Algebra Syllabus | 2017 Batch

= KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),

Enabe | Enlghten | Enrich Coimbatore —641 021
e o e e SYLLABUS
Semester — |
L T PC
17MMU102 ALGEBRA 6 1 06

Course Objective :

On successful completion of course the learners will be enriched with the concept of
De Moivre’s theorem, Rings, fields, linear transformation, which are very useful for their
research.

Course Outcome :
To enable the students to learn and gain knowledge about functions, relations, systems of
linear equations and linear transformations.

UNIT I

Polar representation of complex numbers, nth roots of unity, De Moivre’s theorem for rational
Indices and its applications. Sets —Finite and infinite sets-Equality sets-Subsets-Comparability -
Proper subsets-Axiomatic development of set theory-Set operations.

UNIT I
Equivalence relations, Functions, Composition of functions, Invertible functions, One to one
Correspondence and cardinality of a set, Well-ordering property of positive integers.

UNIT 111
Division algorithm, Divisibility and Euclidean algorithm, Congruence relation between integers,
Principles of Mathematical Induction, Statement of Fundamental Theorem of Arithmetic.

UNIT IV

Systems of linear equations, row reduction and echelon forms, vector equations, the matrix
equation Ax=b, solution sets of linear systems, applications of linear systems, linear
independence.

UNIT V

Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix,
characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn and rank
of a matrix, Eigen values, Eigen Vectors and Characteristic Equation of a matrix.
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SUGGESTED READINGS

TEXT BOOKS

1. Titu Andreescu., and Dorin Andrica,( 2006). Complex Numbers from A to Z, Birkhauser.
Library of Congress Cataloging-in-Publication Data Andreescu, Titu, (For Unit —I).

2. Edgar G. Goodaire and Michael M. Parmenter, ,(2005). Discrete Mathematics with Graph
Theory, 3" Edition, Pearson Education (Singapore) P. Ltd., Indian Reprint.(For Unit —I1)

3.David C. Lay., (2007). Linear Algebra and its Applications, Third Edition, Pearson Education
Asia, Indian Reprint. (For Unit 111, IV and V)

REFERENCE
1. Kenneth Hoffman., Ray Kunze., (2003).Linear Algebra, Second edition, Prentice Hall of India
Pvt Ltd, New Delhi.
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Subject: Algebra Subject Code: 177MMU102
Class :1-B. Sc. Mathematics Semester |
Lecture
S.No | Duration Topics to be covered Support Materials
(Hr)
UNIT-I
1. 1 Introduction to Polar representation of T1:Ch: 2; Pg.N0:33-34
complex numbers
2. 1 Continuation on Polar representation of T1:Ch: 2; Pg.N0:35-36
complex numbers
3. 1 Continuation on Polar representation of T1:Ch: 2; Pg.N0:36-37
complex numbers
4, 1 n" roots of unity T1:Ch: 2; Pg.N0:38-39
5. 1 Continuation of n" roots of unity T1:Ch: 2; Pg.No:40-41
6. 1 Continuation of n™ roots of unity T1:Ch: 2; Pg.No:42-43
7. 1 Tutorial- |
8. 1 Continuation of Problems on n™ roots of T1:Ch: 2; Pg.No:44-45
unity
9. 1 De Moivre’s Theorem for rational indices T1:Ch: 2; Pg.N0:46-47
10. 1 Continuation on De Moivre’s Theorem for | T1:Ch: 2; Pg.N0:48-49
rational indices
11. 1 Continuation on De Moivre’s Theorem for | T1:Ch: 2; Pg.No:50-52
rational indices
12. 1 De Moivre’s Theorem and its applications | T1:Ch: 2; Pg.N0:53-54
13. 1 Continuation on De Moivre’s Theorem T1:Ch: 2; Pg.No:54-55
and its applications
14, 1 Tutorial- 11
15. 1 Continuation on De Moivre’s Theorem T1:Ch: 2; Pg.N0:33-36
and its applications
16. 1 Continuation on De Moivre’s Theorem T1:Ch: 2; Pg.N0:37-39
and its applications
17. 1 Sets and its types T2: Ch: 2; Pg.N0:37-39
18. 1 Subsets and Proper subsets T2: Ch: 2; Pg.N0:40-41
19. 1 Set Operations with examples T2: Ch: 2; Pg.N0:43-46
20. 1 Continuation on Set Operations with T2: Ch: 2; Pg.N0:47-49
examples
21. 1 Tutorial- 111
22. 1 Recapitulation and discussion of possible
questions on unit |
Total no. of lecture hours planned : 22 hrs
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T1:Titu Andreescuand Dorin Andrica,2006.ComplexNumbers from A to Z,Birkhauser,Library of
congress cataloging-in —publication dataAndreescu, Titu,1956.

T2:EdgerG.Goodaire and Michael M.Parameter,2005. Discrete Mathematics with graph
theory,3" edition,Pearson Educaion(Singapore) P.Ltd.,Indian Reprint.

UNIT-II

1. 1 Basic concepts of Equivalence relations R1:Ch 11:Pg.NO:391-393
2. 1 Continuation of Equivalence relations T2: Ch: 2; Pg. No :56-57
3. 1 Continuation of Equivalence relations T2: Ch: 2; Pg. No :57-58
4. 1 Functions: definitions and properties T2: Ch: 2; Pg. No :59-60
5. 1 Continuation on functions T2: Ch: 2; Pg. No :61-62
6. 1 Tutorial- |
7. 1 Composition of functions T2: Ch: 3; Pg. No :71-73
8. 1 Continuation on Composition of functions | T2: Ch: 3; Pg. No :74-75
9. 1 Invertible functions T2: Ch: 3; Pg. No :76-77
10. 1 Continuation on Invertible functions T2: Ch: 3; Pg. No :78-79
11. 1 Continuation on Invertible functions T2: Ch: 3; Pg. No :80-81
12. 1 One to one correspondence T2: Ch: 2; Pg. No :59-60
13. 1 Tutorial- 11
14. 1 Problems on one to one correspondence T2: Ch: 2; Pg. No :61-62
15. 1 Cardinality of a set T2: Ch: 3; Pg. No :66-67
16. 1 Continuation on Cardinality of a set T2: Ch: 3; Pg. No :68-69
17. 1 Continuation on Cardinality of a set T2: Ch: 3; Pg. No :70-71
18. 1 Well-ordering property of positive integers | T2: Ch:3; Pg. No :72-73
19. 1 Continuation on Well-ordering property of | T2: Ch:3; Pg. No :74-75

positive integers
20. 1 Tutorial- 111
21. 1 Recapitulation and discussion of possible

questions

Total no. of lecture hours planned : 21 hrs

T2:EdgerG.Goodaire and Michael M.Parameter,2005. Discrete Mathematics with graph
theory,3" edition,Pearson Educaion(Singapore) P.Ltd.,Indian Reprint.

R1. Kenneth Hoffman., Ray Kunze., 2003. Linear Algebra, Second edition, Prentice Hall of India
Pvt Ltd, New Delhi.

UNIT-I1I
1. 1 Introduction on Division algorithm T2: Ch: 4; Pg. No :97-104
2. 1 Divisibility algorithm T2: Ch: 4; Pg. N0:105-106
3. 1 Euclidean algorithm T2: Ch: 4; Pg. N0:107-108
4. 1 Continuation of Euclidean algorithm T2: Ch: 4; Pg. N0:109-110
5. 1 Problems on Divisibility and Euclidean T2: Ch: 4; Pg. N0:115-116
algorithm
6. 1 Tutorial —I
7. 1 Continuation on Divisibility and Euclidean | T2: Ch: 4; Pg. N0:116-117
algorithm
8. 1 Continuation on Divisibility and Euclidean | T2: Ch: 4; Pg. N0:118-119
algorithm
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9. 1 Continuation on Divisibility and Euclidean | T2: Ch: 4; Pg. N0:119-120
algorithm

10. 1 Congruence relation between integers T2: Ch: 4; Pg. No :121-122

11. 1 Continuation on Congruence relation T2: Ch: 4; Pg. No :123-124
between integers

12. 1 Tutorial —11

13. 1 Continuation on Congruence relation T2: Ch: 4; Pg. No :124-126
between integers

14, 1 Continuation on Congruence relation T2: Ch:4, Pg. N0:127-130
between integers

15. 1 Continuation on Congruence relation T2: Ch:4, Pg. N0:131-138
between integers

16. 1 Principles of Mathematical Induction T2: Ch: 4; Pg. No :139-145

17. 1 Continuation on Principles of Mathematical | T2: Ch: 5; Pg. No :149-151
Induction

18. 1 Statement of Fundamental Theorem of T2: Ch: 5; Pg. No :152-154
Arithmetic

19. 1 Tutorial- 111

20. 1 Recapitulation and discussion of possible
questions

Total no. of lecture hours planned : 20 hrs

T2:EdgerG.Goodaire and Michael M.Parameter,2005. Discrete Mathematics with graph
theory,3" edition,Pearson Educaion(Singapore) P.Ltd.,Indian Reprint.

UNIT-IV

1. 1 Introduction and basic concepts of systems | T3:Ch:1; Pg,No:1-4

of linear equations
2. 1 Problems on systems of linear equations T3:Ch:1; Pg,N0:5-9
3. 1 Continuation of Problems on systems of | T3:Ch:1; Pg,No:10-12

linear equations
4, 1 Row reduction T3:Ch:1; Pg,N0:13-15
5. 1 Continuation on Row reduction T3:Ch:1; Pg,N0:16-19
6. 1 Tutorial —I
7. 1 Continuation on Row reduction T3:Ch:1; Pg,N0:20-23
8. 1 Echelon forms T3:Ch:1; Pg,N0:24-27
9. 1 Continuation on Echelon forms T3:Ch:1; Pg,N0:28-30
10. 1 Continuation on Echelon forms T3:Ch:1; Pg,N0:29-34
11. 1 Vector equations T3:Ch:1; Pg,N0:35-38
12. 1 Tutorial —11
13. 1 The matrix equation Ax=b R1:Ch:1; Pg.N0:6-8
14. 1 Problems on Ax =b form R1:Ch:1; Pg.N0:9-10
15. 1 Solution sets of linear systems T3:Ch:1; Pg,N0:39-43
16. 1 Applications of linear systems T3:Ch:1; Pg,No0:44-46
17. 1 Linear independance T3:Ch:1; Pg,N0:50-52
18. 1 Continuation on Linear independance T3:Ch:1; Pg,N0:53-55
19. 1 Tutorial- 111
20. 1 Recapitulation and discussion of possible

guestions

Total no. of lecture hours planned : 20 hrs
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T3: David C.Lay,2007.Linear Algebra and itsapplications 3™ edition, Pearson Educaion(Asia)
P.Ltd.,Indian Reprint.

R1. Kenneth Hoffman., Ray Kunze., 2003. Linear Algebra, Second edition, Prentice Hall of India
Pvt Ltd, New Delhi.

UNIT-V
1. 1 Introduction to linear transformations R1:Ch:3.1; Pg.N0:67-69
2. 1 Matrix of a linear transformations R1:Ch:3.1; Pg.N0:70-72
3. 1 Continuation on Matrix of a linear R1:Ch:3.1; Pg.N0:73-75
transformations
4. 1 Inverse of a matrix R1:Ch:3.1; Pg.N0:76-78
5. 1 Problems on Inverse of a matrix R1:Ch:3.1; Pg.N0:79-80
6. 1 Tutorial —I
7. 1 Characterizations of invertible matrices R1:Ch:3.1; Pg.N0:81-84
8. 1 Continuation on Characterizations of R1:Ch:3.1; Pg.N0:85-87
invertible matrices
9. 1 Subspaces of R" R1:Ch:2.2; Pg.N0:34-36
10. 1 Dimensions of subspaces of R" R1:Ch:2.2; Pg.No0:37-38
11. 1 Tutorial —11
12. Continuation on Dimensions of subspaces R1:Ch:2.2; Pg.N0:39-40
of R"
13. Rank of matrix T3:Ch:5; Pg.N0:264-266
14, Eigen values ,Eigen vectors T3:Ch:5; Pg.N0:267-268
15. Continuation on Eigen values ,Eigen vectors | T3:Ch:5; Pg.N0:269-270
16. Characteristic Equation of a matrix T3:Ch:5; Pg.N0:271-272
17. Problems on Finding Characteristic T3:Ch:5; Pg.N0:273-275
Equation of a matrix
18. 1 Tutorial- 111
19. 1 Recapitulation and discussion of important
questions
20. 1 Discuss on Previous ESE question papers
21, 1 Discuss on Previous ESE question papers
22. 1 Discuss on Previous ESE question papers

Total no. of lecture hours planned : 22 hrs

T3: David C.Lay,2007.Linear Algebra and itsapplications 3™ edition, Pearson Educaion(Asia)
P.Ltd.,Indian Reprint.

R1. Kenneth Hoffman., Ray Kunze., 2003. Linear Algebra, Second edition, Prentice Hall of India
Pvt Ltd, New Delhi.

SUGGESTED READINGS
TEXT BOOKS:

TL1:Titu  Andreescuand  Dorin  Andrica,2006.ComplexNumbers  from A to
Z,Birkhauser,Library of congress cataloging-in —publication dataAndreescu, Titu,1956.

T2:EdgerG.Goodaire and Michael M.Parameter,2005. Discrete Mathematics with graph
theory,3" edition,Pearson Educaion(Singapore) P.Ltd.,Indian Reprint.
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T3: David C.Lay,2007.Linear Algebra and itsapplications 3™ edition, Pearson
Educaion(Asia) P.Ltd.,Indian Reprint.

REFERENCE:

R1. Kenneth Hoffman., Ray Kunze., 2003. Linear Algebra, Second edition, Prentice Hall of
India Pvt Ltd, New Delhi..
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Subject : Algebra Subject Code : 177MMU102 LT PC
Class :1-B.Sc. Mathematics Semester o 6 1 06
UNIT |

Polar representation of complex numbers, nth roots of unity, De Moivre’s
theorem for rational Indices and its applications. Sets —Finite and infinite sets-
Equality sets-Subsets-Comparability -Proper subsets-Axiomatic development of

set theory-Set operations.

SUGGESTED READINGS

TEXT BOOKS
1. Titu Andreescu., and Dorin Andrica,( 2006). Complex Numbers from A to Z,

Birkhauser. Library of Congress Cataloging-in-Publication Data Andreescu,
Titu.

2. Edgar G. Goodaire and Michael M. Parmenter, ,(2005). Discrete Mathematics
with Graph Theory, 3" Edition, Pearson Education (Singapore) P. Ltd., Indian
Reprint.

3.David C. Lay., (2007). Linear Algebra and its Applications, Third Edition,
Pearson Education Asia, Indian Reprint.

REFERENCE

1. Kenneth Hoffman., Ray Kunze., (2003).Linear Algebra, Second edition,
Prentice Hall of India Pvt Ltd, New Delhi.
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UNIT -1
Complex Number in Polar Form

1. Complex Numbers
In algebra we discovered that many equations are not satisfied by any real numbers. Examples are:
x?=-2 or X*—2x+40=0
We must introduce the concept of complex numbers.

Definition: A complex number is an ordered pair z = (X, y) of real numbers x and y. We call x the
real part of z and y the imaginary part, and we write

Rez=x, Imz=y.

Example 1: Re(4,6)=4 and Im(4,6)=6

Two complex numbers are equal where z, =(x,,y,) and z, =(X,,Y,) :
z,=1, ifandonlyif x, =x,and y, =Y,

Addition and Subtraction of Complex Numbers: We define for two complex numbers, the sum
and difference of z, = (x,,y,) and z, =(X,,Y,):

2+, :(X1+X2’y1+y2) and z,-z, :(Xl_XZ’yl_yZ)'
Multiplication of two complex numbers is defined as follows:

2,2, = (X1X2 — VY XY, X% yl)

Example 2: Let z, =(3,4) and z, =(5,-6) then
z,4+z,=3+5,4+(-6)) =(8,-2)
and
2-2,=(3-5,4=(-6)) = (-2.10)
and
2,2,=(3-5-4-(-6),3-(-6)+4-5)=(39,2).

We need to represent complex numbers in a manner that will make addition and multiplication easier
to do. )
Complex numbers represented as Z=X+1y

A complex number whose imaginary part is 0 is of the form (x,0) and we have

Prepared by : R. Praveen Kumar, Department of Mathematics,KAHE 2/18
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(%, 0)+(X,,0) = (X +X,,0) and (x;,0) = (X,,0) = (X, —X,,0)
and
(%1,0)-(%,,0) = (X%, 0)
which looks like real addition, subtraction and multiplication. So we identify (x,0) with the real
number x and therefore we can consider the real numbers as a subset of the complex numbers.

We let the letter i =(0,1) and we call i a purely imaginary number.

Now consider i* =i-i=(0,1)-(0,1) = (-1,0) and so we can consider the complex number
i> =—1=the real number —1. We also get yi=y-(0,1) =(0,y)

And so we have: (X, ¥) =(x,0)+(0,y) =x+iy
Now we can write addition and multiplication as follows:
Z+2,=(X%+X, Y, +Y,) =X+ X +i(y,+Y,)

and 2,7, = (XX, — V1Yo, XY, + X Y1) = X% — Y, Y, Hi(X Y, +X,V) .

Example 3: Let z, =(2,3)=2 +3i and z, =(5,-4) =5 -4i, then
z+z,=2+3)+(5-4i)=T7-i
and
z,-2,=(2+3i)-(5-4i) =10+15i - 8i —12i* =22+ 7i

The Complex Plane
The geometric representation of complex numbers is to represent the complex number (x, y) as the

point (X,Y).

A .
y-axis
0 X+iy
2 ———
11
|| [ .
[ [ "
T 1 2 X-axis
L 2-3)=2-3i

So the real number (x,0) is the point on the horizontal x-axis, the purely imaginary number
yi =(0,y) ison the vertical y-axis. For the complex number (X,y), X is the real part and y is the
imaginary part.

Prepared by : R. Praveen Kumar, Department of Mathematics,KAHE 3/18
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Example 4. Locate 2-3i on the graph above.

How do we divide complex numbers? Let’s introduce the conjugate of a complex number then go to
division.

Given the complex number z = x+1y, define the conjugate 7= X+1y =X—1ly
We can divide by using the following:

Z Xy XY XY, X+ Y Y, H0GY —XY,)
Z, X +ly, X +iy, % —iy, X22+y22

243i  (2+30)(3+4i) 6+12i*+8i+9i 6 .17
Example 5. = = : =——+i—
3-4i (3-4i)3+4i) 9-16i" 25 25

Complex Numbers in Polar Form

It is possible to express complex numbers in polar form. If the point z = (x,y) = x+1y is represented

by polar coordinates r, @, then we can write x=rcosé@, y=rsind and z=rcos@+irsin@=re"’ . r
is the modulus or absolute value of z, |z|=r =/x*+Yy?, and 6 is z the argument of z,

€ = arctan (XJ . The values of r and 6 determine z uniquely, but the converse is not true. The

X

modulus r is determined uniquely by z, but 6 is only determined up to a multiple of 2z. There are

infinitely many values of 6 which satisfy the equations x =rcosé, y =rsiné, but any two of them

differ by some multiple of 2r. Each of these angles 6 is called an argument of z, but, by convention,
one of them is called the principal argument.

Definition  If z is a non-zero complex number, then the unique real number 6, which satisfies
x=|z|cosd, y =|z|sin6, —z<O<x
is called the principal argument of z, denoted by 6 =arg(z) .

Prepared by : R. Praveen Kumar, Department of Mathematics,KAHE 4/18
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Note: The distance from the origin to the point (x,y) is |z| the modulus of z; the argument of z is

the angle @ = arctan ¥ Geometrically, 6 is the directed angle measured from the positive x-axis to
X

the line segment from the origin to the point (x,y). When z =0, the angle 6 is undefined.
The polar form of a complex number allows one to multiply and divide complex number more

easily than in the Cartesian form. For instance, if z, =re and z, =r,e” then z,z, = rr,e'*"*,

Z | P . .

L= 1¢@%)  These formulae follow directly from DeMoivre’s formula.

ZZ r-2

Z‘Z_:
y
8 +8,
g v\ 0
' X
Example 6. For z=1+i,we get r=+1* +1* = V2 and @ =arctan 2 = arctan| :%. The
X

principal value of @ is % but 977[ would work also.

Multiplication and Division in Polar Form

Let z, =r,cosé, +ir;sing, =r,(cosé, +isinég)and z, =r,(cosd, +ising,) then we have

: =%(cos(@l—ez)ﬂsin(el—ez))

2,2, = rr,(cos(é, + 6,) +isin(é, +6,)) and =
ZZ 2

Prepared by : R. Praveen Kumar, Department of Mathematics,KAHE 5/18
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Example 7: z, =1+i= ﬁ(cos%+isin%) and  z, =3-i 2[cos%+isin%]

Then z,zz=\/5 cosZ+isinZ | 2| cosZ +isinZ |=242 coss—ﬁﬂ'sins—jr
4 4 6 6 12 12

. r n 10 S5z
Since —+—=——="—
6 24 12

And

Zl_ﬁ(cosjﬂsin’:)_ﬁ( I 7;)
L= =——| cos—+isin—

& 2(cosﬁ+isinﬁ} 2 12
6 6

We can use z°=z-z=r-r(cos(d+8)+isin(d+6) =r’(cos 26 +isin 26)
And so:

DeMoivre's Theorem:

z" =r"(cosnd +isinnd)

where n is an positive integer.
We want to prove that, for all positive integers n,

(isin x+cos x)" =isin nx+cos nx

Stepl:casen=1

. . 1 .
Trivially, (ISINX+COSX)" =iSINX+COSX g4 the result holds for n = 1.

Step 2: arbitrary n
We assume the induction hypothesis, that is, we assume

(isin x+cos x)”_1 =isin(n—1)x+cos(n—-1)x
Now we have
(isin x+cosx)" = (isin X + cos x)(isin x +cos x)"
= (isin x + cos x)(isin(n —1)x + cos(n —1)x)
= cos xcos(n—1)x —sin xsin(n —1)x
+i[sin xcos(n —1)x+cos xsin(n —1)x]

= COoSNX+isinnx

Prepared by : R. Praveen Kumar, Department of Mathematics,KAHE 6/18
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using the compound angle identities.
This proves the induction step, so by the principle of mathematical induction,

(isin x+cos x)" =isin nx -+ cos nx
for all positive integers, n.

Let r =1 to get: (cos@+isin@)" =cosnd+isinng.

Example 1: Compute (1+i)°

6
(1+i)6 :(ﬁ(cos%—kisingn
=\/§6(cos6-£+isin6-£]
4 4

( 3r .. 37rj
=8| cos— +isin—
2 2

=—8i

n™ Roots of Complex Numbers:

Consider z =r(cos@+isin@)=w" = R"(cosng +isinng) (Equation 1)

where w=R(cos¢+ising). Then R:Q/F, and so 8 =n¢ or ¢:€ )
n
. ] 0 2r
However ng = 0+ 2 also satisfies Equation 1 and so ¢ = H+T. And

ng =0+ 4z implies ¢:Q+4—”. However ng = 6+ 6z implies ¢=Q+6—”.
n n n n

And continuing n¢g =8 +kz implies ¢ :§+k7ﬂ. for k any integer up to n.

We get %=W(cos(%)+isin(wn, k=0, 1, 2, 3, LI, (n-1).

n

Prepared by : R. Praveen Kumar, Department of Mathematics,KAHE 7/18
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Example 2. Find the sixth root of —1.

There will be six roots:

zlzﬁﬁ cos(zjﬂ'sin(—j :£+li
6 2 2
z7=3/I cos(£+2—”j+isin(£+2—”) =i
i 6 6 6
z¢:gicm(£+f£)+mm(£+ﬂz):=—1§+—z
‘ 6 6 6 6 2
z4=9ﬁ cos £+6—7z)+isin[£+6—”) =—£—li
6 6 6 6 2 2
z, = 41| cos Z+—j+isin[£+8—ﬂj =—i
’ 6 6 6
zﬁzﬁﬁ cos(£+£)+isin(—+lo—”j =—£—l
6 6 6 2 2

ELEMENTARY SET THEORY
I. BASIC CONCEPTS

Example 3:

Since i =cos £J+isin(£J , we let
2 2

Find the square roots of i.

1 « . (1 7 T .. T 1
wl=\/1_ cos| —-— |+isin| —-= | |=cos—+isin—=
2 2 2 2 4 4

second square root of 7is:

- 4 —

V22

is one square root of 7. The

1 Definition 1: A set is a collection of objects together with some rule to determine whether
a given object belongs to this collection. Any object of this collection is called an element

of the set.

Prepared by : R. Praveen Kumar, Department of Mathematics,KAHE
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1. Each element of the set is listed within a set of brackets: { }.
2. Within the brackets, the first few elements are listed, with dots following
to show that the set continues with the selection of the elements following

the same rule as the first few.

3. Within the brackets, the set is described by writing out the exact rule by
which elements are chosen. The name given each element is separated
from the selection rule with a vertical line.

Examples:

(a) Denote by A the set of natural numbers with are greater than 25. The set could be
written in the following ways:

{26,27,28....}  (using the second notation listed above)
{x | x is a natural number and x > 25} (using the third notation above)

The above description is read as “the set of all x such that x is a natural
number and x > 25”.

Note that 32 is an element of A. We write 32 € A, where “€” denotes “is
an element of.” Also, 6 & A, where “&” denotes “is not an element of.”

(b) Let B be the set of numbers {3,5,15,19,31,32}. Again the elements of the set are
natural numbers. However, the rule is given by actually listing each element of
the set (as in the first notation above). We see that 15 € B, but 23 ¢ B.

(c) Let C be the set of all natural numbers which are less than 1. In this set, we observe
that there are no elements. Hence, C is said to be an empty set. A set with no

elements is denoted by @.

Definition: A set A is said to be a subset of a set B if every element of A is an element of
B.

Notation: To indicate that set A is a subset of set B, we use the expression A c B,
where “C” denotes “is a subset of”. A & B means that A is not a subset of B.

Examples:

(a) Let B be the set of natural numbers. Let A be the set of even natural numbers.
Clearly, A is a subset of B. However, B is not a subset of A, for 3 € B, but 3 ¢ A.

(b) An empty set @ is a subset of any set B. If this were not so, there would be some
element x € @ such that x € B. However, this would contradict with the definition of
an empty set as a set with no elements.
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Theorem: Properties Of Sets

Let A, B, and C be sets.
1. Forany set A, Ac A (Reflexive Property)
2. IfAcBand B c C, then A c C (Transitive Property)
Definition: Two sets, A and B, are said to be equal if and only if A is a subset of B and B
is asubset of A. To indicate that two sets, A and B, are equal, we use the symbol A = B.

This means that sets A and B contain exactly the same elements. A # B means that A
and B are not equal sets.

Example:

Let A be the set of even natural numbers and B be the set of natural numbers which
are multiples of 2. Clearly, A c B and B c A. Therefore, since A and B contain
exactly the same elements, A = B.
Remarks:
(@) Two equal sets always contain the same elements. However, the rules for the sets

may be written differently, as in the above example.

(b) Since any two empty sets are equal, we will refer to any empty set as the empty
set.

(c) Ais said to be a proper subset of B is and only if:
(hAcB
(i) A£B, and
(i) A# Q.

Theorem: Properties of Set Equality

(@) For any set A, A = A. (Reflexive Property)
(b) If A =B, then B = A. (Symmetric Property)
(c) IfFA=Band B =C, then A = C. (Transitive Property)

Definition: Let A and B be subsets of a set X. The intersection of A and B is the set of all
elements in X common to both A and B.
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Notation: “A N B” denotes “A intersection B” or the intersection of sets A and B.

Thus, ANB={xeX|xeAandxeB},orANB={x|xe€eAAxE€EB}.

Examples:

a. Given that the box below represents X, the shaded area represents AN B:

A B

b. Let A ={2,4,5} and B = {1,4,6,8} Then, A N B = {4}.

Note: A set that has only one element, such as {4}, is sometimes called a singleton
set.

c.LetA={2,45}and B={1,3}. ThenANB=0.
Remarks:

a. If, as in the above example 1.11c, A and B are two sets such that A N B is the empty
set, we say that A and B are disjoint.

b. Given sets Aand B.x e AN B ifand only if x € Aand x € B.

Definition: Let A and B be subsets of a set X. The union of A and B is the set of all elements
belonging to A or B.

Notation: “A U B” denotes “A union B” or the union of sets A and B.
Thus, AUB={xeX|xeAorxeB}.OrAUB={x|x€eAvxEeB}.

Examples:
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a. Given that the box below represents X, the shaded area represents A U B:

b. Let A={2,4,5} and B = {1,4,6,8}.
Then, AU B ={1,2,4,5,6,8}

Remark:
GivensetsAand B. xe AUB ifandonlyifx € Aorx € B.

Definition: Let A and B be subsets of a set X. The set B — A, called the difference
of B and A, is the set of all elements in B which are not in A.

Thus,B-A={xe X |x€eBandx¢&A}.

Examples:

a. Let B = {2,3,6,10,13,15} and A = {2,10,15,21,22}.
Then B — A = {3,6,13}.

b. Let X be the set of natural numbers and A be the set of odd natural numbers. Then,
X — A =the set of even natural numbers; or X — A = {x | x is a natural number
and x is even}.
c. Given that the box below represents X, the shaded area represents B — A.
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Definition: If A C X, then X — A is sometimes called the complement of A with respect
to X.

Notation: The following symbols are used to denote the complement of A with
respect to X:

CA, CA, ~A, A and A '

Thus, (\A={x € X|x ¢ A}.

Theorem: Let A and B be subsets of a set X.
Then, A-B=An (B.

SUB- SET
Let set A be a set containing all students of your school and B be a set containing all students of class

X1 of the school. In this example each element of set B is also an element of set A. Such a set B is
said to be subset of the set A. It is writtenas B | A

Consider D={1,23,4,..... }

E ={...-3-2,-1,0,1, 2,3, ....... }

Clearly each element of set D is an element of set E also \D | E

If A and B are any two sets such that each element of the set A is an element of the set B also, then A
Is said to be a subset of B.
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Remarks
(i) Each set is a subset of itself i.e. ATA.

(i) Null set has no element so the condition of becoming a subset is automatically satisfied.
Therefore null set is a subset of every set.

(iii) IfATBandBIiAthen A=B.

(iv) Ifal g and A! B then A is said to be a proper subset of B and B is said to be a super set of A.
i.e.aiOrBEA.

Example If A ={x:xisaprime number less than 5} and

B ={y: yisan even prime number} then is B a proper subset of A ?
Solution : It is given that

A={2,3} B={2}.

ClearlyBiAand Bt A

We write g j a

and say that B is a proper subset of A.

Example IfA={1,234},B={223, 4,5}
iSAIBorBIiA?

Solution : Here -TAbutliBp A/ B.

Also 5IBbut5TAPBI/A.

Hence neither A is a subset of B nor B is a subset of A.

POWER SET

Let A={a b}
Subset of A are ¢, {a}, {b} and {a, b}.

If we consider these subsets as elements of a new set B (say) then
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B = {¢.{a}.{b}.{ab}}

B is said to be the power set of A.

Notation : Power set of a set A is denoted by P(A).

Power set of a set A is the set of all subsets of the given set.
Example Write the power set of each of the following sets :
(i) A={x:xIRandx*+7=0}.

(i) B={y:yINandl£y£3}.

Solution :

(1) Clearly A =f (Null set)

\ f is the only subset of given set \ P (A)={f }

(i)  The set B can be written as {1, 2, 3}
W ®)={f {1} {2} {3}.{1. 2}, {1, 3}, {2,3},{1,2,3} }.

UNIVERSAL SET

Consider the following sets.

A = {x: x is a student of your school}

B = {y : y is a male student of your school}

C ={z: z is a female student of your school}

D ={a: aisastudent of class XII in your school}
Clearly the set B, C, D are all subsets of A.
CARTESIAN PRODUCT OF TWO SETS
Consider two sets A and B where

A={1,2}, B={3 4,5}

Set of all ordered pairs of elements of A and B

Prepared by : R. Praveen Kumar, Department of Mathematics,KAHE

15/18



UNIT — 1 Complex Number in Polar Form

2017 Batch

is  {(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)}

This set is denoted by A x B and is called the cartesian product of sets A and B.

ie.  AxB={(1,3), (1, 4),(1, 5),(2, 3),(2, 4),(2,5)}
Cartesian product of B sets and A is denoted by BxA.
In the present example, it is given by

BxA ={(3,1).3, 2),(4 1),4 2).5,1),5, 2)}
Clearly AxB 1 BXA.

In the set builder form :
AxB={(ab):aTAandbT1B}
BxA={(ba):bTBandalTA}

Note: IfA=forB=forA,B=f

thenA"B=B 'A=f.

Example

(1) Let A={a,b,c}, B={d,e}, C={a,d}.

Find (i) AxB(ii) BxA  (iii) AX(BE C) (ivy(ACC)'B
(V(ACB)'C (VA (B-C).
Solution : (i) AxB ={(a, d),(a, e), (b, d), (b, €), (c, d), (c, e)}.

(i)  BxA={(d a),(d b), (d, c), (e a) (e b)(e c)}

(iii) A={ab,c}, BEC={ade}.
x (BEC)={(a a),(a, d),(a e),(b, a),(b, d),(b, €), (c, a),(c, d),(c, e).

(iv) ACC={a}, B={d, e}.

\(ACC)xB={(a, d). (a )}
(v) ace=T,c={ad}, \ACB c=f

(vij A={abc},B-C={e}\A"(B-C)={(ae),(be),(ce)}
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PART —B (5x2 =10)

Possible Questions (2 marks)

© 00 NN Ol A WP

. Find the polar representations for the complex number z:—i +i

. Find the polar representations for the complex number z=3-2i.
. Find the polar representations for the complex number z=6+6iV3.
. Find the polar representations for the complex number z=-4i.

V3

T.

. Find the polar representations for the complex number z=cos a-isina.
. State the De Moivre’s theorem

. Find the square roots of the complex numbers z=1+i.

. Find the square roots of the complex numbers z=i.

. Compute (1+i)

1000

10. Find the cube roots of the complex numbers z= -i.
11. Find the cube roots of the complex numbers z= 27.
12. Compute (-1+i)*

13. Define finite and infinite sets

14. Define Complement of a set

15. Prove that if A and B are finite sets, then n(AUB) = n(A) + n(B) — n(ANB)
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PART —C (5x6 =30)

Possible Questions (6 marks)

1) Find the Polar representation of the complex number z=1+cos a +i sin a, a € (0,21I1).
(1-0)10(v3+i)°
(—1—i\/§)10

3) i) Find polar representations for the complex number z:—% —i

2) Compute z =
Vv
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Unit |
Complex number in Polar form
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
S.No Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
A complex number z=x+iy write the polar
representation in the form................ z=1(c0os®+isin®) |z=r(cos®) 7z=(cos®+isin®) |z=r(cos@-isin®) z=1(c0os®+isin®)
The polar representation z=r(cos®+isin®) where
T€eiinininnnnnn, [0,00] [0,1) [1,00) [0,00) [0,00)
The polar representation z=r(cos®@+isin®) where
O€....ccevinnn [0,IT] (0,2IT] [0,21T) [0,211] [0,21T)
The polar argument ©® of the geometric imageof z is
calledthe........................ of z angle argument theta coordinate argument
The polar argument r of the geometric imageof z is
calledthe.................eeeee. of z root real modulus imaginary modulus
For.......oooooiiiia. the modulus and argument of z
are uniquely determined z=0 z>0 z<0 70 z#0
For z#0 the modulus and argument of z are
.................. determined unique double triple zero unique
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8 |Two complex numbers z1 and z2#0 are equal if and

onlyif ................. ri=r2 ri<r2 ri>r2 ri/r2 ri=r2
9 |Two complex numbers z1 and z2#0 are

.................. if and only if r1=r2 one equal not equal multiple equal
10 |Two complex numbers z1 and z2+#0 are equal if and

only if r1=r2 and tl1-t2=............ jfor an integer k.  |kII -2 k/T1 2KkI1T 2kIT

The set Arg z is called the
I P argument of the complexnumber

z. finite infinite extended singular extended
12 |Any complexnumber z can be represented as

z=1(cos®+isin®) ,wherer.................. >0 <0 >0 <0 >0
13 |Any complexnumber z can be represented as

z=1(cos®+isin®) ,where r >0 and Oe................... Z R W N R
14 |The modulus of the numbers z= -1+i\3

1S. i, 2 -2 1 -1 2
15 |The modulus of the numbers z= 1-i\3

1. #REF! 1 2 -2 2
16 | The modulus of the numbers z= 2+2i

8., \2 32 42 22 22
17 |The modulus of the numbers z= -1-i

LIS PPRTPPP \2 32 42 22 2
18 .

The argument of the numbers z= -1+i\3

1S.iuiiiiiiiiiin, I1/3 211/3 S11/3 411/3 511/3
19 |The argument of the numbers z= 1-iV3

1S, i, I1/3 211/3 IT 411/3 211/3
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20 |The argument of the numbers z= 2+2i

| I1/4 711/4 51174 31174 I1/4
21 |The argument of the numbers z= -1-i

| I1/4 711/4 S11/4 311/4 511/4
22

The modulus of the numbers z=2i1is.................... 0 1 2 3 2
23

The modulus of the numbers z=-1is.................... 1 2 3 4 1
24

The modulus of the numbers z=2is.................... 1 2 3 4 2
25

The modulus of the numbers z=-3iis.................... 0 3 6 9 3
26 | The argument of the numbers z= 2i

| I1/2 71172 51172 31172 I1/2
27

The argument of the numbers z=-11is.................... I1/4 I1/2 I1/3 I1 II
28

The argument of the numbers z=2 is.................... 0 II I1/2 I1/4 0
29 |The argument of the numbers z= -3

| I1/2 711/2 51172 31172 31172
30

cosO +isin O=............... 1 -1 2 -2 1
31

cosI/2+isinIl/2=............... 1 -1 i negative i i
32

cosIT+isinIl=............... 1 -1 i negative i -1
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33

cos 312 +isin 3[12=............... 1 -1 i negative i negative i
34 |The complex number z=(1+ cos z+sin a ) if a=II then

=i, 0 1 2 3 0
35 | The complex number z=(1+ cos z+sin a) if

................ then z=0 a<[l a>I1 a=I1 a#ll a=I1

36 |In De Moivre's theorem the power ofcomplex number | "/ (cos n®-+isin " (cos n®-isin
"= n®) (cos n®+i sin n®) [n®) " (cos®+i sin ®@)| | 1" (cos n®+i sin n®)
37
2= Iz|" l-z[" |1/z|" Iz| Iz|"
38 (cos n®+i sin (cos ®/n+i sin
If =1 then (cos n®+isin n®)"=........................... n®) (cos n®-i sin n®) |®/n) (cos ®+i sin ®) (cos n®+i sin n®)
39 |[Ifoiieinn.n. then (cos n®+isin n®)"=(cos n@+i
sin n®) r=0 r=1 r=-1 r=2 r=1
40
The value of (1+i)**=.............. 27500 171000 271000 17500 27500
41
In the field of real numbers Z"-z0=.............. 0 1 2 3 0
42 |In the field of real numbers Z"-z0=0 is used for
defining the ............ roots of number z0. 1st 2nd n th (n+1) th n th
43 |In the field of real numbers Z"-z0=0 is used for
defining thenth .............. of number z0. numbers real equations roots roots
44 |Any solution Z of the equation Z"-z0=0 an
............. root of the complex number z0. 1st 2nd n th (n+1) th n th
45 |Any solution Z of the equation Z"-z0=0 an n th root
ofthe ............ number z0. real complex imaginary rational complex
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46 |Any solution Z of the equation Z"-z0=0 an n th root
of the complex number ................ 20 z1 z2 z3 20
47 |the root of the equation Z"-1=0 are called the n th
rootof ............ unity finite infinite equation unity
48
If A={1,2,3,4,...} then the set A is finite composite infinite equality infinite
49 |If a finite set S has 'n' elements then the power set of
S has elements n 2" n-1 n+1 2"
50
If A={1,2,3,4,5}and B = {3,7,9} then A\B = {1,2,4,5) {1,2,3,4,5,7,9} {7,9} {3} {1,2,4,5)
51
If A={a,b,c,d} and B ={f,b,d,g} then ANB = {a,b,c} {a,b,c,d,f} {b,d} {f.0,d} {b,d}
52 n(A)+n(B)- n(A)-
n(AUB)= n(A)+n(B) n(ANB) n(A)-n(B) n(B)+n(ANB) n(A)+n(B)-n(ANB)
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UNIT =11
Relations and Functions
RELATIONS

Consider the following example :
A={Mohan, Sohan, David, Karim}
B={Rita, Marry, Fatima}

Suppose Rita has two brothers Mohan and Sohan, Marry has one brother David, and Fatima has one
brother Karim. If we define a relation R " is a brother of" between the elements of A and B then clearly.

Mohan R Rita, Sohan R Rita, David R Marry, Karim R Fatima.

After omiting R between two names these can be written in the form of ordered pairs as :
(Mohan, Rita), (Sohan, Rita), (David, Marry), (Karima, Fatima).

The above information can also be written in the form of a set R of ordered pairs as

R= {(Mohan, Rita), (Sohan, Rita), (David, Marry), Karim, Fatima}

ClearlyRi A" B, i.e.R={(a,b):alAbTB andaRb}

If A and B are two sets then a relation R from A toB is a sub set of AxB.

If (i) R=f, Ris called a void relation.

(i) R=AxB, R is called a universal relation.

(iii)  If Ris arelation defined from A to A, it is called a relation defined on A.

(ivy R={(aa)"alA},iscalled the identity relation.

Domain and Range of a Relation

If R is a relation between two sets then the set of its first elements (components) of all the ordered pairs
of R is called Domain and set of 2nd elements of all the ordered pairs of R is called range, of the given
relation.

Consider previous example given above.

Domain = {Mohan, Sohan, David, Karim}

Range = {Rita, Marry, Fatima}
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Examplel Giventhat A={2,4,5,6,7} B={2, 3}.

R is a relation from A to B defined by
R={(ab):alA, blBandaisdivisible by b}

find (i) R in the roster form

(ii) Domain of R

(iii) Range of R

(iv) Repersent R diagramatically.
Solution: () R=A{(2,2), (4, 2), (6, 2), (6,3)}
(ii) Domain of R = {2, 4, 6}

(iii) Range of R = {2, 3}

(iv)
A B
2 *
" 5 "
T

Example 2 If R is a relation 'is greater than' from A to B, where A= {1, 2, 3, 4, 5} and B = {1,2,6}.

Find (i) R in the roster form. (ii) Domain of R (iii) Range of R.
Solution :

M  R={B1).,(,2).41),42),651),(5 2}

(i)  Domain of R = {3, 4, 5}

(i)  Range of R = {1, 2}

2.1 Overview

This chapter deals with linking pair of elements from two sets and then introduce relations between the two
elements in the pair. Practically in every day of our lives, we pair the members of two sets of numbers. For
example, each hour of the day is paired with the local temperature reading by T.V. Station's weatherman, a
teacher often pairs each set of score with the number of students receiving that score to see more clearly how well

the class has understood the lesson. Finally, we shall learn about special relations called functions.

2.1.1 Cartesian products of sets

Definition : Given two non-empty sets A and B, the set of all ordered pairs (X, y), where x € A and y € B is called

Cartesian product of A and B; symbolically, we write
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AxB={(x,y)|xeAandye B}
IfA={1,2,3}and B = {4, 5}, then

AxB={(1,4),(24),@3,4),(@1,5),(2,5), (3,5}
And B x A={(4,1),4,2),(43),51),(5,2), 5, 3)}

(i) Two ordered pairs are equal, if and only if the corresponding first elements are equal and the second
elements are also equal, i.e. (x,y) = (u,v) ifand only if x=u,y = v.

(i) fn(A)=pandn(B)=q,thenn(AxB)=pxq.
(1) AxAxA={(a, b, ¢): a, b, c € A} Here(a, b, c)iscalled an ordered triplet.
2.1.2 Relations A Relation R from a non-empty set A to a non empty set B is a subset of the Cartesian product set

A x B. The subset is derived by describing a relationship between the first element and the second element of the
ordered pairs in A x B.

The set of all first elements in a relation R, is called the domain of the relation R, and the set of all second
elements called images, is called the range of R.

1
For example, the set R = {(1, 2), (-2, 3), ( 2, 3)} is arelation; the domain of
1
R={1,-2, 2 }and the range of R = {2, 3}.

(i) A relation may be represented either by the Roster form or by the set builder form, or by an arrow diagram
which is a visual representation of a relation.

(it) Ifn (A) =p, n(B) =q; then the n (A x B) = pg and the total number of possible relations from the set A to
setB = qu.

2.1.3 Functions A relation f from a set A to a set B is said to be function if every element of set A has one and
only one image in set B.

In other words, a function f is a relation such that no two pairs in the relation has the same first element.

The notation f : X — Y means that f is a function from X to Y. X is called the domain of f and Y is called the
co-domain of f. Given an element x € X, there is a unique element

yinY that is related to x. The unique element y to which f relates x is denoted by f (x) and is called f of x, or the
value of f at x, or the image of x under f.

The set of all values of f (x) taken together is called the range of f or image of X under f. Symbolically.
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range of f={ye Y |y="f(x), for some x in X}

Definition : A function which has either R or one of its subsets as its range, is called a real valued function.
Further, if its domain is also either R or a subset of R, it is called a real function.

2.1.4 Some specific types of functions

(i) Identity function:

The function f: R -» R defined by y = f (x) = x for each x € R is called the

identity function. Domainof f=R

Range of f =R

(ii) Constant function: The function f: R - R defined by y = f (X) = C, x € R, where C is a constant € R, is a
constant function.

Domain of f =R
Range of f = {C}

(iii) Polynomial function: A real valued function f : R — R defined by y = f (x) = ag
+a;x + ...+ apX", wherene N, and ag, a; , a,...a, € R, for each x € R, is called Polynomial functions.

X
(iv) Rational function: These are the real functions of the type , Where g ( x)

f(x) and g (x) are polynomial functions of x defined in a domain, where g(x) 0. For
x 1

example f: R —{- 2} > Rdefinedbyf(x)= —— ,xeR-{-2}isa
X 2

rational function.
(v) The Modulus function: The real function f : R — R defined by f (x) = x =

X, X0x,x0

X € R is called the modulus function.
Domainof f= R
Range of f=R" u {0}

(vi) Signum function: The real function
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f: R — R defined by

[ x| 1, if x0
—,x 0

f(x) X 0, if x0O
0,x0 1, if x 0

is called the signum function. Domain of f = R, Range of f = {1, 0, — 1}

(vii) Greatest integer function: The real function f : R — R defined by f (x) = [X], x €R assumes the value of
the greatest integer less than or equal to X, is called the greatest integer function.

Thusf(xX) =[x]=—-1for-1<x<0f(X)=[x]=0for0<x<1
[X]=1forl< x<2

[X]=2for2< x<3andsoon

2.1.5 Algebra of real functions

(i) Addition of two real functions

Letf: X - Randg: X — R be any two real functions, where X € R.
Then we define (f+g): X > Rby (f+g) (xX) =f(x) +g (x), forall x e X.

(i) Subtraction of a real function from another

Letf: X —> Rand g: X — R be any two real functions, where X € R.
Then, we define (f—g) : X - Rby (f—g) (xX) =f (x) — g (x), for all x € X.

(iii) Multiplication by a Scalar

Let f: X — R be areal function and a be any scalar belonging to R. Then the product af is function from X
to R defined by (af) (x) =af(x), xe X.

(iv)  Multiplication of two real functions

Letf: X — Rand g : x — R be any two real functions, where X € R. Then
product of these two functions i.e. fg: X — R is defined by (fg) (x) =f(x) g (x) x € X.
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(v)  Quotient of two real function

Let f and g be two real functions defined from X — R. The quotient of f by g
f

denoted by 4 is a function defined from X — R as

" "™ provided g (x) #0, x € X.

99(x)

0 Note Domain of sum function f + g, difference function f — g and product function fg.
= {x:x€Ds N Dg}

where Df = Domain of function f

Dg = Domain of function g

F={x:xeD: N Dy and g (x) # 0}

2.2 Solved Examples

Short Answer Type

Example 1 Let A = {1, 2, 3,4} and B = {5, 7, 9}. Determine
(i) AxB (i) BxA

(iii) IsAxB=BxA? (iv) Isn(AxB)=n(BxA)?

i) AxB={(1,5),(1,7),(1,9),(25),(2,7),(2,9),(3,5),(3,7),(3,9),(4,5),4,7), (4,9}
(i) BxA={(5,1),(5,2),(5,3),5,4),(7,1),(7,2),(7,3),(7,4),(9,1), (9 2), (9 3), (9, 4)}
(ili) No, A xB#B x A. Since A x B and B x A do not have exactly the same ordered pairs.
(iv) n(AxB)=n(A)xn(B)=4x3=12

n(BxA)=nB)xn(A)=4x3=12

Hence n(AxB)=n(BxA)

Example 2 Find x and y if:

(i) (4x+3,y)=(x+5-2) (i) (x—y,x+y)=(6,10)
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Solution

(i) Since (4x+3,y)=(3x+5,-2),s0

I4x+3=3x+5
or X=2
and y=-2
(i) x—-y=6
x+y=10
2.2x=16
r X=8
8-y=6
y=2

Example 3 If A={2,4,6,9}and B ={4, 6, 18, 27,54}, a€ A, b € B, find the set of ordered pairs such that 'a" is
factor of 'b'and a < b.

Solution Since A={2,4,6,9}

B = {4, 6, 18, 27, 54},

we have to find a set of ordered pairs (a, b) such that a is factor of b and a < b.

Since 2 is a factor of 4 and 2 < 4.

So (2, 4) is one such ordered pair.

Similarly, (2, 6), (2, 18), (2, 54) are other such ordered pairs. Thus the required set of ordered pairs is

{(2, 4), (2,6), (2,18), (2, 54), (6, 18), (6, 54,), (9, 18), (9, 27), (9, 54)}.
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FUNCTION

A Function assigns to each element of a set, exactly one element of a related set.
Functions find their application in various fields like representation of the computational
complexity of algorithms, counting objects, study of sequences and strings, to name a few. The
third and final chapter of this part highlights the important aspects of functions.

Function - Definition

A function or mapping (Defined as f:X—Yf:X—Y) is a relationship from elements of one
set X to elements of another set Y (X and Y are non-empty sets). X is called Domain and Y is

called Codomain of function ‘f°.

Function ‘f” is a relation on X and Y such that for each xeXxX€eX, there exists a
unique YEYYeY such that (X,y)ER(X,y)€R. ‘x’ is called pre-image and ‘y’ is called image of

function f.
A function can be one to one or many to one but not one to many.
Injective / One-to-one function

A function f:A—Bf:A—B is injective or one-to-one function if for every beBbeB, there

exists at most one acAa€A such that f(s)=tf(s)=t.
This means a function f is injective if al#a2al#a2 implies f(al)#f(a2)f(al)#f(a2).
Example
o NN, f(x)=5xf:N—N,f(x)=5x is injective.
o NN, f(x)=x2f:N—N,f(x)=x2 is injective.
e [R—-R f(x)=x2f:R—R,f(x)=x2 is not injective as (—x)2=x2(—x)2=x2
Surjective / Onto function
A function f:A—Bf:A—B is surjective (onto) if the image of f equals its range.
Equivalently, for every beBbeB, there exists some acAa€cA such that f(a)=bf(a)=b. This means
that for any y in B, there exists some x in A such that y=f(x)y=f(x).
Example

e NN, f(x)=x+2f:N—N,f(X)=x+2 is surjective.
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o f:IR-R f(x)=x2f:R—R,f(x)=x2 is not surjective since we cannot find a real number whose

square is negative.
Bijective / One-to-one Correspondent

A function f:A—Bf:A—B is bijective or one-to-one correspondent if and only if fis both

injective and surjective.
Problem

Prove that a function f:R—Rf:R—R defined by f(x)=2x—3f(x)=2x-3 is a bijective

function.
Explanation — We have to prove this function is both injective and surjective.
If f(x1)=f(x2)f(x1)=f(x2), then 2x1-3=2x2-32x1-3=2x2-3 and it implies
that x1=x2x1=x2.
Hence, f is injective.
Here, 2x-3=y2x-3=y
So, x=(y+5)/3x=(y+5)/3 which belongs to R and f(x)=yf(x)=y.
Hence, f is surjective.
Since f is both surjective and injective, we can say f is bijective.
Inverse of a Function
The inverse of a one-to-one corresponding function f:A—Bf:A—B, is the
function g:B—Ag:B—A, holding the following property —
f(x)=y=g(y)=xf(x)=y=9(y)=x
The function f is called invertible, if its inverse function g exists.
Example
e AFunction f:Z—Z f(x)=x+5f:Z—Z.f(x)=x+5, is invertible since it has the inverse
function g:Z—Z,g(x)=x—5g:Z—Z,g(x)=x—5.
e A Function f:Z—Z.f(x)=x2f:Z—Z,f(x)=x2 is not invertiable since this is not one-to-one
as (—x)2=x2(—x)2=x2.
Composition of Functions

Two functions f:A—Bf:A—B and g:B—Cg:B—C can be composed to give a
composition gofgof. This is a function from A to C defined by (gof)(x)=g(f(x))(gof)(x)=g(f(x))

Example
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Let f(xX)=x+2f(x)=x+2 and g(x)=2x+1g(X)=2x+1,
find (fog)(x)(fog)(x) and (gof)(x)(gof)(x).

Solution
(fog) (X)=f(g(x))=f(2x+1)=2x+1+2=2x+3(fog) (X)=f(g(x))=f(2x+1)=2x+1+2=2x+3
(9of)(x)=9(f(x))=9(x+2)=2(x+2)+1=2x+5(gof) (x)=g(f(x))=g(x+2)=2(x+2) +1=2x+5
Hence, (fog)(x)#(gof)(x)(fog)(x)#(gof)(x)
Some Facts about Composition

« If fand g are one-to-one then the function (gof)(gof) is also one-to-one.

o If fand g are onto then the function (gof)(gof) is also onto.

o Composition always holds associative property but does not hold commutative property.

The rules of mathematical logic specify methods of reasoning mathematical statements. Greek
philosopher, Aristotle, was the pioneer of logical reasoning. Logical reasoning provides the
theoretical base for many areas of mathematics and consequently computer science. It has many
practical applications in computer science like design of computing machines, artificial
intelligence, definition of data structures for programming languages etc.

Theorem A total function has an inverse if and only if it is bijective.

Proof
Suppose f: A — B has an inverse f —1. Then we show that f is bijective.
We first show that f is one to one. Suppose f (x1) = f (x) then
U () = 7 (F (x2),
= fof (x¢) = f 'of (o),

= 1a(X1) = 1a(X2),
= X1 = Xo.
Next we first show that f is onto. Let b € B and let a = f —1 (b) then
f(a) = f (f '(b)) = b and so f is surjective.
The second part of the proof is concerned with showing that if f : A 7B is bijective then it has an

inverse f —1. Clearly, since f is bijective we have that for each a€ A there exists a unique b B such
that f (a)e b.

Define g: B -A by letting g(b) be the unique a in A such that f (a) b. Then we have that:
gof (a) =g(b) =aand fog(b) =f(a) = b.
Therefore, g is the inverse of f.
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Some Discrete Examples
EXAMPLE 2 Suppose A =1{1,2,3.4}, B = [x. v. 2] and

F =1L x) 2. ¥) (3, 2), (4, y)].

Then f 15 a function A — B with domain A and target B. Since mg f =
fr.v.zh = B, f is onto. Since f(2) = f(4) (= y) but 2 £ 4, [ is not one-
to-ome. [In fact, there can exist no one-to-one function A — B, Why not? See
Exercise 25(a).] F Y

EXAMPLE 3  Suppose A = {1,2,3}, 8 = [x, y.z. w} and
F=101,w), (2, ¥), (3, x)).

Then f: A — B is a function with domain A and range {w, y. x]. Since mg f #
f, fis not onto, [No function A — B can be onto, Why not? See Exercise 25(h).]
This function is one-to-one because (1), f(Z), and ((3) are all different: 1f
flay) = flag), then a) = aa. F Y

EXAMPLE 4 Suppose A = {1.2.3}, B = [x, v.z).
F=00120 (2. v, 3,y and g ={{1,2).(2 ¥} (3, x)}

Then f and g are functions from A o 8. The domain of [ is A and domg = A
too. The range of F is {z. v]). which is a proper subset of B, so f is not onto.
On the other hand, g is onto because mg g = [z, v, x} = H. This function 15 also
ome-to-one because g(1). g(2), and g(3) are all different: If glg) ) = glaz). then
iy = a7, Notice that f is not one-to-one: f(2) = F(3) (= v). yet 2 £ 3. F Y

EXAMPLES et f: 7 — 2 be defined by f{x) = 2x — 3. Then dom § = 2. To find mg [,
mote that

bemgfeb=2a-13 for some integer a
irh=2XHa—-214+1 for some integer a

and this occurs 1if and only if & is odd, Thus, the range of [ is the set of odd
integers. Since mg f # Z, f is not onte. 1t is one-to-one, however: If fix) =
Sixad, then 2 — 3 =20 — 3 and vy = 12, 'Y

EXAMPLE & Let /2 N — N be defined by f(x} = 2xr — 3. This might look like a perfectly
good function, as in the last example, but actually there is a difficulty, If we try to
calculate f(1), we obtain f(1) =2{1) =3 = =1 and —1 & N. Hence. no function
has been defined. a
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PROBLEM 7. Define f: 2 — Zby fix)= v? — 5x + 5. Determine whether or
not [ is one-to-one and/or onto.

Solotion.  To dewrmine whether or not | i8 one-to-one, we consider the pos-
sibility that fixi} = f(xa). In this case, J.'f -5 +5= .r% — S5x2 4+ 5, so
xlz - .r% = Sxp = 5x2 and (x) = xzMx; + x7) = 5(x; — x2). This equation indecd
has solutions with x; = v2: Any Xy, x; satisfving x; +x3 = 5 will do, for instance,
vy =2, 12 =23 Bince f(2)= f(3)=—1, we cnm.:ludt‘ihal f is not onc-to-one,

Is f onto? Recalling that the graph of fix) = x* —5cr + 5 v € R, 15 a
parabola with vertex I:; 3}!, clearly any integer less than =1 15 not in the range
of f. Allernatvely, 1t 15 easy to see that 0 05 not in the range of [ because
=S5 45 = 0 has no integer solutions (by the quadratic formula). Either
argument shows that f is not onto, i

PROBLEM 8. Define f: Z — Zby fir) = 3x' — x. Determine whether or not
f 15 one-to-one andfor onto.

Solution. Suppose flxg) = fir:) for xrp, v2 € £ Then f"l-rll: -1 = ."!-.1'; — X3, 8
]I.’.lri:I .'r::] = 1} — &y and

3 — x2)(x] + a0+ 03) =1 —

If x| # xa. we must have x{ + xpx2 + x; = 1, which is impossible since x; and
v are integers. Thus, xp = xz and 15 one-to-one.

Is f onto? If yes, then the equation & = fir) = 3x' — x has a solution
in £ for every integer b This seems unlikely and, after a moment’s thought,
oecurs e us that the integer & = |, for example, cannot be written this way:
1 = 3x* — x for some integer x implies x{3x — 1) = | But the only pairs of

integers whose product is 1 are the pairs 1, 1 and —1, —1. S0 here, we would
require x = 32 — 1 = | or xr = 3x? — 1 = —1, neither of which is possible.
The integer & = | 15 a counterexample to the assertion that [ is onto, so f is
nol onio,

e R L R R Lt S S o Ly S nmm
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EXAMPLE

Let g: R — R be defined by glx) = x°, The domain of g is R; the range of g is
the set of nonnegative real numbers. Since this is a proper subset of R, g 15 not
onte. Neither 15 g one-to-one since g{3) = gi—3), but 3 & —1. s

Diefine Ji: [0, 0o) — R by hix) = x*, This function is identical to the function g
of the preceding example except for its domain. By resincting the domain of g o
the nonnegative reals we have produced a function /& which is one-to-one since
filx ) = hixa) implies .wcl2 = .rg and hence r) = £xs. Since ¥y = {0 and xy > (},
we must have x) = xs. r' Y

The Identity Function

For any set A, the identity function en A s the function 140 A — A defined by
tala) = a forall @ £ A, In terms of ordered pairs,

ta = [la.a) ae A},

When there 15 no possibility of confusion about A, we will often write ¢, rather
than 4. {The Greek symbol ¢ 15 pronounced “vota”, so that "4 15 read “yota
sub A"

The graph of the identty function on R is the familiar line with equation
v = x. The identity function on a set A is indeed a function A — A since, for
any @ € A, there is precisely one pair of the form (a, ¥) £ «, namely, the pair
fed, ).

INVERSES AND COMPOSITION
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The Inverse of a Function

Suppose that f 15 a one-to-one onto function from A o B, Given any b € B,
there exists @ © A such that fila) = & (because f is onto) and only one such
a (because [ is one-to-one). Thus, for each b £ B, there is precisely one pair
of the form (a, k) € f. It follows that the set [(b,a) | (a.b) € f]. obtained by
reversing the ordered pairs of [, is a function from B to A (since each element
of B occurs precisely once as the first coordinate of an ordered pair).

EXAMPLE 13 1f A = {1,2.3. 4} and B = Jx. v, z, t], then
F =l x) (2, vy (3 2) (4, 1))

is 4 one-to-one onto function from A to B and, reversing its pairs, we obtain a
function B — Az {{x, 1), (v, 20, (2, 30 (5. 43}, A

DEFINITION A function ;A — B has an inverse if and only if the set obtained by reversing
the ordered pairs of F i a function B — A, If f: A — B has an inverse, the
function

| =k alabef) |

is called the inverse of f,

We pronounce =t *F inverse,” terminology which should not be confused
with :r.- f~! is simply the name of a certain function, the inverse of i

If f: A — B has an inverse [ I B — A, then 47" also has an inverse
because reversing the pairs of ' gives a function, namely - thus, (F -1 = f.

EXAMPLE 14 1f A =1{1.2. 3. 4} and B =[x, v, 7, r], and

F={00Lx0. 02, v}, (3 20 (4, 1))
then
Fh =i, 1L (v, 20, (2 3), (. )

and (F77 = (L x) (2, v), (3. 20, (d4.00) = f. A

A function f: A — B has an inverse B — A if and only if § is one-1o-one and
Onio,

For any function g, remember that {x, ¥} € g if and only if gix) = ¥ in
particular, (b, @)} € ' if and enly if @ = f"(h). Thus,

a=f I[ll?:IHI:_IIlJ.ﬂ}FIr I"'-"'r-l:-l'-h_l'; e fla) = b
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The eguivalence of the first and last eguations here 15 very important:

(2) a = f'(k) if and only if f(a) = b.

For example, if for some function f, 7 = £~ '(—7), then we can conclude
that fim)=-7.11 fi4) =2 then 4 = f -1i2).

The sojution o the equation 2r = 5is r = % = 27! 5. Generally, to solve
the equation ax = b, owe ask il @ £ 0, and if this 15 the case, we multiply each
side of the equation by a~', obtaining ¥ = a~'h = £, Since all real numbers
except 0 have a multiplicative inverse, checking that a # 0 is just checking that
a has an inverse.

Look again at statement (2). We solve the equation fi{x) = ¥ for x in the
same way we solve ax = & for x. We first ask if f has an inverse, and if it does,
apply ! to cach side of the equation, obtaining x = £ '(v).

The “application™ of ! to each side of the equation v = fix) is very much
like multiplying each side by £, “Multiplying by =" may sound foolish, but
there 15 a context (called growp theory) in which it makes pood sense. Our intent
here is just to provide a good way to remember the fundamental relationship
expressed in (2).

EXAMPLE

It f: R — Risdefined by fix) = 2x = 3, then [ 15 ope-to-one and onto, so an
inverse function exists. According 1o (2), if v = f~'(x), then x = fiy) = 2y =3,
Thus, ¥ = $(x +3) = f~'(x). A

let A={xeR|x=0L.B=|xreR|x>=0] and define f: A — B by
fix) = x°. This is just the squaring function with domain restricted so that it
15 one-to-one a5 well as onto, Since f 15 one<to-one and onto, it has an inverse.
To obtain f"(.r]-, let v = f Lix), deduce [by the relationship expressed in (2))
that fiv) = x and so v* = x, Solving for v, we get v = £/x. Since x = f(v),
ved wy=0 Thes, v = -, Flix) = =/ A
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Ay

PROBLEM 18. Lot A =[x | x < 1) and define /- 4 — Rby filx) = 5

a

Is f one-to-one? Find mg f. Explain why f: A — mg f has an inverse. Find
dom =, mg =, and a formula for 7 '(x).

dy) i1z
Solution. Suppose Fia)) = fa2). Then = , 50 Bayay —da) =
ppase o) = fi =1 a1 i |
Bayas — daz, hence a; = az. Thus f is one-to-one.

Mext,

vermg < v= flx) forsomex < A
4x

2x —1
«» there 18 an xr € A such that 2yy — v = 4rx

+ there is an x € A such that y =

+» there is an x € A such that x(2y — 4) = v.

If y = 2, the equation x(2y —4) = v becomes {0 = 2 and no x exists. On the n:ull]'u:r
hand. it v # 2, then 2y —4 £ O and so, dividing by 2y -4, we obtain x = 2—‘5 rh
.'I-: —

(It is easy to see that such x 15 never % that is, x € A.) Thus v & mg [ if and
onlyif v#2 Somg f=B=[veR|y#2.

Since f: A — B iz one-to-one and onto, it has an inverse /' B = A,
Also, dom f~' = mgf = B and mg /! = dom f = A. To find f~'{x), set
¥y = F=Yx) Then

£03) dy
= & —
T
. . x _
and, solving for v, we gel v = — = f lix). |
2x — 4
Composition of Functions
DEFINITION If f: A Band p: & —  are functions, then the compaosition of g and |08

the function g o @ A — € defined by (g o fHa) = gi fla)) forall @ € A,
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EXAMPLE 19 IfA=a b ). B=(xr.v),and C = |, v.wl,andil f- A4 - Bandg: B = C
arg the functions

f=1{ta,x) (b v ic, x)], g={{x, u)iywl}

then
(go fia)= gl flan = glx) =u.
(go fiib) = g(fib) = giy) = w.
(go Piich=pgifleN =gilxl=u
and s0 g o f = [{a, u), (b, w). (c.u)] i

EXAMPLE 20 If f and g are the functions R — R defined by
fix)=2r—3, pix)=x"+1,
then both g o f and f o g are defined and we have
(go f)ix) = g(flx) =g(2r —3) = (2x —3)* + 1

and
(f o) = flglx)y= flx?+ 1) =22+ 1) =3 A

EXAMPLE 21 In the definition of g o f, it is required that rng f € B =domg. If f: R —+ R
and g: R (1} — R are the functions defined by

fli=2x-3 and glx) = LI
X —
then g o f is not defined because mg f = R € dom g. On the other hand, f o g
is defined and

{ft-gJ{r}=2{x—il}—-"-- A
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PROPOSITION Composition of functions is an associative operation,

Proof We must prove that ( fogich = foigoh) whenever each of the tweo functions—
(foglohand  o{g o h)—is defined. Thus, we assume that for certain sets A,
B, C.and [2, & ig a function A — B, g is a function & — C,and § 15 a function
C = DA direct proof 1s suggested
Since the domain of (f o ghoh is the domain of o (g oh) (namely, the set
A). we have only to prove that ({(Ffaglehla) = (foigoh))a) for any a £ A.
For this, we have

ifogiohiay=(fcgihia)) = Figlhla)))
and
(folgofa)l = fligaohpal) = flglhial)

as desired, |
If /: A— B has an inverse f~': B — A, then, recalling (2},

_ll"_ll.‘.’:] = if and only if b = fla).
So for any a & A,
a=f"ib=f @y =rF"ofla.

In other words, the composition £~ o £ = 14, the identity function on A. Simi-
larly, for any elemen b = B,

b= fla)= f(Ff b= o i,

Thus. the composition fo f~' = (5 is the identity function on &, We summarnze,

PROPOSITION Functioms @ A — 8 and g: & — A are inverses if and only of g o F =04 amnd

Joop =g that is, if and only if
Hifa =g and ekl =56 foralla s A and all b € 5.

PROBLEM 23. Show that the functions f: R — (1. o0 and e (1. 00) - R
defined by

floy =3 %1, gix) = 1logyix — 1)

Are INVerses.

Solution. For any © R,
(g o fiix)=glfix)y=g3* + 1)

= {log,[(3* + 1) = 1])

= 'i[l.ug_a, .:lll'] = fl'. =K

Prepared by : R. Praveen Kumar, Department of Mathematics, KAHE 19/23



UNIT - 11 Relations and Functions 2017 Batch

and for any x € (1. 20),

(fogix)= flgix)) = _.rf% logs(x — 1))
— 32‘.5 logsix—11 1

=3|l‘|ﬂ_—,|l I + | =|:_:_-_ I:l-l | = x.

ONE-TO-ONE CORRESPONDENCE AND THE CARDINALITY OF A SET

the ser {1, 2,3, ..., n} of the first 7 natural numbers, for some 1 = M. A set which
is not finite is called infinite.

DEFIMNITION Sets A and & have the same cardinality and we write |A| = &, if and only if
there is a one-to-one correspondence between them; that is, if and only if there
exXisls a one-to-one onto function from A to B {or from B to A).

DEFINITIONS A finire set is a set which is either emply or in one-to-one correspondence with

EXAMPLES 25 e @+ x, b yis a one-to-one correspondence between [a, b} and {x, v);
hence, |{a. b} = |{x, ¥} (= 2L
« The function f: N — ML [0} defined by fin) = n — 1 is a one-o-one
correspondence between M and N L0 so [N = [W L0}
« The function f: 7 — 27 defined by fin) = 2n is a one-to-0one correspon
dence between the set £ of integers and the set 272 of even integers; thus, £
and 2Z have the same cardinality, &

PROBLEM 26, Show that the set BT of positive real numbers has the same
cardinality as the open interval (0, 1) ={r e R | = x = 1}.

Solution.  Let (0, 1) <= R be defined by
1
filx) = ——1.
T

We claim that f establishes a one-to-one correspondence between (0, 1) and R™.
To show that f is onto, we have to show that any v € BT is fix) for some
x (0, 1) But
1
14+ ¥

|
¥ = — — 1 implies x =
.
which 15 in (0, 1} since v = (. Therefore,

v € RY implies y:f'(l—_:-_ 1-]
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0 s indeed onto, Also, 15 one-to-one because

. | |
flxy=filx) = —=1=— =1
x| X3
l I
— — = —
A s
— X = X2,

DEFINITIONS A set A is cowntably infinite if and only if |A| = |[N| and countable if and only if

it 15 either nite or countably infinite. A set which is nod countable s wncouniable,

PROBLEM 27. Show that |£] = By,

Solution.  The set of integers 15 infinite, To show they are countably infinite, we
list them: 0. 1. 1,2, =2,3, =3, .... This list is just F(1), F02), f03) ... where
Fi N —= s defined by

i [T if # 15 even
fint = . : .
sim— 1) ot mois odd,
which is certainly both one-to-one and onto. |

PROBLEM 28B. Show that [N = N| = |N|.

Solution. The elements of N« N can be listed by the scheme illustrated in
Fig 4. The arrows indicate the order in which the elements of N = N should

be listed—1, 1), (2, 10,00, 20, (1, 30,02, 2), ... . Wherever the amows terminate,
there is no difficulty in continuing. s0 each ordered pair acquires a definite
position, |

WELL ORDERING PRINCIPLE

(Well-Ordering Principle).

Every non-empty subset of natural numbers contains its least element.

Proof:

To prove the weak form of the principle of mathematical induction. The proof is based on
contradiction. That is, suppose that we need to prove that “whenever the statement P holds true,
the statement Q holds true as well”. A proof by contradiction starts with the assumption that “the
statement P holds true and the statement Q does not hold true” and tries to arrive at a
contradiction to the validity of the statement P being true
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PART — B (5 x 2 =10 Marks)

Possible Questions (2 Mark)

. Define Equivalence relations.

. Define functions with examples

. Define composition functions with examples.

. Define lvertible functions

. Define one-to-one correspondence with example

. Define cardinality of a set.

. State the two properities of composition functions

. Write the various types of Functions.

© 0O N o o A W0 DN B

. Define domain & co domain of the function.
10. Define range of the function.

11. Define equality of two functions.

12. Define denumerable sets.

13. Define countable set

14. Define Identity Mapping.

15. Define constant mapping
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PART — C (5 x 6 =10 Marks)

Possible Questions (6 Mark)

1). If p and o are equivalence relations defined on a set S, Prove that p N ¢ is an equivalence
relation.
2) Show that the following functions are 1-1
i) f: R — R given by f(x)=5x*- 1
ii) f: Z — Egiven by f(n)=3x° - x
3)If the function f: R— R is given by f(x)= cos x and g: R — R is given by g(x)=x3 find
(g o f)(x)and (f o g)(x) and show that they are not equal.
4) Explain about types of relation with examples.
5) Let A={1,2,3} and f,g,h and s be functions from A to A given by
f={(12),(23).E1}; 9={(12),(21).(33) };
h={(1,1),(2,2),(3,1) } and s= { (1,1),(2,2), (3,3) }. Find fog, gof, fohog, gos,
SoS, fos.
6) Let S={1,2,3,4,5} and T={1,2,3,8,9} and define the functions f: S—> T and g: S — S by
f={(1,8), (3,9),(4,3),(2,1),(5,2)} and g={(1,2),(3,1),(2,2),(4,3),(5,2)} ,then find the values of the
following feg, geof, fof, geg.

1

7) Let f, g and h: R — R be defined by f(x)=x+2 ,g(x)= =1
Compute i)ho go f(x) ii)goho f(x) iii) gof 1o f(x).
8)If f: X—Y and A, B are two subsets of Y, then prove that
) f71(AUB) =f~H(A) U fH(B)
i) f7H(ANB) = 1A N fH(B)
9) For integers a,b define aRb if and only if a — b is divisible by m. Show that R defines an
equivalence relation on Z.
10).Let A be the set A={xeR \ x>0} and define f,g, h :A— R by f(X):ﬁ ,g(X)Zi ,h(x)=x+1 find

gef,feghogof and fogoh .
11) Write about the types of function with example

and h(x)=3
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SM KARPAGAM ACADEMY OF HIGHER EDUCATION
===/ (Deemed to be University_Esta_inshed Under Sect_ion 3 of UGC Act 1956)
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Subject: Algebra Subject Code: 17MMU102
Class :I-B.Sc. Mathematics Semester  : |
Unit 11
Relations and Functions
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
S.No Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
1
If fA—Bhence fiscalleda ................. function form formula fuzzy function
2 |If the function f is otherwise called as
........................ limit mapping lopping inverse mapping
3 |Iff:A—Binthis set Aiscalledthe ................. of
the function f. domain co domain set element domain
4 |Iff:A—Binthisset Biscalledthe................. of
the function f. domain co domain set element co domain
5 |The value of the function f for a and is denoted by
................................. a(f) f(a) a f f(a)
6 |If aeA then the element in B which is assignedto ais
calledthe ................... ofa B-image a-image A-image f-image f-image
7 |The element a may be referred to as the
....................... of f(a) f-image pre-image domain codomain pre-image
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8 |The .............. of a function as the image of its
domain domain range co domain image range
9 |The range of a function as the................ of'its
domain range domain image preimage image
10 |The range of a function as the image of its
................. co domain image domain range domain
Let f be a mapping of A to B,Each element of A has a
(I PO and each element in B need not be appear
as the image of an element in A. unique preimage |unique image unique zero unique range unique image
Let f be a mapping of A to B,Each element of ......
12 |has a unique image and each element in B need not
be appear as the image of an element in A. A B f f(A) A
Let f be a mapping of A to B,Each element of A has a
13 |unique image and each element in.......... need not
be appear as the image of an element in A. A B f f(A) B
Let f be a mapping of A to B,Each element of A has a
14 |unique image and each element in B need not be
appear as the ............. of an element in A. domain range co domain image image
15 |One-to-one mapping is also sometimes known
AS. .ttt injection bijection surjection imjection injection
16 |A mapping f:A—Bissaidtobe.............. if
different elements in A have different f-images in B |zero one-one onto into one-one
A mapping f:A—B is said to be 1-1 if
(A P elements in A have different f-images
inB same different not equal one different
18 ) o o g
A mapping f:A—B is said to be 1-1 if different
elements in A have different ................ in B pre images f-images B-images A-images f-images
19 |In one-one mappings an element in B has
only.................. preimage in A Zero one two three one
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20 In............. mappings an element in B has only one
preimage in A one-one onto into one-oneonto one-one

21 |One-one onto mapping is also sometimes known

ASntiiiieeiaeann injection bijection surjection imjection bijection
22 |A mapping f:A—Bissaidtobe .............. if
different elements in A have same f-images in B one-one onto into many one many one

23 |In many-one mappings some elements in B has more
than.................. preimage in A zero one two three one

24 |In many-one mappings some elements in B has

.............. one preimage in A equal more than less than only more than
Two sets A and B are said to have the same number
25 |of elements iff a one-one mapping of A onto B exists, cardinally
such sets are saidtobe .................... equivalent merely equivalent |equivalent notequivalent cardinally equivalent
Two sets A and B are said to have the same number
26 |of elementsiffa ............ mapping of A onto B
exists, such sets are said to be cardinally equivalent |one-one many one onto into one-one
Two sets A and B are said to have the same number
27 |of elements iff a one-one mapping of A .......... B
exists, such sets are said to be cardinally equivalent |one-one many one onto into onto
Two sets A and B are said to have the ........number
28 |of elements iff a one-one mapping of A onto B exists,
such sets are said to be cardinally equivalent same different zero finite same
29
Cardinally eqivalent can be written as................ A+B A-B A~B A/B A~B

30 |Cardinally eqivalent sets are to have the ............
cardinal number. ZEero one same finite same

31 |Cardinally egivalent sets are to have the same
................ number. rational complex real cardinal cardinal
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If f:A—B is one-one onto, then f ':B—A .the
32 |mapping f'iscalledthe................ mapping of

the mapping of f. integral inverse invert reverse inverse
33 |Only one-one and onto mapping

POSSES. . viuvenrnnnn. mappings. integral inverse invert reverse inverse
34 one-one and

Only .......oene. mapping posses inverse mappings. |one-one and into |one-one many one one-one and onto one-one and onto
35 |If f:A—B is one-one onto, then f:B—A is also one-one and

..................... one-one and into |one-one many one one-one and onto one-one and onto
36 |If f:A—B is one-one onto, then the inverse mapping

of fis ......ooooiini zero unique different same unique
37 |If £X—>Y and g:Y—Zthenthe.................... of

the function f and g demoted by (gof): X—Z. inverse composite different one-one composite
38 |If :X—Y and g:Y—Zthen the composite of the

function f and g demoted by ................ (fog): X—Z. (fog): X—Y. (gof):y—Z. (gof): X—Z. (goh): X—Z.
39

In general gof ................ fo g equal notequal less than more than notequal
40 |If xRx ,forevery xeA since every triangle is congruent

to it self. ThusRis ............... reflexive symmetic transitive anti-symmetric reflexive

If xRy and yRz— x Rz,since if triangle x is
41 |congruenttoy and triangley is congrugent to z

then,trainglex is congruent to z.Then R is reflexive symmetic transitive anti-symmetric transitive

If xRy —y R zsince if triangle x is congruent to y
42 |and triangle y is congrugent to x.Then R is

............... reflexive symmetic transitive anti-symmetric symmetic
43 |If R is reflexive,symmetric and transitive therefore R

isan .................... relation one-one onto equivalence equal equivalence
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UNIT - 111
THE INTEGERS

DIVISIBILITY THEORY IN THE INTEGERS

Well- Ordering Principle

Every non empty set S of nonnegative integers contains a least element. That
is, there exists some integer a in S such that a <b forall b in S.
THE DIVISION ALGORITHM

Division Algorithm, the result is familiar to most of us roughly, it asserts that
an integer a can be “divided” by a positive integer b in such a way that the
remainder is smaller than b. The exact statement of this fact is Theorem 1.:

Theorem 1. Given integers a and b, with b > 0, there exist unique integers g
and r satisfying
a=qgb+r 0<r<b

The integers g and r are called, respectively, the quotient and remainder in
the division of a by b.

Proof. Let a and b be integers with b > 0 and consider the set
S = {a — xb : xisaninteger; a — xb > 0}.

Claim: The set S is nonempty

It suffices to find a value x which making a — xb nonnegative. Since b > 1, we
have |a]b > |a| and so, a — (—|a|)b =a + |a]b >a + |a| > 0. For the choice x =
—l|al, then a — xb lies in S. Therefore S is nonempty, hence the claim.
Therefore by Well-Ordering Principle, S contains a small integer, say r. By
the definition of S there exists an integer q satisfying

r=a-gqgb o<r.
Claim:r<b
Suppose r >b. Then we have

a—(Q+Lb=(@—gb)—b=r—5b>0.

This implies that,a — (q+ 1)b €S. Buta—(q+1)b=r —b <r,since b >0,
leading to a contradiction of the choice of r as the smallest member of S.
Hence, r < b, hence the claim.

Next we have to show that the uniqueness of g and r. Suppose that a as two
representations of the desired form, say,

a=qb+r:q,b+r',
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where 0 <r<band 0 < r <b. Then (r' -r)=b(q — q’). Taking modulus on
both sides,

I(r = M = Iblg — ¢)I = Iblig — ¢)I =bl(g — q)I.

But we have —h < —r <0 and 0 < r< b, upon adding these inequalities we
obtain —b < r — r < b. This implies b|(q — q’)| < b, which yields 0 < |g — q’|
< 1. Because |¢q — q,| IS a nonnegative integer, the only possibility is that |q —
q'| =0, hence, q = q'. This implies |r' —r|=0,thatis, r= r Hence the proof.
O

Corollary 1. If a and b are integers, with b =/0, then there exists integers q
and r such that

a=qgb+r 0<r<|b|.

Proof. It is enough to consider the case in which b is negative. Then |b| > 0,
and Theorem 1. produces unique integers g and r for which

a:q’|b|+r 0<r<|bh.
Noting that |b| = —b, we may take q = —q'to arriveata=qgb+r,with0 <r<
|b|. O
Application of the Division Algorithm
1. Square of any integer is either of the form 4k or 4k + 1. That is, the
square of integer leaves the remainder 0 or 1 upon division by 4.

Solution: Let a be any integer. If a is even, we can let a = 2n, n is an
integer, then a2 = (2n)2 = 4n® = 4k, If aisodd, we can leta=2n+1,nis
an integer, then a’ = (2n+1)2 = 4n° +4n+1 = 4(n2 +n)+1 = 4k+1.

2. The square of any odd integer is of the form 8k + 1.
Solution: Let a be an integer and let b = 4, then by division algorithm
a is representable as one of the four forms: 4q, 4q + 1, 4q + 2, 4q + 3.
In this representation, only those integers of the forms 4q + 1 and 4q +
3areodd. Ifa=4qg+ 1, then
2 2 2 2
a =(4g+1) =16qg +89+1=8(29" +q)+1=8k+1.
If a=4q+ 3, then

a® = (4q+3)° = 16q7+24q+9 = 160°+24q+8+1 = 8(20°+3q+1)+1 = 8k+1.

Prepared by: R. Praveen Kumar, Department of Mathematics, KAHE 3/23



UNIT — I The Integer 2017 Batch

a(az+2) . .
(82*2) s an integer.

3. For all integer a > 1,

3

Solution: Let @ > 1 be an integer. According to division algorithm, a is
of the form 3q, 3q + 1 or 3q + 2. If a = 3q, then

30((3q),+ 2
G2

3
which is clearly an integer. Similarly we can prove other two cases also.

THE GREATEST COMMON DIVISOR

Definition 1. An integer b is said to be divisible by an integer a =/ 0, in
symbols a|b, if there exists some integer ¢ such that b = ac. We write a - b to
indicate that b is not divisible by a.

Thus, for example, —22 is divisible by 11, because —22 = 11(—2). How-
ever, 22 is not divisible by 3; for there is no integer ¢ that makes the
statement 22 = 3c true.

There is other language for expressing the divisibility relation alb. We could
say that a is a divisor of b, that a is a factor of b, or that b is a multiple of a.
Notice that in Definition 1 there is a restriction on the divisor a: Whenever
the notation a|b is employed, it is understood that a is different from zero.

If a is a divisor of b, then b is also divisible by —a (indeed, b = ac implies that
b = (—a)(—c¢)), so that the divisors of an integer always occur in pairs.

To find all the divisors of a given integer, it is sufficient to obtain the positive
divisors and then adjoin to them the corresponding negative integers. For this
reason, we shall usually limit ourselves to a consideration of positive divisors.
It will be helpful to list some immediate consequences of Definition 1.

Theorem 2. For integers a, b, c, the following hold:
1. a|0, 1|a, ala.
2. a|lifandonly ifa = +1.
3. If a]b and c|d, then ac|bd.
4. If a]b and bc, then alc.
5. a|b and bja if and only if a = b.
6. Ifalb and b =0, then |a| <|b|.

7. If a]b and a|c, then a|(bx + cy) for arbitrary integers x and y.
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Proof. 1. Since 0 = a.0, a|0. Since a = 1.a, 1|a. Since a = a.1, ala.

2. We have a|l if and only if 1 = a.c for some c, this is if and only if a =
+1.

3. Clear from definition.
4. Clear from definition.
5. Clear from definition.

6. If a|b, then there exists an integer ¢ such that b = ac; also, b =0 implies
that ¢ =/ 0. Upon taking absolute values, we get |b| = |ac| = |a]|c|.
Because ¢ =0, it follows that |c| > 1, whence |b] = |a]|c| > |a].

7. The relations a|b and ajc ensure that b = ar and ¢ = as for suitable
integers r and s. But then whatever the choice of x and y, bx + cy = arx
+ asy = a(rx + sy). Because rx + sy is an integer, this says that a|(bx +
cy), as desired.

Definition 2. Let a and b be given integers, with at least one of them different
from zero. The greatest common divisor of a and b, denoted by gcd(a, b), is
the positive integer d satisfying the following:

(i) dlaandd|b.

(if) Ifcla and c|b, then ¢ <d.

Example: The positive divisors of —12 are 1, 2, 3, 4, 6, 12, whereas those
of 30 are 1, 2, 3, 5, 6, 10, 15, 30; hence, the positive common divisors of —12
and 30 are 1, 2, 3, 6. Because 6 is the largest of these integers, it follows that
gcd(—12, 30) = 6. In the same way, we can show that gcd(—5, 5) = 5, gcd(8,
17) =1, gcd(—8, —36) = 4.

Theorem 3. Given integers a and b, not both of which are zero, there exist
integers x and y such that

gcd(a, b) = ax + by.
Proof. Consider the set S of all positive linear combinations of aand b :

S={au+Dbv:au+bv>0;u,vintegers}.

Since, if a =0 then |a| = au+b.0 €S, whereu=1,ifa>0;u=-1,ifa<0, S
is nonempty. Therefore by the Well-Ordering Principle, S must contain a
smallest element, say d. Thus, from the very definition of S, there exist
integers x and y for which d = ax + by. Claim: d = gcd(a, b)
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By using the Division Algorithm, we can obtain integers g and r such that a =
qd + r, where 0 <r < d. Then r can be written in the form:

r =a-qd

a — g(ax + by)

a(l — gx) + b(—qy).

If r were positive, then this representation would imply that r is a member of
S, contradicting the fact that d is the least integer in S (recall that r < d).
Therefore, r = 0, and so a = qd, or equivalently d|a. By similar reasoning, d|b,
this implies d is a common divisor of a and b.

Now if c is an arbitrary positive common divisor of the integers a and b, then
part (7) of Theorem 2 allows us to conclude that c|(ax + by); that is, c|d. By
part (6) of the same theorem, ¢ = |¢| <|d| = d, so that d is greater than every
positive common divisor of a and b. Hence d = gcd(a, b). Hence the claim.
Therefore gcd(a, b) = ax + by. [

Corollary 2. If a and b are given integers, not both zero, then the set
T=ax+bhy:Xxyare integers

is precisely the set of all multiples of d = gcd(a, b).
Proof. Because d|a and d|b, we know that d|(ax + by) for all integers x, y.
Thus, every member of T is a multiple of d. Conversely, d may be written as

d = axg + byp for suitable integers xg and yg , so that any multiple nd of d is of
the form

nd = n(axg + byo) = a(nxo) + b(nyo).

Hence, nd is a linear combination of a and b, and, by definition, lies in T. O

Definition 3. Two integers a and b, not both of which are zero, are said to be
relatively prime whenever gcd(a, b) = 1.

Theorem 4. Let a and b be integers, not both zero. Then a and b are
relatively prime if and only if there exist integers x and y such that 1 = ax +

by.

Proof. If a and b are relatively prime so that gcd(a, b) = 1, then Theorem 3
guarantees the existence of integers x and y satisfying 1 = ax+by. Conversely,
suppose that 1 = ax + by for some choice of x and y, and that d = gcd(a, b).
Because d|a and d|b, Theorem 2 yields d|(ax+by), or d|1. This implies d = £1.
But d is a positive integer, d = 1. That is a and b are relatively prime. []

Corollary 3. If gcd(a, b) = d, then gcd(a/d, b/d) = 1.

Proof. Since d|a and d|b, a/d and b/d are integers. We have, if gcd(a, b) = d,
then there exists x and y such that d = ax + by. Upon dividing each side of this
equation by d, we obtain the expression

Prepared by: R. Praveen Kumar, Department of Mathematics, KAHE 6/23



UNIT — I The Integer 2017 Batch

1 = (a/d)x + (b/d)y.

Because a/d and b/d are integers, a/d and b/d are relatively prime. Therefore
ged(a/d, b/d) = 1.0

Corollary 4. If a|c and b|c, with gcd(a, b) = 1, then ab|c.

Proof. Since a|c and b|c, we can find integers r and s such that ¢ = ar = bs.
Given that gcd(a, b) =1, so there exists integers x and y such that 1 = ax+by.

Multiplying the last equation by c, we get,
c =cl =c(ax + by) = acx + bcy.

If the appropriate substitutions are now made on the right-hand side, then
c = a(bs)x + b(ar)y = ab(sx + ry).

This implies, abc.
Theorem 5. (Euclid’s lemma.) If a|bc, with gcd(a, b) = 1, then ajc.

Proof. Since gcd(a, b) = 1, we have 1 = ax + by for some integers x and y.
Multiplication of this equation by ¢ produces

c =1c = (ax + by)c = acx + bcy.

Since a|bc and alac, we have alacx + bcy. This implies ac. 0

Note: If a and b are not relatively prime, then the conclusion of Euclid’s
lemma may fail to hold. For example: 6]/9.4 but 6 - 9 and 6 - 4.

Theorem 6. Let a, b be integers, not both zero. For a positive integer d, d =
gcd(a, b) if and only if

(i) dlaand d|b.
(i) Whenever c|a and c|b, then c|d.

Proof. Suppose that d = gcd(a, b). Certainly, d|a and d|b, so that (i) holds. By
Theorem 3, d is expressible as d = ax + by for some integers x, y. Thus, if c|a
and c|b, then c|(ax + by), or rather c|d. This implies, condition (ii) holds.
Conversely, let d be any positive integer satisfying the stated conditions (i)
and (ii). Given any common divisor ¢ of a and b, we have c|d from
hypothesis (ii). This implies that d > ¢, and consequently d is the greatest
common divisor of a and b. [
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THE EUCLIDEAN ALGORITHM

Lemma 1. If a=qb + r, then gcd(a, b) = gcd(b, r).

Proof. If d = gcd(a, b), then the relations d|a and d|b together imply that d|(a
— gb), or d|r. Thus, d is a common divisor of both b and r. On the other hand,
if ¢ is an arbitrary common divisor of b and r, then c|(gb + r), whence c|a.
This makes ¢ a common divisor of a and b, so that ¢ <d. It now follows from
the definition of gcd(b, r) that d = gcd(b, r). [J

The Euclidean algorithm

The Euclidean Algorithm may be described as follows: Let a and b be two
integers whose greatest common divisor is desired. Because gcd(|al, |b |) =
gcd(a, b),, with out loss of generality we may assume a > b > 0. The first step
is to apply the Division Algorithm to a and b to get

a=gqib+ry 0<rp<bh.
If it happens that r1 = 0, then bja and gcd(a, b) = b. When rq =0, divide b by
r1 to produce integers g and ro satisfying

b=qgori+r 0<rp<r.
If rp = 0, then we stop; otherwise, proceed as before to obtain
ri=qsr2+r3 0<rz<ro.

This division process continues until some zero remainder appears, say, at the
th o .
(n + 1) stage where r,,—1 is divided by ry (a zero remainder occurs sooner or

later because the decreasing sequence b >rq > ry > - - - > 0 cannot contain
more than b integers). The result is the following system of equations:

a=qgib+rp 0<ri<b

b=qory+ro 0<rp<rp
ri=qar2+rz 0<rz<rp

r =qr +r
n—2 n n-1 n 0 < nh < -1

r =q r+0.

n—1 n+l n

By Lemma 1,

ged(a, b) =ged(b, r1) == ged(r,—1, rn) = ged(rp, 0) = ry.

Note:Start with the next-to-last equation arising from the Euclidean Algo-
rithm, we can determine x and y such that gcd(a, b) = ax + by.
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Example: Let us see how the Euclidean Algorithm works in a concrete case
by calculating, say, gcd(12378, 3054). The appropriate applications of the
Division Algorithm produce the equations

12378 = 4.3054 + 162
3054 =18.162 + 138
162 =1.138 + 24

138 =5.24 + 18
24=118+6
18=36+0

This tells us that the last nonzero remainder appearing in these equations,
namely, the integer 6, is the greatest common divisor of 12378 and 3054:

6 = gcd(12378, 3054).

To represent 6 as a linear combination of the integers 12378 and 3054, we
start with the next-to-last of the displayed equations and successively
eliminate the remainders 18, 24, 138, and 162:

6 = 2418
24 — (138 — 5.24)
6.24 — 138
6(162 — 138) — 138
6.162 — 7.138
6.162 — 7(3054 — 18.162)
132.162 — 7.3054
132(12378 — 4.3054) — 7.3054

132.12378 + (~535)3054

Thus, we have
6 = gcd(12378, 3054) = 12378x + 3054y,

where x = 132 and y = —535. Note that this is not the only way to express the
integer 6 as a linear combination of 12378 and 3054; among other
possibilities, we could add and subtract 3054.12378 to get

6 =(132+3054)12378 + (—535 —

12378)3054 = 3186.12378 + (~12913)3054.
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Theorem 7. If k > 0, then gcd(ka, kb) = k gcd(a, b).

Proof. If each of the equations appearing in the Euclidean Algorithm for a
and b, multiplied by k, we obtain

ak=q1(bk) + rik 0 <rik <bk
bk = go(rik) + rok 0 <rok <rqik

n—2K=0n(ry—1k) + rpk - 0 <rpk <r,—1k

rn—1K = gn+1(rnk) + 0.
But this is clearly the Euclidean Algorithm applied to the integers ak and bk,

so that their greatest common divisor is the last nonzero remainder rnk; that
IS,

gcd(ka, kb) = rpk =k gcd(a, b),
Hence the theorem. O
Corollary 5. For any integer k =/0, gcd(ka, kb) = |k| gcd(a, b).

Proof. We already have, if k > 0, then gcd(ka, kb) = k gcd(a, b). Therefore it
suffices to consider the case in which k < 0. Then —k = |k| > 0 and, by

Theorem 7,
gcd(ak, bk) = gcd(—ak, —bk)
= gcd(alk], blk])
= |k| gcd(a, b).
Hence the result. O

De nition 4. The least common multiple of two nonzero integers a and b,
denoted by lcm(a, b), is the positive integer m satisfying the following:

(i) almand b|m.
(if) If alc and b|c, with ¢ > 0, then m <c.

As an example, the positive common multiples of the integers -12 and 30
are 60, 120, 180, ... hence, Icm(—12, 30) = 60.
Theorem 8. For positive integers a and b
gcd(a, b) Icm(a, b) = ab.

Proof. Let d = gcd(a, b) and let m = ab/d, then m > 0.
Claim: m =Icm(a, b)

Since d is the common divisor of a and b we have a = dr, b = ds for in-tegers
rand s. Then m = as = rb. This implies, m a (positive) common multiple of a
and b.

Now let ¢ be any positive integer that is a common multiple of a and b, then ¢
= au = bv for some integers u and v. As we know, there exist integers x and y
satisfying d =ax+ by. In consequence,
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C =t =c(ax+by) =(C)x+ C)y=vx+uy.
m ab ab b a

This equation states that m|c, this implies, m < c. By the definition of least
common multiple, we have m = Icm(a, b). Hence the claim. Therefore gcd(a,
b) Icm(a, b) = ab. [J
Corollary 6. For any choice of positive integers a and b, lcm(a, b) = ab if and
only if gcd(a, b) = 1.

Definition 5. If a, b, c, are three integers, not all zero, gcd(a, b, c) is defined
to be the positive integer d having the following properties:

(i) disadivisor of each of a, b, c.

(it) If e divides the integers a, b, ¢, then e <d.

For example gcd(39, 42, 54) = 3 and gcd(49, 210, 350) = 7.
Example: Consider the linear Diophantine equation

172x + 20y = 1000

Applying the Euclidean’s Algorithm to the evaluation of gcd(172, 20), we

find that
172 = 8.20+12
20 = 1.12+8
12 =18+4
8 = 24,

whence gcd(172, 20) = 4. Because 4|1000, a solution to this equation exists.
To obtain the integer 4 as a linear combination of 172 and 20, we work
backward through the previous calculations, as follows:

4 =12-8
12 - (20 - 12)
212 — 20

2(172 — 8.20) — 20
2172 + (—17)20

Upon multiplying this relation by 250, we arrive at

1000

250.4
250(2.172 + (—17)20)
500.172 + (—4250)20,

so that x =500 and y = —4250 provide one solution to the Diophantine
equation in question. All other solutions are expressed by

X = 500 + (20/4)t = 500 + 5t

y = —4250 — (172/4)t = —4250 — 43t,

for some integer t.

If we want to find positive solution,if any happen to exist. For this, t must be
chosen to satisfy simultaneously the inequalities
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5t+500>0 —43r—4250>0
or
36
~9843 > ¢ > —100.
Because t must be an integer, we are forced to conclude that t = —99. Thus, our

Diophantine equation has a unique positive solution x = 5, y = 7 corresponding to
the value t = —99.

THE FUNDAMENTAL THEOREM OF ARITHMETIC

Definition 6. An integer p > 1 is called a prime number, or simply a prime, if its
only positive divisors are 1 and p. An integer greater than 1 that is not a prime is
termed composite.

Among the first ten positive integers, 2, 3, 5, 7 are primes and 4, 6, 8, 9, 10 are
composite numbers. Note that the integer 2 is the only even prime, and according to
our definition the integer 1 plays a special role, being neither prime nor composite.

Theorem 1. If p is a prime and p|ab, then p|a or p|b.

Proof. If p|a, then we need go no further, so let us assume that p - a. Because the
only positive divisors of p are 1 and p itself, this implies that gcd(p, a) = 1. Hence,
by Euclid’s lemma, we get p|b. [

Corollary 8. If p is a prime and p|ajay - - - ap, then p|ak for some k, where 1 <
k<n.
Proof. We proceed by induction on n, the number of factors. When n = 1, the stated
conclusion obviously holds; whereas when n = 2, the result is the content of
Theorem 10. Suppose, as the induction hypothesis, that n > 2 and that whenever p
divides a product of less than n factors, it divides at least one of the factors. Now let

plaiay - - - an. From Theorem 10, either pla, or plaiaz - - - a,—1 If plan, then we are
through. As regards the case where plaiaz - - - a,—1, the induction hypothesis
ensures that p|ax for some choice of k, with 1 <k <n — 1. In any event, p divides
one of the integers a1, ap, - - -, an.

Theorem 2. (Fundamental Theorem of Arithmetic.) Every positive integer n >
1 can be expressed as a product of primes; this representation is unique,
apart from the order in which the factors occur.

Proof. Either n is a prime, there is nothing to prove. If n is composite, then
there exists an integer d satisfying djn and 1 < d < n. Among all such integers

d, choose p; to be the smallest (this is possible by the Well-Ordering
Principle). Then P1 must be a prime number. Otherwise it too would have

a divisor g with 1 < g < pz; but then g|p1 and p1|n imply that g|n, which
contradicts the choice of p; as the smallest positive divisor, not equal to 1, of
n. We therefore may write n = p1nq1, where p1 is prime and 1 < ng < n.lIf ng
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happens to be a prime, then we have our representation. In the contrary case,
the argument is repeated to produce a second prime number p2 such that ny =
p2ony; that is,

n=p1Pony 1<ny<n.

If ny is a prime,then it is not necessary to go further. Otherwise, write np =
p3ng, with p3 a prime:

n=p1P2p3n3 1<nz<ny.

The decreasing sequence n >n1 >ny > - - - > 1 cannot continue indefinitely,

so that after a finite number of steps n;—1 is a prime, call it, px. This leads to
the prime factorization

n=pip2 - - Pk

To establish the second part of the proof-the uniqueness of the prime factor-
ization, let us suppose that the integer n can be represented as a product of
primes in two ways, say,

n=pip2---Pr=0q102 Qs r=s,

where the pj and g; are all primes, written in increasing magnitude so that

Prs=p2=--"Spr Q1=q2="""=¢s.
Because p1]|q102 - - - qs, Corollary 9 tells us that p1 = qx for some k; but then
P1 >g1. Similar reasoning gives g3 > p1, whence p1 = g1. We may cancel this

common factor and obtain
P2P3 - Pr=0203 " - - Qs.
Now repeat the process to get p2 = gp and, in turn,

P3P4 - Pr=0304 " - - Qs

Continue in this fashion. If the inequality r < s were to hold, we would
eventually arrive at

1=0r+10r+2 - s,
which is absurd, because each gj > 1. Hence, r = s and
p1=q11 p2=q21 v '1pr=qh
making the two factorizations of n identical. The proof is now complete.

Prepared by: R. Praveen Kumar, Department of Mathematics, KAHE 13/23



UNIT - III The Integer | 2007 Baten

THE THEORY OF CONGRUENCES

Definition 1. Let n be a fixed positive integer. Two integers a and b are said
to be congruent modulo n, symbolized by

a = b(modn)

if n divides the difference a — b; that is, provided that a — b = kn for some
integer k.

Theorem 1. For arbitrary integers a and b, a = b(modn) if and only if aand b
leave the same nonnegative remainder when divided by n.

Proof. Suppose a = b(modn), so that a = b + kn for some integer k. Upon
division by n, b leaves a certain remainder r; thatis, b =qn + r, where 0 <r <
n. Therefore,

a=b+kn=(n+r)+kn=(Q+kn+r

which indicates that a has the same remainder as b.
On the other hand, suppose we can write a = gin + r and b = gon + r, with the

same remainder r (0 <r <n). Then
a—b=(qn+r)—(qn+r1)=(qL — g2)n,
whence nja — b. That is, a = b(modn). 0

Theorem 2. Let n > 1 be fixed and a, b, ¢, d be arbitrary integers. Then the
following properties hold:

a = a(modn).
If a = b(modn), then b = a(modn).

If a = b(modn) and b = c(modn), then a = c¢(modn).

A W e

If a = b(modn) and ¢ = d(modn), then a + ¢ = b + d(modn) and ac =
bd(modn).
5. If a = b(modn), then a + ¢ = b + c¢(modn) and ac = be(modn).

6. If a = b(modn), then ak = bk(modn) for any positive integer k.
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Problem 1: Show that 41|220 -1
Solution: We have

2° = —9(mod 41).
Therefore
2% = (=9)*(mod 41).
This implies that
20 _, 4
27 =(—9) (mod 41).

But we have (—9)4 =81.81 and 81 = —1(mod 41). Therefore
220 = (—1)(~1)(mod 41).

This implies 41]2%° — 1.
Problem 2: Find the remainder obtained upon dividing the sum 1!
+21+31+41+...+99! + 100!
by 12.
Solution: We have 4! = 24 = 0(mod 12); thus, for k >4,
kl=4156---k=05..6 ---k=0(mod 12).

Therefore

U+21+31+41+...+100l =11+ 21+31+0+ - - +0=9(mod 12).
The remainder 9.

Theorem 3. If ca = cb(mod n), then a = b(mod n/d), where d = gcd(c, n)
Proof. By hypothesis, we can write

C(a — b) =ca — cb =kn, (3.1)

for some integer k. Knowing that gcd(c, n) = d, there exist relatively prime
integers r and s satisfying ¢ = dr, n = ds. When these values are substituted in
Eg. 3.1 and the common factor d canceled, the net result is

r(a — b) = ks.

Hence, s|r(a — b) and gcd(r, s) = 1. Euclid’s lemma yields s|(a — b), which
implies a = b(mod s); in other words, a = b(mod n/d). [

Corollary 12. If ca = cb(mod n) and gcd(c, n) = 1, then a = b(mod n).
Corollary 13. If ca = cb(mod p) and p - ¢, where p is a prime number, then a
= p(mod p).

Proof. The conditions p - ¢ and p a prime imply that gcd(c, p) = 1. Then by
Corollary 12, a = b(mod p).
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PRINCIPLE OF MATHEMATICAL
INDUCTION

The principle of mathematical induction
Let P(n) be a given statement involving the natural number n such that
3. The statement is true for n = 1, i.e., P(1) is true (or true for any fixed natural number)
and
4. If the statement is true for n = k (where k is a particular but arbitrary natural number),
then the statement is also true for n =k + 1, i.e, truth of P(k) implies the truth of P(k +
1). Then P(n) is true for all natural numbers n.

Solved Examples

Short Answer Type

Prove statements in Examples 1 to 5, by using the Principle of Mathematical Induction for
allne N, that :

Example11+3+5+..+(2n-1)=n2

Solution Let the given statement P(n) be defined as P(n) : 1 + 3 +5 +..+ (2n— 1) =n?,
for n € N. Note that P(1) is true, since
P(1):1=1?
Assume that P(k) is true for some k e N, i.e., P(k) : 1 + 3
+5+..+(2k-1)=k2
Now, to prove that P(k + 1) is true, we have
1+3+5+..+(2k-1)+(2k+1)
=k*+ (2k + 1) (Why?)
=k2+2k+1=(k+1)2

Thus, P(k + 1) is true, whenever P(k) is true.
Hence, by the Principle of Mathematical Induction, P(n) is true for all n € N.

Example 2 2*" — 1 is divisible by 3

Solution Let the statement P(n) given as

P(n) : 22n — 1 is divisible by 3, for every natural number n.

We observe that P(1) is true, since

2 - 1=4-1=31Iisdivisible by 3.

Assume that P(n) is true for some natural number k, i.e., P(k): 2% —
1 is divisible by 3, i.e., 2° — 1 = 3q, where q € N Now, to prove that
P(k + 1) is true, we have
P(k+1):22(k+1)—1=22k+2-1=22k.22-1

=2% 4-1=32% +(2*-1)
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=3.2%+3q

=3 (2% +q)=3m, whereme N

Thus P(k + 1) is true, whenever P(K) is true.

Hence, by the Principle of Mathematical Induction P(n) is true for all natural numbers n.

Example 3 2n + 1 < 2", for all natual numbers n ¢ 3.

Solution Let P(n) be the given statement, i.e., P(n) : (2n + 1) < 2" for all natural numbers,
n ¢ 3. We observe that P(3) is true, since
23+1=7<8=23
Assume that P(n) is true for some natural number k, i.e., 2k + 1 < 2
To prove P(k + 1) is true, we have to show that 2(k + 1) + 1 < 2“*X. Now, we have 2(k +
HN+1=2k+3
82k+1+2<2k+2<2k.2=2k+1.
Thus P(k + 1) is true, whenever P(K) is true.

Hence, by the Principle of Mathematical Induction P(n) is true for all natural numbers, n €
3.

Long Answer Type

Example 4 Define the sequence ay, ay, as... as follows :
a; =2,a,=5a,1, forall natural numbers n ¢ 2.
(ii1) Write the first four terms of the sequence.
(iv) Use the Principle of Mathematical Induction to show that the terms of the sequence
satisfy the formula a, = 2.5™* for all natural numbers.
Solution
r Wehavea; =2
a,=5a,1=5a;=5.2=10 az = 58.&1 =5a, =
5.10 =50 a4 = 5a4 1 = baz = 5.50 = 250
r  Let P(n) be the statement, i.e.,
P(n) : a, = 2.5 n—1 for all natural numbers. We observe that P(1) is true
Assume that P(n) is true for some natural number k, i.e., P(k) : ax = 2.5 ~. Now to
prove that P (k + 1) is true, we have

P(k+1):akxs1=5a=5.(5Y

=25 =25k

Thus P(k + 1) is true whenever P (k) is true.

Hence, by the Principle of Mathematical Induction, P(n) is true for all natural numbers.

Example 5 The distributive law from algebra says that for all real numbers c, a; and a,,
we have ¢ (a; + a,) = ca; + ca.

Use this law and mathematical induction to prove that, for all natural numbers, n = 2, if c,
ai, a2, ...,an are any real numbers, then

c(ai+ta,+..+tay)=ca;+ca, +..+ca,

Solution Let P(n) be the given statement, i.e.,
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P(n):c(ap+ax+..+a,) =ca; +cay + ... ca, for all natural numbers n = 2, for c, ay, ay,
..apeR.
We observe that P(2) is true since

(by distributive
c(a; + ap) =cait ca law)
Assume that P(n) is true for some natural number k, where k > 2, i.e.,
+Cay +...+
P(k):c (a1 +ax+...+ay) = cajCax

Now to prove P(k + 1) is true, we have
Pk+1):c(a; +tax+..tax+ax+1)
=c((ar+ax+..+ay) +ax+1)

(by distributive
=c(a; +ax+..+a)+cax+1 law)

=ca; +tcay+..+cag+cCak+

Thus P(k + 1) is true, whenever P (k) is

true.

Hence, by the principle of Mathematical Induction, P(n) is true for all natural numbers n
22.

Example 7 Prove by the Principle of Mathematical Induction that

Ix1+2x21+3x%x 31+ ... +nxnl=(n+1)!-1forall natural numbers n.
Solution Let P(n) be the given statement, that is,
P(nN): 1x11+2x21+3x3l+...+nxn!=(n+1)! -1 forall natural numbers n. Note
that P (1) is true, since
PAQ):1x1l=1=2-1=21-1.

Assume that P(n) is true for some natural number k, i.e.,
Pk): 1x11+2x21+3x3l+ ... +kxkl=(k+1)-1
To prove P (k + 1) is true, we have
Pk+1):1x11+2x21+3x31+ .. +kxkl+(k+1)x(k+1)!

i) k+D)!'-1+k+1D!Ixk+1)

(i) k+1+1)(k+1)!-1

(ii)(k+2)k+1)!-1=((k+2)!-1
Thus P (k + 1) is true, whenever P (k) is true. Therefore, by the Principle of Mathematical
Induction, P (n) is true for all natural number n.
Example 8
Prove, by Mathematical Induction, that

(417 +(n+2) +(n+3 +..+ (2n) = 1@ +16)(7” +1)

is true for all natural numbers n.

Discussion
Some readers may find it difficult to write the L.H.S. in P(k + 1). Some cannot
factorize the L.H.S. and are forced to expand everything.

For P(1),

Prepared by: R. Praveen Kumar, Department of Mathematics, KAHE 18/23



UNIT — 111 The Integer 2017 Batch

1x3x8

LH.S.=2*=4, RHS.= =4 . P(1) is true.
Assume that P(k) is true for some natural number k, that is
(K17 +(k+ 2 +(k+3F + ...+ (2K) = k(2k+16)(7k+1)
v (D)
For P(k+ 1),
(k+2) +(k+3) +...+(2k)* +(2k +1)* +(2k + 2)° (There is a

missing term in front
and  two more terms at the back.)

=(k+2F +(k+3) +...+(2k)* +(2k +1)* + 4(k +1)’
=(k+1) +(k+2) +(k+3)° +...+(2k)* + (2k +1)* + 3(k + 1Y’
_ k(2K +16)(7k +1) +(2k +1)7 +3(k +1F by (1)

[k(7k +1)+ 6(2k +1)]+ 3(k +1)* (Combine the

_ (Zk +1)

first two terms)

(2k+1 [7k? +13K + 6]+ 3(k + 1)

=(2kT+1)(7k+6)(k+1)+3(k+1)

_(k+y)
6

(k +1) [14k2 +37k + 24

(k ; 1) (2K + 37k +8) = (k +1)2(k +1) ; [7(k +1)+1]

[(2k +1)7k +6)+18(k +1)]

P(k+1) is true.
By the Principle of Mathematical Induction, P(n) is true for all natural numbers, n .

Example 9
Prove, by Mathematical Induction, that

1-n+2(n—1)+3(n—2)+...+(n—2)-2+n-1:%n(n +1)n +2)

is true for all natural numbers n.

Discussion
The "up and down" of the L.H.S. makes it difficult to find the middle term, but

you can avoid this.

Solution
Let P(n) be the proposition:

1-n+2(-1)+3(n=2)+ ..+ (—2)-2+n -1:%n(n +1)(n +2)
For P(1),
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LHS.=1, RHS.= %xlx 2x3=1. P(1) is true.

Assume that P(k) is true for some natural number k, that is

1~k+2(k—1)+3(k—2)+...+(k—2)-2+k-1=%k(k+1)(k+2)

... qQ
For P(k+1), .
1-(kK+1)+ 2k +3(k =1)+...+(k=1)-3+k-2+(k +1)-1
1-(k+1)+2[(k 1) +1]+3(k —2) + 2] +... + (k =2)-[2 + 1] +k - L+ 1]+ (k +1)-1
1-k+2(k-1)+3k-2)+..+(k-2)-2+k-1
+1 42 +3 +o.+ (k=1 +k +(k+1)
arithmetic)

— k(s fk+2) (k2K +2) by (1)

(The bottom series is

== (ke+ o+ 2+ 3= (e D+ )2 [k-+ 1)+ 2

P(k+1) is true.
By the Principle of Mathematical Induction, P(n) is true for all natural numbers, n .

Example 10
Prove, by Mathematical Induction, that n(n + 1)(n + 2)(n + 3) is divisible by 24, for all
natural numbers n.

Discussion
Mathematical Induction cannot be applied directly. Here we break the proposition
into three parts. Also note that 24 = 4x3x2x1 = 4!

Solution

Let P(n) be the proposition:

1. n(n + 1) is divisible by 2! =2.

2. n(n + 1)(n + 2) is divisible by 3! =6.

3. n(n + 1)(n + 2)(n + 3) is divisible by 4! =24,

For P(1),

1. 1x2 =2 is divisible by 2.

2. 1x2x3 = 6 is divisible by 3.

3. I1x2x3x4 = 24 is divisible by 24. P(1) is true.

Assume that P(k) is true for some natural number k, that is
1. k(k + 1) is divisible by 2, thatis, k(k + 1) =2a
ceee (D
2. k(k + 1)(k + 2) is divisible by 6, that is, k(k + 1)(k + 2) = 6b
N %))
3. k(k + 1)(k + 2)(k + 3) is divisible by 24,
that is, k(k+ 1)(k +2)(k + 3) = 24c
3)
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where a, b, ¢ are natural numbers.

For P(k+1),
1. k+DHk+2)=k(k+1)+2(k+1)=2a+2(k+1),by(l)
=2Jat+k+1]

N )]
, which is divisible by 2.
2. (k+1)(k+2)k+3)=k(k+ 1)(k+2)+3(k+1)k+2)
=6b+3x2[at+k+1],by(2),(4)
=6[b+at+k+1]

)
, which is divisible by 6.

3. (k+D)(k+2)k+3)k+4)=k(k+1)(k+2)k+3)+4k+ 1)k+2)(k+3)

=24c+4x6b+a+tk+1] ,by(3),(5)

=24[c+b+a+k+1]

, which is divisible by 24 .
o P(k+1) is true.
By the Principle of Mathematical Induction, P(n) is true for all natural numbers, n .
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PART - B (5 x 2 =10 Marks)

Possible Questions (2 Mark)

. Define the divisibility over a field.

. Define the greatest common divisor of two polynomials over a field.
. State the Division Algorithm.

. Define relatively prime polynomials.

. Define quotient and remainder.

. State the Euclidean algorithm.

. Define reducible.

. Define irreducible.

© 00 N o O B~ W N e

. State the principles of mathematical induction.

10. State the Fundamental theorem of Arithmetic.

11. Write the any two basic properties of the Greatest Common divisor.

12. Write the any two basic properties of the Prime factors.
13.Define residue.
14 Write any two properties of congruence relation.
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PART - C (5 x 6 =10 Marks)

Possible Questions (6 Mark)
1) Prove that 12+2%+3%+.... +n°= n(n+1)(2n+1)/6 by Principle of Mathematical induction.

2) Find a+b (mod n), ab (mod n) and (a + b) ?(mod n) if a=4003, b=-127, n=85.
3) Prove that the sum of the first n odd integers is n?2.
4) State and prove the Principles of Mathematical Induction.
5) Find the quotient g and the remainder r as defined in the Division algorithm
i) a=500, b=17  ii)a=-500,b=17 iii)a=-500 ,b=-17
6) Define greatest common divisor& Find the greatest common divisor of a and b and
express it in the form ma+nb for suitable integers mand n .
i) a=26 ,b=118.
7) State and prove the Division Algorithm.
8) Solve the following congruence i) 3x =1 (mod 5) ii)i)3x =1 (mod 6)
9)State and prove the fundamental theorem of Arithmetic .
10) Prove that ,if a= x (mod n)and b = y(mod n), then
i) atb= x + y(mod n) and ii) ab= xy(mod n) .
11. State and prove Euclidean Algorthim.

12. State and prove Euclidean theorem.
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Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
S.No Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

Let f(x),g(x)#0 be any two polynomials of the

1 |polynmial domain F[x],over the field F. Then there
exist uniquely two polynomials q(x) & r(x) in F[x]  |f(x)=
suchthat .................... q(x)g(x)+r(x) f(x)= q(x)+r(x) f)=q(x)g(x)  [f(X)=g(x)+r(x) )= q(x)g(x)+r(x)

Let f(x),g(x)#0 be any two polynomials of the

2 |polynmial domain F[x],over the field F. Then there
exist uniquely two polynomials q(x) & r(x) in F[x]
such that f(x)=q(x)g(x)+r(x) where r(x).... equal to zero not equal to zero  |less than zero  |more than zero equal to zero

3 |Division algorithm for polynomials over a field deg
I(X) coveeennnn deg g(x) < > = + =

4 |In the division algorithm, the polynomial q(x) is
called the .......... on dividing f(x) by g(x) quotient remainder divisior diviend quotient
In the division algorithm, the polynomial q(x) is

5 |called the quotient on dividing f(x) by g(x) and the
polynomail r(x)is called the ........................ quotient remainder divisior diviend remainder

6 |A polynomial domain F[x] over a field F is a
principal................... commutatice ring |ideal ring associative ring |division ring ideal ring
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7 |Apolynomial ................. F[x] over a field F is a
principal idea Iring domain range co domain quotient domain
8 |A polynomial domain F[x]overa.............. Fisa
principal ideal ring ring domain range field field
9 In a Euclidean algorithm ,Let F be a field and f(x)
and g(x) be any two polynomials in F[x], not both of
whichare .............c..oco zZero one two three zero
In a Euclidean algorithm ,Let F be a field and f(x)
10 |and g(x) be any two polynomials in F[x], not both of
which are zero.Then f(x and g(x) have a greatest common  |least common
........................... d(x) common divisor |divisor divisor equal divisor greatest common divisor
Let F be a field and f(x) and g(x) be any two
11 |polynomials in F[x], not both of which are zero.Then
f(x and g(x) have a greatest common divisor d(x),it  |d(x)=m(x)f(x)+n(|d(x)=m(x)f(x)- d(x)=f(x)+n(x)g [d(X)=m(X)f(X)+n(
can be expressed in the form........ X)g(x) n(x)g(x) (x) X) d(x)=m(x)f(x)+n(x)g(x)
12 In a Euclidean algorithm,the expression
d(x)=m(x)f(x)+n(x)g(x) for .................... m(x) and
n(x) in F[x]. ring field polynomials domain polynomials
13 |The greatest common divisor should be a
................... polynomial zero monic double triple monic
14 |If a(x)#0 and f(x) are elements of F[x] then a(x) is a
.................. of f(x) quotient remainder divisor dividend divisor
If a(x)#0 and f(x) are elements of F[x] then a(x) is a
15 |divisor of f(x)iff there is a polynomial b(x) be in f[x]
then .......cooovveiiinnn. f(x)=a(x)+b(x) |f(x)=a(x)-b(x) f(x)=a(x)b(x)  |f(x)=a(x)/b(x) f(x)=a(x)b(x)
16 |The divisor of f(x) symbolically write
...................... a(x)/f(x) f(x)/a(x) b(x)/f(x) a(x)/b(x) a(x)/f(x)
17 |A ...l is an element of F[x] which has a
multiplicative inverse. zero unit two three unit
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18 A unit is an element of F[x] which has
................... inverse. finite infinite multiplicative  |zero multiplicative
19 |A unitis an element of F[x] which has a
multiplicative ................... ring field range inverse inverse
20 |All the polynomials of ................ degree
belonging to F[x] are units of F[x]. 1st 2nd zero nth zero
21 |All the polynomials of zero degree belonging to F[x]
Are......ooevvnnnnn of F[x] units field ring range units
22 |The.....cooeveninnin elements of F are the only units
of F[X] zero non zero finite infinite non zero
23 |The non zero elements of F are the ................. of
F[x]. only units not only units double units Zero units only units
If f(x) and g(x) are polynomials in F[x], then we call
24 |f(x) and g(x) associates if .................... for some
Ofc e F. f(x)=9(x) f(x)=c/g(x) f(x)=c+g(x) f(x)=cg(x) f(x)=cg(x)
Iff(x)and g(x) are .................... in F[x], then we
25 |call f(x) and g(x) associates if f(x) =c g(x) for some
0#c e F. field ring polynomials domain polynomials
If f(x) and g(x) are polynomials in F[x], then we call
26 |f(x) and g(x) associates if f(x) =c g(x) for some
................... O=ceF 0>ceF O<ceF O#c e F O#c e F
Two non zero polynomials f(x) and g(x) in F[x] are
27 l|associates iff ........................ And f(X)+g(x) & f(X)g(x) & f(x)/g(x) & g(x)-f(x)/g(x) &
............................ g(x)/f(x) g(x)f(x) f(x) a(x)/f(x) f)/g(x) & g(x)/f(x)
28 | Two non zero polynomials f(x) and g(x) in F[x] are
................ iff f(x)/g(x) and g(x)/f(x) commutates associates divisible distributive associates
29 |The divisorsof f(x) are called
S divisors. proper improper finite infinite improper

Prepared by : R. Praveen Kumar, Department of Mathematics, KAHE



The Integer / 2017 Batch

30 |All other divisors of f(x), if there are any , are called

S, divisors. proper improper finite infinite proper
31 |[Iffx)bea.................. of positive degree, then f(x)

is said to be irreducible over F. function domain polynomial range polynomial
32 |If f(x) be a polynomial of .............. degree, then

f(x) is said to be irreducible over F. zero positive negative infinite positive
33 |If f(x) be a polynomial of positive degree, then f(x) is

saidtobe ................s over F. irreducible reducible singular non singular irreducible
34 |An irreducible polynomial is otherwise called

AS..tiriieninin, point prime power degree prime
35 |Ithas.............. proper divisors in F[x]; f(x) is

irreducible over F. no One two infinite no
36 |It has no proper divisors in F[x]; f(x) is

...................... over F irreducible reducible singular non singular irreducible
37 |Ithasa.................. divisors in F[x]; f(X) is

reducible over F. finite infinite proper improper proper
38 |It has a proper divisors in F[x]; f(x)

1Se i over F. irreducible reducible singular non singular reducible
39

......................... depends on the field. irreducibility reducibility singularity non singularity irreducibility
40

Irreducibility depends on the ................... field domain range ring field
41 |Two polynomials are said to be relatively prime if

their greatest common divisor is ................ 0 1 2 3 1
. P polynomials are said to be relatively

prime if their greatest common divisor is 1. zero one two three two
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43 |Two polynomials are saidtobe ...................... if
their greatest common divisor is 1. field prime relatively prime [uniquely prime relatively prime
44 |Two polynomials are said to be relatively prime if
their ................... divisor is 1. zero greatest common  |leatest common |infinite greatest common
Let m be any fixed positive integer.Then an integer a
45 |is said to be congruent to another integer b modulo m
if m/(ab) m/(a-b) m/(a+b) m/a m/(a-b)
Let m be any fixed .............. integer.Then an
46 |integer a is said to be congruent to another integer b
modulo m if m/(a-b). positive negative zero infinite positive
Let m be any fixed positive integer.Then an integer a
47 |issaidtobe............. to another integer b modulo
m if m/(a-b). division range congruent domain congruent
Let m be any fixed positive integer.Then an integer a
48 |is said to be congruent to another integer b
................ m if m/(a-b). multiplication addition division modulo modulo
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UNIT - IV

SYSTEM OF LINEAR EQUATIONS

A linear equation in variables X1, Xo, - - -, X, IS an equation of the form
aix1 + asxo + -+ -+ apXp = b,

where ajg, ap, - - - ap and b are constant real or complex numbers. The constant a;
is called the coefficient of xj and b is called the constant term of the equation.

A system of linear equations (or linear system) is a finite collection of linear
equations in same variables. For instance, a linear system of m equations in

n variables X1, X2, - - -, Xy can be written as
aiixy +apxp + +aip=hby
agxy +axpxg + +apn=hy
| (9.2)
am1X1 + amaX2 + -+ - + amn = by
A solution of a linear system is a n-tuple (s1, S, - - -, Sn) of numbers that makes
each equation a true statement when the values s, Sp, - - -, Sp are sub-stituted for
X1, X2, -+ -, Xp, respectively. The set of all solutions of a linear system is called

the solution set of the system.

Any system of linear equations has one of the following exclusive conclusions.
(a) No solution.

(b) Unique solution.

(c) Infinitely many solutions.

A linear system is said to be consistent if it has at least one solution and is
said to be inconsistent if it has no solution.

The system of equations (9.1) is said to be homogeneous if all bj are zero;
otherwise, it is said to be non-homogeneous.

The system of equations (9.1) can be expressed as the single matrix equation

AX =B, (9.2)

vector (column matrix) X that satisfies the matrix equation (9.2) is also the
solution of the system.

Definition 21. The matrix [AB] which is obtained by placing the constant
column matrix B to the right of the matrix A is called the augmented matrix.
Thus the augmented matrix of the system AX =B is
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d d trrd V)
[AB]= 2 22 -+ on 2
a a a D
11 12 In 1
a a ...a b
ml m2 mn m
Theorem 35. The system AX = B is consistent if and only if A and [AB] have the

same rank.

System of non-homogeneous Equations
If we are given with a system of m equations in n unknowns, proceed as follows:

1. Write down the corresponding matrix equation AX = B.

2. By elementary row transformations obtain row echelon matrix of the
augmented matrix [AB].

3. Examine whether the rank of A and the rank of [AB] are the same or not.

Case 1 If rank of A =/rank of [AB], then the system is inconsistent and has no solution.
otherwise, it is said to be non-homogeneous.

The system of equations (9.1) can be expressed as the single matrix equation

AX =B, 9.2)
Any vector (column matrix) X that satisfies the matrix equation (9.2) is also the
solution of the system.

De nition 21. The matrix [AB] which is obtained by placing the constant column

matrix B to the right of the matrix A is called the augmented matrix. Thus the

augmented matrix of the system AX =B is
d d

trrd V)
[AB]= 2 22 .-+ on 2
a a a D
11 12 In 1
a a ...a b
ml m2 mn m
Theorem 35. The system AX = B is consistent if and only if A and [AB] have the

same rank.

System of non-homogeneous Equations
If we are given with a system of m equations in n unknowns, proceed as follows:

1. Write down the corresponding matrix equation AX = B.
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2. By elementary row transformations obtain row echelon matrix of the
augmented matrix [AB].

3. Examine whether the rank of A and the rank of [AB] are the same or not.

Case 1 If rank of A =/rank of [AB], then the system is inconsistent and has no
solution.

Case 2 If rank of A = rank of [AB], then the system is consistent.

Case 2a If rank of A = rank of [AB] = n = number of unknowns, then the
system has unique solution.

Case 2b If rank of A = rank of [AB] < n = number of unknowns, then the
system has infinitely many solutions. We assign arbi-trary values to
(n — r) unknowns and determine the remaining r unknowns
uniquely.

Solution of System of Linear Equations
Any given system of linear equations may be written in term of matrix, such that

AX =B (1)
where
a, b, ¢ X d,
A=la, b, c,|,X=|y|and B=|d,
a; by ¢, z d,

A is known as co-efficient matrix.
If we multiply both sides of (i) by the reciprocal matrix A™, then we get A*AX = A™'B

(A'AX=A"B = IX=A"B = X=A"B
X A, A, A [d;
= y =i B, B, B;|x|d,|whereA=0
z C, C, Ci] |d;
[Ad; +A,d, +A,d,
= % B,d, +B,d, +B,d, ...(11)
1C,d; +C,d, +Cyd;

Hence from (ii) equating the values of x, y and z we get the desired result.

This method is true only when (i) A # 0 (ii) number of equations and number of unknowns
(e.g. X, y, Z etc.) are the same.

Example 1. Solve the equations with the help of determinants :

X+y+z=3, Xx+2y+32=4, x+4y +92=6.

1 1 1
Sol. The co-efficient determinantisA={1 2 3 =2=%0
1 4 9
311 1
X = l 4 2 3| > X==x4=2
2 2
6 4 9
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1 31
y=%1 4 3| = y=%(2)=1:>y=1
169
1 1 +3
2:11 2 +4| = z:l[—4+6+(4—6)]:0: z=0
2_1 4 +6 2

Solutionisx=2,y=1,z=0.

Row reduced Echelon Form:

In addition to the above three conditions, if a matrix satisfies the following conditions:

Each column which contains a leading entry of a row has all other entries zeros, then the matrix is
said to be in row reduced echelon matrix.

Row Rank and Column Rank of a Matrix

Row rank of a matrix, say A is the number of non zero rows in the row echelon matrix A and is

denoted by pr(A).

Column Rank of a matrix, say A is the number of non zero columns in the column echelon matrix A
and is denoted by p.(A).

Note: (i) Every matrix is row equivalent to row echelon matrix.

(if) Every matrix is column equivalent to a column echelon matrix.
(iii) If a matrix A is in row echelon form, then its transpose is in column echelon form.

01 3 13 1
. 01 3 O 3
Example. 1: Reduce the matrix A= to the row reduced echelon form and
026 1 3 9
0 4 12 -2 10 7

hence find its rank.
Solution: Applying R, - R,-R;,R, - R;-2R,, and R, - R,-4R, on the matrix A,

01 3 -13 1
1 -1 2
3 37
2 -2 3

o O o
o O o
o O O

Applying R, > R,+R,,R; > R;-3R,,and R, -> R,-2R,
013 -13 1
/0001 -12
loooo0 0 1
0000 O -1
Applying R, > R,-3R,;,R, > R,-2R,,and R, > R,+R,
013 -13 1
1 -1 2
0 0 1

0 000 O O

This is the required row reduced echelon form of the matrix A. Since, the number of non zero rows is
3, thus row rank of A is 3.

0 0O
A=
0 0O
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System of Linear Equations and Matrices
Linear Equation
y= mx A
is an equation, in which variable y is expressed in terms of x and the constant m, is
called Linear Equation. In Linear Equation exponents of the variable is always  one’.

Equation 1 is also called equation of line.
Linear Equation in_n variables:

axX, +aX, +aX, +..+a,x, =b 2

where X, X,, X,,..., X, are variables and
a,,a,,8,...,a,and b are constants.

Linear System:

A Linear System of m linear equations and n unknowns is:

Ay X+ aX, +aX; + .+ X, = b1
Ay, X + 8y Xy + BpeXg + .o + 8, X, =D,
Qg Xy + AgyX, + AgaXg + .o + 85, X, =Dy

where X, X,, X;,..., X, are variables or unknowns and a’s and b’s
are constants.
Solution:

Solution of the linear system (3) is a sequence of n numbers

S,,S;,,8;,.4'S, , Which satisfies system (3) when we substitute
Xy =S, % =5, X3 = S350, X =S

Example.1. Solve the system of equations

X -3y =-3 -1
2X +y =8 -2

Solution:
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-2E1 +E, =
—-2X + 6y =6
2x+y =38

7y =14 = y=2
From equation 1

X=-3+3y
x=-3+6 =3

Solutionis x=3 and y=2
Check Substitute the solution in Equations 1 and 2

Equationl = 3-3(2)=3-6=-3
Equation2 = 2(3)+2 =6+2=8 .

Example.2. Solve the system of equations

X -3y ==7 -1
2X-6y = 7 -2
Solution:
2E1 - E2 =
2X - 6y = -7
—-2X +6y =-14
0 +0 =-21

This makes no sense as 0 = -21, hence there is no solution.

NOTE: Inconsistent , the system of equations is inconsistent, if the system has no
solution.
Consistent, the system of equations is consistent if the system has at least
one solution.

Example: Inconsistent and consistent system of equations

For the system of linear equations which is represented by straight lines:

ax - by =¢ =1,
a,x - b,y =¢, -1,

There are three possibilities:
No solution one solution infinite many solutions
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[inconsistent] [consistent] [consistent]

Note:1. A system will have unique solution (only one solution)when number of unknowns is
equal to number of equations

Note:2. A system is over determined , if there are more equations then unknowns and it will be
mostly inconsistent.

Note:3. A system is under determined if there are less equations then unknowns and it may turn
inconsistent.

Augmented Matrix

System of linear equations:

A Xy +3,X; +a5Xy = b1
Ay X+ Ay X, +8yXg, = bz

Ay Xy g Xy + 8g3Xgy = b3
can be written in the form of matrices product

Q; A, Q3| X b.l
Ay Ay Ay | X | = bz

8y 8p X b,

or we may write it in the form AX=b,

all a12 a13 Xl bl

where A=la, a, as|,X=]|X ,b=n,
aSl a32 a33 X3 b3

a; a, a; b

Augmented matrix is [A:b]=|a, a, a, b,
ay 8 ay b

Example: 4. Write the matrix and augmented form of the system of linear equations
3X-y+6z2=6

X+y+ z2=2
2X+y+4z=3

Solution: Matrix form of the system is
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3 -1 6| X 6
1 1 1|yl|=|2
2 1 4|z 3
3 -1 6 6
Augmented formis [A:b]=[1 1 1 2].
2 1 4 3

Elementary Row operations:

Elementary row operations are steps for solving the linear system of equations:
l. Interchange two rows

Il. Multiply a row with non zero real number
I1l.  Add a multiple of one row to another row

SYSTEM WITH NO SOLUTION

Example: 6 . Solve the system of linear equations

X— 2y+ z—4u=1
X+ 3y+ 72+ 2u=2
X—12y-11z -16u =5

Solution:
Augmented matrix is:

1 -2 1 -4 1
1 3 7 2 2
1 -12 -11 -16 5

Reducing it to row echelon form (using Gaussian - elimination method)

1 -2 1 -4 1
0 5 6 6 1 R,- R;, Rs-R;
0 -10 -12 -12 4

Q

Q

5 6 6 1 -Rs+2R;
0O 0 0 -3
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Last equation is

Ox+0y+0z+0u=-3

hence there is no solution for the given system of linear equations.

but 0--3

Conditions on Solutions

Example:7. For which values of ‘a’ will be following system

X+2y-3z =4
3X—y+5z =2
Ax+y+(a®-14)z=a+2

Q) infinitely many solutions?
(i) No solution?
(iii)  Exactly one solution?

Solution:
Augmented matrix is

1 2 -3 4
3 -1 5 2
4 1 a*-14 a+?2

Reducing it to reduced row echelon form
1 2 -3 4

Q
o

~7 -14 -10 | Ry3Ry Rs4R;

1 2
1
0 0

Q

0 -7 a*-2 a-14

-3 4
2 L | _L1R, RsRy

7

a’-16 a-4

writing in the equation form,
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X+2y—-3z =4 -1
y—2z =L —2
(@*-16)z=a-4 —3
or equation 3 can be written as
(a+4)(a—-4)z=a-4
CASE | .

a=4 = 0z=0

X+2y-3z =4
y-2z =1

7

as number of equations are less than number of unknowns, hence the system has
infinite many solutions,

let z=t
y=4+2t
X=4+3t-4t-2=—t+2

where ‘t’ is any real number.

CASE 11

a=-4 = 0z=-8,but 0-8, hence, there is no solution.
CASE 111

az4,a=-4, let a=1
Equatins .3. = (1-4)1+4)z=1-4

-152=-3

z=1

_10 2 _ 64
y_7+5_35

— 3 64\ _
x=4+3-2(8)=%
the system will have unique solution when a #4 and a =-4
and for a=1 the solution is

x=4,y=8 and z=1
NOTE: (i) a=-4, no solution,
(i) a=4, infinite many solutions and
(ii)a =4, a =-4, exactly one solution .
Example:8. What conditions must a, b, and c satisfy in order for the system of
equations

Prepared by: R. Praveen Kumar, Department of Mathematics, KAHE 11/30



UNIT - IV System of Linear Equations 2017 Batch

X+y+2z=a
X +z =b
2X+Yy+3z=cC

to be consistent.

Solution: The augmented matrix is

R O
w R N

a
b | reducing it to reduced row echelon form
C

1 1 2 a
~|0 -1 -1 b-a R,-R;, Rs-2R;
0 -1 -1 c-2a

1 1 2 a
-1 -1 b-a R3-R;
0 0 0 c-a-b

Q
o

The system will be consistent ifonly if c—a-b=0
orc=a+hb
Thus the required condition for system to be consistent is
c=a+h.
Solution of a system AX=b

Let AX = b be a given m* n system. The m* ( n + 1) matrix [Alb] is called the augmented

matrixfor the system AX = b. Let [4]2] be the row echelon from [A|b]. The following conclusion is
now obvious from the earlier discussions.

)
By

Let AX = b be a m*n system of linear equation and let [4] 2] be the row echelon

e
By

form [A|b], and let r be the number of nonzero rows of [4] 2] . Note that 1 £ min {m, n}.

Then the following hold:For the system AX =D

(i) The system is inconsistent, i.e., there is no solution if among the nonzero rows

of [4]2] there is a row with zero everywhere except at the last place. That is (n+1)th column

is not a pivot column for 122
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(ii) The system is solvable if [412] has r nonzero rows with r £ n. There is a unique
solutionifr=ni.e., [4]2] has exactly n- nonzero rows, the number of variables. And, there

are infinitely many solutions if [4]#] has r-nonzero rows, with r < n. In fact, one can

th
compute these solutions as follows: for 1 < i £ r, let #¢ column be the pivot column. Then,
assign arbitrary values to each of the variable iy ,j = ¥ and compute the values of the

X
variable #,1 % i £ rin terms of these ( as in example 2.2.2 ). Thus, the general solution
will have n - r variables taking arbitrary values.

Examples:
(i)  Consider the system AX = b where

1 2 -5 3

2 5 -1 -9 -3
A= b=

2 1 -1 3 -11

13 2 7 -5

It is early to verify that the augmented matrix

— IR —

[1 1 2 =5 3
2 5 -1 -9 [-3
[4]&2]=
2 1 -1 3 [-1
1 = 2 7 |-5
is equivalent to
1 00 23]
a1 0 =32
a0 1 =213
a0 0 o0
Then by theorem 2.4.1, the system AX = b is consistent and has infinite number of
solutions. In fact, if
B
x-|®
Bt
Ty
Here, we can give arbitrary value to the variable *+ and other variable can be computed
by :
x +2x, =5
s —im = 2
X —2x = 3
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X =0-2n
x, = 2+3x

ie., BT

where * can be assigned any arbitrary value.
(i) Consider the system AX = Db, where

o 1 -4 B
A=12 -5 2 A=]1
5 -5 7 1

The augmented matrix in this system is
o 1 -4 |83
2 -3 211
I I

It is easy to see that this is equivalent to
o 1 =41
42 -3 218
5 -8 T |ar2

Since, the last row is identically zero for the position of A and non-zero for the portion
of B, the system

is inconsistent.
(iii) Consider the system AX = b, where

1 2 3 3
A=12 -1 1 b=|5
30 -1 3

The augmented matrix [A|b] of the system can be shown to be equivalent to

1 00| 2
[A|8]=10 1 0| -1
o0 1| 3

When 4 is the reduced row echelon form of A. Then, AX = b has unique solution,
namely
2
B=|-1
3

LINEAR DEPENDENCE AND INDEPENDENCE OF ROW & COLUMN MATRICES.
Any quantity having n components is called a vector of order n. If a,,a,,.....a, are elements of fields
(F, +, .), then these numbers written in a particular order form a vector.
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Thus an n-dimensional vector X over a field (F,+, .) is written as X=(a,,a,,.....a,)
where @, € F.

Row matrix of type 1xn is n—dimensional vector written as X=[a, ,a,,.....a, ]
Column matrix of type nx1is also n dimensional vector written as
a‘1

X= a_2 orfa, a, .. a,]

a

n

As the vectors are considered as either row matrix or column matrix, the operation of addition of
vectors will have the same properties as the addition of matrices.
Linear Dependence:

The set of vectors {Vv,,V,,.....v, }are said to be linearly dependent if there exist scalars a,,a,,.....a
not all zero such that a,v,+a,v,+....+a,v, =0

Linear Independence:

The set of vectors {V,,V,,.....v, }are said to be linearly independent if there exist scalars a,,a,,.....a
such that a,v,+a,v,+....+a v, =0 gives a,=a,=....=a, =

Examplel: Show that the vectors u=(1,3,2), v=(1,-7,-8) and w=(2,1,-1) are linearly independent.
Proof: The vectors are said to be linearly dependent if
au+ bv +cw=0 where a, b, c are not all zero.

means a(1,3,2)+b(1,-7,-8)+c(2,1,-1)=(0,0,0) (D)

(a+b+2c, 3a-7b+c, 2a-8b-c)= (0, 0, 0)

which gives a+b+2c=0 2
3a-7b+c=0 3)
2a-8b-c=0 4

Adding (3) and (4), we have
5a-15b=0 = a=3b

From (3) 3(3b)-7b+c=0 = 9b-7b+c = c=-2b

Putting a=3b and c=-2b in (2), we get
3b+b-4b=0, which is true. Giving different real value to b we get infinite non zero real values of a and
c. So a, b, c are not all zero.
Hence given vectors u, v and w are linearly independent.
Theorem 1: If two vectors are linearly dependent then one of them is scalar multiple of other.
Proof: Let u, v be the two linearly dependent set of vectors. Then there exists scalars a, b(not both
zero ) such that
au+b.v=0 Q)
Case 1. When a=0

From (1), au=-bv = u:—Ev
a

Hence u is scalar multiple of v.
Case Il. When b=0

From (1), bv=-au = v:-%u

Hence v is scalar multiple of u. Thus in both cases one of them are scalar multiple of other.

Theorem 2: Every superset of a linearly dependent set is linearly dependent.
Proof: Let S, ={X,X,.....X,} be set of n vectors which are linearly dependent.
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Let S, ={X, X;......X,,, X,,;...., X, } where r > n be any super setof S .
As {X,,X,......X, }is linearly dependent set

.. There are scalars a;,a,,a5,....... ,a,, not all zero such that

a X, +a, X, +....+4a X, =0

= aX ta,X,+...+a, X, +0.X
As a;,a,,a,....... ,a,, are not all zero
oo Set S, =X, X,y X, X g, X} i linearly dependent set.

Hence every set of linearly dependent set is linearly dependent.
Theorem 3: Every subset of linearly independent set is linearly independent.

Proof: Let S, ={X,,X;......X,,} be set of n vectors which are linearly independent.
Let S, ={X,X,.......X,} where r < n be any subset of S, .

As {X,X,......X }is linearly independent set thus

a, X, +a, X, +....+4a X =0 gives

+0.X,,, +...+0.X, =0

n+l n+2

- Set S, ={X, X,....... X, } is linearly independent set.

Hence every subset of linearly independent set is linearly independent.
Theorem 4: If vectors X,;,X,......X, are linearly dependent, then at least one of them may be written
as linear combination of the rest.

Proof: Since the vectors X ,X,......X , are linearly dependent, therefore there exist scalars
a;,8,,85,0mn0 ,a, not all zero, such that

a X, +a, X, +....+a X, =0 or a, X +a,X,+..+a,X;+a
Suppose a; #0

-, X, =a, X +a, X, +...a,, X, +a
A Bis

a : a, a
or X=X +—=2X,+.. .+ X +LX A X
-, - - - -

Xippota, X, =0

i+l

i+lXi+1"'+aan

Hence vector X, is a linear combination of the rest.
Theorem 5: If the set {X,,X,..... X, }is linearly independent and the set {X,X,.....X,,Y}is

linearly dependent, then Y is linear combination of the vectors X,,X,......X, .
Proof: Consider the relation

a X +a,X,+......+a X +aY =0 (1)
As set {X,,X,......X,, Y}is linearly dependent
a;,8,,a5,.0e ,a,,a are not all zero

We claim that a# 0. If a=0, then (1) becomes
a X, ta, X, +....+a, X, =0
As set {X,,X;......X_ }is linearly independent
: ;= 8, Agyeennnne =a, =

Then from (1), the set {X,X,......X,,Y}is linearly independent which a contradiction to the given

condition is. Thus a = 0 is not possible. Hence a # 0
From (1), we have -aY=a X, +a,X,+......+a X
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a a a :
or Y=-L1X +-2X,+.....+=2 X, , which proves the result.
-a -a -a

Theorem 6: The kn-vectors A;,A,,......,A are linearly dependent iff the rank of the matrix
A=[A A,,....., A Jwith the given vectors as columns is less than k.
Proof: Let X,A; +XA,, ...+ XA, =0

where X, X,,......, X, are scalars
ay, a, By
a a a

=X, | X 2 et X | X |=0
anl anz ank

= a; X +a,X, +...... +a, X% =0
Ay X + 85X, Fotay X, =0

X +a,X e +a, X =0
Which can be written in matrix form as

a'11 alZ alk Xi O
Gy 8y e Ay || % 0
_anl anZ ank__Xk_ _0_

= AX=0

Let the vectors A, A,,......, A, be linearly dependent.

So, from the relation (i), scalars X, X,,......, X, are not all zero and thus the homogeneous system of
equations given by (ii) has non-trivial solution. Hence p(A)<k .Converse of this theorem is also true.
Theorem 7: A square matrix A is singular iff its columns (rows) are linearly dependent.

Proof: Let n be the order of the square matrix A and A, A,,......, A, be its columns.

SAS[ALA, LA
Proceed in same way as above theorem to prove p(A)<n
Since p(A)<n, thus |A| = 0and hence A is singular matrix.
Conversely, the column vectors of A are linearly dependent.
Theorem 8: The kn-vectors A, A,,......, A are linearly independent if the rank of the matrix
A=[A A,,.....,Ais equal to k.
Proof: Proceed in the same way as above theorem to obtain AX=0. Now suppose .
Then |A| # 0 and homogeneous system of equations given by (ii) has trivial solution only.
X =X, ==X, =0

Thus, the vectors A, A,,....., A, are linearly independent.
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Theorem 9: The number of linearly independent solution of the equation AX=0 is (n-r) where r is
the rank of matrix A.

Proof: Given that rank of A is r which means A has r linearly independent columns. Let first r
columns are linearly independent.

Now, A=[C,,C,,....C,,.....,C.], where C,,C,,.....,C, are column vectors of A.
~[C,,Cpyrnes G| 2 |=0= C % +CyX, +.. +C X, =0 ..(i)

As the set [C,,C,,.....,C,]is linearly independent, thus each vector C,,C,,,,.....,C, can be written as
linear combination of C,,C,,.....,C, .

Now, C,,, =a,,C, +a,,C, +....+a,C
C.,=a,C +a,C,+....+a,C,

C,=a,C +a,C,+....+a,C,, where k=n-r (i)
From (i) and (ii), we get
_ail_ _aZl_ _akl_
a12 a‘22 akZ
alr a2r a‘kr
X, = -1,X,=| O0,...X,=| O
0 -1 0
0 0 0
0 0 | -1

Thus, ,—AX=_O has (r;—r) s_olutions.
Check Your Progress

1)(1)(1
1. Find the vector p if the given vectors are linearly dependent | -1 |,| p |,
3)13)\1

Ans. p=2.

LINEAR SYSTEM OF EQUATIONS
System of Non Homogeneous Linear Equation
If
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a11X1+a12X2+...+alan=b1
321X1+322X2+...+32nxn:b2

..................................... (D

be given system of m linear equations then (1) may be written as

i1 8 - A || X b,
a1 8p .- Apy || X2 b,
_aml amZ amn_ _Xn_ _bm_
a;p  ap IR
dy Ay 2y, b,
=X AX =B and C=[A:B]= "
Am  Amp o Ampnibp

then [A : B] or C is called augmented matrix. Sometime we also write A : B for [A : B]
Consistent Equations.
(1) If rank of A = rank of [A : B] and there is

unique solution when rank of A =rank of [A:B]=n
Q) rank of A=rank of [A:B]=r<n.
Inconsistent Equations.

If rank of A = rank of [A : B] i.e. have no solution.

Example 1. Discuss the consistency of the following system of equation
2x+3y+4z=11, x +5y+7z=15, 3x + 11y + 13z = 25, if consistent, solve.

2 3 4:11
Sol.  The augmented matrix[A:B]=|1 5 7:15
3 11 13:25
[1 5 7:15
Ry, operationisdoneso~ |2 3 4:11
|3 11 13:25
Next operating R, > R, — 2R; and R; - R; — 3Ry, we get
1 5 7:15
~|0 -7 -10:-19
0 -4 -8:-20

1 1
Again, operating R, — —7 R, and Ry — _Z R, we get

1 5 7:15

~ 0 1 Eg
7 7

01 2:5

Next operating R; — R; —R;, we get
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i 1
1 5 7:15
~ 0 1 Eg
7 7
00 EE
L 77 ]
X+5y+7z=15
10 19
y+—z== M)
4,16
7 7
From which we get rank of A = 3 as well as rank of A : B = 3. Hence the system of equations
. . . .4
is consistent and has unigue solution 72:7 =z=4
10 19 10 19 21
And y+—z2=—- = y+ —x4=— = y=-—=-3
7 7 7 7 7

And from (M), we have x + 5y + 72 =15 => x =2
i.e. we have the solution x = 2, y = -3 and z = 4, which is the required result.
Example 2. Test the following equations for consistency and hence solve these equations
2X —3y+7z=5, 3x+y—3z=13 and 2x + 19y-47z = 32.
Sol.  The above equations may be written as AX = B.
2 -3 7 ][x, 5
3 1 =-3|[x,|=|13
12 19 -47]|x, 32

Operating R, —» 2R, — 3R; and Rz — R; — Ry, we get
2 -3 7 [x/ | [5]
0 11 -27||x,|=|11
10 +22 54X, 27

Next, we operate R; &> R; — 2R,
2 -3 7 ][x 5
0 11 -27||x,|=11
10 +22 -54]|x, 27

This indicate the rank of A =2 which is less than 3 (the number of variables) i.e.
p(A)=2<3
So, the given equations are not consistent and so infinite number of solutions can be obtained.
Example 3. Show that if A = -5, the system of equation 3x —y + 4z = 3, X + 2y —
3z = =2 and 6x + 5y + Az = -3 have a unique solution. If A = -5, show that the equations are
consistent. Determine the solution, in each case.
Sol.  The given equations are

3X—-y+4z=3,
X+2y—-3z=-2 ..(D)
and 6x + 5y + Az =-3
3 -1 4 X 3
IfA=]1 2 -3|, X=|y| and|B =|-2] such that AX = B from (1)
6 5 A z -3
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3 -1 4:3
Then augmented matrix A:B=|1 2 -3:-2
6 5 A:-3
Operating Ry,(i.e. interchanging R; and Ry)
1 2 -3:-2
A:B=|3 -1 4:3
6 5 A3
Now operating R, — 3R, [i.e. R,, 1(-3)] and Rs, 1(-6) i.e. Rz — 6R;, we get
1 2 3:-2
A:B~|0 -7 13:9
10 -7 1+18:9
Next, Rs — Ry[(i.e. R, 2(-1)], we get
1 2 -3:-2
~|0 -7 13:9 ..(2)
0 0 A+5:0

If L = — 5, then rank of A becomes p(A) = 2 which is less than 3, (the number of unknowns)
and hence the equations will be consistent and will have infinite number of solutions

. 2
Next, operating, Ry + 7 R, we get

1 0 5:;
~10 =7 13:9 | from this matrix, if L # -5
0 0 A+5:0

then rank is 3 and the equation will be consistent and we get

5 4
X + ?2:7 ; —7y+13z=9and (A +5)z=0 ie.z=0

\IILO

= -1y=9= y=-

and x
. . o 4 9
i.e. unique solutionisx= -, y= 7 z =0, which is required result.

If L = -5, then from (2), we have X+2y—-3z=-2,-7Ty+13z=9 ...(3)
If we take z = k than from (3),

13k -9
13k -9 3k+2( 7 j—z 45K
=——— and zZ= -

7 3 7
Example 4. Examine whether the following equations are consistent and solve them if they
are consistent 2x +6y + 11 =0, 6x + 20y -6z + 3 =0 and
6y —18z+1=0.
Sol.  The above equations may be written in the form
2 6 0 |x -11

AX=Bwhichis |6 20 -6 |y|=|-3 ..(D)
0 6 -18j|lz -1
Now the augmented matrix may be written as
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2 6 0 : -11
A:B=|6 20 -6 : -3 ..(2)
0 6 -18 : -1
Operating R, > R, — 3Ry, we get
26 0 : -11
A:B~|0 2 -6 : 30
0 6 -18 : -1
Now, operating R; — R; — 3R, we get
2 6 0 : -11
~10 2 -6 : 30
00 0 : -9

Hence rank of A = p(A) =2 and p(A : B) = 3. So, p(A) = 2 < 3 (number of variables). This indicated
that given equation are in consistent and so it has no unique solution.

Example 5. Solve the following system of equations by matrix method x +y +z=8, x —y +
2z =6 and 3x + 5y -7z =14.

Sol.  The above equations written in the form AX = B.

1 1 1 X 8
where A=|1 -1 2 | X=|y|and B=|6
3 5 -7 z 14

So, we may write augmented matrix as
11 1 : 8

A:B=|1 -1 2 : 6 ..(D)
3 5 -7 :14
Operating R, - R, — Ry and R; — R; — 3Ry, we have
1 1 1 : 8
A:B~|0 -2 1 : -2 ...(2)
0 2 10 : 10
Again R; —» Rz + R, we have
11 1 : 8
~/0 -2 1 : =2
0 0 -9 : -12

this implies that

X+y+z=8
—2y+z=-2 ...(3)
and —-9z=-12
4 4 1
= z= < and2y=z+2=—+2=—O y=E
3 3 3 3
Using 1% equation of (3), we getx +y +z=8
5 4
= X+ -+—- =8 = x=8-3=5
3 3
From (2) we see that p(A) = 3 = number of variables so, the system of equations are
. . 5 4
consistent and solutions are x =5,y = 3’ zZ= 3
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Example 6. Determine for what values of A and u the following equations have (i) no solution ii) a
unique solution (iii) infinite number of solution : X +y+z=6, X+2y+3z=10 andx +2y + Az =
M.
Sol.  The above equations may be written in the form AX = B.
11 1||x

i.e. 1 2 3||ly|=
1

1 1 :
The augmented matrix [A : B] = 2 3 :10
12 )X
Operating R, — R, — Ry and Rs — R; — Ry, we get
11 1 : 6
~/101 2 = 4
01 A-1: p-6
Again operating Rz — R,, we get
11 1 6
~10 1 2 : 4
0 0 A-3 : p-10
= wegetx+y+z=6, y+2z=4and (A —3)z=p - 10.
Q) If R(A) # R[A: B]i.e.if A —3=0and pn— 10 # 0, then rank of A = rank of [A : B]. Since
p(A) =2 and p(A : B) = 3. The equation have no solution.
(i) The equations have unique solution if rank of A =rank of [A: B] =3,i.e. if A—3#0and p—
3=0.
(iii) If p(A) =p(A:B)=2i.e.whenA-3=0and u—10=0i.e. when A =3 and u=10.
Then these are infinite number of solution.

System of Homogeneous Linear Equations
If

g Xg Fap Xo+ ...+ ag X,
Aog Xq + A Xo + ...+ as X,

..................................... (1)

Am X1t ame Xo+ ... tam Xn =
be given system of m linear equations then (1) may be written as AX=0

8y &y e A, (| X 0
azl a22 a2n X2 0
aml a'm2 a‘mn_ _Xn _0 _

Here A is called the coefficient matrix and the given system of equations AX=0 is called linear
homogeneous system of equations.

Working rule for determining solution of m homogeneous equations in n variables.

Firstly we find the rank of coefficient matrix A. Then

1. There is only a trivial solution which is X, =X,=.....=X,=0if p(A) =n.

2. A can be reduced to a matrix which has (n-r) zero rows and r non zero rows and if p(A) <n
so the system is consistent and has infinite number of solutions.

Thus, the given system of equations has a non- trivial solution iff |A| =
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Example 1: Solve the following system of equations
X-y+z=0
X+2y-z=0
2x+y+3z=0
Solution. Writing the given equations in the matrix form, we have
1 -1 1]|x 0

1 2 -1|y|=|0
2 1 3jz| |0

1 -1 1
or AX=0,where A=|1 2 -1
2 1 3
Operating R, - R,+(-R;)and R, - R,+(-2)R,.
1 -1 1
A0 3 -2
0 3 1
1 -1 1
Operating R; > R,+(-R,), AU|0 3 -2
0 0 3

Operating R, -> R, X(%j and R, - R, X(:_lgj

1 -1 1
A0 3 -2/3
0 0 1

. p(A)=3 = number of variables and hence the given system of equations has only trivial solution, x

Ezamiale:o .Solve the following system of equations:
X-y+2z-3w=0

3X+2y-4z+w=0

4x -2y +9w =0

Solution: Writing the given equations in the matrix form, we have

0
1 -1 2 -3
y 0
3 2 41 =
Z 0
4 -2 0 9
w 0
1 -1 2 -3
or AX=0,where A=|3 2 -4 1
4 -2 0 9

Operating R, > R,-3R, and R, - R;- 4R,
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1 -1 2 -3
A0 5 -10 10
0 2 -8 21
Operating R, = R, (%)
1 -1 2 -3]
A0 1 -2 2
10 -8 21|
Operating R; > R;- 2R,
1 -1 2 -3
All|0 1 -2 2
0 0 4 17

. p(A)=3, Here n = 4 (the number of unknowns)

Now p(A)<4. Thus the system of equations has infinite solutions. The solutions will contain 4 —
3=1 arbitrary constant.
Equation corresponding to the matrix are

X-y+2z-3w=0 1)
y-22+2w =0 (2)
-4z+17w =0 (3)
From (3), z:%w
From (2), y-%w+2w=0 =y :%W

From (1), x—%w+%w—3w=0 = X =W

Putting w = k, we getXx =k, y :%k, Z =%k , Which is the general solution, where K is an arbitrary

parameter.

Check Your Progress

1. Solve the following system of liear equation
X—y+z=0

X+2y—-2=0

2X+y+3z=0

Ans.x=y=z=0.

2. Find the values of a and b for which the following system of linear equations
2X+by-z=3

SX+7y+z=7.

ax+y+3z=a

Ans.a=1landb=3.
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APPLICATION OF LINEAR SYSTEM

Three by three systems of linear equations are also used to solve real-life problems. The
given problem is expressed as a system of linear equations and then solved to determine the
value of the variables. Sometimes, the system will consist of three equations but not every
equation will have three variables. Example three is one such problem.

Example 1: Solve the following problem using your knowledge of systems of linear
equations.

Jesse, Maria and Charles went to the local craft store to purchase supplies for making
decorations for the upcoming dance at the high school. Jesse purchased three sheets of
craft paper, four boxes of markers and five glue sticks. His bill, before taxes was $24.40.
Maria spent $30.40 when she bought six sheets of craft paper, five boxes of markers and
two glue sticks. Charles, purchases totaled $13.40 when he bought three sheets of craft
paper, two boxes of markers and one glue stick. Determine the unit cost of each item.

Let p represent the number of sheets of craft paper.
Let m represent the number of boxes of markers.
Let g represent the number of glue sticks.

Express the problem as a system of linear equations:

3p+4m+5g =$24.40
6p +5m+2g = $30.40

3p+2m+g =%$13.40
Solve the system of linear equations to determine the unit cost of each item.

3p+4m+59 =2440 3p+4m+5g =24.40 3p+4m+5g =24.40
= =
3p+2m+g =13.40 -5@8p+2m+g=1340) -15p-10m-5g =-67.00
—12p—-6m=-42.60

6p-+5m+ 29 :30.4036p+5m+2g =30.40 :>6p+5m+2g =30.40
3p+2m+g=13.40 -2B8p+2m+9g=1340) —-6p—-4m-2g=-26.80
m=3.60

-12p-6m =-42.60

-12p-6(3.60) =—42.60
—12p-21.60=-42.60
-12p-21.60+21.60=-42.60+21.60

3p+2m+g =13.40

3(1.75) + 2(3.60) + g =13.40
5.25+7.20+ g =13.40
12.45+ g =13.40

-12p=-21
12.45-12.45+ g =13.40-12.45
__12 ___21 - 95
1277 9=
p=175
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The unit cost of each item is: 1 sheet of craft paper = $1.75
1 box of markers = $3.60
1 glue stick = $0.95
Example 2: Solve the following problem using your knowledge of systems of linear
equations.

Rafael, an exchange student from Brazil, made phone calls within Canada, to the United
States, and to Brazil. The rates per minute for these calls vary for the different countries.
Use the information in the following table to determine the rates.

Month Time within Time to the Time to Brazil Charges

Canada (min) U.S. (min) (min) $
September 90 120 180 $252.00
October 70 100 120 $184.00
November 50 110 150 $206.00

Let ¢ represent the rate for calls within Canada.

Let u represent the rate for calls to the United States.

Let b represent the rate for calls to Brazil.

Express the problem as a system of linear equations:
90c +120u +180b = $252.00
70c +100u +120b = $184.00
50c +110u +150b = $206.00

90c +120u +180b = 252.00 - 2(90c +120u +180b = 252.00)

70c+100u +120b =184.00  —3(70c+100u +120b =184.00)

. 180c + 240u +360b =504.00

—210c —300u —360b =-552.00
—30c —60u =—48.00

70c+100u +120b =184.00 - 5(70c +100u +120b =184.00)

50c +110u +150b =206.00  4(50c+110u +1500 = 206.00)

T 350c —500u —600b =-920.00

200c + 440u + 6000 = 824.00
—150c —60u =-96.00
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—30c —60u =-48.00 —1(-30c — 60u = —48.00) . 30c +60u = 48.00

~150c—60u =-96.00  ~150c—60u=-9600  —150c—60u =-96.00
~120c = -48.00
120 _ -4800
-120° -120
c=.40
70c +100u +120b =184.00
~30c — 60u = —48.00 70(.40) +100(.60) +120b =184.00
—30(.40) - 60u = —48.00 28.00+60.00+120b = 184.00
~12.00- 60u = —48.00 88.00+120b =184.00
~12.00+12.00~60u = ~48.00+12.00 88.00-88.00+120b =184.00-88.00
~60u = —36.00 120b = 96.00
~60 _ ~36.00 120, _ 96.00
-60  -60 120 120
u=.60 b =.80

The cost of minutes within Canada is $0.40/min. The cost of minutes to the United
States is $0.60/min. The cost of minutes to Brazil is $0.80/min.
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PART —B (5x2 =10)

Possible Questions (2 marks)
1. Define the systems of Linear equations

2. Define the row reduction echelon matrix with example.
3. Define the row equivalent matrix.

4. What do you mean by Linear Independence?

5. When we say that the system is homogeneous.

6. In which case the linear equations are equivalent.

7. What do you mean by Linear dependence?

8. When we say that the system is Non-homogeneous.
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PART —C (5x6 =30)

Possible Questions (6 marks)

1 5 -3
1) Determine if b is a linear combination of a;and a, where a1=[—2], az=[—13] and b=[ 8 ]
3 -3 1
2) Determine the system is consistent
X1-6X,=5
X2'4X3+X4=0
-X1+6Xo+X3+5X,=3
-Xo+5X3+4X,=0
1 5 2 -6
0 4 -7 2
0 0 5 0

3) Determine if the system is consistent

-3

4) Let Az[g i] ,u=[_41] and v=[ c

] Verify i) A(u+v)=Au+Av ii)A(5u)= 5A(u).
3 -4 2 0
5) Find the general solutions of the system whose augmented matrix is[—9 12 -6 0]

-6 8 —40
3 5 6 7
6) Describe the solution of AX = BwhereA= (-3 -2 1 |andb =|-1
6 1 -8 —4
3 -1 2
7 If A=<2 1 1| find all solutions of AX=0 by row reducing A.
1 -3 0

8) In V3(R) the vectors (1,2,1) ,(2,1,0) and (1,-1,2) are linearly independent or not
9) Find a row reduced echelon matrix which is row equivalent to

1 —1
A=12 2 What are the solutions of AX=0?
i 14+
1 4 2
10) Let v1=[2], v2=[5 and v3=[1] ,
3 6 0

i) Determine if the set {vy, v,,va} is linearly independent.
ii) If possible, find a linear dependence relation among vy, V,, and v
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e . KARPAGAM ACADEMY OF HIGHER EDUCATION
N ) B (Deemed to be University Established Under Section 3 of UGC Act 1956)
= Pollachi Main Road, Eachanari (Po),
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Subject: Algebra Subject Code: 17MMU102
Class :I-B.Sc. Mathematics Semester  : |
Unit IV

System of Linear Equation
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
S.No Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

1 Any n-tuple of elements of F which satisfies each of
the equations in linear equation is called a

............................... of the system. value root solution function solution

Any............ -tuple of elements of F which satisfies
2 |each of the equations in linear equation is called a

solution of the system. 1 2 3 n n

Any n-tuple of elements of F which satisfies each of
3 |the............. in linear equation is called a solution

of the system. functions equations roots solutions equations
4 |Ifyl=y2=........... =ym=0 then the system is

...................................... homogeneous non homogeneous |linear nonlinear homogeneous
5 Ifyl=y2=.......... SYM=..oiee. then the system is

homogeneous. 0 1 2 3 0

The most fundamental technique for finding the
solution of a system of linear equations is the integration by
technique of ....................oo substitution elimination parts differention elimination
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The most fundamental technique for finding the
7 |solution of a system of.................... equations is
the technique of elimination. integral differential linear nonlinear linear
The most fundamental technique for finding the
8 i of a system of linear equations is the
technique of elimination. function root solution value solution
............. systems of linear equations are equivalent
9 |if each equation in each system is a linear
combination of the equations in the other system. one Two three four Two
Two systems of linear equations are ......... if each
10 |equation in each system is a linear combination of the
equations in the other system. zero equivalent different division equivalent
Two systems of linear equations are equivalent if
11 |each equation in each systemisa ................... non
combination of the equations in the other system. linear non linear homogeneous  |homogeneous linear
Two systems of linear equations are equivalent if
12 |each equation in each system is a linear combination
of the equations in the ............. system first same other finite same
13 i, systems of linear equations have
exactly the same solutions. linear nonlinear Equivalent homogeneous Equivalent
14 |Equivalent systems of ..................... equations non
have exactly the same solutions. linear non linear homogeneous  |homogeneous linear
15 |Equivalent systems of linear equations have exactly
the................. solutions. zero same different finite same
16 |An.............. matrix R is called a row reduced
echelon matrix if R is row reduced. mxm nxn mxn nxm mxn
17 |An mxn matrix Riscalleda ....................... row reduced column reduced
matrix if R is row reduced. echelon echelon echelon null row reduced echelon
18 o
An mxn matrix R is called a row reduced echelon
matrix if Ris............... unit null column reduced |row reduced row reduced
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In the row reduced echelon form every .............. R
19 |which has all its entries 0 occurs below every row has

a non zero entry. row column unit singular row
In the row reduced echelon form every row R which

20 |has all its entries ............. occurs below every row

has a non zero entry. 0 1 2 3 0
In the row reduced echelon form every row R which

21 |has all its entries 0 occurs below every row has a

.................. entry. zero non zero unit diagonal non zero
Inthe .................... form every row R which has

22 |all its entries 0 occurs below every row has a non row reduced column reduced
zero entry. echelon echelon echelon null row reduced echelon
An.......... matrix R is called row reduced if the

23 |first non zero entry in each non zero row of R is
equal to 1 mxm nxn mxn nxm mxn

24 |An mxn matrix Riscalled .................... if the first |row reduced column reduced
non zero entry in each non zero row of R is equal to 1 echelon echelon rowreduced column reduced rowreduced
An mxn matrix R is called row reduced if the first

25 e, entry in each non zero row of R is equal to
1 zero non zero diagonal unit non zero

An mxn matrix R is called row reduced If the first
26 |non zero entry in each non zero row of R is equal to

In row reduced, each .................. of R which
27 |contains the leading non zero entry of some row has

all its other entries 0. row column diagonal first column
In row reduced, each column of R which contains

28 |the................. non zero entry of some row has all

its other entries 0. first second third leading leading
In row reduced, each column of R which contains the

29 |leading ................. entry of some row has all its

other entries 0. zero non zero diagonal unit non zero
In row reduced, each column of R which contains the

30 |leading non zero entry of some ................ has all

its other entries 0. row column diagonal first row
In row reduced, each column of R which contains the

31 |leading non zero entry of some row has all its other
(31108 [ T 0 1 2 3 0
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32

Every ..ol matrix A is row equivalent to
a row reduced echelon matrix.

mxm

nxn

mxn

nxm

mxn

33

Every mxn matrix A iS ......coovvvvnnnnnnn. equivalent
to a row reduced echelon matrix.

row

column

diagonal

leading

row

34

Every mxn matrix A is row equivalent to a

row reduced
echelon

column reduced
echelon

echelon

null

row reduced echelon

35

If A is an mxn matrix and ................. ,then the
homogeneous system of linear equations AX=0 has a
non- trivial solution.

m<n

m>n

m=n

m<n

36

If A is an mxn matrix and m<n,then
the.........oooeiinii. system of linear equations AX=0
has a non- trivial solution.

homogeneous

non homogeneous

linear

nonlinear

homogeneous

37

If A is an mxn matrix and m<n,then the
homogeneous system of linear equations
AX=............. has a non- trivial solution.

38

If A is an mxn matrix and m<n,then the
homogeneous system of linear equations AX=0 has a
............. solution.

trivial

non- trivial

ZEero

non- zero

non- trivial

39

IfAisan............... matrix,then A is row
equivalent to the nxn identity matrix iff the system of
equations AX=0 has only the trivial solution.

mxm

nxn

mxn

nxm

nxn

40

If A is an nxn matrix,then A is .............to the nxn
identity matrix iff the system of equations AX=0 has
only the trivial solution.

row equivalent

column equivalent

diagonal

leading

row equivalent

41

If A Is an nxn matrix,then A is row equivalent to the
11041 IO matrix iff the system of
equations AX=0 has only the trivial solution.

Zero

identity

row

column

identity

42

If A is an nxn matrix,then A is row equivalent to the
nxn identity matrix iff the system of equations
................. has only the trivial solution.

AX=I

AX=0

AX=R

AX=B

AX=0

43

If A Is an nxn matrix,then A is row equivalent to the
nxn identity matrix iff the system of equations AX=0
hasonlythe ................... solution.

trivial

non- trivial

Z€Ero

non- Zero

trivial
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Introduction to linear transformations, matrix of a linear transformation, inverse of
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UNIT -V
LINEAR TRANSFORMATIONS AND MATRICES

Linear Transformation:

Definition of linear transformation:
A linear transformation L of the vector space V into the vector space W is a function (denoted by
L:V W) sych that for WV eV.keR,

@ L(u+v)=L(u)+ L(v).
() L(ku)=kL(u),

Note:
If L:V =V and L is a linear transformation, L is also called a linear operator on V.

Note:
L(u) is called the image of U .

Example:
Let
U Vi U v,
sl v.2 e u.; Ve v,
u, v, u. v

A linear transformation L of R" (V) into R™ (W) is a function such that
(a) L(u+v)=u"+v" = L(u)+L(v)
L(u)=u" g LW =Vv"

(b) L(kU): kL(U) = kU*! Where k (S R

, Where

Several special cases of the above linear transformation are the following:

1. Projection: L:R® = R” s defined by
X

HEE

z

L is a linear transformation since
ul Vl
u=u,|\v=|V,

(@) for any Us Vs ,
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U, +V, U v,
u+v, | [u ] [y
Lu+v)=L|u, +v, :{ }:{ }{ }:L U, ||+ L]V, ||=Lu)+LV)
U, +Vv, | |u,| |v,
Uy +V, U, v,
(b) for K € R,
ku u
' ku, u, '
L(ku)=L]||ku, ||= =k| ' |=kL |u, ||=kL(u)
ku, u,
ku, U,
2.
Dilation: 1 *R* = R s defined by
ul ul
Luw=L||u,||=r|lu, |[=ru,r>1
u3 u3
Constraction: LR =R’ js defined by
ul ul
L,(u)=L,||u, ||=r|lu, |=ru,0<r<1
u3 u3
= Both L1 and L2 are linear transformations.
3.
¢ (x, 7)

L -] "=l e X =rC0S(0), y =rsin(0)
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= X =rcos(@ + @)= rcos(@)cos(¢)— rsin(@)sin(¢)
y =rsin(@ +¢)=rsin(@)cos(4)+rcos(0)sin(¢)

= X =xcos(¢)— ysin(g)
y = xsin(¢)+ ycos(g)

= ]l il
Rotation: L:R* = R’ js defined by

oo e

L is a linear transformation.

4. Let A be fixed MXN matrix. Then,
L:R" = R" gefined by

u1 ul
Lu)=L uf =A uf = Au
un un
is a linear transformation since
(@) for any UVER",
L(u+v)=Alu+v)=Au+Av = L(u)+ L(v)
(b) for K € R,
L(ku)= A(ku) = k(Au)=kL(u)
Example:
Let

L:P, > P, L(a,x* +a,x+a,)=(a, +a, )X +2,

where P, is the set of all the polynomials of degrees = N Is L a linear transformation?
[solution:]

L is a linear transformation since

_ 2 _ 2
(@) for any U= 82X +a,X+ay, V=DX"+bXx+b; P,

Prepared by: R. Praveen Kumar, Department of Mathematics, KAHE 4/26



UNIT -V Linear Transformation and Matrices

| 2017 Batch

L(u+v)=L((@, +b, )x* +(a, +b)x+ (2, +b,))
[(a, +b,)+(a, +by )Jx+(a, +by)
= (az +a1)x+ao]+[(b2 +b1)X+b0]

= L(a2x2 +aX+ a0)+ L(b2x2 +hx+ bo)
= L(u)+L(v)
(b) for ke R,
L(ku) = L(k(a,x? +a,x+a, ))= L(ka,x* + ka,x +ka,
= (ka, +ka, Jx+ka, =k((a, +a,)x +a]
= kL(a2x2 +ax+ ao)
= KkL(u)
Example:
Let LR Pn, L is the operation of taking the derivative, for example,

L(x2 ) = 2X
Is L a linear transformation?

[solution:]

L is a linear transformation since
u=ax"+a X" +--+a,v=h x"+h X" +--+b, . P,

(a) for any in
L(u+v)= L((an +b, X"+ (@, +b, X+ (3, + b ))
=n(a, +b, X" +(n-1)a,, +b,_ K"? +--+(a, +b)
=lna, X" +(n-T)a, 12+t a, |+ il X"+ (1=, X7 by
= L(anxn +a X" +---+a0)+ L(bnxn +h x"™ +---+b0)
= L(u)+L(v)
(b) for K € R,

L(ku) = L(ka,x" +Ka, X" +---+kap )
=nka X" +(n-1)ka_ X" +---+ka,
= k[nanx”‘1 +(n-1)a,_x"2+---+ ai]
= kL(anxn +a, X"t ao)
= kL(u)
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Example:

. 3 2
L:R™ = R" is defined by

ul
u1u2
L[| u, =
u3
u3

Is L a linear transformation?
[solution:]

L is not a linear transformation since

ul Vl
u=|u, [v=|v,
u v
(a) for any 3 34,
U +V
S L TRV (TN | I ITATRRTATARHTRVARRTATA
Lu+v)=L|u,+v,||= =
ul Vl
uu, +v,v, | [uu, ] [vy
2 U TR =R R =1, | [+ U |V, || = L)+ L(v)
3 3

Important result:
Let L:V =W pe a linear transformation. Then,

L(OV ) - OW , Where 0, is the zero vector in V and Ow is the zero vector in W.
o LUu-v)=L(u)-L(v)
Vl,Vz,...,Vk Cl,Cz,...,Ck

® For any vectors in V and any scalars , then

L(cv, + ¢V, +--+¢V, )= ¢, L(v, )+ C,L(v, )+---+ ¢, L(v, )

S=iw, W,,.... W
{1' 2yt n}beabasisforv.lfu is

L(w, ), L(w,),..., L(w, )

® If Vis an n-dimensional vector space and

any vector in V, then L(u) is a linear combination of
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Let L:R® — R? defined by
L(x)=L >)<(1 N >)<(1 = AX
= 211711 2 3 2 | = .
X3 | X3
Let
11[0]
s={lol|1}|olLT- { }
0 _O_
Then, since
x| [1 0
X={ %, | =% 0[+X,|L]|+X,]0 :>[x]5_ =X
X | 0 0
and
X | -
111 X X, +X 1 0
L(x)= X, |= = (X, 4%, 4% ) [+ (x +2x, +3x,
123 S | X, +2X 13X 0 1
3
_—x1 then
X, X, + X, 111 111
=1L =L(x)= X, |= XJs = AlX
L6l [x +2x2+3xj Y [1 2 3] X2 [1 2 3}[ k= Al
L A3
L(X): [L(X)]T = A_X]s = AX,
Let L:R® — R? defined by
X
L=t x| =] 52 .
2X,
X3
Let
1/(0](1
1110
S:{Vl’VZ’VS}: 1h{1]2 ’T:{Wl’WZ}: ol'l21(
011413
Find the matrix of L with respect to the bases S and T.
[solution:]
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A= [:L(Vl )]T [L(Vz )]T [L(Vs )]T ]

L(v,)=L (1) - F;(ﬂ - B} - 2m T OB} — 2w, + 0w,

Thus,

R RIREARAREREEEE

R PHEHRAEHES

= [tk =[5

Therefore,
2 1 3
A= )
o s o

. n m
Let L . R —> R be a linear transformation. Let
S ={V,,\Vy,o 0,V fana T = W, W,,..., W}

General Procedure for Computing A:

n m
be bases for R and R , respectively. Then, the matrix of L with respect to the bases S and T can
be obtained via the following steps:

1. Formthe MX (n + m) augmented matrix
[Wl Wy oo Wy ‘ L(Vl) L(Vz) L(Vn )]
2. Transform the augmented matrix into the reduced row echelon matrix,

[ | Al
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The matrix A is the matrix of L with respect to the bases S and T.

Inverse of Matrix

If A is a non singular matrix, then inverse of matrix A exist and is defined as matrix A satisfies AAT=AA=I
, Where | is unit matrix of same order as that of the matrix A. To find the inverse of matrix A write A=IA |, then
perform same suitable elementary row (column) operations on the matrix A and on the right hand side till we

reach the result I=BA . Then A*=B.

o -

Example 1: Find the inverse of matrix A=

Solution. We write A=IA j.e., 0|A

(62}
O O Fr NN MW
O P O wErk N
o

g1 o

N A~ ow

w =N
Il

1
Operating R; > R;+(-5)R,,R, > R, XZ

1 3 1 00

weget, |0 1 =0 0A

2
1 1
4 4
0 -13 -7] |5 0 1
OperatingR;, = R, +(-3)R,,R; > R, +13R,,

10 1 0

Dk, MO
o
>

00-E -5

4

-

-~ |

OperatingR; - R, x(

TARS
;__/
B
J
o
+
7\
N
N
o
;;U
d
o
+
7\

R
N—
o

2
3
1

o O B+
o O

0
0l=|-

3
1

||o'_\o SN wi-
=

4
3

10 5 5

A=l 5 7 1
15

20 -13 -4

Problems to Check The Progrress

1. Using elementary operation, find the inverse of the following matrices.

1 2 -1 1 3 -1 5
A=|-1 1 2 Ans. A‘lzﬁ 5 3 -1].
2 -1 1 -1 5 3

using the elementary operations.
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Characterizations of Invertible Matrices

The Invertible Matrix Theorem

Let A be a square n xn matrix. The the following statements are equuvalent
(1.e., for a given A, they are either all true or all false).

a. A is an invertible matrix.

b. A is row equivalent to I,,.

c. A has n pivot positions.

d. The equation Ax = 0 has only the trivial solution.
e. A 1s expressible as a product of elementary matrices.

f. The equation Ax = b has at least one solution for each b m R".
g. The equation Ax = b has a umque solution for each b in R™.
h. There 1s an n x n matrix C' such that CA = 1,,.

1. There 1s an n x n matrix [) such that AD =1,.

j. AT is an invertible matrix.

EXAMPLE: Use the Invertible Matrix Theorem to determine if A is

invertible, where
[ 1 -3 0 ]
A= -4 11 1 1.

2 7 3]
Solution
1 =3 0 1 -3 0
A= 4 11 1| ~---~1]0 —1 1
2 7 3 0 0 16

3 p1vots positions

Circle correct conclusion: Matrix A is / 15 not mmvertible.
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Theorem

Every system of linear equations has no solutions, or has exactly one
solution, or has mfinitely many solutions.

1 1 D by
EXAMPLE: Let A=| -3 —11 —14 | and b= b
2 8 10 b3

Is the equation Ax = b consistent for all b?
If not, find all b such that the equation Ax = b 1s consistent.

Solution: Augmented matrix corresponding to Ax = b:

[ 1 4 b b ] [1 4 5 by "
-3 —11 —14 b 0 1 1 3b+b
2 8 10 bs 0 0 0 —2b;+bg

Ax = b 1s _____ consistent for all b since some choices of b make
-2by + by nonzero.

The equation Ax = b 1s consistent 1f

— by + by = 0.

(equation of a plane in R?)

Subspaces of R" and Their Dimensions
Vector Space R"

Definition 1.1. The vector space E" 1z a set of all n-tuples (called vectors)

T
Ta
x
J—ﬂ
where 1, 1a,--- ,r, are real numbers , together with two binary operations, vector

addition and scalar multiplication defined as follows:
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Iy |
- Ia yal .
(1) Vector addition: Toeveryx = | | | andy = | | m K",
In Un
Tt
Ta+ia
Xt+y= .
ESRNS
1
T . T2
(2) Scalar multiplication: To every number & and vector x =
Tn
kxy
kxa
=1
kx,
1 —1
Ex. letx= (2| and vy | 3 |. Find 2x + y.
3 4
Properties
(1) Vector addition: For all vectors x, v and =
(1) vector addition 18 associative: (x +yv)+ 2 =x+ [y + z);
(n) vector addition 18 commutative: x + v = y + x;
(1) there exists an element (additive identity or origin)
0
0
0=
0
such that x + 0 = x for every vector x;
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(2) Scalar multiplication: To numbers a, b and vector x

(1) scalar multiphcation 18 associative: a(bx) = (ab)x;
(n) 1x = x for every vector x.
[3) Scalar multiplication distributes over vector addition: a(x + y) = ax +
ay.
(4) Scalar multiplication distributes over addition of scalars: (a + blx =
ax + ay.
Subspaces of E®

Definition 1.2, Subspaces of E™ A subset W of BE™ 1= called a subspace of B™ 1f 1t
has the following properties:

a. W contains the zero vector in B™.
b. W is closed under addition: if wq, wo are both in W, then so 15 wy + wa.

c. W 1s closed under scalar multiphcation: If w 15 in W and k 15 an arbatrary
scalar, then kw 18 n W,

2 Null and Column spaces of Matrices

2.1 Homogeneous system

Consider the following homogeneous hinear system of m equations and n unknowns

ap Ty + ajara + - + Gty = 0
an Ty + asaTa + -+ + GapTy = 0
Qm1 Tl + 8mars + + AmnTn = 0
Or
Ax =10,
where _
@19 25 E I L5 PN
@31 dan ... (g
A= ]
_ﬂ'm] L Tmn
x|
. . . T3
1s the coefficlent matrix and x = | _
J'-r'l.
Ty 0
T3 0} . _ . .
Thenx= | . | =0=|.| 18 a solution. Moreover, it x and y are two solutions
T (0

of the system. so are
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l. x+y
2. kx.

where k 15 any number. Therefore,
ax + by

are also solutions to the system, where a, b are numbers. ax + by 15 called a hinear

combination of x and y.
The set of all solutions to the linear system Ax = 0, 15 called the Null space of

matrix A, denoted by Null{ A} or N{A). It 18 a subspace of B". It 15 alzo called the
kernel of A, denoted by Ker(A).

2.2 Inhomogeneonus System
by
Forb = | _ |, the system of linear equation
br
Ax=b

may or may not be compatible. When 1t 13 compatible, assume that xg 15 any solution
of Ax = b, then any solution x of Ax = b can be wntten x = xp + y, where y 15 a
solution of the homogeneous system Ay = (.

That 1s, the solution set of Ax = b 15 xp + N(A).

2.3 Span
Definition 2.1. A vector b in E"™ 15 called a linear combination of the wvectors
vi,va, - v in B™ 1f there are scalars ¢y, ¢, -+ , cp such that
b= cxy + coxa + - -+ + CpXp.
Ex. MNote that

)= (5] [ == o]+ 1]

11 is a linear combination of 1 and 0 )
T9 0 1
2

Ex. |VE'.-‘ 15 a linear combination of |Vl_‘ and [?] sInce

i i L

HR iR
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Definition 2.2. The set of all inear combinations of vy, va,--- ,vg 15 a subspace. It
18 called the span of vy, va,--- , v, denoted by
Span{vi,va,--- ,vi}.

2.4 Column space of matrices
Let A be am m ®x n matnx and vq,va,--- ,v, be the column vectors of matrix A.
The span of column vectors:

span{vy, va, - - ,Vn}

15 called the column space of matrix A. It 15 also called the range of A, denoted by
R(A).

Definition 14. Let A be am m xn matriz. Then the matriz A or any matriz
obtained by deleting some rows or columns of A s called sub-matriz of A.

Definition 15. Let A be am m x n matriz given by

ajq 4 in
. . iday lao fe lan

.4 = [ﬂij]mxn =
Mm1 Ap2 " Opyp

If we retain any t rows and t columns of A and deleting m —t rows and n—t
columns, we obtain a t x t square sub-matrix of A. The determinant of this
square sub-matriz of order t is called a minor of A of order t.

Definition 16. The number r is called the rank of the matriz A if it satisfies
the following properties:

1. There is at least one non-zero minor of order r.

2. Every minor of order r + 1 is zero.

Problem 1: Find the rank of the matrix A = { ; 3 }

Solution: Since
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1 2
, : 2 3
Problem 2: Find the rank of the matrix A4 = {9
1 2
Solution: Since there is no minors of order 4 and 3, and hence p(A) < 3.
Now A has a minor ;12 2 ' = —1#10, and since its order 1s 2. p(A4) = 2.

" 1 3 41 ]
) : 2 6 2
Problem 3: Find the rank of the matrix A = 1 9

9
Solution: Left as exercise.

2

1 2
Problem 4: Prove that the rank of matrix every element of which 1s unity
1s 1.
Solution; Since all elements are 1, square matrix of every order will have
determinant 0, except the square matrix [1] of order 1.
Problem 5: Show that no skew-symmetric matrix can be of rank 1.
Solution: Let A be a skew-symmetric matrix. If A 1s zero matrix, then
p(A) =0 # 1. If A is nonzero matrix, then there exists at least one minor of

{[]1 = a? # 0. Hence rank of A is not 1.

sk S 4

s}

the form ‘ 0
—a
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CHARACTERISTICS MATRIX

If A be a square matrix of order n, then we can form the matrix [A — Al], where | is the unit matrix of order n and
A is scalar. The determinant corresponding to this matrix equated to zero is called the characteristic equation i.e.
if A — Al be the matrix then

ay—A  ap a3 a,
3,  Axp-—h Ay P
ag g, Ay —A ... A
IA -l = "1=0 (1)
ay a,, ap3 e Ay — A

is the characteristic equation of A.

On expanding the determinant (1), the characteristic equation may be written as

)"\ +a A e AR+ tag At a,=0
which is n™ degree equation in A.

The roots of (1) are called eigen values or characteristic roots or latent roots of the matrix A.
Eigen Vectors

ay;  ap Ay ay,
dy Ay Ay ayp
) a3 adz ag as
We take the matrix A = "
_anl an2 an3 ann_
%, ]
X,

and if X = | X3 | where Xy, Xa, ..., X, are vectors

then the linear transformation Y = AX ...(2), transforms the column vector X into the column vector Y.
Generally, it is required to find such vectors which either transform it is into them selves or to a scalar multiple
of them selves. If X be such a vector which is transformed into AX using the transformation (2) then AX = AX
= AX-AX=0
ie. [A-AlIX=0 ..(3)
The matrix equation (3) represents n homogeneous linear equations.
(A —A)Xy +apXo + A3 Xg+ ... Ta; X, =0
A X1+ (A —A)Xo+ax+ Xzt ... tanX, =0
3.31X1+a32X2+(3.33—7\.)X3+ ... T as, Xn:O (4)
A Xgtap X+ (an3 - 7\')XEB + ... tanAX=0
This equation (4) will have a non-trivial solution only if to co-efficient matrix is singular i.e. if the
determinant |A — Al| = 0.
This equation is also called characteristic equation of the transformation and is also the same as the
characteristic equation (1) of matrix A. This characteristic equation has n roots which are eigen values of A
corresponding to each root of (1), the equation (3) has non-zero solution.
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which is known as an eigen vector or latent vector. So, if X is a solution of (3) then KX is also a solution, where
K is an arbitrary constant. So, we see that the eigen vector corresponding to an eigen value is not unique.

2
Example 1. Find the eigen values and eigen vectors of the matrices A= [2 4} .

Sol.  The characteristic equation of the given matrix is |JA — Al =0

1-A 2
- =
2 4-)
i.e. 1-2)(@-2)-4=0 = AP —51=0 = AMA-5)=0
i.e. A=0,5 eigen values of A are 0 and 5.
. . . 1-0 2 |x,
So, corresponding to A = 0 eigen vectors are given by =0
i.e. Xg+2%,=0 and 2X + 4%, =0
X; X
i.e. single equation x; + 2x, =0 = 71 =—21 so for A = 0 eigen vectors are (2, —1) and for A = 5, we have
1-5 2 ||x;
=0

2 4-5|x,

= —4x, + 2%, =0 and 2X1 — Xo = 0.

2

X; X
i.e. eigen vectors are Tl = o> i.e. (1, 2) are eigen vectors corresponding to A=5.

Properties of Eigen Values

Q)] The sum of the eigen values of a matrix is the sum of the elements of the principal diagonal. We will
prove this property for a matrix of order 3 and the method can be extended for the matrices of any finite
order.

ay &, ap
Let A=la, a, ay (1)

a3 483 Ag
Then characteristic matrix |[A —Al| =0

ay —A A a3
= Ay ay, — A a, |=0
as; asy ag — A
= W3+ (@ +ap+ag) A )+...=0 .2
If A1, A2 and A3 be eigen values of A then
A=Al =2 +0% M+ Ao+ hg) — ...+ (<1)° A Ao Ag ..(3)

Equating the co-efficients of A from (2) and (3), we get
A+ Ao+ A3 =agg + ax + agz Which is the required result.
() The product of the eigen values of a matrix A is equal to its determinants. If take A = 0 in (3) then, we
get |A — 0| = —A1Ah3 Which is the required result.

(1 If A'is an eigen values of a matrix A, then x is the eigen value of inverse matrix A™. If X be the eigen

vector corresponding to the eigen value A then
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AX =X (4
Pre-multiplying (4) by A", we get A'AX = A™AX

1
i.e. IX=2A'X = X=MAX) = AlX = X

1
This is of the same form as that in (1) from which we get that ” is an eigen value of the inverse matrix A™.
1
(IV)  If A is an eigen value of a matrix A, then x is an eigen value of A™. As A is an orthogonal matrix so

1
A will be same as the transpose of matrix A i.e. A’ = A", So, > is an eigen value of A’. But the
matrix A and A’ have the same eigen values.
. 1. .
[since we know that |[A — Al| = A" — Al|]. Hence X is also an eigen value of A.

(V) If A1, Xa,..., Ay are eigen values of a matrix A then A™ has the eigen values 1,™, A,", ..., A," where mis

a positive ineteger.
If A; be the eigen value of A and X; be the corresponding eigen vector, then

AXi=7\,i Xi (1)

Consider A% X; = A(AX;) = A(Li Xi) = i (AX) = Li(hi Xi) = A2 X; similarly, we proceed and find A% X; =

A X; and so on such that in general we get
AmXi = }\‘im Xi .. (2)

which has the same form as (1). Hence A" is an eigen-value of A™ and the corresponding eigen vector is the
same as that of X;.
Example 2. Find the characteristic roots and characteristic vectors of the matrix

8 -6 2
A=|-6 7 -—4].
2 -4 3
Sol.  The characteristic equation of matrix Ais|A—Al|=0i.e.
8-1 -6 2
-6 7-A -4]=0
2 -4 3-X

i.e. B8-A)[(T—A) (3—A)—16] +6[(-6) (B3—A) +8]+2[24-2(7T-1)]=0
i.e. (8—2)[21 + 2% — 101 — 16] + 6[-10 + 6A] + 2[24 — 14+ 2A] =0
ie. A%+ 1802 — 851 +40 - 60+ 36L+20+ 4L =0
ie.  A’-18A*+45,=0 ie. A=0,3, 15
: Corresponding to A = 0, eigen vectors are given by

8 -6 2 ||x

-6 7 —-4||%,[=0

2 -4 3 ||x;
i.e. equations are

8X; — 6X, +2X3 =0 ...(1)
—6X; + 7X; —4x3=0 ...(2)
2X; — X + 3X3 =0 ...(3)
From (2) and (3) we get
X; X, Xy . X1 Xy X,
21-16 -8+18 24-14 ¥ 172

i.e. eigen vector are (1, 2, 2)
Similarly from (1) and (2) we get the same vectors
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8-3 -6 2 ||x,
Now for A = 3, eigen vectors are obtained from | -6 7-3 -4 ||X,| =0
2 -4 3-3||x,
5 -6 2 ||X
ie. -6 4 -—-4||x,|=0
2 -4 0 |[x,
i.e. equations are

BXy—6X,+2%X3=0
—6X; +4X, —4%3=0

and 2X1 — 4%, =0
From (4) and (5), we get
X, Xy X
24-8 -12+20 20-36
. X1 _Xp X3 X1 _ Xy _ X3
ie. —=—t=— —=—t=—
16 8 -16 T 271 2
i.e. eigen vectors are (2, 1, —2) and for A = 15, eigen vectors are given by
8-15 -6 2 X, -7 -6 2 ||x
-6 7-15 -4 ||x,| =0 = -6 -8 —-4]||x,|=0
2 -4  3-15]|x, 2 -4 12X,
i.e. equation are —TX;—6X;+2x3=0
6X; + 8%, + 4X3 =0
and 2X1 — 4%, + 2%3=0
From (7) and (8), we get
X1 X2 X3 . Xy Xy _Xg

= = ie.
12+8 -6-14 28-18 20 -20 10
i.e. eigen vectors are (2, -2, 1) corresponding to A = 15.
Example 3. Find the eigen values and eigen vectors of the matrix

6 -2 2
-2 3 -1|.
2 -1 3
6 -2 2
Sol.  Letthe given matrixbe A=|-2 3 -1].
2 -1 3
So, the characteristic equation of Ais|A—Al| =0
6-1 -2 2
ie. -2 3-a -1| =0
2 -1 3-A
= (6-10)[B-A)?-1]+2[-2(3—1) +2] +2[2—-2(8-A)] =0
= (6—1)[9—6A+A%—1]+2[2h — 4] +2[2h - 4] =0
= A+ A[6+6]—A[36-8+8]+[48-8-8]=0
= A —12A%+36A1-32=0
= A% — 202 —10A° + 201+ 16 L -32 =0
= (A-2*(L-8)=0 ie. A=272and8.

which are the characteristic roots of (1).

(@)
...(5)
..(6)

(7
..(8)
...9)

(D)

Now corresponding to the eigen values A = 2, 2, 8 the given eigen vectors are obtained from [A — Al]X =

e
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ie. -2 3-1 -1 X, |=|0 ...(2)
2 -1 3-A| | X3 0
(2) may be written as
(6 —A)Xg — 2%, + 2%3 = 0, ...(A)
—2X1+(3—7\,)X2—X3:0, (B)
and 2X1 — Xo + (3 = A)X3 ...(O)

we now, consider different cases.
Case I. When A = 2, then (A), (B) and (C) may be written as

4%, — 2X2 + 2)(3 =0 .. (Al)
—2X1+X2+X3:0 (Bl)
2X1—X2+X3=0 (C]_)
If X3 = 0, then from (A;) and (B,), we get
2X1+ % =0 e X _Xe
1 2= .C. 1 = 2
1
and so eigen vector for L =2, for x3=01is X; = | 2
0
and when x, = 0, then from (A;) and (B;) for A = 2,
X1 _ X3
2X1+X3=0 = T =—
1
another eigen vector for A =21is X, = |0
-2
Case Il1. When 4 = 8, equations (A), (B) and (C) become
—2X1 - 2X2 + 2X3 =0 .. -(All)
—2X1 — 5X2 — X3 = 0 .. -(Bll)
2X1 — X9 — 5X3 =0 .. .(Cll)
eliminating x; from (Ay;) and (B4;), we get
X +2x%=0 e XX (M)
1 2 — G 2 1 cee
and by eliminating x; from (A;;) and (B11), we get
Xo+X%X3=0 i.e X2 _Xs N)
2 3~ :C. _1 1 .
Using (M) and (N), we get X _Xa X
g y WEQ > "1 1
2
i.e. corresponding to A = 8, eigen vector is Xz=| -1
1
Example 1. Find the eigen values and eigen vectors of the matrix
-2 2 -3
A=2 1 -6].
-1 -2 0

Sol.  The characteristic equation of the given matrix is
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—2-% 2 -3
A-Al=| 2 1-1 -6|=0
1 -2 -
ie. A3+22-21L-45=0 =  (A+3)(A+3)(L-5)=0

i.e. eigen values are A =-3,-3,5
: If X, y and z be the eigen vectors. Corresponding to the eigen values A
-1-» 2 -=-3||x
() We have 2 1-» -6||y|=0
-1 -2 -\ |3
Now for A =5 we have
—7x+2y-32=0 2x—4y-6z2=0

(D)

—X—-2y-5z=0
y z
from (1) and (2) = =
-12-12 -6-42 28-4
. i X y z
Hence eigen vectoris [1, 2, -1] —==-=—
1 2 -1
1 2 -3|x
() If L =-3, then from (1), weget | 2 4 —-6||y | =0 which gives only one independent x + 2y — 3z =0
-1 2 3|z
..(3)
. X y z
f we take y =0, we get -3z=0 2_J_Z
if we take y we g X—3z = 37071
for & = -3, eigen vector is (3, 0, 1) wheny = 0.
. X Yy z
atwhen z=0, (3 es Xx+2y=0 2t _Z
wi z (3) gives x + 2y = 5= 170

i.e. eigen vector in this case is (2, -1, 0)
the eigen vectors obtained are (1, 2, -1), (3, 0, 1) and (2, -1, 0)
which are the required result.

2 3 -2
Example 2. Find the sum and the product of eigen valuesof A= | -2 1 1
1 0 2
Sol.  The characteristic equation of matrix Ais|A—Al|=0
2-1 3 -2
ie. -2 1-» 1 | =0
1 0 2-A
ie. (2—%)(1—%)(2—%)+3[1+2(2—k)]+(2)(0—1—_7»)=0

(-0 (W -31+2+3)—6L+15+2—-21 =0
23+502— 110 +10-6A+15+2-21 =0
A -50+190+19 =0
sum of the eigen value A; + A, + A3 =—(-5) =5
and the product of the eigen values is A A, A3 = —19.

SRR
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1. Determine the charecteristics roots and the corresponding characteristics vectors of the matrix

8 6 2
A=|-6 7 -4
2 -4 3

Ans. Characteristics roots are 0, 3, 15.
1

Example 3 Find the characteristic equation of the matrix A = |4
1 2

equation is satisfied by A and hence obtain the inverse of the given matrix.
Sol.  The characteristic equation is |[A — Al| =0

3 7
2 3|. Show that the characteristic
1

1-A 3 7
i.e. 4 2-» 3 |=0 = A — 402 —200-35=0 ..(1)
1 2 1-A
we have to show that A satisfies (1) i.e. A* — 4A* — 20A — 351 =0 (2
Consider
1 3 7(|1 3 7
A2=AA=[4 2 3||4 2 3
1 2 1|1 2 1
[1+12+7 3+6+14 7+9+7
=|14+8+3 12+4+6 28+6+3
| 1+8+1 3+4+2 7+6+1
[20 23 23
= A? =|15 22 37
10 9 14
20 23 23| (1 3 7
A*=A’A=(15 22 37| |4 2 3
10 9 14|11 2 1
[20+92+23 60+46+46 140+ 69+ 23
=|15+88+37 45+44+74 105+66+37
110+36+14 30+18+28 70+27+14
[135 152 232
=140 163 208
60 76 111
Now, we consider A® — 4A% — 20A — 35, which is
135 152 232 20 23 23 1 3 7| (3 0 O
=|140 163 208|-4/15 22 37|-204 2 3|-|0 35 O
60 76 111 10 9 14 1 21 0 0 35

135-80-20-35 152-92-60 232-92-140
=| 140-60-80 163-88-40-35 208-148-60
60—-40-40 76-36-20 -56-20-35
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0 0O
=0 00
0 00O
1
Equation (2) is satisfied and A™ = x [A% - 4A - 201]
1 20 23 23 1 3 7 20 0 O
i.e. Al= =315 22 37|-44 2 3|-|0 20 O
10 9 14 1 21 0 0 20
[20-4-20 23-12  23-28
=% 15-16 23-8-20 37-12
| 10-14 9-8  14-4-20
-4 11 -5
= % -1 -6 25
| 6 1 -10]
(-4 11 -5]
ie. Al = % -1 -6 25 | istherequired result.
| 6 1 -10]
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PART —B (5x2 =10)

Possible Questions (2 marks)

8.

9.

. Define linear transformation with example.
. Define null space.

. Define rank of a matrix

. Define inverse of a matrix with example.

. Define the subspace .

. Define symmetric matrix with example.

. Define self adjoint with example.

Define characteristic equation of a matrix.

Define the Eigen value and Eigen vector of a matrix.

10. Write any two properties of Eigen values.
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PART —C (5x6 =30)

Possible Questions (6 marks)

2 21
1) Find the characteristic vectors corresponding to each characteristic root if A:(l 3 1>
1 2 2

2 2 =3
2) Find the inverse of the matrix A=<—3 2 2 )
2 -3 2

5 -2 2
3) Find the eigen values and eigen vectors of the matrix A=(—2 3 —1)
2 -1 3
4) Let A= [(1) ﬂ and define T:R? - R? by T(x)=A(x).Find the images under T of uz[g] and vz[Z].

5) Defined T:R? — R? by T(x)=A(X).find a vector x whose image under T is b.

1 0 -3 -2
a3 1 )3 )
2 -2 -1 -1

2 -1 1
6) Compute the inverse of the matrix A={ —15 6 —5)
5 -2 2

1/3 0 0 3 a
7) Let A=< 0 1/3 0 > , u:< 6 )and v:<b> Define T:R? - R? by T(x)=A(x).Find
o 0 1/3 -9 c
T(u) and T(v).
8) Show that a square matrix A is orthogonal iff A=t = AT,

9) Let A= [3 g] and define T:R? - R? by T(x)=A(x).Find the images under T of u=[_13] and vz[Z].

4 2 1 3
10) Find the rank of the matrix A=| 6 3 4 7)
21 0 7
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;“ #"%& KARPAGAM ACADEMY OF HIGHER EDUCATION
N s - 2/ (Deemed to be University Established Under Section 3 of UGC Act 1956)
‘:"..‘")’ Pollachi Main Road, Eachanari (Po),
Coimbatore —641 021.
Subject: Algebra Subject Code: 17MMU102
Class :I-B.Sc. Mathematics Semester  : |
Unit vV
Linear Transformation and Matrices
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
S.No Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

Let V& W be vector spaces over the field F. A linear
1 |transformation from V into W is a function T from V

into W such that T(cutv)=................... for all u,v

in V and all scalars c in F. T(u)+T(Vv) cT(u)+cT(v) T(u)+cT(v) CcT(u)+T(v) cT(u)+T(v)
2 |Every ...l transformation is a linear

transformation. matrix row column unit matrix
3 |Every matrix transformation is non

VO transformation. linear non linear homogeneous  |homogeneous linear
R transformation preserve the operations

of vector addition and scalar multiplication. linear non linear matrix row linear
5 |Linear transformation preserve the ............... of

vector addition and scalar multiplication. addition functions operations values operations
6 |Linear transformation preserve the operations of vector

.................... and scalar multiplication. vector addition  |vector subtraction |multiplication |vector division vector addition
7 |Linear transformation preserve the operations of vector scalar matrix

vector addition and ................. multiplication multiplication multiplication |vector division scalar multiplication
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8
If T is a linear transformation , then T(0)=............. 0 1 2 3 0
9
T(cutdv)=................. T(cu)+T(dv) cT(u)-dT(v) T(U)+T(v) cT(u)+dT(v) cT(u)+dT(v)
Let T be a linear transformation then there exists a
10 |unique matrix A such that T(x)=.............. for all x
inR 0 AX X 1 AX
Let T be a linear transformation then there exists a
(I P matrix A such that T(x)=Ax for all x
inR zero unique identity diagonal unique
12 |An nxn matrix B such that BA=I is called a
.................... of A zero left inverse right inverse identity left inverse
13 |An...oooovinnn.l. matrix B such that BA=] is called a
left inverse of A mxm nxn mxn nxm nxn
14 |An nxn matrix B such that AB=I is called a
.................... of A zero left inverse right inverse identity right inverse
15 |An ......ooooena.l. matrix B such that AB=]is called a
right inverse of A mxm nxn mxn nxm nxn
16 |If AB=BA=Ithen Biscalleda............... inverse of
A. two sided left inverse right inverse identity two sided
17 IfAB=BA=.............. then B is called a two sided
inverse of A. 0 1 [ -1 I
18 . . L
A two sided inverse of Aand Ais said to be
.................... invertible inverse identity vertible invertible
19
If Aisinvertible,sois Atand (A™!)'=.............. Al A 0 I A
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20
If Ads.ooooeviiinn.l. ,SoisAtand (A7) '=A invertible inverse identity vertible invertible
21 |If both A and B are invertible ,so is AB,and
(AB)'=............... B! A BA B1A™! B'A™!
22 |IfbothAandBare............... ,s0 1s AB,and
(AB) '=B'A! invertible inverse identity vertible invertible
23
A of invertible matrices is invertible jaddition subtraction product division product
24
A product of invertible ................ is invertible matrices functions vectors equations matrices
25
A product of invertible matrices is .................. invertible unity identity vertible invertible
26
An ..o matrix is invertible. null identity elementary singular elementary
27
An elementary matrix iS.................... invertible inverse identity vertible invertible
A of V is a subset W of V which is
28 litself a vectorspace over F with the operations of
vector addition and scalar multiplication on V. subspace space vector function subspace
A subspace of V is a subset W of V which is itself a
29 |vectorspace over F with the ..................... of
vector addition and scalar multiplication on V. functions operations scalar vector operations
A subspace of V is a subset W of V which is itself a
30 |vectorspace over F with the operations of vector
............. and scalar multiplication on V. vector addition  |vector subtraction |multiplication |vector division vector addition
A subspace of V is a subset W of V which is itself a
31 |vectorspace over F with the operations of vector vector scalar matrix
additionand .................. onV. multiplication multiplication multiplication  |vector division scalar multiplication
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32 |The ccooeiiiiatn. consisting of the zero vector

alone is a subspace of V, called zero subspace of V. |subset set space subspace subset
33 |The subset consisting of the................. vector

alone is a subspace of V, called zero subspace of V. | zero unit finite infinite zero
34 |The subset consisting of the zero vector alone is a

subspace of V, called ....................... of V. zero subspace zZero space zero subset zero set zero subspace
35 [An.....o.oeeee. matrix A over the field F is

symmetric if Aij=Aji for each i and j. mxm nxn mxn nxm nxn
36 |Annxn matrix A overthe ................ Fis

symmetric if Aij=Aji for each i and j. field scalar vector matrix field
37 |An nxn matrix A over the field Fis ............ if

Aij=Aji for each i and j. symmetric non symmetric singular non singular symmetric
38 |An nxn matrix A over the field F is symmetric if

................. for each i and j. Aij<Aji Aij>Aji Aij=Aji Aij#Aji Aij=Aji
39 |Any set which contains a lineary dependent set is linearly linearly

................... dependent independent linear non linear linearly dependent
40 |Any subset of a lineary independent set is linearly linearly

................... dependent independent linear non linear linearly independent
41 |Any set which contains the ........... vector is linearly

dependent. 0 unit inverse complex 0
42 linearly linearly

Any set which contains the 0 vector is................. dependent independent linear non linear linearly dependent
43 |A set S of vectorsis ................... iff each finite linearly linearly

subset of S is linearly independent. dependent independent linear non linear linearly independent
44 |Aset S of vectors is linearly independent iff each

.............. subset of S is linearly independent. one finite infinite null finite
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KARPAGAM ACDEMY OF HIGHER EDUCATION
COIMBATORE - 21
Department of Mathematics
First Semester
First Internal Test — July - 2017

Algebra
Time: 2 Hours
Maximum: 50 Marks

Date : 27.07.2017 (AN)
Class : | - B.Sc. Mathematics

PART-A (20 x 1 =20 Marks)
Answer All the Questions
1. A complex number z=x+iy is write in the polar representation

as......
a) z=r(cos®+isin® b) z=r(cos®) c)z=(cosO+isin®) d) z=r(isin®)
2. The polar representation z=r(cos®+isin®) where re................

a) [0,00] b) [0,1) c)[1,) d) [0,00)

3. The modulus of the numbers z=2i1s....................

a) 0 b) 1 c)2 d)3

4. Two complex numbers z1 and z2#0 are ...... if and only if r1=r2
a) one b) equal c) not equal d) multiple

5. Any complex number z can be represented as z = r (cos®+isin®),
wherer..................

a) >0 b) <0 c) >0 d) <0

6. The set Arg z is called the ...... argument of the complex number z.
a) finite b) infinite c) extended d) singular
7.For......... the modulus and argument of z are uniquely determined
a) z=0 b) z>0 c) z<0 d) z#0

8. The polar representation z=r(cos®+isin®) where Oe¢................
a) [0,IT] b) (0,211) c) [0,21T) d) [0,211]

9. The modulus of the numbers z= 1-iN3is...........oovvo..
a)-1 b)1 )2 d)-2

10. cosO +isin0=...............

a)0 b)1 C)2 d)3

11. In the field of real numbers Z"-zp=..............

a)0 b)1 C)2 d)3

12. The argument of the numbers z=-1-iis....................

a) I1/4 b)311/4 c) 5I1/4 d) 711/4
13.cosII+isinll=...............

a)0 b)1 c)-1 d) i

14. The polar argument ® of the geometric image of z is called
......... of z

a) angle b) argument C) theta d) coordinate

15. In the field of real numbers Z"-z¢=0 is used for defining the
............ roots of number zg.

a) (n-1)" b) (n+1)" c)n™ d) (n-2)"
16. If f:A—B hencefiscalleda ................

a) function b) form c) formula d) fuzzy
17.The .............. of a function as the image of its domain

a) domain b) range c) co domain  d) image
18. If the function f is otherwise called as ........................

a) limit b) mapping c) lopping d) inverse
19. If f:A—B in this set Bis called the ............ of the function f.
a) domain b) co domain c) set d) element
20. If R is reflexive,symmetric and transitive therefore R is an
................. relation

a) one-one b) onto c) equivalence  d) equal

PART-B (3 x 2 = 6 Marks)
Answer All the Questions
21. Find the polar representations for the complex number z=3-2i.

22. Define finite and infinite set.
23. Define Equivalence relations.



PART-B (3 x 8 = 24 Marks)
Answer All the Questions
24. a) Find the Polar representation of the complex number

z=1+cos a +i sin a ,ae(0,211).

(OR)
_(1-DPE+)°
b) Compute z = —(_Hﬁ)m
25. a) State and Prove De Moivre’s theorem.
(OR)

b) Find|z|, arg z, Arg z, arg z, arg (-z) for z=(7-7v/3 i)(-1-i).
26. a) Find the Fourth roots for the complex number z=-i
(OR)
b) Let S={1,2,3,4,5} and T={1,2,3,8,9} and define the functions
f:S— T and g: S — Sby £={(1,8), (3,9),(4,3),(2,1),(5,2)} and
9={(1,2),(3,1),(2,2),(4,3),(5,2)} ,then find the values of the
following feyg, geof, fof, geg.
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Algebra
Time: 2 Hours

Maximum: 50 Marks

Date : 19.08.2017 (AN)
Class : | - B.Sc. Mathematics

PART-A (20 x 1 =20 Marks)
Answer All the Questions
1. The value of the function f for a and is denoted by ...............

a) a(f) b) f(a) c)a d)f

2. If acA then the element in B which is assignedto ais called the
......... of a

a) B-image b) a-image c) A-image d) f-image

3. One-to-one mapping is also sometimes known as................

a) injection  b) bijection C) surjection d) imjection

4. In one-one mappings an element in B has only...... preimage in A
a) zero b) two C) one d) three

5.If f:A—Bin this set Biscalledthe................. of the function f.
a) domain b) co domain c) set d) element

6. The element a may be referred to as the ........... of f(a)

a) f-image b) pre-image c) domain d) codomain

7. A mapping f:A—B is said to be ..... if different elements in A have
different f-images in B

a) zero b) one-one c) onto d) into

8. In many-one mappings some elements in B has ....... one preimage
in A

a) equal b) more than c) lessthan  d) only

9. Let f(x),g(x)#0 be any two polynomials of the polynmial domain
F[x],over the field F. Then there exist uniquely two polynomials q(x)
& r(x)in F[x] suchthat ....................

a) f(x)=a(x)g(x)+r(x) b) f(x)=a(x)+r(x)

c) f(x)=a(x)a(x) d) f(x)=g(x)+r(x)

10. Division algorithm for polynomials over a field deg r(x)

a) < b) > Cc)= d) #

11. A polynomial domain F[x] over a field F is a principal.........

a) commutative ring b) ideal ring

C) associative ring d) division ring

12. In a Euclidean algorithm ,Let F be a field and f(x) and g(x) be any
two polynomials in F[x], not both of which are ......................

a) zero b) one c) two d) three

13. In the division algorithm, the polynomial q(x) is called the

....... on dividing f(x) by g(x)

a) quotient  b) remainder c) divisor d) dividend

14. The divisor of f(x) symbolically write ...................

a) f(x)/a(x)  b) b(x)/f(x) c) a(x)/b(x)  d)a(x)/f(x)
15.A.......... is an element of F[x] which has a multiplicative inverse.
a) zero b) unit c) two d) three

16. The non zero elements of F are the ................. of F[x].

a) only units  b) not only units c) double units  d) zero units
17. If f(x) and g(x) are polynomials in F[x], then we call f(x) and g(x)
associates if .................l. for some O#c € F.

a) f(x)=g(x)  b) f(x)=c/g(x) ¢) f(x)=c+g(x)  d) f(x)=cg(x)

18. Only one-one and onto mapping posses................. mappings.
a) integral b) inverse c) invert d) reverse

19. The divisorsof f(x) are called its........................... divisors.
a) proper b) improper c) finite d) infinite

20. An irreducible polynomial is otherwise called as.................
a) point b) prime C) power d) degree

PART-B (3 x 2 = 6 Marks)
Answer All the Questions
21. Write the various types of Functions.
22. State the Euclidean algorithm.
23. Define the greatest common divisor of two polynomials over a
field.



PART-B (3 x 8 = 24 Marks)
Answer All the Questions
24. a) Show that the following functions are 1-1
i) f: R — R given by f(x)=5x* - 1
ii) f: Z — Egiven by f(n)=3x° - x
(OR)
b) Let A be the set A={xeR \ x>0} and define f,g, h :A— R by
X 1 .
f(x)—m ,g(x)—; J(X)=x+1.findgof,foghogof and
fogoh .
27. @) Prove that the sum of the first n odd integers is n?.
(OR)
b) State and prove the Division Algorithm
28. a) Define greatest common divisor& Find the greatest common
divisor of a and b and express it in the form ma+nb for suitable

integersmand n .
i) a=26 ,b=118. ii) a=427 , b=616.

(OR)

b) Solve the following congruence
i)3x=1(mod5)
i) 3x =1 (mod 6)
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PART-A (20 x 1 =20 Marks)
Answer All the Questions
1. Any n-tuple of elements of F which satisfies each of the .............
in linear equation is called a solution of the system.

a) functions b) equations C) roots d) solutions
2. Ifyl=y2=........... =ym=0 then the system is

a) homogeneous b) non homogeneous c) linear  d) nonlinear
3. The most fundamental technique for finding the ................ ofa
system of linear equations is the technigque of elimination.

a) function b) root c) solution  d) value

4. systems of linear equations are equivalent if each

equation in each system is a linear combination of the equations in the
other system.

a) one b) two c) three d) four
S, systems of linear equations have exactly the same
solutions.

a) linear b) nonlinear  c) Equivalent d) homogeneous

6.Inthe .................... form every row R which has all its entries 0
occurs below every row has a nonzero entry.

a) row reduced echelon b) column reduced echelon

c) echelon d) null

7.An........... matrix R is called row reduced if the first nonzero
entry in each non zero row of R is equal to 1

a) mxm b) nxn C) mxn d) nxm

8. An mxn matrix R is called row reduced if the first nonzero entry in
each non zero row of R isequalto ..............

a)0 b) 1 c)2 d)3

9. Equivalent systems of linear equations have exactly
the................. solutions.

a) zero b) same c) different  d) finite
10. An nxn matrix B such that AB=Iis calleda ................. of A

a) zero b) left inverse C) right inverse d) identity
| § A T ,501s A and (A™! ) '=A

a) invertible b) inverse c) identity d) vertible

12. A product of invertible matrices is ..................

a) invertible b) unity c) identity d) vertible
I3.An ..., matrix is invertible.

a) null b) identity  c) elementary d) singular

14. If AB=BA=Ithen Biscalleda............... inverse of A.

a) two sided b) left inverse c) right inverse d) identity
15. If Alisinvertible,sois A'and (A7) '=..............

a) A b) A c)0 d)i

16. If T is a linear transformation , then T(0)=.............

a)0 b) 1 c)2 d)3
17.Every ....c.oocevne.e transformation is a linear transformation.

a) matrix b) row c) column d) unit

18. Linear transformation preserve the ......... of vector addition and

scalar multiplication.

a) addition b) functions  c) operations d) values
19. If AB=BA=............. then B is called a two sided inverse of A.
a)0 b) 1 C)i d)-1

20. A two sided inverse of A and Aissaidtobe ....................

a) invertible b) inverse c) identity d) vertible

PART-B (3 x 2 = 6 Marks)
Answer All the Questions
21. Define the systems of Linear equations
22. Define null space.
23. When we say that the system is homogeneous?



PART-B (3 x 8 = 24 Marks)
Answer All the Questions
24. a) Determine if b is a linear combination of a;and a, where

1 5 -3
a=|—2 ,aZZ[—13] and b= 8]
3 -3 1
(OR)
b) Determine the system is consistent
X1-6X=5
Xo-4X3+X4=0

-X1+6Xo+X3+5X,=3
-Xo+5X3+4X%4=0
25. a) Defined T:R? — R? by T(x)=A(x).find a vector x whose image

1 0 -3 -2
under Tis b. If A:(—3 1 6 ) : b:< 3 )
2 -2 -1 -1

(OR)
2 -1 1
b) Compute the inverse of the matrix A:<—15 6 —5)
5 -2 2
3 5 6
26. a) Describe the solution of AX = Bwhere A= |-3 -2 1 ]
6 1 -8

7
and b = [—1]
—4
(OR)

b) Let A= [(2, g] and define T:R? — R2 by T(x)=A(x).Find the

images under T of u:[_13] and v:[g].
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B.S¢., DEGREE EXAMINATION, NOVEMBER 2016

First Semester
MATHEMATICS
ALGEBRA
Time: 3 hours ‘Maximum : 60 marks

PART - A (20 2 1 = 20 Marks) (30 Miautes)
{Ousestion Nos. 1 to 20 Online Examinations)

Answer ALL the

PART B (S x 2 = 10 Marks) (2 % Hours)
Questions

21, Write the polar form of a complex aumber.
/22 State the well-ordering principle.

/13, State the principle of mathematical induction.
4. Define linear independence.

A3 Define rank of a matrix A.

PART C (5 x 6 = 30 Marks)
Answer ALL the Questions

%Mﬁm-ul::-z-zﬁmmm
) If w is any nth roots of unity, show that 1 + w + w? ¢+ @™ m 0,

\:}qmauum«mmm-m”aumwmm
8.b € S a~d @ a - b is an even number. Then prove that this relation is an
equivalence relation,

Or
b) Prove that a function € has an inverse o { is one<to-one and onto.

-~ \'("

y?mwmlmewmoh:smquwﬁm' relation.

b)mwmupﬁmmmupmmswma

29,4 Row reduce the matrx A below t echelon form, and locate the pivot columas
of A.
0 -3 -6 4 9
-1 -2 -1
"’[-2 -3 0 3 -1]

1 -3 5§ -9 =7
Or

b)Givenu = [ 1] and v = [ £ ] Find 4u, (~3)v and 4u + (~3)v. Also
represent it graphically.

308) Let T(xy, x;) = (3xy + x5, 5%; + 7x3, %, + 3x;). Show that T is a ono-to-one
linear transformation. Does T map R? onto R*?.

Or
0 1 2
b) Find the inverse of the matrix A = [1 0 3|,if it exists.
4 -3 8
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