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(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)
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(For the candidates admitted from 2018 onwards)

DEPARTMENT OF CHEMISTRY
SUBJECT NAME: PHYSICAL CHEMISTRY-III SUBJECT CODE: 17CHP302A
SEMESTER: III CLASS: II M. Sc CHEMISTRY

Course outcome

To know about the concepts of activity and activity coefficients and determination
of activity coefficient
To familiarize the Partial molar properties and its determination
To learn about the chemical potential and its determination
To study the concept of thermodynamic probability
To learn the Maxwell – Boltzmann, Fermi – Dirac and Bohr’s Einstein statistics
Comparison and applicationsTo know about the Partition functions

Course Objectives
1. To develop knowledge in the interpretation of various physical quantities involved in the

thermodynamics.
2. To learn the fundamental process involved in thermodynamics and their applications.

UNIT – I
Themodynamics and Non-ideal systems: Chemical potential and the definition of fugacity.
Determination of fugacity of gases by graphical method and from equations of state. Variation of
fugacity with temperature. Fugacity and the standard states for non ideal gases.
Definition of activity. Activity coefficient. Temperature coefficient of activity. Standard
states. Applications of activity concept to solutions. The rational and practical approaches.
Measurement of activity of solvent from colligative properties. Determination of activity of
solute.

UNIT – II
Third Law of Thermodynamics: Probability and third law. Need for third law. Nernst heat
theorem and other forms stating third law. Thermodynamic quantities at absolute zero. Statistical
meaning of third law and apparent exception.
Mathematical Introduction: Theories of permutation & combination, laws of probability.
Distribution laws. Gaussian distribution.
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UNIT – III
Classical Maxwell – Boltzmann Statistics: Maxwell distribution law for molecular velocities
and molecular speeds in an ideal gas. Velocity and speed distribution functions. Experimental
verification of Maxwell distribution law. Evaluation of average speed, root mean square speed
and most probable speed from distribution law. Distribution function in terms of the kinetic
energy of an ideal gas. The principle of equipartition of energy and the calculation of heat
capacities of ideal gases. Limitations of the principle of equipartition of energy.
Quantum statistics: Maxwell-Boltzmann statistics. Thermodynamic probability.
Thermodynamic probabilities of systems in equilibrium. Boltzmann expression for entropy.
Stirling’s approximation. State of maximum thermodynamics probability. Legrangian multipliers.
Thermodynamic probabilities of systems involving energy levels. Maxwell-Boltzmann
distribution law. Evaluation of alpha and beta in MB distribution law.

UNIT – IV
Partition function: Definition, justification of nomenclature, microcanonical and canonical
ensembles. Molecular partition and canonical function. The relation between the total partition
function of a molecule and the separate partition functions. Translational partition function,
rotational partition function. Effect of molecular symmetry on rotational partition function. Ortho
and para hydrogen. Vibrational partition function. Electronic partition function. Evaluation of
thermodynamic properties E, H, S, A, G, Cv and Cp from monoatomic and diatomic ideal gas
molecules partition functions. Thermodynamic properties of polyatomic ideal gases. Calculation
of equilibrium constants of reaction involving ideal gases from partition functions.

UNIT – V
Heat capacities of solids: Einstein’s and Debye’s theories of heat capacities of solids. Bose-
Einstein and Fermi-Dirac Statistics: Bose Einstein distribution law- Entropy of Bose Einstein gas.
Planck distribution law of black body radiation. Fermi-Dirac distribution law. Entropy of a Fermi-
Dirac gas. Heat capacities of the electron gas and the heat capacities of metals. Negative absolute
temperature.

SUGGESTED READINGS:
Text Books:
1. Glasstone, S. (2002). Thermodynamics for Chemists. New York: Litton Edition Publishing.
2. Atkins, P., & De Paula, J. (2014). Atkins Physical Chemistry (X Edition). Oxford: Oxford

University Press.
3. Kapoor, K. L. (2005). Text Book Physical Chemistry Vol. V. New Delhi: MacMillan   India

Ltd.
Reference Books:
1. Lavin, I. N. (2002). Physical Chemistry (V Edition). New Delhi: Tata-McGraw Hill

Publishing Company.
2. Whittakar, A. G. (2001). Physical Chemistry. New Delhi: Mount & Heal Viva Books Pvt.

Ltd.
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LECTURE PLAN

UNIT-I

Themodynamics and Non-ideal systems Total no. of hours: 10

S.No Lecture
Hour

Topics to be Covered Support
Materials

1. 1 Introduction - Themodynamics and Non-ideal systems-
Chemical potential - Definition .
Fugacity -Definition

R2-215
R2-251

2. 1 Determination of fugacity of gases by graphical method . R2-251-252

3. 1 Determination of fugacity of gases from equations of
state.

R2-253-254

4. 1 Variation of fugacity with temperature. R2-261-262

5. 1 Definition of  activity. Activity coefficient.
Temperature coefficient of activity, Standard states.
.

R1-582-583,
R3-170

6. 1 Applications of activity concept to solutions, The rational and
practical approaches.

R2-337-338

7. 1 Measurement of activity of solvent from colligative
properties.

R2-356-357

8. 1 Determination of activity of solute. R2-357-358

9. 1 Discussion of Question paper
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References:

1. Puri, Sharma  Pathania, 2003. Physical Chemistry, Vishal Publishing Co., Jalandar.

2.Glasstone, S. 2002.Thermodynamics for Chemists. Litton Edition Publishing, New York

3.Gurtu and Gurtu, 2000. Thermodynamics, Pragati pragasan publications, Chennai.
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UNIT-II Third law of Thermodynamics 08.10.2013 -29.10.2013

HOURS REQUIRED -09

S.N
o

Lecture
Hour

Topics to be Covered Support
Materials

1. 1 Third Law of Thermodynamics- Introduction.
Probability and third law.

2. 1 Nernst heat theorem and other forms stating third law. R1-586-587

3. 1
Thermodynamic quantities at absolute zero

R1-587

4. 1 Statistical meaning of third law. R1-595

5. 1
Apparent exception-

6. 1 Mathematical Introduction, Theories of permutation &
combination

7. 1 Laws of probability

8. 1 Distribution laws, Gaussian distribution. R3-836-838

9. 1 Discussion of question paper

References:
1. Puri, Sharma  Pathania, 2003. Physical Chemistry, Vishal Publishing Co., Jalandar.

2. Gurtu and Gurtu, 2000. Thermodynamics, Pragati pragasan publications, Chennai

3. S.P.Gupta Statistical Methods

UNIT-III Statistical Thermodynamics 26.06.2013 -17.07.2013

HOURS REQUIRED -12
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S.No Lecture
Hour

Topics to be Covered Support
Materials

1. 1 Introduction to Statistical Thermodynamics- Classical Maxwell
– Boltzmann statistics: Maxwell distribution law for molecular
velocities in an ideal gas.

2. 1 Maxwell distribution law for molecular speeds in an ideal gas. R1-69

3. 1 Experimental verification of Maxwell distribution law R3-1029-
1030

4. 1 Evaluation of average speed, root mean square speed and most
probable speed from distribution law.

5. 1 Distribution function in terms of the kinetic energy of an ideal
gas. The principle and limitations of equipartition of energy and
the calculation of heat capacities of ideal gases.

R1-82

6. 1 Quantum statistics- Maxwell-Boltzmann statistics-
Thermodynamic probability- Boltzmann expression for entropy.

R1-6302-
631

7. 1 Stirling’s approximation. State of maximum thermodynamics
probability. Legrangian multipliers

R2-837

8. 1 Thermodynamic probabilities of systems involving energy
levels.

9. 1 Evaluation of alpha and beta in MB distribution law. R1-634

10. 1 Recapitulation and Discussion of question paper

References:
1. Puri, Sharma  Pathania, 2003. Physical Chemistry, Vishal Publishing Co., Jalandar.

2.Lavin, I.N 2002. Physical Chemistry. V Edition, Tata-Mc Graw Hill Publishing Company,
New Delhi

3. . Mc.Quarrie  Physical Chemistry
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UNIT-IV Partition function 23.07.2013 -07.08.2013

HOURS REQUIRED -10

S.N
o

Lecture
Hour

Topics to be Covered Support
Materials

1. 1 Partition function- definition-justification of nomenclature- -

2. 1 Microcanonical and canonical ensembles- Molecular partition
and canonical function.
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.
3. 1 The relation between the total partition function of a molecule

and the separate partition functions.

4. 1 Translational partition function R1-637

5. 1 Rotational partition function

Effect of molecular symmetry on rotational partition function.

R1-639

6. 1 Ortho and Para hydrogen-Vibrational partition function. R1-640

7. 1 Electronic partition function.
Evaluation of thermodynamic properties E,H,S,A,G,Cv and Cp
from monoatomic ideal gas molecules partition functions.

R1-642,
R1-648-649

8. 1 Thermodynamic properties of polyatomic ideal gases. R1-645

9. 1 Calculation of equilibrium constants of reaction involving ideal
gases from partition functions.

R1-652

10. 1 Discussion of important questions

References:
1. Puri, Sharma  Pathania, 2003. Physical Chemistry, Vishal Publishing Co., Jalandar

UNIT-V Heat capacity of solids 13.08.2013 -10.09.2013

HOURS REQUIRED -10

S.No Lecture
Hour

Topics to be Covered Support
Materials

1. 1 Heat capacities of solids-Introduction, Einstein’s   theories of
heat capacities of solids.

R1-656
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2. 1 Debye ‘s theories of heat capacities of solids. R1-657

3. 1 Bose-Einstein and Fermi-Dirac Statistics-Bose Einstein
distribution law Bose Einstein Condensation
.

R1-632

4. 1 Entropy of Bose Einstein gas R1-633

5. 1 Plank distribution law of black body radiation

6. 1 Fermi-Dirac distribution law.

7. 1 Entropy of Fermi-Dirac gas.

8. 1 Heat capacities of the electron gas and the heat capacities of
metals.

9. 1 Negative absolute temperature.

10 1 Discussion of Question paper

References:

1. Puri, Sharma  Pathania, 2003. Physical Chemistry, Vishal Publishing Co., Jalandar
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KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II M.Sc CHEMISTRY     COURSE NAME: PHYSICAL CHEMISTRY-III

COURSE CODE:17CHP305A UNIT: I(THERMODYNAMICS AND NON-IDEAL SYSTEMS) BATCH: 2017-2019

UNIT – I

SYLLABUS

Chemical potential and the definition of fugacity. Determination of fugacity of gases by
graphical method and from equations of state. Variation of fugacity with temperature.
Fugacity and the standard states for non ideal gases.
Definition of activity. Activity coefficient. Temperature coefficient of activity. Standard
states. Applications of activity concept to solutions. The rational and practical
approaches. Measurement of activity of solvent from colligative properties.
Determination of activity of solute.

Partial molar property

A partial molar property is a thermodynamic quantity which indicates how an extensive

property of a solution or mixture varies with changes in the molar composition of the

mixture at constant temperature and pressure, or for constant values of the natural

variables of the extensive property considered. Essentially it is the partial derivative with

respect to the quantity (number of moles) of the component of interest. Every extensive

property of a mixture has a corresponding partial molar property. Water and ethanol

always have negative excess volumes when mixed, indicating the partial molar volume of

each component is less when mixed than its molar volume when pure.

In general, the partial molar volume of a substance X in a mixture is the change in

volume per mole of X added to the mixture.

The partial molar volumes of the components of a mixture vary with the composition of

the mixture, because the environment of the molecules in the mixture changes with the

composition. It is the changing molecular environment (and the consequent alteration of

the interactions between molecules) that results in the thermodynamic properties of a

mixture changing as its composition is altered
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If Z, denotes a extensive property of a mixture, it depends on the pressure (P),

temperature (T), and the amount of each component of the mixture (measured in moles,

n). For a mixture with m components, this is expressed as

If temperature T and pressure P are held constant, is a

homogeneous function of degree 1, since doubling the quantities of each component in

the mixture will double Z. More generally, for any λ:

By Euler's first theorem for homogeneous functions, this implies

where is the partial molar Z of component i defined as:

By Euler's second theorem for homogeneous functions, is a homogeneous function of

degree 0 which means that for any λ:

In particular, taking λ = 1 / nT where , one has

where is the concentration, or mole fraction of component i. Since the molar

fractions satisfy the relation
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the xi are not independent, and the partial molar property is a function of only m − 1 mole

fractions:

The partial molar property is thus an intensive property - it does not depend on the size of

the system.

Partial molar properties satisfy relations analogous to those of the extensive properties.

For the internal energy U, enthalpy H, Helmholtz free energy A, and Gibbs free energy G,

the following hold:

where P is the pressure, V the volume, T the temperature, and S the entropy.

Differential form of the thermodynamic potentials

The thermodynamic potentials also satisfy

where μi is the chemical potential defined as (for constant nj with j≠i):
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The last partial derivative is the same as , the partial molar Gibbs free energy. This

means that the partial molar Gibbs free energy and the chemical potential, one of the

most important properties in thermodynamics and chemistry, are the same quantity.

Under isobaric (constant P) and isothermal (constant T ) conditions, the chemical

potentials, , yields every property of the mixture as they

completely determine the Gibbs free energy.

Chemical potential :

Chemical potential, symbolized by μ, is a quantity first described Josiah Willard Gibbs.

Gibbs definition, any chemical element or combination of elements in given proportions

may be considered a substance, whether capable or not of existing by itself as a

homogeneous body. Chemical potential is also referred to as partial molar Gibbs energy.

Chemical potential is measured in units of energy/particle or, equivalently, energy/mole.

Consider a thermodynamic system containing n constituent species. Its total internal

energy U is postulated to be a function of the entropy S, the volume V, and the number of

particles of each species N1, ..., Nn

By referring to U as the internal energy, it is emphasized that the energy contributions

resulting from the interactions between the system and external objects are excluded. For

example, the gravitational potential energy of the system with the Earth are not included

in U.

The chemical potential of the i-th species, μi is defined as the partial derivative
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where the subscripts simply emphasize that the entropy, volume, and the other particle

numbers are to be kept constant.

In real systems, it is usually difficult to hold the entropy fixed, since this involves good

thermal insulation. It is therefore more convenient to define the Helmholtz energy A,

which is a function of the temperature T, volume, and particle numbers:

In terms of the Helmholtz energy, the chemical potential is

The conditions at constant temperature and pressure. The chemical potential is the partial

derivative of the Gibbs energy with respect to number of particles

The chemical potential can be written in terms of partial derivative of the enthalpy

(conditions of constant entropy and pressure).

Here, the chemical potential has been defined as the energy per molecule. A variant of

this definition is to define the chemical potential as the energy per mole.

The chemical potential is known in a certain state (e.g. for standard conditions), then it

can be calculated in linear approximation for pressures and temperatures in the vicinity of

thisstate:

μ(T)=μ(T0)+α(T–T0) and
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μ(p)=μ(p0)+β(p–p0)

Here is the temperature coefficient and

is the pressure coefficient.

With the Maxwell relations

and

It follows that the temperature coefficient is equal to the negative molar entropy and the

pressure coefficient is equal to the molar volume.

Fugacity :

Fugacity is the effective pressure for a non-ideal gas. The pressures of an ideal gas and a

real gas are equivalent when the chemical potential is the same. The equation that relates

the non-ideal to the ideal gas pressure is:

Φ =f/ P

In this equation, f represents fugacity, P is the pressure for an ideal gas, and Φ is the

fugacity coefficient. For an ideal gas, the fugacity coefficient is 1.

Fugacity (f) is a chemical quantity with units of pressure.
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Determination of Fugacity of gases by graphical method and from equations of

state.

The Gibbs free energy depends on pressure as well as on temperature. The pressure

dependence of the Gibbs free energy in a closed system is given by the combined first

and second laws and the definition of Gibbs free energy as,

1

If we hold temperature constant and vary only the pressure. Equation 1 for integration

from pressure p1 to p2 as follows:

2

Then

3

or

. 4

Equation 4 is general and applies to all isotropic substance: solids, liquids, ideal gases,

and real gases.

Solids and Liquids

The solids and liquids are not very compressible so, to a first approximation, regard the

volume in Equation 4 as constant (as long as the range of pressure is not too large). Then
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the V in Equation 4 comes out of the integral and integrate easily to get,

5

However, that solids and liquids are slightly compressible and define the isothermal

compressibility as

6

The second level of approximation is to regard κ as approximately constant. (κ is not

constant, but the variation with pressure is so small it can be ignored) With κ regarded as

constant rearrange Equation 6 and integrate it to find an expression for V as a function of

p (which can then be substituted into Equation 4 and integrated.) Rearrangement of

Equation 6,

7

Integrate from p1 to p2 (and volume goes from V1 to V2) to get,

8

Take the antilog of both sides,

9

In Equation 9 let p1 be a constant and let p2 range over the pressures. There is no reason

why we have to keep the subscript "2" on p2 so change p2 to just p. This gives us V as a

function of p,

10
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Equation 10 the constant parts have been separated from the variable part to make it easy

to integrate. When this expression for V is plugged into Equation 4 only the need

stay inside the integral.

Ideal Gases

Equation 4 is also valid for gases, only here we put in the value of V for an ideal gas.

11

With this substitution Equation 4 becomes,

12

After integration Equation 12 becomes.

13

Let p2 range over the pressures p, let p1 be some standard state pressure and call it po, and

finally we divide through by the number of moles of gas, n. With these changes equation

13 is written,

14

The quantity G/n , represents the Gibbs free energy per mole of substance. This quantity

is called the chemical potential and it is given the symbol, μ .

15
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Replaced G(po )/n , the molar Gibbs free energy at the standard state pressure, with its

chemical potential symbol, μ o. The standard state pressure equal to one atmosphere.

16

po = 1 atm dividing the p in the ln p.

Nonideal Gases

Equation 15 was derived assuming the gas is ideal. It does not apply to real gases or

approximations to a real gas, like the van der Waals equation of state. Divide Equation 4

by the number of moles, n, let p1 equal the standard state pressure, po and V/n is the molar

volume to get,

17

Let p2 range over the pressures p, variable of integration from p to p'.) Equation 17 ,the

equilibrium constant expression. Equation 15 by writing the chemical potential as,

18

This equation defines a quantity f (p) called the fugacity. The fugacity has units of

pressure and it is a function of pressure. It contains the non ideality of the gas. For an

ideal gas the fugacity is the same as the pressure. Since all real gases become ideal in the

limit as pressure goes to zero,

19

From the equation of state for a gas, Equation 2 and divide it by the number of moles, n,

20



Prepared by Dr. S. Manickasundaram,                Department of Chemistry, KAHE Page 1/26

or

21

Another expression for dμ by taking the differential of Equation 18 (R, T, po , and μ o are

constants.)

22

dμ in Equations 21 and 22 must be the same, so equal to each other

23

Rearrange this to get,

24

Integrate this equation directly, Add and subtract to the right hand side of Equation

24,

25

Regroup the terms in Equation 25,

26

27

where fo is the fugacity at po. Move the to the right hand side,
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28

The limit where po goes to zero. fo goes to po as po → 0 so the last two terms in

parentheses on the right cancel each other in this limit. Equation 28 becomes,

29

Equation 29 will calculate the fugacity, but to take the antilog of both sides to get,

30

From Equation 29, , is the so-called compressibility factor. Equation 29 if the

gas is ideal f = p. It requires an equation of state or experimental data to calculate a

fugacity from either Equation 30 or Equation 29. From the right-hand side of Equation 30

31

would be the best method for calculating fugacity.

Variation of fugacity with temperature :

For a given temperature T, the fugacity f satisfies the following differential relation:

where G is the Gibbs free energy, R is the gas constant, v is the fluid's molar volume,

and f0 is a reference fugacity which is generally taken as 1 bar. For an ideal gas, when f =

P, this equation reduces to the ideal gas law.
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µ i = µ i  + RT ln f i → 1

Dividing the equation throughout by T

µ i ∕ T = µi ∕ T + R ln f i

R ln f i = µ i ∕ T - µ i ∕ T → 2

We know that

[∂(µi ∕ T) ∕ ∂T)]P,N = -H i∕ T2 → 3

Differentiating equation 2 with respect to T at constant P and N

R.∂ (ln f i) ∕ ∂T = ∂(µi ∕ T) ∕ ∂T - ∂(µi ∕ T) ∕ ∂T

∂ (ln f i) ∕ ∂T= H i - H i∕ RT2 .

Activity

Activity is a measure of the effective concentration of a species under non-ideal (e.g.,

concentrated) conditions. This determines the real chemical potential for a real solution

rather than an ideal one.

Activities and concentrations can both be used to calculate equilibrium constants and

reaction rates. However, most of the time we use concentration even though activity is

also a measure of composition, similar to concentration. It is satisfactory to use

concentration for diluted solutions, but when you are dealing with more concentrated

solutions, the difference in the observed concentration and the calculated concentration in

equilibrium increases. This is the reason that the activity was initially created.

a=eμ−μo /RT
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where a=Activity, μ is chemical potential (dependent on standard state) which is Gibbs

Energy per mole, μ0 is the standard chemical potential, R is the gas constant, T is the

absolute Temperature.

The activity of a species i, denoted ai, is defined as:

where μi is the chemical potential of the species under the conditions of interest, μo
i is the

chemical potential of that species in the chosen standard state, R is the gas constant and T

is the thermodynamic temperature. This definition can also be written in terms of the

chemical potential:

The activity will depend on any factor that alters the chemical potential. These include

temperature, pressure, chemical environment etc. The activity also depends on the choice

of standard state, as it describes the difference between an actual chemical potential and a

standard chemical potential. In principle, the choice of standard state is arbitrary,

although there are certain conventional standard states which are usually used .

Activity coefficient

The activity coefficient γ, which is also a dimensionless quantity, relates the activity to a

measured amount fraction xi, molality mi or amount concentration ci:
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The division by the standard molality mo or the standard amount concentration co is

necessary to ensure that both the activity and the activity coefficient are dimensionless, as

is conventional.

When the activity coefficient is close to one, the substance shows almost ideal behaviour

according to Henry's law. In these cases, the activity can be substituted with the

appropriate dimensionless measure of composition xi, mi/mo or ci/co. It is also possible to

define an activity coefficient in terms of Raoult's law: the symbol ƒ for this activity

coefficient, although this should not be confused with fugacity.

. Solution can also become too diluted when necessary.

Standard states

Gases

A real gas and an ideal gas is dependent only on the pressure and the temperature, not on

the presence of any other gases. At a given temperature, the "effective" pressure of a gas i

is given by its fugacity ƒi: this may be higher or lower than its mechanical pressure.

Fugacities have the dimension of pressure, so the dimensionless activity is given by:

where φi is the dimensionless fugacity coefficient of the species, xi is its fraction in the

gaseous mixture (x = 1 for a pure gas) and p is the total pressure.

Mixtures in general

The most convenient way of expressing the composition of a generic mixture is by using

the amount fractions x of the different components, where
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The standard state of each component in the mixture is taken to be the pure substance, i.e.

the pure substance has an activity of one. When activity coefficients are used, they are

usually defined in terms of Raoult's law,

where ƒi is the Raoult's law activity coefficient: an activity coefficient of one indicates

ideal behaviour according to Raoult's law.

Dilute solutions (non-ionic)

A solute in dilute solution usually follows Henry's law rather than Raoult's law, and it is

more usual to express the composition of the solution in terms of the amount

concentration c (in mol/L) or the molality m (in mol/kg) of the solute rather than in

amount fractions.

The activity of the solute is given by:

Ionic solutions

When the solute undergoes ionic dissociation in solution (a salt e.g.), the system becomes

non-ideal and the dissociation process is considered. The activities for the cations and

anions separately (a+ and a–).

In a liquid solution the activity coefficient of a given ion (e.g. Ca2+) isn't measurable

because it is experimentally impossible to independently measure the electrochemical
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potential of an ion in solution. (We cannot add cations without putting in anions at the

same time). Therefore ,

mean ionic activity a±
ν = a+

ν+a–
ν–

mean ionic molality m±
ν = m+

ν+m–
ν–

mean ionic activity coefficient γ±
ν = γ+

ν+γ–
ν–

where ν = ν+ + ν– represent the stoichiometric coefficients involved in the ionic

dissociation process

Even though γ+ and γ– cannot be determined separately, γ± is a measureable quantity that

can also be predicted for sufficiently dilute systems using Debye–Hückel theory. For the

activity of a strong ionic solute (complete dissociation):

a2 = a±
ν = γ±

νm±
ν

The activity of a species is to measure its partial vapor pressure in equilibrium with a

number of solutions of different strength. For some solutes this is not practical, sucrose or

salt (NaCl) do not have a measurable vapor pressure at ordinary temperatures. However,

in such cases it is possible to measure the vapor pressure of the solvent instead. Using the

Gibbs–Duhem relation it is possible to translate the change in solvent vapor pressures

with concentration into activities for the solute.

Another way to determine the activity of a species is through the manipulation of

colligative properties, specifically freezing point depression. Using freezing point

depression techniques, it is possible to calculate the activity of a weak acid from the

relation,

where m' is the total molal equilibrium concentration of solute determined by any

colligative property measurement(in this case ΔTfus, m is the nominal molality obtained

from titration and a is the activity of the species.
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There are also electrochemical methods that allow the determination of activity and its

coefficient.

The value of the mean ionic activity coefficient γ± of ions in solution can also be

estimated with the Debye–Hückel equation, the Davies equation or the Pitzer equations.

Chemical activities should be used to define chemical potentials, where the chemical

potential depends on the temperature T, pressure p and the activity ai according to the

formula:

where R is the gas constant and µ i
o is the value of µ i under standard conditions.

Formulae involving activities can be simplified by considering that:

For a chemical solution: the solvent has an activity of unity

At a low concentration, the activity of a solute can be approximated to the ratio of its

concentration over the standard concentration:

Therefore, it is approximately equal to its concentration.

For a mix of gas at low pressure, the activity is equal to the ratio of the partial pressure of

the gas over the standard pressure:

Therefore, it is equal to the partial pressure in bars (compared to a standard pressure of 1

bar).

For a solid body, a uniform, single species solid at one bar has an activity of unity. The

same thing holds for a pure liquid.
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The definition based on Raoult's law, let the solute concentration x1 go to zero, the vapor

pressure of the solvent p will go to p*. Thus its activity a = p/p* will go to unity. This

means that if during a reaction in dilute solution more solvent is generated (the reaction

produces water e.g.) and typically set its activity to unity.

Solid and liquid activities do not depend very strongly on pressure because their molar

volumes are typically small. Changes can also come as a result of too much dilution of

solution.

Raoult's Law

At boiling and higher temperatures the sum of the individual component partial pressures

becomes equal to the overall pressure, which can symbolized as Ptot.

Under such conditions, Dalton's Law would be in effect as follows:

Ptot = P1 + P2 + ...

Then for each component in the vapor phase:

y1 = P1/Ptot, y2 = P2/Ptot, ... etc.

where P1 = partial pressure of component 1, P2 = partial pressure of component 2, etc.

Raoult's Law is approximately valid for mixtures of components between which there is

very little interaction other than the effect of dilution by the other components. Examples

of such mixtures includes mixtures of alkanes, which are non-polar, relatively inert

compounds in many ways, so there is little attraction or repulsion between the molecules.

Raoult's Law states that for components 1, 2, etc. in a mixture:

P1 = x1 P0
1, P2 = x2 P0

2, etc.

where P0
1, P0

2, etc. are the vapor pressures of components 1, 2, etc. when they are pure,

and x1, x2, etc. are mole fractions of the corresponding component in the liquid.
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The vapor pressures of liquids are very dependent on temperature. Thus the P0pure vapor

pressures for each component are a function of temperature ( T ): For example,

commonly for a pure liquid component, the Clausius-Clapeyron equation (not shown

here) may be used to approximate how the vapor pressure varies as a function of

temperature. This makes each of the partial pressures dependent on temperature also

regardless of whether Raoult's Law applies or not. When Raoult's Law is valid these

expressions become:

P1(T) = x1 P0
1(T), P2(T) = x2 P0

2(T), etc.

At boiling temperatures if Raoult's Law applies, the total pressure becomes:

Ptot = x1 P0
1(T) + x2 P0

2(T) + ...

At a given Ptot such as 1 atm and a given liquid composition, T can be solved for to give

the liquid mixture's boiling point or bubble point, although the solution for T may not be

mathematically analytical (may require a numerical solution or approximation). For a

binary mixture at a given Ptot, bubble point T can become a function of x1 (or x2).

At boiling temperatures if Raoult's Law applies, expressions for vapor mole fractions as a

function of liquid mole fractions and temperature:

y1 = x1 P0
1(T)/Ptot,

y2 = x2 P0
2(T)/Ptot, ... etc.

Once the bubble point T's as a function of liquid composition in terms of mole fractions

have been determined, these values can be plugged into the above equations to obtain

corresponding vapor composition in terms of mole fractions. The complete range of

liquid mole fractions and their corresponding temperatures, obtains a temperature ( T )

function of vapor composition mole fractions. This function . In the case of a binary

mixture: x2 = 1 - x1 and the above equations can be expressed as:

y1 = x1 P0
1(T)/Ptot and
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y2 = (1 - x1) P0
2(T)/Ptot

For many kinds of mixtures, particularly where there is interaction between components

beyond simply the effects of dilution, Raoult's Law does not work well for determining

the shapes of the curves in the boiling point or VLE diagrams. Even in such mixtures,

there are usually still differences in the vapor and liquid equilibrium concentrations at

most points, and distillation is often still useful for separating components at least

partially.

Applications of activity concept to solutions:

Raoult's Law

Raoult's law states that the vapor pressure of a solvent above a solution is equal to the

vapor pressure of the pure solvent at the same temperature scaled by the mole fraction of

the solvent present:

Psolution=XsolventPo
solvent

Henry's Law

Henry's law is one of the gas laws formulated by William Henry in 1803. It states: "At a

constant temperature, the amount of a given gas that dissolves in a given type and volume

of liquid is directly proportional to the partial pressure of that gas in equilibrium with that

liquid." An equivalent way of stating the law is that the solubility of a gas in a liquid is

directly proportional to the partial pressure of the gas above the liquid.

To explain this law, Henry derived the equation:

C=kPgas

Where C is the solubility of a gas at a fixed temperature in a particular solvent (in units of

M or mL gas/L) , k is Henry's law constant (often in units of M/atm), Pgas is the partial

pressure of the gas (often in units of Atm).

The rational and practical approaches :
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If the concentration of solution is expressed in terms of solution is expressed in terms of

mole fraction it is referred to as the rational system and if molality or molarity is used for

expressing concentration it is called practical system.

Measurement of activity of solvent from colligative properties:

Colligative properties are those properties which depend up on the number of particles

and not the nature of solute.

These are properties of solutions in the dilute limit, where there is a solvent “A” and a

solute “B” where nA >> nB. These properties are a direct result of μmix
A

( ,T,p)

<μ
A

pure

(,T,p) Using two measures of concentration:

a. Mole Fraction: xB = nB/(nA+nB) ~ nB/nA

b. Molalility: mB = (moles solute)/(kg solvent) = nB/(nAMA) Where MA is the mass in

kg of one mole of solvent.

There are four Colligative Properties:

1. Lowering  of Vapor pressure

2. Elevation  of Boiling point

3.Depression  of Freezing point

4.Osmotic pressure

Rational activity of solvent from lowering of Vapor pressure: This is Raoult’s Law.

Consider a solution  which is in equilibrium with its vapour
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Then, μ() = μ(g) _________>1

µ() =  µ◦() + RTlna _________>2

Substitute second equation in first equation

μ(g) = µ◦() + RTlna _________>3

Assuming ideal behavior for vapour

μ(g) = µ◦( g) + RTlnP _________>4

Substitute  4th equation in 3rd equation

µ◦( g) + RTlnP = µ◦() + RTlna  _________>5

For pure liquid

µ◦() = µ◦( g) + RTlnP◦ _________>6

Subtracting 6th from 5th equation

RTlna = RTln P/ P◦

A = P/ P◦

Where a= activity, P=Partial pressure, P◦ = Vapour pressure of pure solvent

Rational activity of solvent from Elevation  of Boiling point

μ() = μ(g) → 1

µ() =  µ◦() + RTlna → 2

μ(g) = µ◦() + RTlna → 3

__

lna = μ(g)- µ◦() ∕ RT = ∆Gvap ⁄ RT → 4

d/dT lna = (∆Gvap ⁄ RT )         → 5

_

d/dT lna = - Hvap ∕ RT2
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_ T

∫dlna  = - H◦vap ∕ RT∫ dT ∕ T2 → 6

T◦

lna   = Hvap∕ R [ 1/T- 1/ T◦ ]

T is the Boiling point of solution

T◦ Boiling point of pure solvent.

Rational activity of solvent from Depression  of Freezing point

µ() =  µ◦ (s) → 1

µ() =  µ◦ ()+ RTlna → 2

Substitute second equation in first equation

µ◦ (s) =  µ◦ ()+ RTlna

lna = µ◦ (s) - µ◦ () → 3

___________

RT

[  µ◦ () - µ◦ (s)]

___________ = - ∆G◦fus ⁄ RT → 4

[ RT]

d lna /dT = -1 d (∆G◦fus)

_    __     __               = ∆ Hfus∕ RT2 → 5

R      dT     T

_ T

∫dlna  = - Hfus ∕ R∫ dT ∕ T2 → 6

T◦

lna = - ∆Hfus∕ R [ 1/T- 1/ T◦ ]
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Thus knowing the freezing point  ‘a’ can be calculated.

Osmotic Pressure

Osmosis is the diffusion of a fluid through a semipermeable membrane. When a

semipermeable membrane (animal bladders, skins of fruits and vegetables) separates a

solution from a solvent, then only solvent molecules are able to pass through the

membrane. The osmotic pressure of a solution is the pressure difference needed to stop

the flow of solvent across a semipermeable membrane. The osmotic pressure of a

solution is proportional to the molar concentration of the solute particles in solution.

Π=nRT ∕V=MMRT

Where Π is the osmotic pressure, R is the ideal gas constant (0.0821 L atm / mol

K),T is the temperature in Kelvin, n is the number of moles of solute present, V is the

volume of the solution (n /V is then the molar concentration of the solute), and MM is the

molar mass of the solute.
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Questions Opt-1 Opt-2 Opt-3 Opt-4 Answers

1

The study of  the flow of
heat or any other form of

energy in to or out of a
system undergoing physical
or chemical change is called

thermochemistry thermokinetics thermodynamics thermochemical
studies. thermodynamics

2 Thermodynamics   is
applicable  to

microscopic
systems  only

macroscopic
systems only

homogeneous
systems only

heterogeneous
systems only.

macroscopic
systems only

3 Which  is not  true  about
thermodynamics

it ignores  the
internal  structure

of atoms  and
molecules

it  involves  the
matter  in  bulk

it is concerned
only  with  the

initial  and  final
states  of  the

system

it is  not
applicable  to
macroscopic

systems.

it is  not  applicable
to  macroscopic

systems.

4

An system  that  can
transfer  neither  matter

nor  energy  to  and  from its
surroundings is called

a  closed  system an  isolated
system an  open  system a  homogeneous

system an isolated  system

5 A  thermosflask  is an
example  of isolated  system closed  system open system heterogeneous

system isolated  system

6

A _________  is  one  which
cannot  transfer  matter  but

transfer  heat, work  and
radiations  to  and  from  its

surroundings

an  isolated  system an  open  system a  homogeneous
system a  closed  system a  closed  system
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7
A  gas contained  in  a

cylinder  filled with a piston
constitutes

an open system a heterogeneous
system a closed  system an isolated system a closed  system

8 Which  of the following  is
incorrect, for an  ideal  gas PV= nRT V= nRT/P P=nRT/V all are  correct. an open system

9

The  heat  capacity  at
constant  pressure  is

related  to  heat  capacity  at
constant  volume  by  the

relation

Cp-R =Cv Cv-R =Cp Cp-Cv =R R-Cp =Cv P=nRT/V

10 Which  of  the  following
relations  is  true Cp >Cv Cv>Cp Cp=Cv Cp=Cv=0. Cp-R =Cv

11 An  intensive  property  does
not  depend  up on

nature  of the
substance

quantity  of
matter

external
temperature

atmospheric
pressure Cp >Cv

12 Which  of  the  following  is
not  an  intensive  property pressure concentration density volume volume

13

A  property  that  depends
up on  the  quantity  of

matter  is  called  an
extensive  property. Which
of  the  following  is  not  an

extensive

mass volume density internal  energy. density

14
A  system  in  which  state
variables  have  constant
values  throughout  the

equilibrium non- equilibrium isothermal
equilibrium inequilibrium equilibrium
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system  is  called  in  a  state
of

15
In  an  adiabatic  process

______   can  flow  in to  or
out  of  the  system

no  heat heat matter no  matter. no  heat

16
The  mathematical  relation

for  the  first  law  of
thermodynamics  is

∆E =q-w ∆E = 0 for  a  cyclic
process

∆E =q  for  an
isochoric  process all  of  these. all  of  these.

17
For  an  adiabatic  process
according  to  first  law  of

thermodynamics
∆E = -w ∆E = w ∆E =q-w ∆ q = E-w ∆E = -w

18
The  enthalpy  change, ∆H
of  a process  is  given  by

the  relation
∆H =∆E +p∆v ∆H =∆E +∆nRT ∆H =∆E +w ∆H =∆E -∆nRT ∆H =∆E +∆nRT

19

The   amount  of  heat
required  to  raise  the

temperature  of  one  mole
of  the  substance  by  1  K  is

called

heat  capacity molar  heat
capacity molar  heat molar  capacity. molar  heat

capacity

20 Heat  capacity  at  constant
pressure  is  the  change  in

internal  energy
with  temperature

at  constant
volume

internal  energy
with  temperature

at  constant
pressure

enthalpy with
temperature  at

constant  volume

enthalpy  with
temperature  at

constant  pressure

enthalpy  with
temperature  at

constant  pressure

21 Heat  capacity  at  constant
volume  is  the  change  in

internal  energy
with  temperature

at  constant
volume

internal  energy
with  temperature

at  constant
pressure

enthalpy   with
temperature  at

constant  volume

enthalpy  with
temperature  at

constant  pressure

internal  energy
with  temperature

at  constant
volume
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22 The  enthalpy  change of  a
reaction  is  independent  of

State  of  the
reactants  and

products

nature  of  the
reactants  and

products

initial  and  final
enthalpy  change
of  the  reaction

different
intermediate

reaction

nature  of  the
reactants  and

products

23 Which  of  the  following  is
not  correct ? H=E+PV H-E=PV H-E-PV=0 H=E-PV H=E-PV

24 The  enthalpy  of  a  system
is  defined  by  the  relation H=E+PV H=E-PV E=H+PV PV+E-H H=E+PV

25 For  an  endothermic
reaction ∆H  is –ve ∆H  is +ve ∆E is –ve ∆H is zero ∆H  is +ve

26

A  process  which  proceeds
of  its  own  accord,  without

any  outside  assistance  is
called

non-spontaneous
process

spontaneous
process

reversible
process

ir reversible
process

spontaneous
process

27 The  tendency  of  a process
to  occur  naturally  is  called

momentum  of  the
reaction

spontaneity  of
the  reaction

equilibrium  of
the  reaction

non-spontaneous
of  the  reaction

spontaneity  of  the
reaction

28
Which  of  the  following  is
true  about  the  criteria  of

spontaneity?

a  spontaneous
change  is

unindirectional

a  spontaneous
change  to  occur,
time  is  no  factor

once  a  system
is  in

equilibrium,a
spontaneous

change  is
inevitable

all  of  these all  of  these

29

A  spontaneous  change is
accompanied  by  ________

of  internal  energy  or
enthalpy.

increase decrease neither  increase
nor  decrease

decrease  with
increasing decrease
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30

Each  substance  in  a  given
state  has  a  tendency  to
escape  from  that  state

and  this  escaping  tendency
is  called

spontaneity Gibbs  free
energy fugacity activity fugacity

31
A  spontaneous  reaction

proceeds  with  a  decrease
in

entropy enthalpy free  energy internal  energy . free  energy

32
The  ratio  f/f0   is  called

_________and  is  denoted
by  the  symbol a.

activity activity
coefficient

chemical
potential fugacity. activity

33

The  ratio  f/p  is  called
_________  of  a  gas  and  is
represented  by  the  symbol

υ.

activity activity
coefficient

chemical
potential fugacity. activity  coefficient

34

The  variation  of  free
energy  with  temperature
at  constant  pressure  is
given  by  the  relation

dGp  = -SdTp (dG/dT)p  = -S neither  of  these free  energy free  energy

35

The  variation  of  free
energy  with  pressure  at
constant  temperature  is

given  by  the  relation

(dG)T  = -VdPT dGp  = -SdTp (dG/dT)p  = -S (dG/dT) T  = -S (dG)T  = -VdPT

36 For  a  spontaneous  process ΔG>0 ΔG<0 ΔG =0 ΔS=0 ΔG<0

37
For  an   ideal  gas , the

fugacity  is equal  to
pressure  and  ______

f/p =1 f/p=0 f/p varies f/p> 1 f/p =1
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38

For  a   real  gas , the
fugacity  is not equal  to
pressure  and  the  ratio

______

f/p =1 f/p=0 f/p varies p/f =1 f/p varies

39 A   process  is  in  the
equilibrium  state when ΔG>0 ΔG<0 ΔG =0 ΔS=0 ΔG =0

40

Which  of  the  following
equation  is  used  to

calculate  the  heats  of
reaction  when  ΔG  at  two
temperatutes  are  given?

Gibbs  Helmholtz
equatioin

Clapeyron
equation

Kirchoffs
equation Nernst equation Gibbs  Helmholtz

equatioin

41
____________  is  applicable

to  macroscopic systems
only.

thermochemistry thermokinetics thermodynamics thermochemical
studies. thermodynamics

42 An example  of  isolated
system thermocouple thermosflask carnot engine manometer thermosflask

43 ideal gas can be represented
as  ____ PV =nRT PR=mVT PT=nVR PT=VR PV =nRT

44 ∆E =q-w  for  an  isochoric
process

first law of
thermodynamics

second   law of
thermodynamics zeroth’s law third law of

thermodynamics
first law of

thermodynamics

45 Which  of  the  following  is
an  extensive  property ? pressure concentration density volume volume

46 Which  of  the  following  is
an  intensive  property ? mass volume density internal  energy. density
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47
∆E =q-w  is  the

mathematical  relation  for
the

first  law  of
thermodynamics

second   law of
thermodynamics

third  law of
thermodynamics zeroth’s law first  law  of

thermodynamics

48 ∆E = -w   represents
__________ adiabatic process isothermal

process isobaric process exoergic process adiabatic process

49 ∆H  is +ve  for  ___________ endothermic
process

exothermic
process exoergic process endoergic process endothermic

process

50
Spontaneous  change  is

accompanied  by   decrease
of _______

entropy enthalpy internal  energy free energy internal  energy

51

Raoults law is dilute ideal
solution  non ideal perfect

gas  to be quite satisfactory
for a

dilute solution
ideal non ideal

solution
perfect gas dilute solution

52
For  an  adiabatic  process

according to ---------------- of
thermodynamics, ∆E = -w

second law first  law third law zeroth law first  law

53

When two systems are in
thermal equilibrium with a
third system, then they are
in thermal equilibrium with

each other

First Law of
Thermodynamics

Second Law of
Thermodynamics

Mechanical
equivalent of

heat

Zeroth Law of
Thermodynamics

Zeroth Law of
Thermodynamics

54
Which of the following

temperature scales doesn’t
have negative numbers

Celsius Kelvin Reaumur Fahrenheit Kelvin

55 Which of two temperature
change are equivalent? 1 K = 1 F 1 F = 1 C 1 Re = 1 F 1 K = 1 C 1 K = 1 C
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56
The partial molar free

energy of an element A in
solution is the same as its

Chemical potential Activity Fugacity Activity coefficient Chemical potential

57 The state of a system is
identified by its shape size properties surroundings properties

58 The solvent in a dilute
solution follows Henrys law Daltons law Raoults law Charles law Raoults law

59
The ratio of fugacity to

fugacity at standard state is
called the

Activity Activity co-
efficient

Fugacity
coefficient

Chemical
potential Fugacity coefficient

60
The chemical potential of a
pure substance is equal to

the

specific Gibbs free
energy molar entropy The Gibbs free

energy
Molar Gibbs free

energy
The Gibbs free

energy
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UNIT – II

SYLLABUS

Probability and third law. Need for third law. Nernst heat theorem and other forms stating

third law. Thermodynamic quantities at absolute zero. Statistical meaning of third law

and apparent exception. Mathematical Introduction: Theories of permutation &

combination, laws of probability. Distribution laws. Gaussian distribution.

Third law of thermodynamics

The third law of thermodynamics is a statistical law of nature regarding entropy and the

impossibility of reaching absolute zero, the null point of the temperature scale. As a

system approaches absolute zero, all processes cease and the entropy of the system

approaches a minimum value.

This minimum value, the residual entropy, is not necessarily zero, although it is always

zero for a perfect crystal in which there is only one possible ground state.

The third law of thermodynamics states that the entropy of a system at absolute zero is a

well-defined constant. This is because a system at zero temperature exists in its ground

state, so that its entropy is determined only by the degeneracy of the ground state. It

means that "it is impossible by any procedure, no matter how idealised, to reduce any

system to the absolute zero of temperature in a finite number of operations".

The third law of thermodynamics as stated by Gilbert N. Lewis and Merle Randall:

If the entropy of each element in some (perfect) crystalline state be taken as zero at the

absolute zero of temperature, every substance has a finite positive entropy; but at the
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absolute zero of temperature the entropy may become zero, and does so become in the

case of perfect crystalline substances.

This version states not only ΔS will reach zero at 0 kelvins, but S itself will also reach

zero as long as the crystal has a ground state with only one configuration. Some crystals

form defects which causes a residual entropy. This residual entropy disappears when the

kinetic barriers to

The statistical-mechanics definition of entropy for a large system:

whereS is entropy, kB is the Boltzmann constant, and Ω is the number of microstates

consistent with the macroscopic configuration.

The third law states that the entropy of most pure substances approaches zero as the

absolute temperature approaches zero. This law provides an absolute reference point for

the determination of entropy. The entropy determined relative to this point is the absolute

entropy.

A special case of this is systems with a unique ground state, such as most crystal lattices.

The entropy of a perfect crystal lattice as defined by Nernst's theorem is zero (if its

ground state is singular and unique, whereby log(1) = 0. An example of a system which

does not have a unique ground state is one containing half-integer spins, for which time-

reversal symmetry gives two degenerate ground states.This entropy is generally

considered to be negligible on a macroscopic scale. Additionally, other exotic systems are

known that exhibit geometrical frustration, where the structure of the crystal lattice

prevents the emergence of a unique ground state.

The third law of thermodynamics is essentially a statement about the ability to create an

absolute temperature scale, for which absolute zero is the point at which the internal

energy of a solid is precisely 0.

The following three formulations of the third law of thermodynamics:
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Need for third law :

1.It is impossible to reduce any system to absolute zero in a finite series of operations.

2.The entropy of a perfect crystal of an element in its most stable form tends to zero as

the temperature approaches absolute zero.

3.As temperature approaches absolute zero, the entropy of a system approaches a

constant.

Nernst heat theorem

The Nernst heat theorem was formulated by Walther Nernst and was used in the

development of the third law of thermodynamics.

The theorem

The Nernst heat theorem says that as absolute zero is approached, the entropy change ΔS

for a chemical or physical transformation approaches 0. This can be expressed

mathematically as follow

The above equation is a modern statement of the theorem. Nernst often used a form that

avoided the concept of entropy.
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Graph of energies at low temperatures

The theorem is to start with the definition of the Gibbs free energy (G), G = H - TS,

where H stands for enthalpy. For a change from reactants to products at constant

temperature and pressure the equation becomes ΔG = ΔH − TΔS.

In the limit of T = 0 the equation reduces to just ΔG = ΔH, which is supported by

experimental data. From thermodynamics that the slope of the ΔG curve is -ΔS. Since the

slope shown here reaches the horizontal limit of 0 as T → 0 then the implication is that

ΔS → 0, which is the Nernst heat theorem.

The significance of the Nernst heat theorem is that it was later used by Max Planck to

give the third law of thermodynamics, which is that the entropy of all pure, perfectly

crystalline homogeneous materials is 0 at absolute zero.

Thermodynamic quantities at Absolute zero :

Absolute zero is the theoretical temperature at which entropy reaches its minimum value.

The laws of thermodynamics state that absolute zero cannot be reached using only

thermodynamic means.

A system at absolute zero still possesses quantum mechanicalzero-point energy, the

energy of its ground state. The kinetic energy of the ground state cannot be removed.

However, in the classical interpretation it is zero and the thermal energy of matter

vanishes.

Absolute zero is the null point of any thermodynamic temperature scale. It is defined as

0K on the Kelvin scale and as −273.15°C on the Celsius scale. This equates to −459.67°F

on the Fahrenheit scale. The  temperatures very close to absolute zero, where matter

exhibits quantum effects such as superconductivity and superfluidity.

Very low temperatures
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The average temperature of the universe due to cosmic microwave background radiation.

Absolute zero cannot be achieved artificially, although it is possible to reach

temperatures close to it through the use of cryocoolers. Laser cooling is a technique used

to take temperatures to within a billionth of a degree of 0 K. At very low temperatures in

the vicinity of absolute zero, matter exhibits many unusual properties including

superconductivity, superfluidity, and Bose-Einstein condensation.

At temperatures near 0 K, nearly all molecular motion ceases and, when entropy = S,

ΔS = 0 for any adiabatic process. Pure substances can (ideally) form perfect crystals as T

→ 0. Max Planck's strong form of the third law of thermodynamics states the entropy of a

perfect crystal vanishes at absolute zero. The original Nernstheat theorem makes the

weaker and less controversial claim that the entropy change for any isothermal process

approaches zero as T → 0:

The implication is that the entropy of a perfect crystal simply approaches a constant

value.

The Nernst postulate identifies the isotherm T = 0 as coincident with the adiabat S = 0,

although other isotherms and adiabats are distinct. As no two adiabats intersect, no other

adiabat can intersect the T = 0 isotherm. Consequently no adiabatic process initiated at

nonzero temperature can lead to zero temperature.

It is impossible to reduce the temperature of a system to zero in a finite number of

operations. A perfect crystal is one in which the internal lattice structure extends

uninterrupted in all directions. The perfect order can be represented by translational

symmetry along three (not usually orthogonal) axes. Every lattice element of the structure

is in its proper place, whether it is a single atom or a molecular grouping. For substances

which have two (or more) stable crystalline forms, such as diamond and graphite for

carbon, there is a kind of "chemical degeneracy". The question remains whether both can

have zero entropy at T = 0 even though each is perfectly ordered.
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Perfect crystals never occur in practice; imperfections, and even entire amorphous

materials, simply get "frozen in" at low temperatures, so transitions to more stable states

do not occur.

Using the Debye model, the specific heat and entropy of a pure crystal are proportional to

T 3, while the enthalpy and chemical potential are proportional to T 4. The quantities drop

toward their T = 0 limiting values and approach with zero slopes. Since the relation

between changes in Gibbs free energy (G), the enthalpy (H) and the entropy is

thus, as T decreases, ΔG and ΔH approach each other (so long as ΔS is bounded).

Experimentally, it is found that all spontaneous processes (including chemical reactions)

result in a decrease in G as they proceed toward equilbrium. If ΔS and/or T are small, the

condition ΔG < 0 may imply that ΔH < 0, which would indicate an exothermic reaction.

However, this is not required; endothermic reactions can proceed spontaneously if the

TΔS term is large enough.

The slopes of the derivatives of ΔG and ΔH converge and are equal to zero at T = 0. This

ensures that ΔG and ΔH are nearly the same over a considerable range of temperatures.

Principle of Thomsen and Berthelot, which states that the equilibrium state to which a

system proceeds is the one which evolves the greatest amount of heat, i.e. an actual

process is the most exothermic one.
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Statistical meaning of third law :

Statistical mechanics: Alink between quantum mechanics and classical

thermodynamics.

Consider a pure crystal all the atoms will be arranged in exact pattern of lattice

site

W= N! / N! =1

For similar atoms

W= N! / N! =1,  Indistinguishable

For different atoms

W= N! / n1! n2! n3!......  Distinguishable

Boltzmann entropy equation is

S= kln W

Consider a crystal in which there are 2 atoms A and B

Na →A                   Nb →B

W= N! / N! = N! /na! nb!

S= kln N!/ Na! Nb!

ln N! = NlnN-N

S= k(Nln N-N)- (NalnNa-Na)- (NblnNb-Nb)

S= k (Nln N-N- NalnNa+Na- NblnNb+Nb)

S= k (Nln N-N- NalnNa- NblnNb+N)

S= k (Nln N- NalnNa- NblnNb)

S= -k (NalnNa+ NblnNb- Nln N)

Na= XaN and Nb= XbN
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S= -k (XalnXaN+ XblnXbN-NlnN)

S= -kN (XalnXaN+ XblnXbN-ln N)

S= -kN (XalnXa+XalnN+XblnXb+XblnN- ln N)

S= -kN (XalnXa+XblnXb+ (Xa+Xb-1) ln N)

S= -kN (XalnXa+XblnXb)

Entropy equation for mixed crystals independent of temperature, so entropy is

not zero.

Apparent Exception of third law:

Smixing= -kN (XalnXa+XblnXb)

Carbonmonoxide,water,nitrous oxide and nitric oxide and Hydrogen do not follow

third law.

Carbon Monoxide:

Spectroscopic value of entropy = 160.1 JK-1mol-1

Calorimetric  value of entropy = 155.5 JK-1mol-1

___________________

Difference = 4.6 JK-1mol-1

_____________________

Pure crystal of CO    CO-CO   or  COCO

Actual crystal  COOCCO  or  COCOOC

If we imagine CO as mixed crystal in which there is ordered and disordered

orientation are present.

Smixing= -kN (1/2 ln1/2 +1/2 ln1/2)

Smixing= -kN (ln1/2) = -Nk (-ln2)
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Smixing= -kN ln2 = R ln2

Smixing = 0.693R  = 5.76 JK-1mol-1

CO ordered and disordered orientation are not  present in 1 : 1 ratio.

Nitrous oxide:

Spectroscopic value of entropy = 202.7 JK-1mol-1

Calorimetric  value of entropy = 198.0 JK-1mol-1

___________________

Difference = 4.7 JK-1mol-1

_____________________

Actual crystal-ONNONN  or  NNOONN

Perfect crystal-NNONNO

The ratio is not equal to 1:1, entropy is not equal to zero and do not follow third

law of thermodynamics.

Nitric oxide:

Spectroscopic value of entropy = 182.6 JK-1mol-1

Calorimetric  value of entropy = 179.8 JK-1mol-1

___________________

Difference = 2.8 JK-1mol-1

_____________________

Actual crystal-NOON  or  ONON

Perfect crystal-NO-NO-NO

No  exist in  form of dimers.
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Permutation:

In permutation is used with several slightly different meanings, all related to the act of

permuting (rearranging in an ordered fashion) objects or values. Informally, a

permutation of a set of values is an arrangement of those values into a particular order.

Thus there are six permutations of the set {1,2,3}, namely [1,2,3], [1,3,2], [2,1,3], [2,3,1],

[3,1,2], and [3,2,1].

A permutation of a setS is defined as a bijection from S to itself (i.e., a mapS → S for

which every element of S occurs exactly once as image value). To such a map f is

associated the rearrangement of S in which each element s takes the place of its image

f(s). In combinatorics, a permutation of a finite set S is defined as an ordering of its

elements into a list. In this sense, the permutations of S differ precisely by a

rearrangement of their elements. For a set S that is given with an initial ordering, such as

S={1,2,3,...,n}, these two meanings can be almost identified: applying a permutation in

the first sense to this initial ordering gives an alternative ordering of the elements, which

is a permutation in the second sense.

The rule to determine the number of permutations of n objects was known.

The product of multiplication of the arithmetical series beginning and increasing by unity

and continued to the number of places, will be the variations of number with specific

figures.

Permutations :

A permutation of n taken m at a time is defined as an ordered selection of m out of the n

items. The total number of all the possible permutations is denoted as:

.

Combinations :
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A combination of n taken m at a time is defined as a selection of m out of the n items

without regard to the order. The total number of all the possible combinations is denoted

as:

Addition Law of Probability

Theorem

Let be a probability measure on an event space .

Let .

Then:

That is, the probability of either eventoccurring equals the sum of their individual

probabilities less the probability of them both occurring.

This is known as the addition law of probability, or the sum rule.

Proof

By definition, a probability measure is a measure.

Hence, again by definition, it is a countably additive function.

By Measure is Finitely Additive Function, we have that is an additive function.



Prepared by Dr. S. Manickasundaram,                Department of Chemistry, KAHE Page 12

So we can apply Additive Function on Union of Sets directly.

Alternative Proof

Alternatively, we can prove it directly, although it works out exactly the same:

From Set Difference and Intersection form Partition, we have that:

is the union of the two disjoint sets and ;

is the union of the two disjoint sets and .

So, by the definition of probability measure:

;

We also have from Set Difference Disjoint with Reversethat

.

Hence:

B)

Multiplicative Law of Probability:

 The probability of the intersection of two events A and B is

 P(A \ B) = P(A)P(BjA)= P(B)P(AjB)

 If A and B are independent, the P(A\B) = P(A)P(B).
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 The Multiplicative Law of Probability is often used to determine the probability

of an event which involves a sequence of random occurances.

Normal distribution

In probability theory, the normal (or Gaussian) distribution, is a continuous probability

distribution that is often used as a first approximation to describe real-valued random

variables that tend to cluster around a single mean value. The graph of the associated

probability density function is “bell”-shaped, and is known as the Gaussian function or

bell curve.

where parameter μ is the mean (location of the peak) and σ 2 is the variance (the measure

of the width of the distribution). The distribution with μ = 0 and σ 2 = 1 is called the

standard normal.

The normal distribution is considered the most “basic” continuous probability distribution

due to its role in the central limit theorem, and is one of the first continuous distributions.

Specifically, by the central limit theorem, under certain conditions the sum of a number

of random variables with finite means and variances approaches a normal distribution as

the number of variables increases. For example, the observational error in an experiment

is usually assumed to follow a normal distribution, and the propagation of uncertainty is

computed using this assumption.

A normally-distributed variable has a symmetric distribution.

 The normal distribution is the only absolutely continuous distribution all of whose

cumulants beyond the first two (i.e. other than the mean and variance) are zero.

 For a given mean and variance, the corresponding normal distribution is the

continuous distribution with the maximum entropy.
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Definition

The simplest case of a normal distribution is known as the standard normal distribution,

described by the probability density function

The constant in this expression ensures that the total area under the curve ϕ(x) is

equal to one, and 1⁄2 in the exponent makes the “width” of the curve (measured as half of

the distance between the inflection points of the curve) also equal to one. In statistics to

denote this function with the Greek letter ϕ (phi), whereas density functions for all other

distributions are usually denoted with letters f or p. The alternative glyph φ is also used

quite often, “φ” to denote characteristic functions.

A normal distribution results from exponentiating a quadratic function (just as an

exponential distribution results from exponentiating a linear function):

This yields the classic “bell curve” shape (provided that a< 0 so that the quadratic

function is concave). Note that f(x) > 0 everywhere. One can adjust a to control

the “width” of the bell, then adjust b to move the central peak of the bell along the x-axis,

and finally adjust c to control the “height” of the bell. For f(x) to be a true probability

density function over R, one must choose c such that (which is only

possible when a < 0).

Rather than using a, b, and c, it is far more common to describe a normal distribution by

its meanμ = −b/(2a) and varianceσ2 = −1/(2a). Changing to these new parameters rewrite

the probability density function in a convenient standard form,
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For a standard normal distribution, μ = 0 and σ2 = 1. The last part of the equation above

shows that any other normal distribution can be regarded as a version of the standard

normal distribution that has been stretched horizontally by a factor σ and then translated

rightward by a distance μ. Thus, μ specifies the position of the bell curve’s central peak,

and σ specifies the “width” of the bell curve.

The parameter μ is at the same time the mean, the median and the mode of the normal

distribution. The parameter σ2 is called the variance; as for any random variable, it

describes how concentrated the distribution is around its mean. The square root of σ2 is

called the standard deviation and is the width of the density function.

The normal distribution is usually denoted by N(μ, σ2). Commonly the letter N is written

in calligraphic font Thus when a random variable X is distributed normally with mean μ

and variance σ2, we write

Alternative formulations

σ2 use its reciprocal τ = σ−2 (or τ = σ−1), which is called the precision. This

parameterization has an advantage in numerical applications where σ2 is very close to

zero and is more convenient to work with in analysis as τ is a natural parameter of the

normal distribution. Another advantage of using this parameterization is in the study of

conditional distributions in multivariate normal case.

The normal distribution should be called the “standard” the standard normal was

considered to be the one with variance σ2

The standard normal with variance σ2
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Characterization

The normal distribution was defined by specifying its probability density function.

Probability density function

The probability density function (pdf) of a random variable describes the relative

frequencies of different values for that random variable. The pdf of the normal

distribution is given by the formula

This is a proper function only when the variance σ2 is not equal to zero. This is a

continuous smooth function, defined on the entire real line, and which is called

the “Gaussian function”.

Properties:

 Function f(x) is symmetric around the point x = μ, which is at the same time the

mode, the median and the mean of the distribution.

 The inflection points of the curve occur one standard deviation away from the

mean (i.e., at x = μ − σ and x = μ + σ).

 The standard normal density ϕ(x) is an eigenfunction of the Fourier transform.

 The function is supersmooth of order 2, implying that it is infinitely differentiable.

 The first derivative of ϕ(x) is ϕ′(x) = −x·ϕ(x); the second derivative is ϕ′′(x) = (x2 −

1)ϕ(x). More generally, the n-th derivative is given by ϕ(n)(x) = (−1)nHn(x)ϕ(x),

where Hn is the Hermite polynomial of order n.

When σ2 = 0, the density function doesn’t exist. Ageneralized function that defines a

measure on the real line, and it can be used to calculate, for example, expected value is
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where is the Dirac delta function which is equal to infinity at x = 0.

The property 1, it is possible to relate all normal random variables to the standard normal.

For example if X is normal with mean μ and variance σ2, then

has mean zero and unit variance, that is Z has the standard normal distribution. A

standard normal random variable Z can always construct another normal random variable

with specific mean μ and variance σ2:
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Questions Opt-1 Opt-2 Opt-3 Opt-4 Answers

1
The third law of
thermodynamics states that in
the limit T→0

G=0 H=0 Cv=0 S=0 S=0

2 In the limit T→0 for a crystal ST =Cp/3 ST=Cp/3 ST=Cp/4 ST=Cp ST=Cp/3

3 Entropies calculated using the
third law are called--------

thermal
entropies

statistical
entropies

residual
entropies

absolute
entropies thermal entropies

4

The entropies of substance such
as CO,NO,H2O are not zero at 0
k  as the third law formulates
but are finite these entropies
are called

thermal
entropies

statistical
entropies

residual
entropies

absolute
entropies residual entropies

5

---------is the ratio of the number
of cases favourable to the
accurrence of an event to the
total number of equally
probable cases

mathematical
probability

thermodynamic
probability

statistical
thermodynamics

classical
mechanics

mathematical
probability

6

.---------is the number of
microstates correcting to a given
macrostate dealing with the
distribution of molecules among
on extremely large number of
energy levels

.mathematical
probability

thermodynamic
probability

statistical
thermodynamics

classical
mechanics

thermodynamic
probability
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7
The boltzman entropy equation
is probably the most famous
equation in---------------

statistical
thermodynamic

s

mathematical
probability

thermodynamic
probability

classical
mechanics

statistical
thermodynamics

8 The entropies of real gas
behaves ideally at-----pressure high low very high very low. low

9

The  absolute  entropy  zero  of
HCl  at  25ºc  has  the
extrapolation  from  0  to  15 K
(using  the  Debye  T3 law  is
____________

1.3 JK-1 mol-1 29.5  JK-1 mol-1 12.1  JK-1 mol-1 10.1  JK-1 mol-1 1.3 JK-1 mol-1

10

10. The  absolute entropy zero
of  HCl  at  25ºc ∫Cp d ln T
from  188.07   to  298.15K  is
___________

13 .5 JK-1 mol-1 29.5  JK-1 mol-1 12.1  JK-1 mol-1 10.1  JK-1 mol-1 13 .5 JK-1 mol-1

11

∆Smix of  ortho hydrogen  and
para  hydrogen  is  found  to  be
_______ JK-1 mol-1 in  the
vicinity  of  0 k.

0.37 16.22 17.1 19.66 0.37

12
The  calorimetric  value  of
entropy  for  CO  is  _________
JK-1 mol-1 .

155.5 4.6 160.1 171.2. 155.5

13

Every substance  has  a  finite
entropy  which  may  become
zero  at  absolute  zero  of
temperature  is  __________  0f
thermodynamics.

second  law third  law first  law zeroth  law. third  law

14 The  Smix of  CO  is  found  to
__________  JK-1 mol-1 . 5.76 6.72 1.25 3.56 5.76
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15
The residual  entropy  of
hydrogen  is  _______  JK-1 mol-1
.

6.23 4.25 5.62 3.15. 6.23

16 The  entropy  of  Smixed crystal  is
given  by  _________-

-Nk [ xa ln xa + xb

ln xb ]
Nk [ xa ln xa - xb ln

xb ]
-Nk [ -xa ln xa + xb

ln xb ]
-Nk [- xa ln xa - xb

ln xb ]
-Nk [ xa ln xa + xb ln

xb ]

17

The  residual  entropy  of
hydrogen  is  due  to  the
existence  of  __________  form
of  hydrogen  in  different
quantum  state.

ortho para both combination ortho

18
The  calorimetric  value  of
entropy  in  N2O  is  _______ JK-1

mol-1
198 202.1 227.2 232.1 198

19
The  spectroscopic value  of
entropy  in  NO  is  _______ JK-1

mol-1
172.8 182.8 198 202.7 182.8

20 The  calorimetric  value  for  NO
is _______ JK-1 mol-1 179.8 182.8 198 d)202.7 179.8

21

.__________  is  an
arrangement  that  can  be
made  by  taking  some  or  all
of  a  number  of  given  things.

permutations combination probability independent
events. permutations

22

___________ is  a  group  (or
selection )  that  can  be  made
by  taking  some  or  all  of  a
number  of  given  things at  a
time.

permutations combination probability independent
events. combination
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23
The  total  number  of  possible
outcomes  in  any trial  is
known  as  ______

exhaustive
events

favourable
events

mutually
exclusive  events

independent
events. exhaustive  events

24

Events  are  said  to  be
incompatible  if  the  happening
of  any  one  of  them  rules  out
the  happening  of all  others   is
called    _________.

exhaustive
events

favourable
events

mutually
exclusive  events

independent
events.

mutually  exclusive
events

25
The  binomial  distribution
discovered  by  a  swiss
mathematician  _________

James  Bernoulli Simeon  Devis
Poisson De-Movire Lapalace. James  Bernoulli

26
Poisson  distribution  was
discovered  by  the  French
mathematician  _________

James  Bernoulli Simeon  Devis
Poisson De-Movire Lapalace. Simeon  Devis

Poisson

27

A  continous  random  variable  x
assuming  non-negative  values
is  said  to  have  an
___________  distributioin.

Binomial Poisson Geometric Exponential Exponential

28
_________   distribution  is
called  continous  probability
distribution.

Binomial Poisson Geometric Normal Normal

29
._____________  distribution  is
called  discrete  probability
distribution.

Normal Exponential Gaussian Binomial. Binomial.

30
.__________ distribution  is
called  continous  probability
distribution

Binomial Poisson Geometric Exponential. Exponential.

31 The  entropy  is  measured  in cal K-1 mol-1 J K-1 mol-1 entropy  unit entropy entropy
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32 The  standard  entropy,  S˚, of  a
substance  is

its  entropy  at
0̊ c  and  1  atm

pressure

) its  entropy  at
0 K  and  1  atm

pressure

its  entropy  at
25˚c  and  1  atm

pressure

its  entropy  at  25
K  and  1  atm

pressure

its  entropy  at
25˚c  and  1  atm

pressure

33

The  thermal  entropies  are
somewhat  smaller  than  the
statistical  entropies, the
deviation  ranging  from
__________ J K-1 mol-1 .

3.1-4.8 6.2-7 above 7 7.5 –8.2 . 3.1-4.8

34

The   entropies  of  substance
such  as  H2, D2 are  not  zero  at
0 K  as  the  third  law
formulates  but are  finite  these
entropies  are  called
_________

thermal
entropies

residual
entropies

statistical
entropies

absolute
entropies residual  entropies

35
The  entropy  of  a  pure  crystal
is  zero at  absolute  zero.This  is
statement  of

first  law  of
thermodynamic

s

second  law  of
thermodynamics

third law  of
thermodynamics

zeroth   law  of
thermodynamics

third law  of
thermodynamics

36 Which  is  the  correct  unit  for
entropy ? kJ mol J K-1 mol-1 J K-1 mol kJ mol. J K-1 mol-1

37 The  probability  of  a  sure
event  is 1 2 three unlimited. 1

38 The  probability  of  an
impossible  event  is 1 2 three 0 . 0 .

39
The  probability  of   having  at
least  one  tail  in  4  throws
with  a  coin is

15/16 three 2 1 15/16
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40
A  dice  is thrown  once.then
the  probability  of  getting a
number greater  than  three  is

one/two two/three 6 0 one/two

41 In the limit  T→0 ; s= 0 which
represents  ______

first  law  of
thermodynamic

s

second   law of
thermodynamics

third  law of
thermodynamics zeroth’s law third  law of

thermodynamics

42
Entropies calculated using the
_______ are called  residual
entropies.

first  law  of
thermodynamic

s

second   law of
thermodynamics

third  law of
thermodynamics zeroth’s law third  law of

thermodynamics

43

Which  entropy equation is
probably the most famous
equation in statistical
thermodynamics

Gibbs Helmholtz Kirchoff’s Boltzmann Clapeyron Boltzmann

44 A real gas behaves ideally at low
pressure enthalpy entropy internal energy heat capacity entropy

45
The ortho hydrogen  and  para
hydrogen  is  found  to  be  18.37
JK-1 mol-1 in  the  vicinity  of  0 k.

∆S ∆H ∆G Smix ∆S

46 The  Smix of _________   is
found  to    5.76 JK-1 mol-1 . CO CO2 NO O2 CO

47 The  residual  entropy  of
________ is  6.23    JK-1 mol-1 . hydrogen oxygen nitrogen sulphur hydrogen

48
The  ________  of  Smixed crystal
is  given  by -Nk [ xa ln xa + xb ln
xb ]

entropy enthalpy internal Gibbs energy entropy
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49

The  residual  entropy  of
hydrogen  is  due  to  the
existence  of  ortho form  of
___________  in  different
quantum  state.

hydrogen oxygen nitrogen sulphur hydrogen

50
French scientist  Simeon  Devis
Poisson  was  discovered  by
_________  distribution.

binomial poisson geometric exponential binomial

51 The symbol H in the following
expression represents Enthalpy Entropy Free energy

Internal energy Enthalpy

52 The measure of disorder of the
molecules of the system is Enthalpy Entropy gibbs free energy Helmholtz free

energy Entropy

53

The statement that the total
amount of energy in the
universe is constant is governed
by

First Law of
Thermodynamic

s

Second Law of
Thermodynamics

Third Law of
thermodynamics

Zeroth Law of
Thermodynamics

First Law of
Thermodynamics

54
The entropy of a perfectly
crystalline structure is Zero. This
statement is governed by

First Law of
Thermodynamic

s

Second Law of
Thermodynamics

Third Law of
thermodynamics

Hess law of
constant heat

summation

Third Law of
thermodynamics

55

Boltzmann ---------- equation is
probably the most famous
equation in statistical
thermodynamics

Gibbs Helmholtz entropy enthalpy Clapeyron entropy

56
The  calorimetric  value  of
entropy  in ---------- is  198.0
JK-1 mol-1

N2O HCl CO H2O N2O
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57
The  spectroscopic value  of
entropy  in -------- is  182.8   JK-1

mol-1
NO N2O CO HCl NO

58
The  calorimetric  value  of
entropy  for ---------- is  155.5
JK-1 mol-1 .

NO N2O CO HCl CO

59 The  calorimetric  value  for -----
------ is  179.8  JK-1 mol-1 NO N2O CO HCl NO

60
Entropies calculated using the ---
------- are called thermal
entropies

second law first  law third law zeroth law third law
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UNIT – III

SYLLABUS

Maxwell distribution law for molecular velocities and molecular speeds in an ideal gas.
Velocity and speed distribution functions. Experimental verification of Maxwell
distribution law. Evaluation of average speed, root mean square speed and most probable
speed from distribution law. Distribution function in terms of the kinetic energy of an
ideal gas. The principle of equipartition of energy and the calculation of heat capacities of
ideal gases. Limitations of the principle of equipartition of energy.
Quantum statistics: Maxwell-Boltzmann statistics. Thermodynamic probability.
Thermodynamic probabilities of systems in equilibrium. Boltzmann expression for
entropy. Stirling’s approximation. State of maximum thermodynamics probability.
Legrangian multipliers. Thermodynamic probabilities of systems involving energy levels.
Maxwell-Boltzmann distribution law. Evaluation of alpha and beta in MB distribution
law.

Maxwell–Boltzmann distribution

The Maxwell–Boltzmann distribution describes particle speeds in gases, where the

particles do not constantly interact with each other but move freely between short

collisions. It describes the probability of a particle's speed (the magnitude of its velocity

vector) being near a given value as a function of the temperature of the system, the mass

of the particle, and that speed value. This probability distribution is named after James

Clerk Maxwell and Ludwig Boltzmann.

The Maxwell–Boltzmann distribution is usually for the distribution of molecular speeds,

velocities, momenta, and magnitude of the momenta of the molecules, each of which will

have a different probability distribution function. "Maxwell–Boltzmann distribution"

refer to the distribution of speed. This distribution can be thought of as the magnitude of

a 3-dimensional vector whose components are independent and normally distributed with

mean 0 and standard deviationa. If Xi are distributed as , then
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is distributed as a Maxwell–Boltzmann distribution with parameter a. Apart from the

scale parameter a, the distribution is identical to the chi distribution with 3 degrees of

freedom.

The Maxwell–Boltzmann distribution applies to ideal gases close to thermodynamic

equilibrium, negligible quantum effects, and non-relativistic speeds. It forms the basis of

the kinetic theory of gases, which explains many fundamental gas properties, including

pressure and diffusion.

Derivation

The derivation by Maxwell assumed all three directions would behave in the same

fashion, but a later derivation by Boltzmann dropped this assumption using kinetic

theory. The Maxwell–Boltzmann distribution can be derived from the Boltzmann

distribution for energies.

where Ni is the number of molecules at equilibrium temperature T, in a state i which has

energy Ei and degeneracy gi, N is the total number of molecules in the system and k is the

Boltzmann constant. (Sometimes the above equation is written without the degeneracy

factor gi. In this case the index i will specify an individual state, rather than a set of gi

states having the same energy Ei.) Because velocity and speed are related to energy,

Equation 1 can be used to derive relationships between temperature and the speeds of

molecules in a gas. The denominator in this equation is known as the canonical partition

function.

For the case of an "ideal gas" consisting of non-interacting atoms in the ground state, all

energy is in the form of kinetic energy, and gi is constant for all i. The relationship

between kinetic energy and momentum for massive particles is
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where p2 is the square of the momentum vector p = [px, py, pz]. Rewrite Equation 1 as:

where Z is the partition function, corresponding to the denominator in Equation 1. Here m

is the molecular mass of the gas, T is the thermodynamic temperature and k is the

Boltzmann constant. This distribution of Ni/N is proportional to the probability density

functionfp for finding a molecule with these values of momentum components, so:

The normalizing constantc, can be determined by recognizing that the probability of a

molecule having any momentum must be 1. Therefore the integral of equation 4 over all

px, py, and pz must be 1.

It can be shown that:

Substituting Equation 5 into Equation 4 gives:

The distribution is the product of three independent normally distributed variables px, py,

and pz, with variance mkT. Additionally,the magnitude of momentum will be distributed

as a Maxwell–Boltzmann distribution, with a= √mkTThe Maxwell–Boltzmann
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distribution for the momentum (or equally for the velocities) can be obtained using the H-

theorem at equilibrium within the kinetic theory.

Distribution for the energy

Using p² = 2mE, and the distribution function for the magnitude of the momentum, we

get the energy distribution:

Since the energy is proportional to the sum of the squares of the three normally

distributed momentum components, this distribution is a chi-square distribution with

three degrees of freedom:

where

By the equipartition theorem, this energy is evenly distributed among all three degrees of

freedom, so that the energy per degree of freedom is distributed as a chi-square

distribution with one degree of freedom:

where ε is the energy per degree of freedom. At equilibrium, this distribution will hold

true for any number of degrees of freedom. For example, if the particles are rigid mass

dipoles, they will have three translational degrees of freedom and two additional

rotational degrees of freedom. The energy in each degree of freedom will be described

according to the above chi-square distribution with one degree of freedom, and the total
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energy will be distributed according to a chi-square distribution with five degrees of

freedom.

Distribution for the velocity vector

The velocity probability density fv is proportional to the momentum probability density

function by

and using p = mv we get

which is the Maxwell–Boltzmann velocity distribution. The probability of finding a

particle with velocity in the infinitesimal element [dvx, dvy, dvz] about velocity

v = [vx, vy, vz] is

Like the momentum, this distribution is seen to be the product of three independent

normally distributed variables vx, vy, and vz, but with variance . It can also be seen

that the Maxwell–Boltzmann velocity distribution for the vector velocity [vx, vy, vz] is the

product of the distributions for each of the three directions:

where the distribution for a single direction is
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Each component of the velocity vector has a normal distribution with mean

and standard deviation , so the

vector has a 3-dimensional normal distribution, also called a "multinormal" distribution,

with mean and standard deviation .

The Maxwell–Boltzmann Speed Distribution

The Maxwell–Boltzmann velocity distribution accounts for both the speed and direction

of assembly particles,we are often interested more in their speed than in their direction.

For this purpose, it proves convenient to introduce spherical coordinates in velocity

space.

Spherical velocity space

The Maxwell–Boltzmann distribution for the speed follows the distribution of the

velocity vector. The speed is

and the volume is
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where θ and φ are the "course"  and "path angle". Integration of the normal probability

density function of the velocity, (from 0 to 2π and path angle (from − π / 2 to π / 2),

with substitution of the speed for the sum of the squares of the vector components, yields

the probability density function.

Cartesian to spherical coordinates can be accomplished by invoking the transformation

(1)

where V is the particle speed, θis the zenith angle, and φis the azimuthal angle in

spherical

velocity space. The speed PDF can now be determined from the velocity PDF by

converting to spherical velocity coordinates and then integrating over all possible solid

angles. Converting first to spherical coordinates, we

obtain, from Eq. (1),

For an isotropic velocity distribution, f (V) is unaffected by either θ or φ; thus, directly

integrating over all zenith and azimuthal angles, we find that

(2)

where f (V) represents the derived speed PDF.

From Eq. (2), we observe that the PDF for any isotropic velocity distribution canbe

converted to its corresponding speed PDF by employing

(3)

Hence, substituting from Eq. (3), we determine the PDF representing the Maxwell–

Boltzmann speed distribution as

(4)



Prepared by Dr. S. Manickasundaram,                Department of Chemistry, KAHE Page 8

This Maxwell distributionequation with distribution parameter .

The mean speed, most probable speed (mode), and root-mean-square can be obtained

from properties of the Maxwell distribution.

Speed is defined as , where is the most probable

speed. The distribution of speeds allows comparison of dissimilar gasses, independent of

temperature and molecular weight.

The most probable speed, vp, is the speed possessed by any molecule (of the same mass

m) in the system and corresponds to the maximum value or mode of f(v). Calculate df/dv,

set it to zero and solving for v:

Where R is the gas constant and M = NAm is the molar mass of the substance.

The most probable speed can be determined by implementing

,

from which we obtain

. (5)

Consequently, Eq. (4) can be reformulated as



Prepared by Dr. S. Manickasundaram,                Department of Chemistry, KAHE Page 9

(6)

which is clearly non-Gaussian compared to f (Vx).

The speed PDF for a gaseous assembly, the mean for any function of particlespeed, G(V),

can be determined by evaluating

.

Therefore, for G(V) = Vn, from Eq. (6) we obtain

(7)

Applying the Gaussian integrals , we find that the mean and rootmean-square speeds for a

given assembly temperature become

(8)

(9)

Comparing Eqs. (5), (8), and (9), we see that, at translational equilibrium,

which confirms the non-Gaussian nature of the speed PDF for Maxwell–

Boltzmannstatistics.

The mean speed is the mathematical average of the speed distribution

The root mean square speed, vrms is the square root of the average squared speed:
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The typical speeds are related as follows:

The Maxwell speed distribution (MSD), is a probability distribution describing the

"spread" of these molecular speeds; it is derived, and therefore only valid, assuming that

with an ideal gas. The speed is a scalar quantity, describing how fast the particles are

moving, regardless of direction; velocity also describes the direction that the particles are

moving. Another important element is that space is three dimensional, for any given

speed, there are many possible velocity vectors.

The probability of a molecule having a given speed can be found by using Boltzmann

factor; considering the energy to be dependent only on the kinetic energy:

Here, m is the mass of the molecule, k is Boltzmann's constant, and T is the temperature.

The above equation gives the probability that one component of particle's velocity vx. In 3

dimension we need to count particles that has all possible combinations of {vx,vy,vz}

results in . In other words, to sum all potential combinations of

individual components in 3 dimensional velocity space so that their vector some is

desired value. For the  distribution in 3 dimension, integrate above equations in

dvx,dvy,dvz over entire velocity space such that component sum is constant. If the particles

with speed v in a 3-dimensional velocity space, theseparticles lie on the surface of a

sphere with radius v. The larger v is, the bigger the sphere, and the more possible velocity

vectors. So the number of possible velocity vectors for a given speed goes like the surface

area of a sphere of radius v.
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Multiplying these two functions together gives us the distribution, and normalising this

gives us the MSD in its entirety.

(Again, m is the mass of the molecule, k is Boltzmann's constant, and T is the

temperature.)

This formula is a normalised probability distribution, it gives the probability of a

molecule having a speed between v and v + dv. The probability of a molecule having a

speed between two different values v0 and v1 can be found by integrating this function

with v0 and v1 as the bounds.

Averages

The "average" value of the speed of the Maxwell speed distribution.

Most probable speed:

Firstly, by finding the maximum of the MSD (by differentiating, setting the derivative

equal to zero and solving for the speed), determine the most probable speed. vmpequation

is :

Root mean square speed:

Second, the root mean square of the speed by finding the expected value of v2.

(Alternatively, by using the equipartition theorem.) vrmsequation is:
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Average speed:

Third and finally, the mean value of v from the MSD. equation is:

The equation in the order

These are three different ways of defining the average velocity, and they are not

numerically the same.

Equipartition lawand Limitations of the principle of equipartition of energy.

The equipartition theorem allows the averagekinetic energy of each atom to be

computed, as well as the average potential energies of many vibrational modes.

In classicalstatistical mechanics, the equipartition theorem is a general formula that

relates the temperature of a system with its average energies. The equipartition theorem is

also known as the law of equipartition, equipartition of energy, or simply equipartition.

The original idea of equipartition was that, in thermal equilibrium, energy is shared

equally among all of its various forms; for example, the average kinetic energy per

degree of freedom in the translational motion of a molecule should equal that of its

rotational motions.

The equipartition theorem makes quantitative predictions. It gives the total average

kinetic and potential energies for a system at a given temperature, from which the

system's heat capacity can be computed. However, equipartition also gives the average

values of individual components of the energy, such as the kinetic energy of a particular

particle or the potential energy of a single spring. For example, it predicts that every

molecule in a monoatomicideal gas has an average kinetic energy of (3/2)kBT in thermal

equilibrium, where kB is the Boltzmann constant and T is the (thermodynamic)

temperature. Generally, it can be applied to any classical system in thermal equilibrium.
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The equipartition theorem can be used to derive the ideal gas law, and the Dulong–Petit

law for the specific heat capacities of solids.

The equipartition theorem makes very accurate predictions in certain conditions, it

becomes inaccurate when quantum effects are significant, such as at low temperatures.

When the thermal energy kBT is smaller than the quantum energy spacing in a particular

degree of freedom, the average energy and heat capacity of this degree of freedom are

less than the values predicted by equipartition.

The name "equipartition" means "equal division," as derived from the Latinequi from the

antecedent, æquus ("equal or even"), and partition from the antecedent, partitionem

("division, portion"). The original concept of equipartition was that the total kinetic

energy of a system is shared equally among all of its independent parts, on the average,

once the system has reached thermal equilibrium. Equipartition also makes quantitative

predictions for these energies. For example, it predicts that every atom of a noble gas, in

thermal equilibrium at temperature T, has an average translational kinetic energy of

(3/2)kBT, where kB is the Boltzmann constant. In this example,  the kinetic energy is

quadratic in the velocity. The equipartition theorem shows that in thermal equilibrium,

any degree of freedom (such as a component of the position or velocity of a particle)

which appears only quadratically in the energy has an average energy of 1⁄2kBT and

therefore contributes 1⁄2kB to the system's heat capacity.

The last two equations for the energy of the gas molecules amount to what is called the

equipartition principle. The gas that we have used in this description are monoatomic

(single atom) and therefore have no internal motions such as rotation or vibration. The

only motion that these molecules experience is translation as depicted in the box above.

Each gas atom has three degrees of translational freedom, motion along x, y, or z. The

average energy then per degree of freedom for the translating atomic gas is 1/2 kT per

degree of freedom per gas atom or 1/2 RT per degree of freedom per mole of gas atoms.

By the equipartition principle the total energy is equally distributed among the degrees of

freedom.
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For polyatomic molecules thermal energy will also be distributed among the rotations and

vibrations of the molecule. In the same way that translating molecules could move along

x, y, or z, so too can each of the atoms in a molecule. Thus molecules have a total of 3N

degrees of freedom, where N is the number of atoms in the molecule. Of the total 3N

degrees of freedom only 3 will be translations of the whole molecule through space. The

remainder are internal degrees of freedom: vibrations and rotations. Non-linear

polyatomic molecules have three degrees of rotational freedom while linear polyatomic

molecules have only two rotational degrees of freedom. Rotation of a linear molecule

along its molecular axis does not consume thermal energy (It's easy to roll a pencil). Each

rotation is allotted 1/2 kT per rotation (or 1/2 RT per mole of rotations) according to the

equipartition principle. A mole of water molecules (water is a non-linear molecule), for

example, has 3 rotations and 3/2 RT of rotational energy according to the equipartition

principle. The water rotations are shown below.

Equipartition of energy among vibrations is similar to that for translations and rotations

except that thermal energy may go into potential energy, i.e., into the stiffness of the

hypothetical spring connecting vibrating atoms, or into kinetic energy, the frequency of

the vibration. Each of these vibrational degrees of freedom obtains 1/2 kT according to

the equipartition principle or a full kT per vibration per molecule (a full RT per vibration

per mole of molecules). Non-linear molecules have 3N - 6 vibrations, while linear

molecules have 3N - 5 vibrations. Water, for example, has 3(3) - 6 = 3 vibrations. The

vibrations of water are shown below
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According to the equipartition principle the total energy of a mole of water vapor is

Utotal = Utrans + Urot + Uvib = 3/2 RT + 3/2 RT + 3RT = 6RT.

It is important to recognize that the equipartition principle is a classical idea that fails to

correctly account for the true quantum energies of molecules, with particularly poor

applicability to vibrations.

Each of these vibrational degrees of freedom obtains 1/2 kT according to the

equipartition principle or a full kT per vibration per molecule.

Maxwell–Boltzmann statistics

Speed distribution can be derived from Maxwell-Boltzmann distribution.

In statistical mechanics, Maxwell–Boltzmann statistics describes the statistical

distribution of material particles over various energy states in thermal equilibrium, when

the temperature is high enough and density is low enough to render quantum effects

negligible.

The expected number of particles with energy εi for Maxwell–Boltzmann statistics is Ni

where:

where:

 Ni is the number of particles in state i

 εi is the energy of the i-th state

 gi is the degeneracy of energy level i, the number of particle's states (excluding

the "free particle" state) with energy εi

 μ is the chemical potential
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 k is Boltzmann's constant

 T is absolute temperature

 N is the total number of particles

 Z is the partition function

 e(...) is the exponential function

Equivalently, the distribution is sometimes expressed as

where the index i now specifies a particular state rather than the set of all states with

energy εi.

Derivation of the Maxwell–Boltzmann distribution and evaluation of alpha and beta

.

The Boltzmann distribution will be derived using the assumption of distinguishable

particles.Suppose we have a number of energy levels, labelled by index i , each level

having energy εi and containing a total of Ni particles. Assuming that there is only one

way to put Ni particles into energy level i.

The number of different ways of performing an ordered selection of one object from N

objects is obviously N. The number of different ways of selecting 2 objects from N

objects, in a particular order, is thus N(N − 1) and that of selecting n objects in a

particular order is seen to be N! / (N − n)!. The number of ways of selecting 2 objects
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from N objects without regard to order is N(N − 1) divided by the number of ways 2

objects can be ordered, which is 2!. The number of ways of selecting n objects from N

objects the order is the binomial coefficient: N! / n!(N − n)!. If a set of boxes

numbered , the number of ways of selecting N1 objects from N objects and

placing them in box 1, then selecting N2 objects from the remaining N − N1 objects and

placing them in box 2 etc. is

where the extended product is over all boxes containing one or more objects. If the i-th

box has a "degeneracy" of gi, that is, it has gi sub-boxes, such that any way of filling the

i-th box where the number in the sub-boxes is changed is a distinct way of filling the box,

then the number of ways of filling the i-th box must be increased by the number of ways

of distributing the Ni objects in the gi boxes. The number of ways of placing Ni

distinguishable objects in gi boxes is . The number of ways (W) that N atoms can be

arranged in energy levels each level i having gi distinct states such that the i-th level has

Ni atoms is:

For example, suppose three particles are considered a, b, and c, and we have three

energy levels with degeneracies 1, 2, and 1 respectively. There are 6 ways to arrange the

3 particles so that N1 = 2, N2 = 1 and N3 = 0.

. . . . . .
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c . . c b . . b a . . a

ab ab ac ac bc bc

The six ways are calculated from the formula:

The set of Ni for which W is maximized, subject to the constraint that there be a fixed

number of particles, and a fixed energy. The maxima of W and ln(W) are achieved by

the same values of Ni and, since it is easier to accomplish mathematically, we will

maximize the latter function instead. We constrain our solution using Lagrange

multipliers forming the function:

Using Stirling's approximation for the factorials

we obtain:

Then

Finally
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In order to maximize the expression above we apply Fermat's theorem (stationary points),

according to which local extrema, if exist, must be at critical points (partial derivatives

vanish):

By solving the equations above ( ) we arrive to an expression for Ni:

It can be shown thermodynamicallythat β = 1/kT where k is Boltzmann's constant and T

is the temperature, and that α = -μ/kT where μ is the chemical potential, so that finally:

The above formula is sometimes written:

where z = exp(μ / kT) is the absolute activity.

Negative Absolute Temperature :

The equation  used

to obtain the population numbers as
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where Z is the partition function defined by:

 In this formulation, the initial assumption "…suppose the system has total N

particles..." is dispensed with. Indeed, the number of particles possessed by the

system plays no role in arriving at the distribution. Rather, how many particles

would occupy states with energy εi follows as an easy consequence.

 The presented above is essentially a derivation of the canonical partition function.

The Boltzmann sum over states is really no different from the canonical partition

function.

 Exactly the same approach can be used to derive Fermi–Dirac and Bose–Einstein

statistics. However, there one would replace the canonical ensemble with the

grand canonical ensemble, since there is exchange of particles between the system

and the reservoir. Also, the system one considers in those cases is a single particle

state, not a particle. (In the above discussion, we have assumed our system to be a

single atom.)

Limits of applicability

The Bose–Einstein and Fermi–Dirac distributions may be written:

Assuming the minimum value of εi is small, it can be seen that the condition under which

the Maxwell–Boltzmann distribution is valid is when
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For an ideal gas, we can calculate the chemical potential using the development in the

Sackur–Tetrode article to show that:

where E is the total internal energy, S is the entropy, V is the volume, and Λ is the

thermal de Broglie wavelength. The condition for the applicability of the Maxwell–

Boltzmann distribution for an ideal gas is again shown to be

Maxwell-Boltzmann Distribution Law

T is the absolute temperature, N is number of molecules, m is mass of a molecule, v is the

velocity of a molecule, k is the Boltzmann constant 13.805 x 10_24 J deg-1.

The equation gives the fraction of gas molecules with velocities in the range v to v +dv.

The velocity is described as a vector with components vx, vy and vz in velocity space. The

volume of the spherical shell from surfaces v and v + dv is given by 4v2dv. The transfer

of momentum during collisions between molecules, Maxwell determined that the volume

element must be multiplied by the Boltzmann factor exp(-1/2 mv2/kT). (1/2mv2 as the

expression for kinetic energy.) (m/2kT)1/2 is a normalization factor required to make the

integral of dN over all velocities equal N.

Below is a plot of the probability distribution of molecules as a function of velocity at

three temperatures.
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Translational Mode

Here we applied quantum mechanics to the particle in a box. The expression for the

translational energy of a single gaseous atom, namely,

where the three spatial quantum numbers, n1, n2, and n3, can each take on any value

from unity to infinity. The contribution to thermodynamicproperties from any

independent energy mode can be ascertained by first determining itscontribution to the

partition function. For the translational mode, the partition functioncan be evaluated most

directly by summing over  states rather than over levels.

For the translational partition function,

(1)

For the characteristic translational temperature,

(2)

The summation of above Equation  is identical for the three translational quantum
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numbers. Moreover, by summing over all possible values from unity to infinity, we are

indeed accounting for each quantum state, as identified by its unique set of translational

quantum numbers.

Recall that θt ≈ 10−16 K; thus, for any realistic assembly temperature,the summation in

the above Eq. can be converted to an equivalent integration. In other words, because of

the incredibly minute separation between consecutivetranslational levels, we may assume

a continuous distribution of translational energies, asmight be expected from classical

mechanics. Consequently, from Eq. (1)becomes

(3)

so that, substituting Eq. (2) into Eq. (3), we obtain

(4)

The translational partition function, as defined by Eq. (4), can also be derived by either

(1) summing over energy levels using the density of states or (2) evaluating the phase

integral. For quantum mechanics is actually unnecessary for the translational

energymode; hence, the equipartition principle is perfectly suitable for calculating

translationalcontributions to thermodynamic properties.

Because the characteristic temperature for the translational mode is so much smaller

than that for the various internal energy modes, the total number of quantum states for an

atom or molecule is essentially equivalent to that for the translational mode.

(5)

For an ideal gas at its standard temperature and pressure of 298.15 K and 1 bar, Eq. (5)

typically gives Ztr/N 105, which certainly supports the dilute limit. Dilute conditions

may not exist at low temperaturesor high densities, especially for particles with nearly

zero mass.

Employing the translational partition function, we may now evaluate the contributions

of the translational mode to the thermodynamic properties of an ideal gas. Considering,

for example, the internal energy,
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(6)

Similarly, for the specific heat at constant volume,

(7)

Therefore, the translational contribution to the internal energy per mole is 1.5RT and

that to the heat capacity per mole is 1.5R, which is in perfect accord with our expectations

from the equipartition principle. The translational contributions to the specific enthalpy

andspecific heat at constant pressure are as follows:

At this point, the pressure can be easily determined by combining aspects of classical

and statistical thermodynamics. In particular, the pressure can be expressed classically

as

(8)

while the Helmholtz free energy,

Recalling that Z = Z(T, V), we thus obtain the general relation

(9)

Applying Eq. (9) to the translational mode, we then obtain, by substitution from Eq. (4),

(10)

which is, the equation of state for an ideal gas. The pressure arises solely from the

translational mode, as surely expected from the momentum exchange occurring at all

walls for vessels containing independent gaseous particles. On this basis, the partition

function for each internal energy mode must depend solely on temperature.

For the entropy,



Prepared by Dr. S. Manickasundaram,                Department of Chemistry, KAHE Page 25

which becomes, after substitution from Eq. (10),

(11)

The Sackur–Tetrode equation for translational entropy:

(12)

where T is the temperature (K), M is the molecular weight (kg/kmol), and P is the

pressure

(bar). Based on Eq. (5), the Sackur–Tetrode equation, which holds only in the dilute

limit, is obviously inappropriate for temperatures approaching absolute zero. Hence,the

Eq. (12) gives an entropy value of negative infinity at T = 0.

Translational energy and ideal gases

The (Newtonian) kinetic energy of a particle of mass m, velocity v is given by

where vx, vy and vz are the Cartesian components of the velocity v. Here, H is short for

Hamiltonian, and used as a symbol for energy because the Hamiltonian formalism plays a

central role in the most general form of the equipartition theorem.

Since the kinetic energy is quadratic in the components of the velocity, by equipartition

these three components each contribute 1⁄2kBT to the average kinetic energy in thermal

equilibrium. Thus the average kinetic energy of the particle is (3/2)kBT, as in the example

of noble gases above.

More generally, in an ideal gas, the total energy consists purely of (translational) kinetic

energy: by assumption, the particles have no internal degrees of freedom and move
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independently of one another. Equipartition therefore predicts that the average total

energy of an ideal gas of N particles is (3/2) NAkBT.

The heat capacity of the gas is (3/2) NAkB, the heat capacity of a mole of such gas

particles is (3/2)NAkB = (3/2)R, where NA is the Avogadro constant and R is the gas

constant. Since R ≈ 2 cal/(mol·K), equipartition predicts that the molar heat capacity of

an ideal gas is roughly 3 cal/(mol·K).

The mean kinetic energy allows the root mean square speedvrms of the gas particles to be

calculated:

where M = NAm is the mass of a mole of gas particles.

Rotational energy

A rotating molecule with principal moments of inertiaI1, I2 and I3. The rotational energy

of such a molecule is given by

where ω1, ω2, and ω3 are the principal components of the angular velocity. The

equipartition implies that in thermal equilibrium the average rotational energy of each

particle is (3/2)kBT. Similarly, the equipartition theorem allows the average (the root

mean square) angular speed of the molecules to be calculated.

Rotational Mode

The energy levels and degeneracies for the rigid rotor are given by

(1)

so that the rotational partition function becomes
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(2)

Here, the characteristic rotational temperature,

, (3)

for which the moment of inertia Ie = μr 2 e . Unfortunately, for a homonuclear diatomic

such

as O2 or N2, we have inadvertently overcounted the number of available quantum states

by a factor of two because of the inherent indistinguishability of the nuclear pair.

From symmetry requirements on the molecular wave function, as generated by the usual

coupling between nuclear spin and orbital rotation. As a result,the partition function is

restricted to only odd or even values of the rotational quantum number.

The rotational partition function can be expressed more generally as

(4)

where σ is a symmetry factor, which, by definition, takes values of unity for a

heteronuclear

and two for a homonuclear diatomic molecule.

Typically, θr <T, using a standard Euler–Maclaurin expansion

(5)

If, on the other hand, θr -T, the summation in Eq. (4) can be converted to an

integration,as for our evaluation of the translational partition function. The obvious result

fromEq. (5) is

(6)

Now, for nearly all diatomics, θr2 K, so that Eq. (6) is perfectly suitable for most

computations. However, for molecules containing a hydrogen atom, such as HCl or OH,

θr15 K; thus, for such cases, Eq. (5) becomes necessary. In contrast, direct summation
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via Eq. (4) remains a requirement for H2, as here θr = 87.55 K. With Eq. (3) calculating

the rotational partition function for lighter molecules.

Eq. (6) controls so that our two standard partial derivatives for the partition functionwith

respect to temperature become

Therefore, as for the translational mode, we again replicate the classical results predicted

by the equipartition principle:

(7)

(8)

For the rotational contribution to the entropy,

(9)

For heteronuclear diatomics containing atomic hydrogen, 3 <T/θr ≤ 30, which

implies utilization of Eq. (5); for this case, the rotational partition function can be

expressed as

where we have defined the rotational correction term,

(10)

Evaluating two standard partial derivatives, term-by-term, we find algebraic

manipulation,
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(11)

(12)

(13)

(1 4)

Hence, from Eqs. (11) and (12), we have for the rotational contributions to the internal

energy, enthalpy, and specific heats

(15)

(16)

Similar expressions could be developed for all of the remaining thermodynamic

properties,

including the entropy.

Consider a heteronucleardiatomic with a molecular distribution given,

(17)

Dividing Eq. (17) by its result at J = 0, we obtain

(18)

For T/θr = 100, accents the remarkablepeak that typically arises at a rotational quantum

number J >0. Based on our discussion inwe would normally expect the population to

peak at its ground level, with anexponentially decreasing population at higher levels.The
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rotational case demonstrates that a strongly increasing degeneracy with risingenergy level

can preferentially displace the maximum population away from its ground level.For

atoms having low-lyingelectronic levels with degeneracies significantly greater than that

for the ground electronicstate. Assuming, for the moment, a continuous rather than a

discrete distribution, determine from Eq. (18) that value of the rotational quantum

number corresponding tothe peak in the rotational distribution, which becomes

(19)

For the rotationaldistribution can be very important for many optical techniques used to

determine theconcentration or temperature in a gaseous mixture. In particular, the

rotational peakusually offers the most intense signal in a rovibronic spectrum, and thus

the best possibledetection limit.

Potential energy and harmonic oscillators

Equipartition applies to potential energies as well as kinetic energies: important examples

include harmonic oscillators such as a spring, which has a quadratic potential energy

where the constant a describes the stiffness of the spring and q is the deviation from

equilibrium. If such a one dimensional system has mass m, then its kinetic energy Hkin is

where v and p = mv denote the velocity and momentum of the oscillator. Combining these

terms yields the total energy.
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Equipartition therefore implies that in thermal equilibrium, the oscillator has average

energy

where the angular brackets denote the average of the enclosed quantity.

This result is valid for any type of harmonic oscillator, such as a pendulum, a vibrating

molecule or a passive electronic oscillator. Systems of such oscillators arise in many

situations; by equipartition, each such oscillator receives an average total energy kBT and

hence contributes kB to the system's heat capacity. Atoms in a crystal can vibrate about

their equilibrium positions in the lattice. Such vibrations account largely for the heat

capacity of crystalline dielectrics; with metals, electrons also contribute to the heat

capacity.

Specific heat capacity of solids

An important application of the equipartition theorem is to the specific heat capacity of a

crystalline solid. Each atom in such a solid can oscillate in three independent directions,

so the solid can be viewed as a system of 3N independent simple harmonic oscillators,

where N denotes the number of atoms in the lattice. Since each harmonic oscillator has

average energy kBT, the average total energy of the solid is 3NkBT, and its heat capacity is

3NkB.

By taking N to be the Avogadro constantNA, and using the relation R = NAkB between the

gas constantR and the Boltzmann constant kB, this provides an explanation for the

Dulong–Petit law of specific heat capacities of solids, which stated that the specific heat

capacity (per unit mass) of a solid element is inversely proportional to its atomic weight.

A modern version is that the molar heat capacity of a solid is 3R ≈ 6 cal/(mol·K).

However, this law is inaccurate at lower temperatures, due to quantum effects; it is also

inconsistent with the experimentally derived third law of thermodynamics, according to

which the molar heat capacity of any substance must go to zero as the temperature goes
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to absolute zero. The motions of oscillators can be decomposed into normal modes, like

the vibrational modes of a piano string or the resonances of an organ pipe. On the other

hand, equipartition often breaks down for such systems, because there is no exchange of

energy between the normal modes. In an extreme situation, the modes are independent

and so their energies are independently conserved.

Boltzmann applied the equipartition theorem to provide a theoretical explanation of the

Dulong–Petit law for the specific heat capacities of solids.

The molar specific heat of a diatomic gas against temperature. It agrees with the value

(7/2)R predicted by equipartition at high temperatures (where R is the gas constant), but

decreases to (5/2)R and then (3/2)R at lower temperatures, as the vibrational and

rotational modes of motion are "frozen out".

The failure of the equipartition theorem led to a paradox that was only resolved by

quantum mechanics. For most molecules, the transitional temperature Trot is much less

than room temperature, whereas Tvib can be ten times larger or more. A typical example is

carbon monoxide, CO, for which Trot ≈ 2.8 K and Tvib ≈ 3103 K. For molecules with very

large or weakly bound atoms, Tvib can be close to room temperature (about 300 K); for

example, Tvib ≈ 308 K for iodine gas, I2.

Einstein used the failure of equipartition to argue for the need of a new quantum theory of

matter.

Applications

Ideal gas law

Ideal gases provide an important application of the equipartition theorem



Prepared by Dr. S. Manickasundaram,                Department of Chemistry, KAHE Page 33

for the average kinetic energy per particle, the equipartition theorem can be used to

derive the ideal gas law from classical mechanics. If q = (qx, qy, qz) and p = (px, py, pz)

denote the position vector and momentum of a particle in the gas, and F is the net force

on that particle, then

where the first equality is Newton's second law, and the second line uses Hamilton's

equations and the equipartition formula. Summing over a system of N particles yields

The kinetic energy of a particular molecule can fluctuate, but the equipartition theorem

allows its average energy to be calculated at any temperature. Equipartition also provides

a derivation of the ideal gas law, an equation that relates the pressure, volume and

temperature of the gas.

By Newton's third law and the ideal gas assumption, the net force on the system is the

force applied by the walls of their container, and this force is given by the pressure P of

the gas. Hence

where dS is the infinitesimal area element along the walls of the container. Since the

divergence of the position vector q is
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the divergence theorem implies that

where dV is an infinitesimal volume within the container and V is the total volume of the

container.

Putting these equalities together yields

which immediately implies the ideal gas law for N particles:

where n = N/NA is the number of moles of gas and R = NAkB is the gas constant. The

equipartition provides a simple derivation of the ideal-gas law and the internal energy, the

same results can be obtained by an alternative method using the partition function.

Diatomic gases

A diatomic gas can be modelled as two masses, m1 and m2, joined by a spring of

stiffnessa, which is called the rigid rotor-harmonic oscillator approximation. The

classical energy of this system is

where p1 and p2 are the momenta of the two atoms, and q is the deviation of the inter-

atomic separation from its equilibrium value. Every degree of freedom in the energy is

quadratic and, thus, should contribute 1⁄2kBT to the total average energy, and 1⁄2kB to the

heat capacity. Therefore, the heat capacity of a gas of N diatomic molecules is predicted
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to be 7N·1⁄2kB: the momenta p1 and p2 contribute three degrees of freedom each, and the

extension q contributes the seventh. It follows that the heat capacity of a mole of diatomic

molecules with no other degrees of freedom should be (7/2)NAkB = (7/2)R and, thus, the

predicted molar heat capacity should be roughly 7 cal/(mol·K). However, the

experimental values for molar heat capacities of diatomic gases are typically about

5 cal/(mol·K) and fall to 3 cal/(mol·K) at very low temperatures. This disagreement

between the equipartition prediction and the experimental value of the molar heat

capacity cannot be explained by using a more complex model of the molecule, since

adding more degrees of freedom can only increase the predicted specific heat, not

decrease it.

Relativistic ideal gases

Equipartition was used above to derive the classical ideal gas law from Newtonian

mechanics. However, relativistic effects become dominant in some systems, such as

white dwarfs and neutron stars, and the ideal gas equations must be modified. The

equipartition theorem provides a convenient way to derive the corresponding laws for an

extreme relativistic ideal gas. In such cases, the kinetic energy of a single particle is given

by the formula

Taking the derivative of H with respect to the px momentum component gives the

formula

and similarly for the py and pz components. Adding the three components together gives
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where the last equality follows from the equipartition formula. Thus, the average total

energy of an extreme relativistic gas is twice that of the non-relativistic case: for N

particles, it is 3 NkBT.

Non-ideal gases

In an ideal gas the particles are assumed to interact only through collisions. The

equipartition theorem may also be used to derive the energy and pressure of "non-ideal

gases" in which the particles also interact with one another through conservative forces

whose potential U(r) depends only on the distance r between the particles. A single gas

particle, and approximating the rest of the gas by a spherically symmetric distribution.

Aradial distribution functiong(r) such that the probability density of finding another

particle at a distance r from the given particle is equal to 4πr2ρg(r), where ρ = N/V is the

mean density of the gas. It follows the mean potential energy associated to the interaction

of the given particle with the rest of the gas is

The total mean potential energy of the gas is therefore , where N

is the number of particles in the gas, and the factor 1⁄2 is needed because summation over

all the particles counts each interaction twice. Adding kinetic and potential energies, then

applying equipartition, yields the energy equation
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To derive the pressure equation

Kinetic energies and the Maxwell–Boltzmann distribution

The equipartition theorem states that, in any physical system in thermal equilibrium,

every particle has exactly the same average kinetic energy, (3/2)kBT. The Maxwell–

Boltzmann distribution which is the probability distribution

for the speed of a particle of mass m in the system, where the speed v is the magnitude

of the velocityvector

The Maxwell–Boltzmann distribution applies to any system composed of atoms, and

assumes only a canonical ensemble, specifically, that the kinetic energies are distributed

according to their Boltzmann factor at a temperature T. The average kinetic energy for a

particle of mass m is then given by the integral formula

as stated by the equipartition theorem. The same result can also be obtained by averaging

the particle energy using the probability of finding the particle in certain quantum energy

state.

Quadratic energies and the partition function

More generally, the equipartition theorem states that any degree of freedomx which

appears in the total energy H only as a simple quadratic term Ax2, where A is a constant,
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has an average energy of ½kBT in thermal equilibrium. In this case the equipartition

theorem may be derived from the partition functionZ(β), where β = 1/(kBT) is the

canonical inverse temperature. Integration over the variable x yields a factor

in the formula for Z. The mean energy associated with this factor is given by

as stated by the equipartition theorem.

Kinetic Molecular Theory of Gases

Kinetic Molecular Theory of Gases

The volume of a gas increases with temperature. The velocity (or kinetic energy) of gas

molecules increases at the temperatures increases. Determine the connection between

temperature and the velocity of gases by the molecular dynamics of a gas which produce

a pressure inside a container.

The volume of the box is a x A where a is the size of the box along the x-axis and A is

the area of the wall of the box that is perpendicular to the x-axis.
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Pressure is defined as the force per unit area.

pressure   =

To calculate the pressure need to determine the force exerted by gas molecules colliding
with wall A. The force exerted by a molecule of mass m colliding with wall A can be
calculated from

.

The last quantity in the above equation can be determined if we know the change in

velocity per collision with wall A and the time between collisions with wall A. A

collision with wall A will reverse only the x-component of the velocity . If we assign the

average initial x-component of the velocity before collision as -vx and the final x-

component of the velocity after collision to vx then the change in velocity with collision

with wall A is

The time between collisions with wall A will again depend upon the x-component of the

velocity and the distance travelled by the gas molecule (along x) between collisions. In

our box a gas molecule, after colliding with wall A, would have to travel along x to the
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opposite wall, a distance of a, and back again to wall A, for a total distance travelled

along x of 2a. Thus the time between collisions with wall A would be

and the force exerted by one gas molecule of mass m colliding with wall A becomes

Rearranging we find

pV = mvx
2 per gas molecule.

Recognizing that the velocity is related to its components by the Pythagorean Theorem

and that, on average, each of the components are equal we find:

v2 = vx
2 + vy

2 + vz
2 = 3 vx

2

and

pV = 1/3 mv2 per gas molecule,

or

pVm = 1/3 NA mv2 per mole of gas molecules,

where Vm is the volume occupied by a mole of gas molecules and NA is Avogadro's

number (6.022 x 1023 molecules per mole).
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From the ideal gas temperature scale, i.e., pVm = RT, finally connect the velocity and

kinetic energy of the gas molecules to the temperature.

pVm = 1/3 NA mv2 = RT and

The velocity, v, is the root mean square velocity. At room temperature (300 K) the

velocity of nitrogen molecules ( m = 4.65 x 10-26 kg) is 519 meters/second. (*Note: k is

called Boltzmann's constant and is related to the gas constant R such that k = R/NA =

1.38 x 10-23 joule per Kelvin per molecule.)

The last two equations for the energy of the gas molecules amount to what is called the

equipartition principle. The gas that we have used in this description are monoatomic

(single atom) and therefore have no internal motions such as rotation or vibration. The

only motion that these molecules experience is translation as depicted in the box above.

Each gas atom has three degrees of translational freedom, motion along x, y, or z. The

average energy then per degree of freedom for the translating atomic gas is 1/2 kT per

degree of freedom per gas atom or 1/2 RT per degree of freedom per mole of gas atoms.

By the equipartition principle the total energy is equally distributed among the degrees of

freedom.

For polyatomic molecules thermal energy will also be distributed among the rotations and

vibrations of the molecule. In the same way that translating molecules could move along

x, y, or z, so too can each of the atoms in a molecule. Thus molecules have a total of 3N
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degrees of freedom, where N is the number of atoms in the molecule. Of the total 3N

degrees of freedom only 3 will be translations of the whole molecule through space. The

remainder are internal degrees of freedom: vibrations and rotations. Non-linear

polyatomic molecules have three degrees of rotational freedom while linear polyatomic

molecules have only two rotational degrees of freedom. Rotation of a linear molecule

along its molecular axis does not consume thermal energy (It's easy to roll a pencil). Each

rotation is allotted 1/2 kT per rotation (or 1/2 RT per mole of rotations) according to the

equipartition principle. A mole of water molecules (water is a non-linear molecule), for

example, has 3 rotations and 3/2 RT of rotational energy according to the equipartition

principle. The water rotations are shown below.

Equipartition of energy among vibrations is similar to that for translations and rotations

except that thermal energy may go into potential energy, i.e., into the stiffness of the

hypothetical spring connecting vibrating atoms, or into kinetic energy, the frequency of

the vibration. Each of these vibrational degrees of freedom obtains 1/2 kT according to

the equipartition principle or a full kT per vibration per molecule (a full RT per vibration

per mole of molecules). Non-linear molecules have 3N - 6 vibrations, while linear

molecules have 3N - 5 vibrations. Water, for example, has 3(3) - 6 = 3 vibrations. The

vibrations of water are shown below

According to the equipartition principle the total energy of a mole of water vapor is

Utotal = Utrans + Urot + Uvib = 3/2 RT + 3/2 RT + 3RT = 6RT.
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It is important to recognize that the equipartition principle is a classical idea that fails to

correctly account for the true quantum energies of molecules, with particularly poor

applicability to vibrations.

Each of these vibrational degrees of freedom obtains 1/2 kT according to the

equipartition principle or a full kT per vibration per molecule.
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Questions Opt-1 Opt-2 Opt-3 Opt-4 Answers

1
The  equation  of  average
speed  for  Maxwell
distribution  is -----------

√8RT /πM √2RT /M √3RT /M √5RT /πM √8RT /πM

2
The equation  for  average
square speed  of  Maxwell
distribution  is -----------

√2RT /M √5RT /πM √8RT /πM √3RT /M √3RT /M

3

The  equation  for  most
probable  speed  of
Maxwell  distribution  is ----
-------

√8RT /πM √2RT /M √5RT /πM √3RT /M √2RT /M

4

The  equation  for  Root
Mean  Square Speed  of
Maxwell  distribution  is -----
------

√2RT /πM √3RT/M √8RT /πM √5RT /πM √3RT/M

5

In  equiparttion law each  of
quadratic term  contributes
______  to  the  average
energy.

1/2kT 4/2kT 5/2kT 7/2kT 1/2kT

6
The  equation  for  Stirlings
approximation  is
__________

ln N!  =N ln N –N ln N! ln N!-ln N ln N!=N ln N +N ln N!  =N ln N –N

7
The  state  of  maximum
thermodynamic  probability
equation  is  ________

e-α=N/S Ni =e- α Ni =N/S eα=N/S Ni =N/S
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8
The  Maxwell Boltzmann
distribution  law  equation
is______

Ni = gi. e-α e-βεί Ni = gi. e-α eβεί Ni = gi. eα e-βεί Ni = gi. eα eβεί Ni = gi. e-α e-βεί

9

The  number  of  molecules
occupying  particular
energy  level  of  particular
quantum  state  of  Maxwell
distribution   law  equation
is _______

Nij = eα eβεί Nij= e-α e-βεί Nij= e-α eβεί Nij = eα e-βεί Nij= e-α e-βεί

10
The  molecular  partition
function  q   is  given  by
________

q = ∑gi. e-βεί q = ∑gi. e-βεί q =∑ e-βεί q =∑ eβεί q = ∑gi. e-βεί

11

The  equation  for  the
evaluation  of   α  in
M.B.distribution  law  is
________

e-α=N/q e-α=N/S Ni =e- α eα=N/S e-α=N/q

12

The  equation  for   the
evaluation  of   β  in
M.B.distribution  law  is
________

β = 1/kT β = -1/kT β = kT β = 2/kT β = 1/kT

13

The  equation  for
M.B.distribution  of
molecular  velocity  for
evaluation  of   constant   A
is ________

A =( b/2π )1/2 A =(- b/2π )1/2 A =( b/2π )5/2 A =(- b/2π )3/2 A =(- b/2π )1/2

14
The  Maxwell  speed
distribution equation  is
__________

( m/2π kT
)1/2.e-

mc/2kT.4πc2.dc

( m/2π kT
)3/2.e-mc/2kT.

dvx.dvy.dvz

( m/2π kT )3/2.e-
mc/2kT.4πc2.dc

( m/2π kT
)3/2.emc/2kT.4πc

2.dc

( m/2π kT )3/2.e-
mc/2kT.4πc2.dc
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15
The  Maxwell distribution  of
molecular  velocity
equation  is  _________

( m/2π kT
)1/2.e-

mc/2kT.4πc2.dc

( m/2π kT
)3/2.e-mc/2kT.

dvx.dvy.dvz

( m/2π kT
)3/2.emc/2kT.4πc2.dc

( m/2π kT
)3/2.emc/2kT.

dvx.dvy.dvz

( m/2π kT )3/2.e-
mc/2kT.

dvx.dvy.dvz

16

The  Maxwell  distribution
law   in  terms  of   kinetic
translational  energy
equation  is  _________

dN εtr /N =(1/
kT) 3/2 .(εtr /
π)1/2.2e- ε tr

/kT.d εtr

dN εtr /N =(1/
kT) 5/2 .(εtr / π)

1/2.2e- ε tr
/kT.d εtr

dN εtr /N =(1/ kT) 3/2
.(εtr / π) 3/2.2e- ε tr

/kT.d εtr

dN εtr /N =(1/ kT)
3/2 .(εtr / π)

5/2..2e- ε tr /kT.d
εtr

dN εtr /N =(1/ kT)
3/2 .(εtr / π)1/2.2e-

ε tr /kT.d εtr

17
The  equation  for  various
kinds  of  speed  is  Cmp : <
C> :<C2>

√2RT /M : √8RT
/πM  : √3RT /M

√8RT /πM  :
√2RT /M  : √3RT

/M

√3RT /M : √8RT /πM  :
√2RT /M

√3RT /πM : √8RT
/πM  : √2RT /M

√2RT /M : √8RT
/πM  : √3RT /M

18
The  ratio  of  various  kinds
of  speed  is  Cmp : < C>
:<C2>1/2

1.128:1.225:1 1.128:1:1.225 1.225:1:1.128 1:1.128:1.225 1:1.128:1.225

19 The  average  square  speed
<C2>1/2  value  is  ________ 1.128 1.225 1 1.228 1.225

20 The  most  probable  speed
Cmp    value  is  _______ 1.128 1.225 1 1.228 1

21 The  average  speed  < C>
value  is  _______ 1.128 1 1.228 1.225 1.128

22 The  RMS  speed   <C2>1/2
value  is  ________ 1.128 1 1.225 1.228 1.225

23

The  rotational  contribution
to  Cv   for  a  polyatomic
molecule  in  linear
molecule  is  ________

Cv (rot)=R Cv (rot)=3/2 R Cv (rot)=3R Cv (rot)=5R Cv (rot)=R
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24

The  rotational  contribution
to  Cv for  a  polyatomic
molecule  in  non -linear
molecule  is  ________

Cv (rot)=R Cv (rot)=3/2 R Cv (rot)=3R Cv (rot)=5R Cv (rot)=3/2 R

25
The  number  of  vibrational
degrees  of  freedom  in
linear  molecule  is_______

3 N-5 3 N-6 3 N-4 3 N-7 3 N-5

26

The  number  of  vibrational
degrees  of  freedom  in
non- linear  molecule
is_______

3 N-5 3 N-4 3 N-6 3 N-7 3 N-6

27

The  equation  for
polyatomic  gas  in  non-
linear  molecule  is
________

Cv=3/2 R+3/2
R+ (3N-5)R

Cv=3/2 R+3/2
R+ (3N-6)R Cv=3/2 R+R+ (3N-5)R Cv=3/2 R+3R+

(3N-5)R
Cv=3/2 R+3/2 R+

(3N-6)R

28
The  equation  for
polyatomic  gas  in  linear
molecule  is  ________

Cv=3/2 R+R+
(3N-5)R

Cv=3/2 R+3/2
R+ (3N-6)R

Cv=3/2 R+3/2 R+ (3N-
5)R

Cv=3/2 R+3R+
(3N-5)R

Cv=3/2 R+R+ (3N-
5)R

29
The equation  for
monoatomic  gas  is
________

Cv=3/2 R Cv=R Cv=5/2 R Cv=5R Cv=3/2 R

30

Planck  proposed  the
relationship  between  the
entropy  of  a  system  and
the  thermodynamic
probability   is  given  by  the
equation  _______

S=klnw -S=klnw S= -klnw S=klnT S=klnw

31

The  equation  for
M.B.distribution  law of
molecular  velocity  is
__________

A=(m/2π kT )1/2 A=(m/2π kT
)5/2 A=(-m/2π kT )5/2 A=(-m/2π kT )3/2 A=(m/2π kT )1/2
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32
√3RT /M     equation  of
Maxwell  distribution  law  is
_________

average  square
speed

most  probable
speed average  speed partition function average  square

speed

33
√2RT /M     equation  of
Maxwell  distribution  law  is
_________

average    speed most  probable
speed average square speed equipartition most  probable

speed

34
√8RT /πM   equation  of
Maxwell  distribution  law  is
_________

most  probable
speed

average square
speed average speed root mean square

speed average speed

35
√3RT /M     equation  of
Maxwell  distribution  law  is
_________

average  speed most  probable
speed

root  mean  square
speed partition function root  mean  square

speed

36 1.128  value  belongs  to
__________ average   speed average  square

speed most probable  speed root mean square
speed average speed

37 1.225  value  belongs  to
__________ average   speed average  square

speed most probable  speed partition function average  square
speed

38 The  value  of  1  belongs  to
_________ average   speed average  square

speed most probable speed root mean square
speed

most probable
speed

39
In  speed  distribution
higher  molecular   weight
increases  as  ________

volume
increases

volume
decreases

volume  increasing
with   decreasing

volume
decreasing  with

increasing.
volume increases

40

In  speed  distribution    as
molecular   weight
_________the  disribution
curve  broadens.

increases decreases volume  increasing
with   decreasing

volume
decreasing  with

increasing.
decreases
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41
The  equation  of
_________  for  Maxwell
distribution  is √8RT /πM

average  speed average square
speed most probable speed root mean square

speed average  speed

42
The  equation  for
__________  of  Maxwell
distribution  is √3RT /M

average  speed average square
speed most probable speed partition function average square

speed

43
The  equation  for
__________  of  Maxwell
distribution  is √2RT /M

average  speed average square
speed most probable speed root mean square

speed
most probable

speed

44
The  equation  for  _______
of  Maxwell  distribution  is
√3RT /M

average  speed root mean
square  speed most probable speed partition function root mean square

speed

45
The equation  ln N!  =N ln N
–N   __________ represents
?

Stirlings
approximation

partition
function equipartition law

Maxwell
boltzmann

distribution law

Stirlings
approximation

46 The  equation   Ni =N/S
_______

state  of
maximum

thermodynamic
probability

Stirlings
approximation partition function equipartition law

state  of  maximum
thermodynamic

probability

47 The  equation  for  Cv=3/2 R
is ________ monoatomic gas diatomic gas polyatomic gas

state  of
maximum

thermodynamic
probability

monoatomic gas

48
The  value  of  _______
belongs  to  most probable
speed

1 1.225 1.128 2.25 1

49
The  number  of  _________
degrees  of  freedom  in
linear  molecule  is  3N-5

rotational vibrational translational electronic vibrational
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50

The  number  of  _________
degrees  of  freedom  in
non- linear  molecule  is  3N-
6

rotational vibrational translational electronic vibrational

51
In  speed  distribution
higher  molecular   weight --
------- as  volume  increases  .

decreases increases volume  increasing
with   decreasing

volume
decreasing  with

increasing
increases

52 The average kinetic energy
of the gas molecules is

inversely
proportional to

its absolute
temperature

directly
proportional to

its absolute
temperature

equal to the square of
its absolute

temperature

directly
proportional to its

absolute
temperature

53 For one mole of a gas the
kinetic energy is given by E = 1/2 RT E = 3/2 RT E = 5/2 RT E = 7/2 RT E = 3/2 RT

54 The  equation  monoatomic
--------- gas  is Cv=3/2 R monoatomic diatomic polyatomic triatomic monoatomic

55

----------- proposed  the
relationship between  the
entropy  of  a  system  and
the  thermodynamic
probability   is  given  by  the
equation  S=k ln w

Debye Maxwell
Boltzmann Planck Clapeyron Planck

56
Law of distribution of
velocities was given by--------
-

Maxwell Clausius Bernoulii Dalton Maxwell

57

In determining kinetic
equation of gases the
velocity of all molecules are
not equal so we use -----------

square of
velocity

mean square
velocity under root of velocity cube of velocity mean square

velocity
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58
The example of gas having
monoatomic molecules is ---
-----

Nitrogen hydroge neon and argon oxygen and
nitrogen neon and argon

59

At constant temperature,
the pressure of the gas is
reduced to one third, the
volume

reduces to one
third

increases by
three times remains the same cannot be

predicted
increases by three

times

60 For one mole of a gas, the
ideal gas equation is PV = RT PV = 1/2 RT PV = 3/2 RT PV = 5/2 RT PV = RT
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CLASS: II M.Sc CHEMISTRY     COURSE NAME: POLYMER CHEMISTRY

COURSE CODE:17CHP305A UNIT: IV (PARTITION FUNCTION) BATCH: 2017-2019

UNIT – IV

SYLLABUS

Partition function: Definition, justification of nomenclature, microcanonical and
canonical ensembles. Molecular partition and canonical function. The relation between
the total partition function of a molecule and the separate partition functions.
Translational partition function, rotational partition function. Effect of molecular
symmetry on rotational partition function. Ortho and para hydrogen. Vibrational partition
function. Electronic partition function. Evaluation of thermodynamic properties E, H, S,
A, G, Cv and Cp from monoatomic and diatomic ideal gas molecules partition functions.
Thermodynamic properties of polyatomic ideal gases. Calculation of equilibrium
constants of reaction involving ideal gases from partition functions.

Partition function (statistical mechanics)

In statistical mechanics, the partition function, Z, is an important quantity that encodes
the statistical properties of a system in thermodynamic equilibrium. It is a function of
temperature and other parameters, such as the volume enclosing a gas. Most of the
aggregate thermodynamic variables of the system, such as the total energy, free energy,
entropy, and pressure, can be expressed in terms of the partition function or its
derivatives.

There are several different types of partition functions, each corresponding to different
types of statistical ensemble. The canonical partition function applies to a canonical
ensemble, in which the system is allowed to exchange heat with the environment at fixed
temperature, volume, and number of particles. The grand canonical partition function
applies to a grand canonical ensemble, in which the system can exchange both heat and
particles with the environment, at fixed temperature, volume, and chemical potential.

Canonical partition function

Definition

Thermodynamically large system is in constant thermal contact with the environment,
with a temperature T , and both the volume of the system and the number of constituent
particles fixed. This kind of system is called a canonical ensemble. Label with s
( s = 1, 2, 3, ...) the exact states (microstates) that the system can occupy, and denote the
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total energy of the system when it is in microstate s as Es . Generally, these microstates
can be regarded as analogous to discrete quantum states of the system.

The canonical partition function is

,

where the "inverse temperature", β, is conventionally defined as

with kB denoting Boltzmann's constant. The term exp(–β·Es) is known as the
Boltzmann factor. In systems with multiple quantum states s sharing the same Es , it is
said that the energy levels of the system are degenerate. In the case of degenerate energy
levels, partition function in terms of the contribution from energy levels as follows:

,

where gj is the degeneracy factor, or number of quantum states s which have the same
energy level defined by Ej = Es .

The above treatment applies to quantumstatistical mechanics, where a physical system
inside a finite-sized box will typically have a discrete set of energyeigenstates, which we
can use as the states s above. In classical statistical mechanics, it is not really correct to
express the partition function as a sum of discrete terms. In classical mechanics, the
position and momentum variables of a particle can vary continuously, so the set of
microstates is actually uncountable. The partition function described using an integral
rather than a sum. For instance, the partition function of a gas of N identical classical
particles is

where

pi indicate particle momenta
xi indicate particle positions
d3 is a shorthand notation serving as a reminder that the pi and xi are vectors in
three dimensional space, and
H is the classical Hamiltonian.
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The partition function is a function of the temperature T and the microstate energies E1,
E2, E3, etc. The microstate energies are determined by other thermodynamic variables,
such as the number of particles and the volume, as well as microscopic quantities like the
mass of the constituent particles. This dependence on microscopic variables is the central
point of statistical mechanics. With a model of the microscopic constituents of a system,
one can calculate the microstate energies, and thus the partition function, which will then
allow us to calculate all the other thermodynamic properties of the system.

The partition function can be related to thermodynamic properties because it has a very
important statistical meaning. The probability Ps that the system occupies microstate s is

is the well-known Boltzmann factor. The partition function plays the role of a
normalizing constant (it does not depend on s), ensuring that the probabilities sum up to
one:

This is the reason for calling Z the "partition function": it encodes how the probabilities
are partitioned among the different microstates, based on their individual energies. The
letter Z stands for the "sum over states". This notation also implies the partition function
of a system: it counts the (weighted) number of states a system can occupy. Hence if all
states are equally probable (equal energies) the partition function is the total number of
possible states.

Calculating the thermodynamic total energy

For the partition function, calculate the thermodynamic value of the total energy. This is
the expected value, or ensemble average for the energy, which is the sum of the
microstate energies weighted by their probabilities:

or, equivalently,

Incidentally, if the microstate energies depend on a parameter λ in the manner
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then the expected value of A is

This provides us with a method for calculating the expected values of many microscopic
quantities. Add the quantity to the microstate energies (quantum mechanics, to the
Hamiltonian), calculate the new partition function and expected value, and then set λ to
zero in the final expression..

Relation to thermodynamic variables

The relationships between the partition function and the various thermodynamic
parameters of the system.

The thermodynamic energy is

The variance in the energy (or "energy fluctuation") is

The heat capacity is

The entropy is

whereA is the Helmholtz free energy defined as A = U - TS, where U=<E> is the total
energy and S is the entropy, so that

Partition functions of subsystems
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Suppose a system is subdivided into N sub-systems with negligible interaction energy. If
the partition functions of the sub-systems are ζ1, ζ2, ...,ζN, then the partition function of
the entire system is the product of the individual partition functions:

If the sub-systems have the same physical properties, then their partition functions are
equal, ζ1 = ζ2 = ... = ζ, in which case

Z = ζN.

If the sub-systems are actually identical particles, in the quantum mechanical sense that
they are impossible to distinguish even in principle, the total partition function must be
divided by a N ! (Nfactorial):

Grand canonical partition function

Definition

Definition of the canonical partition function for the canonical ensemble, defining a
grand canonical partition function for a grand canonical ensemble, a system that can
exchange both heat and particles with the environment, which has a constant temperature
T , and a chemical potential μ . The grand canonical partition function, although

conceptually more involved, simplifies the theoretical handling of quantum systems
because it incorporates in a simple way the spin-statistics of the particles (i.e. whether
particles are bosons or fermions

The grand canonical partition function for an ideal quantum gas (a gas of non-
interacting particles in a given potential well) is given by the following expression:

where N is the total number of particles in the gas, index i runs over every microstate
(that is, a single particle state in the potential) with ni being the number of particles
occupying microstate i and εi being the energy of a particle in that microstate. The set
{ ni } is the collection of all possible occupation numbers for each of these microstates

such that Σ ni = N .



Prepared by Dr. S. Manickasundaram,                Department of Chemistry, KAHE Page 6

For example, consider the N = 3 term in the above sum. One possible set of occupation
numbers would be ni = 0, 1, 0, 2, 0 ... and the contribution of this set of occupation
numbers to the N = 3 term would be

.

For bosons, the occupation numbers can take any integer values as long as their sum is
equal to N . For fermions, the Pauli exclusion principle requires that the occupation
numbers only be 0 or 1 , again adding up to N .

Probability

The expression for the grand partition function

.

(The product is sometimes taken over all states with equal energy, rather than over each
state, in which case the individual partition functions must be raised to a power gi where
gi is the number of such states. gi is also referred to as the "degeneracy" of states.)

For a system composed of bosons:

and for a system composed of fermions:

.

Maxwell-Boltzmann gas, we must use "correct Boltzmann counting" and divide the

Boltzmann factor by ni! .

.

Relation to thermodynamic variables
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With the canonical partition function, the grand canonical partition function can be used
to calculate thermodynamic and statistical variables of the system. As with the canonical
ensemble, the thermodynamic quantities are not fixed, but have a statistical distribution
about a mean or expected value.

The most probable occupation numbers are:

,

where α = –β·μ .

For Boltzmann particles this yields:

.

For bosons:

.

For fermions:

.

which are just the results found using the canonical ensemble for Maxwell-Boltzmann
statistics, Bose-Einstein statistics and Fermi-Dirac statistics, respectively.

Total number of particles

.

Variance in total number of particles

.

Internal energy
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.

Variance in internal energy

.

Pressure

.

Mechanical equation of state

.

Relation to potential V

For the case of a non-interacting gas, using the "Semiclassical Approach" we can write
(approximately) the inverse of the potential in the form:

(valid for high T )

The Hamiltonian of every particle is H=T+V .

Sackur–Tetrode equation

The Sackur–Tetrode equation is an expression for the entropy of a monatomic classical
ideal gas which incorporates quantum considerations .The Sackur–Tetrode equation is
named for Hugo Martin Tetrode (1895–1931) and Otto Sackur (1880–1914), who
developed it independently as a solution of Boltzmann's gas statistics and entropy
equations.
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The Sackur–Tetrode equation is written:

whereV is the volume of the gas, N is the number of particles in the gas, U is the internal
energy of the gas, k is Boltzmann's constant, m is the mass of a gas particle, h is Planck's
constant.

The Sackur–Tetrode equation can also be expressed in terms of the thermal wavelength
Λ. Using the classical ideal gas relationship U = (3/2)NkT for a monatomic gas gives

The assumption was made that the gas is in the classical regime, and is described by
Maxwell–Boltzmann statistics.From the thermal wavelength, the Sackur–Tetrode
equation is only valid for

the entropy predicted by the Sackur–Tetrode equation approaches negative infinity as the
temperature approaches zero.

Sackur–Tetrode constant

The Sackur–Tetrode constant, written S0/R, is equal to S/kN evaluated at a temperature

of T = 1 kelvin, at standard pressure (100 kPa or 101.325 kPa, to be specified), for one

mole of an ideal gas composed of particles of mass equal to one atomic mass unit.

Useful Information and Some Simple Models

whereqetc is the partition function.

For a gas of N molecules,
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q's in the last two equations are multiplied together and not added.

The thermodynamic functions as a sum of contributions from the different types of
motion, translation, rotation, and etc. That is

For example the rotational contribution to internal energy or entropy or any other
function can be obtained from

There is no N! inthis equation.

N!, to use Stirling's approximation, which can be written

Or

This approximation is useful when N is very large, like around Avogadro's number.

Using Stirling's approximation makes the translational part of the partition function,

Translational Motion In One Dimension

The translational part of the motion of a molecule by particle-in-a-box states. The energy
of a particle in a one-dimensional of length, l, box depends on one quantum number, n,
which can be 1, 2, 3, . . . up to infinity. The equation for the quantized energy is,



Prepared by Dr. S. Manickasundaram,                Department of Chemistry, KAHE Page 11

whereh is Planck's constant and m is the mass of one molecule.

The partition function for this system is,

The summation cannot be performed in closed form but it can be approximated by an
integral to high accuracy,

This integral can be evaluated and gives

Translational Motion In Three Dimensions

Translational motion in three dimensions there are three quantum numbers, one for each
direction, nx, ny, and nz, and the energy is

The translational partition function in three dimensions is a three−fold summation
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This equationcan be written as

Since  already approximated the summation in Equation by an integral immediately write

where let l3 = V

The rotational energy of a linear molecule (neglecting such things as centrifugal
distortion) is given by BJ(J+1) and each J level is 2J+1 degenerate. The rotational
partition function is easy to write,

If βB<< 1 (this is the high temperature limit) the summation can be approximated by an

integral to give

For a heteronuclear diatomic molecule (or an unsymmetrical one, like HCN) have to

rotate the molecule all the way around 360o to bring it back to the same "state." For a

homonuclear diatomic molecule (or a symmetrical one, such as CO2) it comes back to the

same "state" after only 180o rotation. So an asymmetric molecule, in going around 360o

has only passed through one "state," while a symmetric molecule has passed through two

"states" in a 360o rotation.
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whereσ is called the symmetry number. σ is the number of ways the molecule can be

oriented which are indistinguishable from each other. For HCl, σ = 1; and for Cl2, σ = 2

(as long as both Cl atoms are the same isotope).

The "characteristic rotational temperature," ΘR, as

so that the rotational partition function can be written,

ΘR also allows high and low temperatures. If T>> ΘR say that T is a high temperature .If

T ≈ ΘR or T< ΘR, then say T is a low temperature and we must use the summation

formula (divided by the appropriate σ ). For reasonable size molecules ΘR is usually only

a few degrees Kelvin. For light molecules it can be higher (for H2, ΘR = 87.57 K).

Nonlinear molecules have three moments of inertia and three rotational constants (and,

hence, three ΘR's). The three rotational constants A, B, and C, the rotational partition

function (at high temperatures) is

σ is the symmetry number and it is the number of orientations of the molecule which are

indistinguishable from each other (for benzene σ =12, for ammonia σ =3, etc).

Vibrational motion

Vibrational energies for one mode of vibration are

where v = 0, 1, 2, 3, . . . , and νis the characteristic frequency of the oscillator. The

vibrational partition function is
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which can be summed in closed form to give

)

Sometimes a characteristic vibrational temperature, Θv, is defined by

and the partition function is written in terms of Θv instead of hν/k. Characteristic

vibrational temperatures are usually several thousands of Kelvins except for very "soft"

or low frequency vibrational modes.

Polyatomic molecules have more than one vibrational mode. For polyatomic molecules

each mode (all multiplied together, not added!).

The high temperature limit of qvib (ignoring the zero−point energy contribution) is T/Θv.

This is sometimes called the "classical" limit because it is the result that is obtained from

statistical thermodynamics from classical mechanics instead of quantum mechanics.

Electronic Energy

Electronic excited state energies are usually (but not always) much higher than kT, so

they don't contribute to thermodynamic properties except at extremely high temperatures.

When they contribute have to write out the partition function term−by−term

Here gi is the degeneracy of the i'th level, and selected the ground electronic state as the

zero (or origin) of energy.



Prepared by Dr. S. Manickasundaram,                Department of Chemistry, KAHE Page 15

If shift each level by the same constant amount, the levels Ej + c, looks like a new

partition function

But this factors to give

When we take lnQ' see that it differs from lnQ only by an additive term −βc. This term

will contribute a constant additive term to A, U, H, and G, but it will not contribute to the

entropy or the heat capacities, nor will it contribute to quantities like ΔA, etc.

and they continue in the same manner with U, G, and etc. There is always an arbitrary

zero of energy

Equilibrium Constants

The equilibrium constants (in terms of concentration in molecules/m3) from partition

functions. The expression for this concentration equilibrium constant, in terms of the

material, for a hypothetical reaction,

aA + bB → cC + dD,

is,

The volume dividing each of the molecular partition functions cancel the volume

occurring in the translational part of the partition function, so that there is no explicit

volume dependence in K. This equilibrium constant will be in units of molecules/m3 to
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some power (the −c − d + a + b power, actually). It can be converted to mol/L or pressure

by standard methods. Recall that N/V = p/kT.

Spin isomers of hydrogen

Spin Isomers of Molecular Hydrogen

Molecular hydrogen occurs in two isomeric forms, one with its two proton spins aligned

parallel (orthohydrogen), the other with its two proton spins aligned antiparallel

(parahydrogen). At room temperature and thermal equilibrium, hydrogen consists of 25%

parahydrogen and 75% orthohydrogen.

Nuclear spin states of H2

Each hydrogenmolecule (H2) consists of two hydrogen atoms linked by a covalent bond.

If we neglect the small proportion of deuterium and tritium which may be present, each

hydrogen atom consists of one proton and one electron. The proton has an associated

magnetic moment, which is associated with the proton's spin. In the H2 molecule, the

spins of the two hydrogen nuclei (protons) couple to form a triplet state (I = 1, α1α2, (α1β2

+ β1α2)/(21/2), or β1β2 for which MI = 1, 0, −1 respectively — this is orthohydrogen) or

to form a singlet state (I = 0, (α1β2 – β1α2)/(21/2) MI = 0 — this is parahydrogen). The

ratio between the ortho and para forms is about 3:1 at standard temperature and pressure -

a reflection of the spin degeneracy ratio, but if thermal equilibrium between the two

forms is established, the para form dominates at low temperatures (approx. 99.8% at 20

K. Other molecules and functional groups containing two hydrogen atoms, such as water

and methylene, also have ortho and para forms (e.g. orthowater and parawater), although

their ratios differ from that of the dihydrogen molecule.

Thermal properties
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The permutationalantisymmetry of the H2wavefunction (protons are fermions) imposes

restrictions on the possible rotational states the two forms of H2 can adopt.

Orthohydrogen, with symmetric nuclear spin func

tions, can only have rotational wavefunctions that are antisymmetric with respect to

permutation of the two protons. Conversely, parahydrogen with an antisymmetric nuclear

spin function, can only have rotational wavefunctions that are symmetric with respect to

permutation of the two protons. Applying the rigid rotor approximation, the energies and

degeneracies of the rotational states are given by

.

The rotational partition function is conventionally written as

.

However, as long as these two spin isomers are not in equilibrium, it is more useful to

write separate partition functions for each,

.

The factor of 3 in the partition function for orthohydrogen accounts for the spin

degeneracy associated with the +1 spin state. When equilibrium between the spin isomers

is possible, then a general partition function incorporating this degeneracy difference can

be written as

The molar rotational energies and heat capacities are derived for any of these cases from

The antisymmetry-imposed restriction on possible rotational states, orthohydrogen has

residual rotational energy at low temperature wherein nearly all the molecules are in the J

= 1 state (molecules in the symmetric spin-triplet state cannot fall into the lowest,

symmetric rotational state) and possesses nuclear-spin entropy due to the triplet state's
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threefold degeneracy. The residual energy is significant because the rotational energy

levels are relatively widely spaced in H2; the gap between the first two levels when

expressed in temperature units is twice the rotational temperature for H2,

.

This is the T = 0 intercept seen in the molar energy of orthohydrogen. This residual

energy, 1091 J/mol, is somewhat larger than the enthalpy of vaporization of normal

hydrogen, 904 J/mol at the boiling point, Tb = 20.369 K (this refers to the "normal",

room-temperature, 3:1 ortho:para mixture. The boiling points of parahydrogen and

normal (3:1) hydrogen are nearly equal; for parahydrogen ∆Hvap = 898 J/mol at Tb =

20.277 K. It follows that nearly all the residual rotational energy of orthohydrogen is

retained in the liquid state. Orthohydrogen is consequently unstable at low temperatures

and spontaneously converts into parahydrogen, but the process is slow in the absence of a

magnetic catalyst to facilitate interconversion of the singlet and triplet spin states. At

room temperature, hydrogen contains 75% orthohydrogen, a proportion which the

liquefaction process preserves if carried out in the absence of a catalyst like ferric oxide,

activated carbon, platinized asbestos, rare earth metals, uranium compounds, chromic

oxide, or some nickel compounds to accelerate the conversion of the liquid hydrogen into

parahydrogen, or supply additional refrigeration equipment to absorb the heat that the

orthohydrogen fraction will release as it spontaneously converts into parahydrogen.

Thermodynamic properties of Polyatomic Gas

The evaluation of thermodynamic properties for a gaseous assembly composed of

polyatomic

molecules depends on whether the associated molecular structure is linear or nonlinear.

For linear molecules, the relevant atoms are arranged along a single Cartesian

coordinate; examples are CO2, N2O, and C2H2. Purely geometrical considerations restrict

linearpolyatomics to two rotational degrees of freedom (as for diatomics), while

nonlinear

polyatomics exhibit three such degrees of freedom. Hence, for a polyatomic

moleculecomposed of nindividual atoms, the number of vibrational modes must be 3n −

5 for thelinear case and 3n − 6 for the nonlinear case.
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Degrees of freedom for a polyatomic molecule with n atoms

Each vibrational mode of a polyatomic molecule designates an internuclear distance or

angle whose oscillation reflects a local electronic potential. Hence, stable molecular

configurations for complex molecules must correspond to minima on a multidimensional

potential surface.This perspective, however, is much too difficult to handle from a

quantum mechanical viewpoint; therefore, as for the diatomic case, we seek a simpler

model reflecting available spectroscopic data. The rigid-rotor/harmonic oscillator model,

thus fostering complete separation of energy modes. A fully complex model, including

any rovibrational coupling, must obviously be employed for more rigorous calculations.

Assuming complete mode separation, the molecular partition function for a polyatomic

molecule

.

The translational contribution, similar to that for a diatomic molecule, is given by

where the total mass, m, is simply the sum of all atomic masses composing the molecule.

Therefore, we conclude that the contribution of the translational mode to thermodynamic

properties is essentially the same for a polyatomic molecule as for the monatomic gas.

For nearly all polyatomics, the energy ascribed to the first excited electronic level is

sufficiently high that only the ground electronic state is necessary for most property

calculations. The electronic partition function becomes
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The resulting contribution to thermodynamic properties isnonzero only for the entropy

and free energies. The required electronic degeneracy canbe obtained, as usual, from the

term symbol associated with the ground electronic state.

For linear polyatomics, the term symbol and degeneracy follow the diatomic molecules.

However, for nonlinear polyatomics, the degeneracy is always

as obtained from the associated term symbol

.

Here, A indicates a symmetric while B implies a non-symmetric molecular wave function.

Similarly, the index i = 1, 2 designates whether this wave function is symmetric or

asymmetric,

respectively, with respect to the chemical structure of the polyatomic molecule.
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Questions Opt-1 Opt-2 Opt-3 Opt-4 Answers

1

The  partition  function  is
given  by  the  equation
_________ q = ∑g i. e-εί /kT q =∑ g i eεί /kT q =∑ eεί /kT q =∑ e-εί /kT q = ∑g i. e-εί /kT

2

Canonical  Ensemble
defined  as  a  collection  of
a  large  number  of
independent  assemblies
having   _____

same  temperature ,
volume  and
number  of
identical  systems

different
temperature ,
volume  and
number  of
identical systems

different  volume
and  same identical
systems

different
temperature

same  temperature
, volume  and
number  of
identical  systems

3

Grand  .Canonical  Ensemble
defined  as  a  collection  of
a  large  number  of
independent  assemblies
having   ______

same  temperature ,
volume  and
number  of
identical  systems

Same
temperature ,
volume  and
chemical
potential

different
temperature ,
volume  and
number  of
identical  systems

different
temperature
only

Same temperature
, volume  and
chemical  potential

4
The  total  partition
function  equation  is
_________

q =qtr.qrot. qvib..qele q =qtr.qele q =qtr.qvib q = qrot. qvib q =qtr.qrot. qvib..qele

5
The  units  of  molecular
partition  function   are
________

cm-1 s-1 JK-1mol-1 dimensionless dimensionless

6

If   Q    is  the  molar
(canonical)  partition
function  ,then  the  work
function  A, is  given  by

A=kT  ln Q A= -kT ln Q A=lnQ/kT A=kT/lnQ A= -kT ln Q
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7

In  terms  of  the  molecular
partition  function q, the
internal  energy  of  a
molecule  is  given  by

U=nRT2(dlnq/dv)T U=nRT(dlnq/dv)T U=nRT2(dlnq/dT)v U=nRT(dlnq/dv)
T U=nRT2(dlnq/dT)v

8 Which    of  the  following  is
true q=qtrxqrot +qvib xqele q=qtrxqrotxqvibxqele

q=(qtr+qrot)(qvib+qele

)
q=(qtrxqrot)/(qvib/
qele)

q=qtrxqrotxqvibxqele

9

The  zero-point  energy  of
an  S.H.O.  whose
vibrational  frequency  is  ν,
is  given  by  ___________

hν hν/3 hν/2 hν/4 hν/2

10 Which  of  the  following  is
true : qtr > qvib >qele> qrot qtr < qrot <qvib< qele

qtr >>qrot >>qvib>>
qele

qeie> qvib >qrot>
qtr

qtr >>qrot >>qvib>>
qele

11

The  canonical  partition
function  of  a  system  of
independent
indistinguishable  particles
is  given  by

Q =qN / N! Q = N! / qN Q =qN N! Q =∞ Q =qN / N!

12

The  equation  for
translational  partition
function  is
______________

qtr = (2π m kT /
h2)3/2.V qtr = (2I kT / h2) qtr = (2π m kT /

h2)5/2.V
qtr = (2π m kT /
h2)7/2.V

qtr = (2π m kT /
h2)3/2.V

13
Rotational  partition
function  equation  is
__________

qrot = (2π m kT /
h2)3/2.V qrot = 2I kT / h2 qrot = 2 kT / h2 qrot = 2I k / h2. qrot = 2I kT / h2

14

The  expression  for
homonuclear diatomic
molecule in   Rotational
partition  function  is  given
by  ________

qrot = 2I kT / σ h2 qrot = 2I kT / h2 qrot = 2 kT / h2 qrot = 2I k / h2. qrot = 2I kT / σ h2
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15

The  expression  for
heteronuclear diatomic
molecule in   Rotational
partition  function  is  given
by  ________

qrot = 2I kT / σ h2 qrot = 2 kT / h2 qrot = 2I kT / h2 qrot = 2I k / h2 qrot = 2I kT / h2

16
The  vibrational  partition
function   equation  is  given
by  ___________

qvib =1/1-e-hυ/kT qvib =1/1+e-hυ/kT qvib =1/1 + e hυ/kT qvib =  1/-1+e-

hυ/kT qvib =1/1-e-hυ/kT

17

If  spins  are  parallel in
rotational  partition
function  to  ortho
hydrogen  then  it  has
__________

even  quantum
number

odd quantum
number

odd and even
quantum  number fractional values even  quantum

number

18

If  spins  are  antiparallel in
rotational  partition
function  to  para  hydrogen
then  it  has __________

even  quantum
number

odd quantum
number

odd and even
quantum  number fractional values odd quantum

number

19

If  spins  are  parallel in
ortho  hydrogen it  has  even
quantum  number then  it  is
said  to  be  ___________

symmetric antisymmetric rotational energy vibrational
energy symmetric

20

If  spins  are  antiparallel  in
para  hydrogen it  has  odd
quantum  number then  it  is
said  to  be  ___________

symmetric antisymmetric rotational energy vibrational
energy antisymmetric

21 The  translational  motion
for  Cp,tr is  _________ 3/2R 5/2RT 3/2RT 5/2R 5/2R

22 The  rotational  contribution
to  Erot is  _________ RT R 3/2RT 5/2R RT



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II M.Sc CHEMISTRY COURSE NAME: PHYSICAL CHEMISTRY-III

COURSE CODE: 17CHP302 UNIT: IV (PARTITION FUNCTIONS) BATCH-2017-2019

23 The  translational  motion
for  Cv,tr is  _________ 3/2R 5/2RT 3/2RT 5/2R 3/2R

24 The  rotational  contribution
for  Hrot is  _________ RT R 5/2R 3/2RT RT

25 The  rotational  motion  for
Cp, rot is  _________ RT R 3/2RT 5/2R R

26 The  translational  motion
for  Htr is  _________ 5/2RT 3/2R 5/2R R 5/2RT

27 The  rotational  contribution
for  Cvrot is  _________ RT 3/2RT 5/2R R R

28
The  vibrational
contribution  to  Evib is
_________

R.θv.1/e θv/T-1 R (θv/T )2. e θv/T
/ (e θv/T-1 )2 RT ln (1-e- θv/T ) RT ln (1+ e- θv/T ) R.θv.1/e θv/T-1

29
The  vibrational
contribution  to  Cvib is
_________

R.θv.1/e θv/T-1 R (θv/T )2. e θv/T
/ (e θv/T-1 )2 RT ln (1-e- θv/T ) RT ln (1+ e- θv/T ) R (θv/T )2. e θv/T /

(e θv/T-1 )2

30
The  vibrational
contribution  to  Avib is
_________

R.θv.1/e θv/T-1 R (θv/T )2. e θv/T
/ (e θv/T-1 )2 RT ln (1-e- θv/T ) RT ln (1+ e- θv/T ) RT ln (1-e- θv/T )

31 5/2R  translational  equation
is  _________ Cp,tr Htr Cvtr Etr Cvtr
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32 3/2R  translational  equation
is  _________ Htr Cp,tr Cvtr Etr Cvtr

33 RT rotational  contribution
is  _________ Hrot Cv,rot Grot Cp,rot Hrot

34 3/2RT   translational
equation  is  _________ Etr Cvtr Gtr Cp,tr Etr

35 5/2RT   translational
equation  is  _________ Cvtr Gtr Htr Cp,tr Htr

36

__________  is   defined  as
a collection  of  a  large
number  of  independent
assemblies   having same
temperature , volume  and
number  of  identical
systems .

canonical  ensemble Grand  canonical
ensemble

macro canonical
ensemble

micro canonical
ensemble

canonical
ensemble

37

__________ is  defined  as  a
collection  of  a  large
number  of  independent
assemblies   having  same
temperature , volume  and
chemical  potential.

canonical  ensemble Grand  canonical
ensemble

macro canonical
ensemble

micro canonical
ensemble

Grand  canonical
ensemble

38

If  spins  are  parallel  in
______________ to   ortho
hydrogen  then  it  has  even
quantum  number.

Rotational  partition
function

vibrational
partition
function

translational
partition  function

electronic
partition
function

Rotational
partition  function
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39
A  single  particle  is
referred  to  as  a
______________

system assembly ensemble canonical
ensemble system

40
Collection  of  particles  as  a
whole  is  referred to  as
_______

system assembly ensemble canonical
ensemble assembly

41 The  equation  q = ∑g i. e-εί

/kT   is __________ partition function Stirlings
approximation equipartition law

Maxwell
boltzmann
distribution law

partition function

42

The  equation  for
_________ partition
function  is  qtr = (2π m kT /
h2)3/2.V

translational rotational vibrational electronic translational

43
___________partition
function  equation  is   qrot =
2I kT / h2

translational rotational vibrational electronic rotational

44

The  expression  for
homonuclear diatomic
molecule in   ____________
partition  function  is  given
by  qrot = 2I kT / σ h2

translational rotational vibrational electronic rotational

45 The  _________motion  for
Cp,tr  is 5/2 R. translational rotational vibrational electronic translational

46
The
__________contribution  to
Erot is  RT

translational rotational vibrational electronic rotational

47 The  _____  motion  for  Cv,tr

3/2 R translational rotational vibrational electronic translational
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48 The  __________
contribution  for  Hrot is  RT. translational rotational vibrational electronic rotational

49 The  _________  motion  for
Cp, rot is  R. translational rotational vibrational electronic rotational

50 The  ________ contribution
for  Cvrot is  R. rotational translational vibrational electronic. rotational

51

If  spins  are ----------- in
rotational  partition
function  to  ortho
hydrogen  then  it  has  even
quantum  number

parallel antiparallel antisymmetric non symmetric parallel

52 The  translational  motion
for ------- is  5/2RT Htr Cv,tr Cp,tr Gtr Htr

53

The  expression  for
homonuclear -----------
molecule in rotational
partition  function  is  given
by  qrot = 2I kT / σ h2

monoatomic diatomic triatomic polyatomic diatomic

54 3/2RT ------------- equation
is  Etr.

translational rotational vibrationa Electronic translational

55

If  spins  are  antiparallel in -
----------- partition  function
to  para hydrogen  then  it
has  odd quantum  number

translational rotational vibrationa Electronic rotational
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56 The  rotational contribution
to ---------- is  RT Hrot E,rot Cp,rot Grot E,rot

57 The translational motion  for
------------ is 5/2 R Htr Cv,tr Cp,tr Gtr Cp,tr

58 The  rotational  contribution
for ------------ is  R Hrot E,rot Cp,rot Cvrot Cvrot

59 The ------------- ensemble
describes an isolated system Microcanonical Canonical Grand Canonical microstate Microcanonical

60
The ------------ ensemble
describes a system in
contact with a heat bath

Microcanonical Canonical Grand Canonical microstate Canonical
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UNIT – V

SYLLABUS

Einstein’s and Debye’s theories of heat capacities of solids. Bose-Einstein and Fermi-
Dirac Statistics: Bose Einstein distribution law- Entropy of Bose Einstein gas. Planck
distribution law of black body radiation. Fermi-Dirac distribution law. Entropy of a
Fermi-Dirac gas. Heat capacities of the electron gas and the heat capacities of metals.
Negative absolute temperature.

Einstein’s theory and Debye’s theories of heat capacities of solids.

Einstein Theory for the Crystalline Solid

Einstein (1907) made the very reasonable assumption that a crystalline lattice can be

modeled as an assembly of 3N identical, noninteracting harmonic oscillators. In addition,

because of the tightly-bound structure of crystalline solids, he presumed that all 3N

vibrational modes would oscillate at the same fundamental frequency. The molecular

partition function for a single harmonic oscillator can be written as

(1)

where is the so-called Einstein temperature, which is simply a characteristic

vibrational temperature for the crystalline solid. In essence, θEis an adjustable parameter

that can be used to best match predicted and experimental thermodynamic data for a

given metal.

Because the partition function for distinguishable particles is the same as that for

indistinguishable particles in the dilute limit, for 3N oscillators having the same

characteristic temperature,

(2)
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(3)

(4)

(5)

Similarly, for the entropy, the Equation

(6)

so that from Eqs. (1), (4), and (6) we have, for 3N harmonic oscillators,

(7)

Normal mode structure within a crystallinesolid at higher and lower frequencies.

For comparative purposes, analyzing the limiting behavior forspecific heat at high and

low temperatures, as predicted by the Einstein theory. At the hightemperature limit we

have, upon invoking series expansions for the exponential terms inEq. (5),
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so that the expected result has obtained  from equipartition theory. Onthe other hand, at

the low-temperature limit, we obtain

which obviously disagrees with the observed T3-dependence near absolute zero. This

failure

of Einstein theory arises because of a collective coupling among the lattice sites at lower

temperatures, now explore by turning to the more successful Debye theory.

Debye Theory for the Crystalline Solid

The energy of an oscillator is proportional to its frequency, an improved statistical

model for the crystalline solid at lower temperatures mandates a better understanding of

vibrational energy modes at lower frequencies. As for the single atom of a polyatomic

gas, the normal frequencies in a crystal describe the concerted harmonic motion of all

metallic ions within the lattice structure. At lower frequencies, the resulting wavelengths

are long compared to the atomic spacing within the lattice; thus, these frequencies must

be determined by analyzing the crystal as a continuous elastic medium. In other words, at

lower temperatures, the behavior of a crystalline solid displays features more

appropriately

described by classical rather than quantum mechanics. At higher frequencies, on the other

hand, the wavelength must eventually be limited by the internuclear spacing within the

lattice structure, as indicated in Fig. 13.2. The upshot is that neighboring ions tend to

move

collectively in phase at lower frequencies while ionic pairs gravitate toward out-of-phase

motion at higher frequencies.

Based on this distinction between low- and high-frequency behavior, Debye (1912)

postulated a continuous distribution of oscillator frequencies, but with a maximum

frequency
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identified with a characteristic internuclear spacing, thus defining the so-called

Debye frequency. From this postulate, we may write

(1)

wheredNis the number of normal vibrators in the frequency range ν to ν + dν, g(ν) is a

frequency distribution function, and νDis the Debye frequency. Here, we note that g(ν)

is not the usual probability density function, as integration of Eq. (1) over all possible

frequencies gives the total number of oscillators for a crystalline solid, so that

(2)

At this point, the required distribution function could be obtained by determining

the number of standing acoustic waves produced by thermally excited vibrations within

a specified elastic medium. To determine the number of standing electromagnetic waves

in a blackbody cavity,

From this type of analysis, we find that

(3)

whereV represents the volume of the elastic medium and vsis the average speed of sound

in the metallic crystal. Substituting Eq. (2) into Eq. (1), we obtain

(4)

so that the Debye frequency can be related to fundamental crystalline parameters via

(5)

If we now assume that the properties of a crystalline solid can be determined by

superimposing

the contributions from each normal mode,
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(6)

(7)

where, in each case, we have integrated over all possible frequencies after weighing

the relevant property per vibrator with its frequency distribution function.

The vibrational partition function for any frequency written as

(8)

so that, substituting Eq. (8) into Eqs. (6) and (5), we obtain

(9)

(10)

Our remaining development will be aided considerably by introducing

whereθDis called the Debye temperature. Given these definitions, Eqs. (9) and (10)

become, after substitution from Eq. (4),

(11)

(12)

Defining the Debye function,

(13)
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and integrating Eq. (13) by parts, we obtain finally the specific internal energy and heat

capacity as

(14)

(15)

To expedite the evaluation of Eqs. (14) and (15), the Debye function has been

numerically integrated and the results tabulated in AppendixM. Note that both the

internal

energy and specific heat are functions solely of xD= θD/T. In general, the Debye

temperature, θD, is obtained by fitting Eq. (15) to experimental data, although good

results can also be had by using Eq. (5) along with the measured speed of sound within

a crystalline solid. More significantly, if we explore once again the low-temperature limit

for specific heat, we now find

lim

(16)

thus supporting the observed T3-dependence for T <0.05θD.

From Eq. (16) we conclude that the specific heat of a crystalline solid becomes

negligible as the temperature approaches absolute zero.

Bose–Einstein statistics

In statistical mechanics, Bose–Einsteinstatistics (or more colloquially B–E statistics)

determines the statistical distribution of identical indistinguishablebosons over the energy

states in thermal equilibrium.

Fermi-Dirac and Bose–Einstein statistics apply when quantum effects are important and

the particles are "indistinguishable". Quantum effects appear if the concentration of

particles (N/V) ≥ nq. Here nq is the quantum concentration, for which the interparticle

distance is equal to the thermal de Broglie wavelength, so that the wavefunctions of the
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particles are touching but not overlapping. Fermi–Dirac statistics apply to fermions

(particles that obey the Pauli exclusion principle), and Bose–Einstein statistics apply to

bosons. As the quantum concentration depends on temperature; most systems at high

temperatures obey the classical (Maxwell–Boltzmann) limit unless they have a very high

density, as for a white dwarf. Both Fermi–Dirac and Bose–Einstein become Maxwell–

Boltzmann statistics at high temperature or at low concentration.

Bosons, unlike fermions, are not subject to the Pauli exclusion principle: an unlimited

number of particles may occupy the same state at the same time. This explains why, at

low temperatures, bosons can behave very differently from fermions; all the particles will

tend to congregate together at the same lowest-energy state, forming what is known as a

Bose–Einstein condensate.

B–E statistics was introduced for photons in 1924 by Bose and generalized to atoms by

Einstein in 1924-25.

Bose–Einstein Statistics

For each case, deriving an expression for the number of microstates per macrostate,

which represents the total number of ways an arbitrary particle distribution can arise

when accounting for all possible energy levels. Let us first consider one energy level. The

number of ways in which Njbosons in a single energy level, ε j , may be distributed

among gjenergy states is equivalent to the number of ways in which Njidentical,

indistinguishable objects may be arranged in gjdifferent containers, with no limitation on

the number of objects per container.

Because each energy level represents an independent event, the total number of ways of

obtaining an arbitrary particle distribution becomes

(1)

In other words,WBEidentifies the generic number of microstates per macrostate for Bose–

Einstein statistics.
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Taking the natural logarithm of Eq. (1), we obtain

where we have neglected the unity terms since gj_ 1. Applying Stirling’s approximation,

i.e., lnN! = NlnN − N ,we find that

or

(2)

Fermi–Dirac Statistics

The expression for the number of microstates per macrostate, but this time for fermions.

The number of ways in which Njfermions in a single energy level, ε j , may be distributed

among gjenergy states is equivalent to the number of ways in which Njidentical,

indistinguishable objects may be arranged in gjdifferent containers, with no more than

one object per container.

where the Nj! term in the denominator accounts for particle indistinguishability. The total

number of ways of obtaining an arbitrary particle distribution then becomes

(3)

so that WFD denotes the generic number of microstates per macrostate for Fermi–Dirac

statistics.

Taking the natural logarithm of Eq. (3), we obtain

Applying Stirling’sapproximation ,we find that

or
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(4)

The Most Probable Particle Distribution

Equations (2) and (4) combined into one expression for both Bose– Einstein and Fermi–

Dirac statistics:

(1)

where the upper sign (+) refers to Bose–Einstein statistics and the lower sign (−) refers to

Fermi–Dirac statistics. For simplicity of nomenclature, from here on omit the combined

BE-FD subscript; our convention will be that the upper sign always applies to Bose–

Einstein statistics and the lower sign always applies to Fermi–Dirac statistics.

The most probable particle distributions for Bose–Einstein and Fermi–Dirac statistics

can now be determined by maximizing Eq. (1) subject to the two constraints

(2)

(3)

Equations (2) and (3) reflect the constant (E, V, N) conditions for an isolated system,

as required by the M–B method of statistical thermodynamics. Employing the Lagrange

method of undetermined multipliers first expand Eq. (1) and then

differentiate the result with respect to Njto find the most probable distribution of Nj

among its allowed energy levels. The step-by-step outcome is

(4)

wheregjand ε j are taken as constants during the differentiation. From quantum

mechanics,
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it turns out that the degeneracy, gj, is simply an integer and the level energy, ε j , is a

function

only of the total volume, V, which is, constant for an isolated system.

Equations (2) and (3) are now differentiated to account for the imposed constraints

during the optimization process. The results are

(5)

Introducing multiplied unknowns into Eqs. (5), we then subtract both expressions from

Eq. (4) to guarantee independent values of Nj.We thus obtain

(6)

where the unknowns α and β are the so-called Lagrange multipliers, and the entire

expression

is set equal to zero to identify the most probable macrostate.

Eq. (6) can be achieved for all j only if

Hence, the most probable distribution among energy levels becomes

(7)

Equation (7) thus defines from a molecular viewpoint the specific condition ensuring

thermodynamic equilibrium for a macroscopic system of independent particles.

Fermi–Dirac , Bose–Einstein statistics and Maxwell–Boltzmann statistics :

Fermi–Dirac and Bose–Einstein statistics apply when quantum effects are important and

the particles are "indistinguishable". Quantum effects appear if the concentration of

particles (N/V) ≥ nq. Here nq is the quantum concentration, for which the interparticle

distance is equal to the thermal de Broglie wavelength, so the wavefunctions of the

particles are touching but not overlapping. Fermi–Dirac statistics apply to fermions

(particles that obey the Pauli exclusion principle), and Bose–Einstein statistics apply to
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bosons. As the quantum concentration depends on temperature; most systems at high

temperatures obey the classical (Maxwell–Boltzmann) limit unless they have a very high

density, as for a white dwarf. Both Fermi–Dirac and Bose–Einstein become Maxwell–

Boltzmann statistics at high temperature or at low concentration.

Maxwell–Boltzmann statistics are often described as the statistics of "distinguishable"

classical particles. In other words the configuration of particle A in state 1 and particle B

in state 2 is different from the case where particle B is in state 1 and particle A is in state

2. This assumption leads to the proper (Boltzmann) distribution of particles in the energy

states, but yields non-physical results for the entropy. This problem disappears when it is

realized that all particles are indistinguishable. Both of these distributions approach the

Maxwell–Boltzmann distribution in the limit of high temperature and low density,

without the need for any assumptions. Maxwell–Boltzmann statistics are particularly

useful for studying gases. Fermi–Dirac statistics are most often used for the study of

electrons in solids. As such, they form the basis of semiconductor device theory and

electronics.

Plank distribution law of black body radiation:

A black body is an idealized physical body that absorbs all electromagnetic radiation

falling on it. Because of its perfect absorptivity at all wavelengths, a black body is also

the best possible emitter of thermal radiation, which it radiates incandescently in a

characteristic, continuous spectrum that depends on the body's temperature. At Earth-

ambient, low temperatures this emission is in the infrared region of the electromagnetic

spectrum and not visible, and therefore the object appears black, since it does not reflect

or emit any visible light.
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Black body spectrum (spectral energy density inside a blackbody cavity).

The thermal radiation from a black body is energy converted electrodynamically from the

body's of internal thermal energy at any temperature greater than absolute zero. It is

called blackbody radiation and has a distribution with a frequency maximum that shifts to

higher energies with increasing temperature. As the temperature increases past a few

hundred degrees Celsius, black bodies start to emit visible wavelengths, appearing red,

orange, yellow, white, and blue with increasing temperature. By the time an object is

visually white, it is emitting a substantial fraction as ultraviolet light.

Blackbody emission provides insight into the thermodynamic equilibrium state of the

source of a continuous field. According to the equipartition theorem in classical physics,

each Fourier mode or degree of freedom should have the same energy when in

equilibrium. This approach led to the paradox known as the ultraviolet catastrophe, that

there would be an infinite amount of energy in any continuous field.

Explanation

All matter emits electromagnetic radiation when it has a temperature above absolute zero.

The radiation represents a conversion of a body's thermal energy into electromagnetic

energy, and is therefore called thermal radiation. It is a spontaneous process of radiative

distribution of entropy.
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Conversely all matter absorbs electromagnetic radiation to some degree. An object that

absorbs all radiation falling on it, at all wavelengths, is called a black body. When a black

body is at a uniform temperature, its emission has a characteristic frequency distribution

that depends on the temperature. Its emission is called blackbody radiation.

The concept of the black body is an idealization, as perfect black bodies do not exist in

nature. Graphite is a good approximation, however. Experimentally, blackbody radiation

may be established best as the steady state equilibrium radiation in a rigid-walled cavity.

A closed box of graphite walls at a constant temperature with a small hole on one side

produces a good approximation to ideal blackbody radiation emanating from the opening.

Blackbody radiation becomes a visible glow of light if the temperature of the object is

high enough. The Draper point is the temperature at which all solids glow a dim red,

about 798 K. At 1000 K, the opening in the oven looks red; at 6000 K, it looks white. No

matter how the oven is constructed, or of what material, as long as it is built such that

almost all light entering is absorbed, it will be a good approximation to a blackbody, so

the spectrum, and therefore color, of the light that comes out will be a function of the

cavity temperature temperature alone. A graph of the amount of energy inside the oven

per unit volume and per unit frequency interval plotted versus frequency, is called the

blackbody curve. Different curves are obtained by varying the temperature.

Blackbody radiation is approximated by the radiation from a small hole in a large cavity,

a hohlraum, that has reached and is maintained at a constant temperature. (This leads to

the cavity radiation.) Any light entering the hole would have to reflect off the walls of the

cavity multiple times before it escaped, in which process it is nearly certain to be

absorbed. Absorption occurs regardless of the wavelength of the radiation entering (as

long as it is small compared to the hole). The hole, then, is a close approximation of a

theoretical black body and, if the cavity is heated, the spectrum of the hole's radiation

(i.e., the amount of light emitted from the hole at each wavelength) will be continuous,

and will not depend on the material in the cavity (compare with emission spectrum).
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Calculating the blackbody curve was a major challenge in theoretical physics during the

late nineteenth century. The problem was solved in 1901 by Max Planck in the formalism

now, but its intensity rapidly tends to zero at high frequencies (short wavelengths). For

example, a black body at room temperature (300 K) with one square meter of surface area

will emit a photon in the visible range (390-750 nm) at an average rate of one photon

every 41 seconds, meaning that for most practical purposes, such a black body does not

emit in the visible range.

Planck's law states that

where

I(ν,T) dν is the amount of energy per unit surface area per unit time per unit solid

angle emitted in the frequency range between ν and ν + dν by a black body at

temperature T;

h is the Planck constant

c is the speed of light in a vacuum

k is the Boltzmann constant

ν is frequency of electromagnetic radiation and

T is the temperature in kelvins.

Planck's law describes the spectral radiance of unpolarizedelectromagnetic radiation at all

wavelengths emitted from a black body at absolute temperatureT. As a function of

frequencyν, Planck's law is written as

This function represents the emitted power per unit area of emitting surface in the normal

direction, per unit solid angle, per unit frequency. It is a specific radiative intensity. A
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black body is an ideal surface that absorbs completely, with no reflection or transmission,

electromagnetic radiation of any wavelength falling on it. Though perfectly black

materials do not exist, such a surface can be accurately approximated by a small opening

on a closed cavity, since radiation entering the hole has almost no possibility to escape

the cavity without being absorbed by multiple impacts with its walls.

Black bodies are Lambertian objects, which means that the radiance is proportional to the

cosine of the viewing angle. Therefore, the spectral radiance of a black body surface

viewed from an arbitrary angle θis .

Sometimes, Planck's law is written as for the specific radiative

intensity in a cavity in thermodynamic equilibrium; such radiation is isotropic, and

homogeneous. Also sometimes, Planck's law is writtenas for

spectral energy per unit volume of such cavity radiation. Also sometimes, Planck's Law is

written as an expression for power spectral density emitted.

The function peaks for . Its integral falls off exponentially in

at higher frequencies and polynomially at lower, namely as .

As a function of wavelength λ, Planck's law is written (for unit solid angle) as:

This function peaks for hc = 4.97λkT, a factor of 1.76 shorter in wavelength (higher in

frequency) than the frequency peak. As for it falls off exponentially for shorter

wavelengths and polynomially for longer, with the peculiar difference that the

polynomial is . Its peak is the more commonly used one in Wien's displacement law.

The radiance emitted over a frequency range [ν1,ν2] or a wavelength range

can be obtained by integrating the respective functions.
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The order of the integration limits is reversed because increasing frequencies correspond

to decreasing wavelengths. The strange difference noted earlier between the polynomials

and at long wavelengths disappears in the integral, which falls off cubically in both

frequency and wavelength.

The wavelength is related to the frequency by:

The law is sometimes written in terms of the spectral energy density

which has units of energy per unit volume per unit frequency (joule per cubic meter per

hertz). Integrated over frequency, this expression yields the total energy density. The

radiation field of a black body may be thought of as a photon gas, in which case this

energy density would be one of the thermodynamic parameters of that gas.

The spectral energy density can also be expressed as a function of wavelength:

as shown in the derivation below.

Max Planck originally produced this law in 1900 (published in 1901) in an attempt to

improve upon the Wien approximation, which fit the experimental data at short

wavelengths (high frequencies) but deviated from it at long wavelengths (low

frequencies). Planck found that the above function, Planck's function, fitted the data for

all wavelengths remarkably well. In constructing a derivation of this law, he considered
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the possible ways of distributing electromagnetic energy over the different modes of

charged oscillators in matter. Planck's law emerged when he assumed that the energy of

these oscillators was limited to a set of discrete, integer multiples of a fundamental unit of

energy, E, proportional to the oscillation frequency ν:

Planck believed that the quantization applied only to the tiny oscillators that were thought

to exist in the walls of the cavity (what we now know to be atoms), and made no

assumption that light itself propagates in discrete bundles or packets of energy.

Moreover, Planck did not attribute any physical significance to this assumption, but

rather believed that it was merely a mathematical device that enabled him to derive a

single expression for the black body spectrum that matched the empirical data at all

wavelengths. Planck's formula predicts that a black body will radiate energy at all

frequencies, but its intensity rapidly tends to zero at high frequencies (short wavelengths).

Derivation

The Planck's lawdistribution derivation :

Consider a cube of side L with conducting walls filled with electromagnetic radiation.

Let the cube contain a small particle of black material such as black carbon, so that the

radiation will be transduced to black radiation in thermodynamic equilibrium. Planck

noted that such a transducer between frequency components is needed because without it

the free electromagnetic field in the cavity with perfectly conducting walls cannot

exchange energy between frequency components and cannot achieve stable

thermodynamic equilibrium. If there is a small hole in one of the walls, the radiation

emitted from the hole will be characteristic of a perfect black body. We will first

calculate the spectral energy density within the cavity and then determine the spectral

radiance of the emitted radiation.

At the walls of the cube, the parallel component of the electric field and the orthogonal

component of the magnetic field must vanish. Analogous to the wave function of a
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particle in a box, one finds that the fields are superpositions of periodic functions. The

three wavelengths λ1,λ2 and λ3, in the three directions orthogonal to the walls can be:

where the ni are integers. For each set of integers ni there are two linear independent

solutions (modes). According to quantum theory, the energy levels of a mode are given

by:

The quantum number r can be interpreted as the number of photons in the mode. The two

modes for each set of ni correspond to the two polarization states of the photon which has

a spin of 1. Note that for r = 0 the energy of the mode is not zero. This vacuum energy

of the electromagnetic field is responsible for the Casimir effect. In the following we will

calculate the internal energy of the box at temperature T relative to the vacuum energy.

According to statistical mechanics, the probability distribution over the energy levels of a

particular mode is given by:

Here

The denominator Z(β), is the partition function of a single mode and makes Pr properly

normalized:
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Here we have implicitly defined

which is the energy of a single photon. As explained here, the average energy in a mode

can be expressed in terms of the partition function:

This formula is a special case of the general formula for particles obeying Bose-Einstein

statistics. Since there is no restriction on the total number of photons, the chemical

potential is zero.

The total energy in the box now follows by summing over all allowed single photon

states. This can be done exactly in the thermodynamic limit as L approaches infinity. In

this limit, becomes continuous and we can then integrate over this parameter. To

calculate the energy in the box in this way, we need to evaluate how many photon states

there are in a given energy range. If we write the total number of single photon states

with energies between and as , where is the density of states

which we'll evaluate in a moment, then we can write:

To calculate the density of states we rewrite equation (1) as follows:
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wheren is the norm of the vector :

For every vector n with integer components larger than or equal to zero there are two

photon states. This means that the number of photon states in a certain region of n-space

is twice the volume of that region. An energy range of corresponds to shell of

thickness in n-space. Because the components of have to be

positive, this shell spans an octant of a sphere. The number of photon states in an

energy range is thus given by:

Inserting this in Eq. (2) gives:

From this equation derives the spectral energy density as a function of frequency u(ν,T)

and as a function of wavelength u(λ,T):

where:

u(ν,T) is known as the black body spectrum. It is a spectral energy density function with

units of energy per unit frequency per unit volume.
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And:

where

This is also a spectral energy density function with units of energy per unit wavelength

per unit volume. Integrals of this type for Bose and Fermi gases can be expressed in

terms of polylogarithms. In this case, however, it is possible to calculate the integral in

closed form using only elementary functions. Substituting

The integration variable dimensionless giving:

whereJ is given by:

The total electromagnetic energy inside the box is thus given by:

whereV = L3 is the volume of the box.
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This is not the Stefan-Boltzmann law (which is the total energy radiated by a black body

– see that article for an explanation); but it can be written more compactly using the

Stefan-Boltzmann constant σ, giving

The constant 4σ/c is sometimes called the radiation constant.

Since the radiation is the same in all directions, and propagates at the speed of light (c),

the spectral radiance (energy/time/area/solid angle/frequency) of radiation exiting the

small hole is

which yields

It can be converted to an expression for I'(λ,T) in wavelength units by substituting ν by

c / λ and evaluating

Note that dimensional analysis shows that the unit of steradians, shown in the

denominator of left hand side of the equation above, is generated in and carried through

the derivation but does not appear in any of the dimensions for any element on the left-

hand-side of the equation.

Heat capacities of the electron gas and the heat capacities of metals:
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The electron gas is clearly significant as it provides the primary mechanism for the

electrical conductivity of metallic crystals. Moreover, the Debye theory for a crystalline

solid proves to be inadequate at temperatures below approximately 5 K because adds

materially to thermodynamic properties under such conditions. The electrons can be

treated as independent particles owing to a roughly constant potential throughout the

lattice structure. This relatively constant potential arises from rather long-range forces

both among the electrons themselves and also between the electrons and the metallic ions

located at the various lattice sites.

Continuing the previous development for a crystalline solid, to determine the

thermodynamic properties of its electron gas, particularly the internal energy and specific

heat. The only significant energy mode in this case is translation within the conduction

band. Consequently, identifying the number of energy states associated with an electron

of mass me for translational energies between ε and ε + dε,

(1)

we have multiplied the usual density of translational states by a factor of

two to account for the intrinsic spin of each electron. Because the Pauli exclusion

principle

permits only one electron per state, Eq. (1) also represents the number of electrons

with translational energies between ε and ε + dεat absolute zero. Therefore,

the electronic distribution function at any temperature must be

(2)

so that the total number of electrons becomes

(3)

Substituting Eq. (1) into Eq. (3), and that 0 < ε <εF,we obtain

(4)

at absolute zero. Performing the indicated integration, find from Eq. (4)
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(5)

so that the Fermi energy has now been shown to depend on the number density of free

electrons, which is, affected by the number of valence electrons provided by

each atom in the metallic crystal. In general, for the internal energy,

(6)

so that, at absolute zero, Eq. (6) becomes

(7)

In other words, as expected, the internal energy cannot be zero, even at absolute

zero, owing to the Pauli exclusion principle. Similarly, for the pressure,

(8)

so that, at absolute zero,

(9)

Remarkably, Eq. (9) shows that fermions produce positive pressure, even at absolute

zero.

To define the Fermi temperature,

(10)

which is typically 105 K, and thus several orders of magnitude greater than normal metal

temperatures. Therefore, despite being evaluated at absolute zero, the internal energy and

pressure from Eqs. (7) and (9), respectively. Moreover, even at substantial temperatures,

T <<θFand thus thermodynamic properties for an electron gas should differ

insignificantly from those evaluated at absolute zero. On this basis, determine the

chemical potential at higher temperatures by manipulating Eq. (2) via a series expansion

for μ about μ0. Similarly, the internal energy can be determined by solving Eq. (6) via the

implementation of a Taylor expansion aboutU0.
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Fermi–Dirac integrals both below and above the Fermi energy, eventually show that

(Davidson, 1962)

(11)

(12)

Hence, the chemical potential decreases and the internal energy increases, but ever so

slightly compared to their respective values at absolute zero. The chemical potential

drops because the energy level at which half the quantum states become filled declines at

greater temperatures, as electrons move to higher energy states.

This movement to higher energy levels also causes, an increase in the internal energy of

the electron gas.

From Eqs. (7) and (12 ) we obtain

so that the specific heat contributed by the electron gas becomes

(13)

Eq. (13) implies that only electrons near the Fermi energy become sufficiently

agitated thermally to contribute to the specific heat. Moreover, given typical values

of the Fermi temperature, this contribution is not 1.5R, as for the ideal gas, but on the

order

of 10−2R. For electronic contributions of this magnitude are negligible, except as

compared to the the lattice structure at very low temperatures.

The electron gas to solid-state physics remains otherwise quite significant across the

entire temperature range, especially with respect to modeling the thermionic properties of

metals and also their electrical and thermal conductivities.

Negative  Absolute Temperature

The property of a thermodynamical system which satisfies certain conditions and whose

thermodynamically defined absolute temperature is negative. The essential requirements
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for a thermodynamical system to be capable of negative temperature are: (1) the elements

of the thermodynamical system must be in thermodynamical equilibrium among

themselves in order for the system to be described by a temperature at all; (2) there must

be an upper limit to the possible energy of the allowed states of the system; and (3) the

system must be thermally isolated from all systems which do not satisfy both

requirements (1) and (2); that is, the internal thermal equilibrium time among the

elements of the system must be short compared to the time during which appreciable

energy is lost to or gained from other systems.

The second condition must be satisfied if negative temperatures are to be achieved with a

finite energy. Most systems do not satisfy this condition; for example, there is no upper

limit to the possible kinetic energy of a gas molecule. Systems of interacting nuclear

spins, however, have the characteristic that under suitable circumstances they can satisfy

all three of the conditions, in which case the nuclear spin system can be at negative

absolute temperature.

The transition between positive and negative temperatures is through infinite

temperature, not absolute zero; negative absolute temperatures should therefore not be

thought of as colder than absolute zero, but as hotter than infinite temperature. An

effective quantity introduced for the description of nonequilibrium states of quantum

systems. A system is in a negative temperature state when high energy levels are more

populated than low energy levels. The probability for a system in an equilibrium state to

be on the level is determined by the equation.

Here, £i, are the energy levels of the system, k is the Boltzmann constant, and T is the

absolute temperature, which characterizes the mean energy of the equilibrium system U

= Σ Wn£n Equation (1) indicates that the low energy levels are more populated by

particles than the high energy levels. If external influences cause the system to enter a

nonequilibrium state characterized by a greater population of the higher levels than the

lower levels, it is formally possible to make use of equation (1) by setting T< 0. The
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concept of negtive temperature is applicable only to quantum systems that contain a finite

number of levels.

The absolute temperature T is defined in thermodynamics through its reciprocal l/T,

which is equal to the derivative of the entropy S with respect to the mean energy of the

system, the remaining parameters x being kept constant:

Equation (2) indicates that the negative temperature implies a decrease of entropy with

increasing mean energy. Negative temperature, however, is introduced for the description

of nonequilibrium states, to which the laws of equilibrium thermodynamics are applicable

only conditionally.

An example of a system with negative temperature is the system of nuclear spins in a

crystal located in a magnetic field when the spins interact very weakly with the thermal

lattice vibrations—that is, a system practically isolated from thermal motion. The time

required for the attainment of thermal equilibrium of the spins with the lattice is of the

order of several tens of minutes. During this time, the system of nuclear spins may be in a

state with negative temperature, a state it entered under external influences.

In a narrower sense, negative temperature is a characteristic of the degree of inversion of

the populations of two selected energy levels in a quantum system. In the case of

thermodynamic equilibrium, the relation between the populations N1 and N2 of the levels

£1 and £2 (£1< £2), that is, the mean numbers of particles in these states, is given by the

Boltzmann equation:

whereT is the absolute temperature of the substance. Equation (3) implies that N2<N1. Let

us suppose the equilibrium of the system is disturbed, for example, by irradiation of the
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system with monochromatic electromagnetic radiation, whose frequency is close to the

frequency of the transition between the levels ω21 = (£2— £1) and is different from the

frequencies of other transitions. It is then possible to attain a state in which the population

of the upper level is greater than that of the lower level: N2>N1. If the Boltzmann

equation is conditionally applied to such a nonequilibrium state, negative temperature can

be introduced with respect to the pair of energy levels £1 and £2 in accordance with the

equation.

System at negative absolute temperature

If more particles are at the upper level than at the lower one, absolute temperature of a

system is negative temperature of a system is negative.

As soon as the high energy level is populated more that the low energy one, we have

negative absolute temperature.

A state of matter to which negative absolute temperature can be attributed has more

energy than the states at usual temperatures, because more particles are at high energy

level than at low energy level. Thus one has to addenergy to get negative absolute

temperature. It has been emphasized that such states cannot be reached by adding heat to

a body.
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Questions Opt-1 Opt-2 Opt-3 Opt-4 Answers

1

According  to  Debye  theory,in  the
limit  T→0  Cv  of  a monoatomic
crystal  is  proportional
to_________

T T2 T3 T4 T3

2
According  to  Dulong-petits  law,
for a  monoatomic  crystal,  Cv/cal
K-1 mol-1 is  ________

5 4 6 5 6

3 Which   of  the  following  are
fermions : electron 2D 4He2

a gas  at  high
temperature. electron

4 Which   of  the  following  are
bosons : proton 4He2

19D9 electrons 4He2

5 Which  is  a  boltzon (maxwellon) electron proton 2D a gas  at  high
temperature

a gas  at  high
temperature

6 Which   of  the  following  are
fermions :

2D proton 4He2
a gas  at  high
temperature proton

7 Which of  the  following  are
bosons : proton 2D 19F9 electrons 2D

8
If  gi and  ni are  respectively,  the
degeneracy  and  occupation
number  of  the  ith  energy  level,

gi/ ni <<1 gi/ ni >>1
gi/ ni is indeter
minate gi/ ni < 0 gi/ ni >>1
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then  the  conditions  under  which
M-B, F-D,  and  B.E  statistics  give
identical  results  is  ______

9
The  partition  function  for  1
D.H.O.  equation  is  ___________ 1/1-e-hυ/kT (1/1-e-hυ/kT

)3 1/1-ehυ/kT (1/1-ehυ/kT)3 1/1-e-hυ/kT

10 The partition  function  for  3
D.H.O.  equation  is  ___________ 1/1-e-hυ/kT (1/1-e-hυ/kT

)3 1/1-ehυ/kT (1/1-ehυ/kT)3 (1/1-e-hυ/kT )3

11 The  Bose Einstein  statistics
equation  is ___________ Ni= gi  / eα .eβεί -1 Ni= gi  / eα

.eβεί +1 Ni= gi  / eβεί -1 Ni= gi  / e-α e-βεί Ni= gi  / eα .eβεί -1

12 The  Fermi Dirac statistics  equation
is ___________ Ni= gi  / eα .eβεί -1 Ni= gi  / eα

.eβεί +1 Ni= gi  / eβεί -1 Ni= gi  / e-α e-βεί Ni= gi  / eα .eβεί +1

13 F.D. statistics  wave  functions  is
_______ Symmetric antisymmet

ric both none antisymmetric

14 B.E. statistics  wave  functions  is
_______ Symmetric antisymmet

ric both none Symmetric

15 F.D. statistics    having  spins
_______ 1/2 ,3/2 ,5/2 0, 1,2,3 2,4,6 4/2 ,6/2 . 1/2 ,3/2 ,5/2

16 B.E. statistics    having  spins
_______ 1/2 ,3/2 ,5/2 0, 1,2,3 2,4,6 4/2 ,6/2 . 0, 1,2,3
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17
In  F.D.  statistics  only  _____
particle  can  occupy  each
quantum  state.

one two five three one

18
Einstein  assumed  that  all  the
particles  in  a crystal  vibrate  with
________  frequency.

different same high low same

19
Einstein  equation  gives  results
that  are  too _______  at  low
temperature.

low high very  high very  low. low

20 Debye,s   characteristic
temperature  is  given  as  θD = hνm/k - hνm/k 2hνm/k 5 hνm/k hνm/k

21 Debye,s  T-cubed  law  equation  is
Cv = _______

463.5 (T/ θD )3 cal
/deg

423.5 (T/ θD

)3 cal /deg
224.5 (T/ θD )3

cal /deg
425.5 (T/ θD )3 cal
/deg

463.5 (T/ θD )3 cal
/deg

22
Planck  distribution  law  for  the
black  body  radiation  equation is
_____

ρ(ν)dν = 8πhν/c3.
ν2/ ehυ/kT-1 .d ν

ρ(ν)dν =
8πhν/c3. ν2/
e-hυ/kT-1 .d
ν

ρ(ν)dν =
8πhν/c3. ν2/ e-

hυ/kT+1 .d ν

ρ(ν)dν = 8πhν/c3.
ν2/ -e-hυ/kT-1 .d ν

ρ(ν)dν = 8πhν/c3.
ν2/ ehυ/kT-1 .d ν

23 The  heat  capacity  of electrons  in
metal  equation  is  ___________ Cv,ele = 2R.k.T/ єF

Cv,ele =
2.k.T/ єF

Cv,ele = -2.k.T/
єF

Cv,ele = 2.k. / єF Cv,ele = 2R.k.T/ єF

24 Maxwell  Boltzmann  statistics
equation  is  _______ Ni= gi  / eα .eβεί -1 Ni= gi  / eα

.eβεί Ni= gi / eα eβεί +1 Ni= gi  / e-α e-βεί+1 Ni= gi  / eα .eβεί

25
Dulong  petits  law  only  a  limiting
law  applicable  at  __________
temperature.

high low very  high very  low. high
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26

System  possessing  wave  functions
are  photons,atoms or  molecules
with  even  number  of  nucleons  in
their  nuclei  is  ___________

Maxwell
Boltzmann
statistics

Fermi Dirac
statistics

Bose  Einstein
statistics Debye equation Bose  Einstein

statistics

27

System  possessing  wave  functions
are electrons, protons, atoms  or
molecules  with  odd  number  of
nucleons  in  their  nuclei  is
___________

Maxwell
Boltzmann
statistics

Fermi Dirac
statistics

Bose  Einstein
statistics Debye equation. Fermi Dirac

statistics

28 Entropy  of B.E.  gas  equation  is   S
= _______ Nkα +kβE+Nk Nkα -

kβE+Nk Nkα +kβE-Nk -Nkα –kβE+Nk Nkα +kβE+Nk

29 .B.E. statistics  equation  is
_____________ gi  / Ni +1= eα .eβεί gi  / Ni -1= eα

.eβεί gi  / Ni = eα .eβεί gi  / Ni = e-α .e-βεί gi  / Ni +1= eα .eβεί

30 F.D. statistics  equation  is
_____________ gi  / Ni = eα .eβεί gi  / Ni -1= eα

.eβεί gi  / Ni +1= eα .eβεί gi  / Ni = e-α .e-βεί gi  / Ni -1= eα .eβεί

31 M.B. statistics  equation  is
_____________ gi  / Ni -1= eα .eβεί gi  / Ni +1= eα

.eβεί gi  / Ni = eα .eβεί gi  / Ni = e-α .e-βεί gi  / Ni = eα .eβεί

32 Systems  having  spins  of
½,3/2,5/2  are  called  ___________ Bosons Fermions Maxwellons B.E. statistics Fermions

33 Systems  having  spins  of    0,1,2,3
are  called  ___________ Bosons Fermions Maxwellons F.D. statistics Bosons

34 Electron  is  an  example  for
_______________ Bosons Fermions Maxwellons B.E. statistics Fermions
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35
4He2 is  an  example  for
_______________ Fermions Maxwellons Bosons F.D. statistics Bosons

36 A gas  at  high  temperature  is  an
example  for _________ Fermions Maxwellons Bosons F.D. statistics Maxwellons

37 Proton  is  an  example  for
________ Fermions Maxwellons Bosons B.E. statistics Fermions

38 2D  is  an  example  for  ________ Bosons Fermions Maxwellons F.D. statistics Bosons

39 Ni = gi / eα .eβεί -1    equation  is
called  ________ B.E.  statistics F.D.

statistics M.B. statistics Maxwellons B.E.  statistics

40 Ni = gi / eα .eβεί +1    equation  is
called  ________ B.E. statistics F.D.

statistics M.B. statistics Maxwellons. F.D. statistics

41

According  to  Debye  theory,in  the
limit  T→0  ________  of  a
monoatomic  crystal  is
proportional  to T3.

Cv Cp S E Cv

42
The equation   1/1-e-hυ/kT is the
partition  function  for
___________

1  D.H.O. 3 D.H.O. 2  D.H.O translational
function 1  D.H.O.

43
In   ________   statistics  only  one
particle  can  occupy  each
quantum  state.

Fermi Dirac Bose
Einstein Debye’s Bohr Fermi Dirac
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44
____________assumed that all the
particles in  a  crystal  vibrate  with
same  frequency

Debye’s Fermi Dirac Einstein Bohr Einstein

45 The equation    Cv = 463.5 (T/ θD )3

cal /deg    is _______
Debye,s  T-cubed
law

Bose
Einstein Fermi Dirac Maxwell

Boltzmann
Debye,s  T-cubed
law

46
__________  law  is  only  a  limiting
law  applicable  at  high
temperature.

Dulong  petits Einstein Debye,s  T-
cubed  law

Maxwell
Boltzmann Dulong  petits

47 Entropy  of ________  gas
equation  is   S = Nkα +kβE+Nk    . Fermi Dirac Bose

Einstein Debye’s Bohr Bose Einstein

48
Systems  having  spins  of
____________  are  called
Fermions

½,3/2,5/2 0,1,2,3 0 , ½,3/2 2,4,6 ½,3/2,5/2

49 Systems  having  spins  of
__________ are  called  Bosons ½,3/2,5/2 0,1,2,3 0 , ½,3/2 2,4,6 0,1,2,3

50 A gas  at  _______  temperature  is
an  example  forMaxwellons. high low very low moderate high

51 ------------- of Bose Einstein gas
equation  is  S = Nkα +kβE+Nk Entropy Enthalpy Internal energy Crystal Entropy

52
In   Fermi Dirac statistics  only ------
--- particle  can  occupy  each
quantum  state

one two three many one
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53 The example for ----------- is  proton Bosons Fermions Maxwellons F.D. statistics Fermions

54

The electrons obey ---------- and
hence paulis exclusion principle
only 2 electrons wich occupy each
state

Bosons Fermions Maxwellons F.D. statistics F.D. statistics

55
----------- is used to describe the
contribution from lattice
vibrations photons

M.B. statistics F.D.
statistics Maxwellons B.E. statistics B.E. statistics

56
------------ statistics must be used to
describe the electron contribution
to the specific heat

M.B. statistics F.D.
statistics Maxwellons B.E. statistics F.D. statistics

57

----------- law describes the
electromagnetic radiation emitted
by a black body in thermal
equilibrium at a
definite temperature

Planck Fermi Dirac Einstein Bohr Planck

58
--------- statistics are often
described as the statistics of
"distinguishable" classical particles

Bosons Fermions Maxwell–
Boltzmann Fermi Dirac Maxwell–

Boltzmann

59

The Maxwell–Boltzmann
distribution follows from the --------
--- distribution for temperatures
well above absolute zero

Planck Fermi Dirac Bose-Einstein Bohr Bose-Einstein

60

---------- statistics describes a
distribution of particles over energy
states in systems consisting of
many identical particles that obey
the Pauli exclusion principle

Planck Fermi Dirac Bose-Einstein Bohr Fermi Dirac
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INTERNAL TEST - I
PHYSICAL CHEMISTRY-III (Thermodynamics)

Time: 2 Hours                                                                                               Maximum: 50 marks

PART- A                                                                                                          (20 x 1 = 20 Marks)
Answer All the Questions

1.  For  an   ideal  gas , the  fugacity  is  equal  to  pressure  and  ______

     a) f/p =1  b) f/p=0  c) f/p varies  d) f/p> 1

2.  ∆E =q-w  is  the mathematical  relation  for  the __________

a)  first  law  of  thermodynamics   b) second   law of thermodynamics                                     

c)  third  law of thermodynamics    d) zeroth’s law   

3.  ∆H  is +ve  for  ___________

     a) endothermic process  b) exothermic process  c) exoergic process  d) endoergic process 

4.  For an endothermic reaction_____________

    a) ∆H  is –ve  b) ∆H  is +ve   c) ∆E is –ve  d) ∆H  is zero

5. The enthalpy of a system is defined by the relation __________

    a) H=E+PV   b) H=E-PV  c) E=H+PV  d) PV+E-H

6. The   amount  of  heat  required  to  raise  the  temperature  of  one  mole  of  the  substance     

by  1  K  is  called  

    a) heat capacity       b) molar heat  capacity            c) molar  capacity         d) molar heat

7. A _________  is  one  which  cannot  transfer  matter  but  transfer  heat, work  and radiations  

to  and  from  its  surroundings.

    a) an  isolated  system    b) an  open  system  c) a  homogeneous  system  d) a  closed  system  

8. Every  substance  has  a  finite  entropy  which  may  become  zero  at  absolute  zero  of 

temperature  is  __________  of  thermodynamics.

    a) second  law  b) third  law  c) first  law   d) zeroth  law.



9. The  residual  entropy  of  hydrogen  is  due  to  the  existence  of  __________  form  of  

hydrogen  in different  quantum  state.

       a) ortho  b) para  c) meta  d) combination.

10. At low pressure, Fugacity becomes

      a) equal to pressure  b) greater than pressure  c) less than pressure    d) not equal to pressure

11. The activity of the real gas 

      a) α = P      b) α   ≥ P      c) α   ≤  P       d) α   < P     

12. In the limit  T→0 , S= 0 which represents  ______

a) first  law  of  thermodynamics   b) second   law of thermodynamics                                      

c) third  law of thermodynamics    d) zeroth’s law

13. Gibbs-Duhem equation is 

      a) n1 dµ1 + n2 dµ2 = 0  b) n1µ1 + n2µ2 = 0    c) dn1 µ1 + dn2 µ2 = 0    d) n1 µ1 + n2 µ2 = 1

14. The  residual  entropy  of  ________ is  6.23    JK-1 mol-1   .

       a) hydrogen   b) oxygen   c) nitrogen d) sulphur

15. The number  of  _________  degrees  of  freedom  in  linear  molecule  is  3N-5

       a) rotational   b) vibrational  c) translational d) electronic

16.  Planck  proposed  the  relationship  between  the  entropy  of  a  system  and  the 

thermodynamic  probability is  given by  the equation  _______

       a) S=klnw   b) -S=klnw   c) S= -klnw d) S=klnT

17. According  to  Debye  theory in  the  limit  T→0  Cv  of  a monoatomic  crystal  is     

proportional  to_________

a) T         b) T2             c) T3          d) T4

18. The Nernst heat theorem is _______

       a) ∆G = ∆H     b) ∆G ≥  ∆H     c) ∆G ≤  ∆H     d) ∆G ≠  ∆H     

19. The ideal gas equation for one mole of the substance

       a) PV = nRT    b) PV = RT  c) PV ≥  RT        d) PV ≥  nRT

20. The third law is used for

        a) absolute entropy of the substance          b) absolute enthalpy of the substance

        c) absolute free energy of the substance    d) absolute heat capacity of the substance  



Part B                                                                                                                      (3x2=6 Marks)
Answer All the Questions

21. What is Partial molar properties?

22. Write briefly about chemical potential.

23. Give the physical significance of fugacity.

Part C                                                                                                                 (3x8=24 Marks)
Answer All the Questions

24. a) Explainhow the fugacity  of  a gas may be determined  by a graphical method.

(Or)

b) How will you determine the activity of solvent from colligative properties?

25. a)  write notes on Nernst and third  law of thermodynamics.

(Or)

       b) What is chemical potential? Derive the Gibbs-Duhem equation.

26. a) Derive the equation for Maxwell distribution law for molecular velocities in an ideal          

gas. 

(Or)

      b)  What is meant by fugacity? Explain the variation of fugacity with temperature.  
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Answer All the Questions

1.a)f/p =1  

2.a)  first  law  of  thermodynamics   

3.a)endothermic process  

4. b) ∆H  is +ve

5.a)H=E+PV   

6.b) Molar heat capacity

7. d) a  closed  system   

8. b)third  law  

9. a)ortho  

10.c) less than pressure

11.a) α = P      

12.c)third  law of thermodynamics   

13.a) n1 dµ1 + n2 dµ2 = 0

14.a) hydrogen   

15. b)vibrational  

16.a)S=klnw

17.c) T3

18.a) ∆G = ∆H  

19.b) PV=RT  

20. a) absolute entropy of the substance



Part B (3x2=6 Marks)

Answer All the Questions

21. What is Partial molar properties?

                 A partial molar property is a thermodynamic quantity which indicates how an 

extensive property of a solution or mixture varies with changes in the molar composition of the 

mixture at constant temperature and pressure, or for constant values of the natural variables of 

the extensive property considered.

22. What is chemical potential?

              Gibbs definition, any chemical element or combination of elements in given proportions

may be considered a substance, whether capable or not of existing by itself as a homogeneous 

body. Chemical potential is also referred to as partial molar Gibbs energy. Chemical potential is 

measured in units of energy/particle or, equivalently, energy/mole.

23. What is the physical significance of fugacity?

            Fugacity is the effective pressure for a non-ideal gas. The pressures of an ideal gas and a 

real gas are equivalent when the chemical potential is the same. The equation that relates the 

non-ideal to the ideal gas pressure is:

                                                     Φ =f/ P

In this equation, f represents fugacity, P is the pressure for an ideal gas, and Φ is the fugacity

coefficient. For an ideal gas, the fugacity coefficient is 1.

PART-C(3x8=24Marks)
Answer All the Questions

21. a) Explain how the fugacity  of  a gas may be determined  by a graphical    

method.

The Gibbs free energy depends on pressure as well as on temperature. The pressure dependence

of the Gibbs free energy in a closed system is given by the combined first and second laws and

the definition of Gibbs free energy as,

    ⟶  1

http://en.wikipedia.org/wiki/Thermodynamics
http://en.wikipedia.org/wiki/Mole_(unit)
http://en.wikipedia.org/wiki/Chemical_element
http://en.wikipedia.org/wiki/Thermodynamic_potential
http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Mole_(unit)
http://en.wikipedia.org/wiki/Mixture
http://en.wikipedia.org/wiki/Solution
http://en.wikipedia.org/wiki/Intensive_and_extensive_properties


 If we hold temperature constant and vary only the pressure. Equation 1 for integration from

pressure p1 to p2 as follows:

     ⟶  2

Then

    

⟶
 3

or

.   
⟶

 4

Equation 4 is general and applies to all isotropic substance: solids, liquids, ideal gases, and real

gases. 

(Or)

a) How will you determine the activity of solvent from colligative properties?
Colligative properties are those properties which depend up on the number of particles 

and not the nature of solute.

These are properties of solutions in the dilute limit, where there is a solvent “A” and a solute “B”

where nA >> nB. These properties are a direct result of μmix A (  ,T,p) <μA
pure

(,T,p) Using

two measures of concentration:

a. Mole Fraction: xB = nB/(nA+nB) ~ nB/nA 

b. Molalility: mB = (moles solute)/(kg solvent) = nB/(nAMA) Where MA is the mass in kg of

one mole of solvent. 

There are four Colligative Properties: 

1. Lowering  of 
 
Vapor pressure 



2. Elevation  of Boiling point                                         

                                   

3.Depression  of Freezing point 

4.Osmotic pressure

Rational activity of solvent from lowering of Vapor pressure: This is Raoult’s Law. Consider a

solution  which is in equilibrium with its vapour

Then, μ() = μ(g)  _________>1

µ() =  µ◦() + RTlna _________>2

Substitute second equation in first equation

μ(g)  = µ◦() + RTlna  _________>3

Assuming ideal behavior for vapour

μ(g)  = µ◦( g) + RTlnP _________>4

Substitute  4th equation in 3rd equation

µ◦( g) + RTlnP = µ◦() + RTlna  _________>5

For pure liquid

µ◦() = µ◦( g) + RTlnP◦ _________>6

Subtracting 6th from 5th equation 

RTlna = RTln P/ P◦

 A = P/ P◦

              

Where a= activity, P=Partial pressure, P◦ = Vapour pressure of pure solvent

Rational activity of solvent from Elevation  of Boiling point      



                                   

μ() = μ(g)  → 1

µ() =  µ◦() + RTlna → 2

μ(g)  = µ◦() + RTlna  → 3

                                         __

lna = μ(g)- µ◦() ∕ RT = ∆Gvap ∕ RT → 4

d/dT lna = 
1
R

d
dT      (∆Gvap ∕ RT )         → 5          

            _

d/dT lna = - Hvap ∕ RT2

                _            T

∫dlna  =  - H◦vap ∕ RT∫ dT ∕ T2     → 6

                                T◦

lna   = Hvap∕ R [ 1/T- 1/ T◦ ]

T is the Boiling point of solution

T◦ Boiling point of pure solvent.

Rational activity of solvent from Depression  of Freezing point

µ() =  µ◦ (s) → 1

µ() =  µ◦ ()+ RTlna → 2

Substitute second equation in first equation

µ◦ (s) =  µ◦ ()+ RTlna

lna = µ◦ (s) - µ◦ ()   → 3

         ___________

                 RT

[  µ◦ () - µ◦ (s)]

 ___________      =   - ∆G◦fus ∕ RT → 4



     [ RT]

d lna /dT = -1      d    (∆G◦fus)    

                  _    __     __               =  ∆ Hfus∕ RT2     → 5

               R      dT     T

            _        T

∫dlna  =  - Hfus ∕ R∫ dT ∕ T2     → 6

                            T◦

lna   = - ∆Hfus∕ R [ 1/T- 1/ T◦ ]

Thus knowing the freezing point  ‘a’ can be calculated.

Osmotic Pressure

Osmosis is the diffusion of a fluid through a semipermeable membrane. When a semipermeable

membrane (animal bladders, skins of fruits and vegetables) separates a solution from a solvent,

then only solvent molecules are able to pass through the membrane. The osmotic pressure of a

solution is the pressure difference needed to stop the flow of solvent across a semipermeable

membrane. The osmotic pressure of a solution is proportional to the molar concentration of the

solute particles in solution.

Π=nRT ∕V=MMRT

Where   Π is the osmotic pressure,  R is the ideal gas constant (0.0821 L atm / mol K),T is the

temperature in  Kelvin,  n is  the number of  moles  of  solute  present,   V is  the  volume of  the

solution (n /V is then the molar concentration of the solute), and MM is the molar mass of the

solute.

22. a)  write notes on Nernst and third  law of thermodynamics.

Nernst heat theorem

The Nernst heat theorem was formulated by Walther Nernst and was used in the development of

the third law of thermodynamics.

The theorem

http://en.wikipedia.org/wiki/Third_law_of_thermodynamics
http://en.wikipedia.org/wiki/Walther_Nernst


The Nernst heat theorem says that as absolute zero is approached, the entropy change ΔS for a

chemical  or  physical  transformation  approaches  0.  This  can  be  expressed  mathematically as

follow

The above equation is a modern statement of the theorem. Nernst often used a form that avoided

the concept of entropy.

Graph of energies at low temperatures

The theorem is to start with the definition of the Gibbs free energy (G), G = H - TS, where H

stands for enthalpy. For a change from reactants to products at constant temperature and pressure

the equation becomes ΔG = ΔH − TΔS.

In the limit of T = 0 the equation reduces to just ΔG = ΔH, which is supported by experimental

data. From thermodynamics that the slope of the ΔG curve is -ΔS. Since the slope shown here

reaches the horizontal limit of 0 as T → 0 then the implication is that ΔS → 0, which is the

Nernst heat theorem.

The significance of the Nernst heat theorem is that it was later used by Max Planck to give the

third  law  of  thermodynamics,  which  is  that  the  entropy  of  all  pure,  perfectly  crystalline

homogeneous materials is 0 at absolute zero.

Third law of thermodynamics

http://en.wikipedia.org/wiki/Absolute_zero
http://en.wikipedia.org/wiki/Third_law_of_thermodynamics
http://en.wikipedia.org/wiki/Max_Planck
http://en.wikipedia.org/wiki/Gibbs-Helmholtz_equation


The  third  law  of  thermodynamics is  a  statistical  law  of  nature  regarding  entropy and  the

impossibility of reaching  absolute zero, the null  point of the  temperature scale.  As a system

approaches  absolute  zero,  all  processes  cease  and  the  entropy  of  the  system  approaches  a

minimum value.

This minimum value, the residual entropy, is not necessarily zero, although it is always zero for a

perfect crystal in which there is only one possible ground state.

The third law of thermodynamics states that the entropy of a system at absolute zero is a well-

defined constant. This is because a system at zero temperature exists in its ground state, so that

its  entropy  is  determined  only  by  the  degeneracy of  the  ground  state.  It  means  that  "it  is

impossible by any procedure, no matter how idealised, to reduce any system to the absolute zero

of temperature in a finite number of operations".

Need for third law :

1.It is impossible to reduce any system to absolute zero in a finite series of operations. 

2.The entropy of a perfect crystal of an element in its most stable form tends to zero as the

temperature approaches absolute zero. 

3.As temperature approaches absolute zero, the entropy of a system approaches a constant.

(Or)

       b)what is chemical potential? Derive the Gibbs-Duhem equation.

Gibbs definition, any chemical element or combination of elements in given proportions may be

considered a substance, whether capable or not of existing by itself as a homogeneous body.

Chemical  potential  is  also  referred  to  as  partial  molar  Gibbs  energy.  Chemical  potential  is

measured in units of energy/particle or, equivalently, energy/mole.

http://en.wikipedia.org/wiki/Mole_(unit)
http://en.wikipedia.org/wiki/Chemical_element
http://en.wikipedia.org/wiki/Degeneracy
http://en.wikipedia.org/wiki/Ground_state
http://en.wikipedia.org/wiki/Absolute_zero
http://en.wikipedia.org/wiki/Thermodynamic_entropy
http://en.wikipedia.org/wiki/Residual_entropy
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Absolute_zero
http://en.wikipedia.org/wiki/Entropy


Consider a thermodynamic system containing n constituent species. Its total internal energy U is

postulated to be a function of the entropy S, the volume V, and the number of particles of each

species N1, ..., Nn

By referring to U as the internal energy, it is emphasized that the energy contributions resulting

from the interactions between the system and external objects are excluded. For example, the

gravitational potential energy of the system with the Earth are not included in U.

The chemical potential of the i-th species, μi is defined as the partial derivative

where the subscripts simply emphasize that the entropy, volume, and the other particle numbers

are to be kept constant.

In real systems, it is usually difficult to hold the entropy fixed, since this involves good thermal

insulation. It is therefore more convenient to define the Helmholtz energy A, which is a function

of the temperature T, volume, and particle numbers:

In terms of the Helmholtz energy, the chemical potential is

The  conditions  at  constant  temperature and  pressure.  The  chemical  potential  is  the  partial

derivative of the Gibbs energy with respect to number of particles

The chemical potential can be written in terms of partial derivative of the enthalpy (conditions of

constant entropy and pressure).

http://en.wikipedia.org/wiki/Enthalpy
http://en.wikipedia.org/wiki/Gibbs_free_energy
http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Helmholtz_free_energy
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Helmholtz_free_energy
http://en.wikipedia.org/wiki/Thermal_insulation
http://en.wikipedia.org/wiki/Thermal_insulation
http://en.wikipedia.org/wiki/Partial_derivative
http://en.wikipedia.org/wiki/Postulate


Here,  the chemical  potential  has been defined as  the energy per  molecule.  A variant  of this

definition is to define the chemical potential as the energy per mole.

The chemical potential is known in a certain state (e.g. for standard conditions), then it can be 

calculated in linear approximation for pressures and temperatures in the vicinity of thisstate:

μ(T)=μ(T0)+α(T–T0)   and

μ(p)=μ(p0)+β(p–p0)

Here    is the temperature coefficient and

  is the pressure coefficient.

With the Maxwell relations

and

It follows that the temperature coefficient is equal to the negative molar entropy and the pressure

coefficient is equal to the molar volume.

23. a) Derive the equation for Maxwell distribution law for molecular velocities in an ideal  

gas. 

 In the context of the Kinetic Molecular Theory of Gases, a gas contains a large number of 

particles in rapid motions. Each particle has a different speed, and each collision between 

http://en.wikipedia.org/wiki/Maxwell_relations


particles changes the speeds of the particles. An understanding of the properties of the gas 

requires an understanding of the distribution of particle speeds.

Many molecules, many velocities

At temperatures above absolute zero, all molecules are in motion. In the case of a gas, this 

motion consists of straight-line jumps whose lengths are quite great compared to the 

dimensions of the molecule. Although we can never predict the velocity of a 

particular individual molecule, the fact that we are usually dealing with a huge number of 

them allows us to know what fraction of the molecules have kinetic energies (and hence 

velocities) that lie within any given range.

The trajectory of an individual gas molecule consists of a series of straight-line paths 

interrupted by collisions. What happens when two molecules collide depends on their 

relative kinetic energies; in general, a faster or heavier molecule will impart some of its 

kinetic energy to a slower or lighter one. Two molecules having identical masses and 

moving in opposite directions at the same speed will momentarily remain motionless after 

their collision.

If we could measure the instantaneous velocities of all the molecules in a sample of a gas 

at some fixed temperature, we would obtain a wide range of values. A few would be zero, 

and a few would be very high velocities, but the majority would fall into a more or less 

well defined range. We might be tempted to define an average velocity for a collection of 

molecules, but here we would need to be careful: molecules moving in opposite directions 

have velocities of opposite signs. Because the molecules are in a gas are in random thermal

motion, there will be just about as many molecules moving in one direction as in the 

opposite direction, so the velocity vectors of opposite signs would all cancel and the 

average velocity would come out to zero. Since this answer is not very useful, we need to 

do our averaging in a slightly different way.

The proper treatment is to average the squares of the velocities, and then take the square 

root of this value. The resulting quantity is known as the root mean square (RMS) velocity

vrms=∑ν2n−−−−−√(2.7.1)(2.7.1)vrms=∑ν2n

where nn is the number of molecules in the system. The formula relating the RMS velocity

to the temperature and molar mass is surprisingly simple (derived below), considering the 

great complexity of the events it represents:



vrms=3RTM−−−−−√(2.7.2)(2.7.2)vrms=3RTM

where

 MM is the molar mass in kg mol–1, and 

 RR is gas constant.

Equation 2.7.22.7.2 can also be expressed as

vrms=3kbTm−−−−−√(2.7.3)(2.7.3)vrms=3kbTm

where

 mm is the molecular mass in kg

 kbkb is Boltzmann constant and is just the “gas constant per molecule"

kb=RNa=R6.02×1023(2.7.4)(2.7.4)kb=RNa=R6.02×1023

Equation 2.7.32.7.3 is just the per atom version of Equation 2.7.22.7.2 which is expressed in 

terms of per mol. Either equation will work.

(Or)

b) What is meant by fugacity? Explain the variation of fugacity with temperature. 
            Fugacity is the effective pressure for a non-ideal gas. The pressures of an ideal gas

and a real gas are equivalent when the chemical potential is the same. The equation that 

relates the non-ideal to the ideal gas pressure is:
                                                     Φ =f/ P

In  this  equation, f represents  fugacity, P is  the  pressure  for  an  ideal  gas,  and Φ is  the

fugacity coefficient. For an ideal gas, the fugacity coefficient is 1.

 Variation of fugacity with temperature :

      For a given temperature  T, the fugacity f satisfies the following differential relation:

where G is the Gibbs free energy, R is the gas constant,  v is the fluid's molar volume, and f0 is a

reference fugacity which is generally taken as 1 bar. For an ideal gas, when f = P, this equation

reduces to the ideal gas law.

µi = µi  + RT ln  f i  → 1

http://en.wikipedia.org/wiki/Ideal_gas_law
http://en.wikipedia.org/wiki/Molar_volume
http://en.wikipedia.org/wiki/Gas_constant
http://en.wikipedia.org/wiki/Gibbs_free_energy
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Dividing the equation throughout by T 

µi  ∕ T = µi   ∕ T + R ln  f i  

R ln  f i  = µi  ∕ T -  µi   ∕ T → 2

We know that  

[∂(µi  ∕ T) ∕ ∂T)]P,N = -H i∕ T2   → 3

Differentiating equation 2 with respect to T at constant P and N

R.∂ (ln f i) ∕ ∂T = ∂(µi  ∕ T) ∕ ∂T - ∂(µi  ∕ T) ∕ ∂T

∂ (ln f i) ∕ ∂T= H i  - H i∕ RT2    .
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1. The  RMS  speed   <C2>1/2  value  is  ________

    a) 1.128                      b) 1                              c) 1.225                d) 1.228  

2. The  rotational  contribution  to  Cv   for  a  polyatomic  molecule  in  linear  molecule
is ________

    a) Cv (rot)=R            b) Cv (rot)=3/2 R          c) Cv (rot)=3R    d) Cv (rot)=5R   

3. The equation for monoatomic gas is ________

    a) Cv=3/2 R               b) Cv=R                        c) Cv=5/2 R          d) Cv=5R  

4.  Planck  proposed   the   relationship   between   the   entropy   of   a   system   and   the

thermodynamic  probability   is  given  by  the  equation  _______

    a) S=klnw                   b) -S=klnw                   c) S= -klnw           d) S=klnT

5.  The total partition function equation is   _________

    a) q = qtr.qrot.qvib..qele      b) q = qtr.qele                      c) q = qtr.qvib               d) q = qrot.qvib

6. The units of molecular partition functionare ________

    a) cm-1                            b) s-1                                      c) JK-1mol-1               d) dimensionless

7.  If Q  is  the  molar  (canonical)  partition   function, then  the  work  function  A, is  given by

    a) A=kTlnQ                  b) A= -kTln Q             c) A=lnQ/kT         d) A=kT/lnQ

8. Which of the following are fermions:

    a) 2D                             b) proton                     c) a gas at high temperature        d)   4He2

9. B.E. statistics wave functions is _______

    a) symmetric                b) antisymmetric        c) restricted                        d) only even values 



10.  The  value  of  1  belongs  to   _________

        a) average   speed                                        b) average  square  speed  

        c) most probable  speed                              d) root mean square speed

11.  If  spins  are  antiparallel in  rotational  partition  function  to  para  hydrogen  then  it  
has__________

        a) even  quantum  number                             b) odd quantum  number

        c) odd and even  quantum  number               d) fractional values

12.  If  spins  are  parallel in   ortho  hydrogen it  has  even  quantum  number then  it  is  said  to 

be  ___________

        a) symmetric        b) antisymmetric         c) rotational energy          d) vibrational energy 

13. The translational motion for  Htr is  _________

       a) 5/2RT          b) 3/2R              c) 5/2R               d) R         

14. The  number  of  vibrational  degrees  of  freedom  in  non- linear  molecule  is_______

        a) 3 N-5               b) 3 N-4                   c) 3 N-6                   d) 3 N-7   

15. √8RT /πM  equation of  Maxwell  distribution  law  is  _________

       a) most  probable  speed                           b) average square    speed    

      c) average speed                                       d)  root mean square speed

16. The equation  of ln N!  =N ln N –N   __________ represents?

       a) Stirlings approximation                     b) partition function  

       c) equipartition law                                   d) Maxwell  Boltzmann distribution law

17.  The equation  for   the  evaluation  of   β  in  M.B.distribution  law  is  ________        

        a) β = 1/kT                     b) β = -1/kT              c) β = kT                 d) β = 2/kT

18.   A single  particle  is  referred  to  as  a   ______________

        a) system             b) assembly                 c)  ensemble            d) canonical  ensemble

19.  In   ________   statistics  only  one  particle  can  occupy  each  quantum  state.

        a) Fermi Dirac            b) Bose Einstein            c) Debye’s                    d) Bohr

20.    ____________assumed  that  all  the  particles  in  a  crystal  vibrate  with   same  

frequency

      a) Debye’s                     b) Fermi Dirac                 c) Einstein                     d) Bohr



Part B                                                                                                                     (3x2 = 6 Marks)
Answer All the Questions

21. Write the assumption of Boltzmannons and Fermions.

22. What is a Canonical ensemble?

23. Comment on thermodynamic probability.

Part C                                                                                                                   (3x8 = 24 Marks)
Answer All the Questions

24. a) Evaluate  the average  speed , Root  mean  square  speed  and  Most  probable  speed.

(Or)

      b) Derive the equation for Maxwell-Boltzmann distribution law. 

25. a) Derive an equation for translational partition function.

(Or)

       b) Derive an expression for vibrational partition function.

26.  a) What is Bose-Einstein distribution law? Derive the equation for it.

(Or)

      b)  Explain the Einstein’s theories of heat capacities of solids.  
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1.c) 1.225

2.a)Cv (rot)=R

3.a) Cv=3/2 R

4.a)S=klnw

5.a)q =qtr.qrot.qvib..qele

6.d)dimensionless

7.b)A= -kTln Q

8.b) proton

9.a) Symmetric

10.c)most probable  speed

11.b)odd quantum  number

12. a)symmetric

13.a)5/2RT

14. c) 3 N-6

15.c)average speed

16.a)Stirlings approximation

17.a)β = 1/kT

18.  a)system

19.a)Fermi Dirac

20.  c)Einstein



Part B (3x2=6 Marks)
Answer All the Questions

21. Write the assumption of Boltzmannons and Fermions.

Fermi–Dirac statistics - Wikipedia apply to quantum particles with the property that only one

particle can occupy any particular level. It turns out these are the particles with half-integral

“spin” such as electrons and neutrons.

Both BE and FD statistics converge (from opposite directions) on MB statistics when the density

of particles is small compared to the Quantum concentration, where the inter-particle distance is

c In physics (in particular in statistical  mechanics), the Maxwell–Boltzmann distribution is a

particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann.

It was first defined and used for describing particle speeds in idealized gases, where the particles

move freely inside a stationary container without interacting with one another, except for very

brief collisions in which they exchange energy and momentum with each other or with their

thermal environment. The term "particle" in this context refers to gaseous particles only (atoms

or  molecules),  and  the  system  of  particles  is  assumed  to  have  reached  thermodynamic

equilibrium.[1]  The energies  of  such particles  follow what  is  known as  Maxwell-Boltzmann

statistics, comparable to the de Broglie wavelength.

22. What is a Canonical ensemble?

In  statistical  mechanics,  a  canonical  ensemble  is  the  statistical  ensemble  that  represents  the

possible  states  of  a  mechanical  system in  thermal  equilibrium with  a  heat  bath  at  a  fixed

temperature. The system can exchange energy with the heat bath, so that the states of the system

will differ in total energy.

23. Comment on thermodynamic probability.

 Thermodynamics a system is characterized by specific values of density, pressure, temperature, andothe

r measurable quantities. The enumerated values determine the state of the system as a whole(its macrost

ate). However, for the same density, temperature, and so on, the system’s particles canbe distributed in s

pace by different processes and can have different momenta. Each given particledistribution is called a mi

crostate of the system. The thermodynamic probability (denoted by W) isequal to the number of micro-

states which realize a given macrostate, from which it follows that W ^1. The thermodynamic probability is 



connected with one of the basic macroscopic characteristics ofthe system, the entropy S, by the Boltzman

n relation S = k ln W, where k is Boltzmann’s constant.

Part C(3x8=24Marks)
Answer All the Questions

24. a)Evaluate  average  speed , Root  mean  square  speed  and  Most  probable  speed.

Most probable speed:

Firstly, by finding the maximum of the MSD (by differentiating, setting the derivative equal to

zero and solving for the speed), determine the most probable speed. vmpequation is :

Root mean square speed:

Second, the root mean square of the speed by finding the expected value of v2. (Alternatively, by

using the equipartition theorem.) vrmsequation is:

Average speed:

Third and finally, the mean value of v from the MSD. equation is:

The equation in the order 

http://en.wikipedia.org/wiki/Root_mean_square
http://en.wikipedia.org/wiki/Equipartition_theorem
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Root_mean_square


These are three different ways of defining the average velocity, and they are not numerically the

same. 

Or

      b) Derive the equation for Maxwell distribution law for molecular velocities in an ideal 

gas. 

25. a) Derive an equation for translational partition function.

Here we applied quantum mechanics to the particle in a box. The expression for the translational

energy of a single gaseous atom, namely,

where the three spatial quantum numbers, n1, n2, and n3, can each take on any value

from  unity  to  infinity.  The  contribution  to  thermodynamicproperties  from  any  independent

energy mode can be ascertained by first determining itscontribution to the partition function. For

the translational mode, the partition functioncan be evaluated most directly by summing over

states rather than over levels. 

For the translational partition function,

(1)

For the characteristic translational temperature,

(2)

The summation of above Equation  is identical for the three translational quantum

numbers. Moreover, by summing over all possible values from unity to infinity, we are

indeed accounting for each quantum state, as identified by its unique set of translational

quantum numbers.

Recall that θt≈ 10−16 K; thus, for any realistic assembly temperature,the summation in the above

Eq. can be converted to an equivalent integration.  In other words, because of the incredibly

minute  separation  between  consecutivetranslational  levels,  we  may  assume  a  continuous



distribution  of  translational  energies,  asmight  be  expected  from  classical  mechanics.

Consequently, from Eq. (1)becomes

(3)

so that, substituting Eq. (2) into Eq. (3), we obtain

(4)

The  translational partition function,  as defined by Eq. (4),  can also be derived by either (1)

summing over energy levels using the density of states or (2) evaluating the phase integral. For

quantum  mechanics  is  actually  unnecessary  for  the  translational  energymode;  hence,  the

equipartition  principle  is  perfectly  suitable  for  calculating  translationalcontributions  to

thermodynamic properties.

(Or)

       b) Derive an expression for vibrational partition function.

26. a)What is Bose-Einstein distribution law? Derive the equation for it.

For  each case,  deriving  an  expression  for  the  number  of  microstates  per  macrostate,  which

represents the total number of ways an arbitrary particle distribution can arise when accounting

for all possible energy levels. Let us first consider one energy level. The number of ways in

which  Njbosons in  a  single  energy level,  ε  j  ,  may be  distributed  among  gjenergy states  is

equivalent  to  the  number  of  ways  in  which  Njidentical,  indistinguishable  objects  may  be

arranged in gjdifferent containers, with no limitation on the number of objects per container. 

Because each energy level represents an independent event, the total number of ways of

obtaining an arbitrary particle distribution becomes

(1)

In  other  words,WBEidentifies  the  generic  number  of  microstates  per  macrostate  for  Bose–

Einstein statistics.

Taking the natural logarithm of Eq. (1), we obtain



where we have neglected the unity terms since gj_ 1. Applying Stirling’s approximation,

i.e., lnN! = NlnN− N ,we find that

(Or)

      b)   Explain the Einstein’s theories of heat capacities of solids.  

Einstein Theory for the Crystalline Solid

Einstein (1907) made the very reasonable assumption that a crystalline lattice can be modeled as

an assembly of 3N  identical,  noninteracting harmonic oscillators.  In addition,  because of the

tightly-bound structure of crystalline solids, he presumed that all 3N vibrational modes would

oscillate  at  the  same  fundamental  frequency.  The  molecular  partition  function  for  a  single

harmonic oscillator can be written as

     (1)

where  is  the  so-called  Einstein  temperature,  which  is  simply  a  characteristic

vibrational temperature for the crystalline solid. In essence, θEis an adjustable parameter that can

be used to best match predicted and experimental thermodynamic data for a given metal.

Because the partition function for distinguishable particles is the same as that for

indistinguishable particles in the dilute limit, for 3N  oscillators having the same characteristic

temperature,

(2)

(3)

(4)



     (5)

Similarly, for the entropy, the Equation 

so that from Eqs. (1), (4), and (6) we have, for 3N harmonic oscillators,

(7)

Normal mode structure within a crystallinesolid at higher and lower frequencies.

For  comparative  purposes,  analyzing  the  limiting  behavior  forspecific  heat  at  high  and  low

temperatures, as predicted by the Einstein theory. At the hightemperature limit we have, upon

invoking series expansions for the exponential terms inEq. (5),

so that the expected result has obtained  from equipartition theory. Onthe other hand, at the low-

temperature limit, we obtain 

which obviously disagrees with the observed T3-dependence near absolute zero. This failure

of Einstein theory arises because of a collective coupling among the lattice sites at lower



temperatures, now explore by turning to the more successful Debye theory.


	1.pdf (p.1-2)
	2.pdf (p.3-9)
	3.pdf (p.10-34)
	4.pdf (p.35-42)
	5.pdf (p.43-59)
	6.pdf (p.60-67)
	7.pdf (p.68-110)
	8.pdf (p.111-118)
	9.pdf (p.119-138)
	10.pdf (p.139-146)
	11.pdf (p.147-174)
	12.pdf (p.175-182)
	13.pdf (p.183-185)
	PHYSICAL CHEMISTRY-III (Thermodynamics)
	a) f/p =1 b) f/p=0 c) f/p varies d) f/p> 1
	Part B (3x2=6 Marks)
	Part C (3x8=24 Marks)


	14.pdf (p.186-198)
	PHYSICAL CHEMISTRY-III (Thermodynamics)
	Part B (3x2=6 Marks)
	PART-C(3x8=24Marks)

	Nernst heat theorem
	The theorem

	Third law of thermodynamics
	The third law of thermodynamics states that the entropy of a system at absolute zero is a well-defined constant. This is because a system at zero temperature exists in its ground state, so that its entropy is determined only by the degeneracy of the ground state. It means that "it is impossible by any procedure, no matter how idealised, to reduce any system to the absolute zero of temperature in a finite number of operations".
	Variation of fugacity with temperature :



	15.pdf (p.199-201)
	PHYSICAL CHEMISTRY-III (Thermodynamics)
	Part B (3x2 = 6 Marks)
	Part C (3x8 = 24 Marks)


	16.pdf (p.202-209)
	PHYSICAL CHEMISTRY-III (Thermodynamics)
	Part B (3x2=6 Marks)
	Part C(3x8=24Marks)



