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Scope
This course presents the Basic principles of quantum chemistry which involves the failure of

classical mechanics, wave equations, approximation methods and basic concepts of Group
Theory.

Objectives
1. To study the fundamentals and applications of classical mechanics and quantum chemistry.

2. To understand the structure of an atom and different approximation methods.
3. To learn the concept of Group theory and their applications.

Methodology
Blackboard teaching, Powerpoint presentation and group discussion.

UNIT -1
Failure of classical mechanics and the success of quantum theory in explaining black body
radiation and photoelectric effect.

The time dependent and time independent Schrodinger equations - Born’s interpretation of the
wave function. Requirements of the acceptable wave function.

Algebra of operators. Sums and products of operators - commutator - linear operators- eigen
functions and eigen values - correspondence between physical quantities in classical mechanics
and operators in quantum mechanics - Hamiltonian operator - angular momentum operator.
Quantization of angular momentum and its spatial orientation - average values - postulates of
quantum mechanics.

UNIT - 11

Particle in a one-dimensional box - quantization of energy - normalization of wave function -
orthogonality of the particle in a one-dimensional box wave functions. Illustration of the
uncertainty principle and correspondence principle with reference to the particle in a one-
dimensional box - particle in a three dimensional box - separation of variables.
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Solving of Schrodinger equation for one-dimensional harmonic oscillator. Harmonic oscillator
model of a diatomic molecule. Illustration of the uncertainty principle and correspondence
principle with reference to harmonic oscillator.

Solving of Schrodinger equation for a rigid rotor. Rigid rotor model of a diatomic molecule.

UNIT - 111

Schrodinger equation for the H-atom (or H-like species)- separation of variables - energy levels.
Radial distribution functions - orbitals and orbital shapes. Probability density and radial
distribution functions.

Need for approximation methods. The perturbation theory- application of perturbation method to
systems such as anharmonic oscillator and He-atom.

The variation method - application of variation method to systems such as anharmonic oscillator
and He-atom.

UNIT -1V

Symmetry elements and symmetry operations - definition of identical and equivalent elements
configurations - effect of performing successive operations commutative and non-commutative -
inverse operations.

Groups and their basic properties - definition of a group - basic properties of a group-definition
of abelian - cyclic- isomorphic, finite, infinite groups and subgroup. Symmetry classification of
molecules into point groups-Schoenflies symbol (only-difference between point group and space
group).

Matrices- Definition of matrix, square matrix, diagonal matrix, null matrix, unit matrix, row
matrix, column matrix, symmetric matrix, skew symmetric matrix and conjugate matrix.
Multiplication, commutative and non commutative-determination of inverse of a matrix, block
multiplication of matrices-addition and subtraction of matrices.

Matrix notations for symmetry operations of C,, and Cs, groups-construction of character tables
for C,y and Csy point groups.

UNIT -V

Definition of reducible and irreducible representations - irreducible representations as orthogonal
vectors - direct product rule, the great orthogonality theorem and its consequences -
determinations of the characters for irreducible representation of C,, and Cs, point groups using
the orthogonality theorem.

Group theory and Vibrational spectroscopy - vibrational modes as basis for group representation
- symmetry selection rules for IR and Raman spectra, Mutual exclusion principle - classification
of vibrational modes.

Group theory and dipole moment.
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SUGGESTED READINGS:

Text Books:

1.  Prasad, R. K. (2004). Quantum Chemistry (II Edition). New Delhi: New Age International
Publishers Pvt. Ltd.

2. Cotton, F. A. (2002). Chemical Applications of Group Theory (IIl Edition). Texas: A
Wiley Inter Science Publication.

3. Chandra, A. K. (2002). Quantum Chemistry (IV Edition). New Delhi: Tata McGraw — Hill
Publishing Company Ltd.

4. House, J. E. (2003). Fundamental of Quantum Chemistry (Il Edition). New Delhi:
Academic Press.

5. Levine, I. N. (2004). Quantum Chemistry (V Edition). New Delhi: Pearson Education Pvt.

Ltd.

Reference Books:

1.

2.

3.

Raman, K.V. (2002). Group Theory and its Applications to Chemistry. New Delhi: Tata
McGraw Publishing Company.
Puri, B. R., Sharma, L. R., & Pathania, M. S. (2013). Principles of Physical Chemistry
(46™ Edition). Jalandar: Vishal Publishing Co.
Veera Reddy, K. (2009). Symmetry and Spectroscopy of Molecules. New Delhi:

New Age International Pvt. Ltd.
Atkins, P., & De Paula, J. (2014). Atkins Physical Chemistry (X Edition). Oxford: Oxford
University Press.
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S.No. Lecture Topics to be Covered Support
Duration Material/Page
Period Nos
UNIT-I
1 1 Failure of classical mechanics, The success of T2: 635-645

quantum theory in explaining black
body radiation and Photoelectric effect
2 1 The time dependent and time independent T1: 3-6, T2: 637-
Schrodinger equations, Born’s interpretation of | 639

the wave function
3 1 . Requirements of the acceptable wave T17,11-12
function. Algebra of operators. Sums and
products of operators

4 1 commutator - linear operators- eigen functions | TI1:12-14
and
eigen values

5 1 correspondence  between classical physical

mechanics and operators

mechanics

6 1 Hamiltonian operator - angular momentum T1:16-17
operator.

7 1 Quantization of angular momentum and its T1:17-20
spatial
orientation

8 1 average values - postulates of quantum T1: 637
mechanics.

9 1 Recapitulations and discussion of important
questions

Total No of Hours Planned For Unit 1=9

UNIT-II
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Batch

1 1 Particle in a one-dimensional box T1:39-41

2 1 quantization of energy - normalization of wave | T1:42-43
function -

3 1 orthogonality of the particle in a one- T1:43
dimensional boxwave functions.

4 1 [lustration of the uncertainty T1:43-45, 47 -49;
principle and correspondence principle T2: 640-641,644-
with reference to particle in one dimensional 645
box, particle in a three dimensional box -
separation of variables.

5 1 Solving of Schrodinger equation for one- T1:82-84
dimensional harmonic oscillator.

6 1 Harmonic oscillator model of a diatomic T2: 645-646
molecule.

7 1 [llustration of the uncertainty T1:84-87; T2: 646
principle and correspondence principle with
reference to harmonic oscillator.

8 1 Solving of Schrodinger equation for a rigid T1: 52-55
rotor, Rigid rotor model of a diatomic
molecule.

9 1 Revision & Discussion of possible questions

Total No of Hours Planned For Unit I1=9
UNIT-IIT

1 1 Schrodinger equation for the H-atom (or H- T1: 89-91; T2:
like species) separation of variables - energy 647-649
levels

2 1 Radial distribution functions, Orbitals and T1:91-93, T2:
orbital shapes 651-653

3 1 Probability density and radial T1:94-97

distribution functions.

4 1 Need for approximation methods, The T1: 109-100, 111
perturbation theory

5 1 Application of perturbation method to systems | TI1:115-116
such as anharmonic oscillator.

6 1 Anharmonic oscillator of He atom T1: 117

7 1 The variation method - application of variation | TI:115-117
method

8 1 application of variation method to systems TI: 118-120
such as anharmonic oscillator and He-atom.
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Recapitulation and discussion of important
questions

Total No of Hours Planned For Unit IT11=9

UNIT-1V

Symmetry elements and symmetry operations

T1:288-291

Definition of identical and equivalent elements
configurations

T1:291-293

The operations commutative and non-
commutative -inverse operations. Groups and
their basic properties - definition of a group

T1: 294-302

basic properties of a group-definition of
abelian — non-abelian, Cyclic- isomorphic,
finite, subgroup.

T1:303

Symmetry classification of molecules into
pointgroups-Schoentlies symbol

T1:304-306

Matrices- Definition of matrix, square matrix,
diagonal matrix, null matrix, unit matrix. Row
matrix, column matrix, symmetric matrix,

skew symmetric matrix and conjugate matrix.

T3: 62-64

Multiplication, commutative and non
commutative-determination of inverse of a
matrix, block multiplication of matrices-
addition and subtraction of matrices.

T1:306-309

Matrix notations for symmetry operations of
Cay and Csy groups. construction of character
tables for C,y and Csy point groups.

T1:309-310

9 1

Revision & Discussion of important questions

Total No of Hours Planned For Unit IV=9

UNIT-V

Definition  of reducible and irreducible
representations

T1:310-311

irreducible representations as orthogonal
vectors, direct product rule, the great
orthogonality theorem and its consequences

T3:82-85

Determinations of the characters for
irreducible representation of Cay point groups
using the orthogonality theorem.

T1:311-315

irreducible representation of Csy point groups

T1:312-315

Group theory and Vibrational
spectroscopy -
vibrational modes as basis for group

T3:117-118

Prepared by Dr. E. Karthikeyan, Department of Chemistry, KAHE



2018-2020
Lecture Plan | 5,

6 1 symmetry selection rules for IR and Raman T3:119-123
spectra
7 1 Mutual exclusion T3:119-121
vibrational modes.
8 1 Group theory and dipole moment T3:60
9 1 Revision & Discussion of important questions
10 1 Discussion of end semester questions
11 1 Discussion of end semester questions
12 1 Discussion of end semester questions
Total No of Hours Planned for Unit V=12
Total 48
Planned
Hours
Text Book:

1. A.K.Chandra, 2010, Introductory quantum Chemistry, Tata McGraw Hill Education Pvt., Ltd,
New Delhi.

2. Puri Sharma and Pathania, 2013, Elements of Physical Chemistry, Vishal Publishing Co., New
Delhi.

3. S.Swarnalakshmi T.Saroja, R.M. Ezhilarasi, 2009, A Simple approach to group theory in chemistry,
University Press Pvt., Ltd., New Delhi.
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Class: I- M.Sc (Chemistry) Course Name: Physical Chemistry-I
Course Code: 18CHP103 Unit: T (Quantum Mechanics) Batch: 2018 -2020
UNIT-1
SYLLABUS

Failure of classical mechanics and the success of quantum theory in explaining black
body radiation and photoelectric effect.

The time dependent and time independent Schrodinger equations - Born’s
interpretation of the wave function. Requirements of the acceptable wave function.

Algebra of operators. Sums and products of operators - commutator - linear
operators- eigen functions and eigen values - correspondence between physical
quantities in classical mechanics and operators in quantum mechanics - Hamiltonian
operator - angular momentum operator. Quantization of angular momentum and its
spatial orientation - average values - postulates of quantum mechanics.

Quantum mechanics is the foundation of all modern fields of sciences, including chemistry,
biology, and material sciences; it is the ONL Y- way to TRULY understand Structures and
properties matters

Nature of atoms, chemical bonds, and molecules

Intermolecular forces (hydrogen bonds and van der Waals forces)
Enzymology, proteinomics, and genomics

Nanoscience and material science

Property of electromagnetic radiation (such as
light) Matter interaction with external
electromagnetic fields

Quantum chemistry is built up on the principles of quantum mechanics, and provides
further the

molecular understanding on the structures and properties of chemical compounds,
materials, and biological processes

Statistical mechanics rests on the foundation of quantum mechanics (including quantum
chemistry) and provides the basis of thermodynamics

Prepared by Dr. E. Karthikeyan, Asst. Prof., Department of Chemistry, KAHE Page 1/29
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Class: I- M.Sc (Chemistry) Course Name: Physical Chemistry-I
Course Code: 18CHP103 Unit: I (Quantum Mechanics) Batch: 2018 -2020

THE ORIGINS OF QUANTUM MECHANICS

Many experimental evidences merged around 1900, showing the fundamental failure of
(Newtonian)

classical mechanics,

including even some basic (daily-life) concepts/pictures about matter and
light

» Electron in a hydrogen atom:
>

Ze”
dreyr

. . 1 2 2 2 .
Kinetic energy =_)—( o o o Potential energy V(r)=—
m )

R
Classical mechanics: Total energy = Kinetic energy + potential energy, which can be any value.
Experimental observation: The optical spectrum of H consists of series of discrete lines.

Question/Suggestion: Does the energy of electron in H take discrete valies ?

» Harmonic oscillator systems (e.g. vibration motion), with the same question/suggestion

5

P

. . 1.0 1 > 2
Kinetic energy =y Potential energy V(x) = ;]m‘“ = merx’
2m 2 2

. - ]- 3 2
Classical mechanics: 1) Vibration energy E j = _{)— +omae x” can take any value (= 0)
2m 2

2) Thermal average { Ey, ) = kT (equipartition theorem)

Systems Relating to Harmonic Oscillators

(i) Heat capacity Cp,v of monatomic solid (contributed only by the oscillatory motion of atoms
around their equilibrium lattice positions )

OE._)
SO )
or ),
Classical mechanics: C,, ,=3R atany T ( R=N kg the gas constant )
Experiments: Cony —>0asT — 0

Does the energy of an oscillation motion take discrete valites ?
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Class: I- M.Sc (Chemistry) Course Name: Physical Chemistry-I
Course Code: 18CHP103 Unit: I (Quantum Mechanics) Batch: 2018 -2020

(i1) Blackbody radiation (radiation field is just a collection of electromagnetic oscillators: to be continued)

: R . _ 87, \
The density of states of blackbody radiation: p(A,7) = 7\ B
" . u 87 - 5 A
Classical mechanics: p(A4.7) =—kzT . fails total at small . Ultraviolet catastrophe !

(5

Experiments: p(A, T)—0as A — 0. atany finite temperature 7.

(iii) Light (being an electromagnetic field) is a harmeonic oscillating wave traveling through space
The most important property of a wave is the interference phenomenon

Basic relations and knowledge (speed ¢. wavelength A, frequency v)

I} AM =i

2) circular frequency @=2m1v

r 1
3) wavenumber Vv =—=7 (unit: cm™)
Cc L

4) Light as an electromagnetic field. E(x,7) = exp(ik x —ict) or E(F.0) = exp(il? T —ior)
K.

5) Wavevector k = k, |=k,,k, k)
k.

-- direction of k& = direction of light propagation

f 2 T
) [, 2 ] 7 7 F
-- magnitude k = \/k; +k, +k; = ) =w/c
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Class: I- M.Sc (Chemistry) Course Name: Physical Chemistry-I
Course Code: 18CHP103 Unit: I (Quantum Mechanics) Batch: 2018 -2020

Fundamental Constant in Quantum Mechanics:
Planck constant /1 =6.626-10>*7Js; also /i =h/(2m)=1.055<10*7Js

» In his study of blackbody radiation. Max Planck (1900) proposed that the permitted energies of an

electromagnetic oscillator of frequency v are IE =nhv, n=0,1.2,... | . the single revolutionary

assumption led to a complete satisfactory interpretation of blackbody radiation experiment

» This result suggests an electromagnetic radiation (wave) consists of » =0, 1. 2. ... particles, called

photons, each photon having an energy of

With the concept of photon, Einstein (1905) successfully explained the photoelectric effect ( § 8.2(a))

» Since then. the Planck constant becomes a basic ingredient of quantum mechanics, containing in all

quantum equations, laws, relations, and consequences

» Planck constant plays no role in classical world: all quantum theory approaches to the classical physics
by setting the limit of # — 0. Therefore. quantum mechanics is said to generalize and supersede the
classical mechanics. and classical mechanics would still be useful if the value of Planck constant could

be considered to be negligibly small

Blackbody Radiation (1900, Max Planck)

1. Radiation wave is an electromagnetic (light) wave. created by electric oscillator at certain frequency (v =c¢/A)
ii.  Blackbody is an ideal (theoretical) object that absorbs all the electromagnetic waves falling on it
iti. Blackbody radiation concerns about the energy (power) profile of the radiation wave emitted from a blackbody at
given temperature (i.e. in thermal equilibrium with radiation)

#modes in wavelength 87

1v. Radiation fields inside blackbody cavity are all standing waves . As a result. - =
cavity volume A
- Energy spectral density | p(A.7) = i Eo“ )
A
Rayleigh-
Jeans law
Maximum
- olp
=
N\ ! i
£ g
’E § Experimental
2 =
= Increasing g
Detected g - temperature 2
radiation -
Pinhole \
Container at a
temperature 7 Wavelength, 7 Wavelangth, A
Fig. 8.4 Fig. 8.3 Fig. 8.6
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Class: I- M.Sc (Chemistry) Course Name: Physical Chemistry-I
Course Code: 18CHP103 Unit: I (Quantum Mechanics) Batch: 2018 -2020

Photoelectric Effect (1905, Einstein)
When a metal exposed to a light of frequency v, free electrons can be ejected only when v is large

enough (i.e.. short wavelength) such that v = @, where @ is the so-called “work function™ characterizing how
strong an electron is bound to the metal. The ejected free electron is found to have the kinetic energy of

Eiineic =hv—@ |. which does not depend on the light intensity.

Kinetic energy

= =T of ejected
§ o electron
g B8 \
§ §§

- P

5, S &

> x x ergy needed to

& 54 o

> ==

) W W

8 88

o oo =

Kinetic energy of photoglectron, £,

Increasing
work function
-

Energy supplied
by photon

E

(o)

Frequency of incident radiation, v

* Quantization
1) The dynamic observables (i.e.. any functions of coordinates and momentums in classical mechanics) are
said being quantized. if possible results of individiial measurement on them are of all or partly discrete

values

2) Quantization occurs in not only matter (such as electron. atom. molecules etc) but also for light, typically

conceming about the total energy. angular momentum. and spin

3) There are simple rules established. namely Quantum Mechanics (QM) — thanks to Erwin Schrédinger

(1925) and to Werner Heisenberg (1926) — to describe the quantization phenomena ( § 8.3)

4) A quantum system is completely described by the wavefunction that is governed by Schrédinger equation.

which goes also with Born interpretation of wavefunction ( § 8.4). as for wave-particle duality ( § 8.2)
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Class: I- M.Sc (Chemistry) Course Name: Physical Chemistry-I
Course Code: 18CHP103 Unit: I (Quantum Mechanics) Batch: 2018 -2020

¢ Uncertainty principle
In classical physics the observables characterizing a given system are assumed to be simultaneously
measurable (in principle) with arbitrarily small error. For instance, the position and momentum of a
Newtonian particle can be precisely characterized at both the initial time and any time later as the
classical trajectory. As a consequence, classical particle can have any (continuous) values of energy.

However, quantum mechanics leads to the following uncertainty relation (Heisenberg. 1926).

Therefore. if the momentum of the particle at the x-direction is measured accurately with no uncertainty
(Ap, = 0). its x-position will have to be completely random (Ax —). spreading allover of —» <x < .

Another important uncertainty relation is between energy and time, |AEAt = #i/2

e Zero-point energy
The lowest permitted energy of a quantum system is usually higher than the minimum potential energy
due to the uncertainty principle. The lowest permitted energy above the potential minimum is called the
zero-point energy. In contrast, the classically permitted lowest energy rests at the potential minimum. Zero-
point energy plays the crucial role in chemistry, especially in reactions related to electron and/or hydrogen

transfer dynamics

v Wave-particle duality

Einstein’s idea of photon (to explain the photoelectric effect) that E=hv gave rise of the particle
property of electromagnetic wave (light). Together with his famous E = m¢’, the momentum of light
wave, p = mc, can then be related to the light wavelength A = ¢/v as
The above relation was experimentally verified in the Compton effect (1922). wherein the wavelengths
of x-rays are lengthened (while the electron gains momentum) by scattering from free electrons. The
change in wavelength is predicted quantitatively. assuming the scattering results from elastic collisions
between photons and electrons.

In 1924, Louis de Broglie suggested that not only photons, any particle traveling with a linear
momentum p. should exhibits wave property with wavelength
The wave property of particles, together with the de Broglie relation, were demonstrated first in electron
diffraction experiments (Clinton J. Davisson and Lester H. Germer, 1927), and later also with other
particles (neutron, H atom. He atom, and H, molecule) as diffraction beams, even with Cg, molecules

(Amdt et al., Nature, 401 (1999) 680).
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Class: I- M.Sc (Chemistry) Course Name: Physical Chemistry-I
Course Code: 18CHP103 Unit: I (Quantum Mechanics) Batch: 2018 -2020

NOTE: Energy in ferms of wave property
Often the discrete energies in matter (atoms, molecules, and solids, etc) are detected with light or
other forms of electromagnetic field by either absorption or emission a photon. The energy conservation
requires that . where AE denotes the energy change in the matter system due to it absorbs and

emits a photon of frequency v. As a result. the value of energy can be specified in terms of

(a) frequency: [1Hz < 6.626<107*7]

(b) wavenumber (1/A = v/c): | lem™? < 1.986 x10727J |

Fig. 8.12

SCHRODINGER EQUATION AND QUANTUM MECHANICS

In 1926. Erwin Schrédinger proposed that the quantum state of matter is described by the so-called wave
function ¥(r, 7). which in general is a complex function of the matter’s coordinates and time. and its evolution

is governed by (Schriodinger equation)

fﬁM:H‘P(r.r)
cr

Here. A is an operator that closely relate to the classical Hamiltonian: or. loosely speaking. the energy

expression, H = Kinetic energy + potential energy:

|H = Kinetic energy operator + potential energy operaton

» Rule of Writing Operator (in real space or coordinate space)

Classical variable | Quantum operator | Operator in real space

Coordinator X x X
hé

iox

Momentum Px Dy
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Class: I- M.Sc (Chemistry)
Course Code: 18CHP103

» Hamiltonian Operator (e.g. a particle of mass m moving in one-dimensional space)

Classical expression | Operator in real space
2 2 9
s n e
Kinetic energy 2m 2m gx?
Potential energy F(x) (x)
pl gl 2
2 R T ...
o P v 2% @)
Hamiltonian 2m 2m oy

Course Name: Physical Chemistry-I
Unit: I (Quantum Mechanics)

Batch: 2018 -2020

~ Schridinger Equation for 1D-System

. _")
A- 0°

dx

. FF(x,t
’h;—) = 5
ot 2m gy

+V(x) | ()

lyrl? Probability
= lylPdx

~ Born Interpretation

W(x.r) is a complex function describing the probability wave that

¥(x.f)f dx o« probability of finding the particle within [x, x + dx] at time

» Property of Wave Function

(1) Single-valued  (2) Both ‘¥(x.7) and ¢'¥(x,7)/éx continuous (3) Integrable
r 2\¥(x,1) describes the same quantum state of ‘¥'(x,7). where A is an complex constant
W)

W(ix r)2 ’dx

» Normalized Wave Function normalization s W(x.1)

\ -[all space

The normalized ‘P(x.7) satisfies [ .
“all sp:

‘P(.\'.I)J‘d\' =]

ace
» Property of Schrédinger Equation and Wave Functions
(1) If¥i(x.r) and ¥,(x.7) are solutions to the Schrodinger equation, ¢;'¥y(x.7) + ¢;'¥»(x.7) (which is called
linear combination or coherent superposition of the composite wavefunctions) must also satisfy the
same Schrodinger equation, where ¢; and ¢, are arbitrary complex numbers.
(ii)) Quantum interference (constructive vs. destructive inference)

-2 (/A +vi)

Consider. for example. the plane waves, ¥_=¢>"** " and ¥_=e . where ) and v are

the wavelength and frequency of the plane wave. (a) Show that both ¥'_, and ¥._ are solutions to the

—i2nvt ;
1

Schrédinger equation with #{x) = 0: (b) Show that the standing wave W_+¥_= 2cos(2nx/A)e S
also a solution to the same Schrédinger equation: (¢) Evaluate [¥_ >, |¥_, and |¥_+¥_|. and
make comments on constructive and destructive interferences.
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Class: I- M.Sc (Chemistry) Course Name: Physical Chemistry-I
Course Code: 18CHP103 Unit: I (Quantum Mechanics) Batch: 2018 -2020

dredvdz = F# aned deddie

= Statiomary Schridinger Equation versas Time-dependent Solation

MR s
Tl Alege 1o thie formal solunon o ':_E I_."" I L

——= i ---“Hwn

or il

(1} Cousweder first the spoce-tme boomnzed form of wove fusction: "Fix, 1) = wixhp(f)

Schradinger equation becomes now

i Fil=
il rl'rl——'l.l'l' ".'——II_.'I:'lllnl.lIf:"
| i P -
i =R T i
Mo chivetting g{x ) 1o both sades = mi Cr) e M| x,—— jix) | - winch nmst be a
mt) Of wrix)] i

i oy
onistant £ 1o be defermmnesd thot depensds neither y oor r We linve there o

o O] e N0
ih———=Enir) Wl H{y——w(r}=Ewix)
.

g

I solution - alibeyviated as
= exp{—ENR)

;H.-_.- = E:__.-'::l|1l.: oalled f"?q'.l'u.-f‘:-.litlj_"e'l eqjlanio i5E)
() The fww-midepsndent 5E detenumes both the permitted conergy E vaboe, wloch ollen fums oul fo be

pumanzecd and s dencted as £, withi w the |.|'.If|.|l|l.."d|| pienber, and its associated o stotbonary wave
Tunction v,

Logether wath (1), we coachsde 1k o L 25 |'.J-.'1r.r|| iyl consnimie e sl af

solutions to the tine-dependent SE (nssaming we have

solved all £, and v, for the miven A
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Class: I- M.Sc (Chemistry) Course Name: Physical Chemistry-I
Course Code: 18CHP103 Unit: I (Quantum Mechanics) Batch: 2018 -2020

(111) The general solution to the time-dependent SE (superposition principle):

Y(r.f) = zcne#ﬂ,f "f',’,,”(,.) . where ¢, is complex coefficient
alln

(1v) ¥(r.r) is normalized if y,(r) is normalized and >l en |3 =1

n
# Interpretation of E,. y4,(r). and ¥(r.r)
® F,: Eigenenergy — the permitted energy value (real) if a measurement is performed
® i (r): Eigenstate wave function — the stationary wave function being of defined energy value of E,
® Both £, and i, are determined by the system Hamiltonian operator Hvia H W, = E,u4, . which is also
called the eigenequation of H

® For the system with wave function ¥(r.r) :Z e, (1) va(r). where ¢, (1) = C’?F—JE,,r"h

n

. a single energy

measurement will only have a permitted value € {E,}. and the probability of obtaining the value E, is

c,(f)]* if ¥ and all y;, are normalized

® Expectation or mean value of energy and other dynamical variables in general

For normalized ¥ and v;,: (E' = ¥le, 2 E, - This is the same as
n

” Jutrspace &~ NIE¥ (. ))dr
(B)=

/

-[all spaceLP (r.0))¥(r.t)dr

More generally, we have

¥ (r.0[4 Y(r.0ldr

(4)= J‘aus‘pm (to be proved in L_Notes2)

| J.allspacel{ﬂ(r‘r)lP(r.f)(h‘

State is Described by a Wavefunction

Quantum Mechanics uses a wavefunction to describe the state of matter. In principle, the
wavefunction is not a direct observable. It describes the state in which the matter resides in
mathematical terms. From it we can derive physical observables such as energy and
momentum indirectly. To find these properties, we have to operate with an ’operator’ onto
the wavefunction to get the desired information out.
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Operators and Wavefunctions

An operator Q performs a mathematical operation onto a function. An example
is ) = %, which means: 'take the derivative to z of the function that follows’.
A special case occurs when the operator operates on a function which yields a
function proportional to the original:

Qf = wf
d ,aT ar

—e = a-e
dr

In other words, operating Q onto f yields the same function f multiplied by a
constant w. We define:

1 = operator
f = -eigenfunction
w = eigenvalue

Operators may have more than one eigenfunction, each associated with an eigen-
value: R

Rfa = wnfn
So more generally, operators may have a set of eigenfunctions. All the possible
eigenfunctions of a given operator together is what we call a complete set. These
sets play a central role in quantum mechanics, as we will see.

v Orthogonality. Eigenfunctions f,, in the complete set are orthogonal.
This implies that the overlap integral of two wavefunctions f,, and f,,
taken over whole space is zero:

Soverlap = / fnf;dI’ =0

This orthogonality is much similar to the orthogonality of vectors such as
the orthogonal vectors (z, vy, z) that define Cartesian space. The functions
in a complete set are therefore often said to span a complete (multidimen-
sional) space as well. The overlap integral of a (wave)function f, with
itself gives a finite value (see Born postulate for wavefunctions). If the
functions are normalized, this overlap integral yields 1:

[ tutz= [ 112 =1
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Operator Forms

Important operators are the energy H, position r, and momentum p operators.
All these operators yvield physical observables when operating onto a wavefunc-
tion. What is the mathematical form of the operators? In position (r) space,
the operators are taking the following form:

T = x- (multiply by x)

h O
- S T—
I i OT
3 W o S
H ] T_i_l-:\_-_'r+ﬁ_-q-___1+l[-
2 2m Or-

The operator V' is the operator for the potential energy. For example, for :
coilomb potential it 1s given by:

Zet

dmegr

V = —

I three dimensions the Hamiltionian assumes the form:

- K[ 7 i 2 R L
[ ; {“ AL }+i'=.’—'~?*.--1'

; = e .
2m | Or2  Oy* 027 2m

Alternatively, we could have expressed the operators in momentum (p) space.
The position, momentum and energy operators then assume the forms:

hod
TS
1 Op
P 2
: = = g
H = T+Vv=1_Lv
2m

Commutation Relations

Operators operate on the function to the right. Henee, a product of two opera-
tors should be read as follows:

ABf=A (w}
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where [Hf} is the new hunction for A to operate on. Consequently, the product

operator AH s not necessarily the same as the operator DA, We now deline
the commutator of A and H:

[4.8] - 4B B
The operators commute if

[!. I}J -0

If this condition does not hold, the operators are non-commutating. It can be
shown quite easily that operators that share the same set of egentunctions,
commute. We then have:

—E_f = af
Bf = bf

and thus

A (f}':,r} - ,rjr{_-if}
= bAf—aBf

= (ba—ab)f

[.-i.ﬂ] f

Operators do not always share the same set of eigenfunctions. If they don't, the
II[lE‘I!'I-'HIr]'H Ares ]lH[J-i'HIlIIIHLIIII!IH. .-‘ll.!l il[][]l wtant H'IIIUL]]]I' HArc 1]['.‘ ]]l:l.'-iiril.lll HTLI!I IIH‘

IOIMCTIE I OpeTalors!

h i h o

BAS = =95 T
f af (.’af h rlﬂ'j')
il = kel [ - oy
I o I A
= §i-f
from which we recosnize
[F‘.;-.l_! = §h

this result is tightly connected to Heisenberg's Uncertainty Principle, and relates
to the statement that position and momentum of a small particle cannot be
determined with great precision simmltancously. Instead, there is an uncertamty
of the order of ki between the operators.
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Wave function

The wavefunction describes all the properties of a quantum mechanical system. It is,
however, a mathematical construct. What is its physical meaning? The following section
sheds light on the meaning of the wavefunction and the central equation in quantum
mechanics: the Schrodinger equation.

& The state of a system is fully described by a wavefunction Iry. ro..... t)

The wavefunction can encompass the state of multiple particles (1,2...) in
a system, such as a nuclens with 1ts many electrons. The total wave-
function represents the state of the whole system. Remember thar
a wavefunction can be described as a weighed sum of a complete set of
cigenfunctions &, of an operator:

"I”:n"l' — . T i ||.||_,"|-

—

Wavefunctions are often labeled as ¥, 5 with quantum numbers {a, b, ),
which denote the different guantized states of the svatom.  What s the
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The probability that a particle will be found in volume element
dV is proportional to |'1l'[r)|2

This postulate is known as the Born intepretation of the wavetfunction. In
other words, the wavefunction is a probability amplitude and its square
modulus a probability density. Born’s intepretation of the wavefunction
is based on the notion that particle must be somewhere in space, so that
the overlap integral of the wavetunction with itself must be finite:

/|1Lf(r}|2d1-" < oo

Hence, the wavefunction should be square integrable. For normalized
wavefunctions we get:

/|1If(r)|2d'[f' —1
which means that if one attempts a measurement over whole space, the
chance of finding the particle is one. This postulate also reinforces the

meaning of the coefficient ¢,,. When we write the total wavefunction as
W= Zu Cﬂén; we have:

|l‘:['I | . = (Z cn@n) i {Z Crn {.I.Jm

by

* Ly
— E CrCm Qn@m

71,171
and thus

[1wra = Y ecn [ononav

L, 1T

*
i E CrCm 5?1__m

T,

= el
T

For normalized wavefunctions we get
¥ _feart =1
i

In other words, |c,|? is the probability that the system is in a particular
eigenstate ¢,,. The probability that the system resides in the collection of
all the available eigenstates, which is the sum over all |c,,|?, is 1. This is
equivalent to saying that a sampling over the whole of "¢, -space’, must
give the probability one, because the system has to be somewhere in this
space.
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The Schrodinger Equation

The wavefunction ¥(r,t) fully describes a system in space and time. The full
evolution of the wavefunction is found from the time-dependent Schrodinger
Equation:

ol 5
ith— = HV
ot
Here H is the Hamiltonian, the energy operator:

. Sl - R
H=—— "1V,
2m dr? =

We can separate the time-dependent Schrodinger equation in a space-dependent
and a time-dependent part. Let’s write the wavefunction as:

U(x,t) = ¥(x)0(t)

We now plug this into the Shrodinger Equation:

s s OEE) h? 9% (x) s
ih - %’(I)W = R TIE 0(t) + Vz - P(z)0(t)
2 P 5 s
6(t) ot 2m ¢(z) Oz

Now comes the trick. Each side depends on a different variable, while they equal
each other at all times. Hence, each side equals a constant:

1 86(t)

7 i < R
ENTONE”
R 1 a%p(z) -
“2m yY(x) 922 g T
which gives
. 00(t)
A\ Ee(t
n at ()
h? 0%y(z) o A ~
EI6) 9, — Euw) > Hie) =B

2m 922
The solution of the first, time-dependent equation is:
9(t) o e~ iEL/R

The solution of the second, time-independent Schrodinger equation is the sta-
tionary wavefunction ¢(z):
H ft._" == E-‘EI'I
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We immediately recognize that this equation is an eigenvalue equation with
operator H, eigenfunctions ¥, and eigenvalues E. The values for E thus corre-
spond to the energy of the system. The total wavefunction can now be written
as:

U(z,t) = () - e~ B/

The wavefunction has thus a space-dependent amplitude and time-dependent
phase. Note that in this formalism the phase has no influence on the probability
density of a particle at any time, as

vl

|"If(i“.'f]|2 - (-u','(m)e—fmfﬁ) . (ﬁ-_‘*(__r}eéEﬁh) — P (z)(z) =

Summary

We can find the wavefunction of a system by finding the eigenfunctions of the
Hamiltonian. The corresponding eigenvalues give the permissible energy levels
of the system. In summary we have:

Time-dependent Schridinger equation

-ﬁﬁ% — A(z,t)

Time-independent Schridinger equation
H Y(z) = EY(x)

Wavefunction o
U(z,1) = Y(x) - o B
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We have learned that the wavefunction
e gives a full description of the system
e physical observables can be extracted from the wavetunction
e is not a physical observable itself

e the probability distribution of finding the particle within volume element
dV is given by u‘:(rj|2 dV, postulated by Born

Not any given wavefunction is a good wavefunction. Born's interpretation of the
wavefunction imposes some constraints onto what is an acceptable wavefunction.
Second, because the wavefunction is a solution of the Schrodinger equation,
which is a second order differential equation, there are further constraints on
what is an acceptable wavefunction.

1. The square modulus of the wavetunction must be single valued in order

to fulfill Born’s postulate that |1;'J{Jr"_]|2 is the probability density.

Because the probability of finding a particle at dV can only be one value,
it follows that -t;'!{r}|2 and thus ¢(r) must be single valued.

2. The wavefunction must not be infinite over a finite region. If it were, it
would violate Born’s postulate in the sense that the probability of finding
the particle somewhere must be a finite number. The wavefunction can be
come infinite only over an infinitesimal region, because then the integral
can still yield a finite value. The delta function is a good example of such
a case:

/5(:{?— 1

3. The wavefunction must be continuous everywhere. Discontinuous wave-
functions have ill-behaved second order derivatives, which violates the fact
that the wavetunction needs to be a solution of a second order differential
equation.

4. The wavefunction must have a continuous first order derivative. No sudden
kinks are allowed. This does not hold in regions of ill-behaved potential
energy
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Angular Momentum

In three dimensions, we can think of the angular momentum as a vector with
a magnitude and projections onto the z, ¥y and z axes. Both the magnitude
and the projections are quantized. The magnitude of the angular momentum
depends solely on [ and is given by:

{11+ 1)}"?n

Its projection on the z-axis is labeled by m;. The magnitude for the z-component
of the angular momentum can be found by operating with the [. operator onto
the spherical harmonics.

fz}i,mg . Ez e’i,mg (I)mg 3 ei.?m ‘Eijm; = ﬂlfﬁ' ei:?mq)?m = ?ﬂ-gﬁ }/}.mg

The projection of the angular momentum onto the z-axis thus takes on the val-
ues myh. It is restricted to only 21 + 1 values for a given [. When the projection
on the z-axis is well-determined, we lose information on the z and y-components
of the angular momentum. This is a consequence of the fact that the 1, does
not commute with [, or 'I.E'.,._ as we will see in the next chapter.
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The Radial Schrodinger Equation

The Coulombic potential energy is:

Ze?
dmegr

V(r) =

The full Hamiltonian of the electron-nucleus system is therefore:

h? i h? v? Ze?

1 [P -
2m. " dmegr

2m

In order to solve the Schrodinger equation using this Hamiltonian, we need to
consider the following points:

1. Separating the degrees of freedom of the electron from those of the nucleus,
so that we are only dealing with electronic wavefunctions.

2. Separating the angular motion from the motion in the radial direction.
The Coulombic potential only depends on r and is independent of (8, ¢).
This suggests that we might be able to solve the problem considering only
the radial coordinate.

The first point is readily achieved by writing the Hamiltonian in terms of the
center-of-mass coordinates and the relative distance between the nucleus and
the electron. For the kinetic energy part it is found that:

1 1 1
M =m, +m,, S 3
TR (T (S

ele + MypTy
R=—mrwmr‘ T=y =T
0’ v2 0’ 2 _ n’ 2 h’ 2
Ty ™ Om s IMOR 9y T

The potential energy contribution is only dependent on relative distance r. We
then only solve for the relative distance and ignore the overall translational
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motion of the atom in space, in which case the Schrodinger equation becomes:

e B ,.
_ﬂv e 4?;’60?“1? =
1 d2 ; Zelu 2uE
S+ AW+ — L o= [ |y
r dr? £ A r? P QWED?‘?.E?‘@ ( h? ) :

To achieve the second point, we will write the wavefunction as ¥ (r,8,7) =
R(r)Y (8, ¢), where Y (8, @) are the spherical harmonics that are the solutions
in the angular dimension. If we substitute these functions into the Schrodinger
equation we get:

1 d2 I(1+1) Ze2p (ng)

S i N, T R e e RY

rdr2’ r2 Qmegh’r h2
1d%(rR Ze? f(ria 2 E
_{r2_3+{ ei_(t)}ﬂz_(ﬁg)}%
r dr 2regh<r r h

We first multiply this equation with r, and then define the function II = rR.
We then can write the Schrodinger equation, which depends only on the radial

coordinate r, as: ;
d=11 AN 2uF
e~ (3) Vo= (G ) m

where the effective potential is defined as:

Ze? Il +1)R?
4?remr'+ 2ur?

Vers = —

Note the following:

e The angular part has been divided out in the Schrodinger equation. The
contribution from the angular dimension is implicitly present in the effec-
tive potential through the I(I + 1)A? term.

e The coulombic part provides an attractive (negative) potential. The an-
gular term, however, provides a repulsive (positive) potential. These two
effects will counterbalance depending on the quantum number [ and the
distance from the nucleus r.

e The angular centrifugal force is zero for [ = (. This implies that the
potential is purely attractive and thus that there is a finite chance of
finding the electron at the nuceus.

e Close to the nucleus, the angular centrifugal force for [ ## 0 is larger than
the attractive coulombic force. Consequently, the electron is expelled from
the nucleus and the probability of finding the electron at the nulceus is
ZETO.

Prepared by Dr. E. Karthikeyan, Asst. Prof., Department of Chemistry, KAHE Page 21/29




KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I- M.Sc (Chemistry) Course Name: Physical Chemistry-I
Course Code: 18CHP103 Unit: I (Quantum Mechanics) Batch: 2018 -2020

Angular Momentum Operators

The angular momentum and its operators play a central role in quantum mechanics. The
reason for this is that the with the set of angular momentum operator properties we can
investigate quantum mechanical systems very thoroughly without turning to the
Schrodinger equation, the explicit form of the wavefunctions or even the explicit form
of the operators. All we shall use are the operators and their commutation relations, and
with it we will be able to draw important conclusions about the corresponding
observables.

The Fundamental Postulates of Quantum Mechanics

Quantum Mechanics can be formulated in terms of a few postulates (i.e., theoretical
principles based on experimental observations). The goal of this section is to introduce
such principles, together with some mathematical concepts that are necessary for that
purpose. To keep the notation as simple as possible, expressions are written for a 1-
dimensional system. The generalization to many dimensions is usually straightforward.

: Any system in a pure state can be described by a wave-function, W(t, x), where t is
a parameter representing the time and x represents the coordinates of the system. Such a function
WU (t, x) must be continuous, single valued and square integrable.

Note 1: As a consequence of Postulate 4, we will see that P(t,z) = *(t, ) (t, z)dx represents
the probability of finding the system between x and x + dz at time t.

Postulate 2|1 Any observable (i.e., any measurable property of the system) can be described by
an operator. The operator must be linear and hermitian.

What is an operator?

Definition 1: An operator O is a mathematical entity that transforms a function f(x) into another
function g(x) as follows, R4(96)
Of (z) = g(z),

where [ and g are functions of x.
What is a linear operator?
Definition 3: An operator O is linear if and only if (iff),
O(af(z) + bg(x)) = aOf(z) + bOg(z),
where a and b are constants.

What is an Hermitian operator?
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Definition 4: An operator O is hermitian iff,

*®
[ Az, () Ovm(z) = { ] fiif“t_bél(:r-}ﬁc.én(i*)} )
where the asterisk represents the complex conjugate.

What is an eigen function? What is an eigen value?

Definition 5: A function ¢, (x) is an eigenfunction of O iff,

where O,, is a number called eigenvalue.

Property 1: The eigenvalues of a hermitian operator are real.
Proof: Using Definition 4, we obtain

*

/dxqé:l(;r)@(_ﬁn(:c) — [/d:r(_:};(x)(j@n(x)} =)}
therefore,
[0 — O] / Az on(x)* bn(z) = 0.
Since ¢, () are square integrable functions, then,

0,=0:.

Property 2: Different eigenfunctions of a hermitian operator (i.e., eigenfunctions with different
eigenvalues) are orthogonal (i.e., the scalar product of two different eigenfunctions is equal to
zero). Mathematically, if O¢,, = O, ¢,,, and O¢,, = O,,0,,, with O,, £ O,,, then f dzd) ¢, = 0.

Proof: .
[ dotr06, | [ doi06,| =0,

[On — C)‘m] /dTO:n@n = ().

and
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Postulate 3|2 The only possible experimental results of a measurement of an observable are the

eigenvalues of the operator that corresponds to such observable.
Postulate 4|2 The average value of many measurements of an observable O, when the system is
described by (z) as equal to the expectation value O, which is defined as follows,

07— f drﬁ"(I)*étjr(I)
[ deid(z) ()

Postulate 5 :The evolution of 1(x,t) in time is described by the time-dependent Schridinger

equation:
o(z,t) -
ith———— = HyY(z,1),
s FE Al 92 7 g e e = : : N
wzhele H = —3-2= 4 V/(x). is the operator associated with the total energy of the system, E' =
= Vizk

Particle in a box
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The particle in the box can be represented by the following diagram:R1(22)

biz) &= Box
V= / V=0
= = T
0 a
Particle

The goal of this section is to show that a particle with energy E and mass m in the box-potential
V(x) defined as
: 0, when 0<z<a,
Vg)=1 " i
oa, otherwise,

has stationary states and a discrete absorption spectrum (i.e., the particle absorbs only certain
discrete values of energy called quanta). To that end, we first solve the equation Ho(x) = E¢(x),
and then we obtain the stationary states ¥ (z,t) = ¢(z)exp(—z Et).
Since ¢(z) has to be continuous, single valued and square integrable (see Postulate 1). ¢(0) and
o(a) must satisfy the appropriate boundary conditions both inside and outside the box. The bound-
ary conditions inside the box lead to:
h a . y
il — Bl(1), = ®(x) = A Sin(K 7). (6)
2m Oz
Functions ®(z) determine the stationary states inside the box. The boundary conditions outside the
box are,
h? 9

~5-552(z) +000(z) = B®(z), =  &)=0,

and determine the energy associated with @(z) inside the box as follows. From Eq. (6), we obtain:
%AKE = FA, and, ®(a)= ASin(K a) =0,

= Ka=mnn, with n=1,2,... =
Note that the number of nodes of ® (i.e.. the number of coordinates where ®(x) = 0), is equal to
n — 1 for a given energy, and the energy levels are,

h2 n2x? .
E = % aQ V\"][h n = 1, 2,
g
h2 w2
B =1)=omar
fi2 472
En=2)=— y
(n ) 2m a?’

Conclusion: The energy of the particle in the box is quantized! (i.e., the absorption spectrum of
the particle in the box is not continuous but discrete).
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The commutator [A, B] is defined as follows:R4(97)
(A B = AB - BA.

Two operators A and B are said to commute when [A, B] = 0.

Schrodinger equation

Postulate 1.1 The quantum state of the system is a solution of the Schrédinger equation
ihO|(t)) = H|w(t)), (1.20)

where H is the quantum mechanical analogue of the classical Hamiltonian.

From classical mechanics, H 1s the sum of the kinetic and potential energy of a particle,

H= ‘in + V(z). (1.21)
2m
Thus, using the quantum analogues of the classical x and p, the quantum H is
1 ~9 P '
H=_—p°+V(z). (1.22)
2m

To evaluate V(2) we need a theorem that a function of an operator is the function evaluated
at the eigenvalue of the operator. The proof is straight forward, Taylor expand the function
about some point, If

V(z) = (V(0) +zV'(0) + %V”(O):}:?‘ -) (1.23)
then
V(z) = (V(0) + 2V'(0) + %V”(O):&Q- ) (1.24)
Since for any operator
[f.f11=0vp (1.25)
Thus, we have
@V (@)) = V(2)b(z) (1.26)

So, in coordinate form, the Schrodinger Equation is written as

ho9?
" 2m0a?

o) = ( ' V(_:r)) $(a,1) (1.27)
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Product of operators

An operator product is defined as
(AB)|v) = A[B|v)] (2.100)

where we operate in order from right to left. We proved that in general the ordering of the
operations 1s important. In other words, we cannot in general write AB = BA. An example of
this 1s the position and momentum operators. We have also defined the “commutator”

[A,B] = AB — BA. (2.110)

Let’s now briefly go over how to perform algebraic manipulations using operators and commu-
tators. These are straightforward to prove

Textbook

1. A.K.Chandra, 2010, Introductory quantum Chemistry, Tata McGraw Hill
Education Pvt., Ltd, New Delhi

2. Puri Sharma and Pathania, 2013, Elements of Physical Chemistry, Vishal
Publishing Co., New Delhi

Possible Questions

PART- A Questions(Each question carries one mark)

1. Evidence in favour of the wave nature of radiation
a. Interference of radiation < b. Photoelectric effect
c. Compton effect d. Black body radiation

2. Black body radiation has a characteristic
a. Continuous spectrum b. Discontinuous spectrum
c. Narrow range of light d. Laser action

3. As per plancks law the characteristic continuous spectrum of radiation depends upon
a. Body’s temperature b. Nature of the body
c. Colour of the body d. Density of the body

4. Stefan Boltzmann law is based on
a. Diffraction of radiation b. Photoelectric effect
c. Compton effect d. Black body radiation

5. In one dimensional box problem the potential energy of the particle inside the boxis
a. zero b. unity c. infinity d. fractional
6. The solution of the problem of the rigid rotator gives us directly the solution ofthe
a. angular momentum operator b. Lapalacian operator
c. Hermitian operator d. Position operator

7. A diatomic vibrating molecule can be represented by a simple model called
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a. Simple harmonic oscillator b. Rigid rotor

c. Particle in one dimensional box  d. Particle in three dimensional box

8. The quantum number ‘n’ is called
a. Principal quantum number b. Azimuthal quantum number
c. Magnetic quantum number d. Angular momentum quantum number

9. The lowest energy orbital for the ammonia molecule is designated
a. ls b. log c. 1al d. C3v
10. The benzene molecule C6H6 has how many
vibrational modes a. 6 b. 12 c.24
d. 30
11. Zeeman effect is
a. the change in energy levels of an atom when it is placed in uniform external
field
b. The change in energy levels of an atom when placed in non-uniform external field
c. The change in energy levels of an atomwhen placed in external electric field
d. The change in energy levels of an atom when placed in non-uniform electric field
12. The energy level belongs to En=2n-1/2
a. Harmonic oscillator b. Hydrogen atom

c. particle in a box d. free particle in motion

13. For the symmetry operation “reflection’ the corresponding symmetry element is
a. Identity element b. Plane of symmetry
c. Centre of symmetry d. Proper axis of symmetry

14. An array of numbers arranged in rows and columns are called
a. Matrices b. determinants c. Space lattices d. Miller indices
15. A diagonal matrix will have
a. In a square matrix if all the elements other than those along the diagonal are
Zero
b.In a square matrix if all the elements other than those along the diagonal are unity
c. In a square matrix if all the elements along the diagonal are unity
d. In a'square matrix if all the elements along the diagonal are zero
16. The molecule with C3y point group
a. acetylene b. water c. ammonia d. Boron trichloride
17. For a pyramidal melecule with point group C3v the number of theoretically
predicted IR fundamental bands

a. Three  b. Four c. Five d. Six

18. For chloro trifluoride molecule the number of observed Raman bands and IR bands
are four each, the predicted geometry is
a. Pyramidal b. planar c. T-shaped  d. bent

19. In case of molecules with a centre of symmetry the vibrational modes are anti-
symmetric to centre of inversion are

a. IR inactive b. IR active c. Raman inactive d. Raman hyper active
20. For Raman activity the vibrations should involve a change in
a. polarizability b. magnetization

c. Magnetic susceptibility d. Surface tension
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PART- B Questions (Each question carries Six mark)

21. (a) Explain the different postulates of Quantum
mechanics. (OR)
(b) Explain Heisenberg’s uncertainty principle .How it is experimentally verified?

22. (a) Set up Schrodinger wave equation for one dimensional harmonic
oscillatorand solve the equation for its energy and wave equation.
(OR)
(b) Derive the Schrodinger equation for rigid rotor.

23. (a) Explain the applications of variation method.
(OR)

(b) (1) Apply the perturbation method to helium atom.
(i1) Write a note on orbital and orbital shapes.

24. (a) Explain the different types of matrices with suitable examples.
(OR)

(b) Explain the following
(1) Square matrix (ii) diagonal matrix (iii) null matrix (iv) unit matrix
(v) Symmetric matrix

25. a. State and explain the great orthogonality theorem.
(OR)

b. Construct the character table C2y group.

PART- C Question (Each Question carries Ten mark)

26. (1) What are the relationships between reducible and irreducible
representation of the group.

(i) What are the Properties of irreducible representation?
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S.No | Question Option 1 Option 2 Option 3 Option 4 Answer
Unit-1

1 The definite region in three Atomic orbital | Molecular Nodal plane | Median lobes Atomic orbital
dimensional space around the nucleus orbital
where there is high probability of
finding an electron of a specific energy
E is called

2 This involves with the knowledge of Quantum Classical Newtonian | Fluid mechanics | Quantum
probability mechanics mechanics mechanics mechanics

3 The knowledge of quantum mechanics | Probability certainties uncertanities | possibility Probability
usually involves a knowledge of

4 Classical mechanics and quantum Correspondenc | Bohrs theory | Rutherford | Paulis exclusion | Correspondenc
mechanics tend to give the same e principle theory principle e principle
results when systems are in highly
excited quantum states. This is

5 Classical mechanics and quantum Normal states | Highly excited | Excited to When there is Highly excited
mechanics tend to give the same quantum low levels no excitation quantum states
results when systems are in states

6 In quantum mechanics the state of a Wave function | P,V, T Gaseous Law of mass Wave function
system is defined by laws action




7 Simuntaneous specification of position | Stefan Weins Planck’s law | Heisenberg Heisenberg
and momentum is impossible for a Boltzmann displacement uncertainty uncertainty
microscopic particle. This is law law principle principle

8 According to Newtons second law of | F=ma V=ma F=mv F=Pv F=ma
motion

9 Which one of the following is correct | Both have The KE of Both have Both have same | Both have
in respect of an electron and a proton same KE proton is more | same momentum same
having same de-Broglie wavelength of than that of velocity momentum
2A electron

10 The time independent Schrodinger's total binding | total potential | total kinetic | total energy of | total energy of
equation of a system represents the energy of the | energy of the | energy of the system the system
conservation of the system system the system

11 According to Schrodinger, a particle is | wave packet single wave light wave magnetic wave | wave packet
equivalent to a

12 Matter waves are longititudinal | electromagneti | always show diffraction | show

c travel with diffraction
the speed of
light

13 The de-broglie hypothesis is associated | wave nature of | wave nature of | wave nature | wave nature of | wave nature of
with electron only | proton only of radiation | all material all material

particles particles

14 The de-broglie wavelength of a charge | A=h/NmqV A=hm/AqV A=h/\2mqV | A=h/mqV A=h/\N2mqV
q and accelerate through a potential
difference of V volts is

15 The de-broglie wavelength of a L =h/(VEk) A=h/(\2mEx | A=h/N(mEk | A=h/N(3mEx) | A=h/(N2mEk)
particle having KE Ex is given by ) )

16 The value of Kroneckers delta, is equal | 1= iisnotequal | 1/4=2 1/j=0 1=]

to one when

to ]




17 The value of Kroneckers delta, is zero | 1= 11is not equal 1/j=2 1/j=0 11s not equal
when to j to j
18 The component of linear momentum Discrete Continuous Continuous | Line spectrum Continuous
about any axis forms a eigenspectrum | eigen spectrum eigen
spectrum spectrum
19 The component of angular momentum | Discrete Continuous Continuous | Line spectrum | Discrete
about any axis forms a eigenspectrum | eigen spectrum eigenspectrum
spectrum
20 Momentum of a particle is Mass x Mass / Mass x M?/v Mass x
velocity velocity velocity x velocity
velocity
21 The eigen values for energy must be real imaginary Complex positive real
number
22 The eigen values for augular real imaginary Complex positive real
momentum must be number
23 Hermitian operator is Linear and has | Non linear and | Linear and | Non linear and | Linear and has
real eigen real eigen has imaginary eigen | real eigen
values values imaginary values values
eigen values
24 The eigen values for observable real imaginary Complex positive real
physical quantities must be number
25 In using operators commutator means | Multiplying by | Additing 1 Dividing by | Multiplying by | Multiplying by
Zero 2 2 Zero
26 The operators d/dx and multiplication | Do not commute Isnota Results in a Do not
by x commute linear non-linear commute
function function
27 The classical expression for the total Hamilitonian | hermitian Laplacian Eigen function | Hamilitonian

energy of a single particle of mass m is




28

If in operating on the sum of two
functions an operator gives the same
result as the sum of the operations on
the two functions separately

Linear
operator

Addition
operator

Substracting
operator

Vector operator

Linear

29

If the results of two operations is same
regardless of the sequence in which the
operations are performed, the two
operators are said to

Commute

associate

Get squared

multiplied

commute

30

If the same operator is applied several
times in succession it is written with a

power

+ve sign

-ve sign

Division sign

power

31

The consequtive operations with two
or more operators on a function is
called as

Multiplication
operator

Addition
operator

Substracting
operator

Vector operator

Multiplication
operator

32

If the operator is integration with
respect to x on the operand x>, then
the result of the operation is

X*4 +C

X3/2

KX3

3x?

X*44 +C

33

If the operator is differentiating with
respect to x on the operand x°, then
the result of the operation is

X6

X3/2

3x?

3x?

34

If the operator is multiplying by a
constant on the operand x>, then the
result of the operation is

X6

X3/2

KX3

3x?

KX3

35

If the operator is taking the square root
on the operand x>, then the result of
the operation is

X6

X3/2

KX3

3x?

X3/2

36

If the operator is taking the square on
the operand x>, then the result of the
operation is

X6

X3/2

3x?

X6




37 For the operator differentiation with d/dx dx fdx udv d/dx
respect to X, the operator is
38 A function on which the operation by a | Operand derivative Physical Chemical Operand
operator is carried out is variable variable
39 An operator is a symbol for a certain One function | One property | One eigen One eigen One function
mathematical procedures which to another to another value to function to to another
transforms function another another function | function
value
40 According to Born interpretation the Same Different in May be or zero Same
result of the wave function implies that | wherever dx is | different may not be wherever dx is
the probability of finding the electron | situated places equal situated
in region dx is
41 An acceptable well behaved contineous Discontinuous | Do not Multiple valued | contineous
wavefunction (Psi) will be first derivative | vanish at
infinity
42 One of the properties of the acceptable | Never Discontinuous | Do not Multiple valued | Never
wavefunction (Psi) increases to first derivative | vanish at increases to
infinity infinity infinity
43 One of the properties of the acceptable | Single valued | Discontinuous | Do not Multiple valued | Single valued
wavefunction (Psi) first derivative | vanish at
infinity
44 At constant frequency, the Intensity of Kinetic energy | Quantum of | Particles of Intensity of
photoelectric current increases with incident of radiation radiation radiation incident
increasing radiation radiation
45 Increasing the intensity of incident Increase of KE | Increase the Decreases KE remains Increase the
radiation in photo electric effect is due | of light number of KE same number of
to electrons electrons

emitted in unit
time

emitted in unit
time




46 A process where ejection of electrons | Diffraction of | Photoelectric | Compton Black body Photoelectric
take place by the action of light is radiation effect effect radiation effect
called

47 The spectrum of black-body radiation | Stefan Weins Planck’s law | Jean’s law Weins
at any temperature is related to the Boltzmann displacement displacement
spectrum at any other temperature law law law

48 The power emitted per unit area of the | Stefan Weins Planck’s law | Jean’s law Stefan
surface of a black body is directly Boltzmann displacement Boltzmann
proportional to the fourth power of its | law law law
absolute temperature, the law is

49 Stefan Boltzmann law is based on Diffraction of | Photoelectric | Compton Black body Black body

radiation effect effect radiation radiation
50 Weins displacement law is based on Diffraction of | Photoelectric | Compton Black body Black body
radiation effect effect radiation radiation

51 As the black body is heated the Higher Lower Becomes a | Becomes a Higher

spectrum shift to frequency side | frequency side | narrower broad band frequency side
band

52 Black body radiation has a Planck’s law | Faradays law | Boltzmann | Jeans law Planck’s law
characteristic continuous spectrum of law
radiation which depends upon the
body temperature, this is called

53 As per plancks law the characteristic Body’s Nature of the | Colour of Density of the Body’s
continuous spectrum of radiation temperature body the body body temperature
depends upon

54 Black body radiation has a Body’s Nature of the | Colour of Density of the Body’s
characteristic continuous spectrum of | temperature body the body body temperature
radiation which depends upon

55 Black body radiation has a Continuous Discontinuous | Narrow Laser action Continuous
characteristic spectrum spectrum range of spectrum




light

56 Evidence in favour of the particle Diffraction of | Compton polarisation | interference Compton
nature of radiation radiation effect effect

57 Evidence in favour of the particle Diffraction of | Black body polarisation | interference Photoelectric
nature of radiation radiation radiation effect

58 Evidence in favour of the particle Diffraction of | Photoelectric | polarisation | interference Photoelectric
nature of radiation radiation effect effect

59 Evidence in favour of the wave nature | Diffraction of | Photoelectric | Compton Black body Diffraction of
of radiation radiation effect effect radiation radiation

60 Evidence in favour of the wave nature | Interference of | Photoelectric | Compton Black body Interference of
of radiation radiation effect effect radiation radiation
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UNIT-1I
SYLLABUS

Particle in a one-dimensional box - quantization of energy - normalization of wave function
- orthogonality of the particle in a one-dimensional box wave functions. Illustration of the
uncertainty principle and correspondence principle with reference to the particle in a one-
dimensional box - particle in a three dimensional box - separation of variables.

Solving of Schrodinger equation for one-dimensional harmonic oscillator. Harmonic
oscillator model of a diatomic molecule. Illustration of the uncertainty principle and
correspondence principle with reference to harmonic oscillator.

Solving of Schrodinger equation for a rigid rotor. Rigid rotor model of a diatomic molecule.

1.5 Heisenberg uncertainty principle

Since a free particle is represented by the wave packet W(x, 7), we may regard
the uncertainty Ax in the position of the wave packet as the uncertainty in the
position of the particle. Likewise, the uncertainty Ak in the wave number is
related to the uncertainty A p in the momentum of the particle by Ak = Ap /#.
The uncertainty relation (1.23) for the particle is, then

AxAp =h (1.44)

This relationship is known as the Heisenberg uncertainty principle.
The consequence of this principle is that at any instant of time the position

of the particle 1s defined only as a range Ax and the momentum of the particle
1s defined only as a range A p. The product of these two ranges or ‘uncertain-
ties’ 1s of order £ or larger. The exact value of the lower bound is dependent on
how the uncertainties are defined. A precise definition of the uncertainties in
position and momentum is given in Sections 2.3 and 3.10.

The Heisenberg uncertainty principle is a consequence of the stipulation that
a quantum particle is a wave packet. The mathematical construction of a wave
packet from plane waves of varying wave numbers dictates the relation (1.44).
It is not the situation that while the position and the momentum of the particle
are well-defined, they cannot be measured simultaneously to any desired degree
of accuracy. The position and momentum are, in fact, not simultaneously
precisely defined. The more precisely one is defined, the less precisely is the
other, in accordance with equation (1.44). This situation is in contrast to
classical-mechanical behavior, where both the position and the momentum can,
in principle, be specified simultaneously as precisely as one wishes.

In quantum mechanics, if the momentum of a particle is precisely specified
so that p = py and Ap = 0, then the function A(p) is
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A(p) = o(p — po)

The wave packet (1.37) then becomes

; LI . 1 _
lp(_x, I) — j ()(p — pg)e‘( px—Et)/h dp ol el(pgx—Er‘)/h

1
A 20Hh ) V 27th

which is a plane wave with wave number py/h and angular frequency £ /A.
Such a plane wave has an infinite value for the uncertainty Ax. Likewise, if the
position of a particle 1s precisely specified, the uncertainty in its momentum is
infinite.

Another Heisenberg uncertainty relation exists for the energy £ of a particle
and the time ¢ at which the particle has that value for the energy. The
uncertainty Aw in the angular frequency of the wave packet is related to the
uncertainty AE in the energy of the particle by Aw = AE/h, so that the
relation (1.25) when applied to a free particle becomes

AEAt =1 (1.45)
Again, this relation arises from the representation of a particle by a wave
packet and is a property of Fourier transforms.

The relation (1.45) may also be obtained from (1.44) as follows. The
uncertainty AE is the spread of the kinetic energies in a wave packet. If Ap is
small, then AE is related to A p by

2
AE:A(L) —PAp (1.46)
2m m
The time At for a wave packet to pass a given point equals the uncertainty in
its position x divided by the group velocity v,
Ax  Ax m
At =—=—=—Ax (1.47)
Vg v p
Combining equations (1.46) and (1.47), we see that AEAt = AxA p. Thus, the
relation (1.45) follows from (1.44). The Heisenberg uncertainty relation (1.45)
1s treated more thoroughly in Section 3.10.

Prepared by Dr.E. Karthikeyan, Asst. Prof., Department of Chemistry, KAHE Page 2/31




KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I- M.Sc (Chemistry) Course Name: Physical Chemistry-I
Course Code: 18CHP103 Unit: IT (Wave function ¥ ) Batch: 2018 -2020

2.1 The Schrodinger equation

In the previous chapter we introduced the wave function to represent the
motion of a particle moving in the absence of an external force. In this chapter
we extend the concept of a wave function to make it apply to a particle acted
upon by a non-vanishing force, i.e., a particle moving under the influence of a
potential which depends on position. The force / acting on the particle is
related to the potential or potential energy V(x) by

As in Chapter 1, we initially consider only motion in the x-direction. In Section
2.7, however, we extend the formalism to include three-dimensional motion.
In Chapter 1 we associated the wave packet

W(x, 1) = [ A(p)e'P—Ent g4, (2.2)

—D0

|
\V 27h

with the motion in the x-direction of a free particle, where the weighting factor
A(p) 1s given by

A(p) =

lo's)
\/ﬂj_.xlp(x’ fye (P EO g (2.3)
This wave packet satisfies a partial differential equation, which will be used as
the basis for the further development of a quantum theory. To find this
differential equation, we first differentiate equation (2.2) twice with respect to
the distance variable x to obtain

()2 by o —1 > 2 i(px—Et) /R
o \/ﬁ“ p A(p)e dp (2.4)
Differentiation of (2.2) with respect to the time 7 gives

S - RN - .

—00

O —i rc N
Sals EA( p)elP—En/A g (2.5)
ot vV 27h3 —00 ! !

The total energy £ for a free particle (i.e., for a particle moving in a region of
constant potential energy V') is given by
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E=2 1+
2m

which may be combined with equations (2.4) and (2.5) to give
oW h? 0*W
ot 2m Ox2
Schrodinger (1926) postulated that this differential equation is also valid
when the potential energy 1s not constant, but is a function of position. In that
-ase the partial differential equation becomes
5 OW(x, 1)  h* PW(x. 1)
I' ot 2m Ox?
which 1s known as the time-dependent Schridinger equation. The solutions
W(x, t) of equation (2.6) are the time-dependent wave functions. An important
zoal in wave mechanics 1s solving equation (2.6) for W(x, 7) using various
>xpressions for V/(x) that relate to specific physical systems.
When V(x) is not constant, the solutions W(x, 7) to equation (2.6) may still
se expanded in the form of a wave packet,

+ g

1

+ V(x)W(x, 1) (2.6)

W(x, 1) =

| o :
\/ﬁj A(p, 1P =E/f g, (2.7)

T'he Fourier transform A( p, 1) is then, in general, a function of both p and time
', and 1s given by

A(p, 1) = [ W(x, 1)e (P—E0/h gy (2.8)

1
V21h ) -
By way of contrast, recall that in treating the free particle as a wave packet in
Chapter 1, we required that the weighting factor A(p) be independent of time
ind we needed to specify a functional form for A(p) in order to study some of

‘he properties of the wave packet.

2.2 The wave function

[nterpretation

Before discussing the methods for solving the Schrodinger equation for specific
choices of V(x), we consider the meaning of the wave function. Since the wave
function W(x, 7) is identified with a particle, we need to establish the connec-
1on between W(x, 7) and the observable properties of the particle. As in the
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case of the free particle discussed in Chapter 1, we follow the formulation of
Born (1926).

The fundamental postulate relating the wave function W(x, 7) to the proper-
ties of the associated particle is that the quantity |W(x, .f)|2 =\ >I<(Jc, HW(x, 1)
gives the probability density for finding the particle at point x at time 7. Thus,
the probability of finding the particle between x and x + dx at time 7 is
\W(x, £)]>dx. The location of a particle, at least within an arbitrarily small
interval, can be determined through a physical measurement. If a series of
measurements are made on a number of particles, each of which has the exact
same wave function, then these particles will be found in many different
locations. Thus, the wave function does not indicate the actual location at
which the particle will be found, but rather provides the probability for finding
the particle in any given interval. More generally, quantum theory provides the

probabilities for the various possible results of an observation rather than a
precise prediction of the result. This feature of quantum theory is in sharp
contrast to the predictive character of classical mechanics.

According to Born’s statistical interpretation, the wave function completely
describes the physical system it represents. There is no information about the
system that 1s not contained in W(x, 7). Thus, the state of the system is
determined by its wave function. For this reason the wave function is also
called the state function and 1s sometimes referred to as the state W(x, 1).

The product of a function and its complex conjugate is always real and is
positive everywhere. Accordingly, the wave function itself may be a real or a
complex function. At any point x or at any time ¢, the wave function may be
positive or negative. In order that |W(x, #)|* represents a unique probability
density for every point in space and at all times, the wave function must be
continuous, single-valued, and finite. Since W(x, r) satisfies a differential
equation that is second-order in x, its first derivative is also continuous. The
wave function may be multiplied by a phase factor ¢!, where « is real, without
changing its physical significance since

[e“W(x, ] [e“W(x, 1)] = W (x, HW(x, 1) = [W(x, 1)
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Normalization

The particle that is represented by the wave function must be found with
probability equal to unity somewhere in the range —oo = x = o0, so that
W(x, 1) must obey the relation

0o

[ W(x, 1)*dx = 1 (2.9)

—00

A function that obeys this equation is said to be normalized. 1f a function
@ (x, 1) 1s not normalized, but satisfies the relation

J d*(x, )P(x, t)dx = N

— 0D

then the function W(x, 7) defined by
|

VN

Wx, 1) = D(x, 1)
is normalized.

In order for W(x, ) to satisfy equation (2.9), the wave function must be
square-integrable (also called quadratically integrable). Therefore, W(x, 7)
must go to zero faster than 1/ \/m as x approaches (£) infinity. Likewise, the
derivative W /Jx must also go to zero as x approaches (4 ) infinity.

Once a wave function W(x, ) has been normalized, it remains normalized as
time progresses. To prove this assertion, we consider the integral

[a%
N = j WY dy
—00
and show that N is independent of time for every function W that obeys the
Schrodinger equation (2.6). The time derivative of N is
dN 0
A [ W, 0 dx (2.10)
ds o O1
where the order of differentiation and integration has been interchanged on the
right-hand side. The derivative of the probability density may be expanded as
follows

f_)‘lp(vr’ l,)‘2 — f_)(tp*lp) — ¥ (_)rlp Ty o
Jt Jt )

Ot Ot
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so that
3, ih 0O OW ow*
—[W(x, )] = —= (lp* Y (2.12)
ot | | 2m Ox dx Ox

Substitution of equation (2.12) into (2.10) and evaluation of the integral give

dN i rc a( O aw*) ifi [ OV alp*]

[ — Prl g dy = — |p* 2 _yp
de  2m. '

[a@}

Ox Ox 2m ox Ox
Since W(x, ) goes to zero as x goes to (%) infinity, the right-most term
vanishes and we have

— 00 () ./\‘ — D0

dN

dr

Thus, the integral N 1s time-independent and the normalization of W(x, 7) does
not change with time.

Not all wave functions can be normalized. In such cases the quantity

0

W (x, #)|* may be regarded as the relative probability density, so that the ratio

[ _ W(x, .f)|2 dx

aj

b,
[ W(x, z)|2 dx
Jb,
represents the probability that the particle will be found between a; and a;
relative to the probability that it will be found between 5y and b>. As an
example, the plane wave

W(x, {) = ei(px—Er‘)/ﬁ
does not approach zero as x approaches (&) infinity and consequently cannot
be normalized. The probability density [W(x, 7)|? is unity everywhere, so that
the particle is equally likely to be found in any region of a specified width.
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Equation (2.0) and 1ts complex conjugate may be written 1n the form

oW ih PW i

— _lyw
at 2mox? h 2.11)
oW* ih PWE , '
S g O
Ot 2m Ox? h

so that O|W(x, 1)|* /0t becomes

) it 0P 02 qﬁ*‘)
Wy 2:_(11)"" P
Ot [P, 1) 2m Ox? Ox2

where the terms containing J cancel. We next note that

B (waw L aw*) PV P
Ox Ox Ox? Ox2

ox

2.4 Time-independent Schriodinger equation
The first step in the solution of the partial differential equation (2.6) is to
express the wave function W(x, 7) as the product of two functions
W(x, 1) = p(x)y(1) (2.27)
where 1(x) 1s a function of only the distance x and y(7) 1s a function of only
the time 7. Substitution of equation (2.27) into (2.6) and division by the product
P(x)y(t) give

if

I dy(y  h* 1 d*y(x) - ) g
(1) di — 2my(x) dx2 V) (2.25)
The left-hand side of equation (2.28) is a function only of ¢, while the right-
hand side is a function only of x. Since x and 7 are independent variables, each
side of equation (2.28) must equal a constant. If this were not true, then the
left-hand side could be changed by varying ¢ while the right-hand side
remained fixed and so the equality would no longer apply. For reasons that will
soon be apparent, we designate this separation constant by E and assume that
it is a real number.

Equation (2.28) is now separable into two independent differential equations,
one for each of the two independent variables x and 7. The time-dependent
equation 1s
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and 1s called the time-independent Schrodinger equation. The solution of this
differential equation depends on the specification of the potential energy V(x).
Note that the separation of equation (2.6) into spatial and temporal parts is
contingent on the potential V/(x) being time-independent.
The wave function W(x, 7) is then

W(x, t) = P(x)e E/A (2.31)

and the probability density |W(x, r)|* is now given by
LiE A I)|2 = P*(x, D¥(x, ) = y'}*(_x)eiE"/ ﬁ1,1»*('x)e_i5"/ b — |y‘:(,\‘)|2

Thus, the probability density depends only on the position variable x and does
not change with time. For this reason the wave function W(x, ) in equation
(2.31) 1s called a stationary state. It W(x, 1) 1s normalized, then 1 (x) is also
normalized

f ()P dx = 1 (2.32)

which is the reason why we set the integration constant in equation (2.29) equal
to unity.
The total energy, when expressed in terms of position and momentum, is

called the Hamiltonian, H, and is given by

_ p?
Hix, p) = - + V(x)

The expectation value (H) of the Hamiltonian may be obtained by applying
equation (2.22)
= h? o }
Hi=| ¥ [——;— V(x)|W(x, 1)dx
St J—oc L 2m Ox? + B Yee
For the stationary state (2.3 1), this expression becomes
S 12 o }
H) = p*(x) | — =55+ V(@) |9(x)dx
S [ xu “)[ 2m Ox? ¥ K |

If we substitute equation (2.30) into the integrand, we obtain
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oo

(H) = E[ | Yoy de = E

where we have also applied equation (2.32). We have just shown that the
separation constant £ is the expectation value of the Hamiltonian, or the total
energy for the stationary state. so that “£7 1s a desirable designation. Since the
energy is a real physical quantity, the assumption that £ is real is justified.

In the application of Schrodinger’s equation (2.30) to specific physical
examples, the requirements that 1(x) be continuous, single-valued, and square-
integrable restrict the acceptable solutions to an infinite set of specific functions

Yalx), n =1,2 3, ..., each with a corresponding energy value £,. Thus, the
energy is quantized, being restricted to certain values. This feature 1s illustrated
in Section 2.5 with the example of a particle in a one-dimensional box.

Since the partial differential equation (2.6) 1s linear, any linear superposition
of solutions is also a solution. Therefore, the most general solution of equation
(2.6) for a time-independent potential energy V' (x) is

Wix, 1) =Y cappu(x)e Erh (2.33)
n
where the coefficients ¢, are arbitrary complex constants. The wave function
W(x, 1) in equation (2.33) 1s not a stationary state, but rather a sum of
stationary states, each with a difterent energy £,

2.5 Particle in a one-dimensional box
As an illustration of the application of the time-independent Schrodinger
equation to a system with a specific form for V(x), we consider a particle
confined to a box with infinitely high sides. The potential energy for such a
particle 1s given by
Vix) =0, 0=x=ua
= o0, x<0, x>a
and is illustrated in Figure 2.1.
Outside the potential well, the Schrodinger equation (2.30) is given by
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for which the solution is simply ¥ (x) = 0; the probability is zero for finding
the particle outside the box where the potential is infinite. Inside the box, the
Schrodinger equation 1s

0 a

Figure 2.1 The potential energy V' (x) for a particle in a one-dimensional box of length a.

or
>y 47
FIS i e (2.34)
where /4 is the de Broglie wavelength,
2mh h
e (2.35)

V2mE B p

We have implicitly assumed here that £ is not negative. If £ were negative,
then the wave function vy and its second derivative would have the same sign.
AS increases, the wave function (x) and its curvature d2y'= / dx? would
become larger and larger in magnitude and 1(x) would approach (+) infinity
as x — oQ.

The solutions to equation (2.34) are functions that are proportional to their
second derivatives, namely sin(2wx/A) and cos(2wx/A). The functions
exp[2srix/A] and exp[—2mix /4], which as equation (A.31) shows are equivalent
to the trigonometric functions, are also solutions, but are more difficult to use
for this system. Thus, the general solution to equation (2.34) is

X

27X LB 2mx
CoS
A A

P(x) = Asin (2.36)
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where 4 and B are arbitrary constants of integration.

The constants A4 and B are determined by the boundary conditions placed on
the solution (x). Since y(x) must be continuous, the boundary conditions
require that ¥(x) vanish at cach end of the box so as to match the value of y(x)
outside the box, 1.e., 1(0) = 1y (a) = 0. At x = 0, the function 3(0) from (2.36)
1S

P(0) = Asin0 + BcosO = B

so that B = 0 and 1(x) is now

27X
Y(x) = A sin =2 (2.37)
Atx = a,y(a)is
. 2ma
P(a) = Asin T 0

The constant 4 cannot be zero, for then 1 (x) would vanish everywhere and
there would be no particle. Consequently, we have sin(27a/4) = 0 or
21ta
y
where n 1s any positive integer greater than zero. The solution » = 0 would
cause (x) to vanish everywhere and is therefore not acceptable. Negative
values of n give redundant solutions because sin(—#) equals —sin 6.

We have found that only distinct values for the de Broglie wavelength satisty
the requirement that the wave function represents the motion of the particle.
These distinct values are denoted as 4, and are given by

2a

Ay =—, n=123,... (2.38)
n

= ni, n=1,23....

Consequently, from equation (2.35) only distinct values £, of the energy are
allowed
22 h2 B n2 h2
2ma®  8ma?’
so that the energy for a particle in a box 1s quantized.

The lowest allowed energy level 1s called the zero-point energy and is given
by E; = h*/8ma®. This zero-point energy is always greater than the zero value
of the constant potential energy of the system and increases as the length a of

n=1,23,... (2.39)
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the box decreases. 1 he non-zero value tor the lowest energy level 1s related to
the Heisenberg uncertainty principle. For the particle in a box, the uncertainty
Ax in position 1s equal to the length a since the particle 1s somewhere within
the box. The uncertainty Ap in momentum is equal to 2|p| since the
momentum ranges from —| p| to | p|. The momentum and energy are related by

h
p| = Vv2mE :;—
a

so that
AxAp = nh

1s 1in agreement with the Heisenberg uncertainty principle (2.26). If the lowest
allowed energy level were zero, then the Heisenberg uncertainty principle
would be violated.

The allowed wave functions 1, (x) for the particle in a box are obtained by
substituting equation (2.38) into (2.37),

. nmXx
Yp(x) = Asin —, 0=x=ua
a

The remaining constant of integration A is determined by the normalization
condition (2.32),

(o @] o ) ‘,-'—[’_,‘ JT )
j () [* dx = |A|2J sin? 2 dy — |A2EJ sin“nf d6 = |A|25 =1
—oo 0 a i Jo 2
where equation (A.15) was used. Therefore, we have
2
P =2
a
or

ia\/E
A—e —
4]

Setting the phase « equal to zero since it has no physical significance, we
obtain for the normalized wave functions

! 2 . nax o
Yau(x) = Esm —> 0=x=ua (2.40)
=0, x<0, x>a
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The time-dependent Schrodinger equation (2.30) for the particle in a box has
an infinite set of solutions y,(x) given by equation (2.40). The first four wave
functions ¥ ,(x) for n =1, 2, 3, and 4 and their corresponding probability
densities |1/=n(x)\2 are shown in Figure 2.2. The wave function p|(x) corre-
sponding to the lowest energy level £ 1s called the ground state. The other
wave functions are called excited states.

If we integrate the product of two different wave functions 1;(x) and 1,(x).
we find that

“ 2 (¢ [mx X 2 ("
J Y (X)) ,(x)dx = —j sin( —n) sin (n_'n) dx = —f sin /@smnBd6 = 0
a

0 0 a a 0

(2.41)

where equation (A.15) has been introduced. This result may be combined with
the normalization relation to give

I Y)Y (x) dx = Oy (2.42)
0
where 0y, 1s the Kronecker delta,
O = 1. [=n
(2.43)
=0, [ # n

Functions that obey equation (2.41) are called orthogonal functions. 1f the
orthogonal functions are also normalized, as in equation (2.42), then they are

said to be orthonormal. The orthogonal property of wave functions in quantum
mechanics 1s discussed 1n a more general context in Section 3.3.

The stationary states W(x, ) for the particle in a one-dimensional box are
given by substitution of equations (2.39) and (2.40) into (2.31),

2 JTX i 22 2
WY(x, 1) = \/—sin (n_-n) g i(mTh/2ma)t (2.44)
a d

The most general solution (2.33) is, then,

2 . JIX P, . 2
W(x, 1) = \/—Z ¢, sin (n_—n) i h/2ma (2.45)
a a
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2.8 Particle in a three-dimensional box

A simple example of a three-dimensional system is a particle confined to a
rectangular container with sides of lengths a, b, and ¢. Within the box there is
no force acting on the particle, so that the potential V(r) is given by

V(r) =0, 0<x<a 0<ys<bh 0<z<c

= 00, x<0, x>a, y<0, y>=b; z<0, z>c
The wave function 1(r) outside the box vanishes because the potential is
infinite there. Inside the box, the wave function obeys the Schrédinger equation
(2.70) with the potential energy set equal to zero

_H2 [ 24 ) 2y
h ((}2?,1(1')_'_() ?l(r)+() q(r)) = Ey(r) (2.75)

2m \  Ox? 0y? 0z2

The standard procedure for solving a partial differential equation of this type is
to assume that the function (r) may be written as the product of three
functions, one for each of the three variables
Y(r) = y(x, y, z) = X(x)Y(y) £(2) (2.76)
Thus, X(x) is a function only of the variable x, Y(y) only of y, and Z(z) only of
z. Substitution of equation (2.76) into (2.75) and division by the product XYZ
give
—h* *x -y &z
2mX dx? + 2mY dy? + 2mZ dz?
The first term on the left-hand side of equation (2.77) depends only on the
variable x, the second only on y, and the third only on z. No matter what the
values of x, or y, or z, the sum of these three terms is always equal to the same
constant £. The only way that this condition can be met is for each of the three
terms to equal some constant, say £, E,, and E., respectively. The partial
differential equation (2.77) can then be separated into three equations, one for
each variable

— E (2.77)

dz—X @EX:O dz—Y—F@EY:O dzz—f—@EZ:O
dx2 = K2 " ’ dy2 2’ ’ dz2 2 °
(2.78)
where
Ex+E, +E=E (2.79)
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Thus, the three-dimensional problem has been reduced to three one-dimen-
stonal problems.

The difterential equations (2.78) are 1dentical in form to equation (2.34) and
the boundary conditions are the same as before. Consequently, the solutions
inside the box are given by equation (2.40) as

2 6
X(x):\/[—sin ”'T\, i =1, 2.8 .. .
a a
| 2 . nymwy |
Yiy)= [—sm 5 =123 ... (2.80)
h h

2 g ~JLZ
Z(z):\/—sm Rt ; I (O S T
c c

and the constants £, E,, E. are given by equation (2.39)

272
E:nxh \ Be=1.2.3 ...
Y 8ma? o
nihz
"— Sb?’ =123, . (2.81)
nh?
2:8’“?202, =12 3.

The quantum numbers n,, n,, n. take on positive integer values independently
of each other. Combining equations (2.76) and (2.80) gives the wave functions
inside the three-dimensional box
. 8 . nax . ny . nmz _
I g B V— sin —— sin ——— sin — (2.82)
i v a /

24 C

where v = abc is the volume of the box. The energy levels for the particle are
obtained by substitution of equations (2.81) into (2.79)

h? 2 nZ: %
B = (3+ y 4 1z (2.83)

8m \a?> b2 A2

Prepared by Dr.E. Karthikeyan, Asst. Prof., Department of Chemistry, KAHE Page 16/31




KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I- M.Sc (Chemistry) Course Name: Physical Chemistry-I
Course Code: 18CHP103 Unit: IT (Wave function ¥ ) Batch: 2018 -2020

Degeneracy of energy levels
[f the box 1s cubic, we have a = b = ¢ and the energy levels become
h2
S
The lowest or zero-point energy is £ 11 = 3h? / 8 ma?, which is three times the
zero-point energy for a particle in a one-dimensional box of the same length.
The second or next-highest value for the energy is obtained by setting one of

(n} + ', + n?) (2.84)

the integers ny, n,, n; equal to 2 and the remaining ones equal to unity. Thus,
there are three ways of obtaining the value 6/4? / 8 ma?, namely, E>i1, E121.
and £ ;,. Each of these three possibilities corresponds to a different wave
function, respectively, ¥'21.1(r), ¥1.2.1(r), and 1112(r). An energy level that
corresponds to more than one wave function is said to be degenerate. The
second energy level in this case is threefold or triply degenerate. The zero-
point energy level is non-degenerate. The energies and degeneracies for the
first six energy levels are listed in Table 2.1.

The degeneracies of the energy levels in this example are the result of
symmetry in the lengths of the sides of the box. If, instead of the box being
cubic, the lengths of » and ¢ in terms of @ were b = a/2, ¢ = a/3, then the
values of the energy levels and their degeneracies are different, as shown in
Table 2.2 for the lowest eight levels.

Orthogonality theorem
If Yy and P, are eigenfunctions of a hermitian operator A with different
eigenvalues oy and oy, then Wy and v, are orthogonal. To prove this theorem,
we begin with the integral

(W2 | A1)y = ar (2 [yn) (3.17)
Since A is hermitian and (5 1s real, the left-hand side may be written as

(W2 |Ayn) = (A2 [yv1) = (2| yn)

Thus, equation (3.17) becomes

(ay — ) (W2 [ y1) =0

Since a1 # aa, the functions 3, and 1), are orthogonal.
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Rigid Rotor

We can expand our analysis to a two-particle system with masses m; and mao
that rotate with a fixed distance R between them. We can separate out the

translational motion of the system as a whole and their motion relative to one
another. Instead of using the separate masses my and meo, we can define the
joint mass M and the reduced mass p as follows:

M = m;+mse
i _ 1.1
Lo omp me

Using the technique of the separation of variables, the Schrodinger equation can
be split into an equation that depends on the center coordinates and the joint
mass M, and an equation that depends on the relative coordinates of the system
with reduced mass p:

R,

—%an‘l’m = EnyUy
A,

—EV“@“ = E,V,

The total wavefunction is written as ¥ = W, W, and the total energy is £ =
Ey + E,. We are only concerned with the relative motion of the system. For
constant r we then have for the Schrodinger equation:

h2
_5:’;2 v, =Ev,

The quantum behavior of the harmonic oscillator

This physical system serves as an excellent example for illustrating the basic principles of
quantum mechanics. The Schroedinger equation for the harmonic oscillator can be solved
rigorously and exactly for the energy eigenvalues and eigenstates. The mathematical
process for the solution is neither trivial, as is the case for the particle in a box, nor
excessively complicated. Moreover, we have the opportunity to introduce the ladder
operator technique for solving the eigenvalue problem.

The harmonic oscillator is an important system in the study of physical phenomena in both
classical and quantum mechanics. Classically, the harmonic oscillator describes the
mechanical behavior of a spring and, by analogy, other phenomena such as the oscillations
of charge ow in an electric circuit, the vibrations of sound-wave and light-wave
generators, and oscillatory chemical reactions. The quantum-mechanical treatment of the
harmonic oscillator may be applied to the vibrations of molecular bonds and has many
other applications in quantum physics and field theory.
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4.2 Quantum treatment

The classical Hamiltonian H(x, p) for the harmonic oscillator is

P’ p? > 7
Hx, p)=—+V(x)=—+ %nw)‘x (4.11)
2m 2m
The Hamiltonian operator H (x, p) 1s obtained by replacing the momentum p
in equation (4.11) with the momentum operator p = —if d/dx
52 2 12
; P | h” d i...2.2
H=_—+mox" =—_— SMW-X 4.12
2m T2 2m dx? T (4.12)
The Schrodinger equation is, then
h? d?y(x)
——— + Imw?x*yP(x) = Ep(x 4.13
2m  dx?2 2 V) e 13
It is convenient to introduce the dimensionless variable & by the definition
ma\ /2
E= (—) x (4.14)
h
so that the Hamiltonian operator becomes
. hw d?
H=—|8-—— 48
2 (5 d&z) i

Since the Hamiltonian operator is written in terms of the variable & rather than
x, we should express the eigenstates in terms of & as well. Accordingly, we
define the functions ¢ (&) by the relation

N
</)(§):(—) P(x) (4.16)

maw

[f the functions 1(x) are normalized with respect to integration over x
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[ | 1(x) 2dx = 1

then from equations (4.14) and (4.16) we see that the functions ¢(&) are

normalized with respect to integration over &

50
[ P& ds =1
J o0
The Schrodinger equation (4.13) then takes the form
d*¢(&)

d&?

Since the Hamiltonian operator is hermitian, the energy eigenvalues £ are real.
There are two procedures available for solving this differential equation. The
older procedure is the Frobenius or series solution method. The solution of
equation (4.17) by this method is presented in Appendix G. In this chapter we
use the more modern ladder operator procedure. Both methods give exactly the

same results.

2F
+E2 (&) = (&) (4.17)

The Harmonic Oscillator

The Classical Harmonic Oscillator

A vibrating body subject to a restoring force, which increases in proportion to the
displacement from equilibrium, will undergo harmonic motion at constant frequency and is
called a harmonicoscillator. Figure 1(a) shows one example of a harmonic oscillator, where
a body of mass'm is connected to a fixed support by a spring with a force constant, k. We
will assume that gravitational forces are absent.

Energy
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Harmonic Oscillator Consisting of a Mass Connected by a Spring to a Fixed Support;
(b) Potential Energy, V ,and Kinetic Energy, EK For the Harmonic Oscillator.

When the system is at equilibrium, the mass will be at rest, and at this point the
displacement, x, from equilibrium has the value zero. As the mass is pulled to the right,
there will be a restoring force, f, which is proportional to the displacement. For a spring
obeying Hooke’s law.

2 e

d?x
f=—kx= md_t; (1)

The minus sign in equation 1 is related to the fact that the force will be negative, since the mass

will tend to be pulled toward the —a direction when the force is positive. From Newton’s second
- 5 T = 2 . 5 . x

law, the force will be equal to the mass multiplied by the acceleration, 2. The equation of motion

a2
is a second order ordinary differential equation, obtained by rearranging equation 1 as

d2x k
— +—x =0, )
dt? * e ' 2)

and has a general solution given by

x(t) = Asinwt + B coswt, (3)
where

w = (k/m)!2 @)

The units of w are radians s~ 1, and since there are 2 radians/cycle, the frequency v = w /2w eycles
s~1. [Note: The student should check this solution by substituting equation 3 back into equation 2].

We again require two boundary conditions to specify the constants A and B. We choose the
mass to be at = 0 moving with a velocity vg at time= 0. The first condition gives

r(t=0)=A-0+B-1=B=0 (5)
so that
z(t) = Asinwt. (6)

Using this result, the second boundary condition can be written as

_ |

vp=v(t=0)= 7|
lt=0

= Awcoswt|;—g = Aw, (7)

from which we see that A = vg/w. As the spring stretches, or contracts, when the mass is undergoing
harmonic motion, the potential energy of the system will rise and fall, as the kinetic energy of the
mass falls and rises. The change in potential energy, dV', is

dV = —fdx = kxdz, (8)
so that upon integrating,

1
T 5!;:32 + constant. 9)

The constant of integration may be set equal to zero. This potential energy function is shown as

the parabolic line in Figure 1(b). The kinetic energy of this harmonic oscillator is given by

v Lo T fileY wmy, s 5 _
EK—Q:*m.- _Qm(dt) = Q(Aw} cos” wt (10)
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This function is also plotted in Figure 1(b). The total constant energy, E, of the system is given
by

1 . ; G 1 :
E=V +FErg= ak:r.g + ?(Aw)z cos? wt = §kA2 sin? wt + %(.{4\.&‘)2 cos? wt, (11)

where we have substituted equation 6 for x. Substituting equation 4 for w?, we can write

1 ; 1
B = ;A% (sin?wt + coswt) = A%k (12)

The total energy is thus a constant and is shown as a horizontal line in Figure 1(b). At the limits of
oscillation, where the mass is reversing its direction of motion, its velocity will be momentarily equal
to zero, and its momentary kinetic energy will therefore also be zero, meaning that the potential
energy will be maximized and equal to the total energy of the system at the two turning points.
As the oscillator begins to undergo acceleration away from the turning points, the kinetic energy
will increase, and the potential energy will decrease along the curve, V, as shown in Figure 1(b).

If the spring constant, k, should not be constant, but should vary slightly from a constant
ralue as r changes, we would be dealing with an  anharmonic oscillator. In most cases, an
anharmonic oscillator may be closely approximated by the harmonic oscillator equations for small
displacements from equilibrium, .

Soon we will be comparing the quantum harmonic oscillator with the classical harmonic oscil-
lator, and the probability of finding the mass at various values of x will be of interest. We now
calculate this probability for the classical harmonic oscillator.

The probability of finding the mass, m, at any given value of x is inversely proportional to the
velocity, v, of the mass. This is reasonable, since the faster the mass is moving, the less likely it
is to observe the mass. Hence, we expect that the probability of observing the mass will be have

a minimum at x = 0, where the velocity is at a maximum, and conversely will exhibit mazima
when z = £A. From equation 7 we see that

v(zr) = i—f = Aw coswt, (13)

so that
Pldee. o 14
& Aw coswt’ (14)

where P(x)dz is the probability of finding the mass between z and = + dx. Note that since z is
a continuous variable that we define P(x)dx as the probability and P(z) is called the probability
density, which is the probability per unit length, in this case. We note that at the turning points
of the oscillation, when 1/4 or 3/4 of a cycle has occurred, that ¢ = 5= or ¢ = gz and at these points
coswt goes to zero, with 11 going to infinity. We know that the probability of finding the mass at
the end points must be a maximum, but must not be infinite. The reason that P(z) remains
finite is that dr in equation 14 always has finite width, therefore, P(z) is not defined exactly at a
point. For example, at t = -, P(z) is evaluated over the range —A <z < —A + dz.
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This probability density function as a function of the z-coordinate, P(z), is plotted along with
the velocity, v in Figure 2. The probability density is a smooth function over the range of z
available to the oscillator and has exactly one minimum at r = 0. We will soon find that this
intuitive classical behavior is not obeyed by the quantized harmonic oscillator. In fact, for the
quantum oscillator in the ground state we will find that P(z) has a mazimum at =z = 0.

vix)

/

Figure 2: Probability Density, P(x), for Classical Harmonic Oscillator at Various Displacements,
x. P(z) is plotted as the dashed line and the velocity, v(x) is plotted as the solid curve. The two

vertical lines give the limits of the oscillator motion. Note that P(x) o< U(lx :

The Quantum Harmonic Oscillator

The quantum harmonic oscillator is a very important problem in quantum mechanics. For example,
it serves as a first-order approximation for the bond vibrational problem in diatomic and (with
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coupling) polyatomie molecules. We will examine the quantum harmonic oscillator in some detail,
comparing it with what we know about the classical harmonie oscillator from the previous section.
The potential energy function for the quantum harmonic function is the same as for the classical
harmonic oscillator, namely, V =1/ 2kx2. Thus, in the quantum Hamiltonian is

Hop :EKop‘f'v-Gp (15}
and we may write the Schrodinger equation as
—R2 8% 1
i iy = 2. — Eu 16
2m 81‘2+2 Sk d (16)
The general solution to this problem (which we will not derive) can be written as
1/4 1 1/2
2 A e 1 / 2 4 -
where n = 0,1,2,... is the quantum number, o = %7, y = a'lfrz:r, and H,(y) is a Hermite
polynomial of order n. The first few Hermite polynomials are
Hp(y) = 1 (18)
Hi(y) = 2 (19)
Hay) = 4° -2 (20)
Hs(y) = 8y’ - 12 (21)
Hi(y) = 16y" —48y° + 12 (22)
Hermite polynomials of any order can be calculated from the recursion relation
Hy1(y) = 2yHn(y) — 2nHy_1(y). (23)
The allowed energies (eigen energies) for the quantum harmonic oscillator are
1
E, = (n + 5) Fiw (24)
and since w = 27v,
1
E, = (n + 5) hv. (25)
Using equation 4 for w, we may write
1 EXiR
E,.=|n+=|0[— . 26
( s 2) (m) (26)

The ground state wavefunction for the quantum harmonie oscillator can be obtained by substituting
Hy(y) from equation 18, using y = a2z, into equation 17,

~\ 1/4 o V! e
@dx)::(i) eﬂwazzz(ﬁj) e (27)
M

m

Likewise, the first and second excited state wavefunctions are

13 1/4 .
wM)=(fJ remas’/2 (28)
m
1/4 g
Po(z) = (%) (2@':}:2 = 1) g EEYR (29)

Figure 3 shows the first few allowed energy levels for the quantum harmonic oscillator.
Also shown are the wavefunctions, n and the probability densities, | n|2 for the levels n = 0,

1, 2. The equally spaced set of allowed vibrational energy levels observed for a quantum
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harmonic oscillator is not expected classically, where all energies would be possible. The
quantization of the energy levels of the harmonic oscillator is similar in spirit to the
quantization of the energy levels for the particle in a box, except that for the harmonic
oscillator, the potential energy varies in a parabolic manner with the displacement from
equilibrium, and the walls of the “box” therefore are not vertical. We might say, in
comparison to the “hard” vertical walls for a particle in a box, that the walls are “soft” for
the harmonic oscillator. In addition, the spacing between the allowed energy levels for the
harmonic oscillator is a constant value, h_, whereas for the particle in a box, the spacing

between levels rises as the quantum number, n, increases.

There is another interesting feature seen in Figure 3. For the lowest allowed energy, when

n = 0, we see that the quantum harmonic oscillator possesses a zero-point energy of 1

2h_ This too is reminiscent of the particle in a box, which displays a finite zero-point
energy for the first allowed quantum number, n = 1. This lowest allowed zero-point energy
is unexpected on classical grounds, since all vibrational energies, down to zero, are

possible in the classical oscillator case.

Recall that we developed an expression for the probability of observing a classical
harmonic oscillator between x and x + dx and found that this probability is inversely
proportional to the velocity of the  oscillator (see equation 14). The corresponding
probability for a quantum harmonic oscillator in state n is proportional to n n = | n|2. We
now compare the probability densities of classical and quantum harmonic oscillators.
Recall that the ground state for the classical oscillator has zero energy (and zero motion),
whereas the quantum oscillator in the ground state has an energy of 1 2h. Therefore, it
does not make sense to compare classical and quantum oscillators in their ground states.
We can however directly compare probability densities by comparing quantum and

classical oscillators having the same energy. Equating the quantum and classical oscillator
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energies, we have

1 ; [
E, = — ) hv = A% 30
w=(n+5) = 5%, (30)
where A is the classical amplitude, or limit of motion. Solving for A, we have
2% 1/2
A [T‘V (2n + 1)} (31)

That is, a classical oscillator with energy FE, will oscillate between © = +A, with A given by
equation 31. The quantum and classical probability densities for n = 0,2, 5, and 20 are plotted in
Figure 4.

We see from equation 27 that |;ﬁ!g|2 is a Gaussian function function with a maximum at = = 0.
This is plotted in the upper left panel of Figure 4. Contrast this behavior with the classical harmonie
oscillator, which has a minimum in the probability at = 0 and maxima at the turning points.
Also note that the limits of oscillation are strictly obeyed for the classical oscillator, shown by the
vertical lines. In contrast, the probability density for the quantum oscillator “leaks out” beyond the
T = +A classical limits. The quantum harmonic oscillator penetrates beyond the classical
turning point! This phenomenon is akin to the quantum mechanical penetration of a
finite barrier seen previously. Thus, the probability densities for the quantum and classical
oscillators for n = 0 have almost opposite shapes and very different behavior. Next, we compare the
classical and quantum oscillators for n = 2 (top right panel in Figure 4). Note that the probability
density for the quantum oscillator now has three peaks. In general, the quantum probability density
will have n+1 peaks. In addition to having n+1 maxima, the probability density also has n minima.
Remarkably, these minima correspond to zero probability! This means that for a particular
quantum state n there will be exactly n forbidden locations where the wave function
goes to zero (nodes). This is very different from the classical case, where the mass can be at any

location within the limits —A4 < # < A. Note also that the middle peak centered at x = () has a
smaller amplitude that the outer two peaks. Thus, for n = 2 we are beginning to see behavior that is
closer in spirit to the classical probability density, that is, the probability of observing the oscillator
should be greater near the turning points than in the middle. The classical probability density is
essentially the same for all energies, but is just “stretched” to larger amplitudes for higher energies.
For n = 5, shown in the lower left panel of Figure 4, we see the continued trend that the peaks near
# = 0 are smaller than the peaks near the edges. Note that the probability densities continue to
extend past the classical limits of motion, but die off exponentially. Finally, for n = 20 note that the
gaps between the peaks in the probability density become very small. At large energies the distance
between the peaks will be smaller than the Heisenberg uncertainty principle allows for observation.
In other words, we will no longer be able to distinguish the individual peaks. The probability
will be smeared out. You should be able to see that for n = 20 an appropriate the average of
the quantum probability density closely approximates the classical behavior probability density.
The region of non-zero probability outside the classical limits drops very quickly for high energies,
so that this region will also be unobservable as a result of the uncertainty principle. Thus, the
quantum harmonic oscillator smoothly crosses over to become a classical oscillator. This crossing
over from quantum to classical behavior was called the “correspondence principle” by Bohr.
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' n=0 | n=2

Probability Density
o

Al

Position

Figure 4: Probability Densities for Quantum and Classical Harmonic Oscillators. The probability
densities for quantum harmonic oscillators, [1,(x)|?, are plotted as solid lines for the quantum
numbers n = 0,2,5,20. The probability densities of the classical harmonic oscillators having the
same energies as the quantum oscillators are plotted as dashed lines. The classical limits of motion

are shown by the vertical lines.
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The Quantized Rigid Rotor—Three-Dimensional

Our reason for studying the idealized rigid rotor is to ultimately apply our understanding to
molecules that rotate in a quantized fashion. At this stage of our development, the student should
be thinking about a diatomic molecule that is rotating like a dumbbell in space. A schematic of a
carbon monoxide molecule is shown in Figure 7. This diatomic molecule possesses a single moment
of inertia, I = mlr"f + -m.grg, where mi and ms are the masses of the atoms, and r; and ry are the
distances of these masses from the center of mass of the molecule. In the three dimensional case,
the diatomic molecule can tumble in space, or more specifically its plane of rotation can occur in
any plane in space. The physical condition we have previously considered in which rotation occurs
in a fixed plane (planar rotor) does not apply. We will not derive the equations related to the
three-dimensional rigid rotor but will give the result in equation 45
72

73D _ nr
ER = J(J+ 1) (45)

where the quantum number J =0.1,2,...

[+t

Ic To

Figure 7: Schematic of a Carbon Monoxide Molecule. The distance of each atom from the center
of mass is shown, where r¢ is the distance from the carbon atom (light sphere) to the center of
mass and ro is the distance from the oxygen atom (dark sphere) to the center of mass.

A plot of the allowed rotational energy levels for a diatomic molecule is shown in Figure 8 as
a function of the quantum number, J. It may be seen that as J increases, the spacing between
allowed rotational quantum states increases. If we let J be the rotational quantum number of a
particular state, with (J — 1) the rotational quantum number of the next lower allowed state, then
one may calculate that the spacing between adjacent levels increases by the amount %, which

will be called 2JB where B is the rotational constant, given by
h?

=

This will become important when we discuss spectroscopic transitions between neighboring rota-

tional states. [The student should prove AE = E; — E;_, = 2JB].

B (46)
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Figure 8&: Allowed Energy Levels for the Rotations of a Diatomic Molecule.

Possible Questions

PART- A Questions (Each questions carries one
mark)

1. The power emitted per unit area of the surface of a black body is directly proportional
to the fourth power of its absolute temperature, the law is
a. Stefan Boltzmann law b. Weins displacement law

c. Planck’s law d. Jean’s law

2. Evidence in favour of the particle nature of radiation
a. Diffraction of radiation b. Compton effect
c. polarization d. interference

3. Black body radiation has a characteristic continuous spectrum of radiation which
depends upon

a. Body’s temperature b. Nature of the body

c. Colour of the body d. Density of the body

4. The spectrum of black-body radiation at any temperature is related to the spectrum
at any other temperature

a. Stefan Boltzmann law  b. Weins displacement law

c. Planck’s law d. Jean’s law
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5. In one dimensional box problem the potential energy of the particle outside the box is

a.zero  b. unity c. infinity d. fractional
6. The energy levels of the particle in the box are
a. quantized b. randomized c. dispersed  d. Not-quantized

7. The theory of rigid rotor in space is useful in dealing with
a. Rotational spectra of diatomic molecules b. Vibrational spectra of diatomic
molecules
c. IR spectra of diatomic molecules d. Raman spectra of diatomic molecules

8. In the Hook’s law f = -kx, k is called
a. Force constant b. Gas constant
c. Boltzmann constant d. Faraday’s constant

9. An one electron system whose potential field is not spherically symmetrical
a. Hydrogen atom b. Hydrogen atom in electric field
c. Hydrogen molecule  d. Helium molecule

10. The method to obtain approximate solutions to the wave equation
a. Perturbation method b. Normalization of the wave function
c. Making the wave functions orthogonal

Making the wave functions orthonormal

11. The method applicable for a system which wayve functions may be guessed
a. Perturbation method b. Variation method
c. Normalization of the wave function d. Making the wave functions orthogonal

12. Write the energy level for the free particle in motion

a. En=2n-1/2 b. En=n’ c. Enis continuous d. En on’
13. The shape of BeCl2 molecules is
a. Linear .~ b. Triangular planar < c. Tetrahedral d. octahedral

14. Example for tetrahedral molecule

a. BeCl2  b. boron trifluoride c. methane d. phosphorous pentachloride
15. If the symmetry element is the ‘plane of symmetry” then the corresponding
symmetry operation. is

a. Doingnothing  b. reflection c. Inversion of all coordinates

d. Rotation through an angle of 360/n about an axis where ‘n’ is the order of the axis

16. For the symmetry operation “rotation” the corresponding symmetry element is
a. Identity element b. Plane of symmetry
c. Centre of symmetry  d. Proper axis of symmetry

17. The basic theorem is concerned with the elements of the matrices constituting the
irreducible representation of a group is called

a. Faradays theorem b. The great orthogonality theorem

c. Normalized theorem d. Van der Waals theorem

18. Character tables are constructed using
a. Symmetry elements  b. Orthogonality theorem
c. Symmetry operations d. Irreducible operations

19. The corresponding matrix for the operation E is
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a. Zero matrix b. Square matrix c. Diagonal matrix ~ d. Unit matrix

20. Reducible representation is also called as
a. Total character b. Symmetry elements
c. Symmetry operations  d. Total elements of symmetry

PART- B Questions (Each questions carries six marks)

21. (a). (i) Give an explanatory note on time dependent Schrodinger equation.
(i1) S.T. Weins and Rayleigh Jeans law are the limiting cases of planks
Expression, Explain.

(OR)
(b). Give a detailed account on black body radiation.

22. (a) Compare the classical mechanics and quantum mechanics with particle
in one dimensional box.
(OR)

(b) Derive the equation for particlein three dimensional box and separation of
variables.

23. (a). Give an account on the applications of variation method.
(OR)

(b) (1) Explain radial distribution functions.
(i1) Explain the perturbation method to-anharmonic oscillator.

24. a. Write notes on
(i)’What is a group?
(1) What are the defining properties of a group?
(i11) Define class.
(OR)

b. Write notes on improper rotation and plane of symmetry with suitable examples.

25. (a) (i) What are the relationships between reducible and irreducible
representation of the group.
(i) What are the Properties of irreducible representation?

(OR)

(b) Explain the symmetry selection rules for infra-red and Raman spectra.

PART- C Question (Each Question carries ten marks)

26.  Differentiate variation method and perturbation method with an example?
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S. No Question Option 1 Option 2 Option 3 Option 4 Answer
1 The solution of the problem of the rigid angular Lapalacian Hermitian Position operator angular
rotatorgives us directly the solution of the momentum | operator operator momentum
operator operator
2 Two atoms of mass m1 and m2 rigidly joined | Rigid Simple Particle in one | Particle in three Rigid rotator
by a weightless link of length R is a rotator harmonic dimensional dimensional box
oscillator box
3 The theory of rigid rotor in space is useful in | Rotational Vibrational IR spectra of | Raman spectra of | Rotational
dealing with spectra of spectra of diatomic diatomic molecules | spectra of
diatomic diatomic molecules diatomic
molecules molecules molecules
4 A diatomic molecule in space where the bond | Rigid Simple Particle in one | Particle in three Rigid rotator
length is assumed to remain unchanged rotator harmonic dimensional dimensional box
during rotation is a oscillator box
5 Eo= "2 hv is the zero point energy of Simple Rigid rotor Particle in one | Particle in three Simple
harmonic dimensional dimensional box harmonic
oscilator box oscilator
6 V(x) = % kx’, this is an equation of a Parabola Hyperbola circle Straight line Parabola
7 Force constant k in Hook’s law is high for Single bond | Double bond Triple bond H-bond Triple bond




which region of the electromagnetic
spectrum:

8 Force constant k in Hook’s law depends upon | Bond Molecular Acceleration Viscocity of the Bond
the strength weight of the due to gravity | participating atoms | strength
between two atoms between two
two atoms atoms
9 In the Hook’s law f = -kx, k is called Force Gas constant Boltzmann Faraday’s constant | Force
constant constant constant
10 According to Hooke’s law the force ‘f* acting | -kx mgh mv Y2 mv -kx
on a molecule is given by
11 A diatomic vibrating molecule can be Simple Rigid rotor Particle in one | Particle in three Simple
represented by a simple model called harmonic dimensional dimensional box harmonic
oscillator box oscillator
12 The quantum number ‘n’ is called Principal Azimuthal Magnetic Angular Principal
quantum quantum quantum momentum quantum
number number number quantum number number
13 In the particle in one dimensional problem, The various | The various One state is All are dependent The various
The property of orthogonality between any states are states are independent and still do not states are
two different states ensures that truly dependent and the other interfere with each | truly
independent is dependant other independent
14 The wave functions for different states of the | orthogonal normal metagonal paragonal orthogonal
problem, the particle in one dimensional box
system are
15 Molecules are known to absorb radiation in Ultra violet | NMR Mass heat Ultra violet




16 Which of the following is NOT a correct The Excited The electronic | The typical Excited
aspect of the Born-Oppenheimer electrons in | electronic and amplitude of electronic
approximation amolecule | states have the | vibrational nuclear vibration is | states have

move much | same motions of a much smaller than | the same

faster than equilibrium molecule are that characterizing | equilibrium

the nuclei. internuclear approximately | the motion of internuclear
distance as the | separable electrons. distance as
ground the ground
electronic electronic
state. state.

17 oxygen, just above it in the periodic table, The sulfur Breakdown of | Breakdown of | Excited The sulfur
has only a valence of 2. Why is this? atom can the Pauli the Born- atom can

access d- principle Oppenheimer access d-
orbitals approximation orbitals

18 The ground state of the ozone molecule O3 linear tetrahedral bent equilateral triangle | bent
has the following shape Sulfur apparently
shows a valence of 6 in the molecule SF6,
whereas

19 excited state of the helium atom has the term | 'So S 28, He" ’Si
symbol

20 The ionization energy for hydrogen atom is 27.2 40.8 54.4 122.4 eV 122.4 eV
13.6 V. The ionization energy for the
ground state of L' is approximately

21 The expectation value of 1=r in the ground ao (3/2)ao ao/4n 1/a¢ 1/a¢

state of the hydrogen atom equals




22 Which of the following statements about the | Itis The electron's | The The wavefunction | The
hydrogen atom ground state is INCORRECT: | described angular wavefunction | decreases electron's
by the momentum is spherically | exponentially asa | angular
quantum equals 'h. symmetrical. function of r. momentum
numbers n = equals 'h.
1,I'=0;m
=0.
23 For real atomic orbitals with quantum n n-1 n-1-1 n+1 n-1
numbers n, 1, the total number of nodal
surfaces, radial plus angular, equals
24 The orbital degeneracy (excluding spin) of n n+l1 2n+ 1 n’ n’
hydrogen atom energy levels equals
25 For the hydrogen atom, which of the 4p 4d 4f They all have the They all
following orbitals has the lowest energy same energy have the
same energy
26 The atomic orbital illustrated to consists of 2p 3s 3p 3d 3d
two lobes
27 Spherical polar coordinates are used in the the cartesian the otherwise the the
solution of the hydrogen atom SchrAodinger | Laplacian coordinates Schrodinger atomic orbitals Schrodinger
equation because operator has | would give equation is would violate the equation is
its simplest | particle-in-a- then separable | Pauli exclusion then
form in box into 3 ordinary | principle. separable
spherical wavefunctions. | dfferential into 3
polar equations. ordinary
coordinates. dfferential
equations.
28 A hydrogen atom radiates a photon as it falls | 22.8 91.2 121.6 182.4 121.6
from a 2p level to the 1s level. The
wavelength of the emitted radiation equals
29 The illustrated wavefunction represents the 1 2 3 5 5

state of the linear harmonic oscillator with n=




30 The energy levels of the linear harmonic all non n-fold (n + 1/2)-fold (2n + 1)-fold all non
oscillator are degenerate | degenerate degenerate degenerate degenerate

31 The corresponding eigenvalue equals 0 hk ihk h?k? hk

32 Which of the following is NOT a solution of | exp(jikx) exp(jkx) sin kx cos kx exp(jkx)
the differential equation "(x) + kay(x) = 0

33 Which of the following is NOT a correct The shorter | Anelectronin | The Measurement of The
consequence of the Heisenberg the lifetime | an atom momentum of | one variable in an | momentum

of an cannot be an electron atomic system can | of an
excited state | described by a | cannot be a®ect subsequent electron
of an atom, | well-de ned measured measurements of cannot be
the less orbit. exactly. other variables measured
accurately exactly.
can its

energy be

measured.

34 Planck's constant has the same as angular the frequency quantum angular
momentum | Hamiltonian momentum
number number

35 A diatomic molecule is initially in the state 36/1444 9/38 13/38 34/38 13/38
where is a spherical harmonic. What is
the probability of obtaining result 1 = 5?

36 A particle with energy E is in a time The particle | The The particle The particle can The particle
dependent double well potential shown in will always | probability of | will be tunnel from one will be
figue, which of the following statement about | be in a finding the confined to well to other and confined to
the paticle is not correct ? bound state | particle in one | any one of the | back any one of

will be time well's the well's

independent




37

Consider the following statements. A particle
of energy E is incident from the left on a
potential step of height VO at x =0 1. if E<V0
, wave function of the particle is zero for x>0
2. if E< V0, wave function is not zero for
x>0 3. if E> V0, reflection coefficient is not
zero. Which of the statements given above
are correct

1 only

2 only

1 and 2 only

2 and 3 only

2 and 3 only

38

The eigen function of hydrogen atom contain
which of the following ? 1. Legendure
polynomials 2. Laguerre polynamials 3.
Hermite polynamials. Select the correct
answer using the code given below

1,2 and 3

1&2

1 only

2 only

1&2

39

The wave function fo a paticle in one-
dimentional potential well is given by V2/a
sin nmx/a, 0<x<a, when a potential of V(x)=
cos mx/a is applied,the change in first order
energy is

Z€1o

an

2m/a

2m/a

Z€ro

40

If peturbation H' = ax, where a is a constant,
is added to infinite squre well potential V(x)
=0 for 0<x<m, V(x) = oo otherwise. The
correction to the ground state energy to first
order in a is

an/2

an

an/4

an/\N2

an/2

41

A particle constrained to move along the x-
axis is described by the wave function WY(x) =
2x; 0<x<1 ¥Y(x) = 0; elsewhere. What is the
probability of finding the particle within
(0,0.4)

0.85

0.085

0.0085

0.00085

0.085




42

For a particle of mass m in a one-dimentional
box of length 1, what is the average of
momentum Px for the ground state

Z€ro

h/(21)

h/l

b/ (2xl)

h/(21)

43

If n represents the number of eigen states of a
hydrogen atom, then its discrete energy levels
are proportional to

n2

1/n

1/n°

1/n’

44

A particle of mass m is in a simple harmonic
oscillator potential V = x”. If the ground state
wave function is Ae™? , what is the
expression for constant a equal to

2n(m/2)"* /h

2n(1/m)"* /h

h(m/2)"* 2n

h(m)"* /2n

2m(m/2)"* /h

45

A particle of mass m is confined in the
ground state of a one-dimentional box
extending from x=-2L to x = +2L. The wave
function of the particle in this state W(x) =
YO0 cos nx/4L, where WO is constant. The
energy of eigen value corresponding to this
state is

h’n%/ 2mL>

h’n%/ 4mL’

h’*n?/ 16mL°

h’n?/ 32mL°

h’n%/ 32mL>

46

The wave function of a particle in a box of
length L is W(x) = V2/L sin nx/L , 0<x<L,
Y(x)=0 x<0 & x>L the probability of the
particle finding in the region 0<x<L/2 is

0.40%

0.30%

0.20%

0.50%

0.50%

47

A free electron moving without any
restriction has the continuous energy
spectrum

Line
spectrum

continuous
energy
spectrum

Discrete
energy
spectrum

Band spectrum.

continuous
energy
spectrum

48

The occurrence of zero point energy in one
dimensional box problem is in accordance
with the

Paulis
exclusion
principle

Heisenberg’s
uncertainty
principle

Hund’s rule

Aufbau principle

Heisenberg’s
uncertainty
principle




49 The zero point energy equation shows that The The The The velocity of the | The
the electron inside the box is not at rest, position of | momentum of | momentum of | electron cannot be | momentum
hence the electron | the electron the electron precisely known of the
can be cannot be can be electron
precisely precisely precisely cannot be
known known known precisely
known
50 The zero point energy equation shows that The The position The The velocity of the | The position
the electron inside the box is not at rest, position of | of the electron | momentum of | electron cannot be | of the
hence the electron | cannot be the electron precisely known electron
can be precisely can be cannot be
precisely known precisely precisely
known known known
51 The value of zero is not acceptable for the The wave The wave The wave The wave function | The wave
value of ‘n’ because function function will function will will become well function will
will become | become zero become behaved become zero
unity infinite
52 The electron inside the box is Not at rest Not at rest at Not at rest at Not at rest at 300K | Not at rest at
at 0°K. 0°C 298K 0°K.
53 The value of the arbitrary constant A in the Zero one two three Zero
particle in a box problem is
54 The value of wave function at the walls of Zero one two three Zero
the box is
55 The value of wave function out side the box Zero one two three Zero
is
56 The value of the arbitrary constant B in the Square root | Square of 2/a | Cube root of | Cube of 2/a Square root
particle in a box problem is of 2/a 2/a of 2/a
57 The energy levels of the particle in the box quantised randomised dispersed Not-quantised quantised
are
58 The possible values of ‘n’ in the 1,2,34 .... 0,1,2,3.... Zero 0,24, .... 1,2,3,4 ....

schrodinger’s equation can have values




59

In one dimensional box problem the potential

Zero unity infinity fractional Zero
energy of the particle in the boundaries of the
box is
60 In one dimensional box problem the potential | zero unity infinity fractional infinity

energy of the particle outside the box is
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UNIT-IV

SYLLABUS

Symmetry elements and symmetry operations - definition of identical and equivalent
elements configurations - effect of performing successive operations commutative and
non-commutative - inverse operations.

Groups and their basic properties - definition of a group - basic properties of a group-
definition of abelian - cyclic- isomorphic, finite, infinite groups and subgroup.
Symmetry classification of molecules into point groups-Schoenflies symbol (only-
difference between point group and space group).

Matrices- Definition of matrix, square matrix, diagonal matrix, null matrix, unit matrix,

row matrix, column matrix, symmetric matrix, skew symmetric matrix and conjugate
matrix. Multiplication, commutative and non commutative-determination of inverse of
a matrix, block multiplication of matrices-addition and subtraction of matrices.

Matrix notations for symmetry operations of C2y and C3vy groups-construction of
character tables for C2y and C3v point groups.

Symmetry Elements and Symmetry Operations

A symmetry elementis a geometric entity (point, line or plane). A symmetry operator
performs and action on a three dimensional object. Symmetry operators are similar to other
mathematical operators.

We will be use only five types of operators in this subject

Operator Symbol

Identity E
Rotation C
Mirror plane a
Inversion i
Improper rotation S

All symmetry operators leave the shape (molecule) in an equivalent position,i.e. it is
indistinguishable before and after the operator has performed its action.
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Identity (£)

This operator does nothing and is required for completeness: Equivalent to

multiplying by 1 or adding O in algebra.
Rotation (0)

Rotate clockwise around an axis by 2@/n if the rotation brings the shape (molecule) into an
equivalent position.

The symmetry element is called the axis of symmetry. For a 2m\n rotation there is an n-fold axis
of symmetry. This is denoted as Cn .

Many molecules have more than one symmetry axis. The axis with the largest ‘n’ is called the
principal axis.

Cl

Cl—F|’t—Cl
Cl € 6 6 14 ible rotati €z 56;and 6 > E
4 Ci C7 Cf possible rotations. Cj > and Cj
Consider a square planar molecule like PtCl4.

We classify this as E, 2C4, C2. There are also two other C2 axes (along the bonds and between
the bonds)

Reflection (o)
The shape (molecule) is reflected through a plane. (spiegel is German for “mirror”)

If a plane is L to the principal rotation axis then it is called ch (horizontal). If it
is along the principal axis then it is called ov (vertical). There may be more
than one ov . If the plane bisects an angle between 3 atoms then it is called od
(dihedral). The reflection plane is the symmetry element.
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Inversion (i)
All points in the shape (molecule) are reflected though a single point. The point is the symmetry

element for inversion. This turns the molecule inside out in a sense. The symmetry element is the
point through which the shape is inverted.

Improper Rotation ()
Rotation by 2n/n followed by reflection, ¢ perpendicular to the rotation axis. Since performing ¢
two times is the same as doing nothing (E), S can only be performed an odd number of time.
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Sk =¢,CF  ifkisodd
Sk =CF ifkiseven
kmust be an odd value
e.g. S =CZ%andS; = 0,C3
Additionally...
51 =0y
Sy =0, ifnisodd
St =E ifniseven
The symmetry element for S is the rotation axis.

Symmetry Operations

Identifying all symmetry elements and operations in
molecules. Cyclopropane — Dsh

Cyclopropane - D3z
H H

H
H E, 2C3, 3Cy, on, 253, 3oy

There is an S3 and an 53 (also called S31)

Ethane (staggered) - D34
H H

H

H H E, 2C;3 3Cy, 1, 2S¢, 304
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Definition of a Group
There are four defining rules for groups.

1. The combination of any two elements as well as the square

ofeach element must be in the group.

Combining rule can be defined as anything (multiplication, differentiation, one
followed by another, etc...)

PQ =R ; R must be in the group
The commutative law may not hold AB # BA

2. One element must commute with all other elements and
leave them unchanged. That is, an identity element must be
present.

ER = RE =R ; E must be in the group

3. The associative law must
hold. P(QR) = (PQ)R ; for
all elements
4. Every element must have an inverse which is also in the
group. RR-1 =R-1R = E ; R-1. must be in the group

Summary
Definition of a group
PQ =R R must be in the group

ER = RE =R E must be in the group
P(QR) = (PQ)R for all elements

RR-1 =R-1R =E R-1 must be in the group
Example Groups
With a combining rule of addition, all integers form a group.

The identity element is 0, and the inverse of each element is the negative
value. This is an example of an infinite group.

With a combining rule of multiplication, we can form a finite group with the following set
{1, -1, 1, -1}. The identity element is 1 in this case.

A set of matrices can also form a finite group with the combining rule of matrix
multiplication.
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1 0 0 0 0 1 0 0 0 0 0 1 0O 0 1 0
0 1 0 0 1 0 0 0 0 01 0 0 0 0 1
0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0
0 0 0 1 0 01 0 1 0 0 0O 0 1 0 0
1 0 0
. . w01 0 O
The identity matrix is 00 1 0
0 0 0 1
e.g.
0 1 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 1 0 10 0 0 1
0 0 0 1 01 0 0 11 0 0 0
0O 01 0 1 0 0 0O 0 1 0 0

n
ZAik X Byj = (AB);;
%

Aix =element in the i row and k™ column
Lastly, the set of symmetry operators (not symmetry elements) present for a given

molecular shape forms a group with the combining rule of one followed by another.

These types of groups are called point groups.
Group Multiplication Tables
The number of elements in the group is called the order of the group (h)

Rearrangement Theorem:
In a group multiplication table, each row and column lists each element in the group once

and only once. No two rows or two columns may be identical.

Consider a group of order 3

Gs|E A B
E|E A B
AlA ? 7
B |B ? ?

There are two options for filling out the table AA = B or
AA =E If AA =E then the table becomes...

Gs|E A B
E|E A B
AlA E B
B|B A E
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This violates the rearrangement theorem as the last two columns have elements that appear
more than once.

The only solution for group G3 is

Gs|E A B
E|E A B
A|A B E
BB E A

Note: The group Gj is a member of a set of groups called cyclic groups. Cyclic groups have
the property of being Abelian, that is all elements commute with each other.

A cyclic group is one which every element can be generated by a single
element and it’s powers. In this case A = A and AA = A, =B and AAA =
A3 =E.

Point Groups
Consider all of the symmetry operations in NH;

N':
/ \”"’H
H H E 'l':}l-'g.l'J Uv” O-V'” CS C%

NH3 E O-V' GV” Gv”’ C3 C%

E E O-V' Gv” GV”’ C3 C%
ov |ovy E Cs C% oy’ oy’
oy | oy’ C% E Cs oy’ oy
C |ew” G €2 E o o

C3 C3 O-V'” GVJ Gv” C% E
C?Z) C% O-V" O_vuv GV, E CS

Note that all of the rules of a group are obeyed for the set of allowed symmetry operations in
NH;
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OO W s IO
S O W > |
we e M ww il v Biwsle =N Ra ==
o> Tmm g W w
o Sle NesRw i Neolle
MmO w oo
omw > 0T

Compare the multiplication table of NHj to that of Ge.
There is a 1:1 correspondence between the elements in each group
E-E
ov = A
oy — B
oy —C
Cs—=D
C:—>F
Groups that have a 1:1 correspondence are said to be isomorphic to each other.

If there is a more than 1:1 correspondence between two groups, they are said to be
homomorphic to each other. All'groups are homomorphic with the group E.i.e. A —- E, B
—E,C—Eetc...

Classification of point groups

Shoentlies Notation

Group Essential Symmetry

Name Elements*

Cs one o

G one i

Cn one Cn

Dy one Cn plus nCz L to Gy

o one Gy plus noy

Can one Gy plus on

Dun those of Dy plus on

Dnd those of Dy plus 64

Sn(evenn) oneS,

Ta tetrahedron

On octahedron Special G
In icosahedrons peciat Lifoups
Hy sphere
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Systematic classification of a group

Systematic Method to Assign Point Groups

special group?
No | Yes

1.9

Cy? linear ?

| |

0y I

platonic solids
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Assign the point groups to the following molecules

Br
Gla 2 H
&
“cl

H Br

dichlorodibromo ethane  j only — ¢

triphenyl methane B SiCs
H
\0
H
0 o
| /s N"”//H
H trishydroxy benzene (. H H Cay

Properties of Matrices
Matrix: rectangular array of numbers or elements

aj; Qq2 di3
(1 Qzp dz3z| a; ithrow and jt column
31 d32 033

A vector is a one dimensional matrix
a11
o1
31

This could be a set of Cartesian coordinates (x,y,z)
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Matrix math basics
Addition and
Subtraction
Matrices must be the same size

cij = aij + bij add or subtract the corresponding elements in each matrix Multiplication by a
scalar (k)

k[aij] = [kaij] every element is multiplied by the
constant k

Matrix multiplication

It

Zaik X byj = ¢

k

aik =element in the it row and k™ column

ayp dq2 s b i €11 C12 €13
1 12 13 _

a1 Q2 b b b = |C21 €22 C23
i | 22 23

a3y dszz €31 (€32 C33

Where c11 = (a11bi1 + azb21)
c12 = (ai1biz + azbzz)
etc...
matrix multiplication is not commutative (ab # ba)

Matrix Division
Division is defined as multiplying by the inverse of a matrix. Only square matrices may
have an inverse. The inverse of a matrix is defined as

a-a-1 = 9ij 81 — Kronecker
delta d1j = 1 if i=] otherwise
dij=0
1 0 O
) ij — 0 1 0
0 0 1
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Special Matrices
Block diagonal matrix multiplication

1 0 0 0 0 04 1 0 0 0 O 4 1 0 0 0 0
12 0 0 0 Off2 3 0 0 0 O g8 7 0 0 0 0
00 3 00 O]|OO 1T 0O O0]_10 0 3 0 0
000 1 3 2/|l00 00 1 2 ]00 0 13 3 10
000 1 2 2fj0 00 3 0 2 0 0o 0 10 3 8
000 4 0 40 0 0 2 1 1 0o oo 2 5 9

Each block is multiplied independently
ie.

H SH;‘ §=[§ 7

1 3 210 1 2 13 3 10
1 2 2|3 0 2 10 3 8
4 0 1112 1 1 5 9

Square Matrices

= L) ajj
This is the sum of the diagonal elements of a matrix
(trace). ya is call the character of a matrix

properties of x
if c =ab and d = ba then yc =

yd conjugate matrices have
identical x r = b-1pb then yr
Operations that are in the same class have the same character.

Matrix Representations of Symmetry Operations
We will now use matrices to represent symmetry operations. Consider how an {x,y,z}

vector is transformed in space

Identity E
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1 0 0] % [x
o ¢ o b=l
0 0 1zl Lz

Reflection

Oxy

1 0 O X X
o 10 bf=|>]
0O 0 -11 Lz —Z
Oxz

1 0 0] x X
5 -F
0O 0 1 Z Z
Inversion

i

-1 0 0 X —X
0 0 =11 tz —Z
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Rotation

Cn about the z axis
? 7 0] x - of

[? 70 [y‘ =|y'| The zcoordinate remains unchanged.
0 0 1l iz z

Consider a counter clockwise rotation by 0 about the z axis

y
A
4 (x1,y1)

(XZ,_VZ) ----------- Y2 5

I ) |

: ] i

i ) X
X2 X1

From trigonometry we know that
X, = x1c0s0 —y;sinf and y, = x;sinf + y, cos
Represented in matrix form this gives:
[COSQ —sin 9] x1] . [xz]
sinf  cos@ 1Ly1 X2
For a clockwise rotation we find

[_C(;i?gb 22;2 [ii] = [ﬁj] recall cos ¢ = cos(—¢) andsing = —sin(—¢)

The transformation matrix for a clockwise rotation by ¢ is:

cos¢p sing 0O
[— sing cos q’) 0
0
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Improper Rotations
SI]

Because an improper rotation may be expressed as oxyCy we can write the
following since matrices also follow the associative law.

1 9 0 cos¢p sing 0] px ®
01 0 —sing cos¢ 0 M = |y
0 0 -1 0 0 11 Lz 7'

—sing cosgb 0
L0

[ cos¢ sing O H

The set of matrices that we have generated that transform a set of {x,y,z}
orthogonal coordinates are called orthogonal matrices. The inverse of these
matrices is found by exchanging rows into columns (taking the transpose of
the matrix).

Consider a C3 rotation about the z-axis.

B g
2 2
A L 5 = (3
2
0 g 1

exchanging rows into columns gives

—_

/

2 M h
2 B
V3 1 ol = (C)' = €3
2 2
0 0 1
Multiplying these two matrices gives the identity matrix
1 \.n"'_ \.nﬁ
-2 7 Off—-7 —7% 1 0 0
_¥3 1 _1 0 1 0
2 2 2 0 0 1
0 0 1
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We know from symmetry that C;C% = C3C; = E

Here we see that Cz and CZare inverse and orthogonal to each other.

In general we can write a set of homomorphic matrices that from a representation of a
given point group

For example, consider the water molecule which belongs to the C,v
group. C,v contains E, C,, 6xz , oyz

The set of four matrices below transform and multiply exactlylike the symmetry
operations in C,v. That is, they are homomorphic to the symmetry.operations.

The algebra of matrix multiplication has been substituted for the geometry of applying
symmetry operations.

1 0 0 -1 0 0 1 0 0 -1 0 0
0 1¢0,{0 -1 0,0 =1 0/,]0 1 0
0 0 1 0 0 1 0 0 1 0 0 1

E CZ Oxz Gyz

Show that Cz 0x; = 0y

-1 0 O0Jfr o 0 -1 0 0
I 0o -1 0] l() -1 0] = { 0 1 0]
0 0 110 0 1 0 0 1
Character Tables

For Cs;v we find the following character table with four regions.

The algebra of matrix multiplication has been substituted for the geometry of applying
symmetry operations.

Character Tables

For Csv we find the following character table with four regions.

C3V E 2C3 30";

A1 1 1 1 |z x2+y?, 72

A, |1 1 -1 |Rz

E 2 -1 0 |xy)ERxRy) | (x2-y? xy)(xz,y7)
I 1 11 v

Region I — Mulliken Symbols for Irreducible Representations
1) All 1x1 representations are “A” or “B”, 2x2 are “E” and 3%3 are “T”

2) 1x1 which are symmetric with respect to rotation by 2n/n about the principle Cn axis
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are “A” (i.e. the character is +1 under Cn). Those that are anti-symmetric are labeled “B”
(the character is
-1 under Cn).

3) Subscripts 1 or 2 are added to A and B to designate those that are symmetric (1)

or anti- symmetric (2) to a C2 1 to Cn or if no C2 is present then to a ov.

4) "and " are attached to those that are symmetric (") or anti-symmetric (")relative to a ch.

5) In groups with an inversion center (i), subscript g (German for gerade or even) is

added for those that are symmetric with respect to 1 or a subscript u (German for

ungerade or uneven) is added for those antisymmetric with respect to 1.

6) Labels for E and T representations are more complicated but follow the same general
rules.

Region II — Characters
This region list the characters of the irreducible representations for all symmetry
operations in each group.

Region III — Translations and Rotations
The region assigns translations in x,y and z and rotations Rx, Ry, Rz to irreducible
representations. E.g., in the group above (x,y) is listed in the same row as the’ E
irreducible representation. This means that if one formed a matrix representation based on
x and y coordinates, it would transform (that is have the same characters as) identically as

E.
Recall that previously we looked at a C3 transformation matrix for a set of Cartesian
coordinates.
1 /3
2 2 O
\-'Jg 1 lyl = yf == Cg
—e —=
2 2 z 7z
0 g 1

Notice that this matrix is block diagonalized. If we break this into blocks we
are left with

_Eﬁ ?1 [;] = j;r,] =& -anml [Tlz] = |£"]| =6
2

2

Compare the characters of these matrices to the characters under C3 in the table above.
Notice that for (x,y) x = -1 and for (z) x = 1. If you compared the characters for all of the
other transformation matrices you will see that (x,y) — E and (z) — Al as shown in
region III of the table. Similar analysis can be made with respect to rotations about x, y
and z.
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Region I'V- Binary Products
This region list various binary products and to which irreducible representation that they

belong. The d-orbitals have the same symmetry as the binary products. For example the dxy
orbital transforms the same as the xy binary product.

Representations of Groups
The following matrices form a representation of the Czy point group

1
0
0

0

m O =

0
0
1

0

BE

Group Multiplication Table for Cay

0O O
-1 0

0 1
C2

R

Cov E C2 Oxz Oyz
E E C2 oOx Oyz
C2 C2 E Oyz Oxz
Oxz Oxz Oyz E Ca
Oyz |Oyz Oxz C2 E

1
0
0

0
-1
0

Oxz

0
0
1

How many other representations exist for the C,v point

group? A: As many as we can think up

The set of numbers {1,1,1,1} transform like C,v etc...

|

-1
0
0

0 0
10
0 1
Oyz

However, thereare only a few representations that are'of fundamental importance.
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Consider the matrices E, A, B, C, ... and we perform a similarity transform with

Q

E'=Q1EQ
A'=Q1AQ
B’=Q1BQ
Etc...

For example A" = Q1AQ

A
A'=Q1AQ A

Al

The similarity transform of A by Q will block diagonalize all of the matrices
All of the resulting subsets form representations of the group as well
eg. Ei, A}, Bf..etc...

We say that E, A, B, C... are reducible matrices that form a set of reducible
representations.

If Q does not exist which will block diagonalize all of the matrix
representations then we have an irreducible representation.

Text Books:

1. Raman, K.V, (2002). Group theory. New Delhi: Tata Mc Graw Publishing
Company.

2. Puri, Sharma & Pathania, (2006). Principles of Physical Chemistry. Jalandar:
Millenium Edition, Vishal Publishing Co.

3. Veera Reddy, K. (2005). Symmetry and Spectroscopy of Molecules. New
Delhi: New Age International Pvt. Ltd.

Possible

Questions

PART- A Questions (Each question carry one
mark)
1. Evidence in favour of the wave nature of radiation
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a. Interference of radiation b. Photoelectric effect
c. Compton effect d. Black body radiation

2. Black body radiation has a characteristic
a. Continuous spectrum b. Discontinuous spectrum
c. Narrow range of light d. Laser action

3. As per plancks law the characteristic continuous spectrum of radiation depends upon
a. Body’s temperature b. Nature of the body
c. Colour of the body d. Density of the body

4. Stefan Boltzmann law is based on
a. Diffraction of radiation b. Photoelectric effect
c. Compton effect d. Black body radiation

5. In one dimensional box problem the potential energy of the particle inside the box is
a.zero  b.unity c. infinity d. fractional

6. The solution of the problem of the rigid rotator gives us directly the solution ofthe
a. angular momentum operator  b. Lapalacian operator

c. Hermitian operator d. Position operator
7. A diatomic vibrating molecule can'be represented by a simple model called
a. Simple harmonic oscillator b. Rigid rotor
c. Particle in one dimensional box d. Particle in three dimensional box

8. The quantum number ‘n’is.called
a. Principal quantum number b. Azimuthal quantum number
c. Magnetic quantum number d. Angular momentum quantum number

9. The lowest energy orbital for the ammonia molecule is designated
a. Is b. log c.lalr d Cyv

10. The benzene molecule C6H6 has how many vibrational
modes a. 6 b. 12 c. 24d. 30
11. The method applicable for a system which wave functions may be guessed
a. Perturbation. method b. Variation method
c. Normalization of the wave function d.Making the wave functions orthogonal

12. Write the energy level for the free particle in motion

a. En=2n-1/2 b. En=n’ c. En is continuous d. En on’
13. The shape of BeCl2 molecules is
a. Linear b.Triangular planar ~ c. Tetrahedral d. octahedral
14. Example for tetrahedral molecule
a. BeCI2 b. boron trifluoride ~ c. methane d. phosphorous pentachloride

15. If the symmetry element is the ‘plane of symmetry” then the corresponding
symmetry operation is

a. Doing nothing b. reflection c. Inversion of all coordinates

d. Rotation through an angle of 360/n about an axis where ‘n’ is the order of the axis

16. For the symmetry operation “rotation” the corresponding symmetry element is
a. Identity element b. Plane of symmetry
c. Centre of symmetry d. Proper axis of symmetry
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17. The basic theorem is concerned with the elements of the matrices constituting the
irreducible representation of a group is called

a. Faradays theorem b. The great orthogonality theorem

c. Normalized theorem d. Van der Waals theorem

18. Character tables are constructed using
a. Symmetry elements b. Orthogonality theorem
c. Symmetry operations d. Irreducible operations

19. The corresponding matrix for the operation E is
a. Zero matrix ~ b. Square matrix  c¢. Diagonal matrix ~ d. Unit matrix
20. Reducible representation is also called as

a. Total character b. Symmetry elements
c. Symmetry operations d. Total elements of symmetry
PART- B Questions (Each questions carries six marks)

21. (a). Explain the failure of classical mechanics and the success of quantum
theoryin explaining the results of black body radiation experiment.
(OR)
(b). Write notes on photoelectric effect.

22. (a). Solve the Schrodinger wave equation for one dimensional harmonic
oscillator for its energy.
(OR)
(b) Solve the Schrodinger wave equation for one dimensional harmonic
oscillator for its energy.

23. (a). Explain perturbation method and arrive at the expression for the first
order correction to energy and wave function.
(OR)
(b). Explain the application of variation method to anharmonic oscillator and
Helium atom.

24. (a). (1) What is a group?
(i) What are the defining properties of a group?

(iii) Define class.
(OR)

(b). () What are the conditions for the elements to form a group.

(i1) Define abelian and cyclic groups. Prove the statement. Every cyclic
group is abelian but the converse is not true.

25. (a). Explain the symmetry selection rules for infra-red and Raman spectra.
(OR)
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(b). (1) State direct product rule? Illustrate its applications.

(i) Write the simple procedure to determine hybridization pattern in sigma bond.

PART- C Question (Each questions carries ten marks)

26. Discuss about Reducible and Irreducible representations.

27. Construct the character table for Cs, point group.
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Unit IV
Fundamentals of Group theory
PART-A—-Multiple Choice Questions
(Each Question Carry One Mark) (Online Examinations)
S. No | Question Option 1 Option 2 Option 3 Option 4 Answer
The Triangular | Tetrahedra
1 shat+A187+A188:B188+A188:C188+A18+A188:C1 | Linear planarg 1 octahedral Linear
89

2 The shape of boron trifluoride is Linear Triangular | Tetrahedra octahedral Triangular
planar 1 planar

3 The structure of methane is Linear Triangular | Tetrahedra octahedral tetrahedral
planar 1

4 Structure of phosphorous pentachloride is Linear T.r 1g0na1' Tetrahedra octahedral T.r 1gonal'
bipyramidal | I bipyramidal
boron phosphorous

5 Example for a linear molecule BeCl, . . methane pentachlorid | BeCl,
trifluoride o
boron phosphorous boron

6 Example for triangular planar molecule BeCl trifluoride methane gentachlorld trifluoride
boron phosphorous

7 Example for tetrahedral molecule BeCl; . . methane pentachlorid | methane
trifluoride o




phosphorous

. : . boron .1 | phosphorous
8 Example for Trigonal bipyramidal BeCl» trifluoride methane gentachlorld pentachloride
One of the following is an geometric operation
9 Wh?n .perfprmed on the molgcule, give rise to an Diffraction | interference polarisatio reflection reflection
indistinguishable configuration of the same n
molecule
One of the following is an geometric operation
10 Wh?n .perfprmed on the molgcule, give rise to an Diffraction | interference polarisatio rotation Rotation
indistinguishable configuration of the same n
molecule
One of the following is an geometric operation
when performed on the molecule, give rise to an . . . polarisatio | . . . .
11 C g . Diffraction | interference mversion imversion
indistinguishable configuration of the same n
molecule
Rotation
through an
Inversion | angle of
12 If the symmetry element is the ‘identity element” Doing reflection of all 360/n about | Doing
then the corresponding symmetry operation is nothing coordinate | an axis nothing
s where ‘n’ is
the order of
the axis
Rotation
through an
Inversion | angle of
13 If the symmetry elerpent is the ‘plane of symmetry Domg reflection of all . 360/q about reflection
then the corresponding symmetry operation is nothing coordinate | an axis
s where ‘n’ is

the order of
the axis




Rotation Rotation
through an through an
. . . Inversion | angle of angle of
If the symriletry element is the proper axis of Doing . of all 360/n about | 360/n about
14 symmetry ” then the corresponding symmetry . reflection . ) )
.7 nothing coordinate | an axis an axis
operation 18 o e
S where ‘n’ is | where ‘n’ is
the order of | the order of
the axis the axis
Rotation
through an
Inversion | angle of Inversion of
15 If the symmetry element is the ‘centre of symmetry | Doing reflection of all 360/n about all
”” then the corresponding symmetry operation is nothing coordinate | an axis .
. coordinates
S where ‘n’ is
the order of
the axis
Rotation Rotation
. through an | through an
. . . Inversion
If the symmetry element is the ‘improper axis of . angle of angle of
- ) Doing ) of all
16 symmetry ” then the corresponding symmetry . reflection . 360/n about | 360/n about
.7 nothing coordinate . )
operation is S an axis an axis
followed by | followed by
reflection reflection
17 For the symmetry operation “doing nothing” the Identity Plane of Centre of | Proper axis | Identity
corresponding symmetry element is element symmetry symmetry | of symmetry | element
13 For the symmetry operation “reflection” the Identity Plane of Centre of | Proper axis | Plane of
corresponding symmetry element is element symmetry symmetry | of symmetry | symmetry
For the symmetry operatlop Rotatlf)n’ t‘hrough an Identity Plane of Centre of | Proper axis Proper axis
19 angle of 360/n about an axis where ‘n’ is the order of
element symmetry symmetry | of symmetry

of the axis” the corresponding symmetry element is

symmetry




For the symmetry operatlop Rotation through an . | 1dentity Plane of Centre of 1mproper 1mproper

20 angle of 360/n about an axis followed by reflection axis of axis of

. . element symmetry symmetry

the corresponding symmetry element is symmetry symmetry

71 Molecules which have an infinite number of planes | Linear Tetrahedral | Octahedral | Triangular Linear
of symmetry molecules molecules | molecules | molecules molecules
Molecules which have an infinite number of planes Boron Phosphorops

22 acetylene methane . . pentachlorid | acetylene
of symmetry trifluoride .
Molecules which have an infinite number of planes Boron Phosphorous

23 BeCl, methane . . pentachlorid | BeCl
of symmetry trifluoride .

24 The numb.er of plane of symmetry for Acetylene one two three infinity infinity
molecule is

75 The numb.er of plane of symmetry for a linear one two three infinity infinity
molecule is

2 The numb.er of plane of symmetry for a BeCl, one two three infinity infinity
molecule is

27 Which molecules have the molecular plane as one of Planar triangular tetrahedral | octahedral Planar
the plane of symmetry
The molecule which possess two planes of Boron Phosphorops

28 . BeCl, water . . pentachlorid | water
symmetry 1s trifluoride .

29 i];he molecule which possesses Ca axis of symmetry Matrices
An array of numbers arranged in rows and columns . determinant | Space Miller Point

30 Matrices . o
are called S lattices indices groups




A collection of the symmetry elements present in a

Point

Space

Space

Miller

An equal
number of

31 molecule that obeys the mathematical rules for the . .
. groups groups lattices indices rows and
formation of a group are called
columns
An equal An unequal
32 A square matrix will have number of | number of Only rows Only Squgre
rows and rows and columns matrix
columns columns
33 A matrix with an equal number of rows and Squqre Dlagpnal Null' Unit matrix D1agonal
columns matrix matrix matrix matrix
In a square
matrix if all
the
In a square matrix if all the elements other than Diagonal .| Unit Transpose of | elements
34 . . : Null matrix . :
those along the diagonal are zero, it is called matrix matrix a matrix other than
those along
the diagonal
are zero
In a square | In a square
. L In a square
matrix if all | matrix if all L In a square
matrix if L If every
the the matrix if all
all the element of a
. o elements elements the elements | .
35 A diagonal matrix will have elements diagonal
other than other than along the .
along the . matrix is
those along | those along . diagonal are
. . diagonal one (1)
the diagonal | the diagonal . Zero
. are unity
are zero are unity
If every If every If every If every
element of a | element of a | element of
. . . element of a . .
36 Unit matrix diagonal square anull . Unit matrix
.. .. . null matrix
matrix 1s matrix 1s matrix 1s is zero
one (1) one (1) one (1)




37 If every element of a diagonal matrix is one (1) Unit matrix Squgre Dlagp nal Transpose of C
matrix matrix a matrix
39 Example for a low symmetry point group Cs D> Con Sa Gi
. . . Boron
41 The molecule with Dgn point group acetylene water ammonia o1y g water
42 | The molecule with Cay point tyl t ja | Boron i
e molecule with Cyy point group acetylene water ammonia | Lo, ammonia
. . . Boron Boron
43 The molecule with Csy point group acetylene water ammonia | Lo, g trichloride
. . . Boron
44 The molecule with D3, point group acetylene water ammonia | oy g Dan
45 The point group of acetylene is Don Cov Cay Dsn Cay
46 The point group of water is Don Cov Cay Dsn Csy
47 The point group of ammonia is Dan Cay Csy Dsn Dsn
48 The point group of boron trichloride is Dan Cay Csy Dsn 32
49 The number of possible point groups for a crystal is 32 45 62 Six
The maximum number of axis of symmetry a crystal . Block
50 . two Three Four SixX factored
can have is ;
matrix
Matrix
which will
A matrix in which all the non-zero elements will be Block Character Square Diagonal also be
51 . . factored ) . . blocked out
in square blocks along the diagonal . 0s a matrix | matrix matrix .
matrix in exactly
the same

way




Matrix A
which will coordinatio
C . also be . n point
57 If twp glmlllarly blocked gut matrices are blocked out Dlagpnal Squgre Unit matrix | (x.y,z) in
multiplied, the product will be a . matrix matrix
in exactly the
the same Cartesian
way coordinates
A
coordinatio
n point ) )
) ) A scal Unit D 1 )
53 A one column matrix represents (x,y,z) in scarat . lagona matrix
matrix matrix matrix
the
Cartesian
coordinates
o . : ) : Scalar Vector commutativ
54 Multiplication of two matrices gives a matrix determinant
product product e
commutativ Non- Non- Leaves the
55 Multiplication of a matrix with unit matrix is commutativ | associative . matrix
e associative
e unchanged
vl\é?i[réz Matrix will
L th . . 1vi
o ) ) ) . caves the Matrix will | divided by be divided Carbonyl
56 Multiplication of a matrix with unit matrix is matrix by the
be squared | the sulfide
unchanged number of
number of
columns
TOwWS
. . Carbonyl . Boron Dichloro
57 The molecule with Cgy point group sulfide water ammonia trichloride methane
. . Dichloro . Boron Nitrogen
58 The molecule with C»y point group acetylene methane ammonia trichloride trifluoride
59 The molecule with Csy point grou acetylene water Nitrogen Boron ethylene
3vpomnt group y trifluoride | trichloride y




Vinca

ammonia .
alkaloids

‘ 60 ‘ The molecule with pan point group acetylene ‘ water ethylene
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UNIT-V

SYLLABUS

Definition of reducible and irreducible representations - irreducible representations as
orthogonal vectors - direct product rule, the great orthogonality theorem and its
consequences - determinations of the characters for irreducible representation of C,v

and C;v point groups using the orthogonality theorem.
Group theory and Vibrational spectroscopy - vibrational modes as basis for group

representation - symmetry selection rules for IR and Raman spectra, Mutual exclusion
principle - classification of vibrational modes. Group theory and dipole moment.

The Great Orthogonality Theorem

The theorem states

. h
Z[Fi(R)mn][I}(R)m'n'] — I_6ij5rrlrrz'5rzrz'
R

ilj
Terms
h = order of the group (# of symmetry operators)

Ti = ith representation

li = dimension of Ti (e.g. 3 %X 3 ,1i=23)
R = generic symbol for an operator

[Ti R(mn)] = the element in the mth row and nth column of an operator
R in representation Ti[Tj R(m’n’)] = complex conjugate of the element
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in the m’th row and n’th column of an operator R in representation Tj.
What does this all mean?

For any two irreducible representations Ti, Tj

Any corresponding matrix elements (one from each matrix) behave as components of a
vector in h-dimensional space, such that all vectors are orthonormal. That is, orthogonal
and of unit length.

Examine the theorem under various conditions...

If vectors are from different representations then they are orthogonal

Z[Fi (R)mnl [[}(R)m’n.']* =0 ifi+#]

R

If vectors are from the same representation but are different sets of elements then they are
orthogonal

Z[Fr'. (R)mn] [Fi (R)m.’n_’]* =0ifm#m' orn#n'

R
The square of the length of any vector 1s h/li

Irreducible Representations

There are five important rules concerning irreducible representations

1) The sum of the squares of the dimensions of the irreducible representations of a group
isequal to the order of the group

DE=h
i
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2) The sum of the squares of the characters in an irreducible representation is equal to the
order of the group

Z[xi(m]? = h

3) Vectors whose components are the characters of two irreducible
representations are orthogonal

D DGR =0 wheni =)

4) In a given representation (reducible or irreducible) the characters of all matrices
belongingto the same class are identical

5) The number of irreducible representations of a group is equal to the number of classes
in the group.

Let’s look at a simple group , C,v (E, C,, 6v, 6v’)

There are four elements each in a separate class. By rule 5, there must
be 4 irreducible representations. By rule 1, the sum of the squares of the
dimensions must be equal to h (4).

F+B+15+1i=4

The only solutionisly =L, =13 =1, =1

Therefore the C,v point group must have four one dimensional

Z [Fi (R)mn] [Ff_(R)nm]* —

R li
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irreducible representations.

Irreducible Representations

There are five important rules concerning irreducible representations

6) The sum of the squares of the dimensions of the irreducible representations of a group
isequal to the order of the group

Zsfzh
i

7) The sum of the squares of the characters in an irreducible representation is equal to the
order of the group

Zm(m]z —h

8) Vectors whose components are the characters of two irreducible
representations are orthogonal

> LG (R] =0 whenij

9) In a given representation (reducible or irreducible) the characters of all matrices
belongingto the same class are identical

10) The number of irreducible representations of a group is equal to the number of
classes in the group.

Let’s look at a simple group , C2v (E, C2, ov, 6v’)
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There are four elements each in a separate class. By rule 5, there must
be 4 irreducible representations. By rule 1, the sum of the squares of the
dimensions must be equal to h (4).

B+B+15+15=4

The only solutionisl;, =, =l =10, =1

Therefore the C2v point group must have four one dimensional
irreducible representations.
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All other representations must satisfy ).;[x;(R)]* =4

This can only work for i = £ 1. And for each of the remaining I' to be
orthogonal to I'; there must be two +1 and two -1.

Therefore, the remaining I' must be (E is always +1)

Cov E C2 oy oy
I 1 1 1 1
I -1 -1 1
I3 -1 01 -1
['4 1 1 -1 -1

Take any two and verify that they are orthogonal
= (1x1)+ (1x-1) + (1x-1) +(1x1) =0

These are the four irreducible representation of the point group Cay

Consider the Csy group (E, 2C3, 3ov)

There are three classes so there must be three irreducible representations
414+ E =56

The only values which workare l; = 1,1, =1,[; =2

That is, two one dimensional representations and one two dimensional
representation.

So for I't we can choose

Csv | E 2Cs 3ov
I

For I'; we need to choose * 1 to keep orthogonality




KARPAGAM ACADEMY OF HIGHER EDUCATION

lass: I- M.Sc (Chemistry) Course Name: Physical Chemistry-I
ourse Code: 1I8CHP103  Unit: V (IR/RAMAN SPECTROSCOPY) Batch: 2016 -2019

Prepared by Dr.E. Karthikeyan, Asst. Prof., Department of Chemistry, KAHE Page 7/21




KARPAGAM ACADEMY OF HIGHER EDUCATION

lass: I- M.Sc (Chemistry) Course Name: Physical Chemistry-I
ourse Code: 1I8CHP103  Unit: V (IR/RAMAN SPECTROSCOPY) Batch: 2016 -2019

Cas | E 2Cs 3o
L |+ 1 i
I | 1 1 A

o= (1x1) + 2(1x-1) + 3(1x-1) =0

s | E 26 35

I'1 1 1 1
I'2 ] | |
I’ 2

To find I's we must solve the following

Z[)(l(R)][J(g(R)] = (D2 + 2D x3(G)] +3(Dxz(0,)] = 0

Z[)(z(R)]D(3(R)] =@+ 2D [x3(C)] + 3(=Dx3(0x)] = 0

Solving this set of two equation and two unknowns gives

[x3(C3)] = —1 and [x3(6,)] =0

Therefore the complete set of irreducible representations is

s | E 26 35

I'1 1 1 1
I'2 ] S |
1 I'3 2 =L —

3/21

We have derived the character tables for Czv and Csv (check the book

appendix)

CZV E C?, Ov ij CBV E 2C3 36\!
Ay 1 1 1 1 Ay 1 1 1
Az 1 -1 -1 1 Az 1 1 -1
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B: 1 4 1 4 E 2 4 #
B | 1 1 -1 -1

We now know that there is a similarity transform that may block diagonalize a
reducible representation. During a similarity transform the character of a
representation is left unchanged.

X® = ) ax(®)

J

Where x(R) is the character of the matrix for operation R and 3aj is the number
of times that the jt irreducible representation appears along the diagonal.

The good news is that we do not need to find the matrix Q to perform the
similarity transform and block diagonalize the matrix representations.
Because the characters are left intact, we can work with the characters alone.

We will multiply the above by xi(R) and sum over all operations.

D a®xm® =) Y ar®xm® =) Y a4 x®
R R J R

and
> 1B xR = he;
R

‘For each sum over j we have 0/21

Z a;xj(R) xi(R) = ajZXJ{(R)Xi(R) = a;hé;;
R

R
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The characters for x; and xj form orthogonal vectors we can only have non-
zero values when i # j

The Reduction Formula

The above leads to the important result called “The Reduction Formula”
1
ar =7 x(®) xR
R

Where a; is the number of times the i irreducible representation appears in
the reducible representation.

Cav E 2C: 3oy
I'1 1 1 1
I 1 1 -1
I's 2 -1 0
Ia 5 2 4
I 7 I 3

Apply the reduction formula to I'z and I'

Forla
1
a; = g[(l)(l)(S) +2)M@)+ MDD =1
i
a, = g[(l)(l)(S) £(2)AN2)+ BY(=1)=1)= 2

a3=

N =

[(D@)G) + ) (DE) +G)O)(=1) =1
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a; = %[(1)(1)(7) + @M@ +BM(=3)=0

1
a, = g[(l)(l)(ﬂ + M@ +B)(-D(-3)=3
1
as = g[(l)(Z)U) +@2) D@ +(3)0)(=3)=2

Sum the columns...
ForIa
C3V E ZC3 30-11
Iy 1 1 1
) 1 1 1
) 1 1 1
I's 2 -1 0
[a 5 2 1
For Iy
C3V E 263 30’\:
) 1 1 1
) 1 1 1
) 1 1 1
I'3 2 -1 0
I'3 2 -1 0
I'b 7 1 3
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Vibrations

We can use the tools of group theory to deduce the qualitative appearance of the normal
modes of vibration.

We’ll start with a simple molecule like H20.

For water we expect 3N-6 = 3 normal modes of vibration. Water is simple enough that
we can guess the modes.

o 0 o
>Ny v >y >y
e N ANy W </
symmetric stretching  anti-symmetric stretching bending

Assign these three vibrations to irreducible representations in the C2v point group.

Cv | E C2 om» 0w

A 1 1 1 1 |z

As 1 1 -1 -1 |R:
Bi | 1 -1 1 -1 |xRy
B, | 1 -1 -1 1 |yR

Consider the displacement vectors (red arrows) for each mode and write what happens
under‘each symmetry operation.
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Symmetric stretching (I'V1)
E-1,C-=>1,0a—1, 09— 1
Anti - Symmetric stretching (I'v2)
E-1,C—>-1,0a9~1 0'g9—-1
Bending (I'3)

E->1,0—>-1,06921 0'gp— -1

Cow | E C2 omy O

A1 1 1 1 1 |z
Ao 1 1 -1 -1 |R;
B | 1 -1 1 -1 |xRy
B | 1 -1 -1 1 |yR
[vi 1 1 1 1

['v2 1 -1 1 -1

['v3 1 1 1 1

In a more complicated case we would apply the reduction formula to find the T'irr
which comprise I'v . However, in this case we see by inspection that

- Ay
2 - B,
I - A

Selection Rules for Vibrations

Born-Oppenheimer approximation: electrons move fast relative to
nuclear motion.
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Y =Yy
|| waidpapidradn,
Where:

Y, is the electronic wavefunction and ¥y, is the nuclear wavefunction

d is the dipole moment operator
d= Z(—e)n— + Z 2 ety
[ a

11 1s the radius vector from the origin to a charge qi (an electron in this case)

Where:

—e 1s the proton charge Za is the nuclear charge, ra is the radius vector for a nucleus

Integrals of this type define the overlap of wavefunctions. When'the above integral is not
equal to 0, a vibrational transition 1s said to be allowed. That s, there exists some degree
of overlap of the two wavefunctions allowing the transition from one to the other.

In 1800 Sir William Herschel put a thermometer in a dispersed beam of light. When he
put the thermometer into the region beyond the red light he noted the temperature
increased even more than when placed in the visible light. He had discovered infrared
(IR) light.

Similar to electronic transitions with visible and UV light, IR can stimulate transitions from
vl— v2. A simplified integral describing this transition is

vib+ 3 1. P
j ':b[} d lf) m dt
which is allowed when the integral does not
equal zero. In this integral
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P
vib= _ 'IJJ
0 = vibrational ground state wavefunction and ™ s the pth fundamental

vibrational level wavefunction.

What this all means is that a vibrational transition in the infrared region is only allowed if
the vibration causes a change in the dipole moment of the molecule.

Dipole moments translate just like the Cartesian coordinate vectors X, y and z.
Therefore only vibrations that have the same symmetry as x, y or z are allowed
transitions in the infrared.

Selection Rules for Raman Spectroscopy

In Raman spectroscopy, incident radiation with an electric field vector E may induce a
dipole in a molecule. The extent of which depends on the polarizability of the molecule
(aij polarizability operator).

hE P
fl][)gw aij 'J’md‘f

Transitions in Raman spectroscopy are only allowed if the vibration
causes a change in polarizability.

Polarizability transforms like the binary product terms (Xy, z2 etc...) and therefore
vibrations that have the same symmetry as the binary products are allowed transitions
in Raman spectroscopy. For water, all three vibrations are IR and Raman active.
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Possible Questions

PART- A Questions (Each question carries one mark)

1. The power emitted per unitarea of the surface of a black body is directly proportional
to the fourth power of its absolute temperature, the law is
a. Stefan Boltzmann law  b. Weins displacement law
c. Planck’s law diJean’s law

2. Evidence in favour of the particle nature of radiation
a. Diffraction of radiation b. Compton effect c. polarization d. interference
3. Black body radiation has a characteristic'continuous spectrum of radiation which
depends upon
a. Body’s temperature b. Nature of the body
c. Colour of the body d. Density of the body

4. The spectrum of black-body radiation at any temperature is related to the spectrum
at any other temperature

a. Stefan Boltzmann law b. Weins displacement law

c. Planck’s law d. Jean’s law

5. In one dimensional box problem the potential energy of the particle outside the box s
a. Zero b. unity c. infinity d. fractional
6. The energy levels of the particle in the box are
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a. quantized  b. randomized c. dispersed  d. Not-quantized
7. The theory of rigid rotor in space is useful in dealing with
a. Rotational spectra of diatomic molecules b. Vibrational spectra of
diatomic molecules c. IR spectra of diatomic
molecules d. Raman spectra of diatomic molecules
8. In the Hook’s law f = -kx, k is called
a. Force constant  b. Gas constant  c. Boltzmann constant  d. Faraday’s constant
9. An one electron system whose potential field is not spherically symmetrical

a. Hydrogen atom b. Hydrogen atom in electric field
c. Hydrogen molecule  d. Helium molecule

10. The method to obtain approximate solutions to the wave equation
a. Perturbation method b. Normalization of the wave function
c. Making the wave functions orthogonal d. making the wave functions orthonormal

11. Zeeman effect is
a. the change in energy levels of an atom when it is placed in uniform external
field b. The change in energy levels of an atom when placed in non-uniform external
field c. The change in energy levels of an atom when placed in external electric field
d. The change in energy levels of an atom when placed in non-uniform electric field
12. The energy level belongs to En=2n-1/2
a. Harmonic oscillator b. Hydrogen atom
c. particle in a box d. free particle in motion

13. For the symmetry operation “reflection’” the corresponding symmetry element is
a. Identity element b. Plane of symmetry
c. Centre of symmetry  d. Proper axis of symmetry

14. An array of numbers arranged in rows and columns are called
a. Matrices b. determinants c. Space lattices d. Miller indices
15. A diagonal matrix will have
a. In a square matrix if all the elements other than those along the diagonal are zero
b. In a square matrix if all the elements other than those along the diagonal are unity
c. In a square matrix if all the elements along the diagonal are unity
d. In a square matrix if all the elements along the diagonal are zero
16. The molecule with C3v point group
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a. acetylene b. water c. ammonia d. Boron trichloride

17. For a pyramidal molecule with point group C3v the number of theoretically
predicted IR fundamental bands
a. Three b. Four c. Five d. Six

18. For chloro trifluoride molecule the number of observed Raman bands and IR bands
are four each, the predicted geometry is
a. Pyramidal b. planar c. T-shaped d. bent

19. In case of molecules with a centre of symmetry the vibrational modes are anti-
symmetric to centre of inversion are

a. IR inactive b. IR active c¢. Raman inactive d. Raman hyper active
20. For Raman activity the vibrations should-involve a change in
a. polarizability b. magnetization _c. Magnetic susceptibility . d. Surface tension
PART- B Questions (Each questions carries six marks)

21. a. What are the postulates of Quantum mechanics?
(OR)

b. What are operators in quantum mechanics? Explain multiplication of operators.

22. Set up Schrodinger wave equation for the rigid rotor of diatomic molecule.
(OR)

(b). Set up Schrodinger wave equation for one dimensional box and solve the
equation for its energy.

23. (a). What are the applications of perturbation method to anharmonic
oscillatorand Helium atom.
(OR)
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(b). Derive Schrodinger equation for H-atom.

24. (a) (i) Define class and sub —group.
(il) Write notes on similarity transformation.
(iii) Show that the element [1, -1, i, -i] form a group.
(OR)

(b). (i) Prove the following:
S44=E, §3=o_hls4§C4’SSZ=Q2

(i) Distinguish between vertical plane and horizontal plane.
(i) Prove that Cy(x) Ca(y) = Ca(2).

25. (a) (i) What are the relationship between reducible and irreducible
representation of the group.
(i) What are the properties of irreducible representation?

(OR)
(b) (i) State and explain the great orthogonality theorem.

(i) How will you construct the character table for a Cay and Csy point group using the
great orthogonality theorem?

PART- C Question (Each Question carries ten marks)

26. What is meant by zeropoint energy? Show that the zero point energy for a particle in
one dimensional box is in accordance with Heisenberg’s principle.
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PART-A—-Multiple Choice Questions
(Each Question Carry One Mark) (Online Examinations)
S.No | Question Option 1 Option 2 Option 3 Option 4 Answer
1 For a planar molecule with point group D3, | Three Four Five Six Three
the number of theoretically predicted
IRfundamental bands
2 For a planar molecule with point group D3, | Three Four Five Six Three
the number of theoretically predicted Raman
fundamental bands
3 For a pyramidal molecule with point group | Three Four Five Six four
Csy the number of theoretically predicted
Raman fundamental bands
4 For a pyramidal molecule with point group Three Four Five Six four
C3y the number of theoretically predicted IR
fundamental bands
5 For a T-shaped molecule with point group Three Four Five Six SiX

Csy the number of theoretically predicted IR
fundamental bands




6 For a T-shaped molecule with point group Three Four Five Six Six
Csy the number of theoretically predicted
Raman fundamental bands

7 For Phosphorous trichloride molecule the Three Four Five Six four
number of observed IR bands

8 For Boron trifluoride molecule the number Three Four Five Six three
of observed IR bands

9 For chloro trifluoride molecule the number Three Four Five Six Six
of observed IR bands

10 For Phosphorous trichloride molecule the Three Four Five Six four
number of observed Raman bands

11 For Boron trifluoride molecule the number Three Four Five Six three
of observed Raman bands

12 For chloro trifluoride molecule the number Three Four Five Six Six
of observed Raman bands

13 For Phosphorous trichloride molecule the Pyramidal planar T-shaped bent Pyramidal
number of observed Raman bands and IR
bands are three each, the predicted geometry
1S

14 For Boron trifluoride molecule the number | Pyramidal planar T-shaped bent Planar
of observed Raman bands and IR bands are
four each, the predicted geometry is

15 For chloro trifluoride molecule the number | Pyramidal planar T-shaped bent T-shaped
of observed Raman bands and IR bands are
four each, the predicted geometry is

16 In the IR and Raman spectra, apart from the | overtones Metastable Solvent bands | Base bands overtones
fundamental absorption bands, it contains bands




17 In the IR and Raman spectra, apart from the | Combination | Metastable Solvent bands | Base bands Combination
fundamental absorption bands, it contains bands bands bands
18 In case of molecules with a centre of IR inactive IR active Raman Raman IR inactive
symmetry the vibrational modes symmetric inactive hyperactive
to centre of inversion are
19 In case of centrosymmetric molecules, the Paulis Mutual Hund’s rule Overtones rule Mutual
IR active vibrational modes are Raman exclusion exclusion exclusion
inactive and Raman active vibrational principle principle principle
modes are IR inactive, the principle is called
20 In case of molecules with a centre of IR inactive IR active Raman Raman IR active
symmetry the vibrational modes are anti- inactive hyperactive
symmetric to centre of inversion are
21 Vibrations of ‘g’ modes are IR inactive IR active Raman active | Raman Raman active
hyperactive
22 Vibrations of ‘u’ modes are IR inactive IR active Raman Raman Raman
inactive hyperactive inactive
23 IR active vibrations involve a change in Dipole magnetization | Magnetic Surface tension Dipole
moment susceptibility moment
24 For Raman activity the vibrations should polarizability | magnetization | Magnetic Surface tension polarizability
involve a change in susceptibility
25 For Raman activity the vibrations should Induced dipole | magnetization | Magnetic Surface tension polarizability
involve a change in moment susceptibility
26 The basic theorem is concerned with the Faradays The great Normalized Van der Waals The great
elements of the matrices constituting the theorem orthogonality | theorem theorem orthogonality
irreducible representation of a group is theorem theorem
called
27 All the properties of group representations Faradays The great Normalized Van der Waals The great
and their characters can be derived from this | theorem orthogonality | theorem theorem orthogonality
theorem theorem theorem




28 The Kronecker delta can have values lor0 1or2 Oor2 10r3 lor0

29 According to the great orthogonality Zero An odd An even Positive number Zero
theorem the sum over various operations of number number
the products of the elements of irreducible
representations will be equal to

30 As per the Great Orthogonality theorem, the | Symmetry classes of Symmetry Matrix elements classes of
number of irreducible representations in a elements elements in operations elements in
group is equal to the number of the group the group

31 As per the Great Orthogonality theorem, in a | identical different dissimilar interactive identical
given representation the characters of all the
elements of the same class will be

32 As per the Great Orthogonality theorem, the | Order of the classes of Symmetry Matrix elements Order of the
sum of the squares of the dimensions of the | group elements in operations group
irreducible representations of a group will be the group
equal to the

33 As per the Great Orthogonality theorem, the | Order of the classes of Symmetry Matrix elements Order of the
sum of the squares of the characters in a group elements in operations group
givenirreducible representations of a group the group
will be equal to the

34 As per the Great Orthogonality theorem, the | orthogonal normalised orthonormal identical orthogonal
characters of any two irreducible
representations of a group are

35 In the construction of the character table AorB E T U AorB
One dimensional irreducible representation
will be denoted by

36 In the construction of the character table two | A or B E T U E

dimensional irreducible representation will
be denoted by




37 In the construction of the character table AorB E T U T
Three dimensional irreducible representation
will be denoted by
38 Character tables are constructed using Symmetry Orthogonality | Symmetry Irreducible Orthogonality
elements theorem operations operations theorem
39 One of the following is not true with respect | The number of | The symmetry | The name of | The character The symmetry
to the information’s to the character table IR’s possible | and the point corresponding to and
for a point corresponding | group with the | various classes of | corresponding
group fundamental possible symmetry fundamental
bases for very | symmetry elements for all bases for very
few IR elements the IRs few IR
40 Null matrix is also called as Zero matrix Square matrix | Diagonal Unit matrix Zero matrix
matrix
41 The corresponding matrix for the operation | Zero matrix Square matrix | Diagonal Unit matrix Unit matrix
E is matrix
42 In Cyy point group the number of irreducible | Four five Six three Four
representation are possible
43 In C;, point group the number of irreducible | Four five six three Three
representation are possible
44 The number of elements present in Cs, point | Four five six three Six
group
45 The order of the group is denoted by h E i j h
46 The character of any two irreducible orthogonal diagonal parabola hyperbola orthogonal
representations of a group are
47 In C,y point group the number of classes are | Four five six three Four
possible
48 In C;, point group the number of classes are | Four five six three Three

possible




49 For the Cs, point group, the order of the Four five SiX three six
group is
50 Formaldehyde has Three sigma Four sigma Five sigma Six sigma bonding | Three sigma
bonding bonding bonding molecular orbitals | bonding
molecular molecular molecular molecular
orbitals orbitals orbitals orbitals
51 In the Cyy point group the ‘z’ coordinate Al A2 B1 B2 Al
transformers is
52 The symmetry or antisymmetry is with Subsidiary Principal axis | Vertical axis Horizontal axis Subsidiary
respect to axis axis
53 The single prime and double prime are used | symmetry chiral achiral Mirror image symmetry
to denote
54 Reducible representation is also called as Total character | Symmetry Symmetry Total elements of | Total character
elements operations symmetry
55 Irreducible representations reflect the Point group Space group Symmetry Character table Point group
essences of a elements
56 The C,y point group reducible Al1+A2+B2 2A1 + A2 +B2 Al +A2 2A1 +
representations is equal to 2A2+B2 2A2+B2
57 The Csy point group reducible Al+A2+B2 Al +2A2+E | A2 +B2 Al +A2 Al +2A2+E
representations is equal to
58 The Td point group reducible Al+A2+B2 Al +2E+T2 A2 +B2 Al +A2 Al +2E+T2
representations is equal to
59 To learn more about point groups and the Irreducible Reducible Symmetry Symmetry Irreducible
basis of representations it is essential to representation | representation | elements operations representation
know all possible ] ] s
60 In the group theory the letter R indicates Operation of a | Symmetry ofa | Order of a Class of a group Operation of a
group group group group
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PART A — (20X1 = 20 Marks)
Answer All the questions
1. The knowledge of quantum mechanics usually involves a knowledge of
a) Probability b) certainties ¢) un certainties d) possibility.
2. In quantum mechanics the state of a system is defined by
a) Wave function b) P,V,T c) Gaseous laws d) Law of Mass action

3. Which one of the following is correct in respect of an electron and a proton having same de-
Broglie wavelength of 2 A

a) Both have same K.E b) The K.E of proton is more than that of electron
c¢) Both have same velocity  d) Both have same momentum

4. Simuntaneous specification of position and momentum is impossible for a microscopic
particle. This is

a) Stefan Boltzmann law b) Weins displacement law
c¢) Planck’s law d) Heisenberg Uncertainty principle

5. The time independent Schrodinger's equation of a system represents the conservation of the



a) Total binding energy of the system b) Total potential energy of the system
c) Total kinetic energy of the system d) Total energy of the system

6. The component of linear momentum about any axis forms a mponent of linear momentum
about any axis forms a

a) Discrete eigen spectrum b) Continous eigen spectrum

c¢) Continous spectrum d) Line spectrum

7. Momentum of a particle is

a) MassxVelocity b) Mass/Velocity c) Mass x(Velocity)? d) (Mass)?/Velocity

8. The eigen values for energy must be

a) Real b) Imaginary ¢) Complex number d) Positive

9. Hermitian operator is

a) Linear and has real eigen values b) Non linear and real eigen values

c) Linear and has imaginary eigen values  d) Non linear and imaginary eigen values
10. The operators d/dx and multiplication by x

a) Do not commute b) Commute

c) Is not a linear function d) Results in a non-linear function

11. The solution of the problem of the rigid rotatorgives us directly the solution of the
a) Angular momentum operator b) Laplacian Operator

¢) Hermitian Operator d) Position operator

12. Two atoms of mass my and m rigidly joined by a weightless link of length R is a
a) Rigid rotator b) Simple harmonic oscillator

c) Particle in one dimensional box d) Particle in three dimensional box

13. Eg =% hv is the zero point energy of

a) Simple Harmonic oscillator b) Rigid rotor

c) Particle in one dimensional box d) Particle in three dimensional box

14. V(x) = % kx2, this is an equation of a

a) Parabola b) Hyperbola c) circle d) Straight line



15. According to Hooke’s law the force ‘f” acting on a molecule is given by
a) —kx b)mgh c)mv d)1/2mv
16. The quantum number ‘n’ is called
a) Principal quantum number b) Azimuthal quantum number
¢) Magnetic quantum number d) Angular momentum quantum number

17. The occurrence of zero point energy in one dimensional box problem is in accordance with
the

a) Paulis exclusion principle b) Heisenberg uncertainty principle
¢) Hund’s rule d) Aufbau principle
18. The electron inside the box is
a) Not at rest at 0° K b) Not at rest at 0° C ¢) Not at rest at 298 K d) Not at rest at 300 K
19. The value of wave function at the walls of the box is
a) Zero b) One c) Two d) Three
20. The energy levels of the particle in the box are
a) Quantised b) Randomised c) Dispersed d) Not-quantised
PartB (3x2 =6 Marks)

Answer All the questions
21. Write Heisenberg uncertainty principle.
22. Write the property of Wave function.
23. What is the condition of Orthogonality?

Part C (3x8 = 24 Marks)
Answer All the questions

24 a) Explain the different postulates of Quantum mechanics

(or)

b) Compare the classical mechanics and quantum mechanics with particle in one
dimensional box.

25 a) Derive time dependent Schrodinger wave equation



(or)
b) Define photoelectric effect and explain by quantum theory
26 a) Derive the Schrodinger wave equation for rigid rotor
(or)

b) How Heisenberg’s uncertainty principle is experimentally verified?
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PART A — (20X1 = 20 Marks)
Answer All the questions

1. Probability

2. Wave function

3. Both have same momentum

4. Heisenberg Uncertainty principle
5. Total energy of the system

6. Continous eigen spectrum

7. Mass x Velocity

8. Real

9. Linear and has real eigen values
10. Do not commute

11. Angular momentum operator
12. Rigid rotator

13. Simple Harmonic oscillator

14. Parabola

15. —kx

16. Principal qguantum number

17. Heisenberg uncertainty principle



18.
19.
20.

21,

22,

23.

24a.

24h.

Not at rest at 0° K
Zero
Quantised

Part B (3x2 = 6 Marks)

Answer All the questions

Heisenberg uncertainty principle states that the more precisely the position of
some particle is determined, the less precisely its momentum can be known, and vice
versa. The formal inequality relating the standard deviation of position ox and the
standard deviation of momentum op

dr = dp = g
a. ¥ must be continuous and single-valued everywhere.
b. 0¥ / 0x, 0¥ / 0y, 0¥ / 0z must be continuous and single-valued everywhere. (There
may be exception in some special situations, we will discuss this later.)
c. ¥ must be normalizable. | | 2 must go 0 fast enough as x, y, or z —=o0 so that | || 2
dV remains finite.

The two eigenstates of a Hermitian operator,'Y'm and W, are orthogonal is that they
correspond to different eigenvalues. This means, in Dirac notation, that,<Wm/ Wn>=0, if
,¥m and W, correspond to different eigenvalues.

Part C (3x8 =24 Marks)

Answer All the questions

Postulate 1: The state of a system is described completely in terms of a state vector
Y(r, t), which is quadratically integrable.

Postulate 2: To every physically observable there exist a linear Hermitian operator.
Postulate 3: In any measurement of the observable associated with operator A", the only
values that will ever be observed are the eigenvalues ai, which satisfy the eigenvalue
equation Ag” i = aigi.

Postulate 4: The eigenfunctions of operators corresponding to observable forms a
complete set. Postulate 5: If a system is in a state described by a normalized wave
function P, then the average value of the observable corresponding to A” is given by < A
>= 100 —o0 Y+A"Wdr .

Postulate 6:The wavefunction or state function of a system evolves in time according to
the time-dependent Schrdinger equation H™ W(r, t) = i! 0¥ ot .

Many experimental evidences merged around 1900, showing the fundamental failure


https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Eigenstates
https://en.wikipedia.org/wiki/Hermitian_operator
https://en.wikipedia.org/wiki/Dirac_notation

of (Newtonian)classical mechanics, including even some basic (daily-life)
concepts/pictures about matter and  light

» Electron in a hydrogen atom:
2
.. | 2 2 2 . Ze”
Kinetic energy =——(py + p, + p-): Potential energy V(r)=—
2m, ’ Areyr

Classical mechanics: Total energy = kinetic energy + potential energy, which can be any value.
Experimental observation: The optical spectrum of H consists of series of discrete lines.

Question/Suggestion: Does the energy of electron in H take discrete values ?

» Harmonic oscillator systems (e.g. vibration motion). with the same question/suggestion

7

. i . 1.0, 1 > 2

Kinetic energy =P . Potential energy V' (x) = ;k.\" =S mox
m 2

L

2

o 1
Classical mechanics: 1) Vibration energy E ; = f— +om @’x” can take any value (2 0)
2m
2) Thermal average ( E.,) =/kzI (equipartition theorem)
Systems Relating to Harmonic Oscillators

(1) Heat capacity Cy,v of monatomic solid (contributed only by the oscillatory motion of atoms
around their equilibrium lattice positions )

o(E,,.)
= Cav =Ny [ 2
or

Classical mechanics: C,,,=3R atany T ( R=N_ kg the gas constant )
Experiments: Caivv —0:as.T = 0

Does the energy of an oscillation motion take discrete values ?




25a.

The Schrodinger Equation

The wavefunction ¥(r,t) fully describes a system in space and time. The full
evolution of the wavefunction is found from the time-dependent Schrédinger

Equation:

Lovr

Here H is the Hamiltonian, the energy operator:

We can separate the time-dependent Schrodinger equation in a space-dependent
and a time-dependent part. Let’s write the wavefunction as:

U(z,t) = ¥(2)0(1)

We now plug this into the Shrédinger Equation:

Lo 00 B’ o%(a) e
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Now comes the trick. Each side depends on a different variable, while they equal
each other at all times. Hence, each side equals a constant:
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The solution of the first, time-dependent equation is:

The solution of the second, time-independent Schrodinger equation is the sta-
tionary wavefunction ¢/(x):
H¢ = By



25h.

Photoelectric Effect (1905, Einstein)

When a metal exposed to a light of frequency v, free electrons can be ejected only when v is large
enough (i.e.. short wavelength) such that v = @, where @is the so-called “work function™ characterizing how
strong an electron is bound to the metal. The ejected free electron is found to have the kinetic energy of

Ejinetic =hv—@ |. which does not depend on the light intensity.
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¢ Quantization
1) The dynamic observables (i.e., any functions of coordinates and momentums in classical mechanics) are
said being quantized. if possible results of individual measurement on them are of all or partly discrete

values

2) Quantization occurs in not only matter (such as electron. atom. molecules etc) but also for light, typically

concerning about the total energy. angular momentum. and spin

3) There are simple rules established. namely Quantum Mechanics (QM) — thanks to Erwin Schrodinger

(1925) and to Werner Heisenberg (1926) — to describe the quantization phenomena ( § 8.3)

4) A quantum system is completely described by the wavefunction that is governed by Schrodinger equation.

which goes also with Born interpretation of wavefunction ( § 8.4). as for wave-particle duality ( § 8.2)
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Rigid Rotor

We can expand our analysis to a two-particle system with masses my and ms
that rotate with a fixed distance R between them. We can separate out the

translational motion of the system as a whole and their motion relative to one
another. Instead of using the separate masses mq and mo, we can define the
joint mass M and the reduced mass p as follows:

M = m;+ma
1 _ 1.1
H mp M2

Using the technique of the separation of variables, the Schrodinger equation can
be split into an equation that depends on the center coordinates and the joint
mass M, and an equation that depends on the relative coordinates of the system
with reduced mass pu:

R,

—ﬁvm‘lﬂu = Eu¥y
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5 Vil = B,

The total wavefunction is written as ¥ = W, W, and the total energy is £ =
Ey + E,,. We are only concerned with the relative motion of the system. For
constant r we then have for the Schrédinger equation:
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26b.
1.5 Heisenberg uncertainty principle

Since a free particle is represented by the wave packet W(x, /), we may regard
the uncertainty Ax in the position of the wave packet as the uncertainty in the
position of the particle. Likewise, the uncertainty Ak in the wave number is
related to the uncertainty Ap in the momentum of the particle by Ak = Ap/h.
The uncertainty relation (1.23) for the particle is, then

AxAp =h (1.44)

This relationship is known as the Heisenberg uncertainty principle.
The consequence of this principle is that at any instant of time the position



of the particle is defined only as a range Ax and the momentum of the particle
is defined only as a range A p. The product of these two ranges or ‘uncertain-
ties” is of order £ or larger. The exact value of the lower bound is dependent on
how the uncertainties are defined. A precise definition of the uncertainties in
position and momentum is given in Sections 2.3 and 3.10.

The Heisenberg uncertainty principle is a consequence of the stipulation that
a quantum particle is a wave packet. The mathematical construction of a wave
packet from plane waves of varying wave numbers dictates the relation (1.44).
It is not the situation that while the position and the momentum of the particle
are well-defined, they cannot be measured simultaneously to any desired degree
of accuracy. The position and momentum are, in fact, not simultaneously
precisely defined. The more precisely one is defined, the less precisely is the
other, in accordance with equation (1.44). This situation is in contrast to
classical-mechanical behavior, where both the position and the momentum can,
in principle, be specified simultaneously as precisely as one wishes.

In quantum mechanics, if the momentum of a particle is precisely specified
sothat p = pg and Ap = 0, then the function A( p) is

A(p) = o(p — po)

The wave packet (1.37) then becomes

1 o . 1 ,
Y(x, t) = [ ()( N — P el( px—Et)/h dp = el(pox— Et)/h
) Aok ) P = o) / —

which is a plane wave with wave number py/% and angular frequency E /%
Such a plane wave has an infinite value for the uncertainty Ax. Likewise, if the
position of a particle 1s precisely specified, the uncertainty in its momentum is
infinite.

Another Heisenberg uncertainty relation exists for the energy £ of a particle
and the time 7 at which the particle has that value for the energy. The
uncertainty Aw in the angular frequency of the wave packet is related to the
uncertainty AE in the energy of the particle by Aw = AE/#h, so that the
relation (1.25) when applied to a free particle becomes

AEAL = H (1.45)

Again, this relation arises from the representation of a particle by a wave
packet and is a property of Fourier transforms.

The relation (1.45) may also be obtained from (1.44) as follows. The
uncertainty AL is the spread of the kinetic energies in a wave packet. If Ap is
small, then AE is related to A p by

2m m

2
AE:A(‘D—) N (1.46)

The time At for a wave packet to pass a given point equals the uncertainty in
its position x divided by the group velocity v,
Ax  Ax
Ar=28 28 TA (1.47)
Ug v 12
Combining equations (1.46) and (1.47), we see that AEAt = AxA p. Thus, the
relation (1.45) follows from (1.44). The Heisenberg uncertainty relation (1.45)

is treated more thoroughly in Section 3.10.
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