Instruction Hours / week: L: 0 T: 0 P: 4	Marks: Internal: 40 External: 60 To	
		End Semester Exam: 3 Hours

Course Objectives

This course enables the students

- To develop skills for quantitative estimation using computer language.
- To code various differentiation and integration methods in a modern computer language.
- To plot the graphs of function

Course Outcomes (COs)

On successful completion of this course, the student will be able to

- Solve complicated matrix related problems like matrix inverse and matrix multiplication.
- Acquire problem-solving skills through computer programming. Plot various functions and parametric curves.

List of Practical

- 1. Matrix addition.
- 2. Matrix multiplication.
- 3. Inverse of a matrix.
- 4. Transpose of a matrix
- 5. Plotting of graphs of function e^{ax+b} , log(ax+b), 1/(ax+b), sin(ax+b), cos(ax+b), |ax+b| and to illustrate the effect of a and b on the graph.
- 6. Plotting the graphs of polynomials of degree 4 and 5 and the derivative graph.
- 7. Sketching parametric curves. (Eg. Trochoid, Cycloid, Epicycloid, Hypocycloid).
- 8. Obtaining surface of revolution of curves.

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University) (Established Under Section 3 of UGC Act, 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021

DEPARTMENT OF CHEMISTRY

I B.Sc Chemistry

MATHEMATICS-I PRACTICAL

NAME	:	
REG.NO	:	
CLASS	: _	
ACADEMIC YE	AR:	

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Pollachi Main Road, Eachanari (Po), Coimbatore -641 021

BONAFIDE CERTIFICATE

REG.NO

SUBJECT CODE

This is to certified that this is a bonafide record of work done by

_____ of _____ during

the year 2019-2020 for the Practical Examination held on _____

at Karpagam Academy of Higher Education, Coimbatore-21.

Faculty In-charge

Head of the Department

Internal Examiner

External Examiner

CONTENTS

EX.NO.	DATE	NAME OF THE EXPERIMENT	PAGE NO.	SIGN
1	25.07.19	Matrix Addition	1	
2	01.08.19	Matrix Multiplication	3	
3	08.08.19	Transpose of Matrix	5	
4	22.08.19	Inverse of a Matrix	7	
5	29.08.19	Plotting the graphs of the functions e^{ax+b} , log(ax + b), $sin(ax + b)$, $cos(ax + b)$, $\frac{1}{ax+b}$ and $ ax + b $	9	
6	05.09.19	Plotting the graphs of polynomials of degree 4 and 5 and its derivative graph	16	
7	12.09.19	Sketching Parametric Curves	19	
8	26.09.19	Obtaining surface of revolution of curves	24	

MATRIX ADDITION

Question:

Add any two matrices of order three using Scilab.

Aim:

To add the two matrices of order three using Scilab.

Algorithm:

Step 1: Start the programme.

Step 2: Define the matrices A and B of order three.

Step 3: Add the matrices A and B and store the value in matrix C.

Step 4: Save and execute the programme.

Step 5: Run the programme and view the output in Scilab console.

Step 6: Stop the programme.

// Matrix Addition

clc;

A = [1 2 3; 4 5 6; 7 8 9];

B = [045; 768; 123];

C = A + B

Output:

-->C

C =

1. 6. 8. 11. 11. 14. 8. 10.

12.

Result:

Thus the programme has been executed successfully and the output has been verified.

MATRIX MULTIPLICATION

Question:

Multiply any two matrices of order three using Scilab.

Aim:

To multiply the two matrices of order three using Scilab.

Algorithm:

Step 1: Start the programme.

Step 2: Define the matrices A and B of order three.

Step 3: Multiply the matrices A and B and store the value in matrix C.

Step 4: Save and execute the programme.

Step 5: Run the programme and view the output in Scilab console.

Step 6: Stop the programme.

// Matrix Multiplication

clc

A = [123; 456; 789];B = [045; 768; 123];

C = A * B

Output:

-->C

C =

17.22.30.41.58.78.

65. 94. 126.

Result:

Thus the programme has been executed successfully and the output has been verified.

TRANSPOSE OF A MATRIX

Question:

Transpose of any matrix of order three using Scilab.

Aim:

To transpose the matrix of order three using Scilab.

Algorithm:

Step 1: Start the programme.

Step 2: Define the matrix A of order three.

Step 3: Transpose the matrix A and store the value in matrix B.

Step 4: Save and execute the programme.

Step 5: Run the programme and view the output in Scilab console.

Step 6: Stop the programme.

// Transpose of a matrix

clc

 $A = [\ 1\ 2\ 3; 4\ 5\ 6; 7\ 8\ 9\];$

B = A'

Output:

-->B

B =

- 1.4.7.2.5.8.
- 3. 6. 9.

Result:

Thus the programme has been executed successfully and the output has been verified.

INVERSE OF A MATRIX

Question:

Find the inverse of a matrix of order three using Scilab.

Aim:

To find the inverse of a matrix of order three using Scilab.

Algorithm:

Step 1: Start the programme.

Step 2: Define the matrix A of order three.

Step 3: Inverse the matrix A and store the value in matrix B.

Step 4: Save and execute the programme.

Step 5: Run the programme and view the output in Scilab console.

Step 6: Stop the programme.

// Inverse of a matrix

clc

A = [1 3 1; 1 1 2; 2 3 4];

B = inv(A)

Output:

-->B

B =

 2.
 9.
 -5.

 0.
 -2.
 1.

 -1.
 -3.
 2.

Result:

Thus the programme has been executed successfully and the output has been verified.

EX. NO: 5 DATE: 29.08.19

Plotting of graphs of functions e^{ax+b} , $\log(ax+b)$, $\frac{1}{ax+b}$, $\sin(ax+b)$ $\cos(ax+b)$, |ax+b| and to illustrate the effect of a and b on the graph

Question:

Plot exponential, logarithmic, trigonometric functions using Scilab.

Aim:

To plot exponential, logarithmic, trigonometric functions using Scilab.

Algorithm:

- **Step 1:** Start the programme.
- **Step 2:** Give the values of *a* and *b* by real numbers.
- **Step 3:** Define the domain of the function and store it in x.
- **Step 4:** Store the plotting function in y.
- **Step 5:** Plot the function y and give the title of the graph.
- **Step 6:** Save and execute the programme.
- **Step 7:** Run the programme and view the output in graphic window.
- Step 8: Stop the programme.

(a) Exponential function

clf

a = 1;

b = 2;

x = [0:0.1:2];

y = exp(a*x+b);

plot2d(x, y,3);

title('Graph of Exponential Function')

xlabel ("X-axis")

ylabel (" Y-axis")

(b) Logarithmic function

clf

a = 1;

b = 2;

x = [0:0.1:2];

 $y = \log(a^*x + b);$

plot2d(x, y,3);

title('Graph of Logarithmic Function')

xlabel ("X-axis")

ylabel ("log(ax+b)")

(c) Inverse function

clf

a = 1;

b = 2;

x = [0:0.1:2];

 $y = (a*x+b)^{-1};$

plot2d(x, y,3);

title('Graph of Inverse Function') xlabel ("X-axis")

ylabel (" 1/ ax+b ")

(d) Sine function clf a = 1; b = 2; x = [0:0.1:2*%pi]; y = sin(a*x+b);plot(x, y); title(" Graph of Sin Function") xlabel ("angles in radians") ylabel (" sin(ax+b)")

(e) Cosine function

clf

a = 1;

b = 2;

x = [0:0.1:2*% pi];

y = cos(a*x+b);

plot2d(x, y,3);

title('Graph of Cos Function')

xlabel ("angles in radians")

ylabel (" cos(ax+b)")

(f) Mod function

clf

a = 1;

b = 2;

x = [-20:0.1:20];

y = abs(a*x+b);

plot2d(x, y,3);

title('Graph of Mod Function') xlabel ("X-axis") ylabel (" |ax+b|")

Output:

Result:

Thus the programme has been executed successfully and the outputs have been taken.

EX. NO: 6 DATE: 05.09.19

Plotting of graphs of polynomials of degree 4 and 5 and the derivative graph

Question:

Plot the graphs of polynomials of degree 4 and 5 and also its derivative using Scilab.

Aim:

To plot the graphs of polynomials of degree 4 and 5 and also its derivative using Scilab.

Algorithm:

- **Step 1:** Start the programme.
- **Step 2:** Use linspace command to fix the values of x.
- **Step 3:** Define the polynomials p1(x) and p2(x).
- **Step 4:** Display the values of p1(x) and p2(x)
- **Step 4:** Find derivatives of p1(x) and p2(x) and store it in d1 and d2.
- Step 5: Use plot2d command to plot the graphs of polynomials and its derivatives
- **Step 6:** Save and execute the programme.
- **Step 7:** Run the programme and view the output in graphic window.
- **Step 8:** Stop the programme.

17

Coding:

clf

x=linspace(0, 1, 100)';

p1=4*x^4 + 5*x^3 + 2*x^2 + 6* x +7;

p2= 7*x^5 -3*x^4 +8*x^3 +2 *x^2 +4*x +9;

disp(p1);

disp(p2);

d1=derivat(p1);

d2=derivat(p2);

plot2d(x, [p1 p2 d1 d2], [5 9 -9 -1], leg="p1@p2@d1@d2");

title('Graphs of polynomials and its derivatives')

xlabel(" X-axis")

ylabel(" Polynomials and derivatives")

Result:

Thus the programme has been executed successfully and the output has been verified.

EX. NO: 7 DATE: 12.09.19

Sketching Parametric Curves (Trochoid, Cycloid, Epicycloid, Hypocycloid)

Question:

Sketch the parametric curves (Trochoid, Cycloid, Epicycloid, Hypocycloid)

Aim:

To sketch the parametric curves (Trochoid, Cycloid, Epicycloid, Hypocycloid)

Algorithm:

- **Step 1:** Start the programme.
- **Step 2:** Give the values of *a* and *b* and define the
- **Step 3:** Define the domain of the function and store it in t.
- **Step 4:** Define the parametric curves.

Step 5: Plot the function x,y and give the title of the graph.

- **Step 6:** Save and execute the programme.
- **Step 7:** Run the programme and view the output in graphic window.

Step 8: Stop the programme.

20

Coding:

a) Trochoid

clf a=3; b=5; t = [-2*%pi:0.01:2*%pi]; x = a*t-b*sin(t); y = a-b*cos(t); plot2d(x,y,3);

title('Trochoid')

c) Epicycloid

clf

k=5;

r=5;

t = [-2*%pi:0.01:2*%pi];

 $x = r^{*}(k+1)^{*}\cos(t) - r^{*}\cos((k+1)^{*}t);$

 $y = r^{*}(k+1)^{*}sin(t)-r^{*}sin((k+1)^{*}t);$

plot(x,y);

```
title('Epicycloid')
```


d) Hypocycloid clf k=5; r=5; t = [-2*%pi:0.01:2*%pi]; x = r*(k-1)*cos(t)+r*cos((k-1)*t); y = r*(k-1)*sin(t)-r*sin((k-1)*t); plot(x,y); title('Hypocycloid')

Output:

Result:

Thus the programme has been executed successfully and the outputs have been taken.

Obtaining surface of revolution of curves

Question:

Obtain the surface of revolution of the circle using Scilab.

Aim:

To obtain the surface of revolution of the circle using Scilab.

Algorithm:

- **Step 1:** Start the programme.
- **Step 2:** Define the range of u and range of v.
- **Step 3:** Define the functions x,y and z.

Step 4: Use the 3dplot command to plot the revolution of circle.

Step 5: Save and execute the programme.

Step 6: Run the programme and view the output in graphic window.

Step 7: Stop the programme.

- u = linspace(-% pi/2,% pi/2,40);
- v = linspace(0, 2*% pi, 20);
- $x = \cos(u)' * \cos(v);$
- y = cos(u)'*sin(v);
- z = sin(u)'*ones(v);

plot3d2(x,y,z);

title('Revolution of Circle')

Output:

Result:

Thus the programme has been executed successfully and the output has been taken.