KARPAGAM UNIVERSITY Karpagam Academy Of Higher Education (Deemed University Established Under Section 3 of UGC 1956) Coimbatore-21 Faculty of Arts , Science and Humanities Department of Mathematics UG Program (CBCS)- (2016 – 2019) Batch

Program: B.Sc Mathematics

SEMESTER – III											
16MMU301	Numerical Methods0440601003										
16MMU302	Ring Theory and Linear Algebra I	08	40	60	100	3	6				
16MMU303	Multivariate Calculus	08	40	60	100	3	6				
16MMU304A	Logic and Sets	06	40	60	100	3	4				
16MMU304B	Programming with C and C++										
16MMU311	Numerical Methods (Practical)	04	40	60	100	3	2				
	Semester total	30	200	300	500	-	22				

16MMU301LTPC4004

Scope: This course provides a deep knowledge to the learners to understand the basic concepts of Numerical Methods which utilize computers to solve Engineering Problems that are not easily solved or even impossible to solve by analytical means.

Objectives: To enable the students to study numerical techniques as powerful tool in scientific computing.

UNIT I

High speed computation: Algorithms, Convergence, Errors: Relative, Absolute, Round off, Truncation. Transcendental and Polynomial equations: Bisection method -False Position method - Secant method - Rate of convergence of these methods.

UNIT II

System of linear algebraic equations: Gaussian Elimination - Gauss Jordan methods - Gauss Jacobi method - Gauss Seidel method and their convergence analysis LU decomposition - Power method.

UNIT III

Error bounds - Finite difference operators. Gregory forward and backward difference interpolation Central difference Lagrange and inverse Lagrange interpolation formula.

UNIT IV

Numerical Differentiation and Integration: differentiation-

UNIT V

Runge-Kutta methods of orders two and four. **SUGGESTED READINGS**

TEXT BOOK

1. Jain. M.K., Iyengar. S.R.K., and Jain R.K., (2012). Numerical Methods for Scientific and Engineering Computation, New Age International Publishers, New Delhi .

REFERNCES

- 1. Bradie B., (2007). A Friendly Introduction to Numerical Analysis, Pearson Education, India,
- 2. Gerald C.F., and Wheatley P.O., (2006). Applied Numerical Analysis, Sixth Edition, Dorling Kindersley (India) Pvt. Ltd., New Delhi.

3. Uri M. Ascher and Chen Greif., (2013). A First Course in Numerical Methods, Seventh Edition., PHI Learning Private Limited.

4. John H., Mathews and Kurtis D. Fink., (2012). Numerical Methods using Matlab, Fourth Edition., PHI Learning Private Limited.

5. Sastry S.S., (2008). Introductory methods of Numerical Analysis, Fourth edition, Prentice Hall of India, New Delhi.

Which may also be written as

$$x_{k+1} = x_k - \frac{(x_k - x_{k-1})f(x_k)}{(f(x_k) - f(x_{k-1}))}.$$

Example 5: Using Regula falsi method compute the real root of the equation $xe^x = 2$. Correct to four decimal places.

Solution: Here $f(x) = xe^{x} - 2$ and f(0) = -2, f(0.5) = -1.175

f(0.8) = -0.2196, f(0.9) = 0.2136 and f(1.0) = 0.715

therefore root lies between 0.8 and 0.9

we take $x_0 = 0.8$ and $x_1 = 0.9$

therefore
$$x_2 = x_0 - \frac{f(x_0)(x_1 - x_0)}{f(x_1) - f(x_0)}$$

 $x_2 = 0.8 + \frac{0.2196(0.9 - 0.8)}{0.2136 + 6.2196} = 0.851$
 $\therefore \qquad f(x_2) = -0.00697$

thus $x_3 = 0.851 + \frac{0.00697}{0.2136 + 0.00697} (0.9 - 0.851)$

$$x_3 = 0.851 + 0.0015484 = 0.85256$$

UNIT-I Algebraic and transedental equations 2016-Batch

Now $f(x_3) = -0.0001977$

Thus $x_4 = 0.85256 + \frac{0.0001977}{0.2136 + 0.0001977} (0.9 - 0.85256)$

 $x_4 = 0.85256 + 0.000043868 = 0.8526$

Again, $f(x_4) = -0.0000239$

 $x_5 = 0.8526 + \frac{0.0000239}{0.2136 + 0.0000239} (0.9 - 0.8526)$

 $x_5 = 0.8526 + 0.0000053$

= 0.8526

∴ Approximate root is 0.8526

Newton-Raphson Method (or Method of Tangents)

Newton's method gives a better approximation of a root as compared to the approximations obtained by bisection method or Regula falsi method. This method consists of replacing the part of the curve between point $[x_0, f(x_0)]$ and the x-axis by means of the tangent to the curve at the point and is described graphically in the adjoining Figure 4. The intercept

OT on the x-axis, of the tangent to the curve at the point P is taken as the first approximation.

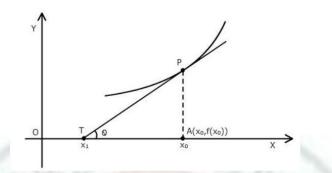


Figure 4

From the given figure 4 we have,

$$\tan \theta = \frac{f(x_0)}{x_0 - x_1}, \quad \text{but} \quad \tan \theta = \frac{dy}{dx} = f'(x_0)$$

This gives, $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$

Repeating the process replacing x_0 by x_1 , we get the second approximation as

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$
 and so on.

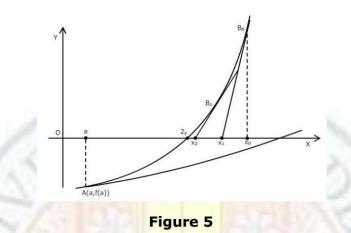
In general, after (n+1) iterations, we have

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, \dots$$

Obviously this method fails if the slope of the tangent to the curve becomes zero.

As an alternative approach

Draw a tangent to the curve at B_0 which meets x-axis at x_1 . Then draw a tangent at B_1 which meets x-axis at x_2 . Continuing this process, the root ξ is obtained as shown in Fig. 5.



Suppose $\xi = x + h$ where h is a small quantity. Then applying Taylor's formula, we have

$$0 = f(x+h) \approx f(x) + h f'(x)$$
$$h = \frac{-f(x)}{f'(x)}$$

Thus $\xi = x + h = x - \frac{f(x)}{f'(x)}$

In general,

or

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, ...$$

Example 6: Find the root of the equation

 $\cos x - xe^x = 0$ using

(i) Regula falsi Method.

(ii) Newton Raphson Method.

Solution:
$$f(x) = \cos x - xe^x$$

Here f(0)=1 and $f(1)=\cos 1-e=-2.17798$

(i) We take $x_0 = 0$ and $x_1 = 1$. By Regula falsi method

$$x_{2} = x_{1} - \frac{(x_{1} - x_{0})}{(f(x_{1}) - f(x_{0}))} f(x_{1})$$
$$= 1 - \frac{(1 - 0)}{(-2.17798 - 1)} (-2.17798)$$

= 0.314665

 $f(x_2) = 0.51987$

$$\therefore \qquad x_3 = x_2 - \frac{(x_2 - x_1)}{(f(x_2) - f(x_1))} f(x_2)$$
$$= 0.314665 - \frac{(0.314665 - 1)}{0.51987} (0.51987)$$
$$= 0.446728$$

Continuing the process, we get $x_4 = 0.491015$, $x_5 = 0.5099461$, $x_6 = 0.5152$.

(ii) Let the initial value of the root be $x_0 = 1$

By Newton-Raphson Method

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

or

$$x_{n+1} = x_n - \frac{\cos x_n - x_n e^{x_n}}{-\sin x_n - e^{x_n} - x_n e^{x_n}}$$

$$= x_n + \frac{\cos x_n - x_n e^{x_n}}{\sin x_n + (1 + x_n)e^{x_n}}$$
$$x_1 = x_0 + \frac{\cos x_0 - x_0 e^{x_0}}{\sin x_0 + (1 + x_0)e^{x_0}}$$

$$=1 + \frac{\cos 1 - e}{\sin 1 + 2e} = 0.65308$$

 $f(x_1) = -0.4606$

•••

$$x_2 = x_1 + \frac{\cos x_1 - x_1 e^{x_1}}{\sin x_1 + (1 + x_1) e^{x_1}} = 0.531343$$

Continuing the process, we get

$$x_3 = 0.51791, x_4 = 0.51776$$

Example 7: Using Newton-Raphson Method compute $\sqrt{5}$.

Solution: $\sqrt{5}$ will be calculated as the root of the equation $x^2 - 5 = 0$.

So that $f(x) = x^2 - 5$ and f'(x) = 2x.

The starting value of the root is obviously 2 hence we take $x_0 = 2$.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - 5}{2x_n}$$
$$= x_n - \frac{1}{2}x_n + \frac{5}{2x_n}$$
$$= \frac{x_n}{2} + \frac{5}{2x_n} = \frac{1}{2}\left(x_n + \frac{5}{x_n}\right)$$
$$\therefore \text{ for } n = 0, x_1 = \frac{1}{2}\left(2 + \frac{5}{2}\right) = 2.25$$

$$n = 1, x_2 = \frac{1}{2} \left(2.25 + \frac{5}{2.25} \right) = 2.236111$$

$$n = 2, x_3 = \frac{1}{2} \left(2.236111 + \frac{5}{2.236111} \right) = 2.2360679$$

$$n = 3, x_4 = \frac{1}{2} \left(2.2360679 + \frac{5}{2.2360679} \right) = 2.23606797$$

Thus, the value of the root is 2.23606797 correct to nine significant digits.

Rate of Convergence

In numerical analysis, the speed at which a convergent sequence approaches its limit is called the **rate of convergence**. We now study the rate at which the iteration method converges if the initial approximation to the root is sufficiently close to the desired root.

Order of a Convergence

Order of a root

- A root of order m = 1 is called a simple root.
- A root of order m > 1 is called a multiple root.
- A root of order *m* = 2 is sometimes called as double root and so on.

Rate of Convergence of Secant Method

We assume that ξ is a simple root of f(x) = 0.

Let us define the error \dot{o}_k as

 $\dot{\mathbf{o}}_k = x_k - \boldsymbol{\xi}$

The secant method reads,

$$x_{k+1} = x_k - \frac{(x_k - x_{k-1})f(x_k)}{f(x_k) - f(x_{k-1})}$$
(3)

To figure out the convergence order, we have to find a relation between \dot{o}_{k+1} and \dot{o}_k .

Using Taylor's theorem, we have

$$f(x_{k}) = f(\xi + (x_{k} - \xi)) = f(\xi + \dot{\mathbf{Q}}_{k})$$
$$= f(\xi) + f'(\xi)\dot{\mathbf{Q}}_{k} + \frac{1}{2}f''(\xi)\dot{\mathbf{Q}}_{k}^{2} + 0(\dot{\mathbf{Q}}_{k}^{3}).$$

Similarly we can write $f(x_{k-1})$ as

$$f(x_{k-1}) = f(\xi + (x_{k-1} - \xi)) = f(\xi + \dot{o}_{k-1})$$

$$= f(\xi) + f'(\xi)\dot{\mathbf{o}}_{k-1} + \frac{1}{2}f''(\xi)\dot{\mathbf{o}}_{k-1}^{2} + 0(\dot{\mathbf{o}}_{k-1}^{3}).$$

Furthermore, we have

$$x_k - x_{k-1} = (x_k - \xi) - (x_{k-1} - \xi) = \dot{o}_k - \dot{o}_{k-1}.$$

Subtracting ξ from both sides of equation (3) and keeping in mind that by definition we have $f(\xi)=0$, gives then

$$\dot{\mathbf{o}}_{k+1} = \dot{\mathbf{o}}_{k} - \frac{\left(f'(\xi)\dot{\mathbf{o}}_{k} + \frac{1}{2}f''(\xi)\dot{\mathbf{o}}_{k}^{2}\right)(\dot{\mathbf{o}}_{k} - \dot{\mathbf{o}}_{k-1})}{f'(\xi)(\dot{\mathbf{o}}_{k} - \dot{\mathbf{o}}_{k-1}) + \frac{1}{2}f''(\xi)(\dot{\mathbf{o}}_{k}^{2} - \dot{\mathbf{o}}_{k-1}^{2})}$$

Which can be rewritten using,

$$(\dot{\mathbf{o}}_{k}^{2}-\dot{\mathbf{o}}_{k-1}^{2})=(\dot{\mathbf{o}}_{k}-\dot{\mathbf{o}}_{k-1})(\dot{\mathbf{o}}_{k}+\dot{\mathbf{o}}_{k-1})$$
 as

$$\dot{\mathbf{Q}}_{k+1} = \dot{\mathbf{Q}}_{k} - \frac{f'(\xi)\dot{\mathbf{Q}}_{k} + \frac{1}{2}f''(\xi)\dot{\mathbf{Q}}_{k}^{2}}{f'(\xi) + \frac{1}{2}f''(\xi)(\dot{\mathbf{Q}}_{k} + \dot{\mathbf{Q}}_{k-1})},$$

 $\dot{\mathbf{Q}}_{k+1} = \frac{\frac{1}{2}f'(\xi)'\dot{\mathbf{Q}}_{k}\dot{\mathbf{Q}}_{k-1}}{f'(\xi) + \frac{1}{2}f''(\xi)(\dot{\mathbf{Q}}_{k} + \dot{\mathbf{Q}}_{k-1})}$

or $\dot{\mathbf{o}}_{k+1} = \frac{f''(\xi)}{2f'(\xi)}\dot{\mathbf{o}}_{k}\dot{\mathbf{o}}_{k-1} + 0(\dot{\mathbf{o}}_{k}^{3}).$

The relation $\dot{\mathbf{o}}_{k+1} = \frac{f''(\xi)}{2f'(\xi)}\dot{\mathbf{o}}_k\dot{\mathbf{o}}_{k-1} + 0(\dot{\mathbf{o}}_k^3)$ is of the form $\dot{\mathbf{o}}_{k+1} = c\dot{\mathbf{o}}_k\dot{\mathbf{o}}_{k-1}$ (4)

where $c = \frac{f''(\xi)}{2f'(\xi)}$, and higher powers of \dot{o}_k are neglected.

The relation (4) is called as *Error equation*. Keeping in view the definition of the rate of convergence, we seek a relation of the form

$$\dot{\mathbf{o}}_{k+1} = A \, \dot{\mathbf{o}}_k^p \tag{5}$$

Where A and p are to be determined.

From (5), we have

$$\dot{\mathbf{o}}_k = A \dot{\mathbf{o}}_{k-1}^p$$
 or $\dot{\mathbf{o}}_{k-1} = A^{-1/p} \dot{\mathbf{o}}_k^{1/p}$

Substituting the values of \dot{o}_{k+1} and \dot{o}_{k-1} in eq. (4), we get

$$\dot{\mathbf{Q}}_{t}^{p} = c \, A^{-(1+1/p)} \dot{\mathbf{Q}}_{t}^{(1+1/p)} \tag{6}$$

Comparing the powers of \dot{o}_k on both sides, we get

$$p=1+\frac{1}{p}$$

Which gives
$$p = \frac{1}{2} \left(1 \pm \sqrt{5} \right)$$

Neglecting the minus sign, we find that the rate of convergence for the secant method is p = 1.618. From (6), we also obtain $A = c^{p/(p+1)}$. The Newton-Raphson formula is

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
(7)

Let ξ be a root of f(x) = 0 also,

Let us define the error at the k^{th} step to be

 $\dot{\mathbf{o}}_k = x_k - \xi$. We assume f'' is continuous near ξ and use a Taylor approximation about x_k , we have

$$0 = f(\xi) = f(x_k - \dot{o}_k) = f(x_k) - \dot{o}_k f'(x_k) + \dot{o}_k^2 f''(x_k) / 2 + 0(\dot{o}_k^3)$$

If $f'(x_k) \neq 0$, we may write

$$\frac{-f(x_k)}{f'(x_k)} = -\dot{o}_k + \frac{\dot{o}_k^2 f''(x_k)}{2f'(x_k)} + 0(\dot{o}_k^3)$$
(8)

Then $\dot{o}_{k+1} = x_{k+1} - \xi = \left(x_k - \frac{f(x_k)}{f'(x_k)}\right) - \xi$ using equation (7)

$$\dot{o}_{k+1} = x_k - \dot{o}_k + \dot{o}_k^2 \frac{f''(x_k)}{2f'(x_k)} + 0(\dot{o}_k^3) + \dot{o}_k - x_k$$
 using equation (8)

$$\dot{b}_{k+1} = \dot{b}_k^2 \frac{f''(x_k)}{2f'(x_k)} + 0(\dot{b}_k^3)$$
(9)

We can write (9) as

$$\dot{\mathbf{o}}_{k+1} = C \dot{\mathbf{o}}_k^2$$
, where $C = \frac{f''(\xi)}{2f'(\xi)}$ as $\begin{array}{c} k \to \infty \\ x_k \to \xi \end{array}$

and neglecting higher powers of \dot{o}_k .

Thus the Newton-Raphson method has second order convergence or quadratic convergence.

Possible Questions

PART-A (2 Mark) UNIT I

1. Define high speed computation Algorithms.

2. Define relative error with example.

3. Write the rate of convergence of the Regula falsi method.

4. Define absolute error with example

5. Define round off error with example.

PART-B (6 Mark)

1. Find the value of 131 using Newton Raphson's Method.

2. Assuming that a root of $x_3-9x+1 = 0$ lies in the interval (2,4) ,find that root by bisection method.

3. Find the real positive root of $3x-\cos x - 1 = 0$ by Newton's method correct to 3 decimal places

4. Solve the following for the positive root by False position method 4x = ex.

5. Find the positive root of the equation $x_3 - 4x - 9 = 0$ by bisection method.

6. Solve the following by Secant method $2x - log_{10}x = 7$.

7. Find all the roots of the equation $x_3-6x_2+11x-6=0$ by Newton's method.

8. Solve the equation $x_3 - 4x + 1 = 0$ by Regula Falsi method.

9. Find the positive root of the equation $x_3 - 4x - 9 = 0$ by bisection method.

10. Find all the roots of the equation x_3 - $4x_2$ +5x-2=0 by method of false position.

KARPAGAM UNIVERSITY COIMBATORE-21 DEPARTMENT OF MATHEMATICS

NAME OF THE FACULTY: Ms.M.LATHA(KU0969) SUBJECT: NUMERICAL METHODS SUBJECT CODE: 16MMU301 CLASS: II B.Sc MATHEMATICS POSSIBLE QUESTIONS

UNIT I

2 MARKS

1. Define high speed computation Algorithms.

- 2. Define relative error with example.
- 3. Write the rate of convergence of the Regula falsi method.
- 4. Define absolute error with example
- 5. Define round off error with example.

KARPAGAM UNIVERSITY COIMBATORE-21 DEPARTMENT OF MATHEMATICS

NAME OF THE FACULTY: Ms.M.LATHA(KU0969) SUBJECT: NUMERICAL METHODS SUBJECT CODE: 16MMU301 CLASS: II B.Sc MATHEMATICS

POSSIBLE QUESTIONS UNIT I

6 MARKS

1. Find the value of $\frac{1}{31}$ using Newton Raphson's Method.

- 2. Assuming that a root of $x^3-9x+1 = 0$ lies in the interval (2,4) ,find that root by bisection method.
- 3. Find the real positive root of $3x-\cos x 1 = 0$ by Newton's method correct to 3 decimal places
- 4. Solve the following for the positive root by False position method $4x = e^x$.
- 5. Find the positive root of the equation $x^3 4x 9 = 0$ by bisection method.
- 6. Solve the following by Secant method $2x log_{10}x = 7$.
- 7. Find all the roots of the equation $x^3-6x^2+11x-6=0$ by Newton's method.
- 8. Solve the equation $x^3 4x + 1 = 0$ by Regula Falsi method.
- 9. Find the positive root of the equation $x^3 4x 9 = 0$ by bisection method.
- 10. Find all the roots of the equation $x^3 4x^2 + 5x 2 = 0$ by method of false position.

UNIT-I

1. ------ Method is based on the repeated application of the intermediate value theorem. c.Regula Falsi d.Newton Raphson b.Bisection a. Gauss Seidal 2. The formula for Newton Raphson method is -----a. xn+1 = f(xn)/f'(xn)b.xn+1 =xn+ f (xn) /f '(xn) c.xn+1 = xn- f(xn)/f'(xn)d.xn+1 = xn - f'(xn) / f(xn)3. The order of convergence of Newton Raphson method is -----b.2 **a.** 4 c.1 d.**0** 4. Graeffe's root squaring method is useful to find -----a. complex roots b.single roots c.unequal roots d.polynomial roots 5. The approximate value of the root of f(x) given by the bisection method is ---a. x0 = a + bb.x0 = f(a) + f(b)c.x0 = (a + b)/ 2 d.X0 = (f(a) + f(b))/26. "In Newton Raphson method, the error at any stage is proportional to the -----of the error in the previous stage." a. cube b.square c.square root d.**egua**l 7. The convergence of bisection method is ------. a. linear b.quadratic c.slow d.fast 8. The order of convergence of Regula falsi method may be assumed to ------. b.1.618 c.0 d.**0.5 a**. 1 9. ----- Method is also called method of tangents. a. Gauss Seidal b.Secant c.Bisection d.Newton Raphson 10. "If f (x) contains some functions like exponential, trigonometric, logarithmic etc., 11. then f (x) is called ----- equation." **a.** Algebraic b.transcendental c. numerical d. polynomial 12. A polynomial in x of degree n is called an algebraic equation of degree n if ----b.f(x) = 1a. f(x) = 0c.f (x) <1 d.f(x)>1 13. The method of false position is also known as ------ method. a. Gauss Seidal b.Secant c.Bisection d.Regula falsi 14. The Newton Rapson method fails if ------. a. f'(x) = 0b.f(x) = 0c.f (x) =1 d.**f(x)≠0** 15. The bisection method is simple but ------.

a. slowly divergent b.fast convergent c.slowly convergent d.divergent 16. Method is also called as Bolzano method or interval having method. a. Bisection b.false position c.Newton raphson d.Horner's 17. The another name of Bisection method is ______ b.Regula falsi c.Newtons a. Bozano d.Giraffes 18. The convergence of Bisection is Very a. slow b.fast c.moderate d.**normal** 19. In Regula-Falsi method, to reduce the number of iterations we start with interval a. Small b.large c.equal d.n**one** 20. The rate of convergence in Newton-Raphson method is of order a. 1 b.2 c.3 d.**4** 21. Newton's method is useful when the graph of the function crosses the x-axis is nearly . a. vertical b.horizontal c.close to zero d.none 22. If the initial approximation to the root is not given we can find any two values of x say a and bsuch that f (a) and f(b) are of _____signs. b.same c.positive d.negative a.opposite 23. The Newton – Raphson method is also known as method of a. secant b.tangent c.iteration d.interpolation 24. If the derivative of f(x) = 0, then method should be used. d.interpolation a. Newton – Raphson b.Regula-Falsi c.iteration 25. The rate of convergence of Newton – Raphson method is _____ d.5 b.cubic c.4 a. quadratic 26. If f (a) and f (b) are of opposite signs the actual root lies between **a.** (a, b) b.(0, a) c.(0, b) d.**(0. 0)** 27. The convergence of root in Regula-Falsi method is slower than **a.** Gauss – Elimination b.Gauss – Jordan c.Newton – Raphson d.**Power method** 28. Regula-Falsi method is known as method of a. secant b.tangent c.chords d.elimination 29. method converges faster than Regula-Falsi method. **a.** Newton – Raphson b.Power method c.elimination d.interpolation

30. If f(x) is continuous in the interval (a, b) and if f (a) and f (b) are of opposite signs the equation f(x) = 0 has at least one lying between a and b. c.root d.polynomial b.function **a.** equation 31. $x^2 + 3x - 3 = 0$ is a polynomial of order **a.** 2 b.3 c.1 d.**0** 32. Errors which are already present in the statement of the problem are called errors. a. Inherent b.Rounding c.Truncation d.**Absolute** 33. Rounding errors arise during a. Solving b.Algorithm c.Truncation d.**Computation** 34. The other name for truncation error is error. **a.** Absolute b.Rounding c.Inherent d.Algorithm 35. Rounding errors arise from the process of the numbers. **a.** Truncating b.Rounding off c.Approximating d.Solving 36. Absolute error is denoted by_____ a. Ea b.Er c.Ep d.Ex 37. Truncation errors are caused by using results. **a.** Exact b.True c.Approximate d.Real 38. Truncation errors are caused on replacing an infinite process by one. **a.** Approximate b.True c.Finite d.Exact 39. If a word length is 4 digits, then rounding off of 15.758 is **a.** 15.75 b.15.76 c.15.758 d.16 40. The actual root of the equation lies between a and b when f (a) and f (b) are of signs. a. Opposite b. same c.negative d.positive

Example 6. Construct the divided difference table for the data

x	0.5	1.5	3.0 5.0	0 6.5	5 8.0
f (x)	1.625	5.875	31.0	131.0	282.125521.0

Hence, find the interpolating polynomial and an approximation to the value of f (7). We have the following divided difference table

(a)	22				
X	f (x)	first order	second order	third order	fourth order
		d.d.	d.d.	d.d.	d.d.
0.5	1.625				
		4.25			
1.5	5.875		5.0		
		16.75		1.0	
3.0	31.000		9.5		0
		50.00		1.0	
5.0	131.000		14.5		0
		100.75		1.0	
6.5	282.125		19.5		
8 0	521 000	159.25			
5.0	131.000	50.00 100.75	14.5	1.0	

We write the divided difference interpolating polynomial as

$$f(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0)(x - x_1) f[x_0, x_1, x_2]$$

+ $(x - x_0)(x - x_1)(x - x_2) f[x_0, x_1, x_2, x_3]$
= $1.625 + (x - 0.5)(4.25) + 5(x - 0.5)(x - 1.5)$
+ $(x - 0.5)(x - 1.5)(x - 3.0)$
= $(1.625 - 2.125 + 3.75 - 2.25) + x(4.25 - 10.0 + 6.75)$
+ $x^2(5 - 5) + x^3$
= $x^3 + x + 1$.
Hence, $f(7.0) = 351$.

Finite Difference Operator:

Let the points $x_1, x_2, x_3, ..., x_n$ be equally spaced

$$\therefore$$
 $x_i = x_0 + ih, \quad i = 0, 1, 2, ..., n, \quad h = x_1 - x_0 = x_2 - x_1 = x_n - x_{n-1}$

We define the following operators

- (1) Shift Operator $Ef(x_i) = f(x_i + h)$
- (2) Forward difference operator $\Delta f(x_i) = f(x_i + h) f(x_i)$
- (3) Backward difference operator $\nabla f(x_i) = f(x_i) f(x_i h)$

(4) Central difference operator
$$\delta f(x_i) = f\left(x_i + \frac{h}{2}\right) - f\left(x_i - \frac{h}{2}\right)$$

(5) The average operator
$$\mu f(x_i) = \frac{1}{2} \left[f\left(x_i + \frac{h}{2}\right) + f\left(x_i - \frac{h}{2}\right) \right]$$

Relation between the operators (take h = 1).
(i) $\Delta f(x_i) = \nabla f(x_i + 1) = \delta f\left(x_i + \frac{1}{2}\right) = f(x_i + 1) - f(x_i)$
(ii) (a) $\Delta f'(x_i) = f(x_i + 1) - f(x_i)$
 $= Ef(x_i) - f(x_i)$
 $= (E-1)f(x_i)$
 $\Rightarrow \boxed{\Delta = E - 1}$
(b) $\nabla f(x_i) = f(x_i) - f(x_i - 1)$
 $= f(x_i) - E^{-1}f(x_i - 1)$
 $= (1 - E^{-1})f(x_i)$
 $\Rightarrow \boxed{\nabla = 1 - E^{-1}}$
 $\Rightarrow \boxed{E^{-1} = 1 - \nabla}$
(iii) We can also have
 $\Delta^n = (E - 1)^n =$
 $\nabla^n = (1 - E^{-1})^n =$

Table showing relationship between the operators

	E	Δ	∇	δ
E	E	$\Delta + 1$	$(1 - \nabla)^{-1}$	$1 + \frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{1}{4}\delta^2}$
Δ	E – 1	Δ	$(1 - \nabla)^{-1} - 1$	$\frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{1}{4}\delta^2}$

∇	1-E ⁻¹	1 – (1+∆) ^{−1}	∇	$-\frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{1}{4}\delta^2}$
δ	$E^{\frac{1}{2}} - E^{-\frac{1}{2}}$	$\Delta (1+\Delta)^{-1/2}$	∇ (1−∇) ^{-1/2}	δ
μ	$\frac{1}{2}(E^{\frac{1}{2}}+E^{-\frac{1}{2}})$	$\left(1+\frac{1}{2}\Delta\right)\left(1+\Delta\right)^{\frac{1}{2}}$	$\left(1-\frac{1}{2}\nabla\right)\left(1-\Delta\right)^{-\frac{1}{2}}$	$\sqrt{1+rac{1}{4}\delta^2}$

Example 7. Show that

(i)
$$\delta = \nabla (1 - \nabla)^{-\frac{1}{2}}$$
 (ii) $\mu = \left(1 + \frac{\delta^2}{4}\right)^{1/2}$

(iii)
$$E = 1 + \frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{1}{4}\delta^2}$$
 (iv) $\nabla = -\frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{\delta^2}{4}}$

Proof:

$$\begin{split} &= \left[\frac{4+E+E^{-1}-2}{4}\right]^{1/2} \\ &= \frac{1}{2} \left[E+E^{-1}+2\right]^{1/2} \\ &= \frac{1}{2} \left[(E^{\frac{1}{2}}+E^{-\frac{1}{2}})^2\right]^{1/2} \\ &= \frac{1}{2} (E^{\frac{1}{2}}+E^{-\frac{1}{2}})^2 = \mu = L.H.S. \end{split}$$
(iii) R.H.S. = $1 + \frac{1}{2} \delta^2 + \delta \sqrt{1 + \frac{1}{4} \delta^2}$
(iii) R.H.S. = $1 + \frac{1}{2} \delta^2 + \delta \sqrt{1 + \frac{1}{4} \delta^2}$
 $= 1 + \frac{1}{2} (E^{\frac{1}{2}}-E^{-\frac{1}{2}})^2 + (E^{\frac{1}{2}}-E^{-\frac{1}{2}}) \times \frac{(E^{\frac{1}{2}}+E^{-\frac{1}{2}})}{2}$
 $= 1 + \frac{1}{2} (E-E^{-1}-2) + \frac{1}{2} (E-E^{-1})$
 $= \frac{1}{2} (2+E+E^{-1}-2+E-E^{-1})$
 $= \frac{1}{2} (2+E+E^{-1}-2+E-E^{-1})$
 $= -\frac{1}{2} (E^{\frac{1}{2}}-E^{-\frac{1}{2}})^2 + (E^{\frac{1}{2}}-E^{-\frac{1}{2}}) \frac{(E^{\frac{1}{2}}+E^{-\frac{1}{2}})}{2}$ (using relation (ii))
 $= -\frac{1}{2} (E+E^{-1}-2) + \frac{1}{2} (E-E^{-1})$
 $= \frac{1}{2} [-E-E^{-1}-2+E-E^{-1}]$
 $= \frac{1}{2} [-E-E^{-1}-2+E-E^{-1}]$
 $= \frac{1}{2} [-E-E^{-1}-2+E-E^{-1}]$
 $= \frac{1}{2} [-E-E^{-1}-2+E-E^{-1}]$

Similarly we can prove other relations given in the table of operators. **Prepared by M.Latha, Department of Mathematics, KAHE**Page 17/24 Gregory-Newton Forward Difference Interpolation:

Relation between divided difference and forward difference operator is

$$f[x_0, x_1, ..., x_n] = \frac{1}{n! h^n} \Delta^n f_0$$
(1)

Divided difference interpolating polynomial is written as

$$P_n(x) = f[x_0] + (x - x_0)f[x_0, x_1] + \dots + (x - x_0(x - x_1)\dots(x - x_{n-1}))$$
$$f[x_0, x_1, \dots, x_n]$$
(2)

Using (1) in (2), Interpolating polynomial can be written as

$$P(x) = P_n(x) = f_0 + (x - x_0)\frac{\Delta f_0}{h} + \frac{(x - x_0(x - x_1)\Delta^2 f_0}{2!h^2} + \dots$$
$$+ \frac{(x - x_0)(x - x_1) + \dots (x - x_{n-1})}{n!h^n}\Delta^n f_0$$
(3)

Polynomial P(x) expressed by equation (3) is known as Gregory-Newton forward differences interpolating polynomial.

Now if we put $u = \frac{(x - x_0)}{h} \Rightarrow hu = (x - x_0)$ and since $x_0, x_1, ..., x_n$ are equally spaced Points that is $x_i = x_0 + ih$

$$\Rightarrow (x-x_i) = (x-(x_0+ih)) = [(x-x_0)-ih] = (uh-ih) = (u-i)h.$$

 \therefore Equation (3) and the truncation error can be written as

$$P(x_0 + hu) = f_0 + u\Delta f_0 + \frac{u(u-1)}{2!}\Delta^2 f_0 + \dots + \frac{u(u-1)\dots(u-n+1)}{n!}\Delta^n f_0$$
(4)

$$=\sum_{i=0}^{n} \binom{u}{i} \Delta^{i} f_{0} \text{ where } \binom{u}{i} = {}^{u}C_{i}$$

and truncation error

$$E_n(f;x) = \frac{u(u-1)....(u-n)}{(n+1)!} h^{n+1} f^{(n+1)}(\xi)$$
(5)

Prepared by M.Latha, Department of Mathematics, KAHE

Page 19/24

Gregory-Newton Backward Difference Interpolation:

We observe that Newton-interpolation with divided differences in terms of backward differences should be in terms of the differences at the end point x_n .

$$f(x) = f\left(x_n + \frac{(x - x_n)}{h} \times h\right) = f(x_n + hu)$$

as we take $\frac{(x-x_n)}{h} = u \Rightarrow x-x_n = hu$

$$\Rightarrow f(x) = f(x_n + uh)$$

$$= E^u f(x_n)$$

$$= (1 - \nabla)^{-u} f(x_n) \qquad [\because E = (1 - \nabla)^{-1}]$$

$$= 1 + u \nabla f(x_n) + \frac{u(u+1)}{2!} \nabla^2 f(x_n) + \dots + \frac{u(u+1) - (u+n-1)}{n!} \nabla^n f(x_n) + \dots (8)$$

Neglecting the difference $\nabla^{n+1} f(x_n)$ and higher order difference we get the interpolating polynomial as

 $P(x) = P(x_n + hu) = f(x)$

$$= f_n + u\nabla f_n + \frac{u(u+1)}{2!}\nabla^2 f_n + \dots + \frac{u(u+1)\dots(u+n-1)}{n!} \times \nabla^n f_n.$$

$$=\sum_{i=0}^{n} (-1)^{i} {-u \choose i} \nabla^{i} f_{n}$$
(9)

where $\begin{pmatrix} -u \\ i \end{pmatrix} = {}^{-u}C_i$.

Polynomial expressed by relation (9) is known as Gregory-Newton backward difference interpolating polynomial and the truncation error is

$$E_n(f;x) = \frac{u(u+1)....(u+n)}{(n+1)!} h^{n+1} f^{n+1}(\xi)$$

Example9. For the following data, calculate the differences and obtain the forward and backward difference polynomials. Interpolate at x = 0.25 and x = 0.35

x	0.1	0.2	0.3	0.4	0.5
f(x)	1.40	1.56	1.76	2.00	2.28

Solution: The difference table is obtained as

x	f(x)	∆f(x)	$\Delta^2 f(x)$	$\Delta^3 f(x)$	
0.1	1.40	07			
0.2	1.56	0.16	0.04		
0.3	1.76	0.20	0.04	0.0	0.0
0.4	2.00	0.24	0.04	0.0	
0.5	2.28	0.28			

The forward difference polynomial is given by

$$P(x) = 1.4 + (x - 0.1)\frac{0.16}{0.1} + \frac{(x - 0.1)(x - 0.2)}{2} \times \frac{0.04}{0.01}$$

 $= 2x^2 + x + 1.28$.

The backward difference polynomial is obtained as

$$P(x) = 2.28 + (x - 0.5)\frac{0.28}{0.1} + \frac{(x - 0.5)(x - 0.4)}{2}\frac{0.04}{0.01}$$

 $=2x^2+x+1.28$.

Both the polynomials are same.

$$\therefore$$
 $f(0.25) = 1.655$, $f(0.35) = 1.875$.

We can obtain the interpolated values directly also. So for x = 0.25 we choose $x_0 = 0.2$ and write

$$u = \frac{x - x_0}{h} = \frac{0.25 - 0.2}{0.1} = 0.5$$

$$\Rightarrow \quad f(0.25) = f(0.2) + (0.5)\Delta f(0.2) + \frac{1}{2}(0.5)(-0.5)\Delta^2 f(0.2)$$

$$= 1.56 + (0.5(0.20) - (0.125)(0.04) = 1.655$$

For x = 0.35 we choose $x_n = 0.4$ and in backward differences as

$$u = \frac{x - x_n}{h} = \frac{0.35 - 0.4}{0.1} = -0.5$$

and $f(0.35) = f(0.4) + (-0.5)\nabla f(0.4) + \frac{1}{2}(0.5)(0.5)\nabla f(0.2)$ = 2.00 - (0.5)(0.24) - (0.125) (0.04) = 1.875.

Hence the solution.

Possible Questions

PART-A (2 Mark) UNIT III

1. Prove that $E\Delta = \Delta = \nabla E$.

2. Write any two properties of divided differences.

3. Define Inverse Lagrange's interpolation

4. Prove that $\mu = (1 + \delta_{24})_{12}$

5. Prove that $\Delta \nabla = \Delta - \nabla = \delta 2$.

PART-B(6 Mark)

1. From the followin	g table, f	ind the	value of	tan 45	□ 15 □			
x□ : 45		46		47		48	49	50
$\tan x \square$: 1.00	00	1.035	5	1.0723	;	1.1106	1.1503	1.1917
2. Using inverse inter	polation	formula	ı, find tl	ne value	of x wh	en y=13.5.		
x: 93.0	96.2		100.0		104.2	10)8.7	
y: 11.38	12.80		14.70		17.07	1	9.91	
3. From the following	g table fi	nd f(x) a	and hence	e f(6) u	sing Ne	wton interp	olation formu	ıla.
x : 1		2	7	8				
f(x):	1	5	5	4				
4. Find the values of	y at X=2	1 and X	=28 from	m the fo	llowing	data.		
X: 20	23		26		29			
Y: 0.3420					0.4848			
5.Using Newton's div			formula	. Find th	ne value	s of f(2),f(8) and	
f(15) given the follow	ving table							
X: 4	5		10	11	13			
	100	294	900	1210	2028			
6. Using Lagrange's	interpola	tion form	nula fin	d the va	lue corr	esponding	to $x = 10$ from	n the following
table								
x:5 6								
y:12 13		16						
7.Using inverse inter	-				of x wh	-		
x: 93.0	96.2			104.2		108.7		
y: 11.38						19.91		
8. Find the age corresp	ponding		-		-	the table		
Age(x): 30		35	40	45	50			
Annuity Value(y): 15.	9	14.9	14.1	13.3	12.5			

KARPAGAM UNIVERSITY COIMBATORE-21 DEPARTMENT OF MATHEMATICS

NAME OF THE FACULTY: Ms.M.LATHA(KU0969) SUBJECT: NUMERICAL METHODS SUBJECT CODE: 16MMU301 CLASS: II B.Sc MATHEMATICS POSSIBLE QUESTIONS

UNIT II

2 MARKS

- **1.** Write the formula for method of triangularization.
- **2.**.Define iterative method.
- 3. Define power method.
- 4. Write the difference between the direct method and iterative method.
- 5. Define Gauss elimination method.

KARPAGAM UNIVERSITY COIMBATORE-21 DEPARTMENT OF MATHEMATICS

NAME OF THE FACULTY: Ms.M.LATHA(KU0969) SUBJECT: NUMERICAL METHODS SUBJECT CODE: 16MMU301 **CLASS: II B.Sc MATHEMATICS**

POSSIBLE QUESTIONS UNIT II

6MARKS 1. Solve the following system by Gauss elimination method. 3x + y - z = 32x - 8y + z = -5x - 2y + 9z = 82. Solve the following system by Gauss Jacobi method. 8x + y + z = 82x + 4y + z = 4x + 3y + 3z = 53. Solve the following system by Gauss Jordan method. $\mathbf{x} + 2\mathbf{y} + \mathbf{z} = 3$ 2x + 3y + 3z = 103x - y + 2z = 134. Solve the following system of equations by Gauss-Jacobi method 10x - 5y - 2z = 34x - 10y + 3z = -3x + 6y + 10z = -35. Solve the following system by triangularisation method. 5x - 2y + z = 47x + y - 5z = 83x + 7y + 4z = 106. Solve the following system of equations by Gauss-Seidal method. 28x + 4y - z = 32x + 3y + 10z = 242x + 17y + 4z = 35

7. Solve the following system by Gauss Jordan method.

$$\begin{array}{ll} x + 2y + z &= 3 \\ 2x + 3y + 3z = 10 \\ 3x - y + 2z &= 13 \end{array}$$

8. Find the numerically largest Eigen value of $A = \begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$ and the corresponding Eigen vector.

9. Solve the following system by triangularization method.

x+y+5z=16 2x+3y+z=4 4x+y-z=4

10. Solve the following system of equations by Gauss-Jacobi method

4x+2y+z = 14x +5y -z = 10 x +y +8z = 20 UNIT II

1. Iterative method is a ----- method a. Direct method b.InDirect method c.both 1st & 2nd d.either 1st &2nd 2. -----is also a self-correction method. a. Iteration method b.Direct method c.Interpolation d.none 3. "The condition for convergence of Gauss Seidal method is that the -----should be diagonally dominant" a. Constant matrix b.unknown matrix c.Coefficient matrix d.Unit matrix 4. In ----- method, the coefficient matrix is transformed into diagonal matrix d.Gauss seidal a. Gauss elimination b.Gauss jordan c.Gauss jacobi 5. ------ Method takes less time to solve a system of equations comparatively than ' iterative method' b. Indirect method c.Regula falsi d.Bisection a. Direct method 6. The iterative process continues till ------ is secured. a. convergency b.divergency c.oscillation d.none 7. "In Gauss elimination method, the solution is getting by means of ------from which the unknowns are found by back substitution." a. "Elementary operations" b." Elementary column operations" c." Elementary diagonal operations" d." Elementary row operations" 8. "The ------ is reduced to an upper triangular matrix or a diagonal matrix in direct methods." a. Coefficient matrix b.Constant matrix c.unknown matrix d.Augment matrix 9. The augment matrix is the combination of ------. a. "Coefficient matrix and constant matrix" c."Unknown matrix and constant matrix" d." Coefficient matrix, constant matrix and Unknown matrix" b. "Coefficient matrix and Unknown matrix" 10. The given system of equations can be taken as in the form of -----a. A = B b.BX= A c.AX= B d. AB = X 11. Which is the condition to apply Gauss Seidal method to solve a system of equations? c.diagonally dominant d.last row dominant a. 1st row is dominant b.1st column is dominant 12. Crout's method and triangularisation method are ----- method. a. Direct b.Indirect c.Iterative d.Interpolation 13. The solution of simultaneous linear algebraic equations are found by using-----

14.

 15. The matrix is if the numerical value of the leading diagonal element in each row is greater than or equal to the sum of the numerical value of other element in that row. a. orthogonal b.symmetric c.diagonally dominant d.singular 16. If the Eigen values of A are -6, 2, 4 then is dominant. a. 2 b6 c.4 d2 17. The Gauss – Jordan method is the modification of method. a. Gauss – Elimination b.Gauss – Jacobi c.Gauss – Seidal d.interpolation 18. x^2 + 5x + 4 = 0 is a equation. a. algebraic b.transcendental c.wave d.heat 19. a + b logx + c sinx + d = 0 is a equation. a. algebraic b.transcendental c.wave d.heat 20. In Gauss – Jordan method, the augmented matrix is reduced intomatrix a. upper triangular b.lower triangular c.diagonal d.scalar 21. The 1st equation in Gauss – Jordan method, is called equation. a. pivotal b.dominant c.reduced d.normal 22. The element a11 in Gauss – Jordan method is called element. a. Eigen value b.Eigen vector c.pivot d.root 23. The system of simultaneous linear equation in n unknowns AX = B if A is diagonally dominant then the system is said to be
 a. orthogonal b.symmetric c.diagonally dominant d.singular 16. If the Eigen values of A are -6, 2, 4 then is dominant. a. 2 b6 c.4 d2 17. The Gauss – Jordan method is the modification of method. a. Gauss – Elimination b.Gauss – Jacobi c.Gauss – Seidal d.interpolation 18. x^2 + 5x + 4 = 0 is a equation. a. algebraic b.transcendental c.wave d.heat 19. a + b logx + c sinx + d = 0 is a equation. a. algebraic b.transcendental c.wave d.heat 20. In Gauss – Jordan method, the augmented matrix is reduced into matrix a. upper triangular b.lower triangular c.diagonal d.scalar 21. The 1st equation in Gauss – Jordan method, is called equation. a. pivotal b.dominant c.reduced d.normal 22. The element a11 in Gauss – Jordan method is called element. a. Eigen value b.Eigen vector c.pivot d.root
 16. If the Eigen values of A are -6, 2, 4 then is dominant. a. 2 b6 c.4 d2 17. The Gauss – Jordan method is the modification of method. a. Gauss – Elimination b.Gauss – Jacobi c.Gauss – Seidal d.interpolation 18. x^2 + 5x + 4 = 0 is a equation. a. algebraic b.transcendental c.wave d.heat 19. a + b logx + c sinx + d = 0 is a equation. a. algebraic b.transcendental c.wave d.heat 20. In Gauss – Jordan method, the augmented matrix is reduced intomatrix a. upper triangular b.lower triangular c.diagonal d.scalar 21. The 1st equation in Gauss – Jordan method, is called equation. a. pivotal b.dominant c.reduced d.normal 22. The element a11 in Gauss – Jordan method is called element. a. Eigen value b.Eigen vector c.pivot d.root
 a. 2 b6 c.4 d2 17. The Gauss – Jordan method is the modification of method. a. Gauss – Elimination b.Gauss – Jacobi c.Gauss – Seidal d.interpolation 18. x^2 + 5x + 4 = 0 is a equation. a. algebraic b.transcendental c.wave d.heat 19. a + b logx + c sinx + d = 0 is a equation. a. algebraic b.transcendental c.wave d.heat 20. In Gauss – Jordan method, the augmented matrix is reduced into matrix a. upper triangular b.lower triangular c.diagonal d.scalar 21. The 1st equation in Gauss – Jordan method, is called equation. a. pivotal b.dominant c.reduced d.normal 22. The element a11 in Gauss – Jordan method is called element. a. Eigen value b.Eigen vector c.pivot d.root
 17. The Gauss – Jordan method is the modification of method. a. Gauss – Elimination b.Gauss – Jacobi c.Gauss – Seidal d.interpolation 18. x² + 5x + 4 = 0 is a equation. a. algebraic b.transcendental c.wave d.heat 19. a + b logx + c sinx + d = 0 is a equation. a. algebraic b.transcendental c.wave d.heat 20. In Gauss – Jordan method, the augmented matrix is reduced into matrix a. upper triangular b.lower triangular c.diagonal d.scalar 21. The 1st equation in Gauss – Jordan method, is called equation. a. pivotal b.dominant c.reduced d.normal 22. The element a11 in Gauss – Jordan method is called element. a. Eigen value b.Eigen vector c.pivot d.root
a. GaussElimination b.Gauss - Jacobi c.Gauss - Seidal d.interpolation 18. x^2 + 5x + 4 = 0 is a equation. a. algebraic b.transcendental c.wave d.heat 19. a + b logx + c sinx + d = 0 is a equation. a. algebraic b.transcendental c.wave d.heat 20. In Gauss - Jordan method, the augmented matrix is reduced intomatrix a. upper triangular b.lower triangular c.diagonal d.scalar 21. The 1st equation in Gauss - Jordan method, is called equation. a. pivotal b.dominant c.reduced d.normal 22. The element a11 in Gauss - Jordan method is called element. a. Eigen vector c.pivot d.root
18. x^2 + 5x + 4 = 0 is a equation. a. algebraic b.transcendental c.wave d.heat 19. a + b logx + c sinx + d = 0 is a equation. a. algebraic b.transcendental c.wave d.heat 20. In Gauss – Jordan method, the augmented matrix is reduced into matrix a. upper triangular b.lower triangular c.diagonal d.scalar 21. The 1st equation in Gauss – Jordan method, is called equation. a. pivotal b.dominant c.reduced d.normal 22. The element a11 in Gauss – Jordan method is called element. a. Eigen value b.Eigen vector c.pivot d.root d.root d.root d.root
a. algebraic b.transcendental c.wave d.heat 19. a + b logx + c sinx + d = 0 is a equation. a. algebraic b.transcendental c.wave d.heat 20. In Gauss – Jordan method, the augmented matrix is reduced intomatrix matrix matrix a. upper triangular b.lower triangular c.diagonal d.scalar 21. The 1st equation in Gauss – Jordan method, is called equation. equation. a. pivotal b.dominant c.reduced d.normal 22. The element a11 in Gauss – Jordan method is called element. element. a. Eigen value b.Eigen vector c.pivot d.root
 19. a + b logx + c sinx + d = 0 is a equation. a. algebraic b.transcendental c.wave d.heat 20. In Gauss – Jordan method, the augmented matrix is reduced intomatrix a. upper triangular b.lower triangular c.diagonal d.scalar 21. The 1st equation in Gauss – Jordan method, is called equation. a. pivotal b.dominant c.reduced d.normal 22. The element a11 in Gauss – Jordan method is called element. a. Eigen value b.Eigen vector c.pivot d.root
a. algebraic b.transcendental c.wave d.heat 20. In Gauss – Jordan method, the augmented matrix is reduced intomatrix matrix a. upper triangular b.lower triangular c.diagonal 21. The 1st equation in Gauss – Jordan method, is calledequation. equation. a. pivotal b.dominant c.reduced d.normal element a11 in Gauss – Jordan method is calledelement. a. Eigen value b.Eigen vector c.pivot d.root d.root
 20. In Gauss – Jordan method, the augmented matrix is reduced intomatrix a. upper triangular b.lower triangular c.diagonal d.scalar 21. The 1st equation in Gauss – Jordan method, is calledequation. a. pivotal b.dominant c.reduced d.normal 22. The element a11 in Gauss – Jordan method is calledelement. a. Eigen value b.Eigen vector c.pivot d.root
 a. upper triangular b.lower triangular c.diagonal d.scalar 21. The 1st equation in Gauss – Jordan method, is calledequation. a. pivotal b.dominant c.reduced d.normal 22. The element a11 in Gauss – Jordan method is calledelement. a. Eigen value b.Eigen vector c.pivot d.root
 21. The 1st equation in Gauss – Jordan method, is called equation. a. pivotal b.dominant c.reduced d.normal 22. The element a11 in Gauss – Jordan method is called element. a. Eigen value b.Eigen vector c.pivot d.root
a. pivotal b.dominant c.reduced d.normal 22. The element a11 in Gauss – Jordan method is called element. a. Eigen value b.Eigen vector c.pivot d.root
22. The element a11 in Gauss – Jordan method is called element. a. Eigen value b.Eigen vector c.pivot d.root
a. Eigen value b.Eigen vector c.pivot d.root
23. The system of simultaneous linear equation in n unknowns $AX = B$ if A is diagonally dominant then the system is said to be
system
a.dominant b.diagonal c.scalar d.singular
24. The convergence of Gauss – Seidal method is roughly that of Gauss – Jacobi method
a. twice b.thrice c.once d.4 times
25. Jacobi's method is used only when the matrix is
a. symmetric b.skew-symmetric c.singular d.non-singular
26. Gauss Seidal method always for a special type of systems.
a. Converges b.diverges c.oscillates d.equal
27. Condition for convergence of Gauss Seidal method is
a. "Coefficient matrix is diagonally dominant" c. pivot element is Zero

b. "Coefficient matrix is not diagonally dominant" d.pivot element is non Zero
28. Modified form of Gauss Jacobi method is method.
a. Gauss Jordan b. Gauss Siedal c. Gauss Jacobbi d.Gauss Elimination
29. "In Gauss elimination method by means of elementary row operations, from which the unknowns are found by method"
Forward substitution b.Backward substitution c.random d.Gauss Elimination
30. In iterative methods, the solution to a system of linear equations will exist if the absolute value of the largest coefficient is
the sum of the absolute values of all remaining coefficients in each equation.
a. less than b. greater than or equal to c. equal to d.not equal
31. In iterative method, the current values of the unknowns at each stage of iteration are used in proceeding to the next stage
of iteration.
a. Gauss Siedal b. Gauss Jacobi c. Gauss Jordan d. Gauss Elimination
32. The direct method fails if any one of the pivot elements become
a. Zero b.one c.two d.negative
33. In Gauss elimination method the given matrix is transformed into
a. Unit matrix b.diagonal matrix c.Upper triangular matrix d.lower triangular matrix
34. "If the coefficient matrix is not diagonally dominant, then by that diagonally dominant coefficient matrix is formed."
a.Interchanging rows b. Interchanging Columns c. adding zeros d.Interchangingrow and Columns
35. Gauss Jordan method is a
a. Direct method b. InDirect method c. iterative method d.convergent
36. Gauss Jacobi method is a
a. Direct method b. InDirect method c. iterative method d.convergent
37. The modification of Gauss – Jordan method is called
a. Gauss Jordan b.Gauss Siedal c. Gauss Jacobbi d.gauss elemination
38. Gauss Seidal method always converges for of systems
a. Only the special type b.all types c.quadratic types d.first type
39. In solving the system of linear equations, the system can be written as
a. BX = B b.AX = A c.AX = B d.AB = X
40. In solving the system of linear equations, the augment matrix is
a.(A, A) b.(B, B) c.(A, X) d.(A, B)

41 IN THE DIFECT METHODS OF SOLVING A SYSTEM OF LINEAR	equations, at first the giv	en system is wri	itten as form "
a. An augment matrix b.a triangular matrix		d.Coefficient	
42. " All the row operations in the direct methods car			
a. all elements b. pivot element	c.negative element	d.positiveeler	nent
43. The direct method fails if			
a. 1st row elements 0 b.1st column elemen	its 0 c.Eith	er 1st or 2nd	d.2 nd row is dominant
44. "The elimination of the unknowns is done not only			
called"			
a. Gauss elimination b. Gauss jordan	c.Gauss jacobi	d .Gauss sieda	ıl
45. In Gauss Jordan method, we get the solution	•		
a."without using back substitution method "		ution method '	n
b,."by using forward substitution method"			
46. "If the coefficient matrix is diagonally dominant, the	-		
a. Gauss elimination b.Gauss jordan	c. Direct	d.Gauss sieda	al
47. Which is the condition to apply Jocobi's method to	solve a system of equatio	ns	
a. 1st row is dominant b.1st column is domi	nan t c.diag	onally dominan	nt d.2 nd row is dominant
48. Iterative method is a method			
a. Direct method b.InDirect method	c.Interpolation	d.extrapolatio	วท
49. "As soon as a new value for a variable is found by it	eration it is used immedi	ately in the equ	ations is called"
a. Iteration method b.Direct method			
	c.Interpolatio	n d.exti	rapolation
50 is also a self-correction method.	c.Interpolatio	n d.exti	rapolation
	c.Interpolation c.Interpolation		rapolation
50 is also a self-correction method.	c.Interpolation	n d.exti	rapolation
50 is also a self-correction method. a. Iteration method b.Direct method	c.Interpolation	n d.exti	rapolation dominant"
 50 is also a self-correction method. a. Iteration method b.Direct method 51. "The condition for convergence of Gauss Seidal me 	c.Interpolation thod is that theshou c.Coefficient matrix	n d.extr d be diagonally d.extrapolatio	rapolation dominant"
 50 is also a self-correction method. a. Iteration method b.Direct method 51. "The condition for convergence of Gauss Seidal me a. Constant matrix b.unknown matrix 	c.Interpolation thod is that theshou c.Coefficient matrix	n d.extr d be diagonally d.extrapolatio	rapolation dominant" on
 50 is also a self-correction method. a. Iteration method b.Direct method 51. "The condition for convergence of Gauss Seidal me a. Constant matrix b.unknown matrix 52. In method, the coefficient matrix is transformed 	c.Interpolation thod is that theshou c.Coefficient matrix ormed into diagonal matri c.Gauss jacobi	n d.exti d be diagonally d.extrapolatic x d.Gauss seida	rapolation dominant" on
 50 is also a self-correction method. a. Iteration method b.Direct method 51. "The condition for convergence of Gauss Seidal me a. Constant matrix b.unknown matrix 52. In method, the coefficient matrix is transfor a. Gauss elimination b.Gauss jordan 	c.Interpolation thod is that theshou c.Coefficient matrix prmed into diagonal matri c.Gauss jacobi	n d.exti d be diagonally d.extrapolatic x d.Gauss seida	rapolation dominant" on
 50 is also a self-correction method. a. Iteration method b.Direct method 51. "The condition for convergence of Gauss Seidal me a. Constant matrix b.unknown matrix 52. In method, the coefficient matrix is transfora. Gauss elimination b.Gauss jordan 53. We get the approximate solution from the 	c.Interpolation thod is that theshoul c.Coefficient matrix prmed into diagonal matri c.Gauss jacobi c.fast method d.Bise	n d.exti d be diagonally d.extrapolatic x d.Gauss seida	rapolation dominant" on

55. "In Gauss elimination method, the solution is getting by means offrom which the unknowns are found by back substitution."
a. "Elementary operations" c." Elementary column operations"
b. "Elementary diagonal operations" d." Elementary row operations"
56. "The method of iteration is applicable only if all equation must contain onecoefficient of different unknowns as than other
coefficients."
a.Smaller b.larger C.equal d.non zero
57. "The is reduced to an upper triangular matrix or a diagonal matrix indirect methods."
a. Coefficient matrix b.Constant matrix c.unknown matrix d.Augment matrix
58. The augment matrix is the combination of
a. "Coefficient matrix and constant matrix" c."Unknown matrix and constant matrix"
b. "Coefficient matrix and Unknown matrix" d." Coefficient matrix, constant matrix and Unknown matrix"
59. The given system of equations can be taken as in the form of
a. $A = B$ b. $BX = A$ c. $AX = B$ d. $AB = X$
60. "The sufficient condition of iterative methods will be satisfied if the large coefficients are along the of the coefficient
matrix."
a.Rows b.Columns c.Leading Diagonal d.elements
61. Which is the condition to apply Gauss Seidal method to solve a system of equations?
a. 1st row is dominant b.1st column is dominant c.diagonally dominant d.Leading Diagonal
62. In the absence of any better estimates, theof the function are taken as x = 0, y = 0, z = 0.
a. Initial approximations b. roots c. points d. final value
63. The solution of simultaneous linear algebraic equations are found by using-
a. Direct method b.InDirect method c.fast method d.Bisection

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021

DEPARTMENT OF MATHEMATICS

Subject: Numerical Methods	Semester: III	LTPC
Subject Code: 16MMU301	Class: II-B.Sc Mathematics	4 0 0 4

UNIT III

Interpolation: Lagrange and Newton's methods. Error bounds - Finite difference operators. Gregory forward and backward difference interpolation – Newton's divided difference – Central difference – Lagrange and inverse Lagrange interpolation formula.

TEXT BOOK

T1. Jain. M.K., Iyengar. S.R.K., and Jain R.K., (2012). Numerical Methods for Scientific and Engineering Computation, New Age International Publishers, New Delhi .
R3. Uri M. Ascher and Chen Greif., (2013). A First Course in Numerical Methods, Seventh Edition., PHI Learning Private Limited.
R4. John H., Mathews and Kurtis D. Fink., (2012). Numerical Methods using Matlab, Fourth Edition., PHI Learning Private Limited.

UNIT III

Interpolation: Interpolation means insertion or filling up intermediate terms of series. Interpolation is the method of estimating the value of a function (dependent variable) for any intermediate value of the independent variable when some values of the function corresponding to the values of the variable are given.

that is, given the set of functional values $(x_0, y_0), (x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ satisfying the relation y = f(x) where the explicit nature of f(x) may not be known, it is required (desired) to find a simpler function say $\phi(x)$ such that f(x) and $\phi(x)$ agree at the set of tabulated points, such a process is called as interpolation and if $\phi(x)$ happens to be a polynomial than the process is polynomial interpolation. $\phi(x)$ approximates (evaluates) for f(x)

3. Methods of Interpolation:

Following are the methods of Interpolation

- (a) Graphic Method
- (b) Method of Curve fitting
- (c) Use of finite difference formulae.

Interpolation

Interpolation or interpolating polynomial are having two main uses.

- (i) The first use is in reconstructing the function f(x) when it is not given explicitly and only the values of f(x) and for its certain order derivatives at a set of points, called nodes, tabular points or arguments are known.
- (ii) The second use is to replace the function f(x) by an interpolating polynomial $\phi(x)$ so that many common operations such as determination of roots, differentiation, integration etc. may be carried out easily using $\phi(x)$.

(ii)

Lagrange and Newton Interpolation:

Let us assume that f(x) is a function defined and continuous on [a,b]

and we have n + 1 points.

 $a \leq x_0 < x_1 < x_2 < \ldots < x_n \leq b \text{, at these } (n+1) \text{ points values of } f(x)$ are known.

We want to find the polynomial

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
(i)

which satisfies the conditions

 $P(x_i) = f(x_i)$ i = 0, 1, 2, ... n

Putting (n+1) point x_0, x, \dots, x_n in eqn. (i) & using (ii) we get

$$a_{0} + a_{1}x_{0} + a_{2}x_{0}^{2} + \dots + a_{n}x_{0}^{n} = P(x_{0}) = f(x_{0})$$

$$a_{0} + a_{1}x_{1} + a_{2}x_{1}^{2} + \dots + a_{n}x_{1}^{n} = P(x_{1}) = f(x_{1})$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{0} + a_{1}x_{n} + a_{2}x_{n}^{2} + \dots + a_{n}x_{n}^{n} = P(x_{n}) = f(x_{n})$$

This system of equation has a unique solution or polynomial P(x) exists if the Vandermonde's determinant

$$V(x_0, x_1, \dots, x_n) = \begin{vmatrix} 1 & x_0 & x_0^2 & \cdots & x_n^n \\ 1 & x_1 & x_1^2 & \cdots & x_n^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{vmatrix} \neq 0$$

Uniqueness : The polynomial obtained above is unique.

Suppose that there is another polynomial $P^*(x)$ which also satisfies

$$P^*(x_i) = f(x_i)$$
 $i = 0, 1, 2, ..., n$

Consider the polynomial

 $Q(x) = P(x) - P^*(x)$

Since $P(x) \& P^*(x)$ are polynomials of degree *n*.

 \therefore Q(x) is also a polynomial of degree $\leq n$.

Also at x_0, x, \dots, x_n

$$Q(x_i) = P(x_i) - P^*(x_i)$$

= $f(x_i) - f(x_i)$ $i = 0, 1, ..., i$
= 0

 $\Rightarrow Q(x)$ is a polynomial of degree $\le n$ which has n + 1 distinct roots $x_0, x, ..., x_n$.

⇒
$$Q(x) = 0$$
 [: a poly. of degree $\leq n$ cannot have $(n+1)$ roots].

Expanding the determinant equation $\begin{vmatrix} P(x) & x & 1 \\ f(x) & x_0 & 1 \\ f(x_1) & x_1 & 1 \end{vmatrix} = 0$ we get

$$P(x)(x_0 - x_1) - f(x_0)(x - x_1) + f(x_1)(x - x_0) = 0$$

$$\Rightarrow P(x) = \frac{(x - x_1)}{(x_0 - x_1)} f(x_0) + \frac{x - x_0}{(x_1 - x_0)} f(x_1)$$
$$P(x) = \ell_0(x) f(x_0) + \ell_1(x) f(x_1)$$

(iv)

where

$$\ell_0(x) = \frac{x - x_1}{(x_0 - x_1)}, \quad \ell_1(x) = \frac{x - x_0}{(x_1 - x_0)}$$

 $\ell_0(x)$ & $\ell_1(x)$ are called the Lagrange fundamental polynomial satisfying

$$\ell_0(x) + \ell_1(x) = 1$$

$$\ell_0(x_0) = 1, \quad \ell_0(x_1) = 0$$

$$\ell_1(x_0) = 0, \quad \ell_1(x_1) = 1$$

In general $\ell_i(x_j) = \delta_{ij} = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases}$

Polynomial represented by equation (iv) is called as Lagrange's Interpolating polynomial.

Consider the determinant Equation.

$$\begin{vmatrix} P(x) & x & 1 \\ f(x_0) & x_0 & 1 \\ f(x_1) & x_1 & 1 \end{vmatrix} = 0$$
(i)

Expanding along first how we get

$$P(x)(x_{0} - x_{1}) - x(f(x_{0}) - f(x_{1})) + 1(x_{1}f(x_{0}) - x_{0}f(x_{1})) = 0$$

$$\Rightarrow P(x)(x_{0} - x_{1}) - xf(x_{0}) + xf(x_{1}) + x_{1}f(x_{0}) - x_{0}f(x_{1}) - x_{0}f(x_{0}) + x_{0}f(x_{0}) = 0$$

$$\Rightarrow P(x)(x_{0} - x_{1}) + x(f(x_{1}) - f(x_{0})) - x_{0}(f(x_{1}) - f(x_{0})) + (x_{1} - x_{0})f(x_{0}) = 0$$

$$\Rightarrow P(x)(x_{0} - x_{1}) = (x_{0} - x_{1})f(x_{0}) - (x - x_{0})(f(x_{1}) - f(x))$$

$$\Rightarrow P(x) = \frac{(x_{0} - x_{1})f(x_{0})}{(x_{0} - x_{1})} - \frac{(x - x_{0})(f(x_{1}) - f(x_{0}))}{-(x_{1} - x_{0})}$$

$$\Rightarrow P(x) = f(x_{0}) + (x - x_{0})\frac{(f(x_{1}) - f(x_{0}))}{(x_{1} - x_{0})}$$
(ii)

The ratio $f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{(x_1 - x_0)}$ is called as first dividend difference of f(x) relative to x_0 and x_1 Polynomial P(x) represented by (ii) is Newton's Dividend Difference Interpolating Polynomial.

Prepared by M.Latha, Department of Mathematics, KAHE

Example 1: Given f(2)=4, f(2.5)=5.5, find the linear interpolating polynomial using

- (i) Lagrange Interpolation
- (ii) Newton's Dividend difference interpolation

Hence find an approximate value of f(2.2)

Solution: We have

$$x_0 = 2,$$
 $f(x_0) = 4$
 $x_1 = 2.5,$ $f(x_1) = 5.5$

(i)

$$\ell_0(x) = \frac{x - x_1}{x_0 - x_1} = \frac{x - 2.5}{-0.5} = -2(x - 2.5)$$

$$\ell_1(x) = \frac{x - x_0}{x_1 - x_0} = \frac{x - 2}{0.5} = 2(x - 2)$$

$$P_1(x) = \ell_0(x) f(x_0) + \ell_1(x) f(x_1)$$

$$= -2(x - 2.5)(4) + 2(x - 2)(5.5)$$

$$= (-2x + 5)(4) + (2x - 4)(5.5)$$

$$= -8x + 20 + 11x - 22$$

$$= 3x - 2.$$

(ii) Newton's dividend difference interpolation

We have

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{5.5 - 4}{0.5} = 3$$

 $P_{1}(x) = f(x_{0}) + (x - x_{0}) f[x_{0}, x_{1}]$ = 4 + (x - 2)(3) = 4 + 3x - 6 = 3x - 2 $f(2.2) \approx P_{1}(2.2) = 3 \times (2.2) - 2$ = 6.6 - 2 = 4.6. **Example4.** Given that f(0)=1, f(1)=3, f(3)=55, find the unique polynomial of degree 2 or less, which fits the given data using.

(i) Lagrange Method

(ii) Newton divided difference method

Also find the bound on the error.

Ans (i) We have $x_0 = 0, x_1 = 1, x_2 = 3, f_0 = 1, f_1 = 3$ and $f_2 = 55$. The Lagrange fundamental polynomials are given by

$$l_{0}(x) = \frac{(x-x_{1})(x-x_{2})}{(x_{0}-x_{1})(x_{0}-x_{2})} = \frac{(x-1)(x-3)}{(-1)(-3)} = \frac{1}{3}(x^{2}-4x+3)$$

$$l_{1}(x) = \frac{(x-x_{0})(x-x_{2})}{(x_{1}-x_{0})(x_{1}-x_{2})} = \frac{x(x-3)}{(1)(-2)} = \frac{1}{2}(3x+x^{2})$$

$$l_{2}(x) = \frac{(x-x_{0})(x-x_{2})}{(x_{2}-x_{0})(x_{2}-x_{1})} = \frac{x(x-1)}{3(2)} = \frac{1}{6}(x^{2}-x).$$

Hence, the Lagrange quadratic interpolating polynomial is given by

$$P_{2}(x) = l_{0}(x)f_{0} + l_{1}(x)f_{1} + l_{2}(x)f_{2}$$

= $\frac{1}{3}(x^{2} - 4x + 3) + \frac{3}{2}(3x - x^{2}) + \frac{55}{6}(x^{2} - x)$
= $8x^{2} - 6x + 1$.

(ii) The divided differences are given by

$$f[0,1] = \frac{3-1}{1-0} = 2, f[1,3] = \frac{55-3}{3-1} = 26,$$
$$f[0,1,3] = \frac{26-2}{3-0} = 8.$$

The Newton divided difference interpolating polynomial becomes

$$P_2(x) = f[0] + (x-0)f[0,1] + (x-0)(x-1)f[0,1,3]$$
$$= 1 + 2x + 8x(x-1) = 8x^2 - 6x + 1.$$

Example 5. The following values of the function $f(x) = \sin x + \cos x$, are

given

x	10°	20°	<mark>30</mark> °	
f (x)	1.15 <mark>85</mark>	1	.2817	1.3660

Construct the quadratic interpolating polynomial that fits the data. Hence, find $f(\pi/12)$. Compare with the exact value.

Since the value of f at $\pi/12$ radians is required, we convert the data into radian measure. We have

$$x_0 = 10^\circ = \frac{\pi}{18} = 0.1745, x_1 = 20^\circ = \frac{\pi}{9} = 0.3491,$$

 $x_2 = 30^\circ = \frac{\pi}{6} = 0.5236$.

The Lagrange fundamental polynomials are given by

$$l_{0}(x) = \frac{(x-x_{1})(x-x_{2})}{(x_{0}-x_{1})(x_{0}-x_{2})} = \frac{(x-0.3491)(x-0.5236)}{(-0.1746)(-0.3491)}$$
$$l_{1}(x) = \frac{(x-x_{0})(x-x_{2})}{(x_{1}-x_{0})(x_{1}-x_{2})} = \frac{(x-0.1745)(x-0.5236)}{(-0.1746)(-0.1745)}$$

 $=-32.8616(x^2-06981x+0.0914)$

$$l_{2}(x) = \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} = \frac{(x - 0.1745)(x - 0.3491)}{(0.3491)(0.1745)}$$
$$= 16.4155(x^{2} - 0.5236 x + 0.0609).$$

Hence, the Lagrange quadratic interpolating polynomial is given by

 $P_2(x) = 16.4061(x^2 - 0.8727 x + 0.1828)(1.1585)$

 $-32.8616(x^2 - 0.6981x + 0.0914)(1.2817)$

 $+16.4155(x^2 - 0.5236x + 0.0609)(1.3660)$

$$= -0.6887 x^{2} + 1.0751 x + 0.9903$$

Hence, $f(\pi/12) = f(0.2618) = 1.2246$,

The exact value is $f(0.2618) = \sin(0.2618) + \cos(0.2618) = 1.2247$.

KARPAGAM UNIVERSITY **COIMBATORE-21 DEPARTMENT OF MATHEMATICS**

NAME OF THE FACULTY: Ms.M.LATHA(KU0969) SUBJECT: NUMERICAL METHODS **SUBJECT CODE: 16MMU301 CLASS: II B.Sc MATHEMATICS**

POSSIBLE QUESTIONS UNIT II/

2 MARKS

- 1. Prove that $E\Delta = \Delta = \nabla E$.
- 2. Write any two properties of divided differences.
- 3. Define Inverse Lagrange's interpolation
- 4. Prove that $\mu = (1 + \frac{\delta^2}{4})^{\frac{1}{2}}$ 5. Prove that $\Delta \nabla = \Delta \nabla = \delta^2$.

KARPAGAM UNIVERSITY COIMBATORE-21 DEPARTMENT OF MATHEMATICS

NAME OF THE FACULTY: Ms.M.LATHA(KU0969) SUBJECT: NUMERICAL METHODS SUBJECT CODE: 16MMU301 CLASS: II B.Sc MATHEMATICS POSSIBLE OUESTION

POSSIBLE QUESTIONS UNIT III

6 MARKS

1. From the f	ollowin	g table,	find the	value o	of tan 45	5°15′			
x°	:	45		46	47	7	48	49	50
tan	w ⁰ • 1	.0000		1.0355	1.07	172	1 1106	1 1502	1 1017
tan	X . 1	1.0000		1.0555	1.07	23	1.1106	1.1503	1.1917
2. Using inv	erse into	erpolatio	on form	ula, finc	d the val	ue of x v	when y=13.5.		
x:	93.0	96.2	*	100.	0	104.2	108.7		
y:	11.38	12.8	0	14.7	70	17.07	19.91		
3. From the f	ollowin	g table f	find f(x)	and he	ence f(6)	using N	ewton interpol	lation formu	la.
	x :	1		2		7	8		
	f(x) :	1		5		5	4		
4. Find the va	alues of	y at X=	21 and	X=28 fi	rom the	followin	ig data.		
X:	20		23		26		29		
Y:	0.34	20	0.390	7	0.4384	Ļ	0.4848		
5.Using New	ton's di	vided di	fference	e formu	ıla. Find	the valu	ues of f(2), f(8) a	and	
f(15) g	iven the	e followi	ing table	e					
X:	4	5	7	10	11	13			
f(x):	48	100	294	900	1210	2028			
6 Using Lag	range's	internol	ation fo	rmula f	find the	value co	rresponding to	v =	
	-	ollowing		iiiiuia i			iresponding to	Λ	
	x : 5		6		9		11		
	y:12		13		14		16		
7. Using inverse interpolation formula, find the value of x when $y=13.5$.									
x: 9	93.0	96.2	100.0	C	104.2	108.7	7		
y:	11.38	12.80	14.70	1	7.07	19.91			
8.Find the ag	ge corre	spondin	g to the	annuity	y value 1	3.6 give	en the table		
Age(2	x) :	30		35		40	45	50	
Annuity Va	lue(y):	15.9		14.9		14.1	13.3	12.5	i

Unit iii

1.	The x values of Interpol	ating polynomial of	f newton -Greg	gory has	
	a.even space b	.equal space c.odd	space d.une	equal	
2.	The value of E is				
	a. delta -1 b	.1-delta	c.delta+1	d.delta+2	
3.	We use the central diffe	rence formula such	as		
	a.lagrange's b	.Newton	c.Euler	d. bessel's	
4.	Formula ca	an be used for unequ	ual intervals.		
	a.Newton's forward	b.Newton's l	backward	c. Lagrange d.st	irling
5.	The difference value ∇y	1 –∇y0 in a Newton	n forward diffe	erenc table is denoted	by
	a. ∇ ² y0	b. ∇ ² y1	с. ⊽у	1 d. ∇y0	-
6.	By putting $n = 3$ in New	ton cote's formula	we get	rule.	
	0. 1/2 1	1.0.	2/0 1 5		· • •
	a.Simpson's 1/3 rule	b.Simpson's	3/8 rule c.1ra	pezoidal rule d.Si	impson's rule
7.	The process of computing	ng the value of a fu	nction outside	the range is called	
	a.interpolation	-		c.triangularisation	
8.	The process of computing	ng the value of a fur	nction inside th	he range is called	
		1 / 1/		1 • .• 1•	, , .
	a.interpolation	b.extrapolatic	on c.tria	ngularisation d.in	ltegration
9.	The difference value y2	- y1 in a Newton's	forward diffe	rence table is denoted	l by
	•	. ∇y1 c.∇y2			
10	. " Formula ca	• •		•	d of the tabular values."
		-	-	c. Lagrange d.st	
11	. The technique of estima			• •	•
	-	-		-	
	a.interpolation	b.extrapolation	on	c.forward method	d.backward method

12. The (n+1) th and higher differences of a polynomial of the nth degree are ------

a. a.**zero** b.one c.two d.three

13. Numerical evaluation of a definite integral is called ------

a.integration	b.differ	rentiation	c.inter	polation	d.triangularisation	
14. "The values of the in	depende	nt variable are not	given at eq	uidistance inter	rvals, weuse	formula."
a. Newton's f	forward	b. Newton's back	ward	c.Lagrange	d.stirling	
15. " To find the unknow	vn values	s of y for some x w	which lies at	the of	the table, we use Ne	wton's Backward formula."
a.beginning	b. end	c.center d.c	outside			
16. " To find the unknow	vn values	s of y for some x w	which lies at	the of	the table, we use New	wton's Forward formula."
a.beginning	b.end	c.center d.c	outside			
17. " To find the unknow	vn value	of x for some y, w	hich lies at	the unequal int	ervals we use	formula."
a.Newton's forwa	ard	b. Newton's back	ward	c. Lagrange	d.inverse interpolati	ion
18. "If the values of the v	variable	y are given, then tl	ne method o	of finding the u	nknown variable x is	called"
a. Newton's f	forward	b. Newton's back	ward	c.interpolation	n d.inverse interpolati	ion
19. In Newton's backwar	rd differe	ence formula, the	value of n is	s calculated by		
$\mathbf{a.n} = (\mathbf{x} - \mathbf{xn})$	/ h	b. $n = (xn)$	-x) / h	c.n = ((x-x0) / h	d.n = (x0-x) / h
20. In Newton's forward	differen	ce formula, the va	lue x can be	e written as	·	
a. x0–nh		b.xn–nh	c.xn+	nh	d. x0 + nh	
21. In Newton's backwar	rd differe	ence formula, the	value x can	be written as		
a. x0–nh		b. xn–nh	c. xn +	nh	d.x0 + nh	
22 Interpolat	tion form	nula can be used fo	or equal and	unequal interv	als.	
a. Newton's forw	vard	b. Newton's back	ward	c. Lagrange	d.none	
23. The fourth difference a.zero	es of a po b.one	olynomial of degre c.two	e four are - d.three			
a.2010	0.0110	C.two	u.unee	Ē.		

24. If the values x0 = 0, y0 = 0 and h = 1 are given for Newton's forward method, then the value of x is ------. A.0 b.1 c.**n** d.X 25. The second difference D2y0 is equal to b.y2 - 2y1 - y0 c. y2 - 2y1 + y0 d. y2 + 2y1 + y0a.y2 + 2y1 - y026. The second difference D3y0 is equal to a.v3 - 3v2 + 3v1 - v0 b.v3 + 3v2 + 3v1 - v0 c.v3 + 3v2 + 3v1 + v0 d.v3 + 3v2 + 3v1 + v327. The differences of constant functions are ----a. Not equal to zero b.**zero** d.two c.one 28. Dy2 = ----a.y2 - y3 b.y1 - y2 c.y0 - y2d.**v3**–**v2** 29. $y_n = y_0 + n Dy_0 + n (n-1) / 2! D2y_0 + n (n-1) (n-2) / 3! D3y_0 + \dots$ is known as a." Newton's formula for equal intervals " b.Bessel's formula c."Newton's formula for unequal intervals " d."Newton's formula for Equal and unequal intervals " 30. In Newton's forward interpolation formula, the first two terms will give the ----a.extrapolation b. linear interpolation c.parabolic interpolation d.interpolation 31. In Newton's forward interpolation formula, the three terms will give the ----b. linear interpolation **c.parabolic interpolation** d.interpolation a.extrapolation 32. The difference D3f(x) is called -----differences f(x). a.first b.fourth d.third c.second 33. n th difference of a polynomial of n th degree are constant and all higher order difference are d,negative a.constant b.variable c.zero 34. In divided difference the value of any difference is ----- of the order of their argument

a.Independent	b.dependent	c.Inverse	d.direct	
35. Central difference equivalent to shi	ift operator is			
a. $E^{1/2} + E - ^{1/2}$	b. E $\frac{1}{2}$ - E - $\frac{1}{2}$	c. E 1/	² . E - ¹ ∕ ₂ d	.Е
36. The differences Dy are called	differences f(x).			
a. first b.fourth	c.second d.thir	d		
37. The value (delta +1)is				
a.E b.h c.h2 d.h4				
38. Relation between Δ ∇ and E				
a. $\Delta + E = E + \nabla = \nabla + E$	$h \Lambda / F - F / \nabla - \Lambda /$	F	$\mathbf{c}.\Delta \mathbf{E} = \mathbf{E} \ \nabla = \Delta$	$d.\Delta + E = E + \nabla = -E$
	$\mathbf{D}_{\mathbf{r}} = \mathbf{D}_{\mathbf{r}} \mathbf{V}_{\mathbf{r}} = \mathbf{D}_{\mathbf{r}}$			$\mathbf{u} = \mathbf{u} + \mathbf{u} = \mathbf{u} + \mathbf{v} = \mathbf{u}$
39. $\Delta^2 y_2 =$				
$a.\Delta y2 - \Delta y3$ b. $\Delta y1$. – Δy2 c. y3 -	- y2	d. Δy3– Δy2	

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021

DEPARTMENT OF MATHEMATICS

UNIT IV					
Subject Code: 16MMU301	Class: II-B.Sc Mathematics	4 0 0 4			
Subject: Numerical Methods	Semester: III	LTPC			

Numerical Differentiation and Integration: Gregory's Newton's forward and backward differentiation- Trapezoidal rule, Simpson's rule, Simpsons 3/8th rule, Boole's Rule. Midpoint rule, Composite Trapezoidal rule, Composite Simpson's rule.

TEXT BOOK

T1. Jain. M.K., Iyengar. S.R.K., and Jain R.K., (2012). Numerical Methods for Scientific and Engineering Computation, New Age International Publishers, New Delhi .

R5:Sastry S.S., (2008). Introductory methods of Numerical Analysis, Fourth edition, Prentice Hall of India, New Delhi.

UNIT IV

Numerical Differentiation:

The problem of differentiation is solved by first approximating the function by an interpolation formula and then differentiating this formula as many times as desired.

Numerical Differentiation Methods Based on Interpolation:

We know that the Lagrange's Interpolation formula is

$$f(x) = \ell_0(x)f(x_0) + \ell_1(x)f(x_1) + \ldots + \ell_n(x)f(x_n)$$

where

$$\ell_0(x) = \frac{(x - x_1)(x - x_2) \dots (x - x_n)}{(x_0 - x_1)(x_0 - x_2) \dots (x_0 - x_n)},$$

$$\ell_1(x) = \frac{(x - x_0)(x - x_2) \dots (x - x_n)}{(x_1 - x_0)(x_1 - x_2) \dots (x_1 - x_n)},$$

$$\ell_n(x) = \frac{(x - x_0)(x - x_1) \dots (x - x_{n-1})}{(x_n - x_0)(x_n - x_1) \dots (x_n - x_{n-1})}$$

Now, f'(x) can be obtained by differentiating f(x) w.r.t. x

Thus, $f'(x) = \ell'_0(x)f(x_0) + \ell'_1(x)f(x_1) + \ldots + \ell'_n(x)f(x_n)$.

Numerical Differentiation using Newton's Forward Difference Interpolation Formula:

We know that the Newton's forward difference interpolation formula is

$$f(x) = f_0 + u\Delta f_0 + \frac{u(u-1)}{2!}\Delta^2 f_0 + \frac{u(u-1)(u-2)}{3!}\Delta^3 f_0 + \dots$$
 (1)

where
$$u = \frac{x - x_0}{h}$$

(2)

(1)

If we take the approximation of f(x) of order (n) or $O(h^n)$, then

$$f(x) = f_0 + u\Delta f_0 + \frac{u(u-1)}{2!}\Delta^2 f_0 + \frac{u(u-1)(u-2)}{3!}\Delta^3 f_0 + \dots + \frac{u(u-1)(u-2)\dots(u-(n-1))}{n!}\Delta^n f_0$$
(3)

and error in this approximation is

$$E(x) = \frac{u(u-1)(u-2)\dots(u-n)}{(n+1)!} h^{n+1} f^{(n+1)}(\xi)$$
(4)

On differentiating equation (1) w.r.t. u, we have

$$\frac{df(x)}{du} = \Delta f_0 + \frac{2u-1}{2}\Delta^2 f_0 + \frac{(3u^2 - 6u + 2)}{6}\Delta^3 f_0 + \dots$$

On differentiating equation (2) w.r.t. x, we have

$$\frac{du}{dx} = \frac{1}{h}$$

$$\Rightarrow \qquad \frac{df(x)}{dx} = \frac{df(x)}{du}\frac{du}{dx} = \frac{1}{h} \left[\Delta f_0 + \frac{2u-1}{2}\Delta^2 f_0 + \frac{(3u^2 - 6u + 2)}{6}\Delta^3 f_0 + \dots \right]$$

$$\Rightarrow f'(x) = \frac{df(x)}{dx} = \frac{1}{h} \left[\Delta f_0 + \frac{2u-1}{2} \Delta^2 f_0 + \frac{(3u^2 - 6u + 2)}{6} \Delta^3 f_0 + \dots \right]$$
(5)

and the error in the approximation of the first derivative of order $O(h^n)$ is

$$|E'(x_0)| = |E'(u=0)| \le \frac{h^n}{(n+1)} M_{(n+1)}$$

where

$$M_{(n+1)} = \max_{x_0 \le x \le x_2} \left| f^{(n+1)}(x) \right|.$$

On again differentiating equation (3) w.r.t. x we have

$$f''(x) = \frac{d}{dx} \left(\frac{df(x)}{dx} \right) = \frac{d}{dx} \left(\frac{df(x)}{dx} \right) \frac{du}{dx}$$
$$\Rightarrow f''(x) = \frac{1}{h^2} \left[\Delta^2 f_0 + (u-1)\Delta^3 f_0 + \left(\frac{6u^2 - 18u + 11}{12} \right) \Delta^4 f_0 + \dots \right]$$

Numerical Differentiation using Newton's Backward Difference Interpolation Formula:

We know that the Newton's backward difference interpolation formula is

$$f(x) = f_n + u\nabla f_n + \frac{u(u+1)}{2!}\nabla^2 f_n + \frac{u(u+1)(u+2)}{3!}\nabla^3 f_n + \dots$$
(1)

where $u = \frac{x - x_n}{h}$

If we take the approximation of f(x) of order (n) or $O(h^n)$, then

$$f(x) = f(x) = f_n + u\nabla f_n + \frac{u(u+1)}{2!}\nabla^2 f_n + \frac{u(u+1)(u+2)}{3!}\nabla^3 f_n + \dots + \frac{u(u+1)(u+2)\dots(u+(n-1))}{n!}\nabla^n f_0$$
(3)

and error in this approximation is

$$E(x) = \frac{u(u+1)(u+2)\dots(u+n)}{(n+1)!} h^{n+1} f^{(n+1)}(\xi)$$
(4)

On differentiating equation (1) w.r.t. u, we have

$$\frac{df(x)}{du} = \nabla f_n + \frac{2u+1}{2} \nabla^2 f_n + \frac{(3u^2 + 6u + 2)}{6} \nabla^3 f_n + \frac{(3u^2 + 6u + 2$$

On differentiating equation (2) w.r.t. x, we have

$$\frac{du}{dx} = \frac{1}{h}$$

$$\Rightarrow \quad \frac{df(x)}{dx} = \frac{df(x)}{du}\frac{du}{dx} = \frac{1}{h} \left[\nabla f_n + \frac{2u+1}{2} \nabla^2 f_n + \frac{(3u^2 + 6u + 2)}{6} \nabla^3 f_n + \dots \right]$$

$$\Rightarrow \quad f'(x) = \frac{df(x)}{dx} = \frac{1}{h} \left[\nabla f_n + \frac{2u+1}{2} \nabla^2 f_n + \frac{(3u^2 + 6u + 2)}{6} \nabla^3 f_n + \dots \right]$$
(5)

and the error in the approximation of the first derivative of order $O(h^n)$ is

$$|E'(x_0)| = |E'(u=0)| \le \frac{h^n}{(n+1)}M_{(n+1)}$$

where

$$M_{(n+1)} = \max_{x_0 \le x \le x_2} \left| f^{(n+1)}(x) \right|$$

On again differentiating equation (3) w.r.t. x we have

$$f''(x) = \frac{d}{dx} \left(\frac{df(x)}{dx} \right) = \frac{d}{dx} \left(\frac{df(x)}{dx} \right) \frac{du}{dx}$$
$$\Rightarrow \quad f''(x) = \frac{1}{h^2} \left[\nabla^2 f_n + (u+1) \nabla^3 f_n + \left(\frac{6u^2 + 18u + 11}{12} \right) \nabla^4 f_n + \dots \right]$$

(2)

UNIT-IV Numerical differential & Integration 2016-Batch

Example 3: Find $\frac{dy}{dx}$ at x = 0.1 from the following table:							
x	0.1	0.2	0.3	0.4			
У	0.9975	0.9900	0.9776	0.9604			

Solution: The difference table is:

x	У	Δy	$\Delta^2 y$	$\Delta^3 y$
0.1	0.9975	-0.0075		ð.
0.2	0.9900		-0.0049	
		-0.0124		0.0001
0.3	0.9776		-0.0048	
1998 - 1994		-0.0172		
0.4	0.9604			

We know that Newton's forward difference interpolation formula is

$$y(x) = y_0 + u\Delta y_0 + \frac{u(u-1)}{2!}\Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!}\Delta^3 y_0 + \dots$$
 (1)

where $u = \frac{x - x_0}{h}$

On differentiating w.r.t. x we have

$$\frac{dy}{dx} = \frac{1}{h} \left[\Delta y_0 + \frac{2u - 1}{2} \Delta^2 y_0 + \frac{3u^2 - 6u + 2}{6} \Delta^3 y_0 \right]$$

here $x_0 = 0.1$, h = 0.1 and x = 0.1, thus

$$u = \frac{x - x_0}{h} = \frac{0.1 - 0.1}{0.1} = 0$$

Thus, we have

$$\frac{dy}{dx} = \frac{1}{h} \left[\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 \right] = \frac{1}{0.1} \left[-0.0075 - \frac{1}{2} (-0.0049) + \frac{1}{3} (0.0001) \right]$$
$$\frac{dy}{dx} = -0.050167.$$

UNIT-IV Numerical differential & Integration 2016-Batch

Example 4: Find the first and second derivative of the function tabulated below at the point x = 1.1 from the following table:

х	1.0	1.2	1.4	1.6	1.8	2.0
f(x)	0	0.1280	0.5440	1.2960	2.4320	4.0000

Solution: The difference table is:

x	f(x)	Δf	$\Delta^2 f$	$\Delta^3 f$	$\Delta^4 f$	$\Delta^5 f$
1.0	0	and the second s		2 Dec	100	
74 (52)		0.1280	ALC: THE PARTY	1.1	1	
1.2	0.1280	10 M 10	0.2880	1.11		
77 - 181		0.4160		0.0480		
1.4	0.544		0.3360		0	
10 200		0.7520		0.0480	100	0
1.6	1.2960		0.3840		0	
0.957 - 9955		1.1360	and Belleversee.	0.480		
1.8	2.4320		0.4320			
244 Dec 16402	1011 W 3100 B 310 W 540	1.5680				
2.0	4.0000					

We know that Newton's forward difference interpolation formula is

$$f(x) = f_0 + u\Delta f_0 + \frac{u(u-1)}{2!}\Delta^2 f_0 + \frac{u(u-1)(u-2)}{3!}\Delta^3 f_0 + \dots$$
(1)

where $u = \frac{x - x_0}{h}$

on differentiating w.r.t. x we have

$$\frac{df}{dx} = \frac{1}{h} \left[\Delta f_0 + \frac{2u-1}{2} \Delta^2 f_0 + \frac{3u^2 - 6u + 2}{6} \Delta^3 f_0 + \dots \right]$$

and $\frac{d^2 f}{dx^2} = \frac{1}{h^2} \left[\Delta^2 f_0 + (u-1)\Delta^3 f_0 + \left(\frac{6u^2 - 18u + 11}{12}\right)\Delta^4 f_0 + \dots \right]$

here $x_0 = 1.0$, h = 0.2 and x = 1.1, thus

$$u = \frac{x - x_0}{h} = \frac{1.1 - 1.0}{0.2} = 0.5$$

Thus, we have

$$\left(\frac{df}{dx}\right)_{x=1,1} = \frac{1}{0.2} \left[0.1280 + \frac{2(0.5) - 1}{2} (0.2880) + \frac{3(0.5)^2 - 6(0.5) + 2}{6} (0.0480) + 0 \right]$$

$$\left(\frac{df}{dx}\right)_{x=1,1} = 0.630.$$

and $\left(\frac{d^2 f}{dx^2}\right)_{x=1,1} = \frac{1}{(0.2)^2} \left[0.2880 + (0.5 - 1)(0.0480) + 0\right] = 6.60$.

Example 5: Find the first derivative of the function tabulated below at the point x = 5:

Solution: We know that the Newton's backward difference interpolation formula is

$$\frac{u(u+1)(u+2)(u+3)(u+4)}{5!}\nabla^5 f_n + \frac{u(u+1)(u+2)(u+3)(u+4)(u+5)}{6!}\nabla^6 f_n + \dots$$

where $u = \frac{x - x_n}{h}$

The backward difference table is:

х	f(x)	∇f	$ abla^2 f$	$ abla^3 f$	$ abla^4 f$	$\nabla^5 f$	$\nabla^6 f$
0	0			The second s			
		2.5			100		
1	2.5	and the second second	3.5	Finn			
	100	6		-2.5	1.5		
2	8.5	Star 1	1		3.5		
	1 Sec	7		1		-3.5	
3	15.5		2		0		1
	1.4.1	9		1	1000	-2.5	
4	24.5		3		-2.5	12	1
		12		-1.5		1	
5	36.5		1.5		1125	1 T	
		13.5			112-24		£ 10
6	50	and a	-	-	1.5	1.1.1	

on differentiating w.r.t. x we have

$$f'(x) = \frac{1}{h} \left[\nabla f_n + \frac{2u+1}{2} \nabla^2 f_n + \frac{3u^2 + 6u + 2}{6} \nabla^3 f_n + \frac{4u^3 + 18u^2 + 22u + 6}{24} \nabla^4 f_n + \frac{5u^4 + 40u^3 + 105u^2 + 100u + 24}{120} \nabla^5 f_n + \frac{6u^5 + 75u^4 + 340u^3 + 675u^2 + 548u + 120}{720} \nabla^6 f_n + \ldots \right]$$

here $x_n = 6$, h = 1 and x = 5, thus

$$u = \frac{x - x_n}{h} = \frac{5 - 6}{1} = -1$$

Thus, we have

$$(f'(x))_{x=5} = \frac{1}{1} \left[13.5 + \frac{2(-1)+1}{2}(1.5) + \frac{3(-1)^2 + 6(-1)+2}{6}(-1.5) + \frac{4(-1)^3 + 18(-1)^2 + 22(-1) + 6}{24}(-2.5) + \frac{4(-1)^3 + 18(-1)^2 + 22(-1) + 2}{24}(-2.5) + \frac{4(-1)^3 + 18(-1)^2 + 22(-1) + 2}{24}(-2.5) + \frac{4(-1)^3 + 18(-1)^2 + 22(-1) + 2}{24}(-2.5) + \frac{4(-1)^3 + 22(-1)^2 + 2}{24}(-2.5) + \frac{4(-1$$

$$\frac{5(-1)^4 + 40(-1)^3 + 105(-1)^2 + 100(-1) + 24}{120}(-2.5) + \frac{6(-1)^5 + 75(-1)^4 + 340(-1)^3 + 675(-1)^2 + 548(-1) + 120}{720}(1)$$

 $\Rightarrow \qquad \left(f'(x)\right)_{x=5} = 13.0917.$

Example 6: From the following table of values of x and f(x), find the first and second derivatives of the function at the point x = 2.2:

x 1.0 1.2 1.4 1.6 1.8 2.0 2.2 f(x) 2.7183 3.3201 4.0552 4.9530 6.0496 7.3891 9.0250

х	f(x)	∇f	$\nabla^2 f$	$\nabla^3 f$	$-\nabla^4 f$	$\nabla^5 f$	$\nabla^6 f$
1.0	2.7183		and the second second	1000			
		0.6018	a la la marca la		- 65	11	
1.2	3.3201		0.1333				
1.1		0.7351		0.0294		1.0	1.4
1.4	4.0552	18 A.	0.1627		0.0067		
	AND E ATTAIN	0.8978	and the second	0.0361		0.0013	
1.6	4.9530		0.1988		0.0080	-17	0.0001
		1.0966	4 6 3	0.0441		0.0014	
1.8	6.0496	South States	0.2429		0.0094		100
	- N. C.	1.3395	34	0.0535	225	10/12	140 1
2.0	7.3891	THE PERMIT	0.2964	1 N.		1000	
		1.6359				1.5	1
2.2	9.0250			122	March 1		1

Solution: The backward difference table is:

We know that the Newton's backward difference interpolation formula is

$$f(x) = f_n + u\nabla f_n + \frac{u(u+1)}{2!}\nabla^2 f_n + \frac{u(u+1)(u+2)}{3!}\nabla^3 f_n + \frac{u(u+1)(u+2)(u+3)}{4!}\nabla^4 f_n + \frac{u(u+1)(u+2)(u+3)(u+4)}{5!}\nabla^5 f_n + \frac{u(u+1)(u+2)(u+3)(u+4)(u+5)}{6!}\nabla^6 f_n + \dots$$

where $u = \frac{x - x_n}{4!}$

on differentiating w.r.t. x we have

h

$$f'(x) = \frac{1}{h} \left[\nabla f_n + \frac{2u+1}{2} \nabla^2 f_n + \frac{3u^2 + 6u + 2}{6} \nabla^3 f_n + \frac{4u^3 + 18u^2 + 22u + 6}{24} \nabla^4 f_n \right]$$

$$+\frac{5u^4+40u^3+105u^2+100u+24}{120}\nabla^5 f_n$$

+
$$\frac{6u^5+75u^4+340u^3+675u^2+548u+120}{720}\nabla^6 f_n+\ldots$$

on again differentiating w.r.t. x we have

$$f''(x) = \frac{1}{h} \left[\nabla^2 f_n + (u+1) \nabla^3 f_n + \frac{12u^2 + 36u + 22}{24} \nabla^4 f_n + \frac{20u^3 + 120u^2 + 210u + 100}{120} \nabla^5 f_n + \frac{30u^4 + 300u^3 + 1020u^2 + 1350u + 548}{720} \nabla^6 f_n + \dots \right]$$

here $x_n = 2.2$, h = 0.2 and x = 2.2, thus

$$u = \frac{x - x_n}{h} = \frac{2.2 - 2.2}{0.2} = 0$$

Thus, we have

$$(f'(x))_{x=2,2} = \frac{1}{0.2} \left[1.6359 + \frac{1}{2}(0.2964) + \frac{1}{3}(0.0535) + \frac{1}{4}(0.0094) + \frac{1}{5}(0.0014) + \frac{1}{6}(0.0001) \right]$$

$$\Rightarrow \quad \left(f'(x)\right)_{x=2,2} = 9.0228$$

and
$$(f''(x))_{x=2.2} = \frac{1}{0.2} \left[0.2964 + 0.0535 + \frac{22}{24} (0.0094) + \frac{100}{120} (0.0014) + \frac{548}{720} (0.0001) \right]$$

$$\Rightarrow (f''(x))_{x=2.2} = 8.992.$$

In Newton Cotes Quadrature formula x_i are taken as equally spaced points from within the intervals [a, b] and the weights w_i are computed by fitting a function to the $f(x_i)$ data and integrating the resulting function exactly.

The basic procedure for developing Newton – Cotes quadrature rules is to first fix the abscissas $x_0, x_1, x_2, ..., x_n \in [a, b]$.

Next interpolate the integrand, f, at the abscissas by the polynomial $P_n(x)$. Finally we integrate the interpolating polynomial and set

 $I(f) \approx I_n(f) \equiv I(P_n)$ Real value of integral of Newton Cotes Real value of integral of integral of integral of interpolating polynomial.

Because we want the final quadrature rule to show a clear dependence on the data values $f(x_i)$, the Lagrange's form of interpolating polynomial will be used

$$P_n(x) = \sum_{i=0}^n L_{n,i}(x) f(x_i)$$

= $\sum_{i=0}^n \frac{(x-x_0)(x-x_1)...(x-x_{i-1})(x-x_{i+1})...(x-x_n)}{(x_i-x_0)(x_i-x_1)...(x_i-x_{i-1})(x_i-x_{i+1})...(x_i-x_n)} f(x_i)$

:. Newton – Cotes Quadrature formulae will take the form

$$I_n(f) = \int_a^b \sum_{i=0}^n L_{n,i}(x) f(x_i) dx$$
$$= \sum_{i=0}^n \left(\int_a^b L_{n,i}(x) dx \right) f(x_i)$$
$$= \sum_{i=0}^n w_i f(x_i) \text{ where } w_i = \int_a^b L_{n,i}(x) dx$$

We have two forms of Newton – Cotes formulas which differs in their choice of the abscissas within the interval [a, b]

(i) Closed Newton – Cotes formulas which include the end points of the integration interval x=a and x=b

Here for a given 'n' we take $\Delta x = (b-a)/n$

and
$$x_i = a + i\Delta x$$
 $i = 0, 1, 2, ..., n$

 (ii) Open Newton – Cotes formulas which do not include the end points of the integration interval

Here we take $\Delta x = (b-a)/(n+2)$

and then
$$x_i = a + (i+1)\Delta x$$
 $i = 0, 1, 2, ..., n$.

Trapezoidal Rule:

In the closed Newton - Cotes formulae

We take n = 1

 \Rightarrow

Then $\Delta x = b - a$ and $x_0 = a$ $x_1 = b$

:. Lagrange's Polynomial associated with these points are

$$L_{1,0}(x) = \frac{b-x}{b-a}, \qquad L_{1,1}(x) = \frac{x-a}{b-a}$$

Quadrature weights are

$$w_0 = \int_a^b \frac{b-x}{(b-a)} dx$$
 and $w_1 = \int_a^b \frac{x-a}{(b-a)} dx$

Put $x = a + t\Delta x \implies dx = \Delta x dt$

when
$$x = a$$
, \therefore $a = a + t\Delta x \implies t = 0$ ($\because \Delta x = b - a$)

$$x = b$$
 \therefore $b = a + t\Delta x \implies (b - a) = t(b - a) \implies t = 1$

:.
$$w_0 = \Delta x \int_0^1 t \, dt = \frac{\Delta x}{2} = \frac{(b-a)}{2} = w_1$$

 \therefore Closed Newton – Cotes Quadrature formula for n = 1 is

$$I(f) \approx I_{1,\text{closed}}(f) = \frac{\Delta x}{2} \left[f(a) + f(b) \right] = \frac{(b-a)}{2} \left[f(a) + f(b) \right]$$

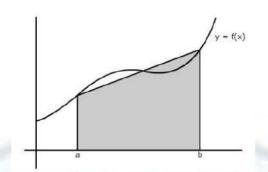


Figure 1: The Trapezoidal Rule

Geometrically, this quadrature rule approximate the value of the definite integral as the area of a trapezoid, so this rule is known as the trapezoidal rule. Simpson's Rule: When n = 2, the quadrature formulae produces a well known formulae that is, Simpson's Rule.

Here

$$\Delta x = \frac{(b-a)}{2}, \qquad x_0 = a, \qquad x_1 = a + \Delta x = (a+b)/2$$
$$x_2 = a + 2\Delta x = b$$

Weights are calculated as

$$w_0 = \int_a^b L_{2,0}(x) dx = \int_a^b \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} dx$$

Put $x = a + t\Delta x \Rightarrow dx = \Delta x dt$ where $\Delta x = \frac{(b-a)}{2}$

when $x = a \Rightarrow a = a + t\Delta x \Rightarrow t = 0$

when
$$x=b$$
, $\Rightarrow b=a+t\left(\frac{b-a}{2}\right) \Rightarrow (b-a)=t\left(\frac{b-a}{2}\right) \Rightarrow \frac{2(b-a)}{(b-a)}=t$

 $\Rightarrow t = 2$

$$\therefore \qquad w_0 = \int_0^2 \frac{(\alpha + t\Delta x - \alpha - \Delta x)(\alpha + t\Delta x - \alpha - 2\Delta x)}{(\alpha - \alpha - \Delta x)(\alpha - \alpha - 2\Delta x)} \Delta x dt$$

$$= \int_{0}^{2} \frac{(t-1)(t-2)(\Delta x)^{3}}{2(\Delta x)^{2}} = \frac{\Delta x}{2} \int_{0}^{2} \left[t^{2}-3t+2\right] dt$$

$$= \frac{\Delta x}{2} \int_{0}^{2} \left[\frac{t^{3}}{3} - \frac{3t^{2}}{2} + 2t \right]$$
$$\Delta x \left[8 + \frac{1}{2} \right] \Delta x = 2$$

$$=\frac{\Delta x}{2}\left[\frac{8}{3}-6+4\right]=\frac{\Delta x}{2}\times\frac{2}{3}=\frac{\Delta x}{3}$$

Similarly

$$w_{1} = \int_{a}^{b} L_{2,1}(x) dx = -\Delta x \int_{0}^{2} t(t-2) dt = \frac{4}{3} \Delta x$$

$$w_{2} = \int_{a}^{b} L_{2,2}(x) dx = \frac{\Delta x}{2} \int_{0}^{2} t(t-1) dt = \frac{\Delta x}{3}$$

$$\therefore \quad I(f) \approx I_{2,\text{closed}}(f) = \frac{\Delta x}{3} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

$$= \frac{(b-a)}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

which is known as Simpson's Rule.

3.1.3. For n = 3 we have Simpson's three – eighth rule:

$$I(f) = \frac{(b-a)}{8} \left[f(a) + 3f(a+\Delta x) + 3f(a+2\Delta x) + f(b) \right]$$

where $\Delta x = \frac{(b-a)}{3}$

3.1.4. For n = 4 we have Boole's Rule:

$$I(f) = \frac{(b-a)}{90} \left[7f(a) + 32f(a+\Delta x) + 12f(a+2\Delta x) + 32f(a+3\Delta x) + 7f(b) \right]$$

where $\Delta x = (b-a)/4$

Mid – Point Rule:

The simplest open Newton – Cotes formulae corresponds to n = 0

$$\Rightarrow \quad \Delta x = \frac{(b-a)}{(n+2)} = \frac{(b-a)}{0+2} = \frac{(b-a)}{2}$$

and the only abscissa is $x_0 = (a+b)/2$

The quadrature weight is

$$w_0 = \int_a^b L_{0,0}(x) dx = \int_a^b dx = b - a$$

... Open Newton - Cotes Quadrature formulae is

$$I(f) \approx I_{0,\text{open}}(f) = (b-a) \times f\left(\frac{a+b}{2}\right)$$
(1)

The formulae given by (1) is known as Mid - Point Rule

3.2.2. For
$$n = 1$$
, $\Delta x = \frac{(b-a)}{(n+2)} = \frac{(b-a)}{3}$

and the abscissa are $x_0 = a + \Delta x$

 $x_1 = a + 2\Delta x$

Quadrature weights are

 $w_{0} = \int_{a}^{b} L_{1,0}(x) = \int_{a}^{b} \frac{x - x_{1}}{x_{0} - x_{1}} dx = \int_{a}^{b} \frac{x - (a + 2\Delta x)}{(a + \Delta x - a - 2\Delta x)}$ $= \int_{a}^{b} \frac{a + 2\Delta x - x}{\Delta x} \quad \text{Put } x = a + t\Delta x, \quad dx = \Delta x dt$ $= \Delta x \int_{0}^{3} (2 - t) dt = \Delta x \int_{0}^{3} \left[2t - \frac{t^{2}}{2} \right]$ $= \Delta x \left[6 - \frac{9}{2} \right] = \frac{3\Delta x}{2}$

when x = a, t = 0

$$x = b = t = \frac{b-a}{\Delta x} = \frac{(b-a)}{\left(\frac{b-a}{3}\right)} = 3$$

 $\therefore \qquad w_0 = \frac{3\Delta x}{2}$

Similarly

$$w_{1} = \int_{a}^{b} L_{1,1}(x) dx = \int_{a}^{b} \frac{(x - x_{0})}{x_{1} - x_{0}} dx = \int_{a}^{b} \frac{x - (a + \Delta x)}{(\alpha + 2\Delta x - \alpha - \Delta x)} dx$$
$$= \int_{a}^{b} \frac{x - (a + \Delta x)}{\Delta x} dx = \frac{3\Delta x}{2}$$

Here also we put $x = a + t\Delta x$

we have

]

$$\Delta x = \frac{(b-a)}{3}$$

For n = 1 Open Newton Cotes formulae is . .

$$I(f) \approx I_{0,\text{open}}(f) = \frac{(b-a)}{2} \left[f(a+\Delta x) + f(a+2\Delta x) \right]$$

Composite Trapezoidal Rule:

We know that

$$I(f) = I_{1,closed}(f) + error$$

= $\frac{(b-a)}{2} [f(a) + f(b)] - \frac{(b-a)^3}{12} f''(\xi)$ (1)

If the integration interval [a, b] is split into *n* subintervals by defining h = (b-a)/n and $x_j = a + jh$; $0 \le j \le n$, and then the trapezoidal rule is applied on each subinterval $\begin{bmatrix} x_{j-1}, x_j \end{bmatrix}$.

We get

$$I(f) = \sum_{j=1}^{n} \int_{x_{j-1}}^{x_j} f(x) dx$$

= $\sum_{j=1}^{n} \frac{(x_j - x_{j-1})}{2} \Big[f(x_{j-1}) + f(x_j) \Big] - \sum_{j=1}^{n} \frac{(x_j - x_{j-1})^3}{12} f''(\xi_j)$
= $\frac{h}{2} \Big[f(x_0) + 2 \sum_{j=1}^{n-1} f(x_j) + f(x_n) \Big] - \frac{h^3}{12} \sum_{j=1}^{n} f''(\xi_j)$

Composite trapezoidal rule

Error

$$\left(\because h = x_j - x_{j-1}\right) \text{ for each } j \text{ and } x_{j-1} < \xi_j < x_j$$
(2)

Composite Simpson's Rule:

Since the basic Simpson's rule divides the interval [a, b] into two pieces

For Simpson's composite rule, we divide the interval [a, b] into even no. of · · · subinterval

$$\therefore$$
 Let $n = 2m$, define $h = \frac{b-a}{n} = \frac{b-a}{2m}$

 $x_i = a + ih \quad (0 \le i \le 2m)$

and apply Simpson's rule *m* times once over each subinterval $[x_{2j-2} \ x_{2j}], j = 1, 2, ..., m$

$$I(f) = \sum_{j=1}^{m} \int_{x_{2j-2}}^{x_{2j}} f(x) dx$$

$$= \sum_{j=1}^{m} \frac{(x_{2j} - x_{2j-2})}{6} \Big[f(x_{2j-2}) + 4f(x_{2j-1}) + f(x_{2j}) \Big] - \sum_{j=1}^{m} \frac{(x_{2j} - x_{2j-2})^{5}}{2880} f^{4}(\xi_{j})$$

$$= \frac{h}{3} \Big[f(x_{0}) + 4\sum_{j=1}^{m} f(x_{2j-1}) + 2\sum_{j=1}^{m-1} f(x_{2m}) \Big] - \frac{h^{3}}{90} \sum_{j=1}^{m} f^{(4)}(\xi_{j})$$

$$(\because x_{2j} - x_{2j-2} = 2h)$$

Provided f has four continuous derivatives.

Similar to composite Trapezoidal Rule

We can find a number $\xi \in [a,b]$ such that $f^4(\xi) = \frac{1}{m} \sum_{j=1}^m f^{(4)}(\xi_j)$

:. Error Term is
$$\frac{-h^5 m}{90} f^{(4)}(\xi) = \frac{-(b-a)h^{(4)}(\xi)}{180}$$

where hm = (b-a)/2

Hence the composite Simpson's rule is

$$I(f) = \frac{h}{3} \left[f(x_0) + 4 \sum_{j=1}^{m} f(x_{2j-1}) + 2 \sum_{j=1}^{m-1} f(x_{2j}) + f(x_{2m}) \right] - \frac{(b-a)h^4}{180} f^{(4)}(\xi)$$

Note: The composite Simpson's Rule has rate of convergence $O(h^4)$. Evaluate $I = \int_0^1 \frac{1}{1+x} dx$ correct to three decimal places. Solution: We solve this example by both the Trapezoidal and Simpson's rules with $\Delta x = 0.5, 0.25, 0.125$

UNIT-IV Numerical differential & Integration 2016-Batch

	f(x) =	$=\frac{1}{1+x}$				
(i)	$\Delta x = 0$	0.5 the v	alues of x and	df(x) are		
	x		O	0.5		1.0
	f(x)		1.0000	0.6667		0.5
(a)	Trapez	oidal rule g	ive	PV-		
	$I = \frac{1}{4}$	1.0000+2(0.6667)+0.5]=0.7084		
(b)	Simpse	on's rule giv	/es			20
	$I = \frac{1}{6}$	1.0000+4(0.6667)+0.5]=0.6945		
(ii)	$\Delta = 0.2$	25 the tabul	ated values of	f x and $f(x)$ are		
	x	0	0.25	0.50	0.75	1.0
s	`(x)	1.0000	0.8000	0.6667	0.5714	0.5
(a)	Trapez	oidal rule g	ives			
	$I = \frac{1}{8} [$	1.0+2(0.80	000 + 0.6667 +	-0.5714)+0.5] = 0.6970	
(Ь)	Simpso	on's rule giv	res			
	$I = \frac{1}{2}$	1.0+4(0.80	000+0.5714)	+2(0.6667)+0	[0.5] = 0.693	32
(iii)	Finally	we take Δ	x = 0.125			
	The tab	oulated valu	es of x and f ((x) are		
x	0 0	0.125 0.2	50 0.375	0.5 0.62	5 0.750	0.875 1

f(x) = 1 = 0.8889 = 0.8000 = 0.7273 = 0.6667 = 0.6154 = 0.5714 = 0.5333 = 0.5

(a) Trapezoidal rule gives

$$I = \frac{1}{16} \left[1.0 + 2(0.8889 + 0.8000 + 0.7273 + 0.6667 + 0.6154) \right]$$

+0.5714+0.5333)+0.5

= 0.6941

(b) Simpson's rule gives

$$I = \frac{1}{24} [1.0 + 4(0.8889 + 0.7273 + 0.6154 + 0.5333) + 2(0.8000 + 0.6667 + 0.5714) + 0.5]$$

= 0.6932

The exact value of Integral $I = \log_e (2) = 0.693147$

 \therefore Approximate value can be taken = 0.693

This example demonstrates that in general Simpson's rule yields more accurate results than the Trapezoidal rule.

Possible Questions

PART-A (2 Mark) UNIT IV

1. Write the formula for Newton forward difference formula for derivatives.

- 2. Write the formula for Newton backward difference formula for derivatives.
- 3. Write the Simpson's 3/8th rule formula.
- 4. Write Boole's rule formula.
- 5. Write the Simpson's 3/8th rule formula

PART-B (6 Mark)

1. The population of a certain town is given below, Find the rate of growth of population in 1931, 1941, 1961 and 1971.

Year : 1931 1941 1951 1961 1971

Population : 40.62 60.80 79.95 103.56 132.65

in thousands

2.Evaluate using Trapezoidal rule with h = 0.2. Hence obtain the approximate 1 2 0 1 dxx \square value of \square .

3. Find the gradient of the road at the middle point of the elevation above a

datum line of seven point of road which are given below:

X : 0 300 600 900 1200 1500 1800

Y : 135 149 157 183 201 205 193

4. By dividing the range into the ten equal parts . Evaluate by Trapezoidal rule and Simpson's rule. 0 sin xdx \square \square

5. From the following table of half-yearly premium for policies maturing at

different ages. Estimate the premium for policies maturing at age 46 & 63.

Age x : 45 50 55 60 65

Premium y : 114.84 96.16 83.32 74.48 68.48

6. Find the value of y at x = 1.05 from the table given below.

x : 1.0 1.1 1.2 1.3 1.4 1.5

y: 0.841 0.891 0.932 0.964 0.985 1.015

7. Find the first and second derivative of the function tabulated below atx = 0.6

X : 0.4 0.5 0.6 0.7 0.8

Y : 1.5836 1.7974 2.0442 2.3275 2.6511

8. Evaluate by (i) Trapezoidal rule (ii) Simpson's rule. Also check up the result by actual integration.

9. Given the following data, find and the maximum value of y. '(6) y

X:023479

Y: 4 26 58 112 466 922

10. Evaluate I= $\int dx / (1+x) 60$ using both of the Simpson's rule

KARPAGAM UNIVERSITY COIMBATORE-21 DEPARTMENT OF MATHEMATICS

NAME OF THE FACULTY: Ms.M.LATHA(KU0969) SUBJECT: NUMERICAL METHODS SUBJECT CODE: 16MMU301 CLASS: II B.Sc MATHEMATICS POSSIBLE QUESTIONS UNIT IV

2 MARKS

1. Write the formula for Newton forward difference formula for derivatives.

2. Write the formula for Newton backward difference formula for derivatives.

3 2. th rule formula.

5 2. th rule formula.

KARPAGAM UNIVERSITY COIMBATORE-21 DEPARTMENT OF MATHEMATICS

NAME OF THE FACULTY: Ms.M.LATHA(KU0969) SUBJECT: NUMERICAL METHODS SUBJECT CODE: 16MMU301 CLASS: II B.Sc MATHEMATICS

POSSIBLE QUESTIONS UNIT IV

6 MARKS

	lation of 1, 1961 a			is given	below,	Find the	e rate of	f growth	of pop	ulation in 1931,
		: 193		1941		1951		1961		1971
	pulation					79.95		103.56		132.65
in t	housands	5								
2.Evaluate	$\int_{0}^{1} \frac{dx}{1+x^2}$	using [Frapezo	oidal rule	e with h	n = 0.2.1	Hence of	btain th	e appro	oximate
value of τ	τ.									
3.Find the g datum lin								above a	l	
Х	:	0	300	600	900	1200	1500	1800		
	:			157		201		193		
4. By divid	ing the ra	inge into	the ter	n equal p	parts .E	valuate	$\int_{0}^{\pi} \sin x dx$	dx by	Trapez	oidal rule and
Simpson's							0			
5. From the										
	ent ages.		-		-		0	t age 46	& 63.	
U	x :	45	50	55		60	65			
	mium y :						68.48			
6. Find the	value of 0	•	1.05 fr	1.2	table gr	ven beid	ow.	1.4		1.5
	0 341					0.964	L	0.985		1.015
y. 0.0	71	0.071		0.752		0.70-	r	0.705		1.015
7. Find the	first and	second of	lerivati	ve of th	e functi	on tabul	lated be	low atx	= 0.6	
Х	: 0.4		0.5		0.6		0.7		.8	
Y	: 1.58	836	1.797	4	2.044	2 2.1	3275		5511	
8. Evaluate	$\int_{0}^{6} \frac{dx}{1+x^2}$	by (i) T	rapezoi	dal rule	(ii) Sin	npson's	rule. Al	so checl	k up	
the result	t by actua	al integra	ation.							
9. Given the following data, find $y'(6)$ and the maximum value of y.										
Х	:	0		3		7	9			
Y	:	4	26	58	112	466	922			

10. Evaluate I= $\int_0^6 dx / (1 + x)$ using both of the Simpson's rule.

UNIT-IV

1.	" If the given integral is ap	proximated by the su	m of 'n' trapezoic	ls, then the rule is called a	as	
	a.Newton's meth	od b. Trapezoidal r	ule c.simpso	on's rule d. power		
2.	The order of error in Trap	ezoidal rule is				
	a.h b.h ³ c.	. h² d.h ⁴				
3.	The general quadratic for	mula for equidistant o	rdinates is			
	a.raphson b	.Newton-cote's	c.interpolation	d.divide differenc	e	
4.	h/2[(sum of the first and I	ast ordinates)+2(sum	of the remaining	ordinates)] is		
	a.simphson's 3/8	b.simphson's 1,	/3 c.trapez	oidal d.taylor series		
5.	Use trapezoidal rule for y	(x)				
	a.linear b	.second degree	c.third degree	d.degree n		
6.	" Simpson's rule is exact f	or a ever	n though it was de	erived for a Quadratic."		
	a.cubic b	less than cubic.	c.linear	d.quadratic		
7.	What is the order of the error in Simpson's formula?					
	A.Four B	.three c.two	d.one			
8.	Simpson's 1/3 is findind y	(x) upto	_			
	a.linear b	.second degree	c.degree n	d.third degree		
9.	In simpson's 1/3, the num	ber of intervels must	be			
	a.any integer b	.odd c.even	d.prime			
10.	In simpson's 1/3, the num	ber of ordinates must	be			
	a.any integer b	.odd c.even	d.prime			
11.	Simpson's one-third rule of	on numerical integration	on is called a	formula.		
	a.closed b	.open c.semi	closed d.semi c	pened		
12.	In simphson's 3/8 rule, we		mial of degree			
	a.degree n b	linear c.secon	nd degree	d. third degree		
13.	The number of interval is					
		b.trapezoidal	-	d.taylor series		
14.	The number of interval is	multiple of six				

a. a.simpson's 1/3 b.simphson's 3/8 c.**weddle** d.trapezoidal 15. The error in Simpson's 1/3 is ------. b.h³ c.h² a.h d.**h**⁴ 16. Modulus of E is a.<M(b-a)h4/180 b.0 c.>M(b-a)h4/180 d.M(b-a)h4/180 17. The order of error is h^2 for_ a.lagrange's b.trapezoidal c.weddle d.simpson's 1/3 18. h^4 is the error of a.simphson's 3/8 b.simphson's 1/3 c.trapezoidal d.taylor series 19. The value of integral ex is evaluated from 0 to 0.4 by the following formula. Which method will give the least error? a. Trapezoidal rule with h = 0.2 b. Trapezoidal rule with h = 0.1 c. **Simpson's 1/3 rule with h = 0.1**. d.weddle 20. Using Simpson's rule the area in square meters included between the chain line, irregular boundary and the first and the last offset will be _____ a. 7.33.28 sg-m b.744.18 sg-m c.880.48 sg-m. d.820.38 sg-m 21. By putting n = 1 in Newton cote's formula we get ------ rule. b.Simpson's 3/8 rule c.**Trapezoidal rule** d.Simpson's rule a.Simpson's 1/3 rule 22. " $I = (3h / 8) \{ (y0 + yn) + 3 (y1 + y2 + y4 + y5 +) + 2(y3 + y6 + y9 +) \}$ is known as -------." b.**Simpson's 3/8 rule** c.Trapezoidal rule a.Simpson's 1/3 rule d.Simpson's rule 23. "I = (h / 3) { (y0 + yn) + 2 (y2+ y4 + y6 + y8 +) + 4(y1 + y3 + y5 +) } is known as ------." **a.Simpson's 1/3 rule** b.Simpson's 3/8 rule c.Trapezoidal rule d.Simpson's rule 24. The differentiation of logx is a.**1/x** c.sinx d.cosx b.e(x) 25. [f(x) dx of (a, b) is c.F(b-a) b.F(a+b) d.F(b)-F(a) a.F(a) 26. h/3[(sum of first and last ordinates)+2(sum of even ordinates)+4(sum of odd ordinates)] is the formula for a.trapezoidal b.simphson's 1/3 **c.**simphson's 3/8 d.taylor series

27. In simpson 1/3 rule	e, the integral	value is h/3[y0+4(y	/1)+y2]		
a. a.for n=1		b. for n=2	c.for n=3	d.for n=4	
28. Differentiation of s	sinx is				
a.cosx	b. tanx	c.sinx	d.logx		
29. Integration of cosx	[
a.cosx	b.tanx	c.sinx	d.logx		
30. If y(x) is linear ther	n use				
a.simphso	n's 3/8	b.simphsoi	n's 1/3	c. trapezoidal	d.taylor series
31. The differentiation	of secx is				
a.secx tan	x b.cotx	c.cosecx d.t	anx		
32. The notation h is _		differece of ordina	tes		
a.sum of o	rdinates	b.number of ordina	ates c.product o	of ordinates	d.difference of ordinates
33. While evaluating t	he definite int	egral by Trapezoida	al rule, the accura	cy can be increased by t	aking
a.Large nu	mber of sub-i	i ntervals b.e	even number of su	b-intervals c.m	ultipleof6 d.has multiple of 3
34. Numerical integrat a.maxima	tion when app b.minim			, it is known as adrant	

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021 DEPARTMENT OF MATHEMATICS

Subject: Numerical Methods	Semester: III	L T P C
Subject Code: 16MMU301	Class: II-B.Sc Mathematics	4 0 0 4
	UNIT V	

Ordinary Differential Equations: Taylor's series - Euler's method - modified Euler's method - Runge-Kutta methods of orders two and four.

TEXT BOOK

T1. Jain. M.K., Iyengar. S.R.K., and Jain R.K., (2012). Numerical Methods for Scientific and Engineering Computation, New Age International Publishers, New Delhi .

R2. Gerald C.F. and Wheatley P.O., (2006). Applied Numerical Analysis, Sixth Edition, Dorling Kindersley (India) Pvt. Ltd., New Delhi.

R4. John H., Mathews and Kurtis D. Fink., (2012). Numerical Methods using Matlab, Fourth Edition., PHI Learning Private Limited.

Initial value problem:

A general solution of a differential equation of n^{th} order has n arbitrary constants. It will be of the form $f(x,y,c_1,c_2,...c_n) = 0$. if n conditions are given we can obtain the values of the constants $c_1,c_2,...c_n$. If all the n conditions are specified at the initial point only, then the problem is called an initial value problem

Boundary value problem:

A general solution of a differential equation of n^{th} order has n arbitrary constants. It will be of the form $f(x_1, y_1, c_1, c_2, ..., c_n) = 0$. If n conditions are given we can obtain the values of the constants c_1 , c_2 c_n If n conditions are specified at more than one point, then the problem is called a boundary value problem

Particular solution:

A most general from of an ordinary differential equation is given by Q (x, y, $\frac{dy}{dx}, \frac{d^2y}{dx^2}, \dots, \frac{d^n y}{dx^n} = 0$

we know that the general solution of a differential equation of nth order has n arbitrary constants. If we give particular values to the constants, the solution is said to be a particular solution.

Formula for Taylor series:

$$Y_{n+1} = y_n + \frac{h_1}{1!} \frac{h^2}{y_n + \frac{1}{2!} y_n} \frac{h^3}{2!} \frac{h^3}{3!} \frac{h^3}{y_n} + \dots$$

Formula for Euler's method or Euler's algorithm:

$$Y_{n+1} = y_n + h f(x_n, y_n), n = 0, 1, 2,$$

Formula for improved Euler's method?:

$$Y_{n+1} = y_n + \frac{1}{2} h [f(x_n, y_n) + f(x_n+h, y_n + h f(x_n, y_n))]$$

Formula for modified Eulers method:

$$Y_{n+1} = y_n + h[f(x_n+h/2, y_n+h/2 f(x_n, y_n))]$$

Formula for fourth order Runge-kutta method:

$$K_{1} = h f(x,y)$$

$$K_{2} = h f (x+h/2, y+k_{1}/2)$$

$$K_{3} = h f(x+h/2, y+k_{2}/2)$$

$$K_{4} = h f (x+h, y+k_{3})$$

$$\Delta y = \frac{1}{2} (K+2k+2K+k)$$

$$\frac{6}{3} y(x+h) = y(x) + \Delta y$$

Runge-kutta method for simultaneous first order differential equations:

To solve numerically the simultaneous equations

$$\frac{dy}{dx} = f_1(x, y, z), \text{ and } \frac{dz}{dx} = f_2(x, y, z) \text{ given the initial conditions } y(x_0) = y_0,$$

Prepared by M.Latha, Department of Mathematics, KAHE

$z(r_0) = Z_0$

we starting from (x_0 , Y_0 , z_0) the increments Δy and ΔZ in y and z respectively are given by formulae

$$K_{1}=hf, (x_{0},y_{0},z_{0}) l_{1} = hf_{2} (x_{0}, y_{0}, z_{0})$$

$$\frac{h}{K_{2}} = hf_{1}(x_{0} + \frac{h}{2}, y_{0} + \frac{1}{2} + Z_{0} + \frac{1}{2}) \quad l_{2} = hf_{2}(x_{0} + \frac{h}{2}, y_{0} + \frac{1}{2}, z_{0} + \frac{1}{2})$$

$$K_{3} = hf_{1}(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{2}}{2} + Z_{0} + \frac{1}{2}) \quad l_{3} = hf_{2}(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{2}}{2}, z_{0} + \frac{1}{2})$$

$$K_{4} = hf_{1}(x_{0} + h, y_{0} + k_{3}, Z_{0} + l_{3}) \quad l_{4} = hf_{2}(x_{0} + h, y_{0} + k_{3}, z_{0} + l_{3})$$

$$\Delta y = \frac{1}{2}(k + 2k + 2k + k) \quad \Delta z = \frac{1}{2}(l + 2l + 2l + l)$$

$$\delta^{1} = \frac{1}{2} \quad \beta^{2} = \frac{1$$

 $y_1=y_0+\Delta y$ and $z_1=z_0+\Delta z$

having got (x_1,y_1,z_1) we get (x_2,y_2,z_2) by repeating the above algorithm once again starting from (x_1,y_1,z_1)

Runge-kutta method for second order differential equation (or R-K-method of order from to solve $y^{||} = f(x,y, y^1)$, given $y(x_0) = y_0$ and $y^1(x_0) = y_0^1$?

To solve
$$y^{||} = f(x,y,y^1)$$
, given $y(x_0) = y_0 y^1(x_0) = y_0^1 y_0^1$

Now, set
$$y^1 = Z$$
 and $y'' = z^1$

Hence, differential equation reduce to $\frac{dy}{dx} = y^1 = z$ and

$$\frac{dz}{dx} = z^{1} = y " = f(x, y, y'') = f(x, y, z)$$

 $\therefore \frac{dy}{dz} = z$ and $\frac{dz}{dz} = f(x, y, z)$ are simultaneous equation Where $f_1(x, y, z) = z$, $f_2(x, y, z) = f(x, y, z)$ given

dx dy

Also y (0) and z (0) are given

Starting from these equations, we can use the R – K method for simultaneous equation and solve the problem.

Milne's predictor formula:

$$Y_{n+1, P} = Y_{n-3} + \frac{4h}{3} (2y_{n-2}^{1} - y_{n-1}^{1} + 2y_{n}^{1})$$

Milne's corrector formula:

$$Y_{n+1, c} = Y_{n-1} + \frac{h}{3} (y_{n-1}^{1} + 4y_{n}^{1} + y_{n+1}^{1})$$

Adam – Bashforth predictor formula:

$$Y_{n+1, P} = y_n + \frac{h}{24} [55y_n^1 - 59y_n^1 + 37y_{n-2}^1 - 9y_{n-3}^1]$$

Adam – Bashforth corrector formula:

$$Y_{n+1, c} = y_n + \frac{h}{24} [9y_{n+1}^1 + 19y_n^1 - 5y_{n-1}^1 + y_{n-2}^1]$$

Relation between Runge – kutta method of second order and modified Euler's method:

In second order Runge – kutta method,

$$\Delta_{y_0} = k_2 = hf \left(\begin{array}{c} x + h, y + k_1 \\ 0 & \overline{2} & 0 \end{array} \right)$$
$$\Delta y_0 = hf \left(\begin{array}{c} x + h & 1 \\ 0 & \overline{2} & \overline{y_0} + 2 \end{array} \right)$$

 \therefore y₁ = y₀ + Δ y₀ + y₀ + hf⁽ xis is exactly the modified Euler method

So, the Runge – kutta method of second order is nothing but the modified Euler method.

Numerical Examples:

01. Using Taylor series method, find correct to four decimal places, the values of y (0.1), given $dy = x^2$

```
+y<sup>2</sup> and y (0) = 1
```

Solution:

We have
$$y^1 = x^2 + y^2$$

 $Y^{ii} = 2x + 2yy'$

$$Y^{iii} = 2 + 2yy'' + 2'^2$$

 $Y^{iv} = 2yy^{iii} + 2y^iy^{ii} + 4y^iy^{ii}$

- $= 2yy^{iii} + 6y^iy^{ii}$
- x₀ = 0, y₀ =1, h = 0.1
- $x_1 = 0.1, y_1 = y(0.1) = ?$

$$Y_0^1 = x_0^2 + y_0^2 = 0 + 1 = 1$$

 $Y_0^{ii} = 2x_0 + 2y_0y_0^1 = 2$

$$Y_0^{iii} = 2 + 2(1) (2) + 2 (1)^2 = 8$$

 $Y_0^{iv} = 2 \times 1 \times 8 + 6$ (1) (2) = 28

By Taylor series method

$$Y = y + h_{1} \qquad h^{2} \qquad h^{3} \qquad 3$$

$$1 \qquad 0 \qquad 1! \qquad y_{0} + 2! \qquad y_{0} + 3! \qquad y_{0} + \dots$$

$$Y (0.1) = y_{1} = 1 + \frac{0.1}{1} (1) + \frac{(0.1)^{2}}{2} (2) + \frac{(0.1)^{3}}{6} (8) + \frac{(0.1)^{4}}{24} (28) + \dots$$

$$= 1 + 0.1 + 0.01 + 0.0013333 + 0.000116666$$

$$= 1.11144999$$

$$= 1.11145$$

02. Using Taylor series method, find y (1.1) correct to four decimal places given $\frac{dy}{dx} = xy^{1/3}$ and y (1) = 1

Solution:

Take x₀ = 1, y₀ = 1, h = 0.1 Y¹ = xy^{1/3} Yⁱⁱ = $\frac{1}{3}xy^{-2/3}y^1 + y^{2/3}$ = $\frac{1}{3}x^2y^{-1/3} + y^{1/3}$ yⁱⁱⁱ = $\frac{x^2}{3}\left(\frac{-1}{3}\right)v^{-\frac{4}{3}}y^1 + \frac{2x}{3}y^{-\frac{4}{3}} + \frac{1}{3}y^{-\frac{2}{3}}y^1$ y₀¹ = 1 (1)^{1/3} = 1 By Taylor series Y₁ = y (1.1) = 1+0.1 + $\frac{(0.2)^2}{2}\left(\frac{4}{3}\right) + \frac{(0.1)^3}{6}\left(\frac{8}{9}\right) + \dots$ = 1+0.1 + 0.00666 + 0.000148 +

= 1.10681

03. Using Taylor series method, find y (0.1) given $\frac{dy}{dx} = x^2 - y$, y (0) = 1 (correct to 4 decimal places)

Solution:

$$X_{0} = 0, y_{0} = 1, h = 0.1, x_{1} = 0.1$$

$$Y^{1} = x^{2} - y$$

$$Y^{ii} = 2x - y^{1}$$

$$Y^{iii} = 2 - y^{ii}$$

$$Y^{iv} = -y^{iii}$$

$$Y_{0}^{1} = x_{0}^{2} - y_{0} = 0 - 1 = -1$$

$$Y_{0}^{11} = 2x_{0} - y_{0}^{1} = 0 - (-1) = 1$$

$$Y_{0}^{iii} = 2 - 1 = 1$$

$$Y_{0}^{iv} = -1$$

$$\therefore y (0.1) = 1 + 0.1 (-1) +$$

$$\frac{0.01}{2} (1) + \frac{(0.001)}{6} (1) + \frac{(0.0001)}{24} (-1, +....)$$

$$= 0.905125$$

04. Given $y^1 = -y$ and y(0) = 1, determine the value of y at x = (0.01) (0.01)

(0.04) by Euler method Solution:

 $Y^1 = -y$, $x_0 = 0$, $y_0 = 1$, $x_1 = 0.01$, $x_2 = 0.02$, $x_3 = 0.03$, $x_4 = 0.04$

We have to find y_1 , y_2 , y_3 , y_4 takes h = 0.01

By Euler algorithm, $y_{n+1} = y_n + hy_n^1 = y_n + hf(x_n, y_n)$

$$Y_1 = y_0 + h f(x_0, y_0) = 1 + (0.01)(-1) = 0.99$$

 $Y_2 = y_1 + hy_1^1 = 0.99 + (0.01) (-y_1)$

= 0.99 + (0.01) (-0.99)

=0.9801

 $y_3 = y_2 + hf(x_2, y_2) = 0.9801 + (0.01)(-0.9801)$

= 0.9703

 $y_4 = y_3 + h f(x_3, y_3) = 0.9703 + (0.01) (-0.9703) = 0.9606$

05. Compute y at x = 0.25 by modified Euler method

given $y^1 = 2xy$, y(0) = 1 Solution:

Here f (x, y) = 2xy, $x_0 = 0$, $y_0 = 1$

Take h = 0.25, $x_1 = 0.25$

By modified Euler method

$$Y_{1} = y_{0} + h \left[f \left(x_{0} + \frac{h}{2}, y_{0} + \frac{h}{2}, f(x, y) \right) \right]$$

 $f(x_0, y_0) = f(0, 1) = 2(0)(1) = 0$

∴y₁ = 1 +0.25 [6 (0.125, 1)]

= 1+0.25 [2 × 0.125, 1]

= 1.0625

06. Solve $\frac{dy}{dx}$ =-2x - y, y (0) = -1 by Taylor series method to find y (0.1) compare it with exact solution?

Solution:

Here $x_0 = 0$, $y_0 = -1$, $h = 0.1$
$Y^1 = -2x - y$
$Y^{ii} = -2 - y^1$
Y ⁱⁱⁱ = - y ⁱⁱ
$\mathbf{Y}^{\mathbf{iv}} = -\mathbf{y}^{\mathbf{iii}}$
$Y_0^1 = -2x_1 - y_0 = 1$
$Y_0^{11} = -2 - 1 = -3$
$Y_0^{iii} = 3$
$Y_0^{iv} = -3$
0.1_{\times} $(0.1)^2$ $(0.1)^3$ $(0.1)^4$
$\therefore y_1 = 1 + \frac{0.1}{1!} \times \frac{(0.1)^2}{2!} \times (-3) + \frac{(0.1)^3}{3!} \times 3 + \frac{(0.1)^4}{4!} \times (-3) + \dots$
= 1+ 0.1 -0.015 +0.0005 - 0.0000125
= -0.91451
= -0.91451 07. Solve $\frac{dy}{dx}$ =x (1+x ³ y), y (0) = 3 by Euler's method for y (0.1)
07. Solve $\frac{dy}{dx}$ =x (1+x ³ y), y (0) = 3 by Euler's method for y (0.1)

$$= 3 + 0.1 f(0, 3) = 3 + 0.1(0)$$

= 3

Solution:

 $X_0 = 0, y_0 = 1, x_1 = 0.1$

By Euler algorithm, $y_1 = 1+0.1 [2 \times 0 + 3 \times 1] = 1.3$

$$Y_2 = y_1 + hf(x_1, y_1)$$

```
= 1.3 + 0.1f [0.1, 1.3]
```

08. Obtain the values of y at x = 0.1 using Runge – kutta method of fourth order for the differential equation $y^1 = -y$, given y (0) = 1

Solution:

Here f (x, y) = - y, x₀ = 0, y₀ = 1, x₁ = 0.1
K₁ = hf (x₀, y₀) = 0.1 f (0, 1) = -0.1
K₂ = hf (x₀ +
$$\frac{h}{2}$$
, y₀ + $\frac{k_1}{2}$) = (0.1) f (0.05, 0.95) = - 0.095
K₃ = hf $\begin{pmatrix} h \\ x_0 + \frac{h}{2}, y_0 \\ \hline 2 \end{pmatrix}$ = (0.1) f (0.05, 0.9525) = -0.09525

 $K_4 = hf(x_0+h, y_0+K_3) = (0.1) f(0.1, 0.90475) = -0.090475$

$$\Delta y = \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

 $y_1 = y_0 + \Delta y = 0.9048375$

10. Compute y (0.3) given $\frac{dy}{dx}$ +y+xy² = 0, y (0) = 1 by taking h = 0.1 using R.K method of fourth order?

Prepared by M.Latha, Department of Mathematics, KAHE

Solution:

$$Y^{1} = -(xy^{2} + y) = f(x, y), x_{0} = 0, y_{0} = 1, h = 0.1 x_{1} = 0.1$$
$$K_{1} = h f(x_{0}, y_{0}) = 0.1 [-(x_{0}y_{0}^{2} + y_{0})] = -0.1$$

$$K_{2} = hf \left(\begin{array}{c} h \\ x_{0} + \frac{h}{2} \end{array}, \begin{array}{c} y_{0} + \frac{-1}{2} \end{array} \right) = -0.1 \left[(0.05) (0.95)^{2} + 0.95 \right] = -0.0995$$

$$K_3 = hf\left(x_0 \boxed{2} \frac{h}{2}, y_0 + \frac{k_2}{2}\right) = (0.1) f(0.1, 0.9005) = -0.0982$$

= 0.9006

11. What are the values of k_1 and l_1 to solve $y^{11} + xy^1 + y = 0$; y (0) =1, y^1 (0) =0 by Runge kutta method of fourth order

$$y^{11} = -xy^1 - y$$
, $x_0 = 0$, $y_0 = 1$

Setting $y^1 = z$, the equation becomes $y^{11} = z^1 = -xz - y$

$$\therefore \frac{dy}{dz} = z = 6, (x, y, z), \frac{dz}{dz} = -xz - y = f_2$$

(x, y, z)dx

given $y_0 = 1$, $z_0 = y_0^1 = 0$

By algorithm, $k_1 = hf_1 (x_0, y_0, z_0) = 0.1 f_1 (0, 1, 0) = 0$

dx

 $L_1 = hf_2 (x_0, y_0, z_0) = 0.1 f_2 (0, 1, 0) = -1 (0.1) = -0.1$

12. What are the values of k_1 and l_1 solve $y^{11} + 2xy^1 - 4y = 0$, y(0) = 0.2, $y^1(0) = 0.5$.

Solution:

 $\frac{\overline{dy}}{dx} \qquad \frac{\overline{d^2}}{dx} \qquad \frac{\overline{dy}Let}{dx} = z \text{ then } 2 = z$ the given differential equation becomes $dz \qquad dy \qquad dz$

 $\begin{array}{ccc} dz & dy & dz \\ \hline - & = -2xz + 4 \ y \ \text{now} \ \hline - & = z \ \text{and} \\ = 2 \ xz + 4 \ y & \hline dx & dx \end{array}$

 $x_0 = 0, y_0 = 0.2 h = 0.2 f_1(x,y,z) = z, f_2(x_1,x_2,x_3) = -2x2 + 4yK_1 = hf_1(x_0,y_0,z_0) = 0.1 \times 0.5 = 0.05,$

$$I_1 = ht_2(x_0, y_0, z_0) = 0.1[-2 \times 0 \times 0.5 + 4 \times .5] = 0.8$$

13. What are the values of k_1 and l_1 to solve $y^{11} - x^2y^1 - 2xy = 1 y (0) = 1$, $y^1 (0) = 0$

Solution:

dy

Let $\frac{dx}{dx} = z$

:. The given differential equation becomes $\frac{d^2 y}{dx^2} = x^2 y^1 + 2xy + 1$

$$\frac{dz}{dx} = x^{2}z + 2xy + 1, x = 0, y = 1, z = 0, f (x, y, z) = z$$

$$f_2(x, y, z) = x^2 z + 2xy + 1, h = 0.1$$

$$x_1 = hf_1(x_0, y_0, z_0) = 0.1 f(0, 1, 0) = 0.1 \times 0 = 0$$

$$I_1 = hf_2 (x_0, y_0, z_0) = 0.1$$

14. What are the values of k₁, k₂, l₁ and l₂ from the system of equations, $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y$ given y (0) =2, z (0) = 1 using Runge – Kutta method of fourth order.

Solution:

 $f_1 (x, y, z) = x + z; f_2 (x, y, z) = x - y$ $X_0 = 0, y_0 = 2, z_0 = 1, h = 0.1$ Now $K_1 = hf_1 (x_0, y_0, z_0)$

= (0.2) f₁ (0, 2, 1)

= (0.1) (0+1)

= 0.1

$$K_{2} = hf_{1}\left(x = h, y + h, z = 1, \frac{1}{2}\right)$$

$$= 0.1 f_{1} (0.05, 2.05, 0.8)$$

$$= 0.085$$

$$l_{1} = (0.1) f_{2} (0, 2, 1)$$

$$= (0.1) (0 - 2^{2})$$

$$= -0.4$$

$$l_{2} = hf_{2}\left(x = h, y + h, \frac{1}{2}, z = 1, \frac{1}{2}\right)$$

$$= (0.1) f_{2} (0.05, 2.05, 0.8)$$

$$= -0.41525$$
15. Solve by Euler's method $\frac{dy}{dx} = x^{2} + y, y (0) = 1 \text{ of } x = 0.02, 0.04$
Solution:
Here $x_{0} = 0, y_{0} = 1, f (x, y) = x^{2} + y, h = 0.2$
By Euler's algorithm, $y_{1} = y_{0} + h f (x_{0}, y_{0})$
i.e. $y_{1} = 1 + 0.02 (x_{0}^{2} + y_{0}) = 1.02$

 $y_2 = y_1 + hf(x_1, y_1)$

 $= 1.02 + 0.02 [(0.02)^{2} + 1.02]$

16. Solve
$$\frac{dy}{dx}$$
 =x + y, given y (1) = 0 and get y (1.1) by Taylor series method?

Solution:

Here $x_0 = 1$, $y_0 = 0$, h = 0.1 $Y^1 = x + y$ $Y^{ii} = 1 + y^1$ $Y^{iii} = y^{ii}$ $Y_0^{1i} = x_0 + y_0 = 1 + 0 = 1$ $Y_0^{11} = 1 + y_0^{11} = 2$ $Y_0^{iii} = 2$ $Y_0^{iv} =$

By Taylor series, we have

 $Y_{1} = y_{0} + \frac{h}{1!} \frac{h^{2}}{y_{0}} + \frac{h^{2}}{2!} \frac{y_{0}}{y_{0}} + \frac{h^{3}}{3!} \frac{y_{0}}{y_{0}} + \dots$ $Y_{1} = y (1.1) = 0 + \frac{0.1}{1} (1) + \frac{(0.1)^{2}}{2} 2 + \frac{(0.1)^{3}}{6} \times 2 + \frac{(0.1)^{4}}{24} \times 2 + \dots$ = 0.11033847

17. Using Taylor method, compute y (0.2) correct to 4 decimal places given $\frac{dy}{dx} = 1 - 2xy$ and y (0) = 0

Page 17/57

Solution:

Here $x_0 = 0$, $y_0 = 0$, $h = 0.2$
$Y^1 = 1 - 2xy$
$Y^{11} = -2 (xy^1 + y)$
$Y^{iii} = -2 [xy^{11} + 2y^{1}]$
$Y^{iv} = -2 [xy^{iii} + 3y^{11}]$
$Y^{v} = -2 (xy^{iv} + 4y^{iii})$
$Y_0^{1} = 1 - 2.0.0 = 1$
$Y_0^{11} = 0$
$Y_0^{111} = -4$
$Y_0^{iv} = 0$
$Y_0^{v} = 32$
By Taylor series,
Y ₁ =y (0.2) = 0 +

 $\frac{0.2}{(1)_{+}}\frac{(0.2)^{2}}{(0)^{+}}(0) + \frac{(0.2)^{3}}{(-4)}(-4) + 0 + \frac{(0.2)^{5}}{(32)}(-32) + \dots$

= 0.1948

18. Solve dy/dx = x+y, given y(1) =0, and get y(1.1), y(1.2) by Taylor series method. Compare your result with the analysis.

Solution:

Here $x_0=1$, $y_0=0x=0.1$ $Y^1=x+y$ $y_0'=x0+y0=1+0=1$ $y''=1+y^1$ $y_0''=1xy_0^1=2$ y'''=y'' $y_0'''=y_0''=2$

$$y^{iv} = y^{iii}$$
 $y_0^{iv} = 2 \text{ etc}$

By Taylor series, are have

$$\begin{array}{c} h & h^{2} & \mu & h^{3} & \mu \\ y_{1} = y_{0} + \frac{h}{1!} y_{0} + \frac{h^{2}}{2!} y_{0} + \frac{h}{3!} (2) + \frac{h}{6!} (2) + \frac{h}{6!$$

 $= 0.1 + 0.01 + 0.00033 + 0.00000833 + 0.000000166 + \dots$

Y(1.1) = 0.11033847

Now, take x₀ = 0.1103847

Now, take $x_0 = 1.1 h = 0.1$,

$$h_{1} h^{2} \underset{II}{\text{SOLVANG}} \underset{III}{\text{ORDINARY DIFFERENTIAL EQUATIONS}}{\text{SOLVANG } 2017$$

$$y_{2} = y_{1} + \frac{1}{1!} y_{1} + \frac{1}{2!} y_{I} \quad \textcircled{P}_{3!} y_{I} + \frac{1}{4!} y_{1} + \dots - - (3)$$

we calculate y_1^I , y_1^{II} , y_1^{III} , y_1^{III} ,, $x_1 = 1.1$, $y_1 = 0.11033847$ $y_1^I = x_1 + y_1 = 1.1 + 0.11033847 = 1.21033847$ $y_1^{II} = 1 + y_1^I = 2.21033847$ $y_1^{III} = y_{11}^{III} = y_{11}^{IV} = y_1^{V} = = 2.21033847$

using in (3),

 $y_2 = y(1.2) = 0.11033847 + 0.1 / 1 (1.21033847)$

$$+\frac{(0.1)^2}{2}(2.21033847) + \frac{(0.1)^3}{6}(2.21033847) + \frac{(0.1)^h}{2h}(2.21033847) + \dots$$

= x + y is y = -x-1+2e^{x-1}

0.11033847+2.21033 847(0.005+0.001666 6+....)

= 0.2461077

The exact solution $\frac{dy}{dx}$

Y (1.1) =
$$-1 \ 1 \ -1 \ +2e^{0.1}$$

= 0.11034
y (1.2) = $-1.2 \ -1 \ +ze^{0.2} \ = 0.2428$
y (1.1) = 0.11033847
y (1.2) = 0.2461077
Exact values: y(1.1) = 0.110341876
Y(1.2) = 0.24280552

19.Using Taylor method compute y (0.2) and y(0.4) correct to 4 decimal places given

$$\frac{dy}{dx} = 1 - 2xy$$
 and $y(0) = 0$

Soln

We know
$$y^{1}=1-2xy$$

 $y^{II} = -2(xy^{1}+y)$
 $y^{III} = -2(xy^{II}+2y^{I})$
 $y^{III} = -2(xy^{III}+2y^{I})$
 $y^{IV} = -2(xy^{III}+3y^{II})$
 $y^{V} = -2(xy^{III}+4y^{III})$
 $y^{V} = -2(xy^{V}+4y^{III})$
 $y^{V} = -2(xy^{V}+4y^{III})$
 $y^{V} = -2(xy^{V}+4y^{V})$
 $y^{V} = -2(xy^{V}+4y^{V})$

by Taylor series

$$y_{I} = y_{0} + \frac{h_{1}}{I!} \frac{h^{2}}{y_{0}} + \frac{h^{3}}{2!} \frac{u}{(0.2)} + \frac{h^{3}}{(0.2)^{2}} \frac{u}{(0.2)^{3}} + \frac{u}{(0.2)^{4}} + \frac{u}{(0.2)^{5}}$$

Prepared by M.Latha, Department of Mathematics, KAHE

Page 20/57

$$y_{1} = y(0.2) = 0 + \underbrace{1}_{1} + \underbrace{0}_{2} + \underbrace{1}_{2} + \underbrace{1}_{0} + \underbrace{1}_{1} + \underbrace{1}_{2} +$$

By Taylor series, for y_1 and z we have

$$Y_1 = y (0.1) = y_0 + hy_0^{-1} + \frac{h^2}{2!} y_0^{II} + \frac{h^3}{3!} y_0^{III} + \dots - - - (1)$$

And
$$Z_1 = Z(0.1) = Z_0 + hZ_0^{1} + \frac{h^2}{2} Z_0^{II} ? h^3 Z_0^{III} + \dots (2)$$

$$2 \quad 6$$

$$Y_{0} = 1 \qquad z_{d} = 1$$

$$Y_{0}^{1} = Z_{0} - x_{0} = 1 - 0 = 1 \qquad z_{0}^{1} = x_{0} + y_{0} + 0 = 1 = 1$$

$$Y_{0}^{"} = Z_{0}^{1} - 1 = 1 - 1 = 0 \qquad z_{0}^{"} = 1 + y_{0}^{1} = 1 + 1 = 2$$

 $Y_0^{III} = z_0^{II} = 2$ $z_0^{III} = y_0^{II} = 0$

Substituting in (1) and (2), we get $z_0^{IV} = y_0^{III} = 2$

$$Y_1 = y(0.1) = 1 + (0.1) + \frac{(0.01)}{2}(0) + \frac{(0.001)}{6}2 + \dots$$

= 1 + 0.1 + 0.000333+.... =1.1007 (correct to 4 decimals)

 $z_1 = z (0.1) = 1 + (0.1) +$

$$\frac{(0.01)}{2}2 + \frac{(0.001)}{6}(0) + \frac{0.0001}{24} \times 2 + \dots$$

=1+0.1+0.01 +0.0000083+....

=1.1100 (correct to 4 decimal places)

 \therefore y (0.1) = 1.1003 and z (0.1) = 1.1100

20. Solve
$$\frac{dy}{dx} = z - x$$
, $\frac{dz}{dx} = y + x$ with y (0) = 1, z (0) = 1, by taking h = 0.1, to get y (0.1) and z (0.1).

Here y and z are dependent variables and x is independent.

Solution:

$$Y^{1} = z - x \qquad \text{and } z^{1} = x + y$$

Take $x_{0} = 0, y_{0} = 1$ take $x_{0} = 0, z_{0} = 1$ and $h = 0.1$
 $Y_{1} = y (0.1) = ? \qquad Z_{1} = z (0.1) = ?$

Using in (6)

$$Y = y (0.1) = 0 + \frac{0.1}{2} [1 + 0.9] = \frac{0.19}{2} = 0.095$$

$$Y_2 = y_1 + \frac{1}{2} h [f(x_1, y_1) + f(x_2, y_1 + hf(x_1, y_1)] \rightarrow (7)$$

 $F(x_1, y_1) = 1 - y_1 = 1 - 0.095 = 0.905$

 $F(x_2, y_1 + h f (x_1, y_1) = f (0.2, 0.095 + (0.1) (0.905)) = 0.8145$

Using in (7) we get $y_2 = y (0.2) = 0.095 + 0.12$

[0.905 +0.8145]

Y (0.2) = 0.18098

$$Y_3 = y_2 + \frac{1}{2} h [f (x_2, y_2) + 6 (x_3, x_2 + h f (x_2, y_2))] \rightarrow (8)$$

Using in (8)

$$Y_3 = y (0.3) = 0.18098 + \frac{0.1}{2} (0.81902 + 1 - 0.26288)$$

Y (0.3) = 0.258787

The values are tabulated

Х	Modified Euler	Improved Euler	Exact solution
0.1	0.095	0.095	0.09516
0.2	0.18098	0.18098	0.18127
0.3	0.258787	0.258787	0.25918

Modified Euler and improved Euler methods give the same values come A to sin decimal places.

21. Evaluate the values of y (0.1) and y (0.2) given $y'' - x (y^1)^2 + y^2 = 0$; y (0) =1, y^1 (0) =0 by using Taylor series method?

Solution:

 $Y^{II} - x (y^1)^2 + y^2 = 0$

Put $y^1 = z \rightarrow (1)$

Hence the eqn reduces to $z^1 - xz^2 + y^2 = 0$

$$\therefore$$
 z¹ = xz² - y² \rightarrow (2)

By initial condition, $y_0 = y(0) = 1$, $z_0 = y_0^1 = 0 \rightarrow (3)$

 $Y_1 = 0.2 - 0.00533333 + 0.000085333$

= 0.194752003

Now again starting with x = 0.2 as the starting value so, use again eqn (1)

Now $y_0 = 0.2$, $y_0 = 0.194752003$, h = 0.2

 $Y_0^1 = 1 - 2x_0y_0 = 1 - 2(0.2) (0.194752003) = 0.9220992$

Prepared by M.Latha, Department of Mathematics, KAHE

 $Y_0^{\parallel} = -2 (x_0 y_0^1 + y_0) = -2 [(0.2) (0.9220992) + 0.194752003]$

= -0.758343686

$$y_0^{III} = -2 [x_0 y_0^{II} + 2 y_0^{-1}]$$

= -2 [(0.2) (-0.758343686) +2 (0.9220992)]

= -3.38505933

 $y_0^{V} = -2 [(0.2) (-3.38505933) + 3 (-0.758343686)]$

= 5.90408585

Using eqn (1), again

 $Y_2 = y (0.4) = 0.194752003 + (0.2) (0.9220992)$

 $\frac{(0.2)^2}{2}(-0.758343686) + \frac{(0.2)^3}{6}(-3.38505933) + \frac{(0.2)^4}{24}(5.90408585) = 0.359883723$

22. Using improved Euler method find y at x =0.1 and y at x =0.2 give $\frac{dy}{dx} = y - \frac{2x}{y}$,

y (0) = 1

Solution:

By improved Euler method,

h

<u> </u>	
$Y_{n+1} = y_n +$	1 2
$[f(x_n, y_n) + f(x_n + h, y_n + hf(x_n, y_n))] \rightarrow (1)$	
$\therefore y_{1} = y_{0} + \frac{1}{2} h [f(x_{0}, y_{0} + h f(x_{0}, y_{0}))] \rightarrow (2)$	
$f(x_{0}, y_{0}) = y_{0} - \frac{2x_{0}}{y_{0}} = 1 - 0 = 1$	
$f(x_1, y_0 + h f(x_0, y_0)) = f(0.1, 1.1) = 1.1 - \frac{2 \times (0.1)}{1.1} = 0.91818$	
$y(0.1) = y_1 = 1 + \frac{0.1}{2} [1+0.91818] = 1.095909$	
$y_2 = y (0.2) = y_1 + \frac{1}{2} h [f (x_1, y_1) + f (x_2, x_1 + hf (x_1, y_1))] \rightarrow (3)$	
$f(x_1, y_1) = y_1 - \frac{2x_1}{y_1} = 1.095909 - \frac{2 \times 0.1}{1.095909}$	
= 0.913412	
$f(x_2, y_1 + h f(x_1, y_1) = f(0.2, 1.095909 + (0.1) (0.9134121)$	
= f (0.2, 1.18732) = 1.18732 - $\frac{2 \times 0.2}{1.18732}$ =0.8594268	
Using in (3), $y_2 = 1.095909 + \frac{0.1}{2} [0.913412 + 0.850427]$	

= 1. 1841009

х	0	0.1	0.2
Y	1	1.095907	1.1841009

23. Apply the fourth order Runge – kutta method, to find y (0.2) given that $y^1 = x + y$,

y (0) = 1

Solution:

Since h is not mentioned in the question we take h = 0.1

$$Y^1 = x + y; y(0) = 1$$

∴ f (x, y) = x+y,
$$x_0 = 0$$
, $y_0 = 1$

$$x_1 = 0.1, x_2 = 0.2$$

By fourth order Runge – kutta method, for the first interative

$$K_{1} = h f (x_{0}, y_{0}) = (0.1) (x_{0} + y_{0}) = (10.1) (0+1) = 0.1$$

$$K_{2} = h f (x_{0} + \frac{1}{2} h, y_{0} + \frac{1}{2} k_{1})$$

$$= (0.1) f (0.05, 1.05) = (1.0) (0.05 + 1.05) = 0.11$$

$$k_{3} = h f (x_{0} + \frac{1}{2} h, y_{0} + \frac{1}{2} k_{2}) = (0.1) f (0.05, 1.055)$$

$$= (0.1) (0.05 + 1.055) = 0.1105$$

$$k_{4} = h f (x_{0} + h, y_{0} + k_{3})$$

$$= (0.1) f (0.1, 1105) = (0.1) (0.1 + 1.1105)$$

$$= 0.12105 \qquad \therefore \qquad \Delta y$$

Prepared by M.Latha, Department of Mathematics, KAHE

6

 $(k_1 + 2k_2 + 2k_3 + k_4)$

$$= \frac{1}{6} [0.1 + 0.22 + 0.2210 + 0.12105) = 0.110341667$$

 $y(0.1) = y_1 = y_0 + \Delta y = 1.110341667 \ \sqcup \ 1.110342$

Now starting from (x_1, y_1) we get (x_2, y_2) again

Apply Runge kutta algorithm replacing (x_0, y_0) by (x_1, y_1)

 $K_1 = h f(x_1, y_1) = (0.1) (x_1+y_1) = (0.1) (0.1 + .110342) = 0.1210342$

$$K_2 = h f(x_1 + \frac{h}{2}, y_1 + \frac{1}{2}k_1) = (0.1) f(0.15, 1.170859)$$

$$k_3 = hf(x_1 + \frac{h}{2}, y_1 + \frac{1}{2}k_2) = (0.1) f(0.15, 1.1763848)$$

= (0.1) (0.15 +1.1763848) = 0.13262848

$$k_4 = hf(x_1 + h, y_1 + k_3) = (0.1) f(0.2, 1.24298048)$$

Y (0.2) = y (0.1) +
$$\frac{1}{6}$$
 [k₁+2k₂ + 2k₃ + k₄]
= 1.110342 + $\frac{1}{6}$ (0.794781008

Y (0.2) = 1.2428055.Correct to four decimals places, y (0.2) = 1.2428

24. Using the Runge – kutta method, tabulate the solution of the system $\frac{dy}{dx}$

z = 1 when x = 0 at intervals of h = 0.1 from x = 0.0 to x = 0.2.

Solution:

Given f (x, y, z) = x + z, g (x, y, z) = x - y, $x_0 = 0$, $y_0 = 0$, $z_0 = 1$ and h = 0.1

UNIT-V Ordinar	y differential equations	2016-Batch
$K_1 = hf(x_0, y_0, z_0)$	$L_1 = hg(x_0, y_0, z_0)$	
$= h (x_0 + z_0)$ — — —	$= h (x_0 - y_0)$ — —	· _
= (0.1) (0 +1) = 0.1	= (0.1) (0 - 0) = 0	
		—

$$\begin{aligned} \frac{k_{2} = hf(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{1}}{2}, z_{0} + \frac{l_{1}}{2}) \\ = h\left[\left(x_{0} + \frac{h}{2}\right) + \left(z_{0} + \frac{l_{1}}{2}\right)\right] \\ = (0.1)\left[\left(0 + \frac{0.1}{2}\right) + \left(1 + \frac{0}{2}\right)\right]^{-} \\ = (0.1)\left[\left(0 + \frac{0.1}{2}\right) + \left(1 + \frac{0}{2}\right)\right]^{-} \\ = (0.1)\left[\left(0 + \frac{1}{2}\right) - \left(0 + \frac{0.1}{2}\right)\right] \\ = (0.1)\left[\left(x_{0} + \frac{h}{2} + \frac{k}{2}, z_{0} + \frac{l_{1}}{2}\right)\right] \\ = 0.105 \\ \hline \\ K_{3} = hf\left[x_{0} + \frac{h}{2}, y_{0} + \frac{k}{2}, z_{0} + \frac{l_{2}}{2}\right] \\ = h\left[\left(x_{0} + \frac{h}{2}\right) + \left(\frac{1}{2}, \frac{l_{1}}{2}\right)\right] \\ = (0.1)\left[\left(x_{0} + \frac{h}{2}\right) + \left(\frac{l_{2}}{2}, \frac{l_{1}}{2}\right)\right] \\ = h\left[\left(x_{0} + \frac{h}{2}\right) + \left(\frac{l_{2}}{2}, \frac{l_{1}}{2}\right)\right] \\ = h\left[\left(x_{0} + \frac{h}{2}\right) + \left(\frac{l_{2}}{2}, \frac{l_{1}}{2}\right)\right] \\ = (0.1)\left[\left(x_{0} + \frac{h}{2}\right) + \left(\frac{l_{2}}{2}, \frac{l_{1}}{2}\right)\right] \\ = (0.1)\left[\left(0 + \frac{1}{2}\right) - \left(0 + \frac{l_{2}}{2}\right)\right] \\ = (0.1)\left[\left(0 + \frac{1}{2}\right) - \left(0 + \frac{l_{2}}{2}\right)\right] \\ = (0.105 \\ \hline \\ = (0.101 \left[\left(0 + \frac{1}{2}, \frac{l_{2}}{2}\right] + \left(\frac{1}{1 + \frac{0}{2}}\right)\right] \\ = h\left[x_{0} + h, y_{0} + k_{3}, z_{0} + l_{3}\right] \\ = h\left[x_{0} + h, y_{0} + k_{3}, z_{0} + l_{3}\right] \\ = h\left[x_{0} - h, y_{0} + k_{3}, z_{0} + l_{3}\right] \\ = h\left[x_{0} - h, (1 - 0.00026) \\ = (0.1)\left[(0 + 0.1) - (0 + 0.105)\right] \\ = (0.1)\left[(0 + 0.1) - (0 + 0.105)\right] \\ = (0.105 \\ \hline \\ = (0.105 \\ \hline$$

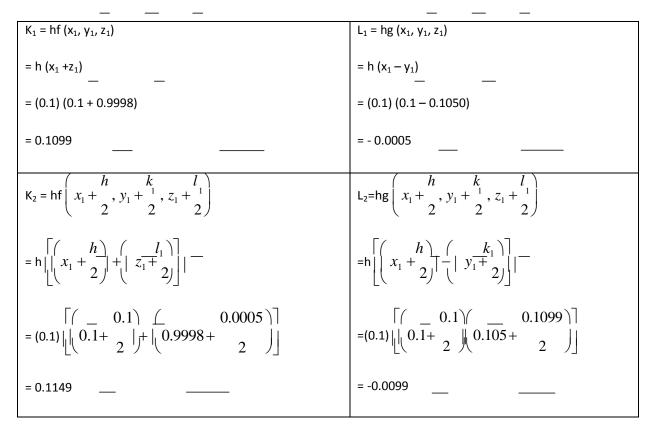
UNIT-VOrdinary differential equations2016-Batch

$\Delta y = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2k + 2k + 2k \\ 6 & 4 \end{bmatrix}_{4}$	$\Delta z = \begin{bmatrix} 1 & & 1 + 2 & & 2 & & + 1 \\ 6 & & & & & \\ 6 & & & & & \\ \end{bmatrix}_{4}$
$= \frac{1}{6} [0.1+2 (0.105) + 2 (0.105) + 0.1099)]$	$= \frac{1}{6} [0+0+2 (-0.00026) -0.0005]$
=0.1050	= 0.00017

$Y_1 = y_0 + \Delta y$	$Z_1 = Z_0 + \Delta Z$
= 0 + 0 .1050	= 1 - 0.00017
y (0.1) = 0.1050	z (0.1) = 0.9998

To compute y (0.2) and z (0.2)

Here $x_1 = 0.1$, $y_1 = 0.1050$, $z_1 = 0.9998$



Prepared by M.Latha, Department of Mathematics, KAHE

UNIT-V Ordinary differential equations

2016-Batch

$K_{3} = hf\left(\begin{array}{c}h & k_{2} & l_{2}\\ x_{1} + & y_{1} + & z, \\ x_{1} + & y_{1} + & z, \\ x_{1} + & y_{2} \end{array}\right)$	$L_{3} = hg \begin{pmatrix} h & k_{2} & l_{2} \\ x_{1} + 2 & y_{1} + 2 & z_{1} + 2 \end{pmatrix}$
$= h \left(\begin{pmatrix} h \\ x_1 + 2 \end{pmatrix} \middle \begin{pmatrix} l_2 \\ z_1 + 2 \end{pmatrix} \middle \right)$	$= h \left[\left(x_1 + \frac{h}{2} \right) - \left(y_1 + \frac{k_2}{2} \right) \right]$
$= (0.1) \begin{bmatrix} (0.1) & (0.00099) \\ 0.1+ & 2 \end{bmatrix} + \begin{bmatrix} 0.9998+ & 2 \end{bmatrix}$	$=(0.1)\left[\begin{pmatrix} 0.1 \\ 0.1 \\ 0.1 + 2 \end{pmatrix} - \begin{bmatrix} 0.1050 + 2 \\ 2 \end{bmatrix} \right]$

_

= 0.1149	= -0.00125
$K_4 = hf(x_1 + h, y_1 + k_3, z_1 + l_3)$	$L_4 = hg [x_1 + h, y_1 + k_3, z_1 + l_3]$
$= h [(x_1 + h) + z_1 + l_3)]$	= h [(x_1+h) - (y_1 + k_3)]
= (0.1) [(0.1+0.1) + (0.9998 - 0.00125)]	= (0.1) [(0.1+0.1) - (0.1050 + 0.1149)]
= 0.1198	 = -0.00199
$\Delta y = \frac{1}{6} [k_{1} + 2k_{2} + k_{3}]_{4}$	$\Delta z = \begin{bmatrix} 1 & 1 & 1 & 2 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 6 & & & & 4 \end{bmatrix}_{4}^{4}$
$= \frac{1}{6} [0.1099 + 2 (0.1149) + 2 (0.1149) + 0.1198)]$	$= \begin{array}{c} 1 \\ -0.0005 +2(-0.00049)+2 & (-0.00125) \\ 6 \end{array}$
$= \frac{1}{6} [0.1099 + 0.2298 + 0.2298 + 0.1198]$ $= 0.1149$	$0.001199]$ $= \frac{1}{6} [-0.0005 - 0.00198 - 0.00199]$ $= \frac{1}{6} [-0.0005 - 0.00198 - 0.00199]$ $= -0.00116$

_	UNIT-V	Ordinary differential	equations	2016-Batch	
	$Y_2 = y_1 + \Delta y$		$Z_2 = Z_1 + \Delta Z$		
	= 0.1050 +0.1149		= 0.9998 - 0.00116		
	= 0.2199		= 0.9986		
	y (0.2) = 0.2199		z (0.1) = 0.9986		

	X=0	X = 0.1	X = 0.2
Y	0	0.1050	0.2199

Х	1	0.9998	0.9986

25. Solve $\frac{d^2 y}{dx^2} - x \left(\frac{dy}{dx}\right)^2 + y^2 = 0$ using Runge – kutta method for x = 0.2 correct to 4 decimal places.

Initial condition are x = 0, y =1, y¹ = 0

Solution:

Given:

$$\frac{d^2 y}{dx^2} - x \left(\frac{dy}{dx}\right)^2 + y^2 = 0 \rightarrow (1)$$
Put $\frac{dy}{dx} = z \rightarrow (2)$

$$\therefore \frac{d^2 y}{dx} = \frac{d^2}{dx} \rightarrow (3)$$

Substituting (2) and (3) in (1), we get
$\frac{dz}{dz} = xz^2 - y$
k ₄ = hf (x ₀ +h, y ₀ + k ₃ , z ₀ + h ₂)
= h (z ₀ +l ₃) = (0.2) (0 -0.1958)
= - 0.0392
$I_4 = hg (x_0 + h, y_0 + k_3, z_0 + I_3)$
= h [(x ₀ +h) (z ₀ + l ₃) ² - (y ₀ + k ₃) ²]
= (0.2) [(0.2) $(0 - 0.1958)^2 - (1 - 0.01998)^2$]
= - 0.1906
$\Delta y = \frac{1}{6} [k_1 + 2k_2 + 2k_3 + k_4]$
$= \frac{1}{6} [0 + 2(-0.02) + 2(-0.01998) - 0.0392]$
= - 0.0199
$\therefore \mathbf{y} (0.2) = \mathbf{y}_1 = \mathbf{y}_0 + \Delta \mathbf{y}$
=1-0.0199
= 0.9801
∴y (0.2) = 0.9801

26. The differential equation $\frac{dy}{dx} = y - x^2$ is satisfied by y (0) = 1, y (0.2) = 1.12186, y (0.4) = 1.46820, y

(0.6) = 1.7379 compute the value of y (0.8) by Milne's predictor corrector formula?

Solution:

Given

 $dy = y^{1} = y = x^{2} \text{ and } h = 0.2dx$ $X_{0} = 0 \qquad y_{0} = 1$ $X_{1} = 0.2 \qquad y_{1} = 1.12186$ $X_{2} = 0.4 \qquad y_{2} = 1.46820$ $X_{3} = 0.6 \qquad y_{3} = 1.7379$

 $X_4 = 0.8$ $y_4 = ?$

By Milne's predictor formula, we have

$$Y_{n+1, P} = y_{n-3} + \frac{4h}{3} [zy_{n-2} - y_{n-1}^{1} + 2y_{n}^{1}] \rightarrow (1)$$

To get y_n , put n = 3 in (1) we get

 $Y_{n, P} = y_0 + \frac{4h}{3} [2y_1^1 - y_2^1 + 2y_3^1] \rightarrow (2)$

Now
$$y_{1}^{1} = (y - x)_{1}^{2} = y_{1} - x_{1}^{2}$$

= 1.12186 - (0.2)² = 1.08186 \rightarrow (3)
 $y_{2}^{1} = (y - x^{2})_{2} = y_{2} - x_{1}^{2}$
= 1.46820 - (0.4)² = 1.3082 \rightarrow (4)
 $y_{3}^{1} = (y - x^{2})_{3} = y_{3} - x_{3}^{2}$
= 1.7379 - (0.6)² = 1.3779 \rightarrow (5)

Substituting (3), (4) and (5) and (2), we get

$$Y_{h,g} = 1 + \frac{4(0.2)}{3} [2(1.08186) - 1.3082 + 2(1.3779)]$$

= 1+0.266 [2.1637 - 1.3082 + 2.7558]

∴ y (0.8) = 1.9630187 (by predictor formula)

By Milne's corrector formula we have

$$Y_{n+1, c} = y_{n-1} + \frac{h}{3} (y_{n-1}^{1} + 4y_{n}^{1} + y_{n+1}^{1})$$

To get y_h , put n = 3, we get

$$Y_{h, C} = y_{2} + \frac{h}{3} (y_{2}^{1} + hy^{1} + y^{1}) \rightarrow (6)$$

Now $y_n^1 = (y - x^2) = y - x^2_h x^2_h$

 $= 1.96277 - (0.8)^2$

$$= 1.3230187 \rightarrow (7)$$

Substituting (4), (5), (7) in (6) we get

$$Y_{4, c} = 1.46820 + \frac{0.2}{3} [1.3082 + 4 (1.3779) + 1.3230187]$$

= 2.0110546

i.e. y (0.8) = 2.0110546

27. Using Taylor's series method, solve $\frac{dy}{dx} = xy+y^2$, y (0) = 1 at x = 0.1, 0.2 and 0.3 continue the solve at

Prepared by M.Latha, Department of Mathematics, KAHE

x = 0.4 by Milne's predictor corrector method?

Given
$$y^1 = xy + y^2$$
, and $x_0 = 0$, $y_0 = 1$ and $h = 0.1$

Now $y^1 = xy + y^2$

 $Y^{11} = xy^1 + y + 2yy^1$

$$Y^{III} = xy^{II} + 2y^{1} + 2yy^{II} + 2y^{12}$$

To find y (0.1)

By Taylor series we have

$$y (0.1) = y_{1} + hy_{0}^{1} + \frac{h^{2}}{2!} y_{0}^{"} + \frac{h^{3}}{3!} y_{0}^{""} + \dots (1)$$

$$y_{0}^{"} = (xy + y^{2})_{0} = (x_{0}y_{0} + y_{0}^{2}) = 1 \dots (2)$$

$$y_{0}^{"} = (xy^{1} + y + 2yy^{1})$$

$$y_{0}^{"} = (x_{0}y_{0}^{1} + y_{0} + 2y_{0}y_{0}^{1}) = 3 \dots (3)$$

$$y_{0}^{""} = (xy_{0}^{"} + 2y^{1} + 2yy^{"} + 2y^{12})_{0} = 10 \dots (4)$$

Substituting (2). (3) and (4) in (1) we get

Y (0.1) = 1 + 0.1 +
$$\frac{(0.1)^2}{2} \times 3 + \frac{(0.1)^3}{6} \times 10$$

- = 1 + 0.1 + 0.016 + 0.001666
- y (0.1) = 1.11666

To find y (0.2)

By Taylor series we have

$\frac{h^2}{2!} y_1^{"} + \frac{h^3}{3!} y_1^{""} + \dots (5)$ $Y_2 = y_1 + h y_1^{-1} +$

Now $y_1^1 = (xy + y^2) = x_1y_1 + {y_1}^2$			
$= (0.1) (1.11666) + (1.11666)^{2}$			
= 0.111666 + 1.2469			
= 1.3585 (6)			
$y_1^{II} = (xy^1 + y + 2yy^1)$			
$= x_1 y_1^{1} + y_1 + 2 y_1 y_1^{1}$			
= (0.1) (1.3585) + 1.11666 + 2 (1.11666) (1.3585)			
= 0.13585 + 1.11666 + 3.0339			
= 4.2865 (6)			
$y_1^{III} = (xy^{II} + 2y^{I} + 2yy^{II} + 2y^{12})$			
$= (x_1 y_1^{"} + 2y_1^{"} + 2y_1 \gamma^{"} + 2y_1^{12})$			
= (0.1) (4.2865) + 2 (1.3585) + 2 (1.1167) (4.2865) + 2 (1.3585) ²			
= 0.4287 + 2.717 + 9.5735 + 3.6916			
= 16. 4102 (8)			
Substituting (6), (7) and (8) in (5) we get			
Y (0.2) = 1.1167 + (0.1) (1.3585) + $\frac{(0.1)^2}{2}$ (4.2865) + $\frac{(0.1)^3}{6}$ (16. 4102)			
Y (0.2) = 1.1167 + 0. 13585 + 0. 0214 + 0.002735			
Y (0.2) = 1.27668			
To find y (0.3)			

By Taylor series we have

Now $y_2^1 = (xy + y^2)_2 = (x_2y_2 + y_2^2)$ $= (0.2) (1.2767) + (1.2767)^{2}$ = 0.2553 + 1.6299 = 1.8852 (10) $y_2^{\parallel} = (xy^1 + y + 2yy^1)^2$ $= x_2y_2^1 + y_2 + 2y_2y_2^1$ = (0.2) (1.8852) + 1.2767 + 2 (1.2767) (1.8852)= 0.33770 + 1.2767 + 4.8136 = 6.4674 (11) $y_2^{\parallel} = (xy^{\parallel} + 2y^1 + 2yy^{\parallel} 2y^{12})_2$ $= (x_2y_2^{11} + 2y_2^{1} + 2y_2y_2^{11} + 2y_2^{12})$ $= (0.2) (6.4674) + 2 (1.8852) + 2 (1.2767) (6.4774) + 2 (1.8852)^{2}$ = 1.2974 + 3.7704 + 16.5138 + 7.1079 = 28.6855

Substituting (10), (11) and (12) in (9), we get

Y (0.3) = 1.2767 + (0.1) (1.8852) +
$$\frac{0.1^2}{2}$$
 (6.4674) + $\frac{(0.1)^3}{6}$ (28.6855)

- = 1.2767 + 0.18852 + 0.0323 + 0.004780
- = 1.5023
- ∴y (0.3) = 1.5023

We have the following values

$$X_0 = 0$$
 $y_0 = 1$ $X_1 = 0.1$ $y_1 = 1.11666$ $X_2 = 0.2$ $y_2 = 1.27668$

To find y (0.4) by Milne's predictor formula

 $Y_{n+1, P} = y_{n+3} + \frac{4h}{3} [2y_{n-2}^{1} - y_{n-2}^{1} + 2y_{n}^{1}] \dots (1)$ $Y_{3}^{1} = (xy + y_{2})_{3}$ $= (x_{3}y_{3} + y_{3}^{2})$ $= [(0.3) (1.5023) + (1.5023)^{2}]$ = 0.45069 + 2.2569 = 2.7076Putting n =3, we get $Y_{4, P} = y_{0} + \frac{4h}{3} [2y_{1}^{1} - y_{2}^{1} + 2y_{3}^{1}]$

$$= 1 + \frac{4(0.1)}{3} [2 (1.3585) - 1.8852 + 2 (2.7076)]$$

= 1 + 0.1333 [2.717 - 1.0852 + 5.4152]

y_{4, P} = 1.8329

To find y (.04) by Milne's corrector formula

By Milne's corrector formula we have

$$y_{n+1, C} = y_{n-1} + [y_{n-1}^{1} + 4y_{n+1}^{1} + y_{n+1}^{1}] \dots (143)$$

Now $y_4^1 = (x^2 + y^2)_4 = (x_4y_4 + y_4^2)$

 $= [(0.4) (1.8327) + (1.8327)^{2}]$

= 0.7330 + 3.3588

= 4.0918

Putting n = 3 in (14) we get

$$Y_{4, C} = y_{2} + \frac{h}{2} [y_{2}^{1} + 4y_{3}^{1} + y_{4}^{1}]$$

$$Y_{4, c} = 1.27668 + \frac{(0.1)}{3} [1.8852 + 4(2.7076) + 4.0918]$$

= 1.8369

28. Solve and get y (2) given $\frac{dy}{dx} = \frac{1}{2} (x + y), y (0) = 2$

y (0.5) = 2.636, y (1) = 3.595; y (1.5) = 4.968 by Adam's

method?

Solution:

By Milne's method, we have $y_0^1 = \frac{1}{2} (0+2) = 1$

$$Y_1^1 = 1.5680, y_2^1 = 2.2975, y_3^1 = 3.2340$$

By Adam's predictor formula

 $Y_{n+1, P} = y_n +$

Prepared by M.Latha, Department of Mathematics, KAHE

$$h \qquad \frac{1}{24} \left[55y_n^{-1} - 59y_{n-1}^{-1} + 37y_{n-2}^{-1} - 9y_{n-3}^{-1} \right]_{B}$$

$$\therefore y_{4, P} = y_3 + \frac{h}{24} [55y_{n}^1 - 59y_2^1 + 37y_1^1 - 9y_0^1] \dots (1)$$

=4.968 +

 $\frac{0.5}{24[}$

= 68708

$$Y_4^{1} = \frac{1}{2} (x_4 + y_4) = \frac{1}{2} (2+6.8708) = 4.4354$$

By corrector,
$$y_{4,C} = y_3 + \frac{h}{24} [9y^1 + 19y^1 - 5y^1 + y^1].. (2)$$

$$= 4.968 + \frac{0.5}{24} [9 (4.4354) + 19 (3.234) - (2.2975) + 1.5680]$$

29. Find y (0.1), y (0.2), y (0.3) from $\frac{dy}{dx} = xy + y^2$, y (0) = 1 by using Runge – kutta method and hence

obtain y (0.4) using Adam's method?

Solution:

f (x, y) = xy + y², x₀ = 0, x₁ = 0.1, x₂ = 0.2,
xy = 0.4, x₄ = 0.4, y₀ = 1
k₁ = hf (x₀, y₀) = (0.1) f (0, 1) = (0.1) 1 = 0.1
k₂ = hf (0.05, y₀ +
$$\frac{k_1}{2}$$
) = (0.1) f (0.05, 1.05)
= (0.1) [(0.05) (1.05) + (1.05)²] = 0.1155

$$k_3 = hf(0.05, y_0 + \frac{k_2}{2}) = (0.1) f(0.05, 1.0578)$$

 $= (0.1) [(0.5) (1.0578) + (1.0578)^{2}]$ = 0.1172 $k_4 = hf(x_0 + h, y_0 + k_3)$ = (0.1) f (0.1, 1.1172) $= (0.1) [(0.10 (1.1172) + (1.1172)^{2}] = 0.13598$ $y_1 = y_0 + \frac{1}{6} [k_1 + 2k_2 + 2k_3 + k_4]$ = 1.1169 y (0.1) = 1.1169 Again, start from y₁ $k_1 = hf(x_1, y_1) = (0.1) f(0.1, 1.1169)$ = 0.1359 $k_2 = hf(x_1 + \frac{h}{2}, y_1 + \frac{k_1}{2}) = (0.1) f(0.15, 1.1849)$ = 0.1582 $k_{3} = hf(0.15, y + \frac{k_{3}}{2}) = (0.1) f(0.15, 1.196)$ = 0.16098 k₄ = (0.1) f (0.2, 1.2779) = 0.1889 $y_2 = 1.1169 + \frac{1}{6} [0.1359 + 2(0.1582 + 0.16098) + 0.1889]$ y (0.2) = 1.2774 Start from (x_2, y_2) to get y_3

Prepared by M.Latha, Department of Mathematics, KAHE

 $K_1 = hf(x_2, y_2) = (0.1) f(0.2, 1.2774) = 0.1887$

 $K_2 = hf(x_2)$

UNIT-V	Ordinary differential equations	2016-Batch
_	+ ^{<i>h</i>} ₂ , y ₂	

$$\frac{k_{1}}{2} = (0.1) f (0.25, 1.3Z18) = 0.2225$$

$$K_{3} = hf (x_{2} + \frac{h}{2}, y_{2} + \frac{k_{2}}{2})$$

$$= (0.1) f (0.25, 1.3887) = 0.2274$$

$$k_{4} = hf (x_{3}, y_{2} + \frac{k_{3}}{2}) = (0.1) f (0.3, 1.5048)$$

$$= 0.2716$$

$$y_{3} = 1.2774 + \frac{1}{6} [0.1887 + 2 (0.2225) + 2 (0.2274) + 0.2716] = 1.5041$$
Now we use Adam's predictor formula
$$Y_{4,P} = y_{3} + \frac{h}{24} [55y^{1} - 59y^{1} + 37y^{1} - 9y^{1}] \dots (2)$$

$$Y_{0}^{1} = x_{0}y_{0} + y_{0}^{2} = 1$$

$$Y_{1}^{1} = x_{1}y_{1} + y_{1}^{2} = 1.3592$$

$$Y_{2}^{1} = x_{2}y_{2} + y_{2}^{2} = 1.8872$$

$$Y_{3}^{1} = x_{3}y_{3} + y_{3}^{2} = 2.7135$$
Using (2)
$$Y_{4,P} = 1.5041 + \frac{0.1}{2} [55 (2.7135) - 59 (1.8872) + 37 (1.3592) - 9 (1)]$$

= 1.8341

$$y_{4, P}^{1} = x_{4}y_{4} + y_{4}^{2} = (0.4) (1.8341) + (1.8341)^{2} = 4.0976$$

 $y_{4, P} = y_{3} + \frac{h}{2} [9y_{4}^{1} + 19y_{3}^{1} - 5y_{2}^{1} + y_{1}^{1}]$

= 1.8389

30. Solve $y^1 = \frac{y^2 - x^2}{y^2 + x^2}$; y (0) = 1 by Runge – kutta method of fourth order to find y (0.2)

Solution:

$$Y^{1} = f(x, y) = \frac{y^{2} - x^{2}}{y^{2} + x^{2}}$$
, $x_{0} = 0$, $h = 0.2$, $x_{1} = 0.2$

$$f(x_0, y_0) = f(0, 1) = \frac{1-0}{1+0} = 1$$

$$k_1 = hf(x_0, y_0) = 0.2 \times 1 = 0.2$$

$$k_2 = hf(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}) = (0.2) f(0.1, 1.1)$$

$$= 0.2 \left[\frac{1.21 - 0.01}{1.21 + 0.01} \right] = 0.9167213$$

$$k_3 = hf(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}) = (0.2) f(0.1, 1.0983606)$$

= 0.1967

$$k_4 = hf(x_0 + 4, y_0 + k_3) = 0.2 f(0.2, 1.1967)$$

= 0.1891

$$\therefore \Delta y = \frac{1}{6} [k_1 + 2k_2 + 2k_3 + k_4]$$

Page 56/57

$$= \frac{1}{6} [0.2 + 2 (0.19672) + 2 (1.1967) + 0.1891]$$

= 0.19598

 $y (0.2) = y_1 = y_0 + \Delta y = 1.19598$

UNIT-V Ordinary differential equations

Possible Questions PART-A (2 Mark) UNIT V

1. Write the difference between Euler and modified Euler Method.

2.Define Euler method with formula.

3. Write the formula for Milne's predictor – corrector method.

4. Write the formula for Adam's Bash forth predictor – corrector method.

5. Define modified Euler method formula.

PART-B (6 Mark)

1. Solve dy/dx = x + y, given y(1)=0 and get y(1.1), y(1.2) by Taylor's series Method.Compare your result with the explicit method

2. Find y (1.5) taking h=0.5 given y'=y-1, y(0)=1.1 by using Euler's Method.

3.Using Adam's method for y (0.4) given dydx=12xy, y(0)=1,y(0.1)=1.01,y(0.2)=1.022, y(0.3)=1.023.

4. Apply fourth order Runge-Kutta method to find y(0.2) given that y'=x+y,y(0)=1.

5.Using Taylor method compute y(0.2) and y(0.4) correct to four decimal

places given by dy/dx = 1-2xy and y(0)=0

6. Compute y at x=0.25 by modified Euler method. Given y'=2xy,y(0)=1

7. Solve the equation dy/dx=1-y, given y(0)=0 using modified Euler method and tabulate the values at x=0.1, 0.2, 0.3 compare your results with the exact solutions

8. Determine the value of y (0.4) using Milne's methods given $y'=xy+y_2$ use Taylor series to get the values of y(0.1),y(0.2) and y(0.3).

9. Find y (1.1) given y'=2x-y, y (1) = 3 by using Taylor series method

10. Obtain the values of y at x=0.1, 0.2 using R-K method of

(i) Second order

(ii) Fourth order

For the differential equation y' = -y given y(0)=1.

KARPAGAM UNIVERSITY COIMBATORE-21 DEPARTMENT OF MATHEMATICS

NAME OF THE FACULTY: Ms.M.LATHA(KU0969) SUBJECT: NUMERICAL METHODS SUBJECT CODE: 16MMU301 CLASS: II B.Sc MATHEMATICS POSSIBLE QUESTIONS UNIT V

2 MARKS

- **1.** Write the difference between Euler and modified Euler Method.
- 2.Define Euler method with formula.
- 3. Write the formula for Milne's predictor corrector method.
- 4. Write the formula for Adam's Bash forth predictor corrector method.
- 5. Define modified Euler method formula.

KARPAGAM UNIVERSITY COIMBATORE-21 DEPARTMENT OF MATHEMATICS

NAME OF THE FACULTY: Ms.M.LATHA(KU0969) SUBJECT: NUMERICAL METHODS SUBJECT CODE: 16MMU301 CLASS: II B.Sc MATHEMATICS

POSSIBLE QUESTIONS UNIT V

6 MARKS

1. Solve dy/dx = x +your result with the explicit method 2. Find y (1.5) taking h=0.5 given y' = y - 1, y(0) = 1.1 $\frac{dy}{dx} = \frac{1}{2}xy$, y(0)=1,y(0.1)=1.01,y(0.2)=1.022, y(0.3)=1.023. 4. Apply fourth order Runge-Kutta method to find y(0.2) given that y' = x + y, y(0) = 1. 5.Using Taylor method compute y(0.2) and y(0.4) correct to four decimal places given by dy/dx = 1-2xy and y(0)=06. 7. Solve the equation dy/dx=1-y, given y(0)=0 using modified Euler method and tabulate the values at x=0.1, 0.2, 0.3 compare your results with the exact solutions $y' = xy + y^2$ 8. use Taylor series to get the values of y(0.1), y(0.2) and y(0.3). -y, y (1) = 3 by using Taylor series method 9. 10. Obtain the values of y at x=0.1, 0.2 using R-K method of

(i) Second order

(ii) Fourth order

-y given y(0)=1.

UNIT-V

1.	The numerical backward differe a. f'(x) = (1/h)* (Dy0 + (2 b. b.y = yn + n Ñyn + {n(n+ c. f'(x) = (1/h)* (Dyn + (2	r–1)/2 * D2y0 + (3r2–6 1) / 2!} Ñ2yn + {n(n+1)	6r+2)/6 * D3y0 + (n+2) / 3!} Ñ3yn +)
2.	The second derivative of the Ne	wton's forward differe	ntiation is	
	a.y " = (1/h2)* {D2y0 – D	3y0 + (11/12) D4y0	}	b.y " = (1/h2)* {D2y0 + D3y0 + (11/12) D4y0}
	c.y " = (1/h)* {D2y0 + D2	3y0 + (11/12) D4y0	}	
3.	The second derivative of the Ne	wton's backward diffe	rentiation is	
	a.y " = (1/h2)* {D2y0 + I	D3y0 + (11/12) D4y0	}	b.y " = (1/h2)* {D2y0 - D3y0 + (11/12) D4y0} d.y " = (1/h)* {D2y0 - D3y0 + (11/12) D4y0}
4.	The order of error in Trapezoida a.h b.h ³ c. d.h ⁴	al rule is		
5.	The order of error in Simpson's a.h $b.h^3$ $c.h^2$			
6.	Numerical evaluation of a defin	ite integral is called		
	b.Differ	rentiation c.Inte	rpolation	d.Triangularization
7.	Simpson's ¾ rule can be applied	d only if the number of	sub interval is in	
	a.Equal b.even	с.	d.uneq	Jual
8.	By putting n = 2 in Newton cote	's formula we get	rule.	
	b.Simps	son's ¾ c.Trap	ezoidal	d.Romberg
9.	The Newton Cote's formula is a	lso known as	formula.	
	a.Simpson's 1/3	b.Simpson's 3/8	c.Trapezoidal	d.
10	. By putting n = 3 in Newton cote	's formula we get	rule.	
	a.Simpson's 1/3	c.Trap	pezoidal	d.Romberg
11	. By putting n = 1 in Newton cote	's formula we get	rule.	
	a.Simpson's 1/3	b.Simpson's ¾		d.Romberg

12. The systematic improvement of Richardon's method is called method	
a.Simpson's 1/3 b.Simpson's ¾ c.Trapezoidal	
13. Simpson's 1/3 rule can be applied only when the number of interval is	
a.Equal b. c.multiple of three d.unequal	
14. "Simpson's rule is exact for a even though it was derived for a Quadratic."	
a.cubic b.less than c.cubic d.	
15. The accuracy of the result using the Trapezoidal rule can be improved by	
a." Increasing the interval h" b." Decreasing the interval h	
d."altering the given function"	
16. A particular case of Runge Kutta method of second order is	
a.Milne's method b.Picard's method c. d.Runge's method	
17. Runge Kutta of first order is nothing but the	
a.modified Euler method b. c.Taylor series d.none of these	
18. In Runge Kutta second and fourth order methods, the values of k1 and k2 are	
b.differ c.always positive d.always negative	
19. The formula of Dy in fourth order Runge Kutta method is given by	
a.1/6 * (k1 + 2k2 + 3k3 + 4k4) b.1/6 * (k1 + k2 + k3 + k4) c. d.1/6 * (k1 + 2k2 + 2k3 + k4)	
20values are calculated in Runge Kutta fourth order method.	
b.k1, k2 and Dy c.k1, k2, k3 and Dy d.none of these	
21. The use of Runge kutta method gives to the solutions of the differential equation than Taylor's series method.	
b.quick convergence c.oscillation d.divergence	
22. In Runge – kutta method the value x is taken as	
b.x0=x+h $c.h=x0+x$ $d.h=x0-x$	
23. In Runge – kutta method the value y is taken as	
a.y = y0 + h $b.y0 = x0 + h$ $c.y = y0 - Dy$	
24. In fourth order Runge Kutta method the value of k3 is calculated by	
a.h f(x - h/2, y - k2/2) b. c.h f(x, y) d.h f(x - h/2, y - k1/2)	
25. In fourth order Runge Kutta method the value of k4 is calculated by	
a.h f(x + h/2, y + k1/2) b.h f(x + h/2, y + k2/2) c d.h f(x - h, y - k3)	
26is nothing but the modified Euler method.	

b.Runge kutta method of third ord	er
c.Runge kutta method of fourth order d.Taylor series method	
27. In all the three methods of Rungekutta methods, the values are same.	
a.k4 & k3 b.k3 & k2 c. d.k1, k2, k3 & k4	
28. The formula of Dy in third order Runge Kutta method is given by	
a.1/6 * (k1 + 2k2 + 3k3 + 4k4) b.1/6 * (k1 + k2 + k3 + k4) c.	d.1/6 * (k1 + 2k2 + 2k3 + k4)
29. The formula of Dy in second order Runge Kutta method is given by	
a.k1 b. c.k3 d.k4	
30. In second order Runge Kutta method the value of k1 is calculated by	
a.h f(x + h/2, y + k1/2) b.h f(x + h/2, y + k2/2)	d.h f(x - h/2, y - k1/2)
31. The Runge – Kutta methods are designed to give and they posses the advantage	of requiring only the function values at some
selected points on the sub intervals	
a.greater accuracy b.lesser accuracy c.average accuracy d.equal	
32. If dy/dx is a function x alone, then fourth order Runge – Kutta method reduces to	
a.Trapezoidal rule b.Taylor series c.Euler method d.	
33. In Runge Kutta methods, the derivatives of are not require and we require only the	e given function values at different points.
b.lower order c.middle order d.zero	
34. The use of method gives quick convergence to the solutions of the differential e	quation than Taylor's series method.
a.Taylor series b.Euler c. d.Simpson	
35. If dy/dx is a function x alone, then Runge – Kutta method reduces to Simpson meth	od
b.third order c.second order d.first order	
36. If dy/dx is a function of then fourth order Runge – Kutta method reduces to Simps	son method.
a. b.y alone c.both x and y d.none	
37. In second order Runge Kutta method the value of k2 is calculated by	
	h f(0,0)

Reg.No-----

(16MMU301) KARPAGAM ACADEMY OF HIGHER EDUCATION

Karpagam University Coimbatore-21 DEPARTMENT OF MATHEMATICS Third Semester II Internal Test - Aug'2017 Numerical Methods Date: .08.17() Time: 2 Hours

PART-A(20X1=20 Marks)

Answer all the Questions:

1. Forward difference operat	or is denoted by the symbol
a) Δ b) ∇	c) Σ d) \prod
2. Relation between E and	∇ is $\nabla =$
a) $E - 1$ b) $1 - E^{-1}$	c) $1 + E^{-1}$ d) $1 * E^{-1}$
3. The n th differences (forwa	rd) of a polynomial of the n th
degree	
are	
a) constant b) variable	c) zero d) one
4. The process of computing	the value of a function outside the
range is called	
a) interpolation	b) extrapolation
c) both	d) inverse interpolation
5 Interpolation f	ormula can be used for equal and
unequal intervals.	
a) Newton's forward	b) Newton's forward
c) Lagrange	d) Romberg

6. The divided difference operator is -----a) non-linear b) normal d) c) linear translation 7.In difference, f(x+h) - f(x) = -----c) $\Delta^2 f(x)$ a) $\Delta f(x)$ b) $\nabla f(x)$ d) h(x)8. The operators are distributive over -----a) subtraction b) multiplication c) division d) addition 9.----- Formula can be used for interpolating the value of f(x) near the end of the tabular values. a) Newton's forward b) Newton's backward c) Lagrange d) divided 10. The -----differences are symmetrical in all their arguments. b) backward c) divided a) forward d) central 11. The interval of differencing h, is denoted by--b) $x_1 - x_0$ c) $x_{3}-x_{0}$ a) $x_2 - x_0$ d) $x_0 - x_1$ 12. The central difference operator is denoted by -----b) δ a) D c) ∇ d) Δ 13. The polynomial x(x-h)(x-2h)(x-3h).....(x-(n-1)h) is defined as ----a) difference of polynomial b) factorial polynomial d) backward difference c) forward difference 14. To find the unknown values of y for some x which lies at the --- of the table, we use Newton's Forward formula. a) beginning b) end c) centre d) outside 15. In Newton's backward interpolation formula, the value of v is calculated by -----. a) v= $(x-x_n) / h$ b) $v = (x_n - x) / h$ c) $v = (x - x_0) / h$ d) $v = (x_0 - x) / h$ 16. The difference value $y_2 - y_1$ in a Newton's forward difference table is denoted by ------.

a) Δy_0 b) Δy_1 c) Δy_2 d) Δy_0

17. The value of any divided differences is ------ of the order of the arguments.

a) independent	b) depender	nt c) zero	od) one				
18. The second difference $\Delta^2 y_0$ is equal to							
a) $y_2 - 2y_1 - y_0$ b) $y_2 + 2y_1 + y_0$							
c) $y_2 - 2y_1 + y_0$	d) y ₂ - 2	$2y_1 + y_0$					
19. The x values of int	erpolating poly	ynomial of New	vton -				
Gregory has	space						
a) odd	b)even	c)equal	d)unequal				
20. The value of $\Delta y_2 = \dots$							
a) y ₂ – y ₃	b) y ₂ + y ₃	c) y ₃ - y ₂	d) y ₃₊ y ₂				

PART-B (3X2= 6 Marks) ANSWER ALL THE QUESTIONS

- 21. Define divided differences.
- 22. Write the formula for Lagrange's interpolation formula for Unequal intervals
- 23. Prove that $E\Delta = \Delta = \nabla E$.

PART-C (3x8=24 Marks) ANSWER ALL THE QUESTIONS

			X	0 = 0 = 1 0	1.0	
24. a) F	rom the fo	llowing ta	able, find	the value	of tan 45	°15′
x° :	45	46	47	48	49	50
tan x°	: 1.0000	1.0355	1.0723	1.1106	1.1503	
1.1917						

(**OR**)

b) Using inverse interpolation formula, find the value of x when y=13.5.

X:	93.0	96.2	100.0	104.2	108.7
y:	11.38	12.80	14.70	17.07	19.91

25. a) From the following table find f(x) and hence f(6) using Newton interpolation formula.

Х	: 1	2	2	7		8				
f(x)	: 1	5	5	5		4				
	(OR)									
b) Find t	b) Find the values of y at X=21 and X=28 from the									
following	data.	-								
X:	20	23	2	6	29					
Y:	0.3420	0.3907	0.4	384	0.4848					
			1							
26. a) Find	the first tw	o derivat	tives of x^3	at $x=50$	and x=56	,				
given the	table below	v:								
X: 50	51	52	53 54		55 56					
Y: 3.6840	3.7084	3.7325	3.7563	3.7798	3.8030					
3.8259										
(OR)										
b) The population of a certain town is given below, Find the rate of growth of population in 1931, 1941, 1961 and 1971.										

17/11					
Year :	1931	1941	1951	1961	1971
Population	: 40.62	60.80	79.95	103.56	132.65
(in thousan	ds)				

a) zero b) odd c)eve	a) Diagram b) graph c) c 5. In Simpson's 1/3, the number of	 a) One step method b) 1 c) step by step method d) 1 4. In R - K method derivatives of 	method. a) Slow convergence b) c) Oscillation d) 2. In this Euler method the actual sequence of short sequence of short a)Straight-line	PART - A (20 x PART - A (20 x Answer all the questions 1. The use of Runge kutta metho solutions of the differential equa	KARPAGAM U Karpagam Academy of COIMBATC DEPARTMENT OF M Third Seme III Internal NUMERICAL N Date : .09.17(AN)	

Scanned by CamScanner

rule. Also check up the result by act	24.a) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by (i) Trapezoidal	ANSWER ALL THE QUESTIONS	21. Write the Simpson's 3/8 th rule formul STIONS 22. Define modified Euler method formul ^{a.}		a) Equal b) even c) multiple of th 20. Runge Kutta of first order is nothing rec	pson's 1/3 rule ezoidal rule on's ¾ rule can be applied in	18. By putting n = 1 in Newton cote's rule.	a) $Y_{n+1} = y_{n+1} + h f(x_n, y_n) n = 0, 1$ b) $Y_{n+1} = y_n - h f(x_n, y_n) n = 0, 1, 2, 3$ c) $Y_n = y_0 + f(x_0, y_n) n = 0, 1, 2, 3 2, 3$ d) $Y_{n+1} = y_n + h f(x_n, y_n) n = 0, 1$	a)slowly b)equally c)fastly 17. Euler's algorithm formula is	spaced nodes by a polynomial of deg ^{interpolate} at equally represents a) Trapezoidal rule b) Simp c) midpoint rule d) booldson s rule l6. The Euler Method and Modified E'srule uler's Method are	15. In Newton cote formula if $f(x)$ is
ual integration.	rule (ii) Simpson's	t(a. 1)pr – corrector method. 'ks)	h ^E STIONS	d) Run ² r method = $6 Ma$ ge's method = $6 Ma$ seconterior	he of th nothing rec d) unequal.	b); d) Simpson's ¾ rule onl ^{Newton} 'method y if the number of sub	rrmula we get	· · · · · · · · · · · · · · · · · · ·	d)greater	 al of deg^{interpolate} at equally ree two then it b) Simp d) booldson s rule dified E'srule uler's Method are 	

(OR)

- b) Solve dy/dx = x + y, given y(1)=0 and get y(1.1),y(1.2)by Taylor's series Method. Compare your result with the explicit method
- 25. a) Compute y at x=0.25 by modified Euler method. Given y'=2xy, y(0)=1.

(OR)

b) Find y (1.5) taking h=0.5 given y' = y - 1, y(0) = 1.1 by using Euler's Method.

26.a) Using Adam's method for y(0.2) ,y(0.3) and y (0.4) given $\frac{dy}{dx} = \frac{1}{2}xy$, y(0)=1,y(0.1)=1.01.

$$\frac{1}{2}xy$$
, y(0)=1,y(0.1)=1.01.

b) Apply fourth order Runge-Kutta method to find y(0.2) given that y' = x + y, y(0) = 1. (OR)