

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956)

COIMBATORE-21

DEPARTMENT OF CHEMISTRY

Semester -I 4H 2C

17CHP111 ORGANIC CHEMISTRY PRACTICAL-I: QUALITATIVE ANALYSIS AND SINGLE STAGE PREPARATIONS

Instruction Hours/week:L: 0 T:0 P:4 Marks: Internal:40 External: 60 Total:100

Scope

This practical deal with the qualitative analysis of various two component mixtures and preparation of organic compounds by standard organic reactions and to understand the basic principles of lab techniques adopted in laboratories.

Objectives

- 1. To provide the knowledge about the qualitative analysis by separation techniques of a two component mixture.
- 2. To develop skills for the preparation of organic compounds by name reactions.

Methodology

Blackboard teaching and Demonstration.

Contents

Analysis of two – component mixtures: Separation and characterization of compounds.

Note: Each student should analyze a minimum of six organic mixtures.

Preparations involving one stage comprising of the following process: Nitration, acylation, halogenation, diazotisation, rearrangement, hydrolysis, reduction, alkylation and oxidation and one preparation illustrating the following: Benzoin condensation, Canizzaro reaction, Perkin reaction, Reimer-Tiemann reaction, Sandmayer reaction, Fries rearrangement, Skraup synthesis- single stage.

Note: Each student should do a minimum of six preparations involving single stage.

SUGGESTED READINGS: Text Books:

1. Thomas, A. O., (2013). *Practical Chemistry*. Cannanore: Scientific Book Center.

2. Bansal, R. K, (2012). *Laboratory Manual of Organic Chemistry* (IV Edition). New Delhi: New Age Publishers.

Reference Books:

1. Furniss, B. S., Hannaford, A. J., Smith, P. W. G., & Tatchell, A. R., (2015). *Vogel's Textbook of Practical Organic Chemistry* (V Edition). Singapore: Pearson Education Ltd.

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956)

COIMBATORE-21

DEPARTMENT OF CHEMISTRY

List of Experiments

Name of the Staff	:	R.Sharmila Devi
Department	:	Chemistry
Subject	:	Organic Chemistry Practical -I
Subject Code	:	17CHP111
Class	:	I M.Sc-Chemistry
Year and Semester	:	I/I

S.No	NAME OF THE EXPERIMENT	PAGE NO
T		2
Ι	Analysis of Organic Mixtures	3
II	Organic preparations	
	Single stage preparations	
1	Preparation of acetanilide from aniline	21
2	Preparation of p-bromoacetanilide from acetanilide	22
3	Preparation of p-bromoaniline from p-bromoacetanilide	23
4	Preparation of diphenyl hydantion from benzil	24

5	Preparation of m-dinitrobenzene from nitrobenzene	25
6	Preparation of benzoic acid from benzaldehyde	26
7	Preparation of acetyl salicylic acid from salicylic acid	27
8	Preparation of anthraquinone from anthracene	28
9	Preparation of s-benzyl isothiouronium chloride	29
10	Preparation of β -naphthol methyl ether	30

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed University Established Under Section 3 of UGC Act 1956) COIMBATORE-21 DEPARTMENT OF CHEMISTRY

LAB MANUAL

Name of the Staff	:	R.Sharmila Devi
Department	:	Chemistry
Subject	:	Organic Chemistry Practical -I
Subject Code	:	17CHP111
Class	:	I M.Sc-Chemistry
Year and Semester	:	I/I

CONTENTS

S.No	NAME OF THE EXPERIMENT	PAGE NO
I	Analysis of Organic Mixtures	3
II	Organic preparations	
	Single stage preparations	
1	Preparation of acetanilide from aniline	21
2	Preparation of p-bromoacetanilide from acetanilide	22
3	Preparation of p-bromoaniline from p-bromoacetanilide	23
4	Preparation of diphenyl hydantion from benzil	24
5	Preparation of m-dinitrobenzene from nitrobenzene	25
6	Preparation of benzoic acid from benzaldehyde	26
7	Preparation of acetyl salicylic acid from salicylic acid	27
8	Preparation of anthraquinone from anthracene	28
9	Preparation of s-benzyl isothiouronium chloride	29
10	Preparation of β -naphthol methyl ether	30

Analysis of Organic Mixtures

Pilot Test

S.No. Experiment Observation Inf	nference
1 Ether Separation a. A part remained insoluble in Pre 1 A small portion of the given mixture is taken in a 100 ml dry beaker and about 25 ml of ether is added and the mixture is stirred a. A part remained insoluble in Pre ure car ether. tremained insoluble in Ether	

If the whole mixture is completely soluble the following separations are done systematically.

2	Sodium bicarbonate separation The clear ether solution is taken in a test tube and is extracted with 10 % NaOH solution. Stirred well and the lower aqueous layer is removed and acidified with 1:1 HCl.	a. Precipitate is formed.b. No precipitate.	Presence of acidic component. Absence of acidic component.
3	Sodium hydroxide separation The clear ether solution is taken in a test tube and extracted with 10 ml of 10 % NaOH solution. Stirred well and the lower aqueous layer is removed and acidified with 1:1 HCl.	a. A precipitate or emlusion is formed.b. No precipitate.	Presence of phenolic component. Absence of phenol component.
4	Acid separation The clear ether solution is taken in a test tube and is extracted with 10 ml of 1:1 HCl. Sstirred well and the lower aqueous layer is removed and neutralized with 10 % NaOH solution.	a. A precipitate or emlusion is formed.b. No precipitate.	Presence of basic component. Absence of basic component.

Preliminary Report

The given mixture contains

- 1) Ether soluble components or
- 2) One ether soluble component and other ether insoluble component.

Bulk separation

After determining the separation procedures by doing pilot test, the major portion of the mixture is taken and the components are separated as follows.

1. Ether separation

The major portion of the mixture is stirred well with 25ml of ether in a 250 ml of dry beaker. The ether layer is decanted. The procedure is repeated three times. The ether soluble component is recovered by evaporation of ether. The ether insoluble component is dried.

2. Sodium bicarbonate separation

The ethereal solution in the beaker is transferred into a 250ml separating funnel. About 20ml of cold saturated solution of NaHCO₃ is added and shaken well releasing the pressure occasionally. Carboxylic acid if present will remain in the sodium bicarbonate layer as sodium salt and sodium bicarbonate insoluble component is present in the ethereal layer.

The aqueous layer is removed and transferred to a 100ml beaker. 1:1 HCl is added. Stirred well the solid is filtered on a Bucked funnel and washed thoroughly with water. The solid is dried.

3. Sodium hydroxide separation

About 25ml of 10% NaOH solution is added to the ethereal solution in a beaker and transferred into a 250ml separating funnel. Shaken well releasing the pressure occasionally. The ethereal layer and aqueous layer are found separated. The ethereal layer contains NaOH insoluble component and aqueous layer contains NaOH soluble component. The aqueous layer is removed and neutralized with 1:1 HCl. If a solid separates it is filtered on a Bucked funnel. If oily globules (emulsion) separates the following procdure is adopted.

The solution with oily globules is transferred into a separating funnel and about 25ml of dry ether is added. After shaking well the aqueous layer is separated and discovered. The ethereal layer is transferred into a clean beaker and ether is evaporated from it.

4. Acid separation

To the ethereal solution in the separating funnel 25ml of HCl is added and shaken well releasing the pressure occasionally. The ethereal layer and aqueous layer are found separated. The ethereal layer contains HCl insoluble component and aqueous layer contains HCl soluble component. The lower aqueous layer is removed and neutralized with 10% NaOH. If a solid separates it is filtered on a Bucked funnel. If oily globules or emulsion is formed the following procedure is adopted. The solution with oily globules is transferred into a separating funnel and about 25ml of dry ether is added. After shaking well the aqueous layer is separated and discarded. The ethereal layer is transferred into a clean beaker and ether is evaporated.

ANALYSIS OF THE COMPONENTS

PRELIMINARY TESTS

S.No.	Experiment	Observation	Inference
1.	Colour and appearance		
	The colour of appearance of the substance is noted	a)Yellow liquid and solid b) Dark brown liquid or solid	May be aromatic, nitro aromatic May be presence of
		c) colorless or white solid	phenol or aromatic amines
		d) Colorless solid	May be presence of carbohydrates, carboxylic acids, amides or urea ketones like benzophenone.
			May be presence of ester aldehydes or hydrocarbons
2.	Odor		
	The odor of the compound is noted gently from a distance	a) Pleasant odor of fruity odor	Esters may be present
		b)Phenolic smell	Phenol may be present
		c)Fishy or aniline like smell	May be presence of aromatic amines
		d)Pungent or irritating smell	May be due to hydrocarbons
3.	Solubility		
	i) A small quantity or a drop of the given substance is mixed with 1 ml of the H ₂ O taken in the test tube and shaken well	Soluble in cold water	May be due to carbohydrates, di-amide like urea or aliphatic amides
	ii)Contents of the above is heated in the test tube	a)Dissolves in hot condition	May be presence of aromatic acids

		b)Dissolves in hot condition and recrystallizes on cooling	May be presence of amides
	iii) To a small quantity of the substance 1 or 2 drops of dilute HCl is added shaken well and warmed	Soluble	Presence of amines
4.	Litmus test		
	A little of the substance is shaken well with 2 ml of water. The solution is tested with Litmus paper.	a) Blue litmus turned red.b) Red litmus turned bluec)No colour change with blue litmus or red litmus paper	May be due to carboxylic acid or phenol May be due to amines
5.	To small quantity of the substance added 2 ml of 10% of NaOH and shaken well	If the substance is a solid a) Dissolves readily in the cold and when the solution is acidified with the drops of concentrated HCL and cooled the substance is regenerated.	Presence of acids or phenols
		b) Dissolves readily the solution becomes yellow and the colour is removed by concentrated HClc) Ammonia is evolved	Presence of amides or diamides
		d) Solution turns yellow or brown when boiled	Presence of nitrophenol or salicyladehyde
		e) oily globules obtained having aniline like smell	Presence of carbohydrates
		If the substance is liquid f) Oily layer disappears on boiling and white precipitate is obtained on acidification with	Presence of anilines

		concentrated HCL and cooling	
		g) No characteristics reaction	Presence of esters
			Absence of carboxylic acids, phenol, esters etc.
6.	Action of con.H ₂ So ₄		
	A little of the substance is treated with 1 ml of concentrated H ₂ SO ₄	a) The substance becomes black with the smell of burnt sugar	Presence of Carbohydrates
		b) No Characteristic reaction	Abaansa f
			Absence of Carbohydrates
7.	Soda lime test		
	A small quantity of the substance	a) Ammonia gas is evolved	Presence of amides
	is mixed with 1 g of soda lime and heated slowly.	b) Kerosene like smell	Presence of acids
		c) Aniline like smell	Presence of anilines
		d) Phenolic smell	Phenolic acid or ester
		e) No characteristic smell	Absence of carboxylic acids, amides phenols
8.	Neutral FeCl ₃ test		
	A small amount of the substance is shaken with about 1 ml of the H_2O	a) A violet blue or green colour is obtained	Presence of phenols or phenolic aldehyde or acids or phenolic esters
	Or OH and neutral FeCl3 is added drop by drop	b) Blue or green precipitate is obtained	Presence of napthols
		c) Brown precipitate or yellow colour	Presence of carboxylic acids
9.	Tollens reagent test		
	To a small amount of the	a) A bright silver mirrors or a	Presence of aldehydes,

10.	substance added 3 to 4 ml of the tollen's reagent and boiled in water bath Bromine water Test A small amount of the substance is shaken well with 1 ml of water and Br.H ₂ o is added drop by drop	brownish black precipitate b) No characteristic reaction a) Yellow colour is obtained b) Yellow colour persists	glucose or fructose or polyhydric phenols Absence of aldehydes, glucose or fructose or polyhydric phenols Presence of unsaturated compounds like cinnamic acid or cinnamaldehyde Presence of saturated
11.	Sodium bicarbonate Test A small amount of the substance is treated with 1 ml of clear solution of NaHCo ₃	a) Brisk effervescence b) No characteristic reaction	compoundsPresence of carboxylic acids, sulphonic acids and nitrophenolAbsence of carboxylic acids
12.	Bromine in Carbotetra chloride A small amount of the substance is treated with 2 ml of Br in CCl ₄	 a) Yellow colour decolourised b) Yellow colour not decolourised c)Decolourised with white precipitate 	Presence of unsaturated compounds like cinnamic acid or cinnamaldehyde Presence of unsaturated compounds Presence of Phenols
13.	Bayer's Test A small amount of the substance is treated with small quantity of Na ₂ Co ₃ solution and dilute	a) Pink colour is decolourised	Presence of unsaturated compounds like cinnamic acid or cinnamaldehyde and

	solution of KMno4	b) No decolourisation	substance like phenol Presence of saturated compounds
14.	Test for aliphatic/aromatic ignition test		
	A little of the substance is ignited with nickel spatula	a) Burns with sooty flames	Presence of aromatic compounds
		b) Burns with non-sooty flames	Presence of aliphatic compounds
15.	Nitration		
	A small amount of the substance is mixed with 1 ml of concentrated sulphuric acid and 1	a) Yellow precipitate or yellow solution is obtained	Presence of aromatic compounds
	ml of concentrated HNO ₃ in dry test tube shaken well and boiled for 15 minutes in water bath and poured into about 20 ml of cold water.	b) No yellow precipitate or solution is obtained	Presence of aliphatic compounds

TEST FOR FUNCTIONAL GROUPS

S.	Experiment	Observation	Inference
No	-		
1.	Sodium bicarbonate test A small amount of the	a. Brisk effervescence with the evolution of CO_2 takes place.	Presence of carboxylic acids
	substance is added to 2ml of a strong solution of NaHCO ₃ .	b. No characteristic reaction takes place.	Absence of carboxylic acid
2.	Esterification About 0.5g of the substance is mixed with about 2ml of alcohol in a dry test tube, 4to5 drops of Con. H_2SO_4 are added, shaken well and gently heated for a minute. The mixture is then poured into about 30ml of a dilute solution of Na ₂ CO ₃ , stirred well and then smell is noted.	A pleasant ester smell is obtained.	Presence of carboxylic acid

3.	Fluorescein reaction A small amount of the substance is mixed with crystals o resorcinol in a dry test tube, 3 drops of Con.H ₂ SO ₄ are added. Shaken well, heated gently and then poured into about 100ml if cold water, stirred well and then an excess of NaOH solution is added.	A red solution gives an intense greenish yellow fluorescence on adding NaOH.	Presence of a dicarboxylic acid
4.	To about 2ml of NaOH one drop of a very dilute solution of phenolphthalein is added. Pink colour appears. To this, the substance dissolved in water is added in drop by drop and shaken well.	Pink colour disappears	Presence of carboxylic acids

PHENOL

S.NO	Experiment	Observation	Inference
1.	Phthalein fusion test A small amount of the substance is mixed with about 0.5g of phthalic anhydride in a test tube, 2drops of Con. H ₂ SO ₄ are added, heated gently for a minute. The mixture is poured into about 10ml of water and then NaOH solution is added in	a. A pink or red colour is obtainedb. A yellowish-green fluorescence is got.	Presence of monohydric phenol. Presence of dihydric phenol.
2.	slight excess. Dye test 1ml of aniline is dissolved in 4ml dil. HCl and the solution is cooled in ice. To the cold solution, NaNO ₂ solution is added with constant shaking. To this 0.5g of substance dissolved in 5ml of dil. NaOH solution is added.	Orange or scarlet red dye is obtained	Presence of phenol
3.	Libermann's test A small amount of the substance s heated with a crystal of NaNO ₂ in a dry tube. It is cooled and two	A red solution is obtained which turns blue or green on adding NaOH.	Presence of phenol.

	drops of Con. H ₂ SO ₄ are added, shaken well and the mixture is poured into about 100ml of water and then NaOH solution is added in excess.		
4.	o-Benzoylation Schotten- Baumann reaction To 5ml of the aqueous suspension of the compound, added 1ml of benzoyl chloride and 10ml of 10% NaOH solution. The content is shaken well for 5 minutes,	White precipitate is obtained.	Presence of phenol.
	cooled and poured into water with stirring.		

ESTERS

S.NO	Experiment	Observation	Inference
1.	Hydroxamic acid test	A violet or deep red-brown	Presence of ester.
	To 5 drops of the liquid a	colour obtained.	
	pinch of hydroxylamine		
	hydrochloride and 5ml of 10%		
	NaOH solution are added. The		
	contents are gently boiled for		
	about 3 minutes, cooled,		
	acidified with Con. HCl. About		
	5 drops of FeCl ₃ solution is		
	added and shaken.		

CARBOHYDRATES

S.NO	Experiment	Observation	Inference
1.	Molisch's test	Deep violet ring at the junction of	Presence of carbohydrate
	A Small amount of the	the two liquids spreading	
	substance is disolved in 2 ml	throughout the solution.	
	of water, a few drops of		
	strong solution of α-		
	naphthol in alcohol is added,		
	along the side of the test		
	tube.		

2.	Phenylhydrazine test The strong aqueous solution of the compound is added to 10 ml of a solution of phenyl hydrazine hydrochloride and sodium acetate in water in a boiling tube. It is heated on a water bath for 15 minutes with occasional shaking.	A Bright yellow pecipitate of osazone is obtained.	Presence of carbohydrates.
3.	Tollen's test The aqueous solution of the compound is added to Tollen's reagent in equal volume and heated on a water bath.	Black precipitate or bright silver mirror obtained.	Presence of reducing sugar.
4.	Fehling's solution test To an aqueous solution of the compound added 1 ml each of Fehling's solution 'A' and 'B' heated to boiling.	A red precipitate is obtained.	Presence of reducing sugar.
5.	Barfoed's test Added 2 ml of the aqueous solution of the compound to 2 ml of Barfoed's reagent and boiled gently.	A red precipitate is obtained.	Presence of reducing sugar (mono saccharide)

ALDEHYDES AND KETONES

S.NO	Experiment	Observation	Inference
1.	Borsche's test	a. Yellow or orange precipitate.	Presence of aldehyde or
	A Little of the substance is		ketone.
	added to 3 ml of Borsche's	b. No yellow or orange precipitate.	
	reagent boiled and added		
	con.HCL. The solution is		
	cooled 3 ml of water.		
2.	Sodium bisulphite test	a. White precipitate.	Presence of aldehyde and
	To small quantity of the		ketone.
	substance 2ml of sodium		
	bisulphate solution is added	b. No white precipitate.	Absence of aldehyde and
	and shaken well.		ketone.
3.	Hydroxylamine test	a. White precipitate of the oxime is	Presence of aldehyde and

	A small quantity of the	obtained.	ketone.
	substance in alcohol is	obtained.	ketone.
	added to 5 ml of a solution		
	of hydroxylamine	b. No white precipitate.	Absence of aldehyde and
	hydrochloride and then a	b. No while precipitate.	ketone.
	slight excess of NaHCO ₃		ketone.
	solution. Heated on a water		
	bath for 10 minutes, cooled		
	and scratched the inner sides		
	of the test tube with a glass		
4.	rod. Semicarbazide test	A white presinitate of	Dressence of aldehyde and
4.		A white precipitate of semicarbazone is obtained.	Presence of aldehyde and ketone.
	About 0.5 g of semi	semicarbazone is obtained.	ketone.
	carbazide hydrochloride is		
	dissolved in 2 ml of water.		Absonoo of oldshuds and
	To this 1 g of sodium	No white presinitate	Absence of aldehyde and
	acetate crystals are added.	No white precipitate.	ketone.
	Shaken well, to this 2 ml of an alcoholic solution of the		
	substance is added heated in		
	a water bath for 15 minutes		
_	and cooled.	X 11	
5.	Phenyl hydrazine test	Yellow precipitate of phenyl	Presence of aldehyde and
	A little of the substance in	hydrozone.	ketone.
	alcohol is added to 5 ml of a		
	solution of phenyl hydrazine		
	hydrochloride and then a	No yellow precipitate.	Absence of aldehyde and
	slight excess of sodium		ketone.
	acetate solution. Heated ion		
	a water bath for 15 minutes.		
	Cooled and scratched the		
	sides of the test tube with a		
6	glass rod.	A violat colour is and used and the	Dressnas of oldshuds
6.	Schiff's reagent test	A violet colour is produced quickly.	Presence of aldehyde.
	A small amount of the		
	substance is added to about		•
	3 ml of schiff's reagent and		
7	shaken well.	A red brown are disited. in the in the	Dressnes of slighting -1 1-11
7.	Fehling's solution test	A red brown precipitate is obtained.	Presence of aliphatic aldehyde.
	A small amount of the		
	substance is added to about		
	2 ml of each of the		
	Fehling's solution A and B		
0	heated gently.		
8.	Tollen's reagent test	A bright silver mirror or a brownish	Presence of aldehyde.
	A small amount of the	black precipitate of silver is	
	substance is added to about	obtained.	
1	4 ml of the tollen's reagent		

	and heated in a boiling water bath for 10 to 15 minutes.		
9.	Legal's test A small amount of the substance is added to 1ml of the freshly prepared sodium nitro prusside solution and then 2ml of the 10 % NaOH.	Orange colour changes to purple on adding glacial acetic acid.	Presence of methoxy ketone. (CH_{3-C})

If the compound is found to contain nitrogen it must be analysed for the following functional groups.

AMINES

1.	Dye test A small quantity of the substance is dissolved in 1	a. A clear solution is obtained.	Presence of aromatic primary amine.
	ml f the Conc. HCl, diluted to about 4ml, cooled in ice water and then treated to	b. An yellow or yellowish brown oily liquid separated.	Presence of secondary amine.
	about 1ml of a strong solution of NaNO ₂ , added drop by drop with constant shaking.	c. An yellowish brown precipitate is obtained.	Presence of tertiary amine.
	(i) The clear diazotised solution is added to a solution of β - naphthol in NaOH solution.	A scarlet red dye is obtained.	Presence of aromatic primary amine.
	 (ii) The yellow oily liquid is extracted with ether, and the ether is evaporated carefully in a water bat. The residual liquid is warmed with 2 drops of phenol and again with 2 drops of Conc. H₂SO₄. (Libermann's reaction) 	The mixture added to water gives a red solution which becomes green or blue on adding NaOH.	Presence of secondary amine.
	(iii) The precipitate is decanted, shaken up with water and treated with NaOH solution.	A green precipitate is obtained.	Presence of tertiary amine.
2.	N - Benzoylation (Schotten – Baumann	White precipitate is obtained.	Presence of primary or secondary amine.

	reaction) 1 ml of the benzoyl chloride and 10 ml of the 10 % NaOH are added to 5 ml of the compound. The contents are shaken well vigorously for 10 minutes, cooled and poured into water with stirring.		
3.	Picric acid test 2 ml of the alcoholic solution of the compound is mixed with 2 ml of an alcoholic solution of picric acid.	Yellow precipitate of picrate is obtained.	Presence of tertiary amine.

AMIDES

1.	Biuret test A small amount of the substance is gently heated in a dry test tube for a few minutes, cooled, the residues is shaken with 2 ml of copper sulphate solution and then 10% NaOH solution is added drop by drop.	Ammonia is evolved on heating. A violet or a violet red colour is obtained.	Presence of diamide like urea
2.	To the strong aqueous solution of the compound con.HNO ₃ is added in equal volume, shaken well and cooled.	White precipitate (urea nitrate) is obtained	Presence of urea
3.	To a strong aqueous solution of the compound saturated solution of oxalic acid is added in equal volume and the solution is allowed to stand.	White precipitate (urea oxalate) is obtained.	Presence of urea

ANILIDES

1.	Dye test	A scarlet red dye is obtained.	Presence of anilides
	A small amount of the		
	substance is boiled with 5		
	ml of dil. HCl for 3 minutes.		
	The solution is cooled in ice		
	and diazotized and the		
	diazonium salt solution is		
	coupled with β -naphthol in		
	NaOH.		
2.	Bromination	Pale yellow precipitate is obtained	Presence of anilide.
	A little of the substance is		
	dissolved in 3 ml glacial		
	acetic acid and to the		
	solution added 1 ml of		
	bromine in CH ₃ COOH. The		
	solution is shaken well and		
	poured into 25 ml water.		

Reduction

A small amount of the substance is mixed with a few granules of tin and 2 ml of con. Hcl, gently heated and shaken well again heated and the process is continued for 5 minutes. The contents are filtered and the filtrate is tested for the presence of an amino group

S.No.	Experiment	Observation	Inference
1.	A little of the filtrate is diazotized with NaNo ₂ solution and diazotized solution is added to the solution of β - napthol in NaOH	A scarlet red dye is obtained	Presence of nitro compound

Halogen compound

S.No.	Experiment	Observation	Inference
1.	Alcoholic AgNo ₃ Test		
	A small amount of the substance is shaken well with 2 ml of alcoholic AgNo ₃	a) An immediate or a slow precipitate of AgX with a colour	Presence of aliphatic halides or aromatic halogen compound with halogen in

	And then gently warmed	b) No precipitate of AgX is	side chain
		obtained	Aromatic halogen compound with halogen nucleus
2.	Anilide test A little of the substance added to 1 ml of aniline is shaken well poured into 20 ml water	White precipitate tis obtained	Presence of acid chloride

If Sulphur is found in sodium fusion test, the following test may be performed

S.No.	Experiment	Observation	Inference
1.	Barium chloride test A little of the substance is burnt in a nickel spatula the residue left is dissolved on dil.HCl and added BaCl ₂ solution	White precipitate is obtained	Presence of sulphonic acid
DDEDA	DATION OF COLID DEDIVATIVE	n	

PREPARATION OF SOLID DERIVATIVES

1. Carboxylic acid

(i) S - Benzylisothiuronium derivatives

Neutralised a solution of 1g of the compound in 1g of water with NaOH using phenolphthalein a indicator. A drop of HCl i added. Then the olution of 1 g of S – Benzyl isothiuronium chloride in 10 ml of water added and shaken well, white precipitate is obtained.

(ii) Bromo derivative

About 1 g of the ubstance i mixed with 5 ml of bromine in glacial acetic acid slowly with constant stirring till yellow colour develop. The contents haken well for 10 - 15 minutes, poured into 50 ml water with stirring. Yellow crystals obtained.

2. Phenols

- (i) o Benzoyl derivative.
- (ii) Bromo derivative.

3. Esters

Alkaline hydrolysis to carboxylic acid.

4. Aldehydes and ketones

- (i) 2,4 dinitro phenylhydrazone
- (ii) semicarbazone
- (iii) phenylhydrazone

5. Carbohydrates

Osazone

6. Amines

- (i) N Amylation
- (ii) N Benzoylation for primary and secondary amines
- (iii) p nitroso derivative for tertiary amine
- (iv) Picrate derivative for tertiary amine

7. Amides

Alkaline hydrolysis to carboxylic acid

8. Diamides

- (i) Urea oxalate
- (ii) Urea nitrate

9. Anilides

- (i) Bromo derivative
- (ii) Azo dye

10. Nitro compounds

Reduction to amines – azo dye.

11. Halogen compounds

Oxidation of the side chain to carboxylic acid.

REPORT

The given organic mixtures contains

COMPOUND 1

_

1. Aliphatic/aromatic	-
2. Saturated/unsaturated	-
3. Elements present	-
4. Functional group(s) present	-
5. Derivative	-
	COMPOUND 2
1. Aliphatic/aromatic	-
2. Saturated/unsaturated	-

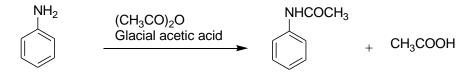
- 3. Elements present
- 4.. Functional group(s) present
- 5. Derivative

ORGANIC PREPARATIONS

1. Preparation of acetanilide from aniline

Chemicals required

Aniline	-	2.5 ml
Acetic anhydride	-	3 ml
Glacial acetic acid	-	4 ml


Procedure

The glacial acetic acid was mixed with aniline in a dry conical flask and acetic anhydride is added slowly into the mixture with constant shaking. The mixture was shaken well from about 10 minutes. The reaction mixture was then poured into a beaker with stirring, containing crushed ice. The white solid that separated was filtered, washed with cold water, dried and the yield was noted.

About 1 g the crude acetanilide was re-crystallised from hot water and the melting point was determined.

Result

Yield of the product = Melting point of the re-crystallised sample =

2. Preparation of p-bromoacetanilide from acetanilide

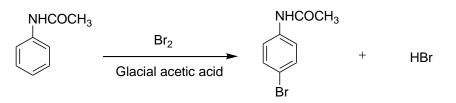
Chemicals required

Acetanilide	- 2.5 g
Glacial acetic acid	- 10 ml
Bromine	- 1 ml in 15 ml glacial acetic acid

Procedure

The powdered acetanilide was dissolved in 10 ml of cold glacial acetic acid contained in a round bottomed flask. The liquid bromine was measured from burette into 15 ml of glacial acetic acid contained in a separating funnel which was shaken gently and continuously to get a solution of uniform concentration. The bromine solution was added slowly to acetanilide with constant shaking to ensure through mixing. After the addition was over the

contents of the flask were kept aside for about 15 minutes. The pale reddish brown solution was poured into 20 ml of water contained in a beaker and a few pieces of ice was added. The


mixture was stirred and the precipitated p-bromoacetanilide was filtered, washed with cold water, dried and the yield was noted.

About 1 g of the sample was re-crystallised from alcohol and the melting point was determined.

Result

Yield of the product =

Melting point of the recrystallised sample =

3. Preparation of p-bromoaniline from p-bromoacetanilide

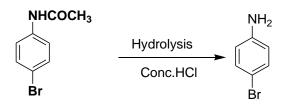
Chemicals required

p-bromoacetanilide	-	5 g
Concentrated hydrochloric acid	-	25 ml

Procedure

p-Bromoacetanilide was boiled with con HCl in a round bottom flask fitted with a refluxed condenser and allowed it to reflux for 1.5 hours till the test portion of the liquid remained clear on dilutionwith water. The p-bromoaniline was present as hydrochloride. After hydrolysis, 20 ml of water was added to the contents of the flask and the free base was liberated by adding liquid ammonia till the mixture gave a distinct smell of ammonia. A colourless oily substance separates which goes to a solid after adding few pieces of ice and

stirring. The solid was filtered, washed with water, dried and yield was noted.


About 1 g of a sample was re-crystallised from dilute alcohol and melting point was determined.

=

Result

Yield of the product

Melting point of the recrystallissed sample =

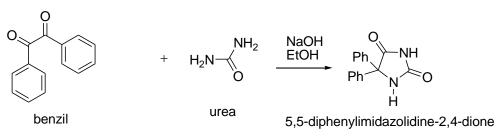
4. Preparation of diphenyl hydantion from benzil

Chemicals required

Benzil	-	1 g
Urea	-	0.5 g
Rectified spirit	-	15 ml
30% NaOH	-	4 ml

Procedure

In a round bottom flask 1 g of benzil, 0.5 g of urea and 15 ml of ethanol and 4 ml of 30% aqueous sodium hydroxide was taken, attached to a reflux condenser and the mixture was boiled for 2 hours. The reaction mixture was cooled and added 25 ml of water.Filtered the solution to remove the sparingly soluble product. Filtrate was acidified with hydrochloric acid.


The precipitate was filtered and washed with water, dried and yield was noted. Melting point was determined.

=

Result

Yield of the product

Melting point of the re-crystallised sample =

5. Preparation of m-dinitrobenzene from nitrobenzene

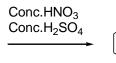
Chemicals required

Nitro benzene-5mlFuming nitric acid-5mlConcentrated H2SO4-10ml

Procedure

5 ml of fuming nitric acid is taken in a round bottom flask and 10 ml of con.H₂SO₄ is added in a little of time, cooling the flask during the time. 5 ml of nitrobenzene was taken and added to the nitrating mixture with small intervals of time. It is shaken well after each addition. Finally it was heated for about 45 minutes by immersing the round bottom flask in a boiling water bath, till a small quantity of the reaction mixture is added into water which gives solid immediately. The contents of the flask are then poured into water, while hot. The mixture was shaken continuously and vigorously, during addition. m-dinitrobenzene was separated as a solid. It was filtered, washed several times with water, dried and yield was noted.

=


A Small portion was re-crytallised with alcohol and the melting point was noted.

Result

Yield of the product

Melting point of the re-crytallissed sample =

 NO_2

NO₂ NO₂

6. Preparation of benzoic acid from benzaldehyde

Chemicals required

Benzaldehyde	-3 ml
Aqueous Na ₂ CO ₃	-10% 30 ml
Potassium permanganate	-5 g
Sodium sulphide	-5 g
Dilute sulphuric acid	-20 ml
Concentrated hydrochloric acid	-20 ml

Procedure

Benzaldehyde mixed with aqueous sodium carbonate solution was taken in a round bottom flask. The round bottom flask was fitted with a condenser and the content was gently boiled and an aqueous solution of potassium permanganate was added to the flask from the top of the condenser in a small quantity until the solution remained slightly pink. The flask was shaken gently during the addition of potassium permanganate. Heating is continued for 30 minutes. Benzaldehyde was oxidized to benzoic acid and manganese precipitated.

The flask was cooled and contents were transferred into a 250 ml beaker. A saturated solution of sodium sulphide was added with constant stirring until the precipitated manganese dioxide was dissolved. To liberate free acid, concentrated hydrochloric acid was added till precipitation was complete. The precipitated acid was filtered off, washed with water, dried and yield was noted. About 1 g of crude benzoic acid was re-crystallised from minimum amount of hot water.

Result

Yield of the product

=

Melting point of the re-crystallised sample =

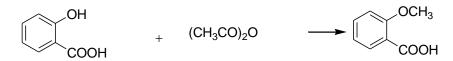
7. Preparation of acetyl salicylic acid from salicylic acid

Chemicals required:

Salicylic acid	- 1.5g
Acetic anhydride	- 2.5ml
Concentrated sulphuric acid	- 2drops
Ethanol	- 6ml

Procedure

Salicylic acid was mixed with acetic anhydride in a 100ml conical flask and 2 drops of $Con.H_2SO_4$ and was added. The mixture was shaken well and heated on a water bath at 50° to 60°C, for about 10 to 15 minutes with constant shaking. Then the conical flask was removed, the contents were cooled under tap and then poured into 60ml if water in a beaker. The acetyl salicylic acid that separates out was filtered, washed with water and dried. The yield was noted.


About 1g of the sample was dissolved in minimum amount of hot ethanol and poured in 40ml of water in a 250ml beaker. The turbid solution was then warmed to get a clear solution. The resulting solution was allowed to cool slowly then needles of acetyl salicylic acid separated out, it was filtered, dried and melting point was noted.

=

Result

Yield of the product

Melting point of the re-crystallised sample =

8. Preparation of anthraquinone from anthracene

Chemicals required

Anthracene	- 5g
Glacial acetic acid	- 60ml
Chromium trioxide	- 10g

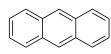
Procedure

5g of powdered anthracene is dissolved in 60ml of glacial acetic acid and the solution was taken in a 250ml round bottom flask.

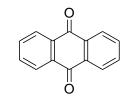
10g of chromium trioxide was dissolved in 8ml of water and to it 35ml of glacial acetic acid was added. The solution was taken in a separating funnel.

The anthracene solution was heated to boiling and to the boiling solution, chromium trioxide solution was added slowly. The content was boiled for 15minutes and the resulting deep green coloured solution was added to 250ml of cold water. The separated crude anthraquionoine was filtered and washed with hot water, hot dilute sodium hydroxide solution and finally with water. The solid was re-crystallised by sublimation.

=


Result

Yield of the product


Melting point of the re-crystallised sample =

Chromium trioxide

Glacial acetic acid

anthracene

Anthraquinone

9. Preparation of s-benzyl isothiouronium chloride

Chemicals required

Benzyl chloride	- 6.4ml
Thiourea	- 3g
Rectified spirit	- 10ml

Procedure

A mixture of benzyl chloride, thiourea and rectified spirit were placed in a 250ml round bottom flask fitted with a reflux condenser and heated on a water bath. A sudden exothermic reaction takes place and all the thiourea dissolved in the solution. The yellow solution was allowed to reflux for 30minutes and then cooled in ice. The white crystals were filtered and dried in air. The filtrate was concentrated to half of its original volume and cooled to give further small crystals. Both the products were collected and yield was noted. A small portion of the sample was re-crystallised from 0.2 N HCl and melting point was noted.

Result

Yield of the product =

Melting point of the re-crystallised sample =

10. Preparation of β-naphthol methyl ether

Chemicals required

β-naphthol	- 6g
Sodium hydroxide	- 2g
Di-methyl sulphate	- 4ml

Procedure

A mixture of 6g of β -naphthol and 2g of sodium hydroxide was taken in a 250ml round bottomed flask. After cooling the flask in a ice water, 4ml of dimethyl sulphate was added. The contents were warmed at 70°-80°C for one hour. The methylation product was filtered at the pump. Washed with sodium hydroxide solution followed by water, dried and re-crystallised from benzene.

Result

Yield of the product =

Melting point of the re-crystallised sample =

Organic Chemistry Practical-I(2017-2018 batch)