

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)
Coimbatore – 641 021.
(For the candidates admitted from 2017 onwards)

DEPARTMENT OF CHEMISTRY

SUBJECT NAME: TEXTILE CHEMISTRY SUBJECT CODE:17CHP305B

SEMESTER: III CLASS: II M.Sc CHEMISTRY

Scope

Textile chemistry frames much of our understanding of the natural world and continues to bring new technologies that are useful to every aspect of human life. Textile chemistry is an exciting and challenging course, which helps us to understand the various aspects of compounds used in our day to day life. Textile chemistry interfaces with a myriad of other disciplines and fields. It is fundamental to understand other areas of chemistry. Due to highly prized nature of Textile chemistry and its diverse topics, it lays the foundation for extremely productive and exciting career in variety of disciplines. The importance of this subject would not diminish over time, so it will remain a promising career path. This course presents the classification of fibres, Dyeing of fabrics and related process.

Objectives

- 1. To learn about the classification of fibers.
- 2. To learn about the dyeing process on fibers.
- 3. To learn the effluent treatment from a fiber industry.

Methodology

Blackboard teaching, Powerpoint presentation and group discussion.

UNIT-I

Fibers: General classification of fibers-chemical structure, production, properties and uses of the following natural fibers (a) natural cellulose fibers (cotton and jute) (b) natural protein fiber (wool and silk).

Chemical structure, production, properties and uses of the following synthetic fibers. (i) Manmade cellulosic fibers (Rayon, modified cellulose fibers) (ii) Polyamide fibers (different types of nylons) (iii) Poly ester fibers.

UNIT-II

Dyeing Process: Impurities in raw cotton and grey cloth, wool and silk- general principles of the removal – scouring – bleaching – desizing – kierboiling- chemicking.

Dyeing - Dyeing of wool and silk -fastness properties of dyed materials - dyeing of nylon, terylene and other synthetic fibres.

UNIT- III

Finishing: Finishes given to fabrics- mechanical finishes on cotton, wool and silk, method used in process of mercerizing –anti-crease and anti-shrink finishes –water proofing.

UNIT-IV

Types of Dyes: Quinonoid dyes-examples and structure-Anthroquinone and Mordant dyes-synthesis and applications of Alizarin-Phthalocyanin dyes-Copper Phthalocyanin-synthesis and applications.

Diphenylmethane dyes- Auramine-Triphenylmethane dyes-Malachite green, Crystal violet, Pararosaniline-preparation and applications.

Indigo dyes-preparation and application-derivatives of Indigo- synthesis and uses of Indigosol and tetrahaloindigo.

Phthalein dyes-Phenolphthalein- preparation and applications.

Xanthene dyes-Rhodamine B, Fluorescein-Eosin- preparation and applications.

UNIT-V

Pollution Control in Textile Industry: Textile effluent-characteristics, effect of untreated effluent, degradability of wastes. Effluent treatment plants-aerated lagoon, photo oxidation process.

SUGGESTED READINGS:

Text Books:

- 1. Chatwal, R. (2009). Synthetic Dyes. Mumbai: Himalayan Publishing House.
- 2. Sadov, F., & Horchagin, M. (1978). *Chemical Technology of Fibrous Materials- A*. Matetshy. U.S.A: Mir Publishers Easton's Books. Inc. Mount Vernon.
- 3. Joseph, M. L., Hudson, P. B., Clapp, A. C., & Kness, D. (1993). *Joseph's Introductory Textile Science* (VI Edition). Fort Worth: Harcourt Brace Jovanovich College Publishers.
- 4. Luniak, B. (1953). The Identification of Textile Fibres: The Identification of Textile Fibres: Qualitative and Quantitative Analysis of Fibre Blends. London: Pitman Publisher.
- 5. Mather, R. R., and Wardman, R. H., *The Chemistry of Textile Fibres*, 2nd Edition (2015) Published by The Royal Society of Chemistry, Thomas Graham House, UK.

Reference Books:

- 1. Sharma, B. K. (1997). Industrial *Chemistry*. New Delhi: Goel Publishing Co.
- 2. Prayag. R. S. (1989). *Dyeing of Wool, Silk and Manmade Fibres*. Dharwad: Noves Data Corporation.
- 3. Shenai. V. A. (1973). *Chemistry of Dyes and Principles of Dyeing*. Bombay: Sevak Publication.
- 4. Shenai. V. A. (1980). *Technology of Textile Processing*. Bombay: Sevak Publication.
- 5. Carr. C. M. (1995). *Chemistry of the Textiles Industry*. Blackie Academic & Professional Publication.
- 6. Marsh, J. T. (2001). *Textile Science*. B.I. Publications, Bombay.

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)
Coimbatore - 641 021.
(For the candidates admitted from 2017 onwards)

DEPARTMENT OF CHEMISTRY

SUBJECT NAME: TEXTILE CHEMISTRY SUBJECT CODE: 17CHP305B

SEMESTER: III CLASS: II M.Sc CHEMKISTRY

LECTURE PLAN DEPARTMENT OF CHEMISTRY

S.No	Lecture Hour	Topics to be Covered	Support Materials/Page Nos	
		UNIT I		
1.	1	General classification of fibers	T1: 2.1-2.2 R3: 1-2	
2.	1	Chemical structure, production, properties and uses of the following natural fibers (a) natural cellulose fibers (cotton)	T1: 2.2 R3: 7-9 T2: 26-32	
3.	1	Natural cellulose fibers (jute)	T2: 55-57	
4.	1	Natural protein fiber (wool)	T1: 2.2-2.3	
5.	1	Natural protein fiber (silk)	T1: 2.3	
6.	1	Chemical structure, production, properties and uses of Manmade cellulosic fibers (Rayon)	R1:1148-1149	
7.	1	modified cellulose fibers	T1: 2.3-2.4	
8.	1	Polyamide fibers (different types of nylons)	R1:1153-1159	
9.	1	Poly ester fibers	T1: 2.4	
10.	1	Recapitulation and Discussion of important questions		
	Total No	of Hours Planned For Unit I =10		
		UNIT II		
1.	1	Dyeing Process: Impurities in raw cotton and grey	R2: 61-62	

2.	1	Impurities in raw wool and silk	R2: 62-63
3.	1	General principles of the removal – scouring	R2: 71-72
4.	1	Bleaching – desizing	R2: 63-64
5.	1	Kierboiling- chemicking	R2: 63-66, R2: 29
6.	1	Dyeing - Dyeing of wool and silk	R1: 1558-1559
7.	1	Fastness properties of dyed materials	R2: 308-310
8.	1	Dyeing of nylon, terylene and other synthetic fibres	R2: 397-398
9.	1	Recapitulation and Discussion of important questions	
	Total No	of Hours Planned For Unit II =9	
		UNIT III	
1.	1	Finishing: Finishes given to fabrics	R4: 286-287
2.	1	Mechanical finishes on cotton	R4: 287-289
3.	1	Wool and silk	R4: 291-292
4.	1	Wool and silk	R4: 292-295
5.	1	Method used in process of mercerizing	R4: 302-305
6.	1	Anti-crease	R4: 344-346
7.	1	Anti-shrink finishes	R4: 341-344
8.	1	Water proofing	R4: 364-366
9.	1	Recapitulation and Discussion of important questions	
	Total No	of Hours Planned For Unit III =9	
		UNIT IV	
1.	1	Types of Dyes: Quinonoid dyes-examples and structure-Anthroquinone	T1: 17.1-17.8
2.	1	Mordant dyes-synthesis and applications of Alizarin-Phthalocyanin dyes	T1: 18.1
3.	1	Copper Phthalocyanin-synthesis and applications	T1: 18.2-18.3
4.	1	Diphenylmethane dyes- Auramine-Triphenylmethane dyes	T1: 11.1-11.3

5.	1	Malachite green, Crystal violet	T1: 12.2-12.3
٥.	1	Watacinte green, Crystar violet	T1: 12.2-12.3
	1	D 21 1 1 2	
6.	1	Pararosaniline-preparation and applications	T1: 12.7-12.8
7.	1	Indigo dyes-preparation and application-derivatives of	T1: 16.4-16.9
/.	-	Indigo- synthesis and uses of Indigosol and	11. 10.1 10.9
		tetrahaloindigo	
8.	1	Phthalein dyes-Phenolphthalein- preparation and	T1: 13.1-13.3
0.	1	11. 13.1 13.3	
9.	1	applications Xanthene dyes-Rhodamine B, Fluorescein-Eosin-	T1: 14.5-14.7
<i>)</i> .	1	preparation and applications	T1: 14.2-14.3
10.	1	Recapitulation and Discussion of important questions	11. 14.2-14.3
10.	1	Recapitulation and Discussion of Important questions	
	Total No	of Hours Planned For Unit IV =10	
	20002210		
		UNIT V	
1.	1	Pollution Control in Textile Industry: Textile effluent-	R2: 432-435
		characteristics	
2.	1	Textile effluent-characteristics	R2: 435-437
	1	TCC + C + 1 CCl	D2 420 420
3.	1	Effect of untreated effluent	R2: 438-439
4.	1	Degradability of wastes	R2: 439-441
7.	1	Degradaomity of wastes	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5.	1	Effluent treatment plants-aerated lagoon	R2: 441-442
		1	·
6.	1	Effluent treatment plants-aerated lagoon	R2: 442-445
			D 4 04 5 2 4 2
7.	1	Photo oxidation process	R4: 217-219
8.	1	Recapitulation and Discussion of important questions	
0.	1	Recapitulation and Discussion of Important questions	
9.	1	End semester question paper discussion	
	•		
10.	1	End semester question paper discussion	
	Total No	of Hours Planned For Unit V =10	
Total	Planned	48	
	Iours	70	
	10015		

SUPPORTING MATERIALS:

Text books:

- T1: Chatwal, R. (2009). Synthetic Dyes. Mumbai: Himalayan Publishing House.
- T2: Mather, R. R., and Wardman, R. H., *The Chemistry of Textile Fibres*, 2nd Edition (2015) Published by The Royal Society of Chemistry, Thomas Graham House, UK.

Reference Books:

- R1: Sharma, B. K. (1997). Industrial Chemistry. New Delhi: Goel Publishing Co.
- R2: Shenai. V. A. (1980). Technology of Textile Processing. Bombay: Sevak Publication.
- **R3:** Carr. C. M. (1995). *Chemistry of the Textiles Industry*. Blackie Academic & Professional Publication.
- R4: Marsh, J.T. (2001). Textile Science. B.I. Publications, Bombay

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

UNIT I SYLLABUS

Fibers: General classification of fibers-chemical structure, production, properties and uses of the following natural fibers (a) natural cellulose fibers (cotton and jute) (b) natural protein fiber (wool and silk).

Chemical structure, production, properties and uses of the following synthetic fibers. (i) Manmade cellulosic fibers (Rayon, modified cellulose fibers) (ii) Polyamide fibers (different types of nylons) (iii) Poly ester fibers.

Introduction:

There is a very wide range of textile fiber types available in the marketplace. They vary not only in chemical type but also in physical characteristics, reflecting the wide variety of applications they have. Many people relate textiles to apparel and to materials for domestic uses, such as carpets, bedding and soft furnishings, but in fact textiles also have many specialized industrial applications. These textile products are referred to as 'technical textiles' and are produced mainly for their functional and technical performance, rather than their aesthetic characteristics. There are no clear distinctions between apparel and technical applications either, in the sense that the 'performance' apparel market, for which garments are produced to meet specific requirements in terms of, for example, functionality or personal protection, is a hugely important one.

For centuries, the textile industry was comprised exclusively of natural fibers, particularly cotton, wool and silk. Indeed, in the UK the textile industry was dominated by wool, because it was not until the beginning of the eighteenth century that cotton began to be imported. Towards the end of the nineteenth century the first 'man-made' fibers were commercialized, these being regenerated fibers, such as viscose rayon, based on cellulose. The textile industry then made considerable technological advances from the 1930s with the development of many types of commercially important synthetic polymers. In the period since the emergence of the first synthetic polymers, the nylons and polyesters, considerable development of this class of fibers has taken place, with the aim of producing fibers of very high technical specifications.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

CLASSIFICATION OF TEXTILE FIBRES

It is useful to classify the various types of textile fibers and, since many have similar chemical characteristics, the best method of classification is according to chemical type. Before the various chemical groups are established, however, the various fiber types can be broadly classed as either natural or man-made.

As was stated earlier, the overwhelming majority of fibers are polymeric in nature. In broad terms, they may be classified thus:

Natural

- Animal (protein) fibers
- Vegetable (cellulosic) fibers

Man-made

- Regenerated cellulose fibers
- Chemical derivatives of cellulose

Synthetic polymer

- 'First-generation' (up to 1970s): commodity domestic and industrial fibers
- 'Second-generation' (1970s on): high-performance and specialized fibers

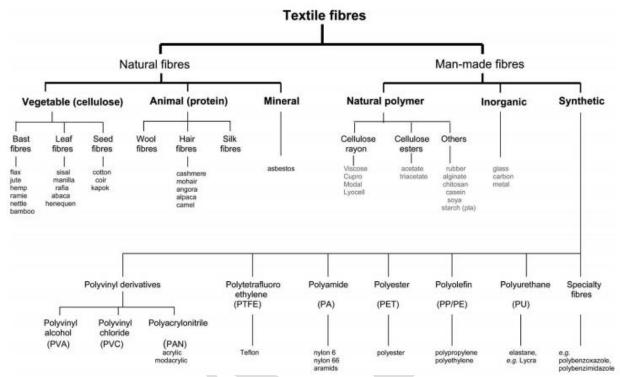
Other

- Metal fibers
- Ceramic fibers

Natural fibers fall into three chemical classes:

- > Cellulosics, which are the fibers obtained from various parts of plants, such as the stems (bast fibers), leaves and seeds.
- > Protein (keratin) fibers, which are the fibers obtained from wool, hair and silk.
- Mineral (the only naturally occurring mineral fiber is asbestos but its use is banned in many countries because of its toxicity).

Man-made fibers (also referred to as 'manufactured fibers') can also be further subdivided into three broad groups:


'Regenerated' fibers, which are fibers derived from natural sources comprising organic polymers by chemical processing to both extract the fiber-forming polymer and to impart novel characteristics to the resulting fibers.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

• Synthetic fbres that are produced from non-renewable sources.

Inorganic fbres, such as ceramic and glass fbres.

Textile fiber types are given what are called generic names and in Europe the organization responsible for allocating generic names is the Bureau International pour la Standardisation des Fibres Artifcielles (BISFA). IUPAC nomenclature does not meet the needs of the textile industry for naming actual fibers and so BISFA established a method and published its first list of generic names in 1994. The geric fiber names are based on common chemical groups that impart characteristic properties, such as:

-CONH- for polyamides -COO- for polyesters -(CH2-CH·CN)- for acrylics

It is possible that a particular fiber type has two generic names, a prime example being the names polyamide and nylon, which both cover nylon 6, nylon 4.6, nylon 6.6 and nylon 11. Generic names are used extensively in garment labeling and facilitate global trading, avoiding the need for countless chemical names and trade names. There are some instances, however, where trade names are used in garment labels. Often trademarks (symbol ®) are used, which can

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

cover a broad range of fiber types and suffix names for a very specific category of a manufacturer's fibers, so that consumers can identify particular qualities or performance characteristics with a specific manufacturer.

The European Commission, in Regulation No. 1007/2011, requires (among other things) all textile products to be labeled with the name and percentage content of all constituent fibers by reference to the recognized fiber names specified in the Regulation. The fiber names specified in the Regulation correspond to those established by BISFA. Each EU member state is obliged to implement this Regulation and in the UK its requirements are enforced under the Textile Products (Indications of Fiber Content) Regulations.

In the USA, the Federal Trade Commission (FTC) assigns generic names and there are instances of different names being used in the USA and the EU for the same fiber types, such as: elastane in the EU is called spandex in the USA, and viscose in the EU is called rayon in the USA. Unfortunately, such duplicity can lead to some confusion amongst consumers when buying clothes.

In addition to generic names, BISFA has developed a list of codes for the various fiber types, the aim of which is to facilitate communication when referring to fibers. While these codes are widely used by professionals in industry and academia, one anomaly seems to be the code assigned to polyester. For this fiber type, BISFA has assigned the code PES, but most professionals prefer to use the code PET, which is understandable given that the chemical name for the polymer is polyethylene terephthalate.

Cellulosic fibrre -Cotton

Cotton has been used as a textile fibre for thousands of years with India being generally considered as the birthplace of cotton cloth. Cotton is a hair attached to the seed of several species of the genus Cossypium, a shrub up to 2 metres in height, indigenous to nearly all tropical regions but growing best near the sea, lakes or large rivers where there is a warm humid climate and sandy soil. Cotton or cotton mixed with synthetic polymers provides most of the clothing in the world. It is used in making the finest garments suited to hot or cold weather, bedsheets, and for worldwide popular jeans. Each cotton fibre has 20-30 layers

CLASS: II MSc CHEMISTRY COURSE NAME: TEXTILE CHEMISTRY

COURSE CODE: 17CHP305B UNIT: I (Fibers) BATCH-2017-2019

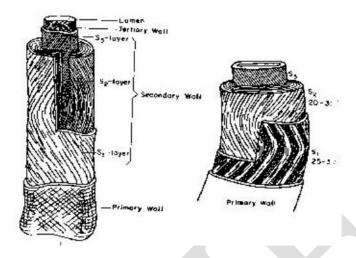
of cellulose built up in an orderly series of spring-like spirals. These fibres bring out certain characteristics like absorbency wet-strength, softness and durability in cotton clothing.

India was the first country to manufacture cotton. Among the latest finds at Mohenjo-Daro were a few scraps of cotton were found sticking to the silver vase. This shows that cotton had been produced in India as far back as even the fourth millennium B.C. Historians speak of the beautiful painted and printed cloth which was sold in Egypt and

some parts of Europe long before the time of Alexander.

Properties of cotton

Cotton is the seed hair of the shrub which bears the botanical name of Gossypium, a member of the mallow family. The shrub grows to 6 feet tall height. From 80 to 110 days after planting the plant bears beautiful creamy white blossoms, which turn pink and fall off and are replaced by a green triangular pod called boll. The fiber develops within the boll. The boll is the size of a walnut. The mature boll bursts open from the fiber pressure, exposing the fluffy mass of white cotton fibers. Cotton is classified according to fiber length, fineness, lustre and geographical


location.

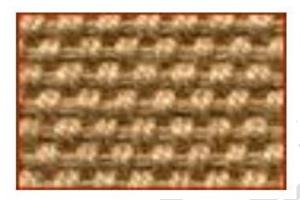
Internal structure of cotton

The cotton fibre which are visible to the naked eye, when viewed under high magnification as with electron microscope are shown to be comprised of many layers of tiny fibrils arranged in definite spiral pattern with the different layers at right angles to each other. This structure as the fibre ripens may account to the twisting of the fibre as it dries. The picture shows the layered structure of cotton fibre as revealed by the microscope after staining and swelling treatment.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

Uses

Cotton plant in Indian tradition is much more than the source of raw material for textile above. Cotton flowers give us nectar and if bee keeping is planned, it gives highly flavoured healthy and tasty honey. Cotton seed oil is a well-known edible oil. It is also used in Vanaspati formulations. In Ayurveda, equal quantity of ginger is used for external application to relieve pains due to rheumatism and arthritis. Roots of cotton plants are used for female diseases. Leaves are good for green manuring. Oil cake is a cattle feed and a good raw material for industrial adhesive besides being a good manure.


Cellulosic fibre- Jute

Jute ranks next to cotton in the amount of fibre produced in the world and in commercial value. It is the world's most plentiful, cheapest and weakest fibres. Jute is grown mainly in Pakistan, India and Brazil. Before partition of India, India produced almost all the supply of jute. Microscopic structure of jute resembles that of flax, but it usually lacks the cross markings characteristics of bast fibres. Raw by one of four hand methods. Then it is washed repeatedly to remove bits of bark, gum etc. and dried in the shade. Sunlight weakens the fibre. The colour and quality of the fibre depend considerably on the degree of maturation of the plant when harvested. Jute is a week fibre, it is harsh brittle with low elongation and little elasticity. Colour is from

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

creamy white to is used for rope twine, cord, and backing for carpet and rugs. Recent uses in hand purses and apparel have given the fabric a boost. Burlap is the fabric made from jute.

Jute Fiber

Uses

It has many uses:

- It is used as under covering for upholstered furniture for bulletin 40 boards, slip, covers.
- ➤ It has limited use in apparel.
- Recent researches have blended jute with cotton to bring it into apparel use, and also in home furnishing.

WOOL - THE PROTEIN FIBRE

Wool is the first fiber that man learnt to make into fabric, either by felting or matting. Wool is the hair or fur covering of the sheep. Originally, sheep had two coats a coarse protective wiry coat and a soft warm fleecy undercoat of very fine texture. History clearly shows that Mesopotamia was the birthplace of wool. The early Romans encouraged sheep farming and wool weaving in England in A.D. 80. Soon the British woollen clothes gained reputation. Woollen Kashmiri shawls are as old as the epics of India. Tradition has it when Lord Krishna went to Kurus as a delegate from the Pandavas, the presents of Dhritrashtra to him were ten thousand shawls of Kashmir.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

Structure of Wool

Varieties of wool and their origin

All wools are classified as fine, medium, long and carpet wool.

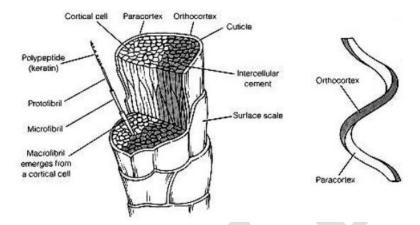
Fine wool:

The merino sheep is the outstanding example which supplies this type of wool. Fine wool may vary in length from 1½ to 5 inches. We get this wool from merino sheep. The original merino sheep were from Bikaner, India, these were taken to Australia. They are noted for softness, fineness, strength, elasticity and superior spinning and felting qualities. They are used for high quality flannel, knit goods, broad cloth, meltons and other face finished fabrics.

Medium wool: These are by Oxford, Hampshire, Suffolk and Dorset.

Long wool:

Large sheep such as the Lincolns Cotswold from Leicester produce long strong, lustrous wool. The fibre length varies from 5 to 6 inches for a Romney marsh, 10 to 15 inches for a Cotswold. This is coarse wool with poor felting quality, they are used for coarser tweeds, serge, overcoating, blankets, braids and worsteds.


Carpet wool:

This wool is procured from various crossbreeds. As the name implies it is largely used in the manufacture of carpets and rugs and for other coarse fabrics, horse blankets, coarse upholstery fabrics, etc.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

Structure of wool:

Wool is a natural protein fibre. It is composed of a chain of amino acids combined by condensation (eliminating water) through peptide linkage to form chains. Wool is composed of five elements in approximately these percentages: carbon 50%, oxygen 22-25%, nitrogen 16-17%, hydrogen 7% and sulphur 3-4%. In addition, there is a very small amount of mineral matter present in the fibre. The weakest part of wool are the sulphur linkages, they are the parts most readily attacked by oxidizing and reducing agents, and even by light.

Most clean wool is off-white in colour, although grey, brown and black wooled sheep are not uncommon in the various breeds. Wyoming wool is the whitest produced in the United States. Colour is due to the pigment in the cortical and medullary areas of the wool; the scales are not pigmented.

Lustre is due to the nature and transparency of the scale structure of wool; it varies among animals and breeds, with the area of a fleece and with climatic conditions. Wool is made of three distinct parts.

- The outer horny transparent flattened scales.
- A cylindrical cortical layer (cortex which makes up the soft plastic bulk or body).
- A medulla or central air filled canal. These are made visible under a microscope. The scales vary in size and shape and the free ends projecting outward and upward towards the tip of the fiber. In the finest wool, the scales encircle the fiber and fit one into another like stacked cups and bowls. In coarser wool, the scales overlap like shingles on a roof, and

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

there may be several encircling rows depending on the diameter of the fibre. The scale

• The scale structure forms a protective hide for the more delicate part of the fibre and gives it form and a certain degree of rigidity. The cortical layer is responsible for the strength and elasticity of the fibre. The medulla increases the insulative property of the fibre by incorporating a built-in air space. Wool like human hair is an outgrowth of the skin. It grows from the hair follicle which also has sebaceous glands attached and which serve the same function as those adjunct to human hair.

Molecular structure of wool

structure make wool identifiable.

The protein fibre have complicated molecules composed of varying numbers and kinds of amino acids, which have combined to form long chains. 20 amino acids have been identified in wool. Larger amounts are glycine, alanine, serine and tyrosine. These are largely the group that form proteins called "keratin." Wool contains a large amount of glutamic acid (16%) has considerable amount of cystine, leucine, serine, arginine, aspartic acid, proline, threonine, glycine, tyrosine, valine and alanine. The general chemical formula for amino acids is:

$$\begin{array}{c} \mathrm{R-CH-COOH} \\ \mathrm{NH_2} \end{array}$$

The folded chain structure of wool is believed to straighten out when pull or pressure is exerted on the wool fibre, and to revert to its original position when released. The unfolding refolding ability of the chain would account in large measure for the high degree of elasticity, elongation, resiliency, and crease resistance of wool fabrics. The side chains between molecules are believed to hook together to give still more resistance to packing or crushing. The cystine side chains, composed in part of sulphur are believed to form stable links at the sulphur atoms between different chains. Other linkages occur between molecular chains also but they are less stable than the sulphur bonds. The following diagram is a possible linkage between molecular chains, showing both sulphur and salt linkage as theorized by Astbury and Speakman.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

Properties

Wool is said to be a poor conducter of heat. However, the amount of heat conducted along the fibre is not the important factor in the warmth of wool. Wool fibres do not pack well because of the natural crimp. This makes the wool fabric porous and capable of incorpoting much air giving the fabric a lofty hand.

Absorbency:

Resiliency:

Absorbency is defined as the ability of a fibre to take up moisture and is expressed in terms of moisture regain, which is the percentage of moisture that a bone dry fibre will absorb from the air under standard conditions of temperature and moisture. Absorbent fibres make fabrics which are comfortable on hot humid days or in damp climate. Absorbent fibres do not build up static electricity, which also makes them more comfortable in dry cold weather. Absorbent fibres are hydrophillic or "water loving" while non-absorbent fibres are hydrophobic or "water repellent."

CLASS: II MSc CHEMISTRY

COURSE CODE: 17CHP305B

COURSE NAME: TEXTILE CHEMISTRY

UNIT: I (Fibers)

BATCH-2017-2019

This is greater when it is dry. This property is important in the manufacture of fabric because

it permits energetic mechanical treatments in finishing woollens and worsteds. Press retention is

good. It holds crease well. Crease is set by moisture, heat and pressure. Wool fibres are weak but

fabrics are durable.

Felting:

It is a term applied to progressive shrinkage of wool. Felting occurs when wool is subjected

to heat, moisture and friction (conditions present at the underarms of sweater and shirt and soles

of socks). To make felting possible a fibre must have a surface scale structure. Felting is also a

disadvantage as it makes washing of wool difficult.

Amphoteric nature:

This means it will unite and react with both acid and basic dyes. Wool is very stable to acids

but it is harmed by alkalies. In the manufacture of fabrics acids are used to remove cellulosic

impurities. This process is called carbonizing.

Elongation:

Elongation of wool is 20 to 50% and both elongation and elasticity are higher when the

wool is wet.

Processing

Shearing: It is the process of clipping the fleece from a living animal. Sheep are sheared

once or twice a year, depending on their locality by travelling crews. An expert shearer can clip

100 to 200 sheeps a day. In most parts of the world shearing is done only once a year in late

spring or early summer. Shearing is a high paying job in range areas. Skill is regired to sheer the

sheep and leave as much wool on its body to protect the animal from the sun and the rain.

Pulling: Pulled wool is obtained from animals which are sold for meat. The pelts are washed

and brushed and then treated chemically to loosen the fibre. The yield of pulled wool is one fifth

of sheared wool. Wool as it comes from the sheep is called *grease wool*, as it contains impurities

such as sand dirt, grease and dried sweat. The grease in stages of purification is used for a wide

Prepared by Dr. G.Ayyannan, Department of Chemistry, KAHE

12/26

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

variety of other commercial products, such as medicines softeners, toilet preparations. **Sorting:** Wool is sorted according to quality and dirt is removed by machine known as duster. The best quality of wool comes from the shoulder of the sheep and the sides of the sheep and the poorest quality from the lower legs.

Physical structure

Fibres of wool vary in length from 1 inch to 14 inches and in thickness from 10 to 70 microns. 18 to 30 micron fibres are used for clothing, coarser wool is used to make rugs. High quality wool does not imply high durability.

A hot 5% solution of alkali will destroy wool completely, as it disintegrates the fibre and it becomes slick, turns to a jelly like mass, and goes into solution. Alkali is sold in the market as lye.

The wool with a blend will dissolve leaving behind only the fibre that has been blended.

Natural protein Fibre – Silk

The manufacturing of silk dates back to 2640 B.C. Silk has been considered one of the most elegant and luxurious of fibres. It is still recognised as such all over the world. It is called the queen of all textile fibres. There are several species of silk producing caterpillars, but the mulberry silkworm, or bombyx morri produces most of the commercial silk fibre. These mulberry silkworms have been cultivated for many centuries. There are other associated varieties which live on the scrub oak and produce the fibre known as wild silk.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

Antiquity

Silk was discovered by a Chinese empress in 2640 B.C. The Chinese carefully guarded the secret of the silk cocoon for 3000 years. They wove beautiful fabrics which were sold to Eastern traders at a high price. In 300 A.D., refugees from china took cocoons to Korea and started raising silk- worms. Japan learnt about silk from Korea. The industry spread through central Asia into Europe, and by the 25th century Italy was the silk center of Europe. This was later taken over by France in the 17th Century. Weaving of silk became important in England when the huge number of weavers emigrated from France to England in 1685.

In India, Kashmir and Karnataka produce a lot of mulberry silk. Other varieties of silk Eri, Muga are produced in the northeast of India. Tasar silk is produced in Uttarakhand. India produces more than 7% of the worlds silk output. Production of mulberry silk in India has been on the rise and growth has been gaining momentum on account of abundant natural resources and cheap labour. Still techniques of cocoon production is considered to be of low level by international standards. Though 70% of the world mulberry silk is produced by China and Japan, India can boast of producing all kinds of silk viz. muga, mulberry eri and tasar. Presently eri silk is being produced primarily in Assam. Eri silkworms are hardier than mulberry silkworms and can be reared with greater ease.

Eri culture has a high potential as a subsidiary occupation to augment farmers' income in north-eastern India. Eri silk can be processed into the most comfortable warm clothing. Eri is also spun in combination with muga or tasar silk waste or cut cocoon to give a rigid texture and an attractive look for use in suiting or upholstery. Among the large varieties of silk goods produced in India for the domestic and export markets are:

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

- Mixed/blended silk fabrics.
- Dress material.
- Sarees.
- Scarves and stoles.
- Made-up articles like cushion covers and bed spreads.
- Silk carpets.
- Silk garments.

The world market for silk and silk products is a lucrative and growing one. Developing countries that already produce silk in various forms or that have the potential to do so should explore the requirements for products and develop market in this sector as one of the means to increase their export earnings. More than 90% of the world market for silk garments is accounted for by women's clothing. This covers a wide range of items from lingerie to high fashion evening wear. Silk goods for men include shirts, ties, socks, underwear and to a limited extent, knitted goods. The main importer of silk is U.S.A. to the tune of 25% of the total Indian silk exports, followed by Germany, U.K., Switzerland, U.A.E., Italy, Singapore, Japan, Canada, Austria. The Netherlands, Belgium, Poland, Australia, etc. The main items of export are dress material, madeup articles (pillow covers, cushion covers, scarves, curtains, bedcovers and silk paintings), readymade garments, sarees and ties. The items are mainly exported from New Delhi, Kolkata, Mumbai, Chennai and Bengaluru.

Chemical structure of silk

Approximately 66% of raw silk is the fibre of fibrion, 22% sericin, 11% water and 1% oil and colouring matter. In order to free the fibrion from its glue like case of serecin and render it capable of acquiring dyestuff and a satisfactory finish that will enhance the beauty and sheen of the silk, it is necessary to find a solvent for sericin. Silk like wool is a protein fibre. Therefore, it

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

yields amino acid upon hydrolysis – CO-NH – groups. It is quite similar to wool in general behaviour.

Heat: Silk can be heated to a higher temperature than wool without disintegration. However, if white silk is held at 231° F for fifteen minutes it becomes pale yellow. For this reason, silk garments must be dried carefully after laundering and should be pressed quickly with an iron that is not too hot. Silk disintegrates above 330° F.

Silk is attacked by the ultraviolet rays of the sun and acid forming gases and moisture. Weighted silk is more quickly injured.

All the man-made fibres have some process in common. They have been produced from nonfibrous material, in the process loose their fibrous nature to being in viscous state to be reformed into fiber. This is done to by forcing the solution through the device called spinnerets. All the fiber then coagulates or hardens within a reasonable time after leaving the spinnerets so that they will not stick together and may be wound on bobbin or cones, or be deposited in pots as cakes of yarn to be readied for conventional processing into fabrics.

The non-thermoplastic group of man-made fibres include several subgroups: those of cellulosic origin, alginates, minerals, and protein based fibres. The largest group at present are the fibres of cellulosic origin all of which are identified as rayon in the Federal Trade Commission (FTC).

The non-thermoplastic fibres, except for the mineral fibres may be cared for much as cotton, linen, silk or wool whichever they most resemble, both in visible characteristics and in their reaction. They are not softened by heat so will not melt if ironed although they will scorch if ironed at sufficiently high temperature. As a group they are soft absorbent, pliable, comfortable to wear, do not pill, do not accumulate static charge and are not subject to attack by moths. In longitudinal view under the microscope, in common with most other man-made fibres they look alike. All appear as smooth rods, black specked if delustred but with no characteristic by which the individual fibres can be positively identified.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

The Rayons (Cellulosic Fibre)

Rayon is a manufactured fibre composed of regenerated cellulose in which substituents have replaced not more than 15% of the hydrogen of the hydroxyl group. By this definition rayon includes viscose rayon, cuprammonium rayon, Fiber E fortisan, Topel, corvel Fiber Fm 27, Avril (Fiber 40, Zantrel). It is an interesting fact that much of the rayons' early development is tied to the attempt to develop filament for incandescent electric lamps, then newly discovered by Thomas Alva Edison.

Many developments of rayon explore in considerable detail the early suggestions and attempts for making artificial silk without the benefit of silk worm. Dr. Robert Hooke and Rene F. Reaumur who predicted such a possibility in 1664 and 1710, respectively. F. G. Keller (1840) inventor of a mechanical process for producing wood pulp, and Louis Schwabe (1840) who experimented with a crude type of spinneret for drawing thread for drawing various solutions through holes in thread form.

Nitrocellulose was the first to be produced successfully and commercially. The early history of this kind is of importance. In 1855, Georges Aeudamers (Switzerland) patented a process of transforming nitrocellulose solution into fine threads.

The rayon and staple fibre handbook has given this account of Chardonnet's work:

"From a textile point of view, Count Hilare de Chardonnet began his work in 1878 and obtained his first French patent on November 11th, 1884, cumulating all the efforts of his predecessors Hooke, Reaumur, Audamers Ozanam, Weston, Huges, Powell, Evans, Wynne, Crooks and Swinburne. His labour won him by general acclaim the title of 'father of rayon industry.'

How is rayon used?

Rayon and acetate both found usage in home furnishing 27%, juniors wear 17% and boys wear 9% and girls wear 2%. Most of the rayon and acetate was used for tires, cords, transportation upholstery, tents, carpets rugs, curtains, bedspreads, coats, knitted wear, woven underwear, suits, blouses, skirts and other items. A large amount went into nightwear and underwear. The rayon fibre has a number of properties in common with each other and with cotton and linen. They burn readily with a yellow flame and with the odour of burning paper or

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

cotton leaving a little cobwebby residue which crumbles into fine, powdery grey ash. The rayon may be successfully fire retardant treated, they are all sensitive to acids but are not generally damaged by alkali. Most of them have low resiliency and elasticity and without special crease resistant treatments wrinkle considerably and need to be ironed frequently. Crease resistant treatments are very commonly applied to many of the fabrics made from these fibres.

Manufacturing process of rayon

Preparation of cotton linter cellulose: linter are small fibres adhering cotton seeds. They are removed after ginning. They are removed at the mill where the seed has to be used for oil and other products. All linters are removed from the process called mill run or in two ginning processes. If the two are used the first ginning cuts are used by the mattress industry or for cheap qualities of cotton fabric. The second and the shorter cut is less expensive and is cleaner. It becomes the cotton for chemical cotton, much of which is utilized in the man-made industry. The initial quality of the linters depends on their quality of the linters and the condition in which the seed has been received at the mill. Different lots of linters are blended to achieve a uniform quality of chemical cotton. The cleaned blended linters are carried to the digester where the fibres are mixed with dilute caustic soda solution (NaOH) then are carried into the digesters for cooking process. Temperature, pressure, time, and proportion depend on the product desired, all processes are carried out under carefully controlled conditions. At the right time the linters are removed from the digester and washed in soft water to stop the action of the alkaline solution. The cooked linters are then bleached with chlorine, rewashed thoroughly and dried. The method of utilizing these linters for the manufacture of linen differs for each process and the difference in method results in characteristic differences in the quality of fibres and hence fabric.

Spinnerets are also called spinning jets, must be made with extreme care and polished until no possibility of the slightest roughness remains anywhere. The instruments of making holes in the spinnerets are finer than the human hair and the holes should be uniform in size and exceedingly smooth. Spinnerets are made from platinum and platinum alloy for viscose rayon and other processes where fibres coagulate in chemical baths but may be made of steel or other metals for air or water coagulating processes.

Properties

Under the microscope in longitudinal view, viscose rayon fibres appear much as smooth

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

glass rods although under high magnification striations may be visible parallel to the fibre length. In cross-section the fibres may be round, oval or flat but all show serrated edges. The typical serrated edge is a positive means of identifying the fibre.

Elongation varies from 9 to 30%. Rayon exhibits a property called creep or delayed elasticity. It takes days to get back in its shape after it has been stretched. Elasticity and resiliency both are low, so that rayon wrinkles badly unless treated with special finishes. Resin treatments on rayon are more successful than any other man-made fibre and is usually quiet permanent. The specific gravity of rayon is 1.52 about the same as cotton which is medium among fibres. It is very absorbent and exhibits about 11 percent hygroscopicity. It dyes in darker colours than cotton does. Dyes must be chosen carefully for mixtures and blends, or the rayon will have exhausted the dye even before the other fibre has had a chance of even getting wet. Rayon does not accumulate static electricity. Resin finishes may alter some of these properties. Viscose looses some strength on prolonged exposure to sun light. It is more resistant to light than silk but less than acetate orlan, and fortisan. Rayon can be satisfactorily laundered like cotton and can be ironed at the same temperature as cotton. Boiling and sterilising the fabric is not advisable. Clean dry viscose is not attacked by moth and mildew.

Properties

The microscopic appearance is different from that of viscose rayon. Rests of the properties are the same, microscope in cross-section, cuprammonium fibers appear as tiny, smooth featherless circles. White cuprammonium does not yellow with age because it has traces of copper remaining, it is more resistant to mildew and mould than other cellulosic fibers.

Uses

Cuprammonium rayon is used for sheer dresses and curtain fabrics, for tricot lingerie and hosiery. It is blended with silk and with cotton.

Man – made fibres

Man-made fibres were first made experimentally in Europe in 1857. Commercial production of man-made fibres began in the United States in 1910. Production of a new fibre is a long and expensive procedure. First, a laboratory research program is set to discover a new material. When a promising material is made it is patented to give the producer exclusive rights

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

to the process for a period of 16 years. Laboratory procedures must then be converted into large scale production. This is usually done in a very small plant called a pilot plant.

All the man-made fibres have some processes in common. They have been produced commercially from non-fibrous material, or if fibrous to begin with, have somewhere in processing lost their fibrous nature and must then reform into fibre must then coagulate or harden within a reasonable amount of time after being extruded from the spinneret. After leaving the spinneret the fibres must be wound on bobbins or cones or are deposited in pots as cakes of yarn. The man-made fibres are divided into two groups: non-thermoplastic and thermoplastic. The non-thermoplastics form several subgroups, the largest group being of cellulosic origin, all of which are identified as rayon. The non-thermoplastic fibres except for the mineral fibres may be cared for much as cotton, linen, silk, or wool whichever they most resemble, in their visible characteristic and their reaction. They are not softened by heat, so they do not melt on ironing. As a group they are absorbent, pliable, comfortable, to wear, do not pill, do not accumulate static electricity and are not subject to attack by moth. In longitudinal look under the microscope they all look alike.

Although all the eleven fibre families differ in chemical composition and structure, they are grouped together because they have many common properties of which heat sensitivity is the most outstanding. These fibres are also referred to as synthetic or thermoplastic, or chemical fibres.

Heat sensitivity is that property of a fibre that causes it to shrink, soften, or melt when heat is applied. These properties are not common with cellulosic or protein fibres.

The fibres differ in their degree of heat sensitivity and even within a family the individual types may vary. For example, Orlon 38 type will shrink 20% or more when heat is applied. Whereas regular orlon has very little shrinkage. This high shrinkage property is used to advantage in factory process to create bulky yarn or to give three-dimensional effects in pile and upholstery fabrics. To create these effects blending is done with low shrinkage fibres. On applying heat these heat sensitive fibres cringe to give a buckle appearance.

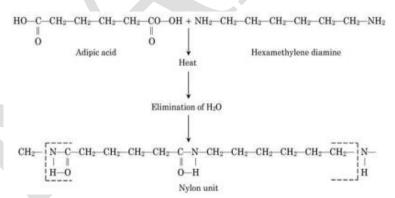
CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

Nylon

Nylon is a generic name applied to a number of related products. Nylon 6,6 was produced by the DuPont Company. It is a manufactured fiber in which the fiber forming substance is any long chain of synthetic polyamide having recurring amide groups as an integral part of the polyamide chain. Nylon is composed of carbon oxygen, hydrogen and nitrogen as are the protein fibers. But since it is not made of amino acids its properties are not like that of silk or any protein fiber. In chemical structure, it is composed of long straight chains with neither side chains nor crosslinkage. Thus, the chains pack closely together In the fiber, accounting for its smooth rather slippery quality.

Nylon is polymerised by condensation reaction, under pressure of adipic acid and hexamethylene diamine. The molecules of the two substance hook together alternatively (copolymerisation) that is a molecule unit of acid and a molecule unit of diamine, with the elimination of water. The following formula demonstrates the polymerisation of a unit molecule of nylon. Many such units make up the nylon molecule. The process is controlled carefully to stop polymerisation within a narrow range, or the chains would become too long to possess the characteristic desired in a textile fiber.

From polymerisation to cold drawing there are several steps in the production of nylon. The acid and the amine are put together in a huge kettle equipped with a stirrer, which mixes thoroughly, forming a salt, then the mixture and some water are fed into an evaporator where the solution is dried to a desired consistency and concentration of the salt. The concentrated salt solution is fed into a jacketed autoclave where a sequence of high temperatures and pressures induce copolymerisation of the two materials to molecular chains of the desired length. The water evolved from the autoclave is removed by evaporation. Nitrogen is bubbled through the autoclave to ensure that air does not get in and the newly formed nylon gets exposed to oxygen. From a slot at the bottom the molten nylon resin is extruded in the form of a thick, white, translucent ribbon and a spray of water cools the ribbon and causes it to harden as it is carried



CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

away from the autoclave to a casting wheel. The ribbon has an appearance similar to white taffy and is quiet hard.

The next step is to break the ribbon up in to small pieces in a chipping unit, ready for forming into fibers. The process for spinning nylon is melt spinning. Nylon is composed of carbon hydrogen, oxygen and nitrogen as are the protein fibers, but since it is not made up of amino acids its properties are not like those of protein substances. In chemical structure it is believed to be composed of long straight chain molecules with neither side chains nor cross-linkages. Thus, the chain packs close together in the fiber accounting for its smooth slippery quality.

Nylon 6,6 is produced from an acid and a diamine which has in turn been produced from other material actually going back to petroleum and coal tar derivatives. Nylon is polymerised by condensation reaction under pressure of adipic acid and hexamethylene diamine. The molecules of the two substances hook together alternatively (copolymerisation) that is a molecule unit of acid and a molecule unit of one diamine then acid again and so on repeatedly with the elimination of water. Many such chains makeup the fibre. The process is controlled carefully to stop polymerisation within a narrow range or the chain would become too long to posses the characteristic desired in a textile fiber.

Cold drawing is the process that gives nylon many of its qualities for which it is most noted, that is great strength, toughness, elasticity, abrasion resistance. Drawing is carried out as for other fibres by passing the filament over rollers which revolve at different controlled speeds. Nylon is drawn three to seven times its original size. Drawing orients the molecular chain in the direction of the fibre axis, lines the chain up parallel to each other and permits a high degree of crystallinity of the fibres. Crystallinity tends to give a rigid structure to the fibres. Despite

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

drawing the nylon fibre still retains greater elasticity than most other fibres. After drawing, nylon may be given an oil or antistatic spraying, twisted and heat set before being wound on the bobbins for weaving knitting or lacing. Heat setting is necessary to stabilize nylon in shape and dimensions. Nylon may be stabilized yarn, as woven or knitted fabric or as a knitted garment.

Properties

Nylon has a somewhat cool clammy feel in filament form. Some people like this feel and others dislike it as much. Nylon is lustrous, white fibre, transparent to translucent, that can in common be made in varying diameters, lengths and degrees of abrasion resistance and lustre. Its translucency has led to dissatisfaction at the consumer level. Nylon is both tough and pliable. Nylon does not flame readily, but burns slowly or fuses and drops off if flame is applied to it. It burns with the odour of cooking green beans or celery and as it burns or melts forms a waxy roll along the edge which becomes hard and tough as it cools. Regardless of the colour of the nylon fabric the curled, waxy edge is a light tan colour after burning. Although nylon may be termed non-flammable, the fusing and dropping off present a great hazard in many ways. Finishes may change this quality of nylon as it does for other fibres.

Nylon is potentially the strongest of fibres. The wet strength of nylon is 85% of dry strength. Elongation is 18 to 37 percent. Nylon has a specific gravity of 1 to 1.4. Absorbency is low. Hygroscopicity is 4 percent. The low hygroscopicity amounts to accumulating static electricity. Nylon is somewhat rigid and does not drape as well as the acetates or silk. It is quick drying. Does not stain readily, it tends to pick up colour grease and soil in laundering with other garments, therefore white and pastel nylon needs separate laundry. Nylon is not affected by cold temperature but looses strength and yellows at sustained high temperatures. Ironing should be done at low temperature to prevent softening, glazing or melting and eventual discolouration. Nylon possesses a fair wrinkle resistance and crease recovery. It has excellent abrasion resistance, because of its strength and elasticity it is considered a very durable fibre. Nylon is degraded by exposure to sunlight, it leads to considerable loss in strength in a short time. It is very less sensitive to light degradation than silk.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

Polyester Fibres

Dacron was the first polyester fibre introduced in 1953. Exclusive patent was given to DuPont Co. of England. It is a long chain polymer composed of 85% by weight of an ester of dihydric alcohol and terephthalic acid (p-HOOC-C6H4-COOH). Dacron found immediate acceptance in easy care, wash and wear garments such as tricot blouses and men's shirts. Comfort properties were improved by blending cotton in Dacron with 65% Dacron and 35% cotton. In 1959, three new polyesters hit the market.

Fortrel: Formerly known as teron, is produced under license by fibre industries.

Vycron: It is produced by Beunit Mills and Co.

Kodel: The third fibre was developed by the Tennessee Eastman Co. and is fundamentally different from other polyesters so no license arrangement was needed.

Manufacture

The manufacturing of polyester fibres is quiet similar to nylon. Both fibres are melt spun. Ethylene glycol and terephtlalic acid are polymerised at high temperature in a vacuum kettle. The polymer is a pasty substance which is extruded as a ribbon and cooled on a casting wheel as a white porcelain like substance. The ribbon is put through a chipping unit, dried and led into a hooper. The polymer is solidified and cut into cubes which are melted and spun into fibers. The fibers solidify in air and they are then hot stretched to orient the molecules and reduce the denier of the fiber.

The fiber is heat set before use. Polyester fibers are produced in filament and staple form in bright and dull lustres in regular and high tenacity strength and can be solution dyed.

The molecule unit of Dacron is heavy stiff and resilient. They resist bending but recover from bending quickly. The molecule chains are held together by numerous bonds of such a nature that they cannot be relaxed by moisture, hence the fabric has good wrinkle recovery.

Appearance

$$\begin{pmatrix} -C - C - C - CH_2 -$$

The fibre has a smooth rod like shape which is typical of melt spun fibres. Dacron 54 has a ribbon like shape which blends better with cotton. Dacron 62 has a trilobal shape which is

CLASS: II MSc CHEMISTRY COURSE NAME: TEXTILE CHEMISTRY

COURSE CODE: 17CHP305B UNIT: I (Fibers) BATCH-2017-2019

similar to silk. Although nylon and the polyesters burn alike in some ways they can be distinguished in some ways by the odour and smell with which they burn. Both are relatively non-flammable in the unfinished state. Both form tan beads when the melt hardens. Some dyes may however cause a darker bead to form. Polyesters have an aromatic odour, and a dark black soot. Nylons odour is celery-like and the smoke is white.

Dacron type 62 is trilobal with a silk like appearance. It is more susceptible to acids and alkalies and dyes more readily than other regular Dacron.

The man-made fibres lacked the unique combination of aesthetic properties of silk. Dacron and nylon achieved that goal. The processing of Dacron was changed to finish that goal. Man-mades are processed under tension by a continuing process rather than a batch processing method. The Dacron fibre was processed under very relaxed conditions. Finishing started with a heat setting process which stabilizes the fabric to control width, removes any wrinkle and imparts resistance to creasing.

The caustic soda treatment is given. In this treatment, part of the fibre gets dissolved away like serecin of silk. As a result the fabric structure is more mobile. To get weave crimp, the remaining finishes of bleaching, colouring, washing and a final heat setting is done to fix the colour and assure stability and are all done with the fabric under completely relaxed conditions.

The trilobal shape has resulted from the shape of the holes in the spinneret. Melt spun fabrics posses the ability to retain shape of the spinneret holes. Dacron has found usage in bedding, furniture, pillow fillings. It can be sterilised, so it has found usage in hospital bed fillings and pillow fillings.

Properties

Pilling is a common problem with Dacron fabrics. They require blending with cotton and also finishing treatment to combat the pilling problem.

Singeing is the most sought after finishing method to burn of the linters on the surface of the fabric. The double flame burns off the fuzz giving the fabric a neat appearance. When cooled the fibres are set and locked in the yarn and the fabric structure. Both treatments improve the hand and heat-setting improves drape and wash and wear performance. Dacron is an opaque white

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

fabric with high strength and elongation of 20 to 48%. The specific gravity is 1.38, because of its strength it can be drawn into a very fine fabric with fine diameter. It can make very sheer fabrics.

The polyesters are more electrostatic than other fibres and hence they attract more dirt quickly giving an untidy appearance. Colour crocking is another disadvantage with many printed Dacrons. Dacron has an affinity for oil. The collar of the garment absorbs so much oil and grease that when it is washed the colour of the collar also faded rendering the garment unuseable. Dacron has however been popular in curtains because it has good light resistance. Wicking is a property that makes Dacron quick drying and easy to maintain. Dacron melts at 480 degrees. It has a good resistance to some of the weak acids even at boiling temperature. It is degraded by concentrated sulphuric acid. It is not affected by bleaches.

POSSIBLE QUESTIONS UNIT-I PART-A (20 MARKS)

- 1. Define fiber.
- 2. Write the chemical composition of jute fiber.
- 3. How will you prepare nylon 6,6?
- 4. What are the main classification of fibers?

(Q.NO 1 TO 20 Online Examination) PART-B (2 MARKS)

PART-C (6 MARKS)

- 1. Write notes on the production, properties, structure and uses of silk.
- 2. (i) What are the different types of nylons?
 - (ii) Give an example for polyamide fibre. Write the preparation, properties, uses and chemical structure of Nylon.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

- 3. Explain in detail for the removal of impurities in raw cotton.
- 4. Write short notes on i) scouring ii) Bleaching iii) desizing iv) kierboiling v) chemicking
- 5. i)Define Fibre. What are the general uses of fibers?
 - (ii) Write the preparation and uses of any one poly ester fiber?

6.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

S.No	Question	Option 1	Option 2	Option 3	Option 4	Answer
	Fibre obtained by chemical					
1	treatment of wood pulp is called?	Natural silk	Rayon	Nylon	Polyester	Rayon
		Fiber suction		Fiber saturation	Fiber saturation	Fiber saturation
2	What is the full form of FSP?	point	Fiber soft point	parcel	point	point
	Which one is stronger than steel					
3	wire?	Cotton fibre	Silk thread	Plastic thread	Nylon fibre	Nylon fibre
	Which polyester is used for					
4	making bottles, utensils, films?	Leather	Nylon	PET	Plastic	PET
5	Muga is the strongest variety of-	cotton	silk	wool	None of these	silk
				They melt on		They melt on
		They make you		heating ans		heating ans stick
	You must not wear synthetic fibres	feel cold and so	They are lustrous	stick to your		to your body
	while working with fire because of	you may get a	and so they shine	body when they		when they cath
6	what?	frost-bite	under the flame	cath fire	None of the above	fire
	Which synthetic fibre is used for					
7	making woollen clothes?	Acrylic	Polyester	Fibre	Cotton	Acrylic
	Synthetic fibres are made using	Woolen				
8	which raw material?	products	Polymers	cotton	Petrochemicals	Petrochemicals
	Which is used commonly for					
9	making parachute ropes?	Polyethylene	Polyester	Nylon	Silk	Nylon
10	Which is a popular polyester?	Plastic	Rayon	Polyethylene	Terylene	Terylene
	The fibres which are obtained by					
	blending natural and synthetic					
11	fibres are called?	joint fibres	mixed fibres	real fibres	artificial fibres	mixed fibres
	Which of the following is used for					
12	making gunny bags?	Cotton	Jute	Wool	Polyster	Jute
	In which of these states does the					
13	jute plant grow?	Punjab	West bengal	Tamil nadu	Kerala	West bengal
14	Which one of the following is not a	Cotton	Nylon	Flax	Wool	Nylon

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

	natural fibre?					
	Yarns is made from very thin					
15	strands called?	Fibres	Looms	Silver	Weft	Fibres
				Cellulose		
16	Polyester is referred as?	Dupont	Work horse	acetate	Acrylic	Work horse
	The fabric come out from the loom			Mercerized		
17	is known as?	Grey goods	Gray goods	good	None of the above	Grey goods
	Kevlar is commercial name for					
18	what?	Glass fibers	Carbon fibers	Aramid fibers	Cermets	Aramid fibers
	Pick the synthetic fiber of the					
19	following?	Cotton	Nylon	Jute	Wool	Nylon
	Which of the following is a source					
20	of rayon?	Wool	PET	Wood pulp	Silk	Wood pulp
		Nylon and	Polyster and	Nylon and	Polyster and	Polyster and
21	Polycot is obtained by mixing of	Wool	Wool	Cotton	cotton	cotton
22	Which is a thermosetting plastic?	Melamine	Polythene	PVC	Nylon	Melamine
	The material similar to silk					
23	appearance is	Nylon	Rayon	Polyester	Terylene	Rayon
24	Woolen fibre is	cellulose	sericin	polyester	keratin	keratin
	The material which is commonly					
	used for the preparation of kitchen					
25	containers is?	PVC	Acrylic	Teflon	PET	PET
26	Nylon is a/an?	amides	peptides	polyamides	polyesters	polyamides
	What could increase the fiber	Decrease inter-	Increase inter-	Decrease intra-	Increase inter-fiber	Increase inter-
27	surface area?	fiber bonding	fiber bonding	fiber bonding	bonding	fiber bonding
	Which bonding holds ligo cellulose					
28	fibers together in paper?	Sulfate	Hydrogen	Halogen	Phosphate	Hydrogen
29	What is the pure form of Cotton?	Protein	Vitamins	Cellulose	Pulp	Cellulose
	Which of the following is a fiber					
30	mat made using synthetic fibers?	Grasses	Canes	Reeds	Nonwovens	Nonwovens

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

	Which are utilized in products such					
	as battery separators, glass fiber					
	filter mats, and as reinforcement in					
	a large variety of reinforcement			Thermosetting		
31	materials?	Glass fibers	Ceramics	tissue	Pulpwood	Glass fibers
	Nylon 6 is obtained from which					
32	raw material?	Caprolactum	Hexanoic acid	Adipic acid	Ethylene	Caprolactum
	Which is very utilized in the					
33	determination of isolated fibers?	Spotting	Pitting	Gourding	Lightening	Pitting
				cold dilute		
34	Cotton is affected by ?	alkalies	strong acids	acids	all the above	strong acids
35	"King of fibres" are?	cotton	jute	silk	nylon	cotton
36	What is Sunn?	cellulosic fibre	protein fibre	minarel fibre	Rubber	cellulosic fibre
37	Which is synthetic fibre?	silk	jute	wool	rayon	rayon
	Which fibre is used as artificial					
38	wool?	Nylon	Rayon	polyster	Acrylic	Acrylic
39	Which one is biodegradable?	cotton cloth	metal cans	plastic bags	aluminium foil	cotton cloth
	The direction in which the yarn is					
40	passing in the fabric?	Fiber	Grain	Length wise	Cross wise	Grain
	Any product capable of being spun/					
	woven or otherwise made into a				Cotton	
41	fabric is?	Fiber	Yarn	Tread		fibre
42	Find the odd one out.	Cotton	Jute	linen	Silk	Silk
	The basis of poly propylene fibers					
43	are?	methane	propane	propylene	ethane	propane
	The secondary property of a textile					
1 44		• •	1 i	£1:1-:1:4	uniformity	luster
44	fiber is?	tenacity	luster	flexibility	uniformity	lustei
44	fiber is? Fibers that are measured in	tenacity	luster	Hexibility	uniformity	luster
45		staplefibers	filament fibers	shorfibres	long fibres	staplefibers

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: I (Fibers)
BATCH-2017-2019

	kilometers are ?					
	Tenacity is the term usually applied					
47	to the strength of?	Fiber	yarn	fabric	cotton	Fiber
	The primary property essential for a			length to width		length to width
48	fibre is ?	lustre	density	ratio	resiliency	ratio
	Lustre of fibres can be reduce	sodium			pottasium	
49	through the addition of ?	hydroxide	titanium dioxide	diphosphate	dichromate	titanium dioxide
	The ability of a fiber to return to					
	shape following compression,					
	bending or similar deformation is					
50	termed as ?	elastic recovery	elongation	resiliency	spinning quality	resiliency
	When the fibre molecules are					
51	arranged in random then it is?	high orientation	Low orientation	crystalline	amorphous	amorphous
	Which part of the jute plant does					
52	give fibre?	Root	Stem	Leaf	Flower	Stem
53	The leaf fibre is?	Cotton	palm	jute	kapok	palm
	Which fibre is popularly called					
54	'Golden fibre'?	Cotton	Silk thread	Jute	flax	Jute
	In fabric form jute is frequently					
55	called ?	blended fabric	burlap	Jute	kenaf	burlap
	What is the other name for artificial					
56	silk?	Nylon	Rayon	Acrylic	polyster	Rayon
57	The strongest synthetic fibre is?	Nylon	Rayon	polyster	Acrylic	Nylon
	Synthetic fibres synthesised from					
58	raw materials are called?	Jute	rayon	petrochemicals	bakelite	petrochemicals
	Which of the following is natural					
59	fibre obtained from plants?	cotton	wool	rayon	nylon	cotton
60	The fibre abaca is obtained from?	sisal	banana	pineapple	jute	banana

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: II
COURSE NAME: TEXTILE CHEMISTRY
BATCH-2017-2019

UNIT I SYLLABUS

Dyeing Process: Impurities in raw cotton and grey cloth, wool and silk- general principles of the removal – scouring – bleaching – desizing – kierboiling- chemicking.

Dyeing - Dyeing of wool and silk –fastness properties of dyed materials – dyeing of nylon, terylene and other synthetic fibres.

Introduction:

Raw wool contains 40% or more by weight of impurities in the form of waxes, suint, cellulosic material such as straw and dried grass, dirt, and proteinaceous material. Besides, during spinning and weaving other impurities are added.

- ➤ Wool waxes are recovered from the grease during scouring. These waxes are comprised of a variety of monocarboxylic, dicarboxylic and hydrocarboxylic acids as well as steroidal alcohols. It has been determined that unscoured wool contains an unoxidized fraction of wool grease and other contaminants that is easily removed and readily recoverable and an oxidized fraction at the tip of the hair that is difficult to remove and separate from other oxidized contaminants.
- > Suint is usually considered to be a variable composition of water-soluble materials that is readily removed by scouring.
- The dirt that is removed from the scoured wool consists of both inorganic and organic materials.
- The proteinaceous material has recently been discovered to consist of skin flakes from the sheep and soluble peptides.

The process that can remove the impurities has various steps:

1. Wetting:

The first treatment given to wool is wetting. This treatment releases latent strains and gives permanent set provide, wet treatment is not done at temperatures higher than that used in crabbing.

2. Crabbing:

This treatment is given to woolens to eliminate the tendency to cockle or distort. The wool is wound tightly on a roll which is made up of iron. The roll is a perforated cylinder covered with

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: II
BATCH-2017-2019

cotton cloth in order to prevent staining. It is rotated during treatment. Steam is passed in the cylinder at 40-150 lb/inch square pressure (as and when required). Now the wool is unwound and rewound, so that the outer roll of wool after crabbing becomes the inner roll, and steam is passed again, steaming enhances affinity of wool for dyes. The pH value of crabbing water determines the setting of wool. A low pH produces little setting and maximum degree of setting is attained at pH 10.2.

3. Scouring:

Scouring of wool differs from cotton. Firstly, wool contains a high percentage (30-60%) of wool grease compared with 0.5% of oil and wax in cotton. Secondly, wool is degraded rapidly with alkali, hence it saponification of oils, and fats is to be done with alkali; it should be done very carefully and below the boiling temperature. Sodium hydroxide is replaced by sodium carbonate, ammonia or ammonium carbonate. Raw wool is scoured by the counter current method, using a machine with four or five bowls arranged in a sequence, so that the wool passes directly out of the first into second and so on. Each bowl has a wringer at the exit, a false bottom and rakes. Below the false bottom is a spirally fluted shaft which rotates and carries the deposited solid dirt to the central outlet for discharge. The rakes make the wool travel forward, beneath the surface of liquor and also agitate to keep the dirt and emulsified grease in suspension. The scouring liquor falls back in the bowl after the wool passes through the wringer. The process is repeated at each bowl. Finally it is washed in water.

	Soap In Solution	Sodium Carbonate	Temperature
First bowl	2-3%	3-4%	49-52°C
Second bowl	1-3%	2-3%	46-49°C
Third bowl	1-1.5%	1-2%	43-46°C
Fourth bowl	water only	**	40.5-43°C

The pH should never be above 10. Soap reacts with hard water and precipitates calcium and magnesium salts, hence they have been replaced by synthetic detergent, and moreover syndents are more Gardinol and Teepol. There are stable to hard water and acids and are not used

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: II
COURSE NAME: TEXTILE CHEMISTRY
BATCH-2017-2019

up at all during scouring and can be reused. Moreover some pressure on wet wool in presence of soap can felt it which is not desirable.

	Synthetic Detergent	Sodium carbonate	Common Salt	pH	Temperature
First bowl	0,25%	0.25%		9.0	54°C
Second bowl	0.2%	0.2%	0.4%	10-10.5	52°C
Third bowl	0.12%	0.02%	0.5%	10	49°C
Fourth bowl	0-0.1%	0	0		46°C

After every 1000 lb of 454 kg of wool have passed over, the bowl should be fortified. Woven piece goods and knitted wool fabrics are sewn together to form an endless rope. These contain much less fats etc. and scoured with 0.5% soap solution or surfactant at 40C. If alkali is required, ammonia is preferred.

4. *Carbonizing* (removal of burrs):

Burr is mainly cellulosic material. Some cellulosic materials which form burr on the animal have to be removed. The method consists of hydro extracting with 6-8% H2SO4 then drying at 60-70C, heating at 105-110C and finally raising the temperature to 150C. After carbonizing fabric is passed through milling machine when hydrocellulose and hemicelluloses falls down, thus removing all vegetable impurities from wool.

5. Milling:

It is done after or before dying process of milling is based on proper of wool, that when it is wet and subjected to pressure it felts permanently specially in presence of soap, alkali and acid. Felting gives denser or more durable fabrics of more pleasing appeal. Milling can be of three different types: soap, grease, and acid.

6. Bleaching:

Yellowish color on the fabric may be removed only if the goods are to be sold as white or light colors where as for dark colors are washed by dye. Bleaching can be done by • SO2: It is a cheap process known as staving. In this case sulphur is burnt in chambers where the wool is hanging in loop form on wooden poles. Sulphur forms sulphur dioxide which acts on the yellow coloring matter. • Hydrogen peroxide: It gives a better white light out. Fabrics are treated in winch machine i.e. without tension. Hydrogen peroxide contains acid for preservation hence

CLASS: II MSc CHEMISTRY

COURSE NAME: TEXTILE CHEMISTRY

COURSE CODE: 17CHP305B

UNIT: II

BATCH-2017-2019

sodium silicate is added to neutralize. (I.e. it acts as buffer to stabilize). Hydrogen

peroxide is heated to 40-50C. The materials are left overnight in the bleach liquor for

complete bleaching wash the fabric with water and then with dilute acetic acid, again

wash with water. This is preferred to staving. Heavy weight woolens are given this

treatment on a jigger machine. Cloth is rolled on rollers A and B, roller C can be shifted

from roller A and B squeezing. Cloth moves from A to B a number of times.

Jigger washing is done (by changing the bath) then wool is dried. When bleaching is done on

jigger machine the strength of H₂O₂ should be 4-5 times higher than for light out fabrics as on a

winch machine.

Definition of Bleaching

A process of whitening fibres or fabrics or depriving a colored material. This is brought

about by using various bleaching-agents. Generally chlorine is used for cotton and other

vegetable fibers and peroxide and sulphur dioxide for animal fibers.

Bleaching of cotton

Cotton is bleached in the raw state (as yarns) or in piece. The impurities present are

cotton wax, fatty acids, peptic substances, coloring matters and albuminoids (another mineral

matter). Although these are do not amount to more than 5% of the weight.

Bleaching of cotton is comparatively a simple process, the main operations being:

• Boiling with alkali.

• Bleaching the organic matters by some bleaching agents.

• Souring treatment with dilute H₂SO₄ or HCl.

Loose cotton

In this process, the necessary operations are:

• Steeping in warm solution of soda for some hours.

• Washing.

• Bleaching powder treatment or sodium hypochlorite.

• Washing.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: II
COURSE NAME: TEXTILE CHEMISTRY
BATCH-2017-2019

• Souring with dilute acids.

• Washing free of acids.

Cotton yarns

In principle the process employed for yarns is the same as for loose cotton, but this requires different machinery:

• Boiling in alkaline lye. This is carried out in kier-boil (6 to 8 hours) in alkaline lye (3% soda ash or 2% caustic soda on weight of cotton).

• Washing.

• Bleaching powder solution 2% Tw treatment contained in stone cistern which is provided with a false bottom.

• Washing.

• Souring with dilute acids HCl about 2% Tw.

• Washing to remove traces of acids.

• Optical bluing.

The bleaching of cotton yarns is a very straight-forward process and with reasonable care, is almost foolproof.

Cotton-pieces

By far the largest bulk of cotton-goods are bleached in the piece as this happens to be the most convenient form, the principle is similar to yarn-blending but here some alter-actions and additional operations have to be performed. These are necessary to remove factors like sizing and other chemical substances which are generally added in sizing or weaving operations. The sizing materials are starches, farinas with other substances like tallow, ZnCl₂, soaps, MgCl₂, etc., and sometimes some mineral oils. All these materials have to be completely removed if perfect results are desired. So two steps viz. singeing, and desizing become necessary.

The surface of the fabric, coming from weaving dept has a downy appearance as it is covered with nap and loose fibres. A clean surface of the fabric is absolutely necessary for further operations. The napping must be removed first, and this is achieved by singeing.

CLASS: II MSc CHEMISTRY COURSE NAME: TEXTILE CHEMISTRY

COURSE CODE: 17CHP305B UNIT: II BATCH-2017-2019

Singeing

The cotton-pieces are run at full width through the singeing machines, over a non-luminous gas

flame.

Grey-washing

The operation simply consists of running pieces through ordinary washing machines. In order to wet these out on leaving the machines, these are piled in heaps and left as such

overnight when fermentation sets in which results in hydrolysis of starch and renders it soluble in

water.

Treatment with alkaline-charge (NaOH + Na₂CO₃)

In this operation the pieces are first run through alkaline of strength of about 4% of the

weight of charge. They are run into kier. After this the pieces are run through continuous

washing machine with plentiful supply of water.

Grey-souring

In this operation, the goods are run through a washing machine containing HCl of

strength of 20 Tw. Object of this is to remove the lime completely. The goods are then well

washed.

Chemicking

The pieces are then washed free of alkali and the bleaching proper or chemicking

follows. This operation is effected in various ways. The most efficient or effective being to run

the goods in a washing machine through bleaching powder solution (10 Tw), and allow them to

lie loosely piled up overnight. The goods are then washed and run through very dilute solutions

of acids (at 20 Tw), called white-sour and again washed thoroughly to free them completely from

acids as otherwise this results in tendering of fibres. The next operation of bleaching is scotching

or opening the cloth out from rope form to its full width. After scotching the opened cloth is

dried on drying machine.

UNIT: II

CLASS: II MSc CHEMISTRY

COURSE NAME: TEXTILE CHEMISTRY

BATCH-2017-2019

Dyeing process:

Dyeing Polyester with Disperse Dyes

COURSE CODE: 17CHP305B

Polyester requires the use of disperse dyes. Other types of dyes leave the color of

polyester almost entirely unchanged. While novices happily charge into dyeing with acid dyes

(for wool or nylon) and fiber reactive dyes (for cotton and rayon), often with excellent results,

the immersion dyeing of polyester is a different story.

However, disperse dye can be used by even young children to make designs on paper, which can

then be transferred to polyester fabric, or other synthetics, with a hot iron. The possibilities are

endless, using fabric crayons, rubber stamps, painting, and even screen printing.

Dyeing of polyester

Commonly, people who have never dyed anything before will e-mail me asking how they

can dye dresses for their weddings, or their daughters' weddings. Attempting to do this would

almost always be a grave error. Immersion dyeing with polyester is not a job for beginners; it is

both more difficult and more dangerous than immersion dyeing cotton or wool. Furthermore,

most such pre-made dresses are marked "dry clean only", and you simply cannot dye a garment

that is not washable.

Immersion dyeing polyester

The difficulty with polyester dyeing is that it requires a lot of heat to get the dye into the

fiber. Boiling water is not hot enough to do the job by itself, so a noxious-smelling carrier

chemical must be added, for immersion dyeing, unless newer low-energy disperse dyes are used.

Polyester dye actually transfers to the fibers best at very high temperatures, the temperature of a

hot iron, or higher. Before you decide to try immersion dyeing polyester, study the directions at

ProChem (see below, under "Specific Instructions") to get an idea of how difficult it may be.

Prepared by Dr. G.Ayyannan, Department of Chemistry, KAHE

7/17

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: II
BATCH-2017-2019

Novel forms of disperse dyes

However, even if you should not attempt to dye your own formal dress, there are many fun projects that are highly suitable to even the least experienced fabric artist. Crayons

Crayola, the maker of wax crayons for paper, also makes fabric crayons for use on polyester and other synthetics. These crayons consist of disperse dye, and can be found in most fabric or crafts stores, even in discount department stores such as Target or WalMart. You do not draw directly on the fabric; instead, you draw on paper - or have your children draw on paper! - and then iron the resulting pictures onto the fabric. (Be sure that any writing is backwards on the paper, since it will come out reversed on the fabric.) The crayons are not particularly bright on paper, but become vivid when heat-transferred to the fabric. For an example, see my page Iron-on Fabric Crayons for Synthetic Fibers.

Stamp Pad Ink

Disperse dye can be applied to paper with rubber stamps, and then ironed on to polyester, just like the crayons. You can use special, large-scale fabric stamps to apply other dyes to fabric, but only disperse dyes allow such fine lines that almost any rubber stamp designed for use on paper will work, if your fabric is smooth enough. Look for a product called "Heat Set Ink" at companies that sell rubber stamping supplies. Caroline Dahl's wonderful book Transforming Fabric gives source information for this material, in addition to many project ideas and beautiful inspiring photographs of works made with disperse dye on polyester.

Iron-on paintings - watercolor painting, hand painting, screen printing:

The powdered disperse dye can be mixed into paint to apply directly in any of several techniques. Just as with the Crayola fabric crayons, you can use disperse dye to paint on paper, then iron it on to your fabric. Mix the dye with enough boiling water to dissolve it, then dilute with cool water to the desired strength - trial and error must be your guide here, keeping in mind that you cannot know how intense the final color will be until you actually iron it on, as it is much more beautiful on the cloth than on the paper. See the Batik Oetoro web site and Prochem's

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: II
BATCH-2017-2019

instructions for transfer printing (via the links below) for detailed directions. If, like most irons, holes yours has in its face plate, you must be sure to move the iron around constantly during the transfer process, to prevent holes from appearing in your design, and yet you must not allow the paper transfer to move on the fabric, or the image will be blurred. A heat transfer press, such as are used in tshirt shops, would desirable. it lacks be more not only holes. but. as more importantly, reaches a higher temperature. However, at around a thousand dollars, this is far more of an investment than most individuals are prepared to make. For a more modest sum, consider the Dry Iron, without steam holes, at the Vermont Country Store's website.

Resisting dye transfer:

Here's a very simple project that can be done with disperse dye - simple in concept, that is, but very complex and beautiful in its details. As pictured in Kate Wells' Fabric Dyeing & Printing, artist Sarah Batho applied disperse dye paint to paper (you could equally well color it heavily with Crayola fabric crayons), scattered real bird feathers across her polyester fabric, then ironed the dye right over the feathers. The feathers prevented the dye from reaching the fabric, leaving a lovely delicate design of white feathers on an intense blue background. A consistently inspiring fabric artist and author, Carolyn Dahl, wrote a book called Natural Impressions: Taking an Artistic Path Through Nature with many inspirations as to the use of natural materials in applying designs to cloth; while it does not mention disperse dyes on polyester in this book, as far as I recall, some of the leaf projects, in particular, might be perfect for a similar technique. (I love Dahl's books, and recommend them highly.)

How to Tie Dye Polyester:

Tie-dyeing polyester is not a project for the novice tie-dyer. Only a real expert should even consider it. If you are just starting out, please try dyeing with fiber reactive dyes on cotton, rayon, or silk, first.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: II
BATCH-2017-2019

Immersion Tie-dyeing:

Traditional single-color tie-dye can be done by tying the dry garment, then dropping it into a hot immersion bath. See the links for directions for immersion dyeing, below. You can get interesting results by tying and dyeing once, washing out, and retying in a different pattern before dropping in another boiling dye bath of a different color. For example, a first dyeing of turquoise followed by another dyeing with fuschia will produce a purple garment with patterns of turquoise and fuschia where the ties prevented full penetration of one of the dyes. Interesting shiborit-like textures result from boiling tied polyester.

Direct Application Tie-Dyeing:

ProChem's instructions for direct application on polyester (see link under "Specific Instructions", below) can be used for a more challenging approach that will give results similar to the currently popular cotton tie-dye techniques. After applying a paint that contains special thickener paste, citric acid, dye carrier, and disperse dye, steam or pressure steam for 30 to 60 minutes to set the dye in the fabric.

Sources for Disperse Dye:

As dyeing polyester is far less popular among artists and craftspersons than the dyeing of cotton or wool, there are fewer providers of disperse dyes for home or studio use. Among them are, in the US, PRO Chemical and Dye (PROchem), and Aljo Dyes, Batik Oetoro and KraftKolour in Australia, and Kemtex and Rainbow Silks in the UK. Dye suppliers that sell Jacquard Products may carry their brand of disperse dye, iDye Poly. Some suppliers label their disperse dyes as "transfer dyes". For contact information, see Sources for Dyeing Supplies.

Specific Instructions Online:

PROchem provides excellent technical support for their products, including online explicit directions for dyeing synthetic fibers with their PROsperse line of disperse dyes:

• Solid	Shade/Immersion	on	Polyester
• Solid	Shade/Immersion	on	Nylon/Acetate
• Solid	Shade/Immersion	on	Acrylic

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: II
BATCH-2017-2019

Painting & Printing/Direct Application on Polyester
 Painting & Printing/Direct Application on Nylon

• Transfer Printing

The other US source of disperse dyes, Aljo Dyes, provides a small amount of information, as well:

Other names for synthetic fibers:

Polyester fibers are sold under various names, including the following: Crimplene, Dacron, Enkalen, Lavsan, Mylar, Tergal, Terlenka, Terylene, Trevira, Polarfleece, and Polartec. Polyester is, chemically, a fiber made of poly(ethylene terephthalate), and can be made from recycled plastic bottles. Plastics marked with the recycle logo containing a number 2 are HDPE (high density polyethylene), plastics marked with the recycle logo containing a number 4 are LDPE (low density polyethylene), and plastics marked with the recycle logo containing a number 1 are PETE (polyethylene terephthalate - e.g., Dacron, Fortrel, Mylar). A new polyester, called Corterra®, was developed in the 1990s by Shell and licensed by KoSa; it is composed of polytrimethylene terephthalate, and is dyed with disperse dyes like other polyesters.

Nylon

Nylon, chemically a form of polyamide, is sold as Antron. The form described as Nylon 6,6 is stretch nylon, sold as Ban-Lon and BriNylon. Nylon 6 (polycaprolactam) is sold under the names Akulon, Amilen, Carpolan, Enkalon, Grillon, and Perlon. Nylon 11 is sold under the name of Rislan.

Polypropylene should not be dyed at home or in the studio. It is popular for hiking socks and long undergarments. Names under which it is sold include Meraklon, Monolene, Polyfilene, Prolene, and Ulstron. Products marked with the recycle logo containing a number 5 are polypropylene.

Polyvinyl chloride. Products marked with the recycle logo containing a number 3 are PVC.

Acrylic is sold under names such as Orlon, Courtelle, Dralon, Leacryl, and Nitron. It is

CLASS: II MSc CHEMISTRY

COURSE NAME: TEXTILE CHEMISTRY

COURSE CODE: 17CHP305B UNIT: II BATCH-2017-2019

composed of poly(propenonitrile)(polyacrylonitrile) with small amounts of a comonomer.

Acrylic can be dyed to pale or medium shades with disperse dye.

Modacrylic is sold under names such as BHS, Creslon, PAN, and Teklan, and also, according to

Ingamells, as Lycra (which must have been a misprint). Modacrylic fibers are between 35% and

85% acrylonitrile, and are made from resins that are copolymers (combinations) of acrylonitrile

and other materials such as vinyl chloride, vinylidene chloride or vinyl bromide. Modacrylic can

probably be dyed just like acrylic.

Lycra, a spandex fiber produced by Dupont, is elastic spun polyurethane, a plastic which is also

used to construct upholstery foams. It must not be subjected to high heat, and is thus not

appropriate for use with disperse dye. Most lycra garments contain a high percentage of cotton,

which can be dyed with cool water fiber-reactive dye; often, the undyed lycra does not even

show on the outside of the garment.

Ingeo is a "natural" polylactate fiber derived from corn. It can be dyed only with disperse dyes,

like polyester, but it shows lower washfastness with these dyes than does polyester.

Safety:

While the immersion dyeing with disperse dyes is difficult and somewhat dangerous, due

to the temperatures required and the carrier chemicals, the disperse dye itself is considered

nontoxic. Even children can engage in these crafts, if an adult is available to do the ironing step

for them. All powdered dyes are dangerous to breathe, like most powdered substances. Even

many foods can be quite damaging when inhaled in powdered form. Avoid breathing dye

powder. Wear a dust mask while measuring any dye powder, and wipe up spilled dye, of any dye

class, as it may turn back into powder when it dries.

Another safety issue is allergenicity. It seems that disperse dyes on fabric are more likely to

cause allergies than other textiles dyes. Fiber reactive dyes are known for their ability to cause

serious allergies to those who carelessly breathe the dye powder while measuring it out, but,

once they are chemically bonded to the fiber and excess dye has been fully washed out, they are suitable for even the chemically sensitive. Disperse dye, in contrast, may cause allergic reactions

Prepared by Dr. G.Ayyannan, Department of Chemistry, KAHE

12/17

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B UNIT: II

COURSE NAME: TEXTILE CHEMISTRY

BATCH-2017-2019

in susceptible people, just by their wearing clothing dyed with it. This may be due to some dye molecules rubbing off of the fiber. This problem, though not at all common, may be seen with commercially dyed fabric as well as home-dyed fabric, and may be partially responsible for the preference for natural fiber clothing among the chemically sensitive.

Dyeing of Nylon

Classes of dye most frequently used to dye or print nylon textile materials are acid, disperse and premetallised dyes.

Acid Dyes

Acid dye molecules are sodium salts and will dissociate in an aqueous dye liquor to form the acid dye anion which are negatively charged. The dye anion is attracted to the positively charged groups in the nylon polymer. The cationic sites are the terminal amino groups. The wash-fastness of acid dyed or printed nylon textile materials is fair to good which depends on the specific acid dye, as the strength of the bond between the dye molecules and the nylon polymer varies with different dyes. If the bond is weak, alkaline detergents can cause easy removal of color from nylon textile materials. The good light-fastness of acid dyed and printed nylon textile materials is due to the electron arrangement within the acid dye chromophores which is reasonably resistant to the degrading effects of the sun's ultraviolet radiation. Under humid conditions the light-fastness of acid dyed or printed textile materials is detrimentally affected as the acid dye anion will react with oxygen from the atmosphere causing degradation of the dye anion, which results in fading.

Premetallised dyes

Premetallised dyes contain a metal atom which is chromium. The presence of the metal atom provides enough stability to resist the degrading effects of the sun's ultraviolet radiation. The stable electron arrangement of the dye molecule is responsible for the good light-fastness of premetallised dyed or printed nylon textile materials. The premetallised dye anion is larger than the acid dye anion and has a greater substantivity to nylon textile materials compared with the acid dyes. This result in premetallised dyed and printed nylon textile materials having very good

UNIT: II

CLASS: II MSc CHEMISTRY COURSE CODE: 17CHP305B COURSE NAME: TEXTILE CHEMISTRY

BATCH-2017-2019

wash-fastness.

Disperse dyes

The molecules of disperse dyes are non-polar and hydrophobic. Disperse dyes have a fair to good light-fastness on dyed and printed nylon textile materials. This due to the aromatic or ring structures within the disperse dye molecules which provide the stable electron arrangement the degrading effects of the radiation. which resists sun's ultraviolet The good wash-fastness of disperse colored nylon materials is due to hydrophobic and non-polar nature of disperse dyes making it difficult for their molecules to be washed out of the polymer system of the nylon filament or staple fiber.

Modified nylon fibres

Specialty yarns or modified nylon yarns are made by melt spinning similar to conventional nylon either with a chemically modified polymer or through a process involving physical modification. The wide spectrum of such yarns includes diverse products such as deepdyeable nylons, anti static nylon, hollow fibers etc. These modified products offer a number of advantages and also lead to value addition to the product. To impart different dyeability to nylon yarns, the following modifications have been carried out:

- 1. As it is known, the amino end groups in nylon 6 have a predominant effect on the dye pick-up when dyed with acid dyes. The amino end groups are the functional sites in nylon for the adsorption of anionic dyes in acidic solution. Thus by varying the amino end groups in the polymer, light shade dyeable yarns as well as ultra deep shade dyeable yarns can be produced. Light shade dyeable nylon yarns can be produced by using an acidic stabiliser which reacts with the free amino group, thus reducing the amino groups. In other words, the amino end group is converted into carboxyl end group. On the other hand, for production of ultra deep dyeable nylon yarns, the amino end group content is increased by replacing the carboxyl end groups of nylon with amino groups using a diamine stabiliser.
- 2. Cationic dye able fibers can be produced by modifying nylon polymer with addition of an anionic sulphonate group. This can be achieved by using a stabilizer during polymerization which has one or two carboxyl groups (which react with the amino end group of nylon) and one

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: II
BATCH-2017-2019

or two sulphonate groups, which makes the polymer anionic. An example of such a stabilise is disodium 3,5-disulphobenzoic acid which converts one amino group into two sulphonate groups. Apart from this, modification of nylon to produce antistatic nylon has been recently carried out. In general, artificial or synthetic polymers are poor conductors of electricity due to their low moisture content and thus create problems related to electrostatic charge development. of This following can be done by any the routes: 1. Chemical modification of nylon polymers by introducing polyether or polyacrylamide during polymerization make the nylon polymer hydrophilic. to

- 2. Physical blending of nylon polymer with hydrophilic polymers such as polyether during melt spinning.
- 3. Adding electrical conducting materials such as carbon, metal or metal oxide powders to the melt during melt spinning. Additionally, flame retardant fabrics are gaining importance in today's textile industry and thus, flame retardant nylon fabrics are also produced. It can be done be achieved by either mixing phosphorus containing compounds or halogen containing compounds to the polymer during the melting stage or during polymerization. On the other hand aromatic raw materials can be used to produce wholly aromatic polyamide with very rigid chains, which results in intrinsic flame retardant propertyi. Apart from the above developments, research work has been done on various other methods of modification of nylon fibres. Plasma treatment of Nylon 6 fiber has been reported by Zhu et al.ii, to improve absorbency of the fabric. In the study nylon 6 fabrics with three different moisture regains were treated with atmospheric pressure plasma and it was observed that the plasma treated fibers had higher oxygen concentration than the control fibers. The scanning electron microscope showed that with the 9.70% moisture regain fibers, the surface layer of the fibers was partially peeled off after plasma treatment. With contact angle measurement it was confirmed that the absorbency of the fibers had improved since the contact angle of the fiber had reduced. Using acid dye and disperse dye, respectively, greater dye uptake was observed in treated fibers compared to control fibers. It may be attributed to the fact that the increased amount of amine end-groups induced by plasma treatment would be playing an important role in enhancing the formation of ionic linkage with acid dyes for plasma-treated nylon fibers. The dyeability of the treated fibers with 1.23% moisture regain was a little better than that of the

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: II
BATCH-2017-2019

other two treated groups. In addition, no significant change in single fiber tensile strength was observed among control and treated fibers.

Some major nylon fibre uses

- **Apparel:** dresses, foundation garments, hosiery, raincoats, ski apparel, windbreakers, swimwear, and cycle wear.
- Home Furnishings: Bedspreads, carpets, curtains, upholstery.

Industrial and Other Uses: Tire cord, hoses, conveyer and seat belts, parachutes, racket strings, ropes and nets, sleeping bags, tarpaulins, tents, thread, monofilament fishing line, dental floss

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: II
COURSE NAME: TEXTILE CHEMISTRY
BATCH-2017-2019

POSSIBLE QUESTIONS UNIT-II PART-A (20 MARKS)

(Q.NO 1 TO 20 Online Examination) PART-B (2 MARKS)

- 1. Define scouring.
- 2. Write any two fastness properties of dyed materials
- 3. What is meant by bleaching?
- 4. Define dyeing.

PART-C (6 MARKS)

- 1. Explain in detail for the removal of impurities in raw cotton.
- 2. Write short notes on i) scouring ii) Bleaching iii) desizing
- 3. Explain the following terms (i) kierboiling ii) chemicking
- 4. Define scouring. Explain the scouring principles for the removal of impurities in raw cotton and grey cloth.
- 5. Explain the various steps involved in the dyeing of Terylene
- 6. Explain the various steps involved in the dyeing of wool.
- 7. Define the process of desizing. Explain the principles involved in desizing on raw cotton.

S.No	Question	Option 1	Option 2	Option 3	Option 4	Answer
1.	Which is the second step of pre-					
	treatment in dyeing process?	Bleaching	Singeing	Desizing	Scouring	Desizing
2.	Jet-dyeing machine is commonly				None of the	
	used for dyeing of	Cotton	Polyester	Wool	above	Polyester
3.					Natural	
	The desizing process mainly removes	Wax and tallow	Dirt and colour	Starch	impurities	Starch
4.	Batch-wise scouring can be carried					
	out in	Winch	Jigger	Kier	J-Box	Kier
5.	The most important ingredient of a			Emulsifying		
	scouring composition is	Wetting agent	Alkali	agent	Sodium silicate	Alkali
6.		Sodium		Hydrogen	Sodium	Hydrogen
	Wool and silk can be bleached with	hydrosulphite	Sodium perborate	peroxide	hypochlorite	peroxide
7.						Remove
		Remove				protruding
		protruding fibres		Cut long threads		fibres
		fromfabrics		from	None of the	fromfabrics
	Singeing of cotton is carried out to	surface	Impart luster	fabricsurface	above	surface
8.	Dyeing of polyester is carried out by				None of the	
	using	Acid dyes	Disperse dyes	Direct dyes	above	Disperse dyes
9.	Vinyl sulphone Reactive dyes are				None of the	
	applied on cotton under	alkaline pH	neutral pH	acid pH	above	neutral pH
10.	Bleaching of cotton fabric is carried	Sodium		Hydrogen	Melamine	Hydrogen
	out by	Hydroxide	Hydrochloric acid	peroxide	formaldehyde	peroxide
11.					Water	
	Which of the following is not a type		Water soluble	Oil soluble	suspendible	Oil soluble
	of developer?	Dry powder	developer	developer	developer	developer
12.	For how long is a penetrant allowed					10 to 30
	to soak in cracks?	5 to 15 minutes	10 to 30 minutes	15 to 35 minutes	20 to 40 minutes	minutes
13.	During sizing, pick up will increase if	Sizing speed	Squeezing	Position of	Temperature of	Position of

		increases	pressure increase	immersion roller islowered	drying cylinder decrease	immersion roller is
				Islowered	s	lowered
14.	Penetrants of which colour are not				3	lowered
1	used?	Red	Blue	Green	Yellow	Red
15.						Lipophilic
	Which of the following is not an	Solvent		Lipophilic pre-	Lipophilic post-	pre-
	excess penetrant remover?	removable	Water washable	emulsifiable	emulsifiable	emulsifiable
16.	Which of the following is not a			Vapour		
	method of pre-cleaning?	Solvent	Acid blasting	degreasing	Media blasting	Acid blasting
17.	Which of the following is not a type					
	of penetrant application?	Dipping	Spraying	Brushing	Pouring	Pouring
18.	Which of the following defect is not	Non-metallic				Non-metallic
	detected by dye penetrant test?	inclusions	Leaks	Cracks	Forging defects	inclusions
19.	Bleached cotton fabric was sent to a					
	laboratory for determination of					
	copper number, which is an estimate					Reducing
	of the presence of	Hydroxyl groups	Carboxyl groups	Reducing groups	Oxidizing groups	groups
20.	During bleaching of cotton with	Sodium	,		Sodium	Sodium
	H2O2, the stabilizer used is	Hydroxide	Sodium silicate	Acetic acid	carbonate	silicate
21.	The processes for sanforization is	Improvement in	Dimensional	Improvement in	None of the	Dimensional
	used for	strength	stability	crease recovery	above	stability
22.	The process of adding pigments or					
	insoluble dyes to a solution before it					
	is extruded through the spinneret is					
	called what type of dyeing?	product	Yarn	Solution	Direct	Solution
23.	Which dyes are water-soluble					
	components that for insoluble colored					
	molecules in the fiber during the					
	dyeing process?	Vat	Azoic	Bleach	Fabric	Azoic
24.	Scouring of cotton is carried out	Alkaline	Acidic conditions	Neutral	None of the	Alkaline

	under	conditions		conditions	above	conditions
25.	What is "an insoluble, finely divided substance, such as titanium dioxide, used to deluster or color fibers, yarns					
	or fabrics"?	Washing	Yarn	Light	Pigments	Pigments
26.	Which is also known as piece dyeing, which dyeing fabric after it has been constructed?	Fiber	Solution	Product	Fabric	Fabric
27.	Which dyeing is used for acrylic fibers colored with cationic dyes?	Yarn	Gel	Reactive	Sulfur	Gel
28.	Which of the following is not a variety of silk?	Muga	Eri	Tassar	Merino	Merino
29.	The process of burning protruding fibers to deliver a smooth fabric thesurface	Singeing	Bleaching	Shearing	Cropping	Singeing
30.	The reactive dyes are applied to a cellulosic fiber in an alkaline dye bath,they forms which bond with hydroxyl group of the fiber by chemicallyreacting with fiber?	Covalent bond	Salt Linkage	Hydrogen bond	None	Covalent
31.	The application of color to the whole body of a textile material with somedegree of fastness	Dyeing	Printing	Discharge style	None	Dyeing
32.	In which stage of the life cycle of silk moth forms silk fibres	Larva	Pupa	Egg	Adult	Pupa
33.	The process of taking out thread from the cocoon for use as silk is called	Rolling	Spinning	Reeling	Grading	Reeling
34.	Cheapest desizing can be done which method?	Higher breaking strength	Increased elongation at break	Increased pliability	None of the above	Increased elongation at break
35.	Find the odd one out:	Shearing	Scouring	Moulting	Dyeing	Moulting

36.	The process of washing fleece to					
	remove dust, dirt and grease is called	Reeling	Scouring	Shearing	Grading	Scouring
37.	Silk fibre obtained from silk moth is?	Carbohydrate	Fat	Protein	Sugars	Protein
38.	The process of selecting parent sheep					
	for obtaining desirable baby sheep is		Selective			Selective
	called	Shearing	breeding	Grading	Sericulture	breeding
39.	Wool is graded according to its	colour	texture	length	All of these	All of these
40.	Shearing of wool in sheep is done					
	during	Winter	early spring	autumn	early summer	early spring
41.		Electrostatic		Vander waal's	None of the	Electrostatic
	Acid dyes on nylon are held by	attraction	hydrogen bonding	forces	above	attraction
42.	Dyes suitable for sublimation transfer				None of the	
	printing are	Acid dyes	Disperse dyes	Direct dyes	above	Disperse dyes
43.						curing at 140
	Fixation of Disperse Dyes on	atmospheric		curing at 140 °C	None of the	°C for 5
	Polyester is carried out of	steaming	pressure steaming	for 5 minute	above	minute
44.						Solution
	Dope dyeing is also known as?	Solution pigments	Garment dyeing	Package Dyeing	Yarn Dyeing	pigments
45.	Gummy materials can be removed by					
	which one?	Bleaching	Singeing	Desizing	Scouring	Desizing
46.	Hairy and projecting fibres can be					
	removed by which one?	Bleaching	Singeing	Desizing	Scouring	Singeing
47.	Removing of impurities from textile					
	materials can be done by?	Bleaching	Singeing	Desizing	Scouring	Scouring
48.	Localised dyeing is also called as?	Printing	Desizing	Singeing	Bleaching	Printing
49.	What is the example for synthetic					Poly vinyl
	sizing agent?	Poly vinyl alcohol	Starch	Glue	Gelatinete	alcohol
50.	Which is the odd one for Yarn	→				
	dyeing?	Skein dyeing	Beam dyeing	Package Dyeing	Jet dyeing	Jet dyeing
51.	Which is the example for bleaching	Diluted Sodium	Diluted Sodium	Diluted Sodium	None	Diluted

	agent?	hypochlorite	hypophosphate	hypochloride		Sodium
						hypochlorite
52.	Which is bleached in the raw state or				a	
	in piece?	Cotton	Wool	Nylon	Silk	Cotton
53.	What is the name of solvent used for			Cupraamonium		
	Acrylic fibre?	DMF	dil.Sulfuric acid	hydroxide	None	DMF
54.	Which type of enzyme is used for					
	scouring?	Pectinase	Cellulase	Catalyase	α-amylase	Pectinase
55.	Which type of enzyme is used for					
	desizing?	Pectinase	Cellulase	Catalyase	α-amylase	α-amylase
56.	Which type of enzyme is used for bio					
	polishing of cotton?	Pectinase	Cellulase	Catalyase	α-amylase	Cellulase
57.	Which type of enzyme is used for					
	peroxide killers?	Pectinase	Cellulase	Catalyase	α-amylase	Catalyase
58.	Bleaching with hypochlorite pH					
	should be?	Acidic	Basic	7	None	7
59.						No Tg for
	What is the Tg value of cotton?	No Tg for cotton	10 °C	1000 °C	50 °C	cotton
60.	Hydrogen peroxide bleaching is					
	carried out of	room temperature	50-60 °C	80-100 °C	100-120 °C	80-100 °C

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: III
COURSE NAME: TEXTILE CHEMISTRY
BATCH-2017-2019

<u>UNIT III</u> SYLLABUS

Finishing: Finishes given to fabrics- mechanical finishes on cotton, wool and silk, method used in process of mercerizing –anti-crease and anti-shrink finishes –water proofing.

Finishing:

Various finishing processes are applied to dyed fibers or cloth. These processes are essential to produce lustre resistance to shrinkage and creasing the other desirable qualities of feel and appearance. Dyeing processes are generally carried out using water as the medium. Hence purity of water is very important. It is necessary to soften water if not pure. The above operations may not be carried out in stated sequence. For example, in the dyeing of wool, first of all finishing treatments are carried out and then the dyeing operations are carried out. On the other hand, in the dyeing of cotton, the dyeing process may be can'ied out in between the two preparatory treatments.

POSSIBLE QUESTIONS
UNIT-V
PART-A (20 MARKS)

(Q.NO 1 TO 20 Online Examination)
PART-B (2 MARKS)

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: III
COURSE NAME: TEXTILE CHEMISTRY
BATCH-2017-2019

- 1). What is meant by Quinonoid dyes?
- 2). Write the structure- of Anthroquinone dye.
- 3). Define Mordant dye.
- 4). Write any one preparation of Rhodamine B.
- 5). Write any three uses of Indigo dye.

PART-C (6 MARKS)

- 1). How is alizarin manufactured? Write a note on its use as a dye. Discuss its structure.
- 2). Write the preparation, structure and applications of Diphenyl methane dye auramine.
- 3). Name a triphenyl methane dye and a vat dye. Give the synthesis of dyes named by you.
- 4). Give the preparation and uses of the following i)Pararosaniline ii) tetra haloindigo Rhodamine B.
- 5). Give the preparation and uses of i)Malachite green ii) Phenolphthalein
 - iii) Crystal violet
- 6). How will you prepare the following indigo dyes
 - i) Indigo dyes
- ii) Indigosol
- iii)tetrahaloindigo

S.No	Question	Option 1	Option 2	Option 3	Option 4	Answer
1.	Mercerization of cotton is carried by	Sodium	Sulphuric		None of the	
	using	hydroxide	acid	Acetic acid	above	Sodium hydroxide
2.		Reduction of	Increase in	Increase in		
	Crease resist finising of cotton fabric	tensile	dimentional	moisture	Increase in	Increase in
	doesnot leads to	strength	stability	regain	bending length	moisture regain
3.	Caustic soda mercerization of cotton	Strength and			None of the	
	iscarried out for improvement a of	luster	Whiteness	Wetting	above	Strength and luster
4.	Decatising process is used for				None of the	
	finishing of	Cotton	polyester	Wool	above	Wool
5.				Flame	7	
	Limiting oxygen index is determined	Wash and	Water	retardant	None of the	Flame retardant
	to testthe efficiency of	wear finishing	proofing	finishing	above	finishing
6.	Range of Maturity Ratio (M) of cotton					
	is	0 to 1	0 to 100	0.2 to 1.2	0.5 to 1.5	0.2 to 1.2
7.					first increases	
	When twist is increased in a spun			does not	and then	first increases and
	yarn, itsstrength	increases	decreases	change	decreases	then decreases
8.			For		When two fold	
			producing	When sizing	yarn has to be	
	Sectional warping is considered	For executing	striped	is considered	used inwarp	For producing
	morepractical than beam warping	big orders	fabrics	necessary	and weft	striped fabrics
9.				Mechanical	Durable	
	Chemical finishes are also called?	Dry finishes	Wet finishes	finishes	finishes	Wet finishes
10.	Which of these fibres are non-					
	biodegradable?	Cotton	Jute	Wool	Nylon	Nylon
11.	What is the hardness suitable for					
	textile wet-processing?	30-40ppm	10-20ppm	40-50ppm	20-30ppm	40-50ppm
12.	Which test is done to evaluate	BAN	PAN	TAN	None	BAN

	mercerization efficiency?					
13.	Mercerization is carried out with					
	NaOH of	10-15% conc	18-25% conc	5-10% conc	25-35% conc	18-25% conc
14.		A synthetic	A colorless	A fluorescent	An optical	
	An optical brightener is	bluing agent	dye	compound	whitener	A colorless dye
15.	Shriking is also known as?	Sanforizing	Mercerizing	Bleaching	Spinning	Sanforizing
16.		Zirconium				
		sodium				Zirconium sodium
	Chemical suitable for discharge	sulphoxylate	Hydorgenper	Sodium	None of the	sulphoxylateformal
	printing is	formaldehyde	oxide	silicate	above	dehyde
17.	Which process can improve luster and			Mercerizatio		
	smoothness of the cotton fabrics?	Bleaching	Scouring	n	Sizing	Mercerization
18.	Which is the last treatment of wet					
	processing?	Mercerizing	Marketing	Printing	Finishing	Finishing
19.	The more common agents used			Neutral in	None of the	
	for discharge printing are	oxidizing type	reducing type	reaction	above	oxidizing type
20.	This process facilitates easy handling					
	and storage	Hydration	Dehydration	Mounting	Clearing	Mounting
21.	Which of the following has the poor					
	water absorbency ?	Polypropylene	Viscose	Cotton	Wool	Polypropylene
22.	Which of these is not a property of			absorbs		
	nylon?	light weight	strong	water	wrinkle free	absorbs water
23.	Wheih of the following can absorb					
	over 90% of its own mass of water					
	and does not stick to wound?	Rayon	Gun cotton	Cotton	Thiokol	Rayon
24.	The highest washing fastness in a					
	dyed cotton fabric would be obtained				Van der Waal's	
	if the dye-fibre bond is	Ionic	Hydrogen	Covalent	force	Covalent
25.		The rough	Fabric left	The profit	The finished	The finished off
	What is the selvedge of the fabric?	edge where	over when	made by the	off edge of the	edge of the fabric

		the fabric has been cut	products have been cut out	fabric manufacturer	fabric	
26.	What is the name of process which involves pulling and twisting of	a: ·		a		g : :
	strands of a fibre?	Ginning	Weaving	Spinning	None	Spinning
27.	The discharging agent used in discharge printing of cotton with reactive dyes is	Citric acid	Sodium dithionite	Thio-urea dioxide	Sodium formaldehyde sulphoxylate	Sodium formaldehyde sulphoxylate
28.	A dye is applied on a fibre using Na2S2O4 as an auxiliary. Washing fastness of the dye on fibre is good. The correct combination of the dye and the fibre is	Cationic dye, acrylic fibre	Vat dye,	Acid dye,	Reactive dye, cotton fibre	Vat dye, cotton fibre
29.	Which is the most prevalent beach?	Sodium hypochlorite	Hydrogen sulphide	Hydrogen peroxide	Sodium chloride	Hydrogen peroxide
30.	Which one is not sensitive to weak acids?	Silk	Wool	Cotton	Nylon	Wool
31.	Tie and dye is a	Organic peroxygen bleaches	Reducing bleaches	Photo sensitizing agents	Inorganic peroxygen bleaches	Organic peroxygen bleaches
32.	Which one is the powerful oxidizing agent?	Sodium chloride	Sodium hypochlorite	Sodium perborate	Sodium bromate	Sodium hypochlorite
33.	Hydrogen peroxide is not used in	Jute	Cotton	Nylon	Silk	Nylon
34.	Polyester fibre have been bleached with Which type of chloroisocyanic					
	acid?	Tri and Tetra	Di and Tri	Di and Tetra	Penta and tetra	Di and Tri
35.	Wool is sensitive to	Sodium bicarbonate	Nitric acid	Potassium hydroxide	Sodium hydroxide	Potassium hydroxide
36.	Which is composed of simple amino acids and contains no disulfide bonds?	Rayon	Silk	Nylon	Polyester	Silk

37.	At home fabric can be decorated	Roller	Block	Screen		
	easily by	printing	printing	printing	Stencil printing	Block printing
38.	In which type of mineral acids do		Concentratio			
	cause wool to swell and gelatinize?	Dilute	n	Reducing	Oxidizing	Concentration
39.			Binding		Decorative	
	Garment dyeing is also known as	Piece dyeing	dyeing	Resist dyeing	dyeing	Piece dyeing
40.	Which two fibre has been traditionally	Cotton and	Nylon and	Jute and		
	bleached by peroxide?	Wool	Silk	Rayon	Wool and Silk	Wool and Silk
41.			Chemical		Semi durable	
	Mechanical finishes are also known as	Wet Finishes	Finishes	Dry Finishes	Finishes	Dry Finishes
42.	Which is the reduction of a fabric or a					
	garment in size?	Shrinkage	Desizing	Designing	Scouring	Shrinkage
43.	Fabrics that are treated for pre-					_
	Shrinking are labelled as	Sanfronished	Anti-Shrink	Shrink-Proof	All of these	All of these
44.	Which is the another aspect of water	Water	Water			
	proofing?	repellent	resistant	Water vapor	Damp proofing	Damp proofing
45.	How many types are there in integral					
	water proofing system?	Three	Two	Four	Five	Two
46.	In which system use fatty acid to					
	block pores within the concrete					
	preventing water passage	Hydrophilic	Hydrophobic	Anisotropic	Hydrostatic	Hydrophobic
47.	Which makes woven cotton fabric		Mercerizatio			
	stronger,more lustrous	Bleaching	n	Scouring	Desizing	Mercerization
48.	Pre-shriking is a Which type of			Mechanical	Durable	Mechanical
	finishes?	Dry finishes	Wet finishes	finishes	finishes	finishes
49.	Finishes may be classified into	Two	Four	Five	One	Four
50.	Which is the process of removing the					
	sizing of the warp yarns?	Designing	Desizing	Finishes	Scouring	Desizing
51.		Hydrogen	Sodium	Sodium		-
	Which one is the powder bleach?	peroxide	chlorite	perborate	Peracetic acid	Sodium perborate

52.	Which is refers to beating or hand					
	pounding of a fibre?	Tendering	Beetling	Pleating	Decatizing	Beetling
53.	What is the colour of bleached wool	Colourless	Yellow	gray	Pink	yellow
54.			Improved			
			reactions			
		Increased	with a	Improved		
	Which one is the effect of	ability to	variety of	strength/elon		
	mercerization?	absorb dye	chemicals	gation	All the above	All the above
55.			Chainless	Batch-up		
		Chain	mercerizatio	mercerizatio		
	Which is Cloth mercerization?	mercerization	n	n	All the above	All the above
56.	Roller and clearer card is used for				Man-made	
	carding of	Cotton	Cotton waste	Wool fibres	fibres	Cotton waste
57.		Internal	External	Both (A) and		
	Super finishing is largely used for	surfaces	surfaces	(B)	Flat surfaces	External surfaces
58.	Which is not a type of dry		Hand	broken and		
	processing?	Sand blasting	scraping,	tagging	Acid wash	Acid wash
59.		caustic soda	shrinkage	alignment of		
		treatment of	treatment of	yarns in a		shrinkage
	What is Fulling?	cotton	wool	fabric	whitening	treatment of wool
60.		Semi durable	Permanent	chemical		
	Which is water proof finish?	finishes	finishes	finishes	None	Permanent finishes

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: IV
COURSE NAME: TEXTILE CHEMISTRY
BATCH-2017-2019

<u>UNIT IV</u> SYLLABUS

Types of Dyes: Quinonoid dyes-examples and structure-Anthroquinone and Mordant dyes-synthesis and applications of Alizarin-Phthalocyanin dyes-Copper Phthalocyanin-synthesis and applications.

Diphenylmethane dyes- Auramine-Triphenylmethane dyes-Malachite green, Crystal violet, Pararosaniline-preparation and applications.

Indigo dyes-preparation and application-derivatives of Indigo- synthesis and uses of Indigosol and tetrahaloindigo.

Phthalein dyes-Phenolphthalein- preparation and applications.

Xanthene dyes-Rhodamine B, Fluorescein-Eosin- preparation and applications.

Definition:

A dye or a dyestuff is usual(v a coloured organic compound or mixture that may be used for imparting colour to a substrate such as cloth, pape/: plastic or leatIler in a reasonably permallent fashioll.

A dye is a coloured substance but all coloured substances are not dyes. Thus a dye should fix itself on the substrate to give it a permanent coloured appearance. Thus, azobenzene is not a dye even though it has red colour, as it cannot be attached to substrate. However, congo red is a dye as it can be applied on cotton and retained by it. Thus, the dyes should have certain groups which help the attachment to the fibre.

$$N=N$$

Azobenzene (Red coloured hut not a dye)

White Dye:

Some colourless compounds are used as the optical brighteners. They may also be called as the *white dyes*. They have the special property of absorbing ultraviolet light and

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: IV
COURSE NAME: TEXTILE CHEMISTRY
BATCH-2017-2019

re-emitting the visible light so that the fabric appears bright.

Pigment:

The coloured substance which is insoluble in water or other solvents is called a pigment. Thus the application of dye and pigment will be different. A dye is applied in the form of a solution, whereas the pigment is applied in the form of a paste in a drying oil, in which it is insoluble

Requisites of a True Dye:

All coloured substances are not dyes. However, the requisites of a true dye are as follows:

- (i) It must have a stable colour.
- (if) It must have an attractive c%ur i.e., it should no! undergo struc/ura/changes readiZ)'-
- (iii) It must be able to attach itself to material frolll solution or to be capable to fixed 01/it.

For example, azobenzene is coloured but cannot fix itself to a fabric. Therefore, azobenzene is not a dye. Further, a dye may not be able to dye all types of substrates. For example, picric acid is able to dye silk or wool a permanent yellow but not cotton. Thus, a dye either forms a chemical union with the substrate being dyed or it may get associated with it an intimate physical union.

- (iv) It must be solu! J.le in water or must form a stable and good di:.persion in watel: Alternatively, it mu; l be soluble in the medium other than water. However, it is to be remembered that the pick lip ~f the dye from the medium should he good.
- (v) The substrate to be -(tved must have a natural affinity for an appropriate dye and must be able to absorb it from solution or aqueous dispersion. The presence under suitable conditions of concentrat ioll. temperatlire and pH.
- (vi) When a dye isfixed to a substrate, it must be filst to washing, dry cleaning, perspiration, light, heat and other agencies. It must be resistant to the action of water, acids or alkalis, particularly the latter due to the alkaline nature of washing soda and washing soap. There is probably no dye which can be guaranteed not to alter shade under all conditions. (vii) The shade and fastness of given dye may vary depending on the substrate due to different interactions of the molecular orbitals of the dye with the substrate, and the ease with which the dye may dissipate its absorbed energy to its environment without itself decomposing.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: IV
COURSE NAME: TEXTILE CHEMISTRY
BATCH-2017-2019

Anthroquinone:

Anthraquinone. the basic system of these dyes, has a faintly yellow colour, the edge of its long wave extends into the visible spectrum (Amal' 327 nm). It is not itself a dye. The introduction of relatively simple electron donors gives anthraquinone compounds which, according to the strength of the electron donors (OH < NH2 < NR2 < NHAr), absorb m any desired region of the visible spectrum. The position of the substituents in anthraquinone not only intluences the absorption maximum but also some of the other properties. For exa.mple. anthraquinone denvatives that have hydroxyl or amino groups m the ~-position generally exhibit better resistance to sublimatIon, better solubility and better affinity for textile substrates than a-substituted compounds. Dyes based on anthraquinone and related polycyclic aromatic qUll10nes are of great Importance. Many of the most light-fast aCid, mordant, disperse, and vat dyes are of this kind. The chromophore is the quinonoid group> C = O.

- (a) Anthraquinone Mordant Dyes: These contain groups such as hydroxyl or ammo group, which can combine with metal ions so as to from insoluble compounds called lakes. The colour of the lake depends upon the mordant, i.e., the metal used. Some of the important anthraquinone mordant dyes are as follows:
 - (i) Alizarin: It is 1, 2-dihydroxyanthraqumone. It is also known as mordant red 11. Previously it-as obtained from the roots of the madder plant now-a-days it IS obtained by heating. under pressure, silver salt (sodium anthraquinone-2-sulphonate, so called because of its silvery crystals), caustic soda. potassium chlorate and water in a steel autoclave at about 180°C. The resulting melt is blown into water and acidified to decompose the sodium alizarate, the precipitated alizarin is filtered, washed and llsed as a 20 per cent paste.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: IV
COURSE NAME: TEXTILE CHEMISTRY
BATCH-2017-2019

Alizarin is a red crystalline solid insoluble in water but s?luble in alcohol and alkali. It is a mordant dye and combines, with mordants, *i.e.*. metallic hydroxIdes, to fOlm coloured insoluble compounds called *lakes*. The colour of the lake depends upon the mordant. *i.e.*. cation used. The colours of the lakes along with the respectIve mordant are given as follows:

(ii) Alizarin Orallge: It is obtained by nitrating alizarin in the presence of boric acid

(iii) Alizarin Red S: II is obtained by the sulphonation of alizarin with fuming sulphuric acid.

(iii) AliztIrill BIlle: It is obtained by reducing alizarin orange to 3-aminoaltzarin followed by

Skraup's synthesis of quinoline. *i.e.*. by heating wIth glycerol. cone. H₂SO₄ and nitrobenzene.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: IV
COURSE NAME: TEXTILE CHEMISTRY
BATCH-2017-2019

Alizann blue dyes wool a blue colour when mordanted with chromium. (v) *Alizarin Bille S*: It is the sodium bisulphite salt of allzarin blue. It is soluble in water. It when mordanted with chromium gives a reddish-blue lake.

(vi) **Mordant Black** 13: It is made by condensing aniline with 1,2, 4-trihydroxyanthraquinone and sulphonating the resulting base.

It is applied to wool with a chromium mordant and is quite fast to light and washing.

Alizarin-Phthalocyanin dves:

Metal phthalocyanine derivatives may be obtained by replacing the two hydrogen atoms of phthalocyanine (I) by metals such as copper, nickel, iron and cobalt. It actual practice metal phthalocyanine derivatives are not made from phthalocyanine (I) but are synthesIsed directly. For example, copper phthalocyanine, *i.e.*, pigment blue 15 is made by the fusion of phthalonitrile with copper metal or a copper salt.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: IV
COURSE NAME: TEXTILE CHEMISTRY
BATCH-2017-2019

Copper Phthalocyanin:

$$\begin{array}{c} O \\ O \\ C \\ O \end{array}$$

$$\begin{array}{c} O \\ C \\ O \end{array}$$

$$\begin{array}{c} O \\ O \\ O \end{array}$$

$$\begin{array}{c} O$$

Auramine-Triphenylmethane dyes

1. Auramine 0: Kern and Karo prepared this dye by heating michler's ketone WIth ammonium chloride and zinc chloride at ISO-160°C. The auramine base so obtained on treatment with Hel is converted into auramine O. The michler's ketone reqUIred for this synthesis prepared by condensing N-dimethylaniline with phosgene.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: IV
COURSE NAME: TEXTILE CHEMISTRY
BATCH-2017-2019

$$Me_{2}N \longrightarrow + C \longrightarrow + Me_{2}N$$


$$Me_{2}N \longrightarrow Me_{2}$$

Now-a-days, it is prepared by heating 4, 4'-bis (dimethylamino-phenyl) methane with sulphur, ammonium chloride and large excess of sodium chloride in an atmosphere of ammonia at 175°C. The auramine base so produced is treated with hydrochloric acid to get auramine 0. The sodium chloride is purely as a diluent.

$$Me_2N$$
 CH_2
 NMe_2
 NH_2
 NH_2

It is marketed in the form hydrochloride. It is a cheap, brilliant yellow and extensively used dye for dyeing of paper, silk, leather and Jute. The yellow colour produced by it is not fast to light and is destroyed by boiling with water, and on treatment with hot acids and alkalis. However, it is still employed due to its cheaper cost than the other dyes of comparable colour.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: IV
COURSE NAME: TEXTILE CHEMISTRY
BATCH-2017-2019

POSSIBLE QUESTIONS UNIT-V PART-A (20 MARKS)

(Q.NO 1 TO 20 Online Examination) PART-B (2 MARKS)

- 1). What is meant by Quinonoid dyes?
- 2). Write the structure- of Anthroquinone dye.
- 3). Define Mordant dye.
- 4). Write any one preparation of Rhodamine B.
- 5). Write any three uses of Indigo dye.

PART-C (6 MARKS)

- 1). How is alizarin manufactured? Write a note on its use as a dye. Discuss its structure.
- 2). Write the preparation, structure and applications of Diphenyl methane dye auramine.
- 3). Name a triphenyl methane dye and a vat dye. Give the synthesis of dyes named by you.
- 4). Give the preparation and uses of the following i)Pararosaniline ii) tetra haloindigo Rhodamine B.
- 5). Give the preparation and uses of i)Malachite green ii) Phenolphthalein
 - iii) Crystal violet
- 6). How will you prepare the following indigo dyes
 - i) Indigo dyes
- ii) Indigosol
- iii)tetrahaloindigo

S.No	Question	Option 1	Option 2	Option 3	Option 4	Answer
1.				usually diffuses		usually diffuses into
		is held to the	is an inorganic	into the interior of	lays on the	the interior of a
	The difference between a dye and	surface of the fiber	chemical that	a fiber from a	surface of the	fiber from a water
	a pigment is that a dye?	by a resin.	permeates fibers	water solution.	fiber.	solution.
2.	Phthalocyanin dyes and Copper					
	Phthalocyanin dyes are examples		Diphenylmethane			
	of which dye?	Quinonoid dyes	dyes	Indigo dyes	Phthalein dye	Quinonoid dyes
3.			the Indigofera plant			the Indigofera plant
			and the woad (Isatis			and the woad (Isatis
			tinctoria) plant and			tinctoria) plant and
			over 50 plants on		the Indigofera	over 50 plants on
		only the Indigofera	the African	the madder (Rubia	and the weld	the African
	Natural Indigo comes from?	tinctoria plant	continent	tinctorium) plant.	plants.	continent
4.				tartrazine, FD&C	chlorophyll,	
	Some examples of natural dyes	alizarin, carminic	indigo, bixin and	Blue #1, and	yellow #6 and	indigo, bixin and
	are?	acid and tartrazine	alizarin	indigo	haematin	alizarin
5.			the famous Lincoln			the famous Lincoln
	Dye made from the weld plant and	the "blue-bellied	Green worn by	the rich purple	the yellow bridal	Green worn by
	the woad plant were combined to	Yankee" color for	Robin Hood and his	color for the	gowns of the	Robin Hood and his
	make?	their tunics.	merry men.	Roman Empire.	Roman Empire.	merry men.
6.		the cochineal				
		insect (genus	mollusk shells	the madder plant		mollusk shells
	Tyrian purple comes from?	Dactylopius)	(genus Murex)	(genus Rubia)	an anthocyanin.	(genus Murex)
7.	The main colorant used to dye		a synthetic black	indigo and a		
	leather black is?	haematin	dye	mordant	no dye needed	haematin
8.			a metallic ion that		a metallic ion or	a metallic ion or salt
			attaches to fibers	a chemical that	salt added to the	added to the dye
		a dye color that	and causes a color	stops the dye	dye bath to make	bath to make dyes
	What is a mordant?	bites into the fiber.	emission.	process.	dyes more	more colorfast by

					colorfast by	forming a bridge
					forming a bridge	between the dye
					between the dye	and the fiber.
					and the fiber.	
9.				Wool is the most	There are no	Wool is the most
				easily dyed fiber	standardized	easily dyed fiber and
		If a dye is fast to	A dye that is fast on	and the resulting	methods of	the resulting color
	Which of these statements is true	light, it will also be	one type of fiber will	color will change	testing	will change the
	about the colorfastness of dyes?	fast to washing.	be fast on all fabrics.	the least.	colorfastness.	least.
10.		must be reduced to				must be reduced to
		a soluble form so			must be in an	a soluble form so
		that it can dissolve	penetrates both the	remains in its	insoluble form so	that it can dissolve
		in the dye bath and	outer ring and the	soluble form	that it can get	in the dye bath and
		get trapped in the	inner core of a piece	inside the denim	trapped in the	get trapped in the
	A Vat dye	cellulose fiber.	of fiber.	fabric.	cellulose fiber.	cellulose fiber.
11.	The greater the number the			the more intense		the more intense or
	double bonds in the carotenoid	the more water	the more non-water	or darker the	the weaker the	darker the pigment
	dyes?	soluble it is.	insoluble it is.	pigment will be.	dye color will be.	will be.
12.	What type of synthetic dye is					
	crystal violet?	Azo dyes	Triphenylmethane	Xanthene dyes	Oxazine dye	Triphenylmethane
13.	These are commonly used to					
	counterstain alum hematoxylin?	Eosin	Congo red	Safranin	All the above	All the above
14.	Eosin is widely used as an aqueous					
	or alcoholic solution with a					
	concentration of?	0.1-0.5%	0.5-1%	1-2%	2-3%	0.5-1%
15.	An azo dye is fixed on fabrics by					
	the process applicable in?	Vat dyes	Mordant dyes	Developed dyes	Substantive dyes	Developed dyes
16.	Red ink is prepared from?	Phenol	Aniline	Conmgo red	Eosin	Eosin
17.	The blue print process involves the			Iron		
	use of?	Indigo dyes	Vat dyes	compounds	Zinc compounds	Iron compounds
18.	An azo dye is formed by	A phenol	An aliphatic primary	Benzene	Nitrous acid	A phenol

	interaction of an aromatic diazonium chloride with?		amine			
19.	Alizarin belongs to the class of?	Vat dyes	Mordant dyes	Substantive dyes	Reactive dyes	Mordant dyes
20.	An insoluble coloured compound formed by action of metallic salts on dyes is known as?	Lake	Mordant	Dye intermediate	None of these	Lake
21.	Alizarin dye obtained from the root of madder plant is anthraquinone derivative. Its structure corresponds to?	1, 2-dihydroxy anthraquinone	2, 3-dihydroxy anthraquinone	1, 4-dihydroxy anthraquinone	1-hydroxy anthraquinone	1, 2-dihydroxy anthraquinone
22.	To which class of dyes does phenolphthalein belongs?	Azo dyes	Nitro dyes	Triphenyl methane dyes	Phthalein dyes	Phthalein dyes
23.	Alizarin a mordant dye is not used in?	Cotton dyeing	Printing	Painting	Chromium lakes for wood dyeing	Painting
24.	The rose odour from an ester is formed by the action of HCOOH on?	Pine oil	Olive oil	Geraniol	Turpentine oil	Geraniol
25.	Which of the following is dye?	Methyl orange	Orange I	Aniline yellow	All of these	All of these
26.	Which of the following is an example of basic dye?	Alizarin	Malachite green	Indigo	Orange I	Malachite green
27.	Which of the following is a direct dye?	Phenolphthalein	Congo red	Alizarin	Indigo	Congo red
28.	Which of the following is a vat dye and often used in dyeing jeans?	Indigo	Alizarin	Picric acid	Crystal violet	Indigo
29.	Which of the following is not a chromophore?	-N=N-	-NO	-NO ₂	-NH ₂	-NH ₂
30.	The compounds used to fix a dye to the fabric is known as?	Mordant	Azeotrope	Bleaching agents	Lake	Mordant
31.	Which one is disperse dye?	Congo red	Alizarin	Celliton	None of these	Celliton
32.	Malachite green is a direct dye for silk and wool. It is prepared by	Benzaldehyde and dimethyl aniline	Carbonyl chloride and dimethyl aniline	Benzene diazonium	None of the above	Benzaldehyde and dimethyl aniline

	condensing?			chloride with dimethyl aniline		
33.					Phthalic	
	Fluorescin, a well known dye is	Phthalic anhydride	Phthalic anhydride	Succinic acid and	anhydride and	Phthalic anhydride
	obtained by the reactions of?	and phenol	and resorcinol	resorcinol	catechol	and resorcinol
34.	Indigo shows cis-trans isomerism.					
	Which is the stable form of			Either cis or	Both of the	
	Indigo?	Cis	Trans	trans	above	Trans
35.			The chemical			
			structure of Indigo			
		Indigo was	was determined by	Indigo is a dark		Indigo is a dark blue
		extracted in India	Baeyer, a German	blue solid soluble	Indigo is fixed to	solid soluble in
	Which is the wrong statement	from plants of the	chemist who also	in water giving a	fabrics by the vat	water giving a blue
	with regards to Indigo?	'Indigo ferra' group	synthesized it	blue solution	process	solution
36.	Which of the following structures					
	represents a colourless					
	substance?	$C_6H_5-N=N O-C_6H_5$	$C_6H_5-N=N-C_6H_5$	C_6H_5 - NH - NH - C_6H_5	None of these	C_6H_5 - NH - NH - C_6H_5
37.				It is fixed to	It has red crystal	
				fabrics by using	soluble in alkalies	It has red crystal
		Alizarin was		mordants like	and the solution	soluble in alkalies
		extracted from the	It's chemical name is	aluminium	imparts red	and the solution
	Identify the wrong statement	roots of the	1, 2-dihydroxy	sulphate giving	colour to	imparts red colour
	regarding alizarin?	madder plant	anthraquinone	fast red colour	fabrics	to fabrics
38.					Yellow colour in	Yellow colour in
					alkaline medium	alkaline medium
	Methyl orange is an indicator in	Yellow colour in	Red colour in acid	Yellow colour in	and red colour in	and red colour in
	acid-alkali titration. It gives ?	alkaline medium	medium	acid medium	acid medium	acid medium
39.	A dye imparts red colour on fabric.					
	What colour of light was absorbed					
	by the dye?	Blue	Red	Green	Orange	Green
40.	Which of the following is an azo	Orange-I	Phenolphthalein	Malachite	Methylene blue	Orange-I

	dye?			green		
41.	An example of anthraquinone dye					
	is?	Alizarin	Basic acid	Methylene blue	Phenolphthalein	Alizarin
42.	Which of the following is a basic					
	dyes?	Congo Red	Aniline Yellow	Alizarin	Indigo	Aniline Yellow
43.	The dyes which are applied to the					
	fabric in the colourless reduced					
	state and then oxidised to			Triphenyl		
	coloured state are called?	Vat dyes	Disperse dyes	methane dye	Azo dyes	Vat dyes
44.	What type of synthetic dye is			Diphenylmethane		
	EOSIN?	Xanthene dyes	Phthalein dyes	dyes	Indigo dyes	Xanthene dyes
45.	What type of dye is THIONINE?	Azo dyes	Triphenylmethane	Thiazine dye	Xanthene dyes	Thiazine dye
46.	All of the following are natural					
	dyes EXCEPT?"	Saffron	Hematoxylin	Brazilin	None f the above	None f the above
47.				Derived from		
				hydrocarbon and		
	Artificial dyes are?	Coal tar dyes	Aniline dyes	benzene	All the above	All the above
48.	Auramine is an example of which	Diphenylmethane				Diphenylmethane
	type of dye?	dyes	Indigo dyes	Phthalein dyes	Xanthene dyes	dyes
49.	Which of the following is a					
	flurescent dye?	DAPI	acridine orange	ethidium bromide	Rhodamine	Rhodamine
50.	Malachite green is an important		·			
	dyestuff, the typical green colour					
	is obtained when the dye				Made up of	
	molecule is ?	Non ionic	Cationic	Anionic	phenyl groups	Cationic
51.	Indigo belongs to the class of	Mordant dyes	Vat dye	Direct dye	Disperse dye.	Vat dye
52.	Which of the following is an					
	example of anthraquinone dye?	Alizrin	Methyl orange	Methylene blue	Phenolphthalein	Alizrin
53.	Which one among the following is					
	not a correct match ?	Silk (Polyamide)	Lipase (Ester)	Indigo (Azo dye)	Karatin (Protein)	Indigo (Azo dye)
54.	Which of the following is an azo	Phenolphthalein	Methyl orange	Malachite green	Methylene blue	Methyl orange

	dye ?					
55.	What is true about congo red?	It is a vat dye	It is dircet dye	It is a disperse dye	It is basic dye	It is dircet dye
56.				nthraquinone		
	Bismarck brown is example of ?	Phthalein dyes	Azo dyes	dyes	Nitro dyes	Azo dyes
57.				Presence of		
				chromophore as		Presence of
			Presence of a	well as		chromophore as
			chromophore is	auxochrome		well as auxochrome
		Every coloured	necessary for a	group is necessary		group is necessary
	Which of the following is a correct	compound can act	compound to act as	for a compound to		for a compound to
	statement ?	as a dye	dye	act as dye	All of the above	act as dye
58.	Which dyes are synthesised and					
	produced within the fibres and the					
	colour so obtained is known as					
	icecolours	Azoic dyes	Vat dyes	Adjective dyes	Direct dyes	Azoic dyes
59.	The dyes which are used in					
	reduced state and are then					
	oxidized in the fabric by air are					
	called	Azo dyes	Dispersed dyes	Basic dyes	Vat dyes	Vat dyes
60.	Which dye is considered alkaline?	Methylene blue	Eosin	Nigrosin	Congo Red	Methylene blue

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: V
COURSE NAME: TEXTILE CHEMISTRY
BATCH-2017-2019

<u>UNIT V</u> SYLLABUS

Pollution Control in Textile Industry: Textile effluent-characteristics, effect of untreated effluent, degradability of wastes. Effluent treatment plants-aerated lagoon, photo oxidation process.

Characteristics of Effluent Water in Textile Industries:

As discussed textile sector is putting enormous impact on Bangladesh economy yet this industry is currently facing several challenges. Out of various activities in textile industry, chemical processing contributes about 70% of pollution. Waste stream generated in this industry is essentially based on water-based effluent generated in the various activities of wet processing of textiles. It is well known that wet processing mills consume large volume of water for various processes such as sizing, desizing, andscouring, bleaching, mercerization, dyeing, printing, finishing and ultimately washing. In fact, in a practical estimate, it has been found that 45% material in preparatory processing, 33% in dyeing and 22% are re-processed in finishing. But where is the real problem? The fact is that the effluent in textilegenerated in different steps is well beyond the standard and thus it is highly polluted and dangerous. This is demonstrated in Table 1.

Properties of Waste Water from Textile Chemical Processing:

Property	Standard	Cotton	Synthetic	Wool
pН	5.5 - 9.0	8-12	7-9	3-10
BOD, mg/l, 5	30-350	150-750	150-200	5000 - 8000
days				
COD, mg/l, day	250	200-2400	400-650	10,000 - 20,000
TDS, mg/l	2100	2100-7700	1060-1080	10,000 –13,000

Classification of Textile Waste Which are Generated in Textile Industry:

Textile waste is broadly classified into four categories, each of having characteristics that demand different pollution prevention and treatment approaches. Such categories are discussed in the following sections:

CLASS: II MSc CHEMISTRY **COURSE CODE: 17CHP305B**

COURSE NAME: TEXTILE CHEMISTRY

BATCH-2017-2019

A. Hard to Treat Wastes:

This category of waste includes those that are persistent, resist treatment, or interfere with the

UNIT: V

operation of waste treatment facilities. Non-biodegradable organic or inorganic materials are the

chief sources of wastes, which contain colour, metals, phenols, certain surfactants, toxic organic

compounds, pesticides and phosphates. The chief sources are:

Color & metal → dyeing operation

Phosphates → preparatory processes and dyeing

Non-biodegradable organic materials → surfactants

Since these types of textile wastes are difficult to treat, the identification and elimination of their

sources are the best possible ways to tackle the problem. Some of the methods of prevention are

chemical or process substitution, process control and optimization, recycle/reuse and better work

practices.

B. Hazardous or Toxic Wastes:

These wastes are a subgroup of hard to treat wastes. But, owing to their substantial impact on the

environment, they are treated as a separate class. In textiles, hazardous or toxic wastes include

metals, chlorinated solvents, non-biodegradable or volatile organic materials. Some of these

materials often are used for non-process applications such as machine cleaning.

C. High Volume Wastes:

Large volume of wastes is sometimes a problem for the textile processing units. Most common

large volume wastes include:

High volume of waste water

Wash water from preparation and continuous dyeing processes and alkaline wastes from

preparatory processes

Batch dye waste containing large amounts of salt, acid or alkali

These wastes sometimes can be reduced by recycle or reuse as well as by process and equipment

modification.

CLASS: II MSc CHEMISTRY

COURSE NAME: TEXTILE CHEMISTRY

COURSE CODE: 17CHP305B UNIT: V BATCH-2017-2019

D. Dispersible Wastes:

The following operations in textile industry generate highly dispersible waste:

1. Waste stream from continuous operation (e.g. preparatory, dyeing, printing and finishing)

2. Print paste (printing screen, squeeze and drum cleaning)

3. Lint (preparatory, dyeing and washing operations)

4. Foam from coating operations

5. Solvents from machine cleaning

6. Still bottoms from solvent recovery (dry cleaning operation)

7. Batch dumps of unused processing (finishing mixes)

Effect of untreated effluent

Quality of ground water

Ground water is the most important source of drinking water. At present almost all depends on ground water for drinking purpose. As per the responses of the respondents presented in Table 3, it is observed that drinking water still remains uncontaminated due to haphazard discharge of industrial waste water though a very few of them expressed their concern about gradual deterioration of quality of the ground water for the same reason.

Quality of soil

Soil is the important medium of plant growth. It controls crops' quantity and quality. Continuous throwing of industrial wastes on soil reduces its quality. As per the findings shown in Table 4, it is seen that low lands are the worst victim of the situation compared to medium and high lands. This is because discharged wastes are ultimately deposited in the low land and remain there for a long time unless these are washed away through flood water.

Insect pest infestation

Generally speaking, insects are the enemies of crops they may cause a substantial loss of a crop yield. The information provided by the respondents indicated that after establishment of industries the insect pest infestation increased to a great extent (Table 5). Information displayed

CLASS: II MSc CHEMISTRY

COURSE NAME: TEXTILE CHEMISTRY

COURSE CODE: 17CHP305B UNIT: V

BATCH-2017-2019

in Table 5 indicates that all the respondents (100%) mentioned about the increase of pest

infestation (from LI to HI) in cereals, vegetables and fruits in their localities after establishment

of industries. As per the responses of some respondents (24% and (6%) there was no increase in

insect infestation in pulse and oilseed crops.

Yield of crops

Due to establishment and their indiscriminate discharges crop yield was found to be decreased

(Table 6) as reported by the respondent. Findings shown in Table 6 indicated that similar to the

increase in insect infestation, all of the respondents (100%) reported about the negative impact of

unplanned discharge of industrial wastage on yield of cereal crops and fruits.

Effects of industrial discharges on human, animal and aquatic lives

Untreated and unplanned industrial discharges deteriorate not only the quality of soil, crop and

environment but also directly affect the human, animal and aquatic lives. From the data

displayed in Table 8 it is observed that most of the respondents (96%) in the industrial areas

faced medium to high levels of dermal diseases and about equal portion of them (86%) have

been suffering from respiratory diseases. The other diseases they suffered from Diarrhoea,

Dysentery, Gall Bladder Cancer, Kidney problem, Sterility and Abortion of female. In case of

domestic animals, all of the respondents directed their opinions that foot & mouth disease,

dermal disease and mastitis occur due to these untreated wastes dumping in the areas. Similarly,

all the respondents also pointed out dermal diseases, low growth, and foul odor of aquatic

animals after cooking. Thus, human being, domestic animals and aquatic animals are also

suffering from bad effects of industrial wastes which are dumped untreated.

Effects of industrial discharges on different types of animals

Most of the respondents (80%) in the industrial areas suppose that there are medium to high

levels decrease of fishes, birds and earthworm while decreases of insect and frog are 70% and

60% respectively.

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B
UNIT: V
COURSE NAME: TEXTILE CHEMISTRY
BATCH-2017-2019

POSSIBLE QUESTIONS UNIT-V PART-A (20 MARKS)

(Q.NO 1 TO 20 Online Examination) PART-B (2 MARKS)

- 1. Define photo oxidation process.
- 2. Write any two characteristics of textile effluent.
- 3. What is the degradability of wastes?
- 4. What is the effect of untreated effluent?

PART-C (6 MARKS)

- 1. How will you determine the following parameters in effluent waste water
 - i) oil and grease ii)chloride content.
- 2. Write notes on degradability on wastes of textile effluent.
- 3. What are the characteristics of textile effluent? How will you identify and explain any one characteristics.
- 4). What is the effect of untreated effluent on the environment?
- 5). How will you treat the effluent using photo oxidation process.
- 6). Write short notes on the effect of untreated effluent on the environment?

S.						
No	Question	Option 1	Option 2	Option 3	Option 4	Answer
1.	Which one is poisoning water in					
	Japan is from fishes?	Bismuth	Arsenic	Antimony	Palladium	Arsenic
2.	Fishes can store more quantity of					
	following in their bodies?	Mercury	Palladium	Bismuth	Chlorine	Mercury
3.	Waste water released from where?	Sanitaria	Tanning	Industries	Municipalities	Industries
4.	Bacteria and micro organisms present					
	in the water will cause?	Indigestion	Intestinal tract	Brain tumour	Cancer	Intestinal tract
5.	Infectious hepatitis is caused by?	Bacteria	Viruses	Protozoa	Helminth	Viruses
6.	Amoebic dysentery is caused by?	Viruses	Helminth	Bacteria	Protozoa	Protozoa
7.	Bacteria in water causes?	Malaria	Typhoid	Dengue	Chicken guinea	Typhoid
8.			Amoebic			
	Helminth in the water causes?	Hook worm	dysentery	Cholera	Typhoid	Hook worm
9.	What is an important requirement of	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved
	the aquatic life?	nitrogen	chlorine	oxygen	methane	oxygen
10.	What is the optimum value in natural					
	water?	2-4ppm	4-7ppm	4-6ppm	2-7ppm	4-6ppm
11.				Biometric	Biological	
		Biochemical	Biological	oxygen deep	oxygen deep	Biological
	What is the full form of BOD?	oxygen demand	oxygen demand	water	water	oxygen demand
12.	The disappearance of the plants and	Nitrogen	Chlorine	Oxygen		Oxygen
	animals in water due to?	depletion	depletion	depletion	Ozone depletion	depletion
13.	The average quantity of water (in					
	lpcd) required for domestic purposes					
	according to IS code is?	100	120	70	135	135
14.	The average consumption of water					
	required in factories in lpcd is?	15-20	20-30	30-45	70-80	30-45
15.	In which type of water demand,	Domestic water	Industrial water	Institutional and	Fire demand	Fire demand

UNIT: V

CLASS: II MSc CHEMISTRY COURSE CODE: 17CHP305B

COURSE NAME: TEXTILE CHEMISTRY BATCH-2017-2019

	minimum average consumption of water takes place?	demand	demand	commercial water demand		
16.	What is the minimum water pressure available at fire hydrants?	80-100kN/m²	100-150kN/m²	40-60kN/m²	150-200kN/m²	100-150kN/m²
17.	Water lost in theft and waste contributes to how much % of total consumption?	5	10	15	20	15
18.	Which is the correct statement	Daily water required by an individual	Water required for various purposes by a	Water required by an individual	Annual average amount of daily water required	Annual average amount of daily water required
19.	regarding per capita demand?	marviduai	person	in a year Cost of water,	by one person Cost of water, quality of water,	by one person Cost of water, quality of water,
	What are the factors affecting per capita demand?	Size of city	Size of city, habit of people	quality of water, size of city	size of city, habit of people	size of city, habit of people
20.	Which of the following statement is correct?	Rich class consumes less water	Intermittent water supplies leads to less water consumption	Loss of water is more if the pressure in the distribution system is less	Water consumption is less in flush system	Intermittent water supplies leads to less water consumption
21.	Sorter's disease is associated with-	Cotton industry	Silk industry	Wool industry	Both (a) and (b)	Wool industry
22.	What is the design discharge for intake structures?	Maximum daily demand	Maximum hourly demand	Maximum weekly demand	Average daily demand	Maximum daily demand
23.	In which of the following units, design period is maximized?	Distribution system	Demand reservoir	Water treatment unit	Pipe mains	Demand reservoir
24.	The following unit is not used to measure turbidity of water?	NTU	ATU	JTU	FTU	ATU
25.	A technique used to determine the concentration of odour compounds in a sample is known as?	Stripping	Settling	Flushing	Chlorination	Stripping

CLASS: II MSc CHEMISTRY COURSE CODE: 17CHP305B

COURSE NAME: TEXTILE CHEMISTRY UNIT: V

BATCH-2017-2019

26.		Difference				Difference
		between total	Sum of total			between total
	In filtration, the amount of dissolved	solids and	solids and	Independent of	None of the	solids and
	solids passing through the filters is?	suspended solids	suspended solids	suspended solids	above	suspended solids
27.	The Total dissolved solids (TDS) can					
	be reduced by the following method	Distillation	Reverse osmosis	Ion exchange	All of the above	All of the above
28.	Which of the following is the physical					
	monitoring of the lake?	PH	COD	BOD	Turbidity	Turbidity
29.	What is comes under the chemical	A				
	monitoring of the lake?	Detergents	Pathogens	Conductivity	Turbidity	Detergents
30.	The workers of silk industry face risks					
	of disease related to	skin	lungs	heart	both (a) and (b)	both (a) and (b)
31.	Workers of which fabric industry have					
	maximum possibility of getting					
	infected by anthrax?	silk	cotton	nylon	wool	wool
32.		Ganga action pre	Ganga action	Ganga affected	Ganga affected	Ganga action
	What is the full form of GAP?	distribution	plan	plan	pre distribution	plan
33.	The central pollution control board					
	and the department of ocean and					
	environment has established howmany					
	stations over the entire coastal line of					
	the country?	171	172	173	174	174
34.	Coastal water shows major differences		>			
	in what?	Pollution	Sewage	Salinity	Conductivity	Salinity
35.	Monitoring systems can be carried out		Automatic	Automatic		Automatic
	by using what?	Motors	sensors	motors	Turbines	sensors
36.	In what way river reduce the pollution					
	in dry season?	Water	Nitrogen	Carbondioxide	Oxygen	Oxygen
37.	Determination of flow increase is used					
	for the monitoring of which pollution?	sea pollution	River pollution	Lake pollution	Tank pollution	River pollution
38.	which of the following does not	Assessing the	Development	Determination of	Colour of the	Colour of the

UNIT: V

CLASS: II MSc CHEMISTRY COURSE CODE: 17CHP305B

COURSE NAME: TEXTILE CHEMISTRY BATCH-2017-2019

	include in the monitoring of river pollution?	immediate water quality	activities in the region	flow increase	water	water
39.	Increase in the BOD value in the water indicates?	Decrease in pollution	Increase in pollution	Pollution is independent of BOD	Slight decrease in the BOD	Increase in pollution
40.	The bacterium by which the people working in wool industry get infected is	Rhizobium	Anthrax	Streptococcus	None of these	Anthrax
41.	Non hazardous organic wastes from the sewage is to be separated from what?	Toxic industrial wastes	Bacteria	Helminth	Protozoa	Toxic industrial wastes
42.	Domestic water treatment is carried out under which conditions?	Aerobic	Anaerobic	Cannot be known	Depends on the pollution level of water	Aerobic
43.	What is the BOD value of the industrial waste?	100	200	300	400	200
44.	Which is the primary process in domestic water treatment?	Screening	Sedimentation	Aerobic process	Anaerobic process	Screening
45.	In the domestic water process, when air is sent during the active sludge, then which one gets released?	Oxygen	Carbondioxide	Nitrogen	Chlorine	Carbondioxide
46.	In final step of the domestic water process, the effluent contain how much BOD?	10ppm	15ppm	20ppm	25ppm	25ppm
47.	Aerobic process is also called as?	Activated sludge process	Sludge thickening process	Sedimentation	Screening	Activated sludge process
48.	Organic contaminants are removed from the wastewater by	Water softening	Demineralization	Absorption	Adsorption	Adsorption
49.	Which of the following process is used to remove the colloidal particles	Chemical precipitation	Chemical coagulation	Ion exchange	Adsorption	Chemical coagulation

CLASS: II MSc CHEMISTRY
COURSE CODE: 17CHP305B UNIT: V

COURSE NAME: TEXTILE CHEMISTRY BATCH-2017-2019

	from the effluent?					
50.	In which unit operation, gases are			Solute		
	released or absorbed in the effluent?	Gas transfer	Ion transfer	stabilization	Solids Transfer	Gas transfer
51.	In which process, excess lime is				Super-	
	converted into bicarbonate?	Chlorination	Liming	Re-carbonation	chlorination	Re-carbonation
52.	Solids are removed from the					
	wastewater by which of the following	Inter facial	Solid			
	unit operation?	contact	stabilization	Ion transfer	Solids transfer	Solids transfer
53.	In which unit operation objectionable					
	solutes are converted into					
	unobjectionable forms without			Solute		Solute
	removal?	Gas transfer	Ion transfer	stabilization	Solids Transfer	stabilization
54.				Synthetic tri-		Synthetic tri-
	Which material is used in contact	Calcium		calcium		calcium
	filters for removal of fluorides?	phosphate	Copper sulfate	phosphate	Bone charcoal	phosphate
55.	What is the key component of zero			Ecological	Industrial	
	waste?	Biofuel	Recycle	footprint	ecology	Recycle
56.					Growth of	
	The presence of Sulfate iron in the				crenothrix in	
	water results in	Odorless water	Acidity in water	Colorless water	water mains	Acidity in water
57.	What is the dose of copper sulfate					
	required for the treatment of water?	0.3-0.6ppm	2-6ppm	4-8ppm	10-20ppm	0.3-0.6ppm
58.					None of the	
	Aerated lagoon is also known as?	Aerated lake	Activated lagoon	Aerated pond	above	Aerated pond
59.	Photo oxidation requires?	Oxygen	Carbon dioxide	Nitrogen	All the above	Oxygen
60.	Problem of solid waste disposal can be				population	
	reduced through	recycling	lesser pollution	more timber	control	recycling