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             KARPAGAM ACADEMY OF HIGHER EDUCATION 

   (Deemed to be University Established Under Section 3 of UGC Act 1956) 

                             Pollachi Main Road, Eachanari (Po), 

                                       Coimbatore –641 021 

                                   Department of Mathematics 

                                               SYLLABUS 

Semester – I  

                        L   T    P   C 

17MMU103             LOGIC AND SETS    6    2    0    6 

 

 Course Objective: On successful completion of course the learners gain about propositional 

equivalence, relation and its applications. 

 Course Outcome: To enable the students to learn and gain knowledge about propositions, 

negation, conjunction, disjunction, logical equivalences and counting principle. 

. 

UNIT I 

Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, 

biconditional propositions, converse, contra positive and inverse propositions and precedence of 

logical operators.  

 

UNIT II 

Propositional equivalence: Logical equivalences.  

Predicates and quantifiers: Introduction, Quantifiers, Binding variables and Negations. 

 

UNIT III 

Sets: Subsets, Set operations and the laws of set theory and Venn diagrams. Examples of finite 

and infinite sets.  

  

UNIT IV 

Finite sets and counting principle. Empty set, properties of empty set. Standard set operations. 

Classes of sets. Power set of a set. Difference and Symmetric difference of two sets. Set 

identities, Generalized union and intersections.  

 

UNIT V 

Relation: Product set, Composition of relations, Types of relations, Partitions. Equivalence 

Relations with example of congruence modulo relation, Partial ordering relations, n-ary relations. 

 

SUGGESTED READINGS 

TEXT BOOK 

1. Grimaldi R.P.,(2004). Discrete Mathematics and Combinatorial Mathematics, Pearson  

Education, Pvt.Ltd, Singapore. 

REFERENCES 

 

1. Bourbaki .N(2004),Theory of sets, Springer Pvt Ltd, Paris. 

2. Halmos P.R.,(2011). Naive Set Theory, Springer Pvt Ltd, New Delhi. 

3. Kamke E., (2010).Theory of Sets, Dover Publishers, New York. 
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  4.Sharma.J.K.,(2015).Discrete mathematics,Tata Mc Graw-Hill publishing company 

Ltd New Delhi. 

5.Chowdhary.K.R.,(2012). Fundamentals of Discrete mathematical structures 

second  edition, phi learning pvtltd,New Delhi.        

6.Seymour Lipschutz,Marc Lars Lipson.,(2001).Theory and problems of  

discretemathematics,Tata Mc Graw-Hill publishing company ltd,New Delhi. 

  7.Sundaresan,V.,GanapathySubramaniam,K.S and Ganesan.K.(2009). 

Discrete mathematics,ARPublications,India. 

  8.Richard Kohar(2016),Basic Discrete Mathematics,Logic set theory and probability. 
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                                          KARPAGAM ACADEMY OF HIGHER EDUCATION 

(Deemed to be University Established Under Section 3 of UGC Act 1956) 

                                   Pollachi Main Road, Eachanari (Po), 

                                            Coimbatore –641 021 

                                                   Lesson Plan  

  

Subject:   Logic and sets                      Subject Code:   17MMP103 

Class:     I  B.Sc  Mathematics                   Semester:I 

 

 

S.No 

Lecture 

Duration 

(Hr) 

Topics to be covered Support  Materials 

 UNIT-I 

1.  1 Introduction to logic and sets R4:Ch: 12; Pg.No:333 

 

2.  1 Propositions R4:Ch: 12; Pg.No:334,335 

3.  1 Tutorial-I  

4.  1 Truth table T1:Ch:2; Pg.No:47-49 

5.  1 Continuation of truth table T1:Ch:2;Pg.No:50-53 

6.  1 Tutorial-II  

7.  1 Negation,Conjuction   R4:Ch:12; Pg.No:335-336 

8.  1 Disjunctions R4:Ch:12;Pg.No:336-338 

9.  1 Implications R4:Ch:12; Pg.No:362-364 

10.  1 Tutorial-III  

11.  1 Biconditional propositions R4:Ch:12;Pg.No:349-350 

12.  1 Continuation of Biconditional propositions R4:Ch:12;Pg.No:351-352 

13.  1 Tutorial –IV  

14.  1 Converse,  R4:Ch: 12; Pg.No:344-348 

15.  1 contra positive propositions R4:Ch: 12; Pg.No:344-348 

16.  1 Continuation of  contra positive 

propositions 

R4:Ch: 12; Pg.No:344-348 

17.  1 Contra inverse propositions R4:Ch:12; Pg.No:343-344 

 

18.  1 Continuation of Contra inverse propositions R4:Ch:12;Pg.No:343-344 

19.  1 Tutorial-V  

20.  1 Precedence of  logical operators R4: Ch: 12; Pg.No:342-343 

21.   Continuation of logical operators R4: Ch: 12; Pg.No:342-343 

22.  1 Problems on logical operators R4: Ch:12; Pg.No:346-358 

23.  1 Tutorial- VI  

24.  1 Recapitulation and discussion of possible 

questions on unit I 

 

Total  24 hrs   

TEXT BOOK 
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T1. Grimaldi R.P.,(2004). Discrete Mathematics and Combinatorial Mathematics, Pearson  

Education, Pvt.Ltd, Singapore. 

 

REFERENCES 

R4.Sharma.J.K.,(2015).Discrete mathematics,Tata Mc Graw-Hill publishing company ltd, New                    

Delhi.  

 UNIT-II 

1.   1 Propositional equivalence T1:Ch:2 :Pg.NO:54-55 

2.  1 Logical Equivalence T1: Ch: 2; Pg. No :55-56 

3.  1 Properties on logical equivalence T1: Ch: 2; Pg. No :55-56 

4.  1 Tutorial-I  

5.  1 Predicates  :Introduction R7: Ch: 2; Pg. No :2.1-2.2 

6.   Quantifiers:Introduction R7: Ch: 2; Pg. No :2.1-2.2 

7.  1 Tutorial-II  

8.  1 Predicates R7: Ch: 2; Pg. No :2.2-2.3 

9.  1 Problems on predicates R7: Ch: 2; Pg. No :2.2-2.3 

10.  1 Tutorial-III  

11.  1 Properties on predicates R7: Ch: 2; Pg. No :2.2-2.3 

12.  1 Quantifiers R7: Ch: 2; Pg. No :2.2-2.3 

13.  1 Quantifiers:Universal and existential R7: Ch:2; Pg.No:2.3-2.4 

14.  1 Existential R7: Ch:2; Pg.No:2.3-2.4 

15.  1 Properties of quantifiers R1: Ch: 4; Pg. No :38-41 

16.  1 Tutorial-IV  

17.  1 Binding Variables:Definition   R7: Ch: 2; Pg. No :2.4-2.5 

18.  1 Problems on binding variables R7: Ch: 2; Pg. No :2.4-2.5 

19.  1 Continuation of problems on Binding 

variables 

R7: Ch: 2; Pg. No :2.5-2.6 

20.  1 Tutorial-V  

21.  1 Negations of a quantified expressions R4: Ch:12; Pg. No :336-337 

22.  1 Negations – problems R7: Ch:2;Pg.No:2.7-2.8 

23.  1 Tutorial-VI  

24.  1 Recapitulation and discussion of possible 

questions  

 

Total  24 hrs   

 

TEXT BOOK 

 

T1. Grimaldi R.P.,(2004). Discrete Mathematics and Combinatorial Mathematics, Pearson  

Education, Pvt.Ltd, Singapore. 

 

 

REFERENCES 

R1. Bourbaki .N(2004),Theory of sets, Springer Pvt Ltd, Paris 

R4.Sharma.J.K.,(2015).Discrete mathematics,Tata Mc Graw-Hill publishing company ltd,  

      New Delhi 
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  R7.Sundaresan,V.,Ganapathy Subramaniam,K.S and Ganesan.K.(2009).Discrete mathematics,AR 

Publications,India. 

  

UNIT-III 

1.  1 Sets: Definitions and examples T1: Ch: 3; Pg. No:123-124 

2.  1 Subsets: Definitions and examples R3: Ch: 1; Pg. No:5-8 

3.  1 Examples on subsets  

4.  1 Theorems on subsets T1: Ch: 3; Pg. No:125-133 

5.  1 Tutorial-I  

6.  1 Set operations: Definitions and examples T1: Ch: 3; Pg. No :136-139 

7.  1 Examples on set operations  

8.  1 Tutorial-II  

9.  1 Laws of set theory:Definitions and example T1: Ch:3;Pg.No:139-140 

10.  1 Examples of sets T1: Ch:3;Pg.No:139-140 

11.  1 Theorems on laws of set theory T1:Ch:3;Pg.No:140-141 

12.  1 Tutorial-III  

13.  1  Venn diagrams:Definitions   T1: Ch:3, Pg. No:140-141 

14.  1 Examples on venn diagrams  

15.  1 Tutorial-IV  

16.  1 Problems on venn diagrams T1: Ch: 3; Pg. No:142-150 

17.  1 Problems on finite sets R7: Ch: 2; Pg. No :3.7-3.8 

18.  1 Tutorial-V  

19.  1 Theorems on finite sets R7:Ch:2:Pg.No:3.8-3.9 

20.  1 Infinite sets-Definition   R7:Ch:2;Pg.No:3.10-3.11 

21.  1 Problems on infinite sets R7:Ch:2;Pg.No:3.10-3.11 

22.  1 Theorems on Infinite sets R7:Ch:2;Pg.No:3.11-3.12 

23.  1 Tutorial- VI  

24.  1 Recapitulation and discussion of possible 

questions 

 

Total  24 hrs   

 

TEXT BOOK 

 

T1. Grimaldi R.P.,(2004). Discrete Mathematics and Combinatorial Mathematics, Pearson  

Education, Pvt.Ltd, Singapore. 

 

REFERENCES 

R3. Kamke E., (2010).Theory of Sets, Dover Publishers, New York. 

 

      R7.Sundaresan,V.,Ganapathy Subramaniam,K.S and Ganesan.K.(2009).  Discrete   

mathematics,AR Publications,India. 
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UNIT-IV 

1.  1 Finite sets R6:Ch:1; Pg,No:9-11 

2.  1 Problems on finite sets R6:Ch:1; Pg,No:9-11 

3.  1 Counting Principle R6:Ch:1; Pg,No:16-17 

4.  1 Tutorial-I  

5.  1 Empty set and   R5:Ch:1; Pg,No:6-7 

6.  1 Property on empty set R5:Ch:1; Pg,No:6-7 

7.  1 Tutorial-II  

8.  1 Standard set operations R5:Ch:1; Pg,No:7-8 

9.  1 Classes of sets R5:Ch:1; Pg.No:8-9 

10.  1 Tutorial-III  

11.  1 Sets-examples R5:Ch:1; Pg.No:8-9 

12.  1 Power set of a set R2:Ch:5; Pg,No:19-21 

13.  1 Problems on power set R2:Ch:5; Pg,No:19-21 

14.  1 Tutorial-IV  

15.  1 Difference of two sets R5:Ch:1; Pg,No:9-10 

16.  1 Symmetric difference of  two  sets R5:Ch:1; Pg,No:10-11 

17.  1 Tutorial-V  

18.  1 Set identities R5:Ch:1;Pg.No:11-12 

19.  1 Generalized union   R2:Ch:4;Pg.No:12-16 

20.  1 Problems on generalized union R2:Ch:4;Pg.No:12-16 

21.  1 Theorems on union R2:Ch:4;Pg.No:12-16 

22.  1 Intersections R2:Ch:4;Pg.No:12-16 

23.  1 Tutorial-VI  

24.  1 Recapitulation and discussion of possible 

questions 

 

Total  24hrs   

 

REFERENCES 

R2. Halmos P.R.,(2011). Naive Set Theory, Springer Pvt Ltd, New Delhi. 

      R5.Chowdhary.K.R.,(2012). Fundamentals of Discrete mathematical structures,second edition,         

phi learning pvt ltd,New Delhi.        

       R6.Seymour Lipschutz,Marc Lars Lipson.,(2001).Theory and problems of discrete     

mathematics,Tata Mc Graw-Hill publishing company ltd,New Delhi. 

  

UNIT-V 

1.  1 Relation R4:Ch:3.1; Pg.No:72-73 

2.  1 Examples on relation R4:Ch:3.1; Pg.No:72-73 

3.  1 Product set R4:Ch:3.1; Pg.No:73-74 

4.  1 Tutorial-I  

5.  1 Composition of relation and types of 

relations 

R4:Ch:3.1; 

Pg.No:79,80,92,93 

6.  1 Types of  relations R4:Pg.No:79,80,92,93 
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7.  1 Tutorial-II  

8.  1 Partial order relations R1:Ch:3; Pg.No:78-79 

9.  1 Equivalence relations: Definitions and 

problems  

R4:Ch:3;Pg.No:82-83 

10.  1 Tutorial-III  

11.  1 Equivalence relations     R4:Ch:3; Pg.No:83-84 

12.  1 Congruence  modulo relation R4:Ch:3; Pg.No:83-84 

13.  1 Examples of congruence modulo relation R4:Ch:3; Pg.No:83-84 

14.  1 Tutorial-IV  

15.  1  Theorem on reduced groups R4:Ch:3; Pg.No:84-85 

16.  1 Partial ordering relations: problems R4:Ch:3; Pg.No:80-81 

17.  1 Tutorial-V  

18.  1 Partial ordering relations: Theorems R4:Ch:3;Pg.No:81-82 

19.  1 n-ary relations R7:Ch:1:Pg.No:20-22 

20.  1 Tutorial –VI  

21.  1 Recapitulation and discussion of important 

questions  

 

22.  1 Discuss on Previous ESE question papers  

23.  1 Discuss on Previous ESE question papers  

24.  1 Discuss on Previous ESE question papers  

Total  24 hrs   

 

  . 

 

REFERENCES 

 

R1. Bourbaki .N(2004),Theory of sets, Springer Pvt Ltd, Paris. 

 

 R4.Sharma.J.K.,(2015).Discrete mathematics,Tata Mc Graw-Hill publishing company ltd, New                    

Delhi.  

 

 R7.Sundaresan,V.,Ganapathy Subramaniam,K.S and Ganesan.K.(2009).Discrete     

mathematics,AR Publications,India. 
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DEPARTMENT OF MATHEMATICS 
 
 

 

 
Subject : Logic and sets 

 

 
SEMESTER: I 

 

 
L  T   P   C 

SUBJECT CODE: 17MMU103 CLASS : I B.Sc Mathematics 6   2 0 6 

 
 

UNIT I 
Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, 
biconditional propositions, converse, contra positive and inverse propositions and precedence of 

logical operators. 
 

 
 

TEXT BOOK 

 
1.   Grimaldi R.P.,(2004). Discrete Mathematics and Combinatorial Mathematics, Pearson 

Education, Pvt.Ltd, Singapore. 
 

 

REFERENCES 

 
1.   Bourbaki .N(2004),Theory of sets, Springer Pvt Ltd, Paris. 

2.   Halmos P.R.,(2011). Naive Set Theory, Springer Pvt Ltd, New Delhi. 

3.   Kamke E., (2010).Theory of Sets, Dover Publishers, New York. 

4.   Sharma.J.K.,(2015).Discrete mathematics,Tata Mc Graw-Hill publishing company ltd, 

New Delhi. 
 

5.   Chowdhary.K.R.,(2012). Fundamentals of Discrete mathematical structures,second 

edition, phi learning pvt ltd,New Delhi. 

6.   Seymour Lipschutz,Marc Lars Lipson.,(2001).Theory and problems of 

discrete  mathematics,Tata Mc Graw-Hill publishing company ltd,New Delhi. 

7.   Sundaresan,V.,Ganapathy Subramaniam,K.S and Ganesan.K.(2009). 
 

Discrete   mathematics,AR Publications,India. 
 

8.    Richard Kohar(2016),Basic Discrete Mathematics,Logic set theory and probability 
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Possible Questions 
 

Part-B(5x2=10 marks) 
 

1.Define proposition with example 

2.Define atomic statement with example 

3.Define modular statement with example 

4.Define truth table. 

5.Define derived connectives 

6.Define Conjunction 

7.Define Disjunction 

8.Give two examples of  converse . 

9.Explain Contrapositive. 
 
 
 
 
 
 
 

Part-C (5x6=30 marks) 
 

1. Construct the truth table for (P→(Q→R)) → ((P→Q) → (P→R)) 

2.  State the converse, contra positive and inverse of  the following 

i)The apple trees will bloom if it stays warm for a week. 

ii) It snows whenever the wind blows from the north-east. 

3.  Write the following statement in symbolic form i)You can access the internet from campus 

only if you are a computer science major or you are not a freshman, ii)You cannot ride 

the  roller coaster if you are under 4 feet tall unless you are older than 16 years old. 

4.  Construct the truth table for (P →( Q→S))  (RV P) 

5.  Construct the truth table for ((P→Q)→R)→S 

6.  State the converse, contra positive and inverse of  the following 

i)If you watch television your mind will decay. 

ii) School is closed if more than 2 feet of snow falls. 

7.  Construct the truth table for   (Q→R)  R  (P→Q) 

8.  State the converse, contra positive and inverse of  the following 

i)If today is Thursday, then I have a test today. 

ii) I come to class whenever there is going to be a quiz. 

9.  Construct the truth table for (P↔Q)↔(R↔S) 

10. State the converse, contra positive and inverse of  the following 

i)If it snows today, I will ski tomorrow. 

ii) A positive integer is a prime only if it has no divisors other than 1 and itself 
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Subject: Logic and Sets                                                                         

Class:I B.Sc Mathematics

Questions choice 1 choice 2 choice 3 choice 4 answer

The equivalent statement for P and not P F T F and T none F

The implications of P P not P P or Q P and Q P or Q

The implications of P and Q is P Q P or Q not P P

P or P "equivalent to" P is called as idempotent associative closure identity idempotent 

not(not P) "equivalent to" P  is called as Involution Absorption Associative none Involution

If P then Q is "equivalent to" not P or Q not P and Q P and Q P or Q not P or Q 

A statement which has true as the truth value                                                                                                

for all the assignments is called
contradiction tautology

either 

tautology or 

contradictio

none tautology

A statement which has false as the truth                                                                                                               

value for all the assignments is called
contradiction tautology

either 

tautology or 

contradictio

none contradiction

If P has T and Q has F as their truth value,                                                                                                                          

then P or Q has ----- as truth value
T F 0 none T

 A biconditional statement P if and only if Q                                                                                                           

is " equivalent to " 

(Not P or Q) and 

(not Q or P)

(Not P or Q) 

or (not Q or 

P)

( P or Q) and 

(not Q or P)

(Not P or Q) 

and ( Q or P)

(Not P or Q) 

and (not Q or 

P)

 A biconditional statement notP if and only if                                                                                                     

Q is " equivalent to " 

(Not P or Q) and 

(not Q or P)

(Not P or Q) 

or (not Q or 

P)

( P or Q) and 

(not Q or P)

(Not P or Q) 

and ( Q or P)

( P or Q) and 

(not Q or P)

 A biconditional statement P if and only if not Q                                                                                                  

is " equivalent to " 

(Not P or Q) and 

(not Q or P)

(Not P or Q) 

or (not Q or 

P)

( P or Q) and 

(not Q or P)

(Not P or Q) 

and ( Q or P)

(Not P or Q) 

and ( Q or P)

Unit I      

Propositions                                                                                                                                                                                                                                                 

Part A (20x1=20 Marks)                                                                                                                                                                                                               

(Question Nos. 1 to 20 Online Examinations)

Possible Questions                               

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021                                                                                                                                                                                        

Semester:I

Subject Code: 17MMU103



 A biconditional statement notP if and only if                                                                                                                    

not Q is " equivalent to " 

(Not P or Q) and 

(not Q or P)

( P or Q) and ( 

Q or P)

( P or Q) and 

(not Q or P)

(Not P or Q) 

and ( Q or P)

( P or Q) and 

( Q or P)

if R: Mark is rich and H: Mark is happy , then                                                                                                                                                                                                                                                                          

Mark is poor or he is both rich and unhappy can                                                                                                           

be symbolically written as 

not R or (R and not 

H)

not R or (R or 

not H)

not R and (R 

and not H)

 R or (R and 

not H)

not R or (R 

and not H)

In the statement If P then Q the antecedent is P Q notP not Q P

In the statement If P then Q the consequent  is P Q notP not Q Q

Out of the following which is the well formed formula P and Q (P or Q if P then Q)
if (if P then Q) 

then Q)
P and Q

Elementary products are P and not P P P andQ not P all of these

Elementary sum are P Not Q P or Q not P or P all of these

pcnf contains 
product of 

maxterms

sum of max 

terms 

sum of 

minterms

product of 

min terms

product of 

maxterms

pdnf contains 
product of 

maxterms

sum of max 

terms 

sum of 

minterms

product of 

min terms

sum of 

minterms

dual of a statement is obtained by replacing                                                                                                                                     

"and" , "or" , "not" by 
"or", "and", "not"

"or", "and", 

"and"

"and", "or", 

"not"

"or", "or", 

"not"

"or", "and", 

"not"

dual of the statement Pand Q is P or Q Q and P Q and not P none P or Q 

dual of "if P then Q" is not P and Q P and Q P or Q Not P or Q not P and Q

P "exclusive or" Q is the negation of if P then Q if Q then P
P if and only 

if Q

Q if and only 

if P

P if and only 

if Q

The other name of tautology is identically true
identically 

false

universally 

false
false

identically 

true

The other name of contradiction is identically true
identically 

false

universally 

true
true

identically 

false

The converse of "if P then Q" is " If Q then P" 
" if not P then 

not Q"

"if not Q 

then not P"
all of these " If Q then P" 

The contra positive  of "if P then Q" is " If Q then P" 
" if not P then 

not Q"

"if not Q 

then not P"
all of these 

"if not Q 

then not P"



The inverse of "if P then Q" is " If Q then P" 
" if not P then 

not Q"

"if not Q 

then not P"
all of these 

" if not P 

then not Q"

A statement A is said to tautologically imply                                                                                         

a statement B if an donly if " if A then B "is a 
tautology contradiction false none tautology

P and (P or Q) is P Q P or Q P and Q P

P " exclusive or" Q is true if both P, Q                                                                                     

has ---- truth values
same different none all of these different

A conditional statement and its contrapositive                                                                                                    

are ………………… A tautulogy

a 

contradictio

n

Logically 

equivalent
an 

assumption

Logically 

equivalent

A rule of inference is a form of argument that is 

……………. valid

a 

contradictio

n

an 

assumption A tautulogy
valid

An or statement is false if, and only if, both                                                                                    

components are ……………….. TRUE FALSE not true

neither true 

nor false FALSE

Two statement forms are logically equivalent                                                                                                     
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UNIT 2 
 

Logical Equivalences  as  Tautologies 
 

The Idea, and   Definition,  of Logical Equivalence 
 

In  lay  terms,  two statements are  logically  equivalent  when  they say  the  same  thing,  albeit 

perhaps  in different ways.   To  a mathematician, two statements are  called  logically equivalent 

when they will always be simultaneously true  or simultaneously false.  To see that  these  notions 

are compatible,  consider  an example  of a man  named  John N. Smith  who lives alone at  12345 

North Fictional Avenue in Miami, Florida,  and has a United States Social Security number  987- 
65-4325.14    Of course there  should  be exactly  one person  with  a given Social Security  number. 

Hence, when we ask any person  the questions, “are  you John N. Smith of 12345 North Fictional 

Avenue in Miami,  Florida?”  and  “is your  U.S. Social Security number  987-65-4325?” we would 

be in essence asking the same question in both cases.  Indeed,  the answers to these two questions 

would always be both yes, or both no, so the statements “you are John N. Smith of 12345 North 

Fictional  Avenue  in Miami,  Florida,”  and  “your  U.S. Social Security  number  is 987-65-4325,” 

are logically equivalent.  The notation we would use is the following: 
 

you are John N. Smith of 12345 North Fictional Avenue in Miami, Florida 

⇐⇒  your U.S. Social Security number  is 987-65-4325. 
 

The motivation for the notation “ ⇐⇒  ” will be explained  shortly. 

On a more abstract note, consider the  statements ∼ (P  ∨ Q) and (∼ P ) ∧ (∼ Q).  Below we 

compute both of these compound  statements’ truth values in one table: 

P     Q     P ∨ Q    ∼ (P ∨ Q)     ∼ P     ∼ Q    (∼ P ) ∧ (∼ Q) 

T T T F F F F 

T F T F F T F 

F T T F T F F 

F F F T T T T 

 

 

the same 

We see that  these  two  statements are both  true  or both  false, under  any of the  22  = 4 possible 

circumstances, those being the possible truth value combinations of the underlying,  independent 

component statements P  and Q.  Thus  the statements ∼ (P ∨ Q) and (∼ P ) ∧ (∼ Q) are indeed 

logically equivalent in the  sense of always having the  same truth value.  Having established this, 

we would write 

∼ (P ∨ Q)  ⇐⇒  (∼ P ) ∧ (∼ Q). 

Note that  in logic, this symbol “ ⇐⇒ ” is similar to the symbol “=”  in algebra  and elsewhere. 15
 

There  are a couple of ways it is read out loud, which we will consider momentarily.  For now we 

take the  occasion to list the formal definition of logical equivalence: 

Definition:    Given  n  independent s tateme nts   P  ,    · · · , Pn , and  two statements  R, S  which 

are  compound  statements  of the P1 , · · · , Pn ,  we say  that  R  and  S  are  logically equivalent, 
which we then  denote  R  ⇐⇒   S , if and only if their  truth  table columns have the same entries 

for each of the 2n  distinct  combinations of truth  values for the P1 , · · · , Pn .  When  R and S are 

logically equivalent,  we will also call R  ⇐⇒  S a valid equivalence.
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P     Q     P ∨ Q         (P     Q)     ∼ P     ∼ Q          P )    (∼ Q) 
←→[(∼ P ) ∧ (∼ Q)] 

T T T F F F F T 

T F T F F T F T 

F T T F T F F T 

F F F T T T T T 

 

 
 

 
Again, this is consistent with the idea that  to say statements R and S are logically equivalent 

is to say that, under  any circumstances, they are both  true  or both  false, so that  asking if R is 

true  is—functionally—exactly the  same as asking  if S is true.   (Recall  our example  of John  N. 

Smith’s Social Security number.) 

Note that  if two statements’ truth values always match, then connecting them with ←→ yields 
a tautology.  Indeed,  the bi-implication  yields T if the connected statements have the same truth 
value, and F otherwise.  Since two logically equivalent statements will have matching truth values 

in all cases, connecting with ←→  will always yield T, and we will have a tautology.  On the other 

hand,  if connecting two statements with ←→  forms a tautology, then the  connected statements 

must have always-matching truth values, and thus  be equivalent. This argument yields our first 

theorem:16
 

 

Theorem :   S uppose R and S  are   compound statements  of  P · · · , Pn .  Then  R and  S are 

logically equivalent  if and only if R ←→ S is a tautology. 
 

The  theorem above gives us the motivation  behind  the notation   ⇐⇒  .  Assuming  R and  S 

are compound  statements built  upon  component  statements P1 · · · , Pn , then 

R  ⇐⇒   S        means that         R ←→ S is a tautology.                           (1.1) 

To be clear, when we write R ←→ S we understand that  this might have truth value T or F, i.e., 
it might be true  or false.  However, when we write R  ⇐⇒   S, we mean  that  R ←→  S is always 
true  (i.e., a tautology), which partially explains  why we call R  ⇐⇒  S a valid equivalence. 17 

To prove R  ⇐⇒   S, we could (but  usually  will not)  construct R ←→  S, and show that  it is 
a tautology.  We do so below to prove 

∼ (P ∨ Q)  ⇐⇒  (∼ P ) ∧ (∼ Q) .
| 

 

 
z     }

R
| 

{z     }           | 
“R” 

 

 
{ 

{z 
“S ” 

} 
 

 
z 

}
S
|         { 

 

 

R←
}

→
| 

S                
{ 

[∼ (P ∨ Q)]

 
 
 
 
 
 
 

However,  our  preferred  method  will be as in  the  previous  truth table,  where  we simply  show 

that  the  truth  table  columns  for R  and  S  have  the  same  entries  at  each  horizontal  level,  i.e., 

for  each  truth value  combination  of the  component  statements.   That  approach   saves  space 

and  reinforces  our  original  notion of equivalence  (matching truth values).    However  it  is still 

important   to   understand   the   connection   between   ←→    and       ⇐⇒    ,  as  given   in  (1.1).
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Equivalences  for  Negations 
 

Much of the intuition achieved from studying symbolic logic comes from examining various logical 

equivalences.   Indeed  we will make much  use of these,  for the  theorems  we use throughout  the 

text  are  often  stated  in  one form,  and  then  used  in a different, but  logically equivalent form. 

When  we prove a theorem, we may prove even a third,  logically equivalent form. 

The first logical equivalences we will look at here are the negations of the our basic operations. 

We already looked at the negations of ∼ P and P ∨ Q.  Below we also look at negations of P ∧ Q, 

P  −→  Q and  P  ←→  Q.  Historically,  (1.3)  and  (1.4)  below are called  De Morgan’s  Laws, but 
each basic negation is important.  We now list these negations. 

 

∼ (∼ P )  ⇐⇒  P                                                                              (1.2) 

∼ (P ∨ Q)  ⇐⇒  (∼ P ) ∧ (∼ Q)                                                       (1.3) 

∼ (P ∧ Q)  ⇐⇒  (∼ P ) ∨ (∼ Q)                                                       (1.4) 

∼ (P  −→ Q)  ⇐⇒  P ∧ (∼ Q)                                                              (1.5) 

∼ (P  ←→  Q)  ⇐⇒  [P ∧ (∼ Q)] ∨ [Q ∧ (∼ P )].                                   (1.6) 
 

Fortunately, with a well chosen perspective these are intuitive.  Recall that  any statement R can 

also be read “R is true,”  while the  negation asserts the original statement is false. For  example 

∼ R can be read as the statement “R is false,” or a similar  wording (such as “it is not the case 
that  R”).  Similarly the statement ∼ (P ∨ Q) is the same as “ ‘P  or Q’ is false.”  With that  it is 

not  difficult  to see that  for ∼ (P ∨ Q) to be true  requires  both  that  P  be false and Q be false. 
For a specific example,  consider our earlier P  and Q: 

 
P :    I will eat pizza 

Q :   I will drink  soda 

P ∨ Q :   I will eat pizza or I will drink  soda 

∼ (P ∨ Q) :   It is not the case that  (either) I will eat pizza or I will drink soda 

(∼ P ) ∧ (∼ Q) :   It is not the  case that  I will eat pizza, and it is not the  case that  I 

will drink  soda 
 

That  these last two statements essentially have the  same content, as stated  in (1.3),  should  be 

intuitive.  An actual proof of (1.3) is best given by truth tables, and can be found on page 15. 

Next  we consider  (1.5).  This  states that  ∼ (P  −→ Q)   ⇐⇒   P ∧ (∼ Q).  Now we can  read 
∼ (P  −→  Q)  as “it  is not  the  case that  P  −→  Q,”  or “P  −→  Q is false.”   Recall  that  there 
was only one case for which we considered  P  −→ Q to be false, which was the case that  P  was 
true  but  Q was false, which itself can be translated to P ∧ (∼ Q).  For  our earlier  example,  the 
negation  of the  statement “if I eat  pizza  then  I will drink  soda”  is the  statement “I  will eat 

pizza but (and)  I will not  drink soda.”  While this discussion is correct and may be intuitive, the 

actual proof (1.5) is by truth table: 

 
P     Q     P → Q    ∼ (P  → Q)     P     ∼ Q    P ∧ (∼ Q) 

T T T F T F F 

T F F T T T T 

F T T F T F F 

F F T F F T F 

 
the same
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1.2.3 

1.2.2 

 

 
 
 

We leave the proof of (1.6) by truth tables to the exercises.  Recall that  P  ←→  Q states that 
we have P  true if and only if we also have Q true,  which we further translated as the idea that  we 

cannot have P  true  without Q true,  and cannot have Q true  without P  true.  Now ∼ (P  ←→  Q) 

is the statement that  P  ←→  Q is false, which means that  P  is true  and Q false, or Q is true  and 

P  false, which taken together form the statement [P ∧ (∼ Q)] ∨ [Q ∧ (∼ P )], as reflected in (1.6) 

above.  For  our example P  and  Q from before, P  ←→  Q is the  statement “I will at pizza if and 
only if I will drink  soda,” the  negation of which is “I will eat pizza and  not drink  soda, or I will 
drink  soda and not eat pizza.” 

Another intuitive  way to look at these  negations is to consider  the  question  of exactly when 

is someone uttering the original statement lying?  For  instance, if someone states P ∧ Q (or some 
English  equivalent), when are they lying?  Since they stated  “P  and  Q,” it is not difficult to see 
they are lying exactly when  at least  one of the  statements P, Q is false, i.e., when P  is false or 

Q is false,18   i.e., when we can truthfully state  (∼ P ) ∨ (∼ Q).  That  is the  kind of thinking  one 

should employ when examining  (1.4), that  is ∼ (P ∧ Q)  ⇐⇒  (∼ P ) ∨ (∼ Q), intuitively. 

 
Equivalent  Forms of the Implication 

 

In  this  subsection  we examine  two  statements which  are  equivalent  to  P  −→  Q.   The  first  is 

more important conceptually, and  the  second is more important computationally.  We list them 

both now before contemplating them further: 
 

P −→ Q  ⇐⇒  (∼ Q) −→ (∼ P )                                               (1.7) 

P −→ Q  ⇐⇒  (∼ P ) ∨ Q.                                                         (1.8) 
 

We will combine  the  proofs into  one truth table,  where we compute  P  −→  Q, followed in turn 
by (∼ Q) −→ (∼ P ) and (∼ P ) ∨ Q. 

 

 

P     Q     P → Q    ∼ Q    ∼ P     (∼ Q) → (∼ P )     ∼ P     Q     (∼ P ) ∨ Q 

T T T F F T F T T 

T F F T F F F F F 

F T T F T T T T T 

F F T T T T T F T 
 

 

the same 
 

 
 
 

The form (1.7) is important enough  that  it warrants a name: 
 

Definition             Given  any implication  P  −→  Q,  we call the (logically equivalent)  statement 

(∼ Q) −→ (∼ P ) its contrapositive (and  vice-versa,  see below). 
 

In fact, note that  the contrapositive of (∼ Q) −→ (∼ P ) would be [∼ (∼ P )] −→ [∼ (∼ Q)], i.e., 

P −→ Q, so P  −→ Q and (∼ Q) −→ (∼ P ) are contrapositives of each other. 

We  have  proved  that  P  −→  Q,  its contrapositive  (∼  Q)  −→  (∼  P ),  and  the  other  form 
(∼ P ) ∨ Q are equivalent  using the  truth  table  above,  but  developing  the  intuition  that  these 
should be equivalent can require some effort.  Some examples  can help to clarify this. 
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1.2.4 

 
 

P  : I will eat pizza 

Q : I will drink soda 

P  −→ Q : If I eat pizza, then I will drink  soda 

(∼ Q) −→ (∼ P ) : If I do not drink  soda, then I will not eat pizza 

(∼ P ) ∨ Q : I will not eat pizza, or I will drink  soda. 
 

Perhaps more intuition can be found when Q is a more natural consequence of P . Consider  the 

following P, Q combination which might be used by parents communicating to their children. 
 

P : you leave your room messy 

Q : you get spanked 

P  −→ Q : if you leave your room messy, then  you get spanked 

(∼ Q) −→ (∼ P ) : if you do not get spanked,  then  you do (did)  not leave your room messy 

(∼ P ) ∨ Q : you do not leave your room messy, or you get spanked. 
 

A mathematical  example  could look like the  following (assuming  x is a “real  number,”  as dis- 

cussed later in this text): 
 

P : x = 10 

Q : x2  = 100 

P  −→ Q : if x = 10, then x2  = 100 

(∼ Q) −→ (∼ P ) : if x2  = 100,  then x = 10 

(∼ P ) ∨ Q : x = 10 or x2  = 100. 
 

The  contrapositive is very important  because  many  theorems  are given as implications,  but 

are often used in their logically equivalent, contrapositive forms.  However, it is equally important 

to avoid  confusing P  −→  Q with  either  of the  statements P  ←→  Q or Q −→  P .  For  instance, 

in  the  second  example  above,  the  child  may  get spanked  without leaving  the  room  messy,  as 

there  are  quite  possibly  other  infractions  which  would result  in a spanking.   Thus  leaving  the 

room messy does not follow from being spanked,  and  leaving the room messy is not necessarily 

connected with the spanking  by an “if and only if.”  In the last, algebraic  example above, all the 

forms of the statement are true, but x2  = 100 does not imply x = 10. Indeed,  it is possible that 

x = −10.  In fact, the correct bi-implication is x 2  = 100 ←→  [(x = 10) ∨ (x = −10)]. 
 

 

Other  Valid Equivalences 
 

While negations and equivalent alternatives to the implication are arguably  the most important 

of our valid logical equivalences,  there are several others.  Some are rather  trivial, such as 
 

P ∧ P   ⇐⇒  P   ⇐⇒  P ∨ P.                                                   (1.9) 

Also rather  easy to see are the “commutativities” of ∧, ∨ and ←→: 

P ∧ Q  ⇐⇒  Q ∧ P,                 P ∨ Q  ⇐⇒   Q ∨ P,                 P ←→  Q  ⇐⇒  Q ←→  P.      (1.10) 

There  are also associative rules.  The latter  was in fact a topic in the previous  exercises: 

P ∧ (Q ∧ R)  ⇐⇒  (P ∧ Q) ∧ R                                              (1.11) 

P ∨ (Q ∨ R)  ⇐⇒  (P ∨ Q) ∨ R.                                             (1.12)
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P Q P ←→  Q P −→ Q Q −→ P (P  −→ Q) ∧ 

T T T T T  T 

T F F F T  F 

F T F T F  F 

F F T T T  T 

 

 
 

However,  it  is not  so clear  when  we mix together  ∨ and  ∧.  In fact,  these  “distribute  over 
each other” in the following ways: 

 

P ∧ (Q ∨ R)  ⇐⇒  (P ∧ Q) ∨ (P ∧ R),                                        (1.13) 

P ∨ (Q ∧ R)  ⇐⇒  (P ∨ Q) ∧ (P ∨ R).                                        (1.14) 
 

We prove the first of these distributive rules below, and leave the  other for the exercises. 

P     Q     R Q ∨ R P ∧ (Q ∨ R) P ∧ Q P ∧ R (P ∧ Q) ∨ (P ∧ R)

T 

T 

T 

T 

T 

F 

T 

T 

T 

T 

T 

T 

T 

F 

T 

T 

T F T T T F T T 

T F F F F F F F 

F T T T F F F F 

F T F T F F F F 

F F T T F F F F 

F F F F F F F F 

 

 

the same 
 

To show that  this is reasonable,  consider the following: 
 

P : I will eat pizza; Q 

: I will drink cola; 

R : I will drink  lemon-lime soda. 

Then  our logically equivalent statements become 

P ∧ (Q ∨ R) : I will eat pizza, and drink  cola or lemon-lime soda; 

(P  ∧ Q) ∨ (P ∧ R) : I will eat pizza and drink  cola, or 

I will eat pizza and drink lemon-lime soda. 
 

Table  1.3, page 22 gives these and some further valid equivalences.  It is important to be able 

to read  these  and,  through  reflection  and  the  exercises,  to be able  to see the  reasonableness  of 

each of these.  Each  can be proved  using truth tables. 

For instance we can prove that  P ←→ Q  ⇐⇒  (P  −→ Q) ∧ (Q −→ P ), justifying the choice 
of the double-arrow  symbol ←→: 

 

(Q −→ P ) 
 

 
 
 
 
 
 

the same 

 
This was discussed in Example  1.1.4 on page 7. 

For  another example  of such a proof, we next demonstrate the  following interesting equiva- 

lence:
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P −→ (Q ∧ R)  ⇐⇒  (P  −→ Q) ∧ (P  −→ R) 

P     Q     R Q ∧ R P  −→ (Q ∧ R) P −→ Q P  −→ R (P  −→ Q) ∧ (P  −→ R)

T 

T 

T 

T 

T 

F 

T 

F 

T 

F 

T 

T 

T 

F 

T 

F 

T F T F F F T F 

T F F F F F F F 

F T T T T T T T 

F T F F T T T T 

F F T F T T T T 

F F F F T T T T 

 

 

the same 
 

This should be somewhat intuitive:  if P is to imply Q ∧ R, that  should be the same as P implying 
Q and P  implying  R.  This equivalence  will be (1.33), page 22. According to (1.34) below it, we 

can replace ∧ with ∨ and get another valid equivalence. 

Still one must  be  careful  about  declaring  two statements to  be equivalent.   These  are  all 

ultimately intuitive,  but  intuition must be  informed.19    For  instance,  left  to  the  exercises  are 

some  valid  equivalences  which  may  seem  counter-intuitive.   These  are  in  fact  left  off of our 

Table  1.3 because  they  are somewhat  obscure,  but  we include  them  here to  illustrate  that  not 

all equivalences  are transparent. Consider 
 

(P ∨ Q) −→ R  ⇐⇒  (P  −→ R) ∧ (Q −→ R),                                  (1.15) 

(P ∧ Q) −→ R  ⇐⇒  (P  −→ R) ∨ (Q −→ R).                                  (1.16) 
 

Upon reflection one can see how these are reasonable.   For instance, we can look more closely at 

(1.15) with the following P, Q and R: 
 

P : I eat pizza, 

Q : I eat chicken, 

R : I drink  cola. 

 

Then  the left and right sides of (1.15) become 
 

(P ∨ Q) −→ R : If I eat pizza or chicken, then I drink  cola 

(P  −→ R) ∧ (Q −→ R) : If I eat pizza then I drink  cola, and if I eat chicken then I drink cola. 
 

In fact (1.16) is perhaps  more difficult to see. 

At the end of the chapter there will be an optional section for the reader interested in achieving 

a higher  level of symbolic  logic sophistication.   That  section  is devoted  to  finding and  proving 

valid equivalences (and  implications as seen in the next  section) without  relying on truth tables. 

The technique centers on using a small number  of established equivalences  to rewrite compound 

statements into alternative, equivalent forms.  With those techniques one can quickly prove (1.15) 

and (1.16), again without  truth tables.  It is akin to proving trigonometric identities, or the leap 

from memorizing  single-digit multiplication tables and  applying  them to several-digit problems. 
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P ∧ P   ⇐⇒  P   ⇐⇒  P ∨ P                                                (1.17) 

∼ (∼ P )  ⇐⇒   P                                                                      (1.18) 

∼ (P ∨ Q)  ⇐⇒  (∼ P ) ∧ (∼ Q)                                               (1.19) 

∼ (P ∧ Q)  ⇐⇒  (∼ P ) ∨ (∼ Q)                                               (1.20) 

∼ (P  −→ Q)  ⇐⇒   P ∧ (∼ Q)                                                       (1.21) 

∼ (P  ←→  Q)  ⇐⇒   [P ∧ (∼ Q)] ∨ [Q ∧ (∼ P )]                             (1.22) 

P ∨ Q  ⇐⇒   Q ∨ P                                                               (1.23) 

P ∧ Q  ⇐⇒   Q ∧ P                                                              (1.24) 

P ∨ (Q ∨ R)  ⇐⇒  (P ∨ Q) ∨ R                                                   (1.25) 

P ∧ (Q ∧ R)  ⇐⇒  (P ∧ Q) ∧ R                                                   (1.26) 

P ∧ (Q ∨ R)  ⇐⇒  (P ∧ Q) ∨ (P ∧ R)                                         (1.27) 

P ∨ (Q ∧ R)  ⇐⇒  (P ∨ Q) ∧ (P ∨ R)                                         (1.28) 

P −→ Q  ⇐⇒   (∼ P ) ∨ Q                                                      (1.29) 

P −→ Q  ⇐⇒   (∼ Q) −→ (∼ P )                                           (1.30) 

P −→ Q  ⇐⇒  ∼ [P ∧ (∼ Q)]                                                 (1.31) 

P  ←→  Q  ⇐⇒   (∼ P ) ←→ (∼ Q)                                           (1.32) 

P  −→ (Q ∧ R)  ⇐⇒   (P  −→ Q) ∧ (P  −→ R)                                 (1.33) 

P  −→ (Q ∨ R)  ⇐⇒  (P  −→ Q) ∨ (P  −→ R)                                (1.34) 

(P  −→ Q) ∧ (Q −→ P )  ⇐⇒  P ←→ Q                                                         (1.35) 

(P  −→ Q) ∧ (Q −→ R) ∧ (R −→ P )  ⇐⇒  (P  ←→ Q) ∧ (Q ←→  R) 

∧ (P  ←→ R)                                            (1.36) 
 
 

Table 1.3: Table  of common  valid  logical  equivalence. 
 

 
 

For a glance at the process, we can look at such a proof of the equivalence  of the contrapositive: 

P  −→  Q  ⇐⇒   (∼ Q) −→ (∼ P ).  To do so, we require  (1.29), that  P  −→  Q  ⇐⇒   (∼ P ) ∨ Q. 
The proof runs as follows: 

 
P −→ Q  ⇐⇒  (∼ P ) ∨ Q 

⇐⇒   Q ∨ (∼ P ) 

⇐⇒   [∼ (∼ Q)] ∨ (∼ P ) 

⇐⇒  (∼ Q) −→ (∼ P ). 

 
The  first  line  used  (1.29),  the  second  commutativity  (1.23),  the  third  that  Q   ⇐⇒  ∼ (∼  Q) 

(1.18), and the  fourth used (1.29) again  but with the part  of “P ” played  by (∼ Q) and the part 

of “Q”  played  by (∼ P ).   This  proof is not  much  more efficient  than  a truth table  proof,  but 

for (1.15) and (1.16) this  technique of proofs without  truth tables is much  faster.  However that 

technique assumes that  the more primitive equivalences used in the proof are valid, and those are 

ultimately proved  using truth tables.  The extra section which develops such techniques,  namely 

Section 1.6, is supplemental and not required reading for understanding sufficient symbolic logic 

to aid in developing  the  calculus.  For  that  we need only up through  Section  1.4.



Unit-II Equivalence and Quantifiers 2017 
Batch 

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE 

Page 10 / 23 

 

 

20 Technically  a circuit would  allow current to flow from a source,  through  components  and  back  to the  source. 

Here  we only  show part of the  possible  path.  We  will encounter  some  complete  circuits  later  in the  text. 

1.2.5 

 
 

 

Circuits and  Logic 
 

While  we will not  develop  this next  theory deeply,  it  is worthwhile to  consider  a short  

intro- duction.   The  idea  is that  we can  model  compound  logic statements with electrical 

switching circuits.20   When  current  is allowed to flow across a switch,  the  switch  is considered  

“on”  when the  statement it  represents  has  truth value  T  and  current  can  flow through  the  

switch,  and “off ” and  not  allowing current  to flow through  when the  truth  value is F. We can 

decide if the compound  circuit  is “on”  or “off ” based  upon  whether  or not  current  could flow 

from one end to the  other,  based  on whether  the  compound  statement has truth value T or F. 

The  analysis 

can be complicated if the switches are not necessarily independent (P  is “on” when ∼ P  is “off ” 
for instance), but this approach  is interesting nonetheless. 

For  example,  the statement P ∨ Q is represented by a parallel  circuit: 

 
P 

 
in                                                               out 

 
 

Q 
 

 
If either P  or Q is on (T),  then the current can flow from the  “in” side to the “out”  side of the 
circuit.  On the other hand,  we can represent P ∧ Q by a series circuit:

in                               P 

Q 

                                out

 
Of course P ∧ Q is only true  when both P  and Q are true,  and the circuit reflects this:  current 

can flow exactly when both “switches” P  and Q are “on.” 

It  is interesting  to  see diagrams  of some  equivalent  compound  statements,  illustrated  as 

circuits.  For  instance, (1.27), i.e., the distributive-type equivalence 

P ∧ (Q ∨ R)  ⇐⇒  (P ∧ Q) ∨ (P ∧ R) 
 

can be seen as the  equivalence  of the two cicruits below: 

 
Q 

in                    P                                                                            out 
 

 
R 

 

 
 

P                               Q 

 
in                                                                                                 out 

 
 

P                               R
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In both circuits,  we must have P  “on,”  and  also either Q or R for current to flow. Note that  in 

the  second circuit, P  is represented in two places, so it is either  “on” in both places,  or “off ” in 

both  places.  Situations  such as these  can complicate analyses  of switching  circuits  but  this  one 

is relatively simple. 

We can also represent negations of simple statements.  To represent ∼ P we simply put “∼ P ” 
into  the  circuit,  where it  is “on”  if ∼ P  is true,  i.e., if P  is false.  This  allows us to construct 
circuits for the implication by using (1.29), i.e., that  P  −→ Q  ⇐⇒  (∼ P ) ∨ Q: 

 

 

∼ P 

 
in                                                               out 

 
 

Q 
 
 

We see that  the  only time  the  circuit  does not  flow is when  P  is true  (∼ P  is false) and  Q is 

false, so this  matches  what  we know of when  P  −→  Q is false.  From  another  perspective,  if P 
is true,  then the top part  of the circuit won’t flow so Q must be true,  for the whole circuit to be 
“on,”  or “true.” 

When  negating a whole circuit  it  gets  even more complicated.  In fact,  it  is arguably  easier 

to look at the original circuit and simply note when current will not flow. For instance, we know 

∼ (P ∧ Q)  ⇐⇒  (∼ P ) ∨ (∼ Q), so we can construct P ∧ Q:

in                               P 

Q 

                                out

 

 

and note that  it is off exactly when either P  is off or Q is off. We then note that  that  is exactly 
when the circuit for (∼ P ) ∨ (∼ Q) is on. 

 

 

∼ P 

 
in                                                               out 

 

 

∼ Q 
 
 

There  are, in fact, electrical/mechanical means by which one can take a circuit and “negate” 

its truth value, for instance with relays or reverse-position switch levers, but  that  sub ject is more 

complicated than  we wish to pursue  here. 

It is interesting to consider P  ←→  Q as a circuit.  It will be “on” if P  and  Q are both “on” 
or both  “off,” and  the  circuit  will be “off ” if P  and  Q do not  match.  Such a circuit  is actually 

used commonly,  such as for a room with two light switches for the same light.  To construct such 

a circuit we note that 
 

P  ←→  Q  ⇐⇒  (P  −→ Q) ∧ (Q −→ P ) 

⇐⇒   [(∼ P ) ∨ Q] ∧ [(∼ Q) ∨ P ] 

We will use the last form to draw our diagram:
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∼ P                                                  ∼ Q 

 
in                                                                                                                        out 

 
 

Q                                                     P 
 
 

The  reader  is invited to  study the  above  diagram  to  be convinced  it  represents P  ←→  Q, 
perhaps  most  easily in the  sense that, “you  can  not  have  one (P  or Q)  without  the  other,  but 

you can  have  neither.”   While  the  above  diagram  does represent P  ←→  Q by the  more easily 

diagrammed  [(∼ P ) ∨ Q] ∧ [(∼ Q) ∨ P ], it also suggests  another  equivalence,  since the  circuits 
below seems to  be functionally  equvialent.   In  the  first,  we can  add  two  more wires to  replace 

the “center” wire, and also switch the ∼ Q and P , since (∼ Q) ∨ P  is the same as P ∨ (∼ Q): 
 

 

∼ P                                                  ∼ Q 

 
in                                                                                                                        out 

 
 

Q                                                     P 
 

 
∼ P                           ∼ Q 

 
in                                                                                                 out 

 
 

P                               Q 
 
 

This circuit represents [(∼ P ) ∧ (∼ Q)] ∨ [P ∧ Q], and so we have (as the reader  can check) 
 

P  ←→  Q  ⇐⇒  [(∼ P ) ∧ (∼ Q)] ∨ [P ∧ Q],                                    (1.37) 
 

which could be added to our previous Table 1.3, page 22 of valid equivalences.  It is also consistent 

with a more colloquial way of expressing P  ←→ Q, such as “neither or both.” 
Incidentally,  the  circuit  above  is used  in applications  where  we wish  to  have  two  switches 

within a room which can both change a light (or other device) from on to off or vice versa.  When 

switch P  is “on,”  switch Q can turn  the  circuit on or off by matching P  or being its negation. 

Similarly  when  P  is “off.”   Mechanically  this is accomplished  with “single pole, double  throw 

(SPDT)”  switches. 
 

in                      P 

Q 

                out

 
 

 
In the above, the switch P  is in the “up”  position when P  is ‘true, and “down”  when P  is false. 

Similarly with Q.
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2 

1.2.6 

1.2.3 

 
 
 

 
Because  there are many  possible “mechanical” diagrams  for switching circuits, reading  and 

writing such  circuits is its own skill.  However, for many  simpler  cases there is a relatively easy 

connection to our symbolic logic. 

 
The Statements T  and  F 

 

Just  as there  is a need for zero in addition,  we have use for a symbol  representing  a statement 

which is always true,  and for another symbol representing a statement which is always false.  For 

convenience,  we will make the following definitions: 
 

Definition              Let T  represent  any compound  statement  which is a tautology,  i.e.,  whose 

truth  value is always T.  Similarly,  let F represent  any compound  statement  which is a contra- 

diction, i.e.,  whose truth  value is always F. 
 

We will assume there is a universal T and a universal F , i.e., statements which are respectively 

true regardless of any other statements’ truth values, and false regardless of any other statements’

truth values.   In  doing so, we consider  any  tautology to  be logically equivalent  to 
contradiction similarly equivalent to F .21 

T , and  any

So, for any given P1 · · · , Pn , we have that  T  is exactly that  statement whose column  in the 

truth table consists entirely of T’s, and F is exactly that  statement whose column  in the  truth 

table consists entirely of F’s.  For  example,  we can write 
 

P ∨ (∼ P )  ⇐⇒  T ;                                                       (1.38) 

P ∧ (∼ P )  ⇐⇒  F .                                                        (1.39) 

These are easily seen by observing the truth  tables. 

P      ∼ P     P ∨ (∼ P )     P ∧ (∼ P ) 

T F T F 

F T T F 

We see that  P ∨ (∼ P ) is always true,  and P ∧ (∼ P ) is always false. Anything which is always 

true  we will dub  T , and  anything  which is always false we will call F .  In the  table  above,  the 

third  column  represents T , and the  last column  represents F . 
From  the definitions we can also eventually get the following. 

 

P ∨ T   ⇐⇒  T (1.40) 

P ∧ T   ⇐⇒   P (1.41) 

P ∨ F  ⇐⇒   P (1.42) 

P ∧ F  ⇐⇒  F . (1.43) 

1 In fact it is not difficult to see that all tautologies are logically  equivalent.  Consider  the  tautologies P ∨ (∼ P ), 

(P  −→  Q)  ←→ [(∼ Q) −→  (∼ P )], and  R −→  R.  A truth table for all three must contain independent component 
statements  P, Q, R,  and  the  abridged  version  of the  table  would  look like

 

P       Q      R P ∨ (∼ P ) (P  −→  Q) ←→ [(∼ Q) −→  (∼ P )] R −→  R

T T T T T T 
T T F T T T 

T F T T T T 

T F F T T T 

F T T T T T 
F T F T T T 

F F T T T T 

F F F T T T 

So when  all possible  underlying  independent component statements are  included,  we see the  truth  table columns 

of these  tautologies  are  indeed the  same  (all  T’s!).  Similar ly all contradictions are  equivalent.
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To  demonstrate  how one would prove  these,  we prove  here the  first  two,  (1.40)  and  (1.41), 

using a truth table.  Notice that  all entries for T  are simply T: 
 

P     T      P ∨ T     P ∧ T 

T  T          T            T 

F  T          T             F 

 

Equivalence  (1.40) is demonstrated  by the  equivalence  of the  second and  third  columns,  while 

(1.41) is shown by the equivalence of the first and fourth columns.  The others are left as exercises. 

These are also worth reflecting upon.  Consider  the equivalence P ∧ T   ⇐⇒  P . When we use 
∧ to connect P  to a statement which is always true,  then the truth  of the  compound  statement 
only depends  upon  the truth  of P . There  are similar explanations for the rest of (1.40)–(1.43). 

Some other interesting equivalences  involving these are the following: 
 

T −→ P   ⇐⇒  P                                                            (1.44) 

P −→ F  ⇐⇒ ∼ P.                                                        (1.45) 
 

We  leave the  proofs of these  for the  exercises.   These  are in fact  interesting  to  interpret.  The 
first  says that  if a true  statement implies P , that  is the  same as in fact having  P .  The  second 

says that  if P  implies a false statement, that  is the  same as having  ∼ P , i.e., as having  P  false. 

Both types of reasoning  are useful in mathematics and other disciplines. 

If a statement contains  only T  or F , then  in fact  that  statement itself  must be a tautology 
(T )  or  a  contradiction  (F ).   This  is because  there  is only  one possible  combination  of truth 

values.  For instance, consider the statement T −→ F , which is a contradiction.  One proof is in 

the table: 

T     F    T −→ F 

T     F            F 
 

Since the  component statement T  −→ F always has truth value F, it  is a contradiction.  Thus 

T  −→ F  ⇐⇒   F .
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45 “Dummy  variables”  are  also  used  to  describe  the  actions  of functions,  as in f (x)  = x2  + 1.  In  this  context, 

the  function  is considered  to be the  action of taking  an  input  number, squaring it,  and  adding  1.  The  x is only 
there  so we can  easily  trace  the  action  on an arbitrary input. We  will revisit  functions  later. 
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Quantifiers 
 

In this section we introduce quantifiers, which form the last class of logic symbols we will consider 

in this text.   To use quantifiers, we also need some notions and  notation from set theory.  This 

section introduces sets and  quantifiers to the  extent required  for our study of calculus here.  For 

the  interested  reader,  Section  1.5 will extend  this  introduction,  though  even  with  that  section 

we would be only just  beginng  to  delve into these topics if studying them for their own sakes. 

Fortunately what we need of these topics for our study of calculus is contained in this section. 

 
Sets 

 

Put  simply,  a set  is a collection  of ob jects,  which  are then  called  elements  or members  of the 

set.  We give sets names just  as we do variables  and statements. For an example of the notation, 

consider a set A defined by 

A = {2, 3, 5, 7, 11, 13, 17}. 
 

We usually  define a particular set  by describing  or listing  the  elements  between “curly  braces” 

{ } (so the reader  understands it is indeed a set we are discussing).  The defining of A above was 
accomplished  by a complete listing, but some sets are too large for that  to be possible, let alone 
practical.  As an alternative, the set A above can also be written 

 
A = {x | x is a prime number  less than  18}. 

 
The  above equation  is usually  read,  “A is the  set of all x such  that  x is a prime  number  less 

than  18.”  Here x is a “dummy  variable,”  used  only briefly to  describe  the  set.45   Sometimes  it 
is convenient to simply write 

 
A = {prime numbers  between 2 and  17, inclusive}. 

 
(Usually “inclusive”  is meant by default, so here we would include 2 and 17 as possible elements, 

if they also fit  the  rest  of the  description.)  Of course there  are often  several  ways of describing 

a list of items.  For  instance,  we can replace “between 2 and  17, inclusive”  with “less than  18,” 

as before. 

Often  an ellipsis “· · · ” is used  when a pattern should  be understood  from a partial listing. 
This  is particularly useful if a complete  listing is either  impractical  or impossible.  For  instance, 

the set B of integers from 1 to 100 could be written 
 

B = {1, 2, 3, · · · , 100}. 
 

To  note  that  an  ob ject  is in a set,  we use the  symbol  ∈.  For  instance  we may  write  5 ∈ B , 
read  “5 is an  element  of B.”   To indicate  concisely that  5, 6, 7 and  8 are in B,  we can  write 

5, 6, 7, 8 ∈ B . 
Just  as we have use for zero in addition,  we also define the  empty set, or null set as the  set 

which has no elements.  We denote that  set ∅.  Note that  x ∈ ∅ is always false, i.e., 
 

x ∈ ∅  ⇐⇒  F , 
 

because it is impossible to find any element of any kind inside ∅. We will revisit this set repeatedly 
in              the               optional,              more              advanced                            Section              1.5. 
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46 The  natural numbers are  also called  counting  numbers  in some  texts. 
47 For  a hint,  think  about  what  shoul d be  x = 1/0.  If we multiply both  sides  by  zero,  we might  think  we get 

0x = (1/0)   0, giving  0 = 1, which  is absurd.  In  fact  there  was no such  x,  so x = 1/0  → 0 = 1, which  is of the 
form P  −→  F which  we may  recall  to be equivalent  to ∼ P . 

48 It  should be  noted  that we have  to  choose  a  direction  to  call  “right,”  the  other  then  being  “left.”   It  will 
depend  upon  our  perspective.  Whe n we look at  the  Cartesian Plane, the  horizontal axis  measures  displacements 
as right (positive horizontal) or left (negative horizontal), and  the  vertical axis measures  displacements as upward 

(positive  vertical) or downward  (negative  vertical).  In that context  the  origin  is where  the  axes  intersect. 
 

Sangeetha,Department of Mathematics,KAHE 

1.4.1 

Figure 1.2: 

 
 
 
 
 
 
 

−2.5 
√ 

2               π               4.8

 
−5      −4      −3      −2      −1         0         1         2         3         4         5 

 
 

 
The  number  line  representing  the  set  R  of real  numbers,   with  a  few points 

plotted.  On  this graph, the  hash  marks  fall at  the  integers. 
 

 
 

Of course  for  calculus  we are  mostly  interested  in  sets  of numbers.    While  not  the  most 

important, the following three sets will occur from time to time in this text: 
 

Natural Numbers46 : 
 

N = {1, 2, 3, 4, · · · }, (1.67) 

Integers: Z = {· · · , −3, −2, −1, 0, 1, 2, 3, · · · }, (1.68) 

 

 
Rational Numbers: 

p     
(p, q ∈ Z) ∧ (q = 0)   .                         (1.69) 

Q = 
q

 

Here we again  use the  ellipsis to show that  the  established  pattern continues  forever  in each  of 

the cases N and Z.  The sets N,  Z and Q are examples  of infinite  sets, i.e., sets that  do not have 

a finite number  of elements.  The rational numbers  are those  which are ratios  of integers, except 

that  division by zero is not allowed, for reasons we will consider later.47
 

For  calculus  the  most  important set  is the  set R of real  numbers,  which cannot  be defined 

by a simple  listing  or  by a simple reference  to  N, Z or Q.   One  intuitive  way to  describe  the 

real numbers  is to  consider  the  horizontal  number  line,  where geometric  points  on the  line are 

represented  by their  displacements  (meaning  distances,  but  counted  as positive  if to  the  right 

and  negative  if to  the  left)  from  a  fixed point,  called  the  origin  in  this  context.   That  fixed 

point  is represented by the number  0, since the  fixed point  is a displacement  of zero units  from 

itself.   In  Figure  1.2 the  number  line representation  of R is shown.   Hash  marks  at  convenient 

intervals  are often  included.  In this  case, they are at the integers.  The arrowheads  indicate the 

number  line is an actual line and thus  infinite in both directions.  The points −2.5 and 4.8 on the 

graph  are not integers, but are rational n√umbers,  since they can be written −25/10 = −5/2, and
48/10 = 24/5,  respectively.  The  points 

irrational.  To summarize, 

2 and  π are real,  but  not  rational,  and  so are called

 

Definition              The  set of all real numbers  is the set R of all possible displacements, to the 

right  or  left,  of a fixed point  0 on  a line.  If the displacement  is to the right,  the number  is the 

positive distance  from 0. If to the left, the number  is the negative  of the distance  from 0.48
 

 

Thus 

R = {displacements from 0 on the number  line}.                              (1.70) 
 

This is not a rigorous definition, not least because “right” and “left” require a fixed perspective. 

Even worse, the definition is really a kind of “circular  reasoning,”  since we are effectively defining 
 

 
 

·



Unit-II Equivalence and Quantifiers 2017 
Batch 

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE 

Page 17 / 23 

 

 

49 This  is part of what makes  quantified  statements  interesting! 

1.4.2 

1.4.3 

 
 
 
 
 
 
 

 
the  number  line in terms of R, and  then  defining R in terms  of (displacements  on) the  number 

line.  We will give a more rigorous definition in Chapter 2 for the interested reader.  For now this 

should do, since the number  line is a simple and  intuitive image. 

 
Quantifiers 

 

The three quantifiers used by nearly every professional mathematician are as follow: 
 

universal quantifier:     ∀,      read,  “for  all,”  or “for  every;” 

existential  quantifier:     ∃,     read,  “there  exists;” 
uniqueness quantifier:      !,     read,  “unique.” 

 
The  first  two  are of equal  importance,  and  far more important than  the  third  which is usually 

only found after the second.  Quantified statements are usually found in forms such as: 
 

(∀x ∈ S )P (x),        i.e., for all x ∈ S, P (x)  is true; 

(∃x ∈ S )P (x),        i.e., there exists an x ∈ S such that  P (x) is true; 

(∃!x ∈ S )P (x),        i.e., there exists a unique  (exactly one) x ∈ S such that 

P (x)  is true. 
 

Here S  is a set  and  P (x)  is some statement about  x.   The  meanings  of these  quickly  become 

straightforward.  For  instance, consider 
 

(∀x ∈ R)(x + x = 2x) :  for all x ∈ R,  x + x = 2x; 

(∃x ∈ R)(x + 2 = 2) :  there exists (an)  x ∈ R such that  x + 2 = 2; 

(∃!x ∈ R)(x + 2 = 2) :  there exists a unique x ∈ R such that  x + 2 = 2. 
 

 
All three  quantified  statements above are true.   In fact  they  are true  under  any circumstances, 

and  can thus  be considered  tautologies.  Unlike unquantified  statements P, Q, R,  etc.,  from our 

first  three  sections,  a quantified  statement is either  true  always  or false always,  and  is thus,  for 

our purposes,  equivalent to either T or F . Each has to be analyzed  on its face, based upon known 

mathematical principles;  we do not have a brute-force mechanism  analogous  to truth  tables to 

analyze  these  s ystematically.49    For  a couple more short  examples,  consider  the  following cases 
from algebra  which should be clear enough: 

 

(∀x ∈ R)(0 · x = 0)  ⇐⇒  T ; 

(∃x ∈ R)(x2 = −1)  ⇐⇒  F . 

The optional advanced  section shows how we can still find equivalent or implied statements from 

quantified statements in many circumstances. 

 
Statements  with  Multiple  Quantifiers 

 

Many  of the  interesting statements in  mathematics contain more  than  one quantifier.   To  il- 

lustrate the  mechanics  of multiply quantified statements, we will first  turn  to  a more worldly 

setting.  Consider  the following sets: 
 

M = {men}, 

W = {women}.
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50 Note  that this  is of the  form  (  m  ∈ M )(   w ∈ W )P (m, w),  that is,  the  statement P  says  something  about 

both  m and  w.  We will avoid  a protracted  discussion  of the  difference between  statements  regarding  one variable 

ob ject—as  in  P (x)  from  our  previous  discussion—and statements  which  involve  more  than  one  as  in  P (m,  w) 

here.   Statements  of multiple (variable)  quantities  will recur  in subsequent  exa mples. 
51 At  times it  seems appropriate  to translate “  ” as “for all,”  and  at  other  times it  seems  better to translate it 

as “for  every.”  Both  mean  the  same. 
52 We  do not  pretend  to know  the  truth  values  of either (1.71)  or (1.72). 

 
 
 
 
 
 
 

 
In other words, M is the set of all men, and W the set of all women.  Consider  the statement50

 

(∀m ∈ M )(∃w ∈ W )[w loves m].                                             (1.71) 

Set to English,  (1.71) could be written, “for every man there exists a woman who loves him.”51
 

So if (1.71) is true,  we can  in principle  arbitrarily  choose a man  m,  and  then  know that  there 

is a woman  w who loves him.  It is important that  the  man  m was quantified  first.  A common 

syntax  that  would be used by a logician or mathematician  would be to say here that, once our 

choice of a man is fixed, we can in principle find a woman who loves him.  Note that  (1.71) allows 

that  different  men may need  different  women to love them,  and  also that  a given man  may be 

loved by more than  (but  not less than)  one woman. 

Alternatively, consider the  statement 

(∃w ∈ W )(∀m ∈ M )[w loves m].                                             (1.72) 

A reasonable  English  interpretation  would  be,  “there  exists  a  woman  who loves every man.” 

Granted  that  is a summary,   for the  word-for-word  English  would read  more like, “there  exists 

a  woman  such  that, for  every  man,  she loves him.”   This  says  something very  different  from 

(1.71),  because  that  earlier  statement does not  assert  that  we can  find a woman  who, herself, 

loves every man, but  that  for each man  there is a woman who loves him.52
 

We can also consider the  statement 

(∀m ∈ M )(∀w ∈ W )[w loves m].                                             (1.73) 

This can be read, “for every man and every woman, the woman loves the man.”  In other words, 

every man is loved by every woman.  In this case we can reverse the  order  of quantification: 

(∀w ∈ W )(∀m ∈ M )[w loves m].                                             (1.74) 

In fact,  if the  two  quantifiers  are the  same type—both  universal  or both  existential—then  the 

order  does not matter. Thus 
 

(∀m ∈ M )(∀w ∈ W )[w loves m]  ⇐⇒  (∀w ∈ W )(∀m ∈ M )[w loves m], 

(∃m ∈ M )(∃w ∈ W )[w loves m]  ⇐⇒  (∃w ∈ W )(∃m ∈ M )[w loves m]. 
 

In  both  representations  in the  existential  statements,  we are stating  that  there  is at  least  one 

man  and  one woman  such that  she loves him.  In fact that  above equivalence  is also valid if we 

replace  ∃ with ∃!, though it  would  mean  then that  there is exactly one man  and  exactly one 

woman  such  that  the  woman  loves the  man,  but  we will not  delve too  deeply  into  uniqueness 

here. 

Note  that  in cases where the  sets  are the  same, we can combine  two similar  quantifications 

into one, as in 
 

(∀x ∈ R)(∀y ∈ R)[x + y = y + x]  ⇐⇒   (∀x, y ∈ R)[x + y = y + x].                (1.75) 

Similarly with existence. 

∀                         ∃ 
 

 
 

∀
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1.4.4 

1.4.2 

54 

 

 
 
 
 
 
 
 
 

However, we repeat the point at the beginning of the subsection, which is that  the order does 

matter if the types of quantification are different. 

For  another, short example which is algebraic  in nature, consider 

(∀x ∈ R)(∃K  ∈ R)(x  = 2K ).                (True.)                              (1.76) 

This  is read,  “for every x ∈ R, there  exists  K  ∈ R such  that  x = 2K .”  That  K  = x/2  exists 

(and  is actually unique)  makes this true,  while it would be false if we were to reverse the  order 

of quantification: 

(∃K ∈ R)(∀x ∈ R)(x  = 2K ).                (False.)                                  (1.77) 

Statement (1.77) claims (erroneously) that  there exists K  ∈ R so that, for every x ∈ R, x = 2K . 

That  is impossible,  because no value of K  is half of every real number  x.  For  example the  value 

of K  which works for x = 4 is not the same as the value of K  which works for x = 100. 

 
Detour:  Uniqueness as  an  Independent  Concept 

 

We will have occasional statements in the text  which include uniqueness.   However, most of those 

will not require  us to rewrite the  statements in ways which require  actual manipulation of the 

uniqueness quantifier.  Still, it is worth noting a couple of interesting points about this quantifier. 

First  we note that  uniqueness  can be formulated as a separate concept  from existence, inter- 

estingly instead requiring  the universal  quantifier. 
 

Definition              Uniqueness is the notion  that if x1 , x2  ∈ S satisfy the same particular state- 

ment  P (  ),  then  they must  in  fact  be the  same  object.   That  is,  if x1 , x2   ∈ S  and  P (x1 )  and 

P (x2 ) are  true,  then  x1  = x2 .  This  may or may not  be true,  depending  upon  the set S and the 

statement  P ( ). 
 

Note that  there is the vacuous case where nothing satisfies the statement P ( ), in which case the 

uniqueness  of any such hypothetical ob ject is proved but there is actually no existence.  Consider 

the following, symbolic representation of the  uniqueness  of an ob ject x which satisfies P (x):53
 

 

(∀x, y ∈ S )[(P (x) ∧ P (y)) −→ x = y].                                        (1.78) 
 
 

Finally  we note  that  a proof of a statement such as (∃!x ∈ S )P (x)  is thus  usually  divided 
into two separate proofs: 

 

(1)  Existence:  (∃x ∈ S )P (x); 
 

(2)  Uniqueness:  (∀x, y ∈ S )[(P (x) ∧ P (y)) −→ x = y]. 
 

For  example,  in the  next  chapter  we rigorously,  axiomatically define the  set of real numbers  R. 

One of the axioms54   defining the real numbers  is the existence of an additive identity: 
 

(∃z ∈ R)(∀x ∈ R)(z + x = x).                                               (1.79) 
 

The  above  statement indeed says  that any  two  elements  x, y ∈ S  which  both  satisfy  P  must  be  the  sa me. 
Note that we use a single arrow  here,  because  the  statement between the brackets [ ] is not likely to be a tautology, 

but  may  be  true  for  enough  cases  for  the  entire  quantified  statement to  be  true.   Indeed, the  symbols =⇒   and 

⇐⇒ belong  between  quantified  statements,  not  inside them. 
Recall  that an  axiom  is an  assumption,  usually  self-evident,  from  which  we can  logically  argue  towards  theo- 

rems.   Axioms  are  also known  as post ulates.  If we attempt to argue  only  using  “pure logic”  (as  a mathematician 

does when  developing  theorems, for instance), it eventually becomes  clear  that we still need  to make  some assump- 

tions  because  one  can  not  argue  “from  nothing.”   Indeed,  some  “starting points”  from  which  to  argue  towards 

the  conclusions  are  required.   These  are  then  called  axioms. 

The  word  “axiomatic”  is often used  colloquially  to  mean  clearly  evident  and  therefore  not  requiring  proof.  In
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In fact it follows quickly that  such a “z” must be unique,  so we have 

(∃!z ∈ R)(∀x ∈ R)(z + x = x).                                               (1.80) 

To prove (1.80), we need to prove (1) existence, and (2) uniqueness.  In this setting, the existence 

is an axiom so there is nothing to prove.  We turn  then to the uniqueness.  A proof is best written 

in prose, but it is based upon  proving that  the following is true: 
 

(∀z1 , z2  ∈ R)[(z1  an additive identity) ∧ (z2  an additive identity) −→ z1  = z2 ]. 
 

Now we prove  this.   Suppose  z1   and  z2   are additive  identities,  i.e.,  they  can  stand  in for z in 

(1.79),  which  could  also read  (∃z ∈ R)(∀x  ∈ R)(x  = z + x).   Note  the  order  there,  where the 
identity z (think “zero”)  is placed on the left of x in the equation x = z + x.  So, assuming z1 , z2 

are additive identities, we have: 
 

z1  = z2 + z1                       (since z2  is an additive identity) 

= z1 + z2                       (since addition is commutative—order is irrelevant) 

= z2                                   (since z1  is an additive identity). 
 

This  argument  showed that  if z1  and  z2  are any real numbers  which act  as additive  identities, 

then  z1  = z2 .  In  other  words,  if there  are any  additive  identities,  there  must be only one.  Of 

course, assuming its existence we call that  unique real number  zero.  (It should be noted that  the 

commutativity used above is another axiom of the real numbers.  We will list fourteen in all.) 

The distinction between existence and uniqueness  of an ob ject with some property P  is often 

summarized  as follows: 
 

(1)  Existence asserts that  there is at least one such ob ject. 

(2)  Uniqueness  asserts that  there is at most one such ob ject. 

If both hold, then there is exactly one such ob ject. 

 

Negating  Universally and  Existentially  Quantified  Statements 
 

For statements with a single universal  or existential quantifier, we have the following negations. 
 

∼ [(∀x ∈ S )P (x)]  ⇐⇒  (∃x ∈ S )[∼ P (x)],                                     (1.81) 

∼ [(∃x ∈ S )P (x)]  ⇐⇒  (∀x ∈ S )[∼ P (x)],                                     (1.82) 
 

The  left  side of (1.81) states that  it  is not  the  case that  P (x)  is true  for all x ∈ S ; the  right 

side states that  there  is an x ∈ S for which P (x)  is false.  We could ask when is it a lie that  for 

all x, P (x) is true?  The answer is when there is an x for which P (x) is false, i.e., ∼ P (x) is true. 

The  left  side of (1.82) states that  it  is not  the  case that  there  exists an x ∈ S so that  P (x) 

is true;  the  right  side says that  P (x)  is false for all x ∈ S .  When  is it  a lie that  there  is an x 
making  P (x)  true?  When  P (x)  is false for all x. 

Thus  when we negate  such a statement as (∀x)P (x)  or (∃x)P (x),  we change ∀  to ∃ or vice- 

versa,            and            negate            the            statement          after            the            quantifiers. 
 
 

 
’
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55 This   may  not  be  the  most  transparent fact, and  indeed  there are  somewhat  deep  subtleties involved,  
but eventually this should  be clear.  The  subtleties lie in the  idea  that once a variable  is quantified, it is fixed for 

that part of the  statement which  follows it.  For  instance, that part (  y ∈ S)P (x, y) treats 56x as if it  were 
“constant.” 

56 Note  that in using  English,  the  quantification  often  follows after  the  variable quantified, as in Example  1.4.3 
above. That   can  become  quite  confusing  when  statements  get  complicated.  Indeed,  much  of the  motivation  of 
this  section  is so that we can  use  the  notation  to,  in essence,  diagram the  logic of such  statements,  and  analyze 
them  to see if they  may  be false (by  seeing  if their negations  ring  true). 

1.4.1 

1.4.2 

1.4.6 

1.4.3 

 
 
 
 
 
 
 

 
Example           Negate (∀x ∈ S )[P (x) −→ Q(x)]. 

Solution:  We  will need (1.21), page 22, namely  ∼ (P  −→ Q)  ⇐⇒  P ∧ (∼ Q). 
 

∼ [(∀x ∈ S )(P (x) −→ Q(x))]  ⇐⇒  (∃x ∈ S )[∼ (P (x) −→ Q(x))] 

⇐⇒   (∃x ∈ S )[P (x) ∧ (∼ (Q(x)))]. 
 

The  above example  should  also be intuitive.  To say that  it  is not  the  case that, for all x ∈ S , 
P (x) −→ Q(x)  is to say there exists an x so that  we do have P (x),  but not the consequent Q(x). 

Example           Negate (∃x ∈ S )[P (x) ∧ Q(x)]. 

Solution:  Here we use ∼ (P ∧ Q)  ⇐⇒  (∼ P ) ∨ (∼ Q), so we can write 
 

∼ [(∃x ∈ S )(P (x) ∧ Q(x))]  ⇐⇒  (∀x)[(∼ P (x)) ∨ (∼ (Q(x)))]. 
 

This  last example  shows that  if it  is not  the  case that  there  exists  an x ∈ S so that  P (x)  and 

Q(x)  are both true, that  is the same as saying that  for all x, either P (x) is false or Q(x)  is false. 

 
Negating  Statements  Containing  Mixed Quantifiers 

 

Here we simply apply (1.81) and (1.82) two or more times, as appropriate.  For  a typical case of 
a statement first quantified by ∀, and then be ∃, we note that  we can group these as follows: 55

 
 

(∀x ∈ R)(∃y ∈ S )P (x, y)  ⇐⇒  (∀x ∈ R)[(∃y ∈ S )P (x, y)]. 
 

(Here “R ” is another set, not to be confused with the set of real numbers  R.)  Thus 
 

∼ [(∀x ∈ R)(∃y ∈ S )P (x, y)] ⇐⇒ ∼ {(∀x ∈ R)[(∃y ∈ S )P (x, y)]} 

⇐⇒  (∃x ∈ R){∼ [(∃y ∈ S )P (x, y)]} 

⇐⇒  (∃x ∈ R)(∀y ∈ S )[∼ P (x, y)]. 
 

Ultimately we have,  in turn,  the ∀’s become ∃’s, the  ∃’s become ∀’s, the variables  are quantified 

in the  same order  as before,  and  finally the  statement P  is replaced  by its negation  ∼ P .  The 

pattern would  continue no matter how many  universal  and  existential quantifiers arise.   (The 
uniqueness  quantifier is left for the  exercises.)  To summarize  for the case of two quantifiers, 

 

∼ [(∀x ∈ R)(∃y ∈ S )P (x, y)] ⇐⇒   (∃x ∈ R)(∀y ∈ S )[∼ P (x, y)]                 (1.83) 

∼ [(∃x ∈ R)(∀y ∈ S )P (x, y)] ⇐⇒   (∀x ∈ R)(∃y ∈ S )[∼ P (x, y)].                 (1.84) 

Example           Consider the following statement, which is false: 

(∀x ∈ R)(∃y ∈ R)[xy = 1]. 
 

One could say that  the statement says every real number  x has a real number  reciprocal y. This 

is false, but before that  is explained,  we compute the  negation which must  be true: 
 

∼ [(∀x ∈ R)(∃y ∈ R)(xy  = 1)]  ⇐⇒   (∃x ∈ R)(∀y ∈ R)(xy  = 1). 
 

Indeed,  there exists such an x, namely  x = 0, such that  xy = 1 for all y. 
 

 
∃
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In the above, we borrowed one of the many convenient mathematical notations for the negations 

of various symbols.  Some common negations follow: 
 

∼ (x = y)  ⇐⇒   x = y, 

∼ (x < y)  ⇐⇒   x ≥ y, 

∼ (x ≤ y)  ⇐⇒   x > y, 

∼ (x ∈ S )  ⇐⇒  x 6∈ 
S. 

 

Of course we can negate both sides of any one of these and get, for example,  x ∈ S  ⇐⇒ ∼ (x 6∈ 

S ).  Reading  one of these backwards,  we can have ∼ (x ≥ y)  ⇐⇒  x < y.
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Possible Questions 
 

Part-B(5x2=10 marks) 
 

1.Define tautology. 

2.Define quantifier 

3.Define predicate. 

4.Define contingency 

5.Define contradiction 

6.Explain logical equivalence 

7.Explain binding variables 

8.Define Negations 
 

 

Part-C(5x6=30 marks) 

1.  Show that the following is a tautology implication P(QR)(PQ)(PR) 

2. Let Q(x,y,z) be the set “x+y=z”.what are yhe truth values of the set xyZ q(x,y,z) and 

zxY q(x,y,z) 
 

3.  Show that P(QP)P(PQ) 
 
4. Let Q(x,y) denote “x + y=0”. what are the truth value of the quantification yxQ(x,y)and 

xyQ(x,y) 
 

5.  Show that (PQ)(P(PQ))(PQ)   (use only the laws) 

6. Let P(x) be the set “x spends more than six hours every week day in class”, where the universe of 

discourse for x is the set of students. Express each of the following quantifications in English:  a) 

XP(x)   b)xP(x)    c)x  P(x)    d)xP(x) 
 

7. Simplify the  statement  using the laws of logic:( P Q R) (P Q) (PR) 

8. Use quantifiers to express each of the following: 

(i) All humming birds are richly colored 

(ii) No large birds line on honey 

(iii) Birds that do not line honey are dull in color 

(iv) Humming birds are small 

9.  Show that (P(QR))(QR)  (P R)R 

10.Express the  set (i)”Everyone has exactly one best friend”   (ii) If somebody is female and is a 

parent ,then this person is someone’s mother as a logical expression. 
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Subject: Logic and Sets                                                                         

Class:I B.Sc Mathematics

Questions Choice 1 Choice 2 Choice 3 Choice 4 Answer

{ "and", "not"} is called a ---- set 
functionally 

complete 

minimal 

functionally 

complete 

maximal functionally 

complete 
 complete 

minimal 

functionally 

complete 

{"and", "or", "not"} is called a ---- set 
functionally 

complete 

functionally 

incomplete
complete functional 

functionally 

complete

For two variables the number of possible                                                                                             

assignment of truth values is 
2 2^n n 2n 2^n

The substitution instance of a tautology is a tautology contradiction identically false all of these tautology

Equivalence is a ----- relation reflexive symmetric transitive asymmetric symmetric

A statement "A" is said to imply another                                                                                              

statement "B" if ---- is a tautology
if A then B if B then A if (not A) then B

if (not B) then 

A
if A then B

The dual of "and" is "and" "or" "not and" "not or" "or"

The dual of " or" is "and" "or" "not and" "not or" "and"

The dual of NANDis NAND NOR "or " "and" NOR

The dual of NOR is NAND NOR "or " "and" NAND

The other name for pcnf is 
product of sums 

canonical form

sum of products 

canonical form

product of products 

canonical form

sum of sums 

canonical 

form

product of sums 

canonical form

The other name for pdnf is 
product of sums 

canonical form

sum of products 

canonical form

product of products 

canonical form

sum of sums 

canonical 

form

sum of products 

canonical form

The minterms are P and Q not P and Q P and Q, not P and Q none of these 
P and Q, not P 

and Q

The max terms are P or Q P or not Q not P or P
P or Q , P or 

not Q

P or Q , P or not 

Q

The statement B follows logically from the                                                                                              

statement A if only if 

if A then B is a 

tautology

if A then B is a 

contradition

if B then A  is a 

tautology

if B then A is a 

contradiction

if A then B is a 

tautology

The Rule P in the inference is used to indicate                                                                                            

the introduction of the 
Premise conclusion contradiction none Premise

Symbolize the expression "Every student in                                                                                        

this class has studied logic"  by taking p(x) : x

studied logic, q(x) : x is in this class

( ұx)(if q(x)  then 

p(x))

( ұx)(if p(x)  then 

q(x))

( ұx)(if not q(x)  then 

p(x))

( ұx)(if q(x)  

then not p(x))

( ұx)(if q(x)  then 

p(x))

Symbolize the statement "This cricket ball is white" W(b) B(w) W(b.c) C(b,w) W(b)

Unit II      

Equivalence and Quantifiers                                                                                                                                                                                                                                               

Part A (20x1=20 Marks)                                                                                                                                                                                                               

(Question Nos. 1 to 20 Online Examinations)

Possible Questions                               
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Symbolize the statement "Jack is taller than Smith" T(j,s) T(s,j) J(s,t) J(t,s) T(j,s)

Symbolize the statement " Canada is to the north of United 

States"
N(c,s) N(s,c) S(n,c) S(c,n) N(c,s)

Universal Quantifier is For all x For some x there exists x
there exists 

no x
For all x

Essential Quantifier is For all x For some x there exists x
there exists 

no x
there exists x

In the statement "The cricket ball is white", the                                                                                                           

predicate is 
white ball cricket ball none white

In the statement "Every mammal is warm blooded",                                                                                                       

the predicate is 
warm blooded mammal warm none warm blooded

In the statement "Every mammal is warm blooded",                                                                                                                                           

the object is 
warm blooded mammal warm none mammal 

Use quantifiers to say that √3 is not a rational   ----------                                                                       

number 

negation (there 

exists x a 

rational 

number)(x^2=3)

(there exists x a 

rational 

number)(x^2=3)

negation (there exists 

x a rational 

number)(x^2≠=3)

none

negation (there 

exists x a 

rational 

number)(x^2=3)

Existential Specification is a rule of the form
(For all x ) (A(x)) 

implies A(y)

A(x) implies (For 

all y)(A(y))

(there exists x )(A(x)) 

implies A(y)

A(x) implies 

(there exists 

y)(A(y))

(there exists x 

)(A(x)) implies 

A(y)

Existential Generalisation is a rule of the form
(For all x ) (A(x)) 

implies A(y)

A(x) implies (For 

all y)(A(y))

(there exists x )(A(x)) 

implies A(y)

A(x) implies 

(there exists 

y)(A(y))

A(x) implies 

(there exists 

y)(A(y))

Universal Specification is a rule of the form
(For all x ) (A(x)) 

implies A(y)

A(x) implies (For 

all y)(A(y))

(there exists x )(A(x)) 

implies A(y)

A(x) implies 

(there exists 

y)(A(y))

(For all x ) (A(x)) 

implies A(y)

Universal Generalisation is a rule of the form
(For all x ) (A(x)) 

implies A(y)

A(x) implies (For 

all y)(A(y))

(there exists x )(A(x)) 

implies A(y)

A(x) implies 

(there exists 

y)(A(y))

A(x) implies (For 

all y)(A(y))

Symbolize the statement" Every mammal is                                                                                                   

warm blooded"

(For all x ) 

(M(x))→ W(x))

(there exists x ) 

(M(x))→ W(x))

(For all x ) (W(x))→ 

M(x))

(there exists x 

) (W(x))→ 

M(x))

(For all x ) 

(M(x))→ W(x))

"x is shorter than y" can be symbolized as G(x,y) X(g) Y(g) G(y,x) G(x,y)

The painting is red can be symbolized as R(p) P(r ) S(p,r) R and P R(p)

The rules used to check the validity of the premises is US,UG ES,EG both none both

The statement form pv(~p) is a…………………….. Satisfiable  Unsatisfiable  Tautology   Invalid  Tautology

The statement form p^(~p) is a…………………….. contradiction  Unsatisfiable  Tautology   Invalid contradiction 

The inverse of “if p then q” is ………………………… if 

∼

p then 

∼

q if 

∼

p then 

∼

q if 

∼

p then 

∼

q

if 

∼

p then 
∼

q if 

∼

p then 

∼

q

The Some men are clever can be symbolized as 
(there exists 

x)(M(x)→C(x))

(for all 

x)(M(x)→C(x))

(there exists x)(M(x) or 

C(x))

(for all  

x)(M(x) or 

C(x))

(there exists 

x)(M(x)→C(x))
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1.5.1 

1.5.2 

1.5.1 

57 Note  that not all  sets  can  be  listed  in  a  table,  even  if it is infinitely  long.   We  can  list  N = {1, 2, 3, ·} and 

Z = {0, 1, −1, 2, −2, 3, −3, · · · }, and  even  with a little ingenuity list the elements of Q, but we cannot do so with 

R or R − Q.  Those sets  which  can  be listed in a table are  called  countable, and  the others  uncountable. All sets 

with  a finite  number of elements  are  also  countable.  Of the others,  some  are  countably  infinite,  and  the others 

are  uncountably  infinite (or  simply uncountable,  as the “infinite” in “uncountably  infinite” is redundant). 
58 Of  course  we  would  not use  fixed  elements  of the set  as  “variables,” which  they  are  not since  each  has  a 

unique identity. 

 

UNIT 3 
 

 

Sets 
 

In  this  section  we introduce  set  theory  in its  own right.   We  also apply  the earlier  symbolic 

logic to the theory of sets (rather than vice-versa).   We also approach  set theory visually  and 

intuitively, while simultaneously introducing all the set-theoretic notation we will use throughout 

the text. To begin we make the following definition: 
 

Definition             A set is a well-defined collection  of objects. 
 

By well-defined, we mean  that once we define the set,  the objects  contained in the set  are 

totally determined, and so any given object is either in the set or not in the set.  We might also 

note that in a sense a set is defined  (or  determined) by  its elements; sets which  are different 

collections of elements are different sets, while sets with exactly the same elements are the same 

set.  We can also define equality by means of quantifiers: 
 

Definition             Given  two sets A and B, we defined the statement A = B as being equivalent 
to the statement (∀x)[(x ∈ A) ←→ (x ∈ B)]: 

 

A = B  ⇐⇒   (∀x)[(x ∈ A) ←→ (x ∈ B)].                                      (1.85) 
 

If we allow ourselves to understand  that x is quantified  universally  (that  is, we assume  “ (∀x)” 

is understood)  unless otherwise  stated,  we can write,  instead  of A = B, that x ∈ A  ⇐⇒  x ∈ B. 
 

When  we say a set is well-defined we also mean that once defined the set is fixed, and does not 

change.   If elements can be listed in a table (finite or otherwise),57  then the order  we list the 
elements is not relevant; sets are defined by exactly which objects are elements, and  which are 
not.  Moreover, it is also irrelevant if objects are listed more than once in the set, such as when 

we list Q = {x | x = p/q,  p, q ∈ Z,  q = 0}.  In that definition 2 = 2/1 = 4/2 = 6/3 is “listed” 

infinitely many  times, but it is simply one element of the set of rational numbers  Q.  While  it 

actually is possible to “list” the elements of Q if we allow for the elipsis (· · · ), it is more practical 

to describe the set, as we did, using some defining property of its elements (here they were ratios 
of integers, without dividing by zero), as long as it is exactly those elements in the set—no more 
and  no fewer—which share that property.  One usually  uses a “dummy  variable”  such as x and 

then  describes  what properties all such x in the set should  have.  We could have just as easily 

used z or any other variable.58
 

 
Subsets  and Set  Equality 

 

When all the elements of a set A are also elements of another set B, we say A is a subset of B.  To 

express this in set notation, we write A ⊆ B.  In this case we can also take another perspective, 

and  say B  is a superset  of A, written  B ⊇ A.  Both symbols represent types  of set inclusions, 
i.e., they show one set is contained in another. 

A useful graphical  device which can illustrate the notion that A ⊆ B and other set relations 

is the Venn  Diagram,  as in Figure  1.3.  There  we see a visual representation of what it  means 

for A ⊆ B.  The sets are represented by enclosed areas in which we imagine the elements reside. 

In each representation given in Figure  1.3, all the elements inside A are also inside B.
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Figure 1.3: 

1.5.1 

1.5.3 

 

 
 
 
 

A 

B                                  A 
A 

B                                                          B 
 
 
 

 
Three   possible  Venn  Diagrams illustrating  A  ⊆  B.    (Note that in  the first 

figure, for example,  B is the set of all elements within the interior of the larger  circle.)  What 

is important is  that all  elements of A  are  necessarily   contained in  B  as  well.   We  do  not 

necessarily  know “where”  in A are the elements of A, except that they are in the area  which 

is marked by A.  Since the area  in A is also  in B,  we know  the elements of A must also  be 

contained in B in the illustrations above. 

 
 

Using symbolic logic, we can define subsets, and the notation, as follows: 

A ⊆ B  ⇐⇒  (∀x)(x ∈ A −→ x ∈ B).                                         (1.86) 

The  role of the implication which is the main  feature of (1.86) should  seem intuitive.  Perhaps 

less intuitive are some of the statements which are therefore logically equivalent to (1.86): 
 

A ⊆ B  ⇐⇒  (∀x)(x ∈ A −→ x ∈ B) 

⇐⇒  (∀x) [(∼ (x ∈ A)) ∨ (x ∈ B)] 

⇐⇒  (∀x) [(x ∈/ A) ∨ (x ∈ B)] , 
 

which uses the fact that P −→ Q  ⇐⇒   (∼ P ) ∨ Q, and 
 

A ⊆ B  ⇐⇒  (∀x) [(∼ (x ∈ B)) −→ (∼ (x ∈ A))] 

⇐⇒  (∀x) [(x ∈/ B) −→ (x ∈/ A)] 
 

which  uses  the contrapositive  P  −→  Q    ⇐⇒    (∼  Q)  −→  (∼  P ).   Note  that we used  the 

shorthand notation ∼ (x ∈ A)  ⇐⇒   x ∈/  A.  With the definition (1.86) we can quickly see two 

more, technically interesting facts about subsets: 
 

Theorem          For any sets A and B,  the following hold true: 
 

A ⊆ A,         and                                                                          (1.87) 

A = B  ⇐⇒  (A ⊆ B) ∧ (B ⊆ A).                                            (1.88) 

Now we take a moment to remind  ourselves of what is meant by theorem: 

Definition             A theorem is a statement which we know to be true because we have a proof 

of it.  We  can therefore  accept it as a tautology. 
 

A theorem’s scope may be very limited (the above theorem only applies to sets and subsets as we 

have defined them.)  Furthermore, a theorem’s scope and  “truth” depends  upon  the axiomatic 

system upon  which  it rests, such  the definitions we gave  our  symbolic  logic symbols  (which 

might not have always been completely obvious to the novice, as in our definitions of “∨” and 

“longrightarrow”).  For  another  example  there  is Euclidean  geometry,  the theroems  of which
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Figure 1.4: 

59 Latin, quod  erat demonstrandum), the traditional ending of a proof  meaning that which  was  to be proved. 

 
 
 
 

R 
 
 
 

N 
 

Z 
Q 

 
 
 
 
 

Venn  Diagram illustrating N ⊆ Z ⊆ Q ⊆ R. 
 

 
rest upon Euclid’s Postulates (or axioms, or original assumptions), while other geometric systems 

begin with different postulates. 

Nonetheless once we have  the definitions and  postulates one can  say  that a theorem is a 
statement which  is always  true (demonstrated  by  some form of proof ),  and  in fact  therefore 

equivalent  to T  (introduced  on  page  26).   We  will use  that fact  in  the proof  of (1.87),  but 

for (1.88)  we will instead demonstrate the validity of the equivalence  (  ⇐⇒  ).   For  the first 

statement’s proof, we have 
 

A ⊆ A  ⇐⇒   (∀x)[(x ∈ A) −→ (x ∈ A)]  ⇐⇒   T . 
 

Note that the above proof is based  upon  the fact that P  −→  P  is a tautology (i.e.,  equivalent 

to T ).  A glance at a Venn Diagram  with a set A can also convince one of this fact, that any set 
is a subset of itself.  For the proof of (1.88) we offer the following: 

 

A = B  ⇐⇒  (∀x)[(x ∈ A) ←→ (x ∈ B)] 

⇐⇒  (∀x)[((x ∈ A) −→ (x ∈ B)) ∧ ((x ∈ B) −→ (x ∈ A))] 

⇐⇒  
 
(∀x)[(x ∈ A) −→ (x ∈ B)

  
∧ 

 
(∀x)[(x ∈ B) −→ (x ∈ A)

 
 

⇐⇒  (A ⊆ B) ∧ (B ⊆ A),  q.e.d.59
 

 
A consideration of Venn  diagrams  also leads  one to believe that for all the area  in A to be 

contained in B  and  vice versa,  it must be the case that A = B.  That A = B implies they  are 

mutual subsets is perhaps  easier to see. 

Note that the above arguments can also be made  with supersets instead of subsets, with ⊇ 

replacing  ⊆ and ←−  replacing  −→. 

One needs to be careful with quantifiers and symbolic logic, as is discussed later in Section ??, 

but in what we did above the (∀x) effectively went along for the ride. 

Of course,  Venn  Diagrams  can  accommodate more  than two sets.   For  example,  we can 

illustrate the chain of set inclusions 
 

N ⊆ Z ⊆ Q ⊆ R                                                      (1.89) 

 
using a Venn Diagram,  as in Figure 1.4. Note that this is a compact way of writing six different 

set inclusions:  N ⊆ Z, N ⊆ Q, N ⊆ R, Z ⊆ Q, Z ⊆ R, and Q ⊆ R.
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Figure 1.5: 

1.5.2 

  

 

 
 
 
 

a < b                  a = b                  a > b 
 

R 

b 
 
 

 
For  any  two real  numbers a  and  b, we have  the three cases  concerning their 

relative positions on the real  line:  a < b, a = b, a > b. Arrows  indicate the possible  positions 

of a for the three cases. 

 

 

Intervals and Inequalities  in  R 
 

The number  line, which we will henceforth dub the real line, has an inherent order in which the 

numbers  are arranged. Suppose we have two numbers  a, b ∈ R.  Then the order relation between 
a and b has three possibilities, each with its own notation: 

 
1.  a is to the left of b, written a < b and spoken “a is less than b.” 

 

 
2.  a is to the right of b, written a > b and spoken “a is greater than b.” 

 

 
3.  a is at the same location as b, written a = b and spoken “a equals b.” 

 
Figure  1.5 shows these three possibilities.  Note that “less than” and  “greater than” refer to 

relative  positions  on the real line, not  how “large”  or “small”  the numbers  are.  For  instance, 

4 < 5 but −5  < −4,  though  it  is natural to consider  −5  to be a “larger”  number  than −4. 

Similarly  −1000  < 1.60     Of course  if a  < b   ⇐⇒    b > a.   We  have  further notation which 

describes when a is left of or at b, and when a is right of or at b: 

 
4.  a is at or left of b, written a ≤ b and spoken “a is less than or equal to b.” 

 

 

5.  a is at or right of b, written a ≥ b and spoken “a is greater than or equal to b.” 

 
Using inequalities, we can describe intervals in R, which are exactly the connected  subsets of 

R, meaning  those sets which can be represented by darkening  the real line at only those points 
which are in the subset,  and  where doing so can be theoretically  accomplished  without  lifting 

our pencils as we darken.  In other words, these are “unbroken” subsets of R.  Later we will see 
that intervals are subsets of particular interest in calculus. 

Intervals can be classified as finite or infinite (referring  to their lengths), and open, closed or 

half-open  (referring  to their  “endpoints”).  The  finite intervals are of three types:  closed, open 
and half-open.  Intervals of these types, with real endpoints  a and b, where a < b (though the idea 

extends to work with a ≤ b) are shown below respectively by graphical  illustration, in interval 

notation,  and using earlier set-theoretic notation:
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61 For  a closed  interval  [a, b], later we will sometimes  refer  to the interior of the interval,  meaning all  points 

whose  immediate neighbors left and  right are  also in the interval.  This  means that the interior of [a, b] is simply 

(a, b). 
62 For  technical  reasons which  will  be  partially  explained later,  R  is  considered to be  both  an  open  and  a 

closed  interval.  Roughly, it is open  because every  point  is interior,  but closed  because every  point  that can  be 

approached as  close  as  we want  from  the interior  is contained  in the interval.  Those are  the topological  factors 

which  characterize  open  and  closed  intervals  as  such.   Topology as  a subject  is rarely taught before  the junior 

level  of college,  or even  graduate school,  though  advanced calculus usually includes some  topology of R. 

  

  

  

  

 
 

open: 
a                b 

(a, b)             
  

x ∈ R 
  

a < x < b
 

closed: 
a                b 

[a, b]              
  

x ∈ R 
  

a ≤ x ≤ b
 

half-open: 
a                b 

[a, b)             
  

x ∈ R 
  

a ≤ x < b
 

half-open: 
a                b 

(a, b]             
  

x ∈ R 
  

a < x ≤ b
 

 

 
 

Note that a < x < b is short for (a < x) ∧ (x < b), i.e., (x > a) ∧ (x < b). The others are similar. 
 

We will concentrate on the open and closed intervals in calculus.  For the finite open interval 
above,  we see that we do not include the endpoints a and  b in the set, denoting this fact with 

parentheses in the interval notation and an “open” circle at each endpoint on the graph.  What is 

crucial to calculus is that immediately surrounding any point x ∈ (a, b) are only other points still 

inside the interval; if we pick a point x anywhere in the interval (a, b), we see that just left and 

just right of x are only points in the interval.  Indeed,  we have to travel some distance—albeit 

possibly short—to leave the interval from a point x ∈ (a, b). Thus  no point inside of (a, b) is on 

the boundary, and so each point in (a, b) is “safely” on the interior of the interval.  This will be 

crucial to the concepts of continuity, limits and (especially)  derivatives later in the text. 
 

For  a closed interval [a, b], we do include  the endpoints  a and  b, which are not  surrounded 

by other points in the interval.  For instance, immediately left of a is outside the interval [a, b], 

though  immediately  right  of a is on the interior.61    We  denote  this  fact  with  brackets  in the 

interval notation, and  a “closed” circle at each endpoint when we sketch the graph.   Half-open 

(or half-closed) intervals are simple extensions of these ideas, as illustrated above. 

 
For infinite intervals, we have either one or no endpoints.  If there is an endpoint it is either 

not included  in the interval or it is, the former giving an open interval and  the latter a closed 

interval.  An open interval which is infinite in one direction will be written (a, ∞) or (−∞, a), 

depending  upon the direction in which it is infinite.  Here ∞ (infinity) means that we can move 
along  the interval  to the right  “forever,”  and  −∞ means  we can  move left  without  end.   For 
infinite closed intervals the notation is similar:  [a, ∞) and  (−∞, a].  The  whole real line is also 

considered  an interval,  which we denote  R = (−∞, ∞).62    When  an interval continues without 

bound in a direction, we also darken  the arrow in that direction.  Thus  we have the following:
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1.5.3 

1.5.4 

63 The  notation  has  changed over  the years. Many  current  texts use  “⊂”  the way  we use  “⊆”  here.   This  is 

unfortunate,  because the notations  “⊆, ⊂”  here  are  strongly  analogous to the notations  ≤, < from  arithmetic. 

One  has  to take care  to know  how  notation is being  used  in a given  context.  (A  few authors even  use ⊆, ( !) 

  

  

  

  

 
 
 
 
 
 
 
 

open: 
a 

(a, ∞)                
  

x ∈ R 
  

x > a
 

open: 
a 

(−∞, a)             
  

x ∈ R 
  

x < a
 

closed: 
a 

[a, ∞)                
  

x ∈ R 
  

x ≥ a
 

closed: 
a 

(−∞, a]             
  

x ∈ R 
  

x ≤ a
 

Note that we never use brackets to enclose an infinite “endpoint,” since −∞, ∞ are not actual 

boundaries  but rather are concepts of unending  continuance.  Indeed,  −∞, ∞ ∈/ R, i.e., they are 

not points on the real line, so they can not be boundaries  of subsets of R; there are no elements 
“beyond”  them. 

 

 

Most  General Venn Diagrams 
 

Before we get to the title of this subsection, we will introduce a  notion which  we will have 

occasional use for, which is the concept of proper subset. 
 

Definition             If (A ⊆ B) ∧ (A = B),  we call A a proper subset of B, and write A ⊂ B63 . 
 

Thus  A ⊂ B means A is contained in B, but A is not all of B.  Note that A ⊂ B   =⇒ A ⊆ B 

(just as P  ∧ Q   =⇒  P ).   When  we have  that A is a subset  of B  and  are  not  interested  in 

emphasizing  whether or not A = B (or are not sure if this is true), we will use the “inclusive” 

notation ⊆.  In fact, the inclusive case is less complicated logically (just as P ∨ Q is easier than 

P  XOR Q) and  so we will usually  opt for it even when we do know that A = B.  We mention 
the exclusive case here mainly because it is useful in explaining  the most general Venn Diagram 
for two sets A and B. 

Of course it  is possible to have  two  sets,  A and  B,  where neither  is a subset  of the other. 

Then  A and B may share  some elements, or no elements.  In fact, for any given sets A and B, 

exactly one of the following will be true: 

 
case 1:  A = B; 

 

case 2:  A ⊂ B, i.e., A is a proper  subset of B; 
 

case 3:  B ⊂ A, i.e., B is a proper  subset of A; 
 

case 4:  A and B share common elements, but neither is a subset of the other; 

case 5:  A and B have no common elements.  In such a case the two sets are said to be disjoint. 

Even if we do not know which of the five cases is correct, we can use a single illustration which 

covers all of these.  That illustration is given in Figure 1.6, with the various regions labeled.  (We 
will explain the meaning  of U in the next subsection.)  To see that this covers all cases, we take 

them in turn:
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Figure 1.6: 

Figure 1.7: 

1.5.4 

 

 
 
 
 

I           
A        B 

 

IV 
II            III 

 

 

U 
 

 
Most  general  Venn  diagram for two  arbitrary sets  A and  B.   Here  U is some 

superset of both A and  B. 

 
 

 
A                   B 

 
 
 
 

 
C 

U 

 
 

The  most general  Venn  Diagram for three sets A, B and  C . 
 
 

case 1:  A = B:  all elements of A and B are in Region IV; there are no elements in Regions II 

and III. 
 

case 2:  A ⊂ B:  there are elements in Regions III and IV, and no elements in Region II. 
 

case 3:  B ⊂ A: there are elements in Regions II and IV, and no elements in Region III. 
 

case 4:  A and B share common elements, but neither is a subset of the other:  there are elements 

in Region II, III and IV. 
 

case 5:  A and B have no common elements:  there are no elements in Region IV. 
 

Note that whether or not Region I has elements is irrelevant in the discussion above, though it 

will become important shortly. 

The  most  general  Venn  diagram  for three  sets  is given in Figure  1.7, though  we will not 

exhaustively show this to be the most general.  It is not important that the sets are represented 

by circles, but only that there are sufficiently many  separate regions and  that every case of an 

element being, or not being, in A, B and C is represented. Note that there are three sets for an 

element to be or not to be a member  of, and so there are 23  = 8 subregions  needed. 

 
Set  Operations 

 

When  we are given two  sets  A and  B,  it  is natural to combine  or compare  their  memberships 

with  each  other  and  the universe  of all elements  of interest.   In particular,  we form new sets 

called the union and intersection of A and B, the difference of A and B (and  of B and A), and 

the complement  of A (and  of B).   The  first  three  are straightforward, but the fourth  requires
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Figure 1.8: 

1.5.5 

1.5.1 

64 The  set-theoretical  “−” could  be interpreted  as “∧  ∼  · · · ∈ ,” and  if we always assume we know  what  is the 

universal set, we can  interpret the complement symbol “ ′ ” as “∼  · · · ∈ .” 

(x ∈ A) ∨ (x ∈ B)
 

 (1.90) 

(x ∈ A) ∧ (x ∈ B)
 

 (1.91) 

(x ∈ A) ∧ (x 6∈ B)
 

 (1.92) 

 

  

  

  

  

  

  

A 

 

 
 
 
 
 
 
 
 
 
 

A               B                        A               B                        A               B 
 

U 

A ∪ B 

U 

A ∩ B 

U 

A − B
 

 
 
 

A               B                        A               B                        A               B 
 

U                                          U 

A′                                                           B′ 

U 

B − A

 
Some Venn Diagrams involving  two sets A and  B inside a universal set U , which 

is represented by the whole “box.” 
 

 
some clarification.  Usually A and B contain only objects of a certain class like numbers,  colors, 

etc.  Thus  we take elements of A and B from a specific universal set U of objects rather than an 

all-encompassing  universe  of all objects.  It is unlikely  in mathematics that we would need, for 

instance, to mix numbers  with persons and  planets and verbs, so we find it convenient to limit 

our universe U of considered objects.  With that in mind (but without presently defining U ), the 

notations for these new sets are as follow: 
 

Definition 
 

A ∪ B = 
 

x   
 

A ∩ B = 
  

x   
 

A − B = 
 

x   
 

′  = 
 

x ∈ U  
 
 (x 6∈ A)

   
.                                                    (1.93)

 

These are read “A union B,” “A intersect B,” “A minus B,” and “A complement,” respectively. 

Note that in the first three, we could have also written 
  

x ∈ U 
 
· · · 

 
, but since A, B ⊆ U , there 

it is unnecessary.  Also note that one could define the complement in the following way, though 
(1.93) is more convenient for symbolic logic computations: 

 

′
 

A  = 
 

x  
   

(x ∈ U ) ∧ (x 6∈ A)
   

= U − A.                                     (1.94) 
 

These operations are illustrated by the Venn diagrams  of Figure 1.8, where we also construct B′ 

and B − A. Note the connection between the logical ∨ and ∧, and the set-theoretical ∪ and ∩.64
 

 

Example          Find  A ∪ B, A ∩ B, A − B and B − A if 
 

 

A = {1, 2, 3, 4, 5, 6, 7} 

B = {5, 6, 7, 8, 9, 10}.
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1.5.6 

65 It is also called  the null  set. Some  older  texts use empty braces ∅  = { }. 
66 This  is precisely because there are no elements of ∅ ; the statement x ∈  ∅  −→ x ∈  A is vacuously true because 

x ∈  ∅  is false,  regardless of x. 

 

 
 

Solution:  Though  not necessary  (and  often  impossible),  we will list these set elements in a 

table from which we can easily compare  the membership. 

 

A    =  {  1,    2,    3,    4,    5,    6,    7,                          }  , 

B    =  {                   5,    6,    7,    8,    9,    10   }  . 

 
Now we can compare  the memberships  using the operations defined earlier. 

 

A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 

A ∩ B = {5, 6, 7}, 

A − B = {1, 2, 3, 4}, 

B − A = {8, 9, 10}. 

 
The complements depend upon the identity of the assumed universal set.  If in the above example 

we had U = N, then A′  = {8, 9, 10, 11, · · · } and B′  = {1, 2, 3, 4, 11, 12, 13, 14, 15 · · · }.  If instead 

we took U = Z we have A′  = {· · · , −3, −2, −1, 0, 8, 9, 10, 11, · · · }, for instance.  (We leave B′  to 
the interested reader.) 

Just as it is important to have a zero element in R for arithmetic and  other purposes,  it is 

also useful in set theory to define a set which contains no elements: 
 

Definition             The set with no elements  is called the empty  set,65  denoted  ∅. 
 

One reason we need such a device is for cases of intersections of disjoint sets.  If A = {1, 2, 3} and 

B = {4, 5, 6, 7, 8, 9, 10}, then A ∪ B = {1, 2, 3, · · · , 10}, while A ∩ B = ∅.  Notice that regardless 

of the set A, we will always have A − A = ∅, A − ∅ = A, A ∪ ∅ = A, A ∩ ∅ = ∅, and ∅ ⊆ A. 

The last statement is true because, after all, every element of ∅ is also an element of A.66   Note 

also that ∅′  = U and U ′ = ∅. 

The set operations for two sets A and B can only give us finitely many combinations of the 

areas enumerated in Figure 1.6. In fact, since each such area is either included or not, there are 

24  = 16 different diagram  shadings  possible for the general case as in Figure  1.6. The situation 

is more interesting  if we have  three  sets  A, B  and  C .  Using Figure  1.7, we can prove several 

interesting set equalities. First we have some fairly obvious commutative laws (1.95), (1.96) and 

associative laws (1.97), (1.98): 
 
 

 

Next  are  the following two  distributive  laws,  which  are  the set-theory  analogs  to the logical 

equivalences  (1.27) and (1.28), found on page 22. 
 

 
A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ),                                           (1.99) 

A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ).                                         (1.100)

A ∪ B = B ∪ A (1.95) 

A ∩ B = B ∩ A (1.96) 

A ∪ (B ∪ C ) = (A ∪ B) ∪ C (1.97) 

A ∩ (B ∩ C ) = (A ∩ B) ∩ C (1.98) 
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1.9: 

1.5.2 

 
 
 
 
 
 
 
 
 

A                B                    A                B                    A                B 
 

 
 
 

C                                       C                                       C 

A                                   B ∪ C A ∩ (B ∪ C )
 

 
 

A                B                    A                B                    A                B 
 

 
 
 

C                                       C                                       C 

A ∩ B A ∩ C (A ∩ B) ∪ (A ∩ C )
 

 
Figure        Venn  Diagrams for Example 1.5.2 verifying  one of the distributive laws, specifi- 

cally A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).  It is especially  important to note how one constructs 
the third box in each line from the first two. 

 

 
Example          We will show how to prove (1.99) using our previous symbolic logic, and then 
give a visual proof using Venn diagrams.   Similar techniques can be used to prove (1.100).  For 

the proof that A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ), we use definitions, and (1.27) from page 22 to 

get the following: 
 

x ∈ A ∩ (B ∪ C )  ⇐⇒  (x ∈ A) ∧ (x ∈ B ∪ C ) 

⇐⇒  (x ∈ A) ∧ [(x ∈ B) ∨ (x ∈ C )] 

⇐⇒  [(x ∈ A) ∧ (x ∈ B)] ∨ [(x ∈ A) ∧ (x ∈ C )] 

⇐⇒  [x ∈ (A ∩ B)] ∨ [x ∈ (A ∩ C )] 

⇐⇒  x ∈ [(A ∩ B) ∪ (A ∩ C )],  q.e.d. 
 

We proved that (∀x)[(x ∈ A ∩ (B ∪ C )) ←→ (x ∈ (A ∩ B) ∪ (A ∩ C ))], which is the definition for 

the sets in question to be equal.  The visual demonstration of A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ) 
is given in Figure  1.9, where we construct both sets of the equality in stages. 

To construct the left-hand  side of the equation, in the first box we color A, then B ∪ C in 
the second, and finally we take the area from the first, remove the area from the second, and are 

left with the difference A − (B ∪ C ).  To construct the right-hand side of the equation, we color 
A − B and A − C in separate boxes.  Then  we color the intersection of these, which is the area 

colored in the previous two boxes.  This gives us our Venn Diagram  for (A − B) ∩ (A − C ).  We 

see that the left- and right-hand sides are the same, and conclude the equality is valid. 
 

The next two are distributive in nature also: 
 

A − (B ∪ C ) = (A − B) ∩ (A − C )                                         (1.101) 

A − (B ∩ C ) = (A − B) ∪ (A − C ).                                        (1.102)
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1.5.3 

1.5.5 

1.5.4 

) 

) 

 

 
 
 

Finally,  if we replace A with U , we get the set-theoretic version of de Morgan’s Laws:
 

(B ∪ C ′
 

′
 

 

= B′
 

′
 

 

∩ C ′ 
′
 

 
(1.103)

(B ∩ C ) = B  ∪ C .                                                     (1.104)
 

Note that these are very much  like our earlier  de Morgan’s laws, and  indeed  use the previous 

versions (1.3) and (1.4), page 17 (also see page 22) in their proofs. For instance, assuming x ∈ U 

where U is fixed, we have
 

x ∈ (B ∪ C ′
 

 

⇐⇒ ∼ (x ∈ B ∪ C ) 

⇐⇒ ∼ ((x ∈ B) ∨ (x ∈ C )) 

⇐⇒  [∼ (x ∈ B)] ∧ [∼ (x ∈ C )] 

⇐⇒  [x ∈ B′ ] ∧ [x ∈ C ′ ] 

⇐⇒  x ∈ B′  ∩ C ′ ,  q.e.d.
 

That proves (1.103), and (1.104) has a similar proof.  It is interesting to prove these using Venn 

Diagrams  as well (see exercises). 
 

Example          Another example  of how to prove  these using  logic and  Venn  diagrams  is in 

order.  We will prove (1.101) using both methods.  First, with symbolic logic: 
 

x ∈ A − (B ∪ C )  ⇐⇒   (x ∈ A) ∧ [∼ (x ∈ B ∪ C )] 

⇐⇒   (x ∈ A) ∧ [∼ ((x ∈ B) ∨ (x ∈ C ))] 

⇐⇒   (x ∈ A) ∧ [(∼ (x ∈ B)) ∧ (∼ (x ∈ C ))] 

⇐⇒   (x ∈ A) ∧ (∼ (x ∈ B)) ∧ (∼ (x ∈ C )) 

⇐⇒   (x ∈ A) ∧ (∼ (x ∈ B)) ∧ (x ∈ A) ∧ (∼ (x ∈ C )) 

⇐⇒   [(x ∈ A) ∧ (∼ (x ∈ B)] ∧ [(x ∈ A) ∧ (∼ (x ∈ C ))] 

⇐⇒   (x ∈ A − B) ∧ (x ∈ A − C ) 

⇐⇒   x ∈ (A − B) ∩ (A − C ),  q.e.d. 

 
If we took  the steps  above  in  turn, we used  the definition  of set  subtraction,  the definition 

of union,  (1.19),  associative property of ∧, added  a redundant (x  ∈ A),  regrouped,  used  the 
definition of set subtraction, and finally the definition of intersection. 

Now we will see how we can use Venn diagrams  to prove (1.101).  As before, we will do this 

by constructing Venn Diagrams  for the sets A − (B ∪ C ) and (A − B) ∩ (A − C ) separately, and 

verify that we get the same sets.  We do this in Figure  1.10.  (If it is not visually  clear how we 

proceed from one diagram  to the next “all at once,” a careful look at each of the 23  = 8 distinct 
regions can verify the constructions.) 

 

 
 

More on  Subsets 
 

Before closing this section, a few more remarks  should  be included  on the subject of subsets. 

Consider  for instance the following: 
 

Example          Let A = {1, 2}.  List all subsets of A. 

Solution:  As A = {1, 2} has two elements, it can have subsets which contain zero elements, 
one element, or two elements.  The subsets are thus ∅, {1}, {2} and {1, 2} = A.
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1.10: 

 
 
 
 
 
 
 
 
 

A                B                    A                B                    A                B 
 

 
 
 

C                                       C                                       C 

A                                   B ∪ C A − (B ∪ C )
 

 
 

A                B                    A                B                    A                B 
 

 
 
 

C                                       C                                       C 

A − B A − C (A − B) ∩ (A − C )
 

 

Figure          Venn Diagrams for Example 1.5.3 verifying that A−(B ∪C ) = (A−B)∩(A−C ). 
 

 
 

It is common for novices studying sets to forget that ∅ ⊆ A, and A ⊆ A, though by definition, 
 

 

x ∈ ∅  =⇒ x ∈ A        (vacuously), 

x ∈ A  =⇒ x ∈ A        (trivially). 
 

 

If one wanted only proper subsets of A, those would be ∅, {1}, {2} (we omit the set A). 

Note that with our set A = {1, 2}, we can reduce rephrase  the question of which subset we 

might refer to, instead into a question of exactly which elements are in it, from the choices 1 and 

2. In other words, given a subset B ⊆ A, which (if any) of the following are true:  1 ∈ B, 2 ∈ B. 

From  these statements we can construct a truth table-like structure to describe  every possible 

subset of A: 
 
 

A = {1, 2} 
 

1 ∈ B 2 ∈ B subset B 

T T {1, 2} = A 
T F {1} 
F 
F 

T 
F 

{2} 
∅ 

 
Similarly, a question about subsets B of A = {a, b, c} can be placed in context of a truth table-like 

construct: 
 
 

A = {a, b, c}
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a ∈ B 

T 

b ∈ B 

T 

c ∈ B 

T 

subset B 

{a, b, c} = A 

T T F {a, b} 

T F T {a, c} 
T F F {a} 

F T T {b, c} 
F T F {b} 
F 
F 

F 
F 

T 
F 

{c} 
∅ 

It would not  be too  difficult  to list  the elements  of A = {1, 2, 3} by listing  subsets  with  zero, 

one, two and  three elements separately, i.e., ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, but 

if we were to need to list subsets of a set with significantly more elements, it might be easier to 

use the lexicographical  order embedded  in the truth table format to exhaust all the possibilities. 

The only disadvantage is that the order in which subsets are listed might not be quite as natural 

as the order we would likely find if we listed subsets with zero, one, two elements and so on.
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Possible Questions 
 

Part-B(5x2=10 marks) 
 

1.Define subset 

2.When two sets are said to be equal 

3.Define finite set with example 

4. Define infinite set with example 

5.Define null set and singleton set 

6.If  A={1,2,3,4,5,6},  B={5,6,7,8} Find  AUB,A∩B 

7.Using Venn diagram explain A-B,B-A 

8.If A={4,5,6,7},B={3,5,7,9},c={4,5}verify AU(BUC)=(AUB)UC 
 

 

Part-C(5x6=30 marks) 
 

1.  Use venn diagram to prove that  A(BC)=(AB)(AC) 
 

 

2. Simplify the following  set using set identities AB(ABC) 
 
3. If A,B,C are sets prove that A(BC)=(C B)A using set identities 

 

 

4. Use venn diagram to find the sets A and B if i)AB={1,3,7,11},BA={2,6,8} and AB={1,9} 

ii)AB={1,2,4},BA={7,8} and AB={1,2,4,5,7,8,9} 

 
5. Prove that (AC)(CB)=

 

 

6. If A,B,C  are the sets then prove that A(BC)=(AB)(AC) 
 
7. If A,B,C are any three sets then prove that   A(BC)=(AB)(AC) 

 

 
 

8. If A,B,C are any three sets then prove that  A(BC)=(AB)(AC) 
 
9. I f A={3,4,2},B={3,4,5,6} and C={2,4,6,8} then prove that  A(BC)=(AB)(AC) 

 

 

10.Let U={x:xN,1x12} be the universal set and A={1,9,10},B={3,4,6,11,12} and C={2,5,6} are 

subsets of U. Find the sets  (i) (AB)(AC)  (ii)A(BC) 
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UNIT 4 
 

 
 
 

Sets 
 
 
 

 
“A set is a Many that  allows itself to be thought of as a One.” 

(Georg Cantor) 
 

In the previous chapters, we have often encountered ”sets”, for example, 

prime  numbers  form  a  set,  domains  in  predicate logic form  sets as  well. 

Defining a set formally is a pretty delicate matter, for now, we will be happy 

to consider an intuitive definition, namely: 
 

Definition      . A set is a collection of abstract objects. 
 

A set is typically determined by its distinct elements, or members,  by 

which we mean that the order does not matter, and if an element is repeated 

several times, we only care about one instance of the element.  We typically 

use the bracket notation {} to refer to a set. 
 

Example     . The sets {1, 2, 3} and {3, 1, 2} are the same, because the or- 

dering  does not matter.  The  set  {1, 1, 1, 2, 3, 3, 3}  is also the same set  as 

{1, 2, 3}, because we are not interested in repetition:  either an element is in 

the set, or it is not, but we do not count how many times it appears. 
 

One may specify a set  explicitly, that is by listing  all the elements  the 

set contains, or implicitly, using a predicate description as seen in predicate 

logic, of the form {x,  P (x)}.  Implicit descriptions tend to be preferred for 

infinite sets. 
 

Example       The set A given by A = {1, 2} is an explicit description.  The 

set {x,  x is a prime number  } is implicit.



Prepared by:Y.Sangeetha,Department of Mathematics,KAHE 

Page 3  / 20 

Unit-4                                   Operations on sets 2017-
Batch 

 

 

A set is a collection of abstract objects 

We write xS iff x is an element (member) of S. 

A set A is a subset of the set B, denoted by A  B iff 
every element of A is also an element of B. i.e., 

 
 
 
 
 
 

Set 
 

 
 

– Examples: prime numbers, domain in predicate logic 

•  Determined by (distinct) elements/members. 

– E.g. {1, 2, 3} = {3, 1, 2} = {1, 3, 2}= {1, 1, 1, 2, 3, 3, 3} 
 

 

•   Two common ways to specify a set 

• Explicit: Enumerate the members 

e.g. A= {2, 3} 

•    Implicit: Description using predicates {x|P(x)} 

e.g. A = {x| x is a prime number} 
 

 
 
 
 
 

Membership & Subset 
 

 
 

– e.g. A = {x| x is a prime number} then 2A, 3A, 
5A,…,1A, 4A, 6A, … 

 
 
 

 

– AB ≜  x(xA xB)
 

– AB ≜  (AB)
 
  x(xAxB) 

 x(xA  xB) 
 

Subset versus Membership: S = {rock, paper, scissors} 

R = {rock}, R  S, rock  S
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44 

26 

27. 

45. 

 
 
 
 
 
 
 
 
 

Given a set  S, one may be interested  in elements  belonging to S, or in 

subset of S. The two concepts are related, but different. 
 

Definition         A set  A is a subset  of a set  B, denoted  by A ⊆ B, if and 

only if every element of A is also an element of B.  Formally 
 

A ⊆ B  ⇐⇒  ∀x(x ∈ A → x ∈ B). 
 

Note  the two  notations  A  ⊂  B  and  A  ⊆  B:   the first  one says  that 

A is a subset of B,  while the second emphasizes  that A is a subset of B, 

possibly equal to B.  The second notation is typically preferred if one wants 

to emphasize that one set is possibly equal to the other. 

To say that A is not a subset of S, we use the negation of ∀x(x ∈ A → 
x ∈ B), which is (using the rules we have studied in predicate logic! namely 

negation of universal quantifier, conversion theorem, and De Morgan’s law) 

∃x(x ∈ A ∧ x 6∈ B).  The notation is A 6⊆ 
B. 

For an element x to be an element of a set S, we write x ∈ S.  This is a 

notation that we used already in predicate logic. Note the difference between 

x ∈ S and  {x} ⊆ S:  in the first  expression, x is in element  of S, while in 

the second, we consider the subset {x}, which is emphasized by the bracket 
notation. 

 

Example     .  Consider the set  S = { rock, paper,  scissors },  then R = { 

rock } is a subset of S, while rock ∈ S, it is an element of S. 
 

Definition      . The empty set is a set that contains no element.  We denote 

it ∅ or {}. 
 

There  is a difference between ∅ and {∅}:  the first one is an empty set, 

the second one is a set, which is not empty since it contains one element:  the 

empty set! 
 

Definition         The empty set is a set that contains no element.  We denote 

it ∅ or {}. 
 

Example       We say that two sets A and B are equal, denoted by A = B, 

if and only if ∀x, (x ∈ A ↔ x ∈ B). 
 

To say that two sets A and  B  are not equal, we use the negation from 

predicate logic, which is: 
 

¬(∀x, (x ∈ A ↔ x ∈ B)) ≡ ∃x((x ∈ A ∧ x 6∈ B) ∨ (x ∈ B ∧ x 6∈ 
A)).
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The set that contains no element is called the 
empty set or null set. 

A=B ≜  x(xA  xB) 

 
 
 
 
 
  

Empty Set 
 
 
 
 
 

– The empty set is denoted by  or by { }. 

– Note:   {} 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Set Equality 
 

 
 
 

– Two sets A, B are equal iff they have the same 
elements. 

AB ≜  x(xA  xB)
 

  x [(xAxB)  (xBxA)] 
 
 

– Two sets are not equal if they do not have 
identical members, i.e., there is some element in 
one of the sets which is absent in the other. 

•  Example: 

{1, 2, 3} = {3, 1, 2} = {1, 3, 2}= {1, 1, 1, 2, 3, 3, 3}
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28 

29 

n 

j 

 
 

j=0 

0

 
 

1

 
 

2

 
 

3

 
 

 
 
 
 
 
 
 
 
 

This  makes  our  earlier  example  {1, 2, 3}  = {1, 1, 1, 2, 3, 3, 3}  easier  to 

justify than what we had  intuitively before:  both sets are  equal  because 

whenever a number  belongs to one, it belongs to the other. 

Definition      . The cardinality of a set S is the number of distinct elements 

of S.   If |S|  is finite, the set is said  to be finite.   It is said  to be infinite 

otherwise. 

We could say the number of elements of S, but then this may be confusing 

when elements  are repeated  as in {1, 2, 3} = {1, 1, 1, 2, 3, 3, 3},  while there 

is no ambiguity  for distinct  elements.  There  |S| = |{1, 2, 3}| = 3.  The  set 

of prime numbers  is infinite, while the set of even prime numbers  is finite, 

because it contains only 2. 

Definition      . The power set P (S) of a set S is the set of all subsets of S: 

P (S) = {A,  A ⊆ S}. 
 

If S  = {1, 2, 3},  then P (S)  contains  S  and  the empty  set  ∅,  and  all 

subsets of size 1, namely {1}, {2}, and {3}, and all subsets of size 2, namely 

{1, 2}, {1, 3}, {2, 3}. 

The cardinality of P (S) is 2n  when |S| = n.  This is not such an obvious 

result, it may  be derived  in several ways, one of them being the so-called 

binomial theorem, which says that 

(x + y)n = 
X 

 
n
   

xj yn−j ,
 

j=0      
j

where  
 
n

 

 

counts  the number  of ways to choose j elements  out of n.   The

notation 
Pn

 means that we sum for the values of j going from 0 to n.  See

Exercise 33 for a proof of the binomial theorem.  When n = 3, evaluating in 

x = y = 1, we have 

23  = 

 
3
  

+ 

 
3
  

+ 

 
3
  

+ 

 
3
 

 
0          1          2          3

and we see that 
  

3
 

 

says we pick no element from 3, there is one way, and it

corresponds to the empty set, then 
  

3
 is telling us that we have 3 ways to

choose a single subset, this is for {1}, {2}, and {3}, 
 

3
 counts {1, 2}, {1, 3},

{2, 3} and 
  

3
 counts the whole set {1, 2, 3}.

When  dealing  with  sets,  it is often  useful to draw  Venn  diagrams  to 

show how sets are  interacting.   They  are  useful to visualize “unions”  and 

“intersections”.
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The cardinality |S| of S is the number of elements in S. 

 

If |S| is finite, S is a finite set; otherwise, S is infinite. 

The power set P(S) of a given set S is the set of all 
subsets of S: P(S) = { A | A  S}. 

 
 
 
 
 
 
  

Cardinality 
 

 
 
 
 

– e.g. for S={1, 3}, |S| =2 
 
 
 

 

– The set of positive integers is an infinite set. 

– The set of prime numbers is an infinite set. 

– The set of even prime numbers is a finite set. 
 
 

•  Note: | | = 0 
 
 
 
 
 
 

Power Set 
 
 
 
 

 

•  Example 

– For S= {1,2,3} 
P(S)={,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} 

 

 

•   If a set A has n elements, then P(s) has 2n 

elements. 
•    Hint: Try to leverage the Binomial theorem 
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A Venn diagram is used to show/visualize 

the possible relations among a collection 

of sets. 

The union of sets A and B 
is the set of those 
elements that are either in 
A or in B, or in both. 

The intersection of the sets 

A and B is the set of all 
elements that are in both A 

and B. 

Pictures from wikipedia 

 
 
 
 
 
 
 
 
 
 

John Venn 
(1834-1923) 

A
  
B

 

 
 
 
 
 
 
 
 
 

 

Venn Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Union and Intersection 
  
 
 
 
 
 
 

A B ≜ {x | xA  xB} A  B ≜ {x | xA  xB}
 
 
 
 

B                  A                               B                 A
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Sets A and B are disjoint iff A  B = 

A  B = A + B - A  B

© photographer 

 

What 
about 
me? 

 
 
 
 
 
  

Disjoint Sets 
 

 
 
 
 

–  |A  B| = 0 
 
 
 
 
 
 

 

Lions                     Fishes 
 
 
 
 

Lions  Fishes = 
 
 
 

 

Cardinality Of Union
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30. 

31 

32. 

46 

 
 
 
 
 
 
 
 
 

Definition         The union of the sets A and B is by definition 

A ∪ B = {x,  x ∈ A ∨ x ∈ B}. 

The intersection of the sets A and B is by definition 

A ∩ B = {x,  x ∈ A ∧ x ∈ B}. 

When  the intersection  of A and  B  is empty,  we say that A and  B  are 

disjoint. 

The  cardinality  of the union  and  intersection  of the sets  A and  B  are 

related by: 

|A ∪ B| = |A| + |B| − |A ∩ B|. 

This  is true, because to count  the number  of elements  in A ∪ B,  we start 

by counting those in A, and then add those in B.  If A and B were disjoint, 

then we are done, otherwise, we have double counted those in both sets, so 

we must subtract those in A ∩ B. 
 

Definition      . The difference of A and B, also called complement of B with 

respect to A is the set containing elements that are in B but not in B: 

A − B = {x,  x ∈ A ∧ x 6∈ 

B}. 
 

The complement of A is the complement of A with respect to the universe 

U : 

Ā = U − A = {x,  x 6∈ 

A}. 

The universe U is the set that serves as a framework for all our set compu- 
tations, the biggest  set  in which all the other  sets  we are interested  in lie. 

Note that Ā = A. 
 

Definition         The Cartesian product A × B of the sets A and B is the set 

of all ordered pairs (a, b), where a ∈ A, b ∈ B: 

A × B = {(a, b),  a ∈ A ∧ b ∈ B}. 

Example     . Take A = {1, 2}, B = {x, y, z}.  Then 

A × B = {(a, b),  a ∈ {1, 2} ∧ b ∈ {x, y, z}} 
 

thus a can be either 1 or 2, and for each of these 2 values, b can be either x, 

y or z: 

A × B = {(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)}. 

Note that A × B = B × A, and that a Cartesian product can be formed 

from n sets A1 , . . . , An , which is denoted by A1 × A2 × · · · × An .
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The difference of A and B (or complement of B with 
respect to A) is the set containing those elements 
that are in A but not in B. 

The complement of A is the complement of A with 
respect to U. 

The Cartesian product AxB of the sets A and 
B is the set of all ordered pairs (a,b) where a 
 A and b  B. 

Picture from wikipedia 

 (z,2) 

     

    

    
  

 
 
 
 
 
 
  

Set Difference & Complement 
 

 
 

A  B ≜ {x | xA  xB} 
 
 
 

A  U - A ≜{x | xA}
 

A 
U

 
 
 
 
 
 

Cartesian Product 
 

 
 
 
 

A  B ≜  {(a,b) | a  A  b  B}

 

•  Example: A = {1,2}, B = {x,y,z} 
A  B = {(1,x), (1,y), (1,z), (2,x), (2,y), (2,z)} 

B  A = {(x,1), (x,2), (y,1), (y,2), (z,1), (z,2)}     2
 

•   In general: A1  A2  …  An                                   1 

≜{(a1,a2, … , an) | aiAi  for i=ϭ,Ϯ, …, n} 

 
René Descartes 
(1596-1650)

•   | A1  A2  …  An | = |A1| |A2 | … |An |       
x    y                z
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33. 

47. 

 
 
 
 
 
 
 
 
 

Definition         A collection of nonempty sets {A1 , . . . , An } is a partition of 

a set A if and only if 

1. A = A1 ∪ A2 ∪ . . . An 
 

2. and  A1, . . . , An  are  mutually  disjoint:   Ai  ∩ Aj    = ∅,  i  = j, i, j = 

1, 2, . . . , n. 

Example      Consider A = Z, A1  = { even numbers }, A2  = { odd numbers 

}.  Then A1 , A2  form a partition of A. 

We next derive a series of set identities: 

A ∩ B̄ = A − B.

By Definition  31, A − B  = {x,  x ∈ A ∧ x 6∈ B}.  Then  A ∩ 

B̄ 

= {x,  x ∈

A ∧ x ∈ B̄ }, but by the definition of B̄ , A ∩ B̄ = {x,  x ∈ A ∧ x 6∈ B}, 

which completes the proof. 

We have the set theoretic version of De Morgan’s law: 
 

A ∩ B = Ā ∪ B̄ . 
 

We have A ∩ B = {x,  x 6∈ A ∩ B} = {x,  ¬(x ∈ A ∧ x ∈ B)}, and using 

the usual De Morgan’s law, we get A ∩ B = {x,  x 6∈ A ∨ x 6∈ B} as 

desired. 

Applying de Morgan’s law on A ∩ B̄ , and B̄ = B we get: 
 

A ∩ B̄ = Ā ∪ B. 
 

Recall that U denotes the universe set, the one to which belongs all the 

sets that we are manipulating.  In particular, A ⊂ U . We have 

A ∪ ∅ = A,  A ∩ U = A,  A ∪ U = U, A ∩ ∅ = ∅,  A ∪ A = A,  A ∩ A = A. 

Furthermore, the order in which ∪ or ∩ is done does not matter: 

A ∪ B = B ∪ A,  A ∩ B = B ∩ A,  A ∪ (B ∪ C ) = (A ∪ B) ∪ C,  A ∩ (B ∩ C ) = (A ∩ B) ∩ C. 
 

Distributive laws hold as well: 

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ),  A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ). 
 

For  example,  A ∩ (B ∪ C ) = {x,  x ∈ A ∧ (x  ∈ B ∨ x ∈ C )} and  we can 

apply  the distribute  law from propositional  logic to get  the desired result. 

And finally 

A ∪ (A ∩ B) = A,  A ∩ (A ∪ B) = A. 

This follows from the fact that A ∩ B is a subset of A, while A is a subset of 

A ∪ B.
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A collection of nonempty sets {A1,A2,…,An} is a partition 
of a set A, iff   A  A  A  An

 
1           2 

and A1, A2   …, An are mutually disjoint, i.e. 

Ai  Aj =  for all i, j = 1,2,..n, and i  j. 

__ 

A  B  A  B 

 
 
 
 
 
 
 
 
 
 

Partition 
 
 
 
 
 

, 
 

 
 
 
 
 

A2 

A1                           
A3                  A 

A4                  A5 
 

 
 
 
 
 
 
 

Set Identities 
 
 
 
 
 
 

__  

A           B       B 

 

 

B         A        B
 
 
 
 

Compare A  B with A-B = {x | xA  xB}

(not a formal proof)
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__ 

A  B  A  B 

A
-B

 

 
 
 
 
 
  

Set Identities 
 
 
 
 
 

 

B 
 

A 
 

•  Consider A  B  A  B

•  Apply DeMorgan’s Law 

and Y= B 

X Y  X Y with X=A

 
 
 
 
 

Set Identities 
 

Identity 

A = A 

Name 
 

Identity laws
    AU = A  

AU = U 
 

Domination laws
   A=  

AA = A 
 

Idempotent laws
   AA = A  

A   = A Double Complement laws
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48 

49 

 
 
 
 
 
 
 
 
 

Suppose that you want  to prove that two  sets  A and  B  are equal.  We 

will discuss 3 possible methods to do so: 

1. Double inclusion: A ⊆ B and B ⊆ A. 
 

2. Set identities. 
 

3. Membership tables. 

Example    . To show that (B − A) ∪ (C − A) = (B ∪ C ) − A, we show the 

double inclusion. 
 

•  Take an element x ∈ (B − A) ∪ (C − A), then either x ∈ (B − A), or 

x ∈ (C − A). Then x ∈ B ∧ x 6∈ A, or x ∈ C ∧ x 6∈ B.  Then either 

way, x ∈ B ∪ C ∧ x 6∈ A, that is x ∈ (B ∪ C ) − A, and (B − A) ∪ (C − 
A) ⊆ (B ∪ C ) − A is shown. 

 

•  Now take an element x ∈ (B ∪ C ) − A, that is x ∈ B ∪ C but x 6∈ A. 

Then x ∈ B and not in A, or x ∈ C and not in A. Then x ∈ B − A or 

x ∈ C − A. Thus either way, x ∈ (B − A) ∪ (C − A), which shows that 

(B − A) ∪ (C − A) ⊇ (B ∪ C ) − A 

Example    . We show that (A − B) − (B − C ) = A − B using set identities. 

(A − B) − (B − C )   =  (A − B) ∩ (B − C ) 

=  (A ∩ B̄ ) ∩ (B ∩ C̄) 

=  (A ∩ B̄ ) ∩ (B̄ ∪ C ) 

=  [(A ∩ B̄ ) ∩ B̄ ] ∪ [(A ∩ B̄ ) ∩ C ] 
 

where the third equality is De Morgan’s law, and the 4rth one is distributivity. 

We also notice that the first term can be simplified to get (A ∩ B̄ ). We then 

apply distributivity again: 

(A ∩ B̄ ) ∪ [(A ∩ B̄ ) ∩ C ] = [A ∪ [(A ∩ B̄ ) ∩ C ]] ∩ [B̄ ∪ [(A ∩ B̄ ) ∩ C ]]. 

Since (A ∩ B̄ ) ∩ C is a subset of A, then the first term is A. Similarly, since 

(A ∩ B̄ ) ∩ C is a subset of B̄ , the second term is B̄ . Therefore 

(A − B) − (B − C ) = A ∩ B̄ = A − B. 
 

The third method is a membership table, where columns of the table rep- 

resent different set expressions, and rows take combinations of memberships 

in constituent sets:  1 means membership,  and 0 non-membership.   For two 

sets to be equal, they need to have identical columns.
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Proving Set Equality 
 

 
 

•  Recall. Two sets are equal if and only if they contain 

exactly the same elements, i.e., iff AB and BA 
 

  

•  Three methods to prove set equality: 

–  Show that each set is a subset of the other 

–  Apply set identities theorems 

–  Use membership table 
 
 
 
 
 
 
  

Each Others’ Subset 
 

Show that (B-A) (C-A)=(B  C)-A. 
 

For any x LHS, x (B-A) or x (C-A) [or both].
 

when x  B  A ( x  B)  (x  A) 

(x  B  C)  (x  A)
 

 

when 

 

x  C  A 
 x  (B  C)  A 

 (x  C)  (x  A)

 (x  B  C)  (x  A) 

 x  (B  C)  A 
 

 

Therefore, LHS  RHS
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___  

 
 
 
 
 
  

Each Others’ Subset 
Show that (B-A) (C-A)=(B  C)-A. 

 

For any x RHS, x (BC) and x A. 
 

when x B and x A
(x  B)  (x  A) 

 

 

when x C and x A, 

 x  B  A 
x (B  A)  (C  A)

(x C)  (x  A)  x C  A 
x (B  A)  (C  A) 

Therefore, RHS  LHS 
 

With LHS  RHS and RHS  LHS, we can conclude that LHS = RHS 
 
 
 
 
 

Using Set Identities 
 

Show that (A-B)-(B-C)=A-B. 

___  ___

( A  B)  (B  C)  ( A  B )  (B  C ) (By alternate representation for set difference)
___ ___

 ( A  B )  ( B  C) (By De Morgan’s laws)
___  ___ ___

 [( A  B )  B ] [( A  B )  C] (By Distributive laws)
___ ___ ___

 [ A  ( B  B )] [ A  ( B  C)] (By Associative laws)
___ ___

 ( A  B ) [ A  ( B  C)] (By Idempotent laws)
___ ___

 A [ B  ( B  C)] 

 A  B 

(By Distributive laws) 

(By Absorption laws)

 A  B (By the alternate representation for set difference)
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50 

Prove that (AB)B = AB  

 A B AB   

0 0 0 0 0 
0 1 1 0 0 
1 0 1 1 1 
1 1 1 0 0 

 

 
 
 
 
  
 
 

Using Membership Tables 
 

Similar to truth table (in propositional logic) 

–  Columns for different set expressions 

–  Rows for all combinations of memberships in constituent sets 

–  ͞ϭ͟ = membership , ͞Ϭ͟ =non-membership 

–  Two sets are equal, iff they have identical columns 
 

 

(AB)B   AB 
 

 
 
 
 
 
 
 
 
 
 

Example     . To prove (A ∪ B) − B = A − B, we create a table 
 

A B A ∪ B (A ∪ B) − B A − B 

0 0  

0 1 

1 0 

1 1 

The first row, if x is not in A and not in B, it will not be in any of the sets, 

therefore the first row contains only zeroes. If x is only in B, then it belongs 

to A ∪ B, but not in the others, since B is removed.  So the second row has 

only a 1 in A ∪ B.  Then  if x is only in A, it belongs to all the three  sets. 

Finally, if x is in both A and B, it is in their intersection, therefore it belongs 

to A ∪ B, but not in the 2 others, since B is removed.
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Possible Questions 
 

Part-B(5x2=10 marks) 
 

1.Define the difference of two sets 

2.What is a power set 

3. Define the symmetric difference of two sets 

4.Define generalized union of two sets 

5.Define partial ordering with an example 

6.If A={2,3,4}then   find P(A) 

7.Give two property of sets 

8.What is meant by finite sets? 

Part-C(5x6=30 marks) 
 

1.   Consider U={1,2,…..,9} and the sets A={1,2,3,4,5},B={4,5,6,7},C={5,6,7,8,9}, 

D={1,3,5,7,9},E={2,4,6,8} and F={1,5,9}. Find i)A
C
, B

C
, D

C
, E

C
, ii) A\B, B\A, D\E, F\D, 

iii)A+B,C+D,E+F. 

2.  Consider U={1,2,…..,9} and the sets A={1,2,3,4,5},B={4,5,6,7},C={5,6,7,8,9}, 

D={1,3,5,7,9},E={2,4,6,8} and F={1,5,9}. Find i)A(BE) ii)(A\E)
c   

iii) (AD) \B iv) (BF) U(CE). 

3.  Prove that (AB)\( AB) = (A\B) (B\A). 
 

4.  Prove the following identity (AB)(AB
C
) = A 

 
5. Consider U={1,2,…..,9} and the sets A={1,2,3,4,5},B={4,5,6,7},C={5,6,7,8,9}, 

D={1,3,5,7,9},E={2,4,6,8} and F={1,5,9}. Find i) AB and AB ii) BD and BD iii) AC 

and AC iv) DE and DE v) EF and EF vi) DF and DF. 

6. Consider the class A of sets A={{1,2,3},{4,5},{6,7,8}}.Determine whether each of the following 

is true or false :  i)1A,ii){1,2,3}  A, iii) {6,7,8}A, iv) {4,5} A, v) A, 

vi)  A 
 

 

7. In a survey of 60 people,it was found that 25 read newsweek magazine,26 read time,26 read 

fortune,9 read both newsweek and fortune,11 read both newsweek and time, 8 read both time and 

fortune and 3 read all three magazines. Find i) The number of people who read atleast one of the 3 

magazines,ii) The number of people who read exactly one magazine. 
 

8. Find the power set power(A) of A={1,2,3,4,5}. 
 
9. If A and B are finite sets,then AB and AB are finite and 

 
( AB) = ( A) +( B)- ( AB) 

10.  i) Let S={red, blue, green, yellow}.Determine which of the following is a partition of S 

a) P1={{red},{blue, green}} b) P2={{red, blue, green, yellow}} c)P3={,{red, blue},{green, 

yellow}} d)P4={{blue},{red, yellow, green}} 

ii) Find all partitions of S={1,2,3} 
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2.3.2. 

 

UNIT  5 
Relations 

 

 

Relations:    Assume  that we hav  e a set  of men  M and  a set 

of women W , some of whom are married.   We want to express which 
men in M are married to which women in W . One way to do that is by 
listing the set of pairs (m, w) such that m is a man, w is a woman, and 
m is married  to w.  So, the relation  “married  to” can be represented 

by a subset of the Cartesian product M × W . In general, a relation  R 
from a set A to a set B will be understood as a subset of the Cartesian 

product A × B, i.e., R ⊆ A × B.  If an element a ∈ A is related to an 

element b ∈ B, we often write a R b instead of (a, b) ∈ R. 
 

The set 

{a ∈ A | a R b for some b ∈ B} 
 

is called the domain  of R.  The set 
 

{b ∈ B | a R b for some a ∈ A} 
 

is called the range  of R.   For  instance, in the relation “married  to” 

above, the domain is the set of married  men, and the range is the set 

of married  women. 
 

If A and  B  are the same set, then any subset of A × A will be a 
binary relation  in A.  For instance, assume A = {1, 2, 3, 4}.  Then  the 
binary relation “less than” in A will be: 

 

<A= {(x, y) ∈ A × A | x < y} 

= {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} . 
 
 

Notation : A set A with a binary relation R is sometimes represented 
by the pair  (A, R).  So, for instance,  (Z, ≤)  means the set  of integers 
together with the relation of non-strict inequality. 

 

 
 

Representations of Relations. 
 

Arrow diagrams.  Venn diagrams and arrows can be used for repre- 
senting relations between given sets.  As an example,  figure 2.14 rep- 
resents  the relation  from A = {a, b, c, d} to B  = {1, 2, 3, 4} given by 
R = {(a, 1), (b, 1), (c, 2), (c, 3)}.  In the diagram  an arrow from x to y 
means that x is related to y. This kind of graph is called directed graph 
or digraph.
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Figure  2.14. 

Figure  2.15. 

2.3.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 

1 
a 

b 

c    
2 

d  3 

4 

 

A                 B 

 
 

Relation. 
 

 

Another  example  is given in diagram  2.15, which  represents  the 
divisibility relation on the set {1, 2, 3, 4, 5, 6, 7, 8, 9}. 

 
 
 
 

1     2      
8 

 
4 

6    3 
9 

7     
5 

 
 
 

 
Binary relation of divisibility. 

 

 

Matrix  of a  Relation.  Another way  of representing a  relation R 
from A to B is with a matrix.  Its rows are labeled with the elements 
of A, and  its columns are labeled with  the elements  of B.   If a ∈ A 
and  b ∈ B  then we write  1 in row a column b if a R b, otherwise  we 
write 0.   

Inverse Relation.  Given a relation  R from A to B,  the 

inverse of R, denoted R−1 , is the relation from B to A defined as 

b R−1 a ⇔ a R b .
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2.3.4. 

2.3.5. 

2.3.6. 

 

 
 

For  instance,  if R is the relation  “being a son or daughter  of ”, then 

R−1 is the relation “being a parent of ”. 
 

 
Composition of Relations.  Let A, B and C be three sets. 

Given a relation  R from A to B  and  a relation  S from B  to C , then 

the composition S ◦ R of relations R and S is a relation from A to C 
defined by: 

 

a (S ◦ R) c ⇔ there exists some b ∈ B such that a R b and b S c . 
 

For  instance,  if R is the relation  “to be the father  of ”, and  S is the 

relation “to be married to”, then S ◦ R is the relation “to be the father 
in law of ”. 

 

 
Properties of Binary Relations.  A binary relation R on 

A is called: 
 

1. Reflexive if for all x ∈ A, x R x.  For instance on Z the relation 

“equal to” (=) is reflexive. 
 

2. Transitive if for all x, y, z ∈ A, x R y and  y R z implies x R z. 

For instance equality (=) and inequality (<) on Z are transitive 

relations. 
 

3. Symmetric if for all x, y ∈ A, x R y ⇒ y R x. For instance on Z, 
equality (=) is symmetric, but  strict inequality  (<) is not. 

 

4. Antisymmetric  if for all x, y ∈ A, x R y and y R x implies x = y. 

For instance, non-strict inequality  (≤)  on Z is antisymmetric. 
 

 
Partial Orders. A partial  order,  or simply, an order  on a 

set A is a binary relation “4” on A with the following properties: 
 

1. Reflexive : for all x ∈ A, x 4 x. 

2. Antisymmetric:  (x  4 y) ∧ (y 4 x) ⇒ x = y. 
3. Transitive : (x  4 y) ∧ (y 4 z) ⇒ x 4 z. 

 
Examples: 

 

1. The non-strict inequality  (≤)  in Z. 
 

2. Relation of divisibility on Z+ : a|b ⇔ ∃t, b = at.
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2.3.7. 

2.3.8. 

 

 

3. Set inclusion (⊆) on P(A)  (the collection of subsets of a given 

set A). 

 
Exercise : prove that the aforementioned relations are in fact partial 

orders.   As an example  we prove that integer divisibility  is a partial 

order: 
 

1. Reflexive: a = a 1 ⇒ a|a. 
 

2. Antisymmetric:  a|b ⇒ b = at for some t and b|a ⇒ a = bt′  for 
some t′. Hence a = att′, which implies tt′ = 1 ⇒ t′ = t−1 . The 
only invertible positive integer is 1, so t = t′ = 1 ⇒ a = b. 

 

3. Transitive:  a|b and b|c implies b = at for some t and c = bt′  for 
some t′, hence c = att′, i.e., a|c. 

 
Question : is the strict inequality  (<) a partial order on Z? 

 

Two elements  a, b ∈ A are said to be comparable  if either  x  4 y 
or y  4 x, otherwise  they  are said to be non  comparable.   The  order 
is called total  or linear  when every pair of elements x, y ∈ A are com- 
parable.   For instance (Z, ≤) is totally ordered,  but  (Z+, |), where “|” 
represents integer divisibility, is not. A totally ordered subset of a par- 
tially ordered set is called a chain ; for instance the set {1, 2, 4, 8, 16, . . . } 
is a chain in (Z+, |). 

 

 
Hasse diagrams. A Hasse diagram is a graphical represen- 

tation of a partially ordered  set  in which each element  is represented 
by a dot (node or vertex of the diagram).  Its immediate successors are 
placed above the node and connected to it by straight line segments.  As 
an example,  figure 2.16 represents the Hasse diagram  for the relation 
of divisibility on {1, 2, 3, 4, 5, 6, 7, 8, 9}. 

 

Question : How does the Hasse diagram  look for a totally  ordered 

set? 
 

 
Equivalence Relations.  An equivalence relation  on a set 

A is a binary relation “∼” on A with the following properties: 
 

1. Reflexive : for all x ∈ A, x ∼ x. 

2. Symmetric:  x ∼ y ⇒ y ∼ x. 
3. Transitive : (x  ∼ y) ∧ (y ∼ z) ⇒ x ∼ z.
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Figure  2.16 

2.3.9. 
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. Hasse diagram for divisibility. 
 

For instance, on Z, the equality  (=) is an equivalence relation. 

Another example, also on Z, is the following: x ≡ y (mod 2) (“x is 

congruent to y modulo 2”) iff x−y is even. For instance, 6 ≡ 2 (mod 2) 
because 6 − 2 = 4 is even, but 7 6≡ 4 (mod 2), because 7 − 4 = 3 is not 
even. Congruence modulo 2 is in fact an equivalence relation: 

 

1. Reflexive: for every integer x, x − x = 0 is indeed even, so x ≡ x 

(mod 2). 
 

2. Symmetric:   if x  ≡  y (mod 2)  then x − y  = t is even,  but 

y − x = −t is also even, hence y ≡ x (mod 2). 
 

3. Transitive:   assume x ≡ y (mod 2) and y ≡ z (mod 2).  Then 

x − y = t and y − z = u are even. From here, x − z = (x − y) + 

(y − z) = t + u is also even, hence x ≡ z (mod 2). 
 
 

Equivalence Classes, Quotient Set, Partitions. Given 
an  equivalence  relation  ∼ on  a  set  A,  and  an  element  x  ∈ A,  the 
set  of elements  of A related  to x are  called the equivalence class  of 
x,  represented [x]  = {y  ∈ A | y ∼  x}.   Element x is said  to be a 
representative of class 

 

[x]. The collection of equivalence classes, represented A/ ∼  = {[x] | 
x ∈ A}, is called quotient set of A by ∼.
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3.2 

3.3 

 

 
 
 
 
 
 
 
 
 
 

Congruence Modulo Relation: 
 

Congruences are an important and useful tool for the study of divisibility.  As we shall see, 

they are also critical in the art of cryptography. 
 

 

Definition:  If a and  b are  integers  and  n>0,wewrite 
 

a ≡ b mod n 
 

to mean n|(b − a).  We read this as “a is congruent  to b modulo (or mod) n. 
 
 

For example, 29 ≡ 8 mod 7, and 60 ≡ 0 mod 15. 
 

The  notation  is used  because  the properties  of congruence  “≡” are  very  similar  to the 

properties of equality  “=”. The next few result make this clear. 
 
 

Theorem       For any integers a and b, and positive integer n, we have: 

1. a ≡ a mod n. 

2. If a ≡ b mod n then b ≡ a mod n. 

3. If a ≡ b mod n and b ≡ c mod n then a ≡ c mod n 
 
 

These results  are classically called:  1.  Reflexivity; 2.  Symmetry;  and 3.  Transitivity.  The 

proof is as follows: 

1. n|(a − a) since 0 is divisible by any integer.  Therefore a ≡ a mod n. 

2.   If a  ≡ b mod n  then n|(b − a).    Therefore,  n|(−1)(b − a)  or  n|(a − b).   Therefore, 

b ≡ a mod n. 

3. If a ≡ b mod n and b ≡ c mod n then n|(b − a) and n|(c − b). Using the linear combination 

theorem, we have n|(b − a + c − b) or n|(c − a).  Thus,  a ≡ c mod n. 
 

The following result  gives an equivalent way of looking at congruence.  It replaces the con- 

gruence sign with an equality. 
 

 

Theorem       If a ≡ b mod n then b = a + nq for some integer q, and conversely. 
 

 
Proof:  If a ≡ b mod n then by definition n|(b − a).  Therefore, b − a = nq for some q. Thus 

b = a + nq. Conversely if b = a + nq, then b − a = nq and so n|(b − a) and hence a ≡ b mod n 

thenb=a+nq.
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3.4 

3.5 

 
 
 
 

We will use often this theorem for calculations.  Thus,  we can write  15 ≡ −2 mod 17 by 

subtracting 17 from 15: −2 = 15 + (−1) · 17. Similarly, 52 ≡ 12 mod 20. Just subtract 40 

(2 times 20) from 52. 
 

A simple consequence is this:  Any number is congruent mod n to its remainder when divided 

by n.  For if a = nq + r, the above result shows that a ≡ r mod n.  Thus  for example, 23 ≡ 

2 mod 7 and 103 ≡ 3 mod 10.  For this reason, the remainder  of a number  a when divided 

by n is called a mod n.  In EXCEL, as in many spreadsheets, this is written ”MOD(a,n).” If 

you put  the expression =MOD(23,7) in a cell, the readout  will be simply 2. Try it! 
 

Another way of relating congruence to remainders  is as follows. 
 

 
 

Theorem       If a ≡ b mod n then a and b leave the same remainder  when divided by n. 

Conversely if a and b leave the same remainder  when divided by n, then a ≡ b mod n. 
 

 
 

Proof:  Suppose a ≡ b mod n.  Then by Theorem 3.3, b = a + nq. If a leaves the remainder 

r when divided  by  n,  we have  a  = nQ + r with  0 ≤ r < n.   Therefore,  b  = a + nq  = 

nQ + r + nq = n(Q + r) + r, and so b leaves the same remainder  when divided by n.  The 

converse is straightforward and we omit the proof. 
 

We can now show some useful algebraic properties of congruences.  Briefly, congruences can 

be added and multiplied. 
 

 
Theorem       If a ≡ b mod n and c ≡ d mod n then 

1. a + c ≡ b + d mod n. 

2. ac ≡ bd mod n. 
 

 
 

Proof:  Write b = a + nq1  and d = c + nq2 , using Theorem  3.3. Then adding equalities,  we 

get b + d = a + c + nq1 + nq2  = a + c + n(q1  + q2 ). This shows that a + c ≡ b + d mod n by 

Theorem  3.3. 
 

Similarly, multiplying,  we get bd = (a + nq1 )(c + nq2 ) = ac + naq2  + ncq1 + n2 q1 q2.  Thus, 

bd = ac + n(aq2  + cq1 + nq1 q2, and so ac ≡ bd mod n, again by Theorem  3.3. 
 

Some Examples. 

We have noted  that 23 ≡ 2 mod 7.  We can square  this  (i.e.  multiply  this  congruence by 

itself ) to get 232 ≡ 4 mod 7. What a nice way to find the remainder of 232 when it is divided 

by 7! Multiply  again by 23 ≡ 2 mod 7, to get 
 

233 ≡ 8 ≡ 1 mod 7
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3.6 

3.7 

 

 
 
 

(This  string of congruences is similar to a string of inequalities.  It is read 233  is congruent 

to 8 which is congruent to 1 mod 7.  By transitivity (Theorem  3.2) this implies that 233  is 

congruent to 1 mod 7.)  Once we know that 233  ≡ 1 mod 7, we can raise to the 5th power 

(i.e. multiply this by itself 5 times) to get 2315 ≡ 1 mod 7. The application of a few theorems 

and we have found remainders  of huge numbers  rather easily! 
 

 

Example       Find 17341  mod 5. As explained on page 26, this is the remainder when 17341
 

is divided by 5. 
 

Method.  We have 
 
 

Squaring, we have 
 
 

Squaring again, we find 

 

 

17 ≡ 2 mod 5 
 
 

172 ≡ 4 ≡ −1 mod 5 
 
 

174 ≡ 1 mod 5
 

Now, 1 to any power is 1, so we raise this last congruence to the 85th power. Why 85? Just 

wait a moment to find out.  We then find 
 

17340  ≡ 1 mod 5 
 

Finally, multiply  by the first congruence to obtain 
 

17341  ≡ 2 mod 5 
 

So the required remainder  is 2. 
 

The  strategy  is to find some power of 17 to be 1 mod 5.  Here, the power 4 worked.  The 

we divided 4 into 341 to get a quotient 85, and this is the power we used on the congruence 

174  ≡ 1 mod 5.  Note also the little trick of replacing 4 by −1 mod 5.  This gives an easier 

number  to square. 
 
 

Example       Solve for x :  5x ≡ 1 mod 12. 
 
 

One method  is as follows.  We know that gcd(5, 12) = 1, so some linear combination  of 5 

and 12 is equal to 1. In Section 1 we had a general method for doing this, and we also had 

a spreadsheet approach.  However, we can simply note by observation that 
 

1 = 5 · 5 + (−2) · 12 
 

So both sides of this equality  are congruent to each other mod 12. Hence 
 

1 ≡ 5 · 5 + (−2) · 12 ≡ 5 · 5 mod 12
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3.8 

 
 
 
 

So one solution is x = 5. More generally, if x ≡ 5 mod 12 then 
 

5x ≡ 25 ≡ 1 mod 12 
 

Here is another approach:  Start with the equation 5x ≡ 1 mod 12. If this were an equality, 

we would simply divide by 5 to get  x = 1/5.   But  we are in the realm of integers  so this 

won’t work.  Instead  we multiply by 5 to get 25x ≡ 5 mod 12 or x ≡ 5 mod 12.  Note that 

we multiplied  by 5 to get a coefficient of 1: 5 · 5 ≡ 1 mod 12. 
 

The  algebra  of congruences  is sometime referred  to as “clock arithmetic.”   This  example 

illustrates this.  Imagine you are a mouse and that each day you travel clockwise around  a 

clock, passing through 25 minutes  on the clock.  You start at 12 o’clock. Here is what you 

journey will look like: 

 

Start          Day 1         Day 2 Day 3 Day 4        Day 5 

12 Midnight    5 o’clock   10 o’clock 3 o’clock 8 o’clock   1 o’clock 

 
Note  that the transition  from 10 o’clock was not to 15 o’clock, but  (working mod 12) to 

15 mod 12 or 3 o’clock. In terms of clocks, we asked when the mouse would land at the 1 

o’clock spot on the clock. 
 

We can quickly find when the mouse will land at 4 o‘clock. The equation is 
 

5x ≡ 4 mod 12 
 

Multiply by 5 to get 25x ≡ 20 mod 12 or simply x ≡ 8 mod 12. It take 8 days. 
 

 

Example       Same clock, different mouse.  This mouse goes 23 minutes  a day and starts 

at 12 o’clock. How many days before she reaches 9 minutes before 12? 
 

 

The appropriate congruence is 23x ≡ −9 mod 60. We’ll use the gcd method and find 1 as a 

linear combination of 23 and 60. A spreadsheet calculation gives 
 

1 = −13 · 23 + 5 · 60
 

Taking this mod 60, we find 
 
 

Multiply by −9 to get 

 
 

23(−13) ≡ 1 mod 60. 
 
 

23(117) ≡ −9 mod 60.

But  117 ≡ 57 mod 60.  And so the mouse must  travel  57 days to reach  9 minutes  before 

the hour.  Note that 57 ≡ −3 mod 60 so the mouse will take 3 days if she goes in the other 

direction. 
 

Up to now, all of our congruences have been modulo one fixed n.  The following results show 

how to change the modulus in certain situations.
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3.9 

3.10 

3.11 

 
 
 
 

Theorem       If a ≡ b mod n, and c is a positive integer,  then ca ≡ cb mod cn 
 

 
Proof:  This is little more than a divisibility theorem.  Since n|(b − a), we have cn|c(b − a) 

or cn|(cb − ca), and this is the result. 
 

The converse is also valid.  Thus,  if ca ≡ cb mod cn with c > 0 then a ≡ b mod n. 
 

These results can be stated: A congruence can by multiplied through (including the modulus) 

and similarly, it can be divided by a common divisor. 
 

Finally,  we can mention  that if a ≡ b mod n and  if d|n, then a ≡ b mod d.  We leave the 

proof to the reader. 
 

We can now tackle the general question of solving a linear congruence ax ≡ b mod n.  We will 

find when this congruence has a solution, and how many solutions it has.  We first consider 

the case gcd(a, n)  = 1.   (In  the examples  above,  this was the situation.)   The  following 

theorem answers this question and also shows how to find the solution. 
 
 

Theorem         If gcd(a, n) = 1, then the congruence  ax ≡ b mod n has a solution x = c. 

In this case, the general solution of the congruence is given by x ≡ c mod n. 
 
 

Proof:  Since a and n are relative prime, we can express 1 as a linear combination of them: 
 

ar + ns = 1 
 

Multiply this by b to get abr + nbs = b. Take this mod n to get 
 

abr + nbs ≡ b mod n or abr ≡ b mod n 
 

Thus  c = br  is a solution of the congruence ax ≡ b mod n.  In general, if x ≡ c mod n we 

have ax ≡ ac ≡ b mod n. 
 

We now claim that any solution of ax ≡ b mod n is necessarily congruent to c mod n.  For 

suppose ax ≡ b mod n.  We already know that ac ≡ b mod n.  Subtract to get 
 

ax − ac ≡ 0 mod n or a(x − c) ≡ 0 mod n 
 

But  this means that n|a(x − br).  But  since a and n are relatively  prime, this implies that 

n|(x − c) and x ≡ c mod n.  This completes the proof. 

An important special case occurs when n is a prime p. 

Corollary         If  p  is  a  prime,  the  congruence  ax  ≡ b mod p  has  a  unique  solution 

x mod p provided a 6≡ 0 

modp.
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3.12 

3.13 

 
 
 
 

The reason we single this case out is that this result is almost exactly like the similar result 

in high school algebra:  The equation ax = b has a unique solution provided a = 0. We shall 

soon delve further into this analogy.   The  reason this is true is that if an integer a is not 

divisible by p, it is relatively prime to p.  Thus,  if a 6≡ 0 mod p, then a and p are 

relatively prime. 
 

During the course of the proof of theorem 3.10 , we proved the following useful result. 
 

 
Theorem         If ab ≡ ac mod n and if gcd(a, n) = 1, then we have b ≡ c mod n. 

 

 
In short, we can cancel the factor a from both sides of the congruence so long as gcd(a, n) = 1. 

In algebra,  we learn that we “can divide an equation ax = ay by a” if a = 0.  Here we can 

“cancel  the factor a  from both sides of the congruence  ax  ≡ ay mod n”  if a  and  n  are 

relatively prime.  This theorem is sometimes called the cancelation law for congruences. 
 

Now suppose that we wish to solve the congruence ax ≡ b mod n where d = gcd(a, n) > 1. 

For example, consider the congruence 18x ≡ 12 mod 24. Here d = gcd(18, 24) = 6. We can 

divide this congruence by 6 to get the equivalent15  congruence 3x ≡ 2 mod 4. So we end up 

with the congruence 3x ≡ 2 mod 4, in which gcd(3, 4) = 1 and which has general solution 

x ≡ 2 mod 4.  So this is the solution  of the original congruence  18x ≡ 12 mod 24.  This 

worked because the gcd also divided the constant term 12.  If it didn’t  there would be no 

solution.  This is the content of the following theorem which generalizes this problem. 
 

 
Theorem         Given the congruence ax ≡ b mod n.  Let d = gcd(a, n).  Then 

1. If d does not divide b, the congruence has no solution. 

2.   If d|b  then  the congruence  is equivalent to  the congruence  (a/d)x ≡ (b/d) mod (n/d) 

which has a unique solution mod n/d. 
 

 
Proof:  Suppose there were a solution of ax ≡ b mod n.  Then we would have ax ≡ b mod d. 

But a ≡ 0 mod d since d|a. So we would have 0 ≡ b mod d or d|b.  So a necessary condition 

for a solution is that d|b.  This prove part 1. As for part 2, divide the entire congruence by d 

as in the above example.  The reduced congruence has a unique solution mod n/d since a/d 

and n/d are relatively prime. 
 

Algebra on  a Small Scale. 

Corollary  3.11 has  an  interesting interpretation–if p is a prime  and  we work mod p, the 

integers mod p behave algebraically  like the real numbers.   In the real number  system the 

equation ax = b has a solution x = b/a = ba−1  where a−1 = 1/a is the reciprocal of a and is 

the solution of the equation ax = 1. What is the situation if we try to do this mod p? 
 

15 It is equivalent, since we can multiply the resulting congruence by 6 to get back the original congruence.
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3.14 

3.15 

 

 
 
 

Example         What is the value of 5−1  mod 7? 
 
 

Method.   It is required  to find the solution  of 5x ≡ 1 mod 7.  We can do this  using the 

method of Example 3. Since
 
 

be observation, we have 

3 · 5 + (−2)7 = 1 
 
 

3 · 5 ≡ 1 mod 7

So 5−1  ≡ 3 mod 7, or simply 5−1  = 3 mod 7, where equality if used because it is understood 

that we are working mod 7. 
 

Since we are working mod 7, there are only 7 different numbers mod 7, namely the remainders 

0 through 6 when a number  is divided by 7.  So the algebra of numbers  mod 7 is a strictly 

finite algebra.  Here is the multiplication table for these numbers mod 7. We omit 0. 
 

 

× 1 2 3 4 5 6 

1 1 2 3 4 5 6 

2 2 4 6 1 3 5 

3 3 6 2 5 1 4 

4 4 1 5 2 6 3 

5 5 3 1 6 4 2 

6 6 5 4 3 2 1 
 

Multiplication Table mod 7 
 
 

The number 1 is underlined in the body of the table.  The row and column where a 1 appears 

are inverses, because the product is 1. By observation, we can see that 2 and 4 are inverses 

mod 7, as are 3 and 5. Both 1 and 6 are self inverses.  (Note that 6 = −1 mod 7, and so it 

is not surprising that 6 is its own inverse:  (−1)−1  = −1. 
 

Let us go one step further with the analogy with ordinary  algebra. 
 
 

Example         Solve the congruence 8x ≡ 13 mod 29. 
 
 

First method.  In analogy with algebra we expect the solution x ≡ 13 · 8−1  mod 29. So we 

first compute 8−1  mod 29. We express 1 as a linear combination of 8 and 29 by the method 

given in section 1, or using a spreadsheet.  A possible result is 
 

1 = 11 · 8 − 3 · 29 
 

Taking this mod 29, we find 8−1  ≡ 11 mod 29. So, solving for x, we find 
 

x ≡ 13 · 8−1  ≡ 13 · 11 = 143 ≡ 27 mod 29
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Second method.  Using fractions, we write 
 

13 
x ≡ 

8 

 

 
 

mod 29

Ordinarily,  we cancel factors in the numerator and denominator.  We can’t do this here, but 

we can multiply numerator and denominator by the same (non-zero) number.  We choose 4, 

because this  gets  the denominator  close to the modulus  29, making  the quotient  simpler. 

Thus
13 

x ≡     ≡ 
8 

Now do it again, using a factor 10: 

52     23 
≡ 

32      3 

 

mod 29

 

23     230 
≡      ≡ 

3       30 

 

27 
≡ 27 mod 29 

1

This is the same answer, of course.  Here’s the way the full solution works in one line:
 

13 
x ≡     ≡ 

8 

 

52     23 
≡     ≡ 

32      3 

 

230     27 
≡ 

30       1 

 
≡ 27 mod 29

Third method.  When we write x ≡ 
13 
8 

 

mod 29, we can cancel at least one factor 2, if we

add 29 to the numerator.  Thus,
 

13 
x ≡     ≡ 

8 

 

42     21     50 
≡     ≡ 

8       4        4 

 

25     54     27 
≡     ≡     ≡ 

2       2        1 

 
≡ 27 mod 29

We don’t  necessarily  recommend  this  method,  but  we use it  to illustrate  that there  are 

often many ways to attack a problem and to show the inner consistency of our small scale 

arithmetic. 
 

Divisibility  Tricks. The number  345,546,711 is divisible by 3. In fact it is divisible by 9. 

We can discover this easily using the following trick, which we shall prove. 
 

A number is congruent  mod 9 to the sum of the digits in that number. 
 

Here we have 
 

345, 546, 711 ≡ 3 + 4 + 5 + 5 + 4 + 6 + 7 + 1 + 1 = 36 ≡ 3 + 6 = 9 ≡ 0 mod 9 
 

In fact, using this result, it is not even necessary to find the sum.  There are short cuts.  For 

example 3 + 4 + 5 = 12 which is congruent to its digit sum 1 + 2 = 3 mod 9.  Continuing, 

add 5 + 5 = 10 ≡ 1, so we add 1 to 3 to get 4. And so on. This is a lot easier to do than to 

explain.  Briefly, any time you get a two digit answer, replace it by its digit sum. 
 

The proof of this trick depends on the knowledge that the digits in an expansion of a number 

represent coefficient of powers of 10. Thus, 
 

3, 412 = 3 × 103 + 4 × 102 + 1 × 101 + 2 × 1
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≡ 

≡ 

 

 
 
 

Since 10 ≡ 1 mod 9, we can  square  to get  102   ≡ 1 mod 9.   Similarly,  by cubing  we get 

103 ≡ 1 mod 9, and so on. Thus, 
 

3412 = 3 × 103 + 4 × 102 + 1 × 101 + 2 × 1 ≡ 3 + 4 + 1 + 2 mod 9 
 

where the latter sum is simply the sum of the digits of 3412.  This  generalizes to give the 

result.  It follows that a number is congruent to its digit sum mod 3, because if a ≡ b mod n 

and d|n then a ≡ b mod n.  (Here n = 9 and d = 3.) 
 

This  simple  trick  has  a  useful  application.    It is a  check  on  possible  calculation  errors. 

For  example,  suppose  you  are  given the multiplication  341 × 167 = 56847 and  you  are 

suspicious of this  result.   (Perhaps  someone was sloppy or didn’t  copy it down correctly.) 

Now if this  multiplication  were true, it  would also be true mod 9.   But  341 ≡ 8 mod 9 

(just add  the digits!)   and  167 ≡ 14 ≡ 5 mod 9 so 341 × 167 ≡ 8 × 5 = 40 ≡ 4 mod 9. 

But  the answer given us was 56847 ≡ 30 ≡ 3 mod 9, and so it was in error.  This  method 

is not failsafe, but  it  is a  quick  check.16     Incidentally,  you  know that the multiplication 

1234567 × 245678 = 303305951435 is wrong.  (Hint:  look at the last digits.)  You know it’s 

wrong by checking the answer mod 10. 
 

There is another simple trick to find a number  mod 11 using its digits.  In this case, we find 

the alternating sum starting with the units column.  For example, to find 56744 mod 11, we 

compute 56743 ≡ 3 − 4 + 7 − 6 + 5 = 5 mod 11. The proof is similar to the proof above, and 

is based on the simple congruence 10 =≡ −1 mod 11. Squaring,  we get 100 =≡ 1 mod 11. 

Cubing, we get 1000 ≡ 1 mod 11, etc.  Thus, 
 

56743 = 3 + 4 × 10 + 7 × 102 + 6 × 103 + 5 × 104 ≡ 3 − 4 + 7 − 6 + 5 = 5 mod 11 
 

The general proof is the same. 
 

For example, the alleged calculation 345 × 3456 = 1129320 can be check mod 11. We have 
 

345 × 3456 ≡ (5 − 4 + 3)(6 − 5 + 4 − 3) = 4 × 2 = 8 mod 11 
 

The alleged answer is 1129320 ≡ 0 − 2 + 3 − 9 + 2 − 1 + 1 = −6 ≡ 5 6≡ 8 mod 11. The 

actual answer for this multiplication is 1192320, so the error was a simple transposition of 

digits, a common error.  The alternating sum will catch such an error.
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Possible Questions 
 

Part-B(5x2=10 marks) 
 

1 Define generalized intersection of two sets 

2..Define composition of relations with an example. 

3. Define partition of a set 

4.Define equivalence class 

5.Define composition of relations with an example 

6. Define a relation on a set with examples 

7.Define Product set 

8.Define equivalence relations 
 

 

Part-C(5x6=30 marks) 
 

1. State and prove equivalence class theorem on relations. 
 

2. R and S are “congruent modulo 3” and ”congruent modulo 4” relations respectively on the set of 

integers .Find (i) RS  (ii)RS (iii)RS  (IV)SR (v) RS. 

 
3.Determine whether the relation R on the set off all integers is reflexive,symmetric,antisymmetric 

and /or transitive, whereaRbiff (i)ab (ii)ab≥0  (iii)ab≥1  (iv)a is multiple of b 
 

 

4.If R is the relation on the set of integers such that (a,b)R ,iff 3a+4b=7n for some integer n, prove 

that R is an equivalence relation. 
 

5. If R is the relation on A={1,2,3} such that (a,b)R, iff a+b=even. Find the relational matrix 

MR.Find also the relational matrices R
-1 

,R, R
2
. 

6. If  R and S be relations on a set A represented by the matrices MR=   and 

MS=  . Find the matrices that represent  i)RS  ii)RS  iii)RS  iv)SR  v)RS 
 

 

7. If the relation R1,R2,.....R6 are defined on the set of real numbers as given below R1={(a,b)/a>b}, 

R2={(a,b)/a≥b}, R3={(a,b)/a<b},R4={(a,b)/ab},         R5={(a,b)/a=b}, R6={(a,b)/ab}. Find the 

following composite relations R1R2, R2R2, R1R4, R3R5, R5R3, R6R3, R6R4, R6R6. 

 

8..If R={(1,2),(2,4),(3,3)} and S={(1,3),(2,4),(4,2)}.Find  (i)RUS  (ii)R∩S  (iii)R-S  (iv)S-R 

(v)RS.Also verify that dom(RUS)=dom(R)Udom(S) and range(R∩S)=range(R)∩range(S) 
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