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Course Objective :   

On successful completion of course the learners will be enriched with the concept of  

De Moivre’s theorem, Rings, fields, linear transformation, which are very useful for their 

research. 

 

Course Outcome :  
To enable the students to learn and gain knowledge about functions, relations, systems of 

linear equations and linear transformations. 

 

UNIT I 

Polar representation of complex numbers, nth roots of unity, De Moivre’s theorem for rational 

Indices  and its applications. Sets –Finite and infinite sets-Equality sets-Subsets-Comparability -

Proper subsets-Axiomatic development of set theory-Set operations. 

 

UNIT II 

Equivalence relations, Functions, Composition of functions, Invertible functions, One to one 

Correspondence and cardinality of a set, Well-ordering property of positive integers. 

 

UNIT III 

Division algorithm, Divisibility and Euclidean algorithm, Congruence relation between integers, 

Principles of Mathematical Induction, Statement of Fundamental Theorem of Arithmetic. 

 

UNIT IV 

Systems of linear equations, row reduction and echelon forms, vector equations, the matrix 

equation Ax=b, solution sets of linear systems, applications of linear systems, linear 

independence. 

 

UNIT V 

Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, 

characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn and rank 

of a matrix, Eigen values, Eigen Vectors and Characteristic Equation of a matrix. 
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SUGGESTED READINGS 

TEXT BOOKS 

1. Titu Andreescu., and Dorin Andrica,( 2006). Complex Numbers from A to Z, Birkhauser. 

Library of  Congress Cataloging-in-Publication Data Andreescu, Titu, (For Unit –I). 

 

2. Edgar G. Goodaire and Michael M. Parmenter, ,(2005). Discrete Mathematics with Graph 

Theory, 3
rd

 Edition, Pearson Education (Singapore) P. Ltd., Indian Reprint.(For Unit –II) 

 

3.David C. Lay., (2007). Linear Algebra and its Applications, Third Edition, Pearson Education 

Asia, Indian Reprint. (For Unit III, IV and V) 

 

REFERENCE 

1. Kenneth Hoffman., Ray Kunze., (2003).Linear Algebra, Second edition, Prentice Hall of India  
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KARPAGAM ACADEMY OF HIGHER EDUCATION 

(Deemed to be University Established Under Section 3 of UGC Act 1956) 

Pollachi Main Road, Eachanari (Po), 

Coimbatore –641 021 

LECTURE PLAN 

Subject: Algebra              Subject Code: 17MMU102 

Class    : I – B. Sc. Mathematics             Semester       :  I 

 

S.No 

Lecture 

Duration 

(Hr) 

Topics to be covered Support  Materials 

 UNIT-I 

1.  1 Introduction to Polar representation of 

complex numbers 

T1:Ch: 2; Pg.No:33-34 

 

2.  1 Continuation on  Polar representation of 

complex numbers 

T1:Ch: 2; Pg.No:35-36 

3.  1 Continuation on  Polar representation of 

complex numbers 

T1:Ch: 2; Pg.No:36-37 

4.  1 n
th

 roots of  unity T1:Ch: 2; Pg.No:38-39 

5.  1 Continuation  of  n
th

 roots of  unity T1:Ch: 2; Pg.No:40-41 

6.  1 Continuation  of  n
th

 roots of  unity T1:Ch: 2; Pg.No:42-43 

7.  1 Tutorial- I    

8.  1 Continuation  of  Problems on n
th

 roots of  

unity 

T1:Ch: 2; Pg.No:44-45 

9.  1 De Moivre’s Theorem for rational indices T1:Ch: 2; Pg.No:46-47 

10.  1 Continuation  on  De Moivre’s Theorem for 

rational indices 

T1:Ch: 2; Pg.No:48-49 

11.  1 Continuation  on  De Moivre’s Theorem for 

rational indices 

T1:Ch: 2; Pg.No:50-52 

12.  1 De Moivre’s Theorem  and  its applications T1:Ch: 2; Pg.No:53-54 

13.  1 Continuation  on  De Moivre’s Theorem  

and  its applications 

T1:Ch: 2; Pg.No:54-55 

14.  1 Tutorial- II    

15.  1 Continuation  on  De Moivre’s Theorem  

and  its applications 

T1:Ch: 2; Pg.No:33-36 

 

16.  1 Continuation  on  De Moivre’s Theorem  

and  its applications 

T1:Ch: 2; Pg.No:37-39 

 

17.  1 Sets and its types T2: Ch: 2; Pg.No:37-39 

18.  1 Subsets and Proper subsets  T2: Ch: 2; Pg.No:40-41 

19.  1 Set Operations with examples T2: Ch: 2; Pg.No:43-46 

20.  1 Continuation  on  Set Operations with 

examples 

T2: Ch: 2; Pg.No:47-49 

21.  1 Tutorial- III    

22.  1 Recapitulation and discussion of possible 

questions on unit I 

 

Total no. of lecture hours planned : 22 hrs 
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T1:Titu Andreescuand Dorin Andrica,2006.ComplexNumbers from A to Z,Birkhauser,Library of 

congress cataloging-in –publication dataAndreescu, Titu,1956. 

T2:EdgerG.Goodaire and Michael M.Parameter,2005. Discrete Mathematics with graph 

theory,3
rd

 edition,Pearson Educaion(Singapore) P.Ltd.,Indian Reprint. 

UNIT-II 

1.   1 Basic concepts of  Equivalence relations R1:Ch 11:Pg.NO:391-393 

2.  1 Continuation  of  Equivalence relations T2: Ch: 2; Pg. No :56-57 

3.  1 Continuation  of  Equivalence relations T2: Ch: 2; Pg. No :57-58 

4.  1 Functions: definitions and properties T2: Ch: 2; Pg. No :59-60 

5.  1 Continuation on functions T2: Ch: 2; Pg. No :61-62 

6.  1 Tutorial- I   

7.  1 Composition of functions T2: Ch: 3; Pg. No :71-73 

8.  1 Continuation on Composition of functions T2: Ch: 3; Pg. No :74-75 

9.  1 Invertible functions T2: Ch: 3; Pg. No :76-77 

10.  1 Continuation on Invertible functions T2: Ch: 3; Pg. No :78-79 

11.  1 Continuation on Invertible functions T2: Ch: 3; Pg. No :80-81 

12.  1 One to one correspondence  T2: Ch: 2; Pg. No :59-60 

13.  1 Tutorial- II  

14.  1 Problems on one to one correspondence T2: Ch: 2; Pg. No :61-62 

15.  1 Cardinality of a set T2: Ch: 3; Pg. No :66-67 

16.  1 Continuation on  Cardinality of a set T2: Ch: 3; Pg. No :68-69 

17.  1 Continuation on Cardinality of a set T2: Ch: 3; Pg. No :70-71 

18.  1 Well-ordering property of positive integers T2: Ch:3; Pg. No :72-73 

19.  1 Continuation on Well-ordering property of 

positive integers 

T2: Ch:3; Pg. No :74-75 

20.  1 Tutorial- III    

21.  1 Recapitulation and discussion of possible 

questions  

 

Total no. of lecture hours planned :  21 hrs 

T2:EdgerG.Goodaire and Michael M.Parameter,2005. Discrete Mathematics with graph 

theory,3
rd

 edition,Pearson Educaion(Singapore) P.Ltd.,Indian Reprint. 

R1. Kenneth Hoffman., Ray Kunze., 2003. Linear Algebra, Second edition, Prentice Hall of India 

Pvt   Ltd, New Delhi. 

UNIT-III 

1.  1 Introduction  on Division algorithm T2: Ch: 4; Pg. No :97-104 

2.  1 Divisibility algorithm T2: Ch: 4; Pg. No:105-106 

3.  1 Euclidean algorithm T2: Ch: 4; Pg. No:107-108 

4.  1 Continuation of Euclidean algorithm T2: Ch: 4; Pg. No:109-110 

5.  1 Problems on Divisibility and Euclidean 

algorithm 

T2: Ch: 4; Pg. No:115-116 

6.  1 Tutorial –I  

7.  1 Continuation on Divisibility and Euclidean 

algorithm 

T2: Ch: 4; Pg. No:116-117 

8.  1 Continuation on Divisibility and Euclidean 

algorithm 

T2: Ch: 4; Pg. No:118-119 
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9.  1 Continuation on Divisibility and Euclidean 

algorithm 

T2: Ch: 4; Pg. No:119-120 

10.  1 Congruence relation between integers T2: Ch: 4; Pg. No :121-122 

11.  1 Continuation on Congruence relation 

between integers 

T2: Ch: 4; Pg. No :123-124 

12.  1 Tutorial –II  

13.  1 Continuation on Congruence relation 

between integers 

T2: Ch: 4; Pg. No :124-126 

14.  1  Continuation on Congruence relation 

between integers 

T2: Ch:4, Pg. No:127-130 

15.  1  Continuation on Congruence relation 

between integers 

T2: Ch:4, Pg. No:131-138 

16.  1 Principles of  Mathematical Induction T2: Ch: 4; Pg. No :139-145 

17.  1 Continuation on Principles of Mathematical 

Induction 

T2: Ch: 5; Pg. No :149-151 

18.  1 Statement of  Fundamental Theorem of 

Arithmetic 

T2: Ch: 5; Pg. No :152-154 

19.  1 Tutorial- III    

20.  1 Recapitulation and discussion of possible 

questions 

 

Total no. of lecture hours planned :  20 hrs 

T2:EdgerG.Goodaire and Michael M.Parameter,2005. Discrete Mathematics with graph 

theory,3
rd

 edition,Pearson Educaion(Singapore) P.Ltd.,Indian Reprint. 

UNIT-IV 

1.  1 Introduction and basic concepts of systems 

of  linear equations 

T3:Ch:1; Pg,No:1-4 

2.  1 Problems on systems of  linear equations T3:Ch:1; Pg,No:5-9 

3.  1 Continuation of Problems on systems of  

linear equations 

T3:Ch:1; Pg,No:10-12 

4.  1 Row reduction T3:Ch:1; Pg,No:13-15 

5.  1 Continuation on Row reduction T3:Ch:1; Pg,No:16-19 

6.  1 Tutorial –I  

7.  1 Continuation on Row reduction T3:Ch:1; Pg,No:20-23 

8.  1 Echelon forms T3:Ch:1; Pg,No:24-27 

9.  1 Continuation on  Echelon forms T3:Ch:1; Pg,No:28-30 

10.  1 Continuation on  Echelon forms T3:Ch:1; Pg,No:29-34 

11.  1 Vector equations T3:Ch:1; Pg,No:35-38 

12.  1 Tutorial –II  

13.  1 The matrix equation  Ax=b R1:Ch:1; Pg.No:6-8 

14.  1 Problems on Ax =b form R1:Ch:1; Pg.No:9-10 

15.  1 Solution sets of linear systems T3:Ch:1; Pg,No:39-43 

16.  1 Applications of linear systems T3:Ch:1; Pg,No:44-46 

17.  1 Linear independance T3:Ch:1; Pg,No:50-52 

18.  1 Continuation on Linear independance T3:Ch:1; Pg,No:53-55 

19.  1 Tutorial- III    

20.  1 Recapitulation and discussion of possible 

questions 

 

Total no. of lecture hours planned :  20 hrs 
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T3: David C.Lay,2007.Linear Algebra and itsapplications 3
rd

 edition, Pearson Educaion(Asia) 

P.Ltd.,Indian Reprint. 

R1. Kenneth Hoffman., Ray Kunze., 2003. Linear Algebra, Second edition, Prentice Hall of India 

Pvt   Ltd, New Delhi. 

UNIT-V 

1.  1 Introduction to linear transformations R1:Ch:3.1; Pg.No:67-69 

2.  1 Matrix of a linear transformations R1:Ch:3.1; Pg.No:70-72 

3.  1 Continuation on Matrix of a linear 

transformations 

R1:Ch:3.1; Pg.No:73-75 

4.  1 Inverse of a matrix R1:Ch:3.1; Pg.No:76-78 

5.  1 Problems on Inverse of a matrix R1:Ch:3.1; Pg.No:79-80 

6.  1 Tutorial –I  

7.  1 Characterizations of invertible matrices R1:Ch:3.1; Pg.No:81-84 

8.  1 Continuation on Characterizations of 

invertible matrices 

R1:Ch:3.1; Pg.No:85-87 

9.  1 Subspaces of  R
n
 R1:Ch:2.2; Pg.No:34-36 

10.  1 Dimensions of subspaces of R
n
 R1:Ch:2.2; Pg.No:37-38 

11.  1 Tutorial –II  

12.   Continuation on Dimensions of subspaces 

of R
n
 

R1:Ch:2.2; Pg.No:39-40 

13.   Rank of matrix T3:Ch:5; Pg.No:264-266 

14.   Eigen values ,Eigen vectors  T3:Ch:5; Pg.No:267-268 

15.   Continuation on Eigen values ,Eigen vectors T3:Ch:5; Pg.No:269-270 

16.   Characteristic Equation of a matrix T3:Ch:5; Pg.No:271-272 

17.   Problems on Finding Characteristic 

Equation of a matrix 

T3:Ch:5; Pg.No:273-275 

18.  1 Tutorial- III    

19.  1 Recapitulation and discussion of important 

questions  

 

20.  1 Discuss on Previous ESE question papers  

21.  1 Discuss on Previous ESE question papers  

22.  1 Discuss on Previous ESE question papers  

Total no. of lecture hours planned :   22 hrs 

T3: David C.Lay,2007.Linear Algebra and itsapplications 3
rd

 edition, Pearson Educaion(Asia) 

P.Ltd.,Indian Reprint. 

R1. Kenneth Hoffman., Ray Kunze., 2003. Linear Algebra, Second edition, Prentice Hall of India 

Pvt   Ltd, New Delhi. 

 

SUGGESTED READINGS  

TEXT BOOKS: 

T1:Titu Andreescuand Dorin Andrica,2006.ComplexNumbers from A to 

Z,Birkhauser,Library of congress cataloging-in –publication dataAndreescu, Titu,1956. 

T2:EdgerG.Goodaire and Michael M.Parameter,2005. Discrete Mathematics with graph 

theory,3
rd

 edition,Pearson Educaion(Singapore) P.Ltd.,Indian Reprint. 
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T3: David C.Lay,2007.Linear Algebra and itsapplications 3
rd

 edition, Pearson 

Educaion(Asia) P.Ltd.,Indian Reprint. 

REFERENCE: 

R1. Kenneth Hoffman., Ray Kunze., 2003. Linear Algebra, Second edition, Prentice Hall of 

India Pvt   Ltd, New Delhi.. 
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Department of Mathematics  

       Subject : Algebra                Subject Code : 17MMU102        L  T   P  C 

      Class      : I – B.Sc. Mathematics         Semester       : I    6   1   0   6 

 

UNIT I 
 

Polar representation of complex numbers, nth roots of unity, De Moivre’s 

theorem for rational Indices  and its applications. Sets –Finite and infinite sets-

Equality sets-Subsets-Comparability -Proper subsets-Axiomatic development of 

set theory-Set operations. 

 

SUGGESTED READINGS 

 

TEXT BOOKS 

1. Titu Andreescu., and Dorin Andrica,( 2006). Complex Numbers from A to Z, 

Birkhauser. Library of  Congress Cataloging-in-Publication Data Andreescu, 

Titu. 

 

2. Edgar G. Goodaire and Michael M. Parmenter, ,(2005). Discrete Mathematics 

with Graph Theory, 3
rd

 Edition, Pearson Education (Singapore) P. Ltd., Indian 

Reprint. 

 

3.David C. Lay., (2007). Linear Algebra and its Applications, Third Edition, 

Pearson Education Asia, Indian Reprint.  

 

REFERENCE 

1. Kenneth Hoffman., Ray Kunze., (2003).Linear Algebra, Second edition, 

Prentice Hall of India Pvt Ltd, New Delhi.  
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UNIT – I  

Complex Number in Polar Form 

1. Complex Numbers 

In algebra we discovered that many equations are not satisfied by any real numbers. Examples are: 

 
2 2x    or 

2 2 40 0x x    

  

We must introduce the concept of complex numbers. 

  

Definition:  A complex number is an ordered pair ( , )z x y of real numbers x and y.  We call x the 

real part of z and y the imaginary part, and we write  

  

Re z x ,   Im z y . 

  

 

  

Two complex numbers are equal where 1 1 1( , )z x y and 2 2 2( , )z x y : 

1 2z z   if and only if  1 2x x and 1 2y y  

 

Addition and Subtraction of Complex Numbers: We define for two complex numbers, the sum 

and difference of 1 1 1( , )z x y and 2 2 2( , )z x y : 

1 2 1 2 1 2( , )z z x x y y      and 1 2 1 2 1 2( , )z z x x y y    . 

 

Multiplication of two complex numbers is defined as follows: 

 

1 2 1 2 1 2 1 2 2 1( , )z z x x y y x y x y    

  

 

 

 

 

 

 

 

 

 

We need to represent complex numbers in a manner that will make addition and multiplication easier 

to do. 

Complex numbers represented as z x yi   

  

A complex number whose imaginary part is 0 is of the form ( ,0)x and we have  

Example 1:   and   

Example 2:  Let  and  then  

 

and  

 

and 

 . 
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1 2 1 2( ,0) ( ,0) ( ,0)x x x x    and 1 2 1 2( ,0) ( ,0) ( ,0)x x x x    

and  

1 2 1 2( ,0) ( ,0) ( ,0)x x x x   

which looks like real addition, subtraction and multiplication. So we identify ( ,0)x  with the real 

number x  and therefore we can consider the real numbers as a subset of the complex numbers.  

 

We let the letter (0,1)i  and we call i a purely imaginary number.  

 

 Now consider 
2 (0,1) (0,1) ( 1,0)i i i       and so we can consider the complex number  

2 1i   = the real number  1 .  We also get (0,1) (0, )yi y y    

 

And so we have: ( , ) ( ,0) (0, )x y x y x iy     

 

Now we can write addition and multiplication as follows:  

 

1 2 1 2 1 2 1 2 1 2( , ) ( )z z x x y y x x i y y         

  

 and  1 2 1 2 1 2 1 2 2 1( , )z z x x y y x y x y   = 1 2 1 2 1 2 2 1( )x x y y i x y x y   . 

 

The Complex Plane 

The geometric representation of complex numbers is to represent the complex number ( , )x y as the 

point ( , )x y . 

 

                                             y-axis 
                                                               x iy                                         

                                    2 

                                    1                   

 

 

                                               1    2                 x-axis 

               

                                                     (2, 3) 2 3i                      

 

So the real number ( ,0)x  is the point on the horizontal x-axis, the purely imaginary number 

(0, )yi y  is on the vertical y-axis.  For the complex number ( , )x y , x  is the real part and y is the 

imaginary part. 

Example 3: Let and , then   

 

and  
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How do we divide complex numbers?  Let’s introduce the conjugate of a complex number then go to 

division.   

 

Given the complex number z x iy  , define the conjugate z x iy x iy     

 

We can divide by using the following: 

 

1 1 1 1 1 2 2 1 2 1 2 2 1 1 2

2 2

2 2 2 2 2 2 2 2 2

( )z x iy x iy x iy x x y y i x y x y

z x iy x iy x iy x y

     
  

   
 

 

  

 

 

 

 

 Complex Numbers in Polar Form  

 

It is possible to express complex numbers in polar form.  If the point ( , )z x y x iy    is represented 

by polar coordinates ,  r  , then we can write cosx r  , siny r   and cos sin iz r ir re     .  r 

is the modulus or absolute value of  z, 2 2| |z r x y   , and  is 
2

z the argument of z, 

arctan
y

x


 
  

 
.  The values of r and  determine z uniquely, but the converse is not true.  The 

modulus r is determined uniquely by z, but  is only determined up to a multiple of 2.  There are 

infinitely many values of  which satisfy the equations cos ,  sinx r y r   , but any two of them 

differ by some multiple of 2.  Each of these angles  is called an argument of z, but, by convention, 

one of them is called the principal argument.  

Definition If z is a non-zero complex number, then the unique real number , which satisfies  

cos ,  sin ,   x z y z          

is called the principal argument of z, denoted by arg( )z  . 

Example 4. Locate 2-3i on the graph above. 

Example 5.  
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Note: The distance from the origin to the point ( , )x y  is z , the modulus of z; the argument of z is 

the angle arctan
y

x
  .  Geometrically,  is the directed angle measured from the positive x-axis to 

the line segment from the origin to the point ( , )x y .  When 0z  , the angle  is undefined. 

 The polar form of a complex number allows one to multiply and divide complex number more 

easily than in the Cartesian form.  For instance, if 1 2

1 1 2 2 and 
i iz re z r e 

   then 1 2( )

1 2 1 2

i
z z rr e

 
 , 

1 2( )1 1

2 2

iz r
e

z r

  .  These formulae follow directly from DeMoivre’s formula. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Multiplication and Division in Polar Form 

 

Let 1 1 1 1 1 1 1 1cos sin (cos sin )z r ir r i       and 2 2 2 2(cos sin )z r i    then we have 

1 2 1 2 1 2 1 2(cos( ) sin( ))z z rr i         and    1 1
1 2 1 2

2 2

(cos( ) sin( ))
z r

i
z r

      

 

Example 6.  For , we get  and .   The 

principal value of  is , but  would work also. 

  

 

 

 

y 

x 
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We can use 
2 (cos( ) sin( )z z z r r i          =

2(cos2 sin 2 )r i   

And so: 

  
DeMoivre's Theorem:   

 

 (cos sin )n nz r n i n     

 

where n is an positive integer. 

We want to prove that, for all positive integers n, 

(isin cos ) isin cosnx x nx nx    
 

Step 1: case n = 1 

Trivially, 
1(isin cos ) isin cosx x x x   . So the result holds for n = 1. 

 

Step 2: arbitrary n 

We assume the induction hypothesis, that is, we assume 
1(isin cos ) isin( 1) cos( 1)nx x n x n x      

Now we have 

 

1(i sin cos ) (i sin cos )(i sin cos )

      (i sin cos )(i sin( 1) cos( 1) )

      cos cos( 1) sin sin( 1)

i sin cos( 1) cos sin( 1)

      cos i sin

n nx x x x x x

x x n x n x

x n x x n x

x n x x n x

nx nx

   

    

   

   

 
 

Example 7:    and   

Then =  

Since  

  

 And 

= =  
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using the compound angle identities. 

 This proves the induction step, so by the principle of mathematical induction, 

(isin cos ) isin cosnx x nx nx    
for all positive integers, n. 

 

Let 1r   to get:   (cos sin ) cos sinni n i n      . 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

n
th

 Roots of Complex Numbers: 

 

Consider (cos sin )z r i   = (cos sin )n nw R n i n       (Equation 1) 

 

where (cos sin )w R i   .   Then nR r , and so n   or 
n


  .    

However 2n     also satisfies Equation 1 and so 
2

n n

 
   .  And   

4n     implies 
4

n n

 
   . However 6n     implies 

6

n n

 
   .  

 

And continuing n k     implies 
k

n n

 
   . for k any integer up to n. 

  

We get 
2 ) 2 )

cos sinn n k k
z x i

n n

         
     

    
, k=0, 1, 2, 3, , (n-1). 

 

 

 

 

 

 

 

 

Example 1: Compute  

 

 



UNIT – I                               Complex Number in Polar Form 2017 Batch 

 

Prepared by : R. Praveen Kumar, Department of Mathematics,KAHE   8/18 
 

 

 

 
 

 

 

 

 

 

ELEMENTARY SET THEORY 

I. BASIC CONCEPTS  

 

 

 

 

 

 

  Notation:  The name of a set is denoted with a capital letter – A, B, etc. 

 

       The description of the set can be given in the following ways: 

 

 

1 Definition 1: A set is a collection of objects together with some rule to determine whether 

       a given object belongs to this collection.  Any object of this collection is called an element 

       of the set. 

 

Example 4:  Compute   

  

Solution: = =  

Where . So  

 

  

 =  

  

 . 

 

Example 2. Find the sixth root of    

 

There will be six roots: 

 

 

 

 

 

 

 

 

 

 

 

Example 3: Find the square roots of i. 

 

Since , we let 

 is one square root of . The 

second square root of is : 
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       1. Each element of the set is listed within a set of brackets: {    }.  

       2. Within the brackets, the first few elements are listed, with dots following 

to show that the set continues with the selection of the elements following   

the same rule as the first few. 

    3. Within the brackets, the set is described by writing out the exact rule by 

        which elements are chosen. The name given each element is separated  

        from the selection rule with a vertical line. 

 

  Examples: 

 

  (a) Denote by A the set of natural numbers with are greater than 25.  The set could be  

       written in the following ways: 

 

   {26,27,28….}     (using the second notation listed above) 

 

   {x | x is a natural number and x > 25}  (using the third notation above) 

    

   The above description is read as “the set of all x such that x is a natural 

   number and x > 25”. 

    

       Note that 32 is an element of A. We write 32 ∈ A, where “∈” denotes “is 

       an element of.” Also, 6 ∉ A, where “∉” denotes “is not an element of.” 

 

  (b) Let B be the set of numbers {3,5,15,19,31,32}. Again the elements of the set are  

       natural numbers.  However, the rule is given by actually listing each element of  

       the set (as in the first notation above). We see that 15 ∈ B, but 23 ∉ B. 

 

  (c) Let C be the set of all natural numbers which are less than 1. In this set, we observe 

       that there are no elements. Hence, C is said to be an empty set.  A set with no 

        elements is denoted by ∅. 

 

  Definition: A set A is said to be a subset of a set B if every element of A is an element of  

      B. 

 

Notation: To indicate that set A is a subset of set B, we use the expression A ⊂ B, 

where “⊂” denotes “is a subset of”.  A ⊄ B means that A is not a subset of B. 

  Examples: 

   

(a) Let B be the set of natural numbers. Let A be the set of even natural numbers. 

Clearly, A is a subset of B.  However, B is not a subset of A, for 3 ∈ B, but 3 ∉ A. 

 

(b) An empty set ∅ is a subset of any set B. If this were not so, there would be some 

element x ∈ ∅ such that x ∉ B.  However, this would contradict with the definition of 

an empty set as a set with no elements. 
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  Theorem: Properties Of Sets 
   

  Let A, B, and C be sets. 

 

   1. For any set A, A ⊂ A   (Reflexive Property) 

 

   2. If A ⊂ B and B ⊂ C, then A ⊂ C  (Transitive Property) 

 

 Definition: Two sets, A and B, are said to be equal if and only if A is a subset of B and B  

     is  a subset of A.  To indicate that two sets, A and B, are equal, we use the symbol A = B.  

      This means that sets A and B contain exactly the same elements.  A ≠ B means that A 

      and B are not equal sets. 

 

  Example: 

 

  Let A be the set of even natural numbers and B be the set of natural numbers which 

  are multiples of 2. Clearly, A ⊂ B and B ⊂ A.  Therefore, since A and B contain 

                      exactly the same elements, A = B. 

 

  Remarks: 

 

  (a) Two equal sets always contain the same elements.  However, the rules for the sets 

  

       may be written differently, as in the above example. 

 

  (b) Since any two empty sets are equal, we will refer to any empty set as the empty 

       set. 

 

  (c) A is said to be a proper subset of B is and only if: 

       (i) A ⊂ B 

      (ii) A ≠ B, and 

     (iii) A ≠ ∅. 

 

 

  Theorem: Properties of Set Equality 
 

  (a) For any set A, A = A. (Reflexive Property) 

 

  (b) If A = B, then B = A. (Symmetric Property) 

 

  (c) If A = B and B = C, then A = C. (Transitive Property) 

 

 

 Definition: Let A and B be subsets of a set X. The intersection of A and B is the set of all 

elements in X common to both A and B. 
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  Notation: “A ⋂ B” denotes “A intersection B” or the intersection of sets A and B. 

 

  Thus, A ⋂ B = {x ∈ X | x ∈ A and x ∈ B}, or A ⋂ B = {x | x ∈ A  x ∈ B}. 

 

  Examples: 

 

  a. Given that the box below represents X, the shaded area represents A⋂ B:  

 
  

b. Let A = {2,4,5} and B = {1,4,6,8} Then, A ⋂ B = {4}. 

 

Note: A set that has only one element, such as {4}, is sometimes called a singleton  

set. 

 

  c. Let A = {2,4,5} and B = {1,3}. Then A ⋂ B = ∅. 

 

 Remarks: 

 

  a. If, as in the above example 1.11c, A and B are two sets such that A ⋂ B is the empty 

      set, we say that A and B are disjoint. 

 

  b. Given sets A and B. x ∈ A ⋂ B if and only if x ∈ A and x ∈ B. 

 

 

Definition: Let A and B be subsets of a set X. The union of A and B is the set of all elements 

belonging to A or B. 

 

 Notation: “A ⋃ B” denotes “A union B” or the union of sets A and B. 

 Thus, A ⋃ B = {x ∈ X | x ∈ A or x ∈ B}. Or A ⋃ B = {x | x ∈ A  x ∈ B}. 

 

 

 

 Examples: 

 

X: 
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 a. Given that the box below represents X, the shaded area represents A ⋃ B: 
 

 
 

 

 b. Let A = {2,4,5} and B = {1,4,6,8}. 

     Then, A ⋃ B = {1,2,4,5,6,8} 

 

Remark: 

 

 Given sets A and B.  x ∈ A ⋃ B if and only if x ∈ A or x ∈ B. 

 

Definition: Let A and B be subsets of a set X.  The set B – A, called the difference 

       of B and A, is the set of all elements in B which are not in A. 

 

 Thus, B – A = {x ∈ X | x ∈ B and x ∉ A}. 

 

Examples: 

 

 a. Let B = {2,3,6,10,13,15} and A = {2,10,15,21,22}. 

     Then B – A = {3,6,13}. 

 

 b. Let X be the set of natural numbers and A be the set of odd natural numbers.  Then,  

     X – A = the set of even natural numbers; or X – A = {x | x is a natural number  

     and x is even}. 

      c. Given that the box below represents X, the shaded area represents B – A. 

X: 
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 Definition: If A ⊂ X, then X – A is sometimes called the complement of A with respect 

       to X. 

 

 Notation: The following symbols are used to denote the complement of A with  

                respect to X: 

 

   ∁xA,  ∁A,  A, Ã, and A ‘ 

 

Thus,   ∁xA = {x ∈ X | x ∉ A}. 

 

 Theorem: Let A and B be subsets of a set X. 

        Then, A – B = A ⋂ ∁B. 

 

SUB- SET 
Let set A be a set containing all students of your school and B be a set containing all students of class 

XII of the school. In this example each element of set B is also an element of set A. Such a set B is 

said to be subset of the set A. It is written as B Í A 

 

Consider D ={1, 2, 3, 4,........} 

 

E = {..... -3 -2, -1, 0, 1, 2, 3, .......} 

 

Clearly each element of set D is an element of set E also \ D Í E 

 

If A and B are any two sets such that each element of the set A is an element of the set B also, then A 

is said to be a subset of B. 

 

 

X: 
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Remarks 

 

(i) Each set is a subset of itself i.e. A Í A . 

 

(ii) Null set has no element so the condition of becoming a subset is automatically satisfied. 

Therefore null set is a subset of every set. 

 

(iii) If A Í B and B Í A then A = B. 

 

(iv) If A Í B and A ¹ B then A is said to be a proper subset of B and B is said to be a super set of A. 

i.e. A Ì B or B É A . 

 

 

Example  If A = {x : x is a prime number less than 5} and 

 

B = {y : y is an even prime number} then is B a proper subset of A ? 

 

Solution : It is given that 

 

A = {2, 3 }, B = {2}. 

 

Clearly B Í A and  B ¹ A 

 

We write B Ì A 

 

and say that B is a proper subset of A. 

 

Example  If A = {1, 2, 3, 4}, B = {2, 3, 4, 5}. 

 

is A Í B o r B Í A ? 

 

Solution : Here 1Î A b u t1Ï B Þ A Í/ B. 

 

Also 5Î B but 5 Ï A Þ B Í/ A . 

 

Hence neither A is a subset of B nor B is a subset of A. 

 

POWER SET  

 

Let A = {a, b} 

Subset of A are  , {a}, {b} and {a, b}. 

If we consider these subsets as elements of a new set B (say) then 
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B = 







,{a},{b},{a,b}

 

B is said to be the power set of A. 

 

Notation : Power set of a set A is denoted by P(A). 

 

Power set of a set A is the set of all subsets of the given set. 

 

Example Write the power set of each of the following sets : 

 

(i) A = {x : xÎ R and x
2
 + 7 = 0 }. 

 

(ii) B = {y : yÎ N and1 £ y £ 3}. 

 

Solution : 

 

(i) Clearly A = f (Null set) 

 

\ f is the only subset of given set \ P (A)={f } 

 

(ii) The set B can be written as {1, 2, 3} 

\P (B) = {  f , {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}  } . 

 

 UNIVERSAL SET 

 

Consider the following sets. 

 

A = {x : x is a student of your school} 

 

B = {y : y is a male student of your school} 

 

C = {z : z is a female student of your school} 

 

D = {a : a is a student of class XII in your school} 

 

Clearly the set B, C, D are all subsets of A. 

 

 CARTESIAN PRODUCT OF TWO SETS 

 

Consider two sets A and B where 

 

A={1, 2}, B= {3, 4, 5}. 

 

Set of all ordered pairs of elements of A and B 
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is {(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)} 

 

This set is denoted by A × B and is called the cartesian product of sets A and B. 

 

i.e. A×B ={(1, 3), (1, 4),(1, 5),(2, 3),(2, 4),(2, 5)} 

 

Cartesian product of B sets and A is denoted by B×A. 

 

In the present example, it is given by 

 

B×A = {(3, 1),(3, 2),(4, 1),(4, 2),(5, 1),(5, 2)} 

 

Clearly A×B ¹ B×A. 

 

In the set builder form : 

 

A×B = {(a,b) : a Î A and b Î B } 

 

B×A = {(b,a) : b Î B and a Î A } 

 

Note : If A = f or B = f or A , B = f 

 

then A ´ B = B ´A = f . 

 

Example  

 

(1) Let A={a,b,c}, B={d,e}, C={a,d}. 

 

Find (i) A×B(ii) B×A (iii) A×(B È C ) (iv) (A Ç C) ´ B 

 (v) (A Ç B) ´C (vi) A ´ (B - C) . 

Solution : (i)  A×B ={(a, d),(a, e), (b, d), (b, e), (c, d), (c, e)}. 

 

(ii) B×A = {(d, a),(d, b), (d, c), (e, a) (e, b),(e, c)}. 

 

(iii) A = {a, b, c}, B È C ={a,d,e}. 

× ( B È C ) ={(a, a),(a, d),(a, e),(b, a),(b, d),(b, e), (c, a),(c, d),(c, e). 

 

(iv) A ÇC = {a}, B={d, e}. 

 

\( A ÇC )×B={(a, d), (a, e)} 

(v) A ÇB = f , c={a,d}, \ A Ç B ´ c = f 

 

(vi) A = {a,b,c}, B - C = {e}.\A ´ (B - C) = {(a,e),(b,e),(c,e)} 

 



UNIT – I                               Complex Number in Polar Form 2017 Batch 

 

Prepared by : R. Praveen Kumar, Department of Mathematics,KAHE   17/18 
 

PART – B ( 5 x 2  =10) 

 

Possible Questions (2 marks) 
  

1. Find the polar representations for the complex number  z=3-2i. 

2. Find the polar representations for the complex number  z=6+6i√3. 

3. Find the polar representations for the complex number  z=-4i. 

4. Find the polar representations for the complex number  z= 
 

 
  

√ 

 
. 

5. Find the polar representations for the complex number  z=cos a- i sin a . 

6. State the De Moivre’s theorem 

7. Find the square roots of the complex numbers z=1+i. 

8. Find the square roots of the complex numbers z=i. 

9. Compute  (1+i)
1000 

10. Find the cube roots of the complex numbers z= -i. 

11. Find the cube roots of the complex numbers z= 27. 

12. Compute (-1+i)
4
 

13. Define finite and infinite sets 

14. Define Complement of a set 

15. Prove that if A and B are finite sets, then n(AꓴB) = n(A) + n(B) – n(AꓵB)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT – I                               Complex Number in Polar Form 2017 Batch 

 

Prepared by : R. Praveen Kumar, Department of Mathematics,KAHE   18/18 
 

 

PART – C ( 5 x 6  =30) 

 

Possible Questions (6 marks) 
 

1) Find the Polar representation of the complex number   z=1+cos a +i sin a, a ϵ (0,2П). 

2) Compute    
(   )  (√   )

 

(    √ )
   

3) i) Find polar representations for the complex number z= 
 

 
  

√

 √㴀 
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S.No Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

1 A complex number z=x+iy write the polar 

representation in the form……………. z=r(cosΘ+isinΘ) z=r(cosΘ) z=(cosΘ+isinΘ) z=r(cosΘ-isinΘ) z=r(cosΘ+isinΘ)

2 The polar representation z=r(cosΘ+isinΘ) where 

rϵ……………. [0,∞] [0,1) [1,∞) [0,∞) [0,∞)

3 The polar representation z=r(cosΘ+isinΘ) where 

Θϵ……………. [0,Π] (0,2Π] [0,2Π) [0,2Π] [0,2Π)

4 The polar argument  Θ of the geometric imageof z is 

called the……………………of z. angle argument theta coordinate argument

5 The polar argument  r of the geometric imageof z is 

called the……………………of z. root real modulus imaginary modulus

6 For ………………….the modulus and argument of z 

are uniquely determined z=0 z>0 z<0 z≠0 z≠0

7 For z≠0 the modulus and argument of z are 

……………...determined unique double triple zero unique

Possible Questions                               

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021.                                                                                                                                                                                            

        Subject: Algebra                                                                                                                                             Subject Code: 17MMU102

        Class   : I - B.Sc. Mathematics                                                                                                                      Semester      : I

Unit I                                                                                                                                                                                                    
Complex number in Polar form                                                   

Part A (20x1=20 Marks)                                                                                                                                                                                                               

(Question Nos. 1 to 20 Online Examinations)
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8 Two complex numbers z1 and z2≠0 are equal if and 

only if …………….. r1=r2 r1<r2 r1>r2 r1/r2 r1=r2

9 Two complex numbers z1 and z2≠0 are 

……………... if and only if r1=r2 one equal not equal multiple equal

10 Two complex numbers z1 and z2≠0 are equal if and 

only if r1=r2 and  t1-t2=…………,for an integer k. kΠ -2 k/Π 2kΠ 2kΠ

11

The set Arg z is called the 

……………………argument of the complexnumber 

z. finite infinite extended singular extended

12 Any complexnumber z can be represented as  

z=r(cosΘ+isinΘ) ,where r……………… ≥0 ≤0 >0 <0 ≥0

13 Any complexnumber z can be represented as  

z=r(cosΘ+isinΘ) ,where r ≥0 and  Θϵ………………. Z R W N R

14 The modulus of the numbers z= -1+i√3 

is……………….. 2 -2 1 -1 2

15 The modulus of the numbers z= 1-i√3 

is……………….. #REF! 1 2 -2 2

16 The modulus of the numbers z= 2+2i 

is……………….. √2 3√2 4√2 2√2 2√2

17 The modulus of the numbers z= -1-i 

is……………….. √2 3√2 4√2 2√2 √2

18
The argument of the numbers z= -1+i√3 

is……………….. Π/3 2Π/3 5Π/3 4Π/3 5Π/3

19 The argument of the numbers z= 1-i√3 

is……………….. Π/3 2Π/3 Π 4Π/3 2Π/3

Prepared by : R. Praveen Kumar, Department of Mathematics, KAHE



Complex number in Polar form  / 2017 Batch

20 The argument of the numbers z= 2+2i 

is……………….. Π/4 7Π/4 5Π/4 3Π/4 Π/4

21 The argument of the numbers z= -1-i 

is……………….. Π/4 7Π/4 5Π/4 3Π/4 5Π/4

22

The modulus of the numbers z= 2i is……………….. 0 1 2 3 2

23

The modulus of the numbers z= -1 is……………….. 1 2 3 4 1

24

The modulus of the numbers z= 2 is……………….. 1 2 3 4 2

25

The modulus of the numbers z= -3i is……………….. 0 3 6 9 3

26 The argument of the numbers z= 2i  

is……………….. Π/2 7Π/2 5Π/2 3Π/2 Π/2

27

The argument of the numbers z= -1 is……………….. Π/4 Π/2 Π/3 Π Π

28

The argument of the numbers z= 2 is……………….. 0 Π Π/2 Π/4 0

29 The argument of the numbers z= -3i 

is……………….. Π/2 7Π/2 5Π/2 3Π/2 3Π/2

30

cos0 +isin 0=…………… 1 -1 2 -2 1

31

cos Π/2 + i sin Π/2 =…………… 1 -1 i negative i i

32

cos Π + i sin Π =…………… 1 -1 i negative i -1
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33

cos 3Π/2 + i sin 3Π/2 =…………… 1 -1 i negative i negative i

34 The complex number  z=(1+ cos z+sin a ) if a=Π then 

z=…………….. 0 1 2 3 0

35 The complex number  z=(1+ cos z+sin a ) if 

……………. then z=0 a<Π a>Π a=Π a≠Π a=Π

36 In De Moivre's theorem the power ofcomplex number 

z
n
=…………..

 r
n
/ (cos nΘ+isin 

nΘ)   (cos nΘ+i sin nΘ)

 r
n
 (cos nΘ-isin 

nΘ)  r
n
 (cosΘ+i sin Θ)  r

n
 (cos nΘ+i sin nΘ)

37

|z
n
|=……….. |z|

n
|-z|

n
|1/z|

n
|z| |z|

n

38

If r=1 then (cos nΘ+isin nΘ)
n
=………………………

  (cos nΘ+i sin 

nΘ)   (cos nΘ-i sin nΘ)

  (cos Θ/n+i sin 

Θ/n)   (cos Θ+i sin Θ)   (cos nΘ+i sin nΘ)

39 If …………….. then (cos nΘ+isin nΘ)
n
=(cos nΘ+i 

sin nΘ) r=0 r=1 r=-1 r=2 r=1

40

The value of (1+i)
1000

=………….. 2^500 1^1000 2^1000 1^500 2^500

41

In the field of real numbers Z
n
-z0=………….. 0 1 2 3 0

42 In the field of real numbers Z
n
-z0=0 is used for 

defining the …………roots of number z0. 1st 2nd n th (n+1) th n th

43 In the field of real numbers Z
n
-z0=0 is used for 

defining the n th ………….. of number z0. numbers real equations roots roots

44 Any solution Z of  the equation Z
n
-z0=0  an 

………….root of the complex number z0. 1st 2nd n th (n+1) th n th

45 Any solution Z of  the equation Z
n
-z0=0  an n th root 

of the ………... number z0. real complex imaginary rational complex
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46 Any solution Z of  the equation Z
n
-z0=0  an n th root 

of the complex number ………….... z0 z1 z2 z3 z0

47 the root of the equation  Z
n
-1=0  are called the n th 

root of  ………... unity finite infinite equation unity

48

If A = {1,2,3,4,…} then the set A is finite composite infinite equality infinite

49 If a finite set S has 'n' elements then the power set of 

S has ____ elements n 2
n

n-1 n+1 2
n

50

If A = {1,2,3,4,5}and B = {3,7,9} then A\B = {1,2,4,5) {1,2,3,4,5,7,9} {7,9} {3} {1,2,4,5)

51

If A={a,b,c,d} and B ={f,b,d,g} then AꓵB = {a,b,c} {a,b,c,d,f} {b,d} {f,g,d} {b,d}

52

n(AꓴB)= n(A)+n(B)

n(A)+n(B)-

n(AꓵB) n(A)-n(B)

n(A)-

n(B)+n(AꓵB) n(A)+n(B)-n(AꓵB)
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UNIT – II 

Relations and Functions  

 RELATIONS 

 

Consider the following example : 

 

A={Mohan, Sohan, David, Karim} 

 

B={Rita, Marry, Fatima} 

 

Suppose Rita has two brothers Mohan and Sohan, Marry has one brother David, and Fatima has one 

brother Karim. If we define a relation R " is a brother of" between the elements of A and B then clearly. 

 

Mohan R Rita, Sohan R Rita, David R Marry, Karim R Fatima. 

 

After omiting R between two names these can be written in the form of ordered pairs as : 

 

(Mohan, Rita), (Sohan, Rita), (David, Marry), (Karima, Fatima). 

 

The above information can also be written in the form of a set R of ordered pairs as 

 

R= {(Mohan, Rita), (Sohan, Rita), (David, Marry), Karim, Fatima} 

 

Clearly R Í A ´ B, i.e.R = {(a,b):a Î A,b Î B and aRb} 

 

If A and B are two sets then a relation R from A toB is a sub set of A×B. 

 

If (i) R = f , R is called a void relation. 

 

(ii) R=A×B, R is called a universal relation. 

 

(iii) If R is a relation defined from A to A, it is called a relation defined on A. 

 

(iv) R = { (a,a) " a Î A } , is called the identity relation. 

 

 

Domain and Range of a Relation 

 

If R is a relation between two sets then the set of its first elements (components) of all the ordered pairs 

of R is called Domain and set of 2nd elements of all the ordered pairs of R is called range, of the given 

relation. 

 

Consider previous example given above. 

 

Domain = {Mohan, Sohan, David, Karim} 

 

Range = {Rita, Marry, Fatima} 
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Example 1 Given that A = {2, 4, 5, 6, 7}, B = {2, 3}. 

 

R is a relation from A to B defined by 

R = {(a, b) : a Î A,  b Î B and a is divisible by b} 

 

find (i) R in the roster form   

(ii) Domain of R  

(iii) Range of R 

(iv) Repersent R diagramatically. 

 

Solution : (i) R = {(2, 2), (4, 2), (6, 2), (6, 3)} 

 

(ii) Domain of R = {2, 4, 6} 

 

(iii) Range of R = {2, 3} 

 

(iv) 

 
 

Example 2 If R is a relation 'is greater than' from A to B, where A= {1, 2, 3, 4, 5} and B = {1,2,6}. 

Find (i) R in the roster form. (ii) Domain of R (iii) Range of R. 

 

Solution : 

 

(i) R = {(3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2)} 

 

(ii) Domain of R = {3, 4, 5} 

 

(iii) Range of R = {1, 2} 

 

2.1 Overview 

 

This chapter deals with linking pair of elements from two sets and then introduce relations between the two 

elements in the pair. Practically in every day of our lives, we pair the members of two sets of numbers. For 

example, each hour of the day is paired with the local temperature reading by T.V. Station's weatherman, a 

teacher often pairs each set of score with the number of students receiving that score to see more clearly how well 

the class has understood the lesson. Finally, we shall learn about special relations called functions. 

2.1.1 Cartesian products of sets 

 

Definition : Given two non-empty sets A and B, the set of all ordered pairs (x, y), where x ∈ A and y ∈ B is called 

Cartesian product of A and B; symbolically, we write 
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A × B = {(x, y) | x ∈ A and y ∈ B} 

 If A = {1, 2, 3} and B = {4, 5}, then 

A × B = {(1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5)} 

And B × A = {(4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3)} 

 

 

(i) Two ordered pairs are equal, if and only if the corresponding first elements are equal and the second 

elements are also equal, i.e. (x, y) = (u, v) if and only if x = u, y = v.  

(ii) If n(A) = p and n (B) = q, then n (A × B) = p × q. 
 

(i)  A × A × A = {(a, b, c) : a, b, c ∈ A}. Here (a, b, c) is called an ordered triplet. 

 

2.1.2 Relations A Relation R from a non-empty set A to a non empty set B is a subset of the Cartesian product set 

A × B. The subset is derived by describing a relationship between the first element and the second element of the 

ordered pairs in A × B. 

 

The set of all first elements in a relation R, is called the domain of the relation R, and the set of all second 

elements called images, is called the range of R. 

For example, the set R = {(1, 2), (– 2, 3), ( 
1
2 , 3)} is a relation; the domain of 

1 

R = {1, – 2, 2 } and the range of R = {2, 3}. 

(i) A relation may be represented either by the Roster form or by the set builder form, or by an arrow diagram 

which is a visual representation of a relation. 

(ii) If n (A) = p, n (B) = q; then the n (A × B) = pq and the total number of possible relations from the set A to 

set B = 2pq. 
 

2.1.3 Functions A relation f from a set A to a set B is said to be function if every element of set A has one and 

only one image in set B. 

 

In other words, a function f is a relation such that no two pairs in the relation has the same first element. 

 

The notation f : X → Y means that f is a function from X to Y. X is called the domain of f and Y is called the 

co-domain of f. Given an element x ∈ X, there is a unique element 

 

y in Y that is related to x. The unique element y to which f relates x is denoted by f (x) and is called f of x, or the 

value of f at x, or the image of x under f. 
 

The set of all values of f (x) taken together is called the range of f or image of X under f. Symbolically. 
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range of f = { y ∈ Y | y = f (x), for some x in X} 

 

Definition : A function which has either R or one of its subsets as its range, is called a real valued function. 

Further, if its domain is also either R or a subset of R, it is called a real function. 

 

2.1.4  Some specific types of functions 

 

(i) Identity function:  

The function f : R → R defined by y = f (x) = x for each x ∈ R is called the 

identity function. Domain of f = R 

 

Range of f = R 

 

(ii) Constant function: The function f : R → R defined by y = f (x) = C, x ∈ R, where C is a constant ∈ R, is a 

constant function.  

Domain of f = R 

 

Range of f = {C} 

 

(iii) Polynomial function: A real valued function f : R → R defined by y = f (x) = a0  

+ a1x + ...+ anx
n
, where n ∈ N, and a0, a1 , a2...an ∈ R, for each x ∈ R, is called Polynomial functions. 

 

(iv) Rational function: These are the real functions of the type 
f
 
(
 
x)

 , where g ( x) 
 

f (x) and g (x) are polynomial functions of x defined in a domain, where g(x)  0. For 

example f : R – {– 2} → R defined by f (x) = 

x  1 

, x ∈ R – {– 2 }is a 

x  2    

rational function.    

(v) The Modulus function: The real function f : R → R defined by f (x) =  x = 

x, x 0 x, x 0 

x ∈ R is called the modulus function. 

Domain of f = R 

Range of f = R
+
  ∪ {0} 

(vi) Signum function: The real function  
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f : R → R defined by 

 

 | x | 

, x   0 

1, if x  0 

 

 

 

0, if x  0 x f (x )   

 

0, x  0 

    

 1,  if  x  0 

is called the signum function. Domain of f = R, Range of f = {1, 0, – 1} 
 

(vii) Greatest integer function: The real function f : R → R defined by f (x) = [x], x ∈R assumes the value of 

the greatest integer less than or equal to x, is called the greatest integer function.  

Thusf (x) = [x] = – 1 for – 1 ≤ x < 0 f (x) = [x] = 0 for 0 ≤ x < 1 

 

[x] = 1 for 1 ≤  x < 2 

 

[x] = 2 for 2 ≤  x < 3 and so on 

 

2.1.5 Algebra of real functions 

 

(i) Addition of two real functions 
 

Let f : X → R and g : X → R be any two real functions, where X ∈ R. 

Then we define ( f + g) : X → R by ( f + g) (x) = f (x) + g (x), for all x ∈ X. 

(ii) Subtraction of a real function from another  

Let f : X → R and g : X → R be any two real functions, where X ⊆ R. 

 

Then, we define (f – g) : X → R by (f – g) (x) = f (x) – g (x), for all x ∈ X. 

 

(iii) Multiplication by a Scalar 
 

Let f : X → R be a real function and α be any scalar belonging to R. Then the product αf is function from X 

to R defined by (α f ) (x) = α f (x), x ∈ X. 

(iv) Multiplication of two real functions 
 

Let f : X → R and g : x → R be any two real functions, where X ⊆ R. Then 

product of these two functions i.e. f g : X → R is defined by ( f g ) (x) = f (x) g (x) x ∈ X. 
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(v) Quotient of two real function 
 

Let f and g be two real functions defined from X → R. The quotient of f by g 

f 

denoted by g  is a function defined from X → R as 
f
  ( x)  

f
 
(x)

 , provided g (x) ≠ 0, x ∈ X. 

 

gg( x) 

 

 Note Domain of sum function f + g, difference function f – g and product function fg. 

= {x : x ∈D f  ∩  Dg} 

 

where Df  = Domain of function f 

 

Dg  = Domain of function g 

 

F = {x : x ∈D f  ∩  Dg  and g (x) ≠ 0} 

 

2.2  Solved Examples 

 

Short Answer Type 

 

Example 1 Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine 

 

(i) A × B (ii) B × A 

 

(iii) Is A × B = B × A ? (iv) Is n (A × B) = n (B × A) ? 

 

 

(i) A × B = {(1, 5), (1, 7), (1, 9), (2, 5), (2, 7), (2, 9), (3, 5), (3, 7), (3, 9), (4, 5), (4, 7), (4, 9)} 

 

(ii) B × A = {(5, 1), (5, 2), (5, 3), (5, 4), (7, 1), (7, 2), (7, 3), (7, 4), (9, 1), (9, 2), (9, 3), (9, 4)} 

 

(iii) No, A × B ≠ B × A. Since A × B and B × A do not have exactly the same ordered pairs. 

 

(iv) n (A × B) = n (A) × n (B) = 4 × 3 = 12 
n (B × A) = n (B) × n (A) = 4 × 3 = 12 

 

Hence n (A × B) = n (B × A) 

 

Example 2 Find x and y if: 

 

(i) (4x + 3, y) = (3x + 5, – 2) (ii) (x – y, x + y) = (6, 10) 
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Solution 

 

(i) Since (4x + 3, y) = (3x + 5, – 2), so 

 

4x + 3 = 3x + 5 

 

or x = 2 

 

and y = – 2 

 

(ii) x – y = 6 

 

x + y = 10 

 

∴2x = 16 

 

r x = 8 

 

8 – y = 6 

 

∴y = 2 

 

Example 3 If A = {2, 4, 6, 9} and B = {4, 6, 18, 27, 54}, a ∈ A, b ∈ B, find the set of ordered pairs such that 'a' is 

factor of 'b' and a < b. 

 

Solution Since A = {2, 4, 6, 9} 

 

B = {4, 6, 18, 27, 54}, 

 

we have to find a set of ordered pairs (a, b) such that a is factor of b and a < b. 

 

Since 2 is a factor of 4 and 2 < 4. 

 

So (2, 4) is one such ordered pair. 

 

Similarly, (2, 6), (2, 18), (2, 54) are other such ordered pairs. Thus the required set of ordered pairs is 

 

{(2, 4), (2, 6), (2, 18), (2, 54), (6, 18), (6, 54,), (9, 18), (9, 27), (9, 54)}.  
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FUNCTION 

A Function assigns to each element of a set, exactly one element of a related set. 

Functions find their application in various fields like representation of the computational 

complexity of algorithms, counting objects, study of sequences and strings, to name a few. The 

third and final chapter of this part highlights the important aspects of functions. 

Function - Definition 

A function or mapping (Defined as f:X→Yf:X→Y) is a relationship from elements of one 

set X to elements of another set Y (X and Y are non-empty sets). X is called Domain and Y is 

called Codomain of function „f‟. 

Function „f‟ is a relation on X and Y such that for each x∈Xx∈X, there exists a 

unique y∈Yy∈Y such that (x,y)∈R(x,y)∈R. „x‟ is called pre-image and „y‟ is called image of 

function f. 

A function can be one to one or many to one but not one to many. 

Injective / One-to-one function 

A function f:A→Bf:A→B is injective or one-to-one function if for every b∈Bb∈B, there 

exists at most one a∈Aa∈A such that f(s)=tf(s)=t. 

This means a function f is injective if a1≠a2a1≠a2 implies f(a1)≠f(a2)f(a1)≠f(a2). 

Example 

 f:N→N,f(x)=5xf:N→N,f(x)=5x is injective. 

 f:N→N,f(x)=x2f:N→N,f(x)=x2 is injective. 

 f:R→R,f(x)=x2f:R→R,f(x)=x2 is not injective as (−x)2=x2(−x)2=x2 

Surjective / Onto function 

A function f:A→Bf:A→B is surjective (onto) if the image of f equals its range. 

Equivalently, for every b∈Bb∈B, there exists some a∈Aa∈A such that f(a)=bf(a)=b. This means 

that for any y in B, there exists some x in A such that y=f(x)y=f(x). 

Example 

 f:N→N,f(x)=x+2f:N→N,f(x)=x+2 is surjective. 
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 f:R→R,f(x)=x2f:R→R,f(x)=x2 is not surjective since we cannot find a real number whose 

square is negative. 

Bijective / One-to-one Correspondent 

A function f:A→Bf:A→B is bijective or one-to-one correspondent if and only if fis both 

injective and surjective. 

Problem 

Prove that a function f:R→Rf:R→R defined by f(x)=2x–3f(x)=2x–3 is a bijective 

function. 

Explanation − We have to prove this function is both injective and surjective. 

If f(x1)=f(x2)f(x1)=f(x2), then 2x1–3=2x2–32x1–3=2x2–3 and it implies 

that x1=x2x1=x2. 

Hence, f is injective. 

Here, 2x–3=y2x–3=y 

So, x=(y+5)/3x=(y+5)/3 which belongs to R and f(x)=yf(x)=y. 

Hence, f is surjective. 

Since f is both surjective and injective, we can say f is bijective. 

Inverse of a Function 

The inverse of a one-to-one corresponding function f:A→Bf:A→B, is the 

function g:B→Ag:B→A, holding the following property − 

f(x)=y⇔g(y)=xf(x)=y⇔g(y)=x 

The function f is called invertible, if its inverse function g exists. 

Example 

 A Function f:Z→Z,f(x)=x+5f:Z→Z,f(x)=x+5, is invertible since it has the inverse 

function g:Z→Z,g(x)=x−5g:Z→Z,g(x)=x−5. 

 A Function f:Z→Z,f(x)=x2f:Z→Z,f(x)=x2 is not invertiable since this is not one-to-one 

as (−x)2=x2(−x)2=x2. 

Composition of Functions 

Two functions f:A→Bf:A→B and g:B→Cg:B→C can be composed to give a 

composition gofgof. This is a function from A to C defined by (gof)(x)=g(f(x))(gof)(x)=g(f(x)) 

Example 
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∈  

 

 

Let f(x)=x+2f(x)=x+2 and g(x)=2x+1g(x)=2x+1, 

find (fog)(x)(fog)(x) and (gof)(x)(gof)(x). 

Solution 

(fog)(x)=f(g(x))=f(2x+1)=2x+1+2=2x+3(fog)(x)=f(g(x))=f(2x+1)=2x+1+2=2x+3 

(gof)(x)=g(f(x))=g(x+2)=2(x+2)+1=2x+5(gof)(x)=g(f(x))=g(x+2)=2(x+2)+1=2x+5 

Hence, (fog)(x)≠(gof)(x)(fog)(x)≠(gof)(x) 

Some Facts about Composition 

 If f and g are one-to-one then the function (gof)(gof) is also one-to-one. 

 If f and g are onto then the function (gof)(gof) is also onto. 

 Composition always holds associative property but does not hold commutative property. 

The rules of mathematical logic specify methods of reasoning mathematical statements. Greek 

philosopher, Aristotle, was the pioneer of logical reasoning. Logical reasoning provides the 

theoretical base for many areas of mathematics and consequently computer science. It has many 

practical applications in computer science like design of computing machines, artificial 

intelligence, definition of data structures for programming languages etc. 

Theorem  A total function has an inverse if and only if it is bijective. 

 

Proof  

Suppose f : A → B has an inverse f −1. Then we show that f is bijective. 

We first show that f is one to one. Suppose f (x1) = f (x2) then 

f 
−1

(f (x1)) = f 
−1

(f (x2)), 

⇒ f 
−1

of (x1) = f 
−1

of (x2), 

 

⇒ 1A(x1) = 1A(x2), 

     ⇒ x1 = x2. 

Next we first show that f is onto. Let b ∈ B and let a = f −1 (b) then 

    f (a) = f (f 
−1

(b)) = b and so f is surjective. 

The second part of the proof is concerned with showing that if f : A     B is bijective then it has an 

inverse f −1. Clearly, since f is bijective we have that for each a   A there exists a unique b B such 

that f (a)    b. 

 

Define g: B A by letting g(b) be the unique a in A such that f (a) b. Then we have that: 

gof (a) = g(b) = a and f og(b) = f (a) = b. 

Therefore, g is the inverse of f. 
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WELL ORDERING PRINCIPLE 

(Well-Ordering Principle).  

Every non-empty subset of natural numbers contains its least element. 

Proof:  

To prove the weak form of the principle of mathematical induction. The proof is based on 

contradiction. That is, suppose that we need to prove that “whenever the statement P holds true, 

the statement Q holds true as well”. A proof by contradiction starts with the assumption that “the 

statement P holds true and the statement Q does not hold true” and tries to arrive at a 

contradiction to the validity of the statement P being true 
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PART – B (5 x 2 =10 Marks) 

 

Possible Questions (2 Mark) 

 

1. Define Equivalence relations. 

2. Define functions with examples 

3. Define composition functions with examples. 

4. Define Ivertible functions 

5. Define one-to-one correspondence with example 

6. Define cardinality of a set. 

7. State the two properities of composition functions 

8. Write the various types of Functions. 

9. Define domain  & co domain of the function. 

10. Define range of the function. 

11. Define equality of two functions. 

12. Define denumerable sets. 

13. Define countable set 

14. Define Identity Mapping. 

15. Define constant mapping 
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PART – C (5 x 6 =10 Marks) 

 

Possible Questions (6 Mark) 

 

1). If    and   are equivalence relations defined on a set S, Prove that      is an equivalence  

relation. 

2) Show that the following functions are 1-1  

          i) f : R → R given by f(x)= 5x
2
 - 1 

          ii) f: Z → Egiven by f(n)=3x
3
 - x 

3)If the function f: R→ R is given by f(x)= cos x and g: R → R is given by g(x)=   find  

                                and show that they are not equal. 

4) Explain about types of relation with examples. 

5) Let A={1,2,3} and f,g,h and s be functions from A to A given by  

         f ={ (1,2), (2,3),(3,1) } ;  g = { (1,2), (2,1), (3,3) } ;    

         h = { (1,1), (2,2), (3,1) } and s = { (1,1), (2,2), (3,3) }. Find   f ₒ g,  g ₒ f,  f ₒ h ₒ g,  g ₒ s, 

         s ₒ s,  f ₒ s. 

 6) Let S={1,2,3,4,5}  and T={1,2,3,8,9} and define the functions f : S→ T  and  g: S → S by  

f={(1,8), (3,9),(4,3),(2,1),(5,2)}  and g={(1,2),(3,1),(2,2),(4,3),(5,2)} ,then find the values of  the 

following                        . 

 

7) Let  f, g  and h: R → R be defined by  f(x)=x+2  ,g(x)= 
 

      
   and h(x)=3 

Compute              ii)            iii)            . 

8) If   f: X→Y and A, B are two subsets of Y, then  prove that  

        i)                        

        ii)                        

9) For integers a,b define  a   if and only if a – b is divisible by m. Show that R defines an 

equivalence relation on Z. 

10).Let A be the set A={xϵR \ x>0}  and define f ,g, h :A→ R by f(x)=
 

   
 ,g(x)=

 

 
 ,h(x)=x+1 find 

                and         . 

11) Write about the types of function with example 
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S.No Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

1

If f:A→B hence f is called a  …………….. function form formula fuzzy function

2 If the function f is otherwise called as 

…………………… limit mapping lopping inverse mapping

3 If f:A→B in this set  A is called the ……………..of 

the function f. domain co domain set element domain

4 If f:A→B in this set  B is called the ……………..of 

the function f. domain co domain set element co domain

5 The value of the function f for a and is denoted by 

…………………………… a(f) f(a) a f f(a)

6 If aϵA then the element in B which is assignedto ais 

called the ……………….of a B-image a-image A-image f-image f-image

7 The element a may be referred to as the 

…………………..of f(a) f-image pre-image domain codomain pre-image

Possible Questions                               
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8 The ………….. of a function as the image of its 

domain domain range co domain image range

9 The range of a function as the……………. of its 

domain range domain  image preimage  image

10 The range of a function as the image of its 

…………….. co domain image domain range domain

11

Let f be a mapping of A to B,Each element of A has a 

…………. and each element in B need not be appear 

as the image of an element in A. unique preimage unique image unique zero unique range unique image

12

Let f be a mapping of A to B,Each element of …... 

has a unique image and each element in B need not 

be appear as the image of an element in A. A B f f(A) A

13

Let f be a mapping of A to B,Each element of A has a 

unique image and each element in………. need not 

be appear as the image of an element in A. A B f f(A) B

14

Let f be a mapping of A to B,Each element of A has a 

unique image and each element in B need not be 

appear as the …………. of an element in A. domain range co domain image image

15 One-to-one  mapping is also sometimes known 

as…………………. injection bijection surjection imjection injection

16 A mapping  f:A→B is said to be ………….. if 

different elements in A have different f-images in B zero one-one onto into one-one

17

A mapping  f:A→B is said to be 1-1 if 

……………….elements in A have different f-images 

in B same different not equal one different 

18
A mapping  f:A→B is said to be 1-1 if different 

elements in A have different ……………. in B pre images f-images B-images A-images f-images

19 In one-one mappings an element in B has 

only………………preimage in A zero one two three one
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20 In …………...mappings an element in B has only one 

preimage in A one-one onto into one-oneonto one-one 

21 One-one onto   mapping is also sometimes known 

as…………………. injection bijection surjection imjection bijection

22 A mapping  f:A→B is said to be ………….. if 

different elements in A have same  f-images in B one-one onto into many one many one

23 In many-one mappings some elements in B has more 

than………………preimage in A zero one two three one

24 In many-one mappings some elements in B has 

………….. one preimage in A equal more than less than only more than

25
Two sets A and B are said to have the same number 

of elements iff a one-one mapping of A onto B exists, 

such sets are said to be ……………….. equivalent merely equivalent

cardinally 

equivalent notequivalent cardinally equivalent

26

Two sets A and B are said to have the same number 

of elements iff a ………... mapping of A onto B 

exists, such sets are said to be cardinally equivalent one-one many one onto into one-one

27

Two sets A and B are said to have the same number 

of elements iff a one-one mapping of A ………. B 

exists, such sets are said to be cardinally equivalent one-one many one onto into onto

28

Two sets A and B are said to have the ……..number 

of elements iff a one-one mapping of A onto B exists, 

such sets are said to be cardinally equivalent same different zero finite same 

29

Cardinally eqivalent can be written as……………. A+B A-B A~B A/B A~B

30 Cardinally eqivalent sets are to have  the  ………... 

cardinal number. zero one same finite same

31 Cardinally eqivalent sets are to have  the  same  

……………. number. rational complex real cardinal cardinal
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32

If  f:A→B is one-one onto, then f⁻¹:B→A .the 

mapping   f⁻¹ is called the …………….mapping of 

the mapping of f. integral inverse invert reverse inverse

33 Only one-one and onto mapping 

posses……………..mappings. integral inverse invert reverse inverse

34

Only …………... mapping posses inverse mappings. one-one and into one-one 

one-one and 

many one one-one and onto one-one and onto

35 If  f:A→B is one-one onto, then f⁻¹:B→A  is also 

………………… one-one and into one-one 

one-one and 

many one one-one and onto one-one and onto

36 If  f:A→B is one-one onto, then the inverse mapping 

of f is ……………... zero unique different same unique

37 If  f:X→Y    and   g:Y→Zthen the ………………..of 

the function f and g demoted by (gₒf):X→Z. inverse composite different one-one composite 

38 If  f:X→Y    and   g:Y→Zthen the composite of the 

function f and g demoted by ……………. (fₒg):X→Z. (fₒg):X→Y. (gₒf):y→Z. (gₒf):X→Z. (gₒf):X→Z.

39

In general  gₒf ……………. fₒ g equal notequal less than more than notequal

40 If xRx ,forevery xϵA since every triangle is congruent 

to it self.Thus R is …………… reflexive symmetic transitive anti-symmetric reflexive

41

If xRy  and yRz→ x Rz,since if  triangle x  is 

congruent to y  and triangley is congrugent to z 

then,trainglex is congruent to z.Then R is reflexive symmetic transitive anti-symmetric transitive

42

If xRy  →y R z since if  triangle x  is congruent to y  

and triangle y is congrugent to x.Then R is 

…………… reflexive symmetic transitive anti-symmetric symmetic

43 If R is reflexive,symmetric and transitive therefore R 

is an ………………..relation one-one onto equivalence equal equivalence
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UNIT – III 

THE INTEGERS 
 

DIVISIBILITY THEORY IN THE INTEGERS 
 

Well- Ordering Principle 
 

Every non empty set S of nonnegative integers contains a least element. That 

is, there exists some integer a in S such that a ≤ b for all b in S. 

THE DIVISION ALGORITHM 
 

Division Algorithm, the result is familiar to most of us roughly, it asserts that 

an integer a can be ”divided” by a positive integer b in such a way that the 

remainder is smaller than b. The exact statement of this fact is Theorem 1.: 
 

 

Theorem 1. Given integers a and b, with b > 0, there exist unique integers q 

and r satisfying 
 

a = qb + r 0 ≤ r < b 
 

The integers q and r are called, respectively, the quotient and remainder in 

the division of a by b. 
 

Proof. Let a and b be integers with b > 0 and consider the set 
 

S = {a − xb : xisaninteger; a − xb ≥ 0}. 
 

Claim: The set S is nonempty 
 

 

It suffices to find a value x which making a − xb nonnegative. Since b ≥ 1, we 

have |a|b ≥ |a| and so, a − (−|a|)b = a + |a|b ≥ a + |a| ≥ 0. For the choice x = 

−|a|, then a − xb lies in S. Therefore S is nonempty, hence the claim. 

Therefore by Well-Ordering Principle, S contains a small integer, say r. By 

the definition of S there exists an integer q satisfying 
 

r = a − qb 0 ≤ r. 
 

Claim: r < b 
 

Suppose r ≥ b. Then we have 
 

a − (q + 1)b = (a − qb) − b = r − b ≥ 0. 
 

This implies that, a − (q + 1)b ∈ S. But a − (q + 1)b = r − b < r, since b > 0, 

leading to a contradiction of the choice of r as the smallest member of S. 

Hence, r < b, hence the claim. 
 

Next we have to show that the uniqueness of q and r. Suppose that a as two 

representations of the desired form, say, 
 

a = qb + r = q
′
b + r

′
, 
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where 0 ≤ r < b and 0 ≤ r
′
 < b. Then (r

′
 − r) = b(q − q

′
). Taking modulus on 

both sides, 
 

|(r
′
 − r)| = |b(q − q

′
)| = |b||(q − q

′
)| = b|(q − q

′
)|. 

 

But we have −b < −r ≤ 0 and 0 ≤ r
′
 < b, upon adding these inequalities we 

obtain −b < r
′
 − r < b. This implies b|(q − q

′
)| < b, which yields 0 ≤ |q − q

′
| 

< 1. Because |q − q
′
| is a nonnegative integer, the only possibility is that |q − 

q
′
| = 0, hence, q = q

′
. This implies |r

′
 − r| = 0, that is, r = r

′
. Hence the proof. 

 
 

Corollary 1. If a and b are integers, with b =   0, then there exists integers q 

and r such that 
 

a = qb + r 0 ≤ r < |b|. 
 

Proof. It is enough to consider the case in which b is negative. Then |b| > 0, 

and Theorem 1. produces unique integers q
′
 and r for which 

 

a = q
′
|b| + r 0 ≤ r < |b|. 

 

Noting that |b| = −b, we may take q = −q
′
 to arrive at a = qb + r, with 0 ≤ r < 

|b|.  

Application of the Division Algorithm 

1. Square of any integer is either of the form 4k or 4k + 1. That is, the 

square of integer leaves the remainder 0 or 1 upon division by 4. 

 

Solution: Let a be any integer. If a is even, we can let a = 2n, n is an 

integer, then a
2
 = (2n)

2
 = 4n

2
 = 4k. If a is odd, we can let a = 2n+1, n is 

an integer, then a
2
 = (2n+1)

2
 = 4n

2
 +4n+1 = 4(n

2
 +n)+1 = 4k+1. 

 

2. The square of any odd integer is of the form 8k + 1. 

 

Solution: Let a be an integer and let b = 4, then by division algorithm 

 

a is representable as one of the four forms: 4q, 4q + 1, 4q + 2, 4q + 3. 

In this representation, only those integers of the forms 4q + 1 and 4q + 

3 are odd. If a = 4q + 1, then 
 

a
2
 = (4q + 1)

2
 = 16q

2
 + 8q + 1 = 8(2q

2
 + q) + 1 = 8k + 1. 

 

If a = 4q + 3, then 
 

a
2
 = (4q+3)

2
 = 16q

2
+24q+9 = 16q

2
+24q+8+1 = 8(2q

2
+3q+1)+1 = 8k+1. 
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3. For all integer a ≥ 1, 
a(a2+2)

 is an integer. 
 

3 

 

Solution: Let a ≥ 1 be an integer. According to division algorithm, a is 

of the form 3q, 3q + 1 or 3q + 2. If a = 3q, then 
 

3q((3q)2
 

+ 2)
 = 9q3 + 2q, 

 

3 
 

which is clearly an integer. Similarly we can prove other two cases also. 
 

THE GREATEST COMMON DIVISOR 
 

 

Definition 1. An integer b is said to be divisible by an integer a =   0, in 

symbols a|b, if there exists some integer c such that b = ac. We write a - b to 

indicate that b is not divisible by a. 
 

Thus, for example, −22 is divisible by 11, because −22 = 11(−2). How-

ever, 22 is not divisible by 3; for there is no integer c that makes the 

statement 22 = 3c true. 
 

There is other language for expressing the divisibility relation a|b. We could 

say that a is a divisor of b, that a is a factor of b, or that b is a multiple of a. 

Notice that in Definition 1 there is a restriction on the divisor a: Whenever 

the notation a|b is employed, it is understood that a is different from zero. 

If a is a divisor of b, then b is also divisible by −a (indeed, b = ac implies that 

b = (−a)(−c)), so that the divisors of an integer always occur in pairs. 

To find all the divisors of a given integer, it is sufficient to obtain the positive 

divisors and then adjoin to them the corresponding negative integers. For this 

reason, we shall usually limit ourselves to a consideration of positive divisors. 

It will be helpful to list some immediate consequences of Definition 1. 
 

 

Theorem 2. For integers a, b, c, the following hold: 
 

1. a|0, 1|a, a|a. 

 

2. a|1 if and only if a = ±1. 

 

3. If a|b and c|d, then ac|bd. 

 

4. If a|b and b|c, then a|c. 

 

5. a|b and b|a if and only if a = ±b. 

 

6. If a|b and b =   0, then |a| ≤ |b|. 

 

7. If a|b and a|c, then a|(bx + cy) for arbitrary integers x and y.  
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     Proof. 1. Since 0 = a.0, a|0. Since a = 1.a, 1|a. Since a = a.1, a|a. 

 

2. We have a|1 if and only if 1 = a.c for some c, this is if and only if a = 

±1. 

 

3. Clear from definition. 

 

4. Clear from definition. 

 

5. Clear from definition. 

 

6. If a|b, then there exists an integer c such that b = ac; also, b =   0 implies 

that c =   0. Upon taking absolute values, we get |b| = |ac| = |a||c|. 

Because c =   0, it follows that |c| ≥ 1, whence |b| = |a||c| ≥ |a|. 

 

7. The relations a|b and a|c ensure that b = ar and c = as for suitable 

integers r and s. But then whatever the choice of x and y, bx + cy = arx 

+ asy = a(rx + sy). Because rx + sy is an integer, this says that a|(bx + 

cy), as desired. 
 

 

Definition 2. Let a and b be given integers, with at least one of them different 

from zero. The greatest common divisor of a and b, denoted by gcd(a, b), is 

the positive integer d satisfying the following: 

(i) d|a and d|b. 

 

(ii) If c|a and c|b, then c ≤ d. 
 

Example: The positive divisors of −12 are 1, 2, 3, 4, 6, 12, whereas those 

of 30 are 1, 2, 3, 5, 6, 10, 15, 30; hence, the positive common divisors of −12 

and 30 are 1, 2, 3, 6. Because 6 is the largest of these integers, it follows that 

gcd(−12, 30) = 6. In the same way, we can show that gcd(−5, 5) = 5, gcd(8, 

17) = 1, gcd(−8, −36) = 4. 
 

Theorem 3. Given integers a and b, not both of which are zero, there exist 

integers x and y such that 
 

gcd(a, b) = ax + by. 
 

Proof. Consider the set S of all positive linear combinations of a and b : 
 

S = {au + bv : au + bv > 0; u, v integers}. 
 

Since, if a =   0 then |a| = au+b.0 ∈ S, where u = 1, if a > 0; u = −1, if a < 0, S 

is nonempty. Therefore by the Well-Ordering Principle, S must contain a 

smallest element, say d. Thus, from the very definition of S, there exist 

integers x and y for which d = ax + by. Claim: d = gcd(a, b) 
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By using the Division Algorithm, we can obtain integers q and r such that a = 

qd + r, where 0 ≤ r < d. Then r can be written in the form: 
 

r =  a − qd 

 

= a − q(ax + by) 

 

= a(1 − qx) + b(−qy). 
 

If r were positive, then this representation would imply that r is a member of 

S, contradicting the fact that d is the least integer in S (recall that r < d). 

Therefore, r = 0, and so a = qd, or equivalently d|a. By similar reasoning, d|b, 

this implies d is a common divisor of a and b. 
 

Now if c is an arbitrary positive common divisor of the integers a and b, then 

part (7) of Theorem 2 allows us to conclude that c|(ax + by); that is, c|d. By 

part (6) of the same theorem, c = |c| ≤ |d| = d, so that d is greater than every 

positive common divisor of a and b. Hence d = gcd(a, b). Hence the claim. 

Therefore gcd(a, b) = ax + by.  
 

Corollary 2. If a and b are given integers, not both zero, then the set 
 

T = ax + by : x, y are integers 
 

is precisely the set of all multiples of d = gcd(a, b). 

Proof. Because d|a and d|b, we know that d|(ax + by) for all integers x, y. 

Thus, every member of T is a multiple of d. Conversely, d may be written as 

d = ax0 + by0 for suitable integers x0 and y0 , so that any multiple nd of d is of 

the form 
 

nd = n(ax0 + by0) = a(nx0) + b(ny0). 
 

Hence, nd is a linear combination of a and b, and, by definition, lies in T. 
 

 

Definition 3. Two integers a and b, not both of which are zero, are said to be 

relatively prime whenever gcd(a, b) = 1. 
 

Theorem 4. Let a and b be integers, not both zero. Then a and b are 

relatively prime if and only if there exist integers x and y such that 1 = ax + 

by. 
 

Proof. If a and b are relatively prime so that gcd(a, b) = 1, then Theorem 3 

guarantees the existence of integers x and y satisfying 1 = ax+by. Conversely, 

suppose that 1 = ax + by for some choice of x and y, and that d = gcd(a, b). 

Because d|a and d|b, Theorem 2 yields d|(ax+by), or d|1. This implies d = ±1. 

But d is a positive integer, d = 1. That is a and b are relatively prime.  
 

Corollary 3. If gcd(a, b) = d, then gcd(a/d, b/d) = 1. 
 

Proof. Since d|a and d|b, a/d and b/d are integers. We have, if gcd(a, b) = d, 

then there exists x and y such that d = ax + by. Upon dividing each side of this 

equation by d, we obtain the expression 
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1 = (a/d)x + (b/d)y. 
 

Because a/d and b/d are integers, a/d and b/d are relatively prime. Therefore 

gcd(a/d, b/d) = 1.  
 

Corollary 4. If a|c and b|c, with gcd(a, b) = 1, then ab|c. 
 

Proof. Since a|c and b|c, we can find integers r and s such that c = ar = bs. 

Given that gcd(a, b) = 1, so there exists integers x and y such that 1 = ax+by. 
 

Multiplying the last equation by c, we get, 
 

c = c1 = c(ax + by) = acx + bcy. 
 

If the appropriate substitutions are now made on the right-hand side, then 
 

c = a(bs)x + b(ar)y = ab(sx + ry). 
 

This implies, ab|c. 

Theorem 5. (Euclid’s lemma.) If a|bc, with gcd(a, b) = 1, then a|c. 
 

Proof. Since gcd(a, b) = 1, we have 1 = ax + by for some integers x and y. 

Multiplication of this equation by c produces 
 

c = 1c = (ax + by)c = acx + bcy. 
 

Since a|bc and a|ac, we have a|acx + bcy. This implies a|c. 
 

 

Note: If a and b are not relatively prime, then the conclusion of Euclid’s 
 

lemma may fail to hold. For example: 6|9.4 but 6 - 9 and 6 - 4. 
 

Theorem 6. Let a, b be integers, not both zero. For a positive integer d, d = 

gcd(a, b) if and only if 
 

(i) d|a and d|b. 

 

(ii) Whenever c|a and c|b, then c|d. 
 

Proof. Suppose that d = gcd(a, b). Certainly, d|a and d|b, so that (i) holds. By 

Theorem 3, d is expressible as d = ax + by for some integers x, y. Thus, if c|a 

and c|b, then c|(ax + by), or rather c|d. This implies, condition (ii) holds. 

Conversely, let d be any positive integer satisfying the stated conditions (i) 

and (ii). Given any common divisor c of a and b, we have c|d from 

hypothesis (ii). This implies that d ≥ c, and consequently d is the greatest 

common divisor of a and b.  
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THE EUCLIDEAN ALGORITHM 
 

 

Lemma 1. If a = qb + r, then gcd(a, b) = gcd(b, r). 
 

Proof. If d = gcd(a, b), then the relations d|a and d|b together imply that d|(a 

− qb), or d|r. Thus, d is a common divisor of both b and r. On the other hand, 

if c is an arbitrary common divisor of b and r, then c|(qb + r), whence c|a. 

This makes c a common divisor of a and b, so that c ≤ d. It now follows from 

the definition of gcd(b, r) that d = gcd(b, r).  
 

The Euclidean algorithm 
 

The Euclidean Algorithm may be described as follows: Let a and b be two 

integers whose greatest common divisor is desired. Because gcd(|a|, |b |) = 

gcd(a, b),, with out loss of generality we may assume a ≥ b > 0. The first step 

is to apply the Division Algorithm to a and b to get 
 

a = q1b + r1 0 ≤ r1 < b. 

If it happens that r1 = 0, then b|a and gcd(a, b) = b. When r1 =   0, divide b by 

r1 to produce integers q2 and r2 satisfying 
 

b = q2r1 + r2 0 ≤ r2 < r1. 
 

If r2 = 0, then we stop; otherwise, proceed as before to obtain 
 

r1 = q3r2 + r3 0 ≤ r3 < r2. 
 

This division process continues until some zero remainder appears, say, at the 

(n + l)
th

 stage where rn−1 is divided by rn (a zero remainder occurs sooner or 

later because the decreasing sequence b > r1 > r2 > · · · ≥ 0 cannot contain 

more than b integers). The result is the following system of equations: 
 

a = q1b + r1 0 ≤ r1 < b 

b = q2r1 + r2 0 ≤ r2 < r1 

r1 = q3r2 + r3 0 ≤ r3 < r2 
.  
.  

.  

r
n−2 

=
 

q
n

r
n−1 

+
 

r
n 0 ≤ rn < rn−1 

r
n−1 

=
 

q
n+1

r
n 

+ 0. 

By Lemma 1, 
 

gcd(a, b) = gcd(b, r1) = = gcd(rn−1, rn) = gcd(rn, 0) = rn. 
 

 

Note:Start with the next-to-last equation arising from the Euclidean Algo-

rithm, we can determine x and y such that gcd(a, b) = ax + by. 
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Example: Let us see how the Euclidean Algorithm works in a concrete case 

by calculating, say, gcd(12378, 3054). The appropriate applications of the 

Division Algorithm produce the equations 
 

12378 = 4.3054 + 162 
 

3054 = 18.162 + 138 
 

162 = 1.138 + 24 
 

138 = 5.24 + 18 

 

24 = 1.18 + 6 

 

18 = 3.6 + 0 

 
This tells us that the last nonzero remainder appearing in these equations, 
namely, the integer 6, is the greatest common divisor of 12378 and 3054: 

 

6 = gcd(12378, 3054). 

 

To represent 6 as a linear combination of the integers 12378 and 3054, we 
start with the next-to-last of the displayed equations and successively 
eliminate the remainders 18, 24, 138, and 162: 

 

6 =  24 − 18  
= 24 − (138 − 5.24)  
= 6.24 − 138  
= 6(162 − 138) − 138  
= 6.162 − 7.138  
= 6.162 − 7(3054 − 18.162)  
= 132.162 − 7.3054  
= 132(12378 − 4.3054) − 7.3054  
= 132.12378 + (−535)3054 

 

Thus, we have 
 

6 = gcd(12378, 3054) = 12378x + 3054y, 

 

where x = 132 and y = −535. Note that this is not the only way to express the 

integer 6 as a linear combination of 12378 and 3054; among other 
possibilities, we could add and subtract 3054.12378 to get 

 

6 = (132 + 3054)12378 + (−535 − 

12378)3054 = 3186.12378 + (−12913)3054. 
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Theorem 7. If k > 0, then gcd(ka, kb) = k gcd(a, b). 
 

Proof. If each of the equations appearing in the Euclidean Algorithm for a 
and b, multiplied by k, we obtain 

 

ak = q1(bk) + r1k 0 ≤ r1k < bk 

bk = q2(r1k) + r2k 0 ≤ r2k < r1k 
.  
.  

.  

rn−2k = qn(rn−1k) + rnk 0 ≤ rnk < rn−1k 

rn−1k = qn+1(rnk) + 0. 

But this is clearly the Euclidean Algorithm applied to the integers ak and bk, 

so that their greatest common divisor is the last nonzero remainder rnk; that 

is, 
 

gcd(ka, kb) = rnk = k gcd(a, b), 
 

Hence the theorem.  
 

Corollary 5. For any integer k =   0, gcd(ka, kb) = |k| gcd(a, b). 
 

Proof. We already have, if k > 0, then gcd(ka, kb) = k gcd(a, b). Therefore it 
suffices to consider the case in which k < 0. Then −k = |k| > 0 and, by 
Theorem 7, 

gcd(ak, bk) = gcd(−ak, −bk)  
= gcd(a|k|, b|k|)  
= |k| gcd(a, b). 

 
Hence the result.  

 

De nition 4. The least common multiple of two nonzero integers a and b, 
denoted by lcm(a, b), is the positive integer m satisfying the following: 

 

(i) a|m and b|m. 
 

(ii) If a|c and b|c, with c > 0, then m ≤ c. 
 

As an example, the positive common multiples of the integers -12 and 30 

are 60, 120, 180, ... hence, lcm(−12, 30) = 60. 

Theorem 8. For positive integers a and b 
 

gcd(a, b) lcm(a, b) = ab. 
 

Proof. Let d = gcd(a, b) and let m = ab/d, then m > 0.  
Claim: m = lcm(a, b)  

 

Since d is the common divisor of a and b we have a = dr, b = ds for in-tegers 
r and s. Then m = as = rb. This implies, m a (positive) common multiple of a 
and b. 

 
Now let c be any positive integer that is a common multiple of a and b, then c 
= au = bv for some integers u and v. As we know, there exist integers x and y 
satisfying d =ax+ by. In consequence, 
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c  = cd = c(ax + by) = ( c )x + c )y = vx + uy. 
m ab ab b 

 

    a 
 

This equation states that m|c, this implies, m ≤ c. By the definition of least 
common multiple, we have m = lcm(a, b). Hence the claim. Therefore gcd(a, 

b) lcm(a, b) = ab.  
Corollary 6. For any choice of positive integers a and b, lcm(a, b) = ab if and 
only if gcd(a, b) = 1. 

 

Definition 5. If a, b, c, are three integers, not all zero, gcd(a, b, c) is defined 
to be the positive integer d having the following properties: 

 

(i) d is a divisor of each of a, b, c. 
 

(ii) If e divides the integers a, b, c, then e ≤ d. 
 

For example gcd(39, 42, 54) = 3 and gcd(49, 210, 350) = 7. 

Example: Consider the linear Diophantine equation 
 

172x + 20y = 1000 

 

Applying the Euclidean’s Algorithm to the evaluation of gcd(172, 20), we 
find that 

172 = 8.20 + 12 
20 = 1.12 + 8  
12 =  1.8 + 4  
8    =  24, 

 

whence gcd(172, 20) = 4. Because 4|1000, a solution to this equation exists. 
To obtain the integer 4 as a linear combination of 172 and 20, we work 
backward through the previous calculations, as follows: 

 

4 =  12 − 8  
= 12 − (20 − 12)  
= 212 − 20  
= 2(172 − 8.20) − 20  
= 2.172 + (−17)20 

 

Upon multiplying this relation by 250, we arrive at 
 

1000 = 250.4 
 

= 250(2.172 + (−17)20)  
= 500.172 + (−4250)20, 

 

so that x = 500 and y = −4250 provide one solution to the Diophantine 
equation in question. All other solutions are expressed by 

 

x = 500 + (20/4)t = 500 + 5t 

 

y = −4250 − (172/4)t = −4250 − 43t, 
 

for some integer t. 
 

If we want to find positive solution,if any happen to exist. For this, t must be 
chosen to satisfy simultaneously the inequalities 
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5t + 500 > 0 − 43t − 4250 > 0 

or 

36 

 

−98 > t > −100. 
 

43 
 
Because t must be an integer, we are forced to conclude that t = −99. Thus, our 
Diophantine equation has a unique positive solution x = 5, y = 7 corresponding to 
the value t = −99. 
 
 

 

 

THE FUNDAMENTAL THEOREM OF ARITHMETIC 
 

 

Definition 6. An integer p > 1 is called a prime number, or simply a prime, if its 
only positive divisors are 1 and p. An integer greater than 1 that is not a prime is 
termed composite. 
 

Among the first ten positive integers, 2, 3, 5, 7 are primes and 4, 6, 8, 9, 10 are 

composite numbers. Note that the integer 2 is the only even prime, and according to 

our definition the integer 1 plays a special role, being neither prime nor composite. 
 

Theorem 1. If p is a prime and p|ab, then p|a or p|b. 
 

Proof. If p|a, then we need go no further, so let us assume that p - a. Because the 

only positive divisors of p are 1 and p itself, this implies that gcd(p, a) = 1. Hence, 

by Euclid’s lemma, we get p|b.  

Corollary 8. If p is a prime and p|a1a2 · · · an, then p|ak for some k, where 1 ≤ 

k ≤ n.  
Proof. We proceed by induction on n, the number of factors. When n = 1, the stated 
conclusion obviously holds; whereas when n = 2, the result is the content of 
Theorem 10. Suppose, as the induction hypothesis, that n > 2 and that whenever p 
divides a product of less than n factors, it divides at least one of the factors. Now let 

p|a1a2 · · · an. From Theorem 10, either p|an or p|a1a2 · · · an−1 If p|an, then we are 

through. As regards the case where p|a1a2 · · · an−1, the induction hypothesis 

ensures that p|ak for some choice of k, with 1 ≤ k ≤ n − 1. In any event, p divides 

one of the integers a1, a2, · · · , an. 

 
Theorem 2. (Fundamental Theorem of Arithmetic.) Every positive integer n > 
1 can be expressed as a product of primes; this representation is unique, 
apart from the order in which the factors occur. 

 

Proof. Either n is a prime, there is nothing to prove. If n is composite, then 
there exists an integer d satisfying d|n and 1 < d < n. Among all such integers 

d, choose p1 to be the smallest (this is possible by the Well-Ordering 

Principle). Then P1 must be a prime number. Otherwise it too would have  

a divisor q with 1 < q < p1; but then q|p1 and p1|n imply that q|n, which 

contradicts the choice of p1 as the smallest positive divisor, not equal to 1, of 

n. We therefore may write n = p1n1, where p1 is prime and 1 < n1 < n.If n1 
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happens to be a prime, then we have our representation. In the contrary case, 

the argument is repeated to produce a second prime number p2 such that n1 = 

p2n2; that is, 
 

n = p1P2n2 1 < n2 < n1. 
 

If n2 is a prime,then it is not necessary to go further. Otherwise, write n2 = 

p3n3, with p3 a prime: 
 

n = p1P2p3n3 1 < n3 < n2. 
 

The decreasing sequence n > n1 > n2 > · · · > 1 cannot continue indefinitely, 

so that after a finite number of steps nk−1 is a prime, call it, pk. This leads to 
the prime factorization  

n = p1p2 · · · pk. 
 

To establish the second part of the proof-the uniqueness of the prime factor-
ization, let us suppose that the integer n can be represented as a product of 
primes in two ways, say, 

 

n = p1p2 · · · pr = q1q2 · · · qs r ≤ s, 
 

where the pi and qj are all primes, written in increasing magnitude so that 
 

p1 ≤ p2 ≤ · · · ≤ pr q1 ≤ q2 ≤ · · · ≤ qs. 

Because p1|q1q2 · · · qs , Corollary 9 tells us that p1 = qk for some k; but then 

p1 ≥ q1. Similar reasoning gives q1 ≥ p1, whence p1 = q1. We may cancel this 
common factor and obtain 

 

p2p3 · · · pr = q2q3 · · · qs.  

Now repeat the process to get p2 = q2 and, in turn, 
 

p3p4 · · · pr = q3q4 · · · qs. 
 

Continue in this fashion. If the inequality r < s were to hold, we would 
eventually arrive at 

1 = qr+1qr+2 · · · qs, 

which is absurd, because each qj > 1. Hence, r = s and 
 

p1 = q1, p2 = q2, · · · , pr = qr, 
 

making the two factorizations of n identical. The proof is now complete. 
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THE THEORY OF CONGRUENCES 
 
 

 

Definition 1. Let n be a fixed positive integer. Two integers a and b are said 
to be congruent modulo n, symbolized by 

 

a ≡ b(modn) 
 

if n divides the difference a − b; that is, provided that a − b = kn for some 
integer k. 

 

Theorem 1. For arbitrary integers a and b, a ≡ b(modn) if and only if a and b 
leave the same nonnegative remainder when divided by n. 

 

Proof. Suppose a ≡ b(modn), so that a = b + kn for some integer k. Upon 

division by n, b leaves a certain remainder r; that is, b = qn + r, where 0 ≤ r < 

n. Therefore, 

a = b + kn = (qn + r) + kn = (q + k)n + r 
 

which indicates that a has the same remainder as b. 

On the other hand, suppose we can write a = q1n + r and b = q2n + r, with the 

same remainder r (0 ≤ r < n). Then 
 

a − b = (q1n + r) − (q2n + r) = (q1 − q2)n, 
 

whence n|a − b. That is, a ≡ b(modn).  
 

Theorem 2. Let n > 1 be fixed and a, b, c, d be arbitrary integers. Then the 
following properties hold: 

 

1. a ≡ a(modn). 

2. If a ≡ b(modn), then b ≡ a(modn). 
 

3. If a ≡ b(modn) and b ≡ c(modn), then a ≡ c(modn). 
 

4. If a ≡ b(modn) and c ≡ d(modn), then a + c ≡ b + d(modn) and ac ≡ 

bd(modn). 
 

5. If a ≡ b(modn), then a + c ≡ b + c(modn) and ac ≡ bc(modn). 
 

6. If a ≡ b(modn), then a
k
 ≡ b

k
(modn) for any positive integer k. 

 

 

 

 

 

 

 

 

 

 



UNIT – III                                        The Integer   2017 Batch

 

Prepared by: R. Praveen Kumar, Department of Mathematics, KAHE    15/23 
 

Problem 1: Show that 41|2
20

 − 1. 
Solution: We have  

2
5
 ≡ −9(mod 41). 

 

Therefore  

(2
5
)
4
 ≡ (−9)

4
(mod 41). 

 

This implies that  

2
20

 ≡ (−9)
4
(mod 41). 

 

But we have (−9)
4
 = 81.81 and 81 ≡ −1(mod 41). Therefore 

 

2
20

 ≡ (−1)(−1)(mod 41). 
 

This implies 41|2
20

 − 1. 

Problem 2: Find the remainder obtained upon dividing the sum 1! 

+ 2! + 3! + 4! + · · · + 99! + 100! 

by 12. 
 

Solution: We have 4! ≡ 24 ≡ 0(mod 12); thus, for k ≥ 4, 
 

k! ≡ 4!.5.6 · · · k ≡ 0.5..6 · · · k ≡ 0(mod 12). 
 

Therefore 

 

1! + 2! + 3! + 4! + · · · + 100! ≡ 1! + 2! + 3! + 0 + · · · + 0 ≡ 9(mod 12). 
 

The remainder 9. 
 

Theorem 3. If ca ≡ cb(mod n), then a ≡ b(mod n/d), where d = gcd(c, n) 

Proof. By hypothesis, we can write 
 

c(a − b) = ca − cb = kn, (3.1) 
 

for some integer k. Knowing that gcd(c, n) = d, there exist relatively prime 
integers r and s satisfying c = dr, n = ds. When these values are substituted in 
Eq. 3.1 and the common factor d canceled, the net result is 

 

r(a − b) = ks. 
 

Hence, s|r(a − b) and gcd(r, s) = 1. Euclid’s lemma yields s|(a − b), which 

implies a ≡ b(mod s); in other words, a ≡ b(mod n/d).  
 

Corollary 12. If ca ≡ cb(mod n) and gcd(c, n) = 1, then a ≡ b(mod n). 
 

Corollary 13. If ca ≡ cb(mod p) and p - c, where p is a prime number, then a 

≡ b(mod p). 
 

Proof. The conditions p - c and p a prime imply that gcd(c, p) = 1. Then by 

Corollary 12, a ≡ b(mod p). 
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PRINCIPLE OF MATHEMATICAL 

INDUCTION 
 

 

  The principle of mathematical induction 
 
Let P(n) be a given statement involving the natural number n such that  

3. The statement is true for n = 1, i.e., P(1) is true (or true for any fixed natural number) 

and  
4. If the statement is true for n = k (where k is a particular but arbitrary natural number), 

then the statement is also true for n = k + 1, i.e, truth of P(k) implies the truth of P(k + 

1). Then P(n) is true for all natural numbers n. 
 
Solved Examples 
 
Short Answer Type 
 
Prove statements in Examples 1 to 5, by using the Principle of Mathematical Induction for 

all n ∈ N, that : 
 
Example 1 1 + 3 + 5 + ... + (2n – 1) = n2 
 

Solution Let the given statement P(n) be defined as P(n) : 1 + 3 + 5 +...+ (2n – 1) = n
2
, 

for n ∈ N. Note that P(1) is true, since  
P(1) : 1 = 1

2 
 
Assume that P(k) is true for some k ∈ N, i.e., P(k) : 1 + 3 

+ 5 + ... + (2k – 1) = k 2  
Now, to prove that P(k + 1) is true, we have  
1 + 3 + 5 + ... + (2k – 1) + (2k + 1)  
= k

2
 + (2k + 1) (Why?)  

= k2 + 2k + 1 = (k + 1)2 
 
Thus, P(k + 1) is true, whenever P(k) is true.  
Hence, by the Principle of Mathematical Induction, P(n) is true for all n ∈ N. 
  
Example 2 2

2n
 – 1 is divisible by 3. 

 
Solution Let the statement P(n) given as 
 
P(n) : 22n – 1 is divisible by 3, for every natural number n. 
 
We observe that P(1) is true, since 
 
2

2
 – 1 = 4 – 1 = 3.1 is divisible by 3.  

Assume that P(n) is true for some natural number k, i.e., P(k): 2
2k

 – 

1 is divisible by 3, i.e., 2
2k

 – 1 = 3q, where q ∈ N Now, to prove that 

P(k + 1) is true, we have  
P(k + 1) : 22(k+1) – 1 = 22k + 2 – 1 = 22k . 22 – 1 
 
= 2

2k
 . 4 – 1 = 3.2

2k
  + (2

2k
 – 1) 
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= 3.2
2k

 + 3q  
= 3 (2

2k
 + q) = 3m, where m ∈ N  

Thus P(k + 1) is true, whenever P(k) is true.  
Hence, by the Principle of Mathematical Induction P(n) is true for all natural numbers n. 
 
Example 3 2n + 1 < 2

n
, for all natual numbers n  3. 

 
Solution Let P(n) be the given statement, i.e., P(n) : (2n + 1) < 2

n
 for all natural numbers, 

n  3. We observe that P(3) is true, since  
2.3 + 1 = 7 < 8 = 23 
 
Assume that P(n) is true for some natural number k, i.e., 2k + 1 < 2

k 

 
To prove P(k + 1) is true, we have to show that 2(k + 1) + 1 < 2

k+1
. Now, we have 2(k + 

1) + 1 = 2 k + 3  
8.2k + 1 + 2 < 2k + 2 < 2k . 2 = 2k + 1. 

 
Thus P(k + 1) is true, whenever P(k) is true. 
 
Hence, by the Principle of Mathematical Induction P(n) is true for all natural numbers, n  

3. 
 
Long Answer Type 
 
Example 4 Define the sequence a1, a2, a3... as follows :  
a1 = 2, an = 5 an–1 , for all natural numbers n  2.  

(iii) Write the first four terms of the sequence. 
 
(iv) Use the Principle of Mathematical Induction to show that the terms of the sequence 

satisfy the formula an = 2.5
n–1

 for all natural numbers.  
Solution  

r We have a1 = 2  
a2 = 5a2–1 = 5a1 = 5.2 = 10 a3 = 5a3–1 = 5a2 = 

5.10 = 50 a4 = 5a4–1 = 5a3 = 5.50 = 250 

r Let P(n) be the statement, i.e.,  
P(n) : an = 2.5 n–1 for all natural numbers. We observe that P(1) is true  
Assume that P(n) is true for some natural number k, i.e., P(k) : ak = 2.5

k
 
– 1

. Now to 

prove that P (k + 1) is true, we have 

 

P(k + 1) : a k + 1 = 5.ak = 5 . (2.5
k
 
– 1

) 
 
= 2.5

k
 = 2.5

(k
 
+ 1)–1 

 
Thus P(k + 1) is true whenever P (k) is true.  
Hence, by the Principle of Mathematical Induction, P(n) is true for all natural numbers. 
 
Example 5 The distributive law from algebra says that for all real numbers c, a1 and a2, 

we have c (a1 + a2) = ca1 + ca2. 

Use this law and mathematical induction to prove that, for all natural numbers, n ≥ 2, if c, 

a1, a2 , ...,an are any real numbers, then  
c (a1 + a2 + ... + an ) = ca1 + ca2 + ... + can  

Solution Let P(n) be the given statement, i.e., 
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P(n) : c (a1 + a2 + ... + an) = ca1 + ca2 + ... can for all natural numbers n ≥ 2, for c, a1, a2, 

... an ∈ R. 

We observe that P(2) is true since  

c(a1 + a2) = ca1 + ca2 

(by distributive 

law) 

Assume that P(n) is true for some natural number k, where k > 2, i.e., 

P(k) : c (a1  + a2 + ... + ak) = ca1 

+ ca2 + ... + 

cak  

Now to prove P(k + 1) is true, we have   

P(k + 1) : c (a1  + a2 + ... + ak + ak + 1)   

= c ((a1 + a2 + ... + ak) + ak + 1)   

= c (a1  + a2 + ... + ak) + cak + 1  

(by distributive 

law) 

= ca1  + ca2 + ... + cak + cak + 1   

Thus P(k + 1) is true, whenever P (k) is 

true.    
Hence, by the principle of Mathematical Induction, P(n) is true for all natural numbers n 

≥ 2. 

Example 7 Prove by the Principle of Mathematical Induction that 
 
1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = n + 1)! – 1 for all natural numbers n.  

Solution Let P(n) be the given statement, that is, 
 
P(n) : 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = n + 1)! – 1 for all natural numbers n. Note 

that P (1) is true, since 
 

P (1) : 1 × 1! = 1 = 2 – 1 = 2! – 1. 
 
Assume that P(n) is true for some natural number k, i.e., 
 
P(k) : 1 × 1! + 2 × 2! + 3 × 3! + ... + k × k! = (k + 1)! – 1 
 
To prove P (k + 1) is true, we have 
 
P (k + 1) : 1 × 1! + 2 × 2! + 3 × 3! + ... + k × k! + (k + 1) × (k + 1)! 
 

(i) k + 1)! – 1 + (k + 1)! × (k + 1) 
 

(ii) (k + 1 + 1) (k + 1)! – 1 
 

(iii) (k + 2) (k + 1)! – 1 = ((k + 2)! – 1 
 
Thus P (k + 1) is true, whenever P (k) is true. Therefore, by the Principle of Mathematical 

Induction, P (n) is true for all natural number n. 

Example 8 

Prove, by Mathematical Induction, that 

        
  

6

1n71n2n
n2...3n2n1n

2222 
     

is true for all natural numbers  n. 

 

Discussion  
Some readers may find it difficult to write the L.H.S. in P(k + 1). Some cannot 

factorize the L.H.S. and are forced to expand everything. 

 

For  P(1), 
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L.H.S. = 2
2
 = 4, R.H.S. = 4

6

831



 .   P(1)  is true. 

Assume that  P(k)  is true for some natural number  k, that is 

       
  

6

1k71k2k
k2...3k2k1k

2222 
     

  …. (1) 

For  P(k + 1) , 

          22222
2k21k2k2...3k2k    (There is a 

missing term in front           

    and two more terms at the back.) 

          22222
1k41k2k2...3k2k   

            222222
1k31k2k2...3k2k1k   

 
  

   22
1k31k2

6

1k71k2k



  , by (1) 

 
 

      21k31k261k7k
6

1k2



     (Combine the 

first two terms) 

 
     22 1k36k13k7

6

1k2



  

 
 

    2
1k31k6k7

6

1k2



  

 
 

     1k186k71k2
6

1k



  

 
   24k37k14

6

1k 2 


  

 
 

  
       

6

11k711k21k
8k73k2

6

1k 



  

 P(k + 1)  is true. 

By the Principle of Mathematical Induction, P(n) is true for all natural numbers, n . 

 

Example 9 

Prove, by Mathematical Induction, that 

         2n1nn
6

1
1n22n...2n31n2n1      

is true for all natural numbers  n. 

 

Discussion  
The "up and down" of the L.H.S. makes it difficult to find the middle term, but 

you can avoid this. 

 

Solution 

Let  P(n)  be the proposition: 

        2n1nn
6

1
1n22n...2n31n2n1   

For  P(1), 
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L.H.S. = 1, R.H.S. = 1321
6

1
  .   P(1)  is true. 

 

Assume that  P(k)  is true for some natural number  k, that is 

        2k1kk
6

1
1k22k...2k31k2k1     

 …. (1) 

For  P(k + 1) , 

         11k2k31k...1k3k21k1   

                 11k11k121k...12k311k21k1   

 
     

   1kk1k...321

1k22k...2k31k2k1




(The bottom series is 

arithmetic) 

      2k1k
2

1
2k1kk

6

1
  , by (1) 

            21k11k1k
6

1
3k2k1k

6

1
  

 P(k + 1)  is true. 

By the Principle of Mathematical Induction, P(n) is true for all natural numbers, n . 

 

Example 10 

Prove, by Mathematical Induction, that  n(n + 1)(n + 2)(n + 3)  is divisible by  24,  for all 

natural numbers  n. 

  

Discussion  
 Mathematical Induction cannot be applied directly.  Here we break the proposition 

into three parts.  Also note that  24 = 4321 = 4! 

 

Solution 

Let  P(n)  be the proposition: 

1. n(n + 1)  is divisible by  2! =2. 

2. n(n + 1)(n + 2)  is divisible by  3! = 6. 

3. n(n + 1)(n + 2)(n + 3)  is divisible by  4! = 24. 

 

For  P(1), 

1. 12 = 2 is divisible by  2. 

2. 123 = 6 is divisible by  3. 

3. 1234 = 24 is divisible by  24.   P(1)  is true. 

 

Assume that  P(k)  is true for some natural number  k, that is 

1. k(k + 1)  is divisible by  2, that is,  k(k + 1) = 2a     

  …. (1) 

2. k(k + 1)(k + 2)  is divisible by  6 , that is, k(k + 1)(k + 2) = 6b   

  …. (2) 

3. k(k + 1)(k + 2)(k + 3)  is divisible by  24 ,  

that is,  k(k + 1)(k + 2)(k + 3) = 24c       

   …. (3) 
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where  a, b, c  are natural numbers. 

 

For  P(k + 1) , 

1. (k + 1)(k + 2) = k(k + 1) + 2(k + 1) = 2a + 2(k + 1) , by (1) 

= 2 [a + k + 1]           

    …. (4) 

 , which is divisible by  2. 

2. (k + 1)(k + 2)(k + 3) = k(k + 1)(k + 2) + 3(k + 1)(k + 2) 

 = 6b + 3  2[a + k + 1] , by (2), (4) 

 = 6 [b + a + k + 1]          

     …. (5) 

, which is divisible by  6. 

3. (k + 1)(k + 2)(k + 3)(k + 4) = k(k + 1)(k + 2)(k + 3) + 4(k + 1)(k + 2)(k + 3) 

 = 24c + 4  6[b + a + k + 1] , by (3) , (5) 

 = 24 [c + b + a + k + 1] 

 , which is divisible by  24 . 

 P(k + 1)  is true. 

By the Principle of Mathematical Induction, P(n) is true for all natural numbers, n . 
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PART – B (5 x 2 =10 Marks) 

 

Possible Questions (2 Mark) 

 

1. Define the divisibility over a field. 

2. Define the greatest common divisor of two polynomials over a field. 

3. State the Division Algorithm. 

4. Define relatively prime polynomials. 

5. Define quotient and remainder. 

6. State the Euclidean algorithm. 

7. Define reducible. 

8. Define irreducible. 

9. State the principles of mathematical induction. 

10. State the Fundamental theorem of Arithmetic. 

11. Write the any two basic properties of the Greatest Common divisor. 

12. Write the any two basic properties of the Prime factors. 

13.Define residue. 

14.Write any two properties of congruence relation. 
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PART – C (5 x 6 =10 Marks) 

 

Possible Questions (6 Mark) 

1) Prove that 1
2
+2

2
+3

2
+…. +n

2
= n(n+1)(2n+1)/6 by Principle of Mathematical induction. 

2) Find a+b (mod n), ab (mod n) and        (mod n) if a=4003, b=-127, n=85. 

3) Prove that the sum of the first n odd integers is    . 

4) State and prove the Principles of Mathematical Induction. 

5) Find the quotient q and the remainder r as defined in the Division algorithm 

          i) a=500, b=17      ii)a=-500,b=17      iii)a=-500 ,b=-17 

6) Define greatest common divisor& Find the greatest common divisor of a and b and  

        express  it in the form ma+nb for suitable integers m and n . 

             i) a=26 ,b=118.  

7) State and prove the Division Algorithm. 

8) Solve the following congruence i ) 3x              ii) i ) 3x            

9)State and prove the fundamental theorem of Arithmetic . 

10) Prove that ,if  a                          then 

        i) a+b             and ii) ab            . 

11. State and prove Euclidean Algorthim. 

12. State and prove Euclidean theorem. 
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S.No Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

1

Let f(x),g(x)≠0 be any two polynomials of the 

polynmial domain F[x],over the field F. Then there 

exist uniquely two polynomials q(x) & r(x) in F[x] 

such that ………………..

f(x)= 

q(x)g(x)+r(x) f(x)= q(x)+r(x) f(x)=q(x)g(x) f(x)=g(x)+r(x) f(x)= q(x)g(x)+r(x)

2

Let f(x),g(x)≠0 be any two polynomials of the 

polynmial domain F[x],over the field F. Then there 

exist uniquely two polynomials q(x) & r(x) in F[x] 

such that f(x)=q(x)g(x)+r(x) where r(x)…. equal to zero not equal to zero less than zero more than zero equal to zero

3 Division algorithm for polynomials over a field  deg 

r(x)  ………..deg g(x) < > = ≠ =

4 In the division algorithm, the polynomial q(x) is 

called the ……….on dividing f(x) by g(x) quotient remainder divisior diviend quotient

5

In the division algorithm, the polynomial q(x) is 

called the quotient on dividing f(x) by g(x) and the 

polynomail r(x)is called the …………………… quotient remainder divisior diviend remainder

6 A polynomial domain F[x] over a field F is a 

principal………………. commutatice ring ideal ring associative ring division ring ideal ring

Possible Questions                               
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7 A polynomial …………….. F[x] over a field F is a 

principal idea lring domain range co domain quotient domain

8 A polynomial domain  F[x] over a ………….. F is a 

principal ideal ring ring domain range field field

9
In a Euclidean algorithm ,Let F be a field and f(x)  

and g(x) be any two polynomials in F[x], not both of 

which are ………………………. zero one two three zero

10

In a Euclidean algorithm ,Let F be a field and f(x)  

and g(x) be any two polynomials in F[x], not both of 

which are  zero.Then f(x and g(x) have a 

………………………d(x) common divisor

greatest common 

divisor

least common 

divisor equal divisor greatest common divisor

11

Let F be a field and f(x)  and g(x) be any two 

polynomials in F[x], not both of which are  zero.Then 

f(x and g(x) have a greatest common divisor d(x),it 

can be expressed in the form……..

d(x)=m(x)f(x)+n(

x)g(x)

d(x)=m(x)f(x)-

n(x)g(x)

d(x)=f(x)+n(x)g

(x)

d(x)=m(x)f(x)+n(

x) d(x)=m(x)f(x)+n(x)g(x)

12
In a Euclidean algorithm,the expression 

d(x)=m(x)f(x)+n(x)g(x) for ………………..m(x) and 

n(x) in F[x]. ring field polynomials domain polynomials

13 The greatest common divisor should be a 

……………….polynomial zero monic double triple monic

14 If a(x)≠0 and f(x) are elements of F[x] then a(x) is a 

………………of f(x) quotient remainder divisor dividend divisor

15

If a(x)≠0 and f(x) are elements of F[x] then a(x) is a 

divisor of f(x)iff there is a polynomial b(x) be in f[x] 

then …………………… f(x)=a(x)+b(x) f(x)=a(x)-b(x) f(x)=a(x)b(x) f(x)=a(x)/b(x) f(x)=a(x)b(x)

16 The divisor of f(x) symbolically write 

…………………. a(x)/f(x) f(x)/a(x) b(x)/f(x) a(x)/b(x) a(x)/f(x)

17 A ……….is an element of F[x] which has a 

multiplicative inverse. zero unit two three unit
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18
A unit  is an element of F[x] which has 

………………. inverse. finite infinite multiplicative zero multiplicative

19 A  unit is an element of F[x] which has a 

multiplicative …………….... ring field range inverse inverse

20 All the polynomials of ……………. degree 

belonging to F[x] are units of F[x]. 1st 2nd zero nth zero

21 All the polynomials of zero  degree belonging to F[x] 

are……………...of F[x].  units field ring range  units 

22 The……………….. elements of F are the only units 

of F[x]. zero non zero finite infinite non zero

23 The non zero elements of F are the ……………..of 

F[x]. only units not only units double units zero units only units 

24

If f(x) and g(x) are polynomials in F[x], then we call 

f(x) and g(x) associates if ………………..for some 

0≠c ϵ F. f(x)=g(x) f(x)=c/g(x) f(x)=c+g(x) f(x)=cg(x) f(x)=cg(x) 

25

If f(x) and g(x) are ……………….. in F[x], then we 

call f(x) and g(x) associates if f(x) =c g(x) for some 

0≠c ϵ F. field ring polynomials domain polynomials

26

If f(x) and g(x) are polynomials in F[x], then we call 

f(x) and g(x) associates if f(x) =c g(x) for some 

…………….... 0=c ϵ F 0>c ϵ F 0<c ϵ F 0≠c ϵ F 0≠c ϵ F

27

Two non zero polynomials f(x) and g(x) in F[x] are 

associates iff …………………….. And 

……………………….

f(x)+g(x) &  

g(x)/f(x)

f(x)g(x) &  

g(x)f(x)

f(x)/g(x) &  g(x)-

f(x)

f(x)/g(x) &  

g(x)/f(x) f(x)/g(x) &  g(x)/f(x)

28 Two non zero polynomials f(x) and g(x) in F[x] are 

……………. iff f(x)/g(x)  and g(x)/f(x) commutates associates divisible distributive associates

29 The divisorsof f(x) are called 

its………………………divisors. proper improper finite infinite improper
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30 All other divisors of f(x), if there are any , are called 

its…………………….divisors. proper improper finite infinite proper

31 If f(x) be a ……………...of positive degree, then f(x) 

is said to be irreducible over F. function domain polynomial range polynomial 

32 If f(x) be a polynomial of ………….. degree, then 

f(x) is said to be irreducible over F. zero positive negative infinite positive

33 If f(x) be a polynomial of positive degree, then f(x) is 

said to be ………………. over F. irreducible reducible singular non singular irreducible

34 An irreducible polynomial is otherwise called 

as…………….. point prime power degree prime

35 It has ………….. proper divisors in F[x]; f(x) is 

irreducible over F. no 0ne two infinite no

36 It has no proper divisors in F[x]; f(x) is 

…………………. over F. irreducible reducible singular non singular irreducible

37 It has a ……………... divisors in F[x]; f(x) is 

reducible over F. finite infinite proper improper proper

38 It has a proper  divisors in F[x]; f(x) 

is………………….. over F. irreducible reducible singular non singular reducible

39

……………………. depends on the field. irreducibility reducibility singularity non singularity irreducibility

40

Irreducibility depends on the …………….... field domain range ring field

41 Two polynomials are said to be  relatively prime if 

their greatest common divisor is ………….... 0 1 2 3 1

42 ………………. polynomials are said to be  relatively 

prime if their greatest common divisor is 1. zero one two three two
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43 Two polynomials are said to be …………………. if 

their greatest common divisor is 1. field prime  relatively prime uniquely prime  relatively prime

44 Two polynomials are said to be  relatively prime if 

their ……………….divisor is 1. zero greatest common leatest common infinite greatest common 

45

Let m be any fixed positive integer.Then an integer a 

is said to be congruent to another integer b modulo m 

if …………….. m/(ab) m/(a-b) m/(a+b) m/a m/(a-b)

46

Let m be any fixed ………….. integer.Then an 

integer a is said to be congruent to another integer b 

modulo m if m/(a-b). positive negative zero infinite positive

47

Let m be any fixed positive integer.Then an integer a 

is said to be …………. to another integer b modulo 

m if m/(a-b). division range congruent domain congruent

48

Let m be any fixed positive integer.Then an integer a 

is said to be congruent to another integer b 

……………. m if m/(a-b). multiplication addition division modulo modulo
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UNIT – IV 

  

SYSTEM OF LINEAR EQUATIONS 
 
 

 

A linear equation in variables x1, x2, · · · , xn is an equation of the form 
 

a1x1 + a2x2 + · · · + anxn = b, 
 

where a1, a2, · · · an and b are constant real or complex numbers. The constant ai 

is called the coefficient of xi and b is called the constant term of the equation. 
 

A system of linear equations (or linear system) is a finite collection of linear 
equations in same variables. For instance, a linear system of m equations in 

n variables x1, x2, · · · , xn can be written as  

 

a11x1 + a12x2 +   + a1n = b1 

a21x1 + a22x2 + 
· · · 

+ a2n = b2 
 

. 
 

   
 

.. · · · 
 

 (9.1) 
   
   

am1x1 + am2x2 + · · · + amn = bm 

 

A solution of a linear system is a n-tuple (s1, s2, · · · , sn) of numbers that makes 

each equation a true statement when the values s1, s2, · · · , sn are sub-stituted for 

x1, x2, · · · , xn, respectively. The set of all solutions of a linear system is called 
the solution set of the system.  
Any system of linear equations has one of the following exclusive conclusions.  
(a) No solution.  
(b) Unique solution.  
(c) Infinitely many solutions.  
A linear system is said to be consistent if it has at least one solution and is  
said to be inconsistent if it has no solution. 

The system of equations (9.1) is said to be homogeneous if all bj  are zero; 

otherwise, it is said to be non-homogeneous.  
The system of equations (9.1) can be expressed as the single matrix equation 

 

AX = B, (9.2) 
 
 

vector (column matrix) X that satisfies the matrix equation (9.2) is also the 
solution of the system. 

 

 

Definition 21. The matrix [AB] which is obtained by placing the constant 
column matrix B to the right of the matrix A is called the augmented matrix. 
Thus the augmented matrix of the system AX = B is 
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[AB] =
a

21 

a
22 ·

·
 ·
·
 ·
· a

2n 

b
2  

 
a

11 

a
12  

a
1n 

b
1  

  · · ·   

 a 
. 

a 
. 

· · · a 
. 

b
. 

 

 m1 m2  mn m  
Theorem 35. The system AX = B is consistent if and only if A and [AB] have the 
same rank. 

 

System of non-homogeneous Equations 
 

If we are given with a system of m equations in n unknowns, proceed as follows: 
 
 

 

1. Write down the corresponding matrix equation AX = B. 
 

2. By elementary row transformations obtain row echelon matrix of the 
augmented matrix [AB]. 

 
3. Examine whether the rank of A and the rank of [AB] are the same or not. 

 

 

Case 1 If rank of A =   rank of [AB], then the system is inconsistent and has no solution. 

otherwise, it is said to be non-homogeneous. 
 

The system of equations (9.1) can be expressed as the single matrix equation 
 

AX = B, (9.2) 
Any vector (column matrix) X that satisfies the matrix equation (9.2) is also the 
solution of the system. 

 

 

De nition 21. The matrix [AB] which is obtained by placing the constant column 
matrix B to the right of the matrix A is called the augmented matrix. Thus the 
augmented matrix of the system AX = B is 

[AB] =
a

21 

a
22 ·

·
 ·
·
 ·
· a

2n 

b
2  

 
a

11 

a
12  

a
1n 

b
1  

  · · ·   

 a 
. 

a 
. 

· · · a 
. 

b
. 

 

 m1 m2  mn m  
Theorem 35. The system AX = B is consistent if and only if A and [AB] have the 
same rank. 

 

System of non-homogeneous Equations 
 

If we are given with a system of m equations in n unknowns, proceed as follows: 
 
 

 

1. Write down the corresponding matrix equation AX = B. 
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2. By elementary row transformations obtain row echelon matrix of the 
augmented matrix [AB]. 

 
3. Examine whether the rank of A and the rank of [AB] are the same or not. 

 

 

Case 1 If rank of A =   rank of [AB], then the system is inconsistent and has no 
solution. 

Case 2 If rank of A = rank of [AB], then the system is consistent. 
 

Case 2a If rank of A = rank of [AB] = n = number of unknowns, then the 
system has unique solution. 

 

Case 2b If rank of A = rank of [AB] < n = number of unknowns, then the 

system has infinitely many solutions. We assign arbi-trary values to 

(n − r) unknowns and determine the remaining r unknowns 

uniquely. 
   
 
Solution of System of Linear Equations 

Any given system of linear equations may be written in term of matrix, such that  

    AX = B       …(i) 

where 

 A = 





















































3

2

1

333

222

111

d

d

d

Band

z

y

x

X,

cba

cba

cba

 

A is known as co-efficient matrix. 

If we multiply both sides of (i) by the reciprocal matrix A
1

, then we get A
1 

AX = A
1

B 

 (A
1

A)X = A
1

 B   I X = A
1

B   X = A
1

B 

       

















z

y

x

 = 




































3

2

1

321

321

321

d

d

d

CCC

BBB

AAA
1

 where   0 

   = 
























332211

332211

332211

dCdCdC

dBdBdB

dAdAdA
1

     …(ii) 

 Hence from (ii) equating the values of x, y and z we get the desired result. 

 This method is true only when (i)   0 (ii) number of equations and number of unknowns 

(e.g. x, y, z etc.) are the same. 

 Example 1.  Solve the equations with the help of determinants : 

  x + y + z = 3,  x + 2y + 3z = 4,  x + 4y + 9z = 6. 

 Sol. The co-efficient determinant is  = 

941

321

111

 = 2  0 

          x = 

















946

324

113

2

1
  x = 

2

1
  4 = 2 
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          y = 

















961

341

131

2

1
  y = 

2

1
(2) = 1    y = 1 

            z = 























641

421

311

2

1
     z = 

2

1
[4 + 6 + (4  6)] = 0    z = 0 

 Solution is x = 2, y = 1, z = 0. 
 
Row reduced Echelon Form: 

In addition to the above three conditions, if a matrix satisfies the following conditions: 

Each column which contains a leading entry of a row has all other entries zeros, then the matrix is 

said to be in row reduced echelon matrix. 

Row Rank and Column Rank of a Matrix 

Row rank of a matrix, say A is the number of non zero rows in the row echelon matrix A and is 

denoted by  Rρ (A) . 

Column Rank of a matrix, say A is the number of non zero columns in the column echelon matrix A 

and is denoted by Cρ (A) . 

Note:  (i) Every matrix is row equivalent to row echelon matrix. 

(ii)  Every matrix is column equivalent to a column echelon matrix. 

(iii) If a matrix A is in row echelon form, then its transpose is in column echelon form. 

Example. 1: Reduce the matrix 

0 1 3 1 3 1

0 1 3 0 2 3
A=

0 2 6 1 3 9

0 4 12 2 10 7

 
 
 
 
 

 

to the row reduced echelon form and 

hence find its rank. 

Solution: Applying 2 2 1 3 3 1 4 4 1R R -R ,R R -2R , and R R -4R    on the matrix A, 

0 1 3 1 3 1

0 0 0 1 1 2
A=

0 0 0 3 3 7

0 0 0 2 2 3

 
 


 
 
 

 

 

 

Applying 1 1 2 3 3 2 4 4 2R R +R ,R R -3R , and R R -2R    

0 1 3 1 3 1

0 0 0 1 1 2
A=

0 0 0 0 0 1

0 0 0 0 0 1

 
 


 
 
 

 

 

Applying 1 1 3 2 2 3 4 4 3R R -3R ,R R -2R , and R R +R    

0 1 3 1 3 1

0 0 0 1 1 2
A=

0 0 0 0 0 1

0 0 0 0 0 0

 
 


 
 
 
 

 

This is the required row reduced echelon form of the matrix A. Since, the number of non zero rows is 

3, thus row rank of A is 3. 
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System of Linear Equations and Matrices 
 Linear Equation  
   y =  m x .1 

 is an equation, in which variable  y  is expressed in terms of  x  and the constant  m , is  

called Linear Equation.   In Linear Equation exponents of the variable is always  ‘ one’. 

 

 Equation 1 is also called equation of  line. 

Linear Equation in  n variables: 
 

bxaxaxaxa nn  ....332211   .2 

 

where   nxxxx ,...,,, 321   are variables and 

 naaaa ,...,,, 1321 and b  are constants. 

  

 Linear System:  

 
 A Linear System of  m   linear equations and  n  unknowns is: 

 

  

mnmnmmm

nn

nn

nn

bxaxaxaxa

bxaxaxaxa

bxaxaxaxa

bxaxaxaxa









....

........................................................

.......................................................

.......................................................

....

....

....

332211

33333232131

22323222121

11313212111

       .3 

 

where   nxxxx ,...,,, 321   are variables or unknowns and a’s and b’s 

are constants. 

 Solution: 

 
 Solution of the linear system (3) is a sequence of  n  numbers  

 

 nssss ,...,,, 321   , which satisfies system (3) when we substitute 

 nn sxsxsxsx  ,...,,, 332211 . 

 

Example.1.   Solve the system of equations 

 

      
2                                    8        2

1                                   3   3  -  





yx

yx
 

 

 

 

 

Solution:      
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 -2E1  + E2      

 

     6     6    2  yx  

      8           2  yx    

  ______________ 

   +7y  =  14       y = 2 

  

From equation 1  

 

  x = -3 +3y 

  x = -3 + 6  = 3 

 

 Solution is   x = 3  and   y = 2     

 

Check    Substitute the solution in Equations 1 and 2 

Equation 1      3 – 3(2) = 3 – 6 = -3 

Equation 2      2(3) +2  = 6 + 2 = 8  . 

 

 

Example.2.   Solve the system of equations 

 

      
2                                    7     6 - 2

1                                   7   3  -  





yx

yx
 

Solution:      

 2E1  -  E2      

 

                7-     6  -  2 yx  

           14-     6  2  yx    

  _____________________  

   0    +  0   = -21 

This makes no sense  as 0  -21, hence there is no solution. 

 

NOTE:        Inconsistent  , the system of  equations is inconsistent, if the system has no 

solution. 

Consistent,    the system of  equations is consistent if the system has at    least 

one solution. 

   

  

 

Example:  Inconsistent and consistent system of equations    
 

  For the system of linear equations which is represented by straight lines: 

   

       
2222

1111

                                      b  -  

                                       b  -  

lcyxa

lcyxa




 

 

 There are three possibilities: 

 No solution   one solution    infinite many solutions 
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 [inconsistent]   [consistent]     [consistent]  

 

 

Note:1. A system will have unique solution (only one solution)when number of unknowns is 

equal to number of equations 

Note:2. A system is over determined , if there are more equations then unknowns and it will be 

mostly  inconsistent. 

Note:3. A system is under determined if there are less equations then unknowns and it may turn 

inconsistent. 

 

Augmented Matrix   

 

 System of linear equations: 

 

  

33133232131

23123222121

13113212111

bxaxaxa

bxaxaxa

bxaxaxa







 

 

can be written in the form of matrices product 

 

  



















































3

2

1

3

2

1

333231

232221

131211

b

b

b

x

x

x

aaa

aaa

aaa

    

 

or we may write it in the form   AX=b,  

 

where  A= 

















333231

232221

131211

aaa

aaa

aaa

 , X = 

















3

2

1

x

x

x

     , b =

















3

2

1

b

b

b

 

 

Augmented matrix is   


















3

2

1

333231

232221

131211

    

  

   

:

b

b

b

aaa

aaa

aaa

bA  

 
Example: 4.  Write the matrix and  augmented form of the system of linear equations 
 

 3x – y + 6z = 6    

             x + y +   z = 2                                                 

                          2x + y +4z = 3 
 

  

 
Solution: Matrix form of the system is  
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















































 

3

2

6

412

111

613

z

y

x

 

 

 

 Augmented form is    














 



3    412

2    111

6    613

: bA . 

 

 

 Elementary Row operations:   
 

 Elementary row operations are steps for solving the linear system of equations: 

 

I. Interchange two rows 

II. Multiply a row with non zero real number 

III. Add a multiple of one row to another row 

 

SYSTEM WITH NO SOLUTION 
 

Example: 6 . Solve the system of linear equations 

 

 

5161112

22  7  3   

14      2   







uzyx

uzyx

uzyx

 

 

Solution:  

 Augmented matrix is: 

 

 





















51611121

22731

14121

 

 

Reducing it to row echelon form (using  Gaussian - elimination method) 

 

 























41212100

16650

14121

       R2- R1,  R3-R1 

 

 























30000

16650

14121

        -R3+2R2 
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Last equation is 

 

-30  but                   

30000



 uzyx
 

 

 hence there is no solution for the given system of linear equations. 

Conditions on Solutions 

 
Example:7. For which values of ‘a’ will be following system  

 

   

2)14(4

2             53

4           32 

2 





azayx

zyx

zyx

 

(i) infinitely many solutions? 

(ii) No solution? 

(iii) Exactly one solution? 

 

 

 

Solution: 

 Augmented matrix is 

 

 























21414

2513

4321

2 aa

 

 

Reducing it to reduced row echelon form 

        

























14270

101470

4321

2 aa

    R2-3R1,   R3-4R1 

   

        

























41600

210

4321

2

7
10

aa

  
7
1 R2,   R3-R2 

 

 

 

 

 

 

writing in the equation form, 
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       4)4( 4)(     

as written becan  3equation or 

3       4)16(              

2                         2       

1              4           32 

2

7
10









azaa

aza

zy

zyx

 

CASE I .  
 

00       4  za  

 

 
              2       

             4  32

7
10



zy

zyx
 

 

as number of equations are less than number of unknowns, hence the system has 

infinite many solutions, 

 

let         z = t 

 
7
8

7
20

7
10

434

2





tttx

ty
  

where ‘t’ is any real number. 

 

 

CASE II     
 

 , -80but , -80z              4 a hence, there is no solution. 

CASE III  
 

  1let          ,4,4  aaa  

 

5

1z                                                

-315z-                                          

41)41)(41(      .3. Equatins





 z

 

                                                  
35

47

35

64

5

3

35

64

5

2

7

10

)(24 



x

y
 

the system will have unique solution when  a  4 and a  -4 

and for a=1 the solution is  

 

 .    and    ,
5
1

35
64

35
47  zyx  

 

NOTE: (i)   a=-4,   no solution, 

 (ii)   a=4,     infinite many solutions and 

(iii)a  4, a  -4,  exactly one solution . 

Example:8. What conditions must a, b, and c satisfy in order for the system of 

equations 
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czyx

bzx

azyx







32

           

2 

 

 

  to be consistent. 

 

Solution: The augmented matrix is 

 

     

















c

b

a

312

101

211

 reducing it to reduced row echelon form 

 

  





















ac

ab

a

2110

110

211

   R2-R1,  R3-2R1 

 

  





















bac

ab

a

000

110

211

  R3-R1 

 

The system will be consistent if only if   c – a - b = 0 

 

      or c = a + b  

 

Thus the required condition for system to be consistent is 

 

   c = a + b. 

Solution of a system AX=b 

Let AX = b be a given m n system. The m ( n + 1 ) matrix [A|b] is called the augmented 

matrixfor the system AX = b. Let  be the row echelon from [A|b]. The following conclusion is 

now obvious from the earlier discussions. 
 

Let AX = b be a m n system of linear equation and let  be the row echelon 

form [A|b], and let r be the number of nonzero rows of  . Note that 1  min {m, n}. 

Then the following hold:For the system AX = b 

      (i) The system is inconsistent, i.e., there is no solution if among the nonzero rows 

of  there is a row with zero everywhere except at the last place. That is (n+1)th column 

is not a pivot column for . 
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      (ii) The system is solvable if  has r nonzero rows with r  n. There is a unique 

solution if r = n i.e.,  has exactly n- nonzero rows, the number of variables. And, there 

are infinitely many solutions if  has r-nonzero rows, with  r < n. In fact, one can 

compute these solutions as follows: for 1  i  r, let  column be the pivot column. Then, 

assign arbitrary values to each of the variable , j  and compute the values of the 

variable , 1  i  r in terms of these ( as in example 2.2.2 ). Thus, the general solution 

will have  n - r variables taking arbitrary values. 

Examples: 

(i)       Consider the system AX = b where 

                         ,           

          It is early to verify that the augmented matrix  

                    

         is equivalent to  

                              

        Then by theorem 2.4.1, the system AX = b is consistent and has infinite number of 

solutions. In fact, if  

                             , 

        Here, we can give arbitrary value to the variable , and other variable can be computed 

by : 

                             , 
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        i.e.,                  , 

       where  can be assigned any arbitrary value. 

(ii)   Consider the system AX = b, where 

                       ,    . 

       The augmented matrix in this system is 

                        . 

       It is easy to see that this is equivalent to 

                    

       Since, the last row is identically zero for the position of A and non-zero for the portion 

of B, the system 

       is inconsistent. 

(iii)  Consider the system AX = b, where 

                    ,      

        The augmented matrix [A|b] of the system can be shown to be equivalent to 

                      , 

        When  is the reduced row echelon form of A. Then, AX = b has unique solution, 

namely 

                                   

 

 

 

 
LINEAR DEPENDENCE AND INDEPENDENCE OF ROW & COLUMN MATRICES. 

Any quantity having n components is called a vector of order n. If are elements of fields 

(F, +,  .), then these numbers written in a particular order form a vector. 

1 2 n, ,.....a a a
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 Thus an n-dimensional vector X over a field (F,+, .) is written as X=  

where  

Row matrix of type is n—dimensional vector written as  

Column matrix of type is also n dimensional vector written as 

 

As the vectors are considered as either row matrix or column matrix, the operation of addition of 

vectors will have the same properties as the addition of matrices. 

Linear Dependence: 

The set of vectors are said to be linearly dependent if there exist scalars  

not all zero such that  

Linear Independence: 

The set of vectors are said to be linearly independent if there exist scalars   

such that gives . 

Example1: Show that the vectors u=(1,3,2), v=(1,-7,-8) and w=(2,1,-1) are linearly independent. 

Proof: The vectors are said to be linearly dependent if 

au+ bv +cw=0 where a, b, c are not all zero. 

means a(1,3,2)+b(1,-7,-8)+c(2,1,-1)=(0,0,0)    (1) 

(a+b+2c, 3a-7b+c, 2a-8b-c)= (0, 0, 0) 

which gives   a+b+2c=0     (2) 

   3a-7b+c=0     (3) 

   2a-8b-c=0     (4) 

Adding (3) and (4), we have 

   5a-15b=0      a=3b 

 From (3) 3(3b)-7b+c=0  9b-7b+c  c=-2b 

Putting a=3b and c=-2b in (2), we get 

3b+b-4b=0, which is true. Giving different real value to b we get infinite non zero real values of a and 

c. So a, b, c are not all zero. 

Hence given vectors u, v and w are linearly independent. 

Theorem 1:  If two vectors are linearly dependent then one of them is scalar multiple of other. 

Proof:  Let u, v be the two linearly dependent set of vectors. Then there exists scalars a, b(not both 

zero ) such that 

  a. u + b. v = 0      (1) 

Case 1.  When  

From (1),  au = - bv   

Hence u is scalar multiple of v. 

Case II.  When  

From (1),  bv = - au   

Hence v is scalar multiple of u. Thus in both cases one of them are scalar multiple of other. 

 

 

Theorem 2: Every superset of a linearly dependent set is linearly dependent. 

Proof:  Let  be set of n vectors which are linearly dependent. 

1 2 n( , ,..... )a a a

i .a F

1×n 1 2 nX=[a ,a ,.....a ]

n×1

 

1

2

1 2 n

n

a

a
X= or a a .. a

:

a

 
 
 
 
 
 

1 2 n{v ,v ,.....v } 1 2 na ,a ,.....a

1 1 2 2 n na v +a v +.....+a v 0

1 2 n{v ,v ,.....v } 1 2 na ,a ,.....a

1 1 2 2 n na v +a v +.....+a v 0 1 2 na =a =.....=a 0


  

a 0


b

u v
a

 

b 0


a

v=- u
b

n 1 1 nS {X ,X ......X }
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Let  where r > n be any super set of . 

As is linearly dependent set 

 There are scalars  not all zero such that 

  

 

As  are not all zero 

 Set  is linearly dependent set. 

Hence every set of linearly dependent set is linearly dependent. 

Theorem 3:  Every subset of linearly independent set is linearly independent. 

Proof: Let  be set of n vectors which are linearly independent. 

Let  where r < n be any subset of . 

As is linearly independent set thus  

 gives 

   

where  

 Set  is linearly independent set. 

Hence every subset of linearly independent set is linearly independent. 

Theorem 4:  If vectors are linearly dependent, then at least one of them may be written 

as linear combination of the rest. 

Proof:  Since the vectors , are linearly dependent, therefore there exist scalars  

not all zero, such that 

 or   

Suppose  

 

or   

Hence vector  is a linear combination of the rest. 

Theorem 5:  If the set is linearly independent and the set is 

linearly dependent, then Y is linear combination of the vectors . 

Proof:  Consider the relation 

       (1) 

As set is linearly dependent  

    are not all zero 

We claim that . If  a=0, then (1) becomes  

  

As set is linearly independent 

    

Then from (1), the set is linearly independent which a contradiction to the given 

condition is. Thus a = 0 is not possible. Hence  

From (1), we have  

r 1 1 n n+1 rS {X ,X ......,X ,X ....,X } nS

1 1 n{X ,X ......X }


1 2 3 na ,a ,a ,.......,a

1 1 2 2 n na X +a X +.......+a X 0

1 1 2 2 n n 1 2   a X +a X +.......+a X 0. 0. .... 0. 0n n rX X X      

1 2 3 na ,a ,a ,.......,a


r 1 2 n n+1 rS {X ,X ......,X ,X ....,X }

n 1 1 nS {X ,X ......X }

r 1 1 rS {X ,X ......,X } nS

1 1 n{X ,X ......X }

1 1 2 2 n na X +a X +.......+a X 0

1 2 3 na = a = a ,.......= a 0

1 1 2 2 r ra X +a X +.......+a X 0 1 2 3 ra = a = a ,.......= a 0


r 1 1 rS {X ,X ......,X }

1 1 nX ,X ......X

1 1 nX ,X ......X

1 2 3 na ,a ,a ,.......,a

1 1 2 2 n na X +a X +.......+a X 0 1 1 2 2 i i i+1 i+1 n na X +a X +....+a X +a X ...+a X 0

ia 0

i i 1 1 2 2 i-1 i-1 i+1 i+1 n n-a X =a X +a X +....a X +a X ...+a X

1 2 i-1 i+1 n
i 1 2 i-1 i+1 n

i i i i i

a a a a a
X = X + X +....+ X + X ...+ X

-a -a -a -a -a

iX

1 1 n{X ,X ......X } 1 1 n{X ,X ......X ,Y}

1 1 nX ,X ......X

1 1 2 2 n na X +a X +.......+a X aY 0 

1 1 n{X ,X ......X ,Y}


1 2 3 na ,a ,a ,.......,a ,a

a 0

1 1 2 2 n na X +a X +.......+a X 0

1 1 n{X ,X ......X }


1 2 3 na = a = a ,.......= a 0

1 1 n{X ,X ......X ,Y}

a 0

1 1 2 2 n n-aY=a X +a X +.......+a X
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or   , which  proves the result. 

Theorem 6:  The kn-vectors are linearly dependent iff  the rank of the matrix 

with the given vectors as columns is less than k. 

Proof:  Let  

where  are scalars 

 

 

Which can be written in matrix form as 

 

 

Let the vectors be linearly dependent. 

So, from the relation (i), scalars are not all zero and thus the homogeneous system of 

equations given by (ii) has non-trivial solution. Hence .Converse of this theorem is also true. 

Theorem 7:  A square matrix A is singular iff its columns (rows) are linearly dependent. 

Proof: Let n be the order of the square matrix A and be its columns. 

 

Proceed in same way as above theorem to prove  

Since , thus and hence A is singular matrix. 

Conversely, the column vectors of A are linearly dependent. 

Theorem 8:  The kn-vectors are linearly independent if the rank of the matrix 

is equal to k. 

Proof:  Proceed in the same way as above theorem to obtain . Now suppose . 

Then and homogeneous system of equations given by (ii) has trivial solution only. 

 

Thus, the vectors are linearly independent. 

1 2 n
1 2 n

a a a
Y= X + X +.......+ X

-a -a -a

1 2 kA ,A ,......,A

1 2 kA=[A ,A ,.....,A ]

1 1 2 2 kx A A ,...... A 0kx x  

1 2 k, ,......,x x x

11 12 1

21 22 2

1 1 k

1 2

x x ..... x O
: : :

k

k

n n nk

a a a

a a a

a a a

     
     
         
     
     
     

11 1 12 2 1

21 1 22 2 2

n1 1 2 2

a ...... 0

a ...... 0

..............................................

a ...... 0

k k

k k

n nk k

x a x a x

x a x a x

x a x a x

    

   

   

111 12 1k

221 22 2k

n1 n2 nk

a a ... a 0

a a ... a 0

:: : : : :

:: : : : :

a a ... a 0k

x

x

x

    
    
    
    
    
    
        

AX=O

1 2 kA ,A ,......,A

1 2 k, ,......,x x x

ρ(A)<k

1 2 nA ,A ,......,A

1 2 n A=[A ,A ,......,A ]

ρ(A)<n

ρ(A)<n A 0

1 2 kA ,A ,......,A

1 2 kA=[A ,A ,.....,A ]

AX=O

A 0

1 2 x ..... 0kx x    

1 2 kA ,A ,.....,A
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Theorem 9:  The number of linearly independent solution of the equation AX=O is (n-r) where r is 

the rank of matrix A. 

Proof: Given that rank of A is r which means A has r linearly independent columns. Let first r 

columns are linearly independent. 

Now, , where are column vectors of A. 

   ...(i) 

As the set is linearly independent, thus each vector can be written as 

linear combination of . 

Now,  

 

................................................. 

, where k=n-r    ...(ii) 

From (i) and (ii), we get 

 

Thus, AX=O has (n-r) solutions. 

Check Your Progress 

1.  Find the vector p if the given vectors are linearly dependent 

1 1 1

1 , , 0

3 3 1

p

     
     
     
     
     

. 

Ans. p=2. 

 

 

 

 

 

 

 

 

LINEAR SYSTEM OF EQUATIONS 

System of Non Homogeneous Linear Equation 

If 

1 2 nA=[C , ,..... ,....., ]rC C C 1 2 nC , ,.....,C C

1

2

1 2 n 1 1 2 2 n[C , ,....., ] 0 C ..... 0
:

n

n

x

x
C C x C x C x

x

 
 
       
 
 
 

1 2 r[C , ,....., ]C C r r+1 nC , ,.....,C C

1 2 rC , ,.....,C C

r+1 11 1 12 2 1r ra C a ..... aC C C   

r+2 21 1 22 2 2r ra C a ..... aC C C   

n k1 1 k2 2 kr ra C a ..... aC C C   

11 21 1

12 22 2

1 2

1 2 n-r

: : :

, ,....., X1 0 0

0 1 0

0 0 0

: : :

0 0 1

k

k

r r kr

a a a

a a a

a a a

X X

     
     
     
     
     
     
       
     

     
     
     
     
          
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  a11 x1 + a12 x2 + … + a1n xn = b1 

  a21 x1 + a22 x2 + … + a2n xn = b2 

  ……………………………….     …(1) 

  ………………………………. 

  am1 x1 + am2 x2 + … + amn xn = bn 

 

be given system of m linear equations then (1) may be written as 

   

 AX = B  and C = [A : B] =  

then [A : B] or C is called augmented matrix.  Sometime we also write A : B for [A : B] 

Consistent Equations. 

(i)  If rank of A = rank of [A : B] and there is  

unique solution when rank of A = rank of [A : B] = n 

(i) rank of A = rank of [A : B] = r < n. 

Inconsistent Equations. 

 If rank of A  rank of [A : B] i.e. have no solution. 

 Example 1.  Discuss the consistency of the following system of equation  

2x + 3y + 4z = 11,  x + 5y + 7z = 15,  3x + 11y + 13z = 25, if consistent, solve. 

 Sol. The augmented matrix [A : B] =  

R12 operation is done so ~  

Next operating R2
 
 R2  2R1 and R3  R3  3R1, we get 

   ~  

Again, operating R2    R2 and R3    R3, we get 

   ~  

Next operating R3  R3 R2, we get 





































































m

2

1

n

2

1

mn2m1m

n22221

n11211

b

...

...

b

b

x

...

...

x

x

a...aa

............

............

a...aa

a...aa



















mmn2m1m

2n22221

1n11211

b:a...aa

............

b:a...aa

b:a...aa

















25:13113

15:751

11:432

















25:13113

11:432

15:751





















20:840

19:1070

15:751

7

1

4

1

















5:210
7

19
:

7

10
10

15:751
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   ~   

           …(M) 

 From which we get rank of A = 3 as well as rank of A : B = 3.  Hence the system of equations 

is consistent and has unique solution   z = 4 

And y + z =   y +  4 =    y =   = 3 

And from (M), we have x + 5y + 7z = 15  x = 2 

i.e.  we have the solution x = 2,  y = 3 and z = 4, which is the required result.  

 Example 2.  Test the following equations for consistency and hence solve these equations 

2x  3y + 7z = 5,  3x + y  3z = 13 and 2x + 19y47z = 32.  

 Sol. The above equations may be written as AX = B. 

    

Operating R2  2R2  3R1 and R3  R3  R1, we get 

    

Next, we operate R3  R3  2R2 

     

This indicate the rank of  A = 2 which is less than 3 (the number of variables) i.e. 

(A) = 2 < 3 

 So, the given equations are not consistent and so infinite number of solutions can be obtained.  

 Example 3.  Show that if   5, the system of equation 3x  y + 4z = 3, x + 2y                           

3z = 2 and 6x + 5y + z = 3 have a unique solution.  If  = 5, show that the equations are 

consistent.  Determine the solution, in each case. 

 Sol. The given equations are  

  3x  y + 4z = 3, 

  x + 2y  3z = 2       …(1) 

and  6x + 5y + z = 3 

If A = ,  X =   and B =  such that AX = B from (1) 























7

16
:

7

4
00

7

19
:

7

10
10

15:751

7

16
z

7

4

7

19
z

7

10
y

15z7y5x







7

16
z

7

4


7

10

7

19

7

10

7

19

7

21

























































32

13

5

x

x

x

47192

313

732

3

2

1

























































27

11

5

x

x

x

54220

27110

732

3

2

1

























































27

11

5

x

x

x

54220

27110

732

3

2

1























56

321

413

















z

y

x





















3

2

3
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Then augmented matrix A : B =  

Operating R12(i.e. interchanging R1 and R2) 

     A : B =  

Now operating R2  3R1 [i.e. R2, 1(3)] and R3, 1(6) i.e. R3  6R1, we get 

    A : B ~  

Next, R3  R2[(i.e. R3, 2(1)], we get 

   ~       …(2) 

 If  =  5, then rank of A becomes (A) = 2 which is less than 3, (the number of unknowns) 

and hence the equations will be consistent and will have infinite number of solutions 

 Next, operating, R1 + R, we get 

  ~  from this matrix, if   5 

then rank is 3 and the equation will be consistent and we get 

  x +   ;  7y + 13z = 9 and ( + 5)z = 0  i.e. z = 0 

 7y = 9  y =    and  x + 0 =   i.e. x = . 

i.e. unique solution is x = ,  y =  ,  z = 0, which is required result. 

If  = 5, then from (2), we have x + 2y  3z = 2, 7y + 13z = 9   …(3) 

If we take z = k than from (3),  

  y =   and  z =  

 Example 4.  Examine whether the following equations are consistent and solve them if they 

are consistent  2x + 6y + 11 = 0,  6x + 20y  6z + 3 = 0 and  

6y  18z + 1 = 0. 

 Sol. The above equations may be written in the form  

 AX = B which is      …(1) 

Now the augmented matrix may be written as  























3:56

2:321

3:413























3:56

3:413

2:321























9:1870

9:1370

2:321























0:500

9:1370

2:321

7

2

























0:500

9:1370
7

4
:501

7

4
z

7

5


7

9

7

4

7

4

7

4

7

9

7

9k13 

7

k54

3

2
7

9k13
2k3











 




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




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












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


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
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








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
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3
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     A : B =      …(2)  

Operating R2  R2  3R1, we get 

     A : B ~  

Now, operating R3  R3  3R2, we get 

   ~  

Hence rank of A = (A) = 2 and (A : B) = 3.  So, (A) = 2 < 3 (number of variables).  This indicated 

that given equation are in consistent and so it has no unique solution. 

 Example 5.  Solve the following system of equations by matrix method x + y + z = 8,  x  y + 

2z = 6  and 3x + 5y  7z = 14. 

 Sol. The above equations written in the form AX = B. 

where  A =  

So, we may write augmented matrix as  

        A : B =       …(1) 

Operating R2  R2  R1 and R3  R3  3R1, we have  

     A : B ~       …(2) 

Again R3  R3 + R2, we have  

   ~   

this implies that 

  x + y + z = 8 

    2y + z = 2        …(3) 

and          9z = 12  

 z =   and 2y = z + 2 =  + 2 =    y =  

Using 1
st
 equation of (3), we get x + y + z = 8 

  x +  = 8   x = 8  3 = 5 

 From (2) we see that (A) = 3 = number of variables so, the system of equations are 

consistent and solutions are x = 5, y = . 

  


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Example 6.  Determine for what values of  and  the following equations have (i) no solution ii) a 

unique solution (iii) infinite number of solution :  x + y + z = 6,  x + 2y + 3z = 10  and x + 2y + z = 

. 

 Sol. The above equations may be written in the form AX = B.   

i.e.   

The augmented matrix [A : B] =  

Operating R2  R2  R1 and R3  R3  R1, we get 

   ~  

Again operating R3  R2, we get 

   ~  

 we get x + y + z = 6,  y + 2z = 4 and (  3)z =   10. 

(i) If R(A)  R[A : B] i.e. if   3 = 0 and   10  0, then rank of A  rank of [A : B].  Since 

(A) = 2 and (A : B) = 3.  The equation have no solution. 

(ii) The equations have unique solution if rank of A = rank of [A : B] = 3, i.e. if   3  0 and   

3  0. 

(iii) If (A) = (A : B) = 2 i.e. when   3 = 0 and   10 = 0 i.e. when  = 3 and               = 10.  

Then these are infinite number of solution. 

System of Homogeneous Linear Equations 

If 

  a11 x1 + a12 x2 + … + a1n xn =  

  a21 x1 + a22 x2 + … + a2n xn =  

  ……………………………….     …(1) 

  ………………………………. 

  am1 x1 + am2 x2 + … + amn xn =  

be given system of m linear equations then (1) may be written as  

   

Here A is called the coefficient matrix and the given system of equations  is called linear 

homogeneous system of equations. 

Working rule for determining solution of m homogeneous equations in n variables. 

Firstly we find the rank of coefficient matrix A. Then 

1.   There is only a trivial solution which is . 

2.  A can be reduced to a matrix which has (n-r) zero rows and r non zero rows and if           

so the system is consistent and has infinite number of solutions. 

Thus, the given system of equations has a non- trivial solution iff  























































10

6

z

y

x

21

321

111

















 :21

10:321

6:111

















 6:110

4:210

6:111

















 10:300

4:210

6:111

AX=O

111 12 1

221 22 2

1 2

... 0

... 0

... ... ... ... ... ...

... ... ... ... ... ...

... 0

n

n

m m mn n

xa a a

xa a a

a a a x

    
    
    
    
    
    
        

AX=O

1 2 n x =x =.....=x =0 if ρ(A) = n

ρ(A) < n

 A 0
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Example 1: Solve the following system of equations 

   

Solution. Writing the given equations in the matrix form, we have 

  

or AX=O, where  

Operating  

  

Operating  

Operating  

 

= number of variables and hence the given system of equations has only trivial solution, x 

= y = z = 0. 

Example:  Solve the following system of equations: 

 

Solution: Writing the given equations in the matrix form, we have 

 

or AX=O, where   

Operating  

x - y + z = 0

x + 2y - z = 0

2x + y + 3z = 0

1 -1 1 0

1 2 -1 0

2 1 3 0

x

y

z

     
     


     
          

1 -1 1

A 1 2 -1

2 1 3

 
 


 
  

2 2 1 3 3 1,R R +(-R ) and R R +(-2)R 

1 -1 1

A 0 3 -2

0 3 1

 
 
 
  

3 3 2R R +(-R ),

1 -1 1

A 0 3 -2

0 0 3

 
 
 
  

2 2 3 3

1 1
R R and R R

3 3

   
      

   

1 -1 1

A 0 3 -2/3

0 0 1

 
 
 
  

 (A)=3

x - y + 2z - 3w = 0

3x + 2y - 4z + w = 0

4x - 2y + 9w = 0

0
1 -1 2 -3

0
3 2 -4 1

0
4 -2 0 9

0

x

y

z

w

   
     
     
     
      

   

1 -1 2 -3

A 3 2 -4 1

4 -2 0 9

 
 


 
  

2 2 1 3 3 1R R - 3R and R R - 4R , 
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Operating , 

 

Operating  

 

, Here n = 4 (the number of unknowns) 

Now . Thus the system of equations has infinite solutions. The solutions will contain 4 – 

3=1 arbitrary constant. 

 Equation corresponding to the matrix are 

    

From (3),             

 From (2),  

 From (1),  

Putting w = k, we get , which is the general solution, where k is an arbitrary 

parameter. 

Check Your Progress 

1. Solve the following system of liear equation 

0

2 0

2 3 0

x y z

x y z

x y z

  

  

  

    

Ans. x = y = z = 0. 

2.  Find the values of a and b for which the following system of linear equations 

2 3

5 7 7

3

x by z

x y z

ax y z a

  

  

  

. 

Ans. a = 1 and b = 3. 

 

 

 

 

1 -1 2 -3

A 0 5 -10 10

0 2 -8 21

 
 
 
  

2 2

1
R R

5

 
  

 

1 -1 2 -3

A 0 1 -2 2

0 2 -8 21

 
 
 
  

3 3 2R R - 2R ,

1 -1 2 -3

A 0 1 -2 2

0 0 -4 17

 
 
 
  

 (A)=3

(A)< 4

x - y + 2z - 3w = 0 (1)

y - 2z + 2w = 0 (2)

 - 4z + 17w = 0 (3)

17
z =

4
w


17 13

y - 2 0  =
2 2

w w y w  


13 17

x - 3 0  =
2 2

w w w x w   

13 17
 =k,  = k, z = k

2 4
x y
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APPLICATION OF LINEAR SYSTEM  

 

Three by three systems of linear equations are also used to solve real-life problems.  The 

given problem is expressed as a system of linear equations and then solved to determine the 

value of the variables. Sometimes, the system will consist of three equations but not every 

equation will have three variables.  Example three is one such problem. 

 

 

 

Example 1:  Solve the following problem using your knowledge of systems of linear 

equations. 

 

Jesse, Maria and Charles went to the local craft store to purchase supplies for making 

decorations for the upcoming dance at the high school.  Jesse purchased three sheets of 

craft paper, four boxes of markers and five glue sticks.  His bill, before taxes was $24.40.  

Maria spent $30.40 when she bought six sheets of craft paper, five boxes of markers and 

two glue sticks.  Charles, purchases totaled $13.40 when he bought three sheets of craft 

paper, two boxes of markers and one glue stick.  Determine the unit cost of each item. 

 

Let p represent the number of sheets of craft paper. 

Let m represent the number of boxes of markers. 

Let g represent the number of glue sticks. 

 

Express the problem as a system of linear equations: 

 

                              

40.13$23

40.30$256

40.24$543







gmp

gmp

gmp

 

Solve the system of linear equations to determine the unit cost of each item. 

 

40.1323

40.24543





gmp

gmp


)40.1323(5

40.24543





gmp

gmp


00.6751015

40.24543





gmp

gmp
 

                                                                                          60.42612  mp  

 

40.1323

40.30256





gmp

gmp


)40.1323(2

40.30256





gmp

gmp


80.26246

40.30256





gmp

gmp
 

                                                                                                     60.3m  

 

75.1

12

21

12

12

2112

60.2160.4260.2160.2112

60.4260.2112

60.42)60.3(612

60.42612






















p

p

p

p

p

p

mp

          

95.

45.1240.1345.1245.12

40.1345.12

40.1320.725.5

40.13)60.3(2)75.1(3

40.1323













g

g

g

g

g

gmp
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The unit cost of each item is:  1 sheet of craft paper = $1.75 

                                                1 box of markers = $3.60 

                                                 1 glue stick = $0.95    

Example 2:  Solve the following problem using your knowledge of systems of linear 

equations. 

 

Rafael, an exchange student from Brazil, made phone calls within Canada, to the United 

States, and to Brazil.  The rates per minute for these calls vary for the different countries.  

Use the information in the following table to determine the rates. 

 

Month Time within 

Canada (min) 

Time to the 

U.S. (min) 

Time to Brazil 

(min) 

Charges 

($) 

September 90 120 180 $252.00 

October 70 100 120 $184.00 

November 50 110 150 $206.00 

  

Let c represent the rate for calls within Canada. 

Let u represent the rate for calls to the United States.    

Let b represent the rate for calls to Brazil. 

 

Express the problem as a system of linear equations: 

 

                         

00.206$15011050

00.184$12010070

00.252$18012090







buc

buc

buc

 

 

00.18412010070

00.25218012090





buc

buc
 

)00.18412010070(3

)00.25218012090(2





buc

buc
  

 


00.552360300210

00.504360240180





buc

buc
 

       00.486030  uc  

 

00.20615011050

00.18412010070





buc

buc
 

)00.20615011050(4

)00.18412010070(5





buc

buc
 

 


00.824600440200

00.920600500350





buc

buc
 

             00.9660150  uc  
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00.9660150

00.486030





uc

uc


00.9660150

)00.486030(1





uc

uc


00.9660150

00.486030





uc

uc
 

                                                                                            

40.

120

00.48

120

120

00.48120














c

c

c

    

 

60.

60

00.36

60

60

00.3660

00.1200.486000.1200.12

00.486000.12

00.4860)40(.30

00.486030






















u

u

u

u

u

u

uc

           

80.

120

00.96

120

120

00.96120

00.8800.18412000.8800.88

00.18412000.88

00.18412000.6000.28

00.184120)60(.100)40(.70

00.18412010070

















b

b

b

b

b

b

b

buc

  

 

 

The cost of minutes within Canada is $0.40/min.  The cost of minutes to the United 

States is $0.60/min.  The cost of minutes to Brazil is $0.80/min. 
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PART – B ( 5 x 2  =10) 

 

Possible Questions (2 marks) 
1. Define the systems of Linear equations 

2. Define the row reduction echelon matrix with example. 

3. Define the row equivalent matrix. 

4. What do you mean by Linear Independence? 

5. When we say that the system is homogeneous. 

6. In which case the linear equations are equivalent. 

7. What do you mean by Linear dependence? 

8. When we say that the system is Non-homogeneous. 
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PART – C ( 5 x 6  =30) 

 

Possible Questions (6 marks) 

1) Determine if b is a linear combination of a1and a2 where a1=[
 
  
 

], a2=[
 

   
  

]      b=[
  
 
 

] 

2) Determine the system is consistent 

                         x1-6x2=5 

                    x2-4x3+x4=0 

           -x1+6x2+x3+5x4=3 

                -x2+5x3+4x4=0 

3) Determine if the system is consistent [
   
    
   

    
  
 
 

] 

 

4) Let A=[
  
  

] ,u=[
 
  

] and v=[
  
 

] Verify i) A(u+v)=Au+Av  ii)A(5u)= 5A(u). 

5) Find the general solutions of the system whose augmented matrix is[
    
      
     

    
 
 
 
] 

6) Describe the solution of      where    [
   
     
    

] and   [
 
  
  

] 

7) If   A=(
    
   
    

)  find all solutions of AX=0 by row reducing A. 

8) In       the vectors (1,2,1) ,(2,1,0) and (1,-1,2) are linearly independent or not 

 9) Find  a row reduced echelon matrix which is row equivalent to 

                [
   
  
    

]   What are the solutions of AX=0? 

10) Let v1=[
 
 
 
], v2=[

 
 
 
] and v3=[

 
 
 
] ,   

           i) Determine if the set {v1, v2,v3} is linearly independent. 

          ii) If possible, find a linear dependence relation among v1, v2, and v3 
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S.No Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

1
Any n-tuple of elements of F which satisfies each of 

the equations in linear equation is called a 

………………………….of the system. value root solution function solution

2

Any………...-tuple of elements of F which satisfies 

each of the equations in linear equation is called a 

solution of the system. 1 2 3  n  n

3

Any n-tuple of elements of F which satisfies each of 

the …………. in linear equation is called a solution 

of the system. functions equations roots solutions equations

4 If y1=y2=………..=ym=0 then the system is 

……………………………….. homogeneous non homogeneous linear nonlinear homogeneous

5 If y1=y2=………..=ym=…………..then the system is 

homogeneous. 0 1 2 3 0

6
The most fundamental technique for finding the 

solution of a system of linear equations is the 

technique of …………………………. substitution elimination

integration by 

parts differention elimination

Possible Questions                               
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7

The most fundamental technique for finding the 

solution of a system of………………..equations is 

the technique of elimination. integral differential  linear nonlinear  linear 

8

The most fundamental technique for finding the 

……………. of a system of  linear equations is the 

technique of elimination. function root solution value solution

9

…………. systems of linear equations are equivalent 

if each equation in each system is a linear 

combination of the equations in the  other system. one Two three four Two

10

Two systems of linear equations are ……... if each 

equation in each system is a linear combination of the 

equations in the  other system. zero equivalent different division equivalent

11

Two systems of linear equations are equivalent if 

each equation in each system is a ………………. 

combination of the equations in the  other system. linear non linear homogeneous

non 

homogeneous linear

12

Two systems of linear equations are equivalent if 

each equation in each system is a linear combination 

of the equations in the  ………….system. first same other finite same 

13 ………………….systems of linear equations have 

exactly the same solutions. linear nonlinear Equivalent homogeneous Equivalent 

14 Equivalent systems of ………………...equations 

have exactly the same solutions. linear non linear homogeneous

non 

homogeneous linear

15 Equivalent systems of linear equations have exactly 

the…………….. solutions. zero same different finite same 

16 An …………...matrix R is called a row reduced 

echelon matrix if  R is row reduced. mxm nxn mxn nxm mxn 

17 An mxn matrix R is called a ………………….. 

matrix if  R is row reduced.

row reduced 

echelon

column reduced 

echelon echelon null row reduced echelon

18
An mxn matrix R is called a row reduced echelon 

matrix if  R is …………… unit null column reduced row reduced row reduced
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19

In the row reduced echelon form every ………….. R 

which has all its entries 0 occurs below every row has 

a non zero entry. row column unit singular row 

20

In the row reduced echelon form every row R which 

has all its entries …………. occurs below every row 

has a non zero entry. 0 1 2 3 0

21

In the row reduced echelon form every row R which 

has all its entries 0 occurs below every row has a 

……………...entry. zero non zero unit diagonal non zero

22

In the ……………….. form every row R which has 

all its entries 0 occurs below every row has a non 

zero entry.

row reduced 

echelon

column reduced 

echelon echelon null row reduced echelon

23

An ……….. matrix R is called row reduced if the 

first non zero entry in each non zero row of R is 

equal to 1 mxm nxn mxn nxm mxn 

24 An mxn matrix R is called ……………….. if the first 

non zero entry in each non zero row of R is equal to 1

row reduced 

echelon

column reduced 

echelon rowreduced column reduced rowreduced

25

An mxn matrix R is called row reduced if the first 

…………. entry in each non zero row of R is equal to 

1 zero non zero diagonal unit non zero

26

An mxn  matrix R is called row reduced if the first 

non zero entry in each non zero row of R is equal to 

………….. 0 1 2 3 1

27

In row reduced, each ……………... of R which 

contains the leading non zero entry of some row has 

all its other entries 0. row column diagonal first column

28

In row reduced, each column of R which contains 

the…………….. non zero entry of some row has all 

its other entries 0. first second third leading leading

29

In row reduced, each column of R which contains the 

leading …………….. entry of some row has all its 

other entries 0. zero non zero diagonal unit non zero

30

In row reduced, each column of R which contains the 

leading non zero entry of some ……………. has all 

its other entries 0. row column diagonal first row

31

In row reduced, each column of R which contains the 

leading non zero entry of some row  has all its other 

entries……………….. 0 1 2 3 0
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32 Every ……………….. matrix A is row equivalent to 

a row reduced echelon matrix. mxm nxn mxn nxm mxn 

33 Every mxn matrix A is ………………….equivalent 

to a row reduced echelon matrix. row column diagonal leading row

34 Every mxn matrix A is row equivalent to a 

………………….. matrix.

row reduced 

echelon

column reduced 

echelon echelon null row reduced echelon

35

If A is an mxn matrix and ……………..,then the 

homogeneous system of linear equations AX=0 has a 

non- trivial solution. m<n m>n m=n m-n m<n 

36

If A is an mxn matrix and m<n,then 

the………………...system of linear equations AX=0  

has a non- trivial solution.  homogeneous non  homogeneous linear nonlinear  homogeneous 

37

If A is an mxn matrix and m<n,then the 

homogeneous system of linear equations 

AX=…………. has a non- trivial solution. 0 1 2 3 0

38

If A is an mxn matrix and m<n,then the 

homogeneous system of linear equations AX=0 has a 

………….solution.  trivial non- trivial zero non- zero non- trivial 

39

If A is an …………... matrix,then A is row 

equivalent to the nxn identity matrix iff the system of 

equations AX=0 has only the trivial solution. mxm nxn mxn nxm nxn 

40

If A is an nxn matrix,then A is ………....to the nxn 

identity matrix iff the system of equations AX=0 has 

only the trivial solution. row equivalent column equivalent diagonal leading row equivalent

41

If A is an nxn matrix,then A is row equivalent to the 

nxn ………………... matrix iff the system of 

equations AX=0 has only the trivial solution. zero identity row column identity

42

If A is an nxn matrix,then A is row equivalent to the 

nxn identity matrix iff the system of equations 

…………….. has only the trivial solution. AX=I AX=0 AX=R AX=B AX=0

43

If A is an nxn matrix,then A is row equivalent to the 

nxn identity matrix iff the system of equations AX=0 

has only the ……………….solution.  trivial non- trivial zero non- zero trivial 
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UNIT – V 

LINEAR TRANSFORMATIONS AND MATRICES 
 

Linear Transformation: 

 

Definition of linear transformation: 

A linear transformation L of the vector space V into the vector space W is a function (denoted by 

WVL : ) such that for RkVvu   , , , 

(a) 
     vLuLvuL 

. 

(b) 
   ukLkuL 

. 

 

Note: 

If VVL :  and L is a linear transformation, L is also called a linear operator on V. 

 

Note: 

 uL  is called the image of u . 

 

Example: 

 

Let  

           



















































































*

*

2

*

1

*

*

*

2

*

1

*2

1

2

1

 , , ,

mmnn v

v

v

v

u

u

u

u

v

v

v

v

u

u

u

u


. 

A linear transformation L of 
nR (V) into 

mR (W) is a function such that  

(a)   )()( vLuLvuvuL  

, where  
 uuL )(  and 

 vvL )( . 

(b)   ,)(  kuukLkuL  where Rk . 

 

Several special cases of the above linear transformation are the following: 

 

1. Projection: 
23: RRL   is defined by  











































y

x

z

y

x

L

. 

L is a linear transformation since  

(a) for any 




































3

2

1

3

2

1

 ,

v

v

v

v

u

u

u

u

,  
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  )()(

3

2

1

3

2

1

2

1

2

1

22

11

33

22

11

vLuL

v

v

v

L

u

u

u

L
v

v

u

u

vu

vu

vu

vu

vu

LvuL 









































































































































. 

(b) for Rk , 

  )(

3

2

1

2

1

2

1

3

2

1

ukL

u

u

u

kL
u

u
k

ku

ku

ku

ku

ku

LkuL 





















































































. 

2.  

Dilation: 
33

1 : RRL   is defined by  

  1 ,

3

2

1

3

2

1

11 


















































 rru

u

u

u

r

u

u

u

LuL

. 

Constraction: 
33

2 : RRL   is defined by  

  10 ,

3

2

1

3

2

1

22 


















































 rru

u

u

u

r

u

u

u

LuL

 
  Both 1L  and 2L  are linear transformations.  

3.  

 

 

Let 










y

x
u

 and 
ur 

. Then, 
    sin ,cos ryrx 

. 
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         

         



sincoscossinsin    

sinsincoscoscos 

'

'

rrry

rrrx





. 

 

   

   



cossin        

sincos     

'

'

yxy

yxx





 
 

   
    















 











y

x

y

x





cossin

sincos
     

'

'

. 

 

Rotation: 
22: RRL   is defined by  

 
   
    















 
























2

1

2

1

cossin

sincos

u

u

u

u
LuL





. 

L is a linear transformation. 

 

4. Let A be fixed nm   matrix. Then, 
mn RRL  :  defined by  

  Au

u

u

u

A

u

u

u

LuL

nn































































2

1

2

1

 
is a linear transformation since  

(a) for any 
nRvu   , ,  

    )()( vLuLAvAuvuAvuL 
. 

(b) for Rk , 

      )(ukLAukkuAkuL 
. 

 

Example: 

 

Let  

    01201

2

212  ,: axaaaxaxaLPPL 
, 

where nP
 is the set of all the polynomials of degrees n . Is L a linear transformation? 

 

[solution:] 

 

L is a linear transformation since  

(a) for any 01

2

201

2

2  , bxbxbvaxaxau 
 in 2P

,  
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        
      

     

   
   vLuL

bxbxbLaxaxaL

bxbbaxaa

baxbaba

baxbaxbaLvuL











             

             

             

             

01

2

201

2

2

012012

001122

0011

2

22

. 

(b) for Rk , 

      
    

 
 ukL

axaxakL

axaakkaxkaka

kaxkaxkaLaxaxakLkuL









          

          

          

01

2

2

012012

01

2

201

2

2

 
 

Example: 

 

Let nn PPL :
, L is the operation of taking the derivative, for example,  

  xxL 22 
. 

Is L a linear transformation? 

 

[solution:] 

 

L is a linear transformation since  

(a) for any 0

1

10

1

1  , bxbxbvaxaxau n

n

n

n

n

n

n

n  





 
 in nP

,  

        
      

     
   
   vLuL

bxbxbLaxaxaL

bxbnxnbaxanxna

baxbanxban

baxbaxbaLvuL

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

nn

n

nn

n

nn

n

nn







































             

             

11             

1             

0

1

10

1

1

1

2

1

1

1

2

1

1

11

2

11

1

00

1

11









. 

(b) for Rk , 

   
 

  
 
 ukL

axaxakL

axanxnak

kaxkanxnka

kaxkaxkaLkuL

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n































          

          

1          

1          

0

1

1

1

2

1

1

1

2

1

1

0

1

1








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Example: 

 
23: RRL   is defined by  











































3

21

3

2

1

u

uu

u

u

u

L

. 

Is L a linear transformation? 

 

[solution:] 

 

L is not a linear transformation since  

(a) for any 




































3

2

1

3

2

1

 ,

v

v

v

v

u

u

u

u

,  

 
  

   vLuL

v

v

v

L

u

u

u

L
v

vv

u

uu

vu

vvuu

vu

vvvuvuuu

vu

vuvu

vu

vu

vu

LvuL






































































































































































3

2

1

3

2

1

3

21

3

21

33

2121

33

21122121

33

2211

33

22

11

             

 
 

Important result: 

Let WVL  :  be a linear transformation. Then, 

 
  WVL 00 

, where V0
 is the zero vector in V and W0

 is the zero vector in W. 

 
     vLuLvuL 

. 

 For any vectors kvvv  ,, , 21 
 in V and any scalars kccc  ,, , 21 

, then 

       kkkk vLcvLcvLcvcvcvcL   22112211 . 

 If V is an n-dimensional vector space and 
 nwwwS ,,, 21 

 be a basis for V. If u  is 

any vector in V, then 
 uL

 is a linear combination of 
     nwLwLwL  ,, , 21 

. 
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Example: 

 

Let 23: RRL   defined by  

  Ax

x

x

x

x

x

x

LxL 





























































3

2

1

3

2

1

321

111
.  

Let  




























































































1

0
 ,

0

1
 ,

1

0

0

 ,

0

1

0

 ,

0

0

1

TS  

Then, since  

  x

x

x

x

xxxx

x

x

x

x S 



























































































3

2

1

321

3

2

1

   

1

0

0

0

1

0

0

0

1

 

and  

     

        SST xAx

x

x

x

xL
xxx

xxx
xL

xxxxxx
xxx

xxx

x

x

x

xL












































































































321

111

321

111

32
 

1

0
32

0

1

32321

111

3

2

1

321

321

321321

311

321

3

2

1

then 

       AxxAxLxL ST  . 

 

Example: 

 

Let 23: RRL   defined by  

  






 



































3

21

3

2

1

2x

xx

x

x

x

LxL .  

Let  

   



























































































2

0
 ,

0

1
, ,

3

2

1

 ,

4

1

0

 ,

0

1

1

,, 21321 wwTvvvS . 

Find the matrix of L with respect to the bases S and T. 

[solution:] 
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         
TTT

vLvLvLA 321  

Thus, 

  211 02
2

0
0

0

1
2

0

2

02

11

0

1

1

wwLvL 








































































  

   









0

2
  1 T

vL . 

  212 41
2

0
4

0

1
1

8

1

42

10

4

1

0

wwLvL 








































































  

   









4

1
  2 T

vL  

  213 33
2

0
3

0

1
3

6

3

32

21

3

2

1

wwLvL 








































































  

   









3

3
  3 T

vL . 

Therefore, 











340

312
A . 

 

General Procedure for Computing A: 

Let 
mn RRL :  be a linear transformation. Let  

 nvvvS ,,, 21   and  mwwwT ,,, 21   

be bases for 
nR  and 

mR , respectively. Then, the matrix of L with respect to the bases S and T can 

be obtained via the following steps: 

 

1. Form the  mnm   augmented matrix 

      nm vLvLvLwww  2121 . 

 

2. Transform the augmented matrix into the reduced row echelon matrix, 

 AI nn . 
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The matrix A is the matrix of L with respect to the bases S and T. 

 
Inverse of Matrix 

If A is a non singular matrix, then inverse of matrix A exist and is defined as matrix  satisfies

, where I is unit matrix of same order as that of the matrix A. To find the inverse of matrix A write , then 

perform same suitable elementary row (column) operations on the matrix A and on the right hand side till we 

reach the result . Then . 

Example 1: Find the inverse of matrix using the elementary operations. 

Solution.  We write i.e.,  

Operating  

we get,   

Operating , 

 

Operating , 

 

. 

Problems to Check The Progrress 

1. Using elementary operation, find the inverse of the following matrices. 

 

1 2 1

1 1 2

2 1 1

A

 
 

  
  

  Ans. 1

3 1 5
1

5 3 1
14

1 5 3

A

 
 

  
  

. 

-1A -1 -1AA =A A=I
A=IA

I=BA -1A =B

1 3 2

A= 0 4 1

5 2 3

 
 
 
  

A=IA

1 3 2 1 0 0

0 4 1 0 1 0 A

5 2 3 0 0 1

   
   


   
      

3 3 1 2 2

1
R R +(-5)R ,R R

4
  

1 3 2 1 0 0

1 1
0 1 0 0 A

4 4

0 -13 -7 -5 0 1

   
   
   
   
   
   

1 1 2 3 3 2R R +(-3)R ,R R 13R  

5 3
1 0 1 0

4 4

1 1
0 1 0 0 A

4 4

15 13
0 0 - -5 1

4 4

   
   

   
   
   
   
   
      

3 3 1 1 3 2 2 3

-4 -5 1
R R ,R R + R ,R R R

15 4 4

     
         

     

2 1 1

3 3 31 0 0 10 5 5
1 7 1 1

0 1 0 A= 5 7 1 A
3 15 15 15

0 0 1 20 13 4
4 13 4

3 15 15

 
 

    
      
    
        

  
  

-1

10 5 5
1

A 5 7 1
15

20 13 4

 
 

 
 
   
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CHARACTERISTICS MATRIX 

If A be a square matrix of order n, then we can form the matrix [A  I], where I is the unit matrix of order n and 

 is scalar.  The determinant corresponding to this matrix equated to zero is called the characteristic equation  i.e. 

if A  I be the matrix then  

  |A  I| =  = 0  …(1) 

is the characteristic equation of A. 

 On expanding the determinant (1), the characteristic equation may be written as  

 (1)
n
 

n
 + a1 

n1
 + a2 

n2
 + … + an1

 
 + an = 0 

which is n
th
 degree equation in . 

 The roots of (1) are called eigen values or characteristic roots or latent roots of the matrix A.  

Eigen Vectors  

 We take the matrix A =  

and if X =  where x1, x2, …, xn are vectors  

then the linear transformation Y = AX …(2), transforms the column vector X into the column vector Y.  

Generally, it is required to find such vectors which either transform it is into them selves or to a scalar multiple 

of them selves.  If X be such a vector which is transformed into X using the transformation (2) then X = AX  

  AX  X = 0 

i.e.          [A  I]X = 0       …(3) 

 The matrix equation (3) represents n homogeneous linear equations. 

  (a11  )x1 + a12 x2 + a13 x3 + … + a1n xn = 0 

  a21 x1 + (a22  )x2 + a23 + x3 + … + a2n xn = 0 

  a31x1 + a32 x2 + (a33  )x3 + … + a3n xn = 0    …(4) 

  ………………………. 

  an1 x1 + an2 x2 + (an3  )x3 + … + ann xn = 0 

 This equation (4) will have a non-trivial solution only if to co-efficient matrix is singular i.e. if the 

determinant |A  I| = 0. 

 This equation is also called characteristic equation of the transformation and is also the same as the 

characteristic equation (1) of matrix A.  This characteristic equation has n roots which are eigen values of A 

corresponding to each root of (1), the equation (3) has non-zero solution. 









nnnnn

n

n

n

aaaa

aaaa

aaaa

aaaa

...

...............

...............

...

...

...

321

3333231

2232221

1131211



























nn3n2n1n

n3333231

n2232221

n1131211

a...aaa

...............

...............

a...aaa

a...aaa

a...aaa























n

3

2

1

x

...

x

x

x
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           X =  

which is known as an eigen vector or latent vector.   So, if X is a solution of (3) then KX is also a solution, where 

K is an arbitrary constant.  So, we see that the eigen vector corresponding to an eigen value is not unique.  

Example 1.  Find the eigen values and eigen vectors of the matrices    A = . 

 Sol. The characteristic equation of the given matrix is |A  I| = 0 

  = 0 

i.e. (1  ) (4  )  4 = 0  
2
  5 = 0  (  5) = 0 

i.e.   = 0, 5   eigen values of A are 0 and 5. 

So, corresponding to  = 0 eigen vectors are given by  = 0 

i.e. x1 + 2x2 = 0  and 2x1 + 4x2 = 0 

i.e. single equation x1 + 2x2 = 0    so for  = 0 eigen vectors are (2, 1) and for  = 5, we have 

 = 0  

   4x1 + 2x2 = 0  and  2x1  x2 = 0. 

i.e.  eigen vectors are  i.e. (1, 2) are eigen vectors corresponding to =5.  

Properties of Eigen Values   
(I) The sum of the eigen values of a matrix is the sum of the elements of the principal diagonal.  We will 

prove this property for a matrix of order 3 and the method can be extended for the matrices of any finite 

order. 

Let           A =       …(1) 

Then characteristic matrix |A  I| = 0  

   = 0 

 
3
 + 

2
(a11 + a22 + a33) (    ) + … = 0      …(2) 

If 1, 2 and 3 be eigen values of A then  

 |A  I| = 
3
 + 

2
 (1 + 2 + 3)  …. + (1)

3
 1 2 3  …(3) 

Equating the co-efficients of 
2
 from (2) and (3), we get 

       1 + 2 + 3 = a11 + a22 + a33 which is the required result. 

(II) The product of the eigen values of a matrix A is equal to its determinants.  If take  = 0 in (3) then, we 

get |A  0| = 123 which is the required result. 

(III) If  is an eigen values of a matrix A, then  is the eigen value of inverse matrix A
1

.  If X be the eigen 

vector corresponding to the eigen value  then  























nx

x

x

x

...

3

2

1










42

21





42

21














2

1

x

x

042

201

1

x

2

x 21

















2

1

x

x

542

251

2

x

1

x 21 

















333231

232221

131211

aaa

aaa

aaa







333231

232221

131211

aaa

aaa

aaa



1
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AX = X  …(4) 

Pre-multiplying (4) by A
1

, we get A
1

AX = A
1
X 

i.e. IX = A
1

X  X = (A
1

X)  A
1

X = X 

This is of the same form as that in (1) from which we get that  is an eigen value of the inverse matrix A
1

. 

(IV) If  is an eigen value of a matrix A, then  is an eigen value of A
1

.  As A is an orthogonal matrix so 

A
1

 will be same as the transpose of matrix A i.e. A = A
1

.  So,  is an eigen value of A.  But the 

matrix A and A have the same eigen values.  

[since we know that |A  I| = |A  I| ].  Hence  is also an eigen value of A.  

(V) If 1, 2,…, n are eigen values of a matrix A then A
m
 has the eigen values 1

m
, 2

m
, …, n

m
  where m is 

a positive ineteger.   

If Ai be the eigen value of A and Xi be the corresponding eigen vector, then  

    AXi = i Xi       …(1) 

 Consider A
2
 Xi = A(AXi) = A(i Xi) = i (AXi) = i(i Xi) = i

2
 Xi similarly, we proceed and find A

3
 Xi = 

i
3
 Xi and so on such that in general we get 

       A
m
Xi = i

m
 Xi      …(2) 

which has the same form as (1).  Hence i
m
 is an eigen-value of A

m
 and the corresponding eigen vector is the 

same as that of Xi.  

Example 2.  Find the characteristic roots and characteristic vectors of the matrix               

  A = . 

Sol. The characteristic equation of matrix A is | A  I | = 0 i.e. 

   = 0 

i.e. (8  ) [(7  ) (3  )  16] + 6[(6) (3  ) + 8] + 2[24  2(7  )] = 0 

i.e. (8  ) [21 + 
2
  10  16] + 6[10 + 6] + 2[24  14 + 2] = 0 

i.e. 
3
 + 18

2
  85 + 40  60 + 36 + 20 + 4 = 0 

i.e. 
3
  18

2
 + 45 = 0 i.e.  = 0, 3, 15. 

 Corresponding to  = 0, eigen vectors are given by  

       = 0 

i.e. equations are 

  8x1  6x2 + 2x3 = 0       …(1) 

  6x1 + 7x2  4x3 = 0       …(2) 

  2x1  4x2 + 3x3 = 0       …(3) 

From (2) and (3) we get  

  i.e.  

i.e. eigen vector are (1, 2, 2) 

Similarly from (1) and (2) we get the same vectors 
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Now for  = 3, eigen vectors are obtained from  = 0 

i.e.   = 0 

i.e. equations are  

  5x1  6x2 + 2x3 = 0       …(4) 

  6x1 + 4x2  4x3 = 0       …(5) 

and  2x1  4x2 = 0        …(6) 

From (4) and (5), we get 

   

i.e.    

i.e. eigen vectors are (2, 1, 2) and for  = 15, eigen vectors are given by  

 = 0    = 0 

i.e. equation are  7x1  6x2 + 2x3 = 0      …(7) 

   6x1 + 8x2 + 4x3 = 0      …(8) 

and   2x1  4x2 + 2x3 = 0      …(9) 

From (7) and (8), we get 

   i.e.  

i.e. eigen vectors are (2, 2, 1) corresponding to  = 15.   

 Example 3.  Find the eigen values and eigen vectors of the matrix                   

                                      . 

 Sol. Let the given matrix be A = . 

So, the characteristic equation of A is |A  I|  = 0 

i.e.    = 0      …(1) 

 (6  ) [(3  )
2
  1] + 2[2(3  ) + 2] + 2[2  2(3  )] = 0 

              (6  ) [9  6 + 
2
  1] + 2[2  4] + 2[2  4] = 0 

       
3
 + 

2
[6 + 6]  [36  8 + 8] + [48 8  8] = 0 

        
3
  12

2
 + 36   32 = 0 

            
3
  2

2
  10

2
 + 20 + 16   32 = 0 

  (  2)
2
 (  8) = 0 i.e.   = 2, 2 and 8. 

which are the characteristic roots of (1). 

 Now corresponding to the eigen values  = 2, 2, 8 the given eigen vectors are obtained from [A  I]X = 

0. 
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i.e.        …(2) 

(2) may be written as  

  (6  )x1  2x2 + 2x3 = 0,      …(A) 

  2 x1 + (3  )x2  x3 = 0,      …(B) 

and  2x1  x2 + (3  )x3       …(C) 

we now, consider different cases. 

Case I. When  = 2, then (A), (B) and (C) may be written as  

  4x1  2x2 + 2x3 = 0       …(A1) 

  2x1 + x2 + x3 = 0       …(B1) 

  2x1  x2 + x3 = 0       …(C1) 

 If x3 = 0, then from (A1) and (B1), we get 

  2x1 + x2 = 0 i.e.  

and so eigen vector for  = 2, for x3 = 0 is X1 =  

and when x2 = 0, then from (A1) and (B1) for  = 2,  

   2x1 + x3 = 0   

 another eigen vector for  = 2 is X2 =  

Case II.  When  = 8, equations (A), (B) and (C) become 

  2x1  2x2 + 2x3 = 0                 …(A11) 

  2x1  5x2  x3 = 0      …(B11) 

  2x1  x2  5x3 = 0      …(C11) 

eliminating x3 from (A11) and (B11), we get 

  x1 + 2x2 = 0 i.e.      …(M) 

and by eliminating x1 from (A11) and (B11), we get 

  x2 + x3 = 0 i.e.      …(N) 

Using (M) and (N), we get   

i.e. corresponding to  = 8,  eigen vector is X3 =  

 Example 1.  Find the eigen values and eigen vectors of the matrix                                                         

    A = . 

 Sol. The characteristic equation of the given matrix is  
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   |A  I| =  = 0 

i.e. 
3
 + 

2
  21  45 = 0  ( + 3) ( + 3) (  5) = 0 

i.e.  eigen values are  = 3, 3, 5 

 If x, y and z be the eigen vectors.  Corresponding to the eigen values   

(I) We have         …(1) 

Now for  = 5 we have  

  7x + 2y  3z = 0 2x  4y  6z = 0 

  x  2y  5z = 0 

from (1) and (2)  

Hence eigen vector is [1,  2,  1]   

(II) If  = 3, then from (1), we get  = 0 which gives only one independent x + 2y  3z = 0

       …(3)  

if we take  y = 0, we get  x  3z = 0   

 for  = 3, eigen vector is (3, 0, 1) when y = 0. 

at when  z = 0, (3) gives  x + 2y = 0   

i.e. eigen vector in this case is (2, 1, 0) 

 the eigen vectors obtained are (1, 2, 1), (3, 0, 1) and (2, 1, 0) 

which are the required result.  

Example 2.  Find the sum and the product of eigen values of A = . 

Sol. The characteristic equation of matrix A is |A  I| = 0 

i.e.   = 0 

i.e. (2  ) (1  ) (2  ) + 3[1 + 2(2  )] + (2) (0  ) = 0 

       (2  ) (
2
  3 + 2 + 3)  6 + 15 + 2  2 = 0 

            
3
 + 5

2
  11 + 10  6 + 15 + 2  2 = 0 

          
3
  5

2
 + 19 + 19 = 0 

 sum of the eigen value 1 + 2 + 3 = (5) = 5 

and the product of the eigen values is 1 2 3 = 19. 
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1. Determine the charecteristics roots and the corresponding characteristics vectors of the matrix 

8 6 2

6 7 4

2 4 3

A

 
 

   
  

. 

Ans. Characteristics roots are 0, 3, 15. 

Example 3 Find the characteristic equation of the matrix  A = .  Show that the characteristic 

equation is satisfied by A and hence obtain the inverse of the given matrix. 

 Sol. The characteristic equation is |A  I| = 0 

i.e.  = 0  
3
  4

2
  20  35 = 0  …(1) 

we have to show that A satisfies (1) i.e. A
3
  4A

2
  20A  35I = 0   …(2) 

Consider 

         A
2
 = A.A =  

   =  

         A
2
 =  

         A
3
 = A

2
 A =   

   =  

   =  

Now, we consider A
3
  4A

2
  20A  35I, which is 

  =    

 

  =  
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  =  

 Equation (2) is satisfied and A
1

 = [A
2
  4A  20I] 

i.e.       A
1

 =  

  =  

  =  

i.e.       A
1

 =  is the required result.  
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PART – B ( 5 x 2  =10) 

 

Possible Questions (2 marks) 

 
1. Define linear transformation with example. 

2. Define null space. 

3. Define rank of a matrix 

4. Define inverse of a matrix with example. 

5. Define the subspace . 

6. Define symmetric matrix with example. 

7. Define self adjoint with example. 

8. Define characteristic equation of a matrix. 

9. Define the Eigen value and Eigen vector of a matrix. 

10. Write any two properties of Eigen values. 
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PART – C ( 5 x 6  =30) 

 

Possible Questions (6 marks) 
 

1) Find the characteristic vectors corresponding to each characteristic root if A=(
   
   
   

) 

2) Find the inverse of the matrix A=(
    
    
    

) 

3) Find the eigen values and eigen vectors of the matrix  A=(
    
     
    

) 

4) Let A= [
  
  

] and define T:      by T(x)=A(x).Find the images under T of u=[
 
 
] and v=[

 
 
]. 

 

5) Defined T:      by T(x)=A(x).find a vector x whose image under T is b.     

            If  A=(
    
    
     

) , b=(
  
 
  
). 

6)  Compute the inverse of the matrix  A=(
    
      
    

)      

7) Let  A=(

     
     
     

) , u=(
 
 
  
) and v=(

 
 
 
)  Define T:      by T(x)=A(x).Find         

         T(u) and T(v). 

8) Show that a square matrix A is orthogonal iff        . 

9) Let A= [
  
  

] and define T:      by T(x)=A(x).Find the images under T of u=[
 
  
] and v=[

 
 
]. 

10) Find the rank of the matrix A=(
   
   
   

     
 
 
 
) 
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S.No Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

1

Let V& W be vector spaces over the field F. A linear 

transformation from V into W is a function T from V 

into W such that T(cu+v)=………………. for all u,v 

in V and all scalars c in F. T(u)+T(v) cT(u)+cT(v) T(u)+cT(v) cT(u)+T(v) cT(u)+T(v)

2 Every …………….. transformation is a linear 

transformation. matrix row column unit matrix

3 Every matrix transformation is 

a…………..transformation. linear non linear homogeneous

non 

homogeneous linear

4 ……………... transformation preserve the operations 

of vector addition and scalar multiplication. linear non linear matrix row linear

5 Linear transformation preserve the …………... of 

vector addition and scalar multiplication. addition functions operations values operations

6 Linear transformation preserve the operations of 

……………….. and scalar multiplication. vector addition vector subtraction

vector 

multiplication vector division vector addition

7 Linear transformation preserve the operations of 

vector addition and ……………..

vector 

multiplication

scalar 

multiplication

matrix 

multiplication vector division scalar multiplication

Possible Questions                               
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8

If T is a linear transformation , then T(0)=…………. 0 1 2 3 0

9

T(cu+dv)=…………….. T(cu)+T(dv) cT(u)-dT(v) T(u)+T(v) cT(u)+dT(v) cT(u)+dT(v)

10

Let T be a linear transformation then there exists a 

unique matrix A such that T(x)=………….. for all  x 

in R 0 Ax x 1 Ax

11

Let T be a linear transformation then there exists a 

……………... matrix A such that T(x)=Ax for all  x 

in R zero unique identity diagonal unique

12 An nxn matrix B such that BA=I is called a 

………………..of A zero left inverse right inverse identity left inverse

13 An ……………..matrix B such that BA=I is called a 

left inverse of A mxm nxn mxn nxm nxn 

14 An nxn matrix B such that AB=I is called a 

………………..of A zero left inverse right inverse identity right inverse

15 An ……………..matrix B such that AB=I is called a 

right  inverse of A mxm nxn mxn nxm nxn 

16 If AB=BA=I then  B is called a …………...inverse of  

A. two sided left inverse right inverse identity two sided 

17 If AB=BA=………….. then  B is called a two sided 

inverse of  A. 0 1 I -1 I

18
A two sided inverse of Aand  Ais said to be 

……………….. invertible inverse identity vertible invertible

19

If  A is invertible,so is A⁻¹ and (A⁻¹ )⁻¹=………….. A⁻¹ A 0 I A
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20

If  A is ……………….,so is A⁻¹ and (A⁻¹ )⁻¹=A invertible inverse identity vertible invertible

21 If both A and B are invertible ,so is AB,and 

(AB)⁻¹=……………  B⁻¹  A⁻¹  BA  B⁻¹A⁻¹  B⁻¹A⁻¹

22 If both A and B are …………... ,so is AB,and 

(AB)⁻¹=B⁻¹A⁻¹ invertible inverse identity vertible invertible

23

A ………………... of invertible matrices is invertible addition subtraction product division product

24

A product of invertible ……………. is invertible matrices functions vectors equations matrices

25

A product of invertible matrices is ……………… invertible unity identity vertible invertible

26

An ………………..matrix is invertible. null identity elementary singular elementary 

27

An elementary matrix is……………….. invertible inverse identity vertible invertible

28
A ……………... of V is a subset W of V which is 

itself a vectorspace over F with the operations of 

vector addition and scalar multiplication on V. subspace space vector function subspace

29
A subspace of V is a subset W of V which is itself a 

vectorspace over F with the ………………... of 

vector addition and scalar multiplication on V. functions operations scalar vector operations

30
A subspace of V is a subset W of V which is itself a 

vectorspace over F with the operations of 

………….and scalar multiplication on V. vector addition vector subtraction

vector 

multiplication vector division vector addition

31

A subspace of V is a subset W of V which is itself a 

vectorspace over F with the operations of vector 

addition and ……………... on V.

vector 

multiplication

scalar 

multiplication

matrix 

multiplication vector division scalar multiplication
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32 The ……………….consisting of the zero vector 

alone is a subspace of V, called zero subspace of V. subset set space subspace subset 

33 The subset consisting of the…………….. vector 

alone is a subspace of V, called zero subspace of V.  zero unit finite infinite  zero

34 The subset consisting of the zero vector alone is a 

subspace of V, called ………………….. of V. zero subspace zero space zero subset zero set zero subspace

35 An …………... matrix A over the field F is 

symmetric if Aij=Aji for each i and j. mxm nxn mxn nxm nxn 

36 An nxn matrix A over the ……………. F is 

symmetric if Aij=Aji for each i and j. field scalar vector matrix field

37 An nxn matrix A over the field F is ………...if 

Aij=Aji for each i and j. symmetric non symmetric singular non singular symmetric 

38 An nxn matrix A over the field F is symmetric if 

…………….. for each i and j. Aij<Aji Aij>Aji Aij=Aji Aij≠Aji Aij=Aji

39 Any set which contains a lineary dependent set is 

……………....

linearly 

dependent

linearly 

independent linear non linear linearly dependent

40 Any subset of a lineary independent set is 

……………....

linearly 

dependent

linearly 

independent linear non linear linearly  independent

41 Any set which contains the ………..vector is linearly 

dependent. 0 unit inverse complex 0

42

Any set which contains the 0 vector is……………..

linearly 

dependent

linearly 

independent linear non linear linearly dependent

43 A set S of vectors is ………………. iff each finite 

subset of S is linearly independent.

linearly 

dependent

linearly 

independent linear non linear linearly  independent

44 A set S of vectors is linearly independent iff each 

………….. subset of S is linearly independent. one finite infinite null finite
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46

47

48

49

50

51

52
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PART-A (20 x 1 =20 Marks) 

Answer All the Questions 

1. A complex number z=x+iy is write in the polar representation 

as…... 

a) z=r(cosΘ+isinΘ    b) z=r(cosΘ)   c) z=(cosΘ+isinΘ)   d) z=r(isinΘ) 

2. The polar representation z=r(cosΘ+isinΘ) where rϵ……………. 

a) [0,∞]            b) [0,1)            c) [1,∞)                    d) [0,∞) 

3. The modulus of the numbers z= 2i is………………..  

a) 0                          b) 1                  c) 2                           d) 3 

4. Two complex numbers z1 and z2≠0 are …… if and only if r1=r2 

a) one                      b) equal            c) not equal              d) multiple 

5. Any complex number z can be represented as z = r (cosΘ+isinΘ), 

where r……………… 

a) ≥0                       b) ≤0                 c) >0              d) <0 

6. The set Arg z is called the ……argument of the complex number z. 

a) finite                  b) infinite           c) extended           d) singular 

7. For ………the modulus and argument of z are uniquely determined 

a) z=0                    b) z>0                 c) z<0                    d) z≠0 

8. The polar representation z=r(cosΘ+isinΘ) where Θϵ……………. 

a) [0,Π]                 b) (0,2Π)             c) [0,2Π)               d) [0,2Π] 

9. The modulus of the numbers z= 1-i√3 is……………….. 

a)-1                      b)1                       c)2                         d)-2 

10. cos0 +i sin 0=…………… 

a)0                      b)1                           c)2                   d)3 

11. In the field of real numbers Z
n
-z0=………….. 

a)0                       b)1                          c)2                     d)3 

12. The argument of the numbers z= -1-i is……………….. 

a) Π/4                  b)3Π/4                    c) 5Π/4             d) 7Π/4 

13. cos Π + i sin Π =…………… 

a) 0                      b)1                          c) -1               d)  i 

14. The polar argument Θ of the geometric image of z is called 

………of  z. 

a) angle               b) argument           c) theta               d) coordinate 

15. In the field of real numbers Z
n
-z0=0 is used for defining the 

…………roots of number z0.  

a) (n-1)
th

              b) (n+1)
th  

             c) n
th

                   d) (n-2)
th 

16. If f:A→B  hence f is called a  …………….. 

a) function           b) form                 c) formula          d) fuzzy 

17. The ………….. of a function as the image of its domain 

a) domain            b) range                 c) co domain      d) image 

18. If the function f is otherwise called as …………………… 

 a) limit               b) mapping             c) lopping          d) inverse 

19. If f:A→B in this set  B is called the …………of the function f.           

a) domain     b) co domain          c) set               d) element 

20. If R is reflexive,symmetric and transitive therefore R is an    

……………..relation  

 a) one-one     b) onto            c) equivalence       d) equal 

 

PART-B (3 x 2 = 6 Marks) 

Answer All the Questions 

21. Find the polar representations for the complex number  z=3-2i. 

22. Define finite and infinite set. 

23. Define Equivalence relations. 

 

 



PART-B (3 x 8 = 24 Marks) 

Answer All the Questions 

24. a) Find the Polar representation of the complex number    

         z=1+cos a +i sin a ,aϵ(0,2П). 

(OR) 

     b) Compute    
(   )  (√   )

 

(    √ )
   

25. a) State and Prove De Moivre’s theorem. 

(OR) 

      b) Find| |, arg z, Arg z, arg  ̅, arg (-z) for z=(7-7√  i)(-1-i). 

26. a) Find the Fourth roots for the complex number z=-i 

(OR) 

      b) Let S={1,2,3,4,5}  and T={1,2,3,8,9} and define the functions  

       f : S→ T  and  g: S → S by  f={(1,8), (3,9),(4,3),(2,1),(5,2)}  and  

      g={(1,2),(3,1),(2,2),(4,3),(5,2)} ,then find the values of  the 

      following                        . 
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PART-A (20 x 1 =20 Marks) 

Answer All the Questions 

1. The value of the function f for a and is denoted by ……………  

a) a(f)  b) f(a)    c) a   d) f 

2. If aϵA then the element in B which is assignedto ais called the 

……...of  a 

a) B-image b) a-image   c) A-image  d) f-image 

3. One-to-one  mapping is also sometimes known as…………….  

a) injection b) bijection   c) surjection  d) imjection 

4. In one-one mappings an element in B has only……preimage in A 

a) zero              b) two                c) one     d) three 

5. If f:A→B in this set  B is called the ……………..of the function f. 

a) domain         b) co domain   c) set              d) element    

6. The element a may be referred to as the ………..of f(a)  

a) f-image   b) pre-image  c) domain d) codomain 

7. A mapping  f:A→B is said to be ….. if different elements in A have 

different f-images in B 

a) zero  b) one-one  c) onto  d) into 

8. In many-one mappings some elements in B has ……. one preimage 

in A  

a) equal b) more than  c) less than d) only 

9. Let f(x),g(x)≠0 be any two polynomials of the polynmial domain 

F[x],over the field F. Then there exist uniquely two polynomials q(x) 

& r(x) in F[x] such that ……………….. 

a) f(x)=q(x)g(x)+r(x)  b) f(x)=q(x)+r(x)  

c) f(x)=q(x)g(x)  d) f(x)=g(x)+r(x) 

10. Division algorithm for polynomials over a field  deg r(x)  

…….deg g(x)  

a) <  b) >  c) =  d) ≠ 

11. A polynomial domain F[x] over a field F is a principal……… 

a) commutative ring  b) ideal ring   

c) associative ring   d) division ring 

12. In a Euclidean algorithm ,Let F be a field and f(x)  and g(x) be any 

two polynomials in F[x], not both of which are ………………….  

a) zero  b) one   c) two  d) three 

13. In the division algorithm, the polynomial q(x) is called the 

…….on dividing f(x) by g(x) 

a) quotient b) remainder  c) divisor d) dividend 

14. The divisor of f(x) symbolically write ……………….   

a) f(x)/a(x) b) b(x)/f(x)  c) a(x)/b(x)  d) a(x)/f(x) 

15. A ……….is an element of F[x] which has a multiplicative inverse. 

a) zero  b) unit   c) two  d) three 

16. The non zero elements of F are the ……………..of F[x].  

a) only units  b) not only units    c) double units    d) zero units 

17. If f(x) and g(x) are polynomials in F[x], then we call f(x) and g(x) 

associates if ……………….for some 0≠c ϵ F.  

a) f(x)=g(x)  b) f(x)=c/g(x)        c) f(x)=c+g(x)     d) f(x)=cg(x) 

18. Only one-one and onto mapping posses……………..mappings.  

a) integral b) inverse  c) invert d) reverse 

19. The divisorsof f(x) are called its………………………divisors.  

a) proper b) improper  c) finite d) infinite 

20. An irreducible polynomial is otherwise called as……………..  

a) point b) prime  c) power d) degree 

 

PART-B (3 x 2 = 6 Marks) 

Answer All the Questions 

21. Write the various types of Functions. 

22. State the Euclidean algorithm. 

23. Define the greatest common divisor of two polynomials over a 

field. 

 

 

 

 



PART-B (3 x 8 = 24 Marks) 

Answer All the Questions 

24. a) Show that the following functions are 1-1  

          i) f : R → R given by f(x)= 5x
2
 - 1 

          ii) f: Z → Egiven by f(n)=3x
3
 - x 

(OR) 

       b) Let A be the set A={xϵR \ x>0}  and define f ,g, h :A→ R by 

          f(x)=
 

   
 ,g(x)=

 

 
 ,h(x)=x+1.find                 and 

                  . 

27. a) Prove that the sum of the first n odd integers is    . 

(OR) 

      b) State and prove the Division Algorithm 

28. a) Define greatest common divisor& Find the greatest common 

      divisor of a and b and express  it in the form ma+nb for suitable 

       integers m and n . 

             i) a=26 ,b=118.   ii) a=427 , b=616. 

 

(OR) 

      b) Solve the following congruence 

 i ) 3x              

 ii) 3x            
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PART-A (20 x 1 =20 Marks) 

Answer All the Questions 

1. Any n-tuple of elements of F which satisfies each of the …………. 

in linear equation is called a solution of the system.  

a) functions  b) equations  c) roots        d) solutions 

2. If y1=y2=………..=ym=0 then the system is 

………………………………..  

a) homogeneous b) non homogeneous c) linear       d) nonlinear 

3. The most fundamental technique for finding the ……………. of a 

system of  linear equations is the technique of elimination.  

a) function  b) root  c) solution d) value 

4. …………. systems of linear equations are equivalent if each 

equation in each system is a linear combination of the equations in the  

other system.  

a) one  b) two    c) three d) four 

5. ………………….systems of linear equations have exactly the same 

solutions.  

a) linear b) nonlinear c) Equivalent   d) homogeneous 

6. In the ……………….. form every row R which has all its entries 0 

occurs below every row has a nonzero entry.  

a) row reduced echelon b) column reduced echelon   

c) echelon     d) null 

7. An ……….. matrix R is called row reduced if the first nonzero 

entry in each non zero row of R is equal to 1  

a) mxm  b) nxn    c) mxn  d) nxm 

 

8. An mxn  matrix R is called row reduced if the first nonzero entry in 

each non zero row of R is equal to …………..  

a) 0   b) 1   c) 2  d) 3 

9. Equivalent systems of linear equations have exactly 

the…………….. solutions.  

a) zero    b) same   c) different d) finite 

10. An nxn matrix B such that AB=I is called a ……………..of A  

a) zero   b) left inverse    c) right inverse d) identity 

11. If  A is ……………….,so is A⁻¹ and (A⁻¹ )⁻¹=A  

a) invertible b) inverse  c) identity d) vertible 

12. A product of invertible matrices is ………………  

a) invertible  b) unity c) identity  d) vertible 

13. An ………………..matrix is invertible.  

a) null    b) identity c) elementary  d) singular 

14. If AB=BA=I then  B is called a …………...inverse of  A.  

a) two sided   b) left inverse  c) right inverse d) identity 

15. If  A is invertible, so is A⁻¹ and (A⁻¹ )⁻¹=…………..  

a) A⁻¹     b) A  c) 0   d) i 

16. If T is a linear transformation , then T(0)=………….  

a) 0   b) 1  c) 2   d) 3 

17. Every …………….. transformation is a linear transformation.  

a) matrix  b) row   c) column  d) unit 

18. Linear transformation preserve the ……... of vector addition and 

scalar multiplication. 

a) addition  b) functions c) operations  d) values 

19. If AB=BA=………….. then  B is called a two sided inverse of  A. 

a) 0   b) 1  c) i   d) -1 

20. A two sided inverse of A and  A is said to be ………………..  

a) invertible  b) inverse c) identity  d) vertible 

PART-B (3 x 2 = 6 Marks) 

Answer All the Questions 

21. Define the systems of Linear equations 

22. Define null space. 

23. When we say that the system is homogeneous? 

 

 

 



PART-B (3 x 8 = 24 Marks) 

Answer All the Questions 

24. a) Determine if b is a linear combination of a1and a2 where 

       a1=[
 
  
 
], a2=[

 
   
  

]          b=[
  
 
 
] 

(OR) 

      b) Determine the system is consistent 

                         x1-6x2=5 

                    x2-4x3+x4=0 

           -x1+6x2+x3+5x4=3 

                -x2+5x3+4x4=0 

25. a) Defined T:      by T(x)=A(x).find a vector x whose image 

under T is b. If  A=(
    
    
     

) , b=(
  
 
  
). 

(OR) 

      b) Compute the inverse of the matrix A=(
    
      
    

) 

 

26. a) Describe the solution of      where    [
   
     
    

] 

and   [
 
  
  
] 

(OR) 

b) Let A= [
  
  

] and define T:      by T(x)=A(x).Find the 

images under T of u=[
 
  
]  and v=[

 
 
]. 
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