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(Deomat 10 e Universie) Department of Mathematics
(Under Section 3 of UGC Act 1956) SYLLAB US
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17MMU103 LOGIC AND SETS 6 2 0 6

Course Objective: On successful completion of course the learners gain about propositional
equivalence, relation and its applications.

Course Outcome: To enable the students to learn and gain knowledge about propositions,
negation, conjunction, disjunction, logical equivalences and counting principle.

UNIT I

Introduction, propositions, truth table, negation, conjunction and disjunction. Implications,
biconditional propositions, converse, contra positive and inverse propositions and precedence of
logical operators.

UNIT 11
Propositional equivalence: Logical equivalences.
Predicates and quantifiers: Introduction, Quantifiers, Binding variables and Negations.

UNIT 111
Sets: Subsets, Set operations and the laws of set theory and Venn diagrams. Examples of finite
and infinite sets.

UNIT IV

Finite sets and counting principle. Empty set, properties of empty set. Standard set operations.
Classes of sets. Power set of a set. Difference and Symmetric difference of two sets. Set
identities, Generalized union and intersections.

UNIT V
Relation: Product set, Composition of relations, Types of relations, Partitions. Equivalence
Relations with example of congruence modulo relation, Partial ordering relations, n-ary relations.

SUGGESTED READINGS
TEXT BOOK
1. Grimaldi R.P.,(2004). Discrete Mathematics and Combinatorial Mathematics, Pearson
Education, Pvt.Ltd, Singapore.

REFERENCES
1. Bourbaki .N(2004),Theory of sets, Springer Pvt Ltd, Paris.
2. Halmos P.R.,(2011). Naive Set Theory, Springer Pvt Ltd, New Delhi.
3. Kamke E., (2010).Theory of Sets, Dover Publishers, New York.
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4.Sharma.J.K.,(2015).Discrete mathematics, Tata Mc Graw-Hill publishing company
Ltd New Delhi.
5.Chowdhary.K.R.,(2012). Fundamentals of Discrete mathematical structures
second edition, phi learning pvtltd,New Delhi.
6.Seymour Lipschutz,Marc Lars Lipson.,(2001).Theory and problems of
discretemathematics, Tata Mc Graw-Hill publishing company Itd,New Delhi.
7.Sundaresan,V.,GanapathySubramaniam,K.S and Ganesan.K.(2009).
Discrete mathematics,ARPublications,India.

8.Richard Kohar(2016),Basic Discrete Mathematics,Logic set theory and probability.
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Lesson plan/2017-Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),

Coimbatore —641 021
Lesson Plan

Subject: Logic and sets Subject Code: 17MMP103
Class: | B.Sc Mathematics Semester:|
Lecture
S.No | Duration Topics to be covered Support Materials
(Hr)
UNIT-I
1. 1 Introduction to logic and sets R4:Ch: 12; Pg.N0:333
2. 1 Propositions R4:Ch: 12; Pg.N0:334,335
3. 1 Tutorial-I
4. 1 Truth table T1:Ch:2; Pg.N0:47-49
5. 1 Continuation of truth table T1:Ch:2;Pg.N0:50-53
6. 1 Tutorial-Il
7. 1 Negation,Conjuction R4:Ch:12; Pg.N0:335-336
8. 1 Disjunctions R4:Ch:12;Pg.N0:336-338
9. 1 Implications R4:Ch:12; Pg.N0:362-364
10. 1 Tutorial-I11
11. 1 Biconditional propositions R4:Ch:12;Pg.N0:349-350
12. 1 Continuation of Biconditional propositions | R4:Ch:12;Pg.N0:351-352
13. 1 Tutorial -1V
14, 1 Converse, R4:Ch: 12; Pg.N0:344-348
15. 1 contra positive propositions R4:Ch: 12; Pg.N0:344-348
16. 1 Continuation of contra positive R4:Ch: 12; Pg.N0:344-348
propositions
17. 1 Contra inverse propositions R4:Ch:12; Pg.N0:343-344
18. 1 Continuation of Contra inverse propositions | R4:Ch:12;Pg.N0:343-344
19. 1 Tutorial-V
20. 1 Precedence of logical operators R4: Ch: 12; Pg.N0:342-343
21. Continuation of logical operators R4: Ch: 12; Pg.N0:342-343
22. 1 Problems on logical operators R4: Ch:12; Pg.N0:346-358
23. 1 Tutorial- VI
24, 1 Recapitulation and discussion of possible
questions on unit |
Total 24 hrs
TEXT BOOK

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
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T1. Grimaldi R.P.,(2004). Discrete Mathematics and Combinatorial Mathematics, Pearson
Education, Pvt.Ltd, Singapore.

REFERENCES

R4.Sharma.J.K.,(2015).Discrete mathematics, Tata Mc Graw-Hill publishing company Itd, New

Delhi.

UNIT-I1I
1. 1 Propositional equivalence T1:Ch:2 :Pg.NO:54-55
2. 1 Logical Equivalence T1: Ch: 2; Pg. No :55-56
3. 1 Properties on logical equivalence T1: Ch: 2; Pg. No :55-56
4, 1 Tutorial-I
5. 1 Predicates :Introduction R7: Ch: 2; Pg. N0 :2.1-2.2
6. Quantifiers:Introduction R7: Ch: 2; Pg. N0 :2.1-2.2
7. 1 Tutorial-Il
8. 1 Predicates R7: Ch: 2; Pg. N0 :2.2-2.3
9. 1 Problems on predicates R7: Ch: 2; Pg. N0 :2.2-2.3
10. 1 Tutorial-111
11. 1 Properties on predicates R7: Ch: 2; Pg. N0 :2.2-2.3
12. 1 Quantifiers R7: Ch: 2; Pg. No :2.2-2.3
13. 1 Quantifiers:Universal and existential R7: Ch:2; Pg.No:2.3-2.4
14. 1 Existential R7: Ch:2; Pg.N0:2.3-2.4
15. 1 Properties of quantifiers R1: Ch: 4; Pg. No :38-41
16. 1 Tutorial-1V
17. 1 Binding Variables:Definition R7: Ch: 2; Pg. N0 :2.4-2.5
18. 1 Problems on binding variables R7: Ch: 2; Pg. N0 :2.4-2.5
19. 1 Continuation of problems on Binding | R7: Ch: 2; Pg. No :2.5-2.6
variables
20. 1 Tutorial-V
21, 1 Negations of a quantified expressions R4: Ch:12; Pg. No :336-337
22. 1 Negations — problems R7: Ch:2;Pg.N0:2.7-2.8
23. 1 Tutorial-VI
24. 1 Recapitulation and discussion of possible
guestions
Total 24 hrs
TEXT BOOK

T1. Grimaldi R.P.,(2004). Discrete Mathematics and Combinatorial Mathematics, Pearson

REFERENCES
R1. Bourbaki .N(2004),Theory of sets, Springer Pvt Ltd, Paris
R4.Sharma.J.K.,(2015).Discrete mathematics, Tata Mc Graw-Hill publishing company Itd,

New Delhi
Prepared by:Y.Sangeetha,Department of Mathematics,KAHE

Education, Pvt.Ltd, Singapore.
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R7.Sundaresan,V.,Ganapathy Subramaniam,K.S and Ganesan.K.(2009).Discrete mathematics,AR

Publications,India.

Lesson plan/2017-Batch

UNIT-I1I
1. 1 Sets: Definitions and examples T1: Ch: 3; Pg. N0:123-124
2. 1 Subsets: Definitions and examples R3: Ch: 1; Pg. No:5-8
3. 1 Examples on subsets
4. 1 Theorems on subsets T1: Ch: 3; Pg. N0:125-133
5. 1 Tutorial-I
6. 1 Set operations: Definitions and examples T1: Ch: 3; Pg. No :136-139
7. 1 Examples on set operations
8. 1 Tutorial-11
Q. 1 Laws of set theory:Definitions and example | T1: Ch:3;Pg.N0:139-140
10. 1 Examples of sets T1: Ch:3;Pg.N0:139-140
11. 1 Theorems on laws of set theory T1:Ch:3;Pg.N0:140-141
12. 1 Tutorial-I11
13. 1 Venn diagrams:Definitions T1: Ch:3, Pg. N0:140-141
14, 1 Examples on venn diagrams
15. 1 Tutorial-1Vv
16. 1 Problems on venn diagrams T1: Ch: 3; Pg. N0:142-150
17. 1 Problems on finite sets R7: Ch: 2; Pg. No :3.7-3.8
18. 1 Tutorial-V
19. 1 Theorems on finite sets R7:Ch:2:Pg.N0:3.8-3.9
20. 1 Infinite sets-Definition R7:Ch:2;Pg.N0:3.10-3.11
21. 1 Problems on infinite sets R7:Ch:2;Pg.N0:3.10-3.11
22. 1 Theorems on Infinite sets R7:Ch:2;Pg.N0:3.11-3.12
23. 1 Tutorial- VI
24. 1 Recapitulation and discussion of possible
questions
Total 24 hrs
TEXT BOOK

T1. Grimaldi R.P.,(2004). Discrete Mathematics and Combinatorial Mathematics, Pearson

REFERENCES
R3. Kamke E., (2010).Theory of Sets, Dover Publishers, New York.

Education, Pvt.Ltd, Singapore.

R7.Sundaresan,V.,Ganapathy Subramaniam,K.S and Ganesan.K.(2009). Discrete
mathematics,AR Publications,India.

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
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UNIT-IV

1. 1 Finite sets R6:Ch:1; Pg,N0:9-11
2. 1 Problems on finite sets R6:Ch:1; Pg,N0:9-11
3. 1 Counting Principle R6:Ch:1; Pg,N0:16-17
4. 1 Tutorial-I
5. 1 Empty set and R5:Ch:1; Pg,No:6-7
6. 1 Property on empty set R5:Ch:1; Pg,N0:6-7
7. 1 Tutorial-11
8. 1 Standard set operations R5:Ch:1; Pg,No:7-8
9. 1 Classes of sets R5:Ch:1; Pg.N0:8-9
10. 1 Tutorial-111
11. 1 Sets-examples R5:Ch:1; Pg.No:8-9
12. 1 Power set of a set R2:Ch:5; Pg,N0:19-21
13. 1 Problems on power set R2:Ch:5; Pg,N0:19-21
14, 1 Tutorial-1Vv
15. 1 Difference of two sets R5:Ch:1; Pg,N0:9-10
16. 1 Symmetric difference of two sets R5:Ch:1; Pg,No:10-11
17. 1 Tutorial-V
18. 1 Set identities R5:Ch:1;Pg.N0:11-12
19. 1 Generalized union R2:Ch:4;Pg.N0:12-16
20. 1 Problems on generalized union R2:Ch:4;Pg.N0:12-16
21. 1 Theorems on union R2:Ch:4;Pg.N0:12-16
22, 1 Intersections R2:Ch:4;Pg.N0:12-16
23. 1 Tutorial-VI
24. 1 Recapitulation and discussion of possible

questions

Total 24hrs
REFERENCES

R2. Halmos P.R.,(2011). Naive Set Theory, Springer Pvt Ltd, New Delhi.
R5.Chowdhary.K.R.,(2012). Fundamentals of Discrete mathematical structures,second edition,

phi learning pvt Itd,New Delhi.

R6.Seymour Lipschutz,Marc Lars Lipson.,(2001).Theory and problems of discrete

mathematics, Tata Mc Graw-Hill publishing company Itd,New Delhi.

UNIT-V

1. 1 Relation R4:Ch:3.1; Pg.N0:72-73
2. 1 Examples on relation R4:Ch:3.1; Pg.N0:72-73
3. 1 Product set R4:Ch:3.1; Pg.N0:73-74
4. 1 Tutorial-I
5. 1 Composition of relation and types of R4:Ch:3.1;

relations Pg.N0:79,80,92,93
6. 1 Types of relations R4:Pg.N0:79,80,92,93

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
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7. 1 Tutorial-Il
8. 1 Partial order relations R1:Ch:3; Pg.N0:78-79
9. 1 Equivalence relations: Definitions and R4:Ch:3;Pg.N0:82-83
problems
10. 1 Tutorial-I11
11. 1 Equivalence relations R4:Ch:3; Pg.N0:83-84
12. 1 Congruence modulo relation R4:Ch:3; Pg.N0:83-84
13. 1 Examples of congruence modulo relation R4:Ch:3; Pg.N0:83-84
14. 1 Tutorial-1Vv
15. 1 Theorem on reduced groups R4:Ch:3; Pg.N0:84-85
16. 1 Partial ordering relations: problems R4:Ch:3; Pg.N0:80-81
17. 1 Tutorial-V
18. 1 Partial ordering relations: Theorems R4:Ch:3;Pg.N0:81-82
19. 1 n-ary relations R7:Ch:1:Pg.N0:20-22
20. 1 Tutorial —VI
21. 1 Recapitulation and discussion of important
questions
22. 1 Discuss on Previous ESE question papers
23. 1 Discuss on Previous ESE question papers
24. 1 Discuss on Previous ESE question papers
Total 24 hrs
REFERENCES

R1. Bourbaki .N(2004),Theory of sets, Springer Pvt Ltd, Paris.

R4.Sharma.J.K.,(2015).Discrete mathematics, Tata Mc Graw-Hill publishing company Itd, New

Delhi.

R7.Sundaresan,V.,Ganapathy Subramaniam,K.S and Ganesan.K.(2009).Discrete
mathematics,AR Publications,India.

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
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Batch
‘&@EMY OF Higy, 5
@
S@ KARPAGAM ACADEMY OF HIGHER EDUCATION
—_— (Deemed to be university Established under Section 3 of UGC Act 1956)
obia'] EnfiahienTEniich Pollachi Main Road, Eacharani Post, Coimbatore-641 021
o, DEPARTMENT OF MATHEMATICS
Subject : Logic and sets SEMESTER: I LT P C
SUBJECT CODE: 177MMU103 CLASS : I B.Sc Mathematics 62 0 6

UNIT I

Introduction, propositions, truth table, negation, conjunction and disjunction. Implications,
biconditional propositions, converse, contra positive and inverse propositions and precedence of
logical operators.

TEXT BOOK

1. Grimaldi R.P.,(2004). Discrete Mathematics and Combinatorial Mathematics, Pearson
Education, Pvt.Ltd, Singapore.

REFERENCES

Bourbaki .N(2004), Theory of sets, Springer Pvt Ltd, Paris.

Halmos P.R.,(2011). Naive Set Theory, Springer Pvt Ltd, New Delhi.

Kamke E., (2010).Theory of Sets, Dover Publishers, New York.
Sharma.J.K.,(2015).Discrete mathematics, Tata Mc Graw-Hill publishing company Itd,
New Delhi.

bR

5. Chowdhary.K.R.,(2012). Fundamentals of Discrete mathematical structures,second
edition, phi learning pvt Itd,New Delhi.

6. Seymour Lipschutz,Marc Lars Lipson.,(2001).Theory and problems of
discrete mathematics, Tata Mc Graw-Hill publishing company Itd,New Delhi.

7. Sundaresan,V.,Ganapathy Subramaniam,K.S and Ganesan.K.(2009).
Discrete mathematics,AR Publications, India.

8. Richard Kohar(2016),Basic Discrete Mathematics,Logic set theory and probability
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Unit-1 Propositions

UNIT -1

Propositions. Compound Statements. Truth Tables

Statements (Propositions ): Sentences that claim certain things. either true or false

Notation: A. B, ...P.Q. R, .....p. q. 1, etc.

Examples of statements: Today is Monday. This book is expensive
If a number 1s smaller than 0 then it is positive.

Examples of sentences that are not statements: Close the door! What is the time?

Propositional variables: A, B, C, ..., P., Q. R, ... Stand for statements. May have true or
false value.
Propositional constants:

T —true

F - false

Basic logical connectives: NOT,:#ND, OR
Other logical connectives can be represented by means of the basic connectives

Logical connectives | pronounced Symbol in Logic
Negation NOT =, ¢
Conjunction AND A

Disjunction OR V

Conditional if then —

Biconditional if and only if oS

Exclusive or Exclusive or @®

Truth tables - Define formally the meaning of the logical operators.

The abbreviation iff means if and only if

a. Negation (NOT, ~, -, )

~P 15 true 1f and only 1f P 1s false

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE

Page 2\ 16




Unit-1 Propositions 2017-

Batch

b. Conjunction (AND, A, &&)

E Q Bae P A Q 1s true i1ff both P and Q are true. In all other

T T T cases P A Q 1s false

T F F

F T F

13 F F
c. Disjunction / Inclusive OR (OR, V, |))

P Q PVQ P VQ 1strue iff P is true or Q 1s true or both are

true.

i ) T T

T F T P V Q is false iff both P and Q are false

F 4 b T

F F F

d. Conditional , known also as implication (—)

P Q P—Q The mmplication P— Q 1s false 1ff P 1s true however
Q 1s false.

b T T

T F F In all other cases the implication 1s true

F T T

E E T

e. Biconditional (&)

P Q PoQ P+ Q 1s true iff P and Q have same values - both are
true or both are false.
T K 4 b
T F F If P and Q have different values. the biconditional 1s
3 L) E false.
F F T
f. Exclusive OR (®)
P Q P®Q P@ Q 1s true iff P and Q have different values
E £ . We say: “P or Q but not both”
T F T
F T T
E F F

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
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Precedence of the logical connectives:

Connectives within parentheses, innermost parentheses first

=3 negation

A conjunction

N disjunction

— conditional

©, D biconditional, exclusive OR

Compound Statements: Logical expressions that consist of propositional variables and logical
connectives. They may contain also propositional constants.

Evaluating compound statements : by building their truth tables

Example: PV Q

P Q -P -PVQ
T T F ¥
T F F F
F T T T
F F T ]\
PVQA-(PAQ

P Q PVQ PAQ —~(PAQ EPVQA—-(PAQ
A B -B AA-B (the letters A and B
are used as shortcuts)

o - A
o =
R

e I e I |
e B B B
s B B Mes

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
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1. Tautologies and Contradictions

A propositional expression is a tautology if and only if for all possible assignments of truth
values to its variables its truth value is T

Example: P V — P is a tautology

P =P PV=P

T E T
F T T

A propositional expression is a contradiction if and only if for all possible assignments of
truth values to its variables its truth value is F

Example: P A — P is a contradiction

P =P PASP

) B F
B d ] B

Usage of tautologies and contradictions - in proving the validity of arguments; for rewriting
expressions using only the basic connectives.

Definition: Two propositional expressions P and Q are logically equivalent.
if apd only if P & Q is a tautology. We write P=Qor P & Q.

Note that the symbols = and < are not logical connectives
Exercise:
a) Show that P — Q <> —~PV Q 1satautology.1.e. P—Q =—PVQ

P Q -P -PVQ P—Q P—Qo-PVQ

R
I
— —
— =
— = A
e e e

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE

Page 5116



Unit-1

2017-
Batch:

Propositions

2. Logical equivalences

Similarly to standard algebra, there are laws to manipulate logical expressions. given as

logical equivalences.

1. Commutative laws

2. Associative laws

w

. Distributive laws:

4. Identity

5. Complement properties

6. Double negation

7. Idempotency (consumption)

8. De Morgan's Laws

9. Universal bound laws (Domination)

10. Absorption Laws

11. Negation of T and F:

PVQ=QV P
PAQ= QAP

(P VQVR= PV(QVR)
(PAQAR= PA(QAR)

PV QAP®VR=PV (Q A R)
PAQV(®ARZ=PA(Q V R)

PV F=P
PA T=P

PV—-P=T
P A-P=F

(excluded middle)

(contradiction)
-~(—P)=P

PV P=P
PA P=P

~(PVQ=-P A Q
~(PAQ="P V Q
PV T=T

P AF=F

PV (P AQ=P
PA(PVQ=P
~T =F

FET

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
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1. Truth table of the conditional statement

P—0)

o
e

T M e
CEEE
-

P is called antecedent
Q is called consequent
Meaning of the conditional statement: The truth of P implies (leads to) the truth of Q

Note that when P is false the conditional statement is true no matter what the value of Q is. We say that in this
case the conditional statement is true by default or vacuously true.

2. Representing the implication by means of disjunction

P—Q="PVQ
P Q ~—-P P-Q —PVQ
T T F £ T
F F F F F
F T T T T
F F T T T
Same truth tables
Usage:
1. To rewrite "OR" statements as conditional statements and vice versa (for better

understanding)
2. To find the negation of a conditional statement using De Morgan's Laws

3. Rephrasing "or" sentences as "if-then' sentences and vice versa

Consider the sentence:
(1) "The book can be found in the library or in the bookstore".

Let
A=The bookcy. =~

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
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Rewrite A V B as a conditional statement

In order to do this we need to use the commutative laws, the equivalence — (— P) =P. and the
equivalence P— Q = -PVQ

Thus we have:
AVB=—-(—A)VB=—-A—B

The last expression — A — B is translated into English as
"If the book cannot be found in the library,
it can be found in the bookstore".

Here the statement "The book cannot be found in the library" is represented by — A

There 1s still one more conditional statement to consider.
AV B =B V A (commutative laws)

Then. following the same pattern we have:
BVA=—-(—-B)VA=—-B—A

The English sentence is: "If the book cannot be found in the bookstore, it can be found in the
library.

We have shown that:

AVB= ~(~A)VB=—A—B
AVB=BVA =—(—-B)VA=—-B—A

Thus the sentence "The book can be found in the library or in the bookstore'

can be rephrased as:
""If the book cannot be found in the library, it can be found in the bookstore".
""If the book cannot be found in the bookstore, it can be found in the library.

4. Negation of conditional statements

Positive: The sun shines
Negative: The sun does not shine

Positive: " If the temperature is 250°F then the compound is boiling "
Negative: ?

In order to find the negation, we use De Morgan's Laws.

Let

P = the temperature is 250°F

Q = the compound is boiling

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
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Positive: P Q = =PV Q
Negative: ~(P— Q) = ~(—~PVQ =—-(—P)AQ= PAQ

Negative: The temperature is 250°F however the compound is not boiling
IMPORTANT TO KNOW:

The negation of a disjunction is a conjunction.
The negation of a conjunction is a disjunction

The negation of a conditional statement is a conjunction. not another if-then statement

Question: Which logical connective when negated will result in a conditional statement?

5. Necessary and sufficient conditions

Definition:
"P is a sufficient condition for Q" means : if Pthen Q, P— Q
"P is a necessary condition for Q" means: if not P then not Q, ~P — ~Q
The statement ~P — ~Q is equivalent to Q — P

Hence given the statement P — Q,
P is a sufficient condition for Q, and Q is a necessary condition for P.

Examples:

If n 1s divisible by 6 then 7 is divisible by 2.
The sufficient condition to be divisible by 2 is to be divisible by 6.
The necessary condition to be divisible by 6 is to be divisible by 2

If n is odd then n is an integer.
The sufficient condition to be an integer to be odd.
ooy vuimuud B8 DERRESATY &noditipn.to g ndd ic tn he an intecer

If and only if - the L

Liv 11

ronditional
12,
Q PoeQ 0
............ T
1 i T
F F F
B F F
F T
. P < Qs true
vhenever P and Q have same values. Otherwise it 1s false. .
.. I

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
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This means that both P — Q and Q — P have to be true

P Q P—Q Q—P PsQ

K ) T ( ¥ (

F F F 2} F

F ¥ F F F

F F T T T
Contrapositive

Definition: The expression ~Q — ~P is called contrapositive of P — Q

The conditional statement P — Q and its contrapositive ~Q — ~P are equivalent.
The proof is done by comparing the truth tables

The truth table for P— Qand ~Q — P 1is:

T T F F T i &
T E F T F F
F ’E E F T 4
F E E T T E

We can also prove the equivalence by using the disjunctive representation:
P =—PNO=SQV-"P=—"Q) V-P=—Q——P

Converse and inverse

Definition: The converse of P — Q is the expression Q — P

Definition: The inverse of P — Q is the expression ~P — ~Q

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
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Neither the converse nor the inverse are equivalent to the original implication.
Compare the truth tables and you will see the difference.

P Q =R =) P=0 Q=P =P—==0
i i E B i i) i
i ) F E ¥ F ) i
F ¥ T E T F F
F F f ) () & ) i)

Valid and Invalid Arguments.

Definition: An argument is a sequence of statements. ending in a conclusion. All the statements
but the final one (the conclusian) are called premises(or assumptions. hypotheses)

Verbal form of an argument:
(1) If Socrates 1s a human being then Socrates is mortal.
(2) Socrates is a human being

Therefore (3) Socrates is mortal

Another way to write the above argument:
P—Q

2. Testing an argument for its validity

Three ways to test an argument for validity:

A. Critical rows

1. Identify the assumptions and the conclusion and assign variables to them.
2. Construct a truth table showing all possible truth values of the assumptions and the
conclusion.
Find the critical rows - rows in which all assumptions are true
4. For each critical row determine whether the conclusion is also true.
a. If the conclusion 1s true in all critical rows. then the argument is valid
b. If there 1s at least one row where the assumptions are true, but the conclusion is
false. then the argument 1s invalid

w
.

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
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B. Using tautologies
The argument is true if the conclusion is true whenever the assumptions are true.
This means: If all assumptions are true. then the conclusion is true.
"All assumptions" means the conjunction of all the assumptions.
Thus. let A1, A2. ... An be the assumptions. and B - the conclusion.
For the argument to be valid. the statement
If (A1 A A2 A... A An) then B must be a tautology - true for all assignments of values to
its variables. 1.e. its column in the truth table must contain only T
ie.
(AIAA2A...AAn)—B=T
C. Using contradictions
If the argument 1s valid. then we have (Al AA2A... AAn)—=B=T
This means that the negation of (A1 A A2 A... A An) — B should be a contradiction -

containing only F 1n its truth table

In order to find the negation we have first to represent the conditional statement as a
disjunction and then to apply the laws of De Morgan

(A1AA2A...AAn)—B=~(A1AA2A.. AAn)VB=

~AlV~A2V ... V~An VB.

The negation is:

~((A1AA2A...AAn)—B)=~(~A1 V~A2V ... V~An VB)
=AlAA2A...AAnA-B

The argument is validif A1AA2A ... AAnA~B=F

There are two ways to show that a logical form is a tautology or a contradiction:

a. by constructing the truth table
b. by logical transformations applying the logical equivalences (logical identities)
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Examples:
1. Consider the argument:
P—Q
P
Q
Testing its validity:
a. by examining the truth table:
P Q P—Q
T i ()
T F F
F i i i1
F F T
PAP—Q)—Q
by (1) = | PAP=Q)VAQ
by(10) | = | (~PV~APQ))VQ
by (1) = | (-PV~PVQ)YVQ
by(10) | = |PVEPA-Q)VQ
by@) | = |[((PVP)ACPV-QUNO
by(5) | = |[(TAGCPV-Q)VQ
by (8) =N =ENV=0)IV QO
by (2) = |-PV(QVQ
by(5) | = |~-PVT
by(7) = |T
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2. Consider the argument

P—Q

Q
P

We shall show that this argument is invalid by examining the truth tables of the assumptions and
the conclusion. The critical rows are in boldface.

P Q P—Q
T T i
T F B
F T /|
F F i

here the assumptions are true, however the
conclusion is false
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Exercise:

Show the validity of the argument:

L. PNQ (premise)
2. ~Q (premise)
Therefore P (conclusion)

a. by using critical rows
b. by contradiction using logical identities

Solution:

a. by critical rows

conclusion Premises

P Q PVQ ~Q

T T T F

E F i T Critical row
F T T F

F F F F

b. By contradiction using identities

(PVQA~Q)A ~P=
(PA-Q)V(QA~Q))A ~P=
(PA~Q)V F)A ~P=
PA~Q)A ~P=

PA~P A ~Q=FA ~Q=F
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Possible Questions

Part-B(5x2=10 marks)

1.Define proposition with example
2.Define atomic statement with example
3.Define modular statement with example
4.Define truth table.

5.Define derived connectives

6.Define Conjunction

7.Define Disjunction

8.Give two examples of converse .
9.Explain Contrapositive.

[N

9.

Part-C (5x6=30 marks)

. Construct the truth table for (P-(Q-R)) - (P-Q) - (P->R))

State the converse, contra positive and inverse of the following

i) The apple trees will bloom if it stays warm for a week.

ii) It snows whenever the wind blows from the north-east.

Write the following statement in symbolic form i)You can access the internet from campus
only if you are a computer science major or you are not a freshman, ii)You cannot ride
the roller coaster if you are under 4 feet tall unless you are older than 16 years old.
Construct the truth table for (P - (Q-S)) (RV P)

Construct the truth table for ((P-Q)-R)-S

State the converse, contra positive and inverse of the following

i)If you watch television your mind will decay.

ii) School is closed if more than 2 feet of snow falls.

Construct the truth table for (Q-R) R (P-Q)

State the converse, contra positive and inverse of the following

i)If today is Thursday, then | have a test today.

ii) I come to class whenever there is going to be a quiz.

Construct the truth table for (P~ Q) (R~ S)

10. State the converse, contra positive and inverse of the following

i)If it snows today, | will ski tomorrow.
ii) A positive integer is a prime only if it has no divisors other than 1 and itself

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE

Page 16 \ 16



KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),
Coimbatore —641 021

Subject: Logic and Sets

Subject Code: 177MMU103

Class:1 B.Sc Mathematics Semester:|I
Unit |
Propositions
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Questions choice 1 choice 2 choice 3 choice 4 answer

The equivalent statement for P and not P F T FandT none F
The implications of P P not P PorQ Pand Q PorQ
The implications of P and Q is P Q PorQ not P P
P or P "equivalent to" P is called as idempotent associative  |closure identity idempotent
not(not P) "equivalent to" P is called as Involution Absorption |Associative [none Involution
If P then Q is "equivalent to" not P or Q notPandQ [PandQ PorQ not P or Q
A statement which has true as the truth value contradiction tautolo either none tautolo
for all the assignments is called gy tautology or &Y

cantradictin
A statement which has false as the truth contradiction tautolo either none contradiction
value for all the assignments is called &Y tautolc:lgy or

caontradictin
If P has T and Q has F as their truth value,

T F Ofnone T
then P or Q has ----- as truth value
Not P or Not P or
A biconditional statement P if and only if Q (Not P or Q) and ( Q (PorQ)and|(NotPorQ) ( Q
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COMPONENTS Are ...o.ocesvveenens TRUE FALSE not true nor false FALSE
Uic
Two statement forms are logically equivalent not same truth |the same |different | the same the same

if, and only if they always have........ccccccevrrvnienene.

values

truth values

truth values

false values

truth values

P " exclusive or" Q is false if both P, Q
has ---- truth values

same

different

none

all of these

same




Unit-1II Equivalence and Quantifiers 2017

Batch
\\vgwew OF Hig,, e

E < KARPAGAM ACADEMY OF HIGHER EDUCATION
@ ‘ (Deemed to be University Established under Section 3 of UGC Act 1956)
N—N~ Pollachi Main Road, Eacharani Post, Coimbatore-641 021
et e et DEPARTMENT OF MATHEMATICS

Subject : Logic and sets SEMESTER: | LT PC

SUBJECT CODE: 177MMU103 CLASS : 1 B.Sc Mathematics 62 0 6

UNIT I
Propositional equivalence: Logical equivalences.
Predicates and quantifiers: Introduction, Quantifiers, Binding variables and Negations.

TEXT BOOK

1. Grimaldi R.P.,(2004). Discrete Mathematics and Combinatorial Mathematics, Pearson
Education, Pvt.Ltd, Singapore.

REFERENCES

Bourbaki .N(2004),Theory of sets, Springer Pvt Ltd, Paris.

Halmos P.R.,(2011). Naive Set Theory, Springer Pvt Ltd, New Delhi.

Kamke E., (2010).Theory of Sets, Dover Publishers, New York.
Sharma.J.K.,(2015).Discrete mathematics, Tata Mc Graw-Hill publishing company Itd,
New Delhi.

podPE

5. Chowdhary.K.R.,(2012). Fundamentals of Discrete mathematical structures,second
edition, phi learning pvt Itd,New Delhi.

6. Seymour Lipschutz,Marc Lars Lipson.,(2001).Theory and problems of
discrete mathematics, Tata Mc Graw-Hill publishing company Itd,New Delhi.

7. Sundaresan,V.,Ganapathy Subramaniam,K.S and Ganesan.K.(2009).

Discrete mathematics, AR Publications,India.

8. Richard Kohar(2016),Basic Discrete Mathematics,Logic set theory and probability

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
Page 1/23



Unit-1I Equivalence and Quantifiers 2017
Batch

UNIT 2

Logical Equivalences as Tautologies

The Idea, and Definition, of Logical Equivalence

In lay terms, two statements are logically equivalent when they say the same thing, albeit
perhaps in different ways. To a mathematician, two statements are called logically equivalent
when they will always be simultaneously true or simultaneously false. To see that these notions
are compatible, consider an example of a man named John N. Smith who lives alone at 12345
North Fictional Avenue in Miami, Florida, and has a United States Social Security number 987-
65-4325.1* Of course there should be exactly one person with a given Social Security number.
Hence, when we ask any person the questions, “are you John N. Smith of 12345 North Fictional
Avenue in Miami, Florida?” and “is your U.S. Social Security number 987-65-4325?" we would
be in essence asking the same question in both cases. Indeed, the answers to these two questions
would always be both yes, or both no, so the statements “you are John N. Smith of 12345 North
Fictional Avenue in Miami, Florida,” and “your U.S. Social Security number is 987-65-4325,”
are logically equivalent. The notation we would use is the following:

you are John N. Smith of 12345 North Fictional Avenue in Miami, Florida
<= your U.S. Social Security number is 987-65-4325.

The motivation for the notation “ <= > will be explained shortly.
On a more abstract note, consider the statements ~ (P v Q) and (~ P) A (~ Q). Below we
compute both of these compound statements’ truth values in one table:

PIQPVQ[~PVQ | ~P|]~Q](~P)r(~Q)
TIT T F F | F F
TIF| T F F| T F
FIT| T F T | F F
FIF| F T T | T T

the same

We see that these two statements are both true or both false, under any of the 22 = 4 possible
circumstances, those being the possible truth value combinations of the underlying, independent
component statements P and Q. Thus the statements ~ (P vQ) and (~ P) A (~ Q) are indeed
logically equivalent in the sense of always having the same truth value. Having established this,
we would write

~PVvQ) == (~P)a(~ Q).

Note that in logic, this symbol “ <=  is similar to the symbol “=" in algebra and elsewhere. *°
There are a couple of ways it is read out loud, which we will consider momentarily. For now we
take the occasion to list the formal definition of logical equivalence:

Definition: Given n independent statements P , ... P,, and two statements R, S which

are compound statements of the P, ---,P,, we say that R and S are logically equivalent,
which we then denote R <= S, if and only if their truth table columns have the same entries

for each of the 2" distinct combinations of truth values for the P;,---,P,. When R and S are
logically equivalent, we will also call R == S a valid equivalence.
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Again, this is consistent with the idea that to say statements R and S are logically equivalent
is to say that, under any circumstances, they are both true or both false, so that asking if R is
true is—functionally—exactly the same as asking if S is true. (Recall our example of John N.
Smith’s Social Security number.)

Note that if two statements’ truth values always match, then connecting them with —— vyields
a tautology. Indeed, the bi-implication yields T if the connected statements have the same truth
value, and F otherwise. Since two logically equivalent statements will have matching truth values
in all cases, connecting with — will always vyield T, and we will have a tautology. On the other
hand, if connecting two statements with —« forms a tautology, then the connected statements
must have always-matching truth values, and thus be equivalent. This argument vyields our first
theorem:1®

Theorem : Suppose R and S are compound statements of P... P,. Then R and S are
logically equivalent if and only if R «— S is a tautology.

The theorem above gives us the motivation behind the notation <= . Assuming R and S
are compound statements built upon component statements P; - - - , P, then

R = S means that R «— S isa tautology. (11

To be clear, when we write R —— S we understand that this might have truth value T or F, i.e.,
it might be true or false. However, when we write R <= S, we mean that R — S is always
true (i.e., a tautology), which partially explains why we call R <= S a valid equivalence. 1’

To prove R == S, we could (but usually will not) construct R — S, and show that it is
a tautology. We do so below to prove

(09 = (P

{2 :

7 R<-}-I—>S {
i A—0 e v

FIU|lFVV F 9)[~Fr ]~V F) = 2 —[(~ P) A (~ Q)]

T(T [ T F F | F F T

TIF| T F F T F T

F|T T F T F F T

F|F F T T T T T

However, our preferred method will be as in the previous truth table, where we simply show
that the truth table columns for R and S have the same entries at each horizontal level, i.e.,
for each truth value combination of the component statements. That approach saves space
and reinforces our original notion of equivalence (matching truth values). However it is still
important to understand the connection between ——  and <= , as given in (1.1).
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Equivalences for Negations

Much of the intuition achieved from studying symbolic logic comes from examining various logical
equivalences. Indeed we will make much use of these, for the theorems we use throughout the
text are often stated in one form, and then used in a different, but logically equivalent form.
When we prove a theorem, we may prove even a third, logically equivalent form.

The first logical equivalences we will look at here are the negations of the our basic operations.
We already looked at the negations of ~ P and P v Q. Below we also look at negations of P A Q,
P — Qand P — Q. Historically, (1.3) and (1.4) below are called De Morgan’s Laws, but
each basic negation is important. We now list these negations.

~(~P) &= P 1.2)
~(PVvQ == (~P)r(~Q (1.3)
~(PAQ == (~P)Vv(~Q (1.4)

~(P -—>Q) &= PA(~Q (1.5)
~(P — Q == [PA(~QIVvI[Qa(~P)]L (1.6)

Fortunately, with a well chosen perspective these are intuitive. Recall that any statement R can
also be read “R is true,” while the negation asserts the original statement is false. For example

~ R can be read as the statement “R is false,” or a similar wording (such as “it is not the case

that R”). Similarly the statement ~ (P v Q) is the same as “ ‘P or Q’ is false.” With that it is

not difficult to see that for ~ (P v Q) to be true requires both that P be false and Q be false.
For a specific example, consider our earlier P and Q:

P : I will eat pizza
Q: I will drink soda
P vQ: | will eat pizza or I will drink soda

~ (P vQ): Itisnotthe case that (either) I will eat pizza or I will drink soda
(~ P)A(~ Q) : Itisnotthe case that | will eat pizza, and it is not the case that |
will drink soda

That these last two statements essentially have the same content, as stated in (1.3), should be
intuitive. An actual proof of (1.3) is best given by truth tables, and can be found on page 15.

Next we consider (1.5). This states that ~ (P —— Q) <= P A (~ Q). Now we can read
~ (P —— Q) as “it is not the case that P — Q,” or “P —— Q is false.” Recall that there
was only one case for which we considered P —— Q to be false, which was the case that P was
true but Q was false, which itself can be translated to P A (~ Q). For our earlier example, the
negation of the statement “if | eat pizza then I will drink soda” is the statement “l will eat
pizza but (and) | will not drink soda.” While this discussion is correct and may be intuitive, the
actual proof (1.5) is by truth table:

PIQ[P-Q[~P -Q[P[~Q[PACQ
T[T T F T F F
T|F F T T T T
FIT T F T F F
F|F T F F T F
\ /
the same
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We leave the proof of (1.6) by truth tables to the exercises. Recall that P «— Q states that
we have P true if and only if we also have Q true, which we further translated as the idea that we
cannot have P true without Q true, and cannot have Q true without P true. Now ~ (P «— Q)
is the statementthat P —— Q is false, which means that P is true and Q false, or Q is true and
P false, which taken together form the statement [P A (~ Q)] Vv [Q A (~ P)], as reflected in (1.6)
above. For our example P and Q from before, P «— Q is the statement “l will at pizza if and

only if I will drink soda,” the negation of which is “I will eat pizza and not drink soda, or | will
drink soda and not eat pizza.”

Another intuitive way to look at these negations is to consider the question of exactly when
is someone uttering the original statement lying? For instance, if someone states P A Q (or some
English equivalent), when are they lying? Since they stated “P and Q,” it is not difficult to see
they are lying exactly when at least one of the statements P, Q is false, i.e, when P is false or
Q is false,’® i.e., when we can truthfully state (~ P) v (~ Q). That is the kind of thinking one
should employ when examining (1.4), that is ~ (P A Q) &= (~ P)V (~ Q), intuitively.

Equivalent Forms of the Implication

In this subsection we examine two statements which are equivalent to P — Q. The first is

more important conceptually, and the second is more important computationally. We list them
both now before contemplating them further:

P—-Qe= (~Q — (~P) ()]
P—Q <= (~P)vQ. (1.8)

We will combine the proofs into one truth table, where we compute P — Q, followed in turn

by (~ Q) —— (~ P)and (~ P) vQ.

PTIQQP-Q]~Q]~FPTHQ->0P)~PJTQ]TP)VQ
| I I F F | F | |
T|F F T | F F F |F F
FIT| T F | T T T|T T
F|F T T| T T T |F T

the same

The form (1.7) is important enough that it warrants a name:

Definition Given any implication P —— Q, we call the (logically equivalent) statement
(~ Q) — (~ P) its contrapositive (and vice-versa, see below).

In fact, note that the contrapositive of (~ Q) —— (~ P)would be [~ (~ P)] —— [~ (~ Q)], i.e.,
P— Q soP — Qand (~ Q) — (~ P) are contrapositives of each other.
We have proved that P — Q, its contrapositive (~ Q) — (~ P), and the other form

(~ P) v Q are equivalent using the truth table above, but developing the intuition that these
should be equivalent can require some effort. Some examples can help to clarify this.
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P oI will eat pizza
Q : I will drink soda
P — Q: If | eat pizza, then I will drink soda
(~ Q) — (~ P) : If I do not drink soda, then I will not eat pizza
(~ P)vQ: I will not eat pizza, or | will drink soda.

Perhaps more intuition can be found when Q isa more natural consequence of P. Consider the
following P, Q combination which might be used by parents communicating to their children.
P : you leave your room messy
Q : you get spanked
P —— Q: if you leave your room messy, then you get spanked
(~ Q) — (~ P) :ifyou do not get spanked, then you do (did) not leave your room messy
(~ P) v Q:you do not leave your room messy, or you get spanked.

A mathematical example could look like the following (assuming X is a “real number,” as dis-
cussed later in this text):

P:x=10
Q : x> =100
P — Q:ifx =10, then x? =100
(~ Q) — (~ P):ifx? =100, then x =10
(~P)vQ:x=10or x? =100.

The contrapositive is very important because many theorems are given as implications, but
are often used in their logically equivalent, contrapositive forms. However, it is equally important
to avoid confusing P —— Q with either of the statements P «—— Q or Q —— P. For instance,
in the second example above, the child may get spanked without leaving the room messy, as
there are quite possibly other infractions which would result in a spanking. Thus leaving the
room messy does not follow from being spanked, and leaving the room messy is not necessarily
connected with the spanking by an “if and only if.” In the last, algebraic example above, all the
forms of the statement are true, but x? = 100 does not imply x = 10. Indeed, it is possible that
x = -10. In fact, the correct bi-implication is x? = 100 «— [(x = 10) v (x = -10)].

Other Valid Equivalences

While negations and equivalent alternatives to the implication are arguably the most important
of our valid logical equivalences, there are several others. Some are rather trivial, such as

PAP & P &= P VP (1.9)
Also rather easy to see are the “‘commutativities” of A, v and ——:

PAQ == QAP, PvQ == QVP, Pe— Q &= Q« P. (1.10)
There are also associative rules. The latter was in fact a topic in the previous exercises:

PAQAR) &= (P AQ) AR (1.12)
PVQVR) &= (P VvQ) VR (1.12)
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However, it is not so clear when we mix together v and A. In fact, these “distribute over
each other” in the following ways:

PAQVR) &= (P AQ V(P AR), (1.13)
PVQAR) &= (PvQ) AP vR). (1.14)

We prove the first of these distributive rules below, and leave the other for the exercises.

PIOIRJQVR[PAQRVR)[PAQ[PAR[(P AQ V(P AR)
T 1017 T T T T T
T|TI|F T T T F T
TIF|T T T F T T
T|F|F F F F F F
FIT [T T F F F F
FIT|F T F F F F
FIFI|T T F F F F
FIF|F F F F F F
the same

To show that this is reasonable, consider the following:

P : I will eat pizza; Q
2 1 will drink cola;
R : I will drink lemon-lime soda.

Then our logically equivalent statements become

P A(Q Vv R) : I will eat pizza, and drink cola or lemon-lime soda;
(P AQ) Vv (P AR) : I will eat pizza and drink cola, or
I will eat pizza and drink lemon-lime soda.

Table 1.3, page 22 gives these and some further valid equivalences. It is important to be able
to read these and, through reflection and the exercises, to be able to see the reasonableness of
each of these. Each can be proved using truth tables.

For instance we can prove that P — Q <= (P — Q) A (Q —— P), justifying the choice
of the double-arrow symbol ——:

PIQP—Q[P —~Q[Q—P[P —~QrQ—PF)
T[T T T T T
T|F F F T F
FIT F T F F
F|F T T T T
the same

This was discussed in Example 1.1.4 on page 7.
For another example of such a proof, we next demonstrate the following interesting equiva-
lence:
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P-— (QAR) == (P — QA(P - R)

PIQJRTQARTJP — QAR)JP — Q[P = RTFP — QAP —R)
T[T[T T T T T T
T|T|F F F T F F
TIF|T F F F T F
T|F|F F F F F F
FIT][T T T T T T
FIT|F F T T T T
FIF|T F T T T T
FIF|F F T T T T
the same

This should be somewhat intuitive: if P is to imply Q AR, that should be the same as P implying
Q and P implying R. This equivalence will be (1.33), page 22. According to (1.34) below it, we
can replace A with v and get another valid equivalence.

Still one must be careful about declaring two statements to be equivalent. These are all
ultimately intuitive, but intuition must be informed.’® For instance, left to the exercises are
some valid equivalences which may seem counter-intuitive. These are in fact left off of our
Table 1.3 because they are somewhat obscure, but we include them here to illustrate that not
all equivalences are transparent. Consider

(PvQ) —— R &= (P — R) A(Q —— R), (1.15)
(PAQ) —— R &= (P — R) v(Q — R). (1.16)

Upon reflection one can see how these are reasonable. For instance, we can look more closely at
(1.15) with the following P, Q and R:

P : 1 eat pizza,
Q : | eat chicken,
R : 1 drink cola.

Then the left and right sides of (1.15) become

(P vQ) — R :If | eat pizza or chicken, then I drink cola
(P —— R) A(Q —— R) : If | eat pizza then | drink cola, and if | eat chicken then I drink cola.

In fact (1.16) is perhaps more difficult to see.

At the end of the chapter there will be an optional section for the reader interested in achieving
a higher level of symbolic logic sophistication. That section is devoted to finding and proving
valid equivalences (and implications as seen in the next section) without relying on truth tables.
The technique centers on using a small number of established equivalences to rewrite compound
statements into alternative, equivalent forms. With those techniques one can quickly prove (1.15)
and (1.16), again without truth tables. It is akin to proving trigonometric identities, or the leap
from memorizing single-digit multiplication tables and applying them to several-digit problems.
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PAP & P &= PVP (1.17)
~(~P) &= P (1.18)
~(PVvQ) == (~P)r(~Q) (1.19)
~(PAQ == (~P)v(~Q (1.20)
~FP - Q) &= PA(~Q (1.21)
~(P = Q) == [Pa(~QlvIQa(~P)] (1.22)
PvQ = QvVP (1.23)
PAQ = QAP (1.249)
PVQVR) &= (PVQ) VR (1.25)
PAQAR) &= (P AQ) AR (1.26)
PAQVR) &= (PAQ V(P AR) (1.27)
PVQAR) &= (PvQ AP VR) (1.28)
P—Q = (~P)vQ (1.29)
P—-Qe&= (~Q — (~P) (1.30)
P—Q = ~[PA(~ Q)] (1.31)
Pe= Q&= (~P)— (~Q (1.32)
P—->QAR) &= P —-QarP — R (1.33)
P—->QVR) &= (P —-QvVv(FP — R (1.34)
P—-QAQ —P) &= P —Q (1.35)
P—-9rQ—=RAR—P) == P—QrQ—R)
AP «— R) (1.36)

Table 1.3: Table of common walid logical equivalence.

For a glance at the process, we can look at such a proof of the equivalence of the contrapositive:
P—-Q = (~ Q) — (~ P). To do so, we require (1.29), that P —— Q <= (~ P)Vv Q.

The proof runs as follows:

P-—Q &= (~P)vQ
= QV(~P)
= [~ (~ QIV(~P)
= (~Q - (~P).

The first line used (1.29), the second commutativity (1.23), the third that Q &= ~ (~ Q)
(1.18), and the fourth used (1.29) again but with the part of “P ” played by (~ Q) and the part
of “Q” played by (~ P). This proof is not much more efficient than a truth table proof, but
for (1.15) and (1.16) this technique of proofs without truth tables is much faster. However that
technique assumes that the more primitive equivalences used in the proof are valid, and those are
ultimately proved using truth tables. The extra section which develops such techniques, namely
Section 1.6, is supplemental and not required reading for understanding sufficient symbolic logic
to aid in developing the calculus. For that we need only up through Section 1.4.
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Circuits and Logic

While we will not develop this next theory deeply, it is worthwhile to consider a short
intro- duction. The idea is that we can model compound logic statements with electrical
switching circuits.?® When current is allowed to flow across a switch, the switch is considered
“on” when the statement it represents has truth value T and current can flow through the
switch, and “off” and not allowing current to flow through when the truth value is F. We can
decide if the compound circuit is “on” or “off” based upon whether or not current could flow
from one end to the other, based on whether the compound statement has truth value T or F.
The analysis
can be complicated if the switches are not necessarily independent (P is “on” when ~ P is “off”
for instance), but this approach is interesting nonetheless.

For example, the statement P v Q is represented by a parallel circuit:

P

-— | |, out

Q

If either P or Q ison (T), then the current can flow from the “in” side to the “out” side of the
circuit. On the other hand, we can represent P A Q by a series circuit:

n P —M o out

Q

Of course P A Q is only true when both P and Q are true, and the circuit reflects this: current
can flow exactly when both “switches” P and Q are “on.”

It is interesting to see diagrams of some equivalent compound statements, illustrated as
circuits. For instance, (1.27), i.e., the distributive-type equivalence

PAQVR) &= (PAQ V(P AR)

can be seen as the equivalence of the two cicruits below:

— Q —
in 4 P out
—eo
R
P Q
in out
P R
—— —eo
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In both circuits, we must have P “on,” and also either Q or R for current to flow. Note that in
the second circuit, P is represented in two places, so it is either “on” in both places, or “off” in
both places. Situations such as these can complicate analyses of switching circuits but this one
is relatively simple.

We can also represent negations of simple statements. To represent ~ P we simply put “~ P~
into the circuit, where it is “on” if ~ P is true, i.e, if P is false. This allows us to construct
circuits for the implication by using (1.29), i.e, that P — Q &= (~ P)Vv Q:

~P

out

Q

We see that the only time the circuit does not flow is when P is true (~ P is false) and Q is
false, so this matches what we know of when P — Q is false. From another perspective, if P
is true, then the top part of the circuit won’t flowso Q must be true, for the whole circuit to be
“on,” or “true.”

When negating a whole circuit it gets even more complicated. In fact, it is arguably easier
to look at the original circuit and simply note when current will not flow. For instance, we know
~ P AQ) &= (~ P)v(~ Q) sowe can construct P A Q:

in o =) . out

Q

and note that it is off exactly when either P is off or Q is off. We then note that that is exactly
when the circuit for (~ P) v (~ Q) is on.

~Q

There are, in fact, electrical/mechanical means by which one can take a circuit and “negate”
its truth value, for instance with relays or reverse-position switch levers, but that sub ject is more

complicated than we wish to pursue here.

It is interesting to consider P —— Q as a circuit. It will be “on” if P and Q are both “on”
or both “off,” and the circuit will be “off” if P and Q do not match. Such a circuit is actually
used commonly, such as for a room with two light switches for the same light. To construct such

a circuit we note that

P—Qe= P —QrQ—P)
== [(~P)VQIA[~Q VP]

We will use the last form to draw our diagram:
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in out

Q P

The reader is invited to study the above diagram to be convinced it represents P «—— Q,
perhaps most easily in the sense that, “you can not have one (P or Q) without the other, but
you can have neither.” While the above diagram does represent P —— Q by the more easily
diagrammed [(~ P) v Q] A [(~ Q) v P], it also suggests another equivalence, since the circuits
below seems to be functionally equvialent. In the first, we can add two more wires to replace
the “center” wire, and also switch the ~ Q and P, since (~ Q) v P isthe same as P v (~ Q):

~P ~Q

in ., OUtL

n out

This circuit represents [(~ P) A (~ Q)] V[P A Q], and so we have (as the reader can check)
P— Q== [(~P)A(~Q]VI[PAQ] (1.37)

which could be added to our previous Table 1.3, page 22 of valid equivalences. It is also consistent
with a more colloguial way of expressing P —— Q, such as “neither or both.”

Incidentally, the circuit above is used in applications where we wish to have two switches
within a room which can both change a light (or other device) from on to off or vice versa. When
switch P is “on,” switch Q can turn the circuit on or off by matching P or being its negation.
Similarly when P is “off.” Mechanically this is accomplished with “single pole, double throw

(SPDT)” switches.
. \ /
in 4 &) \\ / . oOut
Q l '\
/
/ \

“« N

In the above, the switch P isin the “up” position when P is ‘true, and “down” when P is false.
Similarly with Q.
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Because there are many possible “mechanical” diagrams for switching circuits, reading and
writing such circuits is its own skill. However, for many simpler cases there is a relatively easy
connection to our symbolic logic.

The Statements T and F

Just as there is a need for zero in addition, we have use for a symbol representing a statement
which is always true, and for another symbol representing a statement which is always false. For
convenience, we will make the following definitions:

Definition  Let T represent any compound statement which is a tautology, i.e., whose
truth value is always T. Similarly, let F represent any compound statement which is a contra-
diction, i.e., whose truth value is always F.

We will assume there is a universal T and a universal F, i.e., statements which are respectively
true regardless of any other statements’ truth values, and false regardless of any other statements’
truth values. In doing so, we consider any tautology to be logically equivalent to T, and any
contradiction similarly equivalent to F.21

So, for any given Py ---, P,, we have that T is exactly that statement whose column in the
truth table consists entirely of T’s, and F is exactly that statement whose column in the truth
table consists entirely of F’s. For example, we can write

Pv(~P) e= T; (1.38)
PA(~P) e= F. (1.39)

These are easily seen by observing the truth tables.

Pll~P[PV(~P)[PA(~P)

T F T F

F T T F

We see that P v (~ P) is always true, and P A (~ P) is always false. Anything which is always
true we will dub T, and anything which is always false we will call F. In the table above, the

third column represents T, and the last column represents F.
From the definitions we can also eventually get the following.

PVT & T (1.40)
PAT &= P (1.41)
PVF & P (1.42)
PAF & F. (1.43)

Ln fact it is not difficult to see that all tautologies are logically equivalent. Consider the tautologies P v (~ P),

P — Q) «—[(~Q —— (~ P)],and R —— R. A truth table for all three must contain independent component
statements P, Q R, and the abridged version of the table would look like

PTQTRJPVEP)]TP —-Q «—[~Q — (~P)I[R—R
Ll Ll Ll L L T
T(T|F T T T
TIF|T T T T
TIF|F T T T
F T T T T T
FIT|F T T T
FIF|T T T T
FIF|[F T T T

So when all possible underlying independent component statements are included, we see the truth table columns
of these tautologies are indeed the same (all T’s!). Similarly all contradictions are equivalent.
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To demonstrate how one would prove these, we prove here the first two, (1.40) and (1.41),
using a truth table. Notice that all entries for T are simply T:

T P

P

4w
i

—
— 4

Equivalence (1.40) is demonstrated by the equivalence of the second and third columns, while
(1.41) is shown by the equivalence of the first and fourth columns. The others are left as exercises.
These are also worth reflecting upon. Consider the equivalence P AT <= P. When we use

A to connect P to a statement which is always true, then the truth of the compound statement
only depends upon the truth of P. There are similar explanations for the rest of (1.40)—(1.43).
Some other interesting equivalences involving these are the following:

T—>P = P (1.44)
P—F &< ~P. (1.45)

We leave the proofs of these for the exercises. These are in fact interesting to interpret. The
first says that if a true statement implies P, that is the same as in fact having P. The second
says that if P implies a false statement, that is the same as having ~ P, i.e., as having P false.
Both types of reasoning are useful in mathematics and other disciplines.

If a statement contains only T or F, then in fact that statement itself must be a tautology
(T) or a contradiction (F). This is because there is only one possible combination of truth
values. For instance, consider the statement T —— F, which is a contradiction. One proof is in
the table:

T[F[T —F
T[F F

Since the component statement T — F always has truth value F, it is a contradiction. Thus
T —-F e F.
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Quantifiers

In this section we introduce quantifiers, which form the last class of logic symbols we will consider
in this text. To use quantifiers, we also need some notions and notation from set theory. This
section introduces sets and quantifiers to the extent required for our study of calculus here. For
the interested reader, Section 1.5 will extend this introduction, though even with that section
we would be only just beginng to delve into these topics if studying them for their own sakes.
Fortunately what we need of these topics for our study of calculus is contained in this section.

Sets

Put simply, a set is a collection of objects, which are then called elements or members of the
set. We give sets names just as we do variables and statements. For an example of the notation,
consider a set A defined by

A=4{235711,13 17}.

We usually define a particular set by describing or listing the elements between “curly braces”
{ } (so the reader understands it is indeed a set we are discussing). The defining of A above was
accomplished by a complete listing, but some sets are too large for that to be possible, let alone
practical. As an alternative, the set A above can also be written

A = {x| x is a prime number less than 18}.

The above equation is usually read, “A is the set of all x such that x is a prime number less
than 18.” Here x is a “dummy variable,” used only briefly to describe the set.*> Sometimes it
is convenient to simply write

A = {prime numbers between 2 and 17, inclusive}.

(Usually “inclusive” is meant by default, so here we would include 2 and 17 as possible elements,
if they also fit the rest of the description.) Of course there are often several ways of describing
a list of items. For instance, we can replace “between 2 and 17, inclusive” with “less than 18,”
as before.

Often an ellipsis ““---” is used when a pattern should be understood from a partial listing.
This is particularly useful if a complete listing is either impractical or impossible. For instance,
the set B of integers from 1 to 100 could be written

B ={1,23,100}.

To note that an object is in a set, we use the symbol €. For instance we may write 5 € B,
read “5 is an element of B.” To indicate concisely that 5, 6, 7 and 8 are in B, we can write
5,6,7,8 B.

Just as we have use for zero in addition, we also define the empty set, or null set as the set
which has no elements. We denote that set . Note that x € @ is always false, i.e.,

X el = F,

because it is impossible to find any element of any kind inside @. We will revisit this set repeatedly
in the optional, more advanced Section 1.5.
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The number line representing the set R of real numbers, with a few points
plotted. On this graph, the hash marks fall at the integers.

Of course for calculus we are mostly interested in sets of numbers. While not the most
important, the following three sets will occur from time to time in this text:

Natural Numbers® : N={1,234 -} (1.67)
Integers: zZ={--,-3-2,-1,01,23, -}, (1.68)
(P,ge2) A(@=0) . (1.69)

Rational Numbers: (%=

Here we again use the ellipsis to show that the established pattern continues forever in each of
the cases N and Z. The sets N, Z and Q are examples of infinite sets, i.e., sets that do not have
a finite number of elements. The rational numbers are those which are ratios of integers, except
that division by zero is not allowed, for reasons we will consider later.*”

For calculus the most important set is the set R of real numbers, which cannot be defined
by a simple listing or by a simple reference to N, Z or Q. One intuitive way to describe the
real numbers is to consider the horizontal number line, where geometric points on the line are
represented by their displacements (meaning distances, but counted as positive if to the right
and negative if to the left) from a fixed point, called the origin in this context. That fixed
point is represented by the number 0, since the fixed point is a displacement of zero units from
itself. In Figure 1.2 the number line representation of R is shown. Hash marks at convenient
intervals are often included. In this case, they are at the integers. The arrowheads indicate the
number line is an actual line and thus infinite in both directions. The points —2.5 and 4.8 on the
graph are not integers, but are rational nymbers, since they can be written —25/10 = -5/2, and
48/10 = 24/5, respectively. The points 2 and = are real, but not rational, and so are called
irrational. To summarize,

Definition The set of all real numbers is the set R of all possible displacements, to the
right or left, of a fixed point 0 on a line. If the displacement is to the right, the number is the
positive distance from 0. If to the left, the number is the negative of the distance from 0.8

Thus
R = {displacements from 0 on the number line}. (1.70)

This is not a rigorous definition, not least because “right” and “left” require a fixed perspective.
Even worse, the definition isreally a kind of “circular reasoning,” since we are effectively defining
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the number line in terms of R, and then defining R in terms of (displacements on) the number
line. We will give a more rigorous definition in Chapter 2 for the interested reader. For now this
should do, since the number line is a simple and intuitive image.

Quantifiers

The three quantifiers used by nearly every professional mathematician are as follow:

universal quantifier: VvV, read, “for all,” or “for every;”

existential quantifier: 3, read, “there exists;”
uniqueness quantifier: !, read, ‘“unique.”

The first two are of equal importance, and far more important than the third which is usually
only found after the second. Quantified statements are usually found in forms such as:

(Yx € S)P (x), i.e., for all x €S, P(x) is true;

(Ix € S)P (x), i.e., there exists an x € S such that P (x) is true;

(A'x € S)P (x), i.e., there exists a unique (exactly one) x € S such that
P (x) is true.

Here S is a set and P (x) is some statement about X. The meanings of these quickly become
straightforward. For instance, consider
(X eR)(X +x =2x) : for all x eR, X +X = 2x;
(Ax e R)(x +2 =2): there exists (an) x € R such that x +2 = 2;
(Ax e R)(x +2 =2): there exists a unique x € R such that x +2 = 2.

All three quantified statements above are true. In fact they are true under any circumstances,
and can thus be considered tautologies. Unlike unguantified statements P, Q, R, etc., from our
first three sections, a quantified statement is either true always or false always, and is thus, for
our purposes, equivalent to either T or F. Each has to be analyzed on its face, based upon known
mathematical principles; we do not have a brute-force mechanism analogous to truth tables to

analyze these systematically.*® For a couple more short examples, consider the following cases
from algebra which should be clear enough:

(YxeR)(0-x=0) = T;
(Ix e R)(X?= -1) <= F.

The optional advanced section shows how we can still find equivalent or implied statements from
quantified statements in many circumstances.

Statements with Multiple Quantifiers

Many of the interesting statements in mathematics contain more than one quantifier. To il-
lustrate the mechanics of multiply quantified statements, we will first turn to a more worldly
setting. Consider the following sets:

M = {men},

W = {women}.
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In other words, M is the set of all men, and W the set of all women. Consider the statement®
(Ym € M)(Aw € W)[w loves m]. (1.71)

Set to English, (1.71) could be written, “for every man there exists a woman who loves him.”%!
So if (1.71) is true, we can in principle arbitrarily choose a man m, and then know that there
is a woman w who loves him. It is important that the man m was quantified first. A common
syntax that would be used by a logician or mathematician would be to say here that, once our
choice of a man is fixed, we can in principle find a woman who loves him. Note that (1.71) allows
that different men may need different women to love them, and also that a given man may be
loved by more than (but not less than) one woman.
Alternatively, consider the statement

(Aw € W)(Ym € M)[w loves m]. (1.72)

A reasonable English interpretation would be, “‘there exists a woman who loves every man.”
Granted that is a summary, for the word-for-word English would read more like, “there exists
a woman such that, for every man, she loves him.” This says something very different from
(1.71), because that earlier statement does not assert that we can find a woman who, herself,
loves every man, but that for each man there is a woman who loves him.%?

We can also consider the statement

(Ym € M)(Yw € W)[w loves m]. (1.73)

This can be read, “for every man and every woman, the woman loves the man.” In other words,
every man is loved by every woman. In this case we can reverse the order of quantification:

(Yw € W)(Ym € M)[w loves m]. (1.74)

In fact, if the two quantifiers are the same type—both universal or both existential—then the
order does not matter. Thus

(Ym e M)(Yw € W)[w loves m] == (Yw € W)(Ym € M)[w loves m],
(Am e M)(Fw e W)[w loves m] == (Iw € W)(Im € M)[w loves m].

In both representations in the existential statements, we are stating that there is at least one
man and one woman such that she loves him. In fact that above equivalence is also valid if we
replace 3 with 3!, though it would mean then that there is exactly one man and exactly one
woman such that the woman loves the man, but we will not delve too deeply into uniqueness
here.

Note that in cases where the sets are the same, we can combine two similar quantifications
into one, as in

(" x eR)(VYy eR)x+y=y+Xx] &= (¥X,yeR)x+y=y+X]. (1.75)

Similarly with existence.
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However, we repeat the point at the beginning of the subsection, which is that the order does
matter if the types of quantification are different.
For another, short example which is algebraic in nature, consider

(Yx € R)(IK € R)(x =2K). (True.) (1.76)

This is read, “for every x € R, there exists K € R such that x = 2K.” That K = x/2 exists
(and is actually unique) makes this true, while it would be false if we were to reverse the order
of quantification:

(IK € R)(¥x € R)(x = 2K). (False.) 1.77)

Statement (1.77) claims (erroneously) that there exists K € R so that, for every x € R, x = 2K..
That is impossible, because no value of K is half of every real number x. For example the value
of K which works for x =4 is not the same as the value of K which works for x = 100.

* *° Detour: Uniqueness as an Independent Concept

We will have occasional statements in the text which include uniqueness. However, most of those

will not require us to rewrite the statements in ways which require actual manipulation of the

uniqueness quantifier. Still, it is worth noting a couple of interesting points about this quantifier.
First we note that uniqueness can be formulated as a separate concept from existence, inter-

estingly instead requiring the universal quantifier.

Definition Uniqueness is the nation that if x;, x, € S satisfy the same particular state-
ment P ( ), then they must in fact be the same object. That is, if x;,x; € S and P(xy) and
P (x2) are true, then X; = X,. This may or may not be true, depending upon the set S and the
statement P ().

Note that there is the vacuous case where nothing satisfies the statement P (), in which case the
uniqueness of any such hypothetical object is proved but there is actually no existence. Consider
the following, symbolic representation of the uniqueness of an object x which satisfies P (x):>2

(", y € S)I(P(X) AP(Y) — x=Yy] (1.78)

Finally we note that a proof of a statement such as (3!'x € S)P (x) is thus usually divided
into two separate proofs:

(1) Existence: (Ix € S)P (X);
(2) Uniqueness: (Yx,y € S)[(P(X) AP(y)) —— x=Y].

For example, in the next chapter we rigorously, axiomatically define the set of real numbers R.
One of the axioms® defining the real numbers is the existence of an additive identity:

(3z e R)(¥x € R)(z + x = X). (1.79)

‘The above statement indeed says that any two elements x, y € S which both satisfy P must be the same.
Note that we use a single arrow here, because the statement between the brackets []is not likely to be a tautology,
but may be true for enough cases for the entire quantified statement to be true. Indeed, the symbols= and
<= belong between quantified statements, not inside them.

'Recall that an axiom is an assumption, usually self-evident, from which we can logically argue towards theo-
rems. Axioms are also known as postulates. If we attempt to argue only using “pure logic” (as a mathematician
does when developing theorems, for instance), it eventually becomes clear that we still need to make some assump-
tions because one can not argue “from nothing.” Indeed, some “starting points” from which to argue towards
the conclusions are required. These are then called axioms.

The word “axiomatic” is often used colloquially to mean clearly evident and therefore not requiring proof. In
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In fact it follows quickly that such a “z” must be unique, so we have
(3'z e R)(Yx e R)(z + x = Xx). (1.80)

To prove (1.80), we need to prove (1) existence, and (2) uniqueness. In this setting, the existence
is an axiom so there is nothing to prove. We turn then to the uniqueness. A proof is best written
in prose, but it is based upon proving that the following is true:

(Vz1, z2 € R)[(z1 an additive identity) A (z, an additive identity) —— z; = z,].

Now we prove this. Suppose z; and z, are additive identities, i.e., they can stand in for z in
(1.79), which could also read (3z € R)(Yx € R)(x = z + x). Note the order there, where the
identity z (think “zero”) is placed on the left of x in the equation x =z + x. So, assuming zi, Z»
are additive identities, we have:

Z1=2,+17; (since z, is an additive identity)
=z1+2; (since addition is commutative—order is irrelevant)
=2 (since z; is an additive identity).

This argument showed that if z; and z, are any real numbers which act as additive identities,
then z; = z,. In other words, if there are any additive identities, there must be only one. Of
course, assuming its existence we call that unique real number zero. (It should be noted that the
commutativity used above is another axiom of the real numbers. We will list fourteen in all.)

The distinction between existence and uniqueness of an object with some property P is often
summarized as follows:

(1) Existence asserts that there is at least one such object.
(2) Uniqueness asserts that there is at most one such object.

If both hold, then there is exactly one such object.

Negating Universally and Existentially Quantified Statements

For statements with a single universal or existential quantifier, we have the following negations.

~ [(Yx € S)P (X)] == (Ix € S)[~ P (X)], (1.81)
~ [(Ax e S)P (x)] == (¥x € S)[~ P (X)], (1.82)

The left side of (1.81) states that it is not the case that P (x) is true for all x € S; the right
side states that there isan x € S for which P (x) is false. We could ask when is it a lie that for
all x, P (x) is true? The answer is when there is an x for which P (x) is false, i.e., ~ P (X) is true.

The left side of (1.82) states that it is not the case that there exists an x € S so that P (x)
is true; the right side says that P (x) is false for all x € S. When is it a lie that there is an x
making P (x) true? When P (x) is false for all x.

Thus when we negate such a statement as (Yx)P (x) or (Ix)P (x), we change V to 3 or vice-
Versa, and negate the statement after the guantifiers.
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Example Negate (Yx € S)[P(x) —— Q(X)].
Solution: We will need (1.21), page 22, namely ~ (P — Q) == P A (~ Q).
~ [(1x e S)(P (x) — QX)) == (Ax €S)[~ (P (x) — Q(X))]
== ([@Ax €S)P(x) A (~ (QC)NI

The above example should also be intuitive. To say that it is not the case that, for all x € S,
P(X) —— Q(x) isto say there exists an x so that we do have P (x), but not the consequent Q(X).

Example 2 "7 Negate (Ix € S)[P (X) A Q(X)].
Solution: Here we use ~ (P AQ) &= (~ P) Vv (~ Q), so we can write

~ [@xeS)(P () A Q)] == (¥X)[(~ P (X)) v (~ (Q)))I.

This last example shows that if it is not the case that there exists an x € S so that P (x) and
Q(x) are both true, that isthe same as saying that for all x, either P (x) is false or Q(x) is false.

Negating Statements Containing Mixed Quantifiers

Here we simply apply (1.81) and (1.82) two or more times, as appropriate. For a typical case of
a statement first quantified by v, and then be 3, we note that we can group these as follows:

(Yx eR)(Fy €SP (x, y) == (¥x eR)[(Ay € S)P (x, y)].
(Here “R ™ is another set, not to be confused with the set of real numbers R.) Thus

~ [(Yx e R)3Fy € S)P (x, y)] == ~ {(¥x e R)[(Fy € S)P (x, Y)I}
== (Ix e R{~ [(Aye S)P (x, )]}
= (Ix e R)(Vy € S)[~ P (x, V)]

Ultimately we have, in turn, the ¥’s become 3’s,the 3I’sbecome V’s, the variables are quantified
in the same order as before, and finally the statement P is replaced by its negation ~ P. The
pattern would continue no matter how many universal and existential quantifiers arise. (The
uniqueness quantifier is left for the exercises.) To summarize for the case of two quantifiers,

~ [(Yx € R)(Ay € S)P (x, y)] == (Ix € R)(Vy € S)[~ P (X, ¥)] (1.83)
~ [(Axe R)(Yy €SP (X, y)] == (¥x € R)(Ay € S)[~ P (X, y)]. (1.84)
Example y Consider the following statement, which is false:

(Yx € R)(Ay € R)[xy =1].

One could say that the statement says every real number x has a real number reciprocal y. This
is false, but before that is explained, we compute the negation which must be true:

~ [(yx e R)(Ay e R)(xy =1)] &= (AIx e R)(Vy e R)(xy =1).

Indeed, there exists such an x, namely x =0, such that xy =1 for all y.
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In the above, we borrowed one of the many convenient mathematical notations for the negations
of various symbols. Some common negations follow:

~ X =y) = x=y,
~x<y) = xz2vy,
~ X<y = x>y,

~ (X €S) &= x6e
S.

Of course we can negate both sides of any one of these and get, for example, X € S <= ~ (x 6€
S). Reading one of these backwards, we can have ~ (x 2 y) &= x<y.
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Possible Questions
Part-B(5x2=10 marks)

1.Define tautology.

2.Define quantifier

3.Define predicate.

4.Define contingency
5.Define contradiction
6.Explain logical equivalence
7.Explain binding variables
8.Define Negations

Part-C(5x6=30 marks)
1. Show that the following is a tautology implication P(QR)(PQ)(PR)
2. Let Q(X,y,z) be the set “x+y=z".what are yhe truth values of the set xyZ q(x,y,z) and
zxY q(x,y,2)

3. Show that P(QP)P(PQ)

4. Let Q(x,y) denote “x + y=0”. what are the truth value of the quantification yxQ(x,y)and
xyQ(x.y)

5. Show that (PQ)(P(PQ))(PQ) (use only the laws)
6. Let P(x) be the set “x spends more than six hours every week day in class”, where the universe of

discourse for x is the set of students. Express each of the following quantifications in English: a)
XP(x) b)xP(x) c)x P(x) d)xP(x)

7. Simplify the statement using the laws of logic:(P Q R) (P Q) (PR)
8. Use quantifiers to express each of the following:
(1) All humming birds are richly colored
(ii) No large birds line on honey
(iii) Birds that do not line honey are dull in color
(iv) Humming birds are small
9. Show that (P(QR))(QR) (P R)R
10.Express the set (i)”’Everyone has exactly one best friend” (ii) If somebody is female and is a
parent ,then this person is someone’s mother as a logical expression.
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Possible Questions
Questions Choice 1 Choice 2 Choice 3 Choice 4 Answer
) minimal i i minimal
e functionally . maximal functionally .
{"and", "not"}is called a ---- set functionally complete functionally
complete complete
complete complete
functionall functionall functionall
{"and", "or", "not"} is called a ---- set y . y complete functional y
complete incomplete complete
F iables th f ibl
or.two variables the numb.er of possible 5 28n 0 In Y
assignment of truth values is
The substitution instance of a tautology is a tautology contradiction identically false all of these tautology
Equivalence is a ----- relation reflexive symmetric transitive asymmetric symmetric
A statement "A" is said to imply another if (not B) then
- . P if Athen B if B then A if (not A) then B ( ) if Athen B
statement "B" if ---- is a tautology A
The dual of "and" is "and" “or" “not and" "not or" “or"
The dual of " or" is "and" “or" “not and" "not or" "and"
The dual of NANDis NAND NOR "or" "and" NOR
The dual of NOR is NAND NOR "or" "and" NAND

The other name for penfis

product of sums
canonical form

sum of products
canonical form

product of products
canonical form

sum of sums
canonical

form

product of sums
canonical form

The other name for pdnfis

product of sums
canonical form

sum of products
canonical form

product of products
canonical form

sum of sums
canonical
form

sum of products
canonical form

Pand Q, not P

The minterms are Pand Q not Pand Q P and Q, not P and Q | none of these and Q
PorQ,Por |PorQ, Pornot
The max terms are PorQ PornotQ notPorP
not Q Q
The statement B follows logically from the if AthenBis a if AthenBisa if Bthen A isa if Bthen Aisa| ifAthenBisa
statement A if only if tautology contradition tautology contradiction tautology
The Rule P in the inference is used to indicate . . . .
. . Premise conclusion contradiction none Premise
the introduction of the
Symbolize th ion"E tudent i
ymPbolize the expression  tvery student In (w)(if q(x) then | (yx)(if p(x) then | (yx)(if notq(x) then | (yx)(ifa(x) |(yx)(if q(x) then

this class has studied logic" by taking p(x) : x
studied logic, q(x) : x is in this class

p(x))

qa(x))

p(x))

then not p(x))

p(x))

Symbolize the statement "This cricket ball is white"

W(b)

B(w)

W(b.c)

C(b,w)

W(b)




Symbolize the statement "Jack is taller than Smith" T(j,s) T(s,j) I(s,1) J(t,s) T(j,s)
Symbolize the statement " Canada is to the north of United
" N(c,s) N(s,c) S(n,c) S(c,n) N(c,s)
States
. e . there exists
Universal Quantifier is For all x For some x there exists x o X For all x
. e . there exists .
Essential Quantifier is For all x For some x there exists x o X there exists x
In the statement "The cricket ball is white", the . . .
) . white ball cricket ball none white
predicate is
In the statement "Every mammal is warm blooded",
. . warm blooded mammal warm none warm blooded
the predicate is
In the statement "Every mammal is warm blooded",
o warm blooded mammal warm none mammal
the object is
negation (there . i . negation (there
. i i ) (there exists xa | negation (there exists .
Use quantifiers to say that V3 is not a rational ---------- exists x a ) ) exists x a
number rational rational xa rational none rational
A)= N)£=
number)(x~2=3) number)(x"2=3) number)(x"2#=3) number)(x*2=3)
(Forall x) (A(x)) | A(x)implies (For | (there exists x )(A(x)) Alx) implies | (there exists x
Existential Specification is a rule of the form implies A(y) All y;A(y)) implies Aly) (there exists | )(A(x)) implies
y)(Aly)) Aly)
A(x) impli A(x) impli
. . L (Forallx) (A(x)) | A(x)implies (For | (there exists x )(A(x)) () |mp.|es (x) imp .|es
Existential Generalisation is a rule of the form implies A(y) all y)(A(Y)) implies Afy) (there exists (there exists
y)(Aly)) y)(A(y))
(For all x) (A(x)) | A(x) implies (For | (there exists x )(A(x) | %) TMPIES | coaiy) (a)
Universal Specification is a rule of the form o P o (there exists o
implies A(y) all y)(A(y)) implies A(y) implies A(y)
y)(Aly))
(Forallx) (A(x)) | A(x)implies (For | (there exists x )(A(x)) Alx) implies A(x) implies (For
Universal Generalisation is a rule of the form L P . (there exists g
implies A(y) all y)(A(y)) implies A(y) all y)(A(y))
y)(A(y))
Symbolize the statement" Every mammal is (Forall x) (there exists x ) (Forall x ) (W(x))— (tr;e(:;(i))(;'c'ts X (Forall x)
—
warm blooded" (M(x))— W(x)) (M(x))— W(x)) M(x)) Mix)) (M(x))— W(x))
"x is shorter than y" can be symbolized as G(x,y) X(g) Y(g) G(y,x) G(x,y)
The painting is red can be symbolized as R(p) P(r) S(p,r) Rand P R(p)
The rules used to check the validity of the premises is US,UG ES,EG both none both
The statement form pv(~p) iS a........c.ccevvenvenenn... Satisfiable Unsatisfiable Tautology Invalid Tautology
The statement form pM(~p)isa.......................... contradiction Unsatisfiable Tautology Invalid contradiction
if pthen
The inverse of “if pthen q” 1S ..., if pthen q | if pthen ¢ if pthen ¢ q if pthen ¢
The Some men are clever can be symbolized as (there exists (for all (there exists x)(M(x) or (for all (there exists
X)(MX)—C0) | ¥(M)—Clx) c(x)) XJ(MO)or |y M(x)—Cix)

Clv))
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UNIT 3

Sets

In this section we introduce set theory in its own right. We also apply the earlier symbolic
logic to the theory of sets (rather than vice-versa). We also approach set theory visually and
intuitively, while simultaneously introducing all the set-theoretic notation we will use throughout
the text. To begin we make the following definition:

Definition A set is a well-defined collection of objects.

By well-defined, we mean that once we define the set, the objects contained in the set are
totally determined, and so any given object is either in the set or not in the set. We might also
note that in a sense a set is defined (or determined) by its elements; sets which are different
collections of elements are different sets, while sets with exactly the same elements are the same
set. We can also define equality by means of quantifiers:

Definition Given two sets A and B, we defined the statement A = B as being equivalent
to the statement (Yx)[(x € A) — (x € B)]:

A=B == (YX)[(x €A) — (x €B)]. (1.85)

If we allow ourselves to understand that x is quantified universally (that is, we assume “(¥x)”
is understood) unless otherwise stated, we can write, instead of A=B, that x e A == x € B.

When we say a set is well-defined we also mean that once defined the set is fixed, and does not
change. If elements can be listed in a table (finite or otherwise),%” then the order we list the
elements is not relevant; sets are defined by exactly which objects are elements, and which are
not. Moreover, it is also irrelevant if objects are listed more than once in the set, such as when
we list Q = {xX | x =p/q, p,g €Z, q=0}. In that definition 2 = 2/1 = 4/2 = 6/3 is “listed”
infinitely many times, but it is simply one element of the set of rational numbers Q. While it
actually is possible to “list” the elements of Q if we allow for the elipsis (- - -), it is more practical
to describe the set, as we did, using some defining property of its elements (here they were ratios
of integers, without dividing by zero), as long as it is exactly those elements in the set—no more
and no fewer—which share that property. One usually uses a “dummy variable” such as x and
then describes what properties all such x in the set should have. We could have just as easily
used z or any other variable.>®

7 7  Subsets and Set Equality

When all the elements of a set A are also elements of another set B, we say A is a subset of B. To
express this in set notation, we write A € B. In this case we can also take another perspective,
and say B is a superset of A, written B 2 A. Both symbols represent types of set inclusions,
i.e., they show one set is contained in another.

A useful graphical device which can illustrate the notion that A € B and other set relations
is the Venn Diagram, as in Figure 1.3. There we see a visual representation of what it means
for A ¢ B. The sets are represented by enclosed areas in which we imagine the elements reside.
In each representation given in Figure 1.3, all the elements inside A are also inside B.
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_ Three possible Venn Diagrams illustrating A € B. (Note that in the first
figure, for example, B is the set of all elements within the interior of the larger circle.) What
is important is that all elements of A are necessarily contained in B as well. We do not
necessarily know “where” in A are the elements of A, except that they are in the area which
is marked by A. Since the area in A is also in B, we know the elements of A must also be
contained in B in the illustrations above.

Using symbolic logic, we can define subsets, and the notation, as follows:
ACB < (YX)(xeA -— x eB). (1.86)

The role of the implication which is the main feature of (1.86) should seem intuitive. Perhaps
less intuitive are some of the statements which are therefore logically equivalent to (1.86):

AcB == (W X)(xeA — xeB)
== (VX)[(~ (x €A)) v (x €B)]
= (YX)[(x € A) v (x € B)],

which uses the fact thatP —— Q <= (~ P)VvQ, and

AcB == (¥X)[(~ (x €B)) — (~ (x €A))]
== (IX)[(x €B) — (x £A)]
which uses the contrapositive P —— Q <= (~ Q) —— (~ P). Note that we used the

shorthand notation ~ (x € A) == x ¢ A. With the definition (1.86) we can quickly see two
more, technically interesting facts about subsets:

Theorem For any sets A and B, the following hold true:
ACA, and (1.87)
A=B == (AcCB)A(B cA). (1.88)

Now we take a moment to remind ourselves of what is meant by theorem:

Definition 3 A theorem is a statement which we know to be true because we have a proof
of it. We can therefore accept it as a tautology.

A theorem’s scope may be very limited (the above theorem only applies to sets and subsets as we
have defined them.) Furthermore, a theorem’s scope and “truth” depends upon the axiomatic
system upon which it rests, such the definitions we gave our symbolic logic symbols (which
might not have always been completely obvious to the novice, as in our definitions of “v” and
“longrightarrow™). For another example there is Euclidean geometry, the theroems of which
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o)

Venn Diagram illustrating N € Z € Q € R.

rest upon Euclid’s Postulates (or axioms, or original assumptions), while other geometric systems
begin with different postulates.

Nonetheless once we have the definitions and postulates one can say that a theorem is a
statement which is always true (demonstrated by some form of proof), and in fact therefore
equivalent to T (introduced on page 26). We will use that fact in the proof of (1.87), but
for (1.88) we will instead demonstrate the validity of the equivalence ( == ). For the first
statement’s proof, we have

ACA &= (VX)[XeA) — (xeA)] « T.

Note that the above proof is based upon the fact that P —— P is a tautology (i.e., equivalent

to T). A glance at a Venn Diagram with a set A can also convince one of this fact, that any set
is a subset of itself. For the proof of (1.88) we offer the following:

A=B <= (YX)[(x €A) — (x €B)]
== (V[((x €A) — (x €B)) A ((x €B) — (x € A))]
== (WX)[(xeA) — (xeB) A (W X)[(xeB) — (xeA)
== (ACB)A(B cA), ged®

A consideration of Venn diagrams also leads one to believe that for all the area in A to be
contained in B and vice versa, it must be the case that A = B. That A = B implies they are
mutual subsets is perhaps easier to see.

Note that the above arguments can also be made with supersets instead of subsets, with 2
replacing € and —- replacing —.

One needs to be careful with quantifiers and symbolic logic, as is discussed later in Section ??,
but in what we did above the (V¥x) effectively went along for the ride.

Of course, Venn Diagrams can accommodate more than two sets. For example, we can
illustrate the chain of set inclusions

NcZcQcR (1.89)

using a Venn Diagram, as in Figure 1.4. Note that this is a compact way of writing six different
set inclusions: N c Z Nc Q Nc R Z <c Q Z ¢ R ad Q < R
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a<b a=>bh
b

For any two real numbers a and b, we have the three cases concerning their
relative positions on the real line: a <b,a =b, a > b. Arrows indicate the possible positions
of a for the three cases.

Intervals and Inequalities in R

The number line, which we will henceforth dub the real line, has an inherent order in which the
numbers are arranged. Suppose we have two numbers a, b € R. Then the order relation between
a and b has three possibilities, each with its own notation:

1. a is to the left of b, written a < band spoken “a is less than b.”
2. a is to the right of b, written a > b and spoken “a is greater than bh.”

3. a is at the same location as b, written a = b and spoken “a equals b.”

Figure 1.5 shows these three possibilities. Note that “less than™ and “greater than™ refer to
relative positions on the real line, not how “large” or “small” the numbers are. For instance,
4 < 5 but -5 < -4, though it is natural to consider -5 to be a “larger” number than -4.
Similarly -1000 < 1.0 Of course ifa <b <= b > a. We have further notation which
describes when a is left of or at b, and when a is right of or at b:

4. a is at or left of b, written a < band spoken “a is less than or equal to b.”

5. a is at or right of b, written a > b and spoken “a is greater than or equal to b.”

Using inequalities, we can describe intervals in R, which are exactly the connected subsets of
R, meaning those sets which can be represented by darkening the real line at only those points
which are in the subset, and where doing so can be theoretically accomplished without lifting
our pencils as we darken. In other words, these are “unbroken” subsets of R. Later we will see
that intervals are subsets of particular interest in calculus.

Intervals can be classified as finite or infinite (referring to their lengths), and open, closed or
half-open (referring to their “endpoints”). The finite intervals are of three types: closed, open
and half-open. Intervals of these types, with real endpoints a and b, where a < b (though the idea
extends to work with a < b) are shown below respectively by graphical illustration, in interval
notation, and using earlier set-theoretic notation:
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open: %‘ % (a,b) xeR a<x<b
closed: g g [a,b] xeR a<x<h
half-open: g % [a,b) xeR a<x<b
half-open: % g (a, b] xeR a<x<hbh

Note that a < x < bis short for (a < X) A (x <b), i.e,, (x >a) A (x <b). The others are similar.

We will concentrate on the open and closed intervals in calculus. For the finite open interval
above, we see that we do not include the endpoints a and b in the set, denoting this fact with
parentheses in the interval notation and an “open” circle at each endpoint on the graph. What is
crucial to calculus is that immediately surrounding any point x € (a, b) are only other points still
inside the interval; if we pick a point x anywhere in the interval (a, b), we see that just left and
just right of x are only points in the interval. Indeed, we have to travel some distance—albeit
possibly short—to leave the interval from a point x € (a, b). Thus no point inside of (a, b) is on
the boundary, and so each point in (a, b) is “safely” on the interior of the interval. This will be
crucial to the concepts of continuity, limits and (especially) derivatives later in the text.

For a closed interval [a, b], we do include the endpoints a and b, which are not surrounded
by other points in the interval. For instance, immediately left of a is outside the interval [a, b],
though immediately right of a is on the interior.? We denote this fact with brackets in the
interval notation, and a “closed” circle at each endpoint when we sketch the graph. Half-open
(or half-closed) intervals are simple extensions of these ideas, as illustrated above.

For infinite intervals, we have either one or no endpoints. If there is an endpoint it is either
not included in the interval or it is, the former giving an open interval and the latter a closed
interval. An open interval which is infinite in one direction will be written (a, o) or (-oo, a),
depending upon the direction in which it is infinite. Here o (infinity) means that we can move
along the interval to the right “forever,” and —oco means we can move left without end. For
infinite closed intervals the notation is similar: [a, ) and (-0, a]. The whole real line is also
considered an interval, which we denote R = (-o0, ©).%2 When an interval continues without
bound in a direction, we also darken the arrow in that direction. Thus we have the following:
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open: Cé: > (a, ) xeR x>a
open: - g (—o0,a) xeR x<a
closed: g > [a, ) XxXeR x=a
closed: = g (—o0,a] xeR x<a

Note that we never use brackets to enclose an infinite ““endpoint,” since —co, co are not actual
boundaries but rather are concepts of unending continuance. Indeed, —oo, co ¢ R, i.e., they are

not points on the real line, so they can not be boundaries of subsets of R; there are no elements
“beyond” them.

Most General Venn Diagrams

Before we get to the title of this subsection, we will introduce a notion which we will have
occasional use for, which is the concept of proper subset.

Definition If (A € B) A(A=B), we call A aproper subset of B, and write A c B%®,

Thus A ¢ B means A is contained in B, but A is not all of B. Notethat Ac B = ACB
(justas P AQ == P). When we have that A is a subset of B and are not interested in
emphasizing whether or not A = B (or are not sure if this is true), we will use the “inclusive”
notation <. In fact, the inclusive case is less complicated logically (just as P v Q is easier than
P XOR Q) and so we will usually opt for it even when we do know that A = B. We mention
the exclusive case here mainly because it is useful in explaining the most general Venn Diagram
for two sets A and B.

Of course it is possible to have two sets, A and B, where neither is a subset of the other.
Then A and B may share some elements, or no elements. In fact, for any given sets A and B,
exactly one of the following will be true:

case 1: A=B;

case 2. Ac B, i.e, Aisa proper subset of B;

case 3;: B c A i.e, B isa proper subset of A;

case 4: A and B share common elements, but neither is a subset of the other;

case 5: A and B have no common elements. In such a case the two sets are said to be disjoint.

Even if we do not know which of the five cases is correct, we can use a single illustration which
covers all of these. That illustration is given in Figure 1.6, with the various regions labeled. (We
will explain the meaning of U in the next subsection.) To see that this covers all cases, we take
them in turn:
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Most general Venn diagram for two arbitrary sets A and B. Here U is some
superset of both A and B.

A
A%

The most general Venn Diagram for three sets A, B and C.

case 1: A =B: all elements of A and B are in Region IV; there are no elements in Regions Il
and 111

case 2: A c B: there are elements in Regions Il and IV, and no elements in Region II.
case 3: B c A: there are elements in Regions Il and IV, and no elements in Region I11.

case 4. Aand B share common elements, but neither is a subset of the other: there are elements
in Region II, 111 and IV.

case 5: A and B have no common elements: there are no elements in Region V.

Note that whether or not Region | has elements is irrelevant in the discussion above, though it
will become important shortly.

The most general Venn diagram for three sets is given in Figure 1.7, though we will not
exhaustively show this to be the most general. It is not important that the sets are represented
by circles, but only that there are sufficiently many separate regions and that every case of an
element being, or not being, in A, B and C is represented. Note that there are three sets for an
element to be or not to be a member of, and so there are 2% = 8 subregions needed.

Set Operations

When we are given two sets A and B, it is natural to combine or compare their memberships
with each other and the universe of all elements of interest. In particular, we form new sets
called the union and intersection of A and B, the difference of A and B (and of B and A), and
the complement of A (and of B). The first three are straightforward, but the fourth requires
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) Rt

Some Venn Diagrams involving two sets A and B inside a universal set U, which
is represented by the whole “box.”

B-A

some clarification. Usually A and B contain only objects of a certain class like numbers, colors,
etc. Thus we take elements of A and B from a specific universal set U of objects rather than an
all-encompassing universe of all objects. It is unlikely in mathematics that we would need, for
instance, to mix numbers with persons and planets and verbs, so we find it convenient to limit
our universe U of considered objects. With that in mind (but without presently defining U), the
notat