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Course outcome

To know about the concepts of activity and activity coefficients and determination
of activity coefficient

e To familiarize the Partial molar properties and its determination

e To learn about the chemical potential and its determination

e To study the concept of thermodynamic probability

e To learn the Maxwell — Boltzmann, Fermi — Dirac and Bohr’s Einstein statistics
Comparison and applicationsTo know about the Partition functions

Course Objectives

1. To develop knowledge in the interpretation of various physical quantities involved in the
thermodynamics.

2. Tolearn the fundamental process involved in thermodynamics and their applications.

UNIT -

Themodynamics and Non-ideal systems: Chemical potential and the definition of fugacity.
Determination of fugacity of gases by graphical method and from equations of state. Variation of
fugacity with temperature. Fugacity and the standard states for non ideal gases.

Definition of activity. Activity coefficient. Temperature coefficient of activity. Standard

states. Applications of activity concept to solutions. The rational and practical approaches.
Measurement of activity of solvent from colligative properties. Determination of activity of
solute.

UNIT — 11

Third Law of Thermodynamics: Probability and third law. Need for third law. Nernst heat
theorem and other forms stating third law. Thermodynamic quantities at absolute zero. Statistical
meaning of third law and apparent exception.

Mathematical Introduction: Theories of permutation & combination, laws of probability.
Distribution laws. Gaussian distribution.
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UNIT — 111

Classical Maxwell — Boltzmann Statistics: Maxwell distribution law for molecular velocities
and molecular speeds in an ideal gas. Velocity and speed distribution functions. Experimental
verification of Maxwell distribution law. Evaluation of average speed, root mean sguare speed
and most probable speed from distribution law. Distribution function in terms of the kinetic
energy of an ideal gas. The principle of equipartition of energy and the calculation of heat
capacities of ideal gases. Limitations of the principle of equipartition of energy.

Quantum  dtatisticss: Maxwell-Boltzmann  statistics.  Thermodynamic ~ probability.
Thermodynamic probabilities of systems in equilibrium. Boltzmann expression for entropy.
Stirling’s approximation. State of maximum thermodynamics probability. Legrangian multipliers.
Thermodynamic probabilities of systems involving energy levels. Maxwell-Boltzmann
distribution law. Evaluation of alphaand betain MB distribution law.

UNIT -1V

Partition function: Definition, justification of nomenclature, microcanonical and canonical
ensembles. Molecular partition and canonical function. The relation between the total partition
function of a molecule and the separate partition functions. Trandlationa partition function,
rotational partition function. Effect of molecular symmetry on rotational partition function. Ortho
and para hydrogen. Vibrational partition function. Electronic partition function. Evaluation of
thermodynamic properties E, H, S, A, G, Cy and Cp from monoatomic and diatomic idea gas
molecules partition functions. Thermodynamic properties of polyatomic ideal gases. Calculation
of equilibrium constants of reaction involving ideal gases from partition functions.

UNIT -V

Heat capacities of solids: Einstein’s and Debye’s theories of heat capacities of solids. Bose-
Einstein and Fermi-Dirac Statistics: Bose Einstein distribution law- Entropy of Bose Einstein gas.
Planck distribution law of black body radiation. Fermi-Dirac distribution law. Entropy of a Fermi-
Dirac gas. Heat capacities of the electron gas and the heat capacities of metals. Negative absolute
temperature.

SUGGESTED READINGS:

Text Books:

1. Glasstone, S. (2002). Thermodynamics for Chemists. New Y ork: Litton Edition Publishing.

2. Atkins, P., & De Paula, J. (2014). Atkins Physical Chemistry (X Edition). Oxford: Oxford
University Press.

3. Kapoor, K. L. (2005). Text Book Physical Chemistry Vol. V. New Delhi: MacMillan India
Ltd.

Reference Books:

1.  Lavin, I. N. (2002). Physical Chemistry (V Edition). New Delhi: TataMcGraw Hill
Publishing Company.

2. Whittakar, A. G. (2001). Physical Chemistry. New Delhi: Mount & Heal Viva Books Pvt.
Ltd.
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LECTURE PLAN

UNIT-I
Themodynamics and Non-ideal systems Total no. of hours: 10
S.No | Lecture Topics to be Covered Support
Hour Materials
1. |1 Introduction - Themodynamics and Non-ideal systems- R2-215
Chemical potential - Definition . R2-251
Fugacity -Definition
2. |1 Determination of fugacity of gases by graphical method . R2-251-252
3. |1 Determination of fugacity of gases from equations of R2-253-254
state.
4. |1 Variation of fugacity with temperature. R2-261-262
5 |1 Definition of activity. Activity coefficient. R1-582-583,
Temperature coefficient of activity, Standard states. R3-170
6. |1 Applications of activity concept to solutions, The rational and R2-337-338
practical approaches.
7. |1 M easurement of activity of solvent from colligative R2-356-357
properties.
8 |1 Determination of activity of solute. R2-357-358
9. |1 Discussion of Question paper
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References:

1. Puri, Sharma & Pathania, 2003. Physical Chemistry, Vishal Publishing Co., Jalandar.
2.Glasstone, S. 2002.Thermodynamics for Chemists. Litton Edition Publishing, New Y ork

3.Gurtu and Gurtu, 2000. Thermodynamics, Pragati pragasan publications, Chennai.
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UNIT-II Third law of Thermodynamics 08.10.2013 -29.10.2013

HOURS REQUIRED -09

SN | Lecture Topicsto be Covered Support
0 Hour Materials
1. |1 Third Law of Thermodynamics- Introduction.
Probability and third law.
2. |1 Nernst heat theorem and other forms stating third law. R1-586-587
3|1 R1-587
Thermodynamic quantities at absolute zero
4. |1 Statistical meaning of third law. R1-595
5 |1
Apparent exception-
6. |1 Mathematical Introduction, Theories of permutation &
combination
7. |1 Laws of probability
8 |1 Distribution laws, Gaussian distribution. R3-836-838
9. |1 Discussion of question paper
References:

1. Puri, Sharma & Pathania, 2003. Physical Chemistry, Visha Publishing Co., Jalandar.
2. Gurtu and Gurtu, 2000. Thermodynamics, Pragati pragasan publications, Chennai

3. S.P.Gupta Statistical Methods

UNIT-III Statistical Thermodynamics 26.06.2013-17.07.2013

HOURS REQUIRED -12
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S.No | Lecture Topicsto be Covered Support
Hour Materials
1 |1 Introduction to Statistical Thermodynamics- Classical Maxwell
— Boltzmann statistics: Maxwell distribution law for molecul ar
velocitiesin an ideal gas.
2. |1 Maxwell distribution law for molecular speedsin an idea gas. R1-69
3. |1 Experimental verification of Maxwell distribution law R3-1029-
1030
4. |1 Evaluation of average speed, root mean square speed and most
probable speed from distribution law.
5 |1 Distribution function in terms of the kinetic energy of an ideal R1-82
gas. The principle and limitations of equipartition of energy and
the calculation of heat capacities of ideal gases.
6. |1 Quantum statistics- Maxwell-Boltzmann statistics- | R1-6302-
Thermodynamic probability- Boltzmann expression for entropy. 631
7. |1 Stirling’s approximation. State of maximum thermodynamics R2-837
probability. Legrangian multipliers
8 |1 Thermodynamic probabilities of systems involving energy
levels.
9. |1 Evaluation of alpha and betain MB distribution law. R1-634
10. |1 Recapitul ation and Discussion of question paper
References:

1. Puri, Sharma & Pathania, 2003. Physical Chemistry, Visha Publishing Co., Jalandar.

2.Lavin, I.N 2002. Physical Chemistry. V Edition, Tata-Mc Graw Hill Publishing Company,
New Delhi

3..Mc.Quarrie Physical Chemistry
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UNIT-IV Partition function 23.07.2013 -07.08.2013

HOURS REQUIRED -10

SN | Lecture Topicsto be Covered Support
0 Hour Materials
1. |1 Partition function- definition-justification of nomenclature- -

2. |1 Microcanonical and canonical ensembles- Molecular partition
and canonical function.
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3. |1 The relation between the total partition function of amolecule
and the separate partition functions.

4. |1 Trandational partition function R1-637
5. |1 Rotational partition function R1-639
Effect of molecular symmetry on rotational partition function.

6. |1 Ortho and Para hydrogen-Vibrational partition function. R1-640
7. |1 Electronic partition function. R1-642,

Evaluation of thermodynamic properties E,H,S,A,G,Cv and Cp R1-648-649
from monoatomic ideal gas molecules partition functions.
8 |1 Thermodynamic properties of polyatomic ideal gases. R1-645
9. |1 Calculation of equilibrium constants of reaction involving ideal R1-652
gases from partition functions.
10. |1 Discussion of important questions
References:

1. Puri, Sharma & Pathania, 2003. Physical Chemistry, Visha Publishing Co., Jalandar

UNIT-V

Heat capacity of solids 13.08.2013 -10.09.2013

HOURS REQUIRED -10

S.No | Lecture Topicsto be Covered Support
Hour Materials
1 1 Heat capacities of solids-Introduction, Einstein’s theories of R1-656

heat capacities of solids.
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2. 1 Debye ‘s theories of heat capacities of solids. R1-657

3. 1 Bose-Einstein and Fermi-Dirac Statistics-Bose Einstein R1-632
distribution law Bose Einstein Condensation

4, 1 Entropy of Bose Einstein gas R1-633

5. 1 Plank distribution law of black body radiation

6. 1 Fermi-Dirac distribution law.

7. 1 Entropy of Fermi-Dirac gas.

8. 1 Heat capacities of the electron gas and the heat capacities of
metals.

0. 1 Negative absolute temperature.

10 |1 Discussion of Question paper

References:

1. Puri, Sharma & Pathania, 2003. Physical Chemistry, Visha Publishing Co., Jalandar
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UNIT -1

SYLLABUS

Chemical potential and the definition of fugacity. Determination of fugacity of gases by
graphica method and from equations of state. Variation of fugacity with temperature.
Fugacity and the standard states for non ideal gases.

Definition of activity. Activity coefficient. Temperature coefficient of activity. Standard

states. Applications of activity concept to solutions. The rational and practical
approaches. Measurement of activity of solvent from colligative properties.
Determination of activity of solute.

Partial molar property

A partial molar property is a thermodynamic quantity which indicates how an extensive
property of a solution or mixture varies with changes in the molar composition of the
mixture at constant temperature and pressure, or for constant values of the naturd
variables of the extensive property considered. Essentially it is the partial derivative with
respect to the quantity (number of moles) of the component of interest. Every extensive
property of a mixture has a corresponding partial molar property. Water and ethanol
always have negative excess volumes when mixed, indicating the partial molar volume of

each component is less when mixed than its molar volume when pure.

In genera, the partial molar volume of a substance X in a mixture is the change in
volume per mole of X added to the mixture.

The partial molar volumes of the components of a mixture vary with the composition of
the mixture, because the environment of the molecules in the mixture changes with the
composition. It is the changing molecular environment (and the consequent alteration of
the interactions between molecules) that results in the thermodynamic properties of a

mixture changing as its composition is atered
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If Z, denotes a extensive property of a mixture, it depends on the pressure (P),
temperature (T), and the amount of each component of the mixture (measured in moles,

n). For a mixture with m components, thisis expressed as
Z=Z(T P nyng--).

If temperature T and pressure P are held constant, Z = Z(ny,ng---) is a
homogeneous function of degree 1, since doubling the quantities of each component in

the mixture will double Z. More generally, for any A:
Z(Any, Ang, «-=) = AZ (114, 9.+ - +).

By Euler's first theorem for homogeneous functions, thisimplies
m’m _
4 = Z n,Z;,
=1

where 21’ isthe partial molar Z of component i defined as:

- 0Z
on, 1 ._.P,ﬂ_-j;.v‘i

By Euler's second theorem for homogeneous functions, Ziisa homogeneous function of

degree 0 which means that for any A:
Zi( Ay, Ang,-- ) = Zi(ig, nig. - - -).

In particular, taking A = 1 / nt where 'iT = 711 + 12 + - - onehas

Zi(zy, @2.---) = Zi(ny. g, - -).

1
ry=—
where 7T is the concentration, or mole fraction of component i. Since the molar

fractions satisfy the relation
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the x; are not independent, and the partial molar property is afunction of only m- 1 mole

fractions:

Zz- = Zi(;rl, Loy -- «xm—l)'

The partial molar property is thus an intensive property - it does not depend on the size of

the system.

Partial molar properties satisfy relations analogous to those of the extensive properties.
For the internal energy U, enthalpy H, Helmholtz free energy A, and Gibbs free energy G,
the following hold:

H; =U; + PV;,
A, =U-T8;.
G, = H;—T8S;.

where P isthe pressure, V the volume, T the temperature, and Sthe entropy.
Differential form of the thermodynamic potentials
The thermodynamic potentials also satisfy

dU =1dS — PdV + Z Jidn ;.

dH =1dS +VdP + IZ Jidn;.

dA = =-5dI' — PdV -I-JZ Jidn;.,

dG = —SdT'+ VdP + ) pdn;,

where pi is the chemical potential defined as (for constant nj with j#i):
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The last partial derivative is the same as (—:;i, the partial molar Gibbs free energy. This
means that the partial molar Gibbs free energy and the chemical potential, one of the
most important properties in thermodynamics and chemistry, are the same quantity.

Under isobaric (constant P) and isothermal (constant T ) conditions, the chemical

potentials, pa(T1, @2, - Tm), yields every property of the mixture as they

completely determine the Gibbs free energy.

Chemical potential :
Chemical potential, symbolized by y, is aquantity first described Josiah Willard Gibbs.

Gibbs definition, any chemica element or combination of elements in given proportions
may be considered a substance, whether capable or not of existing by itself as a
homogeneous body. Chemical potentia is also referred to as partial molar Gibbs energy.

Chemical potential is measured in units of energy/particle or, equivaently, energy/mole.

Consider a thermodynamic system containing n constituent species. Its total interna
energy U is postulated to be a function of the entropy S, the volume V, and the number of

particles of each species Ny, ..., Nn

U=U(S,V,Ni,...,Np)

By referring to U as the internal energy, it is emphasized that the energy contributions
resulting from the interactions between the system and externa objects are excluded. For
example, the gravitational potential energy of the system with the Earth are not included
inU.

The chemical potentia of the i-th species, i is defined as the partial derivative
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: a -I!“\'T‘i 8, V,Nj=i

where the subscripts simply emphasize that the entropy, volume, and the other particle

numbers are to be kept constant.

In real systems, it is usualy difficult to hold the entropy fixed, since this involves good
thermal insulation. It is therefore more convenient to define the Helmholtz energy A,

which isafunction of the temperature T, volume, and particle numbers:
K= AT VNG ooy )

In terms of the Helmholtz energy, the chemical potential is

-3
: (‘_}-ﬁ'r‘i T,V,Nji

The conditions at constant temperature and pressure. The chemical potential is the partial

derivative of the Gibbs energy with respect to number of particles

#_(mﬂ
{‘}ﬂ'} T.p,Nj

The chemical potential can be written in terms of partial derivative of the enthalpy

(conditions of constant entropy and pressure).

Here, the chemical potential has been defined as the energy per molecule. A variant of

this definition is to define the chemical potential as the energy per mole.

The chemical potential is known in acertain state (e.g. for standard conditions), then it
can be calculated in linear approximation for pressures and temperatures in the vicinity of
thisstate:

H(M=p(To)+0a(T-To) and
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H(P)=H(po)+B(pP—Po)
Oy
= (2)
P

2 [On
'J_(ap

Here " sthe temperature coefficient and

)T,ﬂ is thepressure coefficient.

With the Maxwell relations

.-
dr . on ),

(@),,.~ (&)
ap Tmn an T.p

It follows that the temperature coefficient is equal to the negative molar entropy and the

and

pressure coefficient is equal to the molar volume.
Fugacity :

Fugacity is the effective pressure for a non-ideal gas. The pressures of an ideal gas and a
real gas are equivalent when the chemical potentia is the same. The equation that relates
the non-ideal to the ideal gas pressureis:

o =f/P
In this equation, f represents fugacity, Pis the pressure for an idea gas, and @ is the

fugacity coefficient. For an ideal gas, the fugacity coefficient is 1.

Fugacity (f) isachemical quantity with units of pressure.
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Determination of Fugacity of gases by graphical method and from equations of
state.

The Gibbs free energy depends on pressure as well as on temperature. The pressure
dependence of the Gibbs free energy in a closed system is given by the combined first

and second laws and the definition of Gibbs free energy as,
dF=-S4T+Vdpr —a

If we hold temperature constant and vary only the pressure. Equation 1 for integration

from pressure p; to p2 as follows:

dG =Vdp —2

Then

G(py) — Gpy) = j; 2 Vap
1

— 3

or

G(py) = Gr:p1}+jp 2 Yy

pl — 4

Equation 4 is general and applies to all isotropic substance: solids, liquids, ideal gases,

and real gases.
Solidsand Liquids

The solids and liquids are not very compressible so, to a first approximation, regard the

volume in Equation 4 as constant (as long as the range of pressure is not too large). Then
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the V in Equation 4 comes out of the integral and integrate easily to get,
F(pa)=Glpd+p,—p) —5s

However, that solids and liquids are dlightly compressible and define the isothermal

compressibility as

I[EVJ
¥ =——| —
Fap'_r —s 6

The second level of approximation is to regard Kk as approximately constant. (K is not
constant, but the variation with pressure is so small it can be ignored) With k regarded as
constant rearrange Equation 6 and integrate it to find an expression for V as a function of
p (which can then be substituted into Equation 4 and integrated.) Rearrangement of
Equation 6,

dF

TR

Integrate from p1 to p2 (and volume goes from V1 to V>) to get,

V2
In—==-x (py—py)
7 17 P

—> 8
Take the antilog of both sides,
pa=Vie PP S o

In Equation 9 let p1 be a constant and let p2 range over the pressures. There is no reason
why we have to keep the subscript "2" on pz so change p2 to just p. Thisgivesus V as a

function of p,

o=l P TR = S P gTR P

— 10
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Equation 10 the constant parts have been separated from the variable part to make it easy

to integrate. When this expression for V is plugged into Equation 4 only the ¢ "% need
stay inside the integral.

| deal Gases

Equation 4 is also valid for gases, only here we put in the value of V for an ideal gas.

With this substitution Equation 4 becomes,

Pa nRT
G(py) = Glpy) +j 2 2R
2 F — 12

After integration Equation 12 becomes.

»
G{py) = Gp) +nRTh =2
P — 13

Let p2 range over the pressures p, let p1 be some standard state pressure and call it p°, and
finally we divide through by the number of moles of gas, n. With these changes equation
13 iswritten,

Gp) _G@7 | a2

fal
H M 2 — 14

The quantity G/n , represents the Gibbs free energy per mole of substance. This quantity
is called the chemical potential and it is given the symbol, u .

g =P+ RT £
po — 15
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Replaced G(p° )/n , the molar Gibbs free energy at the standard state pressure, with its
chemical potential symbol, p °. The standard state pressure equal to one atmosphere.

u=u"+EThp —16

p° = 1latmdividing the pintheln p.
Nonideal Gases

Equation 15 was derived assuming the gas is ideal. It does not apply to rea gases or
approximations to areal gas, like the van der Waals equation of state. Divide Equation 4
by the number of moles, n, let p1 equal the standard state pressure, p° and V/n is the molar

volume to get,
o p r 1 1
=u’+[7. VipHd
H=p Ip (plap’

Let p2 range over the pressures p, variable of integration from p to p'.) Equation 17 ,the
equilibrium constant expression. Equation 15 by writing the chemical potentia as,
g= g +RTIRIP

@
— 18

This equation defines a quantity f (p) called the fugacity. The fugacity has units of
pressure and it is a function of pressure. It contains the non ideality of the gas. For an
ideal gas the fugacity is the same as the pressure. Since all real gases become idea in the
limit as pressure goes to zero,

lim fp)=p

— 19

From the equation of state for agas, Equation 2 and divide it by the number of moles, n,

29 T

» » —3 20
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or
du=Fdr —n

Another expression for du by taking the differential of Equation 18 (R, T, p°, and p ° are

constants.)

du=RTdlnf —»

du in Equations 21 and 22 must be the same, so equal to each other

RTdn f=Vdp —s23

Rearrange this to get,

7
fi ].f.l.f = Efip o
dp
Integrate this equation directly, Add and subtract # to the right hand side of Equation

24,

.:I’lnf=idp—@+d—p
RT P P =25

Regroup the terms in Equation 25,

(1
.:ilnf—{RT Jai:-+

F F —26

Py 1},
In 7 —1 E,=j' TP b np-lnp,
nf-lnjf p.[ RT3 p+lnp-lnp .

wheref, isthe fugacity at po. Move the In 7, to the right hand side,
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Inf= j {V(pl} 1|}'p'+1np+|[1n_,ﬂ,—1np‘,:l
£

—3 28

The limit where po goes to zero. f, goes to po as po — 0 so the last two terms in

parentheses on the right cancel each other in this limit. Equation 28 becomes,

In f= I [V{p'} i. im'+ln p

£ — 29

Equation 29 will calculate the fugacity, but to take the antilog of both sides to get,

V{p'} 1
;]d — peli oz

"
T_FV
From Equation 29, RT | is the so-called compressibility factor. Equation 29 if the

f=relf| 3

— 30

gas isidea f = p. It requires an equation of state or experimental data to calculate a
fugacity from either Equation 30 or Equation 29. From the right-hand side of Equation 30

pil’:'r 1 12
BY 4B p+C
2T rs r

— 31

would be the best method for cal culating fugacity.
Variation of fugacity with temperature:

For agiven temperature T, the fugacity f satisfies the following differential relation:

fdG  VdP
dinl = & _
"t T RT T RT

where G is the Gibbs free energy, R is the gas constant, v is the fluid's molar volume,
and fo is areference fugacity which is generally taken as 1 bar. For an ideal gas, when f =

P, this equation reduces to the ideal gaslaw.
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Mi=Hi +rTinfi - 1
Dividing the equation throughout by T

M/ T=wi /T+Rn fj

Rinfi =pi/T- /T > 2

We know that

[0/ T)/0T)]en=-H¢T? — 3

Differentiating equation 2 with respect to T at constant P and N
R.O(Infi)/0T =0(Wi/T)/0T - (Wi /T)/dT

d(Infj)/dT=H; .H/RT? .

Activity

Activity is a measure of the effective concentration of a species under non-idea (e.g.,
concentrated) conditions. This determines the real chemical potential for a real solution
rather than an ideal one.

Activities and concentrations can both be used to calculate equilibrium constants and
reaction rates. However, most of the time we use concentration even though activity is
also a measure of composition, similar to concentration. It is satisfactory to use
concentration for diluted solutions, but when you are dealing with more concentrated
solutions, the difference in the observed concentration and the cal culated concentration in
equilibrium increases. Thisisthe reason that the activity wasinitialy created.

a=eJ-po /RT
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where a=Activity, pischemica potential (dependent on standard state) which is Gibbs
Energy per mole, 0 is the standard chemical potential, R is the gas constant, T is the

absolute Temperature.

The activity of aspeciesi, denoted a;, is defined as:

4 Z
a; = exp (—“t Rifh )

where i is the chemical potential of the species under the conditions of interest, % is the
chemical potential of that species in the chosen standard state, R is the gas constant and T
is the thermodynamic temperature. This definition can also be written in terms of the

chemical potential:
— .,
pi = p; + RT Ina;

The activity will depend on any factor that alters the chemical potential. These include
temperature, pressure, chemical environment etc. The activity also depends on the choice
of standard state, as it describes the difference between an actual chemical potential and a
standard chemical potentia. In principle, the choice of standard state is arbitrary,

although there are certain conventional standard states which are usually used .
Activity coefficient

The activity coefficient y, which is aso a dimensionless quantity, relates the activity to a

measured amount fraction x;, molality my or amount concentration ci:
A; = Tzili
— =)
; = Y, i1 / m

o =
iy = fc,iﬂé/f:
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The division by the standard molality m° or the standard amount concentration c° is
necessary to ensure that both the activity and the activity coefficient are dimensionless, as

is conventional.

When the activity coefficient is close to one, the substance shows amost ideal behaviour
according to Henry's law. In these cases, the activity can be substituted with the
appropriate dimensionless measure of composition x;, m/mP° or c¢i/c®. It is aso possible to
define an activity coefficient in terms of Raoult's law: the symbol f for this activity

coefficient, although this should not be confused with fugacity.

ay = f-iin-i. Solution can aso become too diluted when necessary.
Standard states
Gases

A real gas and an ideal gasis dependent only on the pressure and the temperature, not on
the presence of any other gases. At a given temperature, the "effective” pressure of agas i
is given by its fugacity fi: this may be higher or lower than its mechanical pressure.
Fugacities have the dimension of pressure, so the dimensionless activity is given by:

fi p

;= = = ¢ty

p\.p !
where ¢ is the dimensionless fugacity coefficient of the species, x is its fraction in the
gaseous mixture (x = 1 for apure gas) and p isthe total pressure.

Mixturesin general

The most convenient way of expressing the composition of a generic mixture is by using

the amount fractions x of the different components, where
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The standard state of each component in the mixture is taken to be the pure substance, i.e.
the pure substance has an activity of one. When activity coefficients are used, they are
usually defined in terms of Raoult's law,

a; = fix;

where fi is the Raoult's law activity coefficient: an activity coefficient of one indicates

ideal behaviour according to Raoult's law.
Dilute solutions (non-ionic)

A solute in dilute solution usually follows Henry's law rather than Raoult's law, and it is
more usua to express the composition of the solution in terms of the amount
concentration ¢ (in mol/L) or the molality m (in mol/kg) of the solute rather than in

amount fractions.

The activity of the solute is given by:

G

e i = e C_ﬁ
m;
H‘m,iﬁ = i me

| onic solutions

When the solute undergoes ionic dissociation in solution (a salt e.g.), the system becomes
non-ideal and the dissociation process is considered. The activities for the cations and

anions separately (a+ and a.).

In a liquid solution the activity coefficient of a given ion (e.g. Ca2") isn't measurable
because it is experimentally impossible to independently measure the electrochemical
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potential of an ion in solution. (We cannot add cations without putting in anions at the

same time). Therefore,

mean ionic activity a:’ = a+""a"-
mean ionic molality m.’ = m""m*"

mean ionic activity coefficient y+’ =y y_*"

where v= v+ + v_ represent the stoichiometric coefficients involved in the ionic

dissociation process

Even though y+ and y- cannot be determined separately, y- is a measureable quantity that
can also be predicted for sufficiently dilute systems using Debye-Huickel theory. For the

activity of a strong ionic solute (complete dissociation):
a= aiv — VJ_er+V

The activity of a species is to measure its partial vapor pressure in equilibrium with a
number of solutions of different strength. For some solutes thisis not practical, sucrose or
salt (NaCl) do not have a measurable vapor pressure at ordinary temperatures. However,
in such cases it is possible to measure the vapor pressure of the solvent instead. Using the
Gibbs-Duhem relation it is possible to tranglate the change in solvent vapor pressures
with concentration into activities for the solute.

Another way to determine the activity of a species is through the manipulation of
colligative properties, specifically freezing point depression. Using freezing point
depression techniques, it is possible to calculate the activity of a weak acid from the
relation,

m’ =m(l +a)

where m' is the total mola equilibrium concentration of solute determined by any
colligative property measurement(in this case ATss, M is the nominal molality obtained

from titration and a is the activity of the species.
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There are also electrochemica methods that allow the determination of activity and its

coefficient.

The value of the mean ionic activity coefficient y= of ions in solution can also be

estimated with the Debye-Hickel equation, the Davies equation or the Pitzer equations.

Chemical activities should be used to define chemica potentials, where the chemical
potential depends on the temperature T, pressure p and the activity a according to the

formula
i = ps + RTIng;
where Risthe gas constant and 1i° is the value of ;i under standard conditions.
Formulae involving activities can be ssimplified by considering that:
For achemical solution: the solvent has an activity of unity

At a low concentration, the activity of a solute can be approximated to the ratio of its

concentration over the standard concentration:

i

l: = —
‘T Ce'

Therefore, it is approximately equal to its concentration.

For amix of gas at low pressure, the activity is equal to the ratio of the partial pressure of
the gas over the standard pressure:
Pi
= o
P~
Therefore, it is equal to the partial pressure in bars (compared to a standard pressure of 1
bar).

For a solid body, a uniform, single species solid at one bar has an activity of unity. The
same thing holds for a pure liquid.
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The definition based on Raoult's law, let the solute concentration x; go to zero, the vapor
pressure of the solvent p will go to p*. Thus its activity a = p/p* will go to unity. This
means that if during a reaction in dilute solution more solvent is generated (the reaction
produces water e.g.) and typically set its activity to unity.

Solid and liquid activities do not depend very strongly on pressure because their molar
volumes are typically small. Changes can aso come as a result of too much dilution of

solution.
Raoult'sL aw

At boiling and higher temperatures the sum of the individual component partial pressures

becomes equal to the overall pressure, which can symbolized as Pit.

Under such conditions, Dalton's Law would be in effect as follows:

Pot=P1+ P2+ ...

Then for each component in the vapor phase:

Y1 = P1/Prot, Y2 = P2/Pyat, ... €tC.

where Py = partial pressure of component 1, P> = partial pressure of component 2, etc.

Raoult's Law is approximately valid for mixtures of components between which there is
very little interaction other than the effect of dilution by the other components. Examples
of such mixtures includes mixtures of akanes, which are non-polar, relatively inert
compounds in many ways, so there islittle attraction or repulsion between the molecules.
Raoult's Law states that for components 1, 2, etc. in a mixture:

P; = x1 P, P> = x2 P%, etc.

where P?1, P%, etc. are the vapor pressures of components 1, 2, etc. when they are pure,

and X1, X2, etc. are mole fractions of the corresponding component in the liquid.
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The vapor pressures of liquids are very dependent on temperature. Thus the P°pure vapor
pressures for each component are a function of temperature ( T ): For example,
commonly for a pure liquid component, the Clausius-Clapeyron equation (not shown
here) may be used to approximate how the vapor pressure varies as a function of
temperature. This makes each of the partial pressures dependent on temperature also
regardless of whether Raoult's Law applies or not. When Raoult's Law is valid these

expressions become:

Py(T) = x1 P°y(T), Po(T) = x2 P’(T), etc.

At boiling temperaturesif Raoult's Law applies, the total pressure becomes:
Prot = X1 PPa(T) + X2 PP(T) + ...

At agiven Pyt such as 1 atm and a given liquid composition, T can be solved for to give
the liquid mixture's boiling point or bubble point, although the solution for T may not be
mathematically analytical (may require a numerical solution or approximation). For a

binary mixture at a given Py, bubble point T can become a function of x1 (or x2).

At boiling temperatures if Raoult's Law applies, expressions for vapor mole fractions as a

function of liquid mole fractions and temperature:
y1 = X1 PP(T)/Peo,
y2 = X2 PP2(T)/Peot, ... €tC.

Once the bubble point T's as a function of liquid composition in terms of mole fractions
have been determined, these values can be plugged into the above equations to obtain
corresponding vapor composition in terms of mole fractions. The complete range of
liquid mole fractions and their corresponding temperatures, obtains a temperature ( T )
function of vapor composition mole fractions. This function . In the case of a binary

mixture: X2 = 1 - x1 and the above equations can be expressed as:

Yy1=X1 Pol(T)/ Pt and
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y2 = (1 - X1) PP2(T)/Prot

For many kinds of mixtures, particularly where there is interaction between components
beyond simply the effects of dilution, Raoult's Law does not work well for determining
the shapes of the curves in the boiling point or VLE diagrams. Even in such mixtures,
there are usually still differences in the vapor and liquid equilibrium concentrations at
most points, and distillation is often still useful for separating components at least
partialy.

Applications of activity concept to solutions:

Raoult's Law
Raoult's law states that the vapor pressure of a solvent above a solution is equal to the
vapor pressure of the pure solvent at the same temperature scaled by the mole fraction of

the solvent present:

Psolution=X solventP°solvent

Henry's Law

Henry's law is one of the gas laws formulated by William Henry in 1803. It states: "At a
constant temperature, the amount of a given gas that dissolvesin a given type and volume
of liquid is directly proportional to the partial pressure of that gasin equilibrium with that
liquid." An equivalent way of stating the law is that the solubility of a gasin aliquid is
directly proportional to the partial pressure of the gas above the liquid.

To explain this law, Henry derived the equation:

C=kPgas
Where C isthe solubility of a gas at afixed temperature in a particular solvent (in units of
M or mL gas/L) , kis Henry's law constant (often in units of M/atm), Pgasis the partia

pressure of the gas (often in units of Atm).

Therational and practical approaches:
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If the concentration of solution is expressed in terms of solution is expressed in terms of
mole fraction it is referred to as the rational system and if molality or molarity is used for

expressing concentration it is called practical system.

M easurement of activity of solvent from colligative properties:

Colligative properties are those properties which depend up on the number of particles

and not the nature of solute.

These are properties of solutions in the dilute limit, where there is a solvent “A” and a

solute “B” where nA >> nB. These properties are a direct result of u™  ( AT.P)

pure
<H, (A, T,p) Using two measures of concentration:

a. Mole Fraction: xB = nB/(nA+nB) ~ nB/nA

b. Molalility: mB = (moles solute)/(kg solvent) = nB/(nAMA) Where MA isthe massin

kg of one mole of solvent.

There are four Colligative Properties:
1. Lowering of Vapor pressure

2. Elevation of Boiling point

3.Depression of Freezing point

4.0smotic pressure

Rational activity of solvent from lowering of Vapor pressure: This is Raoult’s Law.

Consider asolution which isin equilibrium with its vapour
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Then, pu(A) = u(9) >1

HU(A) = pe(A) + RTIna >2
Substitute second equation in first equation
u(@) =pe(A) +RTIna >3
Assuming ideal behavior for vapour

M) =pe(g)+RTINP___ >4

Substitute 4™ equation in 3" equation

pe(g) + RTInP = pe (L) + RTlna >5
For pureliquid

pe(A) = pe( g) + RTInP >6
Subtracting 6™ from 5" equation

RTlna=RTIn P/ P-
A=P/ P

Where a= activity, P=Partial pressure, P> = VVapour pressure of pure solvent

Rational activity of solvent from Elevation of Boiling point

ML) =p(g) -1
H(A) = pe(A) + RTlna - 2

(@) =pe(A)+RTlna - 3

Ina=p(g)- Ko (A)/RT = AGvap/RT - 4

d/dT Ina== = (AGvap/RT) -5

d/dT Ina= - Hvap/RT?
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_ T
fdina = - Hovap/RT[dT/T?2 - 6
T

Ina =Hvap’R[1/T-1/T°]
T isthe Boiling point of solution

T° Boiling point of pure solvent.

Rational activity of solvent from Depression of Freezing point
M) = pe(s) - 1

H(A) = pe (A)+ RTlna - 2

Substitute second equation in first equation

ke (s) = pe (A)+ RTlna

Ina=pe (s)-pe () -3

RT

[ e Q) - e (9)]
- AGefus/RT - 4

[ RT]

dina/dT=-1 d (AG-fus)
= AHw/RT? -5

R dT T

T
fdIna = - Hue/RIAT/T2 - 6
T

Ina =-AHn/ R[1/T-1/ T ]
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Thus knowing the freezing point ‘a’ can be calculated.

Osmotic Pressure

Osmosis is the diffusion of a fluid through a semipermeable membrane. When a
semipermeable membrane (animal bladders, skins of fruits and vegetables) separates a
solution from a solvent, then only solvent molecules are able to pass through the
membrane. The osmotic pressure of a solution is the pressure difference needed to stop
the flow of solvent across a semipermeable membrane. The osmotic pressure of a

solution is proportional to the molar concentration of the solute particles in solution.

M=nRT/N=MMRT

Where T1is the osmotic pressure, Ris the idea gas constant (0.0821 L atm / mol
K),T is the temperature in Kelvin, nis the number of moles of solute present, V is the
volume of the solution (n/V is then the molar concentration of the solute), and MM is the

molar mass of the solute.
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The study of the flow of
heat or any other form of .
. . . A . thermochemical .
1 energy in to or out of a thermochemistry thermokinetics thermodynamics studies thermodynamics
system undergoing physical )
or chemical change is called
) Thermodynamics is microscopic macroscopic homogeneous heterogeneous macroscopic
applicable to systems only systems only systems only systems only. systems only
L it is concerned o
itignores the . itis not . .
L . - only with the . itis not applicable
Which is not true about internal structure it involves the . . applicable to .
3 . . initial and final . to macroscopic
thermodynamics of atoms and matter in bulk macroscopic
states of the systems.
molecules systems.
system
An system that can
transfer neither matter an isolated a homogeneous .
4 . a closed system an open system an isolated system
nor energy to and from its system system
surroundings is called
A thermosflask is an ) heterogeneous .
5 isolated system closed system open system isolated system
example of system
A is one which
cannot transfer matter but
Y a homogeneous
6 transfer heat, work and an isolated system | an open system svstem a closed system a closed system
radiations to and from its y
surroundings
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A gas contained in a
cylinder filled with a piston
constitutes

an open system

a heterogeneous
system

a closed system

an isolated system

a closed system

Which of the following is
incorrect, for an ideal gas

PV=nRT

V=nRT/P

P=nRT/V

all are correct.

an open system

The heat capacity at
constant pressure is
related to heat capacity at
constant volume by the
relation

Cp-R =Cv

Cv-R =Cp

Cp-Cv =R

R-Cp =Cv

P=nRT/V

10

Which of the following
relations is true

Cp >Cv

Cv>Cp

Cp=Cv

Cp=Cv=0.

Cp-R =Cv

11

An intensive property does
not depend up on

nature of the
substance

quantity of
matter

external
temperature

atmospheric
pressure

Cp >Cv

12

Which of the following is
not an intensive property

pressure

concentration

density

volume

volume

13

A property that depends
up on the quantity of
matter is called an
extensive property. Which
of the following is not an
extensive

mass

volume

density

internal energy.

density

14

A system in which state
variables have constant
values throughout the

equilibrium

non- equilibrium

isothermal
equilibrium

inequilibrium

equilibrium
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system is called in a state
of
In an adiabatic process
15 can flow into or no heat heat matter no matter. no heat
out of the system
The mathematical relation
. AE =0 for a cyclic AE =g for an
16 for the first law of AE =g-w 4 . q all of these. all of these.
L process isochoric process
thermodynamics is
For an adiabatic process
17 according to first law of AE = -w AE =w AE =g-w Ag=Ew AE = -w
thermodynamics
The enthalpy change, AH
18 of a process is given by AH =AE +pAv AH =AE +AnRT AH =AE +w AH =AE -AnRT AH =AE +AnRT
the relation
The amount of heat
required to raise the
. molar heat . molar heat
19 temperature of one mole heat capacity . molar heat molar capacity. .
. capacity capacity
of the substance by 1 K is
called
internal ener internal ener . . .
. . &Y : &Y enthalpy with enthalpy with enthalpy with
Heat capacity at constant | with temperature | with temperature
20 . , temperature at temperature at temperature at
pressure is the change in at constant at constant
constant volume | constant pressure | constant pressure
volume pressure
internal ener internal ener . . internal ener
. . - . &Y enthalpy with enthalpy with . &Y
Heat capacity at constant | with temperature | with temperature with temperature
21 . . temperature at temperature at
volume is the change in at constant at constant at constant
constant volume | constant pressure
volume pressure volume
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State of the nature of the initial and final different nature of the
The enthalpy change of a . .
22 L reactants and reactants and enthalpy change intermediate reactants and
reaction is independent of . .
products products of the reaction reaction products
Which of the following is
23 & H=E+PV H-E=PV H-E-PV=0 H=E-PV H=E-PV
not correct ?
The enthalpy of a system
24 | . nEnapy ysH H=E+PV H=E-PV E=H+PV PV+E-H H=E+PV
is defined by the relation
For an endothermic . . . . .
25 . AH is—ve AH is +ve AE is —ve AH is zero AH is +ve
reaction
A process which proceeds
6 of its own accord, without | non-spontaneous spontaneous reversible ir reversible spontaneous
any outside assistance is process process process process process
called
7 The tendency of a process | momentum of the spontaneity of equilibrium of non-spontaneous | spontaneity of the
to occur naturally is called reaction the reaction the reaction of the reaction reaction
once a system
. N is in
Which of the following is a spontaneous a spontaneous A
_ . equilibrium,a
28 true about the criteria of change is change to occur, cDONtaneous all of these all of these
spontaneity? unindirectional time is no factor P .
change is
inevitable
A spontaneous change is
accompanied by . neither increase decrease with
29 . increase decrease . . decrease
of internal energy or nor decrease increasing
enthalpy.
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Each substance in a given
state has a tendency to . Gibbs free . N .
30 escape from that state spontaneity fugacity activity fugacity
i . energy
and this escaping tendency
is called
A spontaneous reaction
31 proceeds with a decrease entropy enthalpy free energy internal energy . free energy
in
The ratio f/fO is called . .
. L activity chemical : L
32 and is denoted activity . . fugacity. activity
coefficient potential
by the symbol a.
The ratio f/p is called
of a gas and is L activity chemical . L -
3 represented by the symbol activity coefficient potential fugacity. activity coefficient
u.
The variation of free
energy with temperature _ _ .
34 at constant pressure is dGp =-SdTp (dG/dT)p =-S neither of these free energy free energy
given by the relation
The variation of free
35 | Cnerey with pressure at | g r _ ygpr dGp =-SdTp (dG/dT)p =-S5 | (dG/dT)T =-5 (dG)T = -VdPT
constant temperature is
given by the relation
36 | For a spontaneous process AG>0 AG<O0 AG =0 AS=0 AG<O0
For an ideal gas, the
37 fugacity is equal to f/p =1 f/p=0 f/p varies f/p>1 f/p=1
pressure and
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For a real gas, the
fugacity is not equal to _ _ : _ .
38 pressure and the ratio f/p=1 f/p=0 f/p varies p/f=1 f/p varies
39 A process is in the AG>0 AG<0 AG =0 AS=0 AG =0
equilibrium state when
Which of the following
equation is used to Gibbs Helmholtz Clapeyron Kirchoffs . Gibbs Helmholtz
40 calculate the heats of . . . Nernst equation .
. equatioin equation equation equatioin
reaction when AG at two
temperatutes are given?
is applicable .
. . - n thermochemical .
41 to macroscopic systems thermochemistry thermokinetics thermodynamics studies thermodynamics
only. ’
An example of isolated .
42 system thermocouple thermosflask carnot engine manometer thermosflask
ideal gas can be represented
43 as PV =nRT PR=mVT PT=nVR PT=VR PV =nRT
AE =g-w for an isochoric first law of second law of , third law of first law of
44 . . zeroth's law . .
process thermodynamics thermodynamics thermodynamics thermodynamics
Which of the following is . .
45 . pressure concentration density volume volume
an extensive property ?
Which of the following is . . .
46 . . mass volume density internal energy. density
an intensive property ?
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AE =g-w is th . . )
(.:IW 'S .e first law of second law of third law of , first law of
47 mathematical relation for . . . zeroth’s law .
the thermodynamics thermodynamics | thermodynamics thermodynamics
AE = - t . . isoth I . . . . .
48 W represents adiabatic process Isotherma isobaric process exoergic process adiabatic process
process
. endothermic exothermic . ) endothermic
49 | AH is +ve for exoergic process | endoergic process
process process process
Spontaneous change is
50 accompanied by decrease entropy enthalpy internal energy free energy internal energy
of
Raoults law is dilute ideal . .
. . dilute solution
solution non ideal perfect . . . .
51 . . ideal non ideal perfect gas dilute solution
gas to be quite satisfactory .
solution
fora
For an adiabatic process
52 | according to ---------------- of second law first law third law zeroth law first law
thermodynamics, AE = -w
When two systems are in
th I ilibri ith Mechanical
.erma equifibriurgglith a First Law of Second Law of e.c anica Zeroth Law of Zeroth Law of
53 third system, then they are . . equivalent of . .
. N & h Thermodynamics Thermodynamics Thermodynamics Thermodynamics
in thermal equilibrium with heat
each other
Which of the following
54 temperature scales doesn’t Celsius Kelvin Reaumur Fahrenheit Kelvin
have negative numbers
Which of two t t
55 ch ot two temperature 1K=1F 1F=1C 1Re=1F 1K=1C 1K=1C
change are equivalent?
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The partial molar free
56 energy of an element A in Chemical potential Activity Fugacity Activity coefficient | Chemical potential
solution is the same as its
57 The state of a system is shape size roperties surroundings roperties
identified by its P BP 8 prop
Th Ivent in a dilut
58 € %0 v.en In a dilute Henrys law Daltons law Raoults law Charles law Raoults law
solution follows
The ratio of fugacity to . . .
Activity co- F t Ch I
59 | fugacity at standard state is Activity Ct“.” .y co ug;?c'l y emlc?a Fugacity coefficient
efficient coefficient potential
called the
The chemical potential of
e chemica po‘en ralora specific Gibbs free The Gibbs free Molar Gibbs free The Gibbs free
60 pure substance is equal to molar entropy
the energy energy energy energy
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Probability and third law. Need for third law. Nernst heat theorem and other forms stating

third law. Thermodynamic quantities at absolute zero. Statistical meaning of third law

and apparent exception. Mathematical Introduction: Theories of permutation &

combination, laws of probability. Distribution laws. Gaussian distribution.

Third law of thermodynamics

The third law of thermodynamics is a statistical law of nature regarding entropy and the
impossibility of reaching absolute zero, the null point of the temperature scale. As a
system approaches absolute zero, all processes cease and the entropy of the system

approaches a minimum value.

This minimum value, the residual entropy, is not necessarily zero, although it is always

zero for a perfect crystal in which there is only one possible ground state.

The third law of thermodynamics states that the entropy of a system at absolute zero is a
well-defined constant. This is because a system at zero temperature exists in its ground
state, so that its entropy is determined only by the degeneracy of the ground state. It
means that "it is impossible by any procedure, no matter how idealised, to reduce any
system to the absolute zero of temperature in a finite number of operations”.

Thethird law of thermodynamics as stated by Gilbert N. Lewis and Merle Randall:

If the entropy of each element in some (perfect) crystalline state be taken as zero at the

absolute zero of temperature, every substance has a finite positive entropy; but at the
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absolute zero of temperature the entropy may become zero, and does so become in the

case of perfect crystalline substances.

This version states not only AS will reach zero at 0 kelvins, but S itself will also reach
zero as long as the crystal has a ground state with only one configuration. Some crystals
form defects which causes a residual entropy. This residual entropy disappears when the

kinetic barriersto

The stati stical-mechani cs definition of entropy for alarge system:
S =kglog Q1

whereS is entropy, ks is the Boltzmann constant, and Q is the number of microstates
consi stent with the macroscopic configuration.

The third law states that the entropy of most pure substances approaches zero as the
absolute temperature approaches zero. This law provides an absolute reference point for
the determination of entropy. The entropy determined relative to this point is the absolute

entropy.

A special case of thisis systems with a unique ground state, such as most crystal lattices.
The entropy of a perfect crysta lattice as defined by Nernst's theorem is zero (if its
ground state is singular and unique, whereby log(1) = 0. An example of a system which
does not have a unique ground state is one containing half-integer spins, for which time-
reversal symmetry gives two degenerate ground states.This entropy is generally
considered to be negligible on a macroscopic scale. Additionally, other exotic systems are
known that exhibit geometrical frustration, where the structure of the crystal lattice

prevents the emergence of a unique ground state.

The third law of thermodynamics is essentially a statement about the ability to create an
absolute temperature scale, for which absolute zero is the point at which the internal

energy of asolid is precisely 0.

The following three formulations of the third law of thermodynamics:
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Need for third law :

1.1t isimpossible to reduce any system to absolute zero in afinite series of operations.

2.The entropy of a perfect crystal of an element in its most stable form tends to zero as

the temperature approaches absolute zero.

3.As temperature approaches absolute zero, the entropy of a system approaches a

constant.
Nernst heat theorem

The Nernst heat theorem was formulated by Walther Nernst and was used in the

development of the third law of thermodynamics.
Thetheorem

The Nernst heat theorem says that as absolute zero is approached, the entropy change AS
for a chemica or physical transformation approaches 0. This can be expressed

mathematically as follow

lim AS =(

T—0

The above equation is a modern statement of the theorem. Nernst often used a form that

avoided the concept of entropy.

AG

AH

o T
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Graph of energies at low temperatures

The theorem is to start with the definition of the Gibbs free energy (G), G = H - TS,
where H stands for enthalpy. For a change from reactants to products at constant

temperature and pressure the equation becomes AG = AH - TAS

In the limit of T = 0 the equation reduces to just AG = AH, which is supported by
experimental data. From thermodynamics that the slope of the AG curve is -AS. Since the
slope shown here reaches the horizontal limit of 0 as T — 0 then the implication is that
AS - 0, which is the Nernst heat theorem.

The significance of the Nernst heat theorem is that it was later used by Max Planck to
give the third law of thermodynamics, which is that the entropy of al pure, perfectly
crystalline homogeneous materialsis 0 at absolute zero.

Thermodynamic quantities at Absolute zero :

Absolute zero is the theoretical temperature at which entropy reaches its minimum value.
The laws of thermodynamics state that absolute zero cannot be reached using only

thermodynamic means.

A system at absolute zero still possesses quantum mechanicalzero-point energy, the
energy of its ground state. The kinetic energy of the ground state cannot be removed.
However, in the classica interpretation it is zero and the thermal energy of matter
vanishes.

Absolute zero is the null point of any thermodynamic temperature scale. It is defined as
OK on the Kelvin scale and as —273.15°C on the Celsius scale. This equates to —459.67°F
on the Fahrenheit scale. The temperatures very close to absolute zero, where matter

exhibits quantum effects such as superconductivity and superfluidity.

Very low temperatures
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The average temperature of the universe due to cosmic microwave background radiation.

Absolute zero cannot be achieved artificially, although it is possible to reach
temperatures close to it through the use of cryocoolers. Laser cooling is a technigue used
to take temperatures to within a billionth of a degree of 0 K. At very low temperaturesin
the vicinity of absolute zero, matter exhibits many unusual properties including
superconductivity, superfluidity, and Bose-Einstein condensation.

At temperatures near 0 K, nearly all molecular motion ceases and, when entropy = S
AS=0 for any adiabatic process. Pure substances can (ideally) form perfect crystalsas T
- 0. Max Planck's strong form of the third law of thermodynamics states the entropy of a
perfect crystal vanishes at absolute zero. The origina Nernstheat theorem makes the
weaker and less controversial claim that the entropy change for any isothermal process
approacheszeroas T - O:

lim AS =10

T—0
The implication is that the entropy of a perfect crystal simply approaches a constant

value.

The Nernst postulate identifies the isotherm T = 0 as coincident with the adiabat S=0,
although other isotherms and adiabats are distinct. As no two adiabats intersect, no other
adiabat can intersect the T = 0 isotherm. Consequently no adiabatic process initiated at

nonzero temperature can lead to zero temperature.

It is impossible to reduce the temperature of a system to zero in a finite number of
operations. A perfect crystal is one in which the internal lattice structure extends
uninterrupted in al directions. The perfect order can be represented by trandational
symmetry along three (not usually orthogonal) axes. Every lattice element of the structure
isin its proper place, whether it is a single atom or a molecular grouping. For substances
which have two (or more) stable crystalline forms, such as diamond and graphite for
carbon, there is akind of "chemica degeneracy”. The question remains whether both can

have zero entropy at T = 0 even though each is perfectly ordered.
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Perfect crystals never occur in practice; imperfections, and even entire amorphous
materials, smply get "frozen in" at low temperatures, so transitions to more stable states

do not occur.

Using the Debye model, the specific heat and entropy of a pure crystal are proportional to
T3, while the enthalpy and chemical potential are proportional to T*. The quantities drop
toward their T=0 limiting values and approach with zero slopes. Since the relation

between changesin Gibbs free energy (G), the enthalpy (H) and the entropy is

AG =AH ~TAS

thus, as T decreases, AG and AH approach each other (so long as AS is bounded).
Experimentally, it is found that all spontaneous processes (including chemical reactions)
result in adecrease in G as they proceed toward equilbrium. If ASand/or T are small, the
condition AG <0 may imply that AH <0, which would indicate an exothermic reaction.
However, this is not required; endothermic reactions can proceed spontaneoudly if the

TASterm islarge enough.

The slopes of the derivatives of AG and AH converge and are equal to zeroat T =0. This
ensures that AG and AH are nearly the same over a considerable range of temperatures.
Principle of Thomsen and Berthelot, which states that the equilibrium state to which a
system proceeds is the one which evolves the greatest amount of heat, i.e. an actual
process is the most exothermic one.
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Statistical meaning of third law :

Statistical mechanics: Alink between quantum mechanics and classical

thermodynamics.

Consider a pure crystal all the atoms will be arranged in exact pattern of lattice

site

W=NI!/N!=1

For similar atoms

W= N!/N! =1, Indistinguishable

For different atoms

W= N!/nil n2! n3l...... Distinguishable
Boltzmann entropy equation is

S=kin W

Consider a crystal in which there are 2 atoms A and B
Na - A Nb - B

W= N!/N!=N!/na! np!

S=kin NI/ Na! Nb!

In N!' = NInN-N

S= Kk(NIn N-N)- (NalnNa-Na)- (NbInNb-Nb)
S= k (NIn N-N- NalnNa+Na- NbInNb+NDb)
S= Kk (NIn N-N- NalnNa- NbInNb+N)

S=k (NIn N- NalnNa- NbIinNDb)

S= -k (NalnNa+ NbInNb- NIn N)

Na= XaN and Nb= XpN

Prepared by Dr. S. Manickasundaram, Department of Chemistry, KAHE Page 7



S= -k (XaInXaN+ XpInXoN-NInN)

S=-kN (XalnXaN+ XbInXpN-In N)

S= -kN (XalnXa+XalnN+XplnXp+XslNN- In N)
S=-kN (XalnXa+XolnXp+ (Xa+Xb-1) In N)
S= -kN (XalnXa+XbInXp)

Entropy equation for mixed crystals independent of temperature, so entropy is

not zero.
Apparent Exception of third law:
Shmixing= -KN (XalnXa+XblnXb)

Carbonmonoxide,water,nitrous oxide and nitric oxide and Hydrogen do not follow
third law.

Carbon Monoxide:
Spectroscopic value of entropy = 160.1 JK*mol?

Calorimetric value of entropy = 155.5 JK'mol*

Difference = 4.6 JKmol?

Pure crystal of CO CO-CO or COCO
Actual crystal COOCCO or COCOOC

If we imagine CO as mixed crystal in which there is ordered and disordered

orientation are present.
Smixing= -KN (1/2 In1/2 +1/2 In1/2)

Smixing= -kN (In1/2) = -Nk (-In2)
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Shmixing= -kKN In2 = R In2

Shixing = 0.693R =5.76 JKmol*

CO ordered and disordered orientation are not presentin 1 : 1 ratio.
Nitrous oxide:

Spectroscopic value of entropy = 202.7 JK*mol?

Calorimetric value of entropy = 198.0 JKmol*

Difference = 4.7 JKmol?

Actual crystal-ONNONN or NNOONN
Perfect crystal-NNONNO

The ratio is not equal to 1:1, entropy is not equal to zero and do not follow third

law of thermodynamics.
Nitric oxide:
Spectroscopic value of entropy = 182.6 JK*mol?

Calorimetric value of entropy = 179.8 JK'mol*

Difference = 2.8 JK'mol+?

Actual crystal-NOON or ONON
Perfect crystal-NO-NO-NO

No existin form of dimers.
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Permutation:

In permutation is used with several dlightly different meanings, all related to the act of
permuting (rearranging in an ordered fashion) objects or vaues. Informaly, a
permutation of a set of values is an arrangement of those values into a particular order.
Thus there are six permutations of the set {1,2,3}, namely [1,2,3], [1,3,2], [2,1,3], [2,3,1],
[3,1,2], and [3,2,1].

A permutation of a setSis defined as a bijection from Sto itself (i.e,, a mapS - Sfor
which every element of S occurs exactly once as image value). To such a map f is
associated the rearrangement of S in which each element s takes the place of its image
f(s). In combinatorics, a permutation of a finite set Sis defined as an ordering of its
elements into a list. In this sense, the permutations of S differ precisely by a
rearrangement of their elements. For a set Sthat is given with an initial ordering, such as
S={1,2,3,...,n}, these two meanings can be almost identified: applying a permutation in
the first sense to thisinitial ordering gives an alternative ordering of the elements, which

isa permutation in the second sense.
The rule to determine the number of permutations of n objects was known.

The product of multiplication of the arithmetical series beginning and increasing by unity
and continued to the number of places, will be the variations of number with specific

figures.
Per mutations:

A permutation of n taken m at atime is defined as an ordered selection of m out of the n

items. The total number of all the possible permutations is denoted as:
P§=?z(n—]](n—2]---(n—m+]] where x = m

Combinations:
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A combination of n taken m at atime is defined as a selection of m out of the n items
without regard to the order. The total number of all the possible combinations is denoted

as:

|
C'g=L= ol ® where % = m
pl{m=—m)l  |m) |a—m

Addition Law of Probability
Theorem

Let Prbe a probability measure on an event space-.

Let"LB = E

Then:
Pr(AUB)=Pr(4)+Pr(B)-Pr(ANB)

That is, the probability of either eventoccurring equals the sum of their individual

probabilities |ess the probability of them both occurring.

Thisis known as the addition law of probability, or the sum rule.
Pr oof

By definition, a probability measure is a measure.

Hence, again by definition, it is a countably additive function.

By Mesasure is Finitely Additive Function, we have that Pris an additive function.
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So we can apply Additive Function on Union of Sets directly.

Alter native Pr oof

Alternatively, we can prove it directly, although it works out exactly the same:

From Set Difference and Intersection form Partition, we have that:
Aisthe union of the two digoint setsA \ Band A N B;

Bisthe union of the two disoint stsB\ Aand AN B.

So, by the definition of probability measure:

Pr(A) =Pr(A\ B) + Pr(AN B)
Pr(B) = Pr(B\ A) + Pr(AN B)

We dso have from Set Difference  Digoint  with Reversethat
(A\B)N(B\A4) =2

Hence:

Pr{d)+Pr{f_Pr{A\ B)+2Pr{ANB)+Pr{B\ A)
—Pr{(A\B)U{ANB)U(B\ A)) + Pr(A B)
_Pr(AUB)+Pr(AnB)

Multiplicative Law of Probability:

The probability of the intersection of two events A and B is
P(A\ B) = P(A)P(BjA)= P(B)P(AjB)
If A and B are independent, the P(A\B) = P(A)P(B).
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The Multiplicative Law of Probability is often used to determine the probability

of an event which involves a sequence of random occurances.

Normal distribution

In probability theory, the normal (or Gaussian) distribution, is a continuous probability
distribution that is often used as a first approximation to describe real-valued random
variables that tend to cluster around a single mean value. The graph of the associated
probability density function is “bell”-shaped, and is known as the Gaussian function or
bell curve.

f{r}: v@;—;rf' e

where parameter | is the mean (location of the peak) and ¢? is the variance (the measure
of the width of the distribution). The distribution with y = 0 and 62 = 1 is caled the

standard normal.

The normal distribution is considered the most “basic” continuous probability distribution
duetoitsrolein the central limit theorem, and is one of the first continuous distributions.
Specificaly, by the central limit theorem, under certain conditions the sum of a number
of random variables with finite means and variances approaches a normal distribution as
the number of variables increases. For example, the observational error in an experiment
is usualy assumed to follow a normal distribution, and the propagation of uncertainty is
computed using this assumption.

A normally-distributed variable has a symmetric distribution.

The normal distribution is the only absolutely continuous distribution all of whose
cumulants beyond the first two (i.e. other than the mean and variance) are zero.
For a given mean and variance, the corresponding normal distribution is the

continuous distribution with the maximum entropy.
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Definition

The simplest case of a normal distribution is known as the standard normal distribution,
described by the probability density function

1_2

b(a) = et

The constant 1/v27in this expression ensures that the total area under the curve ¢(x) is
equal to one, and ¥ in the exponent makes the “width” of the curve (measured as half of
the distance between the inflection points of the curve) also equal to one. In statistics to
denote this function with the Greek letter ¢ (phi), whereas density functions for all other
distributions are usually denoted with letters f or p. The alternative glyph ¢ is also used

quite often, “@” to denote characteristic functions.

A norma distribution results from exponentiating a quadratic function (just as an
exponential distribution results from exponentiating a linear function):

f(I) i EE.T?'FM'H:'.

This yields the classic “bell curve” shape (provided that a< O so that the quadratic
function is concave). Note that f(x) > O everywhere. One can adjust a to control
the “width” of the bell, then adjust b to move the central peak of the bell along the x-axis,
and finally adjust ¢ to control the “height” of the bell. For f(x) to be a true probability

density function over R, one must choose ¢ such that J_ f(=) 4= = T(which is only
possible when a < 0).

Rather than using a, b, and c, it is far more common to describe a normal distribution by
its meanp = —-b/(2a) and variances? = —1/(2a). Changing to these new parameters rewrite
the probability density function in a convenient standard form,

iR
flz) = e 3 = Lp(22),

i
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For a standard normal distribution, p = 0 and 62 = 1. The last part of the equation above
shows that any other normal distribution can be regarded as a version of the standard
normal distribution that has been stretched horizontally by a factor 0 and then translated
rightward by a distance p. Thus, p specifies the position of the bell curve’s central peak,

and ¢ specifies the “width” of the bell curve.

The parameter | is at the same time the mean, the median and the mode of the normal
distribution. The parameter 02 is caled the variance; as for any random variable, it
describes how concentrated the distribution is around its mean. The square root of o2 is

called the standard deviation and is the width of the density function.

The normal distribution is usually denoted by N(u, %). Commonly the letter N is written
in caligraphic font Thus when a random variable X is distributed normally with mean p

and variance 02, we write
X ~ Nu, o).
Alter native for mulations

02 use its reciproca T = 02 (or T = ¢!), which is caled the precision. This
parameterization has an advantage in numerical applications where o2 is very close to
zero and is more convenient to work with in analysis as 1 is a natural parameter of the
normal distribution. Another advantage of using this parameterization is in the study of

conditional distributions in multivariate normal case.

The norma distribution should be called the “standard” the standard normal was

considered to be the one with variance g2

The standard normal with variance ¢2
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fl@)=e"

Characterization

The normal distribution was defined by specifying its probability density function.
Probability density function

The probability density function (pdf) of a random variable describes the relative
frequencies of different values for that random variable. The pdf of the normal
distribution is given by the formula

- 1 2 (02 1 [fx—p
- 2y _ —(z-w?(20%) _ 2 f rcR
flx; p,0°) 21?026 gqb( " ) r € R

This is a proper function only when the variance 62 is not equal to zero. This is a
continuous smooth function, defined on the entire real line, and which is called

the “Gaussian function”.
Properties:

Function f(x) is symmetric around the point x = y, which is at the same time the
mode, the median and the mean of the distribution.

The inflection points of the curve occur one standard deviation away from the
mean (i.e,ax=py—0andx =y + ).

The standard normal density ¢(X) is an eigenfunction of the Fourier transform.
The function is supersmooth of order 2, implying that it isinfinitely differentiable.
The first derivative of ¢(X) isd'(X) = —x-¢(x); the second derivativeis " (x) = (x> -
1)d(x). More generally, the n-th derivative is given by ¢™(x) = (—1)"Hn(X)(X),

where Hn is the Hermite polynomial of order n.

When ¢ = 0, the density function doesn’t exist. Ageneralized function that defines a

measure on thereal line, and it can be used to calculate, for example, expected valueis
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flz; 1, 0) =6(z — p).
where‘ﬁ( ')isthe Dirac deltafunction which isequal to infinity at x = 0.

The property 1, it is possible to relate all normal random variables to the standard normal.

For exampleif X is normal with mean u and variance ¢2, then

has mean zero and unit variance, that is Z has the standard normal distribution. A
standard normal random variable Z can aways construct another normal random variable

with specific mean p and variance o

X =02+ pu.
Py =o(E). @) =2 o)

a
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Entropies calculated using the thermal statistical residual absolute .

. . . . . thermal entropies

third law are called-------- entropies entropies entropies entropies
The entropies of substance such
as CO,NO,H20 are not zero at 0 . :

. thermal statistical residual absolute . .
k as the third law formulates entropies s B tropies entropies residual entropies
but are finite these entropies
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The boltzman entropy equation
is probably the most famous
equation in---------------

statistical
thermodynamic
s

mathematical
probability

thermodynamic
probability

classical
mechanics

statistical

thermodynamics

The entropies of real gas
behaves ideally at-----pressure

high

low

very high

very low.

low

The absolute entropy zero of
HCI at 252c has the
extrapolation from 0 to 15K
(using the Debye T law is

1.3 JK* mol?

29.5 JK* mol?

12.1 JKtmol?

10.1 JKt mol?

1.3 JK! mol?

10

10. The absolute entropy zero
of HCl at 252c [CpdInT
from 188.07 to 298.15K is

13 .5 JKT mol?

29.5 JKtmol*?

12.1 JKtmol?

10.1 JK*mol?

13 .5 JK* mol?

11

ASnix of ortho hydrogen and
para hydrogen is found to be

JKTmol? in the
vicinity of 0 k.

0.37

16.22

17.1

19.66

0.37

12

The calorimetric value of
entropy for CO is
JKTmol? .

155.5

4.6

160.1

171.2.

155.5

13

Every substance has a finite
entropy which may become
zero at absolute zero of
temperature is of
thermodynamics.

second law

third law

first law

zeroth law.

third law

14

The Smix of CO is found to
JKmol? .

5.76

6.72

1.25

3.56

5.76
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The residual entropy of
hydrogen is due to the
17 | existence of form ortho para both combination ortho
of hydrogen in different
guantum state.

The calorimetric value of
18 | entropy in N,O is JK? 198 202.1 227.2 232.1 198
mol?

The spectroscopic value of
19 | entropy in NO is JK? 172.8 182.8 198 202.7 182.8
mol™

The calorimetric value for NO

20 | . 1 1 179.8 182.8 198 d)202.7 179.8
is JK* mol
. is an
arrangement that can be . N - independent .
21 . permutations combination probability permutations
made by taking some or all events.
of a number of given things.
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selection ) that can be made .
. . o . independent o
22 | by taking some or all of a permutations combination probability events combination

number of given things at a
time.
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25 | discovered by a swiss James Bernoulli Poisson De-Movire Lapalace. James Bernoulli
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The thermal entropies are
somewhat smaller than the
33 | statistical entropies, the 3.1-4.8 6.2-7 above 7 75-8.2. 3.1-4.8
deviation ranging from
JKtmol™.
The entropies of substance
such as H, D, are not zero at
0K as the third law thermal residual statistical absolute . .
34 - . . . . residual entropies
formulates but are finite these entropies entropies entropies entropies
entropies are called
The entropy of a pure cry.sta.l first NG Of. second law of third law of zeroth law of third law of
35 | is zero at absolute zero.This is | thermodynamic . . . .
thermodynamics | thermodynamics | thermodynamics thermodynamics
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37 The pr'obablllty of geure 1 2 three unlimited. 1
event is
3g | e probability of an 1 2 three 0. 0.
impossible event is
The probability of having at
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SYLLABUS

Maxwell distribution law for molecular velocities and molecular speeds in an ideal gas.
Velocity and speed distribution functions. Experimental verification of Maxwell
distribution law. Evaluation of average speed, root mean sguare speed and most probable
speed from distribution law. Distribution function in terms of the kinetic energy of an
ideal gas. The principle of equipartition of energy and the calculation of heat capacities of
ideal gases. Limitations of the principle of equipartition of energy.

Quantum statistics: Maxwell-Boltzmann statistics.  Thermodynamic probability.
Thermodynamic probabilities of systems in equilibrium. Boltzmann expression for
entropy. Stirling’s approximation. State of maximum thermodynamics probability.
Legrangian multipliers. Thermodynamic probabilities of systemsinvolving energy levels.
Maxwell-Boltzmann distribution law. Evaluation of alpha and beta in MB distribution
law.

M axwell-Boltzmann distribution

The Maxwell-Boltzmann distribution describes particle speeds in gases, where the
particles do not constantly interact with each other but move freely between short
collisions. It describes the probability of a particle's speed (the magnitude of its velocity
vector) being near a given value as a function of the temperature of the system, the mass

of the particle, and that speed value. This probability distribution is named after James

Clerk Maxwell and Ludwig Boltzmann.

The Maxwell-Boltzmann distribution is usually for the distribution of molecular speeds,
velocities, momenta, and magnitude of the momenta of the molecules, each of which will
have a different probability distribution function. "Maxwell-Boltzmann distribution”
refer to the distribution of speed. This distribution can be thought of as the magnitude of

a 3-dimensional vector whose components are independent and normally distributed with

2
mean 0 and standard deviationa. If Xi are distributed as X ~ N(0,a) then
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is distributed as a Maxwell-Boltzmann distribution with parameter a. Apart from the

scale parameter a, the distribution is identical to the chi distribution with 3 degrees of
freedom.

The Maxwell-Boltzmann distribution applies to ideal gases close to thermodynamic

equilibrium, negligible quantum effects, and non-relativistic speeds. It forms the basis of

the kinetic theory of gases, which explains many fundamental gas properties, including

pressure and diffusion.

Derivation

The derivation by Maxwell assumed all three directions would behave in the same
fashion, but a later derivation by Boltzmann dropped this assumption using Kinetic
theory. The Maxwell-Boltzmann distribution can be derived from the Boltzmann
distribution for energies.

N;  giexp(-E;/kT)
N ¥, gjexp(—E;/kT)

(1)

where Ni is the number of molecules at equilibrium temperature T, in a state i which has
energy Ei and degeneracy g, N is the total number of moleculesin the system and k is the

Boltzmann constant. (Sometimes the above equation is written without the degeneracy

factor gi. In this case the index i will specify an individual state, rather than a set of g
states having the same energy Ei.) Because velocity and speed are related to energy,
Equation 1 can be used to derive relationships between temperature and the speeds of
molecules in a gas. The denominator in this equation is known as the canonical partition

function.

For the case of an "ideal gas" consisting of non-interacting atoms in the ground state, all
energy is in the form of kinetic energy, and gi is constant for al i. The relationship

between kinetic energy and momentum for massive particlesis
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E=2 (2)

" 2m

where p? is the square of the momentum vector p = [px, Py, P2]. Rewrite Equation 1 as:

(3)

where Z is the partition function, corresponding to the denominator in Equation 1. Here m

is the molecular mass of the gas, T is the thermodynamic temperature and Kk is the

Boltzmann constant. This distribution of Ni/N is proportional to the probability density

functionfp, for finding a molecule with these values of momentum components, so:

(4)

.
fp(pz:pysp:) = - €Xp

VA

Pt by
2mkT

The normalizing constantc, can be determined by recognizing that the probability of a

molecule having any momentum must be 1. Therefore the integral of equation 4 over al
Px, Py, and p; must be 1.

It can be shown that:
Z
= ; 4]
© T (2mrmkT)* (5)

Substituting Equation 5 into Equation 4 gives:

i 3 R R
fp(pi.'py!p:} _ (W) exp [_ kT ] ’ (6}

The distribution is the product of three independent normally distributed variables Px, Py,

and Pz, with variance MKT. Additionally,the magnitude of momentum will be distributed

as a Maxwel-Boltzmann distribution, with a= VmkTThe Maxwel-Boltzmann
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distribution for the momentum (or equally for the velocities) can be obtained using the H-

theorem at equilibrium within the kinetic theory.
Distribution for the energy

Using p? = 2mE, and the distribution function for the magnitude of the momentum, we
get the energy distribution:

fedE = §, (%) dE =2\/% exp [f} dE. (7)

Since the energy is proportional to the sum of the squares of the three normally

distributed momentum components, this distribution is a chi-square distribution with

three degrees of freedom:
fe(E)dE = x*(z;3) dz
where

2F

I:E.

By the equipartition theorem, this energy is evenly distributed among all three degrees of

freedom, so that the energy per degree of freedom is distributed as a chi-square
distribution with one degree of freedom:

€ —€

Tkl P [ﬁ

fole)de = de

where € is the energy per degree of freedom. At equilibrium, this distribution will hold
true for any number of degrees of freedom. For example, if the particles are rigid mass
dipoles, they will have three trandational degrees of freedom and two additiona
rotational degrees of freedom. The energy in each degree of freedom will be described
according to the above chi-square distribution with one degree of freedom, and the total
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energy will be distributed according to a chi-square distribution with five degrees of
freedom.

Distribution for the velocity vector

The velocity probability density fv is proportional to the momentum probability density
function by

dp 3
f.dv = P (5) d*v

and using p = mv we get

m(o? + 02 + o)

2KT "

111 3/2
1= () e

which is the Maxwell-Boltzmann velocity distribution. The probability of finding a
particle with velocity in the infinitesimal element [dv, dwy, dv;] about velocity

V =[x, W, V] IS
Foltisgs v ) dvgdudus.

Like the momentum, this distribution is seen to be the product of three independent
kT

normally distributed variables Vx, Wy, and Vz, but with variance 77 . It can aso be seen

that the Maxwell-Boltzmann velocity distribution for the vector velocity [vy, W, V4] is the

product of the distributions for each of the three directions:

Jo (2, Uy, v.) = fvtvm)ft(vy}ft(v}

where the distribution for asingle direction is

[m —mnu?
Jolos) =\ g P [ 2KT ] |
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Each component of the velocity vector has a normal distribution with mean

(kT
B . . J'L'J: = T, = Jﬂz = _
Poz = foy = o, = Ugnd standard deviation ! M | so the

vector has a 3-dimensional normal distribution, also caled a "multinormal” distribution,

FAR
S J'V = e
with mean #v = Oand standard deviation m .

The Maxwell-Boltzmann Speed Distribution
The Maxwell-Boltzmann velocity distribution accounts for both the speed and direction

of assembly particles,we are often interested more in their speed than in their direction.
For this purpose, it proves convenient to introduce spherical coordinates in velocity

space.

Spherical velocity space

The Maxwell-Boltzmann distribution for the speed follows the distribution of the
velocity vector. The speed is

T \/vg Fil ki

and thevolumeis
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dv, dv, dv. = v*sinf dvdf dp

where 0 and @ are the "course" and "path angle". Integration of the normal probability

density function of the velocity, (from 0 to 2T and path angle (from =T/ 2 to Tt / 2),

with substitution of the speed for the sum of the squares of the vector components, yields
the probability density function.

Cartesian to spherical coordinates can be accomplished by invoking the transformation

dV.dV,dV. = (Vde)(Vsin6 dp)(dV) = Vising dVde do
(1)
where V is the particle speed, #is the zenith angle, and @Jis the azimuthal angle in
spherical
velocity space. The speed PDF can now be determined from the velocity PDF by
converting to spherical velocity coordinates and then integrating over all possible solid
angles. Converting first to spherical coordinates, we

obtain, from Eq. (1),

F(V)dVidV,dV. = f(V)V%sin0 dVde d¢

For an isotropic velocity distribution, f (V) is unaffected by either 8 or @; thus, directly

integrating over all zenith and azimuthal angles, we find that

; =

fF(V)dV = f(¥) 'rf’:'fil-"f sin# :iﬁfﬂ dp = 4x V2 F(V)dV
0 0
()
where f (V) represents the derived speed PDF.

From Eq. (2), we observe that the PDF for any isotropic velocity distribution canbe
converted to its corresponding speed PDF by employing
F(V)=4xVEf(V)
A3)
Hence, substituting from Eg. (3), we determine the PDF representing the Maxwell-

Boltzmann speed distribution as

: + OR3P g f mV?
H¥= .;?(w) 5 ”‘p(_zkr)(4)
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a= | —
This Maxwell distributionequation with distribution parameter m

The mean speed, most probable speed (mode), and root-mean-square can be obtained
from properties of the Maxwell distribution.

_v o, = f?kT [2RT
Speed is defined as Up  where \/ M s the most probable

speed. The distribution of speeds allows comparison of dissimilar gasses, independent of

temperature and molecular weight.

The most probable speed, vy, is the speed possessed by any molecule (of the same mass
m) in the system and corresponds to the maximum value or mode of f(v). Calculate df/dv,

Set it to zero and solving for v:

& (v)
dv

) _\/QkT_ [2RT
PN m _\/ M

Where Risthe gas constant and M = Namis the molar mass of the substance.

=10

The most probable speed can be determined by implementing
df(V)

—_— =10

dV

from which we obtain

i 1
Lf:?lr" = (L;\? )
m

e

Consequently, Eg. (4) can be reformulated as
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-[__r = — [ — et
(V) '\"‘IFIH??,F (Hﬂﬂ ) o |: ( Vinp ) ]
(6)
which is clearly non-Gaussian compared to f (V).

The speed PDF for a gaseous assembly, the mean for any function of particlespeed, G(V),
can be determined by evaluating

GV = f T GV F(V)dV
i )

Therefore, for G(V) = Vn, from Eq. (6) we obtain

ﬁ o _1- (zk;r ):.-.-'2 f‘.\: L" ] m+2 = ( 'i..__r : rj ( li-.-‘r )
A v N S Tl ( S
M

Applying the Gaussian integrals , we find that the mean and rootmean-square speeds for a

given assembly temperature become

: 12
s (E)
nm
(8)

—

= (3kT\'?
Vims = "I,."I Ve = (—)
9)

m

Comparing Egs. (5), (8), and (9), we seethat, at trandational equilibrium,

Vims = V = 1rr;rl.ﬁ

which confirms the non-Gaussian nature of the speed PDF for Maxwell-

Boltzmannstatistics.

The mean speed is the mathematical average of the speed distribution

s S8ET S8RT 2
= ) flo d )= _— e 1
w /0 v fe)dr Vam VM ﬁlp

The root mean sguare speed, Vims IS the square root of the average squared speed:

- 1/2

| ! | 3ET [3RT 3
L o8 LN o _ _ _alty
Urms (l v f() dl) m M \/;tp
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Thetypica speeds are related as follows:

0.886{v) = vp < (V) < Ups = 1.085(v).

The Maxwell speed distribution (MSD), is a probability distribution describing the
"spread” of these molecular speeds; it is derived, and therefore only valid, assuming that
with an ideal gas. The speed is a scalar quantity, describing how fast the particles are
moving, regardless of direction; velocity also describes the direction that the particles are
moving. Another important element is that space is three dimensional, for any given
speed, there are many possible velocity vectors.

The probability of a molecule having a given speed can be found by using Boltzmann
factor; considering the energy to be dependent only on the kinetic energy:

_— - . \ " N
(prabability of a molecule having speed between v and v+dv) o< e ™2/ k7)),

Here, misthe mass of the molecule, k is Boltzmann's constant, and T is the temperature.

The above equation gives the probability that one component of particle's velocity w. In 3

dimension we need to count particles that has al possible combinations of {vx,w,Vz}

. 2 2 2
. 1 =T 1 1
results in © vy + Uy T

. In other words, to sum all potential combinations of
individual components in 3 dimensional velocity space so that their vector some is
desired value. For the distribution in 3 dimension, integrate above equations in
dvx,dvy,dv, over entire velocity space such that component sum is constant. If the particles
with speed v in a 3-dimensiona velocity space, theseparticles lie on the surface of a
sphere with radius v. The larger v is, the bigger the sphere, and the more possible vel ocity
vectors. So the number of possible velocity vectors for a given speed goes like the surface

area of a sphere of radius v.

(number of vectors corresponding to speed v) o Ao,
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Multiplying these two functions together gives us the distribution, and normalising this

givesusthe MSD inits entirety.

m

2nkT

D(v)de = (

3/
7 A 'E,." A
) Arele~ ™/ (2KT) q;.

(Again, m is the mass of the molecule, k is Boltzmann's constant, and T is the

temperature.)

This formula is a normalised probability distribution, it gives the probability of a
molecule having a speed between v and v + dv. The probability of a molecule having a
speed between two different values vo and vi can be found by integrating this function

with vo and v1 as the bounds.

Averages

The "average" value of the speed of the Maxwell speed distribution.
Most probable speed:

Firstly, by finding the maximum of the MSD (by differentiating, setting the derivative
equal to zero and solving for the speed), determine the most probable speed. vimpequation

is:

kT
‘mP T\ m /)

Root mean squar e speed:

Second, the root mean square of the speed by finding the expected vaue of V2.
(Alternatively, by using the equipartition theorem.) vimsequation is:

3kT\ /2
Urms = (7) .
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Aver age speed:

Third and finally, the mean value of v from the MSD. © equation is:

8k 2
[ I )
mIn

The equation in the order Ymp < U < Vrms-
These are three different ways of defining the average velocity, and they are not

numerically the same.

Equipartition lawand Limitations of the principle of equipartition of energy.

The equipartition theorem alows the averagekinetic energy of each atom to be
computed, as well as the average potential energies of many vibrational modes.

In classicalstatistical mechanics, the equipartition theorem is a general formula that
relates the temperature of a system with its average energies. The equipartition theorem is
also known as the law of equipartition, equipartition of energy, or smply equipartition.
The original idea of equipartition was that, in thermal equilibrium, energy is shared
equally among all of its various forms; for example, the average kinetic energy per
degree of freedom in the translational motion of a molecule should equal that of its
rotational motions.

The equipartition theorem makes quantitative predictions. It gives the total average
kinetic and potential energies for a system at a given temperature, from which the
system's heat capacity can be computed. However, equipartition also gives the average
values of individual components of the energy, such as the kinetic energy of a particular
particle or the potential energy of a single spring. For example, it predicts that every
molecule in a monoatomicideal gas has an average kinetic energy of (3/2)ksT in thermal
equilibrium, where ks is the Boltzmann constant and T is the (thermodynamic)

temperature. Generally, it can be applied to any classical system in thermal equilibrium.
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The equipartition theorem can be used to derive the ideal gas law, and the Dulong—Petit

law for the specific heat capacities of solids.

The equipartition theorem makes very accurate predictions in certain conditions, it
becomes inaccurate when quantum effects are significant, such as at low temperatures.
When the thermal energy kgT is smaller than the quantum energy spacing in a particular
degree of freedom, the average energy and heat capacity of this degree of freedom are
less than the values predicted by equipartition.

The name "equipartition” means "equal division,” as derived from the Latinequi from the
antecedent, agquus ("equal or even"), and partition from the antecedent, partitionem
("division, portion"). The original concept of equipartition was that the total kinetic
energy of a system is shared equally among all of its independent parts, on the average,
once the system has reached thermal equilibrium. Equipartition also makes quantitative
predictions for these energies. For example, it predicts that every atom of a noble gas, in
thermal equilibrium at temperature T, has an average trandational kinetic energy of
(3/2)ksT, where ks is the Boltzmann constant. In this example, the kinetic energy is
guadratic in the velocity. The equipartition theorem shows that in thermal equilibrium,
any degree of freedom (such as a component of the position or velocity of a particle)
which appears only quadratically in the energy has an average energy of %ksT and
therefore contributes %2ks to the system's heat capacity.

The last two equations for the energy of the gas molecules amount to what is called the
equipartition principle. The gas that we have used in this description are monoatomic
(single atom) and therefore have no internal motions such as rotation or vibration. The
only motion that these molecules experience is translation as depicted in the box above.
Each gas atom has three degrees of trandlational freedom, motion along X, y, or z. The
average energy then per degree of freedom for the translating atomic gas is 1/2 KT per
degree of freedom per gas atom or 1/2 RT per degree of freedom per mole of gas atoms.
By the equipartition principle the total energy is equally distributed among the degrees of
freedom.
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For polyatomic molecules thermal energy will also be distributed among the rotations and
vibrations of the molecule. In the same way that translating molecules could move along
X, Y, or z, so too can each of the atoms in a molecule. Thus molecules have atotal of 3N
degrees of freedom, where N is the number of atoms in the molecule. Of the total 3N
degrees of freedom only 3 will be tranglations of the whole molecule through space. The
remainder are internal degrees of freedom: vibrations and rotations. Non-linear
polyatomic molecules have three degrees of rotational freedom while linear polyatomic
molecules have only two rotational degrees of freedom. Rotation of a linear molecule
along its molecular axis does not consume thermal energy (It's easy to roll a pencil). Each
rotation is alotted 1/2 KT per rotation (or /2 RT per mole of rotations) according to the
equipartition principle. A mole of water molecules (water is a non-linear molecule), for
example, has 3 rotations and 3/2 RT of rotational energy according to the equipartition

principle. The water rotations are shown below.

Equipartition of energy among vibrations is similar to that for translations and rotations
except that thermal energy may go into potential energy, i.e., into the stiffness of the
hypothetical spring connecting vibrating atoms, or into kinetic energy, the frequency of
the vibration. Each of these vibrational degrees of freedom obtains 1/2 kT according to
the equipartition principle or afull KT per vibration per molecule (a full RT per vibration
per mole of molecules). Non-linear molecules have 3N - 6 vibrations, while linear
molecules have 3N - 5 vibrations. Water, for example, has 3(3) - 6 = 3 vibrations. The

vibrations of water are shown below
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According to the equipartition principle the total energy of a mole of water vapor is
Utotar = Utrans + Urot + Uvib = 3/2 RT + 3/2 RT + 3RT = 6RT.

It is important to recognize that the equipartition principle is a classical idea that fails to
correctly account for the true quantum energies of molecules, with particularly poor

applicability to vibrations.

Each of these vibrational degrees of freedom obtains 1/2 KT according to the

equipartition principle or afull KT per vibration per molecule.
Maxwell-Boltzmann statistics
Speed distribution can be derived from Maxwell-Boltzmann distribution.

In statistical mechanics, Maxwell-Boltzmann statistics describes the statistical

distribution of materia particles over various energy states in thermal equilibrium, when

the temperature is high enough and density is low enough to render quantum effects

negligible.

The expected number of particles with energy €i for Maxwell-Boltzmann statistics is Nj

where;

where;

N isthe number of particlesin state i
€i isthe energy of thei-th state
Oi is the degeneracy of energy level i, the number of particle's states (excluding

the "free particle" state) with energy €i
M is the chemical potential

Prepared by Dr. S. Manickasundaram, Department of Chemistry, KAHE Page 15



k is Boltzmann's constant

T is absolute temperature

N isthe total number of particles

N = Z J'”‘lu".z'

1

Z isthe partition function

—e; kT
Z=) ge ™
1

e-) js the exponential function

Equivaently, the distribution is sometimes expressed as

T —e R
N; 1 g/ kT
N  els—mikr — 7

where the index i now specifies a particular state rather than the set of al states with

energy €i.

Derivation of the Maxwell-Boltzmann distribution and evaluation of alpha and beta

The Boltzmann distribution will be derived using the assumption of distinguishable

particles.Suppose we have a number of energy levels, labelled by index i, each level
having energy €i and containing a total of Nj particles. Assuming that there is only one

way to put N particlesinto energy level i.

The number of different ways of performing an ordered selection of one object from N
objects is obviously N. The number of different ways of selecting 2 objects from N
objects, in a particular order, is thus N(N — 1) and that of selecting N objects in a

particular order is seen to be N! / (N — n)!. The number of ways of selecting 2 objects
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from N objects without regard to order is N(N — 1) divided by the number of ways 2
objects can be ordered, which is 2!. The number of ways of selecting N objects from N
objects the order is the binomia coefficient: N! / n!(N — n)!. If a set of boxes
numbered 15 2, - - -, k, the number of ways of selecting N1 objects from N objects and

placing them in box 1, then selecting N2 objects from the remaining N — N1 objects and

placing them in box 2 etc. is

— NI (N — Ny)! N
v (N — N;)! Nol(N — Ny = No)l ) 7\ N, 10!

k

= N1T](1/N:D)

i=1

where the extended product is over all boxes containing one or more objects. If the i-th
box has a "degeneracy” of J, that is, it has gi sub-boxes, such that any way of filling the
i-th box where the number in the sub-boxes is changed is a distinct way of filling the box,

then the number of ways of filling the i-th box must be increased by the number of ways

of distributing the Ni objects in the @i boxes. The number of ways of placing Ni
N;

distinguishable objectsin gi boxesis 9: . The number of ways (W) that N atoms can be

arranged in energy levels each level | having g distinct states such that the i-th level has

Ni atomsis:

W= NT[%

N
i
Nl

For example, suppose three particles are considered &, b, and C, and we have three
energy levels with degeneracies 1, 2, and 1 respectively. There are 6 ways to arrange the

3particlessothat N1 =2, N2=1and N3 =0.
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.cb..ba..a
ab ab ac ac bc bc

The six ways are calculated from the formula:

ot - () 3) ()

The set of Nj for which W is maximized, subject to the constraint that there be a fixed
number of particles, and a fixed energy. The maxima of W and In(W) are achieved by

the same values of Ni and, since it is easier to accomplish mathematicaly, we will

maximize the latter function instead. We constrain our solution using Lagrange
multipliers forming the function:

F(Ny, Ny, Ny) =In(W) + o(N = N)) + B(E =Y Nies)

Using Stirling's approximation for the factorials

Nl =~ NNV
we obtain:
In(N)=NInN -N

Then

=InN!'+> (Nilng;: — N:In N; + N;)

i=1

W = { N! H 9 :

.sl‘

Finaly

F(NL Noo oo No) = N In(N)=N+aN4BE4LY  (Nilng — N;In N; + N; — (a— Be) N,)

i=l1

Prepared by Dr. S. Manickasundaram, Department of Chemistry,  KAHE Page 18



In order to maximize the expression above we apply Fermat's theorem (stationary points),

according to which local extrema, if exist, must be at critical points (partial derivatives
vanish):
af

BN = Ing; —InN;— (a+ B¢) =0

By solving the equations above (z = 1 .. . 1) we arrive to an expression for Ni:

r i

Iy )

Ni= ea+3ei

It can be shown thermodynamicallythat B = 1/KT where K is Boltzmann's constant and T

isthe temperature, and that a = -p/KT where p is the chemical potential, so that finaly:

. gi
 elei—p)/kT

Ji\"z'

The above formulais sometimes written:

Ji
EE;’_.."IFC'T/E

.
ﬁr‘i; -

where z = exp(u / KT) is the absolute activity.

Negative Absolute Temperature:

The equation used
Z J.h\'rt' — J.I?\Fir
i

to obtain the population numbers as

QJ;E'_E’:'“;T

J.'?\'r-;' = J.'?\'r
VA
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where Z is the partition function defined by:

r — 'rk.'T
‘d — yC € i
E : i
T

In this formulation, the initial assumption "...suppose the system has total N
particles..." is dispensed with. Indeed, the number of particles possessed by the

system plays no role in arriving at the distribution. Rather, how many particles

would occupy states with energy €; follows as an easy consequence.

The presented above is essentially a derivation of the canonical partition function.
The Boltzmann sum over states is really no different from the canonical partition

function.

Exactly the same approach can be used to derive Fermi—Dirac and Bose-Einstein

statistics. However, there one would replace the canonical ensemble with the

grand canonica ensemble, since there is exchange of particles between the system

and the reservoir. Also, the system one considers in those cases is asingle particle
state, not a particle. (In the above discussion, we have assumed our system to be a

single atom.)
Limits of applicability

The Bose-Einstein and Fermi—Dirac distributions may be written:

s Gi
 elei—p)/RT 417

N;
Assuming the minimum value of € issmall, it can be seen that the condition under which
the Maxwell-Boltzmann distribution is valid is when

e
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For an ideal gas, we can calculate the chemical potential using the development in the
Sackur—Tetrode article to show that:

OE v
= = kT
£ (aN ) o "’ (Nﬁﬁ)

where E is the total internal energy, Sis the entropy, V is the volume, and /A is the

therma de Broglie wavelength. The condition for the applicability of the Maxwell-

Boltzmann distribution for an ideal gasis again shown to be

Trf

s > L.

M axwell-Boltzmann Distribution L aw

3
m 12
d = am| 2
WN{zch] o

T isthe absolute temperature, N is number of molecules, m is mass of amolecule, v isthe

kT

1, .2
I
-z ]vgdv

velocity of amolecule, k is the Boltzmann constant 13.805 x 10-%* J deg™.

The equation gives the fraction of gas molecules with velocities in the range v to v +dv.
The velocity is described as a vector with components vy, v and v, in velocity space. The
volume of the spherical shell from surfaces v and v + dv is given by 401 ¥dv. The transfer
of momentum during collisions between molecules, Maxwell determined that the volume
element must be multiplied by the Boltzmann factor exp(-1/2 mv¥/KT). (1/2mv? as the
expression for kinetic energy.) (mV2kT)Y? is a normalization factor required to make the

integral of dN over all velocities equal N.

Below is a plot of the probability distribution of molecules as a function of velocity at

three temperatures.
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probabdlity

welocity

Translational Mode
Here we applied quantum mechanics to the particle in a box. The expression for the
trandlational energy of a single gaseous atom, namely,

7

Ey = ny +n + n;
8mV2? [ }

where the three spatial quantum numbers, n, nz, and ns, can each take on any value

from unity to infinity. The contribution to thermodynamicproperties from any
independent energy mode can be ascertained by first determining itscontribution to the
partition function. For the trandational mode, the partition functioncan be evaluated most
directly by summing over statesrather than over levels.

=33 3 en|- ey b+ 4 9)|

m=1 m=1 m=

For the trandlational partition function,

3w (27}

n=1

D
For the characteristic trandational temperature,

I
BV 24 (2)

E‘Ir:

The summation of above Equation isidentical for the three translational quantum
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numbers. Moreover, by summing over all possible values from unity to infinity, we are
indeed accounting for each quantum state, as identified by its unique set of trandlational
guantum numbers.

Recall that 6t = 10-16 K; thus, for any realistic assembly temperature,the summation in
the above Eq. can be converted to an equivalent integration. In other words, because of
the incredibly minute separation between consecutivetranglational levels, we may assume
a continuous distribution of trandlationa energies, asmight be expected from classica

mechanics. Consequently, from Eq. (1)becomes

- & on®\ | 1 [=T ;
Zy = “‘ exp(—T) a’n} = {E\HT]
©)

so that, substituting Eq. (2) into Eqg. (3), we obtain

e (EH;?;J;T)"'E v
‘ @

The trandational partition function, as defined by Eq. (4), can aso be derived by either

(1) summing over energy levels using the density of states or (2) evaluating the phase
integral. For quantum mechanics is actually unnecessary for the trandational
energymode; hence, the equipartition principle is perfectly suitable for calculating
trangl ational contributions to thermodynamic properties.

Because the characteristic temperature for the translational mode is so much smaller

than that for the various internal energy modes, the total number of quantum states for an
atom or molecule is essentially equivalent to that for the translational mode.

Z = Zy (ETHHI{T)R":J ( V) |
N~ N h2 N~
)

For an ideal gasat its standard temperature and pressure of 298.15 K and 1 bar, Eqg. (5)

typically gives Ztr/N 10°, which certainly supports the dilute limit. Dilute conditions
may not exist at low temperaturesor high densities, especially for particles with nearly
Zero mass.

Employing the translational partition function, we may now evaluate the contributions

of the translational mode to the thermodynamic properties of an ideal gas. Considering,

for example, the internal energy,
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TR aln 7, _ 3
(&), = T(5%7). =3
(6)

Similarly, for the specific heat at constant volume,

(%), =[2 (L5)] -3
. £ IF (i i r £

Therefore, the trandlational contribution to the internal energy per moleis 1.5RT and

that to the heat capacity per moleis 1.5R, which isin perfect accord with our expectations
from the equipartition principle. The translational contributions to the specific enthapy

andspecific heat at constant pressure are as follows:

h° 3 Cp 5
)= (B
At this point, the pressure can be easily determined by combining aspects of classical

and statistical thermodynamics. In particular, the pressure can be expressed classically

as

. ("—A)
aV TN
(8

while the Helmholtz free energy,

A— _NKT [m ({) i 1}

Recalling that Z = Z(T, V), we thus obtain the general relation

5 -w.—;r(a In z)

v Jor (9)
Applying Eg. (9) to the translational mode, we then obtain, by substitution from Eq. (4),

PV = NkT

(10)

which is, the equation of state for an ideal gas. The pressure arises solely from the
trandlational mode, as surely expected from the momentum exchange occurring at all
walls for vessels containing independent gaseous particles. On this basis, the partition
function for each internal energy mode must depend solely on temperature.

For the entropy,
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B L

3 1a (l‘rka} In ( v ]
ht N

e
| =
—
g

[
[ T ST

which becomes, after substitution from Eq. (10),
5y (2mm)y*? {kT‘JS"J
(E)w_l"[ P ]+
(11)

The Sackur—Tetrode equation for translational entropy:

3]

sy 5 3
(l) —ZInT+>lnM—lnP—11516
Ir s £ (12)

where T is the temperature (K), M is the molecular weight (kg/lkmol), and P is the
pressure

(bar). Based on Eg. (5), the Sackur—Tetrode equation, which holds only in the dilute
limit, is obviously inappropriate for temperatures approaching absolute zero. Hence,the
Eq. (12) gives an entropy vaue of negativeinfinity at T = 0.

Trangational energy and ideal gases

The (Newtonian) kinetic energy of a particle of mass m, velocity v is given by

2 2 2 2
Hyg= %m|v| == %m (’t-‘z + v, + uﬁ) :

where v, v and v; are the Cartesian components of the velocity v. Here, H is short for

Hamiltonian, and used as a symbol for energy because the Hamiltonian formalism plays a

central role in the most general form of the equipartition theorem.

Since the kinetic energy is quadratic in the components of the velocity, by equipartition
these three components each contribute ¥2keT to the average kinetic energy in thermal
equilibrium. Thus the average kinetic energy of the particle is (3/2)kgT, as in the example
of noble gases above.

More generdly, in an ideal gas, the total energy consists purely of (trandlational) kinetic
energy: by assumption, the particles have no internal degrees of freedom and move
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independently of one another. Equipartition therefore predicts that the average total
energy of anideal gasof N particlesis (3/2) NakgT.

The heat capacity of the gas is (3/2) Naks, the heat capacity of a mole of such gas
particles is (3/2)Naks = (3/2)R, where Na is the Avogadro constant and R is the gas
constant. Since R = 2 cal/(mol-K), equipartition predicts that the molar heat capacity of
an ideal gasisroughly 3 cal/(mol-K).

The mean kinetic energy allows the root mean square speedvims of the gas particles to be
calcul ated:

{3kgT {3RT
t]rms — {‘U?) — i — ﬁ'

where M = Namis the mass of amole of gas particles.

Rotational energy

A rotating molecule with principal moments of inertial1, |2 and Is. The rotational energy

of such amoleculeis given by
2 2 2
H. = %(11':-“11 -+ Iﬂw? i Jir13':“"1.51,}

where w1, w2, and w3z are the principal components of the angular velocity. The
equipartition implies that in thermal equilibrium the average rotationa energy of each
particle is (3/2)ksT. Similarly, the equipartition theorem allows the average (the root

mean square) angular speed of the molecules to be calculated.

Rotational Mode

The energy levels and degeneracies for the rigid rotor are given by

PO ) e s, DR 7 T
-;i'ﬁ' (1)

so that the rotational partition function becomes
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Z:-r.-.- — ;gif"'! 1 kT ; I:Ej + 1] EKP[—I{_JF + 1 125 .IF]

@)
Here, the characteristic rotational temperature,
hc h*
“." = —if = ——
k Bkl

©)

for which the moment of inertia le = ur 2 e . Unfortunately, for a homonuclear diatomic
such

as Oz or N2, we have inadvertently overcounted the number of available quantum states
by afactor of two because of the inherent indistinguishability of the nuclear pair.

From symmetry requirements on the molecular wave function, as generated by the usual
coupling between nuclear spin and orbital rotation. As a result,the partition function is
restricted to only odd or even values of the rotational quantum number.

Therotational partition function can be expressed more generally as

ot = gl 3 (2J + Dyexp[—J(J +1)&,/T]
=t (4)

where o is a symmetry factor, which, by definition, takes values of unity for a

heteronuclear

and two for a homonuclear diatomic molecule.

Typicaly, 0r <T, using a standard Euler—Maclaurin expansion

2N rﬂ,.) 1 /a.\* 4 76\
T o, ___%(?,Jrﬁ(?] _ﬁ(?) L
(5)

If, on the other hand, 6r -T, the summation in Eg. (4) can be converted to an
integration,as for our evaluation of the translational partition function. The obvious result
fromEqg. (5) is

T

of,

(6)
Now, for nearly all diatomics, 8r2 K, so that Eq. (6) is perfectly suitable for most

Zr.;l_l —

computations. However, for molecules containing a hydrogen atom, such as HCI or OH,

Br15 K; thus, for such cases, EQ. (5) becomes necessary. In contrast, direct summation
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via Eq. (4) remains a requirement for Hz, as here 6r = 87.55 K. With Eqg. (3) calculating
the rotational partition function for lighter molecules.

Eq. (6) controls so that our two standard partial derivatives for the partition functionwith
respect to temperature become

—fdln Z, D o fdln fn
T a el iy Tl 1. e —
( arT );.- [HT ( aT )],

Therefore, asfor the tranglational mode, we again replicate the classical results predicted

by the equipartition principle:

(7).~ (%),"1

%)= (5), -
.IIE ol "R e (8)

For the rotational contribution to the entropy,

For heteronuclear diatomics containing atomic hydrogen, 3 <T/6r < 30, which
implies utilization of Eq. (5); for this case, the rotational partition function can be
expressed as

where we have defined the rotational correction term,

= 1+1(HF)+ 1 (FJ,)1+ 4 (;},)3
g 3I\F 1I5\T AN T (10)

Evauating two standard partial derivatives, term-by-term, we find algebraic

mani pul ation,
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(12)

;r—t(*’r' - DAY A% pEad
"f‘ix?)_ﬁ(?) +m(?) At

T, (13)

o1 (:4) 4 (a,)3+ 36 9,')-"
e 3\T/)T15\T) T35\T) T (4

Hence, from Egs. (11) and (12), we have for the rotational contributions to the internal

energy, enthalpy, and specific heats

F rAs
(%)m! = (R_IT)“_! =1- Z
’ (15)

( 1 ' Zﬂ = E Z i
i)
( R)mr . R )r:-r Zre Zre “ (16)

Similar expressions could be developed for al of the remaining thermodynamic
properties,

including the entropy.

Consider a heteronucleardiatomic with a molecular distribution given,

N oyt kT i [ i
;  gre _ @I+ 1}3}{}_}{_“;;1}9}

N zrf:.' ffmr (17)

Dividing EqQ. (17) by itsresult at J = 0, we obtain

1"‘-‘1 i

J(J + 16
? =|{2j _|_'[}exp [_L

T

I
A i]

}(18)
For T/8r = 100, accents the remarkablepeak that typically arises at a rotational quantum
number J >0. Based on our discussion inwe would normally expect the population to

peak at its ground level, with anexponentially decreasing population at higher levels.The
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rotational case demonstrates that a strongly increasing degeneracy with risingenergy level
can preferentially displace the maximum population away from its ground level.For
atoms having low-lyingelectronic levels with degeneracies significantly greater than that
for the ground electronicstate. Assuming, for the moment, a continuous rather than a
discrete distribution, determine from Eg. (18) that value of the rotational quantum
number corresponding tothe peak in the rotational distribution, which becomes

IF i

-"rmu.x — af aa

73

(19)
For the rotationaldistribution can be very important for many optical techniques used to
determine theconcentration or temperature in a gaseous mixture. In particular, the
rotational peakusually offers the most intense signal in a rovibronic spectrum, and thus
the best possibledetection limit.

Potential energy and harmonic oscillators

Equipartition applies to potential energies as well as kinetic energies: important examples
include harmonic oscillators such as a spring, which has a quadratic potential energy

132
Hp-:-t = 744 ,

where the constant a describes the stiffness of the spring and q is the deviation from
equilibrium. If such aone dimensional system has mass m, then its kinetic energy Hxin is
1 P’
Hyn = -t = =—,
B B 2m’

where v and p = mv denote the velocity and momentum of the oscillator. Combining these
termsyields the total energy.
p* 1

+ -ag”.

H:Hkin‘l'Hpot:E 9
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Equipartition therefore implies that in thermal equilibrium, the oscillator has average

energy

{H} = (Hkin> 4 (Hpot> e %kBT ~t %kBT = 'ICBT.'

where the angular brackets { : -)denote the average of the enclosed quantity.

This result is valid for any type of harmonic oscillator, such as a pendulum, a vibrating
molecule or a passive electronic oscillator. Systems of such oscillators arise in many
situations; by equipartition, each such oscillator receives an average total energy ks T and
hence contributes ks to the system's heat capacity. Atoms in a crystal can vibrate about
their equilibrium positions in the lattice. Such vibrations account largely for the heat
capacity of crystalline dielectrics; with metas, electrons also contribute to the heat

capacity.
Specific heat capacity of solids

An important application of the equipartition theorem is to the specific heat capacity of a
crystalline solid. Each atom in such a solid can oscillate in three independent directions,
so the solid can be viewed as a system of 3N independent simple harmonic oscillators,
where N denotes the number of atoms in the lattice. Since each harmonic oscillator has
average energy ksT, the average total energy of the solid is 3NkgT, and its heat capacity is
3Nkz.

By taking N to be the Avogadro constantNa, and using the relation R = Naks between the
gas constantR and the Boltzmann constant ks, this provides an explanation for the
Dulong—Petit law of specific heat capacities of solids, which stated that the specific heat
capacity (per unit mass) of a solid element isinversely proportional to its atomic weight.
A modern version is that the molar heat capacity of asolid is 3R = 6 cal/(mol -K).

However, this law is inaccurate at lower temperatures, due to quantum effects; it is also
inconsistent with the experimentally derived third law of thermodynamics, according to
which the molar heat capacity of any substance must go to zero as the temperature goes
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to absolute zero. The mations of oscillators can be decomposed into norma modes, like
the vibrational modes of a piano string or the resonances of an organ pipe. On the other
hand, equipartition often breaks down for such systems, because there is no exchange of
energy between the norma modes. In an extreme situation, the modes are independent

and so their energies are independently conserved.

Boltzmann applied the equipartition theorem to provide a theoretical explanation of the

Dulong—Petit law for the specific heat capacities of solids.

The molar specific heat of a diatomic gas against temperature. It agrees with the value
(712)R predicted by equipartition at high temperatures (where R is the gas constant), but
decreases to (5/2)R and then (3/2)R at lower temperatures, as the vibrationa and
rotational modes of motion are "frozen out".

The failure of the equipartition theorem led to a paradox that was only resolved by
guantum mechanics. For most molecules, the transitional temperature Trot iS much less
than room temperature, whereas Tvip can be ten times larger or more. A typical exampleis
carbon monoxide, CO, for which Tyt = 2.8 K and Tvib = 3103 K. For molecules with very
large or weakly bound atoms, T.ip can be close to room temperature (about 300 K); for
example, Tvib = 308 K for iodine gas, I2.

Einstein used the failure of equipartition to argue for the need of a new quantum theory of

matter.
Applications
|deal gaslaw

Ideal gases provide an important application of the equipartition theorem

<H|’Cin} —

5— (P2 + Py + %)
1 aHkin aHkin ij'm 3 N
= §(<Pw o)t <P9m> + <Pfap; >) = kel
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for the average kinetic energy per particle, the equipartition theorem can be used to
derive the ideal gas law from classical mechanics. If g = (gx, Gy, z2) and p = (Px, Py, P2)
denote the position vector and momentum of a particle in the gas, and F is the net force
on that particle, then

@B = (o) () + (o)

where the first equality is Newton's second law, and the second line uses Hamilton's
eguations and the equipartition formula. Summing over a system of N particlesyields

The kinetic energy of a particular molecule can fluctuate, but the equipartition theorem
allows its average energy to be calculated at any temperature. Equipartition also provides
a derivation of the ideal gas law, an equation that relates the pressure, volume and

temperature of the gas.

By Newton's third law and the idea gas assumption, the net force on the system is the
force applied by the walls of their container, and this force is given by the pressure P of

the gas. Hence

N
(Y a-F)=rf aqus
k=1 surface

where dS is the infinitesimal area element along the walls of the container. Since the
divergence of the position vector q is

dq. Og, Jqg.
- — = —T 3‘
V-a 0q. T dqy - dg.
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the divergence theorem implies that

Pj{ q-dS =P/ (V- q)dV =3PV,
surface volume

where dV is an infinitessmal volume within the container and V is the total volume of the

container.

Putting these equalities together yields

N
3NkgT = _< pCTE Fk> =3PV,

k=1
which immediately implies the ideal gaslaw for N particles:
PV = NkgT = nRT,

where n = N/Na is the number of moles of gas and R= Nakg is the gas constant. The
equipartition provides asimple derivation of the ideal-gas law and the internal energy, the

same results can be obtained by an alternative method using the partition function.
Diatomic gases

A diatomic gas can be modelled as two masses, my and ny, joined by a spring of
stiffnessa, which is called the rigid rotor-harmonic oscillator approximation. The
classical energy of thissystemis

|131|2 |132|2 1 2
= —[I_
2my (3 2meo & 2

H

where p1 and p2 are the momenta of the two atoms, and q is the deviation of the inter-
atomic separation from its equilibrium value. Every degree of freedom in the energy is
quadratic and, thus, should contribute %-ksT to the total average energy, and %2k to the
heat capacity. Therefore, the heat capacity of a gas of N diatomic molecules is predicted
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to be 7N-¥2ks: the momenta p1 and p2 contribute three degrees of freedom each, and the
extension g contributes the seventh. It follows that the heat capacity of amole of diatomic
molecules with no other degrees of freedom should be (7/2)Naks = (7/2)R and, thus, the
predicted molar heat capacity should be roughly 7 ca/(mol-K). However, the
experimental values for molar heat capacities of diatomic gases are typically about
5cal/(mol-K) and fall to 3 ca/(mol-K) at very low temperatures. This disagreement
between the equipartition prediction and the experimental value of the molar heat
capacity cannot be explained by using a more complex model of the molecule, since
adding more degrees of freedom can only increase the predicted specific heat, not

decrease it.
Relativistic ideal gases

Equipartition was used above to derive the classical ideal gas law from Newtonian
mechanics. However, relatvistic effects become dominant in some systems, such as
white dwarfs and neutron stars, and the ideal gas equations must be modified. The
equipartition theorem provides a convenient way to derive the corresponding laws for an
extreme relativistic ideal gas. In such cases, the kinetic energy of asingle particleis given

by the formula

Hyn = cp= C\/}Ji +p§+p§-

Taking the derivative of H with respect to the px momentum component gives the

formula

p aHkin e Pi
* Ops VP2 + P+ P

and similarly for the py and p, components. Adding the three components together gives
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(B
" Vi +PE+ P!

A r7kin A 7 kin 9 Iykin
:<pz%>+<p%>+<pﬁ§;>

= 3kgT

where the last equality follows from the equipartition formula. Thus, the average total
energy of an extreme relativistic gas is twice that of the non-relativistic case: for N
particles, it is3 NksT.

Non-ideal gases

In an ideal gas the particles are assumed to interact only through collisions. The
equipartition theorem may also be used to derive the energy and pressure of "non-idea
gases’ in which the particles also interact with one another through conservative forces
whose potential U(r) depends only on the distance r between the particles. A single gas
particle, and approximating the rest of the gas by a spherically symmetric distribution.
Aradia distribution functiong(r) such that the probability density of finding another
particle at adistance r from the given particle is equal to 4nr?pg(r), where p = N/V is the
mean density of the gas. It follows the mean potential energy associated to the interaction
of the given particle with the rest of the gasis

{hpqt)zfu‘lwsz(r)g(r) dr.

— 1pnr
The total mean potential energy of the gas is therefore {Hpﬂf} T N {hpﬂt}, where N
is the number of particlesin the gas, and the factor % is needed because summation over
all the particles counts each interaction twice. Adding kinetic and potential energies, then

applying equipartition, yields the energy equation

3 e u}
H = {Hyin} + {Hpot) = ENR:BT + 2?7pr r2U (r)g(r) dr.
0
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To derive the pressure equation
3NkpT = 3PV + 2n] “\fp/ U'(r)g(r) dr.
Kinetic energies and the Maxwell-Boltzmann distribution

The equipartition theorem states that, in any physical system in thermal equilibrium,
every particle has exactly the same average kinetic energy, (3/2)ksT. The Maxwell—-
Boltzmann distribution which isthe probability distribution

2

3/2
m —Tmu
/) ”(znkgf) WA BT

for the speed of a particle of mass m in the system, where the speed v is the magnitude

2 4 g2 4+ g2
’bﬁ Yy T V2 of the velocityvector

v = (Ug, Uy, V;).

The Maxwell-Boltzmann distribution applies to any system composed of atoms, and
assumes only a canonical ensemble, specifically, that the kinetic energies are distributed
according to their Boltzmann factor at a temperature T. The average kinetic energy for a

particle of mass misthen given by the integral formula

(Hiin) = (zmv”) = / s’ f(v) dv = SkgT,
0

as stated by the equipartition theorem. The same result can also be obtained by averaging
the particle energy using the probability of finding the particle in certain quantum energy
state.

Quadratic energies and the partition function

More generdly, the equipartition theorem states that any degree of freedomx which
appears in the total energy H only as a simple quadratic term Ax?, where A is a constant,
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has an average energy of %ksT in thermal equilibrium. In this case the equipartition
theorem may be derived from the partition functionZ(B), where p = 1/(ksT) is the

canonical inverse temperature. Integration over the variable x yields a factor

T

e —gaz? _ [T
2= /_m dx € GA’

in the formulafor Z. The mean energy associated with this factor is given by

) log Z, 1 1
dlog el oot

e =~"35 ~25 2

as stated by the equipartition theorem.

Kinetic Molecular Theory of Gases

Kinetic Molecular Theory of Gases

The volume of a gas increases with temperature. The velocity (or kinetic energy) of gas
molecules increases at the temperatures increases. Determine the connection between
temperature and the velocity of gases by the molecular dynamics of a gas which produce

apressure inside a container.

The volume of the box isax A where ais the size of the box aong the x-axis and A is
the area of the wall of the box that is perpendicular to the x-axis.
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8

Pressure is defined as the force per unit area.

pressure =127

area

To calculate the pressure need to determine the force exerted by gas molecules colliding
withwall A. The force exerted by a molecule of mass m colliding with wall A can be
calculated from

& srelocity
& time

fomce = mass ¥ acceleraton = mass x

The last quantity in the above equation can be determined if we know the change in
velocity per collison with wall A and the time between collisions with wall A. A
collision with wall A will reverse only the x-component of the velocity . If we assign the
average initial x-component of the velocity before collision as -vx and the fina x-
component of the velocity after collision to vx then the change in velocity with collision
withwall A is

Aowelocity = v, - (W) = 2,

The time between collisions with wall A will again depend upon the x-component of the
velocity and the distance travelled by the gas molecule (along x) between collisions. In
our box a gas molecule, after colliding with wall A, would have to travel aong x to the
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opposite wall, a distance of a, and back again to wall A, for a total distance travelled
along x of 2a. Thus the time between collisions with wall A would be

) 2
ﬂ.t]l'['LE:_a

W

and the force exerted by one gas molecule of mass m colliding with wall A becomes

2

AT .

i _ _omv
ome = m X E‘E = a
&5

and the pressure at wrall A becomes

Z
R force  mw, v, L
I area, ak W I

Rearranging we find
pvV = mv,® per gas molecule.

Recognizing that the velocity is related to its components by the Pythagorean Theorem
and that, on average, each of the components are equal we find:

V2= vl + w2+ V2 = 32
and

pV = 1/3mv? per gas molecule,
or

PVm = /3 Namv? per mole of gas molecules,

where Vn is the volume occupied by a mole of gas molecules and Na is Avogadro's

number (6.022 x 10% molecules per mole).
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From the ideal gas temperature scale, i.e., pVm = RT, finaly connect the velocity and

kinetic energy of the gas molecules to the temperature.

PVm = Y3Namv? = RT and

FBL AT [

and the average kinetic energv (11 of a gas molecule is

S R |
F v = 2p*‘.F—z}:.T

and the average kinetic enerey (1) of a mole of gas molecnles iz

The velocity, v, is the root mean sguare velocity. At room temperature (300 K) the
velocity of nitrogen molecules ( m = 4.65 x 102 kg) is 519 meters/second. (*Note: k is
called Boltzmann's constant and is related to the gas constant R such that k = R/Na =

1.38 x 1023 joule per Kelvin per molecule.)

The last two equations for the energy of the gas molecules amount to what is called the
equipartition principle. The gas that we have used in this description are monoatomic
(single atom) and therefore have no internal motions such as rotation or vibration. The
only motion that these molecules experience is trandation as depicted in the box above.
Each gas atom has three degrees of translational freedom, motion along x, y, or z. The
average energy then per degree of freedom for the trandating atomic gas is 1/2 KT per
degree of freedom per gas atom or 1/2 RT per degree of freedom per mole of gas atoms.
By the equipartition principle the total energy is equally distributed among the degrees of
freedom.

For polyatomic molecules thermal energy will also be distributed among the rotations and
vibrations of the molecule. In the same way that translating molecules could move aong

X, Y, Or z, so too can each of the atoms in a molecule. Thus molecules have a total of 3N
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degrees of freedom, where N is the number of atoms in the molecule. Of the total 3N
degrees of freedom only 3 will be tranglations of the whole molecule through space. The
remainder are interna degrees of freedom: vibrations and rotations. Non-linear
polyatomic molecules have three degrees of rotational freedom while linear polyatomic
molecules have only two rotational degrees of freedom. Rotation of a linear molecule
along its molecular axis does not consume thermal energy (It's easy to roll a pencil). Each
rotation is allotted 1/2 KT per rotation (or 1/2 RT per mole of rotations) according to the
equipartition principle. A mole of water molecules (water is a non-linear molecule), for
example, has 3 rotations and 3/2 RT of rotational energy according to the equipartition

principle. The water rotations are shown below.

Equipartition of energy among vibrations is similar to that for transations and rotations
except that thermal energy may go into potential energy, i.e., into the stiffness of the
hypothetical spring connecting vibrating atoms, or into kinetic energy, the frequency of
the vibration. Each of these vibrational degrees of freedom obtains 1/2 kT according to
the equipartition principle or afull KT per vibration per molecule (afull RT per vibration
per mole of molecules). Non-linear molecules have 3N - 6 vibrations, while linear
molecules have 3N - 5 vibrations. Water, for example, has 3(3) - 6 = 3 vibrations. The

vibrations of water are shown below
&K o “e

According to the equipartition principle the total energy of a mole of water vapor is

Utota = Utrans + Urat + Uvib = 3/2 RT + 3/2 RT + 3RT = 6RT.
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It is important to recognize that the equipartition principle is a classical idea that fails to
correctly account for the true quantum energies of molecules, with particularly poor

applicability to vibrations.

Each of these vibrational degrees of freedom obtains 1/2 KT according to the

equipartition principle or afull KT per vibration per molecule.
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Questions

Opt-1

Opt-2

Opt-3

Opt-4

Answers

The equation of average
speed for Maxwell
distribution is -----------

V8RT /M

V2RT /M

V3RT /M

V5RT /M

V8RT /M

The equation for average
square speed of Maxwell
distribution is -----------

V2RT /M

V5RT /M

V8RT /M

V3RT /M

V3RT /M

The equation for most
probable speed of
Maxwell distribution is ----

V8RT /MM

V2RT /M

V5RT /M

V3RT /M

V2RT /M

The equation for Root
Mean Square Speed of
Maxwell distribution is -----

V2RT /M

V3RT/M

V8RT /M

V5RT /M

V3RT/M

In equiparttion law each of
quadratic term contributes

to the average
energy.

1/2kT

4/2kT

5/2kT

7/2kT

1/2kT

The equation for Stirlings
approximation is

InN! =N In N =N

In N!

InN!-In N

In N!=NIn N +N

InN! =N In N-N

The state of maximum
thermodynamic probability
equation is

e-a=N/S

Ni=e- a

Ni =N/S

ea=N/S

Ni =N/S
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The Maxwell Boltzmann
8 | distribution law equation Ni = gi. e-a e-Pel | Ni=gi. e-a epetl Ni = gi. ea e-Bel Ni = gi. ea ePel Ni = gi. e-a e-Pel
is

The number of molecules
occupying particular
energy level of particular

9 | quantum state of Maxwell Nij = ea ePel Nij= e-a e-Bel Nij= e-a ePel Nij = ea e-Petl Nij= e-a e-Bel
distribution law equation
is
The molecular partition

10 | function q is given by q=Ygi. e-Bel q=Jgi. e-Bel q=> e-Bei q =5 ePel q=Jgi. e-Pel

The equation for the

evaluation of a in .
11 M.B.distribution law is e-a=N/q e-a=N/S Ni=e-a ea=N/S e-a=N/q

The equation for the
evaluation of B in

12 M.B.distribution law is

B=1/kT B=-1/kT B=kT B=2/kT B=1/kT

The equation for
M.B.distribution of
13 | molecular velocity for A=(b/2m)1/2 A=(-b/2m)1/2 A=(b/2m)5/2 A=(-b/2m)3/2 A=(-b/2m)1/2
evaluation of constant A
is

The Maxwell speed (m/2m kT (m/2m kT

(m/2m kT
14 | distribution equation is )1/2.e- )3/2.e-mc/2kT. (rr:r;//zzﬁr;r)[i/zzdi )3/2.emc/2kT.4mc (rrr:://zziﬁrlr)[i/zzdi
mc/2kT.4mc2.dc dvx.dvy.dvz ) ) 2.dc ) '
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The Maxwell distribution of (m/2m kT (m/2r kT (m/2r kT (m/2m kT (m/2m kT )3/2.e-

15 | molecular velocity )1/2.e- )3/2.e-mc/2kT. 13/2.emc/2KT. 4rtc2.dc )3/2.emc/2kT. mc/2kT.
equation is mc/2kT.4mc2.dc dvx.dvy.dvz ’ ' ’ dvx.dvy.dvz dvx.dvy.dvz
The Maxwell distribution dN etr /N =(1/ dN etr /N =(1/ _ dN etr /N =(1/ kT) _

16 law in terms of kinetic kT)3/2 .(etr/ | kT)5/2 .(etr / m) dlf:;/n'\)l ;/(;/zlg):{rz 3/2 .(etr / m) 3(;2N Zir//Nn_)(ll//ZkZ-
translational energy n)1/2.2e-etr 1/2.2e-€tr i /KT.d s.tr 5/2.2e-etr /kT.d e tr /KT z—:tr‘
equation is /kT.d tr /KT.d tr ) gtr ’

. Ii:zsei‘;a:g;;o; "Car:g“i V2RT /M : V8RT \/2\/R§I'R/.|-I\/I/n"\<|/3:RT V3RT /M : V8RT /M : | V3RT /M :V8RT | V2RT /M :V8RT
C> <C2> /TIM : V3RT /M /M V2RT /M /TtM :V2RT /M /TtM : V3RT /M
The ratio of various kinds

18 | of speed is Cmp:<C> 1.128:1.225:1 1.128:1:1.225 1.225:1:1.128 1:1.128:1.225 1:1.128:1.225
:<C2>1/2
The average square speed

19 . 1.128 1.225 1 1.228 1.225
<C2>1/2 value is

20 | The most probable speed 1.128 1.225 1 1.228 1
Cmp value is

o1 | The average speed <C> 1.128 1 1.228 1.225 1.128
value is

27 | The RMS speed <C2>1/2 1.128 1 1.225 1.228 1.225
value is
The rotational contribution

23 to Cv for‘a polyatom|c Cv (rot)=R Cv (rot)=3/2R Cv (rot)=3R Cv (rot)=5R Cv (rot)=R
molecule in linear
molecule is
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24

The rotational contribution
to Cv for a polyatomic
molecule in non -linear
molecule is

Cv (rot)=R

Cv (rot)=3/2 R

Cv (rot)=3R

Cv (rot)=5R

Cv (rot)=3/2 R

25

The number of vibrational
degrees of freedom in
linear molecule is

3N-5

3 N-6

3 N-4

3 N-7

3N-5

26

The number of vibrational
degrees of freedom in
non- linear molecule

is

3N-5

3N-4

3 N-6

3 N-7

3 N-6

27

The equation for
polyatomic gas in non-
linear molecule is

Cv=3/2 R+3/2
R+ (3N-5)R

Cv=3/2 R+3/2
R+ (3N-6)R

Cv=3/2 R+R+ (3N-5)R

Cv=3/2 R+3R+
(3N-5)R

Cv=3/2 R+3/2 R+
(3N-6)R

28

The equation for
polyatomic gas in linear
molecule is

Cv=3/2 R+R+
(3N-5)R

Cv=3/2 R+3/2
R+ (3N-6)R

Cv=3/2 R+3/2 R+ (3N-
5)R

Cv=3/2 R+3R+
(3N-5)R

Cv=3/2 R+R+ (3N-
5)R

29

The equation for
monoatomic gas is

Cv=3/2R

Cv=R

Cv=5/2R

Cv=5R

Cv=3/2R

30

Planck proposed the
relationship between the
entropy of a system and
the thermodynamic
probability is given by the
equation

S=kinw

-S=klnw

S= -klnw

S=kInT

S=kinw

31

The equation for
M.B.distribution law of
molecular velocity is

A=(m/2r kT )1/2

A=(m/2m kT
)5/2

A=(-m/2r kT )5/2

A=(-m/2m kT )3/2

A=(m/2r kT )1/2
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speed

V3RT /M  equation of
R . average square | most probable . . average square
32 | Maxwell distribution law is average speed partition function
speed speed speed
V2RT /M  equation of
33 | Maxwell distribution law is | average speed most probable average square speed equipartition most probable

speed

V8RT /MM equation of

most probable

average square

root mean square

curve broadens.

34 | Maxwell distribution law is average speed average speed
speed speed ge sp speed gesp
V3RT /M equation of
o . most probable root mean square A . root mean square
35 | Maxwell distribution law is | average speed partition function
speed speed speed
1.128 value belongs to average square root mean square
36 & average speed ge 59 most probable speed q average speed
speed speed
1.225 value belongs to average square . . average square
37 & average speed ge 39 most probable speed | partition function ge 59
speed speed
The value of 1 belongs to average square root mean square most probable
38 g average speed ge 59 most probable speed q P
speed speed speed
In speed distribution . . volume
. . volume volume volume increasing . . .
39 | higher molecular weight - . . decreasing with volume increases
. increases decreases with decreasing . -
increases as increasing.
In speed distribution as
. . . volume
molecular weight : volume increasing . .
40 S increases decreases . . decreasing with decreases
the disribution with decreasing . -
increasing.
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The equation of

41 for Maxwell average speed
distribution is V8RT /mM

average square
speed

root mean square

most probable speed speed

average speed

The equation for

42 of Maxwell average speed average square

. . average square
most probable speed | partition function 8¢5a

distribution is V3RT /M speed speed
The equation for average square root mean square most probable
43 of Maxwell average speed sgeeg most probable speed < eedq speed
distribution is V2RT /M P P p
The equation for __ root mean root mean square
44 | of Maxwell distribution is average speed most probable speed partition function q
square speed speed
V3RT /M
The equation InN! =NInN - . Maxwell -
Stirlings partition . . Stirlings
45 | -N represents Apbroximation function equipartition law boltzmann aporoximation
? PP distribution law PP
state of state of maximum
The equation Ni=N/S maximum Stirlings h . . . .
46 . s . partition function equipartition law thermodynamic
thermodynamic | approximation -
- probability
probability
state of
The equation for Cv=3/2R . : . . maximum .
47 | . monoatomic gas diatomic gas polyatomic gas . monoatomic gas
is thermodynamic
probability
The value of
48 | belongs to most probable 1 1.225 1.128 2.25 1

speed

The number of
49 | degrees of freedom in rotational vibrational translational electronic vibrational
linear molecule is 3N-5
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The number of
degrees of freedom in

not equaI SO we use -----------

50 . . rotational vibrational translational electronic vibrational
non- linear molecule is 3N-
6
In speed distribution . . volume
. . . volume increasing . . .
51 | higher molecular weight -- decreases increases . . decreasing with increases
. with decreasing . .
——————— as volume increases . increasing
inversel directl directl
N . y . v equal to the square of . y .
The average kinetic energy proportional to | proportional to , proportional to its
52 . . . its absolute
of the gas molecules is its absolute its absolute absolute
temperature
temperature temperature temperature
For one mole of a gas the
53 o . E=1/2RT E=3/2RT E=5/2RT E=7/2RT E=3/2RT
kinetic energy is given by
The equation monoatomic ) . . . . . .
54 . monoatomic diatomic polyatomic triatomic monoatomic
————————— gas is Cv=3/2R
——————————— proposed the
relationship between the
entropy of a system and Maxwell
55 . Debye Planck Clapeyron Planck
the thermodynamic Boltzmann
probability is given by the
equation S=kInw
Law of distribution of
56 | velocities was given by-------- Maxwell Clausius Bernoulii Dalton Maxwell
In determining kinetic
equation of gases the square of mean square . . mean square
57 q . g a . q under root of velocity cube of velocity q
velocity of all molecules are velocity velocity velocity
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The example of gas having
. . . oxygen and
58 | monoatomic molecules is --- Nitrogen hydroge neon and argon . neon and argon
_____ nitrogen
At constant temperature,
the pressure of the gas is reduces to one increases by . cannot be increases by three
59 . . . remains the same . .
reduced to one third, the third three times predicted times
volume
go | oronemoleofa gas, the PV = RT PV =1/2 RT PV = 3/2RT PV =5/2 RT PV = RT
ideal gas equation is
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SYLLABUS

Partition function: Definition, justification of nomenclature, microcanonical and
canonical ensembles. Molecular partition and canonical function. The relation between
the total partition function of a molecule and the separate partition functions.
Trandational partition function, rotational partition function. Effect of molecular

symmetry on rotational partition function. Ortho and para hydrogen. Vibrationa partition
function. Electronic partition function. Evaluation of thermodynamic properties E, H, S,
A, G, C, and C, from monoatomic and diatomic ideal gas molecules partition functions.
Thermodynamic properties of polyatomic ideal gases. Calculation of equilibrium
constants of reaction involving ideal gases from partition functions.

Partition function (statistical mechanics)

In statistical mechanics, the partition function, Z, is an important quantity that encodes
the statistical properties of a system in thermodynamic equilibrium. It is a function of
temperature and other parameters, such as the volume enclosing a gas. Most of the
aggregate thermodynamic variables of the system, such as the total energy, free energy,
entropy, and pressure, can be expressed in terms of the partition function or its
derivatives.

There are severa different types of partition functions, each corresponding to different
types of statistical ensemble. The canonical partition function applies to a canonical
ensemble, in which the system is allowed to exchange heat with the environment at fixed
temperature, volume, and number of particles. The grand canonical partition function
applies to a grand canonical ensemble, in which the system can exchange both heat and
particles with the environment, at fixed temperature, volume, and chemical potential.

Canonical partition function

Definition

Thermodynamicaly large system is in constant thermal contact with the environment,
with atemperature T, and both the volume of the system and the number of constituent

particles fixed. This kind of system is called a canonica ensemble. Label with s
(s=1,2,3,..) the exact states (microstates) that the system can occupy, and denote the
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total energy of the system when it isin microstate s as Es. Generaly, these microstates
can be regarded as analogous to discrete quantum states of the system.

The canonical partition function is

4 = Ze_'jE"

where the "inverse temperature”, 3, is conventionally defined as

e
P T

with ks denoting Boltzmann's constant. The term exp(-B-Es) is known as the
Boltzmann factor. In systems with multiple quantum states s sharing the same Es, it is
said that the energy levels of the system are degenerate. In the case of degenerate energy
levels, partition function in terms of the contribution from energy levels as follows:

S = Zgj i E-_-'jEJ'
J

where g; isthe degeneracy factor, or number of quantum states s which have the same
energy level defined by Ej = Es.

The above treatment applies to quantumstatistical mechanics, where a physical system
inside a finite-sized box will typically have a discrete set of energyei genstates, which we
can use as the states sabove. In classical statistical mechanics, it is not really correct to
express the partition function as a sum of discrete terms. In classical mechanics, the
position and momentum variables of a particle can vary continuously, so the set of
microstates is actually uncountable. The partition function described using an integral
rather than a sum. For instance, the partition function of a gas of N identical classica
particlesis

Z = ~ expl[=BH(py - py,x1 - xy)] dPpy - dPpy P2y - APy

where

pi indicate particle momenta
xi indicate particle positions
d? isa shorthand notation serving as areminder that the pi and x; are vectorsin
three dimensional space, and
H isthe classica Hamiltonian.
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The partition function is a function of the temperature T and the microstate energies Ei,
E>, Es, etc. The microstate energies are determined by other thermodynamic variables,
such as the number of particles and the volume, as well as microscopic quantities like the
mass of the constituent particles. This dependence on microscopic variables is the central
point of statistical mechanics. With a model of the microscopic constituents of a system,
one can calculate the microstate energies, and thus the partition function, which will then
allow usto calculate all the other thermodynamic properties of the system.

The partition function can be related to thermodynamic properties because it has a very
important statistical meaning. The probability Ps that the system occupies microstate sis

1
P == ,—E_'ng .
* Z
¢~ 7Eis the well-known Boltzmann factor. The partition function plays the role of a

normalizing constant (it does not depend on s), ensuring that the probabilities sum up to
one:

5> B = %ZE_"SE‘ = %z: 1.

L]

This is the reason for calling Z the "partition function™: it encodes how the probabilities
are partitioned among the different microstates, based on their individual energies. The
letter Z stands for the "sum over states'. This notation also implies the partition function
of a system: it counts the (weighted) number of states a system can occupy. Hence if all
states are equally probable (equal energies) the partition function is the total number of
possible states.

Calculating the thermodynamic total energy
For the partition function, calculate the thermodynamic value of the total energy. Thisis

the expected value, or ensemble average for the energy, which is the sum of the
microstate energies weighted by their probabilities:

_ o 1 v —BE. 1 d P . OlnZ
<E) - ; EPy = Z ;bst = E@Z(_Jj-‘hl..bg.‘ J = (“)_;3
or, equivaently,
L QE)IHZ
(E) = kT* 5.

Incidentally, if the microstate energies depend on a parameter A in the manner
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E,=EY + )4, foralls
then the expected value of Ais

| | 10
<A) = ;ASPS —?}—AlIIZ(lj" AJ

This provides us with a method for calculating the expected values of many microscopic
quantities. Add the quantity to the microstate energies (quantum mechanics, to the
Hamiltonian), calculate the new partition function and expected value, and then set A to
zeroin thefinal expression..

Relation to thermodynamic variables

The relationships between the partition function and the various thermodynamic
parameters of the system.

The thermodynamic energy is

, dln Z
=95

The variance in the energy (or "energy fluctuation™) is

A e e FInZ
(BB = (B = B = S22

The heat capacity is

B L,
Co="aT = kg:m((“"))'
The entropy is
S=—ks Y Poln Py = ko(ln Z + B(E)) = 2 (kpT'ln 2) = -2
. " T ar aT

whereA is the Helmholtz free energy defined as A = U - TS where U=<E> is the total
energy and Sis the entropy, so that

A= (E) =TS = —kgTh Z.

Partition functions of subsystems
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Suppose a system is subdivided into N sub-systems with negligible interaction energy. If
the partition functions of the sub-systems are (s, &, ...,(n, then the partition function of
the entire system is the product of the individual partition functions:

N
Z — H (:J'.
i=1
If the sub-systems have the same physical properties, then their partition functions are
equal, (4= (2= ... = in which case
z=0N
If the sub-systems are actually identical particles, in the quantum mechanical sense that

they are impossible to distinguish even in principle, the total partition function must be
divided by aN ! (Nfactoria):

o Cf‘e
Z = N

Grand canonical partition function
Definition

Definition of the canonical partition function for the canonica ensemble, defining a
grand canonical partition function for a grand canonical ensemble, a system that can
exchange both heat and particles with the environment, which has a constant temperature
T, and a chemica potential p. The grand canonical partition function, although
conceptually more involved, simplifies the theoretical handling of quantum systems
because it incorporates in a simple way the spin-statistics of the particles (i.e. whether
particles are bosons or fermions

The grand canonical partition function Zfor an ideal quantum gas (a gas of non-
interacting particlesin a given potential well) is given by the following expression:

= — i Z H e—Anilei—p)

N=0 {n;}

where N is the total number of particlesin the gas, index i runs over every microstate
(that is, a single particle state in the potential) with n; being the number of particles
occupying microstate i and € being the energy of a particle in that microstate. The set
{ mi} isthe collection of al possible occupation numbers for each of these microstates
suchthat Z ni=N.
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For example, consider the N =3 term in the above sum. One possible set of occupation
numbers would be ni=0,1,0,2,0... and the contribution of this set of occupation
numbersto the N =3 term would be

Htf_'jni(ﬁ_p] — E_.j(fl_ﬂ:] E—Ed(eg—p)
i

For bosons, the occupation numbers can take any integer values as long as their sum is
equal to N. For fermions, the Pauli exclusion principle requires that the occupation
numbersonly be 0 or 1, againaddingupto N.

Probability

The expression for the grand partition function
z=]1]2
3 .

(The product is sometimes taken over all states with equal energy, rather than over each
state, in which case the individual partition functions must be raised to apower g where
g isthe number of such states. g isalso referred to as the "degeneracy” of states.)

For a system composed of bosons:

- 1
- —fAnilei—p) _
2i = Z € 1 — e—Blei—p)

ris=0

and for a system composed of fermions:

1
Z = Z e~Pnilei—n) — | | o—Blei—n)

Ti3=0

Maxwell-Boltzmann gas, we must use "correct Boltzmann counting” and divide the
Boltzmann factor e > Py n1 .

X p—nilei—p) Fei—p)
Zi=) —— =exp (e

n,!
Ti=0 t

Relation to thermodynamic variables

Prepared by Dr. S. Manickasundaram, Department of Chemistry, KAHE Page 6



With the canonical partition function, the grand canonical partition function can be used
to calculate thermodynamic and statistical variables of the system. As with the canonical
ensemble, the thermodynamic quantities are not fixed, but have a statistical distribution
about a mean or expected value.

The most probable occupation numbers are:

s (Slnl[zij) 1 (8111(3,;})
vt da J,y B ou /sy |

where o =-0-y .

For Boltzmann particles thisyields:

n) = e~HeiH)

For bosons:

1
)= S — 1.

For fermions:

1
{n'a:-" — eSle—m 1

which are just the results found using the canonical ensemble for Maxwell-Boltzmann
statistics, Bose-Einstein statistics and Fermi-Dirac statistics, respectively.

Total number of particles

. dIn(Z) 1 (0In(2)
M=), 5 ),
(_ Q .31".' _,' (_ i.tl I3.|"'r

Variancein total number of particles

. d2In(Z)
«OA) }_ ( aag )Jl

Internal energy
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)= (52

Variancein internal energy

mm%=G%%aL1

Pressure

PV =kgThZ,

Mechanical equation of state

Int Z)
g

(PV) =

Relation to potential V

For the case of a non-interacting gas, using the "Semiclassical Approach” we can write
(approximately) the inverse of the potentia in the form:

1 et Z(s)
. ds \/(7:5)6

- st l..a'—l It
2 J._; (?)

1
5= ——
keT (vaidfor high T)
The Hamiltonian of every particleisH=T+V .
Sackur—Tetrode equation

The Sackur-Tetrode equation is an expression for the entropy of a monatomic classical
ideal gas which incorporates quantum considerations .The Sackur-Tetrode equation is
named for Hugo Martin Tetrode (1895-1931) and Otto Sackur (1880-1914), who
developed it independently as a solution of Boltzmann's gas statistics and entropy
equations.
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The Sackur-Tetrode equation is written:

3
E 1% UN\2 . R dmm
s=evin |(5) (5) | +3* (3 + 0 5)

whereV is the volume of the gas, N is the number of particlesin the gas, U isthe internal
energy of the gas, k is Boltzmann's constant, mis the mass of a gas particle, h is Planck’s
constant.

The Sackur-Tetrode equation can also be expressed in terms of the thermal wavelength
/\. Using the classical ideal gas relationship U = (3/2)NKT for a monatomic gas gives

5 =311 [ ¥ ] + :
EN  LNAZ2| ' 2

The assumption was made that the gas is in the classical regime, and is described by
Maxwell-Boltzmann statistics.From the therma wavelength, the Sackur-Tetrode
equation isonly valid for

Trf

>t

the entropy predicted by the Sackur—Tetrode equation approaches negative infinity as the
temperature approaches zero.

Sackur—Tetr ode constant

The Sackur-Tetrode constant, written S/R, is equal to SkN evaluated at a temperature
of T= 1kelvin, at standard pressure (100 kPa or 101.325 kPa, to be specified), for one

mole of an idea gas composed of particles of mass equal to one atomic mass unit.

Useful Information and Some Simple Models

g — qtrans ) qu:ut ) gvih ) gelec ) qetc. ®
wheregec is the partition function.

For agas of N molecules,
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A

g
Q_N

A
— qtrans

L NI

A A A qN
'ant ) th : gelec " et -

g'sin the last two equations are multiplied together and not added.

The thermodynamic functions as a sum of contributions from the different types of
motion, tranglation, rotation, and etc. That is

A:Auans+Arut+Amh+Aelec+_"'

For example the rotational contribution to internal energy or entropy or any other
function can be obtained from

Ay = _kTth'r}ci
=—-NikTlng,,,

Thereisno N! inthis equation.

N!, to use Stirling's approximation, which can be written
InN!'= NInN-N,

Or

M A
Nz N'e ",
This approximation is useful when N isvery large, like around Avogadro's number.
Using Stirling's approximation makes the translational part of the partition function,

q eY'
Qtrans: tin;

Translational Motion In One Dimension

The trandlational part of the motion of a molecule by particle-in-a-box states. The energy
of a particle in a one-dimensional of length, |, box depends on one quantum number, n,
whichcanbel, 2, 3,. .. up toinfinity. The equation for the quantized energy is,
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'
n Smit’

whereh is Planck's constant and mis the mass of one molecule.

The partition function for this system s,

2.2
hn

-
— g Bt
5

The summation cannot be performed in closed form but it can be approximated by an
integral to high accuracy,

2.2
n

q= j e_ﬁg””"zdn.
0

Thisintegral can be evaluated and gives

Translational Motion In Three Dimensions

Trandational motion in three dimensions there are three quantum numbers, one for each
direction, ny, ny, and nz, and the energy is

h?

tﬂ

N MMy

2 2 2
- (i 4+ +n)

The trandational partition function in three dimensionsis a three—fold summation

o 2

Y L R
Q'trans - :
n, M, N
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This equationcan be written as

3
it

. -

_ E Eml

gtrans_ € "
ol

Since aready approximated the summation in Equation by an integral immediately write

3

Drmkt |2
Graans = |~ 7 V

wherelet I3 =V
The rotational energy of a linear molecule (neglecting such things as centrifugal

distortion) is given by BJ(J+1) and each J leve is 2J+1 degenerate. The rotationa
partition function is easy to write,

Gy = > (2T +De PHD,
J

If BB<< 1 (thisis the high temperature limit) the summation can be approximated by an
integral to give

L L KT
SB B

For a heteronuclear diatomic molecule (or an unsymmetrical one, like HCN) have to

gmt

rotate the molecule all the way around 360° to bring it back to the same "state." For a
homonuclear diatomic molecule (or asymmetrical one, such as COy) it comes back to the
same "state" after only 180° rotation. So an asymmetric molecule, in going around 360°
has only passed through one "state,” while a symmetric molecule has passed through two
"states" in a 360° rotation.

kT
'{_’?mt ~

-~ )
Bo
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whereo is caled the symmetry number. ¢ is the number of ways the molecule can be
oriented which are indistinguishable from each other. For HCI, 0 = 1; and for Cl, 0 = 2
(aslong as both Cl atoms are the same isotope).

The "characteristic rotational temperature,” Or, as

B
®R :;,

so that the rotational partition function can be written,

T
'{_’?mt G'®R )

Or also adlows high and low temperatures. If T>> Or say that T is a high temperature .If

T = Or or T< Og, then say T is a low temperature and we must use the summation
formula (divided by the appropriate ¢ ). For reasonable size molecules ©r is usually only
afew degrees Kelvin. For light moleculesit can be higher (for H2, Or = 87.57 K).

Nonlinear molecules have three moments of inertia and three rotational constants (and,
hence, three Or's). The three rotationa constants A, B, and C, the rotational partition

function (at high temperatures) is

3
7 G
o ~JABC

0 is the symmetry number and it is the number of orientations of the molecule which are

rot.

indistinguishable from each other (for benzene 0 =12, for anmonia o =3, etc).
Vibrational motion

Vibrational energiesfor one mode of vibration are
1
E =h{v+ E),

wherev =0, 1, 2, 3, . . ., and vis the characteristic frequency of the oscillator. The

vibrational partition functionis
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_ _ B (v+1/2)
Gy = ZE
W
_ e-,@hwzze-ﬁmvj
W

which can be summed in closed form to give

Gy = o B i1 1
il

W
e—ﬁhvv _ (E—ﬁ’hv) )

Sometimes a characteristic vibrational temperature, ©y, is defined by

and the partition function is written in terms of ©y instead of hv/k. Characteristic
vibrational temperatures are usually severa thousands of Kelvins except for very "soft"
or low frequency vibrationa modes.

Polyatomic molecules have more than one vibrational mode. For polyatomic molecules
each mode (all multiplied together, not added!).

The high temperature limit of quib (ignoring the zero—point energy contribution) is T/Oy.
This is sometimes called the "classical” limit because it is the result that is obtained from
statistical thermodynamics from classical mechanicsinstead of quantum mechanics.
Electronic Energy

Electronic excited state energies are usualy (but not always) much higher than KT, so
they don't contribute to thermodynamic properties except at extremely high temperatures.

When they contribute have to write out the partition function term—by-term
_ - PE - JE
Qooe = 817828 77 8¢ 77+

Here gi is the degeneracy of the i'th level, and selected the ground electronic state as the
zero (or origin) of energy.

0=3e"".
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If shift each level by the same constant amount, the levels E; + ¢, looks like a new
partition function

Q'= e,

J

But thisfactorsto give
_ - 5E.
O'=e ¥ e
B

When we take InQ' see that it differs from InQ only by an additive term —fc. This term
will contribute a constant additive term to A, U, H, and G, but it will not contribute to the

entropy or the heat capacities, nor will it contribute to quantities like AA, etc.

A—A =—kTnQ,

and they continue in the same manner with U, G, and etc. There is dways an arbitrary
zero of energy

A=—kTnO,

Equilibrium Constants
The equilibrium constants (in terms of concentration in molecules'm®) from partition
functions. The expression for this concentration equilibrium constant, in terms of the
material, for a hypothetical reaction,

aA +bB - cC+dD,

is,
I )
(@f ﬁf
g VAV
& b
(%f @ﬁ
VAV

The volume dividing each of the molecular partition functions cancel the volume
occurring in the trandationa part of the partition function, so that there is no explicit

volume dependence in K. This equilibrium constant will be in units of molecules'm® to
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some power (the —c — d + a + b power, actually). It can be converted to mol/L or pressure
by standard methods. Recall that N/V = p/KT.

Spin isomer s of hydrogen

Spin Isomers of Molecular Hydrogen
Molecular hydrogen occurs in two isomeric forms, one with its two proton spins aligned
paralel (orthohydrogen), the other with its two proton spins aligned antiparallel

(parahydrogen). At room temperature and thermal equilibrium, hydrogen consists of 25%
parahydrogen and 75% orthohydrogen.

Nuclear spin states of Hz

Each hydrogenmolecule (H2) consists of two hydrogen atoms linked by a covalent bond.

If we neglect the small proportion of deuterium and tritium which may be present, each

hydrogen atom consists of one proton and one electron. The proton has an associated

magnetic moment, which is associated with the proton's spin. In the H> molecule, the

spins of the two hydrogen nuclel (protons) couple to form atriplet state (1 = 1, o102, (01p2
+ B1a2)/(2Y3), or B1B2 for which M, = 1, 0, -1 respectively — this is orthohydrogen) or
to form a singlet state (I = 0, (a1B2 — B102)/(2Y%) My = 0 — this is parahydrogen). The
ratio between the ortho and paraformsis about 3:1 at standard temperature and pressure -

a reflection of the spin degeneracy ratio, but if thermal equilibrium between the two

forms is established, the para form dominates at low temperatures (approx. 99.8% at 20
K. Other molecules and functional groups containing two hydrogen atoms, such as water
and methylene, also have ortho and para forms (e.g. orthowater and parawater), although
their ratios differ from that of the dihydrogen molecule.

Thermal properties
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The permutationaantisymmetry of the Howavefunction (protons are fermions) imposes
restrictions on the possible rotational states the two forms of Hz can adopt.
Orthohydrogen, with symmetric nuclear spin func

tions, can only have rotational wavefunctions that are antisymmetric with respect to
permutation of the two protons. Conversely, parahydrogen with an antisymmetric nuclear
spin function, can only have rotational wavefunctions that are symmetric with respect to
permutation of the two protons. Applying the rigid rotor approximation, the energies and
degeneracies of the rotational states are given by

J(J + 1)A?
:%; gr=2J+1

Therotational partition function is conventionally written as

o0
i § —Ej/fkgT

Zr-:rt — g€ /
J=0 .

Ej

However, as long as these two spin isomers are not in equilibrium, it is more useful to
write separate partition functions for each,

& Z (2J + I}E—J(J-i-l)ﬁ?,rgmﬁ-r i e ool Z (27 + 1)6__;{”1)52;91;;5.]1

even J odd J

The factor of 3 in the partition function for orthohydrogen accounts for the spin
degeneracy associated with the +1 spin state. When equilibrium between the spin isomers

is possible, then a general partition function incorporating this degeneracy difference can

be written as
Lequil = Z (2 —(-1)")(2J + I)E—J{J+1jﬁgf21k5’r
J=0

The molar rotational energies and heat capacities are derived for any of these cases from

2 oln Z,; OU ot
'}-—F"Iro = RTE R— ; Cv rot — =
' ( oT ) et (81")

The antisymmetry-imposed restriction on possible rotational states, orthohydrogen has

residual rotational energy at low temperature wherein nearly all the molecules are in the J
= 1 state (molecules in the symmetric spin-triplet state cannot fall into the lowest,
symmetric rotational state) and possesses nuclear-spin entropy due to the triplet state's
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threefold degeneracy. The residua energy is significant because the rotational energy
levels are relatively widely spaced in Hp; the gap between the first two levels when
expressed in temperature units is twice the rotational temperature for Ho,

EJ:'I - EJ:'D i i h_? s
i = = m =174.98 K

This is the T = 0 intercept seen in the molar energy of orthohydrogen. This residual

energy, 1091 Jmol, is somewhat larger than the enthalpy of vaporization of normal
hydrogen, 904 Jmol at the boiling point, Tp = 20.369 K (this refers to the "normal”,

room-temperature, 3:1 ortho:para mixture. The boiling points of parahydrogen and
normal (3:1) hydrogen are nearly equa; for parahydrogen AH,q = 898 Jmol at Ty =
20.277 K. It follows that nearly all the residual rotationa energy of orthohydrogen is
retained in the liquid state. Orthohydrogen is consequently unstable at low temperatures
and spontaneously converts into parahydrogen, but the processis slow in the absence of a
magnetic catalyst to facilitate interconversion of the singlet and triplet spin states. At
room temperature, hydrogen contains 75% orthohydrogen, a proportion which the

liquefaction process preserves if carried out in the absence of a catalyst like ferric oxide,

activated carbon, platinized asbestos, rare earth metals, uranium compounds, chromic

oxide, or some nickel compounds to accelerate the conversion of the liquid hydrogen into
parahydrogen, or supply additiona refrigeration equipment to absorb the heat that the
orthohydrogen fraction will release as it spontaneously converts into parahydrogen.
Thermodynamic properties of Polyatomic Gas

The evauation of thermodynamic properties for a gaseous assembly composed of
polyatomic

mol ecul es depends on whether the associated molecular structureislinear or nonlinear.
For linear molecules, the relevant atoms are arranged along a single Cartesian

coordinate; examples are CO2, N2O, and CoH». Purely geometrical considerations restrict
linearpolyatomics to two rotational degrees of freedom (as for diatomics), while
nonlinear

polyatomics exhibit three such degrees of freedom. Hence, for a polyatomic
moleculecomposed of nindividual atoms, the number of vibrational modes must be 3n -

5 for thelinear case and 3n — 6 for the nonlinear case.
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Degrees of freedom for a polyatomic molecule with n atoms

Mode Linear MNonlinear
Translation 3 3
Rotation 2 3
Vibration In—5 n—=6

Each vibrationa mode of a polyatomic molecule designates an internuclear distance or
angle whose oscillation reflects a local electronic potential. Hence, stable molecular
configurations for complex molecules must correspond to minima on a multidimensional
potential surface.This perspective, however, is much too difficult to handle from a
guantum mechanical viewpoint; therefore, as for the diatomic case, we seek a simpler
model reflecting available spectroscopic data. The rigid-rotor/harmonic oscillator model,
thus fostering complete separation of energy modes. A fully complex model, including
any rovibrational coupling, must obviously be employed for more rigorous cal culations.

Assuming compl ete mode separation, the molecular partition function for a polyatomic

molecule

L= zrr Z'u‘ Zr:;.' Z.'.'.’1
Thetrandational contribution, similar to that for a diatomic molecule, is given by

oy A D
xgr = (QT;:ERF) V = !Zf?ff

where the total mass, m, is simply the sum of all atomic masses composing the molecule.
Therefore, we conclude that the contribution of the translational mode to thermodynamic
propertiesis essentialy the same for a polyatomic molecule as for the monatomic gas.
For nearly al polyatomics, the energy ascribed to the first excited electronic level is
sufficiently high that only the ground electronic state is necessary for most property
calculations. The electronic partition function becomes
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The resulting contribution to thermodynamic properties isnonzero only for the entropy
and free energies. The required electronic degeneracy canbe obtained, as usual, from the
term symbol associated with the ground electronic state.

For linear polyatomics, the term symbol and degeneracy follow the diatomic molecules.

However, for nonlinear polyatomics, the degeneracy is always

g =25+1

as obtained from the associated term symbol

(3]

25414 or 25+, T

Here, A indicates a symmetric while B implies a non-symmetric molecular wave function.
Similarly, the index i = 1, 2 designates whether this wave function is symmetric or
asymmetric,

respectively, with respect to the chemical structure of the polyatomic molecule.
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The partition function is
iven by the equation . . . . .
given By The =4 q=38 e* /KT a=sgiet /KT | q=Se/kT q=3 e /kT q=38 e* /KT
Canonical Ensemble different
. . same temperature, . same temperature
defined as a collection of temperature, different volume ’
volume and . . different , volume and
a large number of volume and and same identical
. . number of temperature number of
independent assemblies . . number of systems . .
. identical systems . . identical systems
having identical systems
Grand .Canonical Ensemble same temooiiuce Same different
defined as a collection of volume anF::i ' | temperature, temperature, different Same temperature
a large number of volume and volume and temperature , volume and
. . number of ) . .
independent assemblies . . chemical number of only chemical potential
. identical systems . . .
having potential identical systems
The total partition
function equation is q =0tr.drot. Qvib..Cele q =0tr.0ele q =0tr.0vib g = Jrot. Quib q =0tr.grot. Quib..(ele
The units of molecular
partition function are cm? st JKmol? dimensionless dimensionless
If Q is the molar
(canonical) partition
. A=kT | A= -kT | A=InQ/kT A=kT/I A= -kT |
function ,then the work Bl nQ nQ/ /inQ nQ
function A, is given by
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In terms of the molecular
partition function g, the R _ e U=nRT(dIng/dv) R
7 internal energy of a U=nRT*(dIng/dv)T U=nRT(dIng/dv)T | U=nRT?*(dIng/dT)v T U=nRT?(dIng/dT)v
molecule is given by
WhiCh Of the fO“OWin iS = r+ ro Vi + ele = rX ro Vi
8 & G=CtXClrot +Gvib Xqele | G=CrXQroXCuibXGele | - (Gt Gror) Qi+ Gete | =(ClxClor)/ (G =0t XClrotXQuibXlele
true ) Qlele)
The zero-point energy of
an S.H.O. whose
9 vibrational frequency is v, hv hv/3 G hv/4 hv/2
is given by
Which of the following is r >>0rot >>0vib>> cie> Qvib >0rot>  >>rot >>0vib>>
10 . & qtr> Quib >qele>qrot qtr< Qrot <qvib< Cele & Rl Qvio g Gvib >Qrot % Grot Gvio
true : Qele Qtr Cele
The canonical partition
function of a system of
11 | independent Q=qg"/N! Q=N!/g" Q=g" N! Q =o° Q=g"/N!
indistinguishable particles
is given by
The equation for
12 translational partition Owr= (2 m kT / —@2IKT/h) Ouw= (2 mkT / Qu=(2nmkT/ | qu=(2nmkT/
function is h?)¥2.v L '\ h?)>2.v h?)72.v h?)¥2.v
Rotational partition _
13 | function equation is ﬂ;;;/-z(\fn m KT / Gror= 21 KT / h? Groe= 2 kT / h? Groe= 21 k / h2. Grot= 21 KT / h?
The expression for
homonuclear diatomic
14 | molecule in Rotational Qrot = 21 kT / o h? Qrot = 21 kT / h? Qrot= 2 kT / h? Qrot= 21 k / h2. Qrot= 21 kT / 6 h?
partition function is given
by
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The expression for
heteronuclear diatomic

by

15 | molecule in Rotational Qrot= 21 kT / 0 h? Qrot= 2 kT / h? Qrot= 21 kT / h? Qrot= 21 k / h? Qrot= 21 kT / h?
partition function is given
by
The vibrational partition _ .

16 | function equation is given | qui =1/1-e™/kT quib =1/1+e /KT | quib =1/1+ e "/kT hqu"/'T(_F 1-1ve Quib =1/1-eM/kT
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If spins are parallelin
rotational partition
function to ortho
hydrogen then it has

even quantum
number

odd quantum
number

odd and even
quantum number

fractional values

even quantum
number

If spins are antiparallel in
rotational partition

even quantum

odd quantum

odd and even

odd quantum

tO Erot iS

18 ) fractional values
function to para hydrogen | number number guantum number number
then it has
If spins are parallelin
ortho hydrogen it has even . y . . vibrational .
19 . .| symmetric antisymmetric rotational energy symmetric
guantum number then it is energy
said to be
If spins are antiparallel in
hyd it h d ibrational
20 para hydrogen It Mas oc.l .| symmetric antisymmetric rotational energy vibrationa antisymmetric
qguantum number then it is energy
said to be
The translational motion
21 3/2R 5/2RT 3/2RT 5/2R 5/2R
for Cp,y is / / / / /
29 The rotational contribution RT R 3/2RT 5/2R RT
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Einstein’s theory and Debye’s theories of heat capacities of solids.

Einstein Theory for the Crystalline Solid

Einstein (1907) made the very reasonable assumption that a crystalline lattice can be
modeled as an assembly of 3N identical, noninteracting harmonic oscillators. In addition,
because of the tightly-bound structure of crystalline solids, he presumed that al 3N
vibrational modes would oscillate at the same fundamental frequency. The molecular

partition function for a single harmonic oscillator can be written as
Z-.:h = {] o i_,--.'.l_rl."'.r}. | (1)

where 9 = hvE/ K s the so-called Einstein temperature, which is simply a characteristic
vibrational temperature for the crystalline solid. In essence, Oeis an adjustable parameter
that can be used to best match predicted and experimental thermodynamic data for a
given metal.

Because the partition function for distinguishable particlesis the same as that for
indistinguishable particles in the dilute limit, for 3N oscillators having the same
characteristic temperature,

U = 3NKT? (” sl )

()
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Cy = 3Nk | —T> *--] :
‘ w{[arr( aT l
3)

u _ 38g/T
RT  ef=/T _1 (4)

¢, 3(0g/T) /T
R (T-17 (g

Similarly, for the entropy, the Equation

S = 3Nk l’r ( i ] +1n ;:.,.hJ 1
ar Jy (6)

so that from Egs. (1), (4), and (6) we have, for 3N harmonic oscillators,

h Hj-_'l.". T _BcdT
SRl R L T R
R Lr’fr--f =; i J} 7

W e o

i ®
+ "_:

L

‘ot
le

e
—

Normal mode structure within a crystallinesolid at higher and lower frequencies.

For comparative purposes, analyzing the limiting behavior forspecific heat at high and

low temperatures, as predicted by the Einstein theory. At the hightemperature limit we

have, upon invoking series expansions for the exponentia termsinkg. (5),
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B % 30/ TP [1+ 8/ T)+ -]
o/ T=0 R~ (14+(0g/T)+---— 1)

.
i

so that the expected result has obtained from equipartition theory. Onthe other hand, at
the low-temperature limit, we obtain

B T ot R o ;{{.}Tzi_l_.._:..L:I = 3(0g/ Ty /T
which obviously disagrees with the observed T3-dependence near absolute zero. This
failure

of Einstein theory arises because of a collective coupling among the lattice sites at lower

temperatures, now explore by turning to the more successful Debye theory.

Debye Theory for the Crystalline Solid

The energy of an oscillator is proportional to its frequency, an improved statistical

model for the crystalline solid at lower temperatures mandates a better understanding of
vibrational energy modes at lower frequencies. As for the single atom of a polyatomic
gas, the normal frequenciesin acrystal describe the concerted harmonic motion of all
metallic ions within the lattice structure. At lower frequencies, the resulting wavelengths
are long compared to the atomic spacing within the lattice; thus, these frequencies must
be determined by analyzing the crystal as a continuous elastic medium. In other words, at
lower temperatures, the behavior of a crystaline solid displays features more
appropriately

described by classical rather than quantum mechanics. At higher frequencies, on the other
hand, the wavelength must eventually be limited by the internuclear spacing within the
lattice structure, as indicated in Fig. 13.2. The upshot is that neighboring ions tend to
move

collectively in phase at lower frequencies while ionic pairs gravitate toward out-of-phase
motion at higher frequencies.

Based on this distinction between low- and high-frequency behavior, Debye (1912)
postulated a continuous distribution of oscillator frequencies, but with a maximum

frequency
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identified with a characteristic internuclear spacing, thus defining the so-called

Debye frequency. From this postul ate, we may write

dN = g(v)dv O<v<up (1)

wheredNis the number of normal vibratorsin the frequency rangev tov + dv, g(v) isa
frequency distribution function, and vDis the Debye frequency. Here, we note that g(v)
is not the usua probability density function, asintegration of Eq. (1) over all possible
frequencies gives the total number of oscillators for a crystalline solid, so that

f . g(v)ydv =3N
y @

At this point, the required distribution function could be obtained by determining
the number of standing acoustic waves produced by thermally excited vibrations within
a specified elastic medium. To determine the number of standing electromagnetic waves
in a blackbody cavity,
From this type of analysis, we find that
2xV

§(v) = ——*

whereV represents the volume of the elastic medium and vsis the average speed of sound
in the metallic crystal. Substituting Eq. (2) into Eq. (1), we obtain
9Nv?

g{ll:l — e
"D (4)
so that the Debye frequency can be related to fundamental crystalline parameters via

3 _3 Nv?

B 4.'-T 1__: (5)

If we now assume that the properties of a crystalline solid can be determined by
superimposing

the contributions from each normal mode,
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vp cfalnZ,
U= [ g(v)kT= (t n b) dv
Jo aT v (6)

. o d  ,f{dln Zl-,-b)
{_L—fu g,{ij[ﬁT( 3T J:|V:a’1.

(7)

where, in each case, we have integrated over all possible frequencies after weighing
the relevant property per vibrator with its frequency distribution function.
The vibrational partition function for any frequency written as

7,5 = (1 — g ivrkTy-1

(8)

so that, substituting Eq. (8) into Egs. (6) and (5), we obtain

N LFi] : ; hl‘__."k}_"
= L/; Hll'ﬂf? muﬁ.

9)
- hv/ kT)? ehvikT
Cv = f 1,=(s=}k{{€;“_l_.::’.'_‘n3 dv

(10)
Our remaining development will be aided considerably by introducing

hv hU” f'j']r)

o ﬁ X0 e

% ~XF T

wherefBDis called the Debye temperature. Given these definitions, Egs. (9) and (10)
become, after substitution from Eq. (4),

ONET [0 ; 3
= - [ . dx
J1

(11)

Cy dx

(12)

_ 9Nk [J xle*
a

xh Jo (¥ —1)

Defining the Debye function,

1 xp 3
D(xp) = — .;L—ld.z:
XnJo €& — (13)
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and integrating Eq. (13) by parts, we obtain finally the specific interna energy and heat

capacity as
u
— =3D{xp)
RT (14
1” 3--
L_f'? =3 |:'—1D{.1'.f.i]' == E,_Hm [}
n — (15)

To expedite the evaluation of Egs. (14) and (15), the Debye function has been
numerically integrated and the results tabulated in AppendixM. Note that both the
internal

energy and specific heat are functions solely of xD=8D/T. In general, the Debye
temperature, 6D, is obtained by fitting Eq. (15) to experimenta data, although good
results can aso be had by using Eq. (5) along with the measured speed of sound within
acrystaline solid. More significantly, if we explore once again the low-temperature limit
for specific heat, we now find

lim

. _I_ .,-}T_' i o .1
LT e T ] L (i)
p—oo N XD—+00 f'.".i."ﬂ 3 Yp (16)

thus supporting the observed T3-dependence for T <0.058D.
From Eq. (16) we conclude that the specific heat of a crystalline solid becomes

negligible as the temperature approaches absol ute zero.
Bose-Einstein statistics

In statistical mechanics, Bose-Einsteinstatistics (or more colloquialy B-E statistics)
determines the statistical distribution of identical indistinguishablebosons over the energy
states in thermal equilibrium.

Fermi-Dirac and Bose-Einstein statistics apply when quantum effects are important and
the particles are "indistinguishable". Quantum effects appear if the concentration of
particles (N/V) = nq. Here nq is the quantum concentration, for which the interparticle

distance is equal to the thermal de Broglie wavelength, so that the wavefunctions of the
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particles are touching but not overlapping. Fermi-Dirac statistics apply to fermions
(particles that obey the Pauli exclusion principle), and Bose-Einstein statistics apply to
bosons. As the quantum concentration depends on temperature; most systems at high
temperatures obey the classical (Maxwell-Boltzmann) limit unless they have a very high
density, as for a white dwarf. Both Fermi—Dirac and Bose-Einstein become Maxwell—-

Boltzmann statistics at high temperature or at low concentration.

Bosons, unlike fermions, are not subject to the Pauli exclusion principle: an unlimited
number of particles may occupy the same state at the same time. This explains why, at
low temperatures, bosons can behave very differently from fermions; al the particles will
tend to congregate together at the same lowest-energy state, forming what is known as a

Bose-Einstein condensate.

B-E statistics was introduced for photons in 1924 by Bose and generalized to atoms by
Einstein in 1924-25.

Bose-Einstein Statistics

For each case, deriving an expression for the number of microstates per macrostate,
which represents the total number of ways an arbitrary particle distribution can arise
when accounting for all possible energy levels. Let usfirst consider one energy level. The
number of ways in which Njbosons in a single energy level, € | , may be distributed
among gjenergy states is equivalent to the number of ways in which Njidentical,
indistinguishable objects may be arranged in gjdifferent containers, with no limitation on

the number of objects per container.
- (NG g = 1)
W —_—_—_—_-
2 1"\-':.': {g, —1 j!
Because each energy level represents an independent event, the total number of ways of
obtaining an arbitrary particle distribution becomes
(‘I\Ir.-'. +~ i — ]:1
War = ]_[ W= ]_[ NG -
’ ’ 1)

In other words,WBEi dentifies the generic number of microstates per macrostate for Bose—
Einstein statistics.
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Taking the natural logarithm of Eq. (1), we obtain

In .H":HE 3 Z {ll’l{ .'“"l'r_r' =+ 5,’.-13! — In 'I"..Ir:'.: —In g-II!I

where we have neglected the unity terms since gj__ 1. Applying Stirling’s approximation,
i.e, InN! = NInN - N ,we find that

In Wae =) {(N; +5;)In(N; + g;) — N;In N; — g; Ing;|
i

or

! - roo+ Jl"l.lrl. i+ Ji"o"li
In Wgg = Z N; In L e g;ln ] :

I i
ki | E_i’_u

@)

Fermi-Dirac Statistics
The expression for the number of microstates per macrostate, but this time for fermions.
The number of ways in which Njfermionsin asingle energy level, € j , may be distributed
among gjenergy states is equivaent to the number of ways in which Njidentical,
indistinguishable objects may be arranged in gjdifferent containers, with no more than

~A—— -
one object per container. © Ni'(g:i — N;i)
where the Nj! term in the denominator accounts for particle indistinguishability. The total
number of ways of obtaining an arbitrary particle distribution then becomes

r r .:[,IJI.:
Wep = 1_[ Wi =11 N;! (g; — N;)!

. 4
]

©)

so that WFD denotes the generic number of microstates per macrostate for Fermi—Dirac
statistics.

Taking the natural logarithm of Eq. (3), we obtain

InWep =) {lng;! —InN;! —In(g; — N;)!}

Applying Stirling’sapproximation ,we find that

In Wip = Z lgilng; — N;InN; — (g; — N;)In(g; — N;)}

or
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gi—N &y — 0N

InWrp =) {N;ln == L _g;ln

g ( 4)

TheMost Probable Particle Distribution
Equations (2) and (4) combined into one expression for both Bose- Einstein and Fermi-
Dirac statistics:

o

Nj gl

where the upper sign (+) refers to Bose-Einstein statistics and the lower sign (-) refersto

- iz Bj + ;"\':.' gy + h-‘f
In Wige, = Nn———+gl
fn | j:_a_ {J} z jin N g;in

Fermi—Dirac statistics. For ssmplicity of nomenclature, from here on omit the combined
BE-FD subscript; our convention will be that the upper sign always applies to Bose-
Einstein statistics and the lower sign always appliesto Fermi—Dirac statistics.

The most probable particle distributions for Bose-Einstein and Fermi—Dirac statistics

can now be determined by maximizing Eq. (1) subject to the two constraints

> N;=N
)

Y Nig;=E
! 3)

Equations (2) and (3) reflect the constant (E, V, N) conditions for an isolated system,

as required by the M—B method of statistical thermodynamics. Employing the Lagrange
method of undetermined multipliersfirst expand Eg. (1) and then

differentiate the result with respect to Njto find the most probable distribution of Nj
among its allowed energy levels. The step-by-step outcomeis

lnW = [N;ln(g; £ N;) — N;InN; £ g;In(g; £ N;) Fg;1ng;)

N; 3 :
dinWw=">" lln{g,.- * Ny £ AN, In N =1 4= i w_}dh';
T o el | =¥ ik

dln W= (In(g; = N;) — InN;} dN;,
f 4)
wheregjand ¢ j are taken as constants during the differentiation. From quantum

mechanics,
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it turns out that the degeneracy, gj, is smply an integer and the level energy, €| , isa
function

only of thetotal volume, V, which is, constant for an isolated system.

Equations (2) and (3) are now differentiated to account for the imposed constraints

during the optimization process. The results are

Y dN; =0 Y e;dN; =0

©)
Introducing multiplied unknowns into Egs. (5), we then subtract both expressions from
Eq. (4) to guarantee independent values of Nj.We thus obtain
> {in(g; £ N;) — InN; —a — Be;}dN; =0
i (6)
where the unknowns o and [ are the so-called Lagrange multipliers, and the entire
expression
is set equal to zero to identify the most probable macrostate.
Eq. (6) can be achieved for al j only if
g; £ N;

|
n N

=o 4 ﬁ.&r}.-

Hence, the most probable distribution among energy levels becomes

._[;?_,l'
explo + B=;)F 1
(7)

Equation (7) thus defines from a molecular viewpoint the specific condition ensuring

a""l'r i —

thermodynamic equilibrium for a macroscopic system of independent particles.

Fermi—Dirac , Bose-Einstein statistics and M axwell-Boltzmann statistics :

Fermi—Dirac and Bose-Einstein statistics apply when guantum effects are important and

the particles are "indistinguishable". Quantum effects appear if the concentration of

particles (N/V) = nq. Here nq is the quantum concentration, for which the interparticle

distance is equal to the thermal de Broglie wavelength, so the wavefunctions of the

particles are touching but not overlapping. Fermi—Dirac stetistics apply to fermions
(particles that obey the Pauli exclusion principle), and Bose-Einstein statistics apply to
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bosons. As the quantum concentration depends on temperature; most systems at high
temperatures obey the classical (Maxwell-Boltzmann) limit unless they have a very high
density, as for a white dwarf. Both Fermi—-Dirac and Bose-Einstein become Maxwell-
Boltzmann statistics at high temperature or a low concentration.

Maxwell-Boltzmann statistics are often described as the statistics of "distinguishable"
classical particles. In other words the configuration of particle A in state 1 and particle B
in state 2 is different from the case where particle B isin state 1 and particle Aisin state
2. This assumption leads to the proper (Boltzmann) distribution of particles in the energy
states, but yields non-physical results for the entropy. This problem disappears when it is
realized that all particles are indistinguishable. Both of these distributions approach the
Maxwell-Boltzmann distribution in the limit of high temperature and low density,
without the need for any assumptions. Maxwell-Boltzmann statistics are particularly
useful for studying gases. Fermi—Dirac statistics are most often used for the study of
electrons in solids. As such, they form the basis of semiconductor device theory and

electronics.

Plank distribution law of black body radiation:

A black body is an idealized physical body that absorbs all electromagnetic radiation

falling on it. Because of its perfect absorptivity at al wavelengths, a black body is also
the best possible emitter of thermal radiation, which it radiates incandescently in a

characteristic, continuous spectrum that depends on the body's temperature. At Earth-

ambient, low temperatures this emission is in the infrared region of the electromagnetic

spectrum and not visible, and therefore the object appears black, since it does not reflect

or emit any visible light.
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Black body spectrum (spectral energy density inside a blackbody cavity).

The thermal radiation from a black body is energy converted electrodynamically from the

body's of internal thermal energy at any temperature greater than absolute zero. It is

called blackbody radiation and has a distribution with a frequency maximum that shifts to
higher energies with increasing temperature. As the temperature increases past a few
hundred degrees Celsius, black bodies start to emit visible wavelengths, appearing red,
orange, yellow, white, and blue with increasing temperature. By the time an object is

visualy white, it is emitting a substantial fraction as ultraviolet light.

Blackbody emission provides insight into the thermodynamic equilibrium state of the

source of a continuous field. According to the equipartition theorem in classical physics,

each Fourier mode or degree of freedom should have the same energy when in
equilibrium. This approach led to the paradox known as the ultraviolet catastrophe, that

there would be an infinite amount of energy in any continuous field.
Explanation

All matter emits electromagnetic radiation when it has a temperature above absol ute zero.
The radiation represents a conversion of a body's thermal energy into electromagnetic
energy, and is therefore called thermal radiation. It is a spontaneous process of radiative

distribution of entropy.
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Conversely all matter absorbs electromagnetic radiation to some degree. An object that
absorbs all radiation falling on it, at all wavelengths, is called a black body. When a black
body is at a uniform temperature, its emission has a characteristic frequency distribution
that depends on the temperature. Its emission is called blackbody radiation.

The concept of the black body is an idedlization, as perfect black bodies do not exist in
nature. Graphite is a good approximation, however. Experimentaly, blackbody radiation
may be established best as the steady state equilibrium radiation in arigid-walled cavity.
A closed box of graphite walls at a constant temperature with a small hole on one side

produces a good approximation to ideal blackbody radiation emanating from the opening.

Blackbody radiation becomes a visible glow of light if the temperature of the object is
high enough. The Draper point is the temperature at which all solids glow a dim red,
about 798 K. At 1000 K, the opening in the oven looks red; at 6000 K, it looks white. No
matter how the oven is constructed, or of what material, as long as it is built such that
amost al light entering is absorbed, it will be a good approximation to a blackbody, so
the spectrum, and therefore color, of the light that comes out will be a function of the
cavity temperature temperature alone. A graph of the amount of energy inside the oven
per unit volume and per unit frequency interval plotted versus frequency, is called the

blackbody curve. Different curves are obtained by varying the temperature.

Blackbody radiation is approximated by the radiation from a small hole in alarge cavity,
a hohlraum, that has reached and is maintained at a constant temperature. (This leads to
the cavity radiation.) Any light entering the hole would have to reflect off the walls of the
cavity multiple times before it escaped, in which process it is nearly certain to be
absorbed. Absorption occurs regardiess of the wavelength of the radiation entering (as
long as it is small compared to the hole). The hole, then, is a close approximation of a
theoretical black body and, if the cavity is heated, the spectrum of the hol€'s radiation
(i.e., the amount of light emitted from the hole at each wavelength) will be continuous,
and will not depend on the material in the cavity (compare with emission spectrum).
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Calculating the blackbody curve was a major challenge in theoretical physics during the
late nineteenth century. The problem was solved in 1901 by Max Planck in the formalism
now, but its intensity rapidly tends to zero at high frequencies (short wavelengths). For
example, ablack body at room temperature (300 K) with one square meter of surface area
will emit a photon in the visible range (390-750 nm) at an average rate of one photon
every 41 seconds, meaning that for most practical purposes, such a black body does not

emit in the visible range.

Planck's law states that

a
I(V,T)d:f:(gh;j) 1

C exT — 1

where

[(v,T) dv is the amount of energy per unit surface area per unit time per unit solid
angle emitted in the frequency range between v and v + dv by a black body at
temperature T,

histhe Planck constant

c isthe speed of light in a vacuum

k is the Boltzmann constant

v isfrequency of electromagnetic radiation and

T isthe temperature in kelvins.

Planck's law describes the spectral radiance of unpolarizedel ectromagnetic radiation at al

wavelengths emitted from a black body at absolute temperaturel. As a function of

frequencyVv, Planck's law is written as

27 1

e

I{,T) = SR

This function represents the emitted power per unit area of emitting surface in the normal

direction, per unit solid angle, per unit frequency. It is a specific radiative intensity. A
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black body is an ideal surface that absorbs completely, with no reflection or transmission,
electromagnetic radiation of any wavelength falling on it. Though perfectly black
materials do not exist, such a surface can be accurately approximated by a small opening
on a closed cavity, since radiation entering the hole has almost no possibility to escape

the cavity without being absorbed by multiple impacts with itswalls.

Black bodies are Lambertian objects, which means that the radiance is proportiona to the

cosine of the viewing angle. Therefore, the spectral radiance of a black body surface

viewed from an arbitrary angle Bis / (v, 71.,6) = I(v,T) cos(8)

Sometimes, Planck's law is written as B(T) = I{v, Tor the specific radiative

intensity in a cavity in thermodynamic equilibrium; such radiation is isotropic, and

homogeneous. Also sometimes, Planck's law is writtenast!( 17) = 4a (v, 1)/'{ Cfor
spectral energy per unit volume of such cavity radiation. Also sometimes, Planck's Law is
written as an expression Fpp(v,T) =al(v, Lo power spectral density emitted.

The function £ (¥, I‘Jpeaks for iy = 2.82 kT Itsintegral falls off exponentialy in 1/

at higher frequencies and polynomially at lower, namely ast’.
As a function of wavelength A, Planck’s law is written (for unit solid angle) as:

O ohe? 1
I'O\T) =

This function peaks for hc = 4.97\KT, a factor of 1.76 shorter in wavelength (higher in

frequency) than the frequency peak. As for I (L’ , TJit falls off exponentially for shorter

wavelengths and polynomialy for longer, with the peculiar difference that the

polynomia is Mots peak is the more commonly used one in Wien's displacement law.

The radiance emitted over a frequency range [Vi1,V2] or a wavelength range

[A2, M] = [¢/va, ¢/ Vi]can be obtained by integrating the respective functions.
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f:g I(v,T)dv = /M I'(A,T)dx.

i Az

The order of the integration limits is reversed because increasing frequencies correspond

to decreasing wavelengths. The strange difference noted earlier between the polynomials

*and \*at long wavelengths disappears in the integral, which falls off cubically in both

frequency and wavelength.

The wavelength isrelated to the frequency by:

A==

I’

The law is sometimes written in terms of the spectral energy density

I ¥ . 8mh? 1
u(v,T) = ?I(I/,I) =3 "

which has units of energy per unit volume per unit frequency (joule per cubic meter per
hertz). Integrated over frequency, this expression yields the total energy density. The
radiation field of a black body may be thought of as a photon gas, in which case this

energy density would be one of the thermodynamic parameters of that gas.

The spectral energy density can aso be expressed as a function of wavelength:

. 8nhe 1
u(A,T) = e

as shown in the derivation below.

Max Planck originally produced this law in 1900 (published in 1901) in an attempt to

improve upon the Wien approximation, which fit the experimental data at short

wavelengths (high frequencies) but deviated from it a long wavelengths (low
frequencies). Planck found that the above function, Planck's function, fitted the data for
all wavelengths remarkably well. In constructing a derivation of this law, he considered
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the possible ways of distributing electromagnetic energy over the different modes of
charged oscillators in matter. Planck's law emerged when he assumed that the energy of
these oscillators was limited to a set of discrete, integer multiples of afundamenta unit of

energy, E, proportional to the oscillation frequency v:

F = hv.

Planck believed that the quantization applied only to the tiny oscillators that were thought
to exist in the walls of the cavity (what we now know to be atoms), and made no
assumption that light itself propagates in discrete bundles or packets of energy.
Moreover, Planck did not attribute any physical significance to this assumption, but
rather believed that it was merely a mathematical device that enabled him to derive a
single expression for the black body spectrum that matched the empirical data at all
wavelengths. Planck's formula predicts that a black body will radiate energy at all
frequencies, but itsintensity rapidly tends to zero at high frequencies (short wavelengths).

Derivation

The Planck's lawdistribution derivation :

Consider a cube of side L with conducting walls filled with electromagnetic radiation.

Let the cube contain a small particle of black material such as black carbon, so that the
radiation will be transduced to black radiation in thermodynamic equilibrium. Planck
noted that such a transducer between frequency components is needed because without it
the free electromagnetic field in the cavity with perfectly conducting walls cannot
exchange energy between frequency components and cannot achieve stable
thermodynamic equilibrium. If there is a small hole in one of the walls, the radiation
emitted from the hole will be characteristic of a perfect black body. We will first
calculate the spectral energy density within the cavity and then determine the spectral
radiance of the emitted radiation.

At the walls of the cube, the parallel component of the electric field and the orthogonal
component of the magnetic field must vanish. Analogous to the wave function of a
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particle in a box, one finds that the fields are superpositions of periodic functions. The

three wavelengths A1,A2 and A3, in the three directions orthogonal to the walls can be:

o,

n;

Ai

where the N; are integers. For each set of integers Ni there are two linear independent
solutions (modes). According to quantum theory, the energy levels of a mode are given

by:

1N he \
Enpame ()= (r+5) so/md+md+md. (1)

The quantum number I' can be interpreted as the number of photons in the mode. The two
modes for each set of Nj correspond to the two polarization states of the photon which has

aspin of 1. Note that for r = O the energy of the mode is not zero. This vacuum energy
of the electromagnetic field is responsible for the Casimir effect. In the following we will

calculate the internal energy of the box at temperature T relative to the vacuum energy.

According to statistical mechanics, the probability distribution over the energy levels of a

particular mode is given by:

_exp(—BE(r))
P. = AOEER
Here
8= 1/(kT).

The denominator Z([3), is the partition function of a single mode and makes Pr properly

normalized:
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1
=y

Z exp [-BF (r)] =

Here we have implicitly defined

def he
£ ?1-]_ =+ n-g + ﬂ-&,

2L

which is the energy of a single photon. As explained here, the average energy in a mode

can be expressed in terms of the partition function:

dlog(Z) E
d3  exp(Bs) -1

(B) = -

This formulais a specia case of the general formula for particles obeying Bose-Einstein

statistics. Since there is no restriction on the total number of photons, the chemical

potential is zero.

The total energy in the box now follows by summing {E }over all alowed single photon
states. This can be done exactly in the thermodynamic limit as L approaches infinity. In
this limit, cbecomes continuous and we can then integrate {E }over this parameter. To

calculate the energy in the box in this way, we need to evaluate how many photon states

there are in a given energy range. If we write the total number of single photon states

with energies between =and € + dzas g(e) dz | \where 9(2)is the density of states

which we'll evaluate in a moment, then we can write:

o= /:G exp (3) e )

To calculate the density of states we rewrite equation (1) as follows:

.jEf he
g = QLH-,
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wheren is the norm of the vector 7 = (”1: Mo, ﬂ53):

A= \/n'l? + n3 + ni.

For every vector N with integer components larger than or equal to zero there are two

photon states. This means that the number of photon states in a certain region of n-space

is twice the volume of that region. An energy range of dzcorresponds to shell of
thickness @1 = (2L/he)dzsig n-space. Because the components of 7ihave to be

positive, this shell spans an octant of a sphere. The number of photon states (€) dginan

energy range tzis thus given by:

1 8w L3
gle)de = 2§4ﬂﬂ2 dn = T3 e’ de.
Inserting thisin Eq. (2) gives:
8 B :
S - de.  (3)

h3c® Jo exp(fBe) —1

From this equation derives the spectral energy density as a function of frequency u(v,T)

and as afunction of wavelength U(A, T):

% = [}m u(v, T) dv,
where:
8mhy? 1
u(v,T) = vy B

u(v,T) is known as the black body spectrum. It is a spectral energy density function with

units of energy per unit frequency per unit volume.
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And:

U %0
§=L u(\, T) d,

where

8mhe 1

N5 ehc/AT _1°

u(A,T) =

This is also a spectral energy density function with units of energy per unit wavelength
per unit volume. Integrals of this type for Bose and Fermi gases can be expressed in

terms of polylogarithms. In this case, however, it is possible to calculate the integral in

closed form using only elementary functions. Substituting

= 'z,

m

The integration variable dimensionless giving:

B 8 (kT)*
H(T) - (h-t_’!)3 ‘-’T!

whereJ is given by:

J = f e dﬂ: S,
0o exp(zr)—1 15
The total electromagnetic energy inside the box is thus given by:

U  Su5(kT)4

VvV~ 15(he)?

whereV = L3 isthe volume of the box.
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Thisis not the Stefan-Boltzmann law (which is the total energy radiated by a black body
— see that article for an explanation); but it can be written more compactly using the

Stefan-Boltzmann constant o, giving

U 40T

V c

The constant 4a/c is sometimes called the radiation constant.

Since the radiation is the same in all directions, and propagates at the speed of light (c),
the spectra radiance (energy/time/area/solid angle/frequency) of radiation exiting the

small holeis
_u(y,T)c
I(V! T} T T!
which yields
2hi? 1
I(v,T) = —

2  ehw/KT _ 1"

It can be converted to an expression for I'(A, T) in wavelength units by substituting v by

¢/ A and evauating

di

I(A\T)=I(T)| 7

Note that dimensional anaysis shows that the unit of steradians, shown in the
denominator of left hand side of the equation above, is generated in and carried through
the derivation but does not appear in any of the dimensions for any element on the left-
hand-side of the equation.

Heat capacities of the electron gas and the heat capacities of metals:
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The eectron gas is clearly significant as it provides the primary mechanism for the
electrical conductivity of metalic crystals. Moreover, the Debye theory for a crystalline
solid proves to be inadequate at temperatures below approximately 5 K because adds
materialy to thermodynamic properties under such conditions. The electrons can be
treated as independent particles owing to a roughly constant potential throughout the
lattice structure. This relatively constant potential arises from rather long-range forces
both among the electrons themselves and a so between the electrons and the metallic ions
located at the various lattice sites.
Continuing the previous development for a crystaline solid, to determine the
thermodynamic properties of its electron gas, particularly the interna energy and specific
heat. The only significant energy mode in this case is translation within the conduction
band. Consequently, identifying the number of energy states associated with an electron
of mass me for tranglational energies between € and € + de,
DNe)de = 4n (E;I—?;)_ Vel de
! 1)
we have multiplied the usua density of trandationa states by afactor of
two to account for the intrinsic spin of each electron. Because the Pauli exclusion
principle
permits only one electron per state, Eq. (1) also represents the number of electrons
with trandlational energies between € and € + deat absolute zero. Therefore,
the electronic distribution function at any temperature must be
Di{e)
expl(e — n)/ kT] 41 2

N(e) =

so that the total number of € ectrons becomes

N = [ JFM'I{E:I{!'E:f. IXe)de i
Jo o expl(e —p)/kT]+1
©)

Substituting Eq. (1) into Eg. (3), and that 0 < € <¢F,we obtain

Ef '} - 32 "
N=4m [ (%) L"F.‘I.._ de
o i \ 1 A (4)

at absolute zero. Performing the indicated integration, find from Eq. (4)
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el (B
SaE B, \ m 'L") (5)
so that the Fermi energy has now been shown to depend on the number density of free

electrons, which is, affected by the number of valence electrons provided by

each atom in the metallic crystal. In general, for the internal energy,

U= fl eN(e)de
i (6)
so that, at absolute zero, EQ. (6) becomes
Uy =4 ﬁh (% ) it Ve'lde = %NH
-- ' o
In other words, as expected, the internal energy cannot be zero, even at absolute

zero, owing to the Pauli exclusion principle. Similarly, for the pressure,

(8)

so that, at absolute zero,

2 { Ner
A=2(5)
(9)
Remarkably, Eg. (9) shows that fermions produce positive pressure, even at absolute

Z€ero.

To define the Fermi temperature,

EF

If'l.ll T —

¥ (10)
which istypically 10° K, and thus several orders of magnitude greater than normal metal
temperatures. Therefore, despite being evaluated at absolute zero, the internal energy and
pressure from Egs. (7) and (9), respectively. Moreover, even at substantial temperatures,
T <<OFand thus thermodynamic properties for an electron gas should differ
insignificantly from those evaluated at absolute zero. On this basis, determine the
chemical potential at higher temperatures by manipulating Eq. (2) via a series expansion
for y about p0. Similarly, the internal energy can be determined by solving Eq. (6) viathe
implementation of a Taylor expansion aboutUO.
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Fermi-Dirac integrals both below and above the Fermi energy, eventually show that
(Davidson, 1962)

po= &F {] _%(g)_ II}(ll)

L {1 B (T }
Pt EF
’ (12)

Hence, the chemical potential decreases and the internal energy increases, but ever so

dlightly compared to their respective values at absolute zero. The chemica potential
drops because the energy level at which half the quantum states become filled declines at
greater temperatures, as el ectrons move to higher energy states.

This movement to higher energy levels also causes, an increase in the internal energy of
the electron gas.

From Egs. (7) and (12 ) we obtain

iy (‘”‘] B (E)
aT Jyny 2 er

so that the specific heat contributed by the electron gas becomes

D

Eq. (13) impliesthat only electrons near the Fermi energy become sufficiently

c, xt T
R 2 (

agitated thermally to contribute to the specific heat. Moreover, given typical values

of the Fermi temperature, this contribution is not 1.5R, as for the ideal gas, but on the
order

of 10R. For eectronic contributions of this magnitude are negligible, except as
compared to the the | attice structure at very low temperatures.

The electron gas to solid-state physics remains otherwise quite significant across the
entire temperature range, especially with respect to modeling the thermionic properties of
metals and also their electrical and thermal conductivities.

Negative Absolute Temperature
The property of a thermodynamical system which satisfies certain conditions and whose
thermodynamically defined absolute temperature is negative. The essential requirements
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for athermodynamical system to be capable of negative temperature are: (1) the elements
of the thermodynamical system must be in thermodynamical equilibrium among
themselves in order for the system to be described by a temperature at all; (2) there must
be an upper limit to the possible energy of the allowed states of the system; and (3) the
system must be thermally isolated from all systems which do not satisfy both
requirements (1) and (2); that is, the internal therma equilibrium time among the
elements of the system must be short compared to the time during which appreciable
energy islost to or gained from other systems.

The second condition must be satisfied if negative temperatures are to be achieved with a
finite energy. Most systems do not satisfy this condition; for example, there is no upper
limit to the possible kinetic energy of a gas molecule. Systems of interacting nuclear
spins, however, have the characteristic that under suitable circumstances they can satisfy
al three of the conditions, in which case the nuclear spin system can be at negative

absolute temperature.

The transition between positive and negative temperatures is through infinite
temperature, not absolute zero; negative absolute temperatures should therefore not be
thought of as colder than absolute zero, but as hotter than infinite temperature. An
effective quantity introduced for the description of nonequilibrium states of quantum
systems. A system is in a negative temperature state when high energy levels are more
populated than low energy levels. The probability for a system in an equilibrium state to
be on the level is determined by the equation.

exp i 'au .'ak.-fr‘}
E,i {---&;;‘I.‘[T]

(1) Wp =

Here, £i, are the energy levels of the system, k is the Boltzmann constant, and T is the
absolute temperature, which characterizes the mean energy of the equilibrium system U
= 2 WirEn Equation (1) indicates that the low energy levels are more populated by
particles than the high energy levels. If external influences cause the system to enter a
nonequilibrium state characterized by a greater population of the higher levels than the
lower levels, it is formally possible to make use of equation (1) by setting T< 0. The
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concept of negtive temperature is applicable only to quantum systems that contain afinite

number of levels.

The absolute temperature T is defined in thermodynamics through its reciprocal |/T,
which is equal to the derivative of the entropy S with respect to the mean energy of the
system, the remaining parameters x being kept constant:

1 a5
) N VY7

X

Equation (2) indicates that the negative temperature implies a decrease of entropy with
increasing mean energy. Negative temperature, however, isintroduced for the description
of nonequilibrium states, to which the laws of equilibrium thermodynamics are applicable

only conditionally.

An example of a system with negative temperature is the system of nuclear spins in a
crystal located in a magnetic field when the spins interact very weakly with the thermal
lattice vibrations—that is, a system practically isolated from thermal motion. The time
required for the attainment of thermal equilibrium of the spins with the lattice is of the
order of severa tens of minutes. During this time, the system of nuclear spinsmay bein a
state with negative temperature, a state it entered under external influences.

In a narrower sense, negative temperature is a characteristic of the degree of inversion of
the populations of two selected energy levels in a quantum system. In the case of
thermodynamic equilibrium, the relation between the populations N1 and N2 of the levels
£1 and £ (£1< £2), that is, the mean numbers of particles in these states, is given by the

Boltzmann equation:

N

= » (8 &3kT
[ 2
N, '

3)

whereT is the absolute temperature of the substance. Equation (3) implies that N><Nj. Let
us suppose the equilibrium of the system is disturbed, for example, by irradiation of the
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system with monochromatic electromagnetic radiation, whose frequency is close to the
frequency of the transition between the levels w21 = (E2— £1) and is different from the
frequencies of other transitions. It is then possible to attain a state in which the population
of the upper level is greater than that of the lower level: N>>Ni. If the Boltzmann
equation is conditionally applied to such a nonequilibrium state, negative temperature can

be introduced with respect to the pair of energy levels £1 and £> in accordance with the

eguation.
AW N
4 e L B Wy
(4) Fis = I V.
'y
N(hi) at high
energy
=
2| Nilo) at low
= enerqgy
System a negative absolute temperature

If more particles are at the upper level than at the lower one, absolute temperature of a
system is negative temperature of a system is negative.

As soon as the high energy level is populated more that the low energy one, we have

negative absol ute temperature.

A state of matter to which negative absolute temperature can be attributed has more
energy than the states at usua temperatures, because more particles are at high energy
level than at low energy level. Thus one has to addenergy to get negative absolute
temperature. It has been emphasized that such states cannot be reached by adding heat to
abody.
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Systems having spins of 0,1,2,3 . .
33 a:/e called g 3P Bosons Fermions Maxwellons F.D. statistics Bosons
Electron is an example for . . .
34 Bosons Fermions Maxwellons B.E. statistics Fermions
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35 He; s an example for Fermions Maxwellons | Bosons F.D. statistics Bosons
A t high t t i . ..
36 gas at high temperature 15 an Fermions Maxwellons | Bosons F.D. statistics Maxwellons
example for
37 Proton is an example for Fermions Maxwellons | Bosons B.E. statistics Fermions
38 | ’D is an example for Bosons Fermions Maxwellons F.D. statistics Bosons
Ni=gi;e*.ef-1 tion i F.D.
39 1=gi/€".€ equation 1s B.E. statistics 3 M.B. statistics Maxwellons B.E. statistics
called statistics
Ni=gi e®.eft +1 tion i F.D.
40 1=gi/€.€ equation 15 B.E. statistics - M.B. statistics Maxwellons. F.D. statistics
called statistics
According to Debye theory,in the
limit T=>0 f
gq |MitTS0______ ofa Cv Cp s E v
monoatomic crystal is
proportional to T3.
The equation 1/1-eM™/kT is the .
. . translational
42 | partition function for 1 D.H.O. 3 D.H.O. 2 D.H.O . 1 D.H.O.
function
In statistics only one Bose
43 | particle can occupy each Fermi Dirac Einstein Debye’s Bohr Fermi Dirac
guantum state.
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assumed that all the
44 | particlesin a crystal vibrate with | Debye’s Fermi Dirac | Einstein Bohr Einstein
same frequency
H — 3 , _ , _
45 The equatl.on Cv=463.5(T/6p) Debye's T-cubed BF>se . Eermi Dirac Maxwell Debye's T-cubed
cal /deg is law Einstein Boltzmann law
law is only a limiting
- . . . : Debye's T- Maxwell )
46 | law applicable at high Dulong petits Einstein cubed law Boltzmann Dulong petits
temperature.
Entropy of gas I Bose J . .
47 equation is S = Nko +kBE+NK . Fermi Dirac Einstein Debye’s Bohr Bose Einstein
Systems having spins of
48 are called %,3/2,5/2 0,1,2,3 0, %,3/2 2,4,6 %,3/2,5/2
Fermions
Systems having spins of
49 %,3/2,5/2 0,1,2,3 0, %,3/2 2,4,6 0,1,2,3
are called Bosons
50 Ages at ___ temperatul is high low very low moderate high
an example forMaxwellons.
------------- of Bose Einstein gas
51 equation is S = Nka +kBE+NK Entropy Enthalpy Internal energy | Crystal Entropy
In Fermi Dirac statistics only ------
52 | --- particle can occupy each one two three many one
guantum state
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Fermions

54

The electrons obey ---------- and
hence paulis exclusion principle
only 2 electrons wich occupy each
state

Bosons

Fermions

Maxwellons

F.D. statistics

F.D. statistics

55

——————————— is used to describe the
contribution from lattice
vibrations photons

M.B. statistics

F.D.
statistics

Maxwellons

B.E. statistics

B.E. statistics

56

———————————— statistics must be used to
describe the electron contribution
to the specific heat

M.B. statistics

F.D.
statistics

Maxwellons

B.E. statistics

F.D. statistics

57

----------- law describes the
electromagnetic radiation emitted
by a black body in thermal
equilibrium at a

definite temperature

Planck

Fermi Dirac

Einstein

Bohr

Planck

58

--------- statistics are often
described as the statistics of
"distinguishable" classical particles

Bosons

Fermions

Maxwell—
Boltzmann

Fermi Dirac

Maxwell—
Boltzmann

59

The Maxwell-Boltzmann
distribution follows from the --------
--- distribution for temperatures
well above absolute zero

Planck

Fermi Dirac

Bose-Einstein

Bohr

Bose-Einstein

60

---------- statistics describes a
distribution of particles over energy
states in systems consisting of
many identical particles that obey
the Pauli exclusion principle

Planck

Fermi Dirac

Bose-Einstein

Bohr

Fermi Dirac
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KARPAGAM ACADEMY OF HIGHER EDUCATION
COIMBATORE-21
(For the candidates admitted from 2017& onwards)
M.Sc. DEGREE EXAMINATION, AUGUST 2018
Third Semester
Chemistry
INTERNAL TEST -1
PHYSICAL CHEMISTRY-III (Thermodynamics)

Time: 2 Hours Maximum: 50 marks
PART-A (20 x 1 =20 Marks)
Answer All the Questions

1. For an ideal gas,the fugacity is equal to pressure and
a) f/[p=1 b) t/p=0 c) f/p varies d) f/p>1
2. AE =g-w is the mathematical relation for the
a) first law of thermodynamics b) second law of thermodynamics
c¢) third law of thermodynamics d) zeroth’s law
3. AH is +ve for
a) endothermic process b) exothermic process c) exoergic process d) endoergic process
4. For an endothermic reaction

a) AH is —ve b) AH is+ve c) AEis—ve d) AH is zero

5. The enthalpy of a system is defined by the relation
a) H=E+PV b) H=E-PV c¢) E=H+PV d) PV+E-H
6. The amount of heat required to raise the temperature of one mole of the substance
by 1 K is called
a) heat capacity ~ b) molar heat capacity ¢) molar capacity d) molar heat
7.A is one which cannot transfer matter but transfer heat, work and radiations
to and from its surroundings.
a) an isolated system b)an open system c)a homogeneous system d)a closed system
8. Every substance has a finite entropy which may become zero at absolute zero of
temperature is of thermodynamics.

a) second law b) third law c) first law d) zeroth law.



9. The residual entropy of hydrogen is due to the existence of form of
hydrogen in different quantum state.
a) ortho b) para c) meta d) combination.
10. At low pressure, Fugacity becomes
a) equal to pressure b) greater than pressure c) less than pressure d) not equal to pressure
11. The activity of the real gas
a)a=P b)a >P ¢)a <P d)a <P
12. In the limit T—0 , S= 0 which represents
a) first law of thermodynamics b) second law of thermodynamics
c) third law of thermodynamics d) zeroth’s law
13. Gibbs-Duhem equation is
a)n dy +nodp=0 b)mipy + nopo=0 c¢)dny iy +dnp o=0 d)yn; i +no =1
14. The residual entropy of is 6.23 JK'mol! .
a) hydrogen b) oxygen c) nitrogen d) sulphur
15. The number of degrees of freedom in linear molecule is 3N-5
a) rotational b) vibrational c¢) translational d) electronic
16. Planck proposed the relationship between the entropy of a system and the
thermodynamic probability is given by the equation
a) S=kinw b) -S=klnw c) S= -klnw d) S=kInT
17. According to Debye theory in the limit T—0 Cv of a monoatomic crystal is
proportional to
a)T BT oT T
18. The Nernst heat theorem is
a)AG=AH b)AG> AH ¢)AG< AH d)AG# AH
19. The ideal gas equation for one mole of the substance
a) PV=nRT b)PV=RT ¢)PV> RT d) PV > nRT
20. The third law is used for
a) absolute entropy of the substance b) absolute enthalpy of the substance

c) absolute free energy of the substance d) absolute heat capacity of the substance



Part B (3x2=6 Marks)
Answer All the Questions

21. What is Partial molar properties?
22. Write briefly about chemical potential.
23. Give the physical significance of fugacity.

Part C (3x8=24 Marks)
Answer All the Questions

24. a) Explainhow the fugacity of a gas may be determined by a graphical method.
(Or)

b) How will you determine the activity of solvent from colligative properties?

25. a) write notes on Nernst and third law of thermodynamics.

(Or)
b) What is chemical potential? Derive the Gibbs-Duhem equation.
26. a) Derive the equation for Maxwell distribution law for molecular velocities in an ideal
gas.
(Or)

b) What is meant by fugacity? Explain the variation of fugacity with temperature.
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PART-A (20 x 1 =20 Marks)
Answer All the Questions

1.a)f/p =1

2.a) first law of thermodynamics
3.a)endothermic process

4.b) AH is +ve

5.a)H=E+PV

6.b) Molar heat capacity

7.d) a closed system

8. b)third law

9. a)ortho

10.c) less than pressure
1l.a)a=P

12.c)third law of thermodynamics
13.a) n; dpy + n> dp=0

14.a) hydrogen

15. b)vibrational

16.2)S=kinw

17.¢) T

18.a) AG = AH

19.b) PV=RT

20. a) absolute entropy of the substance



Part B (3x2=6 Marks)
Answer All the Questions

21. What is Partial molar properties?

A partial molar property is a thermodynamic quantity which indicates how an

extensive property of a solution or mixture varies with changes in the molar composition of the

mixture at constant temperature and pressure, or for constant values of the natural variables of

the extensive property considered.
22. What is chemical potential?

Gibbs definition, any chemical element or combination of elements in given proportions

may be considered a substance, whether capable or not of existing by itself as a homogeneous
body. Chemical potential is also referred to as partial molar Gibbs energy. Chemical potential is
measured in units of energy/particle or, equivalently, energy/mole.
23. What is the physical significance of fugacity?

Fugacity is the effective pressure for a non-ideal gas. The pressures of an ideal gas and a
real gas are equivalent when the chemical potential is the same. The equation that relates the
non-ideal to the ideal gas pressure is:

O =f/ P

In this equation, f represents fugacity, P is the pressure for an ideal gas, and @ is the fugacity

coefficient. For an ideal gas, the fugacity coefficient is 1.

PART-C(3x8=24Marks)
Answer All the Questions

21. a) Explain how the fugacity of a gas may be determined by a graphical

method.
The Gibbs free energy depends on pressure as well as on temperature. The pressure dependence
of the Gibbs free energy in a closed system is given by the combined first and second laws and

the definition of Gibbs free energy as,

dG =—-5dT +Vdp — 1
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If we hold temperature constant and vary only the pressure. Equation 1 for integration from

pressure p; to p as follows:

dF=Vdp — >
Then

ra
Glp)-Glpp=| 2 Vdp —
21 3

or

e
G(5) =G|:p1)+j; vy —
1 . 4

Equation 4 is general and applies to all isotropic substance: solids, liquids, ideal gases, and real

gases.

(Or)

a) How will you determine the activity of solvent from colligative properties?
Colligative properties are those properties which depend up on the number of particles

and not the nature of solute.

These are properties of solutions in the dilute limit, where there is a solvent “A” and a solute “B”

p

. ure
where nA >> nB. These properties are a direct result of u™ 4 ( [].T,p) <u A ([],T,p) Using

two measures of concentration:

a. Mole Fraction: xB = nB/(nA+nB) ~ nB/nA

b. Molalility: mB = (moles solute)/(kg solvent) = nB/(nAMA) Where MA is the mass in kg of
one mole of solvent.

There are four Colligative Properties:

1. Lowering of Vapor pressure



2. Elevation of Boiling point

3.Depression of Freezing point

4.0smotic pressure
Rational activity of solvent from lowering of Vapor pressure: This is Raoult’s Law. Consider a

solution which is in equilibrium with its vapour

Then, () = w(g) >1

w([ D) = pe([]) + RTIna >2

Substitute second equation in first equation

u(g) = pe([]) + RTIna >3
Assuming ideal behavior for vapour
u(g) = pe(g) + RTInP >4

Substitute 4™ equation in 3™ equation

pe( g) + RTInP = pe([]) + RTlna >5
For pure liquid
pe([]) = pe( g) + RTnPo >6

Subtracting 6™ from 5" equation
RTIna = RTIn P/ Pe
A=P/Pe

Where a= activity, P=Partial pressure, P> = Vapour pressure of pure solvent

Rational activity of solvent from Elevation of Boiling point



wh=n@ —1
w([ D) = pe([d) + RTIna — 2

u(g) =pe([]) + RTna — 3

Ina = p(g)- pe([])/RT = AGvap/RT — 4

1 d
d/dT na= R dT (AGvap/RT) —5

d/dT Ina = - Hvap/RT?
T

[dlna = - Hovap/RT[dT/T> — 6
T

Ina =Hvap/R[ 1I/T-1/T"]
T is the Boiling point of solution

T" Boiling point of pure solvent.

Rational activity of solvent from Depression of Freezing point
w() = pe(s) > 1

w( D = pe [+ RTIna — 2

Substitute second equation in first equation
pe (s) = pe ([J)+ RTlna

Ina = pe (s) - po () —3

RT

[ pe (D) - pe(s)]
= - AGefus/RT — 4



[ RT]
dna/dT=-1 d (AGefus)

= AHw/RT? —5

R dT T
T

Jdlna = - Hpe/RIAT/T2 — 6
T
Ina =-AHwn/R[1/T-1/T]

Thus knowing the freezing point ‘a’ can be calculated.

Osmotic Pressure

Osmosis is the diffusion of a fluid through a semipermeable membrane. When a semipermeable
membrane (animal bladders, skins of fruits and vegetables) separates a solution from a solvent,
then only solvent molecules are able to pass through the membrane. The osmotic pressure of a
solution is the pressure difference needed to stop the flow of solvent across a semipermeable
membrane. The osmotic pressure of a solution is proportional to the molar concentration of the
solute particles in solution.

[I=nRT/V=MMRT

Where IIis the osmotic pressure, R is the ideal gas constant (0.0821 L atm / mol K),T is the
temperature in Kelvin, nis the number of moles of solute present, V is the volume of the
solution (n /V is then the molar concentration of the solute), and MM is the molar mass of the
solute.

22. a) write notes on Nernst and third law of thermodynamics.
Nernst heat theorem

The Nernst heat theorem was formulated by Walther Nernst and was used in the development of

the third law of thermodynamics.

The theorem


http://en.wikipedia.org/wiki/Third_law_of_thermodynamics
http://en.wikipedia.org/wiki/Walther_Nernst

The Nernst heat theorem says that as absolute zero is approached, the entropy change AS for a
chemical or physical transformation approaches 0. This can be expressed mathematically as

follow

lim AS =10

T—0

The above equation is a modern statement of the theorem. Nernst often used a form that avoided

the concept of entropy.

AG

AH

o T

Graph of energies at low temperatures

The theorem is to start with the definition of the Gibbs free energy (G), G = H - TS, where H
stands for enthalpy. For a change from reactants to products at constant temperature and pressure

the equation becomes AG = AH — TAS.

In the limit of T = 0 the equation reduces to just AG = AH, which is supported by experimental
data. From thermodynamics that the slope of the AG curve is -AS. Since the slope shown here
reaches the horizontal limit of 0 as T — 0 then the implication is that AS — 0, which is the

Nernst heat theorem.

The significance of the Nernst heat theorem is that it was later used by Max Planck to give the
third law of thermodynamics, which is that the entropy of all pure, perfectly crystalline

homogeneous materials is 0 at absolute zero.

Third law of thermodynamics


http://en.wikipedia.org/wiki/Absolute_zero
http://en.wikipedia.org/wiki/Third_law_of_thermodynamics
http://en.wikipedia.org/wiki/Max_Planck
http://en.wikipedia.org/wiki/Gibbs-Helmholtz_equation

The third law of thermodynamics is a statistical law of nature regarding entropy and the
impossibility of reaching absolute zero, the null point of the temperature scale. As a system
approaches absolute zero, all processes cease and the entropy of the system approaches a

minimum value.

This minimum value, the residual entropy, is not necessarily zero, although it is always zero for a

perfect crystal in which there is only one possible ground state.

The third law of thermodynamics states that the entropy of a system at absolute zero is a well-
defined constant. This is because a system at zero temperature exists in its ground state, so that
its entropy is determined only by the degeneracy of the ground state. It means that "it is
impossible by any procedure, no matter how idealised, to reduce any system to the absolute zero

of temperature in a finite number of operations".

Need for third law :

1.1t is impossible to reduce any system to absolute zero in a finite series of operations.

2.The entropy of a perfect crystal of an element in its most stable form tends to zero as the

temperature approaches absolute zero.

3.As temperature approaches absolute zero, the entropy of a system approaches a constant.

(Or)
b)what is chemical potential? Derive the Gibbs-Duhem equation.

Gibbs definition, any chemical element or combination of elements in given proportions may be

considered a substance, whether capable or not of existing by itself as a homogeneous body.
Chemical potential is also referred to as partial molar Gibbs energy. Chemical potential is

measured in units of energy/particle or, equivalently, energy/mole.
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Consider a thermodynamic system containing n constituent species. Its total internal energy U is
postulated to be a function of the entropy S, the volume V, and the number of particles of each
species Ny, ..., N,

U=U(S,V,Ny,...,N,)
By referring to U as the internal energy, it is emphasized that the energy contributions resulting

from the interactions between the system and external objects are excluded. For example, the

gravitational potential energy of the system with the Earth are not included in U.

The chemical potential of the i-th species, u; is defined as the partial derivative

( au
Hi =

ON;

S, VilNj =i
where the subscripts simply emphasize that the entropy, volume, and the other particle numbers

are to be kept constant.

In real systems, it is usually difficult to hold the entropy fixed, since this involves good thermal
insulation. It is therefore more convenient to define the Helmholtz energy 4, which is a function
of the temperature 7, volume, and particle numbers:

A= A(T,V,Ny,...,N,)
In terms of the Helmholtz energy, the chemical potential is

( dA
Hi =

3 .n!“"l-ri

T,V,Nji

The conditions at constant temperature and pressure. The chemical potential is the partial

derivative of the Gibbs energy with respect to number of particles

e ( a@)
EE)}_ET\\-TI T.p,Nj

The chemical potential can be written in terms of partial derivative of the enthalpy (conditions of

constant entropy and pressure).
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Here, the chemical potential has been defined as the energy per molecule. A variant of this

definition is to define the chemical potential as the energy per mole.

The chemical potential is known in a certain state (e.g. for standard conditions), then it can be
calculated in linear approximation for pressures and temperatures in the vicinity of thisstate:
w(D)=w(To)+a(T-Ty) and

H(P)=(po)*P(p—po)

O
= (&)
F

- (2

Here " is the temperature coefficient and

dp

)T,ﬂ- is the pressure coefficient.

With the Maxwell relations

). 5
orj, . on ),

(@), (&)
ap Tn 3?1 T.p

It follows that the temperature coefficient is equal to the negative molar entropy and the pressure

and

coefficient is equal to the molar volume.

23. a) Derive the equation for Maxwell distribution law for molecular velocities in an ideal
gas.
In the context of the Kinetic Molecular Theory of Gases, a gas contains a large number of

particles in rapid motions. Each particle has a different speed, and each collision between


http://en.wikipedia.org/wiki/Maxwell_relations

particles changes the speeds of the particles. An understanding of the properties of the gas
requires an understanding of the distribution of particle speeds.

Many molecules, many velocities

At temperatures above absolute zero, all molecules are in motion. In the case of a gas, this
motion consists of straight-line jumps whose lengths are quite great compared to the
dimensions of the molecule. Although we can never predict the velocity of a

particular individual molecule, the fact that we are usually dealing with a huge number of
them allows us to know what fraction of the molecules have kinetic energies (and hence
velocities) that lie within any given range.

The trajectory of an individual gas molecule consists of a series of straight-line paths
interrupted by collisions. What happens when two molecules collide depends on their
relative kinetic energies; in general, a faster or heavier molecule will impart some of its
kinetic energy to a slower or lighter one. Two molecules having identical masses and
moving in opposite directions at the same speed will momentarily remain motionless after
their collision.

If we could measure the instantaneous velocities of all the molecules in a sample of a gas
at some fixed temperature, we would obtain a wide range of values. A few would be zero,
and a few would be very high velocities, but the majority would fall into a more or less
well defined range. We might be tempted to define an average velocity for a collection of
molecules, but here we would need to be careful: molecules moving in opposite directions
have velocities of opposite signs. Because the molecules are in a gas are in random thermal
motion, there will be just about as many molecules moving in one direction as in the
opposite direction, so the velocity vectors of opposite signs would all cancel and the
average velocity would come out to zero. Since this answer is not very useful, we need to
do our averaging in a slightly different way.

The proper treatment is to average the squares of the velocities, and then take the square
root of this value. The resulting quantity is known as the root mean square (RMS) velocity
vrms=) v2n———— V(2.7.1)(2.7.1)vrms=Yv2n

where nn is the number of molecules in the system. The formula relating the RMS velocity
to the temperature and molar mass is surprisingly simple (derived below), considering the

great complexity of the events it represents:



vrms=3RTM——— V(2.7.2)(2.7.2)vrms=3RTM
where
e MM is the molar mass in kg mol™', and
¢ RR s gas constant.
Equation 2.7.22.7.2 can also be expressed as
vrms=3kbTm—————(2.7.3)(2.7.3)vrms=3kbTm
where
¢ mm is the molecular mass in kg
e kbkb is Boltzmann constant and is just the “gas constant per molecule"
kb=RNa=R6.02x1023(2.7.4)(2.7.4)kb=RNa=R6.02x1023
Equation 2.7.32.7.3 is just the per atom version of Equation 2.7.22.7.2 which is expressed in

terms of per mol. Either equation will work.

(Or)

b) What is meant by fugacity? Explain the variation of fugacity with temperature.
Fugacity is the effective pressure for a non-ideal gas. The pressures of an ideal gas

and a real gas are equivalent when the chemical potential is the same. The equation that

relates the non-ideal to the ideal gas pressure is:
@ =f/ P

In this equation, f represents fugacity, P is the pressure for an ideal gas, and ® is the
fugacity coefficient. For an ideal gas, the fugacity coefficient is 1.
Variation of fugacity with temperature :
For a given temperature T, the fugacity f satisfies the following differential relation:
o f_ 4G _VaP
fo RT RT

where G is the Gibbs free energy, R is the gas constant, v is the fluid's molar volume, and f is a

reference fugacity which is generally taken as 1 bar. For an ideal gas, when f'= P, this equation

reduces to the ideal gas law.

Wi = Wi +rTm /i — 1
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https://chem.libretexts.org/Textbook_Maps/Physical_and_Theoretical_Chemistry_Textbook_Maps/Map%3A_Physical_Chemistry_(McQuarrie_and_Simon)/27%3A_The_Kinetic_Theory_of_Gases/27.3%3A_The_Distribution_of_Molecular_Speeds_Is_Given_by_the_Maxwell-Boltzmann_Distribution#mjx-eqn-rms1

Dividing the equation throughout by T

wi/T=p /T+Rn fi

Rinfi -pi/T- pi/T— 2

We know that

[O(wi/T)/0T)ex=-H/T> — 3

Differentiating equation 2 with respect to T at constant P and N
R.0(Inf3)/0T=0(ni/T)/0T - o(ni/T)/0T

o(Infi)/6T=H; H/RT? .
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PART-A (20 x 1 =20 Marks)
Answer All the Questions

1.

The RMS speed <C>>'? value is
a) 1.128 b) 1 ¢) 1.225 d) 1.228

. The rotational contribution to Cv for a polyatomic molecule in linear molecule

is

a) Cv (rot)=R b) Cv (rot)=3/2 R c¢) Cv (rot)=3R d) Cv (rot)=5R

. The equation for monoatomic gas is

a) Cv=3/2 R b) Cv=R c) Cv=5/2 R d) Cv=5R

. Planck proposed the relationship between the entropy of a system and the

thermodynamic probability is given by the equation

a) S=klnw b) -S=klnw ¢) S= -klnw d) S=kInT

. The total partition function equation is

a) 4 = quGrotqviv.dele D) 4 = qrJele ) q = ququib d) 9 = grot.quiv

. The units of molecular partition functionare

a) cm’ b) s’ ¢) JK'mol d) dimensionless

. If Q is the molar (canonical) partition function, then the work function A, is given by

a) A=kTInQ b) A=-kTln Q ¢) A=InQ/kT d) A=kT/InQ

. Which of the following are fermions:

a)°D b) proton c) a gas at high temperature d) ‘He,

. B.E. statistics wave functions is

a) symmetric b) antisymmetric c) restricted d) only even values



10

11

12

13

14

15

16

17

18.

19.

. The value of 1 belongs to

a) average speed

¢) most probable speed

b) average square speed

d) root mean square speed

. If spins are antiparallel in rotational partition function to para hydrogen then it

has

a) even quantum number

¢) odd and even quantum number

. If spins are parallel in ortho hydrogen it has even quantum number then it is said to

be

a) symmetric

b) antisymmetric

. The translational motion for Hiis

a)52RT  b)3/2R ¢) 5/2R

b) odd quantum

number

d) fractional values

c) rotational energy

dR

d) vibrational energy

. The number of vibrational degrees of freedom in non- linear molecule is
b) 3 N-4 c)3 N-6 d)
. V8RT /nM equation of Maxwell distribution law is

a) 3 N-5

a) most probable speed

c) average speed

. The equation of In N! =N In N -N

a) Stirlings approximation

c) equipartition

law

b) average square
d) root mean square
represents?

b) partition function

3 N-7

speed
speed

d) Maxwell Boltzmann distribution law

. The equation for the evaluation of B in M.B.distribution law is

a) p=1/kT
a) system
In

a) Fermi Dirac

20.

b) B=-1/kT

A single particle is referred to as a

b) assembly

c) B=kT

¢) ensemble

d) p=2/kT

d) canonical ensemble

statistics only one particle can occupy each quantum state.

b) Bose Einstein

frequency

a) Debye’s

b) Fermi Dirac

c) Debye’s

c¢) Einstein

d) Bohr

assumed that all the particles in a crystal vibrate with same

d) Bohr



Part B (3x2 = 6 Marks)
Answer All the Questions

21. Write the assumption of Boltzmannons and Fermions.
22. What is a Canonical ensemble?

23. Comment on thermodynamic probability.

Part C (3x8 = 24 Marks)
Answer All the Questions

24. a) Evaluate the average speed, Root mean square speed and Most probable speed.
(Or)
b) Derive the equation for Maxwell-Boltzmann distribution law.
25. a) Derive an equation for translational partition function.
(Or)
b) Derive an expression for vibrational partition function.
26. a) What is Bose-Einstein distribution law? Derive the equation for it.
(Or)

b) Explain the Einstein’s theories of heat capacities of solids.
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PART-A (20 x 1 =20 Marks)
Answer All the Questions
l.c) 1.225
2.a)Cv (rot)=R
3.a) Cv=3/2 R
4.2)S=kilnw
5.2)q =qr.grot.qvib..qele
6.d)dimensionless
7.b)A= -kTIn Q
8.b) proton
9.a) Symmetric
10.c)most probable speed
11.b)odd quantum number
12. a)symmetric
13.a)5/2RT
14.¢c) 3 N-6
15.c)average speed
16.a)Stirlings approximation
17.a)p = 1/KT
18. a)system
19.a)Fermi Dirac

20. c)Einstein



Part B (3x2=6 Marks)
Answer All the Questions

21. Write the assumption of Boltzmannons and Fermions.
Fermi—Dirac statistics - Wikipedia apply to quantum particles with the property that only one
particle can occupy any particular level. It turns out these are the particles with half-integral

“spin” such as electrons and neutrons.

Both BE and FD statistics converge (from opposite directions) on MB statistics when the density
of particles is small compared to the Quantum concentration, where the inter-particle distance is
¢ In physics (in particular in statistical mechanics), the Maxwell-Boltzmann distribution is a

particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann.

It was first defined and used for describing particle speeds in idealized gases, where the particles
move freely inside a stationary container without interacting with one another, except for very
brief collisions in which they exchange energy and momentum with each other or with their
thermal environment. The term "particle” in this context refers to gaseous particles only (atoms
or molecules), and the system of particles is assumed to have reached thermodynamic
equilibrium.[1] The energies of such particles follow what is known as Maxwell-Boltzmann

statistics, comparable to the de Broglie wavelength.

22. What is a Canonical ensemble?

In statistical mechanics, a canonical ensemble is the statistical ensemble that represents the
possible states of a mechanical system in thermal equilibrium with a heat bath at a fixed
temperature. The system can exchange energy with the heat bath, so that the states of the system
will differ in total energy.

23. Comment on thermodynamic probability.

Thermodynamics a system is characterized by specific values of density, pressure, temperature, andothe
r measurable quantities. The enumerated values determine the state of the system as a whole(its macrost
ate). However, for the same density, temperature, and so on, the system’s particles canbe distributed in s
pace by different processes and can have different momenta. Each given particledistribution is called a mi
crostate of the system. The thermodynamic probability (denoted by W) isequal to the number of micro-

states which realize a given macrostate, from which it follows that W *1. The thermodynamic probability is



connected with one of the basic macroscopic characteristics ofthe system, the entropy S, by the Boltzman

n relation S = k In W, where k is Boltzmann’s constant.

Part C(3x8=24Marks)
Answer All the Questions

24. a)Evaluate average speed, Root mean square speed and Most probable speed.
Most probable speed:

Firstly, by finding the maximum of the MSD (by differentiating, setting the derivative equal to

zero and solving for the speed), determine the most probable speed. vimpequation is :

2T\ 12
Ump = ; .

Root mean square speed:

Second, the root mean square of the speed by finding the expected value of v*. (Alternatively, by

using the equipartition theorem.) vimsequation is:

3T\ 2
Urms = (—> .
T

Average speed:

Third and finally, the mean value of v from the MSD. Uequation is:

8ET\ /2
o — (_) |
mrr

The equation in the order Ump < U < Urms-


http://en.wikipedia.org/wiki/Root_mean_square
http://en.wikipedia.org/wiki/Equipartition_theorem
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Root_mean_square

These are three different ways of defining the average velocity, and they are not numerically the

same.

Or
b) Derive the equation for Maxwell distribution law for molecular velocities in an ideal
gas.
25. a) Derive an equation for translational partition function.
Here we applied quantum mechanics to the particle in a box. The expression for the translational

energy of a single gaseous atom, namely,

a4

& = g—n (n] +n3 +n3)

where the three spatial quantum numbers, 7, n>, and ns, can each take on any value

from unity to infinity. The contribution to thermodynamicproperties from any independent
energy mode can be ascertained by first determining itscontribution to the partition function. For
the translational mode, the partition functioncan be evaluated most directly by summing over
states rather than over levels.

Z, = z z Za‘(p[ ey (4848

nl nz

For the translational partition function,

S ex (%) }-‘(1)

2},- —

n=

For the characteristic translational temperature,

o -
Bmk V23 )

The summation of above Equation is identical for the three translational quantum

numbers. Moreover, by summing over all possible values from unity to infinity, we are

indeed accounting for each quantum state, as identified by its unique set of translational

quantum numbers.

Recall that fz= 10—16 K; thus, for any realistic assembly temperature,the summation in the above

Eq. can be converted to an equivalent integration. In other words, because of the incredibly

minute separation between consecutivetranslational levels, we may assume a continuous



distribution of translational energies, asmight be expected from classical mechanics.

Consequently, from Eq. (1)becomes

o e ! -",_ ’
=[] - (4]
B G)!

so that, substituting Eq. (2) into Eq. (3), we obtain

i (Er;likT)'l;.: v
2
4)

The translational partition function, as defined by Eq. (4), can also be derived by either (1)

summing over energy levels using the density of states or (2) evaluating the phase integral. For
quantum mechanics is actually unnecessary for the translational energymode; hence, the
equipartition principle is perfectly suitable for calculating translationalcontributions to

thermodynamic properties.

(Or)
b) Derive an expression for vibrational partition function.
26. a)What is Bose-Einstein distribution law? Derive the equation for it.
For each case, deriving an expression for the number of microstates per macrostate, which
represents the total number of ways an arbitrary particle distribution can arise when accounting
for all possible energy levels. Let us first consider one energy level. The number of ways in
which Njbosons in a single energy level, ¢ j , may be distributed among gjenergy states is
equivalent to the number of ways in which ANjidentical, indistinguishable objects may be

arranged in gjdifferent containers, with no limitation on the number of objects per container.

Jlxlll. - Fi — .!
wo= WNitgi— 1)t
! ;"'-'J.-! (g — 1)!

Because each energy level represents an independent event, the total number of ways of

obtaining an arbitrary particle distribution becomes

(N; +g; —1)!
Warp=[[W, =]]—2~L—=2__~
we=[ 1w =11 N1 (g —1)!
(1)
In other words, WBFEidentifies the generic number of microstates per macrostate for Bose—

Einstein statistics.

Taking the natural logarithm of Eq. (1), we obtain



In Wy =) {In(N; +g;)! — InN;! —Ing;!)

where we have neglected the unity terms since gj 1. Applying Stirling’s approximation,

1.e., InN! = NInN— N ,we find that

In Wpe =) {(N; + g/)In(N; + g;) — N;In N; — g;Ing;]
i

(Or)
b) Explain the Einstein’s theories of heat capacities of solids.
Einstein Theory for the Crystalline Solid
Einstein (1907) made the very reasonable assumption that a crystalline lattice can be modeled as
an assembly of 3N identical, noninteracting harmonic oscillators. In addition, because of the
tightly-bound structure of crystalline solids, he presumed that all 3N vibrational modes would
oscillate at the same fundamental frequency. The molecular partition function for a single

harmonic oscillator can be written as
Za=Q1—eT)"

O =hve/k s the so-called Einstein temperature, which is simply a characteristic

where
vibrational temperature for the crystalline solid. In essence, Gis an adjustable parameter that can
be used to best match predicted and experimental thermodynamic data for a given metal.
Because the partition function for distinguishable particles is the same as that for

indistinguishable particles in the dilute limit, for 3N oscillators having the same characteristic

temperature,
4 f d In £ ib k
U =3NkT* - )
(572),
(2)
Cy = 3Nk [i T2 (d In 7.z ]:|
aT ar Jly 3
H 3"L'il.ll'.'_."l' T

RT - eferT (4)



Cy _ 3 (Hf._‘l.-'l Tr'-:l3 Ea'f-'.'.',-" T
R (e®/T — 1)? )

Similarly, for the entropy, the Equation
S = 3Nk lT (d I Zis ] +1n z.be _
lv

aT

so that from Eqgs. (1), (4), and (6) we have, for 3N harmonic oscillators,

S | OB g e
R efe/T 1 (7)

] e S e
e

L @
—» —

o o o o0

—+ —

Normal mode structure within a crystallinesolid at higher and lower frequencies.

For comparative purposes, analyzing the limiting behavior forspecific heat at high and low
temperatures, as predicted by the Einstein theory. At the hightemperature limit we have, upon

invoking series expansions for the exponential terms inEq. (5),

lim (—1 = 3{'%"'".":. T:IE [1 LB {HI'.'-".ln + - ] a3
o5/ T—0 R (1+@g/T)+--— ]]3 T

so that the expected result has obtained from equipartition theory. Onthe other hand, at the low-
temperature limit, we obtain

- WO/ 2 Al T k S
lim % = & = 3(8g/ TV e el T

O T—o0 g8/ T

which obviously disagrees with the observed 7°-dependence near absolute zero. This failure

of Einstein theory arises because of a collective coupling among the lattice sites at lower



temperatures, now explore by turning to the more successful Debye theory.
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