d*y

_%W -+ OCl[’ — El‘[r
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for which the solution is simply 1(x) = 0; the probability is zero for finding
the particle outside the box where the potential 1s infinite. Inside the box, the
Schrodinger equation is
ﬁz dzl,[;
T Al Ey
V(x)
N

\ %
Z

0 a

X

Figure 2.1 The potential energy V(x) for a particle in a one-dimensional box of length a.

or
d>y 47 .
d:‘é ! (2.34)
where /A is the de Broglie wavelength,
2mh h
i=Tr _" (2.35)

V2mE B P

We have implicitly assumed here that £ 1s not negative. If £ were negative,
then the wave function 1 and its second derivative would have the same sign.
As |x| increases, the wave function i(x) and its curvature d?y/dx? would
become larger and larger in magnitude and 1(x) would approach (+) infinity
as x — o0.

The solutions to equation (2.34) are functions that are proportional to their
second derivatives, namely sin(27x/4) and cos(27x/A). The functions
exp[2stix/A] and exp[—2mix /4], which as equation (A.31) shows are equivalent
to the trigonometric functions, are also solutions, but are more difficult to use
for this system. Thus, the general solution to equation (2.34) is

2mx

2': X
Y(x) = Asin % + Bcos — (2.36)
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where 4 and B are arbitrary constants of integration.

The constants 4 and B are determined by the houndary conditions placed on
the solution (x). Since ¥(x) must be continuous, the boundary conditions
require that 1(x) vanish at each end of the box so as to match the value of 1(x)
outside the box, 1.e., 1(0) = y(a) = 0. At x = 0, the function 1(0) from (2.36)
is

Y(0) = Asin0 + BcosO) = B
so that B = 0 and y(x) 1s now
27x

YP(x) = Asin 7

(2.37)
Atx = a, yP(a)is

_ . 27ma
Y(a) = Asin - = 0

The constant 4 cannot be zero, for then 1(x) would vanish everywhere and
there would be no particle. Consequently, we have sin(2za/4) = 0 or

27Ta
A

where n 1s any positive integer greater than zero. The solution n» = 0 would
cause 1(x) to vanish everywhere and is therefore not acceptable. Negative
values of n give redundant solutions because sin(—6) equals —sin 6.

We have found that only distinct values for the de Broglie wavelength satisfy
the requirement that the wave function represents the motion of the particle.
These distinct values are denoted as 4, and are given by

)L,,zz—a, n=123,... (2.38)

n

= N, n=1,2,3,...

Consequently, from equation (2.35) only distinct values £, of the energy are
allowed
N 22 h2 N 2 2

 2ma®  8ma®’
so that the energy for a particle in a box is quantized.

The lowest allowed energy level is called the zero-point energy and 1s given
by E; = h*/8ma?. This zero-point energy is always greater than the zero value
of the constant potential energy of the system and increases as the length a of

n=1,23,... (2.39)
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the box decreases. The non-zero value tor the lowest energy level 1s related to
the Heisenberg uncertainty principle. For the particle in a box, the uncertainty
Ax in position is equal to the length @ since the particle i1s somewhere within
the box. The uncertainty Ap in momentum is equal to 2|p| since the
momentum ranges from —| p| to | p[. The momentum and energy are related by

h
pl =V2mE :;—
a

so that
AxAp = nh

is 1in agreement with the Heisenberg uncertainty principle (2.26). If the lowest
allowed energy level were zero, then the Heisenberg uncertainty principle
would be violated.

The allowed wave functions ,(x) for the particle in a box are obtained by
substituting equation (2.38) into (2.37),

_ . nax
Yu(x) = Asin \ 0=x=ua
a

The remaining constant of integration A is determined by the normalization
condition (2.32),

> | ¢ 5 nax T
j P u(x)]* dx = |A|2J sin? 2 dy = |A|2EJ sinnf df = |A|2E =1
—00 0 a I Jo 2
where equation (A.15) was used. Therefore, we have
2
4P ==
a
or

A — eia \/g
a

Setting the phase a equal to zero since it has no physical significance, we
obtain for the normalized wave functions

_ 2 . nax
Pa(x) = Esm o O0=x=ua (2.40)
=0, x<0, x>a

Dr. M. Gopalakrishnan Department of Chemistry, KAHE



Wave Function wp (For the 2017 Batch)

The time-dependent Schrodinger equation (2.30) for the particle in a box has
an infinite set of solutions ,(x) given by equation (2.40). The first four wave
functions ,(x) for n =1, 2, 3, and 4 and their corresponding probability
densities [1,(x)|*> are shown in Figure 2.2. The wave function (x) corre-
sponding to the lowest energy level £y is called the ground state. The other
wave functions are called excited states.

If we integrate the product of two different wave functions 1 ;(x) and ¥, (x),
we find that

a 2 a ].." X JLX 2 T
f Y ()Y, (x)dx = —j sin( Tl) sin (n'n) dx = —f sin /@ sinnfdf = 0
0 d

0 a a 7)o

(2.41)

where equation (A.15) has been introduced. This result may be combined with
the normalization relation to give

I P i) (x) dx = Oy (2.42)
0

where 0y, 1s the Kronecker delta,
Om= 1, [ =n
(2.43)
=0, [ # n

Functions that obey equation (2.41) are called orthogonal functions. 1f the
orthogonal functions are also normalized, as in equation (2.42), then they are

said to be orthonormal. The orthogonal property of wave functions in quantum
mechanics is discussed in a more general context in Section 3.3.

The stationary states W(x, r) for the particle in a one-dimensional box are
given by substitution of equations (2.39) and (2.40) into (2.31),

2 JTX se 22 2
W(x, 1) = \/—sm(’m) o i/ 2ma)t (2.44)
a a

The most general solution (2.33) 1s, then,

W(x, 1) = \/%Z ¢, Sin (n_'n) g (@ mh/2ma’)t (2.45)
a a
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2.8 Particle in a three-dimensional box

A simple example of a three-dimensional system is a particle confined to a
rectangular container with sides of lengths a, b, and ¢. Within the box there 1s
no force acting on the particle, so that the potential V'(r) 1s given by

Vir) =0, 0=x=a 0=sy=bh 0=z=c

= o0, x<0, x>a;, y<0, y>b, z<0, z>c¢
The wave function 3(r) outside the box vanishes because the potential is
infinite there. Inside the box, the wave function obeys the Schrédinger equation
(2.70) with the potential energy set equal to zero
—h? [ Py(r)  DPy(r)  Py(r |
( GGG W

2m \  Ox? 0y? 0z2

(2.75)

The standard procedure for solving a partial differential equation of this type 1s
to assume that the function (r) may be written as the product of three
functions, one for each of the three variables
P(r) = yp(x, y, 2) = X(0)Y () Z(2) (2.76)
Thus, X(x) 1s a function only of the variable x, Y (y) only of y, and Z(z) only of
z. Substitution of equation (2.76) into (2.75) and division by the product XYZ
give
—h* d*X Rt &Y R d*Z
2mX dx? i 2mY dy? i 2mZ dz2

The first term on the left-hand side of equation (2.77) depends only on the
variable x, the second only on y, and the third only on z. No matter what the
values of x, or y, or z, the sum of these three terms is always equal to the same
constant £. The only way that this condition can be met is for each of the three
terms to equal some constant, say E,, £,, and £, respectively. The partial
differential equation (2.77) can then be separated into three equations, one for
each variable

—E (2.77)

d*X 2m d2Y 2m d>Z 2m
W+FEXX:()° d}T—I—FEyY:O, E—I_ﬁTEZZ:O
(2.78)
where
Ex+ E,+ E,=F (2.79)
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Thus, the three-dimensional problem has been reduced to three one-dimen-
sional problems.

The differential equations (2.78) are identical in form to equation (2.34) and
the boundary conditions are the same as before. Consequently, the solutions
inside the box are given by equation (2.40) as

_ 2 . ngx
X(x):\/—sm k 1, n,=1,2,3,
a a

. 2 . I } .
Y(y) = M:Sln "y . n, = 1.2, 3, ... (280)
b b

. 2 . ol e
Z(z) = \/—sm 1= \ n.=1,2,3,...
c c

and the constants £, £, £ are given by equation (2.39)

E, = —__. no=1,2,3,...

Ey, =——, ny=1,2,3,... (2.81)

E, =—"—, n,=1,2,3, ...
© 8mc? -

The quantum numbers ny, n,, n; take on positive integer values independently
of each other. Combining equations (2.76) and (2.80) gives the wave functions
inside the three-dimensional box

_ 8 . MaAX . Ny . Nz _
y.:n_“nym:(r)—\/%sm Y in 7Y i 12 (2.82)

a b c

where v = abc 1s the volume of the box. The energy levels for the particle are
obtained by substitution of equations (2.81) into (2.79)

2 n2 2
L (“+ +”) (2.83)

Hy 1
o 8 m b2
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Degeneracy of energy levels

[t the box is cubic, we have a = b = ¢ and the energy levels become
h2

(n} + ny 4 n2) (2.84)

M1y,

* 8ma?
The lowest or zero-point energy i1s £711 =3 h? / 8 ma?, which is three times the
zero-point energy for a particle in a one-dimensional box of the same length.
The second or next-highest value for the energy is obtained by setting one of

the integers ny., n,, n; equal to 2 and the remaining ones equal to unity. Thus,
there are three ways of obtaining the value 6/ / 8ma’®, namely, Eria, Eroa,
and £ ;.. Each of these three possibilities corresponds to a different wave
function, respectively, ¥21.1(r), Y12.1(r), and ¥ 12(r). An energy level that
corresponds to more than one wave function is said to be degenerate. The
second energy level in this case is threefold or triply degenerate. The zero-
point energy level is non-degenerate. The energies and degeneracies for the
first six energy levels are listed in Table 2.1.

The degeneracies of the energy levels in this example are the result of
symmetry in the lengths of the sides of the box. If, instead of the box being
cubic, the lengths of » and ¢ in terms of a were b = a/2, ¢ = a/3, then the
values of the energy levels and their degeneracies are different, as shown in
Table 2.2 for the lowest eight levels.

Orthogonality theorem

If Yy and Y, are eigenfunctions of a hermitian operator A with different
eigenvalues ay and oy, then Y, and 1, are orthogonal. To prove this theorem,
we begin with the integral

(2 | Ayn) = a1 (2 | 1) (3.17)
Since A is hermitian and «, is real, the left-hand side may be written as

(2 | A1) = (A | yn) = aa(ya | Y1)

Thus, equation (3.17) becomes
(ay — (11)<l/.?2 | l,[e'l) =0

Since a; # ay, the functions 1; and v, are orthogonal.
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Rigid Rotor

We can expand our analysis to a two-particle system with masses my and mo
that rotate with a fixed distance R between them. We can separate out the

translational motion of the system as a whole and their motion relative to one
another. Instead of using the separate masses m; and mo, we can define the
joint mass M and the reduced mass u as follows:

M = my+ms
i _ 1,1
M myp MM

Using the technique of the separation of variables, the Schrodinger equation can
be split into an equation that depends on the center coordinates and the joint
mass M, and an equation that depends on the relative coordinates of the system
with reduced mass u:

n

——va_.w‘l’_w = Enu¥y
R o

—Equjp == E'H_‘IJP.'

The total wavefunction is written as W = Wy, ¥, and the total energy is £ =
En + E,,. We are only concerned with the relative motion of the system. For
constant r» we then have for the Schrodinger equation:

R
—5pA?, = B9,
This 1s the same problem as the particle on a sphere. The solutions are the

spherical harmonics and the energies are:

ﬁﬁ

E=J(J+1)g;

where the labels J and M ; are used for labeling the states of the rigid rotor.
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The quantum behavior of the harmonic oscillator

This physical system serves as an excellent example for illustrating the basic principles of
quantum mechanics. The Schroedinger equation for the harmonic oscillator can be solved
rigorously and exactly for the energy eigenvalues and eigenstates. The mathematical process for
the solution is neither trivial, as is the case for the particle in a box, nor excessively complicated.
Moreover, we have the opportunity to introduce the ladder operator technique for solving the
eigenvalue problem.

The harmonic oscillator is an important system in the study of physical phenomena in both
classical and quantum mechanics. Classically, the harmonic oscillator describes the mechanical
behavior of a spring and, by analogy, other phenomena such as the oscillations of charge ow in
an electric circuit, the vibrations of sound-wave and light-wave generators, and oscillatory
chemical reactions. The quantum-mechanical treatment of the harmonic oscillator may be
applied to the vibrations of molecular bonds and has many other applications in quantum physics
and field theory.
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4.2 Quantum treatment

The classical Hamiltonian /H(x, p) for the harmonic oscillator is
)2 )2

H(x, p)—}——&— Vi(x) = } —|— M 2x? (4.11)
The Hamiltonian operator H(x, p) 1s obtained by replacing the momentum p
in equation (4.11) with the momentum operator p = —ifid/dx
) 2 2
Gy P 1 29 R d 1, 2.2 :
H —?—i—imw X = —%@—Fimw X (4.12)
The Schrodinger equation is, then
h2 d2y
ye )—i— mw y(x) = Ey(x) (4.13)
2m dx2
It is convenient to introduce the dimensionless variable & by the definition
mo\ "/
E= (—) X (4.14)
h
so that the Hamiltonian operator becomes
- ho (., & _
H = N (E - @) (4.15)

Since the Hamiltonian operator is written in terms of the variable & rather than
x, we should express the eigenstates in terms of & as well. Accordingly, we
define the functions ¢ (&) by the relation

% 1/4
v (1) "o ais
ma

[f the functions 1(x) are normalized with respect to integration over x
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J -0
then from equations (4.14) and (4.16) we see that the functions ¢(&) are
normalized with respect to integration over &

[ (PE)[FdE =1

J oo
The Schrodinger equation (4.13) then takes the form
¢ (&)

dé?

Since the Hamiltonian operator is hermitian, the energy cigenvalues £ are real.
There are two procedures available for solving this differential equation. The
older procedure is the Frobenius or series solution method. The solution of
equation (4.17) by this method is presented in Appendix G. In this chapter we
use the more modern ladder operator procedure. Both methods give exactly the

2FE
+E2p(&) = () (4.17)

same results.

The Harmonic Oscillator

The Classical Harmonic Oscillator

A vibrating body subject to a restoring force, which increases in proportion to the displacement
from equilibrium, will undergo harmonic motion at constant frequency and is called a harmonic
oscillator. Figure 1(a) shows one example of a harmonic oscillator, where a body of mass m is
connected to a fixed support by a spring with a force constant, k. We will assume that
gravitational forces are absent.

Enengy

Harmonic Oscillator Consisting of a Mass Connected by a Spring to a Fixed Support;
(b) Potential Energy, V ,and Kinetic Energy, EK For the Harmonic Oscillator.

When the system is at equilibrium, the mass will be at rest, and at this point the displacement,
X, from equilibrium has the value zero. As the mass is pulled to the right, there will be a restoring
force, f, which is proportional to the displacement. For a spring obeying Hooke’s law,
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d?z
= —kr=m— 1

d 02 (1)
The minus sign in equation 1 is related to the fact that the force will be negative, since the mass
will tend to be pulled toward the —z direction when the force is positi;‘e. From Newton’s second
law, the force will be equal to the mass multiplied by the acceleration, iT:"‘;'. The equation of motion
is a second order ordinary differential equation, obtained by rearranging equation 1 as

dr k

— + —x =0, 2

dt2  m ' )

and has a general solution given by

x(t) = Asinwt + B coswt, (3)
where

w = (kfm)*/2. @

The units of w are radians s~!, and since there are 27 radians /eyele, the frequency v = w/27 cycles
s~L. [Note: The student should check this solution by substituting equation 3 back into equation 2].

We again require two boundary conditions to specify the constants A and B. We choose the
mass to be at = 0 moving with a velocity vg at time= 0. The first condition gives

r(t=0)=A-0+B-1=B=0 (5)
so that
x(t) = Asinwt. (6)

Using this result, the second boundary condition can be written as

_dx

vp=v(t=0)= % ;
=

= Awcoswt|i—g = Aw, (7)

from which we see that A = vp/w. As the spring stretches, or contracts, when the mass is undergoing
harmonic motion, the potential energy of the system will rise and fall, as the kinetic energy of the
mass falls and rises. The change in potential energy, dV, is

dV = —fdx = kadz, (8)
so that upon integrating,
I
V= §k$ -+ constant. (9)

The constant of integration may be set equal to zero. This potential energy function is shown as
the parabolic line in Figure 1(h). The kinetic energy of this harmonic oscillator is given by

2
Eyx = %?mrg = %m ((é—f) = %(Aw)g cos? wt (10)
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This function is also plotted in Figure 1(b). The total constant energy, £, of the system is given
by
Leg}

1 . . 1 .
E=V +Eg= §k$2 + 3(}1@')2 cos® wt = §kA2 sin? wt + %(AMJ)Q cos® wt, (11)

where we have substituted equation 6 for z. Substituting equation 4 for w?, we can write
Lo (o 2 Lo
E= §A k (sm wt + cos wt) = §A k (12)

The total energy is thus a constant and is shown as a horizontal line in Figure 1(b). At the limits of
oscillation, where the mass is reversing its direction of motion, its velocity will be momentarily equal
to zero, and its momentary kinetic energy will therefore also be zero, meaning that the potential
energy will be maximized and equal to the total energy of the system at the two turning points.
As the oscillator begins to undergo acceleration away from the turning points, the kinetic energy
will increase, and the potential energy will decrease along the curve, V', as shown in Figure 1(b).

If the spring constant, k, should not be constant, but should vary slightly from a constant
value as r changes, we would be dealing with an  anharmonic oscillator. In most cases, an
anharmonic oscillator may be closely approximated by the harmonic oscillator equations for small
displacements from equilibrium, .

Soon we will be comparing the quantum harmonic oscillator with the elassical harmonic oseil-
lator, and the probability of finding the mass at various values of x will be of interest. We now
calculate this probability for the classical harmonic oscillator.

The probability of finding the mass, m, at any given value of x is inversely proportional to the
velocity, v, of the mass. This is reasonable, since the faster the mass is moving, the less likely it
is to observe the mass. Hence, we expect that the probability of observing the mass will be have

a minimum at © = 0, where the velocity is at a maximum, and conversely will exhibit mazima
when = = £A. From equation 7 we see that

v(r) = i—:: = Aw coswt, (13)

so that
Pla)de o — 14
(z)dz o Aw coswt’ (14)

where P(z)dx is the probability of finding the mass between z and = + dr. Note that since z is
a continuous variable that we define P(x)dzr as the probability and P(z) is called the probability
density, which is the probability per unit length, in this case. We note that at the turning points
of the oscillation, when 1/4 or 3/4 of a cycle has occurred, that t = 5~ or { = % and at these points
cos wt goes to zero, with % going to infinity. We know that the probability of finding the mass at
the end points must be a maximum, but must not be infinite. The reason that P(z) remains
finite is that dx in equation 14 always has finite width, therefore, P(z) is not defined exactly at a

point. For example, at t = 5=, P(r) is evaluated over the range —A < < —A +dx.
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This probability density function as a function of the z-coordinate, P(z), is plotted along with
the velocity, v in Figure 2. The probabhility density is a smooth function over the range of =
available to the oscillator and has exactly one minimum at r = 0. We will soon find that this
intuitive classical behavior is not obeyed by the quantized harmonic oscillator. In fact, for the
quantum oscillator in the ground state we will find that P(z) has a mazimum at x = 0.

v(x)

Figure 2: Probability Density, P(z), for Classical Harmonic Oscillator at Various Displacements,
z. P(z) is plotted as the dashed line and the velocity, v(z) is plotted as the solid curve. The two
vertical lines give the limits of the oscillator motion. Note that P(z) o L

v(z)"
The Quantum Harmonic Oscillator

The quantum harmonic oscillator is a very important problem in quantum mechanics. For example,
it serves as a first-order approximation for the bond vibrational problem in diatomic and (with
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coupling) polyatomic molecules. We will examine the quantum harmonic oscillator in some detail,
comparing it with what we know about the classical harmonic oscillator from the previous section.
The potential energy function for the quantum harmonic function is the same as for the classical
harmonic oscillator, namely, V =1/ 2k2?. Thus, in the quantum Hamiltonian is

Hop = EKop + Y"Tsp (15)
and we may write the Schrodinger equation as

—R?o% 1

——— 4+ —ka*y = E¢ 16

2??16:1‘.2—’—23:@ v (16)
The general solution to this problem (which we will not derive) ean be written as

a4/ 1 \1/2 5

alx) = 1| — N Hn —Y f21 17

wle) = (2) " (5)  Halwe (17)
where n = 0,1,2,... is the quantum number, a = 52, y = o'z, and H,(y) is a Hermite
polynomial of order n. The first few Hermite polynomials are

Hy(y) = 1 (18)

Hi(y) = 2y (19)

Hy(y) = 4y°—2 (20)

Hs(y) = 8y°—12y (21)

Hyly) = 16y* — 48y* + 12 (22)
Hermite polynomials of any order can be calculated from the recursion relation

Hn+1(y) = QQHn(y) - QRHH—I(.U)- (23)
The allowed energies (eigen energies) for the quantum harmonic oscillator are

E, = (n—i— %) fiw (24)
and since w = 27y,

E, = (n—i— %) hu. (25)

Using equation 4 for w, we may write
1 k 1/2
E, = —|h|— . 26
(n + 2) (m) (26)

The ground state wavefunction for the quantum harmonic oscillator can be obtained by substituting

Hpy(y) from equation 18, using y = alf@:r, into equation 17,
-~ 1/4 W\ e
vol) = (E) o/ = (”‘“‘) - (27)
T h
Likewise, the first and second excited state wavefunctions are
ay 1/4
403 >
vi(z) = (i) re=o"/2 (28)
m
1/4
/ _ i 2 —ar? /2
Uolz) = (M) (202 —1) e . (29)

Figure 3 shows the first few allowed energy levels for the quantum harmonic oscillator. Also
shown are the wavefunctions, nand the probability densities, | n|2 for the levelsn =0, 1, 2. The
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equally spaced set of allowed vibrational energy levels observed for a quantum harmonic
oscillator is not expected classically, where all energies would be possible. The quantization of
the energy levels of the harmonic oscillator is similar in spirit to the quantization of the energy
levels for the particle in a box, except that for the harmonic oscillator, the potential energy varies
in a parabolic manner with the displacement from equilibrium, and the walls of the “box”
therefore are not vertical. We might say, in comparison to the “hard” vertical walls for a particle
in a box, that the walls are “soft” for the harmonic oscillator. In addition, the spacing between the
allowed energy levels for the harmonic oscillator is a constant value, h_, whereas for the particle
in a box, the spacing between levels rises as the quantum number, n, increases.

There is another interesting feature seen in Figure 3. For the lowest allowed energy, when n =0,
we see that the quantum harmonic oscillator possesses a zero-point energy of 1

2h_ This too is reminiscent of the particle in a box, which displays a finite zero-point energy for
the first allowed quantum number, n = 1. This lowest allowed zero-point energy is unexpected on
classical grounds, since all vibrational energies, down to zero, are possible in the classical
oscillator case.

Recall that we developed an expression for the probability of observing a classical harmonic
oscillator between x and x + dx and found that this probability is inversely proportional to the
velocity of the oscillator (see equation 14). The corresponding probability for a quantum
harmonic oscillator in state n is proportional to n n = | n|2. We now compare the probability
densities of classical and quantum harmonic oscillators. Recall that the ground state for the
classical oscillator has zero energy (and zero motion), whereas the quantum oscillator in the
ground state has an energy of 1 2h. Therefore, it does not make sense to compare classical and
quantum oscillators in their ground states. We can however directly compare probability
densities by comparing quantum and classical oscillators having the same energy. Equating the

quantum and classical oscillator
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energies, we have

- ! _ L,
E, = (n+ 5) hy = S A%, (30)

where A is the classical amplitude, or limit of motion. Solving for A, we have
oh 1/2
A= [T” (2n + 1)} (31)

That is, a classical oscillator with energy FE, will oscillate between » = +A, with A given by
equation 31. The quantum and classical probability densities for n = 0,2, 5, and 20 are plotted in
Figure 4.

We see from equation 27 that |1;'r0|2 is a Gaussian function function with a maximum at r = 0.
This is plotted in the upper left panel of Figure 4. Contrast this behavior with the classical harmonic
oscillator, which has a minimum in the probability at r = 0 and maxima at the turning points.
Also note that the limits of oscillation are strictly obeyed for the classical oscillator, shown by the
vertical lines. In contrast, the probability density for the quantum oscillator “leaks out” beyond the
T = £A classical limits. The gquantum harmonic oscillator penetrates beyond the classical
turning point! This phenomenon is akin to the quantum mechanical penetration of a
finite barrier seen previously. Thus, the probability densities for the quantum and classical
oscillators for n = 0 have almost opposite shapes and very different behavior. Next, we compare the
classical and quantum oscillators for n = 2 (top right panel in Figure 4). Note that the probability
density for the quantum oscillator now has three peaks. In general, the quantum probability density
will have n+1 peaks. In addition to having n+1 maxima, the probability density also has n minima.
Remarkably, these minima correspond to zero probability! This means that for a particular
quantum state n there will be exactly n forbidden locations where the wave function
goes to zero (nodes). This is very different from the classical case, where the mass can be at any

location within the limits —A < x < A. Note also that the middle peak centered at * = 0 has a
smaller amplitude that the outer two peaks. Thus, for n = 2 we are beginning to see behavior that is
closer in spirit to the classical probability density, that is, the probability of observing the oscillator
should be greater near the turning points than in the middle. The classical probability density is
essentially the same for all energies, but is just “stretched” to larger amplitudes for higher energies.
For n = 5, shown in the lower left panel of Figure 4, we see the continued trend that the peaks near
x = 0 are smaller than the peaks near the edges. Note that the probability densities continue to
extend past the classical limits of motion, but die off exponentially. Finally, for n = 20 note that the
gaps between the peaks in the probability density become very small. At large energies the distance
hetween the peaks will be smaller than the Heisenberg uncertainty prineciple allows for observation.
In other words, we will no longer be able to distinguish the individual peaks. The probability
will be smeared out. You should be able to see that for n = 20 an appropriate the average of
the quantum probability density closely approximates the classical behavior probability density.
The region of non-zero probahility outside the classical limits drops very quickly for high energies,
so that this region will also be unobservable as a result of the uncertainty principle. Thus, the
quantum harmonic oscillator smoothly crosses over to become a classical oscillator. This crossing
over from quantum to classical behavior was called the “correspondence principle” by Bohr.
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Figure 4: Probability Densities for Quantum and Classical Harmonic Oscillators. The probability
densities for quantum harmonic oscillators, |1, (z)|?, are plotted as solid lines for the quantum
numbers n = 0,2, 5,20. The probability densities of the classical harmonic oscillators having the
same energies as the quantum oscillators are plotted as dashed lines. The classical limits of motion

are shown by the vertical lines.
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The Quantized Rigid Rotor—Three-Dimensional

Our reason for studying the idealized rigid rotor is to ultimately apply our understanding to
molecules that rotate in a quantized fashion. At this stage of our development, the student should
be thinking about a diatomic molecule that is rotating like a dumbbell in space. A schematic of a
carbon monoxide molecule is shown in Figure 7. This diatomic molecule possesses a single moment
of inertia, I = ml?""f + m.gr%, where mq and m» are the masses of the atoms, and r; and r» are the
distances of these masses from the center of mass of the molecule. In the three dimensional case,
the diatomic molecule can tumble in space, or more specifically its plane of rotation can occur in
any plane in space. The physical condition we have previously considered in which rotation occurs
in a fixed plane (planar rotor) does not apply. We will not derive the equations related to the
three-dimensional rigid rotor but will give the result in equation 45
72

B3 = J(J+1)— 45
rot ( + )2}' ( )

where the quantum number J =0,1,2, ...

[+«

e o

Figure 7: Schematic of a Carbon Monoxide Molecule. The distance of each atom from the center
of mass is shown, where r¢ is the distance from the carbon atom (light sphere) to the center of
mass and rp is the distance from the oxygen atom (dark sphere) to the center of mass.

A plot of the allowed rotational energy levels for a diatomic molecule is shown in Figure 8 as
a function of the quantum number, J. It may be seen that as J increases, the spacing between
allowed rotational quantum states increases. If we let J be the rotational quantum number of a
particular state, with (J — 1) the rotational quantum number of the next lower allowed state, then
one may calculate that the spacing between adjacent levels increases by the amount %, which
will be called 2JB where B is the rotational constant, given by

ﬁ2
= E

This will become important when we discuss spectroscopic transitions between neighboring rota-
tional states. [The student should prove AE = E; — E;_; = 2JB].

B (46)
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Figure 8: Allowed Energy Levels for the Rotations of a Diatomic Molecule.

Possible Questions

PART- A Questions (Each questions carries one mark)

1. The power emitted per unit area of the surface of a black body is directly proportional to the
fourth power of its absolute temperature, the law is
a. Stefan Boltzmann law b. Weins displacement law

c. Planck’s law d. Jean’s law

2. Evidence in favour of the particle nature of radiation
a. Diffraction of radiation b. Compton effect
c. polarization d. interference

3. Black body radiation has a characteristic continuous spectrum of radiation which depends
upon

a. Body’s temperature b. Nature of the body

c. Colour of the body d. Density of the body
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4. The spectrum of black-body radiation at any temperature is related to the spectrum at any
other temperature
a. Stefan Boltzmann law  b. Weins displacement law

c. Planck’s law d. Jean’s law

5. In one dimensional box problem the potential energy of the particle outside the box is
a. Zero b. unity c. infinity d. fractional

6. The energy levels of the particle in the box are
a. quantized b. randomized c. dispersed  d. Not-quantized

7. The theory of rigid rotor in space is useful in dealing with
a. Rotational spectra of diatomic molecules b. Vibrational spectra of diatomic molecules

c. IR spectra of diatomic molecules d. Raman spectra of diatomic molecules
8. In the Hook’s law = -kx, k is called
a. Force constant b. Gas constant

c. Boltzmann constant d. Faraday’s constant
9. An one electron system whose potential field is not spherically symmetrical
a. Hydrogen atom b. Hydrogen atom in electric field
c. Hydrogen molecule  d. Helium molecule
10. The method to obtain approximate solutions to the wave equation
a. Perturbation method b. Normalization of the wave function
c. Making the wave functions orthogonal d.
Making the wave functions orthonormal
11. The method applicable for a system which wave functions may be guessed
a. Perturbation method b. Variation method
c. Normalization of the wave function  d. Making the wave functions orthogonal
12. Write the energy level for the free particle in motion

a. En=2n-1/2 b. En=n? c. Enis continuous  d. En o n?
13. The shape of BeCl> molecules is
a. Linear  b. Triangular planar c. Tetrahedral d. octahedral

14. Example for tetrahedral molecule

a. BeCl.  b. borontrifluoride c. methane d. phosphorous pentachloride
15. If the symmetry element is the ‘plane of symmetry” then the corresponding symmetry
operation is

a. Doing nothing  b. reflection c. Inversion of all coordinates

d. Rotation through an angle of 360/n about an axis where ‘n’ is the order of the axis
16. For the symmetry operation “rotation” the corresponding symmetry element is

a. ldentity element b. Plane of symmetry

c. Centre of symmetry  d. Proper axis of symmetry
17. The basic theorem is concerned with the elements of the matrices constituting the irreducible
representation of a group is called

a. Faradays theorem b. The great orthogonality theorem

c. Normalized theorem  d. Van der Waals theorem
18. Character tables are constructed using

a. Symmetry elements  b. Orthogonality theorem

c. Symmetry operations d. Irreducible operations
19. The corresponding matrix for the operation E is

a. Zero matrix b. Square matrix c. Diagonal matrix ~ d. Unit matrix
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20. Reducible representation is also called as
a. Total character b. Symmetry elements
c. Symmetry operations  d. Total elements of symmetry

PART- B Questions (Each questions carries six marks)

21. (a). (i) Give an explanatory note on time dependent Schrodinger equation.
(i) S.T. Weins and Rayleigh Jeans law are the limiting cases of planks
Expression, Explain.
(OR)
(b). Give a detailed account on black body radiation.
22. (a) Compare the classical mechanics and quantum mechanics with particle in
one dimensional box.
(OR)
(b) Derive the equation for particle in three dimensional box and separation of
variables.
23. (a). Give an account on the applications of variation method.
(OR)
(b) (i) Explain radial distribution functions.
(i) Explain the perturbation method to anharmonic oscillator.
24. a. Write notes on
(i) What is a group?
(if) What are the defining properties of a group?
(iii) Define class.
(OR)
b. Write notes on improper rotation and plane of symmetry with suitable examples.
25. (a) (i) What are the relationships between reducible and irreducible representation of
the group.
(if) What are the Properties of irreducible representation?
(OR)
(b) Explain the symmetry selection rules for infra-red and Raman spectra.

PART- C Question (Each Question carries ten marks)

26. Differentiate variation method and perturbation method with an example?
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Multiple Choice Questions for Unit 11

S.No | Question Option1 | Option 2 Option 3 Option 4 Answer
1 The solution of the problem of the rigid angular Lapalacian Hermitian Position operator angular
rotatorgives us directly the solution of the momentum | operator operator momentum
operator operator
2 Two atoms of mass m1 and m2 rigidly joined | Rigid Simple Particle in one | Particle in three Rigid rotator
by a weightless link of length R is a rotator harmonic dimensional dimensional box
oscillator box
3 The theory of rigid rotor in space is useful in | Rotational Vibrational IR spectra of Raman spectra of Rotational
dealing with spectra of spectra of diatomic diatomic molecules | spectra of
diatomic diatomic molecules diatomic
molecules molecules molecules
4 A diatomic molecule in space where the bond | Rigid Simple Particle in one | Particle in three Rigid rotator
length is assumed to remain unchanged rotator harmonic dimensional dimensional box
during rotation is a oscillator box
5 Eo = % hv is the zero point energy of Simple Rigid rotor Particle in one | Particle in three Simple
harmonic dimensional dimensional box harmonic
oscilator box oscilator
6 V(x) = % kx?, this is an equation of a Parabola Hyperbola circle Straight line Parabola
7 Force constant k in Hook’s law is high for Single bond | Double bond Triple bond H-bond Triple bond




8 Force constant k in Hook’s law depends upon | Bond Molecular Acceleration Viscocity of the Bond
the strength weight of the | due to gravity | participating atoms | strength
between two atoms between two
two atoms atoms
9 In the Hook’s law f= -kx, K is called Force Gas constant Boltzmann Faraday’s constant | Force
constant constant constant
10 According to Hooke’s law the force ‘f” acting | -kx mgh mv Y2 mv -kx
on a molecule is given by
11 A diatomic vibrating molecule can be Simple Rigid rotor Particle in one | Particle in three Simple
represented by a simple model called harmonic dimensional dimensional box harmonic
oscillator box oscillator
12 The quantum number ‘n’ is called Principal Azimuthal Magnetic Angular Principal
quantum quantum quantum momentum quantum
number number number guantum number number
13 In the particle in one dimensional problem, The various | The various One state is All are dependent | The various
The property of orthogonality between any states are states are independent and still do not states are
two different states ensures that truly dependent and the other interfere with each | truly
independent is dependant other independent
14 The wave functions for different states of the | orthogonal | normal metagonal paragonal orthogonal
problem, the particle in one dimensional box
system are
15 Molecules are known to absorb radiation in Ultra violet | NMR Mass heat Ultra violet

which region of the electromagnetic
spectrum:




16 Which of the following is NOT a correct The Excited The electronic | The typical Excited
aspect of the Born-Oppenheimer electrons in | electronic and amplitude of electronic
approximation a molecule | states have the | vibrational nuclear vibration is | states have

move much | same motions of a much smaller than | the same

faster than | equilibrium molecule are | that characterizing | equilibrium

the nuclei. internuclear approximately | the motion of internuclear
distance as the | separable electrons. distance as
ground the ground
electronic electronic
state. state.

17 oxygen, just above it in the periodic table, The sulfur Breakdown of | Breakdown of | Excited The sulfur
has only a valence of 2. Why is this? atom can the Pauli the Born- atom can

access d- principle Oppenheimer access d-
orbitals approximation orbitals

18 The ground state of the ozone molecule O3 linear tetrahedral bent equilateral triangle | bent
has the following shape Sulfur apparently
shows a valence of 6 in the molecule SF6,
whereas

19 excited state of the helium atom has the term | 'S, Sy 25, He* Sy
symbol

20 The ionization energy for hydrogen atom is 27.2 40.8 54.4 122.4 eV 122.4 eV
13.6 eV. The ionization energy for the
ground state of L™ is approximately

21 The expectation value of 1=r in the ground ao (3/2)ao ao/4n 1/ao 1/ag

state of the hydrogen atom equals




22 Which of the following statements about the | Itis The electron's | The The wavefunction | The
hydrogen atom ground state is INCORRECT: | described angular wavefunction | decreases electron's
by the momentum is spherically | exponentially asa | angular
quantum equals th. symmetrical. function of r. momentum
numbers n = equals th.
1,'=0;m
=0.
23 For real atomic orbitals with quantum n n-1 n-I-1 n+l n-1
numbers n, |, the total number of nodal
surfaces, radial plus angular, equals
24 The orbital degeneracy (excluding spin) of n n+1 2n+1 n n*
hydrogen atom energy levels equals
25 For the hydrogen atom, which of the 4p 4d 4f They all have the They all
following orbitals has the lowest energy same energy have the
same energy
26 The atomic orbital illustrated to consists of 2p 3s 3p 3d 3d
two lobes
27 Spherical polar coordinates are used in the the cartesian the otherwise the the
solution of the hydrogen atom SchrAodinger | Laplacian coordinates Schrodinger atomic orbitals Schrodinger
equation because operator has | would give equation is would violate the equation is
its simplest | particle-in-a- | then separable | Pauli exclusion then
formin box into 3 ordinary | principle. separable
spherical wavefunctions. | dfferential into 3
polar equations. ordinary
coordinates. dfferential
equations.
28 A hydrogen atom radiates a photon as it falls | 22.8 91.2 121.6 182.4 121.6
froma 2p level to the 1s level. The
wavelength of the emitted radiation equals
29 The illustrated wavefunction represents the 1 2 3 5 5

state of the linear harmonic oscillator with n=




30 The energy levels of the linear harmonic all non n-fold (n + 1/2)-fold (2n + 1)-fold all non
oscillator are degenerate | degenerate degenerate degenerate degenerate

31 The corresponding eigenvalue equals 0 hk ihk h’k? hk

32 Which of the following is NOT a solution of | exp(jikx) exp(jkx) sin kx cos kx exp(jkx)
the differential equation "(x) + kay(x) = 0

33 Which of the following is NOT a correct The shorter | Anelectronin | The Measurement of The
consequence of the Heisenberg the lifetime | an atom momentum of | one variable inan | momentum

of an cannot be an electron atomic system can | of an
excited state | described by a | cannot be a®ect subsequent | electron
of an atom, | well-de ned measured measurements of cannot be
the less orbit. exactly. other variables measured
accurately exactly.
can its

energy be

measured.

34 Planck's constant has the same as angular the frequency guantum angular
momentum | Hamiltonian momentum
number number

35 A diatomic molecule is initially in the state 36/1444 9/38 13/38 34/38 13/38
where is a spherical harmonic. What is
the probability of obtaining result | = 5?

36 A particle with energy E is in a time The particle | The The particle The particle can The particle
dependent double well potential shown in will always | probability of | will be tunnel from one will be
figue, which of the following statement about | be ina finding the confined to well to other and confined to
the paticle is not correct ? bound state | particle in one | any one of the | back any one of

will be time well's the well's

independent




37

Consider the following statements. A particle
of energy E is incident from the left on a
potential step of height VO at x =0 1. if E<V0
, wave function of the particle is zero for x>0
2. if E< VO, wave function is not zero for
x>0 3. if E> VO, reflection coefficient is not
zero. Which of the statements given above
are correct

1 only

2 only

1 and 2 only

2 and 3 only

2 and 3 only

38

The eigen function of hydrogen atom contain
which of the following ? 1. Legendure
polynomials 2. Laguerre polynamials 3.
Hermite polynamials. Select the correct
answer using the code given below

1,2and 3

1&2

1 only

2 only

1&2

39

The wave function fo a paticle in one-
dimentional potential well is given by V2/a
sin nmx/a, 0<x<a, when a potential of V(x)=
cos 7x/a is applied,the change in first order
energy is

Z€ero

a/n

2m/a

27m/a

Z€ero

40

If peturbation H' = ax, where a is a constant,
is added to infinite squre well potential V(X)
= (0 for 0<x<m, V(x) = o otherwise. The
correction to the ground state energy to first
orderinais

an/2

at

an/4

an/\2

an/2

41

A particle constrained to move along the x-
axis is described by the wave function ¥(x) =
2x; 0<x<1 ¥Y(x) = 0; elsewhere. What is the
probability of finding the particle within
(0,0.4)

0.85

0.085

0.0085

0.00085

0.085




42

For a particle of mass m in a one-dimentional

box of length I, what is the average of
momentum Px for the ground state

Zero

21y

hl

h/ (2xl)

h2l)

43

If n represents the number of eigen states of a
hydrogen atom, then its discrete energy levels

are proportional to

n2

1/n

1/n®

1/n®

44

A particle of mass m is in a simple harmonic

oscillator potential V = x2. If the ground state

wave function is Ae™? , what is the
expression for constant a equal to

2m(m/2)¥2/h

2n(1/m)"? /h

h(m/2)¥2 /2

h(m)?2/2x

2n(m/2)¥2/h

45

A particle of mass m is confined in the
ground state of a one-dimentional box
extending from x=-2L to x = +2L. The wave
function of the particle in this state W(x) =
Y0 cos nx/4L, where Y0 is constant. The
energy of eigen value corresponding to this
state is

h?n?/ 2mL?

hm?l 4mL?

h?m?l 16mL?

h’n? 32mL?

h?n? 32mL?

46

The wave function of a particle in a box of
length L is W(x) = V2/L sin nx/L , 0<x<L,
Y(x)=0 x<0 & x>L the probability of the
particle finding in the region 0<x<L/2 is

0.40%

0.30%

0.20%

0.50%

0.50%

47

A free electron moving without any
restriction has the continuous energy
spectrum

Line
spectrum

continuous
energy
spectrum

Discrete
energy
spectrum

Band spectrum.

continuous
energy
spectrum

48

The occurrence of zero point energy in one
dimensional box problem is in accordance
with the

Paulis
exclusion
principle

Heisenberg’s
uncertainty
principle

Hund’s rule

Aufbau principle

Heisenberg’s
uncertainty
principle




49 The zero point energy equation shows that The The The The velocity of the | The
the electron inside the box is not at rest, position of | momentum of | momentum of | electron cannot be | momentum
hence the electron | the electron the electron precisely known of the
can be cannot be can be electron
precisely precisely precisely cannot be
known known known precisely
known
50 The zero point energy equation shows that The The position The The velocity of the | The position
the electron inside the box is not at rest, position of | of the electron | momentum of | electron cannot be | of the
hence the electron | cannot be the electron precisely known electron
can be precisely can be cannot be
precisely known precisely precisely
known known known
51 The value of zero is not acceptable for the The wave The wave The wave The wave function | The wave
value of ‘n’ because function function will function will will become well function will
will become | become zero become behaved become zero
unity infinite
52 The electron inside the box is Not at rest Not at rest at Not at rest at Not at rest at 300K | Not at rest at
at 0°K. 0°C 298K 0°K.
53 The value of the arbitrary constant A in the Zero one two three Zero
particle in a box problem is
54 The value of wave function at the walls of | Zero one two three Zero
the box is
55 The value of wave function out side the box | Zero one two three Zero
is
56 The value of the arbitrary constant B in the Square root | Square of 2/a | Cube root of Cube of 2/a Square root
particle in a box problem is of 2/a 2/a of 2/a
57 The energy levels of the particle in the box quantised randomised dispersed Not-quantised quantised
are
58 The possible values of ‘n’ in the 1,2,3,4 .... 0,1,2,3.... ZEro 0,24, .... 1,2,3,4 ....

schrodinger’s equation can have values




59 In one dimensional box problem the potential | zero unity infinity fractional Zero
energy of the particle in the boundaries of the
box is

60 In one dimensional box problem the potential | zero unity infinity fractional infinity

energy of the particle outside the box is
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UNIT -1
Approximation and Variation Methods

Schrodinger equation for the H-atom (or H-like species)- separation of variables - energy levels.
Radial distribution functions - orbitals and orbital shapes. Probability density and radial
distribution functions.

Need for approximation methods. The perturbation theory- application of perturbation method to
systems such as anharmonic oscillator and He-atom.

The variation method - application of variation method to systems such as anharmonic oscillator
and He-atom.
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H|n) = E,|n)
H|m) = E,|m)

We can multiply each equation with (n| or (m| from the left and obtain the
following terms:

(n|H|n) = E,(nln)=E,
(n|H|m) = E, (njm)=0
(m|Hn) = E,{(m|n)=20
(m|H|m) = E, {m|/m)=E,

In matrix notation this would be:

Hﬂﬂ = Eﬂ Hnm = l:l
Hmn =0 H?TU?I = E?n

And thus the Hamiltonian matrix looks like:

Hﬂ?l Hﬂﬂl _ En D
H=le Hmm]‘l 0 Eml

In perturbation theory we will be concerned with Hamiltonians of the form:

H = H{U}I + Hper!:
where H®) is our original Hamiltonian with well-defined eigenstates, and HPe"
is a perturbing term. The matrix elements now become:

H=

T mnmn I
0)

t t
HY 4 grert g0 o geetr HEer E,. + HET

H?{l?l} +H£flrt Hfa?}l_‘_HPert ] _ [ En_|_HIJETt Hrert

We see that the off-diagonal elements are no longer zero for this new Hamil-
tonian. Note that the total Hamiltonian is still hermitian, which implies that
HPe* must be hermitian as well. We thus have:

(HE) = (HP"")}, = HE!

We will use these matrix elements throughout the remainder of the Chapter.
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Idea Behind Perturbation Theory

Perturbation theory assumes that the solution is close to an exact solution. It
describes the system in terms of a simplified Hamiltonian to which we know the
wavefunctions and energies, with a small correction to account for the actual
complexity of the system. We can therefore write the total Hamiltonian as:

H = H{D} + H;Deré

Here H™) is the Hamiltonian with known energies and wavefunctions, and HPe"*
is the correction, or perturbation to the simplified Hamiltonian. The total
Hamiltonian now gives a full description of the system. How do we find the
wavefunctions? Generally, we can use the known solutions |n) as a basis set and
composing the new solutions from a linear combinations of |n):

U = ch 1)

This always holds, but it is generally not so straightforward to find the wavefunc-
tions in this fashion. It is more convenient to proceed in steps and find solutions
of converging accuracy to the actual wavetunction. Perturbation theory there-
fore assumes the following. The perturbation Hamiltonian can be written as an
expansion, with each element giving a slight correction to the former:

H = HY 4 Hrer
HPet = AHW 4 N2ZH® 4.

where A is a parameter that indicates the order of the correction. We assume
that the energy can be written accordingly:

E = E,+ Er"
Erert — AE(D £ N2E@ 4 .

with EY the first order correction to the unperturbed energy and Eéz} the
second order correction to the unperturbed energy. The energy is thus close to
the unperturbed energy Ejy and we add subsequent orders to arrive at a better
approximation for the actual energy. Similarly, we can approach the actual
wavefunction step by step as:

T = U, 4 pret
grert — AW(D  AZe2)

here, the correction to a state |n) can be written as
v, = [n)
vl = Z all |n)
T

P = Sall )
'J"I-"
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Subsequent orders give a better description of the actual wavefunction. Most commonly, we will
truncate the expansion after one or two corrections if we are satisfied with the result, as higher
orders give only incremental improvements of the actual wavefunction.

We learned that perturbation theory can be used to calculate the energy and wavefunction for
systems that are somewhat different from simple case scenarios. With perturbation theory we can
calculate the effect of a small perturbation to the Hamiltonian on the energies and wavefunctions,
to arrive at a better description of the system. By looking at a two level system, we saw that:

* A perturbation tends to increase the energy splitting of two levels; the lower level goes down
while the higher level goes up.

* A perturbation will mix the unperturbed states to arrive at a new wavefunction which gives a
better description of the new system.
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Variation Theory

Variation theory is another powerful method for finding wavefunctions and en-
ergies in systems that do not lend themselves for a direct analytical solution.
Variation theory is a trail-and-error method in which we vary a trail wavefune-
tion so that it minimizes the ground state energy. We make use of the following
condition:

S ViaHYriadV

J U iaiVeriadV

That is, the expectation value of the energy using an arbitrary wavefunction is
equal or larger than the ground state energy. This condition is easily verified by
writing the (normalized) trail wavefunction in terms of the linear combination

E = FEy

of the Hamiltonian’s basis set ¥yqi = >, €n |[n) and calculating the integral
(H):
(H)y = > enen (n|(H)n')
= Z C;CH’EH'JHTL’

= D enlPEn = E0 > |eal?
= (H)=Eo)_leaf

We can parameterize the wavetunctions in various ways. One way is to include
an adjustable parameter in the functional form of the wavetunction itself. For
instance, if we consider the Hamiltonian for the harmonic oscillator, i.e. H =

—%di;g + %IIJI-‘?._ and the trail funetion of the form v, = e_'ug, we get through
variation theory:
2 A S R 2
baH,dV = ety 4 Tka?le T d
W 1 /e {Z-md:ri’_'_QT}e x
ﬁ-2 .- .2 2 9 _ax?
= — [ e " (—2axre™ " 4+ da“re " )dx
2m
1 R
+—=—k [ =%¢ dx
2
7 2 2a°h* 1 2
= [ ge2e dr + ( “ + k) -/xge_gm dx
m m 2
2¢2h% 1 1 [m
= 0N
2 2 w
—ars | —art g
/e e T 50

o
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We thus have

(B 4 3h) v/ _ah® |k
E = +
.«’% 2m Sa

Minimizing for a implies dE /da = 0:

e _ Bk _,
da — 2m  8a2

g2 o fm

N o 4R?

ey — 1 Lm

R =

We thus have for the energy and wavefunction:
1 [k [k, 1 [k
E = ﬁ—h "l—ﬁ = —y/—h

1V m M -l\' 2V m

1 km 2
) L JEkm_,
— » 2 h2
Wy = €

Which are the ground state wavefunction and energy of the harmonic oscillator.

The Radial Wavefunctions

In the previous section we learned about the wavefunctions and energy levels of a particle on a
sphere. This model comes very close to the description of an electron circling around a proton
nucleus, i.e. the hydrogen atom. However, we have assumed that the potential energy is zero
everywhere. This is certainly not true for the hydrogen atom. The electron experiences a
potential which is defined by the Coulombic interaction with the nucleus. In this section we
focus on taking this potential into account so that we can solve the wavefunctions for

the hydrogen atom system.
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The Radial Schrodinger Equation

The Coulombic potential energy is:

Ze?

dwegr

V(r) =

The tull Hamiltonian of the electron-nucleus system is therefore:

ﬁz

"~ 2m,

ﬁﬁ

" 2m,,

¢ dmwegr

T

H—

In order to solve the Schrodinger equation using this Hamiltonian, we need to
consider the following points:

1. Separating the degrees of freedom of the electron from those of the nucleus,
so that we are only dealing with electronic wavefunctions.

2. Separating the angular motion from the motion in the radial direction.
The Coulombic potential only depends on r and is independent of (8, ¢).
This suggests that we might be able to solve the problem considering only
the radial coordinate.

The first point is readily achieved by writing the Hamiltonian in terms of the
center-of-mass coordinates and the relative distance between the nucleus and
the electron. For the kinetic energy part it is found that:

1 1
M =m, +m., —=—+
Lo omy,  m.
R— MeTe _{jr'mvlrn 1 r=r. —r
LR R
2m, '™ 2m. ' 2M 21

The potential energy contribution is only dependent on relative distance r. We
then only solve for the relative distance and ignore the overall translational
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motion of the atom in space, in which case the Schrodinger equation becomes:

ﬁ?

Ze?

e — 2 h Iy — fy
Q,uv ¥ 47reort'u By
1 d? | P Zey 2ukE
S+ A = [y
r dr? e r? v Q?rEgﬁ.zriH ( 2 ) ¢

To achieve the second point, we will write the wavefunction as ¥ (r,6,v) =
R(r)Y (0, ¢), where Y (8, ¢) are the spherical harmonics that are the solutions
in the angular dimension. If we substitute these functions into the Schrodinger
equation we get:

1 d? CoHI+1) Ze2u i 2uE i
1d%(rR Ze? I(1+1 uE
L {22 Wl - - (2E)
rodr 2meghcr T h

We first multiply this equation with r, and then define the function Il = rR.
We then can write the Schrodinger equation, which depends only on the radial

coordinate r, as: ,
d=11 2N 2uE
e (G )= (G ) n

where the effective potential is defined as:

Ze?
dmegr

11+ 1)R?
2ur?

Verr = -

Note the following:

e The angular part has been divided out in the Schrodinger equation. The
contribution from the angular dimension is implicitly present in the effec-
tive potential through the I(I 4+ 1)A? term.

e The coulombic part provides an attractive (negative) potential. The an-
gular term, however, provides a repulsive (positive) potential. These two
effects will counterbalance depending on the quantum number [ and the
distance from the nucleus r.

¢ The angular centrifugal force is zero for [ = 0. This implies that the
potential is purely attractive and thus that there is a finite chance of
finding the electron at the nuceus.

e Close to the nucleus, the angular centrifugal force for I # 0 is larger than
the attractive coulombic force. Consequently, the electron is expelled from
the nucleus and the probability of finding the electron at the nulceus is
ZEro.
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The Radial Wavefunctions

Solving the radial Schrodinger equation is nontrivial and we therefore rely on
specific mathematical tricks for finding the wavetunctions. Fortunately, the out-
come to this differential equation is well-known. The wavefunctions take on the
form of associated Laguerre functions multiplied by a decaying exponential. The
radial functions R, ; are labeled by two quantum numbers: the principal quan-
tum number n = 1, 2... and the momentum quantum number [ = 0,1, .., (n — 1):

) — 27 3('?1—5—1)1 I720+1,_—p/2
R"“(’"}_—{(E) 2-,-1[(n+a)!]3}"“5“:* o’

where the associated Laguerre function LX is a polynomial given by:

ezx—k dn d*

k —x,  ntk ke
'Lﬂ, (I:] = n! drm I:E’. " ) = (_1) drF [-L‘n+k {.1?}]
We now define:
( 22) Amegh?
p=1—|r, a = 5
na e

Then the first few radial wavetunctions R,,; are given by:

n|l Rua(p)

1] 0(1s) | (£)77 22

2| 0(29) | ()" 5252 p)e/?
2 | 12p) | (£)" slgper?

Note the following:

e The radial wavefunction has zero amplitude at the nucleus for I £ 0 and
nonzero amplitude for [ =0

¢ The number of nodesisn —1—1

Energy Levels

The total hydrogenic wavefunction is:

III?L.I_,???.J = Rn,f.,m; /}__m_r
The quantum numbers are:
n = 1,2,.....
I = 0,1.2,....,n—1 (n) levels
my = 0,£1,+£2 ... .+l (21+1) levels
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The energies are:
E — _ _ZPpet N 1
" 32mw2e2h° ) n?

Each of these n-levels has n different [ states, which in turn have 21 4+ 1 different
my states. Note the following:

e The energy only depends on the prinicpal quantum number n. The quan-
tum number for the momentum ! does not influence the energy.

e Each level n has (n — 1) sub-levels of the same energy with Il =0,1,.n—1

e The total number of levels for a given level labeled with I, is 2] 4+ 1, which
results from the possible allowed values of the quantum number m;.

e The energy level spacing decreases quadratically.
The total degeneracy for each level n is:
n—1
q = Z 2l +1=n?
1=0

We can visualize the levels schematically as:

n=3 -I|=u.m=n =1, m=0 I=1,m=1 I=1,m=-1 =2, m=0 I=2,m=1 =2, m=1 |=2,m=2 I|=2, m=--2

I=0, m=0 I=1,m=0 =1, m=1 I=1, m=-1

Figure 1: energy diagram
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The Hydrogen Atomic Orbitals

We are now in a position to construct the atomic orbitals of the hydrogen atom.
We will look at their energies, degeneracies and probability distribution is space.

The Probability Distribution

The Hydrogen wavefunctions are normalized over whole space, i.e. the chance
of finding the electron wavefunction somewhere must be 1. The normalization

condition 1s:
fo's) 2w T
/ / / :1.1__m:q":1’_1’_m’ dV = Oﬂ:“'af-.l'amt,mj
0 0 0 ' o

where the ineremental volume element 1s defined as:
dV = r? sin Bdrdfdo

The probability density of finding the electron in volume element dV = r? sin #dfdpdr
is:
|1]:rn__1_,m; |2 dVv

What is the probability of finding the electron between the distance r and r +dr
from the nucleus? We find this by integrating out the angular part as follows:

T 2w
P(r)dr = / W, |P AV = / / R2|Y |*r? sin Odrdfde
Q 0 0
™ 2T
= R*%dr / f |Y'|? sin 0dfd¢
0 0
= R*%%dr

We call P(r) = R%r? the radial distribution function. The r? takes care of the
fact that a surface at distance r from the nucleus expands like 2. Hence, for
larger r, we are dealing with a larger segment of space, which in turn increases
the chance of finding the electron there. Without the r2 we are not considering
the true three-dimensional geometry of the problem.

The most probable distance to find the electron at is obtained by finding r for
which dP/dr = 0. For the wavefunction ¥y g this is:

3
dP - d 5 o Z d,z—gzrja
T graee” —4(5) o’

3
= 4 (5) (2—2Zr/a)re 227/a = ()
a

—  Toaz =a/Z
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with 5 5
_ Amegh”  dmeph

pe? e?

where ag is known as the Bohr radius.

=ag = 0.5294
Me

Mean Radius

The mean radius is defined as the expectation value of r, not to be confused with
the most probable radius (found through d(R?,r%)/dr = 0). We can calculate
the mean radius as:

2.—
(r)y = / il "Y1 m, AV —/ R rRyr dr/ / oy Yi,m, Sin 6d0d¢

- [ e = (2 [ [ ot

This integral can be solved using standard Laguerre identities (see http://mathworld.
wolfram.com /LaguerrePolynomial. html). The outcome of this integral is:

") — nzzao {3 (i + 1)}

2 22

Note that the mean radius of an s-orbital is greater than that of a p-orbital for
the same principal quantum number (shell), due to the presence of an additional
node in the s-orbital (n — 1 for s, n — 2 for p-orbitals).

s-Orbitals

s-Orbitals have zero angular momentum and thus I = 0 and m; = 0. The first
two levels (1s) and (2s) are given as:

lI’n._I_.m; = Rnti,ﬂlg}i,ﬂlg = 0,! mp = 0

1\ 12 LN2 g 32
Vioo = Riop (E) :(%) (E) 2e—4r/a

1\"? 1\Y2 7Z\%2 1 .
lDQ-.O_-O = RQ._D_.U (E) = (%) (E) —2\/5(2 _ Z.r./a}e—Z‘r'/Ea

Note that:

® DBecause s-orbitals have no angular dependence, they are spherically sym-
metric.

e There is a finite chance to find the electron at the nucleus. This chance,
however, has to be put in the proper perspective by realizing that at
the nucleus the wavetunction has maximum curvature and thus maximum
kinetic energy. The electron while therefore 'shoot through’ the nucleus
instead of sitting permanently at the origin.
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p-Orbitals

p-Orbitals are orbitals with [ = 1. For every n there are 3 p-levels, labeled with

mp =0, my =1, my = —1. These three levels are given by:
g\ 1/2
p. = (4”1’) R, i(r)cosf
g\ 1/2 a
pL = - (ﬁ) R, i(r)sinfe'®
q \ 1/2 _
P = (8_) R, (r)sin e ?
- ;

It is more custom to combine the last two orbitals and rewrite them as real and
imaginary parts. These new combined orbitals alien with the »- and y—axis
and are therefore easier to visualize. They are given by:

1 1/2

Pe = ﬁ(p— —ps) = (E) R, 1(r)siné cos ¢
; 1/2

py = VTE(F_ +py) = (E) R, 1(r)sin#fsin ¢

If we now remember that @ = rsinf cos ¢ and that y = r sin 8 sin ¢, we see that
the p, orbital has 'x’-character and the p, orbital has "y’-character. Indeed,
these composite orbitals are aligned along the respective axes. Note also that:

¢ Because of the nonzero angular momentum, p-orbitals have a zero radial
probability distribution at the origin.

e The p, and p, functions are also valid wavefunctions. In general, for
degenerate states, we can write a linear combination of eigenstates i =
A|n) + B|m) as a new solution of the Schrédinger equation. The p, and
py function fulfill this condition. Note that this only holds for degenerate
states!

d-Orbitals

d-Orbitals have angular momentum [ = 2 and thus occur for levels with n = 3.
There are 5 d-orbitals for every quantum number n > 3. It is custom to compose
linear combinations of these five solutions to end up with wavefunctions with
intuitive symmetries:

5 \ /2 ‘
do = do=(12)  Raalr)(@:2— )/
1 15 \ /2
dp2_y2 = E{d_F? +d_o) = (lﬁﬂ') RnE{T)(xz - yz)f'rz
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dy = @iz = (2)" Rua(r)ay)
e iv2 SR VP n2\")TY/
L 15 2 ’ ;o2
dy,: = w—“’j{d 1+ d_l ]| (E) Rer(T',]yz /r
1/2
1 ‘ 15\ _
dez = ﬁ{d—l_d—l,]:—(ﬁ) an['i"‘jz;r;rz
Textbook

1. AK.Chandra, 2010, Introductory quantum Chemistry, Tata McGraw Hill Education Pvt., Ltd,

New Delhi
2. Puri Sharma and Pathania, 2013, Elements of Physical Chemistry, Vishal Publishing Co., New
Delhi
Possible Questions
PART- A Questions (Each Question carries one mark)

1. Evidence in favour of the wave nature of radiation
a. Interference of radiation b. Photoelectric effect
c. Compton effect d. Black body radiation
2. Black body radiation has a characteristic
a. Continuous spectrum  b. Discontinuous spectrum
c. Narrow range of light  d. Laser action
3. As per plancks law the characteristic continuous spectrum of radiation depends upon
a. Body’s temperature b. Nature of the body
c. Colour of the body d. Density of the body
4. Stefan Boltzmann law is based on
a. Diffraction of radiation b. Photoelectric effect
c. Compton effect d. Black body radiation
5. In one dimensional box problem the potential energy of the particle outside the box is
a. Zero b. unity c. infinity d. fractional
6. The energy levels of the particle in the box are
a. quantized b. randomized c. dispersed  d. Not-quantised
7. The theory of rigid rotor in space is useful in dealing with
a. Rotational spectra of diatomic molecules  b. Vibrational spectra of diatomic molecules
c. IR spectra of diatomic molecules d. Raman spectra of diatomic molecules
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8. In the Hook’s law = -kx, k is called
a. Force constant b. Gas constant
c. Boltzmann constant d. Faraday’s constant
9. The lowest energy orbital for the ammonia molecule is designated
a. 1s b. log c. las d. Cav
10. The benzene molecule CsHs has how many vibrational modes
a.6b.12 c.24 d. 30
11. Zeeman effect is
a. the change in energy levels of an atom when it is placed in uniform external field
b. The change in energy levels of an atom when placed in non-uniform external field
c. The change in energy levels of an atom when placed in external electric field
d. The change in energy levels of an atom when placed in non-uniform electric field
12. The energy level belongs to En=2n-1/2

a. Harmonic oscillator b. Hydrogen atom
c. particle in a box d. free particle in motion
13. The shape of BeCl, molecules is
a. Linear b. Triangular planar c. Tetrahedral d. octahedral
14. Example for tetrahedral molecule
a. BeCly b. boron trifluoride  c. methane  d. phosphorous pentachloride

15. If the symmetry element is the ‘plane of symmetry” then the corresponding symmetry
operation is
a. Doing nothing b. reflection
c. Inversion of all coordinates
d. Rotation through an angle of 360/n about an axis where ‘n’ is the order of the axis
16. For the symmetry operation “rotation” the corresponding symmetry element is
a. ldentity element b. Plane of symmetry
c. Centre of symmetry  d. Proper axis of symmetry
17. For a pyramidal molecule with point group Cay the number of theoretically predicted IR
fundamental bands
a. Three b. Four c. Five d. Six
18. For chloro trifluoride molecule the number of observed Raman bands and IR bands are four
each, the predicted geometry is
a. Pyramidal b. planar c. T-shaped d. bent
19. In case of molecules with a centre of symmetry the vibrational modes are anti-symmetric to
centre of inversion are

a. IR inactive b. IR active c. Raman inactive  d. Raman hyper active
20. For Raman activity the vibrations should involve a change in
a. polarizability b. magnetization

c. Magnetic susceptibility d. Surface tension

PART- B Questions (Each questions carries six marks)

21. (a). Derive time independent Schrodinger wave equation.
(OR)
(b). Define photoelectric effect. How quantum theory explains photoelectric effect?
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22. (a). Discuss the illustration of uncertainty principle and correspondence principle
with reference to harmonic oscillator.
(OR)
(b). Derive the solution of Schrodinger wave equation for one dimensional harmonic
oscillator.
23. a. Explain the most probable distance of the hydrogen atom -1s electron.
(OR)
b. Explain variation method to obtain approximate solution to a wave equation.

24. (a). (i) Write notes on the meaning of improper rotation.
(i) Define inversion operation? It this equivalent to any other combination of
operations. Give an example.
(OR)
(b) (i) What are the different types of groups? Explain with example.
(ii) Distinguish between point group and space group.
25. (a). (i) Construct the Coy character table.
(i1) State and explain the great orthogonality theorem.
(OR)
(b). (i) Define reducible and irreducible representation.
(if) What are the relationships between reducible and irreducible representation
of the group.

PART- C Question (Each questions carries ten marks)

26. Solve the Schrodinger wave equation for a particle in three dimensional box for its energy

and show that the energy states are orthogonal
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Multiple Choice Questions for Unit 111

S.NO | Question Option 1 Option 2 Option 3 Option 4 Answer
1 In Perturbation method a system method to method to obtain | a system which wave method to
which wave | obtain accurate functions is accurately | obtain
functions approximate | solutions to the | known approximate
may be solutions to wave equation solutions to
guessed the wave the wave
equation equation
2 In variation method a system method to method to obtain | a system which wave a system
which wave | obtain accurate functions is accurately | which wave
functions approximate | solutions to the | known functions
may be solutions to wave equation may be
guessed the wave guessed
equation
3 In this method a trial wave function ought | Perturbation | Variation Normalization Making the wave Variation
to be close to the true wave function of the | method method of the wave functions orthogonal method
system concerned and the mean energy is function
then calculated




4 The method applicable for a system which | Perturbation | Variation Normalization Making the wave Variation
wave functions may be guessed method method of the wave functions orthogonal method
function
5 The method applicable for a system which | Perturbation | Variation Normalization Making the wave Perturbation
differs in a very small way from one for method method of the wave functions orthogonal method
which the exact solution is known function
6 The method to obtain approximate Variation Normalizatio | Making the Making the wave Variation
solutions to the wave equation method n of the wave | wave functions | functions orthonormal | method
function orthogonal
7 The method to obtain approximate Perturbation | Normalizatio | Making the Making the wave Perturbation
solutions to the wave equation method n of the wave | wave functions | functions orthonormal | method
function orthogonal
8 An one electron system whose potential Hydrogen Hydrogen Hydrogen Helium molecule Hydrogen
field is not spherically symmetrical atom atom in molecule atom in
magnetic magnetic
field field
9 An one electron system whose potential Hydrogen Hydrogen Hydrogen Helium molecule Hydrogen
field is not spherically symmetrical atom atom in molecule atom in
electric field electric field
10 The sum of the energies of the third and 10 w?h?mL? | 10nh%3mL? | 11h?z?/mL? 11h%r?/mL2 10 m?h?/mL2
the fourth level is
11 The ratio of the reflected to the incident 1- At/Ao V(1-T)in a real negative 1+ AT/AO 1- At/Ao
amplititude Ar/Ao magnitude number
12 The expected value of kinetic enegy in Ex=h/2m Ex= h’k?/m Ex= h2k/2m Ex= h2k2/2m Ex=
terms of h,k and m is h2k2/2m
13 Time relation between W and Ex is Ex¥=h%2m | ExP= ExP=h?km¥ | ExP=h%k/m? ¥ Ecy=
v h?k?/2m ¥ h?k?/2m ¥




14 Which of the following are eigen functions | ¥; and ¥ ¥, and not Y¥; and not ¥ Neither ¥; and ¥ ¥, and ¥,
of A27 ¥,
15 The expectation value of A for the state -0.32 Zero 0.75 0.96 0.96
Y=C ¥, +* ¥,)/5 is
16 Throughout 0< x < L, the wave function Can be is is generally is zeo Can be
chosen to be | exponentially | complex chosen to be
real decaying real
17 probability of least probable isotopmer is (0.00015)?> | (0.00015)? (0.99985)?x0.01 | 0.99985x0.00015x0.98 | (0.00015)?
x0.011 x0.989 1 9 x0.011
18 Least probable isotopomer is D-BC-D H-13C-1H D-2C-D D-2C-H D-C-D
19 Total number of isotopomers of ethylene 4 6 8 10 6
diradical are
20 The value of using variation method is : a>1 a=0 a=0t01 a=-1to+1 a=0
21 Value of <H> is greater than | greater than lesser than Eo Lessor than and equal greater than
Eo and equal to to Eo and equal to
Eo EO
22 The second order correction to E; is zero A A%Ex-Ey A%E;-E, A%Ex-Eq
23 The first order correction to E; is 4A 2A A Zero A
24 The degeneracy of the fourth level is given | 1 2 3 4 4
by
25 The energy level belongs to En o n? Harmonic Hydrogen particle in a box | free particle in motion | Hydrogen
oscillator atom atom
26 The energy level belongs to E is Harmonic Hydrogen particle in a box | free particle in motion | free particle
continuous oscillator atom in motion
27 The energy level belongs to Eq=n? Harmonic Hydrogen particle inabox | free particle in motion | particle in a
oscillator atom box




28 The energy level belongs to E/=2n-1/2 Harmonic Hydrogen particle inabox | free particle in motion | Harmonic
oscillator atom oscillator
29 Write the energy level for the free particle | Ex=2n-1/2 En=n? En is continuous | En o n? Enis
in motion continuous
30 Write the energy level for the particle ina | En=2n-1/2 En=n? En is continuous | En o n? E=n?
box
31 Write the energy level for the Hydrogen Er=2n-1/2 Enis En=n? En an? En an?
atom continuous
32 Write the energy level for the Harmonic En=2n-1/2 En=n? En is continuous | En oo n? E,=2n-1/2
oscillator system
33 The first order perturbed H'=Eez H'=-Eez H'=Ez/e H'=-Ez/E H'=-Eez
Hamiltonian,when an external uniform
electric field E is applied to the z- axis on
an atom is
34 When a perturbation of cx®is applied in the | zero 3/4 c(ho/k)®> | 1/2 ¢ (ho/k)? C ho/k Zero
Hamiltonian of harmonic oscillation,the
shift in first order energy is
35 Zeeman effect is the change The change The change in The change in energy the change
in energy in energy energy levels of | levels of an atom when | in energy
levels of an | levels of an an atom when placed in non-uniform | levels of an
atom when | atom when placed in electric field atom when
itisplaced | placed in external electric it is placed
in uniform non-uniform | field in uniform
external external field external
field field




36

A one dimensional harmonic oscillator of
mass m, charge g and classical amplitude a
is kept in an electric field strength E along
x.First order change in ground and first
excited state are respectively

0,9Ea/2

0,gEa

0,0

gEa/a,qEa

gEa/a,qEa

37

In the first order correction to eigen
function [1&0] is

[0&A*E.-
E>

[0&1]

[A*/E1-E,&O]

[1&1]

[A*/E;-
E.&Q]

38

In the above question ,the second order
correction to E; is

0

AYE,-E;

AYE1-E,

A%E,-E;

39

An unperturbed two level system has
energy eigen values E;and E; and eigen
functions [1&0] and [0&1] when peturbed
its Hamiltonian is represented by the first
order corection to E1 is

4A

2A

A

Zero

40

In case of H- atom the total degeneracy of
the state of specified m is given by

N=n(2L+1)

N=n?

N=I(1+1)

N=2L+1

N=n(2L+1)

41

A system is known to be in a state by the

wave function W (0,0)=1/720 [3Y02 +

\7Y02 -2Y12 ], the probability of finding
the system in a state with m=0 is

4/5

1/5

2/5

3/5

04-May

42

The average value of Py for the box

normalized wave function W(x)=\2/L sin
(3mx/L)

1874/L

6m/L-1

187

43

If ¥ = V2/L cos mx/Le B then <x> in the
limit -L/2<x<L/2 is

3/4L

1/4L

L/2




44

A particle of mass m is confined to a one
dimensional box extending from x=0 to
x=9. Assuming the particle in the first
excited state, what is the position-
probability density at x=a/8?

1/a

2/a

1/2a

1/4a

1/a

45

A particle with energy v, /2 coming from
left encounters a potential -3v,/2 at x=0
V(X)=0 for x<a and V(x)=-3vo/2 for
x>a,transmission coefficient is

172

2/3

4/9

8/9

04-Sep

46

Consider a particle in one dimensional box
between x=0 and x=a V(x) ={=o0 for x<o
or x>a=0 for o<x<a when is the pobability
that it will be found in the region
a/4<x<3a/4?

172

12+1/n

1/4+2/n

1/4+1/n

1/2

47

A particle is described by a wavefunction
¥(x)=e™ in one dimension. What is the
probability that it will be found in the
region (x)<a,a>0?

1-e?

1_e—2a

1_e—2a

48

Consider 8 electrons in a one dimensional
box of length a etending from x=0 to x=a.
What is the minimum allowed total energy
using Pauli's exclusion principle for the
system? (m=mass of electron)

10h? /ma?

8h?/ ma?

15h%/4ma?

15h?/2ma?

15h%/4ma?

49

what is the faction of beam reflected fom
the step barrrier of Vo if enegy ofelectron
E with E> VO and width of barrier is infinite,is given by

E/Vo

E-Vo/Vo

E-Vo/2Vo

E+Vo/E

E-Vo/Vo




50 In the electronic transition pictured below, | 1 3 5 4 4
the molecule starts in its ground vibrational
level. The most probable vibrational
guantum number of the excited state is
51 Which of the following is a true statement | Its The excited The excited state | Fluorescence can occur | Fluorescenc
about the fluorescence of a molecule disssociation | state must be | must have the in the visible region e can occur
whose ground state is a singlet: must atriplet same geometry | after absorption inthe | in the visible
proceed by a as the ground ultraviolet. region after
unimolecula state. absorption
r in the
mechanism. ultraviolet.
52 The benzene molecule C6H6 has how 6 12 24 30 30
many vibrational modes
53 The lowest energy orbital for the ammonia | 1s log la; Cav la;
molecule is designated
54 The force constant in NO equals 1125 1342 1240 1595 1595
55 The equilibrium internuclear distance in 115 121 140 171 115
NO equals
56 For NO, the ] — 0 to J] — 1 transition 1.705 3.41 121 8.628 3.41
occurs at
57 The spectroscopic constants assigned for Do=6.48eV | Dp=7.48¢V | Do =8.48eV Do = 9.48eV Do = 6.48eV
the NO molecule are
58 A certain symmetry group of order 8 has5 | 1 2 3 5 2
irreducible representations.What is the
highest possible degeneracy of its quantum
states
59 Example for a low symmetry point group C, D> Con Ss Cs
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Zeeman effect is

the change
in energy
levels of an
atom when
it is placed
in uniform
external
field

The change
in energy
levels of an
atom when
placed in
non-uniform
external field

The change in
energy levels of
an atom when
placed in
external electric
field

The change in energy
levels of an atom when
placed in non-uniform
electric field

the change
in energy
levels of an
atom when
itis placed
in uniform
external
field
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UNIT - IV
Fundamental of Group Theory
Symmetry elements and symmetry operations - definition of identical and equivalent elements
configurations - effect of performing successive operations commutative and non-commutative -
inverse operations.

Groups and their basic properties - definition of a group - basic properties of a group-definition
of abelian - cyclic- isomorphic, finite, infinite groups and subgroup. Symmetry classification of
molecules into point groups-Schoenflies symbol (only-difference between point group and space
group).

Matrices- Definition of matrix, square matrix, diagonal matrix, null matrix, unit matrix, row
matrix, column matrix, symmetric matrix, skew symmetric matrix and conjugate matrix.
Multiplication, commutative and non commutative-determination of inverse of a matrix, block
multiplication of matrices-addition and subtraction of matrices.

Matrix notations for symmetry operations of C,yand Csy groups-construction of character tables
for Cay and Cay point groups.

Symmetry Elements and Symmetry Operations

A symmetry element is a geometric entity (point, line or plane). A symmetry
operator performs and action on a three dimensional object. Symmetry operators
are similar to other mathematical operators.

We will be use only five types of operators in this subject

Operator Symbol

Identity E
Rotation C
Mirror plane a
Inversion 1
Improper rotation S

All symmetry operators leave the shape (molecule) in an equivalent position,
1.e. it is indistinguishable before and after the operator has performed its

action.
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Identity (£)

This operator does nothing and is required for completeness. Equivalent to

multiplying by 1 or adding 0 in algebra.

Rotation (C)

Rotate clockwise around an axis by 27n/n if the rotation brings the shape (molecule) into an
equivalent position.

The symmetry element is called the axis of symmetry. For a 27\n rotation there is an n-fold axis
of symmetry. This is denoted as Cn .

Many molecules have more than one symmetry axis. The axis with the largest ‘n’ is called the
principal axis.

Consider a square planar molecule like PtCl4.
Cl

Cl—Pt—C(l

Cl Cy, C# C§ Cf possiblerotations. C§ — C,and Cf - E

We classify this as E, 2C4, C2. There are also two other C2 axes (along the bonds and between
the bonds)

Reflection (o)

The shape (molecule) is reflected through a plane. (spiegel is German for “mirror”
If a plane is L to the principal rotation axis then it is called ch (horizontal). If it

is along the principal axis then it is called ov (vertical). There may be more

than one ov . If the plane bisects an angle between 3 atoms then it is called od
(dihedral). The reflection plane is the symmetry element.

Inversion (i)

All points in the shape (molecule) are reflected though a single point. The point is the symmetry
element for inversion. This turns the molecule inside out in a sense. The symmetry element is the
point through which the shape is inverted.

Improper Rotation (S)
Rotation by 27n/n followed by reflection, ¢ perpendicular to the rotation axis. Since performing ¢

two times is the same as doing nothing (E), S can only be performed an odd number of time.
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Sk = o,CF ifkisodd

Sk =Ck ifkiseven
kmust be an odd value

eg. S?=C?andS3 = 0,C3
Additionally...

51 =0y

S =0, ifnisodd

S} =E ifniseven
The symmetry element for S is the rotation axis.
Symmetry Operations

Identifying all symmetry elements and operations in molecules.
Cyclopropane — D3h
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Cyclopropane - D3

H H

H
H E, 2Cs, 3Cz, o1, 2S3, 30v

There is an S+ and an S5 (also called S31)

Ethane (staggered) - D3q
H H

H

H H E, 2Cs3, 3Cy, 1, 2S¢, 304

Definition of a Group
There are four defining rules for groups.
1. The combination of any two elements as well as the square of each
element must be in the group.
Combining rule can be defined as anything (multiplication, differentiation, one
followed by another, etc...)
PQ =R ; R must be in the group
The commutative law may not hold AB # BA
2. One element must commute with all other elements and leave them
unchanged. That is, an identity element must be present.
ER = RE =R ; E must be in the group
3. The associative law must hold.
P(QR) = (PQ)R ; for all elements
4. Every element must have an inverse which is also in the group.
RR-1 = R-1R = E ; R-1 must be in the group
Summary
Definition of a group
PQ =R R must be in the group
ER = RE =R E must be in the group
P(QR) = (PQ)R for all elements
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RR-1 =R-1R = E R-1 must be in the group

Example Groups

With a combining rule of addition, all integers form a group.

The identity element is 0, and the inverse of each element is the negative value.
This is an example of an infinite group.

With a combining rule of multiplication, we can form a finite group with the following set {i, -i,
1, -1}. The identity element is 1 in this case.

A set of matrices can also form a finite group with the combining rule of matrix multiplication.

10 0 0] 01 0 OO0 O0OOT11 710 0 1 0
01 0 01 0 0 O (OO 1 0/ (0 0 0 1
0 01 0 (00O 101 0 O0f (2 0 00O
0 0 0 11 [0 01 0o 1t 0o 0 0o 01 00
1 0 0 0
. . s |01 0 O
The identity matrix is 00 1 0
0 0 0 1
e.g.
01 0 0] [0 0 0 1 0 0 1 0
10 0 0Of ]JO O 1 0] _10 0 01
000 1/ (0 1 0 0l ~ |1 0 0 O
001 0111 0 00 01 0 0

n
ZA:'R. X By; = (AB);;
&
A =element in the i row and k™ column

Lastly, the set of symmetry operators (not symmetry elements) present for a given molecular
shape forms a group with the combining rule of one followed by another.
These types of groups are called point groups.

Group Multiplication Tables

The number of elements in the group is called the order of the group (h)

Rearrangement Theorem:

In a group multiplication table, each row and column lists each element in the group once and
only once. No two rows or two columns may be identical.

Consider a group of order 3
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Gs|E A B
E|E A B
AlA 7?7 7
B |B 7 7

There are two options for filling out the table AA=Bor AA=E
If AA = E then the table becomes...

Gs|E A B
E|[E A B
A|lA E B
B|B A E

This violates the rearrangement theorem as the last two columns have elements that appear more
than once.

The only solution for group G3 is

Gs |

o > bt
e llve o= o=
=N leviive

E
A
B

Note: The group G3 is a member of a set of groups called cyclic groups. Cyclic groups have the
property of being Abelian, that is all elements commute with each other.

A cyclic group is one which every element can be generated by a single

element and it’s powers. In this case A=A and AA=A2=B and AAA=A3 =

E.

Point Groups
Consider all of the symmetry operations in NH3
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E UVJ 'C'-V” O-V'” CS C%

NH; |E o/ o o C (3
E E O'v' O-v” Gv”’ C3 C%
O-V' GV' E C3 C32> O-V” \.r”'
Uv" GV” C% E C3 O'V'” C)'v;.rJ
C ov  Cs C% E ov  Ov
C3 C3 O-V'” O-VJ Gv” C% E

Cg C% oy’ oy ov E C3

Note that all of the rules of a group are obeyed for the set of allowed

symmetry operations in NH3.

MO O W s 0
o O W > |
O QDT m |
O mm g w|w
oSl e Nl Nl fe
M 0w g|g

DM e O

Compare the multiplication table of NH3 to that of G6.

There is a 1:1 correspondence between the elements in each group

E—-E

oy — A
oy — B
oy —=C
C3—>D
C:—F

Dr. M. Gopalakrishnan
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Groups that have a 1:1 correspondence are said to be isomorphic to each other.
If there is a more than 1:1 correspondence between two groups, they are said to be homomorphic
to each other. All groups are homomorphic with the group E.i.e. A— E,B —E, C > Eetc...

Classification of point groups

Shoenflies Notation

Group Essential Symmetry

Name Elements*

Cs one o

G one i

Cn one Cy

Dn one Cyplus nCz L to G

Cov one Cy plus nov

Can one Cy plus on

Dnn those of Dy plus oy

Dnd those of Dy plus o4

Sn(evenn) oneS;y

Ta tetrahedron

On octahedron Special G
In icosahedrons pecial roups
Hn sphere

Systematic classification of a group
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Systematic Method to Assign Point Groups

special group?

No | Yes

A

Cy? linear ?

L (o) n

platonic solids

Cos D,y

nCy;lwC,?

Yes

Cuw

D, Dy
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Assign the point groups to the following molecules

Cl H

Br
I”’.
Hj { cl

Br

dichlorodibromo ethane  j only — G

of>

triphenyl methane Cn— C3
H
\0
H
0 o
/N.,W
y
H
H trishydroxy benzene ¢, H \H Csv

Properties of Matrices
Matrix: rectangular array of numbers or elements

d11 A1z 13
A1 QA Q3| aj ithrow and jth column
(31 d32 dA33

A vector is a one dimensional matrix
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aq

This could be a set of Cartesian coordinates (X,Y,z)

Matrix math basics

Addition and Subtraction

Matrices must be the same size

cij = aij £ bij add or subtract the corresponding elements in each matrix

Multiplication by a scalar (k)
k[aij] = [kaij] every element is multiplied by the constant k

Matrix multiplication

I

zaik X byj = cij

k

aik =element in the it row and k™ column

a1 Aq2 b b b €11 C12 (13
11 12 13
Az1 dz2| X ] = |[C21 €22 (23

b« b b
Az1 dsz2 21 22 23 €31 (32 (€33

Where c11 = (aiib11 + aizb2i)
c12 = (ar1biz + azb2z)
etc...
matrix multiplication is not commutative (ab # ba)
Matrix Division

Division is defined as multiplying by the inverse of a matrix. Only square matrices may have an
inverse. The inverse of a matrix is defined as

a-a-1 = 9ij 01 — Kronecker delta
01) = 1 if i=j otherwise 6ij =0
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Special Matrices
Block diagonal matrix multiplication

1 0 0 00 04 1 0 0 0 O 41 0 0 0 O
12 0 0 0|2 3 0 0 0 O 8 7 0 0 0 O
0 0 3 00 OfjO0O1T 0O0OTUO0O_|00S3 0 0 0
000 1 3 2o oo o 1 2[7]0o0 0 13 3 10
000 1 2 2fj0 0 0 3 0 2 0 0 0 10 3 8
000 4 0 4to 0 0 2 1 1 000 2 5 9

Each block is multiplied independently

ie.
b2l &=l s
[3][1] = [3]

1 3 2j[0 1 2 13 3 10
1 2 2)(3 0 2|=|10 3 8

4 0 112 1 1 2 5 9

Square Matrices

Xa = Lj 4jj
This is the sum of the diagonal elements of a matrix (trace).
xa is call the character of a matrix

properties of x
if c = ab and d = ba then yc = yd

conjugate matrices have identical x

r = b-1pb then yr = xb

Operations that are in the same class have the same character.
Matrix Representations of Symmetry Operations

We will now use matrices to represent symmetry operations. Consider how an {x,y,z} vector is
transformed in space
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Identity

E
1 0 0] x X
BRI
0O 0 11 tz z
Reflection
Oxy
1 0 0 X X
1L
0O 0 -1l tz —Z
Oxz
1 0 0] x X
ERRE
O 0 1 tz Z
Inversion
i
-1 0 0 X —X
ERIINE
0 0 -1l tz —Z

Dr. M. Gopalakrishnan Department of Chemistry, KAHE
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Rotation

Cn about the z axis
77 0] x x'

[? 70 [y‘ =|y'| The z coordinate remains unchanged.
0 0 11 'z z

Consider a counter clockwise rotation by 6 about the z axis

y
b
Vijooooomamas (x1,y1)

(XZ,YZ) ----------- N i

I 0 '

: Id '

[ » X
X2 X1

From trigonometry we know that
Xy =x1c080 —y;sinf and y, = x;sinf + y, cos @
Represented in matrix form this gives:
[cos 6 —sin 9] [x1] _ [xz]
sinf cosf 1)1 X2
For a clockwise rotation we find

[ cos¢  sing [xl] _ [xz

—sing cose|lyl = xz] recall cos ¢ = cos(—¢) andsin¢p = —sin(—¢)

The transformation matrix for a clockwise rotation by ¢ is:

cos¢p sing 0] rx x'
—sing cos¢ 0 [}’] = [y"
0 0 11 1tz Z
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Improper Rotations
SI‘]

Because an improper rotation may be expressed as oxyCn we can write the
following since matrices also follow the associative law.

1 0 0 cos¢p singg 0] x x'
0 1 O] [— sin ¢ cosgb 0 \y] = y"
0 0 -1 z'
[ cos¢p sing O
—sin¢ cosqb 0 ] \ ‘ [ ‘

0 -1

The set of matrices that we have generated that transform a set of {x,y,z}
orthogonal coordinates are called orthogonal matrices. The inverse of these
matrices is found by exchanging rows into columns (taking the transpose of
the matrix).

Consider a Cs rotation about the z-axis.

_L By
2
_¥32 _1 ) = (3
2
0 0 1

0

ol =
2
0 0 1

Multiplying these two matrices gives the identity matrix

<
w]Nll—\

0

o |

V3
2

1

0

0 [100

010
0 0 0 1
1
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We know from symmetry that C;C5 = CiC; = E

Here we see that C; and CZare inverse and orthogonal to each other.

In general we can write a set of homomorphic matrices that from a representation of a given
point group

For example, consider the water molecule which belongs to the C2v group.

C2v contains E, C2, oxz , oyz

The set of four matrices below transform and multiply exactly like the symmetry operations in
C2v. That is, they are homomorphic to the symmetry operations.

0] -1 0 0 1 0 0] [-1 0 O
0,0 -1 0),{0 =1 0f,10 1 0

i to o 14 10 o 11 L0 0 1

s
o O =
x| =g

Ca Oxz Oyz
Show that C; ox; = oy

-1 0 O0j;xr 0 0] [-1 0 O
0 -1 0f|I0 -1 0|=10 1 0

0 0 110 0 1 0 0 1

The algebra of matrix multiplication has been substituted for the geometry of applying symmetry
operations.

Character Tables
For Csvwe find the following character table with four regions.

C3V E 2 C3 301.;

Ay 1 1 1 |z x2+y?, 72

A | 1 1 -1|Rz

E 2 -1 0 |xy)RxRy) | (x2-y2 xy)(xz,yz)
I il I11 v

Region | — Mulliken Symbols for Irreducible Representations

1) All 1x1 representations are “A” or “B”, 2x2 are “E” and 3%3 are “T”
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2) 1x1 which are symmetric with respect to rotation by 2n/n about the principle Cn axis are “A”
(i.e. the character is +1 under Cn). Those that are anti-symmetric are labeled “B” (the character is
-1 under Cn).

3) Subscripts 1 or 2 are added to A and B to designate those that are symmetric (1) or anti-
symmetric (2) to aC2 L to Cnor if no C2 is present then to a ov.

4) "and " are attached to those that are symmetric (') or anti-symmetric (")relative to a ch.

5) In groups with an inversion center (i), subscript g (German for gerade or even) is added for
those that are symmetric with respect to i or a subscript u (German for ungerade or uneven) is
added for those antisymmetric with respect to i.

6) Labels for E and T representations are more complicated but follow the same general rules.

Region Il — Characters

This region list the characters of the irreducible representations for all symmetry operations in
each group.

Region I11 — Translations and Rotations

The region assigns translations in x,y and z and rotations Rx, Ry, Rz to irreducible
representations. E.g., in the group above (X,y) is listed in the same row as the E irreducible
representation. This means that if one formed a matrix representation based on x and y
coordinates, it would transform (that is have the same characters as) identically as E.

Recall that previously we looked at a C3 transformation matrix for a set of Cartesian coordinates

55 R

Notice that this matrix is block diagonalized. If we break this into blocks we
are left with

1

V3
2

i b=

Compare the characters of these matrices to the characters under C3 in the table above. Notice
that for (x,y) x = -1 and for (z) x = 1. If you compared the characters for all of the other
transformation matrices you will see that (X,y) — E and (z) — A1 as shown in region III of the
table. Similar analysis can be made with respect to rotations about X, y and z.

]_cgand[][]=[z']=cg

2
V3
2

Region IV- Binary Products

This region list various binary products and to which irreducible representation that they belong.
The d-orbitals have the same symmetry as the binary products. For example the dxy orbital
transforms the same as the xy binary product.

Dr. M. Gopalakrishnan Department of Chemistry, KAHE



Fundamental of Group Theory (2017 Batch)

Representations of Groups
The following matrices form a representation of the Cay point group

1 0 0 -1 0 O 1 0 0 -1 0 O

o1 0,{0 -1 0[,|0 -1 Of,({0 1 O

0 0 1 0 0 1 0 0 1 0 0 1
E C2 Oxz Oyz

Group Multiplication Table for Cay

Cov E C2 Oxz Oyz
E E C2 Oxz Oyz
C2 C2 E Oyz Oxz
Oxz Oxz Oyz E C»
Oyz |O0yz Oxx C2 E

How many other representations exist for the C2v point group?
A: As many as we can think up
The set of numbers {1,1,1,1} transform like C2v etc...
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However, there are only a few representations that are of fundamental importance.

Consider the matrices E, A, B, C, ... and we perform a similarity transform with

Q

E' = QEQ
A= Q1AQ
B’=Q!BQ
Etc...

For example A’ = Q1AQ

Al
A =Q1AQ A

Al

The similarity transform of A by Q will block diagonalize all of the matrices
All of the resulting subsets form representations of the group as well
e.g. Ei, A}, B]..etc...

We say that E, A, B, C... are reducible matrices that form a set of reducible
representations.

If Q does not exist which will block diagonalize all of the matrix
representations then we have an irreducible representation.

Text Books:

1. Raman, K.V. (2002). Group theory. New Delhi: Tata Mc Graw Publishing Company.

2. Puri, Sharma & Pathania, (2006). Principles of Physical Chemistry. Jalandar: Millenium
Edition, Vishal Publishing Co.

3. Veera Reddy, K. (2005). Symmetry and Spectroscopy of Molecules. New Delhi:
New Age International Pvt. Ltd.
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Possible Questions

PART- A Questions (Each question carry one mark)
1. Evidence in favour of the wave nature of radiation

a. Interference of radiation b. Photoelectric effect

c. Compton effect d. Black body radiation

2. Black body radiation has a characteristic
a. Continuous spectrum b. Discontinuous spectrum
c. Narrow range of light d. Laser action

3. As per plancks law the characteristic continuous spectrum of radiation depends upon
a. Body’s temperature b. Nature of the body
c. Colour of the body d. Density of the body
4. Stefan Boltzmann law is based on
a. Diffraction of radiation b. Photoelectric effect
c. Compton effect d. Black body radiation
5. In one dimensional box problem the potential energy of the particle inside the box is
a.zero  b.unity c. infinity d. fractional
6. The solution of the problem of the rigid rotator gives us directly the solution of the
a. angular momentum operator  b. Lapalacian operator

c. Hermitian operator d. Position operator
7. A diatomic vibrating molecule can be represented by a simple model called
a. Simple harmonic oscillator b. Rigid rotor
c. Particle in one dimensional box d. Particle in three dimensional box
8. The quantum number ‘n’ is called
a. Principal quantum number b. Azimuthal quantum number
c. Magnetic quantum number d. Angular momentum quantum number

9. The lowest energy orbital for the ammonia molecule is designated
a. 1s b. log c.lays d. Ca
10. The benzene molecule CsHe has how many vibrational modes
a. 6 b. 12 c.24 d. 30
11. The method applicable for a system which wave functions may be guessed
a. Perturbation method b. Variation method
c. Normalization of the wave function d.
Making the wave functions orthogonal
12. Write the energy level for the free particle in motion

a. En=2n-1/2 b. Ex=n? c. En is continuous d. Enan?
13. The shape of BeCl, molecules is
a. Linear b. Triangular planar  c. Tetrahedral d. octahedral
14. Example for tetrahedral molecule
a. BeCl, b. boron trifluoride  c. methane  d. phosphorous pentachloride
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15. If the symmetry element is the ‘plane of symmetry” then the corresponding symmetry
operation is
a. Doing nothing b. reflection  c. Inversion of all coordinates
d. Rotation through an angle of 360/n about an axis where ‘n’ is the order of the axis
16. For the symmetry operation “rotation” the corresponding symmetry element is
a. ldentity element b. Plane of symmetry
c. Centre of symmetry d. Proper axis of symmetry
17. The basic theorem is concerned with the elements of the matrices constituting the irreducible
representation of a group is called

a. Faradays theorem b. The great orthogonality theorem
c. Normalized theorem d. Van der Waals theorem
18. Character tables are constructed using
a. Symmetry elements b. Orthogonality theorem
c. Symmetry operations d. Irreducible operations

19. The corresponding matrix for the operation E is
a. Zero matrix  b. Square matrix  c. Diagonal matrix  d. Unit matrix
20. Reducible representation is also called as

a. Total character b. Symmetry elements
c. Symmetry operations d. Total elements of symmetry
PART- B Questions (Each questions carries six marks)

21. (a). Explain the failure of classical mechanics and the success of quantum theory in
explaining the results of black body radiation experiment.
(OR)
(b). Write notes on photoelectric effect.

22. (a). Solve the Schrodinger wave equation for one dimensional harmonic oscillator for
its energy.
(OR)
(b) Solve the Schrodinger wave equation for one dimensional harmonic oscillator
for its energy.
23. (a). Explain perturbation method and arrive at the expression for the first order
correction to energy and wave function.
(OR)
(b). Explain the application of variation method to anharmonic oscillator and Helium
atom.
24. (a). (i) What is a group?
(if) What are the defining properties of a group?
(iii) Define class.
(OR)
(b). (i) What are the conditions for the elements to form a group.
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(i) Define abelian and cyclic groups. Prove the statement. Every cyclic group is
abelian but the converse is not true.
25. (a). Explain the symmetry selection rules for infra-red and Raman spectra.
(OR)
(b). (i) State direct product rule? Illustrate its applications.
(if) Write the simple procedure to determine hybridization pattern in sigma bond.

PART- C Question (Each questions carries ten marks)

26. Solve the Schrodinger wave equation for a particle in one dimensional box for its energy and

show that the energy states are orthogonal.
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Group Theory
Multiple Choice Questions for Unit IV
S. No | Question Option 1 Option 2 Option 3 | Option 4 Answer
The ] ] ] ) Triangular Tetrahedra .
1 sha+A187+A188:B188+A188:C188+A18+A188:C1 | Linear planar | octahedral Linear
89

2 The shape of boron trifluoride is Linear Triangular | Tetrahedra octahedral Triangular
planar I planar

3 The structure of methane is Linear 'Fl)'lr;?]r;grzjular ;I'etrahedra octahedral tetrahedral

4 Structure of phosphorous pentachloride is Linear T_rlgonaI. Tetrahedra octahedral T_rlgonal_
bipyramidal | | bipyramidal
boron phosphorous

5 Example for a linear molecule BeCl; trifluoride methane pentachlorid | BeCl,

e
. boron phosphorogs boron

6 Example for triangular planar molecule BeCl; trifluoride methane Eentachlorld trifluoride
boron phosphorous

7 Example for tetrahedral molecule BeCl, . . methane pentachlorid | methane
trifluoride o




phosphorous

. . . boron - | phosphorous
8 Example for Trigonal bipyramidal BeCl, trifluoride methane Eentachlorld pentachloride
One of the following is an geometric operation
when performed on the molecule, give rise to an : . : polarisatio . ,
9 indistinguishable configuration of the same Diffraction | interference n reflection reflection
molecule
One of the following is an geometric operation
when performed on the molecule, give rise to an : . : polarisatio : :
10 indistinguishable configuration of the same Diffraction | interference n rotation Rotation
molecule
One of the following is an geometric operation
11 \_/vhgn_perf_ormed on th_e mole_:cule, give rise to an Diffraction | interference polarisatio inversion inversion
indistinguishable configuration of the same n
molecule
Rotation
through an
Inversion | angle of
If the symmetry element is the ‘identity element” Doing . of all 360/n about | Doing
12 . S . reflection . . .
then the corresponding symmetry operation is nothing coordinate | an axis nothing
S where ‘n’ is
the order of
the axis
Rotation
through an
Inversion | angle of
13 If the symmetry element is the ‘plane of symmetry” | Doing reflection of all _ 360/n_ about reflection
then the corresponding symmetry operation is nothing coordinate | an axis
S where ‘n’ is

the order of
the axis




Rotation Rotation
through an | through an
. . : Inversion | angle of angle of
If the symr’r,letry element is the proper axis of Doing _ of all 360/n about | 360/n about
14 symmetry ” then the corresponding symmetry . reflection . . .
Y nothing coordinate | an axis an axis
operation is s s
S where ‘n’ is | where ‘n’ is
the order of | the order of
the axis the axis
Rotation
through an
Inversion | angle of Inversion of
15 If the symmetry element is the ‘centre of symmetry | Doing reflection of all 360/n about all
”” then the corresponding symmetry operation is nothing coordinate | an axis .
- coordinates
S where ‘n’ is
the order of
the axis
Rotation Rotation
. throughan | through an
) . . Inversion
If the symmetry element is the ‘improper axis of . angle of angle of
) ) Doing . of all
16 symmetry ” then the corresponding symmetry . reflection . 360/n about | 360/n about
7 nothing coordinate . .
operation is s an axis an axis
followed by | followed by
reflection reflection
17 For the symmetry operation “doing nothing” the Identity Plane of Centre of | Proper axis | Identity
corresponding symmetry element is element symmetry symmetry | of symmetry | element
18 For the symmetry operation “reflection” the Identity Plane of Centre of | Proper axis | Plane of
corresponding symmetry element is element symmetry symmetry | of symmetry | symmetry
For the symmetry operation Rotatlf)n’ t‘hrough an Identity Plane of Centre of | Proper axis Proper axis
19 angle of 360/n about an axis where ‘n’ is the order element svmmetr svmmetr of symmetr of
of the axis” the corresponding symmetry element is y y y y y y symmetry




For the symmetry operation Rotation through an | 1dentity Plane of Centre of | 'MProper Improper

20 angle of 360/n about an axis followed by reflection axis of axis of

. . element symmetry | symmetry

the corresponding symmetry element is symmetry symmetry

21 Molecules which have an infinite number of planes | Linear Tetrahedral | Octahedral | Triangular Linear
of symmetry molecules molecules molecules | molecules molecules
Molecules which have an infinite number of planes Boron Phosphoro_us

22 acetylene methane ) . pentachlorid | acetylene
of symmetry trifluoride e

. e Phosphorous

23 Molecules which have an infinite number of planes BeCl, methane B_oron _ pentachlorid | BeCl,
of symmetry trifluoride e

24 The numb_er of plane of symmetry for Acetylene one WO three infinity infinity
molecule is

o5 The numbgr of plane of symmetry for a linear one WO three infinity infinity
molecule is

26 The numbgr of plane of symmetry for a BeCl, one tWwo three infinity infinity
molecule is

27 Which molecules have the molecular plane as one of Planar triangular tetrahedral | octahedral Planar
the plane of symmetry
The molecule which possess two planes of Boron Phosphoro_us

28 X BeCl; water . : pentachlorid | water
symmetry is trifluoride o

29 ;l;he molecule which possesses Ca axis of symmetry Matrices
An array of numbers arranged in rows and columns . determinant | Space Miller Point

30 Matrices ) -
are called S lattices indices groups




A collection of the symmetry elements present in a

Point

Space

Space

Miller

An equal
number of

31 molecule that obeys the mathematical rules for the latti -
formation of a group are called groups groups attices indices rows and
columns
An equal An unequal
32 A square matrix will have number of | number of Only rows Only Squa_re
rows and rows and columns matrix
columns columns
33 A matrix with an equal number of rows and Square Diagonal Null Unit matrix Diagonal
columns matrix matrix matrix matrix
In a square
matrix if all
the
In a square matrix if all the elements other than Diagonal .| Unit Transpose of | elements
34 . o . Null matrix . !
those along the diagonal are zero, it is called matrix matrix a matrix other than
those along
the diagonal
are zero
Inasquare | Inasquare
. L In a square
matrix if all | matrix if all - In a square
matrix if - If every
the the matrix if all
all the element of a
. o elements elements the elements | .
35 A diagonal matrix will have elements diagonal
other than other than along the .
along the . matrix is
those along | those along . diagonal are
: : diagonal one (1)
the diagonal | the diagonal . zero
) are unity
are zero are unity
If every If every If every If every
element of a | element of a | element of
. . . element of a . .
36 Unit matrix diagonal square a null . Unit matrix
. o o null matrix
matrix is matrix is matrix is ic 7610
one (1) one (1) one (1)




Square

Diagonal

Transpose of

37 If every element of a diagonal matrix is one (1) Unit matrix . ) . Cu
matrix matrix a matrix
39 Example for a low symmetry point group Cs D> Con Sa Ci
. . . Boron
41 The molecule with Dy, point group acetylene water ammonia |z e water
. . . Boron .
42 The molecule with Cay point group acetylene water ammonia | .o ammonia
. . . Boron Boron
43 The molecule with Csy point group acetylene water ammonia | oo e trichloride
. . . Boron
44 The molecule with D3 point group acetylene water ammonia |,z e Dan
45 The point group of acetylene is Dan Caov Cav Dan Cov
46 The point group of water is Dan Caov Cav Dan Cav
47 The point group of ammonia is Dan Cav Csv Dsn Dshn
48 The point group of boron trichloride is Dan Cav Csv Dsh 32
49 The number of possible point groups for a crystal is 32 45 62 7 | Six
The maximum number of axis of symmetry a crystal . Block
50 . two Three Four SiX factored
can have is :
matrix
Matrix
which will
A matrix in which all the non-zero elements will be Block Character Square Diagonal also be
51 . . factored . ) . blocked out
in square blocks along the diagonal . 0S a matrix | matrix matrix )
matrix in exactly
the same

way




Matrix A
which will coordinatio
- . also be : n point
52 If two s,_lmlllarly blocked out matrices are blocked out Dlag_onal Squa_re Unit matrix | (xy.z) in
multiplied, the product will be a . matrix matrix
in exactly the
the same Cartesian
way coordinates
A
coordinatio
n point . .
53 A one column matrix represents (x,y,2) in A scglar Unit Diago nal matrix
the matrix matrix matrix
Cartesian
coordinates
54 Multiplication of two matrices gives a matrix determinant Scalar Vector commutativ
product product e
commutativ | VO™ Non- Leaves the
55 Multiplication of a matrix with unit matrix is commutativ | associative - matrix
e associative
e unchanged
vl\ci?ltrtl))é Matrix will
N o Leavesthe | \ratrix will | divided by |2 9V19€0 | carhonyl
56 Multiplication of a matrix with unit matrix is matrix by the .
be squared | the sulfide
unchanged number of
number of
columns
rows
. . Carbonyl . Boron Dichloro
57 The molecule with C,y point group sulfide water ammonia | oo e methane
. . Dichloro . Boron Nitrogen
58 The molecule with Cay point group acetylene methane ammonia | Lo e trifluoride
. . Nitrogen Boron
59 The molecule with Csy point group acetylene water trifluoride | trichloride ethylene




‘ 60 ‘ The molecule with p2n point group

| acetylene | water

‘ ammonia ‘ ethylene ‘

Vinca
alkaloids
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UNIT -V
IR/Raman spectroscopy

Definition of reducible and irreducible representations - irreducible representations as orthogonal
vectors - direct product rule, the great orthogonality theorem and its consequences -
determinations of the characters for irreducible representation of C,y and Csy point groups using
the orthogonality theorem.

Group theory and Vibrational spectroscopy - vibrational modes as basis for group representation
- symmetry selection rules for IR and Raman spectra, Mutual exclusion principle - classification
of vibrational modes. Group theory and dipole moment.

The Great Orthogonality Theorem
The theorem states

. h
Z[Fl‘(R):rlrz][I}(R)m'n'] = ﬁé‘ijé‘mm'csnn’
R ']

Terms

h = order of the group (# of symmetry operators)

Ti = ith representation

li = dimension of Ti (e.g. 3% 3,1i=3)

R = generic symbol for an operator

[Ti R(mn)] = the element in the mth row and nth column of an operator R in
representation Ti

[Tj R(m’n’)] = complex conjugate of the element in the m’th row and n’th
column of an operator R in representation Tj.

What does this all mean?

For any two irreducible representations Ti, Tj

Any corresponding matrix elements (one from each matrix) behave as components of a vector in
h-dimensional space, such that all vectors are orthonormal. That is, orthogonal and of unit length.

Examine the theorem under various conditions...
If vectors are from different representations then they are orthogonal

Z[Fi (R)u‘rzrm][l—;r''U?):rn"n.’]:L =0 ifi#]

R
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If vectors are from the same representation but are different sets of elements
then they are orthogonal

Z [Fr'. (R)mn] [r: (R)m.’-n_’]* =0 ifm#m' orn#n'
R
The square of the length of any vector is h/li

., _h
Z [Fi (R)'nm] [Fr'. (R)nm]” =7
l;
R
Irreducible Representations
There are five important rules concerning irreducible representations

1) The sum of the squares of the dimensions of the irreducible representations of a group is equal
to the order of the group

D lE=h
i

2) The sum of the squares of the characters in an irreducible representation is equal to the order
of the group

Z[xf(R)]Z —h

3) Vectors whose components are the characters of two irreducible representations are
orthogonal

D Ta®ILG(R] =0 wheni#]

4) In a given representation (reducible or irreducible) the characters of all matrices belonging to
the same class are identical
5) The number of irreducible representations of a group is equal to the number of classes in the

group.

Let’s look at a simple group , C2v (E, C2, ov, 6v’)

There are four elements each in a separate class. By rule 5, there must be 4
irreducible representations. By rule 1, the sum of the squares of the
dimensions must be equal to h (4).

B+B+1E+1E=

The only solutionisly =l, =l =1, =1
Therefore the C2v point group must have four one dimensional irreducible
representations.
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All other representations must satisfy ).;[x;(R)]* =4

This can only work for i = + 1. And for each of the remaining I" to be
orthogonal to I'; there must be two +1 and two -1.

Therefore, the remaining I' must be (E is always +1)

Cav E C2 Ov ov
['1 1 1 1 1
[2 1 -1 -1 1
['3 1 -1 1 -1
[’ 1 1 -1 -1

Take any two and verify that they are orthogonal
[i=(0Ax1)+ (1x-1) + (I1x-1) +(1x1) =0

These are the four irreducible representation of the point group Cay

Consider the Csy group (E, 2Cs, 3ov)

There are three classes so there must be three irreducible representations
GF+5+15=6

The only values which workarel;, =1,l, =1,l; =2

That is, two one dimensional representations and one two dimensional
representation.

So for I'1 we can choose

Csv | E  2Cs 3oy

. |1 1 1

For I'; we need to choose + 1 to keep orthogonality
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Csw | E  2Cs 3oy
rn | 1 1 1
r, |1 1 -1

[iT= (1x1) + 2(1x-1) 4+ 3(1x-1) = 0

Czv | E 2C3 3oy

I 1 1 1
I 1 1 -1
I's 2

To find I's we must solve the following

Z[xl(R)][Xg(R)] = (D(2) + 2D [xs(C3)] + 3(D) xz(0,)] = 0

Z[XZ(R)][)(3(R)] = (D(2) + 2(D[x3(C)] +3(=Dlxz(o)] =0

Solving this set of two equation and two unknowns gives

[x3(C5)] = =1 and [y5(0,)] = 0

Therefore the complete set of irreducible representations is

Csv | E 2Cs 3oy

I'h 1 1 1
I'; 1 1 -1
I's 2 -1 0

We have derived the character tables for Czv and Csv (check the book
appendix)

Coy ‘ E Ca Ov ov C3V‘

E 2C; 3oy
Ay 1 1 1 1 A1 1 1
A; 1 -1 -1 1 Az 1 1 -1
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We now know that there is a similarity transform that may block diagonalize a
reducible representation. During a similarity transform the character of a
representation is left unchanged.

¥® = ) a;(R)

J

Where x(R) is the character of the matrix for operation R and aj is the number
of times that the jt irreducible representation appears along the diagonal.

The good news is that we do not need to find the matrix Q to perform the
similarity transform and block diagonalize the matrix representations.
Because the characters are left intact, we can work with the characters alone.

We will multiply the above by xi(R) and sum over all operations.

D AR HE =D ax® x®) = D apt(R) 6®)
R R j j R

and
> 1® xR = he;
R
For each sum over j we have

zaf)(j(R))(i(R) = ajZ)(j(R))(i(R) = a;jhé;;
R

R
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The characters for i and x;j form orthogonal vectors we can only have non-
zero values wheni #j

The Reduction Formula

The above leads to the important result called “The Reduction Formula”
1
a; =7 xR xi(R)
R

Where a; is the number of times the i™ irreducible representation appears in
the reducible representation.

Cav E 2Cs 3oy
I 1 1 1
Iz 1 1 -1
I3 2 -1 0
I'a 5 2 -1
Iy 7 1 -3

Apply the reduction formula to 'z and I'y

ForTla
1
ar = [(DME) + )M+ B)(D(-1) =1
a; = %[(1)(1)(5) +(2)MD@2)+B)(-D(-1) =2
1
az = g[(l)(Z)(S) + 2D+ GO =1
For I'v
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a == (D) + DOD + BA)(=3) =0
a2 = 1 (VWD) + DD + BN -1)(=3) =3

| —

a3 =-[(D@)(7) + (2)(=D@D) + B)(0)(=3) =2

o)

Sum the columns...

For I,

Cav E 2Cs 3oy
['1 1 1 1

[2 1 1 -1
[2 1 1 -1
['3 2 -1 0

['a 5 2 -1
For I

C3V E 263 30’\!
[2 1 1 -1
[2 1 1 -1

[2 1 1 -1

'3 2 -1 0

['3 2 -1 0

I'v 7 1 -3
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Vibrations

We can use the tools of group theory to deduce the qualitative appearance of the normal modes
of vibration.

We’ll start with a simple molecule like H20.

For water we expect 3N-6 = 3 normal modes of vibration. Water is simple enough that we can
guess the modes.

o o 0
T w7 h H
e N ANy “— <
symmetric stretching  anti-symmetric stretching bending

Assign these three vibrations to irreducible representations in the C2v point group.

Cov | E C2 omy O

Ay 1 1 1 1 |z

A 1 1 -1 -1 |Rg
B. | 1 -1 1 -1 |xBRy
B | 1 -1 -1 1 |y R

Consider the displacement vectors (red arrows) for each mode and write what happens under
each symmetry operation.

Symmetric stretching (T'V1)
E—-1,C—-1,04a—1, 09— 1
Anti - Symmetric stretching (I'V2)
E—=1,C—>-1,0ay—1, 0'py—-1
Bending (I'v3)

E —_ 1 , Cz — _1, G(Xz)_)]_, G]CVZ) — _1
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Cov | E C2 Omy Oz

A1 1 1 1 1 |z
Az 1 1 -1 -1 |R;
Bi | 1 -1 1 -1 |xRy
B | 1 -1 -1 1 |yRy
[v1 1 1 1 1

['v2 1 -1 1 -1

[v3 1 1 1 1

In a more complicated case we would apply the reduction formula to find the I'irr which
comprise I'v . However, in this case we see by inspection that

Fvl RN Al
M2 - B;

M = A

Selection Rules for Vibrations
Born-Oppenheimer approximation: electrons move fast relative to nuclear
motion.

W = Yoy
f Vi dpablydradiy
Where:

. is the electronic wavefunction and i is the nuclear wavefunction

d is the dipole moment operator
d= z(—e)ri + Z Z ey,
i a

Where:
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ri is the radius vector from the origin to a charge gi (an electron in this case)

—e Is the proton charge Za is the nuclear charge, ra is the radius vector for a nucleus

Integrals of this type define the overlap of wavefunctions. When the above integral is not equal
to 0, a vibrational transition is said to be allowed. That is, there exists some degree of overlap of
the two wavefunctions allowing the transition from one to the other.

In 1800 Sir William Herschel put a thermometer in a dispersed beam of light. When he put the
thermometer into the region beyond the red light he noted the temperature increased even more
than when placed in the visible light. He had discovered infrared (IR) light.

Similar to electronic transitions with visible and UV light, IR can stimulate transitions from v1
— v2. A simplified integral describing this transition is

[ wg dwhar

which is allowed when the integral does not equal zero.

In this integral
P

vib* _ J
0" = = vibrational ground state wavefunctionand ' " is the pth fundamental vibrational

level wavefunction.

What this all means is that a vibrational transition in the infrared region is only allowed if the
vibration causes a change in the dipole moment of the molecule.

Dipole moments translate just like the Cartesian coordinate vectors X, y and z. Therefore only
vibrations that have the same symmetry as x, y or z are allowed transitions in the infrared.

Selection Rules for Raman Spectroscopy

In Raman spectroscopy, incident radiation with an electric field vector E may induce a dipole in
a molecule. The extent of which depends on the polarizability of the molecule (aij polarizability
operator).

vib# P
j])bgib aij w:rndr

Transitions in Raman spectroscopy are only allowed if the vibration causes a
change in polarizability.

Polarizability transforms like the binary product terms (xy, z2 etc...) and therefore vibrations
that have the same symmetry as the binary products are allowed transitions in Raman
spectroscopy. For water, all three vibrations are IR and Raman active.
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Possible Questions

PART- A Questions (Each question carries one mark)

1. The power emitted per unit area of the surface of a black body is directly proportional to the
fourth power of its absolute temperature, the law is
a. Stefan Boltzmann law  b. Weins displacement law
c. Planck’s law d. Jean’s law
2. Evidence in favour of the particle nature of radiation
a. Diffraction of radiation b. Compton effect c. polarization d. interference

3. Black body radiation has a characteristic continuous spectrum of radiation which depends
upon

a. Body’s temperature b. Nature of the body

c. Colour of the body d. Density of the body
4. The spectrum of black-body radiation at any temperature is related to the spectrum at any
other temperature

a. Stefan Boltzmann law b. Weins displacement law

c. Planck’s law d. Jean’s law
5. In one dimensional box problem the potential energy of the particle outside the box is

a. Zero b. unity c. infinity d. fractional
6. The energy levels of the particle in the box are

a. quantized  b. randomized c. dispersed  d. Not-quantized
7. The theory of rigid rotor in space is useful in dealing with

a. Rotational spectra of diatomic molecules b. Vibrational spectra of diatomic
molecules c. IR spectra of diatomic molecules d. Raman spectra of diatomic molecules
8. In the Hook’s law f= -kx, k is called

a. Force constant  b. Gas constant  c. Boltzmann constant  d. Faraday’s constant

9. An one electron system whose potential field is not spherically symmetrical
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a. Hydrogen atom b. Hydrogen atom in electric field
c. Hydrogen molecule  d. Helium molecule

10. The method to obtain approximate solutions to the wave equation
a. Perturbation method b. Normalization of the wave function
c. Making the wave functions orthogonal d. making the wave functions orthonormal

11. Zeeman effect is
a. the change in energy levels of an atom when it is placed in uniform external field b.
The change in energy levels of an atom when placed in non-uniform external field c. The
change in energy levels of an atom when placed in external electric field d. The change in
energy levels of an atom when placed in non-uniform electric field

12. The energy level belongs to En=2n-1/2
a. Harmonic oscillator b. Hydrogen atom

c. particle in a box d. free particle in motion
13. For the symmetry operation “reflection” the corresponding symmetry element is
a. ldentity element b. Plane of symmetry

c. Centre of symmetry  d. Proper axis of symmetry

14. An array of numbers arranged in rows and columns are called
a. Matrices b. determinants c. Space lattices d. Miller indices

15. A diagonal matrix will have
a. In a square matrix if all the elements other than those along the diagonal are zero
b. In a square matrix if all the elements other than those along the diagonal are unity
c. In a square matrix if all the elements along the diagonal are unity
d. In a square matrix if all the elements along the diagonal are zero

16. The molecule with Cay point group
a. acetylene b. water c. ammonia d. Boron trichloride

17. For a pyramidal molecule with point group Cay the number of theoretically predicted IR
fundamental bands
a. Three b. Four c. Five d. Six

18. For chloro trifluoride molecule the number of observed Raman bands and IR bands are four
each, the predicted geometry is
a. Pyramidal b. planar c. T-shaped d. bent

19. In case of molecules with a centre of symmetry the vibrational modes are anti-symmetric to
centre of inversion are
a. IR inactive b. IR active c. Raman inactive  d. Raman hyper active

20. For Raman activity the vibrations should involve a change in

a. polarizability b. magnetization  c¢. Magnetic susceptibility d. Surface tension

PART- B Questions (Each questions carries six marks)

21. a. What are the postulates of Quantum mechanics?
(OR)
b. What are operators in quantum mechanics? Explain multiplication of operators.
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22. (a). Set up Schrodinger wave equation for the rigid rotor of diatomic molecule.
(OR)
(b). Set up Schrodinger wave equation for one dimensional box and solve the
equation for its energy.

23. (a). What are the applications of perturbation method to anharmonic oscillator and
Helium atom.
(OR)
(b). Derive Schrodinger equation for H-atom.

24. (a) (i) Define class and sub —group.
(if) Write notes on similarity transformation.
(iii) Show that the element [1, -1, i, -i] form a group.
(OR)
(b). (i) Prove the following:

S¢4=E, S3®=on S5*=Cs* S#2=C
(i) Distinguish between vertical plane and horizontal plane.
(ii1) Prove that Ca(x) Cz(y) = C2(2).

25. (a) (i) What are the relationship between reducible and irreducible representation of
the group.
(if) What are the properties of irreducible representation?
(OR)
(b) (i) State and explain the great orthogonality theorem.
(i) How will you construct the character table for a C,y and Csy point group using the
great orthogonality theorem?

PART- C Question (Each Question carries ten marks)

26. What is meant by zeropoint energy? Show that the zero point energy for a particle in one
dimensional box is in accordance with Heisenberg’s principle
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Group Theory
Multiple Choice Questions for Unit V
S.No | Question Option 1 Option 2 Option 3 Option 4 Answer
1 For a planar molecule with point group Dan | Three Four Five Six Three

the number of theoretically predicted
IRfundamental bands

2 For a planar molecule with point group Dz, | Three Four Five Six Three
the number of theoretically predicted Raman
fundamental bands

3 For a pyramidal molecule with point group | Three Four Five Six four
Csv the number of theoretically predicted
Raman fundamental bands

4 For a pyramidal molecule with point group | Three Four Five Six four
Csv the number of theoretically predicted IR
fundamental bands

5 For a T-shaped molecule with point group Three Four Five Six Six
Csv the number of theoretically predicted IR
fundamental bands




For a T-shaped molecule with point group
Cay the number of theoretically predicted
Raman fundamental bands

Three

Four

Five

Six

SiX

For Phosphorous trichloride molecule the
number of observed IR bands

Three

Four

Five

Six

four

For Boron trifluoride molecule the number
of observed IR bands

Three

Four

Five

Six

three

For chloro trifluoride molecule the number
of observed IR bands

Three

Four

Five

Six

Six

10

For Phosphorous trichloride molecule the
number of observed Raman bands

Three

Four

Five

Six

four

11

For Boron trifluoride molecule the number
of observed Raman bands

Three

Four

Five

Six

three

12

For chloro trifluoride molecule the number
of observed Raman bands

Three

Four

Five

Six

Six

13

For Phosphorous trichloride molecule the
number of observed Raman bands and IR
bands are three each, the predicted geometry
is

Pyramidal

planar

T-shaped

bent

Pyramidal

14

For Boron trifluoride molecule the number
of observed Raman bands and IR bands are
four each, the predicted geometry is

Pyramidal

planar

T-shaped

bent

Planar

15

For chloro trifluoride molecule the number
of observed Raman bands and IR bands are
four each, the predicted geometry is

Pyramidal

planar

T-shaped

bent

T-shaped

16

In the IR and Raman spectra, apart from the
fundamental absorption bands, it contains

overtones

Metastable
bands

Solvent bands

Base bands

overtones




17 In the IR and Raman spectra, apart from the | Combination Metastable Solvent bands | Base bands Combination
fundamental absorption bands, it contains bands bands bands
18 In case of molecules with a centre of IR inactive IR active Raman Raman IR inactive
symmetry the vibrational modes symmetric inactive hyperactive
to centre of inversion are
19 In case of centrosymmetric molecules, the Paulis Mutual Hund’s rule Overtones rule Mutual
IR active vibrational modes are Raman exclusion exclusion exclusion
inactive and Raman active vibrational principle principle principle
modes are IR inactive, the principle is called
20 In case of molecules with a centre of IR inactive IR active Raman Raman IR active
symmetry the vibrational modes are anti- inactive hyperactive
symmetric to centre of inversion are
21 Vibrations of ‘g’ modes are IR inactive IR active Raman active | Raman Raman active
hyperactive
22 Vibrations of ‘u’ modes are IR inactive IR active Raman Raman Raman
inactive hyperactive inactive
23 IR active vibrations involve a change in Dipole magnetization | Magnetic Surface tension Dipole
moment susceptibility moment
24 For Raman activity the vibrations should polarizability | magnetization | Magnetic Surface tension polarizability
involve a change in susceptibility
25 For Raman activity the vibrations should Induced dipole | magnetization | Magnetic Surface tension polarizability
involve a change in moment susceptibility
26 The basic theorem is concerned with the Faradays The great Normalized Van der Waals The great
elements of the matrices constituting the theorem orthogonality | theorem theorem orthogonality
irreducible representation of a group is theorem theorem
called
27 All the properties of group representations Faradays The great Normalized Van der Waals The great
and their characters can be derived from this | theorem orthogonality | theorem theorem orthogonality
theorem theorem theorem




28 The Kronecker delta can have values lor0Q lor2 Oor2 10r3 lor0

29 According to the great orthogonality zero An odd An even Positive number Zero
theorem the sum over various operations of number number
the products of the elements of irreducible
representations will be equal to

30 As per the Great Orthogonality theorem, the | Symmetry classes of Symmetry Matrix elements classes of
number of irreducible representations in a elements elements in operations elements in
group is equal to the number of the group the group

31 As per the Great Orthogonality theorem, ina | identical different dissimilar interactive identical
given representation the characters of all the
elements of the same class will be

32 As per the Great Orthogonality theorem, the | Order of the classes of Symmetry Matrix elements Order of the
sum of the squares of the dimensions of the | group elements in operations group
irreducible representations of a group will be the group
equal to the

33 As per the Great Orthogonality theorem, the | Order of the classes of Symmetry Matrix elements Order of the
sum of the squares of the characters in a group elements in operations group
givenirreducible representations of a group the group
will be equal to the

34 As per the Great Orthogonality theorem, the | orthogonal normalised orthonormal identical orthogonal
characters of any two irreducible
representations of a group are

35 In the construction of the character table AorB E T U AorB
One dimensional irreducible representation
will be denoted by

36 In the construction of the character table two | A or B E T U E

dimensional irreducible representation will
be denoted by




37 In the construction of the character table AorB E T U T
Three dimensional irreducible representation
will be denoted by
38 Character tables are constructed using Symmetry Orthogonality | Symmetry Irreducible Orthogonality
elements theorem operations operations theorem
39 One of the following is not true with respect | The number of | The symmetry | The name of | The character The symmetry
to the information’s to the character table IR’s possible | and the point corresponding to and
for a point corresponding | group with the | various classes of | corresponding
group fundamental possible symmetry fundamental
bases for very | symmetry elements for all bases for very
few IR elements the IRs few IR
40 Null matrix is also called as Zero matrix Square matrix | Diagonal Unit matrix Zero matrix
matrix
41 The corresponding matrix for the operation | Zero matrix Square matrix | Diagonal Unit matrix Unit matrix
Eis matrix
42 In Cy point group the number of irreducible | Four five Six three Four
representation are possible
43 In Cay point group the number of irreducible | Four five Six three Three
representation are possible
44 The number of elements present in Cay point | Four five Six three Six
group
45 The order of the group is denoted by h E i j h
46 The character of any two irreducible orthogonal diagonal parabola hyperbola orthogonal
representations of a group are
47 In Cyy point group the number of classes are | Four five SiX three Four
possible
48 In Cay point group the number of classes are | Four five Six three Three

possible




49 For the Csy point group, the order of the Four five Six three Six
group is
50 Formaldehyde has Three sigma Four sigma Five sigma Six sigma bonding | Three sigma
bonding bonding bonding molecular orbitals | bonding
molecular molecular molecular molecular
orbitals orbitals orbitals orbitals
51 In the C,y point group the ‘z’ coordinate Al A2 Bl B2 Al
transformers is
52 The symmetry or antisymmetry is with Subsidiary Principal axis | Vertical axis Horizontal axis Subsidiary
respect to axis axis
53 The single prime and double prime are used | symmetry chiral achiral Mirror image symmetry
to denote
54 Reducible representation is also called as Total character | Symmetry Symmetry Total elements of | Total character
elements operations symmetry
55 Irreducible representations reflect the Point group Space group Symmetry Character table Point group
essences of a elements
56 The Cyy point group reducible Al+A2+B2 2A1 + A2 +B2 Al +A2 2A1 +
representations is equal to 2A2+B2 2A2+B2
57 The Csy point group reducible Al+A2+B2 Al + 2A2+E A2 +B2 Al +A2 Al + 2A2+E
representations is equal to
58 The Td point group reducible Al+A2+B2 Al + 2E+T2 A2 +B2 Al +A2 Al + 2E+T2
representations is equal to
59 To learn more about point groups and the Irreducible Reducible Symmetry Symmetry Irreducible
basis of representations it is essential to representation | representation | elements operations representation
know all possible S S S
60 In the group theory the letter R indicates Operation of a | Symmetry of a | Order of a Class of a group Operation of a
group group group group
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Dale - 13. Sin 2x is not Eigan function of operator d/dx why. .. ...
PART A ¥ (20 1=20) a. [t gives Cos2x b, It gives Sin2x ¢ It gives tan2x d. It gives 0
Answer all Questions
1. Black body radiation has a characteristic continuous spectrum of radiation which depends upon 14. Caleulate the Eigan value of sin2x, the operator d2/dx... ...
a. Body’s temperature b. Nature of the bady
¢. Colour of the body d. Density of the body a.2 b. 4 c. 4 d,-2
2. In one dimensional box problem the potential energy of the particle outside the box is 15. Who created the "Gold Foil Experiment?"
. Zero b. unity c. infinity d. fractional a. Dolton b. Lewis c. Bohr d. Rutherford
3. The energy levels of the particle in the box are 16. What are the only possible values of the "Spin Quantum Number" in any case?
a. quantized b. randomized ] c. dispersed  d. Not-quantized

: a. +1/2 b. +1/2 and -1/2 c 0 = d.-1
4. The theory of rigid rotor in space is useful in dealing with

17. =Asin(kx) +..........

a. Rotational spectra of diatomic molecules b. Vibrational spectra of diatomic molecules uiasintkx)

a. Beos(k b. Beoseo(kx, c. Bsin(k d. Bsin(kx
c. IR spectra of diatomic molecules d. Raman spectra of diatomic molecules sy b i) o

8, E results in the allowed energies for a particle in a box
5. Inthe Hook’s law = -kx, k is called 15 Eresuits i the Alomed crerglcs Hraperiicicin®
3 a. En = n’h%/8m’ b. En = n’h*/8ma’ ¢. En=n*h¥/8m.2 d. Gn = n*h*4mL2

a, Force constant b. Gas constant
c. Boltzmann constant d. Faraday’s constant 19, The energy level belongs to E,=2n-1/2

6. An one electron system whose potential field is not spherically symmetrical
a. Harmonic oscillator ~ b. Hydrogen atom  c¢. particle ina box d. free particle in motion

a. Hydrogen atom b. Hydrogen atom in electric field

G Hydr:éen molecule d. Helium molecule 20. Which one is de broglie equation
7. Whi i i

ich on€ is Plank equation of protons T B2 o byl s T
a. E=mc’ b.E=hv c. F=ma d E=ma
PARTB (3x2=46)

8. If the y be a complex function then y*y value is Answer all Questions

a0 b. 1 ca d2 21. What is block body radiation? write equation
9. A function of X* operated by integration with respect to X 22. State the uncertainty principle?

a %’ b.3X2 c. X4 +c dkx® 23, Write the time depended and independent schrodinger wave equation.



PART C (3x8=24)

> Answer all Questions
24, a)&kplain the postula'lcs of quantum mechanics
(OR)
b) Bohr theory of hydrogen atom with spectrum

25. a) i. Calculate the de Broglic wave {ength of a body of mass 0.1kg moving in the a velocity of
1.20 x 10°m/s.

ii. A cricket ball weighing 100g is to be located within 1A, what is the uncertainty in its
velocity?
(OR)

b) Explain the application of variation method to anharmenic oscillator and Helium atom.

26. a) Set up Schrodinger wave equation for one dimensional harmonic oscilator and solve the equation
for its eneray and wave equation.

(OR)

b) Derive the Schrodinger equation for rigid rotor.
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Answer Key

PART A (20 x 1 =20)
a. Body’s temperature
c. infinity
a. quantized
a. Rotational spectra of diatomic
molecules
a. Rotational spectra of diatomic
molecules

b. Hydrogen atom in electric field
b. E =hv
b.1

c. X4 +c
b.Commutator

d. Fourth

c. h/411

a. It gives Cos2x
-4

. Rutherford

. +1/2 and -1/2

. Bcos(kx)

. En = n’h%/8ma’
. Harmonic oscillator
.mv="h/A

oMo P T Qo0



PART B (3x 2 =6 Marks)
21. What is block body radiation? write equation

Answer: A black body is one that absorbs all the EM radiation (light...) that strikes it. To stay in thermal
equilibrium, it must emit radiation at the same rate as it absorbs it so a black body also radiates well.

E =hv

22. State the uncertainty principle?

Answer: The Heisenberg uncertainty principle states that it is impossible to find the position and
momentum (velocity) of an electron at the same moment. Mathematical representation of this is as
follows:

AXXAvVX>h4mm

AX is the uncertainty in position of the electron
AVX is the uncertainty in the momentum(velocity)
h = Planck’s Constant

m = mass

23. Write the time depended and independent schrodinger wave equation.

Time Depended
1;i=(r,t) = Z cie_'-“E"ifﬁ’ih(r)

Time In-depended

2 Grte) + Vle) = BLE)

PART C (3x 8 = 24 Marks)

24.  a) explain the postulates of quantum mechanics

Answer:

1. Associated with any particle moving in a conservative field of force is a
wave function which determines everything that can be known about the
system.



2. With every physical observable q there is associated an operator Q, which
when operating upon the wavefunction associated with a definite value of that
observable will yield that value times the wavefunction.

3. Any operator Q associated with a physically measurable property g will be
Hermitian.

4. The set of eigenfunctions of operator Q will form a complete set of linearly
independent functions.

5. For a system described by a given wavefunction, the expectation value of
any property q can be found by performing the expectation value integral with
respect to that wavefunction.

6. The time evolution of the wavefunction is given by the time dependent
Schrodinger equation.

(OR)

b) Bohr theory of hydrogen atom with spectrum

There was one major objection to the Rutherford model of atom and Bohr was the one to point it out. So
while giving his Theory of hydrogen atom, he took the essential features from the Rutherford model of
atom but made a change in order to account for the stability of the atom. He made the following

postulates: —

a)  Anatom consists of a centrally located nucleus having a positive charge and responsible for most of

the mass of the atom.

b)  Electrons revolve around with nucleus at centre and in certain fixed circular orbits with definite

radius.

c)  The permitted or fixed orbits are such that the angular momentum of an electron is integral multiple

of h/2x, h being the Planck’s constant.

The angular momentum L=mvr=n (h/2x), m is the mass of

the electron; v is the velocity of the electron in the orbit, n is

any integer starting from1.

n is the principal quantum number. The above equation is

known as Bohr quantization postulate.

d)  Electrons do not radiate energy while moving in their
permitted orbit. These orbits are called non-radiating or
stationary orbits. This is the manner in which Bohr accounted |,
for the stability of the atom. n
e)  When an electron jumps from one orbit to another, it

then the energy absorbed by the electron is hy=AE=E+E;,

Lyman
series

Balmer -
series

<l

=2 “N Paschen
series

absorb/radiate energy. An electron absorbs energy when it =3 \

jumps from a lower to higher orbit and radiate while jumping

from a higher to lower orbit.
Let us assume an electron jumps from orbit n; to ns (n&>n;),

Brackett
series .

Erand E; being the energy of " and i"" orbit respectively. Pfund series



25. a) i. Calculate the de Broglie wave length of a body of mass 0.1kg moving in the a velocity of

1.20 x 10°m/s.

Solution:
de Broglie wave =A=h/mV
»Mass of moving particle m = 0.1Kg
»Velocity V = 1.2 X10° m/s and h=6.6 x 10-34 kg m* s™*

L= 6.6 x 10-34 kg m? s/0.1Kg x1.2 X10° m/s

ii. A cricket ball weighing 100g is to be located within 1A, wha t is the uncertainty in its
velocity?

Answer: AUAX=h4nmAuAx=h4mm

Au=h4mmAXAu=h4nmAx
=6.625%10**x22/7x1x107"°=6.625x10-344%22/7x1x10-10
=3.51x10-20m/s=3.51x10—-20m/s

(OR)

b) Explain the application of variation method to anharmonic oscillator and Helium atom.

Answer: A harmonic oscillator model in four dimensions is presented for the helium atom to estimate
the distance to the inner and outer electron from the nucleus, the angle between electrons and the
energy levels. The method is algebraic and is not based on the choice of correct trial wave function.
Three harmonic oscillators and thus three quantum numbers are sufficient to describe the two-electron
system. We derive a simple formula for the energy in the general case and in the special case of the
Wannier Ridge. For a set of quantum numbers the distance to the electrons and the angle between the
electrons are uniquely determined as the intersection between three surfaces. We show that the
excited states converge either towards ionization thresholds or towards extreme parallel or antiparallel
states and provide an estimate of the ground state energy.

Hydrogen has been a great laboratory for Quantum Mechanics. After Hydrogen, Helium is
the simplest atom we can use to begin to study atomic physics. Helium has two protons in the
nucleus (Z =2) usually two neutrons (A =4) and two electrons bound to the nucleus

26. a) Set up Schrodinger wave equation for one dimensional harmonic oscillator and solve the equation

for its energy and wave equation.

Answer: The one-dimensional wave equation is given by


http://mathworld.wolfram.com/WaveEquation.html

Py _ 1

= —_ —. 1
axt oAt @)
In order to specify a wave, the equation is subject to boundary conditions
w(0,0=0 (2)
YL, =0, 3
and initial conditions
Wix, )= f(x) (4)
ad ., M =g
a! Xy }—gl’}. (5)
The one-dimensional wave equation can be solved exactly by d'Alembert's solution, using a Fourier
transform method, or viaseparation of variables.
d'Alembert devised his solution in 1746, and Euler subsequently expanded the method in 1748. Let
f=x—vr (6)
NEx+vr (7)
By the chain rule,
; & g &
dﬂ = _J'I!:r +2 _l,n!:f + _J'l!:r (8)
axt  ag oEdn gy
1 & lis F bz
—.—$=%—2¢+%- ©)
voad  af dEan - an
The wave equation then becomes
>Fy
T o
Any solution of this equation is of the form
VEMm=Ffm+gél=fix+v+gix-vi, (11)

where f and & are any functions. They represent two waveforms traveling in opposite directions, .f in
the negative * direction and £ in the positive * direction.

(OR)

b) Derive the Schrodinger equation for rigid rotor.


http://mathworld.wolfram.com/dAlembertsSolution.html
http://mathworld.wolfram.com/FourierTransform.html
http://mathworld.wolfram.com/FourierTransform.html
http://mathworld.wolfram.com/SeparationofVariables.html
http://mathworld.wolfram.com/ChainRule.html
http://mathworld.wolfram.com/OftheForm.html
http://mathworld.wolfram.com/Negative.html
http://mathworld.wolfram.com/Positive.html

Answer: State |V)|¥) at t=0t=0: |¥(0))|¥(0)). The operator (matrix) that governs how it evolves with time
will be called U(t)U(t). The state at a later time can then be written
IF(0)=U®)¥(0))¥(0)=Un)¥(0)).

The state can be defined to start off normalized meaning that it has length one. This has to do with probability
and the fact that the total probability over all space is always one. This normalization is

wittten (¥(0)|W¥(0))=1(¥(0)]¥(0))=1. If the state starts off normalized, we require that it always be
normalized because of the conservation of probability.
(FOIYD))=(F(0)|UtUF(0))=1¥¥(0)=(¥(0)UTUN(0)=1

Because ((¥'(0)[¥(0))=1%(0)]¥(0))=1, that means that U+U=1U+U=I where Il is the identity matrix. This
type of operator is called a unitary operator. Time translation is represented by a unitary operator: U(t)U(t).
After no time has passed a system must be in the same state it was in so when you act on the state
with U(0)U(0) you must get the same state. This means that U(0)=lU(0)=I because acting on a state with the
identity operator will give the same state.

After a tiny bit of timeeshas passed, UUmust be wvery close tollso you can
write U(e)=l—inHeU(e)=I-ihHe. ikih is just a constant with historical significance and HH is some operator
with €g just being the tiny bit of elapsed time.

Remembering that U+U=IU+U=I, you can plug in UU and it's hermitian conjugate U+U+.
UiU=(I+inHeUtu=(1+irH+e) (I-inHe)=1)(1-ihHe)=I

Distrutributing, disregarding the term of order €e22, and noting that 12=112=1 (just like one squared equals
one) you find that H=H+{H=H+. This type of operator is called a hermitian operator. Hermitian operators
represent observables. In the case of HH, the observable you observe is a system's energy.

Let's let UU act on some state \yy and find the difference between U(g)U(e) and U(0)U(0).
(U(e)-U(0))y=—ireHy(U(e)~U(0))y=—ihcHy.

If you divide by €e and let epsilon tend to zero you get the limit definition of a derivative in time! You are left
with

oyot=—ihHyoyot=—ihHy.

You have the time-dependent Schrédinger equation!

*************************************AI I the Best**************************************
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PART A (20 x 1=20)
Answer all Questions .

1. The water molecule belongs to the group
a. Cﬁ\v b. C‘, C. Cgv d. C}\-

2. The benzene molecule (CgHg) has how many vibrational modes
a.6 b. 12 c.24 d. 30

3. The method applicable for a system which wave functions may be guessed
a. Perturbation method b. Variation method
¢. Normalization of the wave function d. Making the wave functions orthogonal

4. Write the energy level for the free particle in motion
a. E=2n-1/2 b. E=n® c¢. E, is continuous d. Eyan’

5. The shape of BeCl; molecules is
a, Linear b. Triangular planar  c. Tetrahedral d. octahedral

6. For the symmetry operation “rotation” the corresponding symmetry element is
a, Identity element b. Plane of symmetry
c. Centre of symmetry d. Proper axis of symmetry

7. For the symmetry operation “reflection” the corresponding symmetry element is
a. Identity element b. Plane of symmetry
c. Centre of symmetry  d. Proper axis of symmetry

8. An array of numbers arranged in rows and columns are called
a. Matrices b. determinants c. Space lattices d. Miller indices

9. The Carbon-di-oxide (CO2) has how many vibrational modes

a3 b. 8 c.4 d.6
10. The molecule with Cs, point group
a. acetylene b. water c.ammonia  d. Boron trichloride

S s e

11. For a pyramidal molecule with point group Csy the number of theoretically predicted IR
fundamental bands

a. Three b. Four ¢ Five d. Six

12. For chloro trifluoride molecule the number of observed Raman bands and IR bands are four
each, the predicted geometry is
a. Pyramidal b. planar ¢. T-shaped  d. bent

13. In case of molecules with a centre of symmetry the vibrational modes are anti-symmeiric to
centre of inversion are

a. IR inactive b. IR active  ¢. Raman inactive  d. Raman hyper active

14, For Raman activity the vibrations should imvolve a change in
a. polarizability b. magnetization c¢. Magnetic susceptibility d. Surface tension

15. A diatomic vibrating molecule can be represented by a simple model called
a. Simple harmonic oscillator b. Rigid rotor
c. Particle in one dimensional box d. Particle in three dimensional box

16. The quantum number ‘m’ 1s called
a. Principal quantum number b. Azimuthal quantum number
c. Magnetic quantum number  d. Angular momentum quantum number

17. The basic theorem is concerned with the elements of the matrices constituting the irreducible
representation of a group is called
a. Faradays theorem ~ b. The great orthogonality theorem
¢. Normalized theorem d. Van der Waals theorem

18. Character tables are constructed using
a. Symmetry elements b. Orthogonality theorem
c. Symmetry operations d. Irreducible operations

19. The corresponding matrix for the operation E is
a. Zero matrix  b. Square matrix ¢ Diagonal matrix  d. Unit matrix

20. Reducible representation is also called as

a. Total character b. Symmetry elements
c. Symmetry operations d. Total elements of symmetry
PART-B (3 x 2=6 Marks)

Answer all Questions

21. State the mutual exclusion principle?
22, What is meant by a improper rotation of symmetry?
23. What are the matrix notation for ¢ and Sn?



PART-C (3 x8= 24 Marks)
Answer all Questions
24. (a) (i) Define Symmetry elements.
(if) Write notes on symmetry operations with examples.
(OR)
(b). (i) Distinguish between vertical plane and horizontal plane symmetry.
(11) Construct the multiplication table for a Cay point group?

25. (a) (i) Write on reducible and irreducible repfesentation of the group.
(i) What are the rules to be followed to identify a point group?
(OR)
(b} (1) State and explain the great orthogonality theorem.

(1) How will you construct the multiplication table for a Cy, point group

26. (a).(i) What is meant by Zeropoint energy?
(if). Explain the application of variation method to anharmenic oscillator atom.
' (OR)
(b).(i) Define abelian and cyclic groups. Prove the
abelian but the converse is not true.
(ii) Explain the symmetry selection rules for infra-red and Raman spectra.

statement, every cyclic group is
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Answer Key
PART A (20 x 1 =20)

1. ¢c.CV

2. d. 30

3. b. Variation method

4. c. Enis Continuers

5. a. Linear

6. d. Proper Axis of Symmetry

7. b. Plane of symmetry

8. a. Matrices

9. c.4

10. c. ammonia

11.a. Three

12. c. T-shaped

13. b. IR active

14. a. polarizability

15. a. Simple harmonic oscillator

16. c. Magnetic quantum Numbers

17. b. The great orthogonality theorem

18. b. orthogonality theorem

d
a

PART-B (3x2 = 6 Marks)

21. State the mutual exclusion principle

Answer: In molecular spectroscopy, the rule of mutual exclusion states that no normal
modes can be both Infrared and Raman active in a molecule that possesses a centre of
symmetry. This is a powerful application of group theory to vibrational spectroscopy, and
allows one to easily detect the presence of this symmetry element by comparison of the IR
and Raman spectra generated by the same molecule

22. What is meant by a improper rotation of symmetry

Answer: This is a compound operation combining a rotation (Cn) with a reflection through a
plane perpendicular to the Cn axis ch.(Cn followed by ch) cCn=Sn


https://en.wikipedia.org/wiki/Spectroscopy
https://en.wikipedia.org/wiki/Normal_mode
https://en.wikipedia.org/wiki/Normal_mode
https://en.wikipedia.org/wiki/Infrared_spectroscopy
https://en.wikipedia.org/wiki/Raman_spectroscopy
https://en.wikipedia.org/wiki/Centre_of_symmetry
https://en.wikipedia.org/wiki/Centre_of_symmetry
https://en.wikipedia.org/wiki/Point_groups_in_three_dimensions
https://en.wikipedia.org/wiki/Vibrational_spectroscopy

23. What is the matrix notation for ¢ and Sn .
Answer: Sigma notation is used as a shorthand way of writing sums. If a vector X (either a row
or column vector) has N components, then alternative notations are used when we want to be explicit
about the index over which the summation is performed or the number of elements of the vector.

1
0
0

(=T =

0
0
1

PART-C (3x8 = 24 Marks)
23. (a) (i) Define Symmetry elements and Symmetry Operation
Answer:  Operations which leave an object looking the same are called symmetry
operations . This term is confined to operations where there is definitely no difference in the
appearance of a molecule before and after performing the operation.

A classification of molecules is done with reference to five symmetry operations. A
symmetry operation is characterized by a point, a straight line or a plane as symmetry
element. Thus, any symmetry element is connected with one ore more symmetry operations
that yield an image identical to the original molecule.

Identity E is a symmetry operation without effect, e.g. a rotation with an angle of 360°.
Though such an operation seems useless, it is of importance in group theory as any group
needs to have one neutral element, i.e. identity. Furthermore, this symmetry operation is the
base for the classification of asymmetric molecules like CHBrCIF which have no other
symmetry.

An n-fold rotation denotes a rotation through an angle of 360°/n, thereby yielding an image
indistinguishable from the original. The n-fold axis Cn is the respective symmetry element.
In inversion, any point of an object is taken, moved through a centre of inversion (i.e. the
symmetry element i) and placed in equal distance beyond this centre.

Reflection moves any point of the original orthogonally to a point beyond some reflection
plane or mirror plane. This plane is the respective symmetry element o.

A rotary reflection around some rotary reflection axis Sn (i.e. symmetry element) combines
an rotation through 360°/n followed by reflection on a horizontal plane.

(OR)
(b). (i) Distinguish between vertical plane and horizontal plane symmetry.
Answer:
Reflection: s (the symmetry element is called a mirror plane or plane of symmetry)

If reflection about a mirror plane gives the same molecule/object back than there is a plane of
symmetry (s).

If plane contains the principle rotation axis (i.e., parallel), it is a vertical plane (sv)

If plane is perpendicular to the principle rotation axis, it is a horizontal plane (sn)



If plane is parallel to the principle rotation axis, but bisects angle between 2 C; axes, it is a
diagonal plane (sd)

H>O posses 2 sy mirror planes of symmetry because they are both parallel to the principle
rotation axis (Cz)

T
T
T

5 \/‘o\_\g)

/
I
\D
/

T
T
T
T

XeF4 has two planes of symmetry parallel to the principle rotation axis: sy

XeF4 has two planes of symmetry parallel to the principle rotation axis and bisecting the angle
between 2 Caxes : Sq

if) Construct the multiplication table for a C,V Point group
Answer: C2v Character Table

Co | E| Co | Oy(X2) | Ou(Y2)

A 1] 1]1 1 z X2, y?, z°
Ay (11 [-1 -1 R; Xy

By [1]|-1]1 -1 X, Ry | xz

B, |[1]-1]-1 1 y, Rx | yz

I I 1 \Y

On the left corner of the character table, the point group is shown. Any character table has four
main areas, I, I, Il and IV.

Area | consists of the characters of the irreducible representations of the group.



1. Symbols A and B are given to one dimensional representation, E to two dimensional
representation, and T to three dimensional representation.

2. When a one dimensional representation is symmetric with respect to /n about the principal Cn
axis, i.e., x(Cn) = 1, symbol A ismrotation by 2 given and B is given, if it is antisymmetric, x(Cn)
=-1.

3. Subscripts 1 is attached to A and B, if the operation is symmetric to C2 perpendicular to the
principal axis. and subscript 2 is attached if it is antisymmetric .

4. Prime is attached to all letters,(A’, B, etc.) if the operation is symmetric h plane. Double
prime is attached (A”, B”, etc.) if it isowith respect to antisymmetric.

5. If a group gas centre of inversion, then subscript ‘g’ is used if it is symmetric with respect to
inversion and subscript ‘u’ is used if it is antisymmetric with respect to inversion.

Area 111 consists of symbols x, y, z, Rx, Ry, and Rz. These represent the Cartesian coordinates
and the rotations about the three axes. If two symbols are placed within parentheses, [ex: (x,y),
(Rx, Ry)], it means that both put together form the basis and they cannot be separated. Area IV
contains the squares and binary products of the coordinates

25. (a) (i) Write on different between reducible and irreducible representation of the group.
Answer:

A reducible representation (p,V)(p,V)has a(t least one) sub representation (pW,W)(pW,W),
where W a subset of V and W is closed under the action of pp.

Completely reducible means that there are subsets WiWiof V such that each WiWi forms
together with its pWipWi a sub representation and V=@iWiV=@iWi.

As @Derek Holt mentioned in the comments a counterexample to your statement that every
reducible representation can be written as a direct sum of irreducible is the following:

X~ (10x1)x—(1x01)

You can check that
a(10)a(10)

, Where a is a real number is an irreducible sub representation but (10x1)(1x01) cannot be written as a
direct sum of irreducible sub representations because it is not diagonalizable (det=1).

(i) What are the rules to be followed to identify a point group.

Answer: ldentification of molecular point groups:

The whole molecules are divided into three broad categories.
Molecules of low symmetry

Molecules of high symmetry

Molecules of special symmetry.

Molecules of Low Symmetry



The starting point could be the molecules containing no symmetry elements other than E, such
molecules are unsymmetrically substituted and these molecules are said to be belongs to C1 point

group.

The TeCl:Bro molecules with its structure in gaseous phase belongs to Cipoint group, and
tetrahedral carbon and silicon compounds of the formula AHFCIBr (A=C,Si).

Molecules of High Symmetry

In this category all the molecules containing Cnaxis (invariably in the absence or presence of
several other types of symmetry of elements) are considered. There are three main types of point
groups Cn, Dy, and Sh.

Molecules of special Symmetry

This class has two groups of molecules:

e Linear or infinite groups and
e Groups which contain multiple higher-order axes.
(OR)
(b) (i) State and explain the great orthogonality theorem.

Answer: Great Orthogonality Theorem:

The matrices of the different Irreducible Representations (IR) possess certain well defined
interrelationships and properties. Orthogonality theorem is concerned with the elements of the matrices
which constitute the IR of a group.

The mathematical statement of this theorem is,

T [(R)p] [GRYMNT = —=— 5,8 & |

1.1 I “mm “nn

Where,
i, j — Irreducible Representations
I;, I — Its dimensions
h — Order of a group

Ti(R)mn — Element of m™ row, n™ column of an i representation

1 th 1 th wth

[(R)'m'n' - Element of m' ™ row, n' ™ column of j' ™ representation

dij Omm' dn — Kronecker delta

Kronecker delta can have values 0 and 1. Depending on that the main theorem can be made into three
similar equations.

i.e.,
1. When, I'i #T'j and j # 1, then 6;; = 0



Therefore, X [ Ti(R)mn ] [ Ti(R)YmM'n'] =0
2. When, I'i =Tjand j = i, then 6;; = 1
Therefore, Xr [ Ti(R)mn ] [ Ti(R)Ym'n'] =0

From these two equations we can say the Orthogonality theorem as, “the sum of the product of the
irreducible representation is equal to zero”.

3. Wheni=j,m=m,n=n'

h

Then, 2R [ ri(R)mn ] [ 1—‘I(R) mn]* = i

From the above equations some important rules of the irreducible representations of a group and there
character were obtained.

(1) How will you construct the multiplication table for Cay point group

Answer: Character Table for Csy, Point Group:

1. For Csy point group, there are 6 symmetry operations and 3 classes, i.e., I', I'2, I's.
2. The sum of the squares of the dimensions of the symmetry operations = 6.

e, 2+ 12+1:2=h=6.

This can only be satisfied by, 2 one dimensional and 1 two dimensional representations.

Csv |E |2C3 |3ov
I 1 a1 b1
I 1 la b2
I3 2 |as b3

3. The sum of the dimensions of I'1 also 6.

Therefore, its characters are (1 1 1).

Csv |E |2Cs |3ov
I'1 1)1 1
I 1 la b2
I's 2 |as b3

4. All operations must satisfy the orthogonality condition, 2r I'i (R) I'j (R) =0
re., ForT'1.I2
ie,11+2.a.1+3.b2.1=0
Letac=1and b2 =-1



ThenI1.T2=0

C3v E 203 3Gv
I 11 1
I 11 -1
I's 2 |a3 b3
re., ForI's. I
ie,21+2.a3.1-3.b3.1=0
Letas=-landbs=0
ThenI'3.12=0
Csv |E |2C3 |3ov
In (1)1 1
I, |11 -1
I's |2 |-1 0
For any character table there are 4 areas.
For Area I:

Assign the Mullicon symbols.

>
=
N |~ m
[N
[N

For Area Ill:

In order to assign the Cartesian coordinates different operations are performed on each of the
axes. Here we were finding the symbols X, Y, Z represents coordinates and rotations Ry, Ry and
R..

26. (a).(I) What is meant by zeropoint energy?

Answer: Zero-point energy (ZPE) or ground state energy is the lowest possible energy that
a quantum mechanical system may have. Unlike in classical mechanics, quantum systems
constantly fluctuate in their lowest energy state due to the Heisenberg uncertainty principle.

In classical mechanics all particles can be thought of as having some energy made up of
their potential energy and kinetic energy. Temperature, for example, arises from the intensity of
random particle motion caused by kinetic energy (known as brownian motion). As temperature is
reduced to absolute zero, it might be thought that all motion ceases and particles come
completely to rest. In fact, however, kinetic energy is retained by particles even at the lowest
possible temperature. The random motion corresponding to this zero-point energy never vanishes
as a consequence of the uncertainty principle of quantum mechanics.

(). Explain the application of variation method to anharmonic oscillator atom.


https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Quantum_mechanical
https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Heisenberg_uncertainty_principle
https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Particle
https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Potential_energy
https://en.wikipedia.org/wiki/Kinetic_energy
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Brownian_motion
https://en.wikipedia.org/wiki/Absolute_zero
https://en.wikipedia.org/wiki/Uncertainty_principle
https://en.wikipedia.org/wiki/Quantum_mechanics

Answer:The harmonic oscillator is based on Hooke's law and the idea of perpetual conversion
of kinetic into potential energy and vice versa. In practice, this description is only an adequate
approximation of e.g. a chemical bond in the limit of very small oscillations. The anharmonic
oscillator model addresses that by adding higher-order terms of the elongation x to account for
deviations farther away from x=0. These extra terms are a perturbation of the Hamiltonian for
the harmonic oscillator:

where the red parts represent the
perturbation.

H=Ho+H i d2+1k2+ 34 dxt
. . —_ —_— — a3 7 = KX X X
Knowing the wave function of the 0 2mdx? 2 ‘
harmonic oscillator and its eigenvalues, we can calculate the anharmonic energy corrections by
applying the perturbation Hamiltonian, Hi to the unpeerturbed wave function of the harmonic

oscillator.

(OR)
(b).(i) Define abelian and cyclic groups. Prove the statement. Every cyclic group is
abelian but the converse is not true.
Answer: For finite cyclic groups this is a very valid proof. The only addenum is the infinite

cyclic group ZZ. Of course, it can be proved directly (below) but, the proof you provide is
much more revealing to the structure of abelian groups.

Now, consider X,yeGx,yeG where GG is cyclic. Since GG is cyclic, it is generated by some
element, sayaa. Then xy=(am)(an)xy=(am)(an) for some m,neZm,neZ. Writing out this
product, using the associativty, and then recollecting terms by definition of powers we
see Xy=am+nXy=am+n. Similarly, yx=am+nyx=am+n so that GG is abelian.

Consider n = 9. Then, since 3 is not relatively prime
to itself, Z/3 x Z/3 is not cyclic,c so we see that not every group of
order 9 is «cyclic and not every abelian group of order 9 is cyclic.
Since these are the only abelian groups of order 9 and we know that
groups of order p? for a prime p are abelian, this comprises the entire set of groups of order 9, so

we can say that every group of order 9 is abelian.

(1) Explain the symmetry selection rules for infra-red and Raman spectra.

Answer: The selection rule says, that vibrations are only IR active (or allowed), if the molecular dipole
moment changes during the vibration. A diatomic molecule with the same atoms cannot be excited to
vibrate because no dipole moment is present. In contrast, molecules with various types of atoms can
interact with incident radiation, and even if a dipole moment is not present in the beginning it can be
induced due to antisymmetric displacement of the center of charge (e.g., COy).



A molecule of n atoms has 3 N degrees of freedom. In a non-linear molecule 3 of these are rotational and
3 of these degrees are translational, and the remaining belong to fundamental vibrations (normal modes).
In a linear molecule 2 degrees are rotational and 3 degrees are translational. The number of fundamental
vibrations in a non-linear molecule is therefore 3N-6 and in a linear molecule it is 3N-5. The water
molecule is an example for a non-linear molecule and has 3 fundamental vibrations (3 x 3 - 6). The
CO, molecule is an example for a linear molecule and has 4 fundamental vibrations (3 x 3 - 5).

*********************A” the Best*********************
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PART - A (20 x 1 = 20 Marks) (30 Minutes)
(Question Nos. 1 to 20 Online Examinations)

(Part - B& C 2 % Hours)

PART B (5 x 6 = 30 Marks)
Answer ALL the Questions

21.(a) (i) Give an explanatory note on time dependent Schrodinger equation.
(ii) S.T. Weins and Rayleigh Jeans law are the limiting cases of plancks
expression.
Or
(b) i) Write a note on operator
ii) Give a detailed account on Hamiltonian operators.

22. (a) Compare the classical mechanics and quantum mechanics with particle
in three dimensional box.
Or
(b) Solving of Schrodinger equation for one-dimensional harmonic oscillator

23. (a) Give an account on perturbation theory and its application to He atom.
Or
(b) (i') Explain radial distribution functions.
(i1) Explain the perturbation method to anharmonic oscillator.

24, (a) i) What is a group?
ii) What are the cyclic, finite and infinite group’s?
iii) Define class.
Or
(b) i) Define matrix?
ii) Write a note on square, diagonal, null matrix?

25. (a) (i) What are the relationships between reducible and irreducible representation

of the group.
(ii) What are the Properties of irreducible representation?
Or
(b) Explain the symmetry selection rules for infra-red and Raman spectra.

PART C (1 x 10 = 10 Marks)
(Compulsory)

26. Give an detail account of black body radiation?
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First Semester

CHEMISTRY

PHYSICAL CHEMISTRY -1
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Time: 3 hours Maximum : 60 marks

PART - A (10 x 2 = 20 Marks)
Answer any TEN Questions

1. How will you proof light is a wave?
2. Define commutator operator and give one example.
3. What are Eigen values and Eigen functions and give suitable examples.

4. What is meant by normalization of wave functions?
5. State Schrodinger wave equation for a particle in a three dimensional box

and rigid rotor.
6. What do the two spherical polar coordinates 8 and ¢ measure.
7. Derive the equation for approximation method to helium atom.

8. Define variation principle.
9. State the equation for perturbation method to helium atom.
10. What are the differences between proper and improper notations?
11. Prove that C,(x) Cy(y) = C3(2).
12. What are sub-groups? Give one suitable example.
13. Explain the symmetry selection rule for IR.
14. Find out the class and order of a group for C,, and C;, point groups.
15. What is meant by mutual exclusion principle?

PART B (5 X 8= 40 Marks)
Answer ALL the Questions

16. (a) Set up Schrodinger wave equation for the rigid rotor of diatomic molecule.
Or
(b) Set up Schrodinger wave equation for one dimensional box and solve the
equation for its energy and wave equation.

Reg. NO...coiviiciiiriecinietiiniina.

17. (a) What are the applications of perturbation method to anharmonic oscillator

and Helium atom.
Or
(b) Derive Schrodinger equation for H-atom.

18. (a) (i) Define class and sub —group.
(ii) Write notes on similarity transformation.
(iii) Show that the element {1, -1, i, -i] form a group.
Or
(b) (i) Prove the following: . s
4=E S’=on S'=Cd8I=C,
(ii) Distinguish between vertical plane and horizontal plane.

(iii) Prove that Ca(x) Cy(y) = Cy(2).

19. (a) (i) What are the relationship between reducible and irreducible representation

of the group.
(i) What are the properties of irreducible representation?

Or
(b) (i) State and explain the great orthogonality theorem.

(ii) How will you construct the character table for a C,, and C,, point group

using the great orthogonality theorem?

20. Compulsory : -
What are the postulates of Quantum mechanics?
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