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Lecture Plan 
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S. No 

Lecture 

Duration 

Hour 

Topics To Be Covered Support Materials 

UNIT-I 

1 1 Definition and examples of rings R1: Ch 12, 237-239 

2 1 Properties of rings R1: Ch 12, 239 

3 1 Properties of rings R1: Ch 12, 240 

4 1 Tutorial  

5 1 Theorems on subrings R1: Ch 12, 241 

6 1 Theorems on subrings R1: Ch 12, 242 

7 1 integral domains R1: Ch 13, 249-250 

8 1 Tutorial.   

9 1 integral domains R1: Ch 13, 250 

10 1 Theorems on fields R1: Ch 13, 250 

11 1 Theorems on fields R1: Ch 13, 251-252 

12 1 Tutorial.  

13 1 Theorems on ideal R1: Ch 13, 252 

14 1 Theorems on ideal R1: Ch 13, 253 

15 1 Theorems on ideal generated by a subset of a 

ring 

R1: Ch 13, 253 

16 1 Tutorial.  

17 1 Theorems on ideal generated by a subset of a 

ring 

R1: Ch 13, 254 

18 1 Theorems on factor rings R1: Ch 13, 255-256 

19 1 Theorems on factor rings R1: Ch 13, 256 

20 1 Tutorial.  

21 1 operations on ideals R1: Ch 14, 262-263 

22 1 Theorems on prime ideals R1: Ch 14, 264-266 

23 1 Theorems on prime maximal ideals R1: Ch 14, 267-268 

24 1 Recapitulation and Discussion  of possible 

questions 

 

Total 24 Hours   

Text book  

T Fraleigh. J. B., (2004). A First Course in Abstract Algebra , Seventh Edition , Pearson 

Education Ltd, Singapore. 

Reference 

R1 Joseph A. Gallian., (1999). Contemporary Abstract Algebra, Fourth Edition, Narosa 
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Publishing House, New Delhi.  

UNIT-II 

1 1 Definitions and examples on ring 

homomorphisms 

R1: Ch 15, 280-281 

2 1 Theorems on ring homomorphisms R1: Ch 15, 281 

3 1 Theorems on ring homomorphisms R1: Ch 15, 282 

4 1 Tutorial.  

5 1 Theorems on ring homomorphisms R1: Ch 15, 283 

6 1 Theorems on ring homomorphisms R1: Ch 15, 284 

7 1 properties of ring homomorphisms R1: Ch 15, 285 
8 1 Tutorial.  
9 1 properties of ring homomorphisms R1: Ch 15, 286 
10 1 properties of ring homomorphisms R1: Ch 15, 287 
11 1 properties of ring homomorphisms R1: Ch 15, 288-289 
12 1 Tutorial.  

13 1 properties of ring homomorphisms R1: Ch 15, 289 

14 1 properties of ring homomorphisms R1: Ch 15, 290 

15 1 Isomorphism theorem I T1: Ch 7, 301 

16 1 Tutorial.  

17 1 Isomorphism theorem I T1: Ch 7, 302 

18 1 Isomorphism theorem II T1: Ch 7, 303-305 

19 1 Isomorphism theorem III T1: Ch 7, 306-309 

20 1 Tutorial.  

21 1 Theorems on field of quotients T1: Ch 7, 310 

22 1 Theorems on field of quotients T1: Ch 7, 311 

23 1 Theorems on field of quotients T1: Ch 7, 312 

24 1 Recapitulation and Discussion  of possible 

questions 
 

Total 24Hours   

Text book  

T Fraleigh. J. B., (2004). A First Course in Abstract Algebra , Seventh Edition , Pearson 

Education Ltd, Singapore. 

Reference 

R1 Joseph A. Gallian., (1999). Contemporary Abstract Algebra, Fourth Edition, Narosa Publishing 

House, New Delhi. 

UNIT-III 

1 1 Introduction to Vector spaces R1: Ch 19, 345 

2 1 Theorems on subspaces R1: Ch 19, 346 

3 1 Theorems on subspaces R1: Ch 19, 347 

4 1 Tutorial  

5 1 Theorems on subspaces R1: Ch 19, 348 

6 1 Theorems on subspaces R1: Ch 19, 349 

7 1 Theorems on subsapces R1: Ch 19, 350 
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8 1 Tutorial.  

9 1 Theorems on subsapces R1: Ch 19, 351 

10 1 properties of subspaces T1: Ch 6, 283 

11 1 properties of subspaces T1: Ch 6, 284 

12 1 Tutorial  

13 1 Theorems on algebra of subspaces T1: Ch 6, 285 

14 1 Theorems on algebra of subspaces T1: Ch 6, 286 

15 1 Theorems on quotient spaces T1: Ch 6, 287 

16 1 Tutorial.  

17 1 Theorems on quotient spaces T1: Ch 6, 288 

18 1 Theorems on linear span T1: Ch 6, 289 

19 1 Theorems on linear span T1: Ch 6, 290 

20 1 Tutorial.  

21 1 Theorems on linear independence T1: Ch 6, 291-292 

22 1 Theorems on basis and dimension T1: Ch 6, 293-294 

23 1 Theorems on dimension of subspaces T1: Ch 6, 294 

24 1 Recapitulation and Discussion  of possible 

questions 

 

Total 24 Hours   

Text book  

T Fraleigh. J. B., (2004). A First Course in Abstract Algebra , Seventh Edition , Pearson 

Education Ltd, Singapore. 

Reference 

R1 Joseph A. Gallian., (1999). Contemporary Abstract Algebra, Fourth Edition, Narosa Publishing 

House, New Delhi. 

UNIT-IV 

1 1 Introduction to Linear transformations T: Ch 2, 33 

2 1 Theorems on linear transformations R1: Ch 9, 212 

3 1 Theorems on linear transformations R1: Ch 9, 213 

4 1 Tutorial.  

5 1 Theorems on null space R1: Ch 9, 214 

6 1 Theorems on null space R1: Ch 9, 215 

7 1 Theorems on null space R1: Ch 9, 216 

8 1 Tutorial.  

9 1 Theorems on null space R1: Ch 9, 217-218 

10 1 properties of null space R1: Ch 9, 218 

11 1 properties of null space R1: Ch 9, 219 

12 1 Tutorial.  

13 1 Theorems on range R2: Ch 11, 320 

14 1 Theorems on range R2: Ch 11, 321 

15 1 Theorems on rank of a linear transformation R2: Ch 11, 322 

16 1 Tutorial.  

17 1 Theorems on rank of a linear transformation R2: Ch 11, 323 
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18 1 Theorems on nullity of a linear 

transformation 

R2: Ch 11, 324-325 

19 1 Theorems on nullity of a linear 

transformation 

R2: Ch 11, 325 

20 1 Tutorial.  

21 1 Theorems on matrix representation of a linear 

transformation 

R2: Ch 11, 326 

22 1 Theorems on algebra of linear 

transformations 

R2: Ch 11, 327 

23 1 Theorems on algebra of linear 

transformations 

R2: Ch 11, 328-329 

24 1 Recapitulation and Discussion  of possible 

questions 

 

Total 24 Hours   

Text book  

T Fraleigh. J. B., (2004). A First Course in Abstract Algebra , Seventh Edition , Pearson 

Education Ltd, Singapore. 

Reference 

R1 Joseph A. Gallian., (1999). Contemporary Abstract Algebra, Fourth Edition, Narosa Publishing 

House, New Delhi. 

R2  Kumaresan S., (1999). Linear Algebra- A Geometric Approach, Prentice Hall of India, New 

Delhi. 

UNIT-V 

1 1 Isomorphism theorems R2: Ch 12, 340 

2 1 Isomorphism theorems R2: Ch 12, 341 

3 1 Isomorphism theorems R2: Ch 12, 342-343 

4 1 Tutorial.  

5 1 Isomorphism theorems R2: Ch 12, 344 

6 1 Isomorphism theorems R2: Ch 12, 344-345 

7 1 Isomorphism theorems R2: Ch 12, 346 

8 1 Tutorial.  

9 1 Theorems on invertibility and isomorphisms R2: Ch 12, 350 

10 1 Theorems on invertibility and isomorphisms R2: Ch 12, 351-352 

11 1 Theorems on invertibility and isomorphisms R2: Ch 12, 353 

12 1 Tutorial.  

13 1 Theorems on invertibility and isomorphisms R2: Ch 12, 353-354 

14 1 Theorems on invertibility and isomorphisms R2: Ch 12, 355 

15 1 Theorems on invertibility and isomorphisms R2: Ch 12, 356-357 

16 1 Tutorial.  

17 1 Theorems on change of coordinate matrix R2: Ch 12, 357 

18 1 Theorems on change of coordinate matrix R2: Ch 12, 357-358 

19 1 Theorems on change of coordinate matrix R2: Ch 12, 358-359 

20 1 Tutorial.  

21 1 Theorems on change of coordinate matrix R2: Ch 12, 360 

22 1 Recapitulation and Discussion  of possible  
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questions 

23 1 Discussion on Previous ESE Question Papers  

24 1 Discussion on Previous ESE Question Papers  

Total 24 Hours           

Text book  

T Fraleigh. J. B., (2004). A First Course in Abstract Algebra , Seventh Edition , Pearson 

Education Ltd, Singapore. 

Reference 

R1 Joseph A. Gallian., (1999). Contemporary Abstract Algebra, Fourth Edition, Narosa Publishing 

House, New Delhi. 

R2  Kumaresan S., (1999). Linear Algebra- A Geometric Approach, Prentice Hall of India, New 

Delhi 

 

Total no. of Hours for the Course: 120 hours 
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1 Rings
1.1 Definitions and examples

We now move on to something completely different — rings. In a ring,
we are allowed to add, subtract, multiply but not divide. Our canonical
example of a ring would be , the integers, as studied in IA Numbers and
Sets.

In this course, we are only going to consider rings in which multipli-
cation is commutative, since these rings behave like “number systems”,
where we can study number theory. However, some of these rings do
not behave like . Thus one major goal of this part is to understand the
different properties of , whether they are present in arbitrary rings, and
how different properties relate to one another.

Definition 1 (Ring) A ring is a quintuple (R,+, , 0R, 1R) where 0R, 1R ∈

R, and +, : R × R→ R are binary operations such that

1. (R,+, 0R) is an abelian group.

2. The operation : R × R→ R satisfies associativity, i.e.

a · (b · c) = (a · b) · c,

and identity:
1R · r = r · 1R = r.

3. Multiplication distributes over addition, i.e.

r1 · (r2 + r3) = (r1 · r2) + (r1 · r3)

(r1 + r2) · r3 = (r1 · r3) + (r2 · r3).

If R is a ring and r ∈ R, we write −r for the inverse to r in (R,+, 0R).
This satisfies r + (−r) = 0R. We write r − s to mean r + (−s) etc. Some
people don’t insist on the existence of the multiplicative identity, but we
will for the purposes of this course.
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Since we can add and multiply two elements, by induction, we can
add and multiply any finite number of elements. However, the notions
of infinite sum and product are undefined. It doesn’t make sense to ask
if an infinite sum converges.

Definition 2 (Commutative ring) We say a ring R is commutative if a ·
b = b · a for all a, b ∈ R.

From now onwards, all rings in this course are going to be commutative.
Just as we have groups and subgroups, we also have subrings.

Definition 3 (Subring) Let (R,+, , 0R, 1R) be a ring, and S ⊆ R is a
subset. We say S is a subring of R if 0R, 1R ∈ S , and the operations +,

make S into a ring in its own right. In this case we write S ≤ R.

Example 1 The familiar number systems are all rings: we have ≤≤≤,
under the usual 0, 1,+,.

Example 2 The set [i] = {a + ib : a, b ∈} ≤ is the Gaussian integers,
which is a ring.

We also have the ring [
√

2] = {a + b
√

2 ∈: a, b ∈} ≤.

We will use the square brackets notation quite frequently. It should be
clear what it should mean, and we will define it properly later.

In general, elements in a ring do not have inverses. This is not a bad
thing. This is what makes rings interesting. For example, the division
algorithm would be rather contentless if everything in had an inverse.
Fortunately, only has two invertible elements — 1 and −1. We call these
units

Definition 4 (Unit) An element u ∈ R is a unit if there is another element
v ∈ R such that u · v = 1R.

It is important that this depends on R, not just on u. For example, 2 ∈ is
not a unit, but 2 ∈ is a unit (since 1

2 is an inverse).
A special case is when (almost) everything is a unit.
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Definition 5 (Field) A field is a non-zero ring where every u , 0R ∈ R
is a unit.

We will later show that 0R cannot be a unit unless in a very degenerate
case.

Example 3 is not a field, but , , are all fields.
Similarly, [i] is not a field, while [

√
2] is.

Example 4 Let R be a ring. Then 0R + 0R = 0R, since this is true in the
group (R,+, 0R). Then for any r ∈ R, we get

r · (0R + 0R) = r · 0R.

We now use the fact that multiplication distributes over addition. So

r · 0R + r · 0R = r · 0R.

Adding (−r · 0R) to both sides give

r · 0R = 0R.

This is true for any element r ∈ R. From this, it follows that if R , {0},
then 1R , 0R — if they were equal, then take r , 0R. So

r = r · 1R = r · 0R = 0R,

which is a contradiction.

Note, however, that {0} forms a ring (with the only possible operations
and identities), the zero ring, albeit a boring one. However, this is often
a counterexample to many things.

Definition 6 (Product of rings) Let R, S be rings. Then the product R×
S is a ring via

(r, s) + (r′, s′) = (r + r′, s + s′), (r, s) · (r′, s′) = (r · r′, s · s′).

The zero is (0R, 0S ) and the one is (1R, 1S ).
We can (but won’t) check that these indeed are rings.
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Definition 7 (Polynomial) Let R be a ring. Then a polynomial with co-
efficients in R is an expression

f = a0 + a1X + a2X2 + · · · + anXn,

with ai ∈ R. The symbols Xi are formal symbols.

We identify f and f + 0R · Xn+1 as the same things.

Definition 8 (Degree of polynomial) The degree of a polynomial f is
the largest m such that am , 0.

Definition 9 (Monic polynomial) Let f have degree m. If am = 1, then
f is called monic.

Definition 10 (Polynomial ring) We write R[X] for the set of all poly-
nomials with coefficients in R. The operations are performed in the ob-
vious way, i.e. if f = a0 + a1X + · · ·+ AnX and g = b0 + b1X + · · ·+ bkXk

are polynomials, then

f + g =

max{n,k}∑
r=0

(ai + bi)Xi,

and

f · g =

n+k∑
i=0

 i∑
j=0

a jbi− j

 Xi,

We identify R with the constant polynomials, i.e. polynomials
∑

aiXi with
ai = 0 for i > 0. In particular, 0R ∈ R and 1R ∈ R are the zero and one of
R[x].

This is in fact a ring.
Note that a polynomial is just a sequence of numbers, interpreted as

the coefficients of some formal symbols. While it does indeed induce a
function in the obvious way, we shall not identify the polynomial with
the function given by it, since different polynomials can give rise to the
same function.
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For example, in /2[X], f = X2 + X is not the zero polynomial, since
its coefficients are not zero. However, f (0) = 0 and f (1) = 0. As a
function, this is identically zero. So f , 0 as a polynomial but f = 0 as
a function.

Definition 11 (Power series) We write R[[x]] for the ring of power se-
ries on R, i.e.

f = a0 + a1X + a2X2 + · · · ,

where each ai ∈ R. This has addition and multiplication the same as for
polynomials, but without upper limits.

A power series is very not a function. We don’t talk about whether the
sum converges or not, because it is not a sum.

Example 5 Is 1 − X ∈ R[X] a unit? For every g = a0 + · · · + anXn (with
an , 0), we get

(1 − X)g = stuff + · · · − anXn+1,

which is not 1. So g cannot be the inverse of (1 − X). So (1 − X) is not a
unit.

However, 1 − x ∈ R[[X]] is a unit, since

(1 − X)(1 + X + X2 + X3 + · · · ) = 1.

Definition 12 (Laurent polynomials) The Laurent polynomials on R is
the set R[X, X−1], i.e. each element is of the form

f =
∑

i∈

aiXi

where ai ∈ R and only finitely many ai are non-zero. The operations are
the obvious ones.

We can also think of Laurent series, but we have to be careful. We al-
low infinitely many positive coefficients, but only finitely many negative
ones. Or else, in the formula for multiplication, we will have an infinite
sum, which is undefined.
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Example 6 Let X be a set, and R be a ring. Then the set of all functions
on X, i.e. functions f : X → R is a ring given by

( f + g)(x) = f (x) + g(x), ( f · g)(x) = f (x) · g(x).

Here zero is the constant function 0 and one is the constant function 1.
Usually, we don’t want to consider all functions X → R. Instead, we

look at some subrings of this. For example, we can consider the ring of
all continuous functions→. This contains, for example, the polynomial
functions, which is just [X] (since in , polynomials are functions).
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Possible Questions
8 marks

1. Prove that (Zn,⊕,�) is a ring

2. Let R be the ring with identity. Prove that the set of all units in R is
a group under multiplication

3. Let F be any filed. Prove that the only ideals of F are F and {0}

4. Prove that the characteristic of an integral domain is either prime
or 0

5. Prove that any finite integral domain is a field

6. Prove that Zn is an integral domain iff n is prime

7. Prove that the only isomorphism f : Q→ Q is the identity map

8. Prove that Zn is an field iff n is prime

9. If U is an ideal of R and 1 ∈ U then prove that U = R

10. Let R be a commutative ring with unity and let A be an ideal of R.
Then R/A is an integral domain if and only if A is prime.

11. If two operations ∗ and # on the set of integers Z are defined by

a ∗ b = a + b + 1

and
a # b = a + b + ab

for all a, b ∈ Z. Show that (Z, ∗,#) is a commutative ring. What is
the zero of the ring? Is it ring with unity?

12. Classify the ring (S ,⊕10,�10) where S = {0, 2, 4, 6, 8}. What is the
unity of the ring. Is it a ring with or without zero divisors?
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13. Show that a commutative ring with the cancellation property (under
multiplication) has no zero-divisors.

14. List all zero-divisors in Z20

15. Prove that a finite integral domain is a field.
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Question Option-1 Option-2 Option-3 Option-4 Answer

A ring with identity . then tha identity  element is unique differnce 2 Either b or c unique

A ring (R, +,.)  all the _____ is a unit Non zero zero evennumber oddnumber nonzero

A commutative skew field is called Integral domain field ideal Zero divisor field

In a ring (Z12,+,.). the one of the zero divisor is 10 11 5 2 2

Skew field has  ______ Zero divisor No zero divisor Integral domain b and c b and c

Zn is an integral domain iff n is _____ composite prime even odd prime

Any field F is an ____ Integral domain Not integral domain ideal Either b or c Integral domain

Any finite integral domain is ____ Not a field field Right ideal ideal Field

Z is not a ___ Ring subring field Either b or c Field

 The only idempotent element of an integral domain are  2and 0 1 and 2 0 and1 3and5 0 and 1

PART-A   Multiple Choice Questions (Each Question Carries One Mark)

M2(R)IS A Ring with unity (1 0 ( 0 0 (1 2 (0 1 (1 0
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UNIT-I

The unique identity of the additive group (R,+) is  denoted  by ___ 0 1 2 3 0

{0} with __ binary operation 1 2 3 4 2

ring

(p(s),u,n) is ____ ring Not a ring Boolean ring field Not a ring

0 satisfies all the condition of ___ ring ideal Integral domain Zero divisor

(p(s),Δ,n)

A ring R is said to be _____ring if ab=ba commutative boolean Null ring B and a Commutative

Boolean ring example (p(s),u,n) (p(s),Δ,n) Q R

ab=ba

The familiar rings Z,Q,R are all rings with _____ identity unit Zero divisor ideal identity

A ring R is said to be commutative ring if_____ ab≠ba ab=ba a=2a a=b
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1 Homomorphisms, ideals and quotients

Just like groups, we will come up with analogues of homomorphisms,
normal subgroups (which are now known as ideals), and quotients.

Definition 1 (Homomorphism of rings) Let R, S be rings. A function
φ : R → S is a ring homomorphism if it preserves everything we can
think of, i.e.

1. φ(r1 + r2) = φ(r1) + φ(r2),

2. φ(0R) = 0S ,

3. φ(r1 · r2) = φ(r1) · φ(r2),

4. φ(1R) = 1S .

Definition 2 (Isomorphism of rings) If a homomorphism φ : R → S is
a bijection, we call it an isomorphism.

Definition 3 (Kernel) The kernel of a homomorphism φ : R→ S is

ker(φ) = {r ∈ R : φ(r) = 0S }.

Definition 4 (Image) The image of φ : R→ S is

(φ) = {s ∈ S : s = φ(r) for some r ∈ R}.

A homomorphism φ : R→ S is injective if and only if ker φ = {0R}.
A ring homomorphism is in particular a group homomorphism φ :

(R,+, 0R) → (S ,+, 0S ) of abelian groups. So this follows from the case
of groups.

In the group scenario, we had groups, subgroups and normal sub-
groups, which are special subgroups. Here, we have a special kind of
subsets of a ring that act like normal subgroups, known as ideals.

Definition 5 (Ideal) A subset I ⊆ R is an ideal, written I � R, if
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1. It is an additive subgroup of (R,+, 0R), i.e. it is closed under addi-
tion and additive inverses. (additive
closure)

2. If a ∈ I and b ∈ R, then a · b ∈ I. (strong closure)

We say I is a proper ideal if I , R.

Note that the multiplicative closure is stronger than what we require for
subrings — for subrings, it has to be closed under multiplication by its
own elements; for ideals, it has to be closed under multiplication by
everything in the world. This is similar to how normal subgroups not
only have to be closed under internal multiplication, but also conjugation
by external elements.

If φ : R→ S is a homomorphism, then ker(φ) � R.
Since φ : (R,+, 0R) → (S ,+, 0R) is a group homomorphism, the ker-

nel is a subgroup of (R,+, 0R).
For the second part, let a ∈ ker(φ), b ∈ R. We need to show that their

product is in the kernel. We have

φ(a · b) = φ(a) · φ(b) = 0 · φ(b) = 0.

So a · b ∈ ker(φ).

Example 1 Suppose I � R is an ideal, and 1R ∈ I. Then for any r ∈ R,
the axioms entail 1R · r ∈ I. But 1R · r = r. So if 1R ∈ I, then I = R.

In other words, every proper ideal does not contain 1. In particular,
every proper ideal is not a subring, since a subring must contain 1.

We are starting to diverge from groups. In groups, a normal subgroup is
a subgroup, but here an ideal is not a subring.

Example 2 We can generalize the above a bit. Suppose I � R and u ∈ I
is a unit, i.e. there is some v ∈ R such that uv = 1R. Then by strong
closure, 1R = u · v ∈ I. So I = R.

Hence proper ideals are not allowed to contain any unit at all, not
just 1R.
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Example 3 Consider the ring of integers. Then every ideal of is of the
form

n = {· · · ,−2n,−n, 0, n, 2n, · · · } ⊆ .

It is easy to see this is indeed an ideal.
To show these are all the ideals, let I�. If I = {0}, then I = 0.

Otherwise, let n ∈ N be the smallest positive element of T . We want to
show in fact I = n. Certainly n ⊆ I by strong closure.

Now let m ∈ I. By the Euclidean algorithm, we can write

m = q · n + r

with 0 ≤ r < n. Now n,m ∈ I. So by strong closure, m, qn ∈ I. So
r = m − q · n ∈ I. As n is the smallest positive element of I, and r < n,
we must have r = 0. So m = q · n ∈ n. So I ⊆ n. So I = n.

The key to proving this was that we can perform the Euclidean algorithm
on . Thus, for any ring R in which we can “do Euclidean algorithm”,
every ideal is of the form aR = {a · r : r ∈ R} for some a ∈ R. We will
make this notion precise in later.

Definition 6 (Generator of ideal) For an element a ∈ R, we write

(a) = aR = {a · r : r ∈ R}� R.

This is the ideal generated by a.
In general, let a1, a2, · · · , ak ∈ R, we write

(a1, a2, · · · , ak) = {a1r1 + · · · + akrk : r1, · · · , rk ∈ R}.

This is the ideal generated by a1, · · · , ak.

We can also have ideals generated by infinitely many objects, but we
have to be careful, since we cannot have infinite sums.
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Definition 7 (Generator of ideal) For A ⊆ R a subset, the ideal gener-
ated by A is

(A) =

∑
a∈A

ra · a : ra ∈ R, only finitely-many non-zero

 .
These ideals are rather nice ideals, since they are easy to describe,

and often have some nice properties.

Definition 8 (Principal ideal) An ideal I is a principal ideal if I = (a)
for some a ∈ R.

So what we have just shown for is that all ideals are principal. Not all
rings are like this. These are special types of rings, which we will study
more in depth later.

Example 4 Consider the following subset:

{ f ∈ [X] : the constant coefficient of f is 0}.

This is an ideal, as we can check manually (alternatively, it is the kernel
of the “evaluate at 0” homomorphism). It turns out this is a principal
ideal. In fact, it is (X).

We have said ideals are like normal subgroups. The key idea is that
we can divide by ideals.

Definition 9 (Quotient ring) Let I � R. The quotient ring R/I consists
of the (additive) cosets r + I with the zero and one as 0R + I and 1R + I,
and operations

(r1 + I) + (r2 + I) = (r1 + r2) + I

(r1 + I) · (r2 + I) = r1r2 + I.

The quotient ring is a ring, and the function

R→ R/I

r 7→ r + I
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is a ring homomorphism. This is true, because we defined ideals to
be those things that can be quotiented by. So we just have to check we
made the right definition.

Just as we could have come up with the definition of a normal sub-
group by requiring operations on the cosets to be well-defined, we could
have come up with the definition of an ideal by requiring the multiplica-
tion of cosets is well-defined, and we will end up with the strong closure
property.

We know the group (R/I,+, 0R/I) is well-defined, since I is a (normal)
subgroup of R. So we only have to check multiplication is well-defined.

Suppose r1 + I = r′1 + I and r2 + I = R′2 + I. Then r′1 − r1 = a1 ∈ I and
r′2 − r2 = a2 ∈ I. So

r′1r′2 = (r1 + a1)(r2 + a2) = r1r2 + r1a2 + r2a1 + a1a1.

By the strong closure property, the last three objects are in I. So r′1r′2+I =

r1r2 + I.
It is easy to check that 0R + I and 1R + I are indeed the zero and one,

and the function given is clearly a homomorphism.

Example 5 We have the ideals n�. So we have the quotient ring /n. The
elements are of the form m + n, so are just

0 + n, 1 + n, 2 + n, · · · , (n − 1) + n.

Addition and multiplication is just what we are used to — it is addition
and multiplication modulo n.

Note that it is easier to come up with ideals than normal subgroups —
we can just pick up random elements, and then take the ideal generated
by them.

Example 6 Consider (X) � [X]. What is [X]/(X)? Elements are repre-
sented by

a0 + a1X + a2X2 + · · · + anXn + (X).
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But everything but the first term is in (X). So every such thing is equiva-
lent to a0+(X). It is not hard to convince yourself that this representation
is unique. So in fact [X]/(X) �, with the bijection a0 + (X)↔ a0.

If we want to prove things like this, we have to convince ourselves this
representation is unique. We can do that by hand here, but in general,
we want to be able to do this properly.

[Euclidean algorithm for polynomials] Let be a field and f , g ∈ [X].
Then there is some r, q ∈ [X] such that

f = gq + r,

with deg r < deg g. This is like the usual Euclidean algorithm, except
that instead of the absolute value, we use the degree to measure how
“big” the polynomial is.

Let deg( f ) = n. So

f =

n∑
i=0

aiXi,

and an , 0. Similarly, if deg g = m, then

g =

m∑
i=0

biXi,

with bm , 0. If n < m, we let q = 0 and r = f , and done.
Otherwise, suppose n ≥ m, and proceed by induction on n.
We let

f1 = f − anb−1
m Xn−mg.

This is possible since bm , 0, and is a field. Then by construction, the
coefficients of Xn cancel out. So deg( f1) < n.

If n = m, then deg( f1) < n = m. So we can write

f = (anb−1
m Xn−m)g + f1,

and deg( f1) < deg( f ). So done. Otherwise, if n > m, then as deg( f1) < n,
by induction, we can find r1, q1 such that

f1 = gq1 + r1,
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and deg(r1) < deg g = m. Then

f = anb−1
m Xn−mg + q1g + r1 = (anb−1

m Xn−m + q1)g + r1.

So done. Now that we have a Euclidean algorithm for polynomials. So
we should be able to show that every ideal of [X] is generated by one
polynomial. We will not prove it specifically here, but later show that
in general, in every ring where the Euclidean algorithm is possible, all
ideals are principal.

We now look at some applications of the Euclidean algorithm.

Example 7 Consider [X], and consider the principal ideal (X2+1)�[X].
We let R = [X]/(X2 + 1).

Elements of R are polynomials

a0 + a1X + a2X2 + · · · + anXn︸                                ︷︷                                ︸
f

+(X2 + 1).

By the Euclidean algorithm, we have

f = q(X2 + 1) + r,

with deg(r) < 2, i.e r = b0 + b1X. Thus f + (X2 + 1) = r + (X2 + 1).
So every element of [X]/(X2 + 1) is representable as a + bX for some
a, b ∈ R.

Is this representation unique? If a+bX+(X2 +1) = a′+b′X+(X2 +1),
then the difference (a − a′) + (b − b′)X ∈ (X2 + 1). So it is (X2 + 1)q for
some q. This is possible only if q = 0, since for non-zero q, we know
(X2 + 1)q has degree at least 2. So we must have (a− a′) + (b− b′)X = 0.
So a + bX = a′ + b′X. So the representation is unique.

What we’ve got is that every element in R is of the form a + bX, and
X2 + 1 = 0, i.e. X2 = −1. This sounds like the complex numbers, just that
we are calling it X instead of i.

To show this formally, we define the function

φ : [x]/(X2 + 1)→

a + bX + (X2 + 1) 7→ a + bi.
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This is well-defined and a bijection. It is also clearly additive. So to
prove this is an isomorphism, we have to show it is multiplicative. We
check this manually. We have

φ((a + bX + (X2 + 1))(c + dX + (X2 + 1)))

= φ(ac + (ad + bc)X + bdX2 + (X2 + 1))

= φ((ac − bd) + (ad + bc)X + (X2 + 1))

= (ac − bd) + (ad + bc)i

= (a + bi)(c + di)

= φ(a + bX + (X2 + 1))φ(c + dX + (X2 + 1)).

So this is indeed an isomorphism.
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Possible Questions
8 marks

1. Prove that the field of quotients F of an integral domain D is the
smallest field containing D

2. State and prove first theorem isomorphism of rings

3. Let f : Z → Zn be defined by f (x) = r if x = qn + r, 0 ≤ r < n .
Prove that f is a homomorphism

4. State and prove fundamental theorem of homomorphism of rings

5. State and prove two properties of homomorphism

6. Let f : R → R′ be a homomorphism. Prove that Ker f is an ideal
of R

7. If D and D′ are isomorphic integral domains then prove that their
field of quotients are also isomorphic

8. State and prove fundamental theorem of homomorphism

9. State and prove first theorem isomorphism of rings

10. If D and D′

are isomorphic integral domains then prove that their field of quo-
tients are also isomorphic

11. Let f : R → R′ be a homomorphism and K be the kernal of f .
Prove that K is an ideal of R

12. Prove that any integral domain D can be embedded in a field F and
every element of F can be expressed as a quotient of two elements
of D

13. State and prove isomorphism theorem I
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Question Option-1 Option-2 Option-3 Option-4 Answer

For any positive integer n, the set nZ={0,±n,±2n,…}is an ideal of ____ Z -2Z Zn -3Z Z

Let  R be a commutative ring  of characteristic 2. Then the mapping  f:a to a^2 is a 

ring
Homomorphism Isomorphism Endomorphism monomorphism Homomorphism

Let Φ be a ring homo morphism from R TO S.then ker Φ={rєR\Φ(r)=0} is 
An integral domain of 

R
An ideal of R field Not field An ideal of R

If G is a group of order____,where p is prime  then G is abilian P^3 P^5 P^2 P^4 P^2

A ___ with 2 binary operation Group Abelian group Ring B and c Ring

___ satisfies all the condition of ring {2,3} {0} N  w {0}

Let a,b,c belong to a ring R .then 

a0=0=

Let a  belong to a ring R .then

(-1)a=?

The ring of integer is _____ field Integral domain Zero divisor a or c Integral domain

Skew field has _____ Zero divisor No zero divisor
 Atleast One zero 

divisor
Many zero divisor No zero divisor

Zn is field   iff n is composite prime Even odd prime

Zn is____ iff n is prime field Integral domain ideal a and b   a and b

{Z} is finite but Z is not Integral domain  Field Not field Not integral domain Not fielfd

Any Boolean ring charectreistic is 2 4 6 0 2

Q is a subring of W Z 2Z R R

The _____ of two subring of a ring is a subring union intersection Symmetric difference A nad c intersection

2Z AND 3Z are _______ of Z subring Not a subring Either a or b Neither a nor b Not a subring

 If F is a_____ its only ideals are {0} and F FIELD Not field Integral domain Integral domain field

Principal ideal  is a and itsdenoted by (a) {a} [a] a (a)

R is a commutative ring with identity 1.then  aє (a) {a} [a] a (a)

___ is a maximal ideal of Z -2 -4 -6 -8 -2

___is a maximal ideal of Z -3 -6 -9 -12 (3

A Homomorphism that is both one one and onto is called _______________ 

homomorphism.  
Ring Polynomial Group Cyclic Ring 

For any positive integer n, the mapping K→K mod n is ___________ from ℤ to ℤₙ Ring Polynomial Group Cyclic Ring 

The mapping from ℤ to ℤₙ is called _____________ Ring Cyclic Natural polynomial Natural 

Every ideal of a ring is of a ring homomorphism of  ℝ Kernel Subring Homomorphism Maximal ideal Kernel 

If ℝ is a ring with unity and the characteristic of  ℝ is n>0, then ℝ contain a subring 

____________ to ℤₙ
isomorphic monomorphic homomorphic epimorphic Isomorphic 

A polynomial degree n over a field has almost n zeros ____________ multiplicity Counting Not defined finite infinite Counting 

Let F be a field aϵF and f(x)ϵf[x] then a is a Zero of f(x) iff (x,a) is a ___________ of f(x) Dividend Factor multiplier Quotient Factor

A principal ideal domain is an integral domain ℝ in which every ideal has the form 

___________ for some a in ℝ
<a>=*ra:rϵ ℝ] <a>=*ar:rϵ ℝ] <a>=*r/a:rϵ ℝ] <a>=*r/a:rϵ ℝ] <a>=*ra:rϵ ℝ]

Let F be a field I a non Zero ideal in f(x) and g(x) an element of f(x) then I=g(x) is a non 

Zero polynomial of __________ degree in I 
minimum maximum least Highest minimum

Let F be field aϵF and f(x) ϵf(x) then f(a) is the division of f(x) by (x-a) Quotient Remainder multiplier dividend remainder

Let D be an integral domain. Then there exits a fields F that contains a subring 

_____________ to D
isomorphic monomorphic Epimorphic homomorphic isomorphic

Let ℝ be a ring with unity 1. The mapping ℤ→ℝ given by n→n:1 is a ____________ 

homomorphism
Ring cyclic isomorphic ideal ring
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[First isomorphism theorem] Let φ : R → S be a ring homomor-
phism. Then ker(φ) � R, and

R
ker(φ)

� (φ) ≤ S .

We have already seen ker(φ) � R. Now define

Φ : R/ ker(φ)→ (φ)

r + ker(φ) 7→ φ(r).

This well-defined, since if r + ker(φ) = r′ + ker(φ), then r − r′ ∈ ker(φ).
So φ(r − r′) = 0. So φ(r) = φ(r′).

We don’t have to check this is bijective and additive, since that comes
for free from the (proof of the) isomorphism theorem of groups. So we
just have to check it is multiplicative. To show Φ is multiplicative, we
have

Φ((r + ker(φ))(t + ker(φ))) = Φ(rt + ker(φ))

= φ(rt)

= φ(r)φ(t)

= Φ(r + ker(φ))Φ(t + ker(φ)).

This is more-or-less the same proof as the one for groups, just that we
had a few more things to check.

Since there is the first isomorphism theorem, we, obviously, have
more coming.

[Second isomorphism theorem] Let R ≤ S and J �S . Then J∩R�R,
and

R + J
J

= {r + J : r ∈ R} ≤
S
J

is a subring, and
R

R ∩ J
�

R + J
J

.
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Define the function

φ : R→ S/J

r 7→ r + J.

Since this is the quotient map, it is a ring homomorphism. The kernel is

ker(φ) = {r ∈ R : r + J = 0, i.e. r ∈ J} = R ∩ J.

Then the image is

(φ) = {r + J : r ∈ R} =
R + J

J
.

Then by the first isomorphism theorem, we know R∩J�R, and R+J
J ≤ S ,

and
R

R ∩ J
�

R + J
J

.

Before we get to the third isomorphism theorem, recall we had the
subgroup correspondence for groups. Analogously, for I � R,

{subrings of R/I} ←→ {subrings of R which contain I}

L ≤
R
I
−→ {x ∈ R : x + I ∈ L}

S
I
≤

R
I
←− I � S ≤ R.

This is exactly the same formula as for groups.
For groups, we had a correspondence for normal subgroups. Here,

we have a correspondence between ideals

{ideals of R/I} ←→ {ideals of R which contain I}

It is important to note here quotienting in groups and rings have different
purposes. In groups, we take quotients so that we have a simpler group
to work with. In rings, we often take quotients to get more interesting
rings. For example, [X] is quite boring, but [X]/(X2 + 1) � is more
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interesting. Thus this ideal correspondence allows us to occasionally get
interesting ideals from boring ones.

[Third isomorphism theorem] Let I � R and J � R, and I ⊆ J. Then
J/I � R/I and (R

I

) / ( J
I

)
�

R
J
.

We define the map

φ : R/I → R/J

r + I 7→ r + J.

This is well-defined and surjective by the groups case. Also it is a ring
homomorphism since multiplication in R/I and R/J are “the same”. The
kernel is

ker(φ) = {r + I : r + J = 0, i.e. r ∈ J} =
J
I
.

So the result follows from the first isomorphism theorem.
Note that for any ring R, there is a unique ring homomorphism→ R,

given by

ι :→ R

n ≥ 0 7→ 1R + 1R + · · · + 1R︸                ︷︷                ︸
n times

n ≤ 0 7→ −(1R + 1R + · · · + 1R︸                ︷︷                ︸
−n times

)

Any homomorphism → R must be given by this formula, since it must
send the unit to the unit, and we can show this is indeed a homomor-
phism by distributivity. So the ring homomorphism is unique. In fancy
language, we say is the initial object in (the category of) rings.

We then know ker(ι)�. Thus ker(ι) = n for some n.

Definition 1 (Characteristic of ring) Let R be a ring, and ι :→ R be
the unique such map. The characteristic of R is the unique non-negative
n such that ker(ι) = n.
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Example 1 The rings , , , all have characteristic 0. The ring /n has char-
acteristic n. In particular, all natural numbers can be characteristics.

The notion of the characteristic will not be too useful in this course.
However, fields of non-zero characteristic often provide interesting ex-
amples and counterexamples to some later theory.

0.1 Integral domains, field of factions, maximal and prime
ideals

Many rings can be completely nothing like . For example, in , we know
that if a, b , 0, then ab , 0. However, in, say, /6, we get 2, 3 , 0, but
2 ·3 = 0. Also, has some nice properties such as every ideal is principal,
and every integer has an (essentially) unique factorization. We will now
classify rings according to which properties they have.

We start with the most fundamental property that the product of two
non-zero elements are non-zero. We will almost exclusively work with
rings that satisfy this property.

Definition 2 (Integral domain) A non-zero ring R is an integral domain
if for all a, b ∈ R, if a · b = 0R, then a = 0R or b = 0R.

An element that violates this property is known as a zero divisor.

Definition 3 (Zero divisor) An element x ∈ R is a zero divisor if x , 0
and there is a y , 0 such that xy = 0 ∈ R.

In other words, a ring is an integral domain if it has no zero divisors.

Example 2 All fields are integral domains, since if a · b = 0, and b , 0,
then a = a · (b · b−1) = 0. Similarly, if a , 0, then b = 0.

Example 3 A subring of an integral domain is an integral domain, since
a zero divisor in the small ring would also be a zero divisor in the big
ring.
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Example 4 Immediately, we know , , , are integral domains, since is a
field, and the others are subrings of it. Also, [i] ≤ is also an integral
domain.

These are the nice rings we like in number theory, since there we can
sensibly talk about things like factorization.

It turns out there are no interesting finite integral domains. Let R be
a finite ring which is an integral domain. Then R is a field.

Let a ∈ R be non-zero, and consider the ring homomorphism

a · − : R→ R

b 7→ a · b

We want to show this is injective. For this, it suffices to show the kernel
is trivial. If r ∈ ker(a · −), then a · r = 0. So r = 0 since R is an integral
domain. So the kernel is trivial.

Since R is finite, a · − must also be surjective. In particular, there is
an element b ∈ R such that a · b = 1R. So a has an inverse. Since a was
arbitrary, R is a field.

So far, we know fields are integral domains, and subsets of integral
domains are integral domains. We have another good source of integral
domain as follows: Let R be an integral domain. Then R[X] is also an
integral domain.

We need to show the product of two non-zero elements are non-zero.
Let f , g ∈ R[X] be non-zero, say

f = a0 + a1X + · · · + anXn ∈ R[X]

g = b0 + b1X + · · · + bmXm ∈ R[X],

with an, bm , 0. Then the coefficient of Xn+m in f g is anbm. This is
non-zero since R is an integral domain. So f g is non-zero. So R[X] is an
integral domain. So, for instance, [X] is an integral domain.

We can also iterate this.
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Write R[X,Y] for (R[X])[Y], the polynomial ring of R in two vari-
ables. In general, write R[X1, · · · , Xn] = (· · · ((R[X1])[X2]) · · · )[Xn].

Then if R is an integral domain, so is R[X1, · · · , Xn].
We now mimic the familiar construction of from . For any integral

domain R, we want to construct a field F that consists of “fractions” of
elements in R. Recall that the subring of any field is an integral domain.
This says the converse — every integral domain is the subring of some
field.

Definition 4 (Field of fractions) Let R be an integral domain. A field
of fractions F of R is a field with the following properties

1. R ≤ F

2. Every element of F may be written as a · b−1 for a, b ∈ R, where b−1

means the multiplicative inverse to b , 0 in F.

For example, is the field of fractions of .
Every integral domain has a field of fractions.
The construction is exactly how we construct the rationals from the

integers — as equivalence classes of pairs of integers. We let

S = {(a, b) ∈ R × R : b , 0}.

We think of (a, b) ∈ S as a
b . We define the equivalence relation ∼ on S

by
(a, b) ∼ (c, d)⇔ ad = bc.

We need to show this is indeed a equivalence relation. Symmetry and
reflexivity are obvious. To show transitivity, suppose

(a, b) ∼ (c, d), (c, d) ∼ (e, f ),

i.e.
ad = bc, c f = de.

Prepared by Dr. K. Kalidass, Department of Mathematics, KAHE Page 7/15



Unit III Ring isomorphisms 2016 Batch

We multiply the first equation by f and the second by b, to obtain

ad f = bc f , bc f = bed.

Rearranging, we get
d(a f − be) = 0.

Since d is in the denominator, d , 0. Since R is an integral domain, we
must have a f − be = 0, i.e. a f = be. So (a, b) ∼ (e, f ). This is where
being an integral domain is important.

Now let
F = S/∼

be the set of equivalence classes. We now want to check this is indeed
the field of fractions. We first want to show it is a field. We write a

b =

[(a, b)] ∈ F, and define the operations by

a
b

+
c
d

=
ad + bc

bd
a
b
·

c
d

=
ac
bd
.

This is well-defined, and makes (F,+, ·, 0
1 ,

1
1 ) into a ring. There are many

things to check, but those are straightforward, and we will not waste time
doing that here.

Finally, we need to show every non-zero element has an inverse. Let
a
b , 0F , i.e. a

b ,
0
1 , or a · 1 , b · 0 ∈ R, i.e. a , 0. Then b

a ∈ F is defined,
and

b
a
·

a
b

=
ba
ba

= 1.

So a
b has a multiplicative inverse. So F is a field.
We now need to construct a subring of F that is isomorphic to R. To

do so, we need to define an injective isomorphism φ : R → F. This is
given by

φ : R→ F

r 7→
r
1
.
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This is a ring homomorphism, as one can check easily. The kernel is the
set of all r ∈ R such that r

1 = 0, i.e. r = 0. So the kernel is trivial, and φ
is injective. Then by the first isomorphism theorem, R � (φ) ⊆ F.

Finally, we need to show everything is a quotient of two things in R.
We have

a
b

=
a
1
·

1
b

=
a
1
·

(
b
1

)−1

,

as required. This gives us a very useful tool. Since this gives us a field
from an integral domain, this allows us to use field techniques to study
integral domains. Moreover, we can use this to construct new interesting
fields from integral domains.

Example 5 Consider the integral domain [X]. Its field of fractions is the
field of all rational functions p(X)

q(X) , where p, q ∈ [X].

To some people, it is a shame to think of rings as having elements. In-
stead, we should think of a ring as a god-like object, and the only things
we should ever mention are its ideals. We should also not think of the
ideals as containing elements, but just some abstract objects, and all we
know is how ideals relate to one another, e.g. if one contains the other.

Under this philosophy, we can think of a field as follows: A (non-
zero) ring R is a field if and only if its only ideals are {0} and R. Note
that we don’t need elements to define the ideals {0} and R. {0} can be
defined as the ideal that all other ideals contain, and R is the ideal that
contains all other ideals. Alternatively, we can reword this as “R is a field
if and only if it has only two ideals” to avoid mentioning explicit ideals.

(⇒) Let I � R and R be a field. Suppose x , 0 ∈ I. Then as x is a
unit, I = R.

(⇐) Suppose x , 0 ∈ R. Then (x) is an ideal of I. It is not {0} since it
contains x. So (x) = R. In other words 1R ∈ (x). But (x) is defined to be
{x · y : y ∈ R}. So there is some u ∈ R such that x · u = 1R. So x is a unit.
Since x was arbitrary, so R is a field. This is another reason why fields
are special. They have the simplest possible ideal structure.

This motivates the following definition:
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Definition 5 (Maximal ideal) An ideal I of a ring R is maximal if I , R
and for any ideal J with I ≤ J ≤ R, either J = I or J = R.

The relation with what we’ve done above is quite simple. There is an
easy way to recognize if an ideal is maximal.

An ideal I � R is maximal if and only if R/I is a field.
R/I is a field if and only if {0} and R/I are the only ideals of R/I. By

the ideal correspondence, this is equivalent to saying I and R are the only
ideals of R which contains I, i.e. I is maximal. So done. This is a nice
result. This makes a correspondence between properties of ideals I and
properties of the quotient R/I. Here is another one:

Definition 6 (Prime ideal) An ideal I of a ring R is prime if I , R and
whenever a, b ∈ R are such that if a · b ∈ I, then a ∈ I or b ∈ I.

This is like the opposite of the property of being an ideal — being an
ideal means if we have something in the ideal and something outside, the
product is always in the ideal. This does the backwards. If the product
of two random things is in the ideal, then one of them must be from the
ideal.

Example 6 A non-zero ideal n� is prime if and only if n is a prime.
To show this, first suppose n = p is a prime, and a · b ∈ p. So p | a · b.

So p | a or p | b, i.e. a ∈ p or b ∈ p.
For the other direction, suppose n = pq is a composite number (p, q ,

1). Then n ∈ n but p < n and q < n, since 0 < p, q < n.

So instead of talking about prime numbers, we can talk about prime
ideals instead, because ideals are better than elements.

We prove a result similar to the above: An ideal I �R is prime if and
only if R/I is an integral domain.

Let I be prime. Let a+ I, b+ I ∈ R/I, and suppose (a+ I)(b+ I) = 0R/I .
By definition, (a + I)(b + I) = ab + I. So we must have ab ∈ I. As I is
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prime, either a ∈ I or b ∈ I. So a + I = 0R/I or b + I = 0R/I . So R/I is an
integral domain.

Conversely, suppose R/I is an integral domain. Let a, b ∈ R be such
that ab ∈ I. Then (a + I)(b + I) = ab + I = 0R/I ∈ R/I. Since R/I is an
integral domain, either a + I = 0R/I or b + I = 0R/i, i.e. a ∈ I or b ∈ I. So
I is a prime ideal.

Prime ideals and maximal ideals are the main types of ideals we care
about. Note that every field is an integral domain. So we immediately
have the following result: Every maximal ideal is a prime ideal.

I � R is maximal implies R/I is a field implies R/I is an integral
domain implies I is prime. The converse is not true. For example, {0} ⊆
is prime but not maximal. Less stupidly, (X) ∈ [X,Y] is prime but not
maximal (since [X,Y]/(X) � [Y]). We can provide a more explicit proof
of this, which is essentially the same.

[Alternative proof] Let I be a maximal ideal, and suppose a, b < I but
ab ∈ I. Then by maximality, I + (a) = I + (b) = R = (1). So we can find
some p, q ∈ R and n,m ∈ I such that n + ap = m + bq = 1. Then

1 = (n + ap)(m + bq) = nm + apm + bqn + abpq ∈ I,

since n,m, ab ∈ I. This is a contradiction.
Let R be an integral domain. Then its characteristic is either 0 or a

prime number.
Consider the unique map φ :→ R, and ker(φ) = n. Then n is the

characteristic of R by definition.
By the first isomorphism theorem, /n = (φ) ≤ R. So /n is an integral

domain. So n� is a prime. So n = 0 or a prime number.

0.2 Factorization in integral domains

We now move on to tackle the problem of factorization in rings. For
sanity, we suppose throughout the section that R is an integral domain.
We start by making loads of definitions.
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Definition 7 (Unit) An element a ∈ R is a unit if there is an b ∈ R such
that ab = 1R. Equivalently, if the ideal (a) = R.

Definition 8 (Division) For elements a, b ∈ R, we say a divides b, writ-
ten a | b, if there is a c ∈ R such that b = ac. Equivalently, if (b) ⊆ (a).

Definition 9 (Associates) We say a, b ∈ R are associates if a = bc for
some unit c. Equivalently, if (a) = (b). Equivalently, if a | b and b | a.

In integers, this can only happen if a and b differ by a sign, but in more
interesting rings, more interesting things can happen.

When considering division in rings, we often consider two associates
to be “the same”. For example, in , we can factorize 6 as

6 = 2 · 3 = (−2) · (−3),

but this does not violate unique factorization, since 2 and −2 are asso-
ciates (and so are 3 and −3), and we consider these two factorizations to
be “the same”.

Definition 10 (Irreducible) We say a ∈ R is irreducible if a , 0, a is not
a unit, and if a = xy, then x or y is a unit.

For integers, being irreducible is the same as being a prime number.
However, “prime” means something different in general rings.

Definition 11 (Prime) We say a ∈ R is prime if a is non-zero, not a unit,
and whenever a | xy, either a | x or a | y.

It is important to note all these properties depend on the ring, not the
element itself.

Example 7 2 ∈ is a prime, but 2 ∈ is not (since it is a unit).
Similarly, the polynomial 2X ∈ [X] is irreducible (since 2 is a unit),

but 2X ∈ [X] not irreducible.
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We have two things called prime, so they had better be related. A
principal ideal (r) is a prime ideal in R if and only if r = 0 or r is prime.

(⇒) Let (r) be a prime ideal. If r = 0, then done. Otherwise, as prime
ideals are proper, i.e. not the whole ring, r is not a unit. Now suppose
r | a · b. Then a · b ∈ (r). But (r) is prime. So a ∈ (r) or b ∈ (r). So r | a
or r | b. So r is prime.

(⇐) If r = 0, then (0) = {0}� R, which is prime since R is an integral
domain. Otherwise, let r , 0 be prime. Suppose a · b ∈ (r). This means
r | a · b. So r | a or r | b. So a ∈ (r) and b ∈ (r). So (r) is prime.

Note that in , prime numbers exactly the irreducibles, but prime num-
bers are also prime (surprise!). In general, it is not true that irreducibles
are the same as primes. However, one direction is always true.

Let r ∈ R be prime. Then it is irreducible.
Let r ∈ R be prime, and suppose r = ab. Since r | r = ab, and r is

prime, we must have r | a or r | b. wlog, r | a. So a = rc for some
c ∈ R. So r = ab = rcb. Since we are in an integral domain, we must
have 1 = cb. So b is a unit.

We now do a long interesting example.

Example 8 Let

R = [
√
−5] = {a + b

√
−5 : a, b ∈} ≤ .

By definition, it is a subring of a field. So it is an integral domain. What
are the units of the ring? There is a nice trick we can use, when things
are lying inside . Consider the function

N : R→≥0

given by
N(a + b

√
−5) 7→ a2 + 5b2.

It is convenient to think of this as z 7→ zz̄ = |z|2. This satisfies N(z ·
w) = N(z)N(w). This is a desirable thing to have for a ring, since it
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immediately implies all units have norm 1 — if r · s = 1, then 1 = N(1) =

N(rs) = N(r)N(s). So N(r) = N(s) = 1.
So to find the units, we need to solve a2 + 5b2 = 1, for a and b units.

The only solutions are ±1. So only ±1 ∈ R can be units, and these
obviously are units. So these are all the units.

Next, we claim 2 ∈ R is irreducible. We again use the norm. Suppose
2 = ab. Then 4 = N(2) = N(a)N(b). Now note that nothing has norm
2. a2 + 5b2 can never be 2 for integers a, b ∈. So we must have, wlog,
N(a) = 4,N(b) = 1. So b must be a unit. Similarly, we see that 3, 1 +
√
−5, 1−

√
−5 are irreducible (since there is also no element of norm 3).

We have four irreducible elements in this ring. Are they prime? No!
Note that

(1 +
√
−5)(1 −

√
−5) = 6 = 2 · 3.

We now claim 2 does not divide 1 +
√
−5 or 1−

√
−5. So 2 is not prime.

To show this, suppose 2 | 1 +
√
−5. Then N(2) | N(1 +

√
−5). But

N(2) = 4 and N(1 +
√
−5) = 6, and 4 - 6. Similarly, N(1−

√
−5) = 6 as

well. So 2 - 1 ±
√
−5.

There are several life lessons here. First is that primes and irreducibles
are not the same thing in general. We’ve always thought they were the
same because we’ve been living in the fantasy land of the integers. But
we need to grow up.

The second one is that factorization into irreducibles is not necessar-
ily unique, since 2 · 3 = (1 +

√
−5)(1 −

√
−5) are two factorizations into

irreducibles.
However, there is one situation when unique factorizations holds.

This is when we have a Euclidean algorithm available.
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Possible Questions
8 marks

1. Prove that the union of two subspaces of a vector space is a sub-
space iff one is contained in the other

2. Let V be a finite dimensional vector space over a field F. Let A be
a subspace of V . Prove that there exists a subspace B of V such that
V = A ⊕ B

3. Let H be a nonempty subset of a vector space V . Then prove that
H is a subspace of V if and only if H is closed under addition and
scalar multiplication

4. Prove that vectors v1, v2, · · · , vk, k ≥ 2 are linearly dependent if and
only if one of the vectors is a linear combination of the others

5. State and prove basis theorem.

6. Prove that R × R is a vector space over R

7. Let W be a nonemepty subset of a vector space V . State and prove
the necessary and sufficient condition for W to be a subspace of V

8. Let S = {(6, 2, 1), (−1, 3, 2)}. Determine, if S is linearly indepen-
dent or dependent?

9. Let S = {v1, · · · , vn} be a basis for V . Then prove that every subset
of V contains more than n elements is linearly dependent

10. Let S = {(1, 0, 0), (0, 4, 0), (0, 0,−6), (1, 5,−3)}. Determine, if S is
linearly independent or dependent?

11. Determine, whether S = {(0, 0, 0), (1, 5, 6), (6, 2, 1)} is a basis of R3

or not

12. Determine, whether {(1, 1, 1), (1,−1, 1), (1, 1,−1)} is a basis of R3

or not
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Question Option-1 Option-2 Option-3 Option-4 Answer

For any positive integer n, the set nZ={0,±n,±2n,…}is an ideal of ____ Z -2Z Zn -3Z Z

Let  R be a commutative ring  of characteristic 2. Then the mapping  f:a to a^2 is a 

ring
Homomorphism Isomorphism Endomorphism monomorphism Homomorphism

Let Φ be a ring homo morphism from R TO S.then ker Φ={rєR\Φ(r)=0} is 
An integral domain of 

R
An ideal of R field Not field An ideal of R

If G is a group of order____,where p is prime  then G is abilian P^3 P^5 P^2 P^4 P^2

A ___ with 2 binary operation Group Abelian group Ring B and c Ring

___ satisfies all the condition of ring {2,3} {0} N  w {0}

Let a,b,c belong to a ring R .then 

a0=0=

Let a  belong to a ring R .then

(-1)a=?

The ring of integer is _____ field Integral domain Zero divisor a or c Integral domain

Skew field has _____ Zero divisor No zero divisor
 Atleast One zero 

divisor
Many zero divisor No zero divisor

Zn is field   iff n is composite prime Even odd prime

Zn is____ iff n is prime field Integral domain ideal a and b   a and b

{Z} is finite but Z is not Integral domain  Field Not field Not integral domain Not fielfd

Any Boolean ring charectreistic is 2 4 6 0 2

Q is a subring of W Z 2Z R R

The _____ of two subring of a ring is a subring union intersection Symmetric difference A nad c intersection

2Z AND 3Z are _______ of Z subring Not a subring Either a or b Neither a nor b Not a subring

 If F is a_____ its only ideals are {0} and F FIELD Not field Integral domain Integral domain field

Principal ideal  is a and itsdenoted by (a) {a} [a] a (a)

R is a commutative ring with identity 1.then  aє (a) {a} [a] a (a)

___ is a maximal ideal of Z -2 -4 -6 -8 -2

___is a maximal ideal of Z -3 -6 -9 -12 (3

A Homomorphism that is both one one and onto is called _______________ 

homomorphism.  
Ring Polynomial Group Cyclic Ring 

For any positive integer n, the mapping K→K mod n is ___________ from ℤ to ℤₙ Ring Polynomial Group Cyclic Ring 

The mapping from ℤ to ℤₙ is called _____________ Ring Cyclic Natural polynomial Natural 

Every ideal of a ring is of a ring homomorphism of  ℝ Kernel Subring Homomorphism Maximal ideal Kernel 

If ℝ is a ring with unity and the characteristic of  ℝ is n>0, then ℝ contain a subring 

____________ to ℤₙ
isomorphic monomorphic homomorphic epimorphic Isomorphic 

A polynomial degree n over a field has almost n zeros ____________ multiplicity Counting Not defined finite infinite Counting 

Let F be a field aϵF and f(x)ϵf[x] then a is a Zero of f(x) iff (x,a) is a ___________ of f(x) Dividend Factor multiplier Quotient Factor

A principal ideal domain is an integral domain ℝ in which every ideal has the form 

___________ for some a in ℝ
<a>=*ra:rϵ ℝ] <a>=*ar:rϵ ℝ] <a>=*r/a:rϵ ℝ] <a>=*r/a:rϵ ℝ] <a>=*ra:rϵ ℝ]

Let F be a field I a non Zero ideal in f(x) and g(x) an element of f(x) then I=g(x) is a non 

Zero polynomial of __________ degree in I 
minimum maximum least Highest minimum

Let F be field aϵF and f(x) ϵf(x) then f(a) is the division of f(x) by (x-a) Quotient Remainder multiplier dividend remainder

Let D be an integral domain. Then there exits a fields F that contains a subring 

_____________ to D
isomorphic monomorphic Epimorphic homomorphic isomorphic

Let ℝ be a ring with unity 1. The mapping ℤ→ℝ given by n→n:1 is a ____________ 

homomorphism
Ring cyclic isomorphic ideal ring

 Φ is a ring homo morphism . a,bєΦ. Φ(a)+Φ(-b) Φ(-a)+Φ(-b) Φ(a)+Φ(b) Φ(a)-Φ(b) Φ(a)+Φ(b)

1a 2a 3a 0a oa

-a

Let F be a field, aϵF and f(x)ϵf[x] then f(a) is the remainder in the division of f(x) by 

______________
a-x x-a a- -a x-a

-1 0 -a a
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1 Definition of Vector Space

We shall study structures with two operations, an addition and a scalar

multiplication, that are subject to some simple conditions. We will re-

flect more on the conditions later but on first reading notice how rea-

sonable they are. For instance, surely any operation that can be called

an addition (e.g., column vector addition, row vector addition, or real

number addition) will satisfy conditions (1) through (5) below.

1.1 Definition and Examples

A vector space (over <) consists of a set V along with two operations

‘+’ and ‘·’ subject to the conditions that for all vectors ~v, ~w, ~u ∈ V and

all scalars r, s ∈ <:

the set V is closed under vector addition, that is, ~v + ~w ∈ V

vector addition is commutative, ~v + ~w = ~w + ~v

vector addition is associative, (~v + ~w) + ~u = ~v + (~w + ~u)

there is a zero vector ∈ V such that ~v+ = ~v for all ~v ∈ V

each ~v ∈ V has an additive inverse ~w ∈ V such that ~w + ~v =

the set V is closed under scalar multiplication, that is, r · ~v ∈ V

addition of scalars distributes over scalar multiplication, (r + s) · ~v =

r · ~v + s · ~v

scalar multiplication distributes over vector addition, r·(~v+~w) = r·~v+r·~w
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ordinary multiplication of scalars associates with scalar multiplication,

(rs) · ~v = r · (s · ~v)

multiplication by the scalar 1 is the identity operation, 1 · ~v = ~v.The definition involves two kinds of addition and two kinds of mul-

tiplication, and so may at first seem confused. For instance, in condi-

tion (7) the ‘+’ on the left is addition of two real numbers while the ‘+’

on the right is addition of two vectors in V . These expressions aren’t

ambiguous because of context; for example, r and s are real numbers so

‘r + s’ can only mean real number addition. In the same way, item (9)’s

left side ‘rs’ is ordinary real number multiplication, while its right side

‘s · ~v’ is the scalar multiplication defined for this vector space.

The best way to understand the definition is to go through the ex-

amples below and for each, check all ten conditions. The first example

includes that check, written out at length. Use it as a model for the oth-

ers. Especially important are the closure conditions, (1) and (6). They

specify that the addition and scalar multiplication operations are always

sensiblethey are defined for every pair of vectors and every scalar and

vector, and the result of the operation is a member of the set.

This subset of<2 is a line through the origin.

L = xyy = 3x

We shall verify that it is a a vector space, under the usual meaning of ‘+’

and ‘·’.

x1y1 + x2y2 = x1 + x2y1 + y2 r · xy = rxry

These operations are just the ones of<2, reused on its subset L. We say

that L inherits these operations from<3.
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We shall check all ten conditions. The paragraph having to do with

addition has five conditions. For condition (1), closure under addition,

suppose that we start with two vectors from the line L,

~v1 = x1y1 ~v2 = x2y2

so that they satisfy the restrictions that y1 = 3x1 and y2 = 3x2. Their sum

~v1 + ~v2 = x1 + x2y1 + y2

is also a member of the line L because the fact that its second component

is three times its first y1 + y2 = 3(x1 + x2) follows from the restrictions

on ~v1 and ~v2. For (2), that addition of vectors commutes, just compare

~v1 + ~v2 = x1 + x2y1 + y2 ~v2 + ~v1 = x2 + x1y2 + y1

and note that they are equal since their entries are real numbers and real

numbers commute. (That the vectors satisfy the restriction of lying in

the line is not relevant for this condition; they commute just because all

vectors in the plane commute.) Condition (3), associativity of vector

addition, is similar.

(x1

y1 + x2

y2) + x3

y3 = (x1 + x2) + x3

(y1 + y2) + y3
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The checks for the five conditions having to do with scalar multipli-

cation are similar. For (6), closure under scalar multiplication, suppose

that r ∈ and ~v ∈ L

~v = xy

so that it satisfies the restriction y = 3x. Then

r · ~v = r · xy = rxry

is also a member of L: the fact that its second component is three times

its first ry = 3(rx) follows from the restriction on~v. Next, this checks (7).

(r + s) · xy = (r + s)x(r + s)y = rx + sxry + sy = r · xy + s · xy

For (8) we have this.

r·(x1y1+x2y2) = r(x1 + x2)r(y1 + y2) = rx1 + rx2ry1 + ry2 = r·x1y1+r·x2y2

The ninth

(rs) · xy = (rs)x(rs)y = r(sx)r(sy) = r · (s · xy)

and tenth conditions are also straightforward.

1 · xy = 1x1y = xy

The whole plane, the set <2, is a vector space if the operations ‘+’

and ‘·’ have their usual meaning.

x1y1 + x2y2 = x1 + x2y1 + y2 r · xy = rxry

Prepared by Dr. K. Kalidass, Department of Mathematics, KAHE Page 5/10



Unit IV Vector spaces 2016 Batch

We shall check just two of the conditions, the closure conditions.

For (1) observe that the result of the vector sum

x1y1 + x2y2 = x1 + x2y1 + y2

is a column array with two real entries, and so is a member of the

plane <2. In contrast with the prior example, here there is no restric-

tion on the vectors that we must check.

Condition (6) is similar. The vector

r · xy = rxry

has two real entries, and so is a member of<2.

In a similar way, each<n is a vector space with the usual operations

of vector addition and scalar multiplication. (In <1, we usually do not

write the members as column vectors, i.e., we usually do not write ‘(π)’.

Instead we just write ‘π’.)

PlaneThruOriginSubsp gives a subset of<2 that is a vector space. For

contrast, consider the set of two-tall columns with entries that are inte-

gers, under the same operations of component-wise addition and scalar

multiplication. This is a subset of <2 but it is not a vector space: it is

not closed under scalar multiplication, that is, it does not satisfy condi-

tion (6). For instance, on the left below is a vector with integer entries,

and a scalar.

0.5 · [r]43 = [r]21.5

On the right is a column vector that is not a member of the set, since its

entries are not all integers.
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The one-element set

[r]0000

is a vector space under the operations

[r]0000 + [r]0000 = [r]0000 r · [r]0000 = [r]0000

that it inherits from<4.

A vector space must have at least one element, its zero vector. Thus

a one-element vector space is the smallest possible.

A one-element vector space is a trivial space.

The examples so far involve sets of column vectors with the usual

operations. But vector spaces need not be collections of column vectors,

or even of row vectors. Below are some other types of vector spaces. The

term ‘vector space’ does not mean ‘collection of columns of reals’. It

means something more like ‘collection in which any linear combination

is sensible’.

Consider 3 = a0 + a1x + a2x2 + a3x3a0, . . . , a3 ∈ <, the set of poly-

nomials of degree three or less (in this book, we’ll take constant polyno-

mials, including the zero polynomial, to be of degree zero). It is a vector

space under the operations

(a0 + a1x + a2x2 + a3x3) + (b0 + b1x + b2x2 + b3x3)

= (a0 + b0) + (a1 + b1)x + (a2 + b2)x2 + (a3 + b3)x3

and

r · (a0 + a1x + a2x2 + a3x3) = (ra0) + (ra1)x + (ra2)x2 + (ra3)x3
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(the verification is easy). This vector space is worthy of attention be-

cause these are the polynomial operations familiar from high school al-

gebra. For instance, 3 · (1− 2x+ 3x2 − 4x3)− 2 · (2− 3x+ x2 − (1/2)x3) =

−1 + 7x2 − 11x3.

Although this space is not a subset of any <n, there is a sense in

which we can think of 3 as “the same” as <4. If we identify these two

space’s elements in this way

a0 + a1x + a2x2 + a3x3 corresponds to a0a1a2a3

then the operations also correspond. Here is an example of correspond-

ing additions.

1 − 2x + 0x2 + 1x3

+ 2 + 3x + 7x2 − 4x3

3 + 1x + 7x2 − 3x3
corresponds to [r]1 − 201+[r]237 − 4 = [r]317 − 3

Things we are thinking of as “the same” add to “the same” sum. Chapter

Three makes precise this idea of vector space correspondence. For now

we shall just leave it as an intuition.

In general we write n for the vector space of polynomials of degree n

or less a0 + a1x + a2x2 + · · · + anxna0, . . . , an ∈ <, under the operations

of the usual polynomial addition and scalar multiplication. We will often

use these spaces as examples.

The set 22 of 22 matrices with real number entries is a vector space

under the natural entry-by-entry operations.

abcd + wxyz = a + wb + xc + yd + z r · abcd = rarbrcrd

As in the prior example, we can think of this space as “the same” as<4.
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We write nm for the vector space of nm matrices under the natural op-

erations of matrix addition and scalar multiplication. As with the poly-

nomial spaces, we will often use these as examples.

The set f f< of all real-valued functions of one natural number vari-

able is a vector space under the operations

( f1 + f2) (n) = f1(n) + f2(n) (r · f ) (n) = r f (n)

so that if, for example, f1(n) = n2 + 2 sin(n) and f2(n) = − sin(n) + 0.5

then ( f1 + 2 f2) (n) = n2 + 1.

We can view this space as a generalization of ex:RealVecSpacesinstead

of 2-tall vectors, these functions are like infinitely-tall vectors.

n f (n) = n2 + 1
0 1
1 2
2 5
3 10
...

...

corresponds to [r]1251010

Addition and scalar multiplication are component-wise, as in ex:RealVecSpaces.

(We can formalize “infinitely-tall” by saying that it means an infinite se-

quence, or that it means a function from to<.)
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Possible Questions

8 marks

1. State and prove fundamental theorem of homomorphism of linear

transformations

2. State and prove rank theorem

3. Let V be a vector space over F. Let A and B be subspaces of V .

Prove that A+B
A u

B
A∩B

4. Let V and W be two vector spaces. Suppose T : V → W is a linear

transformation. Then prove the following

(a) T (0) = 0

(b) T (−v) = −T (v) for all v ∈ V

5. If V is a vector space with a finite spanning set, then prove that

every basis for V contains the same number of vectors.

6. State and prove fundamental theorem of homomorphism on vector

spaces

7. Let T : R3 → R3 be defned by T (a1, a2, a3) = (3a1+a2, a1+a3, a1−

a3). Find the matrix representation of T w.r.t the standard basis for

both domain and range

8. Let T : R2 → R2 be defned by T (x, y) = (x − y, x + y). Find the

matrix representation of T w.r.t the standard basis for domain and

{(1, 1), (1. − 1)} for range
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Question Option-1 Option-2 Option-3 Option-4 Answer

Let ℝ and ℝ’ be ring. A function F:R→R’ is called ___________ homomorphism Bisections monomorphic onto
homomorp

hism

If F is one-one, then F is called ___________________ homomorphism Bisections monomorphic onto
monomorp

hic

If F is onto then F is called _____________________ endomorphism epimorphism monomorphic One-one 
epimorphis

m

A homomorphism of ring onto itself is called an ____________ endomorphism epimorphism One-one onto
endomorph

ism
If F: R→R’ defined by f(a)=0 all aϵR is obviously a homomorphism and f is 

called___________ homomorphism 
mono Trivial Non trivial Identity Trivial 

Let R be any ring, the identity function f: R→R is _______________ Homomorphism Principal ideal ring Maximal ideal  constant
Homomorp

hism

Let R and R’ be ring and f:R→R’ be a Homomorphism then f(0)=________________ 0 F’(0) F”(0) 0’ 0’

Let R and R’ be ring and f: R→R’ be a  Homomorphism then f(-a)=_____________________ f(a) - f(a) 0 1 - f(a)

If is a commutative ring then f(R) is ______________ring Associative Principal ideal Commutative maximal
commutati

ve

Two elements (a,b) and (c,d) ϵS are said to be equivalent iff _____________ ab=dc ad=bc ac=bd ab=ba ad=bc

The equivalence class containing (a,b) is denoted by ______________

The map F:D→R given by f(a) 

 is an isomorphism of D _______f(D)

The field of quantity F of an integral domain D is the ____________ field containing D Smallest Largest Finite Infinite Smallest 

A ring is a set R equipped with ___________ operations Under addition Under multiplication   Two binary Either A or B Two binary 

The additive identity, the additive inverse of each element, and the multiplication are 

_____________  
complex Unique Real All the above Real

If 0=1 in a ring R, then R has only one element, and the ___________ Ideal Field Unity Zero ring Zero ring 

The study of ring originated from the theory of _____________ 
polynomial rings and 

algebraic integers

Complex numbers and 

real function

Polynomial rings and 

complex number  

Polynomial ring and real 

function

polynomial 

rings and 

algebraic 

integers

The term “Zahlring” is__________ ideal Field Number ring Zero ring
Number 

ring

Ring could mean ______________ Association Mapping analysing All the above Association

The Zero ring has number of elements ______ Only one Two or more Infinite All the above Only one

R is the set of even integers under the usual operations of addition and multiplication. R is a 

_____________
Commutative rings Unit element

Commutative rings but 

has no unit element.

Commutative ring with 

unit element.

Commutati

ve rings but 

has no unit 

element.

If R is a commutative ring, then a≠0 ϵ R is said to be a zero-divisor if there exists a,bϵR, b≠0, 

such that _______
ab=0. a/b≠0 a=0 b=0 ab=0

If R is a commutative ring, then a≠0 ϵ R is said to be a ___________if there exists a, bϵR, b≠0, 

such that ab=0.
ideal zero-divisor Integral domain  Field 

zero-

divisor

rng-_________ Ring without i Ring with i Ideal field
Ring 

without i

Set of even integers with usual + and – is a ________ Ring Not an ring Ideal Not an ideal Not an ring 

Ring that satisfy commutative for multiplication are called ______________ ideal Field Integral domain Commutative ring
Commutati

ve ring

In ring, multiplication does not have to have an inverse. A commutative ring such that every 

non zero elements has multiplicative inverse is called __________________
ideal Field Integral domain Commutative ring Field 

Ring that satisfy commutative for _______________ are called  field Addition Multiplication Both binary operation None of these 
Multiplicati

on 

In ring, multiplication does not have to have an inverse. A commutative ring such that every 

non zero elements has ______________ inverse is called Field.
Addition Multiplication Both binary operation None of these 

Multiplicati

on 

The ___________ holds for any commuting pair of elements. Binomial formula Binomial function Linear function Linear formula
Binomial 

formula

The rational, real, and complex numbers are commutative ring of a types called __________ ideal Field Integral domain Commutative ring Field 

The set of natural numbers ℕ with the usual operation is ___________ Ring Not a ring Group Cyclic group Not a ring 

___________ in a ring is analogous to that of Normal subgroup in a group. Ideal Field Integral domain Commutative ring Ideal 

A nonempty subset I of R is said to be left ideal in R if, for any x,y in I and r in 

R,____________
x+y and xy are in R x+y and xy are in I

x+y and xy are in both I 

and R
None of these 

x+y and xy 

are in I

Let R be ring. I is said to left ideal is RI subset I IR subset of I Both a and b None of these RI subset I

If x is in R, then Rx and xR are left and right ideals respectively;

They are called _____________ 

A ring is said to be ___________if it is non zero and it has no proper non-zero two sided 

ideals
Group Real Complex Simple Simple

A proper ideal P of R is called a______________ Prime ideal Proper ring Proper set All the above Prime ideal

Principal 

ideal 
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The set of polynomials with real coefficients

a0 + a1x + · · · + anxnn ∈ and a0, . . . , an ∈ <

makes a vector space when given the natural ‘+’

(a0 + a1x + · · · + anxn) + (b0 + b1x + · · · + bnxn)

= (a0 + b0) + (a1 + b1)x + · · · + (an + bn)xn

and ‘·’.

r · (a0 + a1x + . . . anxn) = (ra0) + (ra1)x + . . . (ran)xn

This space differs from the space 3 of ex:PolySpaceThree. This space
contains not just degree three polynomials, but degree thirty polynomials
and degree three hundred polynomials, too. Each individual polynomial
of course is of a finite degree, but the set has no single bound on the
degree of all of its members.

We can think of this example, like the prior one, in terms of infinite-
tuples. For instance, we can think of 1 + 3x + 5x2 as corresponding to
(1, 3, 5, 0, 0, . . .). However, this space differs from the one in ex:FcnsNToRIsVecSp.
Here, each member of the set has a finite degree, that is, under the corre-
spondence there is no element from this space matching (1, 2, 5, 10, . . . ).
Vectors in this space correspond to infinite-tuples that end in zeroes.

The set f f<< of all real-valued functions of one real variable is a
vector space under these.

( f1 + f2) (x) = f1(x) + f2(x) (r · f ) (x) = r f (x)

The difference between this and ex:FcnsNToRIsVecSp is the domain of
the functions.

The set F = {a cos θ + b sin θa, b ∈ <} of real-valued functions of the
real variable θ is a vector space under the operations

(a1 cos θ+ b1 sin θ) + (a2 cos θ+ b2 sin θ) = (a1 + a2) cos θ+ (b1 + b2) sin θ
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and
r · (a cos θ + b sin θ) = (ra) cos θ + (rb) sin θ

inherited from the space in the prior example. (We can think of F as
“the same” as<2 in that a cos θ + b sin θ corresponds to the vector with
components a and b.)

The set

f<<
d2 f
dx2 + f = 0

is a vector space under the, by now natural, interpretation.

( f + g) (x) = f (x) + g(x) (r · f ) (x) = r f (x)

In particular, notice that closure is a consequence

d2( f + g)
dx2 + ( f + g) = (

d2 f
dx2 + f ) + (

d2g
dx2 + g)

and
d2(r f )

dx2 + (r f ) = r(
d2 f
dx2 + f )

of basic Calculus. This turns out to equal the space from the prior exam-
plefunctions satisfying this differential equation have the form a cos θ +

b sin θbut this description suggests an extension to solutions sets of other
differential equations.

The set of solutions of a homogeneous linear system in n variables is
a vector space under the operations inherited from<n. For example, for
closure under addition consider a typical equation in that system c1x1 +

· · · + cnxn = 0 and suppose that both these vectors

~v = v1v1vn ~w = w1w1wn

satisfy the equation. Then their sum ~v + ~w also satisfies that equation:
c1(v1 +w1)+ · · ·+cn(vn +wn) = (c1v1 + · · ·+cnvn)+(c1w1 + · · ·+cnwn) = 0.
The checks of the other vector space conditions are just as routine.

We often omit the multiplication symbol ‘·’ between the scalar and
the vector. We distinguish the multiplication in c1v1 from that in r~v by
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context, since if both multiplicands are real numbers then it must be real-
real multiplication while if one is a vector then it must be scalar-vector
multiplication.

ex:HomoSlnMakesVS has brought us full circle since it is one of our
motivating examples. Now, with some feel for the kinds of structures
that satisfy the definition of a vector space, we can reflect on that def-
inition. For example, why specify in the definition the condition that
1 · ~v = ~v but not a condition that 0 · ~v =?

One answer is that this is just a definitionit gives the rules and you
need to follow those rules to continue.

Another answer is perhaps more satisfying. People in this area have
worked to develop the right balance of power and generality. This defi-
nition is shaped so that it contains the conditions needed to prove all of
the interesting and important properties of spaces of linear combinations.
As we proceed, we shall derive all of the properties natural to collections
of linear combinations from the conditions given in the definition.

The next result is an example. We do not need to include these prop-
erties in the definition of vector space because they follow from the prop-
erties already listed there.

In any vector space V , for any ~v ∈ V and r ∈ <, we have (1) 0 · ~v =,
(2) (−1 · ~v) + ~v =, and (3) r· =.

For (1) note that ~v = (1 + 0) · ~v = ~v + (0 · ~v). Add to both sides the
additive inverse of ~v, the vector ~w such that ~w + ~v =.

~w + ~v = ~w + ~v + 0 · ~v

= +0 · ~v

= 0 · ~v

Item (2) is easy: (−1 ·~v) +~v = (−1 + 1) ·~v = 0 ·~v =. For (3), r· = r · (0·) =

(r · 0)· = will do.
The second item shows that we can write the additive inverse of ~v as

‘−~v ’ without worrying about any confusion with (−1) · ~v.
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A recap: our study in Chapter One of Gaussian reduction led us to
consider collections of linear combinations. So in this chapter we have
defined a vector space to be a structure in which we can form such com-
binations, subject to simple conditions on the addition and scalar multi-
plication operations. In a phrase: vector spaces are the right context in
which to study linearity.

From the fact that it forms a whole chapter, and especially because
that chapter is the first one, a reader could suppose that our purpose in
this book is the study of linear systems. The truth is that we will not so
much use vector spaces in the study of linear systems as we instead have
linear systems start us on the study of vector spaces. The wide variety of
examples from this subsection shows that the study of vector spaces is
interesting and important in its own right. Linear systems won’t go away.
But from now on our primary objects of study will be vector spaces.

Name the zero vector for each of these vector spaces. The space of
degree three polynomials under the natural operations. The space of 24
matrices. The space f [0..1]< f is continuous. The space of real-valued
functions of one natural number variable. 0 + 0x + 0x2 + 0x3 [r]0000
0000 The constant function f (x) = 0 The constant function f (n) = 0

Find the additive inverse, in the vector space, of the vector. In 3, the
vector −3 − 2x + x2. In the space 2,

[r]1 − 103.

In aex + be−xa, b ∈ <, the space of functions of the real variable x under
the natural operations, the vector 3ex − 2e−x. 3 + 2x − x2 [r] − 1 + 1
0 − 3 −3ex + 2e−x

For each, list three elements and then show it is a vector space. The
set of linear polynomials 1 = a0 + a1xa0, a1 ∈ < under the usual poly-
nomial addition and scalar multiplication operations. The set of linear
polynomials a0 + a1xa0 − 2a1 = 0, under the usual polynomial addition
and scalar multiplication operations. Hint. Use PlaneThruOriginSubsp
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as a guide. Most of the ten conditions are just verifications. Three ele-
ments are: 1+2x, 2−1x, and x. (Of course, many answers are possible.)

The verification is just like ex:RealVecSpaces. We first do conditions
1-5 from def:VecSpace, having to do with addition. For closure under
addition, condition (1), note that where a + bx, c + dx ∈1 we have that
(a + bx) + (c + dx) = (a + c) + (b + d)x is a linear polynomial with
real coefficients and so is an element of 1. Condition (2) is verified with:
where a + bx, c + dx ∈1 then (a + bx) + (c + dx) = (a + c) + (b + d)x, while
in the other order they are (c+dx)+ (a+bx) = (c+a)+ (d +b)x, and both
a+c = c+a and b+d = d +b as these are real numbers. Condition (3) is
similar: suppose a+bx, c+dx, e+ f x ∈ then ((a+bx)+(c+dx))+(e+ f x) =

(a + c + e) + (b + d + f )x while (a + bx) + ((c + dx) + (e + f x)) =

(a + c + e) + (b + d + f )x, and the two are equal (that is, real number
addition is associative so (a+c)+e = a+(c+e) and (b+d)+ f = b+(d+ f )).
For condition (4) observe that the linear polynomial 0 + 0x ∈1 has the
property that (a + bx) + (0 + 0x) = a + bx and (0 + 0x) + (a + bx) = a + bx.
For the last condition in this paragraph, condition (5), note that for any
a + bx ∈1 the additive inverse is −a − bx ∈1 since (a + bx) + (−a − bx) =

(−a − bx) + (a + bx) = 0 + 0x.
We next also check conditions (6)-(10), involving scalar multipli-

cation. For (6), the condition that the space be closed under scalar
multiplication, suppose that r is a real number and a + bx is an ele-
ment of 1, and then r(a + bx) = (ra) + (rb)x is an element of 1 be-
cause it is a linear polynomial with real number coefficients. Condi-
tion (7) holds because (r + s)(a + bx) = r(a + bx) + s(a + bx) is true
from the distributive property for real number multiplication. Condi-
tion (8) is similar: r((a + bx) + (c + dx)) = r((a + c) + (b + d)x) =

r(a+c)+ r(b+d)x = (ra+ rc)+ (rb+ rd)x = r(a+bx)+ r(c+dx). For (9)
we have (rs)(a + bx) = (rsa) + (rsb)x = r(sa + sbx) = r(s(a + bx)).
Finally, condition (10) is 1(a + bx) = (1a) + (1b)x = a + bx. Call the
set P. In the prior item in this exercise there was no restriction on the
coefficients but here we are restricting attention to those linear polyno-
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mials where a0 − 2a1 = 0, that is, where the constant term minus twice
the coefficient of the linear term is zero. Thus, three typical elements of
P are 2 + 1x, 6 + 3x, and −4 − 2x.

For condition (1) we must show that if we add two linear polynomials
that satisfy the restriction then we get a linear polynomial also satisfying
the restriction: here that argument is that if a + bx, c + dx ∈ P then
(a+bx)+ (c+dx) = (a+c)+ (b+d)x is an element of P because (a+c)−
2(b + d) = (a − 2b) + (c − 2d) = 0 + 0 = 0. We can verify condition (2)
with: where a + bx, c + dx ∈1 then (a + bx) + (c + dx) = (a + c) + (b + d)x,
while in the other order they are (c+dx)+(a+bx) = (c+a)+(d+b)x, and
both a+c = c+a and b+d = d+b as these are real numbers. (That is, this
condition is not affected by the restriction and the verification is the same
as the verification in the first item of this exercise). Condition (3) is also
not affected by the extra restriction: suppose that a + bx, c + dx, e + f x ∈
then ((a + bx) + (c + dx)) + (e + f x) = (a + c + e) + (b + d + f )x while
(a + bx) + ((c + dx) + (e + f x)) = (a + c + e) + (b + d + f )x, and
the two are equal. For condition (4) observe that the linear polynomial
satisfies the restriction 0 + 0x ∈ P because its constant term minus twice
the coefficient of its linear term is zero, and then the verification from
the first item of this question applies: 0 + 0x ∈1 has the property that
(a + bx) + (0 + 0x) = a + bx and (0 + 0x) + (a + bx) = a + bx. To
check condition (5), note that for any a + bx ∈ P the additive inverse is
−a − bx since it is an element of P (because a + bx ∈ P we know that
a−2b = 0 and multiplying both sides by −1 gives that −a + 2b = 0), and
as in the first item it acts as the additive inverse (a + bx) + (−a − bx) =

(−a − bx) + (a + bx) = 0 + 0x.
We must also check conditions (6)-(10), those for scalar multiplica-

tion. For (6), the condition that the space be closed under scalar mul-
tiplication, suppose that r is a real number and a + bx ∈ P (so that
a − 2b = 0), then r(a + bx) = (ra) + (rb)x is an element of P because
it is a linear polynomial with real number coefficients satisfying that
(ra) − 2(rb) = r(a − 2b) = 0. Condition (7) holds for the same reason
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that it holds in the first item of this exercise, because (r + s)(a + bx) =

r(a + bx) + s(a + bx) is true from the distributive property for real num-
ber multiplication. Condition (8) is also unchanged from the first item:
r((a + bx) + (c + dx)) = r((a + c) + (b + d)x) = r(a + c) + r(b + d)x =

(ra + rc) + (rb + rd)x = r(a + bx) + r(c + dx). So is (9): (rs)(a + bx) =

(rsa) + (rsb)x = r(sa + sbx) = r(s(a + bx)). Finally, so is condition (10):
1(a + bx) = (1a) + (1b)x = a + bx.

For each, list three elements and then show it is a vector space. The set
of 2 matrices with real entries under the usual matrix operations. The
set of 2 matrices with real entries where the 2, 1 entry is zero, under the
usual matrix operations. Use ex:RealVecSpaces as a guide. (Comment.
Because many of the conditions are quite easy to check, sometimes a
person can feel that they must have missed something. Keep in mind
that easy to do, or routine, is different from not necessary to do.) Here
are three elements.

1234, −1 − 2 − 3 − 4, 0000

For (1), the sum of 2 real matrices is a 2 real matrix. For (2) we
consider the sum of two matrices

abcd + e f gh = a + eb + f c + gd + h

and apply commutativity of real number addition

= e + a f + bg + ch + d = e f gh + abcd

to verify that the addition of the matrices is commutative. The verifica-
tion for condition (3), associativity of matrix addition, is similar to the
prior verification:(

abcd + e f gh
)

+ i jkl = (a + e) + i(b + f ) + j(c + g) + k(d + h) + l

while

abcd +
(
e f gh + i jkl

)
= a + (e + i)b + ( f + j)c + (g + k)d + (h + l)
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and the two are the same entry-by-entry because real number addition
is associative. For (4), the zero element of this space is the 2 matrix
of zeroes. Condition (5) holds because for any 2 matrix A the additive
inverse is the matrix whose entries are the negative of A’s, the matrix
−1 · A.

Condition (6) holds because a scalar multiple of a 2 matrix is a 2
matrix. For condition (7) we have this.

= (r + s)a(r + s)b

(r+s)c (r+s)d
= ra+sa rb+sb
rc+sc rd+sd = r a b
c d + s a b
c d

(r+s)a
bc
d

= (r+s)a (r+s)b
(r+s)c (r+s)d
= ra+sa rb+sb
rc+sc rd+sd = r a b
c d + s a b
c d

Condition (8) goes the same way.

+e f

g h
)

= r a+e b+f
c+g d+h = ra+re rb+rf
rc+rg rd+rh
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= r a b
c d + r e f
g h = r

(
a b

c d + e f
g h
)

r
(
a

bc
d

+ e f
g h
)

= r a+e b+f
c+g d+h = ra+re rb+rf
rc+rg rd+rh
= r a b
c d + r e f
g h = r

(
a b

c d + e f
g h
)

For (9) we have this.

(rs)abcd = rsarsbrscrsd = rsasbscsd = r
(
sabcd

)
Condition (10) is just as easy.

1abcd = 1 · a1 · b1 · c1 · d = sasbscsd

This differs from the prior item in this exercise only in that we are re-
stricting to the set T of matrices with a zero in the second row and first
column. Here are three elements of T .

1204, −1 − 20 − 4, 0000

Some of the verifications for this item are the same as for the first item
in this exercise, and below we’ll just do the ones that are different.
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For (1), the sum of 2 real matrices with a zero in the 2, 1 entry is also
a 2 real matrix with a zero in the 2, 1 entry.

ab0d + e f 0ha + eb + f 0d + h

The verification for condition (2) given in the prior item works in this
item also. The same holds for condition (3). For (4), note that the 2
matrix of zeroes is an element of T . Condition (5) holds because for any
2 matrix A the additive inverse is the matrix −1 · A and so the additive
inverse of a matrix with a zero in the 2, 1 entry is also a matrix with a
zero in the 2, 1 entry.

Condition 6 holds because a scalar multiple of a 2 matrix with a zero
in the 2, 1 entry is a 2 matrix with a zero in the 2, 1 entry. Condition (7)’s
verification is the same as in the prior item. So are condition (8)’s, (9)’s,
and (10)’s.

For each, list three elements and then show it is a vector space. The set
of three-component row vectors with their usual operations. The set

xyzw ∈ <4x + y − z + w = 0

under the operations inherited from<4. Three elements are 123, 213,
and 000.

We must check conditions (1)-(10) in def:VecSpace. Conditions (1)-
(5) concern addition. For condition (1) recall that the sum of two three-
component row vectors

abc + de f = a + db + ec + f

is also a three-component row vector (all of the letters a, . . . , f represent
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real numbers). Verification of (2) is routine

a

b

c + d

e

f = a + d

b + e

c + f

= d + a

e + b

f + c = d

e

f + a

b

c

(the second equality holds because the three entries are real numbers and
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real number addition commutes). Condition (3)’s verification is similar.

(
a

b

c + d

e

f
)

+ g

h

i = (a + d) + g

(b + e) + h

(c + f ) + i

= a + (d + g)

b + (e + h)

c + ( f + i) = a

b

c +
(
d

e

f + g

h

i
)

For (4), observe that the three-component row vector 000 is the additive
identity: abc + 000 = abc. To verify condition (5), assume we are given
the element abc of the set and note that −a − b − c is also in the set and
has the desired property: abc + −a − b − c = 000.

Conditions (6)-(10) involve scalar multiplication. To verify (6), that
the space is closed under the scalar multiplication operation that was
given, note that rabc = rarbrc is a three-component row vector with
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real entries. For (7) we compute.

(r + s)a

b

c = (r + s)a

(r + s)b

(r + s)c = ra + sa

rb + sb

rc + sc

= ra

rb

rc + sa

sb

sc = ra

b

c + sa

b

c
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Condition (8) is very similar.

r
(
a

b

c + d

e

f
)

= ra + d b + ec + f = r(a + d) r(b + e)r(c + f )

= ra + rd

rb + re

rc + r f = ra

rb

rc + rd

re

r f

= ra

b

c + rd

e

f
So is the computation for condition (9).

(rs)abc = rsarsbrsc = rsasbsc = r
(
sabc
)

Condition (10) is just as routine 1abc = 1 · a1 · b1 · c = abc. Call the
set L. Closure of addition, condition (1), involves checking that if the
summands are members of L then the sum

abcd + e f gh = a + eb + f c + gd + h
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is also a member of L, which is true because it satisfies the criteria for
membership in L: (a+e)+ (b+ f )− (c+g)+ (d +h) = (a+b−c+d)+ (e+

f − g + h) = 0 + 0. The verifications for conditions (2), (3), and (5) are
similar to the ones in the first part of this exercise. For condition (4) note
that the vector of zeroes is a member of L because its first component
plus its second, minus its third, and plus its fourth, totals to zero.

Condition (6), closure of scalar multiplication, is similar: where the
vector is an element of L,

rabcd = rarbrcrd

is also an element of L because ra+rb−rc+rd = r(a+b−c+d) = r·0 = 0.
The verification for conditions (7), (8), (9), and (10) are as in the prior
item of this exercise.

Show that each of these is not a vector space. (Hint. Check closure by
listing two members of each set and trying some operations on them.)
Under the operations inherited from<3, this set

xyz ∈ <3x + y + z = 1

Under the operations inherited from<3, this set

xyz ∈ <3x2 + y2 + z2 = 1

Under the usual matrix operations,

a1bca, b, c ∈ <

Under the usual polynomial operations,

a0 + a1x + a2x2a0, a1, a2 ∈ <
+

where<+ is the set of reals greater than zero Under the inherited opera-
tions,

xy ∈ <2x + 3y = 4 and 2x − y = 3 and 6x + 4y = 10
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In each item the set is called Q. For some items, there are other correct
ways to show that Q is not a vector space. It is not closed under addition;
it fails to meet condition (1).

[r]100, [r]010 ∈ Q [r]110 < Q

It is not closed under addition.

[r]100, [r]010 ∈ Q [r]110 < Q

It is not closed under addition.

[r]0100, [r]1100 ∈ Q [r]1200 < Q

It is not closed under scalar multiplication.

1 + 1x + 1x2 ∈ Q − 1 · (1 + 1x + 1x2) < Q

It is empty, violating condition (4).

Define addition and scalar multiplication operations to make the com-
plex numbers a vector space over<. The usual operations (v0 + v1i) +

(w0 + w1i) = (v0 + w0) + (v1 + w1)i and r(v0 + v1i) = (rv0) + (rv1)i suffice.
The check is easy.

Is the set of rational numbers a vector space over < under the usual
addition and scalar multiplication operations? No, it is not closed under
scalar multiplication since, e.g., π · (1) is not a rational number.

Show that the set of linear combinations of the variables x, y, z is a vector
space under the natural addition and scalar multiplication operations.
The natural operations are (v1x + v2y + v3z) + (w1x + w2y + w3z) = (v1 +

w1)x+(v2+w2)y+(v3+w3)z and r·(v1x+v2y+v3z) = (rv1)x+(rv2)y+(rv3)z.
The check that this is a vector space is easy; use ex:RealVecSpaces as a
guide.

Prove that this is not a vector space: the set of two-tall column vectors
with real entries subject to these operations.

x1y1 + x2y2 = x1 − x2y1 − y2 r · xy = rxry
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The ‘+’ operation is not commutative (that is, condition (2) is not met);
producing two members of the set witnessing this assertion is easy.

Prove or disprove that<3 is a vector space under these operations. x1y1z1+

x2y2z2 = 000 and rxyz = rxryrz x1y1z1+x2y2z2 = 000 and rxyz =

000 It is not a vector space.

(1 + 1) · [r]100 , [r]100 + [r]100

It is not a vector space.

1 · [r]100 , [r]100

For each, decide if it is a vector space; the intended operations are the
natural ones. The diagonal 2 matrices

a00ba, b ∈ <

This set of 2 matrices

xx + yx + yyx, y ∈ <

This set
xyzw ∈ <4x + y + w = 1

The set of functions f<<d f /dx + 2 f = 0 The set of functions f<<d f /dx + 2 f = 1
For each “yes” answer, you must give a check of all the conditions given
in the definition of a vector space. For each “no” answer, give a specific
example of the failure of one of the conditions. Yes. Yes. No, this set is
not closed under the natural addition operation. The vector of all 1/4’s
is a member of this set but when added to itself the result, the vector of
all 1/2’s, is a nonmember. Yes. No, f (x) = e−2x + (1/2) is in the set but
2 · f is not (that is, condition (6) fails).

Prove or disprove that this is a vector space: the real-valued functions
f of one real variable such that f (7) = 0. It is a vector space. Most
conditions of the definition of vector space are routine; we here check
only closure. For addition, ( f1 + f2) (7) = f1(7) + f2(7) = 0 + 0 = 0. For
scalar multiplication, (r · f ) (7) = r f (7) = r0 = 0.
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Show that the set<+ of positive reals is a vector space when we interpret
‘x+y’ to mean the product of x and y (so that 2+3 is 6), and we interpret
‘r · x’ as the r-th power of x. We check def:VecSpace.

First, closure under ‘+’ holds because the product of two positive
reals is a positive real. The second condition is satisfied because real
multiplication commutes. Similarly, as real multiplication associates,
the third checks. For the fourth condition, observe that multiplying a
number by 1 ∈ <+ won’t change the number. Fifth, any positive real has
a reciprocal that is a positive real.

The sixth, closure under ‘·’, holds because any power of a positive
real is a positive real. The seventh condition is just the rule that vr+s

equals the product of vr and vs. The eight condition says that (vw)r =

vrwr. The ninth condition asserts that (vr)s = vrs. The final condition
says that v1 = v.

Is (x, y)x, y ∈ < a vector space under these operations? (x1, y1) +

(x2, y2) = (x1 + x2, y1 + y2) and r · (x, y) = (rx, y) (x1, y1) + (x2, y2) = (x1 +

x2, y1 +y2) and r · (x, y) = (rx, 0) No: 1 · (0, 1)+1 · (0, 1) , (1+1) · (0, 1).
No; the same calculation as the prior answer shows a condition in the
definition of a vector space that is violated. Another example of a viola-
tion of the conditions for a vector space is that 1 · (0, 1) , (0, 1).

Prove or disprove that this is a vector space: the set of polynomials of
degree greater than or equal to two, along with the zero polynomial. It is
not a vector space since it is not closed under addition, as (x2)+(1+x−x2)
is not in the set.

At this point “the same” is only an intuition, but nonetheless for each
vector space identify the k for which the space is “the same” as <k.
The 23 matrices under the usual operations The nm matrices (under their
usual operations) This set of 2 matrices

a0bca, b, c ∈ <

This set of 2 matrices
a0bca + b + c = 0
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6 nm 3 To see that the answer is 2, rewrite it as

a0b − a − ba, b ∈ <

so that there are two parameters.

Using ~+ to represent vector addition and ~· for scalar multiplication, re-
state the definition of vector space. A vector space (over<) consists
of a set V along with two operations ‘~+’ and ‘~·’ subject to these condi-
tions. Where ~v, ~w ∈ V , (1) their vector sum ~v ~+ ~w is an element of V . If
~u,~v, ~w ∈ V then (2) ~v ~+ ~w = ~w ~+ ~v and (3) (~v ~+ ~w) ~+ ~u = ~v ~+ (~w ~+ ~u).
(4) There is a zero vector ∈ V such that ~v~+ = ~v for all ~v ∈ V . (5) Each
~v ∈ V has an additive inverse ~w ∈ V such that ~w ~+ ~v =. If r, s are scalars,
that is, members of <), and ~v, ~w ∈ V then (6) each scalar multiple r · ~v
is in V . If r, s ∈ < and ~v, ~w ∈ V then (7) (r + s) · ~v = r · ~v ~+ s · ~v, and
(8) r~· (~v + ~w) = r~·~v + r~· ~w, and (9) (rs)~·~v = r~· (s~·~v), and (10) 1~·~v = ~v.

Prove these. For any ~v ∈ V , if ~w ∈ V is an additive inverse of ~v,
then ~v is an additive inverse of ~w. So a vector is an additive inverse of
any additive inverse of itself. Vector addition left-cancels: if ~v, ~s,~t ∈ V
then ~v + ~s = ~v + ~t implies that ~s = ~t. Let V be a vector space,
let ~v ∈ V , and assume that ~w ∈ V is an additive inverse of ~v so that
~w +~v =. Because addition is commutative, = ~w +~v = ~v + ~w, so therefore
~v is also the additive inverse of ~w. Let V be a vector space and suppose
~v, ~s,~t ∈ V . The additive inverse of ~v is −~v so ~v + ~s = ~v + ~t gives that
−~v + ~v + ~s = −~v + ~v + ~t, which says that +~s = +~t and so ~s = ~t.

The definition of vector spaces does not explicitly say that +~v = ~v (it
instead says that ~v+ = ~v). Show that it must nonetheless hold in any
vector space. Addition is commutative, so in any vector space, for any
vector ~v we have that ~v = ~v+ = +~v.

Prove or disprove that this is a vector space: the set of all matrices,
under the usual operations. It is not a vector space since addition of two
matrices of unequal sizes is not defined, and thus the set fails to satisfy
the closure condition.
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In a vector space every element has an additive inverse. Can some ele-
ments have two or more? Each element of a vector space has one and
only one additive inverse.

For, let V be a vector space and suppose that ~v ∈ V . If ~w1, ~w2 ∈ V are
both additive inverses of ~v then consider ~w1 + ~v + ~w2. On the one hand,
we have that it equals ~w1 + (~v + ~w2) = ~w1+ = ~w1. On the other hand we
have that it equals (~w1 + ~v) + ~w2 = +~w2 = ~w2. Therefore, ~w1 = ~w2.

Prove that every point, line, or plane thru the origin in <3 is a vector
space under the inherited operations. What if it doesn’t contain the ori-
gin? Every such set has the form r · ~v + s · ~wr, s ∈ < where either or
both of ~v, ~w may be . With the inherited operations, closure of addition
(r1~v+ s1~w)+ (r2~v+ s2~w) = (r1 +r2)~v+ (s1 + s2)~w and scalar multiplication
c(r~v+ s~w) = (cr)~v+(cs)~w are easy. The other conditions are also routine.
No such set can be a vector space under the inherited operations because
it does not have a zero element.

Using the idea of a vector space we can easily reprove that the solution
set of a homogeneous linear system has either one element or infinitely
many elements. Assume that ~v ∈ V is not . Prove that r · ~v = if and
only if r = 0. Prove that r1 · ~v = r2 · ~v if and only if r1 = r2. Prove
that any nontrivial vector space is infinite. Use the fact that a nonempty
solution set of a homogeneous linear system is a vector space to draw
the conclusion. Assume that ~v ∈ V is not . One direction of the if
and only if is clear: if r = 0 then r · ~v =. For the other way, let r be a
nonzero scalar. If r~v = then (1/r) · r~v = (1/r)· shows that ~v =, contrary
to the assumption. Where r1, r2 are scalars, r1~v = r2~v holds if and only
if (r1 − r2)~v =. By the prior item, then r1 − r2 = 0. A nontrivial space
has a vector ~v ,. Consider the set k · ~vk ∈ <. By the prior item this set
is infinite. The solution set is either trivial, or nontrivial. In the second
case, it is infinite.

Is this a vector space under the natural operations: the real-valued func-
tions of one real variable that are differentiable? Yes. A theorem of first
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semester calculus says that a sum of differentiable functions is differen-
tiable and that ( f + g)′ = f ′ + g′, and that a multiple of a differentiable
function is differentiable and that (r · f )′ = r f ′.

A vector space over the complex numbers has the same definition as a
vector space over the reals except that scalars are drawn from instead
of from <. Show that each of these is a vector space over the complex
numbers. (Recall how complex numbers add and multiply: (a0 + a1i) +

(b0 + b1i) = (a0 + b0) + (a1 + b1)i and (a0 + a1i)(b0 + b1i) = (a0b0 −

a1b1)+ (a0b1 +a1b0)i.) The set of degree two polynomials with complex
coefficients This set

0ab0a, b ∈ and a + b = 0 + 0i

The check is routine. Note that ‘1’ is 1 + 0i and the zero elements are
these. (0 + 0i) + (0 + 0i)x + (0 + 0i)x2 0 + 0i0 + 0i
0 + 0i0 + 0i

Name a property shared by all of the<n’s but not listed as a requirement
for a vector space. Notably absent from the definition of a vector space
is a distance measure.

Prove that for any four vectors ~v1, . . . ,~v4 ∈ V we can associate their sum
in any way without changing the result.

((~v1 + ~v2) + ~v3) + ~v4 = (~v1 + (~v2 + ~v3)) + ~v4 = (~v1 + ~v2) + (~v3 + ~v4)

= ~v1 + ((~v2 + ~v3) + ~v4) = ~v1 + (~v2 + (~v3 + ~v4))

This allows us to write ‘~v1 + ~v2 + ~v3 + ~v4’ without ambiguity. Prove that
any two ways of associating a sum of any number of vectors give the
same sum. (Hint. Use induction on the number of vectors.) A small
rearrangement does the trick.

(~v1 + (~v2 + ~v3)) + ~v4 = ((~v1 + ~v2) + ~v3) + ~v4

= (~v1 + ~v2) + (~v3 + ~v4)

= ~v1 + (~v2 + (~v3 + ~v4))

= ~v1 + ((~v2 + ~v3) + ~v4)
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Each equality above follows from the associativity of three vectors that is
given as a condition in the definition of a vector space. For instance, the
second ‘=’ applies the rule (~w1 + ~w2) + ~w3 = ~w1 + (~w2 + ~w3) by taking ~w1

to be ~v1 +~v2, taking ~w2 to be ~v3, and taking ~w3 to be ~v4. The base case for
induction is the three vector case. This case ~v1 + (~v2 +~v3) = (~v1 +~v2) +~v3

is one of the conditions in the definition of a vector space.
For the inductive step, assume that any two sums of three vectors,

any two sums of four vectors, . . . , any two sums of k vectors are equal
no matter how we parenthesize the sums. We will show that any sum of
k + 1 vectors equals this one ((· · · ((~v1 + ~v2) + ~v3) + · · · ) + ~vk) + ~vk+1.

Any parenthesized sum has an outermost ‘+’. Assume that it lies
between ~vm and ~vm+1 so the sum looks like this.

(· · · ~v1 · · ·~vm · · · ) + (· · · ~vm+1 · · ·~vk+1 · · · )

The second half involves fewer than k + 1 additions, so by the inductive
hypothesis we can re-parenthesize it so that it reads left to right from the
inside out, and in particular, so that its outermost ‘+’ occurs right before
~vk+1.

= (· · · ~v1 · · · ~vm · · · ) + ((· · · (~vm+1 + ~vm+2) + · · · + ~vk) + ~vk+1)

Apply the associativity of the sum of three things

= (( · · · ~v1 · · · ~vm · · · ) + ( · · · (~vm+1 + ~vm+2) + · · · ~vk)) + ~vk+1

and finish by applying the inductive hypothesis inside these outermost
parenthesis.

ex:ColsIntEntNotVS gives a subset of<2 that is not a vector space, un-
der the obvious operations, because while it is closed under addition, it is
not closed under scalar multiplication. Consider the set of vectors in the
plane whose components have the same sign or are 0. Show that this set
is closed under scalar multiplication but not addition. Let ~v be a mem-
ber of <2 with components v1 and v2. We can abbreviate the condition
that both components have the same sign or are 0 by v1v2 ≥ 0.
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To show the set is closed under scalar multiplication, observe that the
components of r~v satisfy (rv1)(rv2) = r2(v1v2) and r2 ≥ 0 so r2v1v2 ≥ 0.

To show the set is not closed under addition we need only produce
one example. The vector with components −1 and 0, when added to
the vector with components 0 and 1 makes a vector with mixed-sign
components of −1 and 1.
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Possible Questions
8 marks

1. State and prove two properties of inverse of a linear map

2. Prove that inverse of a linear map is linear

3. If A is an algebra with unit element over F then prove that A is
isomorphic to a subalgebra of A(V) for some vector space V

4. If V is finite dimensional over F and if is singular then prove that
there exists an in A(V) such that S T = TS = 0

5. If A is an algebra with unit element over F then prove that A is
isomorphic to a subalgebra of A(V) for some vector space V

6. Let T be a linear transformation from V to W. Prove that the image
of V under T is a subspace of W

7. If {v1, v2, · · · , vm} and {u1, u2, · · · , um} are both bases of a vector
space V over a field F, then m = n

8. Let T : R3 → R3 be defned by T (a1, a2, a3) = (3a1 +a2, a1 +a3, a1−

a3). Find the matrix representation of T w.r.t the standard basis for
both domain and range

9. Let T : R2 → R2 be defned by T (x, y) = (x − y, x + y). Find the
matrix representation of T w.r.t the standard basis for domain and
{(1, 1), (1. − 1)} for range
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Question Option-1 Option-2 Option-3 Option-4 Answer

_____________that satisfies all of the ring axioms but the associativity and the existence 

of a multiplicative identity. 
Associative ring Commutative ring Non ideal Nonassociative ring Nonassociative ring

Ring not requiring multiplicative identity is______________ Proper ideal Field Pseudo-ring Integral domain Pseudo-ring 

rng= Proper ideal Field Pseudo-ring Integral domain Pseudo-ring 

A nonzero ring with  no nonzero zero divisors ____________ Field Ideal Domain Pseudo-ring Domain 

A commutative division ring  example of a Field Ideal Domain Pseudo-ring Field

The unique identity of the additive group (ℝ,+) is denoted by 0 and it is called _____ 

element of the ring 
Non zero Zero Trivial Non trivial Zero

{0} with two binary operation +and ‧ is called ______________ring null empty Singleton Boolean Null

A ring R is called an _________________ if  

#NAME?

(p(s), (p(s), (p(s), (p(s), (p(s),

, , ,∩) , ,

) ) ) )

A ring is said to be commutative ring if ___________________ ab=ba #NAME? #NAME? ab=ab ab=ba

The set of all integers, rationales, and reals are all ________rings. Non commutative identity Commutative Boolean Commutative

__________is both addition identity and multiplication identity for zero ring 1 0 -1 2 0

In a ring with identity the identity element is a ____________ Equal More than one Different unique Unique

Consider a ring (R,+,-)with identity then then unit of R is __________ Zero element All non-zero elements Identity element Invers element All non-zero elements

the unit of ring (M₂(R)) is Singular matrix Non-singular matrix Idempotent Identity matrix 

The unit of (Z,+,-) with identity 1 is _________ 1 and -1 0 and 1 0 and -1 -1 and -2 1 and -1

Identify the zero divisors of  (Z₁₀,+,-) 2,3,4,6 2,4,6,8 1,2,3,4 2,8,16,18 2,3,4,6

ℤₙ is an integral domain iff n is ____________ composite Prime Real 
Neither prime nor 

composite 
Prime

The characteristic of ring (Zₙ,+,-) is ________ 1 0 N n-1 N

The characteristic of  Boolean ring is 1 2 3 4 2

The characteristic of ring (M₂(R)) 1 2 3 4 2

The characteristic of  integral domain  is 0 prime Either 0 or prime Neither 0 nor prime Either 0 or prime

The characteristic of  any field   is 0 prime Either 0 or prime Neither 0 nor prime

Choose the correct idempotent matrix

If F is a field its only ideals are ___________ 0 and F itself 0 F itself None of these 0 and F itself 

If F is a commutative ring then aR=Ra is an ideal and is called ____________ Principal ideal ring Ideal ring Maximal ring Commutative Ring Principal ideal ring

The only idempotent element of an integral domain are 0 1 0 and 1 Neither 0 nor 1 0 and 1

R is set of integers, 0, positive and negative; + and. is the usual addition and multiplication 

of integers R is a ______________
Commutative rings Unit element

Commutative rings but 

has no unit element.

Commutative ring with 

unit element.

Commutative rings with 

unit element.

A field is a Commutative ring unit Division ring 
Commutative division 

ring 

Commutative division 

ring

A finite integral domain is a finite field Ideal unit Field

The ring of integers is thus of characteristic ___ 0 1 2 3 0

The ring of integers is an Integral domain field Ideal unit Integral domain

If p is a prime number then Jₙ, then the ring of integers mod p is a Integral domain field Ideal unit Field

Set of even integers with usual + and ‧ is a unit field rng ring Rng

__________defined the concept of ring of integers of number field Fraenkel Noether Hilbert Richard Dedekind  Richard Dedekind  

Unital ring, unitary ring, ring with unit, ring with identity, or ring with 1 is defined as 
Ring with  multiplicative 

identity 

Ring with multiplicative 

inverse 
Both a and b Neither a or b 

Ring with multiplicative 

identity 

Ring _____________________________________ is rng or pseudo-ring. 
requiring  multiplicative 

identity 

Not requiring 

multiplication identity 

requiring multiplication 

inverse

Not requiring 

multiplication inverse

Not requiring 

multiplication identity

Ring with n elements is Z R Z_n Q Z_n

Which of the following is not a field? Z R Z_n Q Z
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All the above

An integral domain D is said to be of finite characteristic if there exists a positive integers 

m such that __________for all aϵD
ma=1 ma ma=0 ma ma=0

Which of the following is a division ring usual addition and a multiplication  ℝ ℂ All the above 

Boolean ring 

The example for Boolean ring 

The characteristic of ring (p(s), 1 2 3 4 2

Integral domain Boolean ring Pseudo-ring All the above 

Unit 

A ring R is called a Boolean ring if _____________for all aϵℝ #NAME? a  a=0 #NAME?

A division ring is a ring such that every non zero element is a simple Complex Proper unit
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1. If U(Z) is the set of all units of (Z,+, ·), then U(Z) =

a. {1} b. {1,−1}
c. {−1, 0, 1} d. {−1}

2. If every nonzero element of R is a unit, then R is
called a

a. division ring b. ring
c. integral domain d. field

3. If 1 = 0, then the ring consists of

a. countable elements b. uncountable elements
c. two elements d. one element

4. A commutative division ring is called a

a. an ideal b. subring
c. integral domain d. field

5. Any finite integral domain is a

a. an ideal b. subring
c. principal ideal d. field

6. Which of the following is an idempotent element
in M2(Z)?

a.
(

1 0
1 1

)
b.
(

1 1
1 0

)
c.
(

1 0
0 0

)
d.
(

1 1
1 1

)
7. Suppose that a2 = a in a ring R. Then (1 − a)2,

a. a b. 1 − a
c. 1 d. 0.

8. Number of units of a ring (Q,+, ·) is

a. countable b. uncountable
c. 2 d. 1

9. Let R be a ring with identity element 1. Then U(R),
the set of all units forms ——- under multiplica-
tion
a. an abelian b. group
c. an ideal d. field

10. If u is a unit and is idempotent, then u =

a. 0 b. 1
c. either 0 or 1 d. neither 0 nor 1

11. Let R be a commutative ring. Then the ——– of
subrings of R is a subring of R.

a.intersection of any collection b.intersection of
finite collection

1



c.union of any collection d. union of finite
collection

12. In an integral domain idempotent elements are

a. 0 and -1 b. 0 and 1
c. either 0 or 1 d. neither 0 nor 1

13. M2(R) is a

a. commutative ring b. non commutative fing
c. ring without identity d. ring without zero
divisors

14. Let R be a ring without identity. For a ∈ R

a. a < (a) b. a ∈ (a)
c. 1 ∈ (a) d.either b nor c

15. Zn is an integral domain iff n is

a. an integer b. prime
c. composite d. neither b nor c

16. Which of the following is a Boolean ring?

a. Z1 b. Z2
c. Z3 d.Z4

17. (P(S),∆,∩) Characteristic of

a. 1 b. 0
c. 2 d.3

18. ——- is a subring of every ring.

a. {1} b. {0}
c. R d.Z

19. The prime ideals of Z are

a. (0), (1), (2), (3), · · · b. (1), (2), (3), · · ·
c. (1), (3), · · · d.(0), (2), (3), · · ·

20. Ideals of Z are

a. (0), (1), (2), (3), · · · b. (1), (2), (3), · · ·
c. (1), (3), (5), · · · d.(0), (2), (3), · · ·

Part B-(3 × 2 = 6 marks)

21. Define Boolean ring and give an example

22. Define principal ideal generated by an elenment

23. If U is an ideal of R and 1 ∈ U then prove that
U = R

Part C-(3 × 8 = 24 marks)

24. a) Prove that Zn is a field iff n is prime

OR

b) Prove that the characteristic of an integral do-
main is either prime or 0

25. a) Classify the ring (S,⊕10,�10) where S =
{0, 2, 4, 6, 8}. What is the unity of the ring.
Is it a ring with or without zero divisors?

OR

b) If two operations ∗ and # on the set of inte-
gers Z are defined by

a ∗ b = a + b + 1

2



and
a # b = a + b + ab

for all a, b ∈ Z. Show that (Z, ∗,#) is a com-
mutative ring. What is the zero of the ring?
Is it ring with unity?

26. a) Prove that any field is an integral domain.
Justify the converse by an example.

OR

b) Prove that the set of all units in R is a group
under multiplication

3
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1. If f : R→ R′ is a homomorphism then

a. f (a + b) = f (a) + f (b) b. f (a · b) = f (a) · f (b)
c. neither a nor b d. both a and b

2. f is called monomorphism if f is

a. 1-1 b. homomorphism
c. neither a nor b d. both a and b

3. f is called isomorphism if f is

a. 1-1 b. homomorphism
c. neither a nor b d. both a and b

4. Which of the following is homomorphism?

a. f (a) = 0 b. f (a) = a
c. neither a nor b d. both a and b

5. Let a ∈ Kernal of f . Then f (a) =

a. a b. 1
c. 0 d. -1

6. Kernal of f =

a. f−1({0}) b. f−1({−1})
c. f−1({1}) d. f−1({2})

7. Any homomorphism of a field to itself is

a. 1-1 b. many to one
c. either a or b d. neither a nor b.

8. Let f be a homomorphism from a commutative
ring with identity to a field. Then Kernal of f is

a. an ideal b. a maximal ideal
c. neither a nor b d. both a and b

9. Let V be a vector space over a field F. Then α ∈ F
and u ∈ V imples

a. αu ∈ V b.αu < V
c. neither a nor b d. both a and b

10. Scalar multiplication is a function from —– to ——

a. F, V b. F × V, V
c. neither a nor b d. both a and b

11. The elements of F are called

a. vectors b. scalars
c. neither a nor b d. both a and b

12. The elements of V are called

1



a. vectors b. scalars
c. neither a nor b d. both a and b

13. α0=

a. 0 b. 0
c. neither a nor b d. both a and b

14. 0v=

a. 0 b. 0
c. neither a nor b d. both a and b

15. αv=0 implies

a. α = 0 b. v =0
c. either a or b d. both a and b

16. W = {(a, 0, 0) : a ∈ R} is a subspace of

a. R b. R2

c. R3 d.R4

17. Let A and B are subspaces of V. Which of the
following is a subspace of V?

a. A + B b. A ∩ B
c. either a or b d. both a and b

18. Let A and B are subspaces of V. Then A ∪ B is a
subspace of V if

a. A ⊂ B b. B ⊂ A
c. either a or b d. both a and b

19. Let A and B are subspaces of V. Which of the
following is a subspace of V containing A and B?

a. A + B b. A ∩ B
c. either a or b d. both a and b

20. Let A and B are subspaces of V. Then V is called
direct sum of A and B if

a. A + B = V b. A ∩ B =0
c. either a or b d. both a and b

Part B-(3 × 2 = 6 marks)

21. Define homomorphism and give an example

22. Define vector space

23. Show that union of two subspaces need not be a
subspace

Part C-(3 × 8 = 24 marks)

24. a) State and prove isomorphism theorem I
OR

b) Prove that any integral domain D can be em-
bedded in a field F and every element of F can
be expressed as a quotient of two elements of
D

25. a) State and prove two properties of homomor-
phism

OR
b) Let f : R→ R′ be a homomorphism and K be

the kernal of f . Prove that K is an ideal of R

26. a) Prove that R ×R is a vector space over R
OR

b) Let W be a nonemepty subset of a vector
space V. State and prove the necessary and
sufficient condition for W to be a subspace of
V

2
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1. Let V and W be vector spaces. A function
T : V → W is called a linear transformation if
for any vectors u, v in V and scalar α,

a. T(u + v) = T(u) + T(v) b. (αu) = αT(u)
c. neither a nor b d. both a and b

2. The inverse images of 0 is called the

a. Kernal of T b. homomorphism
c. neither a nor b d. both a and b

3. T is called isomorphism if T is

a. 1-1 b. homomorphism
c. neither a nor b d. both a and b

4. Which of the following is linear transformation?

a. T(u) =0 b. T(u) = u
c. neither a nor b d. both a and b

5. Let a ∈ Kernal of T. Then T(u) =

a. u b. v
c. 0 d. -1

6. Kernal of T =

a. T−1({0}) b. T−1({−1})
c. T−1({1}) d. T−1({2})

7. A set of vectors {v1, · · · , vn} is said to be linearly
independent if α1v1 + · · ·αnvn = 0 implies

a. some αi = 0 b. αi = 0
c. either a or b d. neither a nor b.

8. Let S = {(6, 2, 1), (−1, 3, 2)} and S be linearly inde-
pendent. Suppose α(6, 2, 1) + β(−1, 3, 2) = (0, 0, 0).
Then

a. α = 0 b. β = 0
c. neither a nor b d. both a and b

9. Let V be a vector space and S be a subset of V.
Suppose S ia a basis for V. Then

a. L(S) = V b.S is linearly independent
c. neither a nor b d. both a and b

10. Consider the vector spaceR2. Then basis forR2 is .

a. {e1, e2} b. {e1, e2, e3}
c. neither a nor b d. both a and b

11. Which of the following is a basis for C?

a. {1, 0} b. {1, i}
c. neither a nor b d. both a and b
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12. Which of the following is a basis for R?

a. {1} b. {0}
c. neither a nor b d. both a and b

13. Which of the following is a basis for R3?

a. {(1, 1, 1), (1,−1, 1), (1, 1,−1)} b. {e1, e2, e3}
c. neither a nor b d. both a and b

14. Let S = {v1, · · · , vn} be a basis for V. Then every
subset of V contains more than n elements is lin-
early

a. dependent b. independent
c. neither a nor b d. both a and b

15. Let S1 = {v1, · · · , vn} and S2 = {v1, · · · , vm} are bases
for V. Then

a. m ≤ n b. n ≤ m
c. either a or b d. both a and b

16. dim R =

a. 1 b. 0
c. n d. 4

17. dim C =

a. 1 b. 0
c. n d. 4

18. dim M2(R) =

a. 1 b. 0
c. n d. 4

19. dim Vn(R) =

a. 1 b. 0
c. n d. 4

20. The dimension of a vector space V, is number of
elements in

a. V b. basis for V
c. either a or b d. both a and b

Part B-(3 × 2 = 6 marks)

21. Define basis for a vector space

22. Write the standard basis for Rn

23. Determine, whether S = {(0, 0, 0), (1, 5, 6), (6, 2, 1)}
is a basis of R3 or not?

Part C-(3 × 8 = 24 marks)

24. a) Let S = {(6, 2, 1), (−1, 3, 2)}. Determine, if S is
linearly independent or dependent?

OR

b) Let S = {(1, 0, 0), (0, 4, 0), (0, 0,−6), (1, 5,−3)}.
Determine, if S is linearly independent or de-
pendent?

25. a) State and prove two properties of linear
transformation

OR

b) Let T : R3
→ R3 be defned by T(a1, a2, a3) =

(3a1 + a2, a1 + a3, a1 − a3). Find the matrix rep-
resentation of T w.r.t the standard basis for
both domain and range

2



26. a) Let T : R2
→ R2 be defned by T(x, y) =

(x − y, x + y). Find the matrix representation
of T w.r.t the standard basis for domain and
{(1, 1), (1. − 1)} for range

OR

b) State and prove fundamental theorem of lin-
ear transformation

3
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