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PO: On successful completion of this course the learners gain knowledge about the higher order
derivatives and its applications in business, economics and life sciences.

PLO: To enable the students to learn and gain knowledge about concavity, inflection points and
its geometrical applications.

UNIT I
Hyperbolic functions, higher order derivatives, Leibniz rule and its applications to problems of

type e**Psinx, e™*Pcosx, (ax+b)"sinx, (ax+b)"cosx.

UNIT 11

Reduction formulae, derivations and illustrations of reduction formulae of the type [ sin nx dx, |
cos nx dx, | tan nx dx,] sec nx dx, | log x" dx, [sin" x sin™x dx. Curve tracing in Cartesian
coordinates, tracing in polar coordinates of standard curves, L’Hospital’s rule, applications in
business, economics and life sciences.

UNIT 111
Volumes by slicing, disks and washers methods, volumes by cylindrical shells, parametric

equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of
revolution.

UNIT IV
Concavity and Inflection points, asymptotes. Techniques of sketching conics, reflection

properties of conics, rotation of axes and second degree equations, classification into conics
using the discriminant, polar equations of conics.

UNIT V
Introduction to vector functions, operations with vector-valued functions, limits and continuity of

vector functions, differentiation and integration of vector functions, tangent and normal
components of acceleration, modeling ballistics and planetary motion, Kepler’s second law.

TEXT BOOK
1. Strauss M.J., Bradley G.L.,and Smith K. J.,, (2007). Calculus, Third Edition ,Dorling

Kindersley (India) Pvt. Ltd. (Pearson Education), Delhi.

REFERENCES
1. Thomas G.B., and Finney R.L., (2005). Calculus, Ninth Edition, Pearson Education, Delhi.

2. Anton H., Bivens I., and Davis S.,(2002). Calculus, Seventh Edition, John Wiley and Sons
(Asia) P. Ltd., Singapore.

3. Courant R., and John F., (2000). Introduction to Calculus and Analysis (Volumes | & 11),
Springer- Verlag, New York.
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Lecture Plan
Subject Name: CALCULUS Subject Code: 17MMU101
Lecture
S.No Duration Topics To Be Covered Support Materials
Hour
UNIT-I
1. 1 Introduction to Hyperbolic function T1:Ch 7;Pg:350-353
2. 1 Inverse hyperbolic function T1:Ch 7;Pg:353-356
3. 1 Higher order derivatives R4:Ch 4;Pg:156-158
4. 1 Continuation of Higher order Derivatives R4:Ch 4;Pg:158-159
5. 1 Leibiniz rule and its applications R4:Ch 4;Pg:169-173
6. 1 Contllnu_atlon of Leibiniz rule and its R4:Ch 4:Pg:174-177
applications

Problems on type e™ ** sinx, e™ *Pcos

7. 1 X, (ax+b)sinx , (ax+b)cosx R4:Ch 4;Pg:178-180
8. 1 Finding concavity R1:Ch 3;Pg:228-230
9. 1 Finding Inflection point T1:Ch 4;Pg:124-129
10. 1 Curve Sketching with Asymptotes R4:Ch 12;Pg:389-402
11. 1 Continuation of Curve Sketching with R4:Ch 12;Pg:403-409
Asymptotes
12 1 Recapitulation and Discussion of possible
guestions
Total 12Hours
Text Book:

T1 : M.J.Strauss., G.L.Bradley and K.J.Smith.,(2007). Calculus, third edition , dorling
Kindersley(India) Pvt Ltd. (Pearson Edition ), Delhi.

Reference Book:
R1 : G.B.Thomas and R.L.Finney., (2005). Calculus , 9" edition, Pearson Edition , Delhi.

R4: Shanti Narayan, P. K. Mittal, Differential Calculus, (2016), Third Edition Vikas publishing
House pvt.Ltd.

Prepared by: K. Pavithra, Department of Mathematics, KAHE Page 1 of 5



Lesson Plan 2017 Batch
UNIT-II

1. 1 Curve tracing in Cartesian Coordinates R2:Ch 11;Pg:767-770

5 1 Tracing in polar coordinate for standard R3:Ch 1:Pg:101-103
curves

3. 1 Theorm on L’Hospital’s Rule T1:Ch 4;Pg:148-150

4. 1 Problems based on L’Hospital’s Rule T1:Ch 4;Pg:151-153

5 1 Continuation of problems on L’Hospital’s T1:Ch 4:Pg:153-155
Rule
Application i [ [ lif

6. 1 pp ication in business, economics and life T1:Ch 6:Pg:287-290
sciences.

e tion of Abplication | .

7 1 Contlnugtlon 0 . pp |.cat|on in business, T1:Ch 6:Pg:291-294
economics and life sciences.

8. 1 Reductlf)n formula — derivation and R2:Ch 7:Pg:497-498
illustration

9 1 Problems based on reduction formula R2:Ch 7;Pg:500-503

10 1 Continuation of problems on reduction R2:Ch 7:Pg:503-505
formula

11 1 Continuation of problems on reduction R2:Ch 7;Pg:506-507
formula

12 1 Recapitulation and Discussion of possible
guestions

Total 12 Hours
Text Book:

T1 : M.J.Strauss., G.L.Bradley and K.J.Smith.,(2007). Calculus, third edition , dorling
Kindersley(India) Pvt Ltd. (Pearson Edition ), Delhi.

Reference Book:
R2: H.Anton., |. Bivens ., and S.Davis., (2002). Calculus , 7" edition , John Wiley and sons

(Asia) Pvt Ltd, Singapore.
R3: R.Courant and F.John., (2000). Introduction to Calculus and Analysis (Volume | & I1),

Springer verlag, NewYork.
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2017 Batch

UNIT-II

1 1 Volume by slicing R2:Ch 6;Pg:421-424
2 1 Volume by Disks methods R1:Ch 5;Pg:397-399
3 1 Volume by washers methods R1:Ch 5;Pg:400-403
4 1 Volumes by cylindrical shells R2:Ch 6;Pg:432-434
5 1 Continuation of Volumes by cylindrical shells R2:Ch 6;Pg:434-436
6 1 Area of a surface of revolution R2:Ch 6;Pg:444-447
7 1 Parametric Equations R2:Ch 10;Pg:692-695
8 1 Tangent Lines to Parametric Curves R2:Ch 10;Pg:695-696
9 1 Continuation of Tangent Lines to Parametric R2:Ch 10:Pg:696-697

Curves
10 1 Arc Length of Parametric Curves R2:Ch 10;Pg:697-698
11 1 Continuation of Arc Length of Parametric R2:Ch 10;Pg:699-700

Curves
12 1 Recapitulation and Discussion of possible

guestions
Total 12 Hours

Reference Book:
R1 : G.B.Thomas and R.L.Finney., (2005). Calculus , 9" edition, Pearson Edition , Delhi.

R2: H.Anton., |. Bivens ., and S.Davis., (2002). Calculus , 7" edition , John Wiley and sons
(Asia) Pvt Ltd, Singapore.

UNIT-IV
1 1 Introduction to conic section R2:Ch 10;Pg:730-732
2 1 Techniques of sketching conics R1:Ch 9;Pq:727-730
3 1 Equations of conics in standard position R2:Ch 10;Pg:732-735
4 1 Contmuatlon_ c_Jf Equations of conics in R2:Ch 10:Pg:735-738
standard position
5 1 R2:Ch 10;Pg:738-740

Continuation of Equations of conics in

Prepared by: K. Pavithra, Department of Mathematics, KAHE
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Lesson Plan 2017 Batch

standard position
6 1 Translated conics R2:Ch 10;Pg:740-742
7 1 Reflection properties of the conic sections R2:Ch 10;Pg:742-744
8 1 Rotation of axes with examples R2:Ch 10;Pg:750-752
9 1 Classification of conics using discriminant R1:Ch 9;Pg:748-750
10 1 Polar equation in conics R2:Ch 10;Pg:755-757
11 1 Continuation of Polar equation in conics R2:Ch 10;Pg:757-759
12 1 Recapitulation and Discussion of possible

questions
Total 12 Hours

Reference Book:
R1 : G.B.Thomas and R.L.Finney., (2005). Calculus , 9" edition, Pearson Edition , Delhi.

R2: H.Anton., |. Bivens ., and S.Davis., (2002). Calculus , 7" edition , John Wiley and sons
(Asia) Pvt Ltd, Singapore.

UNIT-V

1 1 The Triple product R1:Ch 10;Pg:824-835
2 1 Introduction to Vector functions T1:Ch 10;Pg:494-496
3 1 Operation with Vector-valued functions T1:Ch 10;Pg:496-497
4 1 Limits and continuity of vector functions T1:Ch 10;Pg:498-500
5 1 lefe.rentlatlon and integration of vector T1:Ch 10:Pg:502-511

functions

1 T I f

6 angent gnd normal components o T1:Ch 10:Pg:522-525

acceleration
7 1 Modeling ballistics and planetary motion T1:Ch 10;Pg:512-516
8 1 Kepler’s second law T1:Ch 10;Pg:516-519
9 1 Recapitulation and Discussion of possible

guestions
10 1 Discussion on Previous ESE Question Papers
11 1 Discussion on Previous ESE Question Papers
12 1 Discussion on Previous ESE Question Papers
Total 12 Hours
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Lesson Plan 2017 Batch

Text Book:
T1 : M.J.Strauss., G.L.Bradley and K.J.Smith.,(2007). Calculus, third edition , dorling

Kindersley(India) Pvt Ltd. (Pearson Edition ), Delhi.

Reference Book:

R1 : G.B.Thomas and R.L.Finney., (2005). Calculus , 9" edition, Pearson Edition , Delhi.

Total no. of Hours for the Course: 60 hours
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UNIT-I
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Subject: CALCULUS
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Subject Code: 177MMU101 Class : I- B.Sc Mathematics

UNIT I
Hyperbolic functions, higher order derivatives, Leibniz rule and its
applications to problems of type e®*Psinx, e**cosx, (ax+b)"sinx, (ax+b)"cosx.

TEXT BOOK
T1 :M.J.Strauss., G.L.Bradley and K.J.Smith.,(2007). Calculus, third edition , dorling

Kindersley(India) Pvt Ltd. (Pearson Edition ), Delhi.

REFERENCES
R4: Shanti Narayan, P.K. Mittal, Differential Calculus, (2016), Third Edition,

Vikas Publishing House Pvt. Ltd.
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UNIT-I DIFFERENTIAL CALCULUS | 2017

CALCULUS

UNIT |
DIFFERENTIAL CALCULUS:

Introduction:

The mathematical study of change like motion, growth or decay is calculus. The Rate of change of

given function is derivative or differential.

The concept of derivative is essential in day to day life. Also applicable in Engineering, Science,

Economics, Medicine etc.

Successive Differentiation:

Let y =f(x) --(1) be a real valued function.

dy
The first order derivative of y denoted by —— a5 O y or yror Al

7%y

The Second order derivative of y denoted by < Yor y”or y,or A2

Similarly dlfferentlatlng the function (1) n-times Ysuccesswely,

The process of finding 2" and higher order denvatlves is known as Successive Differentiation.

n'" derivative of some standard functions:

1 y = eax
Sol : y1=a e
Y2 = a2 eax

Differentiating Successively
Vn = an eax
ie. Dn[eax] = g gax

For, a =1 Drlex] = ex

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 2/19



UNIT-I DIFFERENTIAL CALCULUS | 2017

2. y = log (ax +b)
a
Solution : ¥ =
ax+b

_(haa _ (-D'a’
C(ax+b)?  (ax+b)

_ (-D(-2a’a E D*(D(2)a’ E G-’

b &

o T by (b
-1 7
# (- (r-Dla
D [log(ax + b)] = =
[log( )N =%, (@b
Similarly  » (_1)11—1 (n-1)!
D [log x] = oy & =
X
v g
& ¥y = (@e-+a )
. m-1
Solution; ¥, = (ax +b) a
m-2 2

Py = m(m-1)(ax +b) a

. m-3 3
- A m(m-1)m-2)(ax+b) a

Similarly
. m-n n
%= m(m-1)(m-2)....... (m-ntl)(ax+b) a

e

(%)
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UNIT-I DIFFERENTIAL CALCULUS | 2017

Case () -t m=n in(* _l
D'[(ax +b)"] =n(n-1) (n-2) ...... 321.a
=nld"
2l = al

Case (1) :=-If m>n in (*)
m(m—1)....(m—n+D(m—-n)m-n-1)...321

D'l(ex+B)"]= i N2.1 (@x+b)™ e
D[(ax+bY"]= —(ax+B)""a”
(m—n)!
Dn[xm ] = m! xm—nan
(m—n)!
Caseill :-If m<m in (*)
D}?[(ax 35 )m] =0
Case1v :-If m=-1in (*)
n 1 =l-n n (—l)nn'an
D' —— |= (-D)(=2).....(- b " L
o | OBty e = CORE
4 1 B0 BT s (p+n-Da"
(ax+b)" | (ax+b)"*"

D”[ 1 }:(—1)” (p+n-1! a’
(p-D! (ax+b)F™

Tl 7.t | maliea-fi 1
S
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UNIT-I DIFFERENTIAL CALCULUS | 2017

4. y =Cos (ax +b) |
I = Sin(ax +b).a = a Cos (a.x+b+7t/2)
¥, == Sin (ax +b+m/2). a’ =a’ Cos (ax+b+2 n/2)
y, = D" [Cos (ax+b)]= a" Cos (ax+b+nn/2)
Ifa=1, b=0
D" [Cosx]= Cos (x +nn/2)

5. y=Sin(ax+b)

y =D"[Sin(ax+b)]= d" Sin (ax+b+nz/2)
Ifa=1, b=0

D" [Sinx]= Sin(x+ nn/2)

6. y=e Sin(bx+c)

7, = aeSin(ox +e) +be"Cos ox +o)

= eax [a Sln (b'\’ +C)+b COS (br +C)] "
Put a=rcos @ b=rSin@ then 7’—\102+b2 0= tan'l—

A e [r cos 6 Sin (bx +c¢ ) +r Sin 6 COS (bx +C )]
¥, =re” [Sin(bx+c+6)]

y,=r[e%aSin(bx+c+8)+e" bCos(bx +c +0)]
ab
Puta—rcos9 b=rSin6 then r=N&+& 6= tan‘c—1

y, =re”[rcos @ Sin(bx +c + 0) +r Sin 6 Cos (bx +c + 6)]
. e [Sin (bx +c + 260)]

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE
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UNIT-I DIFFERENTIAL CALCULUS | 2017

Similarly, :
y, = e [Sin (bx +c + n) ]
= D" [¢”Sin(bx +¢c )] = (a2+b? )n'f2 e [Sin (bx +c +n tan™ b )]
For a=b=1,c=0 ¢

D' [eSinx] = (2)":(2 e [Sin(x+nm/4)]
7.y =e"[Cos (bx +c) ]
¥ = D" [ Cos (bx +¢ )] = (a®+b? )m2 e” [Cos (bx +c +n, b )]
Fora=b=1,c=0 ¢

D' [eSinx] = (2)"";.2 e [Sin(x+nr/4)]

8_ J' - ai?’l.\'

= i (log am) =gy (mlog a)
P

y.=a (mloga)

Differentiating Successively

B a" (mlog a)’

For m=1, D" a]=a (loga)"

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 6/19



UNIT-I DIFFERENTIAL CALCULUS | 2017

Leibnitz’s Theorem :

It provides a useful formula for computing the nt" derivative of a product of two functions.
Statement : If v and v are any two functions of x with u, and v, as their n® derivative. Then th

derivative of uv is
(uv), = ugv, +"Cyuw,; +"Cotyv,y + ... +"C, i, vi+u,vy

Note : We can interchange u & v (uv)n, = (vu)n,
nCi=n, "Cz=n(n-1)/2!, "Cs=n(n-1)(n-2) /3! ...

1. Find the n"" derivations of e* cos(bx + c)
Solution: y; =e®* - b sin (bx +c) + a e cos (b x + ¢), by product rule.
ie,y1= e [acos(bx +c)-bsin(bx +c)]
Letusputa=rcos 6,andb=rsin 6.
. a’+b’>=1" andtan 6=b/a
je, r=+/a> +b* and 6 =tan" (bla)
Now, y, = e“"[r cos B cos(bx +c¢)—rsin Osin(bx + c)]
le., y1=rea™cos (6+bx+c)
where we have used the formula cos A cos B - sin A sin B = cos (A + B)
Differentiating again and simplifying as before,
y2=12eacos (20 +bx +¢).
Similarly ys3=r3eacos (36 +bx +¢).

Thus y, =r"e™ cos(n®+bx +c)
Where r=+/a’ +b* and 6 =tan" (b/a).
Thus Dn [eaxcos (b x + ¢)]

= l(\/ar2 +b*)" e™ cos|ntan(b/a)+ b.\'+c]J

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 7/19



UNIT-I DIFFERENTIAL CALCULUS | 2017

2. Find the nth derivative of log v 4x? + 8x +3
Solution : Lety=log v4x> +8x+3 =log (4x2 + 8x +3) %

ie., v :% log (4x2 + 8x +3) . log x" = n log x
y :% log { (2x + 3) (2x+1)}, by factorization.

{log (2x + 3) + log (2x + 1)}

9 | —

s y=

1) -t (1) (-1
vayﬂ‘E{ x+3F  (2x+1y }

le., yn =21 (-1) 1 (n-1) ! { 1 - 1 }

@x+3) (2x+1)

3. Find the nt" derivative of log 10 {(1-2x)* (8x+1)%}
Solution : Lety = log 10 {1-2x)® (8x+1)%}

It is important to note that we have to convert the logarithm to the base e by the property:

log,,x = 08 2
=1 log_ 10
Thus y = log {(l—2x)3(8x+l)5}
log 10 ~°
le., y= k $log(l-2x)+5log(8x +1)}
log, 10
. n—1 NE _,7n - -1 i n
S 9%, il e
log, 10 (1-2x) (8x+1)
) n—1 _1)yon 1) = n
& yn=( 1 (n—1)2" | 3( 1)n+ 5(4) :
log, 10 (1-2x)*  (8x+1)

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 8/19



UNIT-I DIFFERENTIAL CALCULUS | 2017

4. Find the nth derivative of e2* cos? x sin X

: - l+cos2x | .
Solution : >> let y = €% cos? x sin x = e [f sin x

2x

: e | ;
e, y= - (sin x + sin X cos 2x)
2x
e . Iy, )
== {smx +;[sm 3x +sm(—x)]}
er
= (2sinx +sin3x—sinx )= sin (-X) = -sin x
= :
o o= 3 (sin x + sin 3x)

Now y, = i{D“(el" sin x )+ D" (e>* sin 3x )}

Thus y_ = i {\/5 )“ez" sin[n tan'(1/2)+ x]+ (\/13 )uel" siu[n tan'(3/2)+ 3x]}

2x

€
4

8= 5(\/; )n sin[u tan~'(1/2)+ x]+ (\/ﬁ)n siu[n tan"'(3/2)+ 3X]}

5. Find the nth derivative of e2x cos 3x

Solution : Lety=e2 cos3 x = e 2. i (3 cos x + cos 3x)

le., y=— (3e%cos x + e cos 3x)

1
4

Y, = i {3Dn (e2x cos x) + Dn (e cos 3x)}

i = i {(3\/5 )f e** cos|ntan™(1/2)+ x]+ (\/13 r e”* cos|ntan™(3/2)+ 3x]}
Thus y, = e;x {?(\E)u cos[n tan(1/2)+ x]+ (w/ﬁ )u cos[n tan~(3/2)+ 3X]}

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 9/19



UNIT-I DIFFERENTIAL CALCULUS | 2017

~—
6. Find the nt" derivativeof —~
(2x+1)2x+3)
Solution : y= B is an improper fraction because; the degree of the
(2x+1)2x+3)

numerator being 2 is equal to the degree of the denominator. Hence we must divide and

rewrite the fraction.

x> 1 4x* :
y=— =—. — for convenience.
4" +8x+3 4 4x +8x+3
1
4x7
4Xz+8x +3 Lgx“
—8x—3

1 —-8x-3
y=— 1+7—_
4 4 +8x+3
I it 8x +3
le, y=——| ————
4 4]4x"+8x+3

The algebraic fraction involved is a proper fraction.
Now yn:O_lD" L .
4 4" +8x+3

8+3 _ A B
(2x+1)2x+3) 2x+1 2x+3

Multiplying by (2x + 1) (2x + 3) we have, 8x + 3=A (2x + 3) + B (2x + 1)

Let

By setting 2x+1=0,2x+ 3=0we getx =-1/2, x = -3/2.
Putx=-12in(1):-1-1+A(2) = A=-1/2
Putx=-3/2in(1):-9=B(-2) = B=9/2

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 10/19



UNIT-I DIFFERENTIAL CALCULUS | 2017

:_l (_1)' (—l)nn!z”l L5 (_l)nn!zul' .
8 (2X+l)n+ (2X+3)u+
ie. v = (—l)nl.l n2" 1 ) 9 \l
o 8 (2x+1)* (zx+3)n?1j

.4
X

7. Find the nth derivative of ———M—
(x+D(x+2)

4

Solution: y = is an improper fraction.

(x+1)(x+2)

(deg of nr. =4 > deg. of dr. = 2)

On dividing x* by x2+ 3 x + 2, We get

y:(x2_3x+7)+ |: —713.\’—14:|
X +3x+2
Yo = Do (x2-3x+7)-D"[ ol }

x> 4+3x+2
ButD=(x2-3x+7)=2x-3,D2(x2-3x+7)=2
D3(x2-3x+7)=0......... Dn(x2-3x+7)=0ifn>2

S.
Hence yn =-D"[ i }

(x+D(x+2)

Now, let Dn e I S

5

X +3x+2 (x+1) (x+2)

=> 15x+ 14 = A(x+2) + B(x+ 1)
Put x=-1;-1=A(1) or A=-1
Put x=-2;-16=B(-1)or B=16

Yﬁ{—D"[ 1 }w[ ! }}
x+1 x+2

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 11/19



UNIT-I DIFFERENTIAL CALCULUS | 2017

Y ) A |

(x+1)n+l (x+2)n+l

v, =(=1)"n! 1 e 16 ==
(x+D"™ (x+2)

8. Show that
n % —_1\" 4
d (log.\ j: ( l)ln. logx—l—l—l—l
de' \ x 2 2 3 &
. log x 1 1
Solution: Lety=——=Jlogx—andletu=logx,v= —
% x x
We have Leibnitz theorem,
(U = Un + ngty v, +Re Uy, s +otu,y (1

ai n-1 " |
Now,u=logx ..Un= M
i
1\ 9l
V:l B e ( 13+1’7.
X X

Using these in (1) by taking appropriate values for n we get,

o ™! )" -1
Dn_(locszlogx”( 1) n.+"l'( 1) En 1)!

_n+l
X

X X X

" n(n—1) (__1_) D2 (n-2)!

l.. 2 x2 xm!
n-1
. )ik o
X X
-D"'n =D"'n
e =g —F——
X X
_1\"2. 1\l _IWN
= n.+w+( D" (n-1)!
2,\"1_1 xn+1
i n-2 | A -2 i -1 ™
i R o U
.’(‘"+l = 2 nl

Note : (-1)* =1 S ) e

=1
-1 (-1’
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UNIT-I DIFFERENTIAL CALCULUS | 2017

(=D _ (-D! 1 \
n! nn=1! n

n 3 3 "'
d [logx}:( 1)171{105_,__\,_1_1_1,”_1}
dx"| = - 2 2 3 n

9. If ys=Dn(x"logx)

Also

Prove that yn = n yn4+(n-1)! and hence deduce that

1 1 1
Yn=n|logx+l+—+—+..+—
2 3 n

Solution : y, = Dn(xn log x) = D1 {D (x" log x}

1 o
= Dn-t {x".—+n.\’" 'log x

X

= Dmi(xn1) + nD™! (x™1 log x}
2. ¥n = (n-1)! +nyn4. This proves the first part.
Now Putting the values forn =1, 2, 3...we get
y1=0'+1 yo=1+logx=1!(logx+1)
y2 = 1!+ 2yy = 1+2 (I + log X)

ie., y2=21og x + 3 =2(log x + 3/2) = 2! (logx+1+%}
y3=2!+3y2=2+3(2log x + 3)

ie., y3=610g x+ll =6 (log x + ll/6) = 3! (logx+l+l +%j

2 3

g | 1
y. =nl| logx+14+—+—+...+—
< - 2 3 n

10. If y = a cos (log x) *+ b sin ( log x), show that
X2y + xys +y = 0. Then apply Leibnitz theorem to differentiate this result n times.
or

If y=a cos (log x) + b sin (log x ), show that

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 13/19



UNIT-I DIFFERENTIAL CALCULUS | 2017

Solution : y = a cos (log x) + b sin (log x)

Differentiate w.r.t x

. y1=-asin (log x) 1 +b cos (log x). 1
X X

(we avoid quotient rule to find y2) .
=>xy1 =-asin (log x) + b cos (log x)

Differentiating again w.r.t x we have,

xy2 + 1 y1=-acos (log x) + b sin ( log x) L
X

or X2y +xys=-[acos (logx) + b sin (log x) ] =-y

S X2ykxys+y =0

Now we have to differentiate this result n times.

ie., Dn(x2ys) + Dn(xy4) +Dn(y)=0

We have to employ Leibnitz theoreom for the first two terms.

Hence we have,

{A—z_D"()f2)+;7.ZA‘.D"_I(J"2)+ 1.9 =

n(n—1) » D™ ();2))}

{x.D"(_vl)+n. L. (."1)}'*'."71 =0

ie., {X%Yn+2+2n X Yn+1+ N (0= 1)yn} + {XYns1+nYn}+yn = 0
ie., X2Yn+2+ 2N X Yn +1+ N2y - NYn + Xyne4+NYn+yn =0

ie., X2Yn+2+ (2n+)XY na + (N2+])yn = 0

11. If cos™ (y/b ) = log (x/n)", then show that
X2Yn+2 + (2n+l) Xy nay + 202y, =0

Solution :By data, cos™ (y/b) =n log (x/n) .".log(a™) =mloga
=> % =¢os [n log (x/n )]

or y=b . cos[nlog (x/n)]

Differentiating w.r.t x we get,
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y1=-b sin [nlog (x/n)] - n . ‘

(x/n) n
or xys =-nbsin [nlog (x/n)]
Differentiating w.r.t x again we get,

1

(x/n) n

Xy2+1. v, =-n .bcos[nlog(x/n)] n

or X (Xy2+y1) = n2b cos [n log (x/n) ] =-n2y, by using (1).
or x2yp +xyi+n2y =0
Differentiating each term n times we have,
D(x2y2) + D(xy1) + n2D"(y) = 0
Applying Leibnitz theorem to the product terms we have,

5 n(n—1)
{x Vpsa T0.2%. Y, 0 + 2.y,

1.2

+{xy, +n 1 .y, +n’y, =0
i X2yns2+ 2 X Yn+1 + N2Yn + XY n+1+ NYn + N2yn=0

or X2 yns2 + (20 + 1) Xyns+1 + 202y, =0

12. If y =sin( log (x2 + 2 x + 1)),
or [Feb-03]
If sin! y=2log (x + 1), show that
(X+)2yn+2 + (2n+1)(X+1)ynst + (N2 + 4)yn =0

Solution: Bydatay=sinlog (x2+2x+1)

S y1=coslog (x2+2x+1) . —2x+2
(x+1)°

ie., yl =coslog (x2+2x+1) %2 x+1)
x +2x+1

2cos log(x* +2x+1)

ie., y1=
» (x+1)

or(x+1)yl =2coslog(x2+2x+1)

Differentiating w.r.t x again we get
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(x+1)y2+1 y1=-2sinlog (x2+2x + 1)

2 v
GiD 2(x+1)

or (x + 1)2yz + (x+1) y1 = -4y
or (x+l )2yo + (x+l) y1 +4y =0,
Differentiating each term n times we have,
D [(x + 1)2y2] +Dn [(x+ 1)ya] + D" [y] =0

Applying Leibnitz theorem to the product terms we have,

{(x+1)2 v +n 2x+l). yo+ "(l”;” 2 1}

. e

+{(x+l) yn+1+n. 1 .yn}+4yn=0
ie.,  (x+)2yn+2+2n (x+1)ynet
- I"IZYn'nyn + (X+|)yn+| +Nyn + 4yn =0

ie,  (x*)yn:2+2n+) (X +)yns1+(n2+4)yn=0

13. If = log (.r+\f1+.\‘3 ) prove that
(1 +x2) yns2 + (20 + 1) Xyns1 + N2yn =0
>> By data, y = log (x Gl T2 )

1 |
yi = ; =<1+ r_7.2.\'
(x+4/1+x7) 2\/1+x'
1 7\/1+x2+7x_A 1
fl+xd)  Jl+x? 1+
or \,/1+x2.1'1:l

Differentiating w.r.t.x again we get

le., ¥

Ji+2%y, + 2xy,=0

241+ x7%)
or (1+x2)y2 + xy1 =0
Now D" [(I+x2)ys] + D"[xy4] = 0

Applying Leibnitz theorem to each term we get,
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n(n—-1
{(l-&-.\’z)}-’n+2 +n.2x .y, + ( ).2 .y,,}

12

+[X.yn+1+n 1yn] =0
le., (1 +X2) Yns2 + 2N X Yn+1+N2Yn—NYn + XyYnsi+ NYn =0

or (14x2)yn+2 + (20 + )Xyns1+n2yn = 0

14. If x =sin t and y = cos mt, prove that

(I-X2)yn + 2-(2n+1)Xyn+ + (M2-n2)y, = 0. [Feb-04]
Solution : By data x=sint and y = cos mt

x=sint => t=sin' xandy=cos mtbecomes

y = cos [ m sin'x)

Differentiating w.r.t.x we get

m

y1 = -sin (m sin-'x)

V1-x2
or V1+x?y, =-msin (m sin"'x)
Differentiating again w.r.f x we get,

1 5 g m
Y (=2x)vy, =—m cos(msin " x).
\ R . 5 Y1
P V1-x?

or (1-x2)yz-xy| = -m2y

or (1-x9)y2—xy1 +m2y =0

Thus (1-X2)yns2-(2n+1)Xyn+1+(M2-n2)yn=0

15. If x =tan ( log y), find the value of
(I+x2)yne1 + (2nx-1) yn+n(n-1)yn-1 [July-04]
Solution : By data x =tan(logy)=> tan'x=logy or y=e@nx Since the desired relation involves

Yn+1, Yn and yn1 we can find y1 and differentiate n times the result associated with ys and y.

x tan" x : 1

Consider y=e™ *. -y =e .
I+x°

or (1+x2yy =y

Differentiating n times we have
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D(hx?)y1=Dy] A |

Anplying Leibnitz theorem onto L.H.S, we have,
{(I+x2)Dn(y1) + n .2x .Dn1 (y4)

n(n—1) s 3
+—1.2 2 - D)= Vs

le., (1#X2)yn+1+2n X Yn + N (n-1) Yn1-yn=0
Or (I+X2)yn+1 + (2nx-l)yn + n(n-)yn1 =0
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POSSIBLE QUESTIONS

Class : | — B.Sc. Mathematics
Subject Name : Calculus
Subject Code : 17MMU101

UNIT =1

2 Mark Questions:

1. Prove that sech®x = 1- tanh?x.
2. Prove that cosech® = 1- coth?x.
3. Prove that cosh®x - sinh®x = 1..
4. Findthat [ sinh(6x) dx
5. Prove that sinh2x = 2sinhxcoshx.
6Mark Questions :
1. Show that i) tanh(x +y) = —tanhttanhy

1+tanhxtanhy
ii)cosh? x — sinhZ x = 1.

2. Find the n" derivative for e?*sin3x sin4x.

3. Prove that i) sinh(x + y) = sinhxcoshy + coshxsinhy
ii) cosh(x + y) = coshxcoshy + sinhxsinhy

4. State and prove Leibniz Rule for n™ derivative.

S. Find%l for i) y = cosh—1(secx) ii) y = tanh’}(2x)2.
6. If = gasin ' prove that (1 — x2)y , — xy1 — a?y = 0 and hence show that
(1 = x)yn+2 — 2n+ 1)xyns1 — (2 + a?)y, = 0.

7. Evaluate i)Find the derivatives of tanh x.
2
ii) If x= acos®0 , y= asin®0 find %
dx
8. If y = sin(msin—1x), prove that (1 — x2)y> — xy1 + m%y = 0 and hence

show that (1 + x2)y,42— (2121 + Dxyp1+ (M2 —=n2)y,=0

9. If y = sin(sinx) prove that Y tanx @ +ycos?x=0.
dx? dx

10. Find the n" derivative of cosx cos2x cos 3x.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore —641 021

DEPARTMENT OF MATHEMATICS

Subject Name: CALCULUS

Question
The even parts of e" is called the hyperbolic _____
The odd parts of " is called the hyperbolic
sinh(2x) =
cosh’x +sinh’x =
differentiation of sinhx = ___

2 )
cosh™x -sinh'x =

The slope of a graph ____ on an interval where the graph is concave up
If the curve y = x*hasno___ atx =0
The slope of a graph ____ on an interval where the graph is concave down

The graph of the function f is concave up on any open interval I where
The graph of the function f is concave down on any open interval I where
ApointP(c,f(c))onacurveiscalled ____

sinh(-x)=__

coshx coshy + sinhx sinhy=___

Differentiation of y = In ( sinhx)

ftanhx dx=__

If x =0 then sinhx =
Ifx=0thencoshx=__
Range of tanhx is

Range of sechx is
differentiation of coshx
sinhx coshy + coshx sinhy =

2 cosh’x - 1 =

Find the second derivative of e>*

The ____ parts of €" is called the hyperbolic cosine

The ___ parts of €" is called the hyperbolic sine
differentiation of ( sinh4x)

Ify= sinh”'x then if and onlyif

2sinhxcoshx =__
fJcoshxdx=__
The graph of the function fis _____ on any open interval I where f'(x) > 0
The graph of the function fis _____ on any open interval I where f"(x) < 0

Differentiation of sech x
Differentiation of cosech x

Isechzx dx=___
Jsecxdx=_____
Jeotxdx=____

Jsechx tanhx dx =___
Jcosech xcothxdx=___
For f (x) = sin(x) , find f " (x)

Option-1
tangent

cosine
2sinhxcoshx

tanhx
(- coshx)

1
behind

hyperbolic
increases
f'(x) >0
f'(x) >0
hyperbolic
(- coshx)
cosh(x +y)
sinhx
In(sinhx)
(-1

(-1
(-1,-1)
(-1,-1)

(- coshx)
cosh(x +y)

tanhx

2X
€

positive

odd

cosh4x

y = sinhx
tanhx

sinhx

local maximum
concave up
cosech x coth x
(-sinhx)

sinhx

secx + tanx

log cosx

(-cosh x)
(-cosech x)
sinhx

UNIT-I

Option-2
cosine

tangent
sinhx + coshx

cosh2x
sinh2x

0

increases
inflection point
Zero

f'(x) <1

f'(x) <1
inflection point
sinh2x

sin(x - y)
cothx
In(sechx)

1

1

(1,1

[1,1)

sinhx

sin(X - y)
cosh2x

2eZX

even
positive

2cosh2x

x = coshy
cosh2x

cothx

concave up

local minimum
(-sech x tanh x )
cosech x coth x

cothx

log [ secx + tanx]
log tanx

(-sech x)

(-tanh x)

cothx

Multiple Choice Questions (Each Question Carries One Mark)

Subject Code: 17MMU101

Option-3
sine
sine
coshxcoshx

1
coshx

cosh2x
Z€ero

concavity
decreases
f'(x) <0
f'(x) <0
concavity
coshx
cosh(x-y)
tanhx
In(coshx)

0

0

(Y
0,1]
cosh2x
cosh(x-y)
1

4e*

odd

even
2sinh4x

X = sinhy

1

tanhx

local minimum
concave down
sech x tanh x
sech x tanh x

tanhx

secx + cos X
log secx
(-sinh x)
(-sech x)
tanhx

Option-4
secant

secant
sinhxcoshx

sinh2x
(-sinhx)
sinh2x
decreases

saddle point
behind
f'x)=0
f'x)=0
saddle point
(- sinhx)
sinh (X +y)
coshx

cothx

2

2

(-1, 1)
[-1,1]
(-sinhx)
sinh (X +y)
sinh2x
(e™)
negative
negative
4cosh4x

y = coshx

sinh2x

sechx

concave down
local maximum
cosec hx

(-cosech x coth x)

sechx

log [ secx + cosec x]
logsinx

(-tanh x)

(-sinh X)

sechx

Answer
cosine
sine
2sinhxcoshx

cosh2x
coshx

1

increases
inflection point
decreases

f'(x) >0

f'(x) <0
inflection point
(- sinhx)
cosh(x +y)
cothx
In(coshx)

0

1

-1, D

0,1]

sinhx

sinh (x+y)
cosh2x

462X

even

odd

4cosh4x

X = sinhy

sinh2x

sinhx

concave up
concave down
(-sech x tanh x )
(-cosech x coth x)

tanhx

log [ secx + tanx]
logsinx

(-sech x)
(-cosech x)

sinhx
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DEPARTMENT OF MATHEMATICS
Subject: CALCULUS Semester :| LTPC
Subject Code: 177MMU101 Class : I- B.Sc Mathematics 4004
UNIT 11

Reduction formulae, derivations and illustrations of reduction formulae of the type | sin nx dx, |
cos nx dx, | tan nx dx,] sec nx dx, | log x" dx, [sin” x sin™x dx. Curve tracing in Cartesian
coordinates, tracing in polar coordinates of standard curves, L’Hospital’s rule, applications in
business, economics and life sciences.

Text Book
T1 :M.J.Strauss., G.L.Bradley and K.J.Smith.,(2007). Calculus, third edition , dorling
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Springer verlag, NewYork.
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UNIT Il

Curvatire: The rate of bepding of a curve in any interval is called the cwvanwe of the cwve i rhar
inrecrval

Curvatare of a elrcle: The curvanure of a civcle ar any point on it equals the reciprocal of its radivs.

Radins of cnrvarare: The radius of auvanure of & curve ar any point on it is defined as the reciprocal of the

curvanae

|14 ar
av )

('afft'“all_ﬂ?ﬂ” 0}7(!(”“5 of curvature o= l ~
ld y

| dy?

Parameteic egnation of radius of corvature

-

3 X A A
Polar form of vadius of curvaties p ‘—
~r

I

(55 )

Dmpiicil form af radivs af curvainre p T T AR
Centre of carvatere: The cucle whuch wuches the auve a2 P oand whose iading 15 2omal o the ading of
cnvalire and ifN conlre s know as cenlie llf".’lll".'i!lill'e‘

Equation af circle of curvature: (x — ¥)% + (y — §)5 = p?

Centre of curvaturee: § X % {1+ y7) 9-¥ %-;I - 3.9

Fwolduse: The lpans af the canrre of curvanue is called an evolure

Involnre: If a carve C) s the evolute of O . then € is said ro be an involute of a curve .

Payamedric cguation of yeme standard curves

Cluve Parametsic farm

Y =4ax {parabola) X=at ,y=2at

; =5 1 ellipsz) X=ac0s0. y <> sind
_ b_ = 1 {yperbolu) X-asech. v hrand
M l: L 22 X=ucos'0 . v =asin’d
Xy = ¢ ( rectangular hyperbola) X=ct.y= :

Emvelope: A curve winch tonches sach menber ol o Lmnly ol caves i called envelope ol thinl Gamly

v,
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Lvelope af a family of cnrves: The locus ol ihe vlinaate pomls ol wiersechon ol censecolive wembers ol
a family of curve is callad rhe envalope of the family nf curves,

Properties of envelope and evalute
Propertyid: The uoaul al quy pomt of @ curve 15 @ langent 10 10 evolute wuckiug ul the comesponding
cealie of coavature,

Propern:2 The ditforence berween the rmadii of cuvanwe ar rwvo points of a  auve
is cqual to the length of the arc of the cvolute berween the two comesponding points

Properfy:3: | hera is one evolute bur an wiitre number of invelures

Property:4 | he envelops of a family of curves romches ar 2ach of irs point, Tha corrasponding membar of
that farely
Lvointe s fhe envelope of normaols: The nomsals w o curve Lo g Limly of swarghe lnesowe kuow s
the 2nvelnpe of the family of thase normals is rhe laens of rhe nltimate poinrs of infarsaction of consacutiva
aormals. Rut the cent2 of curvamre of a arve 15 alsn the panr of cansecnrive nanmals. TTanee the envelope
of the nermals and the loous of the centres of cwrvanure are the same thar is the 2volite of a aurve s the
cuvelope uf the nomwals of the cuve,

Part- A
1. Vind the vadius of corvature of y=e* ar x—

Solution: p = e

vt
yi=eF Al x=0v=1
L alx—0y:—1
I £
p-—dl]l" _n_llt-_- —_2\"5
.

v 1

~
.

Find the radius of curvatiee of at x ==on the curve y = 4 s5in 5 sin 2x

. 1=y
Solution: p = =———

'
-

vi—4oosn 2oos2x al 8~ 2

Vi
‘-

Vol sin x + sin 2x aly — =4

S B

o & 2 ;
ey uH"" 56
*:p:—&

vz -4 »

=

3. Given the coordinates of the centre of curvarure of the curve 15 given as x — 2a - 3ar°
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¥ = 2at’ Determine the evolute of the curve

Sointton: ¥ — 2a 3ar rx o 2af. e 1
-
y - 2ar P =20 camsmeanaa 2

_— " | -0 ey ond
(* Z",."- Vo (y=2aa)

4 T-2u)=2TaF"

The Jecus of e centre of curvature fevolule) s 2x-2aF=27ay"

4. Write the envelope of A’ 1 =4, where i s the paramerer and A, 13 and C ave functions of X

and v, (NOV 08)

Selwtion: Givery Anr 13m0, warl1)
Diffareatiate (1) partially wrr. *m'
2amiil-0 m—2A .02
Sulsitiule {2} m (I} we g
A{-BZAPHB-B2AFC=0
ARTHATB2AHC=0
AB-2ARHA'C=0
- ABTHAYC0
[ herefors F4AC—0 which s the ixquined savelope

5. Find (he radius of curvature at any point of the curve y—x’. (NOV 07)

¥
3%
LR

Solnrion: Radius of curvatuce o

% n ay o ey -
Given y=x° === =2x il Ya == =2
- !'- , 'q
_ =™y (2=ax]
o= = =~

6. 1ind the envelope of the family of X sin @' ¥ cos = p, itheing the paramerer. (NOV-0T)

Solnfion: Given xsma +y s A= Po oo, (13
Dnflereaimate (1) patully wrl ‘a’
N Cos - ¥ sina o i

Elhunmate abeiveen (1) wed (2)

> : fn= A
Xcoso=ysina =~ -=- = Tana--
¥ 3
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N X - )
Sin = —— CLY = —p—
Ay e =ye

substitre in (1)

=
N, ep— }'_ ———
\' ‘o"'h \ xu-)‘l

P
VY —p
Semaring on both sides, x° 197 p” which is the required envelops
7. What is the cmvature of x° ly’ - 4x-6V 7 1= at any point on it C(TAN-D6)
Solntion: Given x° -;," - Ax-0y+10=0
The ziven aquation is of the form <= 137 1 2gx 1 2y ¢ -0
Here 28 —4 2--2
2[=-61=3
Cenire C(2.3), tadins 1~/ + 77 —¢ ~F+9-10 -3
Curvanue of The cucle ;

Therefare Curvamire of X~ +y - Ax-6v+1 00 is N

8. Find the envelope of the family of straight lines y— mx*y 1;5—_1. where m Is the parameter (JAN
1)

Solution: Given v=utym- — |

(y-mx} =m -1

Y5m'y"  Zunyem+H1-0

ur’ [.\;:-ljl-i'uuay v 10 which 1 quadrane '

Here, A=x*-1 B=-2xv C=v'+]

Thc condition 1s B-4AC=0

4 XV 410+

XV A YA 147 30

X'y~ syhich is the required envelops

9, Find the curvature of the caryve 23° +2y° +5x-2y+1=0 (MAY-D5NOV-07)
Sohttion: Given 2% +2%% =Sx-2v+1-0

-1

Ay 32K 120

Here 2g —52 2-5:4
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_ - " - s . e ——— inz
2=l #=-12 centre O -S4.1°2) radins = Jgm+ " — c-'\"-.—, ===

Thereiore Cravalure of the circle 2x° +2v* +5x-2y+1=0 zsé - ﬁ
L State any twao properfies ol evolule . (MAY-U5)

Solupon (31 The oomal ot cmy point of 0 cave 15 9 Gmzenl @ oils evolule leaching ol the
conesponding confre of curvanue. (i) The differcnce beracen the radii of corvanire st too points of &

curve iz equal to the leaath of the arc of the evolut: beracen the nvo corresponding polors.

11, Define the carvature of a planc curve and what the curvature of a straight linc. (JAN 05)
Solution: The 1ate at whick the plane curve has tumed at n poine (race of beading of a carve is called

the curvarure of a curve, Tac curvature of & straight line is zero.

12, Define evolute aod involute . (JAN 05)
Solution: The Jocus of centze of curvature of o curve (BB, B+.. ) 1= called evolute of the mven
curve,
If s crve Cg s the evoline of o cree € thea O s said o be anonvoinge of & cirve ).
13. Find the radius of carvature of the curve x° +v°  6x—4v+6-0 (NOV-08)
Solutions: Given X+ - Gx=1v=4=0
[he given equanion is of e farm < 1y 2ax12f/0e (1
ler22g -6 4 3
=422

Contie CO3-20 tdius y=y g # f- = ¢ =va+0-56=47

Rahes ol Curviure ol the caele = 1udis ol (e cacle=y7

14. Find the envelope of the family of clreles (x-c0)’ 1y =3, where ¢ s the poramerer.(MAY .07}
Sohwrion: Given (x-ef 1y —la
X o -la=y =)
o' Zadx 25 X7y (which is qnadrarne in o
Ihe condibion s BE4AC-0
Here A=1 B=-2 {x 421 C— x4y
Ax+2) - A{x"+3"1=0

®-In1- x57=0
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vix=1 which is the required envelope.

15, Defipe evolule . (MAY-0T)

Seluton: The Joces ol cenlre of curvatoze G5y 15 culled v evolule

16.Find the envelope of the family of straight Hnes v mx+ﬁ for different values of 'm’.
Solution: Given 3.r=mx—£- (NOV 07, May 2009)
mex-my-a-0 which is quadeatic in ‘m’

Thie contiilion is B*-4AC=0
Hae A=x B=-y (=u
Y .dax -0

I'here fare v dax which is rhe required envelops.

17. Vind the envelope of the line _:5. VI=Z¢, where't™ is The paraneter. {(NOVAIZNS)
. x
Solunow: Given —+vi=2g

Y F-2el4x=0 whoch 15 quadiaic w1
The condition is B -1AC-0

llere A-v I3—2¢ C—Xx

Cxy=0

Theretore xy=¢ whach is the required cavelops.

18, Find the radius of curvature of the curve v—c coshix/cjat the point where it crosses the v axis.

’.
L1ev=) =

Solutlon: Radius of corvanwre p = (NOV 05 May ()

Given y=c¢ coshix'cl and the curve crosses the v-axis. (Le.jx=0 implies y=c.
Iherafora the poinr of infersection is (0.c)

¢ stn (x/e)(1ic)-sin b (xic)

E2(1 ¢ )=sinl t= )
ds ’

d-y o
2.2 oS h{x'c)(Lic)

d.y . o] ]
d_‘;‘(_ﬂ.()' cos (D) (L'cy = Lic
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-t 3_2'
19. Find the radius of curvature of the curve xy—c’at (c,c). (NOV 02
Sohmion: Radiis of cnvanuz 5 = '1':’ “
s3

Given xy-2

dy

Xty =0

Ay A

ay_ V.. -].q_-." .
T o aplies o= (ccr=-1

g fo =1=¢ 2. 2
Tyt ] - o
ds e & =
(1+(=13" ¢2y2
= 57 -=
/. 2
p=0cy2

20 1ind the envelape of the tamily of strotght Tines ¥— mx=<alm: — be, Where m is the paramerer
Solution: Given y=mysalm® = b° (Jun ()
(r-mx ) =atm® + b%)

YIm o Zmay- atmpt G

n l;.\:-a:}-?‘lll.\ yi }2-53—0 whneh i uendiahe o’

ere, A=x -a® B=-2xy C=v'-p?

The conditton is B -1AC=0

(R TR ey T RS

X . * » » o
=5+t :—; =1 which is the requirad envelope

21 Write dowat the formula for radius of corviature io (erios of paramelric coordinate svsiem, (May-
09)

Tt ety =

Solutton:  Radms of cuvanire g = =

2y ez’
22, Define the civche of curvutuce nl o point P(xg,ya) on the curve y = 1{x). (Jau-09)
Solution: The circle of curvame is the circle whoee coanre is the coute of curvatuze and radius is the

rudivs ol corvatvze. Therelvae e eguution of varele el curvutue iy
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(x=%)°+(y-¥)°=p°

PART B

’ - R 2! 2/
1. Lind the radins of cnrvarure at the point (acos™8, asin”8) on the cmvex '3 + y s

Solution:

{2}

=,

Yeastl O i
Diflereniiate (17 and {2y warl @

ax _ . . - : :
== 3ucos D(—stal) = —3a sindcos?* 0

Given X=acos 0. o

24
as.

(1) (NOVATMAY-08,MAY-09)

== = 3asin?#{cosi) = 3acosHsin’d

sncosfsin?e
{and

—3usinQcos?@

= 3usinUeos<0 (S('("" 0] 4,"‘;)

dy
dd
ay s
y Sty
ay
ux " ux/, 37
fag
a‘y o dr) o 8
=" — Y
dx= dv Ldx P T tand "da
2 1
i 0' Ho vinf cax=f
Wy i
dxr= Hoviw 6 cactd
f cdynSY 12 24
2T i
. ~ ) V4 tunsd ]
Ruchius of vorvature p = — = -
"—F " e p— 1
o'n= Javm oY

—3asinfcos*@sec®6 — 3asinBeosd
»
2. Find the radins of enrvamure of the cmve y*

. 2'.\
o o=
Solution: Radius of curvanine p = de——tee

wlarx) ax? k¥

Given 7 — x

{u=x) {=x

Ditlerennate w.rt. 'x’

av fu=sil2arsds sl =[arderdii=1)
:3— = - ~ -
L [T

~ x* 2% at the point (-a, 0).

AnsinAcasd

(NOV_(8)

dy {a—:02ax +3x%) = {ax® + *)-1)

dx 2y(n—x)?
dy 5 2al 2a” 1 3a?) | (a® &%)
—— — —4 "
dx ) 0

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE

Page 8/29
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dx wia - x)*F U 2
Ay {a*x +ax* — %) {a*x = ax* —x*)

(@x | ax? ..t-'., 2(a ..-,(' ix I (2 2.1 o 2 pdr 2 S 1‘.:'5-'
d’x_ ax | ax Ny cla x) , Wz w®r x)-.1 »a x)im H‘; 11.4’3:7 3x 7:'-
dy*? (a?x | @x* x?)?

d"x( o at 1 a®) a¥)idat) 4a® 4
> a- o.‘ o - - — -——
dy= ( a?la®lai* a® a

{1+ G]:l"'? 7
Sp = T i

a

3. Find the radius of carvature at the point (a,0)on the curve xy? — a? X7 (MAY 07)

3

Given xy® — a® — &7

Differenriare w..r.'x’

) . gy —ayiiyd
SRN=—==y" |=3XT = ——— (1
i o Ay
3a =0

2]

Thercfore g = —_—

2

Ter
2 wy
P 2 y
— = s e e (1)
dy sl '

=0 =——=—=0
ay -3g1-2

ilaeniane (2wl "y

1 oy A\ f e oA
a2y '.:[‘ 3 W) xtiv—) xy| Si— v ||
Gd A RN A 15 f .
ﬂ_'f.'- ._3'_7-.‘-:.:7

die oo A{-xetonjluin]-u] fesd
_‘ .G. I].' | SaZ. N
dy? (3% Q)

Iherefore radins of cwvanws p —

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 9/29
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i = = (s e s ol corviine 15 san-nessniny )

’

4. Find the curvature of the parabola ¥ 4x at the vertex. (NOY 07)

Solunon: Rihos ol curvalure 2 —

Gven; y-=dx

Diffcrentiate wit'x’

Y 2
— D0 = ==
!.Jf' 0
o Bla
: heia) 3
Therelore o — -
e
"t =, 'l' l .
=T S (1)
=={0.0) — O
\}'.
afferantiare (1) W'y’
a*x 1

\1'_!-" 2

. 1 0}’
Thereling p — ——=2

v e

Curvaslure K=1/ 1 =12

5. Find the radius of curvature of the curve 273}': 4x* at the polnt where the tangent of the curve
makes an angle 45" with the X- axis.
Sohation: Let 1%, be the paint on the cuve ar which rhe rangent makes an angle 15°

wilh the N- axs

L5 SN -
i-‘-;:;i.\.-_.j,'. ) =Tan 45°=| (L)
Grven 27ay"— 4¢°

Differentiate wrt'x’

“ o Ay oy’
L
"y ur Quy
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Pgr. Ay 22Xy o
T ¥ e )
a > < 2y
2y =Tim 45— - —
da S URT
Gives v, = — 13
T un A
¢ R s oA A Taye 3
Az Xeysy lics oo ehe oeve Z2Tay = 1x7, 1
= e ~
Trany y; = <4 gives X~ 30
Ariel using (3] gives yvy;— 2o
Yyati3ala-1
. ¢ uax 27
Va2 I*_I
Y [a y!
7 fravrm=-sndtal |,
‘1'.,2— — = |
sn $n- 3
(=nsys  pleny™s
- . [J="5 )0 J -
Therehimeg subns ol carvinag ) — —— et
v oy
g = 1lavl

6. Fimd the evolute of the rectanpular byperbla xy=c’,

(TAN-06,NOV-08)

A

Solutico: The equation of e given curve is Xv= AL)

Plee perameric fonn of{1) s
X—cr 5

20
dx 1y - )
LY iy
w! w! \22J S
i Ly il ' 1

Y——— -

b s W r g
¥ "‘;‘ o '.'v) " "-l\

TEaT Axhax axhr=/

¢ 'c' L

ar |\..‘) .ﬂ'“

21 2
Flie co-onctmiatzs of the center of crvanee Is |7, 7)
Whae 7 = v —=(1 = %)
] | X% cltYe )l At
—fr-'kl (l""_""'“‘-u——;‘-—-—T
o) ¥ ) 2 2
D b | \ .

- { — 3
X ;n,\.xr po) SRR 42)
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Yy=>rI1l—=—LL1i¥)

b

- - = |l =] == —
) 5 2 11
,_(“
3 KN
¥t (3)

Lhiminaring™ berween (20 and (3),

(211 3)nves

s C Cf g: 0% CF q..3
F o+ _le'+7|"'7|"'——l_:l"-T-"4‘_*
& () s <ot e !
: 1
X Pt = N ovia simetines sises saidaiing (1)
= < L/
{(20-[3rves
I Y 1y -".". 3 QLR ACE . 14
F=r—=|ls— === = == [ (P == ==
¢ 2'1 , |:.‘. 2" !0 2.. ' ! 13 )
W3
1 &
Y = -1 - -
3 2k :-l =)
y § e Al .
4775 e
2 l 2
- - T I i 1
( e 2 - SR T G y b e )
R SRR o I [ (R I (R
2 e 2

therafore (X + P75 = (T — P70 = {3005

The locus of ceaue of curvanue{x , ylis

(x4 3 — - %) a = (4e) Yawhich is the required evolure of the recrangular biyperbola xy—*.

T, Find the vadins of curvature for the carve r=all+cos0mt 0 = ;mul prove that -':n a constanl,
Salarion: Givea rall leos 8) (NOY.07.08)

r'=-asin @ and " = cosé

: : 2 [réers)

The vatins ol anvature mopoln s o iz 6
= s o

s - - - 9o
L L e L

[P iiecos @422 640 Lecosbicos8

II.ID?-:'-‘.",'I:"' PR [FEEPRTY 4.') Yt eraen s
(11 20e2i@1 Lsind@ 30029) 04112029 3
r den
Py — - - —
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o i nes
Also, 07 ==(1 | cost}) = —

v ot
Thoetone. —"=7r = constent,
8, Considering e evolufe us (he envelope af narmals, find the evolute of the puraboly x*=$ay,

Sulvhon Giveu x™—4ay INOYV-08)

Fhe PATAMRTIIC 2OOLATICNA ATe X247, Y-ar

2x
—2 :md—- at
"0
oy dpfai 2al
oax a'\' Wi 2a
ax

- . . 1
W know 1hal the equabion ol uouil 10 (b curve is ¥-3=—{x-x;)
Ll
e B PO, e N
Y-aU=—ix-28t} y-at=-x+zut
I T 2ar (T

InlTereninde (1] partsdly Wl 1 we el

1y

_v.,\' '

vt

da

Substitute the valuc of ‘" in (L)

Y=ar+2a r= t=

—

vo2a ;-‘:2 g .\n "-
—_— +31 ( -2
i ” ] THxm = u(

s | a— () 2] 25 52

du I v ud ) 1
3W3ax = 20y 2ay7n
Souaring on both sides. we ger

27ax" — £(y = 2a)*which is the requiced evalrs.

Y. Obtain the evolure of The pavobols v¥=40x. (NOV-07T)
Solution: GIen F=1aX... ..o.ooviiveivveorn 4}

The panm\n.\ "Q‘I.:Iflv.ls arc x— ﬁt =28t

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 13/29



UNIT-II

REDUCTION FORMULA | 2017

1

e ':ar

=2

AL | X

Zar?

The co-ordinates of the center ot curvamre Ts (x, v)

£ 1=/ (1341 02a
Whee ¥ = —‘{1 | 3} = at? 'TL[I l—)-—at“ l—“-m2 2at? | 2a
S \ Poaesl
X = ARE A L A R LN(D)

1 .
=7 ;(1 I ¥}

v =2ar | ——
( f2ar3

y =

Eluminating *t" between (2land(3).

N 2 __d=2u
(2) gives t° = ——
; - N

(3) ghves r* =

(=2) -

(2 + D2at?
tz

X — 20

27a7? = 4(xr —2a)?

The locus of centre of curvamiea(y, ¥ )is
27ay® — 4(x = 2a)® which ¢ the required evolure.

10. Find the equation of the envelope of 3 - %

Solutien: Given ll:al"-; ¢ ’l%= R R L AR R ]

And 2+ D2 =¢?. i)

Differaatiate (Dand(2) wrr ‘b’

-x da Y

s dr 0 0. )

Ja—12bh 0 4)

. da 0y

(3eives == — 21X 5

3javes = 5 A3

$haivess =2 (6)

(<2l - = . A6)

WA > a’y

From (Spond (6) —— —%ir
O VO T~ - O |
a? &3 a? b2 aipd ¢?

1 where a* + b*  ¢-.

(NOV-02,07)
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£ V... ¥y 1
s e ommn ][] S e S
u® ¢t AR

"

a1y ¢ s
"w—- {J.'('JJ ’3 '”..d h - {ye =)'z
Substulute 1 {2) we gel, (o) + (pe®) = ¢#

2; 27 R SRR A ;
Therelore 4 s — o7z which is the raquired envelope.

11. Fiud the equation of circle of curviture of the parabola y*=12x ul tbe point (3.6),
Solurion: The equation of circle of curvanue is (x - 207+ () ¥)¥ = 25NOV 07,08.JAN 09)

where, © — x—=2(1+y)
Ve

F-or+=0=y)

(L+yi)"
’) - "
¥z
Given  y—12x
Dnlleasathile wal "s" we gel
2y=]2 unpll't.si'; ==
v oy a3 ¥
iy o =0y
\L I.-—.(‘ﬁ' ! e Pl
, dVy > ‘“
Y y—at;:-l'.\_f)l—-lv
—Y 3
(11 ¥)72 (111)%2 -
= = - = -12v2
b 1y
G
0 P27 (g ean not be naganive)
¥oex==(1+¥
Y2
s -
=3 =il 1)=15
g
L ’ ; \
Y=yt=(14w)—-0- l'Llll.'— b
72 ,"b

herefine, the equation of cocle of cusvatiee s (6 — 18) + {y + /)¢ — 288

12, Find the voadins of cnrvature of ‘17 on x—-e'cmt,y-e'sim. (FAN-D6)

- P |
ree e S

Solutica: Radivs of Clrvanie o = se—

x"..’ -yt

Given x - efenst,y  &fsing
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vy Oy IS - .. 8P
XN'===g'vusl  e'vinl =« {cost  sinl)
at
vy @V ’
y’ -1-,'- = e'rost — psint = ef(rosr + sint)

0E e

X =2 =e'( sint  cost) ef(rost  sinl) = 2efsihl
o ""." ¢ ~ 3 a : o -
b T {=sint +cost) + ¢'(cost + sint) — 2e'vost
y wRy
AP Y- _ (et ap=yh
= Lhe radivs of curvature s o — — s

- . - . e :".'
([ (cost — sial)]” + [eF(eost + sial)]”) /2

’ o ¥ .y . » L
. eficost  smi), 2efcost  ef{cost  sind).( 2efsmi)
e P|easteisn’s dshireost 1o’ e a0 e Zetnrcase ) 2 (3a70) 17 ..
e —r - = — e
2ot lcosst=sinicost rrnicosl wxinst) 24r=+
13. Find the evolute of the ellipse ‘—l‘g e (MAY 05.07)
o A 3 u.-'
Soluion: The @ven curve 13 s 1
The paraetic equulions are x=seost!  v=band
ax (8 dy a
—_—  =d45ING ;== — DCas
iaQ *d8
¥ I -‘;-':‘.- b
Y= = 3= —=cold
" W LN
s d=y

1y d f- b A : z -1 b cueep=
o (--mrﬂ) = Zgosectd | ) — Ly
dxs ax \dx 4ax a qax @ asing a=  s(ns

Ya— — = cnser'

')
The Co-ordinate of centre of curvamre is  {x, v)
Whers ¥ — x —={1+¥1)

l: »::n'.ﬂlﬁ:v: 1 M“:{u.u."'ﬁ
- - acos —

-::q’nr.u\m A wsing

beusd Ifcos=0 l
| G
atstnte S srosesls

1 ERROR ai S 1 n S PR
—acosd ———rosd(a”sin’8 + i°cas” @) — acosd — —cosfi{n?(1 — cas”f) + s H)
“w "

1,2

b | : . ' =
- acusd —a—ww(a’ — %0520 + DPeos?B) — aces® — acosh + woos?@ — 7605‘"8

2 a2=p3
=cos>H (n =)= (==
LN

) s 8

\

o

M= (u) (1705 | RSP E JUAPON (1)

0w

' Y
Y =y+=—(+y)

v e
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f ‘.: .
- | =toeiels ) ) ! vicas’ey a”
=bsing +>F—0—= bsind (11 5 —)—u
alzinte) beasece

'.q'.l..\v"Q
3 .2 sN& e a2 1.2 ]S - ax: 1 vy 2 P |
= bsing — —[a*sin‘@ + b5 (1 — stn*8)] — bsing ——sin? 6 — bsinf + bsin? G
~ -

= sin?h [.'} -:';I = sin39 I.'."‘_']

b

. [ad bR .
Y- —sin'A T AR AN A e s At I AASGINT Y

Eliznsing “07 betwera (1 and (2)0we get

= 1
cosb = ( af_\" and sing —( e ' ;
-a:—b:J sl aé — b)
wie know that, sin®@ + cos’6 =1
. - af Mt o b7 (2 (a¥)s (b7)"s
.\'ivre—co:‘e:(" .) —;(,, h] - — }.:‘— ~'J~:.~"—1
\a® — b=, = — b (@*-8)"43 (a*—b2)"73
2 (ax) s+ (by) = (aF = b7)
the locus of (%, v is (ax) /3 4 (bv) 72 = (a° = b*) " 2which is the evolute of the -?lllof,(‘:—:' —-; =1

. I . m
14, Find the envelope of f- + i = 1 where | and m are connected by = T ry = 1 and a,b are constants. (MAY -

05, NOV-05]
2 = 204 ) i, m
Solulion: Givenlhatl= 4 <= 1. _ ... ....[1] - =1 i 12|
oo ’ I
Nifferentiating (1) wrt'm', we get
(—1 dl ‘—l-l 0
o) o
A2 fdm 7 \m?) 22 .’
o £
piffercntiating (2wt 'm’
[ di i 1 0
adm b S N )
am > e
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From |3) and (4]

-yl* =a by ax
. 5 i S5, S S
xme 5 m= =
L X Y.X
m : {
m ! m I
o a a
) ax -
=L =1=3mn=y

{by,l = \"ESI.‘IX‘.(INJ“‘ in eguation {21,

vaxr by . _
a b = [=4 (== 1which is the required envelope.

ve

15. Find the points on the parabola }'2 = 4x at which the radius of curvature is 3/ 2. {may - 05)

Solution: Given v* = 4x. ..., (1)

-~

Let, P (g,b) be the point on the curve 1= = 4

-3
_(a+y)~

¥a

2

Differentiate (1) w.r.t. '«

ay 2
a5 gy _2 T-(ab)=3
Yis2pi =4 === ax 7]
ax ax ¥
a*y
(o Ero_2a gEeb=-g5
¢ dax* ¥y ax

_(ayiy_ (a4 b1)s
Va 4

-

=4y

!:q-i: ) /3

But,b- =4a =

atl=2 azl,b'=4=2b=+2

ral

xetwhereg =42

gt \ <87 —
=42 hence 8(1 +a) 2 =16y2= (1 +a)® =2°

* The points are (1,2),11,-2).
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.- ,
-

16, Considering 1he evolute of 3 curve as lhe covelope of its pormaks fnd (he evolutc of Eg =1,

(NOV_12,05 MAY (15)

XS
Soluton: The given cuve s = + 37 =
-

I'he pacamarinc equations are x-a20s8  w—hsing

ax dy
— = —qsinf e = beosd
ad de
.;_\
ur:_—u =E= ’:' cots

-1
We know el (e equaion ol (e nonmal 35 y=y——(a-x)

§ = bginf = —— ¥ — acesd)
—— -

> coth
asiné
beose
vhepsd — b sinBrosh = axsing — o’ sinfrost

w— bsing = (x — acosd)

+ by sinfrcosBowe ot

Vo & ax =

ror s e R —a

sing 050

ax ‘D - . A
- ’ Al

o586, nd

Differentiate (1) partially w.er.” €7, we ger

-QX Ly

— (—sinf) = ———cosfi = 0

rn,:‘a( Fin* 6

sin*8  =by o &y ~(Bby) 3
—=——=tan'd =——=ta¥l =—F—

costd  ax ax (ax) /s

=ty le [ (5
o s:‘r:ﬁ - #.ms& - f?. =
Jlax) 2=y NICTIRE LT R

SUDaTmLte I eqarion i 1ywe aet

ax 1, 2 &y NET 2, I
T\“l(az)'% - (b‘.)-'s—-T\T\'('n] s (by) s =g =h?
(ax) s ~(By)"s

! 22 s) \ =) - ~ -
J @34 (65)73(@x) s # (b} 3 = 6° -4

[(tu):"'S - (b_\):"s]x': PP P
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(ax) ™z + (by) 2= (a* = 57) " awhich is the required evolue of the ellipse

17, Find the civele of covature af (3,4)omn ay=12, (JANAIS)
Sohwrion: The equation of civele of cwvanue is (x — £)° = (v — 7)° = p°

Where, ¥ =1 ‘%‘lrl +y3)

J2

"
»

".v = yr4d _!\1 N n-)

b
Ll

(t4a3) 7z
PR ——— e —
¥a
Givea xy-12
Diftorentiate w,r.t°x" wie gt

a . A =Y
—=+y= M _———
xo+ ) Cimplics =

[ \

. dy : &ty (=35=ya)
Yi==(1d) 43 H=- -
g dx3 L

@y [37=31 ¢
P ) I i W
ax- 3 9

. ‘ —ArE : X
(1—_\;}3-':_(1-(—3’-) P @& & axs

p: = = — T —

Ve 8/ 27 '8 24
- ,‘9
125
S
Y5
T=x—2(1=v])
Ya
iy o 16 35 _ 4
"'5—(1°T) e
_ 1‘1 — 1{1 16} 25 57
¥ =y b e - ys)= . - v | =4 = -
R p }‘: .2) 8,'6 9 3 8

-

- . . N R 5 o A 2 5
Theretore. the equanon of curcle of curvatare is [ x — =) ={y—=] = :
&) " [

-
-

18. Find the curvature for r = ae7 (JANAIF)

° - . Qcer
Salwrion; Given r = qe~ %"

dr . e
[ ae’““"cori
ad

M= ae?cc:acgt. o
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3
v 2 . [p54pe%) 'S
The radms of curvature in polar formis p= b

———
(riel2riiapyr)

- a & - =, = 3“_
(a-e-Gco.c + glolfcota nel O.’) /2

(aleléc:n + 2a:e: :ataco!: o _02e28::h:co22 I)

e = 3,
a®e*%°%(cosec’ x) /2

a:e:éeam(l + cot: oc)

Beora

= ae cosec & (since (1+ cot® ) = cosec” )

& p = reoseca

b
rooreca

Curvature K = % =

» ", -,
19. Find the evolute of the four cusped hyper cycloid x '3+ y'3 = @ 3,(JAN-D5, NOV-07)

Solution: The equation of the given curveisx 3+ vy 3=a" /3, ... ..(1)

The parametric cquations arc x —a cos @, y — a sin 9

dx : dy A
— = =33 cos-8sinfl ,— = =3 asin* Bcosh
d9 dé
A
Yi=75 o5 =-tand
Y= -sec'&"%#(&ec‘o cosecO) )/ 3a
— S [ § A 3 —tané 2
rX=x )’=(1+,\1)—ac09 9-m(l+taﬂ a)

=acos B+ 3asin® Bcosfeemnnmenne (2)

F=y+-(+y]) =asin’® + ooy (1 +1n0)

13

2500 7043 8005 G5B -mcccecencne e eesssecems snimene e (3)
Elimmate @ from 2 & 3
T+7=acos 6+3asin® Bcosl + asin 6 +3 acos® Gsinb

=af cos @ + sin 8)°- . —y

- - .. 2 - 1A 2 s
¥ -V =acas ‘8 +3asin® Bcosh - asin ‘A +3acos?® Bsink

= af cos 8 - §in 8 eeeenreee )

&+ 5343 -7)3=(a"/3)(( cos6 + sin8)%)73)+{( cos 8- sin8)*)3)

~(a”3)2)

The locus of centre of curvature s (x + v) /3 +(x — v) /3:=(a"/3)(2)
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20. Find the radius of curyvature at the origin of the cvclold x — a8 +sin@)and v a1 cos &).
(MAY'0T. Nov "08)
Given x —a i = sin®) v —al [+ cos B
x'=a{ | +cos )y =al smi|

XN'=-gsmll yU=uwcosh)

- - 2
2 2o 'L
Xrtey?*) 'L

=2 | he radins of cnrvanie is p = S ———
o

-} '.v.-'-'
- -
@l=cosdi*=lastad® = Tacos ﬁ
a1 =cordiacosP—a sndi~azind M

Ard-(g = da
21, Fiud (he envelope of the siraight lines represeuted by (he cquation xcosau+vsinu —asccu. u s
{he paritoeter (Nov' 07)
Solution: Givenx cosa + ysin ¢ —a sec o
Drvided by cos v
Xl ytann  asecw
xtytana—al | fan'al
W Yieuyg+a-x=\u
whach 1 quadiatic i tan o
A=y B=-y C=ux
The envelope is green by B — 44C =10
v — dara-x) which is the required envelope

22. Prove that the evalute of the curve x - a {cos 8 + log tan fé;, y-a sin B §s the catenary v - a cmlni
{ Nov "05)

2 7
Solution ¥ - afcos® | logran )

i T
x'—afsinfl+—F S —acorBcos 8

v—-asin &
v=acosl

= an @
L Sl

P e arn Pus:
Yy V4 fsec BN B

..
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= Yi, -
T =x—=——(1+2y)
Ve

ten @
/30245 2in¥)

" B 3
—a{cos 8= log ran 7 ( | +1an -8)

_ é
X=ulog s (1}

F=y+—(1+x)

= sl U*?::Té Ol =lm '9)

—_ @
end

(]
LR

Lliminate & from (1 and (2)

8 = oo
{1 B RO | )
L 3 ==
o e Ria 0| "
— e = OSSR ~
- - B

X .
¥ =8 oosh ;v.»tucll 1y the reguured evelute

23. Obtain the equation of the evomte of the curve x a{cosé + 8sin &), v = a(sin & - & cos & LiMay 09)

Solutivn: Given x=a(cos® ~ 8sin8), vy = a(sin@ —fcosd)
ax o
5= 2{—sinf + Bcoso + sind) = a Bcosh

;—; = n{cos® + 8sinb —cosf) = o f5ind

"y
dy _ s aBsing
dx -?—’? 2 8cozd —
L)
d®y - d d \ &0 2 1 1
Tl — re (:,...9) g (1 &) = sec 9.”“.; T

Tl co-ordinates of centre of curvature is (X, 1)

o Yy,
T=x—-—=(1+;)
v,

=g{cos8 - @sin@) -:%: afcos’® 5200

=" 0050 i on NS Y

- a(sind - 8cosd) + aBcos’d.secf
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F=asinf .. ... R T UL IR 1)
Eliminating & from cquations {13 & (2 we get° + 72 =a°

Ihe locws of centre of snrvanue 5 X7 + 1= = g which s the required evahira.
24, Find the envelope of the steaight line f——i = 1,where u and b ove pavameters that are connected
s

by the velation a'bh —¢. (May. by

solarion: Given 5¢§ =P IRRLE
a

AQd e RN S R A
Diaflercaciote Equs (£ and (2) partiadly wal b’
X a6 ¥
@2'dh B
a

do B3 i
da

—+1= 0

dab

da

—_—= 4
Fraal :

Lquare (3] & (1) we gt

X ¥y Y 1
a* b a b a+b c
X y 1
= P il reh

a-x—’l? b—»/'_lT(.'
Substilule o equ (2)
Vie+ fve=¢
\E " p \."; = \.='E - which is the required cvolute.
25, Find the envelope of the fumily of Jioes :;j + -;- = 1 subject to the condition a+b —1,{Jan-09)
Solunaon: Chiven %—; =Y. e mrarsssasal)

Anda b1 (2)

DafTerearoare Fens (00 and (20 parnially oot e
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a*> b a b alb
P v
a? b 1

d_\" r b:\" ‘

Snbstinie inenn (2]
\T + \.'T =1

vz \,-'-_\7 = 1 . which iz the required evolute.

- -~
26i. Finel the evolule of the hyperinla - i-r = 1 consiclering it ns the envelope of ily mormals.
o
Solution: The paramelric equations we x- 2 sec@ aud v— b tané, iJan-0Y)
a3 d\.' . 2
== usech lund -~ = hpsec*f
ae dx
2 dy 5 25
ay 15 soc” o
Slope al the aimve m-—— = 'ﬁ“ = -cosec @
ax = ogzcfun? 0
ds
Cquution of womoal o e given cuaveds ¥ — ¥y = — j (x—x;)

L ' ~
y-biunéd  g——(xr—asecd)
srosecd

. po0d :.ﬂ.nb( g

- 3'-_
tozh ?

q0s8)

by cos® = b°sinf = ~axsinBcosf - o*siné
axcos 8y cotd = (> +#b0%)...ooeiicieiiciiaereen )
Differentiste squ {1} waet' 9 ¢

-ax sivd — by cosec®8 = ()
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- by
ax sinf = — ———
sin-8
by
sinff=——
ax
1

sinf = (—b—l)

cosf =41 - sin“@
[

N PO )
_\Il ( a) %

mlu
.._

| 2 2
(ax)f - (by)F

(by)3

cotgd = -
N
Substituie wequ (1) we 221,
| : |

ax '—.—" i; by Syt ':-la +5%)

~ lax)s N ‘,b_\'_‘:

J (@x)i = (by)+ [(an)¥ = (03)7] (a7 + )

{ax)3 - (o.)Bl T=(a*+b%)
(m)‘ = (bﬂ' = '\'-1 = b? ) .which s 1he regqured evelule el the @mven curve.
27. Find the radius of curvature of the curve \:E -\;? "\,FE at I-i-%) (Jan 09)

Selution: Given \x +, /v =\a

Differantiare wrr'x’

i i dy )
..\ 1 \ dl
d's ﬁ
d.’. \T
d1

=-1
dx(--|
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1.ar
2y hdr sa
dx* s ¥
\ 1|1-1-1| 4
— it =D
dx*[82) 2 a1’4 a
--. -
v .1-i‘.':_..:," 1+ '1,":} . “3 0
Radins of cnrvanire p = -—p— ~—3~—=-"=¢ —=
= : -
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POSSIBLE QUESTIONS
Class : | — B.Sc. Mathematics
Subject Name : Calculus
Subject Code : 17MMU101
UNIT — 11

2 Mark Questions:

A

Find the Cartesian coordinate of the point P whose polar coordinates are (r,8) = (6 2?”)

Find the polar coordinate of the point P whose Cartesian coordinate are (—2, —2v3)

State a L Hospital’s Rule.

x7-128
x3-8

Evaluate lim
x—2

Evaluate [ tan® x dx

6Mark Questions :

1.

2.

W

© N o 0 &

(1—cosx)sindx x—sinx

x3

Find i) chlir(l) oy ii) J]CILI’(I)

Show that lim (1 + %)x =e

X—>00

IfI, = foz tan™ x dx then prove that I, + I,_, = n—il and hence evaluate Is

Derive the reduction formula for I, = fof cos™ x dx .
Evaluate [ x*(logx)3dx.

x—sinx

sy 1 2x%2-3x+1
i) lim =——

Evaluate i) lim 5
x-0 X x—+00 3X°+5x—2

Derive the reduction formula for [ sin™ x cos™ x dx.
Evaluate i) [ sec*x dx i) [ cosec”x dx

T
Derive the reduction formula for foz x™ sinx dx

Vs
Derive the reduction formula for f2 sin™ x dx.
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KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),
Coimbatore —641 021
DEPARTMENT OF MATHEMATICS
Multiple Choice Questions (Each Question Carries One Mark)
Subject Name: CALCULUS Subject Code: 17MMU101

UNIT-1I
Question Option-1 Option-2 Option-3 Option-4 Answer
A polar coordinate system in a plane consists of a fixed
point O is called the ____ polar pole initial ray parameter pole
In a polar cooridinates r denotes a ____ distance area angle radius distance
cartesian
An Rectangular coordinates means pole coordinate polar plane  polar coordinate cartesian coordinate
In a polar cooridinates 0 denotesa distance area angle radius angle
The polar coordinates is denoted by S(r, 0) P(r,0) R(r,0) Q(r,0) P(r,0)
The polar angle is denoted by 0 0] r P 0
If the polar equation is r cos® = 2 then the cartesian
equation 1is x=-1 x=2 X=-2 x=0 X=2
The slope of the polar curve = f(0) is givenby 2(dy"/dx") dy'/dx' dy/dx dx/dy dy/dx
A ray emanating from the pole is called the polar curve polar axis polar plane  polar coordinate polar axis
The radial coordinate is denoted by 0 0] r P r
rectangular
what is another name foe cartesian coordinate ? square coordinate coordinate polar plane  polar coordinate rectangular coordinate
lim ,_, (sinx / X) = 0 (-1) 1 2 1
lim ,_,o ((3x - sinx) / x) = 0 (-1 1 2 2
[secxtanx dx =__ tanx sinx secx Cos X secx
lim .,y (X cot X) = 2 1 0 (-1) 1
lim 0. (1 +x)"™ = e 2 1 0 e
In a competitive economy, the total amount that
consumers actually spend on a commodity is usually
_____ the total amount they would have been willing more than or
to spend equal to less than greater than  equal to less than
Jcos x dx sinx (-cos x) (-sinx) tanx (-sinx)
Jfudv=uv-__ [ du Jvdu fudu [dv Jvdu
d(uv) = uv - vu uv + vu udv - vdu udv + vdu udv - vdu
A____ system in a plane consists of a fixed point cartesian
O is called the pole. polar curve coordinate polar plane  polar coordinate polar coordinate
A ray emanating from the_____ is called the polar axis polar pole initial ray parameter pole
Iseczx dx=__ tanx sinx (-cos x) (-sinx) tanx
J(/x)ydx=___ X log x 2x I-x log x
Jeotxdx=___ log cosx log tanx log secx logsinx logsinx
log [ secx + log [ secx +
[secx dx = - Secx + tanx tanx] SecX + cos X  cosec X]| log [ secx + tanx]
flog xdx = . x log x log x +x x log x - x x log x + x x log x - x
lim ,_, (tanx / x) = 0 (-1) 1 2 1
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KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),
Coimbatore —641 021
DEPARTMENT OF MATHEMATICS

Subject: CALCULUS

Semester :1

LTPC
Subject Code: 177MMU101

Class : I- B.Sc Mathematics 400 4

UNIT 111

Volumes by slicing, disks and washers methods, volumes by cylindrical shells,
parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of
surface of revolution.
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2. Anton H., Bivens I., and Davis S.,(2002). Calculus, Seventh Edition, John Wiley and Sons
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UNIT 11
INTEGRATION

The process of integration reverses the process of
differentiation. In differentiation. if f(x) — 2x2 then
f’(x) =4x. Thus the integral of 4x is 2x~. i.e. integration
is the process of moving from F(x) to f(x). By similar
reasoning. the integral of 27 is 7-.

Integration is a process of summation or adding parts
together and an elongated S. shown as . is used to
replace the words “the integral of . Hence. from above.
[A4x—2x%2and [ 2tis 1>

J

— indi-

In differentiation. the differential coefficient

cates that a function of x is being diﬁferentjatezl with
respect to x. the dx indicating that it is “with respect to
x’. In integration the variable of integration is shown by
adding d(the variable) after the function to be integrated.

Thus f Ax dx means “the integral of 4x
with respect to x’.
and f 2r dr means ‘the integral of 27

with respect to 1’

As stated above. the differential coefficient of 2x~ is 4x.
hence [ 4xdx — 2x2. However. the differential coeffi-

cient of 2x2 + 7 is also 4x. Hence J 4xdx is also equal
to 2x2 + 7. To allow for the possible presence of a con-
stant. whenever the process of integration is performed.
a constant "¢’ is added to the result.

Thus f A4xdx — 2x2 4+ ¢ and f 2tdt — 12 4+ c

< £l

<’ is called the arbitrary constant of integration.
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The general solution of integrals of the form J ax”dx.
where a and s are constants is given by:

-z 41

. e .X
ax " dx =—= ——— 4 c
3 e+ 1

This rule is true when n is fractional, zero, or a positive
or negative integer, with the exception of n =—1.
Using this rule gives:

) g S : 0
(1) /3x dx = +c==-x"+c¢
4+1 5
')‘.—Z-H
(i1) /—d\—fZ\ 20x = +c
—2+1
2x~! -2
= ¢c=—+4c¢,and
—1 X
" 1+1
(iii) /fdx—/ '"dx— +c
—+1
2-I-
-
=XT- \/r_~+c
2
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Standard integrals

vi) f cosecaceot sl — —%cosecax o

(viii) j e dx — %ewr e

I )eterm ine e: (a) fdx (25} f 2%dr

+1

The standard integral, f ax" dx = +c

n+1
(a) Whena=35 and n =2 then
sxd
+e=i——=-+F€

2+1
f5x2d.x= >
2+1 3
(b) When a=2 and n =3 then

2¢3+1 214 1
283dt — = == _ 34
/ 351 +€ 1 +c 3 +c
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3 >
/ (4 —+ =X — 6x‘") dx may be written as

3 i3
f 4 dx + / :7—.1' dx — f 6x° dx

i.e. each term is integrated separately. (This splitting
up of terms only applies. however, for addition and

subtraction).
3 5
Hence f (4 —+ —x — 6.\"‘)(13’
1+1 x2+1
— 4 A6 —=—— =
x+()l+l ()+l—l—c

3
-k' XX
=t (7) 2 O 5+«

‘; 3
— 4x —x — 2x° C

Note that when an integral contains more than one term
there is no need to have an arbitrary constant for each:
just a single constant at the end is sufficient.

2x* —3x 5
Determine (a)f —ax = (b)f(l — 0)2dt

(a) Rearranging into standard integral form gives:

9%
/ x—/———(h
1\ x*t! 3
/———d (_) - xte

303 s &,
=\ — ————-x—l—c:——x‘——-x ¢
2.7 3 4 6 4
(b) Rearranging f (1 — r)2dr gives:
2t1—+~l t2~+~l
1 — 27 + 12)dr — 1 — .
/ $ : =% " =3 N
272 r3
—_— r — = 2o —l——3 —+ <
=t—t2+,lr‘—|-c

3
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Determine the following integrals:

: 25 aa) f4d,r (b)f7xd;x‘

.
Ca) Adx 3+ (b)) 7; — c]

= {aa) f Esz—xzdx (b)) f —§—_\'3dx

[(a) ——JL'— —+ < (b)> —r +c]
=_ =2) f ( S : =% ) T (b) f (2 3+ 2T
>
(a) 5 — S x 4+
93
(b)) 48 ¢+ 26°=2 g0 bt
P~ & 3
. =2 f == . (b)) f w‘ix
> 4 b> —~ 4
€= 3 < > g x> =4

5. a2 f ~Vx3dx (b)) f %\/4 xSx
[(a) %-\/xs = (b)) ér\/“ =2 3 c:]

=
(= (a)f 3dt (b)f 73/_
10 'S
[(a) \/‘_‘—l—c (b) 7,\-/.;—1—0]

7. (aa) f 3 cos Z2Zx dx (b)) f T sin 398
3
=) = sin 2x + <
b)) — %COSBQ—'—C
3 > >
b= a) = sec B3 x dx {(b)> 2 cosec A6 5
1 i
(a)Ztaran—i—c (b)) —Ecoté‘l—e—{—c

Definite integrals
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Integrals containing an arbitrary constant ¢ in their
results are called indefinite integrals since their precise
value cannot be determined without further information.
Definite integrals are those in which limits are applied.
If an expression is written as [x]Z. *5” is called the upper
limit and @’ the lower limit.

The operation of applying the limits is defined as:
[x15 = &) — (@

The increase in the value of the integral x~ as x increases
from 1 to 3 is written as ‘/’13 x2 dx

Applying the limits gives:

3 2 3 3 3
= = X~ 3- =
x "(lx‘ — — 4+ C —_— — 4+ C —_ — 4+
_/; * =3 C:ll ( 3 L) =3 L)

2

1
:(9+C)—(-3-+C) 283

2
Ewvaluate (a) / 3x dx
1

> =2
= 3= 3 >
z = | —— = § —(2)" =
@ [ s [5], - {207]
1 1
6

S e
2 2

3(12
{5 ’}

3
®) f At
2

3

3 . B o
(b) f (4 —x")dx = [4x =5 —]
-2 3 =<y

(3)° (—2)°
= — — a2y —
{4(3) 3 } {4( ) 3 }

—8
1 1
= {—55} =83

a4
Evaluate f (6 2 )de.
1 Ve
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= 4
9(%)+l 29(—v)+|-|
B 1 1 1 1
5+l =¥l
- 4
67 201 2 s 4
3 1 3 |
L2 2 Jdi
2 2
= {5\/(4)3 +4JZ} - {;\/(1)3 +4JT}
16 2
Z{_+s|_ _+4}
4 3
51 8 2 4 82
=AgteT g ooy
Evaluate: fn/23sin 2x dx
(8}
f73sin2xdr
0
3 3 3
= [(3) (—l) cos2x] = [——cos?.x]
2 0 2 0
3 b/ 4 3
= {—50052 (5)} — {—5 cosZ(O)}
3
={——cosn}—{——c050}
2 2
3 3 3 3 3

Find: f 4 dx
(5x —3)
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du du
Let u =(5x — 3) then = =5 and dx —?

H / _f4d14_ /]d
ence 5x —3) v ~du

Inu+c

’Jll = u:l i

ln(\x -3 +c

T/6
Evaluate: / 24 sin°> 8 cos 6d 0
0

du
cos &

d
et « = sin 6 then d_g = cos ¥ and df =

Hence / 24 sin’ 6 cos 8 df

du
— f 24u°cos O 2
cos ¢

= 24/ wdu, by cancelling

u®

= 24? 4+ ¢c=4u® +c = 4(sind)° + ¢

— 4sin®6 4+ ¢

w6
Thus / 24 sin> @ cos B dO
0

[4 sin 9]”’6 [ sm—) — (sin0) :|

B Yo 1 _
—4 = — 0| = — or 0.0625
2 16

Find: f X  _ax
2 + 3x-
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7 .
Lot e — 2 + 3x2 then 22 — 6x and dx — =X
dx 6x

X
Hence 5
2 4+ 3x~=

I
|
]
N
.|.
.v

Determine:

d d
Let u=4x2 — 1 then % — 8x and dx = =
dx 8x

2x
Hence f——d_x
V4x2 — 1
2x du 1 1 o i
_— = — —— du. by cancelling
Jusx a) Ja
1
= —fu“”zdu
4
1 [ —1/2)+1 1 [ 12
— — —_— +Cc = — —+ C
4 -3 +1 4| 1
2 Jare— L3
=5 Ll—l—C—E xe ' —1 4
. 1
Determine: — dx
G s
Let x —asin @, thcn % —a cos & and dx —acos @ do.
‘

Hence f
m
~/ \/a— — aZzsinZ @8

_f acos ade
Vaz(l — sin= 8)

acosfde

acos do ) i
— —————, since sin? @ +cos28 = 1
VaZ cosZ e
acos &8 de ¥
== —_— = /(19 = & + ¢
< acos @ <
N _ B X B s
Since x —asin . then sin&d — — and & — sin ! —
a a
1 g
Hence dx = sin — 4
a< — x~<
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3 1
From Problem 13, / —_—dx
0 V9 —x2

VR 1o, 3 2
— [sm —] sincea =3
3do

= (sin_'l —sin~! 0) = % or 1.5708

Find: f Va* — x2dx

= ax
et x¥ — e« sin & then 76 — a cos & and dx — a cos G dO
<
Hence [ Va2 — x2dx
— f N erZ — caZ SinZ O (ex cOS G L)

R f \/(12( 1 — sin= ) (cz COS @ d6)

= / (et COS ) (c7 COS P dEF)

- Ors 267
= ca— f cos” Q@ AP — ca— f ( 1 —cos ) ler

72 Cors 6 (ex s €2 L)

(since cos 268 — 2 cosZ & — 1 >
= o sin 2 z
— = —+ e —4— <
= 5 2 =in & co=s &
= & —- = = - —4 <
since trom Chapter 27.sin 268 — 2 sin & cos &
<=

== [€7 4+ sin & cosa] + o

N ~x R =
Since x — 7 sin &, then sin 7 — = and 2 — sin ' =
< <
Also. cos— & 4 sin= & — 1_ from which.
X 2
cosE — V1 — sin & — l—(*)
<z
a2 — x= ~aaZ — x=
2 <

,,

Thus f Varl —x2 dx = —[6+ sin & cos ]

= T e, + S 2 +c
2 a 2
4 -
Evaluate: V16 — x2 dx
o

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 11/19



UNIT-III FINDING VOLUMES BY DIFFERENT METHODS | 2017

4
From Problem 15, f V16 — x2dx
0

16 X x = 4
Z[TSID Z+§ 16—.‘, ]0

= [8sin"1+2v0] — [8sin~' 0+ 0]
gt Ty g T
— 8 sin 1_8(2)

= 47 or 12.57
Determine: f ﬁi——z—dx
(a< +x=)

dx o
Letx =a tan & then d_; —asec? @and dx = a sec” 0d6O

1
Hence / ———dx
(as 4+ x=)

1 > i
— - 6de
(a? + a? tan? 6) (@sec )

o / asec’ 8do
. a2(1 + tan? 6)

asec? 6d6 ) >
= —— since | +tan“ 68 = sec~ @
a? sec? &

— f —df = —(9)+(‘
a a

3 1 X
Since x =a tan 6.9 = tan ' —
a
1 1 X
Hence / —— > dx=—tan '~ +ec
(a= 4+ x~) a a
2 1
Evaluate: ‘/(.) m dx
= 1
From Problem 17, / ——— dx
o 4+ x=)
1 S v
— —[tan_ll] sincea — 2
2 240
L 1 an=? 7 s o L 1 T o
- 3( Lan — an Y= 5 Z —
T
_ — 0.3927
s or

Integration by parts
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From the product rule of differentiation:

- (uv) = vdu —+ udv
N > —— - S—
dx dx dx

where ¥ and v are both functions of x.

dv - d , du
dx dx MRy i

Integrating both sides with respect to x gives:

fuﬁdxzf—(uv)dx—fv—dx
(ix.

X r dv  du
ie / H—dx =uv — / v—dx
4 dx y dx

Rearranging gives: u

or /udv=uv— / vdu

o

This is known as the integration by parts formula and
provides a method of integrating such products of sim-
ple functions as [ xe'dx, [t sinrdr, [ ¢’ cos@d6 and
J x Inx dx.

Given a product of two terms to integrate the initial
choice is: “which part to make equal to #” and “which
part to make equal to dv’. The choice must be such
that the ‘u part” becomes a constant after successive
differentiation and the “‘dv part’ can be integrated from
standard integrals. Invariable. the following rule holds:
‘If a product to be integrated contains an algebraic term
(such as x. 72 or 36) then this term is chosen as the u
part. The one exception to this rule is when a “In x”° term
is involved: in this case In x is chosen as the “u part’.
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Determine: / x cos x dx

From the integration by parts formula,

fudv:uv—/vdu

Let u = x. from which % = 1. 1.e. du=dx and let

dv =cos x dx, from which v= [ cos x dx =sin x.

Expressions for u, du and v are now substituted into
the ‘by parts’ formula as shown below.

1 | =
Iz:: v o=, v

1
“'r::cos vdxi = '(x)"(sin.\'):_[:(sinx) ,):
g Rl gt Lhimenndl IR B rsapngiin ) Lagin ]

i.e. f\ cosxdx = xsinx — (—cosx)+c¢

=xsinx+cosx+c¢

[This result may be checked by differentiating the right
hand side,

d
i.e. —(xsinx+ cosx+c¢)
dx

= [(x)(cosx) + (sinx)(1)] —sinx + 0
using the product rule

= x cos x. which is the function being integrated

Find: f3tez'dt
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d
Y TS T‘: e = and
s

s . 1
let dv = e*' dt. from which. v= [e*'dr = ;ez’

Substituting into [udv=uv — [vdu gives:

i 1
f3re2’dr = (31) (;e’-’) —f(;ez') (3 dt)
fez’dt
e?.r )
(7) F=16

3 1
Hence / 3te dt = 582‘ (t — E) + c.

MW N W

which may be checked by differentiating.
Determine: / x2 sin x dx
2 . du .
Let u =x~. from which., = = 2x. i.e. du=2xdx, and
X

let dv= sin x dx. from which, v= f sinxdx = —cosx
Substituting intofudv:uv—/vdu gives:

/xz sinxdx = (,\'2)(—005.\7) — f(—cosx)(lx‘ dx)

— —x2cosx =D [ f X cosxdx]

The integral. [ xcosx dx. is not a ‘standard integral’
and it can only be determined by using the integration
by parts formula again.

Find: fx In x dx
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The logarithmic function is chosen as the "« part” Thus

when # —=1In x. then ﬂ = ] du_d—?

dx
Letting dv = x dx gives v—= f,\ dx = '—

Substituting into [ udv—=wuv — [vdu gives:

/xln-rdx:(ln \)( ) f(‘.- dl
lnr——f\(L\
2
) 1 x2
ln_x-—E ? —+ C
l -
(lnx—i -+ <

or —(2Inx — 1) 5
1 +e

Hence f xInxdx =

"N NAAEN L TS

Find: [ e%* cos bx dx

When integrating a product of an exponential and a sine
or cosine function it is immaterial which part is made
equal to ‘u’.

du . .
Let u =™, from which o — =ae™, i.e. du=ae™ dx

and let dv=cos bx dx. from which.
...
v = / cosbx dx = 5 sin bx

Substituting into [ #dv=uv— [ vdu gives:

f e cos bx dx
axs K| L . ax
= () 5 sinbx | — —sin bx J(ae™ dx)

= le‘“ sinbx — 2 e™ sin bx dx (1)
b b

Ny
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S e sin bx dx is now determined separately using inte-
cration by parts again:

ILet 1« — e then diuu — age™™ dx. and let dv— sin bx dx.
from which

E R

1
f sin bx dx — = cos bx

Substituting into the integration by parts formula gives:

1
f e sin bx dx — (&) (-—E cos b.r)
1 _
— f (_Z cos b_r) (ae™ dx)

— — —e“* cos bx
<« LI
—+ — f e cos Hbx dx

Substituting this result into equation (1) gives:

1 =
f e cos bx dx — Zea“‘: sin &Hx — — [ —e X cos bx
- = / e cos bx d_x]
= 1 aax ax
— Ee sin bx + b—e cos bx

The integral on the far right of this equation is the same

as the integral on the left hand side and thus they may
be combined.

2
f e cos bx dx—+ l—‘;j-z— f e™ cos bx dx

1 _ a
— —e&* sin Hx Fear cos bx

2>
i.e. (l —+ Z—z) f e cos bx dx

N a i
— — e sin bx + — e cos bx

H H=2
H= —|— a=
i.e. ( )f e  cos bx dx
e(l.‘l
= ﬁ(b sin bx +— acos bx)
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Hence / €™ cos bx dx

9

b= Nvif-e®
== (b2 +a2) (b3 )(bsinbx+acosbx)

ax

¢
= ——(bsinbx +acosbx)+¢
a’ + b

Using a similar method to above, that is, integrating by
parts twice, the following result may be proved:

/ e™ sin bx dx
£

= ——(asinbx —bcoshx)+c¢ (2)
a* +b-

Evaluate / * ot sin2# dr. correct to 4 decimal places

T
Comparing [ e’ sin 27 dr with [ e** sin bx dx shows that
x=f,a— 1 and b=—22.

Hence. substituting into equation (2) gives:

I o
e sin 21 dr
O

e’ T
=i [].,—,),,( 1 sin 27 — 2 cos 2f):|

— [ (m2(F) —2e=2(F)) |

— [?(sin O — 2 cos O)]

T
ed 1 ed 2
— _— — _ — — =D — ===
[ 5 1 0)] [5(0 -)] 5 — =

— 0.8387. correct to 4 decimal places

X
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POSSIBLE QUESTIONS

Class : 1 — B.Sc. Mathematics
Subject Name : Calculus
Subject Code : 17MMU101

UNIT =111

2 Mark Questions:

Write down the surface area formula for the Revolution about the X-axis.
Define surface area of revolution.

Define a length of a parameterized curve .

Write down a formula for finding Volumes using Disks and Washers methods.
Convert the polar equation to Cartesian equation for r = 2

ok~ wn

2sin6—3cos6

6Mark Questions :
1. Find the Volume of the solid generated by revolving the region bounded by y = v/x and
the linesy =1, x = 4 about the line y = 1.
2. Find the area of the surface generated by revolving the curve y =x3,0 <x S% about

the x-axis.

3. Find the Volume of the solid generated by revolving the region between the parabola x =
y2 4+ 1 and the line x = 3 about the line x = 3.

4. Find arc length for the circumference of a circle of radius a form the parametric
equations x = acos t,y = asint (0 <t < 2m).

5. The region bounded by the curve y = x2 + 1 and the line y = —x + 3 is revolved about
the x — axis to generate a solid. Find the volume of the solid.

6. Ina disastrous first flight, an experimental paper airplane follows the trajectory of the
particle in x =t — 3 sint,y =4 — 3 cost, t > 0. but crashes into a wall at a time t = 10.
i) At what times was the airplane flying horizontally?
i) At what time was it flying vertically?

7. Use Cylindrical shells to find the volume of the solid generate when the region enclosed
between y = +x, x = 1, x = 4, and the x — axis is revolved about the y —axis.

2
. Find difzor the parametric equation x =t —t2and y =t — t3.
dx

9. Find the area of the surface generated by revolving the curve y = 2/x,1 < x <2
about the x-axis .

10. Find the length of the asteroid x = cos3t,y =sin3t,0 <t < 2m.

oo

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 19/19



KARPAGAM ACADEMY OF HIGHER EDUCATION

DEMOF g,
Fe

W
N
> .,
< %
& =
B =]
= =

e

Enable | Enlighten | Enrich
(Deemed to be University)
(Under Section 3 of UGE Act 1956)

(

(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),
Coimbatore —641 021
DEPARTMENT OF MATHEMATICS

Multiple Choice Questions (Each Question Carries One Mark)
Subject Code: 17MMU101

Subject Name: CALCULUS
Question

The volume of the cylinderis _____

A function with a continuous first derivative is said to be smooth
and its graphiscalled

If a right cylinder is generated by translating a region of area A
through a distance h, then h is called

A function with a continuous first derivative is said to be
A piece of cone is called a

(base circumference x slant height ) / 2 =

Volume of a right circular cylinder is

_____ is a solid that generayte when a plane region is translated
along a line or axis that is perpendicular to the region

A right cylinder is a solid that generayte when a plane region is
translated along a line or axis thatis ______ to the region

The volume of a solid can be obtained by integratingthe __

from one end of the solid to the other .

volume of a sphere is
is a solid enclosed by two concentric right circular

cylinders

volume of a cylindrical shell=___

______ is a surface that is generated by revolving a plane
curve about an axis thatb lies in the same plane as the curve.
The direction in which the graph of a pair of parametric equation is
traced as the parameter increaseas is called the
A curve with an orientation imposed on it by a set of parametric
equation is called
An tangent lines to the parametric curve is

The curve represented by the parametric equations x = t* and y= t
is called

If x =a(0 - sinB) and y = a ( 1- cos0) is called a equation of
The parametric equationof ____ is X = acost and y = asint
The parametric equationof _______is x = acost and y = bsint
If x = sect and y = tan t the find dy/dx

The parametric equationof _______ is x = asect and y = btant
If f(x) =x+sinx, then f'(x) =

An horizontal tangent for parametric equations

An vertical tangent for parametric equations

A cylindrical shell is a solid enclosed by two concentric

The parametric equation of a circle is
The parametric equation of a ellipse is

The parametric equation of a hyperbola is

A cylinderical shell is a solid enclosed by_____
circular cylinders

Asolidof ______ isasolid that is generated by revolving a plane
region about a line that lies in the same plane as the region

The line of a solid of revolutionisa __ of revolution

A function f is smooth on [a, b] if f' is____ on [a, b].

_concentric right

UNIT-III
Option-1

base - height
smooth curve
circumference

length
frustum

volume of cone

2
T

sphere
perpendicular

length
4/3 e’

right cylinder
2n

lateral surface
area

parametric curve

orientation
2(dy"/dx")

ellipse

hyperbola
ellipse
hyperbola
1/tan t
hyperbola

sin X — X COS X
dy/dt =0

dy/dt =0

right cylinder
X=acost,y=a
sint
X=atant,y=a
sect
X=acost,y=a
sint

four
cone

ray
discontinuous

Option-2
base x height
length

base

smooth
derivative
surface

lateral surface
area

2nr’h
right cylinder
bounded

height
1/2 nr*h

surface area
i’

surface of
revolution
cross sectional
area
surface of
revolution
dy'/dx'
semicubical
parabola

parabola
circle
parabola
sect / tant
parabola
1+ cos x
dy/dx =0
dy/dx =0

cone
X=atant,y=a
sect
X=acost,y=a
sint
X=acost,y=
b sint

two
revolution

distance
parallel

Option-3
2(base + height)
smooth plane
height

smooth
area

volume of solid

2nr
cone

parallel
cross sectional
area

2
nr'h

cylindrical shell
2rr’h

area of revolution
orientation

parametric curve
dy/dx

hyperbola

cycloid
hyperbola
ellipse

tant / sect
ellipse

COS X

dx/dt =0

dx/dt =0

right circular
cylinders
X=acost,y=a
sect
X=atant,y=a
sect
x=asect,y=b
tant

three
perpendicular

axis
perpendicular

Option-4
(base x
height) / 2
smooth
derivative

length

smooth curve
radil

area of
revolution

nr’h
pyramid
linear

surface area

2mr

cone

2mnr

Cross
sectional area
surface of
revolution
area of
revolution
dx/dy

parabola

solid
parabola
circle

1/sect

circle

1—cos x
dx/dy=0
dx/dy=0
parametric
curve
x=acost,y
=Db sint
X=acost,y
=Db sint
X=atant,y=
a sect

one
parallel

plane
continuous

Answer
base x height
smooth curve
height

smooth
frustum
lateral surface
area

nr’h
right cylinder

perpendicular
cross sectional
area

4/3 T’

cylindrical shell

2n
surface of
revolution

orientation

parametric curve
dy/dx

semicubical
parabola

cycloid

circle

ellipse

sect / tant
hyperbola

I+ cos x

dy/dt =0

dx/dt =0

right circular
cylinders
X=acost,y=a
sint
Xx=acost,y=b
sint
x=asect,y=b
tant

two
revolution

axis
continuous
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MULTIPLE INTEGRAL:

INTRODUCTION: When a function fix) is integrated with respect fo x between the limits a and b, we gef the
definite integral j: Flx)dx
If the mtegrand 1s a function f{x,y) and if it is wtegrated with respect to x and y repeatedly between the
Lumts x; and x; (for x) between the lmits v, and v, (for v)
We get a dowble integral that is denoted by the symbol J)‘:‘ J:ﬂ Flx, ) dx dy
Extending the concept of double integral one step further, we get the triple  inregral
f:u‘ L’;’ f:;' fCe.yv, z)dxdy dz
EVALUATION OF DOUBLE INTEGRALS
Before starting on double integrals let’s do a quick review of the definition of a definite integrals for

functions of single vanables. First. when working with the
Integral, [:-ﬁ:"j o

We think of x’s as coming from the mterval 2 <x </ For these mteprals we can say that we are
integrating over the interval s <x < /1. Note that this does assume that 7 < # _ however, if we have # < 4 then
we can just use the imterval i < x< 2.

Now, when we derived the definition of the definite integral we first thought of this as an area problem.
We first asked what the area under the cwrve was and to do this we broke up the interval 4 <y <% into »

submntervals of width /Ax and choose a pomt, ¥ ., from each interval as shown below,
»

/

'
'

+ *x
ﬁﬂ X L3 X xF ,r; a3 Fya x; :lllc'
& b

.
Lach of the rectangles has height of f(?r, +» and we could then use the area of each of these rectamgles to

approximate the area as follows.

Ass j(xl')&.r+f(x;)ﬂx+--'+f(x;)&x+---+f (x,:)&x

To get the exact area we then took the limit as » goes to infinity and this was also the definition of the

definite integral.

3 o R .
L f(x)a"x: Lﬂ;f(x, )Ax
To evaluate f;ol f;il f(x,y) dx dy, we first integrate f(x,y) with respect to x partially, treating y as
a constant temporarily, between xo and x;. The resulting function got after the inner integration and

substitution of limits will be a function of y. Then we integrate this function of y with respect to y

between the limits y, and y, as usual.
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5 ol
1. Evaluate foz f: e:zrdydx

Solution: Let = foz (xe%): dx = foz x(e* —1)dx
x2\|°
= [(X)(ex —%)—1) (e" —7>]
0
=2e?—4—-e>+2+1
=@)(e*-2) - [(e*-2) - )]

= |
2. Evaluate: [ [ 2 dydx

Solution:Let I = foayfo @ gy = foa\/a2 — x2dx

) 1a
y [a_sm-l () + /7= sz
2 a 2 o

2
> sin~1(1)

1. Evaluate: [[ xy(x + y) dxdy over the area betweeny = X and Y=X

Solution:The limits are: x varies from 0 to 1 and y varies from x” to X.
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I= [} [0y +xy?) dydx

2. Evaluate: [[ x>y*dxdy over the region in the first quadrant of the circle x*+y’=1.

Solution: In the given region. y varies from 0 to V1 — x? and x varies from 0 to 1.

ol V1=xZ2 o, o
I=1 k x2y? dydx
o AR g 3
=¥ (%),  a=ifa-a
Put x = sin6. Then dx = cos6d6. 6 varies from 0 to 7/2.

/s T/ Ty /s
1 1 1
2] = —f sin?6cos*6 do ZEJ (1 — cos?8) cos*6do e ] cos*6do —f cos°6do
0

3
0

o

0

_1[3171 531n_n
31422 64221 96

1 V=
{ j(xly - .\jv2 )dm’x}

3. Evaluate: °L~

O oy

I
(53]

0

— 1
IH ¥ oxxo?? ] (A‘4 xf } x* K2 5(.\‘5]
=j —+ '_‘ — —+T dx =|—+ =
oIl 2 3 L2 3, 8 (%)(3) 6l 5

:(21+16—28): B &
168

1 Vx
Solution : Let I= j{ J'(xzy +x° )dyd.\} =

Jx S 73
{j(xzy-'--\’.\‘z)d\'dr}: I(Yq‘ +L] dx
5 o

——
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DOUBLE INTEGRATION IN POLAR COORDINATES:

6 12 ; o ; :
To evaluate [ 5 2 f, = f(r,8)dr df. we first integrate w.r.to r between the limits r; and r,. Keeping 6 is
Bt § 1

fixed and the resulting expression is integrated w.r.to 8 from 6,to 6,.
In this integral ; and r, are functions of 6 and 6;. 8,are constants.

II rdrd@

L ('.2 +‘ﬂ2)2

1. Evaluate: [ 0"/ 2

Solution: Let | = fon/z [ j . (rzyf(;.z)zil do
T{/z
_1 f ( ~ )r d6
2 J (r2-ra2)? L,

1 7

“2a @
_ [
4a?

2. Evaluate: [2 [ :mse rZdrd6

. .,-(/2 ?'3 2cos@ 1 T{/z 3
Solution: LetI= j_,,/z (?)0 dg = gf_n/2(8cos 6 —0)do
n/z
8
= 2[ cos’0 do
0
162 32
33 9

1. Evaluate: [[ r2sin6drd6 over the cardioids r = a (1+cos®).

Solution: The limits of 12 0 to a (1+cos0) and The limits of 6: 0 to &

,g)a (1+cosB)

T J’o" foa (1+€0s) 126inB drdd = fon (’? sin9do
0

@[
=?f sin@(1 + cosH)*do
0

Put 14+-cosO =t then —sin® d0 = dt
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When 6=0,t=2
When 6 =m, t=0.

2
al a® (a*\’ 4a3
al=—|8dt=—0—|—] =—
BJ‘ 3 (4) 3
i 0

2. Evaluate f: ' fox e **»*) dxdy wusing polar cordinates

Solution: x = rcosf,y = rsinb, dxdy = rdrdf are the polar coordinates for the above integral

T T T

. i T | z1 -
1= [ erraran = [ Lawmao= [FLeTao

0 Y0 0 Jo 2 02[ ]0

—1f[ "”Z]l'de—1f;[0—1]delﬁdel[e]%l[f_ojE
TURLE TR TEL TR
CHANGE THE ORDER OF INTEGRATION:

g2(y) hy(x)
g1(y) h;(x)

f(x,y)dxdy will take the form fab f(x,y)dydx when the order of

The double integral fcd

integration is changed. This process of converting a given double integral into its equivalent double integral by
changing the order of integration is often called change of order of integration. To effect the change of order of
integration. the region of integration is identified first. a rough sketch of the region is drawn and then the new
limits are fixed.

1. Find the limits of integration in the double integral
ffR f(x,y)dxdy,where R is in the first quadrant and bounded by:x =0,y =0,x +y = 1.
Solution: The limits are: y varies from 0 to 1 and x varies from 0 to 1-y.

2. Change the order of integration foa fy" f(x,y)dxdy

Solution: The given region of integration is bounded by y=0. y=a. x=y & x=a.
After changing the order, we have, 1= [ 0“ | g f(x,y)dydx
3. Change the order of integration for the double integral | 01 I, : f(x,y)dxdy

Solution: fol f)l f(x, y)dxdy

1. Change the order of integration in I = f 01 fxzz_x xy dydx and hence evaluate it.
Solution:  LetI= fol jfz_x xy dydx
The given region of integration is bounded by x=0. x=1, y=x2 and x+y=2.
In the given integration x is fixed and y is varying.
So. after changing the order we have to keep y fixed and x should vary.
After changing the order we’ve two regions R; & R»

1= Il+Iz

I= fol fo""‘vxy dxdy + flz flz_’\. xy dxdy
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1 2
ik ~ @
= 3| [ ay [t ay
0 1
2
=2y y2dy+ [[ y2 -y dy]
1y R 1 5 3
=== 2v2 — = - e ———
2[(3)0 (y 3T A E 28 B

———=dydx by changing the order of integration.

\ZX

2. Evaluate f f

«z+

Solution: The given region is bounded by x=0. x=1. y=x and x’+y’=2.

E= fol f;z_xzzl—‘%?dydx
After changing the order we’ve,
The region R is splinted into two regions R;& Ro.
In R;: limits of x: 0 to y & limits of y: 0 to 1
In Ry: limits of x: 0 to W & limits of y: 1 to V2
I=L+h
= _[01 f) —dxdy

¥2+y2

f (Ve +72) dy= (V——l)Jydy (\/——1)()

5= f\zf\zv ad dxdy

/ ‘f_
V2 R V2 1 \E

- J (v X2 + yz);"z‘y2 dy = j (V2-y)dy=(2-1) (};—2)0 VIO - (Y_ZZ_)l

- (2-v2) -3

1=(2-1)(3)+ (-2 -3
Sy
V2
d

3. Evaluate by changing the order of integration in j fx dx

Solution: LetI= f fz\xd dx

s . 5 . . 2
The given region of integration is bounded by x=0. x=4. y=%*"/ 4 Y =4x
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After changing the order we've
Limits of x: y/4 to 2\y
Limits of y: 0 to 4

4 2y s
1=k fy§/4 dxdy=16/3.

12-x
4. Change the order of integration in / = j I f(x, v)dvdx
0 x?

X

12=
Solution: Given / :j‘ j' S (x, vydvdx
0 x?

The given region of integration is bounded by x=0. x=1. y:x2 and x+y=2
In the given integration X is fixed and y is varying

So, after changing the order we have to keep y fixed and x should vary.
After changing the order we have two regions R; & R,

I=5L+L

Jy 22

I :} I f(x.y)dxdy +I j f(x.y)dxdy
00 3

v

EVALUATION OF TRIPLE INTEGRALS
To evaluate f:: fj;l f;ol f(x,y,2) dx dy dz, we first integrate f(x,y, z) with respect to x , treating y and
s as constants temporarily. The limits x and x; may be constants or functions of y and z, so that the resulting
function got after the innermost integration may be a function of y and z. Then we perform the middle
integration with respect to y, treating z as a constant temporarily. The limits y, and y; may be constants or
functions of z, so that the resulting function got after the middle integration may be a function of z only. Finally

we perform the outermost integration with respect to z between the constant limits z, and z;.
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1. Evaluate: foa fob foc(x +y+2z)dzdydx

28 €
Solution: LetI= foa | Ob (xz +yz + z?) dydx
0

bca? ch%a c?ba
+ +
2 2 2

bc
:%(a+b+c)
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. Evaluate: [ [~ - fo“]"z_xz_yz dzdxdy

Solution: Let I—_[ f ‘/(az —y2) — x2 dxdy

a

- [ v - (522 s

o
Q
N
T‘
o
T
o
~
R

3. Evaluate: jol j) : e f:l-_x-_y " xyzdzdydx

Z2\ V1%

[TT—xZ e
Solution: Let szol fO\l xy ?) dzdydx
0

1 V122
xl f y(1—x? —yHdy|dx
0

y2 y4 V1z—x2
e (1—,\'2)———] dx
ja-m%-%]

Il
N

[Ne) e

O S —i

X

x (12 — x*)2dx

O —i

1 (12 2)2 (12 2)
Jh -

1

f(lz x2)?(—2xdx) =
0

=
=2} »a

—1[@2-22)°T _ 1
16 3 "~ 48

0
4. Evaluate: f02" Iy Jo rtsinpdrdpdo
Solution: LetI=[""d6 [* (—'—i)a sinpd
2 0 0 5/0 pap

w

2T 2n
a® a® 4ma®
= —5-f de f sinpde =—§f (—cos@)g d8 = f =
0 0 0

0

loga x x+y

1. Evaluate I J. je""-"“d:dVdv
000

loga x x+y loga x loga x

Solution : j ‘[ J.e““ d=dydx= J J' e dvdx = j J‘(eq("‘) e )dydx
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loga / ez(_\q.y) x loga 1 / €2x
I [ 8 _ex-t-yJ (].\’= [_e-h'_elxj_[ 8 _ex] d.‘(‘
2 2 2
0 0 0
loga /' 4x 4x 4 losa
e 3 . e 3 .
j —Ze¥4e" ldv= g g
L2 2 2 2 :

(leﬂoga _ielloga n loga}_[l_i_,_lw.
Lg 33 3
—a ——a +a——
s’ 32 8

ab \_3 c — C3 |
IJ['T-M X+z rjl dydz: = “{—+a 1._&_2}{‘_ -
ool ? 0 vel 3
a 3 3 b a 3 3
:j{c‘“Lm—*ﬂ:z} d- :J'{C_bﬁi ;’}z
ol =2 2 0 ]
il adih e I e o P e L
N * B ¥ =—/¢c"+b" +a’]
. . 3 o 3 3 3 3
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POSSIBLE QUESTIONS
Class : | — B.Sc. Mathematics
Subject Name : Calculus
Subject Code : 17MMU101

UNIT - IV

2 Mark Questions:

ok~ wd PR

Find where the graph of f(x) = x3 + 3x + 1 is concave up and it is concave down.
Find the eccentricity of the hyperbola 9x% — 16y2 =144.

Find the focus and directrix of the parabola y? = 10x.

Find the inflection point for the function f(x) =3x5 —5x3 + 2.

Define discriminant test.

6Mark Questions :

=

N

3.

9.

10.

Sketch the graph of the parabolas i) x2 = 12y  ii) y? + 8x = 0 and show that focus
and directrix of each.

. Identify and sketch the curve 153x2 — 193xy + 97y2 — 30x — 40y — 200 = 0.

- . x2
Sketch the graph of the ellipse l)? L 7% =1i) x? + 2y? = 4.and showing the foci

of each.
Find a Cartesian equation for the hyperbola centered at the origin that has a focus at ( 3,
0) and the line x = 1 as the corresponding directrix.

Find the equation of the curve x2 — xy + y2 — 6 =0 inx'y’ - coordinates. if the
coordinate axes are rotated through an angle of 8 =45°

Find the constants a, b and c for the ellipse r =

2+cos6

Describe the graph of the equation 16x% 4+ 9y2 — 64x — 54y + 1 =0.

Find a polar equation for an ellipse with semimajor axis 39.44 AU and eccentricity size
of pluto’s orbit around the sun.

Identify and sketch the curve xy = 1

i) Find the directrix of the parabola r = 2

10+10 cos@
ii) Find the equation for the hyperbola with eccentricity 3/2 and directrix x = 2.
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DEPARTMENT OF MATHEMATICS
Multiple Choice Questions (Each Question Carries One Mark)

Subject Name: CALCULUS Subject Code: 17MMU101
UNIT-IV
Question Option-1 Option-2 Option-3 Option-4 Answer
Which one is the example for conic section ? parabola solid triangle rectangle parabola
_____isthe set of all points in the plane that are equiditant
from a fixed line and fixed point not on the line . ellipse hyperbola parabola circle parabola
___is the set of all points in the plane, the sum of whose
distance from two fixed point is a given positive constant that
is greater than the distance between the fixed point. ellipse hyperbola parabola circle ellipse
_____isthe set of all points in the plane, the sum of whose
distance from two fixed point is a given positive constant that
is less than the distance between the fixed point. ellipse hyperbola parabola circle hyperbola
In a ellipse the midpoint of the line segment joining the foci is
called vertices axis symmetry center center
In an ellipse ,the end point of the major axisiscalled ______ minor axis vertices symmetry center vertices
The midpoint of the line segment joining the foci is called the
_____ of the hyperbola vertices axis symmetry center center
The hyperbola intersect the focal axis at two points is called
the center vertices axis symmetry vertices
In a hyperbola the line through the center that is perpendicular standard
to the focal axisis called asymptotes vertices conjugate axis  position conjugate axis
____is the set of points in a plane whose distance from a
given fixed point in the plane is constant. ellipse hyperbola parabola circle circle
standard
The fixed pointis the _____ of the circle. center vertices radius position center
Find the focus of the parabola y* = 10 x 0,572) (-5/2,0) (5/2,0) (0,-5/2) (5/2,0)
The eccentricity of a parabola is e<l1 e>1 e=0 e=1 e=1
The eccentricity of a hyperbola is e<l1 e>1 e=0 e=1 e>1
Find the radius of the circle r =4 cos 0 2 8 4 16 2
The eccentricity of a ellipse is e<l1 e>1 e=0 e=1 e<l1
If B*- 4AC =0 then it is called ellipse hyperbola parabola circle parabola
If B*- 4AC < 0 then it is called ellipse hyperbola parabola circle ellipse
If B>- 4AC > 0 then it is called ellipse hyperbola parabola circle hyperbola
An ellipse is the set of all points in the plane, the sum of whose
distance from two fixed point is a given positive constant that
is_______ the distance between the fixed point. greater than equal to less than not equal to greater than
An hyperbola is the set of all points in the plane, the sum of
whose distance from two fixed point is a given positive
constant that is ___the distance between the fixed point. greater than equal to less than notequalto  less than
If e =1 then it is the eccentricityofa ellipse hyperbola parabola circle parabola
Ife > 1 then itis the eccentricityofa___ ellipse hyperbola parabola circle hyperbola
Ife < 1 then itis the eccentricity of a . ellipse hyperbola parabola circle ellipse
standard
The constant distance is the of the circle center vertices radius position radius
Find the radius of the circle r = 6 cos 0 2 3 6 36 3
In a ellipse the midpoint of the line segment joining
the____is called center minor axis foci major axis vertices foci
Which one is the not a example for conic section ? rectangle ellipse hyperbola parabola rectangle
Intersection of two straight lines is -------------- Surface Curve Plane Point Plane
Plane is a ---------—-—--- surface 1-D 2-D 3-D Dimensionless 2 -D
The angle between the asymptotes of a rectangular hyperbola
is 30 45 60 90 90
The intersection of a cone with a plane gives Point Line Conic Section ~ Two points Point
A point where the graph pf a function has a tangent line and
where the concavity changes iscallled _____ hyperbolic inflection point concavity saddle point  inflection point
A point where the graph pf a function hasa _____ and where
the concavity changes is callled a point of inflection circle tangent line staright line curve tangent line

The slope of a graph increases on an interval where the graph
is

local maximum

concave up

local minimum

concave down concave up



The slope of a graph decreases on an interval where the graph

is___ concave up
If the curve y = x* has no inflection pointat ____ x=2
ApointP(c,f(c))ona______ iscalled an inflection point straight line

Find the vertical asymptote for f(x) = log (2 — x). x=2
Find the horizontal asymptote of y = " + 5. y=1
point of

_can also be thought of as a tangent to the curve infinity. inflection

local minimum
x =0

curve

x =0

y=-5

asymptotes

concave down
x=1
cone
x=1

y=5

concave down

local
maximum
x=-1
circle
x=-1
y=0

local
maximum

concave down
x =0

curve

x=2

y=5

asymptotes
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Introduction to vector functions, operations with vector-valued functions,
limits and continuity of vector functions, differentiation and integration of vector
functions, tangent and normal components of acceleration, modeling ballistics and
planetary motion, Kepler’s second law.
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cal ulus with ve tor fun tions

A vector function r(t) = (f (9, g(f), h(?) is a function of one variable—that is, there is
only one “input” value. What makes vector functions more complicated than the function
y = f (x) that we studied in the first part of this book is of course that the “output” values
are now three-dimensional vectors instead of simply numbers. It is natural to wonder if
there is a corresponding notion of derivative for vector functions. In the simpler case of
a function y = s(f), in which ¢ represents time and s(?) is position on a line, we have
seen that the derivative s(¢) represents velocity; we might hope that in a similar way the
derivative of a vector function would tell us something about the velocity of an object
moving in three dimensions.

One way to approach the question of the derivative for vector functions is to write

down an expression that is analogous to the derivative we already understand, and

see if we can make sense of it. This gives us

r(t + At) — r(0)

() = lim
At—O0 At
_ i F(E+AD = f), g(t + AD — g(8), h(t + AD) — (D)
At—O0 At
o flEHAD - I glt+AD - g(B) h(t+AD — h(d)
= lim At ) At , At )
= (£ (8,9, K (1),

if we say that what we mean by the limit of a vector is the vector of the individual
coordinate limits. So starting with a familiar expression for what appears to be a derivative,
we find that we can make good computational sense out of it—but what does it actually
mean?

We know how to interpret r(t+ At) and r(t)—they are vectors that point to locations
in space; if tis time, we can think of these points as positions of a moving object at times
that are At apart. We also know what Ar = r(t + Af) — r(t) means—it is a vector that
points from the head of () to the head of (¢t + At), assuming both have their tails at
the origin. So when Atis small, Aris a tiny vector pointing from one point on the path
of the object to a nearby point. As At gets close to 0, this vector points in a direction
that is closer and closer to the direction in which the object is moving; geometrically, it
approaches a vector tangent to the path of the object at a particular point.
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13.2 Calculus with vector functions 333

Unfortunately, the vector Ar approaches 0 in length; the vector (0, 0, 0) is not very
informative. By dividing by At, when it is small, we effectively keep magnifying the length
of Ar so that in the limit it doesn’t disappear. Thus the limiting vector (' (t), g'(?), h'(?))
will (usually) be a good, non-zero vector that is tangent to the curve.

What about the length of this vector? It’s nice that we've kept it away from zero,
but what does it measure, if anything? Consider the length of one of the vectors that
approaches the tangent vector:

a(t+ AD — r(f r(tzl: At — (1)

: W=+ [At| |

The numerator is the length of the vector that points from one position of the object to a
“nearby” position; this length is approximately the distance traveled by the object between
times t and t + At. Dividing this distance by the length of time it takes to travel that
distance gives the average speed. As At approaches zero, this average speed approaches
the actual, instantaneous speed of the object at time t.

So by performing an “obvious” calculation to get something that looks like the deriva-
tive of r(t), we get precisely what we would want from such a derivative: the vector r'(¢)
points in the direction of travel of the object and its length tells us the speed of travel. In
the case that tis time, then, we call v(¢) = r(t) the velocity vector. Even if tis not time,
r(t) is useful—it is a vector tangent to the curve.

EXAMPLE 13.2.1 We have seen that r = (cos ¢, sin ¢, t) is a helix. We compute

sm t+cos t =

description of a moving obJect its s}i‘eed is always 3; see fikure 13.2
F sint,cost, 1), and |r| = 2. So thlnklng of this as a

Ll
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EXAMPLE 13.2.2 The velocity vector for (cos t, sin ¢, cos t) is (— sin £, cos t, — sin t). As
before, the first two coordinates mean that from above this curve looks like a circle. The
z coordinate is now also periodic, so that as the object moves around the curve its height
oscillates up and down. In fact it turns out that the curve is a tilted ellipse, as shown in
figure 13.2.3. ]

1
-1
-1
1
1

Figure 13.2.3  The ellipse r = (cos t, sin t,cos ). (AP)

EXAMPLE 13.2.3 The velocity vector for (cos t, sin t, cos 2t) is (- sin ¢, cos t, —2 sin 2¢).

The z coordinate is now oscillating twice as fast as in the previous example, so the graph
is not surprising; see figure 13.2.4. ]

-1
1
-1

Figure 13.2.4 (cos t,sin t,cos2t). (AP)
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13.2 Calculus with vector functions 335

EXAMPLE 13.2.4  Find the angle between the curves (t,1—t,3+#*) and (3—¢t, t—2, %)
where they meet.

The angle between two curves at a point is the angle between their tangent vectors—
any tangent vectors will do, so we can use the derivatives. We need to find the point of
intersection, evaluate the two derivatives there, and finally find the angle between them.

To find the point of intersection, we need to solve the equations

t=3—-u
1—-t=u-—-2

3+¢=u

Solving either of the first two equations for u and substituting in the third gives 3 + £ =
(3 — 9?2, which means t = 1. This together with u = 2 satisfies all three equations. Thus
the two curves meet at (1, 0, 4), the first when ¢ = 1 and the second when t = 2.

The derivatives are (1, —1, 2t) and (—1, 1, 2¢); at the intersection point these are
(1, =1, 2) and (-1, 1, 4). The cosine of the angle between them is then

-1—1+8 1
COSQ=7 —

vV =V,
6 18 3

V_
so 6 =arccos(1/ 3) = 0.96.

The derivatives of vector functions obey some familiar looking rules, which we will
occasionally need.

THEOREM 13.2.5 Suppose r(t) and s(t) are differentiable functions, f (?) is a differ-
entiable function, and a is a real number.

a. Ear(t) = ar (9
dt
b. dér(t) £ 5(0) = (D) + 5D
t
c. %{(t)r(t) = ADC(E) + F(O(D)
d. dagr(t) s(0) = 1D s(D + (D " 5D

€. dagr(t) X s(8) =r(®) x s(t) + r(d) x s'(¢)
£ dal;(f(t)) = YOO
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Note that because the cross product is not commutative you must remember to do the
three cross products in formula (e) in the correct order.

When the derivative of a function f{¢) is zero, we know that the function has a hori-
zontal tangent line, and may have a local maximum or minimum point. If r(¢) = 0, the
geometric interpretation is quite different, though the interpretation in terms of motion
is similar. Certainly we know that the object has speed zero at such a point, and it may
thus be abruptly changing direction. In three dimensions there are many ways to change
direction; geometrically this often means the curve has a cusp or a point, as in the path
of a ball that bounces off the floor or a wall.

EXAMPLE 13.2.6 Suppose that () = (1 + £, £2,1), so r'(£) = (3¢, 2t, 0). This is 0
at t = 0, and there is indeed a cusp at the point (1, 0, 1), as shown in figure 13.2.5. ]

Figure 13.2.5 (1+3,2,1) has a cusp at (1,0, 1). (AP)

Sometimes we will be interested in the direction of ' but not its length. In some
cases, we can still work with 1, as when we find the angle between two curves. On other
occasions it will be useful to work with a unit vector in the same direction as r'; of course,
we can compute such a vector by dividing r' by its own length. This standard unit tangent
vector is usually denoted by T:

In a sense, when we computed the angle between two tangent vectors we have already
made use of the unit tangent, since

cosG:r,S, —pi
Ills’] = [ 18]
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Now that we know how to make sense of r', we immediately know what an antideriva-
tive must be, namely

] ) J )
(O dt=( flodt g®dt h(@dr),

ifr = (f (9, g(9), h(?). What about definite integrals? Suppose that v(?) gives the velocity
of an object at time t. Then v(f)At is a vector that approximates the displacement of the
object over the time At: v(f)At points in the direction of travel, and |v()At| = |v(8)]|At]

is the speed of the object times At, which is approximately the distance traveled. Thus, if
we sum many such tiny vectors:
n—1
v(t)At
i=0
we get an approximation to the displacement vector over the time interval [ ty, tn]. If we
take the limit we get the exact value of the displacement vector:

. n—1 .' th
lim= v(t)At = v(t) dt=1(tn) — r(to).
i=0 to

Denote r(t) by ro. Then given the velocity vector we can compute the vector function r
giving the location of the object:

J

t
(D) =10+  v(w du.
to

EXAMPLE 13.2.7 Anobject moves with velocity vector (cos ¢,sint, cost), starting at
(1, 1, 1) at time 0. Find the function r giving its location.

[t
() =(1,1,1) + (cos u, sin u, cos u) du
0
=(1,1,1) + (sinu, — cos u, sin w)|
=(1,1,1) +(sin t, — cos t, sin t) — (0, —1, 0)

=(1+sint 2—cost 1+ sint)

See figure13.2.6. O
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Figure 13.2.6 Path of the object with its initial velocity vector. (AP)

Exercises 13.2.

A A e

10.

11.

12.

13.

Find " and T forr = (2, 1,¢). =

Find r and T for r = (cos t,sin 2¢, 2). =

Find r and T for r = (cos(é&'), sin(e'),sint). =

Find a vector function for the line tangent to the helix (cos t, sin t, t) when t= /4. =
Find a vector function for the line tangent to (cos ¢, sin t, cos 4t) when t= /3. =

Find the cosine of the angle between the curves (0, t, 5 and (cos(rtt/2), sin(mt/2), t) where
they intersect. =

Find the cosine of the angle between the curves (cos t, — sin(t)/4, sin ©) and (cos ¢, sin t, sin(2t))

where they intersect. =
Suppose that {(t) F k, for some constant k. This means that r describes some path on

the sphere of radius k with center at the origin. Show that r is perpendicular to " at every
point. Hint: Use Theorem 13.2.5, part (d).

A bug is crawling along the spoke of a wheel that lies along a radius of the wheel. The bug is
crawling at 1 unit per second and the wheel is rotating at 1 radian per second. Suppose the

wheel lies in the y-z plane with center at the origin, and at time ¢ = 0 the spoke lies along
the positive y axis and the bug is at the origin. Find a vector function r(f) for the position

of the bug at time ¢, the velocity vector r(¢), the unit tangent T(t), and the speed of the
bug [r (?)]. =

An object moves with velocity vector (cos ¢, sin t, ©), starting at (0,0,0) when t=0. Find the
function r giving its location. =

The position function of a particle is given by r(¢) = (¢, gt, t = 169, t = 0. When is the
speed of the particle a minimum? =

A particle moves so that its position is given by (cos ¢, sin t, cos(6¢t)). Find the maximum and
minimum speeds of the particle. =

2
An object moves with velocity vector (¢, t, cos t), starting at (0, 0, 0) when ¢t = 0. Find the
function r giving its location. =
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14. What is the physical interpretation of the dot product of two vector valued functions? What
is the physical interpretation of the cross product of two vector valued functions?

15. Show, using the rules of cross products and differentiation, that
d . "
2 O @)y =r =<1 (0.

16. Determine the point at which £(£) = (¢, 2, t3) and g(¢) = (cos(t), cos(2t), t+ 1) intersect, and
find the angle between the curves at that point. (Hint: You’ll need to set this one up like
a line intersection problem, writing one in s and one in t.) If these two functions were the
trajectories of two airplanes on the same scale of time, would the planes collide at their point

of intersection? Explain. =

17. Find the equation of the plane perpendicular to the curve r(¢) = (25sin(3%), t, 2 cos(3¢)) at the
point (O, i, —2).=

18. Find the equation of the plane perpendicular to (cos t, sin t, cos(6%)) when t =1/4. =

19. Atwhat point on the curve r(t) = (£3, 3¢, t*) is the plane perpendicular to the curve also
parallel to the plane 6x + 6y — 8z =17 =

20. Find the equation of the line tangent to (cos ¢, sin t, cos(6t)) when t = /4. =

13.3 Ar length and urvature

Sometimes it is useful to compute the length of a curve in space; for example, if the curve
represents the path of a moving object, the length of the curve between two points may
be the distance traveled by the object between two times.

Recall that if the curve is given by the vector function r then the vector Ar = r(t +
At) —1(t) points from one position on the curve to another, as depicted in figure 13.2.1. If

the points are close together, the length of Ar is close to the length of the curve between
the two points. If we add up the lengths of many such tiny vectors, placed head to tail
along a segment of the curve, we get an approximation to the length of the curve over that
segment. In the limit, as usual, this sum turns into an integral that computes precisely
the length of the curve. First, note that

|Ar|

|Ar| = ——
At

At = |r' (D] At

when At is small. Then the length of the curve between r(a) and r(b) is

_ s I,
= &i' At= lim rOlAt= (1) dt

a

lim |Ar| = lim

Nn— oo N—> oo N—> oo
f—_—n —_—n e

(Well, sometimes. This works if between aand bthe segment of curve is traced out exactly
once.)
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EXAMPLE 13.3.1 Let’s find the length of one turn of the helix r = (cos t, sin \t/ t) (see

.2
sin t+cos?t+ 1=

figure 13.1.1). We compute r' = (—sint,cost, 1) and |[r| =
the lengthis

2, SO

J 217‘\/_ _
2dt=2 2m.

0
|

EXAMPI:}E 13.3.2  Suppose y = In x; what is the length of this curve between x= 1

and x= 3°?
Although this problem does not appear to involve vectors or three dimensions, we can
interpret it in those terms: let r(¢) = (¢, In t, 0). This vector function traces out precisely

y = In x in the x-y plane. Then r'(¢£) = (1,1/t,0) and |r' ()| = 1+ 1/t and the desired

length is
ng_l Lt > + In( y =11
+—dt=2- 2+ 2+1) — .
) 2 n 5 ns

(This integral is a bit tricky, but requires only methods we have learned.) i

Notice that there is nothing special about y = In x, except that the resulting integral
can be computed. In general, given any y = f{x), we can think of this as the vector

2
function r(¢) = (¢, f{¢),0). Then r'(t) = (1, £ (1),0) and |r'(?)| = 1+ (f) . Thelength
of the curve y = f(x) between a and b is thus

[N
1+ x))2dx.
a

Unfortunately, such integrals are often impossible to do exactly and must be approximated.
One useful application of arc length is the arc length parameterization. A vector function

r(f) gives the position of a point in terms of the parameter ¢, which is often time, but need
not be. Suppose sis the distance along the curve from some fixed starting point; if we use
sfor the variable, we get r(s), the position in space in terms of distance along the curve.
We might still imagine that the curve represents the position of a moving object;

now we get the position of the object as a function of how far the object has traveled.

EXAMPLE 13.3.3 Suppose 1(t) = (cos t, sin t, 0). We know that this curve is a circle
of radius 1. While ¢ might represent time, it can also in this case represent the usual
angle between the positive x-axis and r(f). The distance along the circle from (1, 0, 0) to
(cos t, sin t, 0) is also t—this is the definition of radian measure. Thus, in this case s = ¢
and r(s) = (cos s, sin s, 0). O
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EXAMPLE 13.34 Suppose r(t) = (cos ¢, sin t, t). We know that this curve is a helix.
The distance along the helix from (1, 0, 0) to (cos t, sin ¢, t)is

J- t J- t\/ 2 J t\/_ \/_
s=  |r(w|du= cos? y +sin  u+1du= odu= o2t
(0] 0 0

v -
Thus, the value of ¢ that gets us distance s\/along 96 helixis t = s/ 2, and so the same
curve is given by t(s) = (cos(s/ 2), sin(s/ 2), s/ 2). O

In general, if we have a vector function r(?), to convert it to a vector function in terms

of arc length we compute
J

t
s= Ir'(w)| du = fT0),

solve s = f{¢t) for ¢, getting t = g(s), and substitute this back into r(t) to get r(s) = r(g(s)).
Suppose that tis time. By the Fundamental Theorem of Calculus, if we start with arc
length

s(t) = T lr'(w)| du

a

and take the derivative, we get

s = [

Here s'(t) is the rate at which the arc length is changing, and we have seen that |r'(?)| is the
speed of a moving object; these are of course the same.

Suppose that r(s) is given in terms of arc length; what is [r'(s)|? It is the rate at which
arc length is changing relative to arc length; it must be 1! In the case,of the helix, for
example, th(\e]@rc 1?ngth para\_?lete;ljzatioir} is (cos(s/ 2),sin(s/ 2),s/ 2),the derivative
is (= sin(s/ 2)/ 2,cos(s/ 2)/ 2,1/ 2),and the length of this is

. \/
sin'(s/ 2) cos¥(s/ 2) 1 T 1
+ +_-= _+
2 2 2 2

- =1.
2
So in general, 1 is a unit tangent vector.

Given a curve r(t), we would like to be able to measure, at various points, how sharply
curved it is. Clearly this is related to how “fast” a tangent vector is changing direction, so
a first guess might be that we can measure curvature with |r"(¢)|. A little thought shows
that this is flawed; if we think of ¢ as time, for example, we could be tracing out the curve
more or less quickly as time passes. The second derivative |r”(¢)| incorporates this notion

of time, so it depends not simply on the geometric properties of the curve but on how
quickly we move along the curve.
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EXAMPLE 13.3.5 Consider r(t) = (cos t, sin t, 0) and s(t) = (cos 2t, sin 2t, 0). Both

of these vector functions represent the unit circle in the x-y plane, but if tis interpreted
as time, the second describes an object moving twice as fast as the first. Computing the
second derivatives, we find |r"(¢)| = 1, |s"(8)| = 4. 0

To remove the dependence on time, we use the arc length parameterization. If a curve
is given by r(s), then the first derivative r(s) is a unit vector, that is, r(s) = T(s). We
now compute the second derivative " (s) = T'(s) and use |T'(s)| as the “official” measure
of curvature, usually denoted x.

EXAMPLE 13.3.6 We have seen that the arc length parameterization of a particu-
larhelixisr(s) = (cos(s/ 2),sin(s/ 2),s/ 2).Computing the second derivative gives
r(s) =(—cos(s/ 2)/2,-sin(s/ 2)/2,0) with length 1/2. .

What if we are given a curve as a vector function r(¢), where t is not arc length?

We have seen that arc length can be difficult to compute; fortunately, we do not need to
convert to the arc length parameterization to compute curvature. Instead, let us imagine

that we have done this, so we have found ¢ = g(s) and then formed r(s) = r(g(s)). The
first derivative £'(s) is a unit tangent vector, so it is the same as the unit tangent vector

T(?) = T(g(s)). Taking the derivative of this we get

I Tg(9) = T'(g(sNg'(s) = T' (0~
ds ds

The curvature is the length of this vector:

c= T X _IT@ _ T
1| = lds/ddl = ol

(Recall that we have seen that ds/dt = |r'(£)].) Thus we can compute the curvature by

computing only derivatives with respect to t; we do not need to do the conversion to arc
length.

EXAMPLE 13.3.7 Returning to the helix, suppose we start with the parameteri- zation
r(t) = (cost,sint, t). Then r'(f) = (—sintcost, 1), [r'()] = 2, and T(f) = (—sin
v-J- | oV | v
t,cost, 1)/ 2. Then T (f) = (—cost,—sint,0)/ 2 and |T (f)] = 1/ 2. Finally,

K=1/2/ 2 =1/2, as before.

a

EXAMPLE 13.3.8 Consider this circle of radius a: r(f) = (a cos t, a sin t, 1). Then
r(f) = (—asint acost0), |r'(t)] = a, and T(t) = (—asint, acost,0)/a. Now T'(t) =
(—acost,—asint,0)/a and |T'(t)] = 1. Finally, x = 1/a: the curvature of a circle is
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everywhere the inverse of the radius. It is sometimes useful to think of curvature as
describing what circle a curve most resembles at a point. The curvature of the helix in the

previous example is 1/2; this means that a small piece of the helix looks very much like a

circle of radius 2, as shown in figure 13.3.1. O

Figure 13.3.1 A circle with the same curvature as the helix. (AP)

EXAMPLE 13.3.9  Considerr(t) = (cost,sint,cos2t),asshowninfigure13.2.4.r(¢) =

(—sint, cost,—2sin(2t)) and |[r' ()] = 1+ 4si nz(zt), SO

—sint cost —25i
T(f) = ) , 2s1n 2t

1+ 4sin?(2) 1+ 4sin?(29) T+ 4 sin?(2%)

Computing the derivative of this and then the length of the resulting vector is possible but

unpleasant. O

Fortunately, there is an alternate formula for the curvature that is often simpler than
the one we have:
_r@xr'(1)]
AN GIE

EXAMPLE 13.3.10  Returningto the previous example, we compute the second deriva-
tive r'(£) = (—cos t, —sin t, —4 cos(21)). Then the cross product r'(£) X r'(¢) is

(—4 cos tcos 2t — 2 sin t sin 2t, 2 cos t sin 2t — 4 sin t cos 2t, 1).
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Computing the length of this vector and dividing by |r'(£)|® is still a bit tedious. With the
aid of a computer we get y
g8 cos*t=48 o t+17

K= '
(—16 cos* t+ 16 cos? t + 1)3/2

Graphing this we get

3m
m 5 2n

ISIERE

Compare this to figure 13.2.4—you may want to load the Java applet there so that you
can see it from different angles. The highest curvature occurs where the curve has its
highest and lowest points, and indeed in the picture these appear to be the most sharply
curved portions of the curve, while the curve is almost a straight line midway between
those points. O

Let’s see why this alternate formula is correct. Starting with the definition of T, r’
= |r’|T so by the product rule " = |r'|'T + |r|T". Then by Theorem 12.4.1 the cross
product is

rxr = TX T+ IC|TxE|T
= [CIlT(T % T) + LT x T
= [r'[*(T x T
because T X T =0, since T is parallel to itself. Then
' x| = |r']?IT % T'|
= |'|?|T||T"|sin 6
= |'|*|T’]
using exercise 8 in section 13.2 to see that § = /2. Dividing both sides by |r'|* then gives

the desired formula.

We used the fact here that T’ is perpendicular to T; the vector N = T'/|T’| is thus a
unit vector perpendicular to T, called the unit normal to the curve. Occasionally of use

is the unit binormal B = T X N, a unit vector perpendicular to both T and N.
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Exercises 13.3.

Find the length of (3 cos ¢, 2t, 3sin §), t € [0, 2n]. =
Find the length of (¢,2, t), t € [0, 1]. =

Find the length of (t,Qsin t,cost), te [0,1]. =
Find the length of the curve y = x8/2, x € [1,9]. =

Al e

Set up an integral to compute the length of (cos ¢, sin ¢, e )t e [0, 5]. (It is tedious but not
too difficult to compute this integral.) =

Find the curvature of (¢, t,gt). =

Find the curvature of (¢, t fgt ). =

Find the curvature of (¢, t fst ). =

Find the curvature of y = x* at (1, 1). =

0N

13.4 Motion along a urve

We have already seen that if ¢ is time and an object’s location is given by r(t), then the
derivative r'(¢) is the velocity vector v(f). Just as v(?) is a vector describing how r(%)
changes, so is v(¢) a vector describing how v(©) changes, namely, a(f) = v(d) = r'(¢) is
the acceleration vector.

EXAMPLE 13.4.1 Suppose r(t) = (cos t, sin t, 1). Then v(t) = (- sin t, cos t, 0) and
a(t) = (= cos t, — sin t, 0). This describes the motion of an object traveling on a circle of
radius 1, with constant z coordinate 1. The velocity vector is of course tangent to the
curve; note that a * v = 0, so v and a are perpendicular. In fact, it is not hard to see that
a points from the location of the object to the center of the circular path at (0, 0, 1). 0

Recall that the unit tangent vector is given by T(¢) = v()/|v(?)], so v = |v|T. If we
take the derivative of both sides of this equation we get

a=|v|T+|vIT. (13.4.1)

Also recall the definition of the curvature, x = |T|/|v|, or |T'| = x|v|. Finally, recall that
we defined the unit normal vector as N = T'/|T|,so T = |T'|N = x|v|N. Substituting
into equation 13.4.1 we get

a=|v|T + x|v|?N. (13.4.2)
The quantity |v(#)| is the speed of the object, often written as v(®); |v(?)| is the rate
at which the speed is changing, or the scalar acceleration of the object, a(f). Rewriting
equation 13.4.2 with these gives us

a=al+xv'N=ar T+ an N;

ar is the tangential component of acceleration and an is the normal component
of acceleration. We have already seen that ar measures how the speed is changing; if
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you are riding in a vehicle with large ar you will feel a force pulling you into your seat.
The other component, an , measures how sharply your direction is changing with respect
to time. So it naturally is related to how sharply the path is curved, measured by x, and
also to how fast you are going. Because an includes 12, note that the effect of speed is
magnified; doubling your speed around a curve quadruples the value of an . You feel the
effect of this as a force pushing you toward the outside of the curve, the “centrifugal force.”
In practice, if want an we would use the formula for «:
0 =y = I’ x 1 P = e x|

N T 2 T
r'[? Ir’|
To compute ar we can project a ontov:

v'a r'r
a =———°="—=
[v] Ir’|

EXAMPLE 13.4.2 Supposer=(t,#, ). Computev, a, ar, and an.
Taking derivatives we get v = (1,2t,3#?) and a = (0, 2,6t). Then
'

4t + 188 \Wt“

ar =V and an = 1+ 42+98%
1+ 48+9t*

Exercises 13.4.

Let r = (cost,sint, t). Compute v, a, ar, and an. =
Let r = (cos t, sin t, £2). Compute v, a, a. and q, =

Let r =(cost,sint, ). Compute v, a, ar,and an. =
Let r = (&', sint, e). Compute v, a, ar, and an. =

M NS

Suppose an object moves so that its acceleration is given by a = (—3 cos ¢, —2 sin t, 0). At

time t = 0 the object is at (3, 0, 0) and its velocity vector is (0, 2, 0). Find v(£) and (%) for

the object. =

6. Suppose an object moves so that its acceleration is given by a = (—3 cos ¢, —2 sin t, 0). At
time ¢ = 0 the object is at (3, 0, 0) and its velocity vector is (0, 2.1, 0). Find v(%) and r(¢) for
the object. =

7. Suppose an object moves so that its acceleration is given by a = (—3 cos t, —2 sin t, 0). At
time t = 0 the object is at (3, 0, 0) and its velocity vector is (0, 2, 1). Find v(¢) and (%) for
the object. =

8. Suppose an object moves so that its acceleration is given by a = (—3 cos t, —2 sin ¢, 0). At

time ¢t = 0 the object is at (3, 0, 0) and its velocity vector is (0, 2.1, 1). Find v(%) and () for

the object. =
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9. Describe a situation in which the normal component of acceleration is 0 and the tangential
component of acceleration is non-zero. Is it possible for the tangential component of accel-
eration to be 0 while the normal component of acceleration is non-zero? Explain. Finally, is
it possible for an object to move (not be stationary) so that both the tangential and normal
components of acceleration are 0? Explain.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE
DEPARTMENT OF MATHEMATICS
POSSIBLE QUESTIONS
Name of the Faculty : Pavithra. K
Class : 1 —B.Sc. Mathematics
Subject Name . Calculus
Subject Code : 17MMU101
UNIT -V

2 Mark Questions:
Define vector valued functions.

Find ltl_l’)rzl F(t),where F(t) = (t%2 — 3)i + e'j + (sinmt)k.

For what values of tis G(t) = |t|i + (cost)j + (t — 5)k differentiable.

Find % [2F () + t3G(D)] if F(t) = i +etj + t2k and G(t) = 3t%i + e~tj — 2tk.
Find ['[ti + 3j — (sint)k]dL.

Write down the polar formulas for velocity and acceleration.
Write down the tangential and normal components of acceleration.

6Mark Questions :

1.

2.

Find the Volume of the Parallelepipied determined by the vectorsu =i —2j 4+ 3k, v=—4i+ 7] —
11k, w=5i4+9j -k

If the position vector of a moving body is R(t) = 2ti — t?j for t = 0. Express R and the velocity vector
V(t) in terms of u,. and uy.

Let F(t) = t%i +tj — (sint)k and G(t) = ti+7 j + 5k. find

i) (F+G)(t) i) (F X G)(t) iii) (F.G)(t)
State and prove Kepler’s second law of motion.
Show that ltilr%[F(t)XG(t)] = (ltllrll F(t))X (lt1£r11 G(t)) for the vector functions F(t) = ti + (1 —t)j +
t?’kand G(t) = eti— (3+eHk
Find the tangential and normal components of the acceleration of an object the moves with position vector
R(t) = (t3,t3¢).
Find the second and third derivative of the vector function
i) F(t) = eti+ (sint)j + (t3 + 5t)k.
il) F(t) = e?'i+ (1 —t2)j + (cos2t)k.
A boy standing at the edge of a cliff throws a ball upwards at a 30° angle with an initial speed of 64 ft/s.
suppose that when the ball leaves the boy’s hand, it is 48 ft above the ground as the base of the cliff.
i) what are the time of flight of the ball and its range?
ii) what are the velocity of the ball and its speed at impact?
Let F(t) = i +tj + t%k anf G(t) = ti + e'j + 3k.Verify that (FXG)'(t) = (F'XG)(t) + (FXG")(t)

. If the velocity of a particle moving in space is V(t) = e'i + t?j + (cos2t)k. Find the particle’s position

as a function of t if the position at time t=0 is R(0) = 2i +j — k.
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ti+(1—-t)j+t?kand G(t) =eti— (3 + ek

6. Find the tangential and normal components of the acceleration of an object the moves
with position vector R(t) = (t3, t?, t).

7. Find the second and third derivative of the vector function

i) F(t) = eti + (sint)j + (t3 + 5t)k.
i) F(t) =e%i+ (1 — t2)j + (cos2t)k.

8. A boy standing at the edge of a cliff throws a ball upwards at a 30° angle with an initial
speed of 64 ft/s. suppose that when the ball leaves the boy’s hand, it is 48 ft above the
ground as the base of the cliff.

i) what are the time of flight of the ball and its range?
ii) what are the velocity of the ball and its speed at impact?

9. Let F(t) =i+ tj + t2k anf G(t) = ti + etj + 3k.Verify that (FXG)'(t) =
(FXG)(t) + (FXG)(t)

10. If the velocity of a particle moving in space is V(t) = eti + t2j + (cos2t)k. Find the
particle’s position as a function of't if the position at time t=0 is R(0) = 2i + j -k.
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KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),

Coimbatore —641 021

DEPARTMENT OF MATHEMATICS
Multiple Choice Questions (Each Question Carries One Mark)
Subject Name: CALCULUS

Ifu, vand w are vectors in R thenu x (v + w) =

(F+G) ()=
F-G)@®H=
FxG) (1=
F B)(®

F.G) =

The square of the time of one complete revolution of a planet about

its orbit is proportional to the cube of the length of the

its orbit.

Lim [ F(t) + G(t) | =

Lim [ F(t) - G(t) | =

Lim [ F(t).G(t) ] =

Iim [ F(t) x G(t) | =

A vector function F(t) is said to be
lim F(t) + lim G(t) =

of

UNIT-V
Option-1 Option-2

uxv)+(uxw) uv+uw

F(t) - G(t) F(t) + G(1)

F(t) - G(t) F(t) + G(1)

F(t) - G(t) F(t) + G(1)

S(OF J(OF(®)

F(t) - G(t) F(t) + G(1)

minor axis semi major axis

lim F(t) - G(t)
lim F(t) - G(t)

lim F(t) - lim G(t)
lim F(t) - lim G(t)

at t if t is in the domain bounded

lim [ F(t) + G(t) ]

The planets moves about the sun in elliptical orbit , with the sun at _one

mass X acceleration =
The derivative of velocity is equal to

speed
speed

The square of the time of ___complete revolution of a planet about
its orbit is proportional to the cube of the length of the semi major

axis of its orbit.

The magnitude of velocity is a
The derivative of position is a
[lim F(t)] x [ lim G(t)]

If a, b and c are vectors in R then (c.a)b - (b.a)c =

If vis a vector the vx 0 =

If v and w are vectors and s and t are scalars then

F.G)@®=

FxG)' 1=
Range of the projectile is

Time of flight of a projectile is

st(viw)=

four

momentum
momentum

Iim [ F(t) + G(t) ]
ax(bxc)

1

st(v) . st(w)
F.G)-(F.
G)H(®
FxG))+(Fx
G)H(®

v? sina

v sino/g

The square of the time of one complete revolution of a planet about

its orbit is
of its orbit.

to the cube of the length of the semi major axis

greater than

The square of the time of one complete revolution of a planet about

its orbit is proportional to the cube of the
axis of its orbit.

[lim F(t)] [ lim G(t)] =

_____of the projectile is v sino/ g
__of the projectile is 2vsino/g

F) . G(t) =

F(t) x G(t) =

F) - G(t) =

F(t) + G(t) =

of the semi major

radius

lim [ F(t) + G(t) ]
speed

speed

F+G) ()
F+G) )
F+G) @)
F+G)®

lim F(t) - lim G(t)

lim F(t) - lim G(t)

[lim F(t)] x [ lim G(t)]
[lim F(t)] x [ lim G(t)]
continuous

Iim [ F(t) x G(t) ]

two

velocity

acceleration

one
force

velocity

lim [ F(t) x G(t) ]
(axc)xb

0

st(v) x st(w)

F't) . G'(t)

F'(t) x G'(t)
2v/g

2v sina/g

proportional

length

lim [ F(t) x G(t) ]
Range

Range

F-G)®
F-G) @O
F-G)©®
F-G) @O

Subject Code:

Option-3
uv +(u +w)
F(t) x G(t)
F(t) x G(t)
F(t) x G(t)
f®
F(t) x G(t)

major axis

17MMU101

Option-4
u+w
F(t) / G(t)
F(t) / G(t)
F(t) / G(t)
F(t)
F(t) . G(t)

semi minor axis

Answer
uxv)+(uxw)
F(t) + G(1)

F(t) - G(t)
F(t) x G(t)
SOF®
F() . G(t)

semi major axis

[lim F(©)] [ lim G(t) lim F(t) + lim G( lim F(t) + lim G(t)
[lim F(©)] [ lim G(t) lim F(t) + lim G( lim F(t) - lim G(t)

lim F(t) + lim G(t) [lim F©)] [ lim G [lim F©)] [ lim G(t)]
lim F(t) + lim G(t) [lim F®)] [ lim G [lim F(©)] x [ lim G(V)]

differentiable
Iim [ F(t) . G(t) ]
three

force

force

two

speed

speed

lim [ F(t) . G(t) ]
(bxc)xa

v

s(v) X t(w)

F G' (v

F'x G'(t)
2 .
v sina/g

2 .
vV sima

less than

distance

lim [ F(t) . G(1) ]
Distance
Distance
FxQG) (@)
FxQG) (@)
FxQG) (@)
FxQG) (@)

derivative continuous

lim [ F(t) - G(t) ] lim [ F(t) + G(1) ]
four one

momentum force

momentum acceleration
three one

acceleration speed
acceleration velocity

Iim [ F(t) - G(t) ] lim [ F(t) x G(t) ]
cx(axb) ax(bxc)

(-v) 0

s(v) . t(w) s(v) X t(w)
F.G)XH)+F. F .G)t)+(F.
GH® G)(®

F.GH)v+(F.
G(1)
2v sina/g

2v/g

equal to

center

lim [ F(t) - G(t) ]

Time of flight
Time of flight
F.G O
F.G®
F.G®
F.G®

(F' x G)(t) + (F x
G
v sino/g

2v sina/g

proportional

length

lim [ F(t) . G(¢t) ]
Range

Time of flight
F.G)@®
FxG)@®
F-G)©®
F+G) @)
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Class : I B.Sc Mathematics Maximum: 50 Marks

Time: 2 Hours

PART — A(20X1=20 Marks)
Answer all the questions

1. cosh?x - sinh?x =

a) tanhx b) cosh2x c)1l d) sinh2x
2. The odd parts of €* is called the hyperbolic
a) cosine b) tangent c) sine d) secant

3. 1. coshx coshy + sinhx sinhy =
a) cosh(x +y ) b) sin(x - y) c)cosh(x-y) d)ysinh(x+y)

4. Differentiation of y = In ( sinhx)

a) sinhx b) cothx c) tanhx d) coshx
5. [tan hx dx =
a) In(sinhx)  b) In(sechx)  c) In(coshx)  d) cothx

6. Ifx=0thensinhx =
a) (-1) b) 1 c)0 d)2

7. 1fx=0thencoshx=__

a) (-1) b) 1 c)0
8. Range of tanhx is

a)(-1,-1) b)@,1 c)(0,1)
9. d(uv) =
ayuv—vu  b)uv+wu C) udv - v du

d) 2

d) (-1, 1)

d) udv + v du

10. The even parts of e* is called the hyperbolic

a) cosine b) tangent C) sine

11.sinh(-x)=__

a)(- coshx)  b) sinh2x ¢) coshx
12.2cosh®*-1=__

a) tanhx b) cosh2x 01

13. Find the second derivative of e

a) e> b) 2e** c) 4e*
14. [coshx dx =
a) sinhx  b) cothx ¢) tanhx
15. [sech’x dx=
a) sinhx  b) cothx c) tanhx

16. In a polar cooridinates r denotes a

a) distance b)area c) angle

d) secant

d) (- sinhx)

d) sinh2x

d) (-e*)

d) sechx

d) sechx

d) radius



17. flogxdx=_

a)xlogx b)logx+x c)xlogx—-x d)xlogx+x
18. Jsecx tanx dx =

a) tanx b) sinx C) secx d) cos x
19. The polar coordinates is denoted by

a)S(r,0) b)P(r,0) ¢)R(r, 0) d) Q(r, )

20. A polar coordinate system in a plane consists of a fixed point O
is called the

a) polar b) pole c) initial ray  d) parameter
Part-B(3x2= 6 Marks)

Answer all the questions
21. Prove that sinh2x = 2sinhxcoshx.

22. Evaluate [ tan® x dx

23. Find the inflection point for the function f(x) = 3x> — 5 x3 + 2.

PART - C(3x8 =24 Marks)
Answer all the questions

24.a) Prove that i) sinh(x + y) = sinhxcoshy + coshxsinhy

i) cosh(x + y) = coshxcoshy + sinhxsinhy

(OR)

b) State and prove Leibniz Rule for n" derivative.

25. a) Find % for i)y = cosh™(secx) ii)y = tanh(x? + 1).
(OR)
b) Find the n™ derivative of cosx cos2x cos 3x.

26. a) Evaluate i) [sec*x dx i) [ cosec”x dx

(OR)

b) Derive the reduction formula for [z x™ sinx dx
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KARPAGAM ACADEMY OF HIGHER EDUCATION
Karpagam University
COIMBATORE -21

DEPARTMENT OF MATHEMATICS
First SEMESTER
I INTERNAL TEST-Jul’17
Calculus

Date : .08.2017
Class : I B.Sc Mathematics

Time: 2 Hours
Maximum: 50 Marks

PART — A(20X1=20 Marks)
Answer all the questions

1. A polar coordinate system in a plane consists of a fixed point
O is called the .
a) polar b) pole c¢) initial ray d) parameter

2. Inapolar cooridinates r denotes a

a) distance b)area c)angle d) radius
3. An Rectangular coordinates means
a) pole b) cartesian coordinate

c) polar plane d) polar coordinate
4. lim xo (sinx / X) =

a)0 by(-1) ¢1 d) 2
5. The volume of the cylinderis

a) base — height

c) 2(base + height)

b) base x height
d) (base x height) / 2

10.

11.

12.

13.

14.

15.

A function with a continuous first derivative is said to be

smooth and its graph is called
a) smooth curve b) length
¢) smooth plane d) smooth derivative

In a polar coordinates 6 denotes a

a) distance b)area c¢) angle d) radius
If the polar equation is r cosf = 2 then the Cartesian equation
is

a)yx=-1 byx=2 c¢)x=-2 d)x=0
The slope of the polar curve = f(0) is givenby

a) 2(dy"/dx™ b) dy'/dx" c) dy/dx d) dx/dy
A ray emanating from the pole is called the

a) polar curve b) polar axis
¢) polar plane d) polar coordinate
The radial coordinate is denoted by

a)o b) O c)r dP
What is another name foe cartesian coordinate ?

a) square coordinate b) rectangular coordinate
¢) polar plane d) polar coordinate
[secx tanx dx =

a) tanx b) sinx C) secx d) cos x
lim 0+ (X COt X) =

a)2 b) 1 c)0 d) (-1)

A right cylinder is a solid that generayte when a plane region
is translated along a line or axis that is to the region



a) perpendicular b) bounded

c) parallel d) linear
16. lim xoor (1 + x)¥* =
a)e b) 2 c)1l d)o
17. volume of a cylindrical shell =
a) 2w b) mr? ¢) 2nr’h d) 2nr
18. A is a surface that is generated by revolving a
plane curve about an axis that lies in the same plane as the

curve.
a) lateral surface area  b) surface of revolution
c) area of revolution  d) cross sectional area

19. An tangent lines to the parametric curve is

a) 2(dy"/dx™)  b) dy'/dx’ c) dy/dx  d) dx/dy
20. The curve represented by the parametric equations x = t* and
y =t3is called
a) ellipse b) semicubical parabola

c) hyperbola d) parabola

PART-B (3 x 2 =6 Marks)

Answer All the Questions:

21.Convert the polar equation to Cartesian equation for r =
25
2sin6 —3cos0

22. Define surface area of revolution.

23. Find the Cartesian coordinate of the point P whose polar
coordinates are (r,8) = (6 2?”)

PART-C (3 x 8 =24 Marks)

Answer All the Questions:

o1 1- ey 1. 2x%-3x+1
24. a) Evaluate i) lim —— ii) lim ———
x—0 Ssecx x—+00 3x“+5x—-2

(OR)
b) Derive the reduction formula for [ sin™ x cos™ x dx.

2
25. a) Find % for the parametric equation x = t — t? and y =
t—t3.
(OR)
b) If I, = [ tan™ x dx then prove that I, + I,_, = ﬁ and
hence evaluate Is.
26. a) Find the area of the surface generated by revolving the

curvey = 2+/x ,1 < x < 2 about the x-axis .
(OR)

b) Find the length of the asteroid x = cos3t ,y =
sin®t,0 <t < 2m.
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PART — A(20X1=20 Marks)
Answer all the questions

1. Which one is the example for conic section ?
a) parabola b) solid c) triangle d) rectangle

is the set of all points in the plane that are equidistant
from a fixed line and fixed point not on the line .

a) ellipse b) hyperbola  ¢) parabola d) circle
. Inan ellipse ,the end point of the major axis is called

a) minor axis b) vertices c) symmetry  d) center

. The midpoint of the line segment joining the foci is called the

of the hyperbola.
a) vertices  b) axis c) symmetry  d) center

.Ifu,vandware vectors in R thenu x (v + w) =

a) (Uxv)+(uxw) b)uv+uw

c) uv +(u +w) du+w

6. (F+G) () =
a)Ft)-Gt) b)F()+G() ) F(t) xG(t)

7 The derivative of velocity is equal to

d) F(t) / G(t)

a) speed b) acceleration  c) force d) momentum

8. A vector function F(t) is said to be at tif tis in the domain

of F.
a) bounded b) continuous c) differentiable d) derivative

9. is the set of all points in the plane, the sum of whose
distance from two fixed point is a given positive constant that is
less than the distance between the fixed point.

a) ellipse b) hyperbola ¢) parabola d) circle

10.In an ellipse the midpoint of the line segment joining the foci is
called

a) vertices b) axis C) symmetry d) center
11. The fixed point is the of the circle.
a) center b) vertices ¢) radius d) standard position

12. Find the focus of the parabola y? = 10 x.

a)(0,5/2) b)(-5/2,0) c) (5/2,0) d) (0, -5/2)
13. The planets moves about the sun in elliptical orbit , with the sun at
focus.
a) one b) two c) three d) four

14. mass X acceleration =

a) speed b) velocity c) force d) momentum



15.(F-G) (t) =
a) F(t) - G(t) b) F(t) +G(t) c) F(t) xG(t) d) F(t) / G(t)
16. lim[F(t) x G(t) ] =
a) lim F(t) - lim G(t) b) [lim F(t)] x [lim G(t)]
c) lim F(t) + lim G(t) d) [lim F@)] [ lim G(t)]
17. The eccentricity of a parabola is
a)e<l1 b)e>1 c)e=0 dye=1

18.Find the radius of the circle r = 4 cos 0.
a) 2 b) 8 c)4 d) 16
19. If B2 - 4AC =0 then it is called
a) ellipse  b) hyperbola  c) parabola d) circle
20. The square of the time of one complete revolution of a planet about
its orbit is proportional to the cube of the length of the of
its orbit.
a) minor axis b) semi major axis

) major axis d) semi minor axis
PART-B (3 x 2 =6 Marks)

Answer all the Questions:
21. Find %1rr21 F(t) , where F(t) = (t? — 3)i + e'j + (sinmt)k.

22.Define discriminant test.

23. Find the focus and directrix of the parabola y* = 10x.

PART-C (3 x 8 =24 Marks)
Answer all the Questions:

24. a) Sketch the graph of the ellipse i)%2 + § =1 ii)x*+
2y? = 4. and show the foci of each.
(OR)

b) Find a Cartesian equation for the hyperbola centered at the
origin that has a focus at (3, 0) and the line x = 1 as the
corresponding directrix.

25. a) Find the equation of the curve x? —xy + y2 — 6 = 0 in
x'y’ - coordinates. if the coordinate axes are rotated
through an angle of 8 = 45°.

(OR)

b) Find the tangential and normal components of the
acceleration of an object the moves with position vector
R(t) = (t3,t%,¢t).

26. ) Let F(t) = t2i + tj — (sin)k and G(t) = ti +7 j +5k.
find i) (F+G)(t) i) (F X G)(t) iii) (F.G)(t)

(OR)

b) State and prove the Kepler’s second law of motion.
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