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Course Obijectives

1. To study the fundamentals and applications of classical mechanics and quantum chemistry.

2. Tounderstand the structure of an atom and different approximation methods.
3. Tolearn the concept of Group theory and their applications.

Course Outcomes

Students have learned and understood

The differences between classical and quantum mechanics. The limitations of classical mechanics.
the connection of quantum mechanical operators to observables
probabilities, amplitudes, averages, expectation values, and observables

how molecular phenomena can be related to model problems
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the fundamentals of group theory
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6. the connection between common approximation methods and standard chemical frameworks (Born-
Oppenheimer approximation, molecular orbitals, for example)

7. ldentified the point groups of molecules and apply the concept of group theory to predict the
spectroscopic properties.

UNIT I — Failure of classical mechanics and Operators
Failure of classical mechanics and the success of quantum theory in explaining black body radiation and
photoelectric effect.

The time dependent and time independent Schrodinger equations - Born’s interpretation of the wave
function. Requirements of the acceptable wave function.

Algebra of operators. Sums and products of operators - commutator - linear operators- eigen functions
and eigen values - correspondence between physical quantities in classical mechanics and operators in
guantum mechanics - Hamiltonian operator - angular momentum operator. Quantization of angular
momentum and its spatial orientation - average values - postulates of quantum mechanics.

UNIT Il — Schrodinger equation
Particle in a one-dimensional box - quantization of energy - normalization of wave function -

orthogonality of the particle in a one-dimensional box wave functions. Illustration of the uncertainty
principle and correspondence principle with reference to the particle in a one-dimensional box - particle
in a three dimensional box - separation of variables.

Solving of Schrodinger equation for one-dimensional harmonic oscillator.Harmonic oscillator model of a
diatomic molecule.lllustration of the uncertainty principle and correspondence principle with reference to
harmonic oscillator.

Solving of Schrodinger equation for a rigid rotor.Rigid rotor model of a diatomic molecule.

UNIT 11 - Approximation Methods
Schrodinger equation for the H-atom (or H-like species)- separation of variables - energy levels. Radial
distribution functions - orbitals and orbital shapes. Probability density and radial distribution functions.

Need for approximation methods. The perturbation theory- application of perturbation method to systems
such as anharmonic oscillator and He-atom.

The variation method - application of variation method to systems such as anharmonic oscillator and He-
atom.

UNITIV — Symmetry elements and Matrices
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Symmetry elements and symmetry operations - definition of identical and equivalent elements
configurations - effect of performing successive operations commutative and non-commutative - inverse
operations.

Groups and their basic properties - definition of a group - basic properties of a group-definition of abelian
- cyclic- isomorphic, finite, infinite groups and subgroup. Symmetry classification of molecules into point
groups-Schoenflies symbol (only-difference between point group and space group).

Matrices- Definition of matrix, square matrix, diagonal matrix, null matrix, unit matrix, row matrix,
column matrix, symmetric matrix, skew symmetric matrix and conjugate matrix. Multiplication,
commutative and non commutative-determination of inverse of a matrix, block multiplication of matrices-
addition and subtraction of matrices.

Matrix notations for symmetry operations of C,,and Cs, groups-construction of character tables for Cay
and Csy point groups.

UNIT V — Group theory

Definition of reducible and irreducible representations - irreducible representations as orthogonal vectors
- direct product rule, the great orthogonality theorem and its consequences - determinations of the
characters for irreducible representation of C,yand Cs, point groups using the orthogonality theorem.

Group theory and Vibrational spectroscopy - vibrational modes as basis for group representation -
symmetry selection rules for IR and Raman spectra, Mutual exclusion principle - classification of
vibrational modes.
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Edition). Jalandar: Vishal Publishing Co.
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S.No Lecture Duration Topics to be Covered Support Material/Page
Period Nos
UNIT-I
1 1 Failure of Classical mechanics and T1:3-7
Operators: Introduction, Block body
radiation and quantum theory
2 1 Photoelectric effect T1:7-11
3 1 The time dependent and time T1:25-27
independent Schrodinger equations
4 1 Requirements of the acceptable wave T1:27-29
functions
5 1 Operators: Algebra of operators, sum T1:34-37
and products of operator, commutator-
linear operator
6 1 Eigen function and eigen values T1:37-40
7 1 Basic postulates of quantum mechanics | T1:40-48
8 1 Momentum operator, Hamiltonian T1:42-43
operator, angular momentum operator
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9 1 Recapitulation and discussion of
important questions
Total No of Hours Planned For Unit 1=9
UNIT-11
1 1 Schrodinger equation: Introduction, T1:65-67
Free Particle system
2 1 Particle in a one dimensional box, T1:67-70
Quantization of energy
3 1 Normalization of the wave function, T1:70-79
Orthogonality of the particle in a one
dimensional box wave functions
4 1 Particle in a ring T1:119-122
5 1 Particle in a three dimensional box, T1:122-123,123-124
separation of variables
6 1 Schrodinger equation for one T1:104-106
dimensional harmonic oscillator-
Classical mechanical treatment
7 1 Quantum mechanical treatment T1:106-113
8 1 A comparison of classical and Quantum | T1:113
mechanical treatment
9 1 Solving the Schrodinger equation fora | T1:136-138
rigid rotor: (rigid rotor model of
diatomic molecules )
10 1 Recapitulation and discussion of
important questions
Total No of Hours Planned For Unit 11=10
UNIT-HI
1 1 Approximation methods: Schrodinger T1:142-144
equation for H-atom
2 1 Separation of variables T1:146-153
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3 1 Radial distribution functions, orbitals T1:153-159
and orbital shapes
4 1 Method of perturbation-The T1:192-194
perturbation theory
5 1 First order perturbation T1:194-202
6 1 Second order perturbation T1:202-204
7 1 Variation method to system such as T1:185-192
anhormonic oscillator
8 1 Multielectronic atoms (He-atom) T1:223-239
9 1 Slater determinants T1:239-240
10 1 Recapitulation and discussion of
important questions
Total No of Hours Planned For Unit 111=10
UNIT-IV
1 1 Symmetry elements and symmetry T2:1-7
operations
2 1 Commutative, non commutative and
inverse operations
3 1 Group and their basic properties: T2:7-12
Definition of groups and their types
4 1 Symmetry classification in to point T2:14-29
groups-Scheonflies symbol
5 1 Matrices- Definitions and their types T2:43-47
6 1 Multiplication,commutative and T2:47-51
noncommutative determination of
inverse of a matrix
7 1 Character table for C,V point groups T2:83-84
8 1 Character table for C3V point groups T2:62-63
9 1 Recapitulation and discussion of
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important questions

Total No of Hours Planned For Unit IV=9

UNIT-V

1 1 Definition of reducible and irreducible | T2:52-57
representations

2 1 Irreducible representations as T2:61
orthogonal vectors

3 1 Direct product rule T2:100-102
4 1 The great orthogonalty theorm T2:59-60
5 1 Group theory and vibrational T2:79-86

spectroscopy-vibrational modes as basis
for group representation

6 1 Symmetry selection rule for IR and T2:104-105
Raman
7 1 Mutual exclusion principle T2:105-106

classification of vibrational modes

8 1 Recapitulation and discussion of
important questions

9 1 Discussion of previous ESE question
papers

10 1 Discussion of previous ESE question
papers

Total No of Hours Planned for unit V=10

Total 48
Planned
Hours

References:

TEXT BOOKS
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T1: Prasad .R.K (2008) Quantum Chemistry(I1l Edition) New Delhi.New Age International Publishers
pvt.Ltd.

T2: Raman.K.V (2002) Group Theory and its Applications to chemistry.New delhi. Tata Mc graw
Publishing company.
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LECTURE NOTES
Unit-1 Failure of classical mechanics and Operators:
SYLLABUS

UNIT I — Failure of classical mechanics and Operators

Failure of classical mechanics and the success of quantum theory in explaining black body radiation and
photoelectric effect.

The time dependent and time independent Schrodinger equations - Born’s interpretation of the wave
function. Requirements of the acceptable wave function.

Algebra of operators. Sums and products of operators - commutator - linear operators- eigen functions
and eigen values - correspondence between physical quantities in classical mechanics and operators in
guantum mechanics - Hamiltonian operator - angular momentum operator. Quantization of angular
momentum and its spatial orientation - average values - postulates of quantum mechanics.

Failure of classical mechanics and the success of quantum theory in explaining block body
radiation:

All normal matter at temperatures above absolute zero emits electromagnetic radiation, which
represents a conversion of a body's internal thermal energy into electromagnetic energy, and is
therefore called thermal radiation. Conversely, all normal matter absorbs electromagnetic
radiation to some degree. An object that absorbs ALL radiation falling on it, at all wavelengths,
is called a blackbody. When a blackbody is at a uniform temperature, its emission has a
characteristic frequency distribution that depends on the temperature. This emission is
called blackbody radiation.

A room temperature blackbody appears black, as most of the energy it radiates is infra-red and
cannot be perceived by the human eye. Because the human eye cannot perceive light waves at
lower frequencies, a black body, viewed in the dark at the lowest just faintly visible temperature,
subjectively appears grey, even though its objective physical spectrum peaks in the infrared
range. When it becomes a little hotter, it appears dull red. As its temperature increases further it
becomes yellow, white, and ultimately blue-white.
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Figure 1.1.1 Blackbody Radiation. When heated, all objects emit electromagnetic radiation
whose wavelength (and color) depends on the temperature of the object. A relatively low-
temperature object, such as a horseshoe forged by a blacksmith, appears red, whereas a higher-
temperature object, such as the surface of the sun, appears yellow or white. Images used with
permission from Wikipedia.

Blackbody radiation has a characteristic, continuous frequency spectrum that experimentally
depends only on the body's temperature. In fact, we can be much more precise: a body emits
radiation at a given temperature and frequency exactly as well as it absorbs the same
radiation. This was proved by Gustav Kirchhoff: the essential point is that if we suppose a
particular body can absorb better than it emits, then in a room full of objects all at the same
temperature, it will absorb radiation from the other bodies better than it radiates energy back to
them. This means it will get hotter, and the rest of the room will grow colder, contradicting the
second law of thermodynamics. However, a metal glows when it’s heated up enough
(Figure 1.1.11.1.1): why is that? As the temperature is raised, the lattice of atoms vibrates more
and more, these vibrations scatter and accelerate the electrons. Even glass glows at high enough
temperatures, as the electrons are loosened and vibrate.

Any body at any temperature above absolute zero will radiate to some extent, the intensity and
frequency distribution of the radiation depending on the detailed structure of the body. To begin
analyzing heat radiation, we need to be specific about the body doing the radiating: the simplest
possible case is an idealized body which is a perfect absorber, and therefore also (from the
above argument) a perfect emitter.

So how do we construct a perfect absorber in the laboratory? OK, nothing’s perfect, but in 1859
Kirchhoff had a good idea: a small hole in the side of a large box is an excellent absorber, since
any radiation that goes through the hole bounces around inside, a lot getting absorbed on each
bounce, and has little chance of ever getting out again. So, we can do this in reverse: have an
oven with a tiny hole in the side, and presumably the radiation coming out the hole is as good a
representation of a perfect emitter as we’re going to find (Figure 1.1.21.1.2).

PREPARED BY Dr.M.R.EZHILARASI, ASSOCIATE PROFESSOR, DEPT OF CHEMISTRY, KAHE.
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Radiator

Emitted Radiationis only a function
of Radiator’s Temperature

Figure 1.1.21.1.2: Blackbody radiator is any object that is a perfect emitter and a perfect absorber
of radiation.

By the 1890’s, experimental techniques had improved sufficiently that it was possible to make
fairly precise measurements of the energy distribution of blackbody radiation. In 1895, at the
University of Berlin, Wienand Lummer punched a small hole in the side of an otherwise
completely closed oven, and began to measure the radiation coming out. The beam coming out
of the hole was passed through a diffraction grating, which sent the different
wavelengths/frequencies in different directions, all towards a screen. A detector was moved up
and down along the screen to find how much radiant energy was being emitted in each frequency
range. They found a radiation intensity/frequency curve close to the distributions in
Figure 1.1.31.1.3.
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Figure 1.1.31.1.3: Graphic representation of spectral distribution of blackbody radiation at
different temperatures. Image used with permission (CC-SA-BY 3.0; 4C). The Stefan-
Boltmann’s Law is observed as the increase in the emission amplitude with increasing
temperature and the Wien’s Displacement Law is observed as the shift to smaller wavelength
with increasing temperature.

By measuring the blackbody emission curves at different temperatures (Figure 1.1.31.1.3), they
were also able to construct two important phenomenological Laws (i.e., formulated from
experimental observations, not from basic principles of nature): Stefan-Boltmann’s
Law and Wien’s Displacement Law.

1.2. The photoelectric effect

The photoelectric effect, the emission of electrons by a metal when light falls on it, was
discovered by Hertz in 1887. Experiments showed the following characteristics of this effect.
When light falls on a metal surface in a vacuum, the emission of electrons depends upon the
frequency of the incident light. There is a minimum frequency of light which is required for the
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emission of electrons from a metal. The value of this threshold frequency varies from metal to
metal. The emission of electrons as well as the energy of the emitted electrons, photoelectrons,
does not depend upon the intensity of the light source. However, if electrons are emitted, then the
magnitude of their current is proportional to the intensity of the incident light. Finally, the energy
of the photoelectrons varies linearly with the frequency of the light.

The classical theory of electromagnetic radiation can explain some of these characteristics but
not all of them. Credit for solving this problem goes to Einstein who, in 1905, refined and
extended the ideas Planck used to explain the black body radiation spectrum and assumed that
'light consists of quanta of energy, called photons'. In fact, Planck had introduced the concept of
material resonators possessing quanta of energy nhv, where nis an integer, while Einstein
assumed that each quantum of light possesses the energy 4v. The absorption of a single photon
by an electron increases the energy of the electron by Av. Part of this energy is used to remove
the electron from the metal. This is called the work function. The remaining part of the energy
imparted to the electron increases its velocity and consequently its kinetic energy. Thus if Av, the
energy of a photon incident on a metal is greater than the energy E required to separate the
electron from the metal, and v is the velocity of the emitted electron, then the following relation
must hold:

All the characteristics of this effect are easily explained by the concept that light consists of
photons. The above formula shows that if the energy of the incident photon is less than the work
function, the electrons cannot be separated from the surface of the metal and therefore will not be
emitted. For a particular metal, the work function E being constant, the relationship between the
energy of the incident photon and the kinetic energy of the emitted electron is linear. It is also
clear that a more intense source of light will cause photons to be emitted at a greater speed and
this will produce a stronger electron current. Thus Einstein was able to provide a completely
satisfactory picture of the photoelectric effect by using the concept of the quantum nature of
light.

In fact, the dual nature of light is brilliantly reflected by the very assumption Einstein made
about the energy of a photon. The frequency is determined by the wave nature of light and is
used to define the energy of the particles constituting the light.

It is interesting to note that, in 1921, Einstein was awarded the Nobel Prize in physics ‘for his
services to Theoretical Physics and especially for his discovery of the law of the photoelectric
effect' and notfor propounding special relativity in 1905 and general relativity in 1915. His
extraordinarily remarkable work on relativity changed the complexion of the entire field of
physics and ensured him a seat among the immortals of the subject, but surprisingly this
magnificent contribution to the pool of knowledge was never considered specifically for that
enviable prize!
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The Schrodinger Equation

In 1925, Erwin Schrodinger and Werner Heisenberg independently developed the new quantum
theory. Schrddinger's method involves partial differential equations, whereas Heisenberg's
method employs matrices; however, a year later the two methods were shown to be
mathematically equivalent. Most textbooks begin with Schrédinger's equation, since it seems to
have a better physical interpretation via the classical wave equation. Indeed, the Schrodinger
equation can be viewed as a form of the wave equation applied to matter waves.

The Time-Independent Schrodinger Equation
Here we follow the treatment of McQuarrie [1], Section 3-1. We start with the one-dimensional
classical wave equation,

2 2
Fu_ 107 (10)
dr? v? ot?
By introducing the separation of variables
u(z,t) = (z)f (t) (11)
we obtain
d*i(z 1 d? f(t
sy 2 - 2y IO @2
dz? v2 dt?
If we introduce one of the standard wave equation solutions for such as £__ (the constant

can be taken care of later in the normalization), we obtain

PREPARED BY Dr.M.R.EZHILARASI, ASSOCIATE PROFESSOR, DEPT OF CHEMISTRY, KAHE.
Page31/31



http://vergil.chemistry.gatech.edu/notes/quantrev/node36.html#McQuarrie:83

KARPAGA

ACADEN ICATION

KARPAGAM ACADEMY OF HIGHER EDUCATION

I
Establishe:

CLASS: Il M.SC CHEMISTRY COURSE NAME: PHYSICAL CHEMISTRY-I
COURSE CODE:19CHP103 UNIT-1 BATCH: 2019
2., .2
d @(I) _ W 'yﬁ(r) (13)
dz? vl

Now we have an ordinary differential equation describing the spatial amplitude of the matter
wave as a function of position. The energy of a particle is the sum of kinetic and potential parts

2

E=2_4V(z) (14)

2m

b
which can be solved for the momentum, , to obtain

p = {2m[E — V(z)]}}/* (15)

Now we can use the de Broglie formula (4) to get an expression for the wavelength

h h
A= —= 16
p - EmE- V@D )
W?
The term in equation (13) can be rewritten in terms of A if we recall

that W = 27V gnd XA =v
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w* _ Aty _ A _ ?m[E—EV(J:)] (17)
2 L A2 h

When this result is substituted into equation (13) we obtain the famous time-independent
Schrodinger equation

dzyf{r) 2m . B
) L 2 e - V(@) = 0 a®

which is almost always written in the form

R ()

2m dzr?

+ V(z)¥(z) = Ev(z) (19)

This single-particle one-dimensional equation can easily be extended to the case of three
dimensions, where it becomes

I + V() = Bue) @0

A two-body problem can also be treated by this equation if the mass L is replaced with a
reduced mass

It is important to point out that this analogy with the classical wave equation only goes so far.
We cannot, for instance, derive the time-dependent Schrédinger equation in an analogous fashion
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(for instance, that equation involves the partial first derivative with respect to time instead of the
partial second derivative). In fact, Schrodinger presented his time-independent equation first, and
then went back and postulated the more general time-dependent equation.

The Time-Dependent Schrodinger Equation

We are now ready to consider the time-dependent Schrodinger equation. Although we were able
to derive the single-particle time-independent Schrédinger equation starting from the classical
wave equation and the de Broglie relation, the time-dependent Schrddinger equation cannot be
derived using elementary methods and is generally given as a postulate of quantum mechanics. It
is possible to show that the time-dependent equation is at least reasonable if not derivable, but
the arguments are rather involved (cf. Merzbacher [2], Section 3.2; Levine [3], Section 1.4).

The single-particle three-dimensional time-dependent Schrodinger equation is

. OY(r, 1) _ R, | |
th——p— = —o=VU(x, 1) + V(0)e(r, 1) 1)

where V' is assumed to be a real function and represents the potential energy of the system (a
complex function V' will act as a source or sink for probability, as shown in Merzbacher [2],
problem 4.1). Wave Mechanics is the branch of quantum mechanics with equation (21) as its
dynamical law. Note that equation (21) does not yet account for spin or relativistic effects.

Of course the time-dependent equation can be used to derive the time-independent equation. If

w(r,t) = 1(r)f ()
we write the wavefunction as a product of spatial and temporal terms, :
then equation (21) becomes

s@inZd — s |- v+ V@) o @2

or
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hodf 1 [ B
— = | —— Vi 4+ V(D) | Y[ (23)
& 20 [ 3y TV )] Vi)

Since the left-hand side is a function of £ only and the right hand side is a function of L only,
the two sides must equal a constant. If we tentatively designate this constant E (since the right-
hand side clearly must have the dimensions of energy), then we extract two ordinary differential
equations, namely

1 df(t)  iE
O a - R 24
and

ﬁz
— 5 VA(x) + V(£)¢(x) = B¢ (x) 29)

The latter equation is once again the time-independent Schrddinger equation. The former
equation is easily solved to yield

Flt) = e B4R (26)

The Hamiltonian in equation (25) is a Hermitian operator, and the eigenvalues of a Hermitian

f(#)

operator must be real, so E is real. This means that the solutions are purely oscillatory,
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f(2) et? = cosfl +1 sinf
since never changes in magnitude (recall Euler's formula ).
Thus if
P(r,t) = ¢(r) g Et/R (27)
o (rt) ¥(r)
then the total wave function differs from only by a phase factor of constant
magnitude. There are some interesting consequences of this. First of all, the
[ (x, £)[?
quantity is time independent, as we can easily show:
[ (r,8)]? = o (e, 8)a) (x, £) = 5P (x) e F My (x) = 3" (r)e(x) (28)

Secondly, the expectation value for any time-independent operator is also time-independent,

'95’(1': t)

if satisfies equation (27). By the same reasoning applied above,

<A>= f ¥ (r, 1) Ay(r, ) = f " (r) Ay (r) (29)

For these reasons, wave functions of the form (27) are called stationary states. The

'95’(1': t)

state is ~“stationary,” but the particle it describes is not!

Of course equation (27) represents a particular solution to equation (21). The general solution to
equation (21) will be a linear combination of these particular solutions, i.e.
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vlrt) = D ae () (30)

Operators
Levine [3] defines an operator as ““a rule that transforms a given function into another function”
d/dr
(p. 33). The differentation operator is an example--it transforms a differentiable
f(z) f'(z)
function into another function . Other examples include integration, the square
root, and so forth. Numbers can also be considered as operators (they multiply a function).
McQuarrie [1] gives an even more general definition for an operator: ~~An operator is a symbol
that tells you to do something with whatever follows the symbol” (p. 79). Perhaps this definition
Cy 5
is more appropriate if we want to refer to the operator acting on NH , for example.
Operators and Quantum Mechanics
In quantum mechanics, physical observables (e.g., energy, momentum, position, etc.) are
represented mathematically by operators. For instance, the operator corresponding to energy is
the Hamiltonian operator

i EEZI?E—FV (31)
N 2 imi '

where 2 is an index over all the particles of the system. We have already encountered the single-
particle Hamiltonian in equation (25). The average value of an observable A represented by an

(r)

operator Afora quantum molecular state is given by the ““expectation value" formula

< A>= fw*(r)ﬁw(r)dr (32)
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Basic Properties of Operators
Most of the properties of operators are obvious, but they are summarized below for
completeness.

e The sum and difference of two operators Aand B are given by

(A+B)f = Af + Bf (33)
(A— B)f = Af — Bf (34)

e The product of two operators is defined by

ABf = A[Bf] (35)

e Two operators are equal if

Af = Bf (36)

o for all functions

e The identity operator 2L does nothing (or multiplies by 1)
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if=g (37)

e A common mathematical trick is to write this operator as a sum over a complete set of
states (more on this later).

Yl =f (38)

]

e The associative law holds for operators

A(BG) = (AB)C (39)

AB +# BA
e The commutative law does not generally hold for operators. In general, t
is convenient to define the quantity

A B]= AB - BA (40)

L

e which is called the commutator of A and E‘ Note that the order matters, so

[ﬁ:é]:_[énﬁ] . [A:E]ZD

that If Aand B happen to commute, then

e The n-th power of an operator A™ is defined as T successive applications of the
operator, e.g.
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A%f = AAf (41)

o The exponential of an operator e is defined via the power series

(42)

Linear Operators
Almost all operators encountered in quantum mechanics are linear operators. A linear operator
is an operator which satisfies the following two conditions:

A(f +9) = Af + Ag 43)
Acf) = cAf (44)
. f g , .
where £ is a constant and and are functions. As an example, consider the

d/dz ()2 d/dz
operators and . We can see that is a linear operator because
(d/dz)[f(z) +g(z)] = (d/dz)f(z) + (d/dz)g(z) (45)
(d/dz)[cf(z)] = c(d/dz)f(z) (46)
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()?
However, is not a linear operator because
(f(z) +9(2))* # (f(2))” + (g(z))* (47)

The only other category of operators relevant to quantum mechanics is the set
of antilinear operators, for which

A(Nf + ng) = NAf + p*Ag (48)

Time-reversal operators are antilinear (cf. Merzbacher [2], section 16-11).

Eigenfunctions and Eigenvalues

L

An eigenfunction of an operator A is a function such that the application

. f

of Aon gives  again, times a constant.

Af = kf (49)

where K is a constant called the eigenvalue. It is easy to show that if A is a linear operator with

-,

g g
an eigenfunction , then any multiple of s also an eigenfunction of A.
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I
Establishe:

When a system is in an eigenstate of observable A (i.e., when the wavefunction is an

eigenfunction of the operator A) then the expectation value of A is the eigenvalue of the
wavefunction. Thus if

Ay(r) = ar(r) (50)
then
<A> = f " (x) Ay (r)dr (51)

assuming that the wavefunction is normalized to 1, as is generally the case. In the event

Y(r)

that is not or cannot be normalized (free particle, etc.) then we may use the formula

cas=1 ”"i’*(r;‘ﬂ“’i’(r}r [ @) de 52)
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What if the wavefunction is a combination of eigenstates? Let us assume that we have a

wavefunction which is a linear combination of two eigenstates of A with eigenvalues 2 and b

"yil = Cu.’l.i!u. + Cb"l!i!b (53)
Arpy = ah,  Ary = bl

where and . Then what is the expectation value of A?

<A> = f YAy (54)

— f [Catla +eptln]" A [€atla + cb2l]

= [ lewta + el facat + bewy)

= afeuf? [ v +beias [+ acie, [viva+blal [viv,

= alca|” + blcs|”

assuming that ve and : are orthonormal (shortly we will show that eigenvectors of Hermitian
operators are orthogonal). Thus the average value of A is a weighted average of eigenvalues,
with the weights being the squares of the coefficients of the eigenvectors in the overall
wavefunction.
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Hermitian Operators
As mentioned previously, the expectation value of an operator Als given by

<A>= f’!,b*(r)ﬁyﬁ(r)dr (55)

and all physical observables are represented by such expectation values. Obviously, the value of

< A>
a physical observable such as energy or density must be real, so we require to be real.
<A>=< A>"
This means that we must have , or
[ v @Av(e)dr = [ (Ay(@) (e)dr (56)

Operators A which satisfy this condition are called Hermitian. One can also show that for a
Hermitian operator,

[ ) Aale)de = [ (A (1)) s ) &)

(o) 1

for any two states and

An important property of Hermitian operators is that their eigenvalues are real. We can see this
) A, = ayy

as follows: if we have an eigenfunction of A with eigenvalue &, i.e. , then for a

Hermitian operator A
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[vidv. = [valdvy (58
a [viv. = o [y

(a—a*) [ |¢f = 0

[a W = 0 W, =0

Since is never negative, we must have either @ = a* or . Since IS
not an acceptable wavefunction, a = a*, so & is real.

Another important property of Hermitian operators is that their eigenvectors are orthogonal (or

Ya Py .
can be chosen to be so0). Suppose that and are eigenfunctions of A with
a®xb
eigenvalues £ and ﬁ, with . If A is Hermitian then
f pa Az E f P (Ag,)" (59)
b f o _ 2" f g
b-a) [ 42 - o
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_ b#a [iads =0
since @ = a* as shown above. Because we assumed , we must have ,
 Ya _ _ N
Le. and are orthogonal. Thus we have shown that eigenfunctions of a Hermitian

operator with different eigenvalues are orthogonal. In the case of degeneracy (more than one
eigenfunction with the same eigenvalue), we can choose the eigenfunctions to be orthogonal. We

can easily show this for the case of two eigenfunctions of A with the same eigenvalue. Suppose
we have

A, = 3% (60)
Ay = I
. o ¥; i

We now want to take linear combinations of and to form two new
' . 1[{/:1._, 1’{';;, 1[{/:1._, — 1.£IJ 1,£IH — 1’{';; _|_ C'!,il_}
eigenfunctions and ,  Where and . Now we

s Y
want and to be orthogonal, so
[ i = 0 @
[ 45+ e - o
[ugnte [up, =0
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Thus we merely need to choose

i
[ 5

c= (62)

and we obtain orthogonal eigenfunctions. This Schmidt-orthogonalization procedure can be
extended to the case of n-fold degeneracy, so we have shown that for a Hermitian operator, the
eigenvectors can be made orthogonal.

Unitary Operators
A linear operator whose inverse is its adjoint is called unitary. These operators can be thought of
as generalizations of complex numbers whose absolue value is 1.

Ul = Ut (63)

Ut =UU =1

A unitary operator preserves the “lengths” and “angles" between vectors, and it can be
considered as a type of rotation operator in abstract vector space. Like Hermitian operators, the
eigenvectors of a unitary matrix are orthogonal. However, its eigenvalues are not necessarily
real.

Commutators in Quantum Mechanics
The commutator, defined in section 3.1.2, is very important in quantum mechanics. Since a
definite value of observable A can be assigned to a system only if the system is in an eigenstate

of JEL then we can simultaneously assign definite values to two observables A and B only if the
. . A
system is in an eigenstate of both A and B. Suppose the system has a value of for
BJ'
observable A and for observable B. The we require
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Avpa, B, = Aitba, B, (64)

Bipa, B, = Bjtba, 5

If we multiply the first equation by B and the second by A then we obtain

E'Aﬁ"lfilﬁi B; — EAE’!.JEEA:' By (65)

AE’E}EE&;,E}' = ﬁBjyi!A,',Ej

ta; B; R .
and, using the fact that " isan eigenfunction of A and B, this becomes

Jéfii}i’Ai,E_; = AiBjifi:Ai.Ej (66)

ABiy, B, = B;An)a, 5,

so that if we subtract the first equation from the second, we obtain

(ﬁé - éﬁ}’lﬁ’&iﬂj =0 (67)
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[A,B] =0
For this to hold for general eigenfunctions, we must have AB = BA, or . That

is, for two physical quantities to be simultaneously observable, their operator representations
must commute.

Section 8.8 of Merzbacher [2] contains some useful rules for evaluating commutators. They are
summarized below.

[A,B]+[B,A] =0 (68)
(A, A]=0 (69)
[A,B+C] = [A,B]+[A,C] (70)
[A+ B,C) =[A,C]+[B, C] (71)
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[A, BC) = [A, BIC + B[A, C| (72)
[AB,C] = [A,C|B + A[B, C] (73)
[4,[B,C)) +[C,[A, B +[B, [C, A = 0 (74

If Aand B aretwo operators which commute with their commutator, then

[A, B"] = nB" YA, B (75)

[A™ B] = nA™}| (76)

=
.Ejf

We also have the identity (useful for coupled-cluster theory)
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Ap A _ A D Los s A Los sz 2
e” Be :B+[A:B] +§[A: [A:B]] +_|[A: [A: [A: Bm + o (77)
[A,B] = C
Finally, if then the uncertainties in A and B, defined
AA? =< A% > — < A >?
as , obey the relation®
1

(AA)(AB) > 5| <C > (78)

This is the famous Heisenberg uncertainty principle. It is easy to derive the well-known relation

(Az)(Ap.) = (79)

B | =

from this generalized rule.

Postulates of Quantum Mechanics

1. The state of a quantum mechanical system is completely specified by the
¥(r,t)
wavefunction :
2. To every observable in classical mechanics, there corresponds a linear, Hermitian
operator in quantum mechanics. For example, in coordinate space, the momentum
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Fa Po
operator corresponding to momentum in the x direction for a single particle
—inh2
iy
is

3. In any measurement of the observable associated with operator A , the only values that

will ever be observed are the eigenvalues a which satisfy A¥ = aW . Although
measurements must always yield an eigenvalue, the state does not originally have to be in

an eigenstate of A An arbitrary state can be expanded in the complete set of

 Avi=atti =3 e
eigenvectors of A ( ) as , Where the sum can run to
. * o
infinity in principle. The probability of observing eigenvalue " s given by

-~

4. The average value of the observable corresponding to operator A is given by

I U Avdr

3
20, U*dr ®)

(4) =

5. The wavefunction evolves in time according to the time-dependent Schrdodinger equation

HU(r,t) = éﬁ%t—w (4)

The total wavefunction must be antisymmetric with respect to the interchange of all
coordinates of one fermion with those of another. Electronic spin must be included in this set
of coordinates. The Pauli exclusion principle is a direct result of this antisymmetry principle.
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POSSIBLE QUESTIONS:
Part-A (20 x 1= 20 marks) Online Examinations
(Each Question Carry One Mark)

1.Evidence in favour of the wave nature of radiation

a.Interference of radiation b. Photoelectric effect ¢. Compton effect  d. Black body
radiation

2.Black body radiation has a characteristi
a. Continuous spectrum b. Discontinuous spectrum

c. Narrow range of light d. Laser action
3. As per plancks law the characteristic continuous spectrum of radiation depends upon

a. Body’s temperature b. Nature of the body

c. Colour of the body d. Density of the body

4. Stefan Boltzmann law is based on

a. Diffraction of radiation b. Photoelectric effect
c. Compton effect d. Black body radiation

5. The power emitted per unit area of the surface of a black body is directly
proportional to the fourth power of its absolute temperature, the lawis

a. Stefan Boltzmann law b. Weins displacement law

c. Planck’s law d. Jean’s law

6. Black body radiation has a characteristic continuous spectrum of radiation
which depends upon
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a. Body’s temperature b. Nature of the body
c. Colour of the body d. Density of the body

7.The spectrum of black-body radiation at any temperature is related to the
spectrum at any other temperature

a. Stefan Boltzmann law b. Weins displacement law

c. Planck’s law d. Jean’s law

8. As per plancks law the characteristic continuous spectrum of radiation depends upon
a. Body’s temperature b. Nature of the body

c. Colour of the body d. Density of the body

9.The definite region in three dimensional space around the nucleus where there is high
probability of finding an electron of a specific energy E is called

a. Atomic orbital
b. Molecular orbital
c. Nodal plane
d.Median lobes

10. This involves with the knowledge of probability
a. Quantum mechanics b. Classical mechanics
c. Newtonian mechanics d. Fluid mechanics

11. The knowledge of quantum mechanics usually involves a knowledge of
a. Probability b. certainties
C. uncertainties d. possibility

12. Classical mechanics and quantum mechanics tend to give the same results when systems are
in highly excited quantum states. This is

a. Correspondence principle b. Bohrs theory

c. Rutherford theory d. Paulis exclusion principle

13. Classical mechanics and quantum mechanics tend to give the same results when systems are

in
a. Normal states b. Highly excited quantum states
c. Excited to low levels d. When there is no excitation
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14. In quantum mechanics the state of a system is defined by
a. Wave function b.PV, T
c. Gaseous laws d. Law of mass action

15. Simuntaneous specification of position and momentum is impossible for a microscopic
particle. This is

a. Stefan Boltzmann law b. Weins displacement law

C. Planck’s law d. Heisenberg uncertainty principle

16. According to Newtons second law of motion
a.F=ma b.V =ma
c.F=mv d. F=Pv

17. Which one of the following is correct in respect of an electron and a proton having same de-
Broglie wavelength of 2 A

a. Both have same KE b. The KE of proton is more than that of electron

c. Both have same velocity d. Both have same momentum

18. The time independent Schrodinger's equation of a system represents the conservation of the
a. total binding energy of the system b. total potential energy of the system
c. total kinetic energy of the system d. total energy of the system

19. According to Schrodinger, a particle is equivalent to a
a. wave packet b. single wave
c. light wave d. magnetic wave

20. Matter waves are
a. longititudinal b. electromagnetic
c. always travel with the speed of light d. show diffraction

PART- B Questions (Each question carries Six mark)

1. Explain the different postulates of Quantum mechanics.

2. Explain Heisenberg’s uncertainty principle .How it is experimentally verified?

3. Write a note on quantum mechanical operators?

4. Set up Schrodinger wave equation for the rigid rotor of diatomic molecules.

5. Set up Schrédinger wave equation for one dimensional box and solve the equation for its
energy and wave equation.
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6. Give an explanatory note on time dependent Schrodinger equation.

7. S.T.Wein’s and Rayleigh Jeans law are the limiting cases of Plank’s expression.
8. Give a detailed account on Hamiltonian operators.

9. Explain black body radiation and Photoelectric effect.

10. Write the postulates of Quantum mechanics.

11. Describe the linear operator with an suitable example.

PART- C (Question carries ten mark)
1. Schrodinger equation to a particle in one dimensional box.

2. What are the Postulates of quantum mechanics?
3. Give an detail account of Black body radiation?
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SUBJECT: PHYSICAL CHEMISTRY-1 (QUANTUM CHEMISTRY AND GROUP
THEORY)
SUBJECT CODE: 19CHP103
MULTIPLE CHOICE QUESTIONS( EACH QUESTION
CARRY ONE MARK)
UNIT-1
S.NO Question Option A Option B Option C Option D Answer
The definite region in three dimensional space
1 aron'Jnd'the nucleus where there_ is high proba.blllty Atomic orbital Mo_lecular Nodal plane Median Atomic orbital
of finding an electron of a specific energy E is orbital lobes
called
2 This involves with the knowledge of probability Quantum mechanics Classmql Newton_lan Fluid . Quantur_n
mechanics mechanics mechanics | mechanics
3 The knowledge of quantiNgggech4giEs usually Probability certainties uncertanities | possibility | Probability
involves a knowledge of
Classical mechanics and quantum mechanics tend Paulis
. . Correspondence Rutherford . Correspondence
4 to give the same results when systems are in fincinle Bohrs theory theor exclusion rincinle
highly excited quantum states. This is princip y principle princip
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Classical mechanics and quantum mechanics tend Highly excited | Excited to When there Highly excited
5 . . Normal states IS no
to give the same results when systems are in quantum states | low levels excitation quantum states
5 In quantum mechanics the state of a system is Wave function PV. T Gaseous Law of _ Wave function
defined by laws mass action
Slmuntaneoys_specmpatlon of position an.d Stefan Boltzmann V\_/elns Planck’s Helsenl?erg Helsenperg
7 momentum is impossible for a microscopic law displacement law uncertainty | uncertainty
particle. This is law principle principle
8 According to Newtons second law of motion F=ma V =ma F=mv F=Pv F=ma
Which one of the following is correct in respect of y e KE. of Both have Both have
. . proton is more Both have same
9 an electron and a proton having same de-Broglie Both have same KE same same
than that of . momentum
wavelength of 2 A velocity momentum
electron
The time independent Schrodinger's equation of a | total binding energy total potential | total kinetic | total energy total energy of
10 . energy of the energy of of the
system represents the conservation of the of the system the system
system the system [ system
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11 According to Schrodinger, a particle is equivalent wave packet single wave light wave magnetic wave packet

to a wave

always
e o .| travel with | show show
12 Matter waves are longititudinal electromagnetic the speed of | diffraction | diffraction
light
wave wave nature of
13 The de-broglie hypothesis is associated with Qe nature of wave QiR 0T gRpve !‘at.”re nature Of. all material
electron only proton only of radiation | all material .
. particles
particles

The de-broglie wavelength of a charge g and -
14 accelerate through a potential difference of V volts | A=h/NmqV A=hm/NqV hA2mqV A=hWmqV | A=h"2mqV

is

The de-broglie wavelength of a particle having KE _ _ A=hA(mEk | A= _
15 Ex is given by A =h/(VEk) A= h/(\2mEk ) ) hAGmEK) A= h/(N2mEx )
16 The value of Kroneckers delta, is equal to one i= | s not equal 1j=2 ilj=0 i= ]

when toj
17 The value of Kroneckers delta, is zero when =] | is not equal 1/j=2 ij=0 | 1s not equal to

to j

J
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18 The component of linear momentum about any Discrete Continuous Continuous | Line Continuous
axis forms a eigenspectrum eigen spectrum | spectrum spectrum eigen spectrum
19 The component of angular momentum about any Discrete Continuous Continuous | Line Discrete
axis forms a eigenspectrum eigen spectrum | spectrum spectrum eigenspectrum
Mass X
20 Momentum of a particle is Mass x velocity Mass / velocity | velocity x M?/v Mass x velocity
velocity
21 The eigen values for energy must be real imaginary gl?rrnngéfx positive real
22 The eigen values for augular momentum must be | real imaginary El?rrr?t?elfx positive real
: Non linear
: Linear and :
. Non linear and and Linear and has
. : Linear and has real . has . . X
23 Hermitian operator is p real eigen . . imaginary | real eigen
eigen values imaginary .
values . eigen values
eigen values
values
The eigen values for observable physical . . Complex .
24 o real imaginary positive real
quantities must be number
25 In using operators commutator means Multiplying by zero | Additing 1 ?'V'dmg by tl:g/uzltlplylng x;;;tlplylng by
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Is not a Results in a Do not
26 The operators d/dx and multiplication by x Do not commute commute linear non-linear
: : commute
function function
27 T_he classu:_al expression f_or the total energy of a Hamilitonian hermitian Laplacian Eigen Hamilitonian
single particle of mass m is function
If in operating on the sum of two functions an _ Addition Substracting | Vector _
28 operator gives the same result as the sum of the Linear operator Linear
. : operator operator operator
operations on the two functions separately
If the results of two operations is same regardless
29 of the sequence in which the operations are Commute associate Get squared | multiplied | commute
performed, the two operators are said to
30 If the same operator is applied several times in power +ve sign _ve sign Division power
succession it is written with a sign
31 The consequtive operations with two or more Multiplication Addition Substracting | Vector Multiplication
operators on a function is called as operator operator operator operator operator
32 If the operatog IS integration with respect to_x on X414 +C 32 K@ 32 X414 +C
the operand x°, then the result of the operation is
If the operator is differentiating with respect to x
33 on the operand x3, then the result of the operation | X® X312 Kx3 3x? 3x2
IS
34 If the opergator is multiplying by a const_ant on the 6 X312 K@ 32 K@
operand x°, then the result of the operation is
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35 If the operaator is taking the square root on t_he 6 X312 Kol 32 X312
operand x°, then the result of the operation is
36 If3 the operator is taking the square on the operand N X312 Ko 32 NG
x°, then the result of the operation is
37 For the operator differentiation with respect to X, d/dx dx fdx udv d/dx
the operator is
38 A fu_nctlon on which the operation by a operator is Operand dafative Physmal Che_mlcal Operand
carried out is variable variable
One eigen One eigen One function to
An operator is a symbol for a certain mathematical | One function to One property to | value to function to
39 . . another
procedures which transforms another function another another another functi
. unction
value function
According to B_orn integgretation the rfagult of the Same wherever dx is | Different in May be or Same wherever
40 wave function implies that the probability of . . may not be | zero L
. ; X . situated different places dx is situated
finding the electron in region dx is equal
. . . . Do not .
An acceptable well behaved wavefunction (Psi) Y Discontinuous . Multiple .
41 . contineous . L vanish at contineous
will be first derivative infinity valued
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: . : : Do not : :
One of the properties of the acceptable Never increases to Discontinuous : Multiple Never increases
42 . . e . o vanish at A
wavefunction (Psi) infinity first derivative infinity valued to infinity
One of the properties of the acceptable . Discontinuous Do not Multiple .
43 . . Single valued : L vanish at Single valued
wavefunction (Psi) first derivative | . .. valued
infinity
i . . M o . Intensity of
m At constant _frequencyz the photoelectric current Intensity of incident | Kinetic energy | Quantum of | Particles of incident
increases with increasing radiation of radiation radiation radiation L
radiation
Increase the Increase the
Increasing the intensity of incident radiation in Increase of KE of pumber of Decreases KE remains number of
45 . . . electrons electrons
photo electric effect is due to light : ) . KE same ; ) .
emitted in unit emitted in unit
time time
46 A process where ejection of electrons take place Diffraction of Photoelectric Compton Black body | Photoelectric
by the action of light is called radiation effect effect radiation effect
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The spectrum of black-body radiation at any Weins , Weins
47 temperature is related to the spectrum at any other f;vl?\.‘,fan Boltzmann displacement II;l\?Van S Jean’s law | displacement
temperature law law
The power gmlt_ted per unit area of the surface of a Stefan Boltzmann V\_/elns Planck’s ’ Stefan
48 black body is directly proportional to the fourth displacement Jean’s law
; . law law Boltzmann law
power of its absolute temperature, the law is law
49 Stefan Boltzmann law is based on le_fra_ctlon of Photoelectric Compton Bla_ck_body Bla_ck_body
radiation effect effect radiation radiation
50 Weins displacement law is based on lefrqctlon of Photoelectric Compton Bla_ck_body Bla_ck_body
radiation effect effect radiation radiation
. Becomes a .
51 As the black body is heated the spectrum shift to I—_Ilgher frequency Lower . narrower Becomes a | Higher .
side frequency side band broad band | frequency side
Black body radiation has a characteristic Boltzmann
52 continuous spectrum of radiation which depends Planck’s law Faradays law law Jeans law | Planck’s law
upon the body temperature, this is called
53 As per plancks law the characteristic continuous Bodv’s temperature Nature of the Colour of Density of | Body’s
spectrum of radiation depends upon y P body the body the body temperature
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Black body radiation has a characteristic : ,
54 continuous spectrum of radiation which depends Body’s temperature Nature of the Colour of Density of | Body’s
upon body the body the body temperature
. . . Narrow :
_ . Continuous Discontinuous Laser Continuous
55 Black body radiation has a characteristic spectrum spectrum Ir%nt?te of action spectrum
56 EV'.d encein favour of the particle nature of le_fra_ctlon 4 Compton effect | polarisation | interference [ Compton effect
radiation radiation
Evidence in favour of the particle nature of Diffraction of Black body . . Photoelectric
57 o . G N polarisation | interference
radiation radiation radiation effect
Evidence in favour of the particle nature of Diffraction of Photoelectric . . Photoelectric
58 o . polarisation | interference
radiation radiation effect effect
59 Evidence in favour of the wave nature of radiation lefrqctlon N Photoelectric Compton Bla_c k_body D|f_fra_ct|on of
radiation effect effect radiation radiation
60 Evidence in favour of the wave nature of radiation Intgrf(?rence of Photoelectric Compton Bla_c k_body Intgrfgrence of
radiation effect effect radiation radiation
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LECTURE NOTES

Unit-2 Schrodinger equation:

SYLLABUS

UNIT Il — Schrodinger equation

Particle in a one-dimensional box - quantization of energy - normalization of wave function -
orthogonality of the particle in a one-dimensional box wave functions. Illustration of the uncertainty
principle and correspondence principle with reference to the particle in a one-dimensional box - particle
in a three dimensional box - separation of variables.

Solving of Schrodinger equation for one-dimensional harmonic oscillator.Harmonic oscillator model of a
diatomic molecule.lllustration of the uncertainty principle and correspondence principle with reference
to harmonic oscillator.

Solving of Schrodinger equation for a rigid rotor.Rigid rotor model of a diatomic molecule.

Particle in a One-Dimensional Box

A particle in a 1-dimensional box is a fundamental quantum mechanical approximation
describing the translational motion of a single particle confined inside an infinitely deep well
from which it cannot escape.

Introduction

The particle in a box problem is a common application of a quantum mechanical model to a
simplified system consisting of a particle moving horizontally within an infinitely deep well
from which it cannot escape. The solutions to the problem give possible values of E and y that
the particle can possess. E represents allowed energy values and y(X)y(x) is a wavefunction,
which when squared gives us the probability of locating the particle at a certain position within
the box at a given energy level.

To solve the problem for a particle in a 1-dimensional box, we must follow our Big, Big recipe
for Quantum Mechanics:

1. Define the Potential Energy, V
2. Solve the Schrodinger Equation
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3. Define the wavefunction
4. Define the allowed energies

Step 1: Define the Potential Energy V

o L4
‘L-"‘ '
<
ey
0 )
x
0 L

A particle in a 1D infinite potential well of dimension LL.

The potential energy is 0 inside the box (V=0 for 0<x<L) and goes to infinity at the walls of the
box (V=w for x<0 or x>L). We assume the walls have infinite potential energy to ensure that the
particle has zero probability of being at the walls or outside the box. Doing so significantly
simplifies our later mathematical calculations as we employ these boundary conditions when
solving the Schrédinger Equation.

Step 2: Solve the Schriodinger Equation

The time-independent Schrodinger equation for a particle of mass m moving in one direction
with energy E is

h2 | d?¥(x) _
- ot V(x)¥(x) = E¥(x) (1)
with

e hhis the reduced Planck Constant where Ai=h2rh=h2n

e mi is the mass of the particle

e Y(X)y(x) is the stationary time-independent wavefunction
e V(x) is the potential energy as a function of position

e EE is the energy, a real number

This equation can be modified for a particle of mass m free to move parallel to the x-axis with zero
potential energy (V = 0 everywhere) resulting in the quantum mechanical description of free motion in
one dimension:
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h2 | d?¥P(x) _
©om + T2 E¥(x) (2)
This equation has been well studied and gives a general solution of:
Y(x) = Asin(kx) + Bcos (kx) (3)

where A, B, and k are constants.

Step 3: Define the wavefunction

The solution to the Schrodinger equation we found above is the general solution for a 1-
dimensional system. We now need to apply our boundary conditions to find the solution to our
particular system. According to our boundary conditions, the probability of finding the particle at

must equal 0 to fulfill this boundary condition giving:

¥(x) = Asin(kx) 4)

We can now solve for our constants (A and k) systematically to define the wavefunction.
Solving for k
Differentiate the wavefunction with respect to x:

av
= kA cos(kx) (5)

d2¥ _
— = k2A cos(kx) (6)

Since y(x)=Asin(kx), then
day/dxe=—kay @)
If we then solve for k by comparing with the Schrédinger equation above, we find:
k=(8m2mE/h2)1/2 (8)

Now we plug k into our wavefunction:
y=Asin(8m2mE/h2)1/2x(9)

Solving for A
To determine A, we have to apply the boundary conditions again. Recall that the probability of
finding a particle at x = 0 or x = L is zero.
When X=Lx=L:

0=Asin(8m2mE/h2)1/2L

This is only true when
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(8m2mE/h2)12L=nn
where n=1,2,3...
Plugging this back in gives us:

y=A sin n/L X
To determine AA, recall that the total probability of finding the particle inside the box is 1,
meaning there is no probability of it being outside the box. When we find the probability and set
it equal to 1, we are normalizing the wavefunction.

fOL v2dx =1

For our system, the normalization looks like:

A: [ sinz (nm/L) xdx=1(10)

Using the solution for this integral from an integral table, we find our normalization constant, A:
A=V2/L (11)

Which results in the normalized wavefunction for a particle in a 1-dimensional box:
y=v2/L sinnn/Lx (12)

Step 4: Determine the Allowed Energies

Solving for E results in the allowed energies for a particle in a box:
En=nzhz8mL> (13)

This is an important result that tells us:

1. The energy of a particle is quantized and
2. The lowest possible energy of a particle is NOT zero. This is called the zero-point energy and
means the particle can never be at rest because it always has some kinetic energy.

This is also consistent with the Heisenberg Uncertainty Principle: if the particle had zero energy,
we would know where it was in both space and time.

What does all this mean?

The wavefunction for a particle in a box at the N=1n=1 and N=2n=2 energy levels look like this:
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n=2
) 4

The probability of finding a particle a certain spot in the box is determined by squaring ywy. The
probability distribution for a particle in a box at the n=1n=1 and n=2n=2 energy levels looks

like this:
2 h=2
n=-1

Notice that the number of nodes (places where the particle has zero probability of being located)
increases with increasing energy n. Also note that as the energy of the particle becomes greater,
the quantum mechanical model breaks down as the energy levels get closer together and overlap,
forming a continuum. This continuum means the particle is free and can have any energy value.
At such high energies, the classical mechanical model is applied as the particle behaves more
like a continuous wave. Therefore, the particle in a box problem is an example of Wave-Particle

Duality.
IMPORTANT FACTS TO LEARN FROM THE PARTICLE IN THE BOX

e The energy of a particle is quantized. This means it can only take on discreet energy values.

e The lowest possible energy for a particle is NOT zero (even at 0 K). This means the
particle always has some kinetic energy.

e The square of the wavefunction is related to the probability of finding the particle in a specific
position for a given energy level.
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e The probability changes with increasing energy of the particle and depends on the position in the
box you are attempting to define the energy for

e In classical physics, the probability of finding the particle is independent of the energy and the
same at all points in the box

Particle in a three-dimensional box

« Generalization of the results for a two-dimensional square box to a three-
dimensional cubic box is straightforward. Since we live in a three-dimensional
world, this generalization is an important one, and we need to be able to think
about energy levels and wave functions in three dimensions. The potential

Viz,y,z) : N L ze0,1]

energy for the cubic box is defined to be O if

ye [0,L] ze0,L] : :
: and and infinite otherwise. This means that the wave

. U[Iiyﬂ:] . . o U[Dﬂy*J:):D

function must satisfy six boundary conditions

Wz, 0,2) =0 Ylz,u,0)=0 2%(L,y,z)=0 2(z,L,z)=0 ’ Wz, y, L) =10
, , , , an .

We first note that the classical energy is the sum of three terms

P2 py P
om  amtom = F
Pz Dy 2=

where —, — and — are the three components of the particle's momentum

P
vector —. Thus, we can write the energy as

E==s;+e, 4=

y
corresponding to the kinetic energy in the =, —and = directions. Because the
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energy is a simple sum of energies for the =, —and =z directions, the wave
function will be a product of wave function forms for the one-dimensional
box, and in order to satisfy the first three of the boundary conditions, we can

take the = functions:

U(z,y,z) = Asin (.,v; ~

As in the two-dimensional case, applying second three boundary conditions
Er =

. J . .
yields the allowed values of —, — and —, which now require three
Ny My .
integers —, — and —:
Rim? Rim? i
e = Iz e T o2y ne T omL2-

so that the allowed values of the total energy are

- e
[

(n3 +n] +ni)

and the wave functions become

nann (5,%) = Asin (S ) oin (25 ) sin (%)

The constant A is determined from the normalization condition
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L L pL
/ / / [on n,n. (2,9, 2) | drdyd> =1
o Jo Jo

Thus, the wave functions are

3/2 _ ~ o
e 3) "o B ) 25

Nz Ty s
, — and — are

restricted to the natural numbers 1,2,3,.... Thus, the lowest energy or ground-
state energy is

As with the two-dimensional box, the three integers

Ei11 =——=
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Visualizing the wave functions is tricky because of their high dimensionality.

The most common method of visualizing functions 01; three variables is the use
flz,y,2
of an isosurface. An isosurface of a function Is the complete set of
y flz,y,2)=C
points *, — and < for which , where C is acho)sen constant.
flz,u, =
Hence the name isosurface - the value of the function IS the same at
all points on the surface.

For wave functions, where the sign can be positive or negative, it is useful to
base the value of < not on the wave function value but rather on the

. . Pﬂ,ﬂ3ﬂ=[rm ymzj = |pﬂ=ﬂ3ﬂ=(riy1:)|: .
probability density . The figure below

. ) UinslT, U, 3] )
shows two isosurfaces of the wave function . The first occurs at a

probability density value of 0.64 and the other occurs at 0.04. These value then
imply that the wave function can have a fixed positive or negative value along
Y123z, Y, 3] = £0.8 . €
the surface. In one case, , While in the
V123(z,y, v) = £0.2
other, :

(a)

@ 2007 Thomzon Higher Education
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Y12a(T,Y, )
Figure: Isosurfaces of at probability density values of 0.64 and 0.04. Red is positive and blue is
negative.

As In the two-dimensional case, the fact that the wave

. Uﬂ:”;,.ﬂ:[rﬂ y,:] .
function Is a product

Wn_n n, (z,¥, :] = %n_ [I]Una [ y]'ﬂ/'n= [:]
means that the probabilities can be calculated from products of one-

dimensional integrals. The probability that a measurement of a particle's

o z € [a,b] y€ [cd] : € [f.g]
position yields a value . and is

b d g
P(r € [a,b] and y € [e,d] and = € [f,g] = f dx f dy / dz [Vn_n,n. (T, 3, 2)|
—_ c f

— [/: UiJI}IdI] [/ﬂd Uia[y)dy]

/: 'uﬁ:[:)d:]

The Quantum Harmonic Oscillator
Rachel Dudik

Harmonic motion is one of the most important examples of motion in all of
physics. Any vibration with a restoring force equal to Hooke’s law is generally
caused by a simple harmonic oscillator. The potential for the harmonic ocillator is
the natural solution every potential with small oscillations at the minimum. Almost
all potentials in nature have small oscillations at the minimum, including many
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systems studied in quantum mechanics. Here, harmonic motion plays a
fundamental role as a stepping stone in more rigorous applications.

The Harmonic Oscillator is characterized by the its Schrodinger Equation. This

equation is presented in section 1.1 of this manual. The harmonic oscillator has
only discrete energy states as is true of theone-dimensional particle in a box

problem. The equation for these states is derived in section 1.2. An exact solution
to the harmonic oscillator problem is not only possible, but also relatively easy to
compute given the proper tools. It is one of the first applications of quantum
mechanics taught at an introductory quantum level. Systems with nearly
unsolvable equations are often broken down into smaller systems. The solution
to this simple system can then be used on them. A firm understanding of the

principles governing the harmonic oscillator is prerequisite to any substantial study
of quantum mechanics.

1 Solution of the Schrodinger Equation

1.1 The Schrodinger Equation for the Harmonic Oscillator

The classical potential for a harmonic oscillator is derivable from Hooke’s law. It is
conventionally written:

Viz) = %F:rj (1)

Where . is the natural frequency, k is the spring constant, and m is the mass of the
body.

.k (2)

For convenience in this calculation, the potential for the harmonic oscillator is written

. 1 a4
Vir) = smw z” (3)
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Placing this potential in the one dimensional, time-independent Schrodinger equation,

it yeilds:
— ;—; f:jr + %mmz U = ET (4)
which equals:
L (e

The Equation for the Quantum Harmonic Oscillator is a second order differential
equation that can be solved using a power series. In following section, 2.2, the power
series method is used to derive the wave function and the eigenenergies for the
guantum harmonic oscillator.

1.2 The Power Series Method

The first step in the power series method is to perform a change of variables by
introducing the dimensionless variable, y2:

Fm

U= t". TI (6)

Substituting this new variable into Equation (5) above yeilds:

d>( 2E
L_.yj +i—
dy® Fie

- ') 2(y) =0 (7)

For very large values of y, the term he iS negligible in comparison to the y? term. With
this fact we can guess that w(y) will be as e«*. The general solution to the differential
equation is:
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T(y) = u(y)e s (8)

We must now calculate the derivatives of T that will be substitued into the
Schrédinger equation.

dl(y)  duly) =* P
v dy ¢ + (—y)u(y)e=
and
d*U(y) dPuly) -2 . du(y) -2 dufy) =2 .. o —?
- = : = [ — : = [ — : = ()l —1 = =
iy’ i e +i yj dy e +i y] dy € +—uky]k +y ]e

d?;iyj e 4 (=) d?{fj e pu(y)(—1l4y)ed + x‘f% —)u(y)eF =0
Canceling terms:
dzzgy:'e:é’i - ifiy)d%ﬂ?:gi —u(y)eF + %“@)E’:’Ej =10
And dividing through by e=%-, we obtain:
if] —(2y) dz;y) + n‘f% — Lju(y) =0

(9)

(10)

(11)

(12)

(13)

The next step is to solve the second order differential equation (13) above for u(y)
so that we can find an exact solution for w(y). We begin by using a power series of y

as the general solution to equation (13). u(y) then takes the form below:
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u(y) =Y any” (14)
[a}

In order to substitute this solution into equation (13) we have to solve the first and
second derivatives of u(y):

=]

dul ,
’t:{;y] = ZD:i_njany”_l (15)
and,
d;;f’") = Z{n — 1){njay™* (16)
B

Replacing the u(y) values in equation (13) we have:

., , - 2FE =
ED (r—1)(n)any™ ™% - ED (2y)(n)any™ " + (2= - 1) ED any® =10 (17)
Simplifying the second term:
“ , , J2E =
n—Lllinlay™ "+ — —-1—2n tpy” =0 18
ED ( J(njany (- ) ED Y (18)

Replacing n with (n+2) in the first term. See section 4, Math Moves and
Helpful Hints, for a discussion of this substitution.

o, , niny—z .  2E o
Zi_i_n +2)—1)(n+ Ejal-lnﬂﬁy'*”"" T+ i 1 —2n)) Z any” =10 (19)
D - 0

and simplifying we have:
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= , 2F )
>l +2)(n+ V)amia + (5= — L= 2n)aa)ly’™ =0 (20)

D Ll

we can then solve for a..., because the coefficient for each power of y must equal zero
(RHS of equation (20)):

_ dn4l-E
e L 1) (21)

Equation (21) is a series representation of all the expansion coefficients in terms of «
o for the power series solution to equation (13). For large values of y, n is also very
large. The ratio of a.. and a, (from formula (21) for the coefficients of the power
series expansion above) is very close to =. Here we have a problem, because in the
limit, = grows faster than the exponential term in w(y). The series must terminate in
order for our solution to have any physical meaning. The best way to terminate the
series is to equate the numerator in equation (21) with zero. We then have:

2FE

M+l— =0 (22)

We can now solve for energy, E:

A, . 1
E=?L‘_En+lj=i_n+5j|ﬁ.;.; (23)

We have found an infinite number of energies for each energy level, n. The formula
for the wave function is incomplete, however, because the power series solution is
incomplete. The individual eigenstates of the Hamiltonian must be made orthogonal.
Hermite polynomials need be incorporated into the final solution in order to do this.
What results is a function of the form:

o= (55) o (5) o] = (24)
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The following is a table for the first 5 eigenenergies and eigenstates for the harmonic

oscillator:2:
n=0 E= ”T“ T = noe =5
n=1 E= 5 T = ao(2y)e =5
n=2 E:MTL'J ‘?l_?’=t'm(4y2-2)e:-§i
n=3 E= h”T“ W= a8y + 12y)e:-§i

T = (16 - 48y* + 12)e =%

>
1l
IS
m
1
.

5 po e T = rp(32y° - 160y3 + 120y)e =

2 Math Moves and Helpful Hints

The Summation Substitution: Why is replacing n with (n+2) in the power series
derivation mathematically legal?

Most textbooks do not expand on the rational for this substitution. The substitution
makes perfect sense, however when each term of the summation is expanded and the
derivatives for each term are taken. The steps below might help with the logic behind
this part of the derivation of the solution to the harmonic oscillator equation: We are
given:
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L]
u(y) = any” (25)
o]

Rewriting this summation in terms of its expansion:

u(y) = '-’Lnl-'n + ﬂlyl + ﬂzyz + ﬂsys T T (26)

Then taking the first and second derivatives of the expanded terms, we have:

du(y)

W = D+ (Lo ™) + 2@y ™) - -+ + (rany™ )] (27)

2

f{j [ ¢ ¢ el P ¢ l
ul(y) _ D+ 0+ (2= 1)(2)aw* * -+ (r— 1)(r)amy" 7] (28)

dyy?

This expansion shows that the first two terms in the second derivative (equation 27
above) are zero because the coefficients are zero. The summation for the second
derivative actually begins with n+2. Hence the substitution in the power series
derivation above.

Hermite Polynomials: What are Hermite polynomials?

The Hermite polynomial is defined as the solution to Hermite’s
Differential equation. This polynomial is a direct result of solving the quantum
harmonic oscillator differential equation. The Hermite's Differential equation takes
the familiar form:

d*y dy
—2xr—+4 2ny = 29
dxr? Tz ny =0 (29)

Where n is a real, non-negative number (n=0,1,2,3..)
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Hermite polynomials form a complete orthogonal set on the interval -oo to +
oo With respect to the function e».. The orthogonality relationship can be shown as
such?:

/e . ) . o m=n
f e” " Hmi{z)Hn(z)dz = { I 2
. 2%nly/n

(30)

m=n

With the orthogonality condition met, piecewise continuous function such as the
solution to the quantum harmonic oscillator can be expressed in terms of the equation
for Hermite polynomials:

i () fix) where 1(x) is continuous (31)
T = P . )
= il ﬂ#ﬂ where f(x) is discontinuous
Where
L e =
Ch = Ff S fl’_I)HnL'_I]ffr (32)
BT J_ o

The Hermite Polynomial is graphed below?:
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307

Figure 1: The Hermite Polynomial.

3 Solved Harmonic Oscillator Problems

1. The Schrdinger equation for the one dimensional harmonic oscillator
is reduced to the following equation for the polynomial u(y):

du(y) ., du{y)  2E ..
iy (2y] o T Lju(y) =0 (33)

a. Determine the recursion relation separately for the even and the odd
energy states.

b. Derive an equation for energy for both the even and the odd states from the
recursion relations above.

c. Find the first three energy values from each of the equations obtained in

(b).

Solution
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Part a. We begin by considering only the even states. The general solution given
in the power series derivation above may be modified so that we include only these
states:

ﬂ':yjl = Zﬂnyjn (34)
[n]

Taking the first and second derivative of u(y) we obtain:

dui_y] — Z{En]ﬂnyzn—l (35)
dy 5
and
dz’“':.?y] — ey 1h 7 In—2
— = 2 — 1) 2n)apy" " 36
= = 1)(zn) (36)

Putting these values for the derivative back into the differential equation:

— ERTH In—2 - In—1 EE - - in __
Zt_]n — 1){Znja,y — ZL_]y]x_lnjany + oo 1) Zan*y =0 (37)
8] o o
simplifying the second term we have:
=, , an_a  2E =
Zi_in— L){2n)any ™ "+ (—— l—;ln:lzgny'” =0 (38)
D = D

Replacing n with (n+1) in the first summation, the equation can be rewritten:

L)

il , . 2E
S (2(n+ 1) = 1)2(n+ a2+ (5= -1- 4n)) S any®™ =0 (39)

[n] o]
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simplifying this:
= 2E an
Z (n4+1)(2n+1ja kn+11+i.F—J-—4””'1n v =0 (40)
8]

Again, since the coefficient must equal zero, (see RHS of equation), we can solve
for ~.1) and obtain the recursion relation for the even states:

An41-2E
2in+1)(Zn+ 1)

i (41)

ipn41 =

A similar method may be used to find the recursion relation for the odd states. This
time we use a general solution of the form below so as to attain only odd states:

ﬂl;jyjl N Zany2n+1 (42)
[}

After filling this solution into the differential equation and following the same steps as
shown for the even states, one obtains the recursion relation:

2

-1n+3——
S+ 1)(2nt3) "

(43)

Din41 =

Part b. As in the power series derivation above, we know that the numerator must
go to zero. We can therefore, solve for the energy and obtain the equation for even
states:

A, 1
E= ?i_;ln + 1) = hw <3n + 5) (44)

and the odd states:
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i a 3
E=—({n+ 3) =k [ 2n4 3 (45)
Part c.

The first three energy values for the even and odd states are listed below.

Even States Odd States

i

Lt 3R

n=0 E=2 E="

n=1 E=z¢ gp=o
n=2 E=%Y E=-4*

2. Find the energy levels of a particle moving in a potential field of the shape2
Viz) =oco,(x < 0) (46)

a
M .

Vir) = x* (z = 0). (47)

Solution

The first step in solving this equation is to look at the boundary conditions. As
x — 0, the wave function should fall to zero. For x > 0, the wave function satisfies the
differential equation for the harmonic oscillator. Since the odd wave functions for the
harmonic oscillator tend toward zero as x — 0, we can conclude that the equation for
the odd states in Problem 1 above is the solution to the problem:

R, . 3 ; 1 _
EZTL_;IE-I—S]:.HLL' (3n+5) (n=1,2,3,4--1) (48)

3. A Harmonic Oscillator is in the initial state: ©(x,0) = #.(x), that is, an
eigenstate of A. What is ©(x,t)?2
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Solution
From Postulate 1V of Quantum Mechanics we can show that:
Tir,f) =e "7 Ulr,0) (49)
Therefore, the time-dependent wave function for the problem here is:
Tix, t) = e=n 0z, 0)= Z:,::n {r]e% (50)
4. Show that in the nth state of the harmonic oscillator:2
And
Solution
(Az)® = {z*) — [z)? (53)
Therefore,
(%) — (Az)? = (z)? (54)
It can be shown that because of orthogonality:
()= (n|zlr) =0 (55)
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Therefore,
(x% — (Az)* =0 (56)
and
:::_rg:l = :::&I‘:lg (57)

A similar case may be shown for the momentum operator

5. Using the uncertainty principles between x and p derived in Problem 3, derive
the zero-point energy:

By = %.ﬁm (58)

&

for a harmonic oscillator with natural frequency w:.2

Solution At E,, the kinetic energy of the system equals the potential energy of the
system:

Where
=L (60)
From the relationship developed in Problem 3,
(x?) = {Ax)? (61)
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and
(p%) = {Ap)? (62)
So
LIAPE _ Ky p 2 (63)
2 m 2 '
and
. { A
::I&I':I = 'i (64)
v lom
Therefore
1 {Ap)?
Ep=2x - il (65)
& m
Or
oo, . .
Ep =2x —{Az)® = k{Az) x {Az) (66)
Then
o .
Ep= —{Ax){Ap) (67)
viem
And
/ U i ] J‘ Y
VAx)(Ap) = {Sh) (68)
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With the relationship between k and .. in equation (56),

Fis
Ep = TD (69)

]

Harmonic Oscillator

Introduction

Many physical systems, such as a weight suspended with a spring, experience a
linear restoring force when displaced from their equilibrium position. The
mathematical expression for such a restoring force, F, is:

F = —kx

k is a proportionality constant called the force constant and x is the displacement from
the equilibrium position. This relationship is called Hooke's law. For the spring
example, k will be large for a stiff spring and smaller for springs that are weaker.
Similarly, if you stretch a spring twice as far, it "springs back™ with twice the force.
Of course this law is valid for limited values of x. Try stretching a spring too far and
you'll find that the restoring force is no longer directly proportional to displacement!

The potential energy, V, for a one-dimensional system is equal to the negative of the
force integrated over x:

V(x) = —JFdx = kf xdx = % kx2 + constant

The constant of integration depends on the physical system being modeled. For the
ground state of a diatomic molecule, as modeled below, we can set it to zero.

Harmonic Oscillator Model for a Diatomic Molecule

We can model the bond in a molecule as a spring connecting two atoms and use the
harmonic oscillator expression to describe the potential energy for the periodic
vibration of the atoms. The potential energy, V(x), of a particle moving in one
dimension is given by:
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V(X) = % kx?

where K is the force constant as above and the constant of integration is zero. We can
make this expression more useful by changing x to R-Re, where R is the internuclear
distance (the distance between atoms) and Re is the equilibrium internuclear distance
(the bond length):

V(R) = % k(R — Re)?

The following figure shows the ground-state potential energy curve (called a potential
well) for the H, molecule using the harmonic oscillator model. Re for H is 0.7412 A.
There is one obvious deficiency in the model, it does not show the energy at which the
two atoms dissociate, which occurs at 4.748 eV for the H> molecule (1 eV = 8065.48
cmt). At some internuclear distance the atoms are far enough apart so that they do not
"feel" each other. That is, they are isolated and the bond is broken. A more realistic
model of the potential well of a diatomic molecule is the Morse potential, which does
model the dissociation energy.
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The solid blue horizontal lines show the energy levels that are calculated using the
harmonic oscillator model:

E\/ = (V+ 1/2)\/@

where v is the vibrational qguantum number (v =0,1,2,...). The v = 0 level is the
vibrational ground state and is the lowest horizontal line in the plot.

ve IS called the vibrational constant:
ve = Yome V(¥,)

where U is the reduced mass (mimy/ms+my). The simple harmonic oscillator provides
a good fit to energies for the lowest energy levels, but fails at higher energies.
The dotted red lines shows the energy levels calculated from:
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Ev = (v+ %) ve— (v + Y%)? veXe + (V + ¥2)% VeYe + higher terms

where v and v are the same as above and x. and y. are the first and second
anharmonicity constants respectively. These correction terms provide much better
match of the calculated energies to the energies that are observed experimentally.

The Rigid Rotor

The rigid rotor is a simple model of a rotating diatomic molecule. We consider the
diatomic to consist of two point masses at a fixed internuclear distance. We then
reduce the model to a one-dimensional system by considering the rigid rotor to have

In
one mass fixed at the origin, which is orbited by the reduced mass , ata

distance L. The Schrodinger equation is (cf. McQuarrie [1], section 6.4 for a clear
explanation)

RP[ 1 8 (. 0 1 &
~57 [—smﬂﬁ (smﬂﬁ) + —szgaT;z] Y(r) = Ev(r) (123)

After a little effort, the eigenfunctions can be shown to be the spherical

Y7(0, 9)
harmonics , defined by

(27 +1) (J — [M|)1]M?

i 6.0) = | ()

P!;;Ml (cosb) gtMé (124)
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||
Py (z)
where are the associated Legendre functions. The eigenvalues are simply
ﬁz
Ej=—JJ+1) (125)
21
Ey 2J+1 _ _
Each energy level IS -fold degenerate in A4, since M can have
—J—-J+1,...,J-1J
values -
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POSSIBLE QUESTIONS:
Part-A (20 x 1= 20 marks) Online Examinations
(Each Question Carry One Mark)

5. In one dimensional box problem the potential energy of the particle inside the box is

a. Zero b. unity c. infinity d. fractional
6.The solution of the problem of the rigid rotator gives us directly the solution ofthe

a. angular momentum operator b. Lapalacian operator

c. Hermitian operator d. Position operator
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7.A diatomic vibrating molecule can be represented by a simple model called
a.Simple harmonic oscillator b. Rigid rotor

c. Particle in one dimensional box d. Particle in three dimensional box

8.The quantum number ‘n’ is called
a. Principal quantum number b. Azimuthal quantum number

c.Magnetic quantum number d. Angular momentum quantum number

1. In one dimensional box problem the potential energy of the particle outside the
boxis
a. Zero b. unity c. infinity d. fractional

2. The energy levels of the particle in the box are

a. quantized b. randomized c. dispersed  d. Not-quantized
3. The theory of rigid rotor in space is useful in dealing with

a. Rotational spectra of diatomic molecules b. Vibrational

spectra of diatomic molecules

c. IR spectra of diatomic molecules d. Raman spectra of diatomic molecules
4. In the Hook’s law f = -kx, Kk is called
a. Force constant b. Gas constant

c. Boltzmann constant d. Faraday’s constant

5. An one electron system whose potential field is not spherically symmetrical
a. Hydrogen atom b. Hydrogen atom in electric field

c. Hydrogen molecule  d. Helium molecule

6. The method to obtain approximate solutions to the wave equation
a. Perturbation method b. Normalization of the wave function
c¢. Making the wave functions orthogonal
Making the wave functions orthonormal

7. The method applicable for a system which wave functions may be guessed
a. Perturbation method b. Variation method

c. Normalization of the wave function  d. Making the wave functions

PREPARED BY Dr.M.R.EZHILARASI, ASSOCIATE PROFESSOR, DEPT OF CHEMISTRY KAHE Page
31/32




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: | M.SC CHEMISTRY COURSE NAME: PHYSICAL CHEMISTRY-I
COURSE CODE:19CHP103 UNIT-2 Schrodinger equation BATCH: 2019
orthogonal

8. Write the energy level for the free particle in motion
a. En=2n-1/2 b. En=n? c. En iscontinuous d. En an?

9. The shape of BeCI2 molecules is
a. Linear  b. Triangular planar c. Tetrahedral d. octahedral
10. Example for tetrahedral molecule
a. BeCI2  b. borontrifluoride c. methane d. phosphorous pentachloride
11. If the symmetry element is the ‘plane of symmetry” then
the corresponding symmetry operation is

a. Doing nothing  b. reflection c. Inversion of all coordinates
d. Rotation through an angle of 360/n about an axis where ‘n’ is the order of the
axis

12. For the symmetry operation “rotation” the corresponding symmetry element IS
a. ldentity element b. Plane of symmetry
c. Centre of symmetry  d. Proper axis of symmetry

13. The basic theorem is concerned with the elements of the matrices
constituting the irreducible representation of a group is called
a. Faradays theorem b. The great orthogonality theorem

c. Normalized theorem d. VVan der Waals theorem

14. Character tables are constructed using
a. Symmetry elements  b. Orthogonality theorem

c. Symmetry operations d. Irreducible operations

15. The corresponding matrix for the operation E is
a. Zero matrix  b. Square matrix c. Diagonal matrix  d. Unit matrix

16. Reducible representation is also called as
a. Total character b. Symmetry elements

c. Symmetry operations  d. Total elements of symmetry

PART- B Questions (Each questions carries six marks)

1. Compare the classical mechanics and quantum mechanics
with particle in one dimensional box.
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2. Derive the equation for particle in three dimensional box and
separation of variables.

3. Give an account on the applications of variation method.

4. What are the applications of Perturbation method to
anharmonic oscillator and helium atom?

5. Derive Shrodinger equation for H-atom.

6. Compare the classical mechanics and quantum mechanics
with particle in three dimensional box.

7. Solving  Schrodinger equation for one-dimensional
harmonic oscillator.

8. Discuss the quantum mechanical treatment for a harmonic
oscillator.

9. For a particle in one dimensional box, show that Y= A

. 2h2
Sin"Z x and E= 2
L 8mL2

10. Explain the separation of variables in Schrodinger
Equation.

11. Write a short note on rigid rotator model for diatomic
molecule?

PART- C (Question carries ten marks)

1. Differentiate variation method and perturbation method with an example?

2. Compare the classical mechanics and quantum mechanics
with particle in three dimensional box.
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The solution of the problem of the rigid angular Lapalacian Hermitian Position angular
1 . . . momentum momentum

rotatorgives us directly the solution of the operator operator operator

operator operator
Simple Particle in Particle in

Two atoms of mass m1 and m2 rigidly joined | . . pe. one three Rigid
2 . . . Rigid rotator harmonic . . . .

by a weightless link of length R is a ! dimensional | dimensional rotator

oscillator box box
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Rotational Vibrational Raman Rotational
. . . . IR spectra of
3 The theory of rigid rotor in space is useful in | spectra of spectra of diatomic spectra of spectra of
dealing with diatomic diatomic diatomic diatomic
molecules
molecules molecules molecules molecules
A diatomic molecule in space where the Simple Particlgin Particle in -
. ) . . one three Rigid
4 bond length is assumed to remain unchanged | Rigid rotator harmonic . . . .
. o \ dimensional | dimensional rotator
during rotation is a oscillator
box box
. Particle in Particle in .
Simple one three Simple
5 Eo =% hv is the zero point energy of harmonic Rigid rotor . . . . harmonic
. dimensional | dimensional .
oscilator oscilator
box box
6 V(X) = % kx?, this is an equation of a Parabola Hyperbola circle Straight line Parabola
7 Force constant k in Hook’s law is high for Single bond Double bond | Triple bond | H-bond Triple bond
) , Bond strength Molecular Acceleration Viscacity of o
Force constant k in Hook’s law depends . the strength
8 between two weight of the | due to L
upon the X participating | between
atoms two atoms gravity
atoms two atoms
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9 In the Hook’s law = -kx, K is called Force constant | Gas constant Boltzmann Faraday’s Force
constant constant constant
10 Acgordlng to Hooke s la\_)v the force ‘f’ kx mgh mv Yy my _kx
acting on a molecule is given by
: Particle in Particle in .
. L Simple Simple
11 A diatomic V|brat|_ng molecule can be harmonic Rigid rotor one th_ree _ harmonic
represented by a simple model called . dimensional | dimensional .
oscillator oscillator
box box
Principal Azimuthal Magnetic Angular Principal
s momentum
12 The quantum number ‘n’ is called guantum gquantum guantum qguantum
quantum
number number number number
number
One state is All are \-/r;reious
In the particle in one dimensional problem, The various The various . dependent and
' independent . states are
13 The property of orthogonality between any states are truly | states are still do not
. ) and the other | : . truly
two different states ensures that independent dependent . interfere with | .
is dependant independen
each other i
The wave functions for different states of
14 the problem, the particle in one dimensional | orthogonal normal metagonal paragonal orthogonal
box system are
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Molecules are known to absorb radiation in
15 which region of the electromagnetic Ultra violet NMR Mass heat Ultra violet
spectrum:
Excited . Excited
. The typical electronic
. The amplitude of | states have
.| states have the | electronic P
The electrons in same and nuclear the same
Which of the following is NOT a correct a molecule L Ny vibration is equilibrium
. equilibrium vibrational .
16 aspect of the Born-Oppenheimer move much : . much smaller | internuclea
o internuclear motions of a .
approximation faster than the . than that r distance
. distance as the | molecule are .
nuclei. : characterizing | as the
ground approximatel i
Y the motion of | ground
electronic y separable .
electrons. electronic
state.
state.
Breakdown The sulfur
. - o The sulfur atom | Breakdown of | of the Born-
oxygen, just above it in the periodic table, . ) . atom can
17 Ny can access d- the Pauli Oppenheimer | Excited
has only a valence of 2. Why is this? . S L access d-
orbitals principle approximatio )
0 orbitals
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The ground state of the ozone molecule O3
18 has the following shape Sulfur apparently linear tetrahedral bent e_qunateral bent
shows a valence of 6 in the molecule SF6, triangle
whereas
19 excited state of the helium atom has the term 15, 35, 2, He* 35,
symbol
The ionization energy for hydrogen atom is
20 13.6 eV. The ionization energy for the 27.2 40.8 54.4 122.4 eV 122.4 eV
ground state of L™ is approximately
The expectation value of 1=r in the ground
21 state of the hydrogen atom equals a (3/2)20 ol 1/ao 1/ao
The The
Which of the following statements about the Jt Is descriteg The electron's | The : wavefunction electron’s
. by the quantum | angular wavefunction | decreases
22 hydrogen atom ground state is - ) . . angular
, numbers n = momentum is spherically | exponentially
INCORRECT: » ¢ . . momentum
1,I'=0;m=0. |equals?h. symmetrical. | as a function
equals th.
ofr.
For real atomic orbitals with quantum
23 numbers n, |, the total number of nodal n n-1 n-1-1 n+l n-1
surfaces, radial plus angular, equals
24 The orbital degeneracy (excluding spin) of N — on+ 1 2 2
hydrogen atom energy levels equals
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They all
o5 For the hydrogen atom, which of the 4 They all have have the
following orbitals has the lowest ener P po 4t the same same
g gy
energy
energy
26 The atomic orbital illustrated to consists of 2 3s 3p 3q 3q
two lobes
the the
cartesian Schrodinger | otherwise the | Schrodinge
the Laplacian coordinates equation is atomic r equation
Spherical polar coordinates are used in the operator has its | would give then orbitals would | is then
27 solution of the hydrogen atom SchrAodinger | simplest form in | particle-in-a- | separable violate the separable
equation because spherical polar | box into 3 Pauli into 3
coordinates. wavefunctions | ordinary exclusion ordinary
dfferential principle. dfferential
equations. equations.
A hydrogen atom radiates a photon as it falls
28 from a 2p level to the 1s level. The 22.8 91.2 121.6 182.4 121.6
wavelength of the emitted radiation equals
The illustrated wavefunction represents the
29 state of the linear harmonic oscillator with 1 2 3 5 5

n=
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30 The energy levels of the linear harmonic all non n-fold (n+ 1/2)-fold | (2n + 1)-fold | all non
oscillator are degenerate degenerate degenerate degenerate degenerate
31 The corresponding eigenvalue equals 0 hk ihk h’k? hk
Which of the following is NOT a solution of . ) . _
32 the differential equation "(x) + kzy(x) = 0 exp(jikx) exp(jkx) sin kx cos kx exp(ikx)
Measurement
The shorter the The of one The
- An electron . .
lifetime of an . momentum variable inan | momentum
. . ¥ excited state of | " 2" atom of an atomic system | of an
Which of the following is NOT a correct cannot be
33 4 an atom, the . electron can a®ect electron
consequence of the Heisenberg described by a
less accurately well-de ned cannot be subsequent cannot be
can its energy . measured measurements | measured
orbit.
be measured. exactly. of other exactly.
variables
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angular the angular
34 Planck's constant has the same as momentum S frequency quantum momentum
Hamiltonian
number number
A diatomic molecule is initially in the state
35 where is a spherical harmonic. What is | 36/1444 9/38 13/38 34/38 13/38
the probability of obtaining result | = 5?
The ) : The
A particle with energy E is in a time . probability of The particle | The particle particle
. . The particle o will be can tunnel .
dependent double well potential shown in . finding the . will be
36 . . : will always be 2 confined to from one well .
figue, which of the following statement . particle in one confined to
A in a bound state . . any one of to other and
about the paticle is not correct ? will be time : any one of
: the well's back .
independent the well's
Consider the following statements. A particle
of energy E is incident from the left on a
potential step of height VO at x =0 1. if E<V0
, wave function of the particle is zero for x>0 2and 3
37 2. if E< VO, wave function is not zero for Lonly 2 only Land 2 only | 2and 3 only only
x>0 3. if E> VO, reflection coefficient is not
zero. Which of the statements given above
are correct
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The eigen function of hydrogen atom contain
which of the following ? 1. Legendure

38 polynomials 2. Laguerre polynamials 3. 1,2and 3 1&2 1 only 2 only 1&2
Hermite polynamials. Select the correct
answer using the code given below

The wave function fo a paticle in one-
dimentional potential well is given by \V2/a
39 sin nmtx/a, 0<x<a, when a potential of V(x)= | zero a/m 2m/a 2m/a zero
cos mx/a is applied,the change in first order
energy is

If peturbation H' = ax, where a is a constant,
is added to infinite squre well potential V(x)

40 =0 for 0<x<m, V(x) = o otherwise. The an/2 an an/4 an/\2 an/2
correction to the ground state energy to first
order ina is

A particle constrained to move along the x-
axis 1s described by the wave function ¥(x)

41 = 2x; 0<x<1 ¥(x) = 0; elsewhere. What is 0.85 0.085 0.0085 0.00085 0.085
the probability of finding the particle within
(0,0.4)
For a particle of mass m in a one-dimentional

42 box of length I, what is the average of zero h/(2l) h/l h/ (2xl) h/(2l)

momentum Px for the ground state

If n represents the number of eigen states of
43 a hydrogen atom, then its discrete energy n n2 1/n 1/n? 1/n?
levels are proportional to
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A particle of mass m is in a simple harmonic
. . 9 112
44 \?\f;:\;giﬁ)r:c?%ﬁr;tsﬂ;” pr:];ttr: t%feo“”d S | orm2)2h | 2n(/my®2 i | h(mi2)2 2 | h(m)¥2 2n /Z}f(m/z)
expression for constant a equal to
A particle of mass m is confined in the
ground state of a one-dimentional box
extending from x=-2L to x = +2L. The wave e/
45 function of the particle in this state ¥(x) = h2n?/ 2mL2 h?m?/ 4mL>2 h?n?/ 16mL? | h’n?/ 32mL2 32nmL2
YO cos nx/4L, where W0 is constant. The
energy of eigen value corresponding to this
state is
The wave function \(/)f a particle in a box of
length L is ¥(x) = V2/L sin ©tx/L , 0<x<L,
46 lI’(;(f)zo x<0 éc 3;>L the probability of the 0.40% 0.30% 0.20% 0.50% 0.50%
particle finding in the region 0<x<L/2 is
A free electron moving without any continuous Discrete Band continuous
47 restriction has the continuous energy Line spectrum | energy energy spectrum energy
spectrum spectrum spectrum ' spectrum
The occurrence of zero point energy in one Paulis exclusion Heisenberg’s Aufbau !—S|e|senberg
48 dimensional box problem is in accordance - uncertainty Hund’s rule e .
. principle L principle uncertainty
with the principle orinciple
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Th
e The The velocit moementum
. . The position of [ momentum momentum y
The zero point energy equation shows that of the electron | of the
49 the electron inside the box is not at rest the electror@@gl | of the electron | of the cannot be electron
' be precisely cannot be electron can .
hence . . precisely cannot be
known precisely be precisely Known recisel
known known P y
known
.. The position Ui The velocity The_ .
. . The position of momentum position of
The zero point energy equation shows that of the electron of the electron
. . the electron can of the the electron
50 the electron inside the box is not at rest, . cannot be cannot be
be precisely . electron can . cannot be
hence precisely . precisely .
known be precisely precisely
known known
known known
The wave The wave The wave
. The wave The wave . . . ) function
The value of zero is not acceptable for the . . . . function will | function will .
51 e function will function will will
value of ‘n’ because . become become well
become unity become zero | . . . become
infinite behaved 2610
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52 The electron inside the box is Not at rest at Not at restat | Notatrestat | Notatrestat | Notat rest
0°K. 0°C 298K 300K at 0°K.

The value of the arbitrary constant A in the

53 particle in a box problem is Zero one two three Zero

54 The valu_e of wave function at the walls of Zero - WO three Zero
the box is

55 ;I;he value of wave function out side the box Zero one WO three Zero

56 The'valu'e of the arbitrary constant B in the Square root of Square of 2/a Cube root of Cube of 2/a Square root
particle in a box problem is 2/a 2/a of 2/a

57 ;-rge energy levels of the particle INGENGY quantised randomised dispersed Not-quantised | quantised

58 The possible values of 'n in the 1,234 ... 0,1,2,3.... zero 0,24, .... 1,234 ...
schrodinger’s equation can have values
In one dimensional box problem the potential

59 energy of the particle in the boundaries of the | zero unity infinity fractional zero
box is

60 In one dimensional box problem the potential b uniity infinity fractional infinity

energy of the particle outside the box is
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LECTURE NOTES

NIT-3 ( Approximation meth

SYLLABUS

Schrodinger equation for the H-atom (or H-like species)- separation of variables - energy
levels. Radial distribution functions - orbitals and orbital shapes. Probability density and
radial distribution functions. Need for approximation methods. The perturbation theory-
application of perturbation method to systems such as anharmonic oscillator and He-atom.
The variation method - application of variation method to systems such as anharmonic
oscillator and He-atom.

The hydrogen atom:
Schrodinger equation for hydrogen atom:

Schrédinger equation can be solved completely for hydrogen atoms as well as hydrogen type
atoms, like, He*, Li** ( Z = 1). For the other atoms only approximate solution can be achieved.

For most calculations, it is simpler to solve the wave equation if the Cartesian coordinates x , y,
and z are converted to polar coordinates, r , ¢, and @ .
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Z Z

Figure 1.5. Cartesian and polar coordinates.

It can be seen from Figure 1E that two sets of coordinates are related to each other by the
following relation,

Z=rcoso0
y=rsin0sin ®
X=rsin0cos ®

The Schrédinger equation is written as,

s

Tim (Xxix)
K2 (E - Lr] W= 0

. 5]
Vi +

Where,

PREPARED BY Dr.M.R.EZHILARASI, ASSOCIATE PROFESSOR, DEPT OF CHEMISTRY,KAHE Page 2/20




KARPAGAM

ACADEMY OF HIGHER EDUCATION
|

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: | M.SC CHEMISTRY COURSE NAME: PHYSICAL CHEMISTRY-I
COURSE CODE:19CHP103 UNIT-3 ( APPROXIMATION METHODS) BATCH: 2019

9% Bzw_l_ %y

Vigp =
¥ = dxe + dy? dz?

Changing to polar coordinates, V2% becomes,

16(26w)+ 1 az+ 1 a(. an)
r2ar\' ar) " r2sin?Ba¢?  risinZ@aB\ " 8§

Now we can write equation (Xix) as,

1a(zaw) t o2 1 a(lgaw) grim _D(XX)
2or " ar) T sim0 952 T rsmieae " 5g) T e BT VIV S
18,0 1 1 9 dy\ 8mim Zer '\ (xxi)
or, — 2 (p22¥ —5(sm6=t) E
72 ar(’“ ar)+rﬂsmzﬂa¢2+rzsmzﬂaﬂ(m 36) T T \F T aman) ¥
(Potentia
| energy
(Ex) =
V , see
equation
vii)

The dependence of yw onr, €, and @ can not be shown directly with equation (xxi). Because, it
would require a four dimensional graph. However, the equation in this form can be express as
follows,

W = R().0(6).9(¢) (xxii)

= R (r) is a function that depends on the distance from the nucleus. It depends on the quantum
numbersnand | .

= O (0)is a function of 6 and depends on the quantum numbers | and m .

= O (D) is a function of ® and depends on the quantum numbers m .

Therefore, equation (xxii) can be express as,
Y= R(r)nf—f‘imj'

This splits wave function into two parts which can be solved separately,
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e R (r)isaradial function that depends on the quantum numbers nand | .
e A is the total angular wave function that depends on the quantum numbers m and I .

Radial part of wave functions, R :

The radial function R has no meaning. R 2 gives the probability of finding the electron in a small
volume d v near the point at which R is measured.

dv

Figure 1.6. Showing volume difference

For a given value of r the total volume will be,

We may consider that an atom is composed of thin layers of thickness d r . The volume d v for
between r and r +d r will be then (Figure 1F),

dV = 4ndr
The probability of finding the electron in that volume will be,

R4V =4nrR:.
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n=1 40 n=2 a0 + n=3 )
20 20 - =0
100
0 0 | . | | |
4 8 12
80 i
20 =1 P
60 i ~ -
1=0 oL NAL 1 1]
40 - 40 - 4 8 12
=1 d
- 20 20 I=2
o- oL | 0 L1 L
312 4 6 324 8 4 ay 8 12
2 r,A r, A
Figure 1.7. Radial probability functions for n = 1, 2,3 for the hydrogen atom. The radial density
is along y axis.
A

R2(y)r2

radious
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Figure 1.8.
Significance:

e The probability function is always positive as it involves the square of R .

e Atr =0, the probability of finding electron is zero. This shows no existence of electron at the
nucleus.

e Ris a function of nand | . Therefore, with increase in value of either nor |, the distance of
finding maximum electron density form the nucleus will also increase.

e At a large value of r, R approaches to zero. Therefore, the probability of finding electron will
approach to zero.

o Most probable distance increases as the principle quantum number ( n ) increases.

e Most probable distance decreases slightly as the subsidiary quantum number ( 1) increases.

Penetration:

Penetration of orbitals means their distribution into inner electronic core. For example, the radial
density of 2s orbital spread into the curve for 1s orbital. Similarly, 3s orbital is spread into 1s,
and 2s orbital. Because of this spreading electrons in 2 s orbital or in 3 s orbital will not be fully
screened by the inner 1s electrons from the nucleus. The extent of penetration decreases
from s to f orbitals.

s>p>d>f
Figure 1.9. Penetration decreases fromsto p as
g radial distribution close to nucleus for s is more
T % compared to p .
c
=
c
=
-]
3
E 2P
A
T
=
g=
4]
o
| | ]
0 5 10 15
r/ag
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1s

25

0 5 10 15

2p

| Figure 1.10. Radial distribution of 1s, 2s, and
3s orbital.

0 L L
0 5 10 15

r {au}

Angular part of wave functions:

The angular parts of the wave function depend only on direction ( @ and @) are independent of
the value of principle quantum number ( n) and the distance from the radius ( r). Thus, A 2 is the
probability of finding an electron at a given direction @ and @ at any distance from the nucleus
to infinity. They depend primarily on the values of | . For I = 0, i.e. s orbitals, the angular wave
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function is constant and independent of the angles 6 and ® . Therefore, this function will provide
a sphere.

Angular functions for some orbitals,

5 orbital P orbital dz*®

O = (1/471)12 O = (3/41) 2cosd O® = (5/161)'2 (3 cos?8-1)

Here, z or z 2 refer the orientations of the orbitals along z axis. The angular wave function of
the p ;orbital corresponds to two spheres whose center lies on z axis. The spheres touch each
other tangentially at the origin. Since, cos 8 changes sign with 8, the wave function will have
two different sign in two different lobes.

n:.l_'l.' ”l Xz Ef\}

Figure 1.11. The angular part of the wave function A (6 ,. ® ) for the 1s, 2 p, and 3 d orbitals
for a hydrogen atom.

Similarly, there are set of five d orbitals (| = 2).
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In case of s and d orbitals the wave functions have the same sign at the same distance in opposite
directions from the center of symmetry. These orbitals are thus centrosymmetric and are said to
be gerade . It means even and denoted as g. While, the wave functions for p orbitals have
opposite signs on either side from the centre of symmetry. Therefore, they are known as non-
centrosymmetric or ungerade orbitals. They are denoted as u .

Angular probability function :

The probability of finding an electron simaltanously at a distance r and in a given direction @ , 0
IS

Y 2 r,D,0
Wi 4. 6=R¥()A%0.9)

The probability of finding an electron in a given direction is then A% (®, 0).

s orbital is spherical so it remains unchanged on squring, while, for p and d orbitals sign factor
vanished and lobes becomes more elongated.

Difference between orbits and orbitals:

Orbit represent discreate trajectories or electrons around the positively charged nucleus. The
position, momentum, and consequently, energy of an electron can be expressed precisely by
using laws of newtonian mechanice assuming electron as particle.

The idea of orbital was introduced by the wavemechanical atom model. The extranuclear part
has been considered as wave and follows the fundamental Schodinger wave equation. The orbital
corresponds to the probability of finding an electron at a certain distance and certain direction.
Hence, each orbital has definite energy, shape and described in terms of quantum numbers.
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\
Node . ‘ﬁ Node .
1s 25 3s s 25 3s
(a) Electron probability (b) Contour probability

ability

Y prob:

Electror

Distance from nucleus (r

(c) Radial probability

Quantum numbers:

Bohr-Sommerfeld aromic model and its later extensions, four quantum numbers (n,l,m,s)
were introduced to explain the spectral features of atoms.

A. The principle guantum number, n .

This quantum number determines the energy level of an atom. The energy expressed as a
function of n ,
Z me*
E:=—Cca3
Bsin“h
According to the above equation energy should decrease with increase of nvalue. Due to
negative sign the energy also increases with increase in the value of n .
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. The Azimuthal or angular momentum quantum number, | :
The Azimuthal or angular momentum quantum number determines the orbital angular

momentum of an electron through the following relation. This specifies the shape of an atomic
orbital, its bonding and bond angles.

[ =+ 1)

I may have any integral values between 0 to (n-1). For | = O, defines s orbital. I= 1, 2, 3, etc
defines, p, d, f, etc respectively.

. The magnetic quantum number, m | :

This quantum number determines the orientation of the angular momentum vector of an electron
in the presence of external magnetic field along a specific axis (let consider along z axis).

Lz=m1h
For a given | value m 1 will be in between + [to — 1| .
i.e.mi1=21+1

Example: for p orbital, | = 1, therefore, m1 = +1, 0, -1. This indicates p orbital will have three
different directions orientations in the presence of external magnetic field.
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< m = +1
— —==m = ()
Sl m = -1
Field

Figure 1.12. The orientation of orbital angular momentum vector in the presence of external
magnetic field for | = 1.

(D) Spin projection quantum number, m :

An electron spins about its own axis. Because of this spinning an angular momentum is
generated that is completely different from the orbital angular momentum. This angular
momentum is expressed by spin projection quantum number ( ms).

Lz=msh

For a given s value m s will have value in the range of +s to -s.

An electron has s = % spin, Hence, m s = +1/2, -1/2

Some other examples, s = 3/2, ms = +3/2, +1/2, -1/2, -3/2

s=3,ms=+3/,+2,+1,0, -1, -2, -3

This indicates, ms=2s+1

Table 1.3.
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n i i Orbital Total no. of Maximum no
0<l=n-—-1 —A=m=1 type orbitals of electrons
20+1 2(21+1)
1 0 0 5 1 2
2 0 0 5 1 2
1 +1.0,-1 §el 3 i)
3 0 0 5 1 2
1 +1.0,-1 Fel 3 i)
2 +2.+1.0. -1,-2 d 3 10
4 0 0 5 1 2
1 +1.0,-1 P 3 6
2 +2.+1.0. -1, -2 d 3 10
3 +3.+2.+1.0,-1.-2. -3 I 7 14

Sequence of energy level:

Rules:

A. Orbital energies increases a ( n + | ) increases.

B.

If there are two orbitals with the same value of ( n + ), the one with the smaller n has the lower
energy.
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Figure 1.13. Energy levels sequence.
Many electrons atom:

Schrédinger wave equation stood good for the hydrogen atom. This wave equation become
highly complicated as the number of electrons in a system increased. To avoid all the difficulties
and to have the equation a simpler form a several approximations have been considered. It has
been found that the radial part of the wave function changes appreciably with change in Z . The
angular part of the wave function remains nearly unchanged. Therefore, the basic shape of the
orbitals that depends on angular part of the wave function, are same.

Effective nuclear charge and Slater’s rule:

As the nuclear charge and the number of electrons in an atom increases, n, | also increase. It has
been shown earlier that with increase of n value the probability of finding of electron at r also
increases. But it does not mean there is no electron density close to the nucleus. Electron density
gradually decreases to the nucleus together with appearance of nodal plane. Nodal plane is the
space where the probability of finding electron is zero and the number of nodal plane is governs
by the formula, n - | -1.

Slater proposed that nuclear charge experienced by the electrons closer to the nucleus will be
greater compared to the electrons far from the nucleus. This is because of the screening of
nuclear charge by the inner electron core. This is called shielding effect. The screening or
shielding efficiency decreases with decreasing to penetration properties of the orbitals. Hence, it
follows the sequence,

s>p>d>f
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Because of the screening effect the actual nuclear charge (Z) may be the replaced
by Z * e which is called effective nuclear charge. It is given by the equation,

L*ei=L-0
o is sum of the shielding contribution.
Estimation of ¢ is governs by the following rules,

(1) The electrons are arranged in sequences of group with increase of n, and for equal n in order
ofl.

(1s),(2s,2p), (3s,3p), (3d), (4s ,4p), (4d), (4f ), (55 ,5p ), (5d ), (5f)........
(if) The contribution of the electrons right to the electron that is under consideration is zero.
(iii) The contribution of each electron from same group 0.35, except 0.3 for 1s ..

(iv) If the considered electron is under ( ns, np ) group, all the other electrons present at n-1 will
contribute 0.85 each and all the other at n-2 or further left will contribute 1.00 each.

(v) If the considered electron is under (nd) or ('nf) group, all the other electrons present
at n (including ns , np ) or further left will contribute 1.00 each.

Rules are in tabulated form:

Electron group | All groups at| n group (n-1) Groups < (n-2) Groups
right side

Is 0 03 0 0

(ms.mp) 0 035 0.85 1.00

(nd) or (mf). 0 035 1.002 1.00

@ this value will be same for ns, np .
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Electron on consideration o Z*gg=7—0
4s (2%0.35) + (18x0.85) + (10x1.00) =26 30-26 = 4.00
3d (9x0.35) + (18x1.00) =21.15 28-21.15=6.85
3s.3p (7x0.35) + (8x0.85) + (2x1.00) = 11.25 18-11.15=6.85
2s. 2p (7x0.35) + (2x0.85)=4.15 10-4.15=585
1s 0.30 2-0.30=1.70

The Aufbau principle:

This principle states that atoms are built up by successive addition of protons at nucleus and
electron at the extra-nuclear part. The newly added electrons will occupy the available orbital of
lowest energy before filling higher energy state.

The Pauli Exclusion principle:

According to this theory, no two electrons in an atom will process same set of four quantum
numbers.

Hund’s rules:
This rule is applied for the determination of the electronic ground state.

(i) For a given electronic configuration the term with maximum multiplicity (3 S+ 1; S = spin
angular momentum) will have the lowest energy.

(i) For a given multiplicity the term with the largest L (angular momentum quantum number)
value will occupy the lowest energy.

(iii) For a given term, in an atom with less than half - filled outer most electronic configuration,
the lowest energy configuration will be with the lowest value of J (total angular momentum
quantum number, J = L £ S). For more than half - filled outer most electronic configuration, the
lowest energy configuration will be with the highest value of J.

* Terms are in capital letter as they represent energy states of electronic configuration.

Example:
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2S+1L,;

S = No. of unpaired electron(s)x1/2. L stands as,L= 0 isS,L=1 isP,L=2isD,L =3
isF,L=4isG, and so on. Jis the vector sum of L and S. It varies as,J=L+S,L+S-
1,L+S-2,...L-S

[= +1 0 -1

P = !

Hence, symbol will be *P», °P,, “Py, [as.] = [+§ to L.-5]

Textbook

1. A.K.Chandra, 2010, Introductory quantum Chemistry, Tata McGraw Hill Education
Pvt., Ltd, New Delhi.

2. Puri Sharma and Pathania, 2013, Elements of Physical Chemistry, Vishal Publishing
Co., New Delhi.

PART- A Questions (Each Question carries one
mark)

1. In one dimensional box problem the potential energy of the particle outside the box is

PREPARED BY Dr.M.R.EZHILARASI, ASSOCIATE PROFESSOR, DEPT OF CHEMISTRY,KAHE Page
17/20




KARPAGAM

ACADEMY OF HIGHER EDUCATION

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: | M.SC CHEMISTRY COURSE NAME: PHYSICAL CHEMISTRY-I
COURSE CODE:19CHP103 _ UNIT-3 (APPROXIMATION METHODS) BATCH: 2019
a. zero b. unity c. infinity d. fractional

2. The energy levels of the particle in the box are
a. quantized b. randomized c. dispersed  d. Not-quantised
3. The theory of rigid rotor in space is useful in dealing with
a. Rotational spectra of diatomic molecules b. Vibrational spectra of diatomic

molecules

c. IR spectra of diatomic molecules d. Raman spectra of diatomic molecules
4. In the Hook’s law f = -kx, k is called

a. Force constant b. Gas constant

c. Boltzmann constant d. Faraday’s constant

5. The lowest energy orbital for the ammonia molecule is designated
a. 1ls b. 1og c. lal d. C3v
6. The benzene molecule C6H6 has how many vibrational
modesa. 6 b.12 c. 24 d. 30
7. Zeeman effect is
a. the change in energy levels of an atom when it is placed in uniform external field
b. The change in energy levels of an atom when placed in non-uniform external field
c. The change in energy levels of an atom when placed in external electric field
d. The change in energy levels of an atom when placed in non-uniform electric field
8. The energy level belongs to En=2n-1/2
a. Harmonic oscillator b. Hydrogen atom

c. particle in a box d. free particle in motion

9. The shape of BeCI2 molecules is

a. Linear b. Triangular planar c. Tetrahedral d. octahedral
10. Example for tetrahedral molecule

a. BeClI2 b. boron trifluoride  c. methane  d. phosphorous pentachloride
11. If the symmetry element is the ‘plane of symmetry” then the corresponding
symmetry operation is
a. Doing nothing b. reflection
c. Inversion of all coordinates
d. Rotation through an angle of 360/n about an axis where ‘n’ is the order of the axis
12. For the symmetry operation “rotation” the corresponding symmetry element is
a. ldentity element b. Plane of symmetry
c. Centre of symmetry  d. Proper axis of symmetry

13. For a pyramidal molecule with point group C3v the number of theoretically
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predicted IR fundamental bands

a. Three b. Four c. Five d. Six
14. For chloro trifluoride molecule the number of observed Raman bands and IR bands are
four each, the predicted geometry is

a. Pyramidal b. planar c. T-shaped d. bent

15. In case of molecules with a centre of symmetry the vibrational modes are anti-
symmetricto centre of inversion are

a. IR inactive b. IR active c. Raman inactive d. Raman hyper active
16. For Raman activity the vibrations should involve a change in

a. polarizability b. magnetization

c. Magnetic susceptibility d. Surface tension

PART- B Questions (Each questions carries six marks)
21. (a). Derive time independent Schrodinger wave equation.

(OR)
(b). Define photoelectric effect. How quantum theory explains photoelectric effect?

22.(a). Discuss the illustration of uncertainty principle and correspondence
principle with reference to harmonic oscillator.

(OR)
(b). Derive the solution of Schrodinger wave equation for one dimensional harmonic
oscillator.

23.a. Explain the most probable distance of the hydrogen atom -1s electron.
(OR)

b. Explain variation method to obtain approximate solution to a wave equation.

24(a). (i) Write notes on the meaning of improper rotation.

(if) Define inversion operation? It this equivalent to any other combination of
operations. Give an example.

(OR)
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(b) (1) What are the different types of groups? Explain with example.
(it) Distinguish between point group and space group.
25.(a). (1) Construct the C2v character table.
(i1) State and explain the great orthogonality theorem.
(OR)
(b). (i) Define reducible and irreducible representation.

(i) What are the relationships between reducible and irreducible representation of the
group.

PART- C Question (question carries ten marks)

1. Solve the Schrodinger wave equation for a particle in three dimensional box for its

energy and show that the energy states are orthogonal.
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SUBJECT: PHYSICAL CHEMISTRY-l (QUANTUM CHEMISTRY AND GROUP THEORY)
SUBJECT CODE: 19CHP103
MULTIPLE CHOICE QUESTIONS( EACH QUESTION CARRY ONE MARK)
UNIT-
3 Option A Option B Option C Option D Answer
a svstem method to method to
y obtain method to : obtain
which wave . . a system which wave .
. . approximate | obtain accurate . . approximate
1 In Perturbation method functions . . functions is accurately .
solutions to | solutions to the solutions to
may be . known
the wave wave equation the wave
guessed . )
equation equation
a system method to a system
y obtain method to . y
which wave . . a system which wave | which wave
. . approximate | obtain accurate . . .
2 In variation method functions . . functions is accurately | functions
solutions to | solutions to the
may be ) known may be
the wave wave equation
guessed . guessed
equation
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In this method a trial wave
function ought o be close to the Perturbation | Variation e rmalization Making the wave Variation
true wave function of the system of the wave .
) method method . functions orthogonal method
concerned and the mean energy is function
then calculated
IZ?eTnewﬁ iﬁ F\)/S:\(/::?:Jen?t)irois ma Perturbation | Variation lglfotrhn;ezl\;;\algon Making the wave Variation
Y Y | method method . functions orthogonal method
be guessed function
The method applicable for a Normalization
system which differs in a very Perturbation | Variation Making the wave Perturbation
: of the wave :
small way from one for which the | method method function functions orthogonal method
exact solution is known
The method to obtain approximate | Variation plormaliZ2ggy Making the. Making the wave Variation
. . n of the wave | wave functions :
solutions to the wave equation method . functions orthonormal | method
function orthogonal
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The method to obtain approximate | Perturbation Normalizatiogiggaking the_ Making the wave Perturbation
7 . . n of the wave | wave functions .
solutions to the wave equation method . functions orthonormal | method
function orthogonal
An one electron system whose Hydrqgen Hydro_gen
8 potential field is not spherically Hydrogen alomig Hydrogen Helium molecule atom in
. atom magnetic molecule magnetic
symmetrical ) )
field field
An one electron system whose Hydrogen Hydro_gen
e . Hydrogen . Hydrogen , atom in
9 potential field is not spherically atom in Helium molecule .
. atom 4 molecule electric
symmetrical electric field .
field
10 | Thesumofthe energies ofthe 10 2h?/mL? | 10s2h23mL2 | 11ee/ml? | 11h2e/mL? 10 22h?/mL?
third and the fourth level is
The ratio of the reflected to the V(1-T) in a real negative
= incident amplititude Ar/Ao 1- Atlho magnitude | number 1+ ATIAD 1- ArlAo
12 The expected value of kinetic E. = h/2m E.= h2k/m E.= h2k/2m E.= h2k2/2m Ex=
enegy in terms of h,k and mis K . k K h2k2/2m
. . . Ek‘“P: h2/2m EklP: 2 1212 2 1212 2 Ekl}l:
13 Time relation between ¥ and Ex is P h2K/2m P ExP=hk/mV¥ | Ex¥=hk/m" ¥ W22/ am W
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14 Whlc.h of theﬂfg llowing are eigen Y1 and V> W2 and not Y1 and not ¥2 | Neither W1 and V> Y1 and V>
functions of A“? Y1
The expectation value of A for the
15 state W= Wy 4495 is -0.32 zero 0.75 0.96 0.96
Can be is . Can be
16 ;Lhr:;lijg:om O<x <L, the wave chosen to be | exponentially :;?T?nﬁa T"y IS zeo chosen to be
real decaying P real
probability of least probable (0.00015)? | (0.00015)? (0.99985)?x0.01 | 0.99985x0.00015x0.98 | (0.00015)?
17
isotopmer is x0.011 x0.989 1 9 x0.011
18 Least probable isotopomer is D-13C-D 'H-3C-'H D-2C-D D-12C-H D-3C-D
19 Total numper (_)f isotopomers of 4 6 8 10 5
ethylene diradical are
20 | he velue ofusing variation a>1 =0 a=010 1 a=-1to+1 =0
greater than greater than
21 Value of <H> is greater ey and equal to | lesser than Eq Lessor than and equal and equal to
Eo Eo to Eo Eq
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29 ;I;he second order correction to E1 2610 A AYE,-Eq AYE,-E, AYE,-Eq
23 The first order correction to E;1 is 4A 2A A Zero A
24 The_ degeneracy of the fourth level 1 5 3 4 4
is given by
Harmonic Hydrogen S C . Hydrogen
2
25 The energy level belongs to En o n oscillator atom particle in a box | free particle in motion atom
26 The energy level belongs to En is Har.monlc Hydrogen particle in a box | free particle in motion free pa_rtlcle
continuous oscillator atom in motion
27 The energy level belongs to En=n? Har.momc Hydrogen particle ina box | free particle in motion particle in a
oscillator atom box
28 The energy level belongs to Eqn=2n- Har.monlc Hydrogen particle in a box | free particle in motion Har_monlc
1/2 oscillator atom oscillator
29 Write the energy level forthe free En=2n-1/2 | En=n? En is continuous | En o n? EnIs
particle in motion continuous
30 Write the energy level for the En=2n-1/2 | En=n? En is continuous | En o n? En=n?
particle in a box
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Write the energy level for the _ Enis . 9 9
31 Hydrogen atom E=2n-1/2 continuous al Enon Enon
32 Write the energy level for the En=2n-1/2 n=n? En is continuous | En a n® En=2n-1/2
Harmonic oscillator system
The first order perturbed
Hamiltonian,when an external . . . . .
33 uniform electric field E is applied H'=Eez H'=-Eez I =Ez/¢ y & H'=-Eez
to the z- axis on an atom is
When a perturbation of cx® is
34 | 2pplied in the Hamiltonian of zer0 34 c(hok)? | 12¢ (ho/k? | Chokk Zero

harmonic oscillation,the shift in
first order energy is
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the change the change
in energy ;I;lhsn%k;ange The change in in energy
levels of an levels é}fy a energy levels of | The change in energy | levels of an

. atom when an atom when levels of an atom atom when
35 Zeeman effect is o atom when 4 . o
it is placed \ placed in when placed in non- it is placed
o placed in . : o oo
in uniform : external electric | uniform electric field | in uniform
external ggtne -I’l:glllf?igrd field external
field field
A one dimensional harmonic
oscillator of mass m, charge q and
classical amplitude a is kept in an
36 electric field strength E along 0.qEa/2 B> 0,0 qEa/a.qEa qFa/a.qEa
x.First order change in ground and
first excited state are respectively
In the first order correction to [0&A*/E - — [A*/E1-
37 eigen function [1&0] is E2 [0&1] [A*/E-E&0] | [1&1] E>&O]
38 In the above question ,the second 0 A AY/E,-Eq AY/EL-E, AY/E,-Eq

order correction to E1 is
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39

An unperturbed two level system
has energy eigen values E1 and E»
and eigen functions [1&0] and
[0&1] when peturbed its
Hamiltonian is represented by the
first order corection to E1 is

4A

2A

Zero

40

In case of H- atom the total
degeneracy of the state of specified
m is given by

N=n(2L+1)

N=n?

N=I(1+1)

N=2L+1

N=n(2L+1)

41

A system is known to be in a state
by the wave function ¥
(0,§)=1/N20 [3Y02 +V7YO02 -
2Y12 ], the probability of finding
the system in a state with m=0 is

4/5

1/5

2/5

3/5

4-May

42

The average value of Py for the
box normalized wave function
¥(x)=V2/L sin (3nx/L)

1873/

6m/L-1

1872

43

If¥ = V2/L cos nx/Le €M, then
<x> in the limit -L/2<x<L/2 is

3/4L

1/4L

L/2

44

A particle of mass m is confined to
a one dimensional box extending
from x=0 to x=9. Assuming the
particle in the first excited state,
what is the position-probability
density at x=a/8?

1/a

2/a

1/2a

1/4a

1/a
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45

A particle with energy v, /2
coming from left encounters a
potential -3vo/2 at x=0 V(x)=0 for
x<a and V(x)=-3vo/2 for
x>a,transmission coefficient is

1/2

2/3

4/9

8/9

4-Sep

46

Consider a particle in one
dimensional box between x=0 and
x=a V(x) ={=c0 for x<o or x>a=0
for o<x<a when is the pobability
that it will be found in the region
al4<x<3a/4?

1/2

12+1/=

1/4+2/w

1/4+1/n

1/2

47

A particle is described by a
wavefunction ¥(x)=e™ in one
dimension. What is the probability
that it will be found in the region
(X)<a,a>0?

e-Za

1-e?

l_e-Za

1_e-2a

48

Consider 8 electrons in a one
dimensional box of length a
etending from x=0 to x=a. What is
the minimum allowed total energy
using Pauli's exclusion principle
for the system? (m=mass of
electron)

10h? /ma?

8h?/ ma?

15h?%/4ma?

15h? /2ma?®

15h?/4ma?




o

KARPAGAM

KARPAGAM ACADEMY OF HIGHER EDUCATION

COURSE NAME: PHYSICAL CHEMISTRY-I

CLASS: | M.SC CHEMISTRY

COURSE CODE:19CHP103 UNIT-3 BATCH: 2019
what is the faction of beam
reflected fom the step barrrier of
49 Vo if enegy ofelectron E with E> E/Vo E-Vo/Vo E-Vo/2Vo E+Vol/E E-Vo/Vo
V0 and width of barrier is infinite,is given by
In the electronic transition pictured
below, the molecule starts in its
50 ground vibrational level. The most | 1 3 5 4 4
probable vibrational quantum
number of the excited state is
Its Fluorescenc
disssociatio The excited e can occur
Which of the following is a true n must . Fluorescence can in the
The excited | state must have ; . .
statement about the fluorescence of | proceed by occur in the visible visible
51 ) state must be | the same . . .
a molecule whose ground stateisa | a ) region after absorption | region after
: . : a triplet geometry as the | . . :
singlet: unimolecula in the ultraviolet. absorption
ground state. .
r in the
mechanism. ultraviolet.
59 The benzene_ mol_ecule C6H6 has 6 12 24 30 30
how many vibrational modes
53 The lowest energy orbital for the 1s 16, las Cay lag

ammonia molecule is designated
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54 The force constant in NO equals 1125 1342 1240 1595 1595
The equilibrium internuclear
55 distance in NO equals 115 121 140 171 115
56 |ForNO,theJ—0t0J—1 1.705 3.41 121 8.628 3.41
transition occurs at
The spectroscopic constants Do = . h _ Do =
>7 assigned for the NO molecule are | 6.48eV Do QY | OG- Do = 9.48eV 6.48eV
A certain symmetry group of order
8 has 5 irreducible
58 representations.What is the highest | 1 2 3 5 2
possible degeneracy of its quantum
states
59 Example for a low symmetry point Cy D, Con s, Ce
group
Fhe change The change . 'Fhe change
in energy 4 The change in in energy
in energy )
levels of an levels of an energy levels of | The change in energy | levels of an
. atom when an atom when levels of an atom atom when
60 Zeeman effect is B atom when . . o
it is placed . placed in when placed in non- it is placed
. placed in . : - .o n
in uniform . external electric | uniform electric field in uniform
non-uniform ;
external . field external
! external field ;
field field
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LECTRUE NOTES

UNIT-1V  Symmetry elements and Matrices

SYLLABUS

UNIT-IV  Symmetry elements and Matrices

Symmetry elements and symmetry operations - definition of identical and equivalent elements
configurations - effect of performing successive operations commutative and non-commutative - inverse
operations.

Groups and their basic properties - definition of a group - basic properties of a group-definition of
abelian - cyclic- isomorphic, finite, infinite groups and subgroup. Symmetry classification of molecules
into point groups-Schoenflies symbol (only-difference between point group and space group).

Matrices- Definition of matrix, square matrix, diagonal matrix, null matrix, unit matrix, row matrix,
column matrix, symmetric matrix, skew symmetric matrix and conjugate matrix. Multiplication,
commutative and non commutative-determination of inverse of a matrix, block multiplication of matrices-
addition and subtraction of matrices.

Matrix notations for symmetry operations of C,, and Cs, groups-construction of character tables for Cy,
and Csy, point groups.

Symmetry can help resolve many chemistry problems and usually the first step is to determine
the symmetry. If we know how to determine the symmetry of small molecules, we can determine
symmetry of other targets which we are interested in. Therefore, this module will introduce basic
concepts of group theory and after reading this module, you will know how to determine the

symmetries of small molecules.

Introduction

Symmetry is very important in chemistry researches and group theory is the tool that is used to
determine symmetry. Usually, it is not only the symmetry of molecule but also the symmetries of

some local atoms, molecular orbitals, rotations and vibrations of bonds, etc. that are important.
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For example, if the symmetries of molecular orbital wave functions are known, we can find out
information about the binding. Also, by the selection rules that are associated with symmetries,
we can explain whether the transition is forbidden or not and also we can predict and interpret

the bands we can observe in Infrared or Raman spectrum.

Symmetry operations and symmetry elements are two basic and important concepts in group
theory. When we perform an operation to a molecule, if we cannot tell any difference before and
after we do the operation, we call this operation a symmetry operation. This means that the
molecule seems unchanged before and after a symmetry operation. As Cotton defines it in his
book, when we do a symmetry operation to a molecule, every points of the molecule will be in

an equivalent position.
Symmetry Elements

For different molecules, there are different kinds of symmetry operations we can perform. To
finish a symmetry operation, we may rotate a molecule on a line as an axis, reflect it on a mirror
plane, or invert it through a point located in the center. These lines, planes, or points are called
symmetry elements. There may be more then one symmetry operations associated with a

particular symmetry
Identity E

The molecule does not move and all atoms of the molecule stay at the same place when we apply
an identity operation, E, on it. All molecules have the identity operation. Identity operation can
also be a combination of different operations when the molecule returns to its original position

after these operations are performed.* This will be demonstrated later.

Proper Rotations and Cn axis
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Cngenerates n  operations, whose CE

symbols are Cn, Ci?, Ci, Cot,..., E

(=Ca"). However, we usually write them in
another way. Table 1.2 shows the way we
write the 6 operations generated by proper
rotation Ce. From this table, we can see that
the symbols of the 6 rotations generated by
Csare Cg, Cs, Ca, C3?, C¢° E.One molecule
can have many proper axes and the one with

the largest n is called principle axis.

Table 1.2 Ce axis and operations it generates

Rotation Angle ()ptr:uiq;nx Symbol
2
C, (
G )
’:I.n' -
gV CP=C, (
....................... 6 T
2 _
Ix=l (F=( (
6
2 .
4x— G =0 &
i) :
- 2!’? % -4
Sx 5 C {5
pl
27 "
6x— C, =F I
ﬁ =]

Reflection and mirror plane ¢

Take NHs for an example. There are 3 mirror planes in molecule NHs. When we do a reflection

through a mirror plane, molecule NHz dose not change (Figure 1.2).
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Figure 1.2 A mirror plane of NHa.

There are three different kinds of mirror plane, ovov, choh, and 6dod. The mirror plane that
contains the principle axis is called ovov.The mirror plane that perpendicular to the principle
axis is called oh.2 Figure 1.3 shows ovov, choh, and odod in PtC12—4PtCl142—.

Figure 1.3 ovov, choh, and odod of PtCls?. This picture is drawn by ACD Labs 11.0.
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When mirror plane is operated n times, we have!

[ E{when n is even)
o =1 .
L’T[ when n is odd )

Inversion and inversion center |

In a molecule, if we can find a point, on
the straight line through which we can
find a pair of same atoms on both side
of this point, we call this molecule has
an inversion center. The inversion

center, i, is not necessarily on an atom

of the molecule.'Figure 1.4 shows the
inversion center
of C2H4CI2C2H4CI2.When inversion is operated n times, we have!

E(when n is even)

!
I =9 ,
1 i(when nis odd )
Figure 1.4 Inversion center of CoH4Clo.
Improper Rotations and Sn axis

Improper rotation is a combination of two operations, proper rotation C, and reflection ?. Figure

1.5 shows the improper rotation operation in CHa.

Table 1.3 and table 1.4 show the operations generated by Se and Ssaxes separately. The 6
operations generated by Sg axis are Ss, Cs, i, C3?, S¢° and E. And the 10 operations generated by
Ssaxis are Ss, Cs?, Ss°, Cs*, ?, Cs, S5/, Cs°, Ss° and E.1Since S1= choh and S;=onC=i, the order of

improper rotation, n, must always be larger than 2. And generally, when n is even, there are n
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operations {Sn*, Sv?, ..., Sa"}, while when n is odd, there are 2n operations {Si!, Sv?, ..., Si*"}.
And we have'
gm — [*’7 C" (when m is odd)

T “¥in \ S,
1{ " (when m is even )

TH

7 1;’5{ when m is even )

[c‘r (when m is odd)

Table 1.3 Sg axis and operations it generates

Rotation Angle Operations Symbaol

q i .
i S,_; = {"ﬁ 'i"ln

Table 1.4 Ss axis and operations it generates
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Rotation Angle - (‘jperntit:ms h Symbol
2 :

""g“ -'55 - GCS 55
228 5i=C C;
S -
322 S =0 s
5 . .
4 2E §t = c
5 - p

2T s
Sx— So=e T

5 -
6x 2% SP=C, C,
5 o * o
7x2% S =oC? s
5 _ _
gx 2% §E=C s
< _ :
93?” 2 =aC! 5’
IDXE?H SO-F E

Figure 1.5 Improper rotation operation S4 in CHa

Symmetry Point Groups
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For a molecule, all the symmetry operations that can be applied to the molecule have all the
properties of a group. Therefore, before we introduce the symmetry point groups, the concept
and properties of a group will be introduced first. When some elements have a certain kind of
relationships and can be related to each other by these relationships, these elements can form

a group.
Closure

If two elements A and B are in the group G, then the multiplicity of these two elements, C, is

also in this group. It can be expressed as
Associativity

All the elements in the group must satisfy the law of associativity, which can be expressed as

(AB)C=A(BC)
Identity

The group must contain such an element E that
ER=RE=R

In group theory, it refers to the operation identity E. Because any molecule or substance must at

least have the symmetry element E.
Inverses

If A is an element in group G, there must be another element A in group G that satisfies AA1=

AA=E. Usually we can write A" as B. It can be expressed as

If AG and AA = A1A=E then A"1=B=G

Group Multiplication Tables
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If there are n elements in a group G, and all of the possible n? multiplications of these elements
are known, then this group G is unique and we can write all these n? multiplications in a table
called group multiplication table. All the symmetry operations of a molecule can be written in
the form of group multiplication table. There is a very important rule about group multiplication
tables called rearrangement theorem, which is that every element will only appear once in each
row or column.tIn group theory, when the column element is A and row element is B, then the
corresponding multiplication is AB, which means B operation is performed first, and then

operation A follows.?

Table 2.1 Group multiplication table?

Gs E A B C D F
E E A B @ D F
A A E D F B C
B B F E D C A
C C D F E A B
D D C A B F E
F = B C A E D
Subgroups
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From table 2.1 above, we can find several small groups in the group multiplication table. For

example,
G2 E A
E E A
A A E

In the same way, there are also many several small groups with orders 1, 2, 3 respectively. These
small order groups that can be found in a higher order group are called subgroups. The number
of elements in a group is called the order of a group, using a symbol h. The number of elements
consist a subgroup is called the order of a subgroup, using a symbol g. From the previous two

examples, we have?,
h/g=k (k is a whole number)

Since the symmetry point group have all the properties of a group, there are also several
subgroups that we can find in a perticular symmetry point group. And sometimes we just use
symmetry opertaions in one subgroup to apply to a system instead of using all the symmetry

operations in the group, which can significantly simplify the calculations.
Classes

Class is another important concept in group theory which provides a way to simplify the
expression of all the symmetry operations in a group. This means that we do not have to write
down all the symmetry operatoins in a group but combine some related operations instead. The

followin part will introduce the concept of classes and how to divide a group into classes.

Similarity transformation and conjugate:
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A and B are two elements in a group, X is any elements in this group. If
X—1AX=B(Group Theory.1)
Then we can say the relationship of A and B is similarity transformation. A and B are
conjugate.! Conjugate elements have three properties’:
a. Every element is conjugate with itself.

A=X—-1AX(Group Theory.2)

b. If A is conjugate with B, then B is conjugate with A.
IfA=X-1BX,then B=Y—1AY(Group Theory.3)

If A is conjugate with B and C, then B is conjugate with C.

IfA=X-1BX and A=Y—1CY ,thenB=Z—1CZ(Group Theory.4)
Classes

Now we can define a class. A class of a group is defined as all the elements in the group that are
conjugated to each other.! To determine the classes of a group, we need to apply similarity
transformation to the elements in the group until all the elements are grouped into smaller sets.

For example, there are four elements in a group: {E, C2, ov, o\ }
X=E, Cz, ovov, ovov X'=E, Ca, oy, ov

Because we always have XEX'=E, {E} is always a class for any point group. Then, apply
similarity transformation to other elements in the group until all the elements are classified in

smaller sets. Table 2.3 shows how the elements are classified in to classes.

Table 2.4 Classes six order group
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.................................................... ity ansfommaiion | Classes
XEX XEXT=E El
ECE=C,
CiCC, =,
Xo,x! GGG - ( c,.C!
! G_l{..;(}_\_{..; [ Rl B
""""""" cCo =C2
o,Ca =C;
EoFE=a
CloC, =0
Xe X e Vo,.0.,0,
o000, = -
o0, =0
OO0 =

Therefore, there are three classes in group Cav: {E}, {Cs, C5?} and { ov, ov , ov " }.

Significance of classes of a group

In the same class of a group, the operations can be converted to each other by an operation. The
operations in the same class are called equivalent operations. And a class of a symmetry group is
a group of equivalent operations. This gives a simpler way to express the operations in a
group.tFor example, for operations in the six order group above, table 2.5 shows the new way to

express these operations.

Table 2.5 Ways to express operations in six order group
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Operations Classes New notations

E [ E} F

C, e o 2

c Pty =ty

o,

o, \0,.0,.0,| 3o,

a,

Symmetry Point Groups

As what mentioned above, all the symmetry operations of a molecule as a group can be written
in the form of group multiplication table and they obey all the properties of a group. This group
is called symmetry point group. It is called point group for two reasons. First reason is that this
group have all the properties of a group. Second reason is that all the symmetry operations are
related to a fixed point in the molecule, which is not necessarily to be an atom of the molecule.
According to the symmetry of molecules, they can be classified as symmetry point groups.'To
determine the symmetry point group of a molecule is very important, because all symmetry
related properties are dependent on the symmetry point group of the molecule. Symmetry point
groups can be divided into 5 classes which are summarized below and the they are described in
details here (symmetry point groups).t®

Point Symmetry Order Example
groups Elements
Nonaxial o] E 1

HCFBrClI
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Point Symmetry Order Example
groups Elements
Ci E, i 2 C2oH2F2Cl>
Cs E,? 2 CH2BrC
Cyclic Cn E, Cn n C2H4Cl2
Cnn E, Cn, novov 2n NH;
Cnv E, Cn, oh, Sn 2n CoH2F2
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15C,, 15?
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Point Symmetry Order Example
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Dohoh E, Crov, on, ?
i,7C
07

Determination of symmetry Point Groups

Determination of symmetry point group of a molecule is the very first step when we are solving

chemistry problems. The symmetry point group of a molecule can be determined by the

following flow chart’.

Table 2.12 Flow chart to determine point group
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Now, using this flow chart, we can determine the symmetry of molecules. However, to further
determine the symmetry properties of something such as molecular orbitals, vibrational modes,

etc. we need character tables which will be introduced next.
Character Tables
Representations of a Group

Through similarity of transformation, we can define the reducible and irreducible representations
of a group. If a matrix representation A can be transferred to block-factored matrix A’, a matrix
composed of blocks (A’, A’’, A’”’) at the diagonal and zero in any other position, by similarity
transformation, this matrix A is called the reducible representation of this group. And if these
blocks (A’, A’, A’’”) cannot be further transferred to block-factored matrix through similarity
transformation, A’, A’’, A’’’ are called irreducible representations of the group. And the sum of
the trace of A’, A’’, A’”’ (the number on the diagonal of A’, A’’, A’”’) is called the characters of
this representation. As is shown in the following equation, ai1i’+ az2’+...+ ann’ is one of the
characters. Reducible representations can be reduced to irreducible representations and

irreducible representations cannot be reduced further.!

U e
dy" Ay oay
. ) - 0 0
i II-llnl {Jr.ﬂr.
ayd a, 0 a T ay
ik I :, _‘_[I
. dy ay, a4y, "y, " " i
'=x"dx=x - - - Ix= - - - = 0
| | - : Lo
Way a4, ) ay, ap" ...y 0
" -
o Oy iy
a Tn i
0 0
" . "
o Oy - O

PREPARED BY Dr.M.R.EZHILARASI, ASSOCIATE PROFESSOR,DEPT OF CHEMISTRY,KAHE Page

19/30




_—\r=
-“I‘SﬂA R(;FPHIFAHEEGEE'éIMI\
KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: | M.SC CHEMISTRY COURSE NAME: PHYSICAL CHEMISTRY-I
COURSE CODE:19CHP103 UNIT-4 BATCH: 2019

Take Csy as an example.Take (X, y, z) as the basic, the matrix of all the operations in Cazy group

{E, Cs, C3%, ov, 6v , oy} are shown in Table 2.6.

Table 2.6 Reducible and irreducible representations of Cay

Operations E . Cs . Cy 5 G, _ G,
| ) T NG Y -
iy 1 00 ERE N i “"f o 17 T L Mo
Reducible ; 3 2 5 22 | A | Hl 2 2 . -1 0 0
T{qip:-ll.::ﬂ:ntw 01 o $ Loy _ i |T o T "7 © ' ) {1 T o . o 1 0
alons O 0 1/ - | A I I I 2 2
r L 0 TR oo l| [0 R A
I
- I | 1] 1 | 1
Teredue 1 { II | t J - [ } - : { ] - |: }
| _ible DL 3 _1oN3 1
| Repres . ooy | | 2 2 2 2| 2 | -1 0
[ ent- 2 | P | i
[ 0 1 3 3 | 3 LU
| tations / ¥3 1 - _il £ _ \
' 2 2. 2 2 w2 2 \
| LT L N o [ L N L L S S
| Chamac | T L | | l 1 ! E
ters —mF—m——
I 2 -1 1 4] { 0

As shown in the table 2.6, all the matrix are block-factored matrix and they are reducible
representations. Every block in these reducible representations are irreducible representations
and the sums of the trace are the characters which are also listed in the table. Notice that the

operations in the same class have the same character. Therefore, they are always written together

using the new notations {E, 2Cs, 3ov}:

Table 2.7 Two irreducible representations of Cay

C, | E 2C; 30, | Basis
T, 1 | 1 2
5 2 -1 0 (X, ¥)

This is not a completed table of irreducible representations, because the basis chosen are not
completed. There are different kinds of basis, including one-dimensional basis like X, y, z, Ry,

Ry, R; and two-dimensional basis like x2, y?, z2, Xy, yz, xz. If we chose R; which is the rotation
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around z-axis as another basis, we can get another irreducible representation, (1, 1, -1). “1”
means nothing change when operation is applied to the basis. “-1” means it becomes opposite
when operation is applied to the basis. “0” means the basis are moved when operation is applied.

Therefore, in summary, for now the irreducible representations of Csy group is

Table 2.8 Summary of irreducible representations of Csy

Cs, E 2C; 3a, ' Basis
i | 7
0 (x. V)
1 -1 K,

—_
[
]
i

Five rules of Characters
For irreducible representations and their characters, there are five very important rules?:
Rule 1

The order of the irreducible representation matrix is called the dimension of the irreducible
representation, using symbol 1z, I, ... And rule 1 states that the sum of the squares of all the

dimensions of irreducible representations (I12+ I,%+ ...) is equal to the order of the group, h.
212=11%+ 1>+ .. =h

Since the character of the irreducible representation of operation E, ?i(E), is equal to the
dimension of the corresponding irreducible representation, Rule 1 can also be written as

? TW(E)?>=T1(E)*+ I'2(E)*+ ...=h
Rule 2

Rule 2 is that the sum of the square of the characters in any irreducible representation is equal to

h. For example, for the first irreducible representation in Cay group
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['1(E)*+ I'y(Ca)*+ I (Ca?)*+ Ii(ov)*+ T'i(ov )2+ oy )?=12+12+1%+1%24+1%+1%=6
Since for the same class, the characters are the same, it can also be written as
['1(E)*+ 2*T'1(Cs)%+ 3* IMi(ov)?=12+2*12+3*12=6
Also, for another irreducible representation in Cay group

I'1(E)%+ 2*T'1(Cs)?+ 3* T'1(0v)?=22+2*(-1)?+3*0%=6
Rule 3

Rule 3 is that the vectors which composed of the characters from different irreducible
representations are orthogonal.

2 2i(R)’T'j(R)? =0 (i is not equal to j)
Again, take Csy group for an example

? T1(R)’T'2(R)? =1*2+2*1*(-1)+3*1*0=0
Rule 4

Rule 4 is that the characters of matrix representations, either reducible or irreducible, of the
operations in the same class are the same, which is shown as the former table.

Rule 5

Rule 5 is that the number of irreducible representations is equal to the number of classes.

For Cavgroup, there are three classes and therefore there are also three irreducible
representations. Therefore, the three irreducible representations in Table 2.8 are the complete list

of irreducible representations in Cay group.

There is a very important relationship between reducible representations and irreducible

representations, which is that any reducible representation can be written as the linear
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I
Establishe:

combination of irreducible representations. The similarity transformations do not change the

character of a reducible representation, therefore

Z(Ry=">a,z (R)

where (R) is the character of reducible representation of operation R. . j(R) is the character of jth
irreducible representation. ajis the times ?j(R) will appear in blocks when reducible
representation is reduced to irreducible representation by similarity transformation. To determine

aj, the former equation can be written as

DRy (RY=2 > a xRy (Ry=>> a y (R)y(R)
£ R J i R

According to rule 3, only when i=j, the sum over R is not equal to zero. Then according to rule 1,

the equation can be written as
Z;{{R})ﬁﬂ(ﬂ] = ha,
)
Then rearrange to

1 |
a, = };‘Z 7(R)y.(R)
R

Using this equation, we can express reducible representations with irreducible representations,
which is very important when we solve chemistry problems.

Again, take Cay group for an example, the reducible representation shown in table 2.6 can be
express as combination of irreducible representations using this relationship. Use irreducible

representations in table 2.8
a1= 1/6 [1(3)(1)+2(0)(1)+3(1)(1)] = 1
a1= 1/6 [1(3)(2)+2(0)(-1)+3(1)(0)] = 1
a1= 1/6 [1(3)(1)+2(0)(1)+3(1)(-1)] = 0
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['=1%1", +1*I,+0*I, =1 +1,

Table 2.11 Meanings of different area of character tables

Cav Point group
E, 2C3 30y Symmetry operation grouped in classes
The order of the group h is equal to the sum of factor in font of each
class
eg. for C;, group, h= 1+2+43=6
AL AL E Mulliken label for each irreducible representation.
Meanings of Mulliken label:
Symmetric to Cy: one dimensional
Antisymmetric to C,: two dimensional
Two dimensional
Three dimensional
(superseript) | Symmetric with respect to oy,
{(superscript) | Antisymmetric with respect to aj,
(subscript) ; | Symmetric with respect to C.( L C,)
(subscript) » | Antisymmetric with respect to C> (L C,)
(subscript) , | Symmetric with respect to i
(subscript) , | Antisymmetric with respect to i
1, l',‘_...;. Ch&rﬂCters
ZRN One-dimensional basis
x*+y",z ... | Two-dimensional basis

~ | | >

Using this flow chart, you can determine the symmetries of small molecules. And also, by using
group theory and character tables, you can determine the symmetries of any thing you are
interested in, such as molecular orbitals, vibrational modes, etc. In conclusion, group theory play
a very important role in chemistry, which we can see from various applications of group theory

in chemistry, like Infrared spectrum, Raman spectrum, electronic spectrum, etc.

Matrix Representations of Groups

PREPARED BY Dr.M.R.EZHILARASI, ASSOCIATE PROFESSOR,DEPT OF CHEMISTRY,KAHE Page
24/30



https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Vibrational_Spectroscopy/Infrared_Spectroscopy/Infrared%3A_Theory
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Vibrational_Spectroscopy/Raman_Spectroscopy/Raman%3A_Theory
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Electronic_Spectroscopy/Fluorescence_and_Phosphorescence

o

KARPAGAM
T KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: | M.SC CHEMISTRY COURSE NAME: PHYSICAL CHEMISTRY-I
COURSE CODE:19CHP103 UNIT-4 BATCH: 2019

We are now ready to integrate what we have just learned about matrices with group
theory. The symmetry operations in a group may be represented by a set of
transformation matrices I'(g)(g), one for each symmetry element gg. Each individual
matrix is called a representative of the corresponding symmetry operation, and the
complete set of matrices is called a matrix representation of the group. The matrix
representatives act on some chosen basis set of functions, and the actual matrices
making up a given representation will depend on the basis that has been chosen. The
representation is then said to span the chosen basis. In the examples above we were

looking at the effect of some simple transformation matrices on an arbitrary

vector (X,y).The basis was therefore a pair of unit wvectors pointing in

the X and Y directions. In most of the examples we will be considering in this course,
we will use sets of atomic orbitals as basis functions for matrix representations. Don’t
worry too much if these ideas seem a little abstract at the moment — they should

become clearer in the next section when we look at some examples.

Before proceeding any further, we must check that a matrix representation of a group

obeys all of the rules set out in the formal mathematical definition of a group.

1. The first rule is that the group must include the identity operation E (the ‘do
nothing’ operation). We showed above that the matrix representative of the
identity operation is simply the identity matrix. As a consequence, every matrix
representation includes the appropriate identity matrix.

2. The second rule is that the combination of any pair of elements must also be an
element of the group (the group property). If we multiply together any two matrix

representatives, we should get a new matrix which is a representative of
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another symmetry operation of the group. In fact, matrix representatives
multiply together to give new representatives in exactly the same way as

symmetry operations combine according to the group multiplication table. For

example, in the Cavpoint group, we showed that the combined symmetry
operation C3ov is equivalent to ¢”'v. In a matrix representation of the group, if
the matrix representatives of C3 and ov are multiplied together, the result will
be the representative of 6"v.

3. The third rule states that every operation must have an inverse, which is also a
member of the group. The combined effect of carrying out an operation and its
inverse is the same as the identity operation. It is fairly easy to show that matrix
representatives satisfy this criterion. For example, the inverse of a reflection is
another reflection, identical to the first. In matrix terms we would therefore
expect that a reflection matrix was its own inverse, and that two identical
reflection matrices multiplied together would give the identity matrix. This
turns out to be true, and can be verified using any of the reflection matrices in
the examples above. The inverse of a rotation matrix is another rotation matrix

corresponding to a rotation of the opposite sense to the first.

4. The final rule states that the rule of combination of symmetry elements in a
group must be associative. This is automatically satisfied by the rules of matrix
multiplication.

Example: a matrix representation of the C3v point group (the ammonia

molecule)
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The first thing we need to do before we can construct a matrix representation is to
choose a basis. For NH3, we will select a basis (SN,S1,52,53) that consists of the

valence s orbitals on the nitrogen and the three hydrogen atoms. We need to consider

what happens to this basis when it is acted on by each of the symmetry operations in

the Cav point group, and determine the matrices that would be required to produce the

same effect. The basis set and the symmetry operations in the C3v point group are

summarized in the figure below.

-
© M €3
|
n -
U".I' -~ 3 -

The effects of the symmetry operations on our chosen basis are as follows:

E (sN,51,52,53)—(SN,S1,52,53)

C*3(sN,S1,52,53)—(SN,S2,53,51)

C3(sN,s1,52,53)—>(SN,S3,51,52)

ov (SN,S1,52,53)—(SN,S1,53,52)

o'v (SN,S1,52,53)—(SN,S2,51,S3)

o"v (SN,S1,52,53)—(SN,S3,52,51) (10.1)
By inspection, the matrices that carry out the same transformations are:

I' E (sN,S1,52,53)—(SN,S1,52,53)
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I" C*3(sN,51,52,53)—(SN,S2,53,51)
I" C3(sN,51,52,53)—(SN,S3,51,52)
I" ov (SN,S1,52,53)—(SN,S1,53,52)
I' o'v (SN,S1,52,53)—(SN,S2,51,53)

I' 6"v (SN,S1,52,53)—(SN,$3,52,51)

These six matrices therefore form a representation for the C3v point group in

the (SN,S1,52,53) basis. They multiply together according to the group multiplication

table and satisfy all the requirements for a mathematical group.

SUGGESTED READINGS

1. Raman, K.V. (2002). Group Theory and its Applications to Chemistry. New Delhi: Tata McGraw
Publishing Company.

2. Puri, B. R., Sharma, L. R., &Pathania, M. S. (2013). Principles of Physical Chemistry (46"
Edition). Jalandar: Vishal Publishing Co.

3. Veera Reddy, K. (2009). Symmetry and Spectroscopy of Molecules. New Delhi:
New Age International Pvt. Ltd.

Possible Questions

PART- A Questions (Each question
carry one mark)

1. Evidence in favour of the wave nature of radiation

a. Interference of radiation b. Photoelectric effect
c. Compton effect d. Black body radiation

2. Black body radiation has a characteristic
a. Continuous spectrum b. Discontinuous spectrum

c. Narrow range of light d. Laser action
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3. As per plancks law the characteristic continuous spectrum of radiation depends

upon
a. Body’s temperature b. Nature of the body
c. Colour of the body d. Density of the body

4. Stefan Boltzmann law is based on
a. Diffraction of radiation b. Photoelectric effect
c. Compton effect d. Black body radiation

5. In one dimensional box problem the potential energy of the particle inside the box

is
a.zero  b.unity c.infinity d. fractional
6. The solution of the problem of the rigid rotator gives us directly the solution ofthe
a. angular momentum operator b. Lapalacian operator

c. Hermitian operator d. Position operator
7. A diatomic vibrating molecule can be represented by a simple model called
a. Simple harmonic oscillator b. Rigid rotor
c. Particle in one dimensional box d. Particle in three dimensional box
8. The quantum number ‘n’ is called
a. Principal quantum number b. Azimuthal quantum number
c. Magnetic quantum number d. Angular momentum quantum
number
9. The lowest energy orbital for the ammonia molecule is designated
a. 1s b. log c.lal d.Csv
10. The benzene molecule C6H6 has how many
vibrational modes a. 6 b.12 c.
24d. 30
11. The method applicable for a system which wave functions may be guessed
a. Perturbation method b. Variation method

c. Normalization of the wave function d.Making the wave functions

orthogonal
12. Write the energy level for the free particle in motion
a. En=2n-1/2 b. En=n? c. En is continuous d.Enan?

13. The shape of BeCl2 molecules is
a. Linear b. Triangular planar ~ c. Tetrahedral d. octahedral
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14. Example for tetrahedral molecule
a. BeCI2 b. boron trifluoride  c. methane  d. phosphorous
pentachloride

15. If the symmetry element is the ‘plane of symmetry” then the
corresponding symmetry operation is

a. Doing nothing b. reflection  c. Inversion of all coordinates
d. Rotation through an angle of 360/n about an axis where ‘n’ is the order of the
axis

16. For the symmetry operation “rotation” the corresponding symmetry element is
a. Identity element b. Plane of symmetry
c. Centre of symmetry d. Proper axis of symmetry

17. The basic theorem is concerned with the elements of the matrices
constituting the irreducible representation of a group is called

a. Faradays theorem b. The great orthogonality theorem
c. Normalized theorem d. Van der Waals theorem
18. Character tables are constructed using
a. Symmetry elements b. Orthogonality theorem
c. Symmetry operations d. Irreducible operations

19. The corresponding matrix for the operation E is
a.Zero matrix  b. Square matrix  c. Diagonal matrix d. Unit matrix

20. Reducible representation is also called as
a. Total character b. Symmetry elements

c. Symmetry operations d. Total elements of symmetry

PART- B Questions

(Each questions carries six marks)

21. (a). Explain the failure of classical mechanics and the success of
quantum theoryin explaining the results of black body radiation
experiment.

(OR)

(b). Write notes on photoelectric effect.
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22. (a). Solve the Schrodinger wave equation for one dimensional
harmonic oscillator for itsenergy.

(OR)

(b) Solve the Schrodinger wave equation for one dimensional
harmonic oscillator for its energy.

23. (a). Explain perturbation method and arrive at the expression
for the first order correction to energy and wave function.

(OR)

(b). Explain the application of variation method to anharmonic
oscillator and Helium atom.

24. (a). (i) What is a group?
(i) What are the defining properties of a group?
(i) Define class.

(OR)
(iv) (b). (i) What are the conditions for the elements to form a group.

(ii) Define abelian and cyclic groups. Prove the statement.
Every cyclic group is abelian but the converse is not true.

25. (a). Explain the symmetry selection rules for infra-red and Raman spectra.
(OR)
(b). (i) State direct product rule? Illustrate its applications.

(if) Write the simple procedure to determine hybridization pattern in sigma
bond.

PART- C Question
(Each questions carries ten marks)

1. Discuss about Reducible and Irreducible representations.

2. Construct the character table for Cay point group.
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COIMBATORE-21
| M.SC CHEMISTRY (2019-2021 BATCH)
SUBJECT: PHYSICAL CHEMISTRY-I (QUANTUM CHEMISTRY AND GROUP THEORY)
SUBJECT CODE: 19CHP103
MULTIPLE CHOICE QUESTIONS( EACH QUESTION CARRY ONE MARK)
UNIT
-4
S.
NO Question Option A Option B Option C Option D Answer
The Triangular
1 sha+A187+A188:B188+A188:C188+A18+A188:C1 | Linear Iana? Tetrahedral | octahedral Linear
89 P
2 The shape of boron trifluoride is Linear jhiangular Tetrahedral | octahedral Triangular
planar planar
3 The structure of methane is Linear 'Fl)'lr;ﬁg?ular Tetrahedral | octahedral tetrahedral
4 Structure of phosphorous pentachloride is Linear T_rlgonal_ Tetrahedral | octahedral T_rlgonal_
bipyramidal bipyramidal
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5 Example for a linear molecule BeCl; bgron . methane phosphorogs BeCl>
trifluoride pentachloride
6 Example for triangular planar molecule BeCl Y methane phosphorous boron
P g P 2 trifluoride pentachloride | trifluoride
7 Example for tetrahedral molecule BeCl> bc_Jron . methane phosphorogs methane
trifluoride pentachloride
8 Example for Trigonal bipyramidal BeCl boron methane phosphorous phosphorous
P gonal bipy 2 trifluoride pentachloride | pentachloride
One of the following is an geometric operation when
9 performed on the molecule, give rise to an Diffraction | interference | polarisation | reflection reflection
indistinguishable configuration of the same molecule
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One of the following is an geometric operation when
10 performed on the molecule, give rise to an Diffraction | interference | polarisation | rotation Rotation
indistinguishable configuration of the same molecule

One of the following is an geometric operation when
11 performed on the molecule, give rise to an Diffraction | interference | polarisation | inversion inversion
indistinguishable configuration of the same molecule

Rotation
through an
If the symmetry element is the ‘identity element” Doing . Inversion of | angle of 36(.)/n . .
12 : . . reflection all about an axis Doing nothing
then the corresponding symmetry operation is nothing . s .
coordinates | where ‘n’ is
the order of the

axis
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Rotation
through an
If the symmetry element is the ‘plane of symmetry” | Doing . Inversion of | angle of 36(.)/n .
13 i 0 . reflection all about an axis reflection
then the corresponding symmetry operation is nothing . s
coordinates | where ‘n’ is
the order of the
axis
Rotation Rotation
through an through an
If the symmetry element is the ‘proper axis of . Inversion of | angle of 360/n | angle of 360/n
» : Doing . ; :
14 symmetry ” then the corresponding symmetry nothin reflection all about an axis about an axis
operation is g coordinates | where ‘n’ is where ‘n’ is
the order of the | the order of the
axis axis
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Rotation
through an
If the symmetry element is the ‘centre of symmetry ” | Doing . Inversion of | angle of 36(.)/n Inversion of all
15 ) 0 . reflection all about an axis .
then the corresponding symmetry operation is nothing . <y coordinates
coordinates | where ‘n’ is
the order of the
axis
Rotation Rotation
. . . . through an through an
Lo | o [D010 [ " | e 30m | sl of s
ymmetry pOnAIng sy y nothing : about an axis | about an axis
operation is coordinates
followed by followed by
reflection reflection
17 For the symmetry operation “doing nothing” the Identity Plane of Centre of Proper axis of | Identity
corresponding symmetry element is element symmetry symmetry | symmetry element
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18 For the symmetry operation “reflection” the Identity Plane of Centre of Proper axis of | Plane of
corresponding symmetry element is element symmetry symmetry | symmetry symmetry
For the symmetry operation ROtatl?n, t.hrough an Identity Plane of Centre of Proper axis of | Proper axis of
19 angle of 360/n about an axis where ‘n’ is the order of element D symmetr svmmetr svmmetr
the axis” the corresponding symmetry element is y y y y y y y y
For the symmetry operation Rotationgiiglisy - Identity Plane of Centre of improper axis | improper axis
20 angle of 360/n about an axis followed by reflection
. . element symmetry symmetry of symmetry of symmetry
the corresponding symmetry element is
21 Molecules which have an infinite number of planes | Linear Tetrahedral | Octahedral | Triangular Linear
of symmetry molecules molecules molecules molecules molecules
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Molecules which have an infinite number of planes Boron Phosphorous

22 acetylene methane . . . acetylene
of symmetry trifluoride | pentachloride

23 Molecules which have an infinite number of planes BeCl, methane Bpron . Phosphoro_us BeCl,
of symmetry trifluoride | pentachloride

24 The numb_er of plane of symmetry for Acetylene e WO three infinity infinity
molecule is

o5 The numbe_:r of plane of symmetry for a linear - - three infinity infinity
molecule is

26 The numbe_:r of plane of symmetry for a BeCl; one Wo three infinity infinity
molecule is

27 Which molecules have the moleculaiglane as Oneta] Planar triangular tetrahedral | octahedral Planar
the plane of symmetry
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The molecule which possess two planes of Boron Phosphorous
28 . BeCl2 water . . . water
symmetry is trifluoride | pentachloride
29 ;l;he molecule which possesses Ca axis of symmetry Matrices
30 An array of numbers arranged in rows and columns Matrices determinant Spe}ce Miller indices | Point groups
are called S lattices
A collection of the symmetry elements present in a Point Space Space 'r?unrrfk?;ra(l)f
31 molecule that obeys the mathematical rules for the P ha Miller indices
. groups groups lattices rows and
formation of a group are called
columns
An equal An unequal
32 A square matrix will have number of | number of Only rows | Only columns | Square matrix
rows and rows and
columns columns
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33

A matrix with an equal number of rows and columns

Square
matrix

Diagonal
matrix

Null matrix

Unit matrix

Diagonal
matrix

34

In a square matrix if all the elements other than those
along the diagonal are zero, it is called

Diagonal
matrix

Null matrix

Unit matrix

Transpose of a
matrix

In a square
matrix if all the
elements other
than those
along the
diagonal are
zero
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Inasquare | Inasquare | Inasquare
matrix if all | matrix if all | matrix if all | In a square If every
the elements | the elements | the matrix if all the | element of a
35 A diagonal matrix will have other than other than elements elements along | diagonal
those along | those along | along the the diagonal matrix is one
the diagonal | the diagonal | diagonal are | are zero (@)
are zero are unity unity
If every If every If every If every
element of a | element of a | element of
. . . element of a : :
36 Unit matrix diagonal square a null . Unit matrix
- . . null matrix is
matrix is matrix is matrix is 2610
one (1) one (1) one (1)
37 If every element of a diagonal matrix is one (1) Unit matrix Squa.re Dlag_onal Tran_spose ofa C1
matrix matrix matrix
39 Example for a low symmetry point group Cs D2 Can S4 Ci




KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PHYSICAL CHEMISTRY-|

CLASS: | M.SC CHEMISTRY

COURSE CODE:19CHP103 UNIT-4 BATCH: 2019
41 The molecule with Dg, point grou acetylene water ammonia Boron water
«h POINT group y trichloride
42 The molecule with Cay point group acetylene water ammonia Boron ammonia
trichloride
43 The molecule with Csy point group acetylene water ammonia B_oron . B_oron .
v trichloride trichloride
44 The molecule with Dzh point group acetylene water ammonia B_oron . Dan
trichloride ¢
45 The point group of acetylene is Dan Cav Csv Dan Cov
46 The point group of water is Dan Cav Csv Dan Csv
47 The point group of ammonia is Don Cov Csv Dan Dan
48 The point group of boron trichloride is Dan Cov Cav Dan 32
49 The number of possible point groups for a crystal is 32 45 62 7| Six
50 The maximum number of axis of symmetry a crystal WO Three Four six Bloc_k factored
can have is matrix
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Matrix which
A matrix in which all the non-zero elements will be Block Character os | Square Diagonal will also be .
51 . . factored ; . . blocked out in
in square blocks along the diagonal . a matrix matrix matrix
matrix exactly the
same way
Matrix
;\;QC')CQEW'” A coordination
59 If two S|m|I|ar_Iy blocked out matrices are multiplied, blocked out Dlag_onal Squa_re Unit matrix point (x,y,_z) in
the product will be a . matrix matrix the Cartesian
in exactly .
coordinates
the same
way
A
coordinatio
n point .
53 A one column matrix represents (x,y,2) in A SC‘?"ar Unit matrix Dlag_onal matrix
the matrix matrix
Cartesian

coordinates
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s : : . . Scalar .
54 Multiplication of two matrices gives a matrix determinant oroduct Vector product | commutative
commutativ | NO"- Non- Leaves the
55 Multiplication of a matrix with unit matrix is commutativ | associative - matrix
€ assoclative
e unchanged
Matrix Will 1y 1orix will be
Leaves the o be divided .
L . . . . Matrix will divided by the | Carbonyl
56 Multiplication of a matrix with unit matrix is matrix by the :
be squared number of sulfide
unchanged number of
columns
rows
. . Carbonyl . Boron Dichloro
57 The molecule with C,y point group sulfide water ammonia trichloride methane
. . Dichloro . Boron Nitrogen
58 The molecule with Cay point group acetylene methane ammonia trichloride trifluoride
59 The molecule with Csy point grou acetylene water Nitrogen Boron ethylene
3vpoint group y trifluoride | trichloride y
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. . . Vinca
60 The molecule with p2n point group acetylene water ammonia ethylene

alkaloids
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LECTURE NOTES

UNIT-5(Group theory)

SYLLABUS

UNIT-5 GROUP THEORY

Definition of reducible and irreducible representations - irreducible representations as orthogonal vectors
- direct product rule, the great orthogonality theorem and its consequences - determinations of the
characters for irreducible representation of C,,and Cs, point groups using the orthogonality theorem.

Group theory and Vibrational spectroscopy - vibrational modes as basis for group representation -
symmetry selection rules for IR and Raman spectra, Mutual exclusion principle - classification of
vibrational modes.

Irreducible Representation

An irreducible representation of a group is a group representation that has no nontrivial invariant
subspaces. For example, the orthogonal group © (n) has an irreducible representation on R”,

Any representation of a finite or semisimple Lie group breaks up into a direct sum of irreducible
representations. But in general, this is not the case, e.g., R. +) has a representation on R’ by

l a

o1l 1)

¢ (a)=

i.e., #(a)lx, ) =(x+ay ») Butthe subspace »=0is fixed, hence ¢ is not irreducible, but there is no
complementary invariant subspace.

The irreducible representation has a number of remarkable properties, as formalized in the group
orthogonality theorem. Let the group order of a group be 4, and the dimension of the #th representation
(the order of each constituent matrix) be # (a positive integer). Let any operation be denoted &, and let
the mth row and nth column of the matrix corresponding to a matrix & in the ith irreducible
representation be I'i (R)«x. The following properties can be derived from the group orthogonality
theorem,



http://mathworld.wolfram.com/Group.html
http://mathworld.wolfram.com/GroupRepresentation.html
http://mathworld.wolfram.com/OrthogonalGroup.html
http://mathworld.wolfram.com/SemisimpleLieGroup.html
http://mathworld.wolfram.com/DirectSum.html
http://mathworld.wolfram.com/GroupOrthogonalityTheorem.html
http://mathworld.wolfram.com/GroupOrthogonalityTheorem.html
http://mathworld.wolfram.com/GroupOrder.html
http://mathworld.wolfram.com/Group.html
http://mathworld.wolfram.com/PositiveInteger.html
http://mathworld.wolfram.com/GroupOrthogonalityTheorem.html
http://mathworld.wolfram.com/GroupOrthogonalityTheorem.html

d, A dmm' d.n W (2)

1. The dimensionality theorem:

h=2f=ﬁ+rﬁ+§+...=2ﬁ[f}, ©)

where each & must be a positive integer and X is the group character (trace) of the representation.

2. The sum of the squares of the group characters in any irreducible representation ¢ equals #,

h= Zﬁ (R). (4)

3. Orthogonality of different representations

;Jﬂ (R) x; (R) =0 fori # j. -

4. In a given representation, reducible or irreducible, the group characters of all matrices belonging to
operations in the same class are identical (but differ from those in other representations).

5. The number of irreducible representations of a group is equal to the number of conjugacy classes in
the group. This number is the dimension of the I'matrix (although some may have zero elements).

6. A one-dimensional representation with all 1s (totally symmetric) will always exist for any group.

7. A one-dimensional representation for a group with elements expressed as matrices can be found by
taking the group characters of the matrices.

8. The number a: of irreducible representations X: present in a reducible representation ¢ is given by

|
@ = ;rtﬂw (R), (6)

where % is the group order of the group and the sum must be taken over all elements in each class.
Written explicitly,

1 [
a= ;xmm (R) ng. (7)
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where Xi" is the group character of a single entry in the character table and 7 is the number of elements
in the corresponding conjugacy class.

Irreducible representations can be indicated using Mulliken symbols.

Direct Products of Irreducible Representations

Every molecule has a point group associated with it, which are assigned by a set for rules
(explained by Group theory). The character tables takes the point group and represents all of
the symmetry that the molecule has.

Symbols under the first column of the character tables

A (Mulliken (singly degenerate or one dimensional) symmetric with respect

Symbol) to rotation of the principle axis

B (Mulliken (singly degenerate or one dimensional) anti-symmetric with

Symbol) respect to rotation of the principle axis

E (Mulliken (doubly degenerate or two dimensional)

Symbol)

T (Mulliken (thirdly degenerate or three dimensional )

Symbol)

Subscript 1 symmetric with respect to the C,principle axis, if no
perpendicular axis, then it is with respect to o,

Subscript 2 anti-symmetric with respect to the C.principle axis, if no
perpendicular axis, then it is with respect to 6.

Subscript g symmetric with respect to the inverse

subscript u

anti-symmetric with respect to the inverse
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prime

double prime

E

o (vertical)

on0r 4 (horizontal)

symmetric with respect to ohch (reflection in horizontal plane)

anti-symmetric with respect to choh ( opposite reflection in
horizontal plane)

Symbols in the first row of the character tables

describes the degeneracy of the row (A and B=1) (E=2) (T=3)

2pi/n= number of turns in one circle on the main axis without
changing the look of a molecule (rotation of the molecule)

21/n= number of turns in one circle perpendicular to the main
axis, without changing the structure of the molecule

27/n= number of turns in one circle perpendicular to the C,' and
the main axis, without changing the structure

reflection of the molecule perpendicular to the other sigma

reflection of the molecule vertically compared to the horizontal
highest fold axis.

reflection of the molecule horizontally compared to the
horizontal highest fold axis.




#Cn

#o

the number in
superscript

other useful
definitions

(RX1RY)

X2+y2’ ZZ

Inversion of the molecule from the center

rotation of 27/n and then reflected in a plane perpendicular to
rotation axis.

the # stands for the number of irreducible representation for the
C,

the # stands for the number irreducible representations for the
sigmas.

in the same rotation there is another rotation, for instance O, has
3C2:C42

the (, ) means they are the same and can be counted once.

without (, ) means they are different and can be counted twice.

Looking at a Character Table

D:h H 2C; 3C, ' 2S; RI Y ‘ IR \ Raman
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The order is the number in front of the the classes. If there is not number then it is considered
to be one. The number of classes is the representation of symmetries.The D;h has six classes
and an order of twelve.

Understanding using matrix

The identity does nothing to the matrix.

[100] [X] [X]

[010][Y]=[Y]

[001] [Z] [Z]

Owy the x and y stay positive, while z turns into a negative.
[100] [X] [X]

[010][Y]=[Y]

[00-1] [Z] [-Z]

Inversion (1) is when all of the matrix turns into a negative.
[-100] [X] [-X]

[0-10][Y]=I[-Y]

[00-1] [Z] [-Z]




C.is when one would use cos and sin. for an example C,
[cos (2n/4 -sin (2m/4 0] [X] []

[sin (271/4) cos (27/4) 01 [Y] =[]

[001][Z]]

The Great Orthogonality Theorem

The theorem states

: h
Z[ri(R)mn][I}(R)m’n’] = 71 6ij5mm’6nn’
R Yy
Terms
h = order of the group (# of symmetry operators)

Ti = ith representation

li = dimensionof Ti (e.g. 3% 3,1i=3)
R = generic symbol for an operator

[Ti R(mn)] = the element in the mth row and nth column of an operator
R in representation Ti[Tj R(m’n’)] = complex conjugate of the
elementin the m’th row and n’th column of an operator R in
representation Tj. What does this all mean?

For any two irreducible representations Ti, Tj

Any corresponding matrix elements (one from each matrix) behave as components of a
vector in h-dimensional space, such that all vectors are orthonormal. That is, orthogonal
and of unit length.

Examine the theorem under various conditions...

If vectors are from different representations then they are orthogonal

Z[FL (R)mﬂ][l—:i'(}:i))?;rt"u‘rl."]:t =0 ifi * ]

R

If vectors are from the same representation but are different sets of elements then they are
orthogonal

Z[Fi (R)mn] [1—‘1 (R)m_’n_’]* =0 ifm#m' orn#n'
R




The square of the length of any vector is h/li

Character Tables

Once the point group of a molecule is known, we can begin to make use of character tables. Group
theoretical considerations and matrix algebra have produced a solid mathematical foundation for the
information found in character tables. However, it would be too lengthy and beyond the scope of this
course to cover this material rigorously. Fortunately, it is not necessary to have a full and complete
understanding of the background theory in order to be able to use character tables to solve problems
related to symmetry. We will approach the material from a more descriptive view point.

What is a Character Table?

As we shall shortly discover, each point group has its own unique character table which is a device
containing useful symmetry related information. A simple way of thinking about how a character table is
constructed is to firstly, recognize that the positions of the atoms of a molecule (let's say water for
example) conform exactly and precisely to the symmetry operations for the point group to which it
belongs (Cav for example). That is, the appearances of the molecule before and after a symmetry
operation are identical. However, molecules have other important properties which do not behave in
exactly the same way as the positions of the atoms. These properties are often referred to as molecular
properties, and can include simple translations, rotations, vibrations, and even the behavior of electrons
in atomic orbitals. They are also referred to as "basis vectors."

An example of how we might generate information relating to a particular molecular property is to first
agree to characterize symmetric behavior at +1 and antisymmetric behavior as -1, and to call the +1's and
-1's the character of the property with respect to the symmetry operation. For water, we place the O atom
at the origin of the cartesian coordinate system and examine the behavior of the Py orbital on O. [Note
that the + and - in the figure refer to the angular dependence of the wave function.]

We now perform one of the symmetry operations for Cay (ignore the positions of the O and H atoms for
the moment). If we choose the C» operation then we would rotate the molecule about the Z axis.




Effect on oxygen 2P, orbital when C,
operation is performed.

The sign of the wave function changes and we describe this as antisymmetric behavior and give it the
character -1. We can perform this analysis for all four operations for C»y and tabulate the results.

Symmetry operations

Point E e o o
group C,, 2 v v

in xz plane in yz plane
Effect on
Oxygen i
o 1 1 1 -1
orbital

1 = unaffected or unchanged
-1 = changed or reversed

A similar treatment for the oxygen Py and P; orbitals gives the following table




Symmetry operations

Point E ¢ |
group C,, : O O

in xz plane in yz plane

Effect on
Oxygen & o

. 1 1 1 1
orbital

Effect on
Oxygen

b 1 1 1 1
orbital

At this point we should also point out that the P orbitals lie along the x, y, and z axes, and the
information that we have generated in the tables can equally be used to describe translationsof the
molecule. A translation is the movement of a molecule as a whole. Ty stands for translation along the x
axis, and this can be depicted as an arrow pointing along the x direction. Performing the C, operation
reverses the direction of the arrow and so we assign this a -1 character (just like a Px orbital). Since we
live in a 3-dimensional universe, there are three translations Tx, Ty, and T, representing three degrees of
freedom for the molecule.




f C, |
C, g
_— Ae—

_ Translation along x axis

Effect on translation along the x axis when C, operation is performed

In much the same way as we treated P orbitals and translations (by "inspection™) we can also consider
rotations of the molecule as a whole. Again, there are three possible rotations Rx, Ry, and R, which can
be performed by rotations about the x, y, and z axes respectively. Consider the rotation Ry as if it were
the steering wheel of an automobile - depicted here with a curly arrow. After the C operation, the
direction of turn of the automobile has been reversed (clockwise to anticlockwise) and so we assign a -1
character.

Effect on rotation about y axis (R,) when C, operation is performed

For Ry, a table of the effect on rotation about the y axis looks like this (rotations about the x and y axis
have also been added)




Symmetry Operations

Point E Cz ov o'V'
Group C,, inxz plane | inyz plane
Effect on

rotation

about y axis 1 =1 1 -1
Effect on

rotation

about x axis 1 -1 -1 1
Effect on

rotation

about z axis 1 1 -1 -1

We can condense this information about the molecular properties of water into a table - a Character
Table. The character table for water (Cay) is shown below

o, o

C, | E C, 2 | 2

A, 1 1 1 1 z X2, y2, 22
A, 1 1 1 -1 R, |xy

B, 1 -1 1 -1 xR, | xz

B, 1 -1 1 1 Y, Ry | yz

The various parts of the table can be described as follows [Note that some of this nomenclature comes
from the mathematical underpinning of group theory - don't be put off by it!]




o o,
Ca C, | @ | w
A, 1 1 1 z [X%y4 2
A 1 -1 -1
¢ R, |[xy
B, -1 1| 1 | xR |x
Bz -1 -1 1 Y, Rx yz




<— Point group (Schoenflies notation)

c2v
c E c 9y . Symmetry operations
2v 2 (x2) (yz) ;
arranged into classes
A,
A, ;
“Symmetry species” these symbols are
< referred to as “Mulliken symbols” and are
B, used to describe the symmetry properties of
the molecular properties in a shorthand way.
B, (The symmetry properties of the molecular

properties are referred to a “irreducible

representations”)

o s 1
Cy | E [C | x | w2
A, 1 1 1 1 z T
A 1 1 -1 -1
. R, |xy
B, 1 -1 1 1 | xR, |x
B, 1 -1 -1 1 Y. R, | yz

The molecular properties (translations, rotations) assigned
to their symmetry species. Also called “the basis functions”
of the irreducible representations. You will always find 6
symbols here (x, y, z, R, R, R,). They represent
mathematical functions such as orbitals, rotations etc.




g, (o 20
Cw | E | & x2) | (2)
A, 1 1 1 1 z X2, y2, 72
A 1 1 P -1
£ R, [xy
B, 1 P 1 1 | xR | x
4
B, 1 1 R 1 | yR | yz

A "representation” of the symmetry properties of certain molecular
properties — this line is a representation of how translations in the
x-direction (x) and rotations about the y axis (Ry) behave in C,,
point group symmetry. This is actually a mathematical code, and is
found here in its simplest form - it is therefore referred to as an
“irreducible representation” (Can also be referred to as
“symmetry species”).

o o,
Cy, E C, (X-;-l) (y;)
A, 1 1 1 1 z X2, y2, 22
A 1 1 -1 -1

2 R, |xy
B1 1 '1 1 '1 x1 Ry XZ
B, 1 -1 -1 1 Y, R, | yz

*

The “character” of an irreducible representation (symbol y chi).




What do Mulliken Symbols Stand For?

Robert S. Mulliken

Mulliken symbols were proposed by Robert S. Mulliken (1896-1986, Nobel prize in chemistry 1966) and
are intended to have the following meanings:

A or B stand for one dimensional representations

A - is symmetric with respect to rotation about a principal axis (Cn)
B- is antisymmetric with respect to rotation about a principal axis (Cn)
E - stands for a doubly degenerate representation

T - stands for a three dimensional representation

Subscripts 1 and 2 refer to symmetry with respect to a C axis perpendicular to a principle axis (Cn), or
to a vertical plane of symmetry if there is no C;

1- symmetric
2 - antisymmetric

Primes (') or (") stand for symmetric () or antisymmetric (") with respect to a horizontal plane of
symmetry (o)

In point groups which have a center of symmetry (i) the subscripts g and u stand for




g - symmetric

u - antisymmetric

with respect to inversion.

A Few Last Comments about Character Tables

In this course you will NOT have to:

1. Determine the characters of an irreducible representation
2. Generate or create a character table or memorize any

3. Perform complex math using character tables

Normal Modes of Vibration
What use are character tables?

At this point a good question is: what's the point of learning about character tables? The simple answer is
that the symmetry and associated character table of a molecule can be used to interpret and predict many
aspects of chemically significant spectroscopies as well as bonding. We will illustrate this next by
focussing on the vibrational modes of a molecule.

In the laboratory we can gather useful experimental data using infra-red (IR) and Raman spectroscopy.
This data can be compared to the number of IR and/or Raman active bands predicted from the application
of group theory and the correct character table. The mathematics (group theory and matrix algebra)
behind this treatment serves as a solid theoretical foundation. The manipulations described below work
because all the symmetry operations of a molecule comprise a mathematical group and obey the rules of
the group. As noted previously we do not have to master this area of mathematics in order to make good
use of character tables.

Degrees of Freedom and Vibrations in Molecules

Here we will initially discuss the degrees of freedom for a simple molecule (water). We will very quickly
see why it is very beneficial to employ symmetry when investigating larger molecules.

For a molecule with "N" atoms there are 3N degrees of freedom (remember we live in a 3-dimensional
world of x, y, z coordinates). For a non-linear molecule 3 degrees of freedom can be signed to
translations - movement of a body as a whole (Tx, Ty, T2) and 3 to rotations (Rx, Ry, Rz). The remaining




motions of the atoms are displacements of the atoms from their mean positions - the center of gravity
does not change. These fundamental vibrations are referred to as "normal modes"”. Thus, a non-linear
molecule has 3N-6 normal modes. For water the number of normal modes is 3 (3 x 3 - 6 = 3). For linear
molecules there are 3N-5 normal modes.

For water, which of course has been intensively studied we know that the 3 vibrations are as follows.

Three fundamental modes of vibration for water

@) (@) @)
N N\ # X
H H H H H H

G Gy
v, symmetric stretch v, asymmetric stretch v3 symmetric bend
A, symmetry B, symmetry A1 symmetry
~ 3700 cm™’ ~ 3600 cm-* ~ 1600 cm™!

The symbols used to describe these modes (A1, B1) are the same Mulliken symbols that we encountered
in our discussion of character tables. In other words, the vibrations, which are molecular properties, can
described by symmetry species or irreducible representations. In fact much of the literature involving
vibrational spectroscopy uses these symbols as a shorthand way of communicating information.

It should be pretty obvious that the number of vibrations increases rapidly with even modest increases in
the number of atoms in the molecule. Determining the kinds of vibrations by inspection (as we did for
water) now becomes much more difficult. For example consider the following compounds:

H20 3atoms 3 vibrations
PH3 4 atoms 6 vibrations
CO,>  4atoms 6 vibrations

XeFs 5atoms 9 vibrations

B2Hs 8 atoms 18 vibrations




For diborane (B2He) which has D2n symmetry figuring out the nature and symmetry species of all 18
vibrations by inspection would be a daunting task. However, armed with the character table for D2n and
knowledge of symmetry properties the task of determining the symmetry species of all vibrations
is straight-forward.

For the case of water we could present the character table (Cov) with the 3 vibrations (v1, v2, v3) listed
in the column of molecular properties as shown below. (v = Greek symbol "nu")

o o,
Co E C, (XZV) (yz)
A, 1 1 1 1 z x2,y2, 22

V4, V3
A, 1 1 -1 -1 R, |xy
B, 1 -1 1 -1 x,R, | xz
V2

B, 1 -1 A 1 | yr | vz

However, in general this approach is impractical. Take pyridine (CsHsN) for example. The point group is
also Cyy but the molecule has 11 atoms. The number of fundamental modes of vibration is 27 (3 x 11 - 6
= 27).




el

\

N

In this case we would have to draw up a Cay character table showing the symmetries of all 27 vibrations.
For this reason vibrations are not normally included in character tables. Instead it is up to the user (you)
to determine the number and type of vibrations (as defined by their symmetry species) for any molecules
that are encountered. How we do this is described below.

Reducible Representations

As previously noted one of the important properties of character tables is that the symmetry operations
are members of a mathematical group and important relationships exist between them. In general the
same can be said about the symmetry species or irreducible representations of the molecular properties.
The products from combining the characters of irreducible representations either by multiplication or
addition/subtraction also obey the rules of the group. The new representations are no longer the most
simple possible and are referred to as "reducible representations” because they can be “reduced” down to
their component parts.

For example, for water the symmetries of the translations (Tx, Ty, T;) can be gleaned directly from the
Cov character table. They are A1, B1, and B2. We can represent all three of these degrees of freedom by a
representation I'tr and we can write the expression below. (I" = upper case Greek letter "gamma").

I'r=A1+B:1+B>

We know that Ai, B: and B are merely the shorthand notations for the symmetry species (irreducible
representations). We can therefore simply write down the characters of I't by adding the individual
characters for Az, B: and B2 from the Cyy character table.




(e} [o 908
Cx | E |G, x2) | 2
A, 1 1 i 1 2
B, 1 1 1 1
X
B, 1 1 1 1 .
el -1 1 1

ThusI't=3 -1 1 1.
This is a valid reducible representation and a member of the Cy group.

In a similar manner we can write down the reducible representation for all three rotations and all the
vibrations.




r; | 3 | - 1 1

| R
3 1 3 1

T'vig

T,y | © | 3 1

The representation for ALL the degrees of freedom for the molecule (3N) can be written as
I'sn=I't+I'r+Tvis

and the reducible representation for it is obtained by simply summing the characters for I't, I'r and I'vig.
sy =9-131

Make a note of this - it will come up later!

Although the set of characters 9 -1 3 1 is a valid member of the Cay group it is not particularly useful
when discussing molecular properties. What is really required is the language of the shorthand symmetry
species (Mulliken symbols, A1, B1 etc.). In other words we want to express I'sy in terms of As, B; etc.
From the information covered above it can be easily shown by inspection that:

I'sn = 3A1 +A2 + 3B1 +2B3

The good news is that for other more complex molecules we do not have to perform this task by
inspection because:

1. We can easily generate I'sn as a reducible representation for a molecule (if we know its point group
symmetry).




2. We can easily convert the I'sn reducible representation into the sum of its symmetry species (Mulliken
symbols) using a "simple” formula known as the reduction formula.

General Method to Obtain I'sn
Step 1

Take the character table for the molecule and add a row at the bottom. In this row generate the reducible
representation for I't (or I'xyz) as we did above, simply by adding the characters for each operation which
correspond to the molecular properties for x, y and z. For C>y we have already shown that these are the
characters corresponding to A, B1 and Bo.

g, [o )
C. | E |[¢c 0« | 2
A, 1 1 1 1 z X2, y2, 22
A 1 1 1 1
2 R, |xy
B, 1 1 1 1 | xR, | x
B, 1 1 1 1 Y. R, | yz
3 -1 1 1
Iy STEP 1

Step 2

Add another row belowI'rand write down the number of atoms whichDO NOT
CHANGEtheir location during each symmetry operation. This is where you realize how useful a real
molecular model set is. To do this you will also need to know where the symmetry elements are and how
the symmetry operations affect the molecule. Of course, you already know how to do this because you
have studied Schonflies notation and know how to assign the point group of a molecule. The character
table also has all the symmetry operations listed by class along the top row.




o o,
C, | E |G ) | 2
A, 1 1 1 z | X3 y? 22
A, 1 -1 -1 R, |xy
B, -1 1 -1 x,R, | xz
B, -1 -1 1 Y, R, yz
3 -1 1 1
It STEP 1
No. of 3 1 3 1
unmoved STEP 2
atoms

of the group.

Step 3

Thus for water (3 atoms) under E there are 3 unmoved atoms, but for C» both H's move but since the O
atom sits on the C; axis it does not change its location and so we record 1 under the C, column. The new
set of numbers generated in step 2 (3 1 3 1) is also a reducible representation in Coy and obeys the rules

In this step we simply multiply together the characters that have been generated in steps 1 and 2. The
result (third row) is the reducible representation for I'sn (or I'toT). Its that simple.

3 -1 1 1
Ll 2] " | sreps
| IR S R 5
atoms
r3N9|'1‘3‘1|STEP3

You will note that the new reducible representation (9 -1 1 3) is identical to the representation
for I'sn that we obtained previously by inspection.




Reducing the Reducible Representation

To convert ANY reducible representation into the sum of its irreducible representations (symmetry
species or Mulliken symbols) we use a reduction formula:

a; = (1/9).Z gr- %R %R

This seemingly complex formula is actually very easy to use.
First what do the terms stand for?

a, = the number of times an irreducible representation appears in the reducible
representation

g = the order of the group (total number of symmetry operations)
dr = the number of symmetry operations in each class (the order of the class)
¥’ = the character of the operation (R) in the irreducible representation

¥r = the character of the operation (R) in the reducible representation

You can easily find this information in the character table:




order of the class — in this case there is
9r one operation in the class so g, = 1

I the 1 is left off since it is obvious
v o, | o,
C.n | E C; | @ | 2
A, 1 1 ) 1 1 z |9 y52 X&'
A, 1 1 -1 -1 R, Xy
B, 1 -1 1 -1 X Ry XZ
B, 1 -1 -1 1 Y, Ry | yz
9 -1 3 1
r3N p XR

Back to our example for water: Point group Coy, order (g) = 4
The reducible representation for I'sn=9-131

The number of times Az appears in this representation is therefore
aan=14{119+11 (-1)+1.1.3+1.1.1}=3

so I'ancontains 3 Ai symmetry species. The numbers of the other symmetry species are calculated as
follows:

an=1/4{119+1.1.(-1)+1.(-1).3+1.(-1).1}=1 one A; present
a1 =1/4 {119+ 1.(-1).(-1) +1.1.3+1.(-1).1} =3 3 B1 present
ap2=1/4 {1.1.9+ 1.(-1)(-1) +1.(-1).3+1.1.1} =2 2 B present

\We can now write I'sn = 3A1 + A2 + 3B1 + 2B (exactly what we got by "inspection™ above. We can now
subtract the symmetry species for the translations and rotations and this will give us the number and
symmetry species of the fundamental modes of vibration. I'rand I'r can be obtained directly from the
character table.

I'sn = 3A1 + Ay + 3B1 + 2B»




I't=A1+B1+ B2

I'r=A2+B1+B>

I'vis=Isn-T71-TrR= 2A1 +B:

So the three normal modes of vibration for water have the symmetries Az, A: and B;.

\We now have a general method for determining all of the fundamental modes of vibration for a molecule
and expressing these modes in the shorthand language of Mulliken symbols. This is one of the exercises
that you will be tested on in Exam 1. The best way to become confident with this method is to practice as
many possible examples as you can!

Rule of mutual exclusion

In molecular spectroscopy, the rule of mutual exclusion states that no normal modes can be
both Infrared and Raman active in a molecule that possesses a centre of symmetry. This is a powerful
application of group theory to vibrational spectroscopy, and allows one to easily detect the presence of
this symmetry element by comparison of the IR and Raman spectra generated by the same molecule.

The rule arises because in a centrosymmetric point group, IR active modes, which must transform
according to the same irreducible representation generated by one of the components of the dipole
moment vector (X, y or z), must be of ungerade (u) symmetry, i.e. their character under inversion is -1,
while Raman active modes, which transform according to the symmetry of the polarizability tensor
(product of two coordinates), must be of gerade (g) symmetry since their character under inversion is +1.
Thus, in the character table there is no irreducible representation that spans both IR and Raman active
modes, and so there is no overlap between the two spectra.

This does not mean that a vibrational mode which is not Raman active must be IR active: in fact, it is still
possible that a mode of a particular symmetry is neither Raman nor IR active. Such spectroscopically
"silent” or "inactive" modes exist in molecules such as ethylene (C2H.), benzene (C¢Hs) and
the tetrachloroplatinate ion (PtCls>).

Reference Books:

1. Raman, K.V. (2002). Group theory. New Delhi: Tata Mc Graw Publishing
Company.

2. Puri, Sharma & Pathania, (2006). Principles of Physical Chemistry. Jalandar:
Millenium Edition, Vishal Publishing Co.

3. Veera Reddy, K. (2005). Symmetry and Spectroscopy of Molecules. New
Delhi: New Age International Pvt. Ltd.

4. Peter Atkins and Julio de Paula. (2009). Atkins’ Physical chemistry. Noida. Oxford
University press. Gopsons papers Ltd.
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PART- A Questions (Each question carries one mark)

1. The power emitted per unit area of the surface of a black body is directly proportional
to the fourth power of its absolute temperature, the lawis
a. Stefan Boltzmann law  b. Weins displacement law
c. Planck’s law d. Jean’s law

2. Evidence in favour of the particle nature of radiation
a. Diffraction of radiation b. Compton effect c. polarization d. interference
3. Black body radiation has a characteristic continuous spectrum of radiation which
depends upon
a. Body’s temperature b. Nature of the body

c. Colour of the body d. Density of the body

4. The spectrum of black-body radiation at any temperature is related to the spectrum
at any other temperature
a. Stefan Boltzmann law b. Weins displacement law

. Planck’s law d. Jean’s law

5. In one dimensional box problem the potential energy of the particle outside the box is
a. Zero b. unity c. infinity d. fractional

6. The energy levels of the particle in the box are

a. quantized  b. randomized c. dispersed  d. Not-quantized
7. The theory of rigid rotor in space is useful in dealing with

a. Rotational spectra of diatomic molecules b. Vibrational spectra of
diatomic molecules c. IR spectra of diatomic

molecules d. Raman spectra of diatomic molecules

8. In the Hook’s law f = -kx, k is called
a. Force constant  b. Gasconstant c. Boltzmann constant  d. Faraday’s constant
9. An one electron system whose potential field is not spherically symmetrical

a. Hydrogen atom b. Hydrogen atom'in electric field

c. Hydrogen molecule  d. Helium molecule

10. The method to obtain approximate solutions to the wave equation
a. Perturbation method b.'Normalization of the wave function

c. Making the wave functions.orthogonal d. making the wave functions orthonormal

11. Zeeman effect is
a. the change.in energy levels of an atom when it is placed in uniform external

field b. The change in energy levels of an atom when placed in non-uniform external
field c.. The change in energy levels of an atom when placed in external electric field




12.

13.

14.

15.

16.

17.

22.

d. The change in energy levels of an atom when placed in non-uniform electric field
The energy level belongs to En=2n-1/2
a. Harmonic oscillator b. Hydrogen atom

c. particle in a box d. free particle in motion

For the symmetry operation “reflection” the corresponding symmetry element is
a. Identity element b. Plane of symmetry

c. Centre of symmetry  d. Proper axis of symmetry

An array of numbers arranged in rows and columns are called

a. Matrices b. determinants c. Space lattices d. Miller indices

A diagonal matrix will have

a. In a square matrix if all the elements other than those along the diagonal are zero
b. In a square matrix if all the elements other than those along the diagonal are unity

c. In a square matrix if all the elements along the diagonal are unity

d. In a square matrix if all the elements along the diagonal are zero

The molecule with C3v point group

a. acetylene b. water c. ammonia d. Boron trichloride

For a pyramidal molecule with point group C3v the number of theoretically
predicted IR fundamental bands

a. Three b. Four c. Five d. Six

18. For chloro trifluoride molecule the number of observed Raman bands and IR bands
are four each, the predicted geometry is
a. Pyramidal b. planar c. T-shaped d. bent
19. In case of molecules with a centre of symmetry the vibrational modes are anti-
symmetric to centre of inversionare
a. IR inactive b. IR active c¢. Raman inactive d. Raman hyper active
20. For Raman activity the vibrations should involve a change in
a. polarizability b. magnetization  c. Magnetic susceptibility d. Surface tension
PART- B Questions (Each questions carries six marks)
21. a. What are the postulates of Quantum mechanics?

(OR)

b. What are operators in quantum mechanics? Explain multiplication of operators.

Set up Schrodinger wave equation for the rigid rotor of diatomic molecule.
(OR)




(b). Set up Schrodinger wave equation for one dimensional box and
solve the equation for its energy.

23. (a). What are the applications of perturbation method to anharmonic
oscillator and Heliumatom.
(OR)

(b). Derive Schrodinger equation for H-atom.

24. (a) (i) Define class and sub —group.
(i) Write notes on similarity transformation.
(i) Show that the element [1, -1, i, -i] form a group.
(OR)

Distinguish between vertical plane and horizontal plane.

(i) Prove that Cy(X)
Ca(y) = Ca(2).




(iii) Distinguish between vertical plane and horizontal plane.
(iv) Prove that Ca(x) Ca(y) = C2(2).

25. (a) (1) What are the relationship between reducible and irreducible
representation of the group.
(1) What are the properties of irreducible representation?

(OR)
(b) (i) State and explain the great orthogonality theorem.

(if) How will you construct the character table for a Coy and Cay point group
using the great orthogonality theorem?

PART- C Question (Each Question carries ten marks)

26. What is meant by zeropoint energy? Show that the zero point energy for a particle in
one dimensional box is in accordance with Heisenberg’s principle.
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S.NO Question Option A Option B Option C Option D Answer
For a planar molecule with point
1 group Dan the number of Three Four Five Six Three
theoretically predicted
IRfundamental bands
For a planar molecule with point
2 group [.)3h the number of Three Four Five Six Three
theoretically predicted Raman
fundamental bands
For a pyramidal molecule with point
3 group Cay the number of Three Four Five Six four
theoretically predicted Raman
fundamental bands
For a pyramidal molecule with point
group Cay the number of . :
4 theoretically predicted IR I Four Five SIX four
fundamental bands
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For a T-shaped molecule with point
group Csy the number of
theoretically predicted IR
fundamental bands

For a T-shaped molecule with point
group Csy the number of
theoretically predicted Raman
fundamental bands

For Phosphorous trichloride

7 molecule the number of observed IR | Three Four Five Six four
bands

For Boron trifluoride molecule the
number of observed IR bands

Three Four Five Six SiX

Three Four Five Six Six

Three Four Five Six three

For chloro trifluoride molecule the . . )
J number of observed IR bands Three Follg FIve SIX SIX

For Phosphorous trichloride
10 molecule the number of observed Three Four Five Six four
Raman bands

11 For Boron trifluoride molecule the Three Four Five Six three
number of observed Raman bands

12 For chloro trifluoride molecule the Three Four Five Six Six
number of observed Raman bands

For Phosphorous trichloride
molecule the number of observed . .
13 Raman bands and IR bands are three Pyramidal planar T-shaped bent Pyramidal

each, the predicted geometry is
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For Boron trifluoride molecule the
number of observed Raman bands .
14 and IR bands are four each. the Pyramidal planar T-shaped bent Planar
predicted geometry is
For chloro trifluoride molecule the
number of observed Raman bands .
15 and IR bands are four each. the Pyramidal planar T-shaped bent T-shaped
predicted geometry is
In the IR and Raman spectra, gpart Metastable Solvent
16 from the fundamental absorption overtones Base bands overtones
. . bands bands
bands, it contains
In the IR and Raman spectra, apart Combination Metastable Solvent Combination
17 from the fundamental absorption Base bands
. . bands bands bands bands
bands, it contains
In case of molecules with a centre Raman Raman
18 of symmetry the vibrational modes | IR inactive IR active L . IR inactive
) . . inactive hyperactive
symmetric to centre of inversion are
In case of centrosymmetric
molecules, the IR active vibrational | Paulis Mutual Mutual
. . . . , Overtones !
19 modes are Raman inactive and exclusion exclusion Hund’s rule rule exclusion
Raman active vibrational modes are | principle principle principle

IR inactive, the principle is called
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In case of molecules with a centre
20 of Symmetry the \_/lbratlonal modes IR inactive IR active Raman Raman IR active
are anti-symmetric to centre of inactive hyperactive
inversion are
21 Vibrations of ‘g’ modes are IR inactive IR active Rl Raman Raman active
active hyperactive
22 Vibrations of ‘u’ modes are IR inactive IR active Ramgn fRéigan . _Ram"?‘”
inactive hyperactive inactive
IR active vibrations involve a Dipole - Magnetic Surface Dipole
23 . magnetization . .
change in moment susceptibility | tension moment
24 For Raman activity the vibrations olarizabilit maanetization Magnetic Surface olarizabilit
should involve a change in P y g susceptibility | tension P y
For Raman activity the vibrations Induced dipole L Magnetic Surface N
25 . N magnetization - . polarizability
should involve a change in moment susceptibility | tension
The basic theorem is concerngd The great . van der The great
with the elements of the matrices Faradays . Normalized .
26 o - i orthogonality Waals orthogonality
constituting the irreducible theorem theorem
theorem theorem theorem

representation of a group is called
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All the properties of group The great . Van der The great
27 representations and their characters Faradays orthogonality Normalized Waals orthogonality
. : theorem theorem
can be derived from this theorem theorem theorem theorem
28 The Kronecker delta can have 1or0 1or2 0or?2 10r3 1or0
values
According to the great orthogonality
theorem the sum over various An odd An even Positive
29 operations of the products of the zero zero
. . number number number
elements of irreducible
representations will be equal to
As per the Great Orthogonality
. . classes of . classes of
theorem, the number of irreducible | Symmetry . Symmetry Matrix .
30 o ; elements in the . elements in the
representations in a group is equal elements rou operations elements rou
to the number of group grotp
As per the Great Orthogonality
31 theorem, in a giverriggueserigiion identical different dissimilar interactive identical
the characters of all the elements of
the same class will be
As per the Great Orthogonality
theorem, the sum of the squares of classes of .
32 the dimensions of the irreducible Rrder of the elements in the Symm_etry Matrix Order of the
. : group operations elements group
representations of a group will be group
equal to the
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As per the Great Orthogonality
theorem, the sum of the squares of
33 the characters in a givenirreducible
representations of a group will be
equal to the

Order of the
group

classes of
elements in the

group

Symmetry
operations

Matrix
elements

Order of the
group

As per the Great Orthogonality
theorem, the characters of any two
irreducible representations of a
group are

34

orthogonal

normalised

orthonormal

identical

orthogonal

In the construction of the character
35 table One dimensional irreducible
representation will be denoted by

AorB

AorB

In the construction of the character
36 table two dimensional irreducible
representation will be denoted by

AorB

In the construction of the character
37 table Three dimensional irreducible
representation will be denoted by

AorB

Character tables are constructed

38 .
using

Symmetry
elements

Orthogonality
theorem

Symmetry
operations

Irreducible
operations

Orthogonality
theorem
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The symmetry | The name of The Charagt_er The symmetry
. .. | The number of | and the point COITESPONAINg | ang
One of the following is not true with , . . . to various .
. ., IR’s possible | corresponding | group with corresponding
39 respect to the information’s to the . . classes of
for a point fundamental the possible fundamental
character table symmetry
group bases for very | symmetry bases for very
few IR elements elgments for few IR
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In Csy point group the number of
43 irreducible representation are Four five Six three Three
possible
m The nu_mber of elements present in Four five six three six
Cav point group
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The character of any two irreducible .
46 representations of a group are orthogonal diagonal parabola hyperbola orthogonal
47 In Czy point group the number of | - five Six three Four
classes are possible
In Csy point group the number of . .
48 classes are possible Four five SiX three Three
49 For the ng point group, the order of Four five six three six
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Three sigma Four sigma Five sigma | Six sigma Three sigma
50 Formaldehyde has bonding bonding bonding bonding bonding
molecular molecular molecular molecular molecular
orbitals orbitals orbitals orbitals orbitals
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coordinate transformers is
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with respect to axis axis axis
53 The single prime and O NSE symmetry chiral achiral Mirror image | symmetry

are used to denote
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KARPAGAM ACADEMY OF HIGHEREDUCATION
COIMBATORE-21
(For the candidate admitted from 2019 onwards)
DEPARTMENT OF CHEMISTRY
M.Sc DEGREE EXAMINATION-September 2019
Internal-1

PHYSICAL CHEMISTRY-I
DATE: SUBJECT CODE: 19CHP103

TIME: 2.00 HRS TOTAL: 50 MARKS

PART-A (20x1=20 MARKYS)
ANSWER ALL THE QUESTIONS

1. The definite region in three dimensional space around the nucleus where there is high
probability of finding an electron of a specific energy E is called
a. Atomic orbital b. Molecular orbital c. Nodal plane d. Median lobes

2. This involves with the knowledge of probability
a. Quantum mechanics b. Classical mechanics c. Newtonian
mechanics d. Fluid mechanics

3. The knowledge of quantum mechanics usually involves knowledge of
a. Probability b. certainties C. uncertainties d. possibility

4. Classical mechanics and quantum mechanics tend to give the same results when systems are
in highly excited quantum states. This is

a. Correspondence principle b. Bohr’s theory

c. Rutherford theory d. Paulis exclusion principle

5. The energy levels of the particle in the box are
a. quantized b. randomized c. dispersed d. Not-quantised

6. In quantum mechanics the state of a system is defined by
a. Wave function b.P,V,T c. Gaseous laws d. Law of mass action

7. Simultaneous specification of position and momentum is impossible for a microscopic
particle. This is

a.Stefan Boltzmann law b. Weins displacement law

c. Planck’s law d. Heisenberg uncertainty principle

8. According to Newton’s second law of motion
a. F=ma b.V=ma cF=mv d.F=Pv



9. According to Hooke’s law the force ‘f” acting on a molecule is given by
a. —kx b. mgh c. mv d. %2 mv

10. A diatomic vibrating molecule can be represented by a simple model called
a. Simple harmonic oscillator b. Rigid rotor
c. Particle in one dimensional box d. Particle in three dimensional box

11. The quantum number ‘n’ is called
a. Principal quantum number b. Azimuthal quantum number
c. Magnetic quantum number d. Angular momentum quantum number

12. In the particle in one dimensional problem, the property of orthogonality between any two
different states ensures that

a. The various states are truly independent

b. The various states are dependent

c. One state is independent and the other is dependent

d. All are dependent and still do not interfere with each other

13. The solution of the problem of the rigid rotator gives us directly the solution of the
a. angular momentum operator b. Laplacian operator
c. Hermitian operator d. Position operator

14. Two atoms of mass m1 and m2 rigidly joined by a weightless link of length R is a
a. Rigid rotator b. Simple harmonic oscillator
c. Particle in one dimensional box d. Particle in three dimensional box

15. The theory of rigid rotor in space is useful in dealing with
a. Rotational spectra of diatomic molecules
b. Vibration spectra of diatomic molecules
c. IR spectra of diatomic molecules
d. Raman spectra of diatomic molecules

16. A diatomic molecule in space where the bond length is assumed to remain unchanged during
rotation is a

a. Rigid rotator b. Simple harmonic oscillator

c. Particle in one dimensional box d. Angular momentum

17. Time relation between ¥ and Exis A A
a. Ex¥=h?2m ¥ b. Ex¥P=h%*k?2m ¥ c. Ex¥=h’k’/m ¥ d. Ex¥=h%k?/m? ¥
18. Which of the following are eigen functions of A??

a. Y1 and ¥» b.¥, and not V1 ¢.¥1 and not ¥ d.Neither W1 and ¥»

19. The expectation value of A for the state W=(* W1 +* ¥,)/5 is
a.-0.32 b. zero c.0.75 d. 0.96



20. Throughout 0< x < L, the wave function
a. Can be chosen to be real b. is exponentially decaying
c. is generally complex d. is zero

PART -B (3 X2=6 MARKS)
ANSWER ALL THE QUESTIONS
21. What is meant by Black body radiation?
22. What is Photoelectric effect?
23. Explain Laplacian operator?
PART -B (5 X6=30 MARKYS)
ANSWER ALL THE QUESTIONS
24. a) Give an explanatory note on time dependent Schrodinger equation.
OR
b) S.T. Wein’s and Rayleigh Jeans’s law are the limiting cases of Planck’s expression. Justify.
25.a) Write a note on Operator?
OR
b). Compare the classical mechanics and quantum mechanics within three dimensional box.
26.a).Solve of Schrodinger equation for one-dimensional harmonic oscillator.
OR

b). Write a note on spherically symmetric potential of the Hamiltonian for H-Like systems?
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DEPARTMENT OF CHEMISTRY
M.Sc DEGREE EXAMINATION-September 2019
Internal-I

PHYSICAL CHEMISTRY-I
DATE: SUBJECT CODE: 19CHP103

TIME: 2.00 HRS TOTAL: 50 MARKS

PART-A (20x1=20 MARKS)
ANSWER ALL THE QUESTIONS

1. The definite region in three dimensional space around the nucleus where there is high probability of finding an
electron of a specific energy E is called
a. Atomic orbital b. Molecular orbital c. Nodal plane d. Median lobes

2. This involves with the knowledge of probability
a. Quantum mechanics b. Classical mechanics c. Newtonian mechanics d.
Fluid mechanics

3. The knowledge of quantum mechanics usually involves knowledge of
a. Probability b. certainties C. uncertainties d. possibility

4. Classical mechanics and quantum mechanics tend to give the same results when systems are in highly excited
quantum states. This is

a. Correspondence principle b. Bohr’s theory

c. Rutherford theory d. Paulis exclusion principle

5. The energy levels of the particle in the box are
a. quantized b. randomized c. dispersed d. Not-quantised

6. In quantum mechanics the state of a system is defined by
a. Wave function b.P,V, T c. Gaseous laws d. Law of mass action

7. Simultaneous specification of position and momentum is impossible for a microscopic particle. This is
a.Stefan Boltzmann law b. Weins displacement law
c. Planck’s law d. Heisenberg uncertainty principle

8. According to Newton’s second law of motion

a.F=ma b.V =ma c.F=mv d.F=Pv
9. According to Hooke’s law the force ‘f” acting on a molecule is given by

a. —kx b. mgh c. mv d. %2 mv
10. A diatomic vibrating molecule can be represented by a simple model called

a. Simple harmonic oscillator b. Rigid rotor

c. Particle in one dimensional box d. Particle in three dimensional box

11. The quantum number ‘n’ is called



a. Principal quantum number b. Azimuthal quantum number
c. Magnetic quantum number d. Angular momentum quantum number

12. In the particle in one dimensional problem, the property of orthogonality between any two different states
ensures that

a. The various states are truly independent

b. The various states are dependent

c. One state is independent and the other is dependent

d. All are dependent and still do not interfere with each other

13. The solution of the problem of the rigid rotator gives us directly the solution of the
a. angular momentum operator b. Laplacian operator
c. Hermitian operator d. Position operator

14. Two atoms of mass m1 and m2 rigidly joined by a weightless link of length R is a
a. Rigid rotator b. Simple harmonic oscillator
c. Particle in one dimensional box d. Particle in three dimensional box

15. The theory of rigid rotor in space is useful in dealing with
a. Rotational spectra of diatomic molecules
b. Vibration spectra of diatomic molecules
c. IR spectra of diatomic molecules
d. Raman spectra of diatomic molecules

16. A diatomic molecule in space where the bond length is assumed to remain unchanged during rotation is a
a. Rigid rotator b. Simple harmonic oscillator
c. Particle in one dimensional box d. Angular momentum

17. Time r;lation between ¥ andAEkiS X i
a. ExY=h?2m ¥ b. Ek¥= h?k?2m ¥ c. Ex¥=h%k?m ¥ d. Ex¥= h?k2/m? ¥

18. Which of the following are eigen functions of A2?
a. Y1 and Y2 b.¥; and not V1 c.W1 and not V> d.Neither W1 and ¥>

19. The expectation value of A for the state P=(3 W1 +* ¥,)/5 is
a.-0.32 b. zero c.0.75 d. 0.96

20. Throughout 0< x < L, the wave function
a. Can be chosen to be real b. is exponentially decaying
c. is generally complex d. is zero

PART -B (3 X2=6 MARKYS)
ANSWER ALL THE QUESTIONS
21. What is meant by Black body radiation?

A blackbody (sometimes spelled "black body") is a theoretically ideal radiator and absorber of energy at all
electromagnetic wavelength s. The term comes from the fact that a cold blackbody appears visually black. The
energy emitted by a blackbody is called blackbody radiation.

22. What is Photoelectric effect?



The photoelectric effect is the emission of electrons or other free carriers when light hits a material. Electrons emitted
in this manner can be called photoelectrons. This phenomenon is commonly studied in electronic physics and in fields
of chemistry such as quantum chemistry and electrochemistry.

23. Explain Laplacian operator?

The Laplace Operator

V2=V-V
48 Ko@) P Y 1Y K G R g s
‘((")x P oy Yoz )((‘)x oy ) T oz k)

_ 92 L 0% B2

= oxZ T oy oz

Applied to a function Applied to a vector field
02f . 0% . 9*f 2= _ 0*Fx, 0%Fy 9%Fz

¥ W oxz T Oy? * 022

Dl s
Vit=oxzt oy T oz

PART -B (5 X6=30 MARKYS)
ANSWER ALL THE QUESTIONS

24. a) Give an explanatory note on time dependent Schrodinger equation.

The Time-Dependent Schrodinger Equation

We are now ready to consider the time-dependent Schrédinger equation. Although we were able to
derive the single-particle time-independent Schrodinger equation starting from the classical wave
equation and the de Broglie relation, the time-dependent Schrédinger equation cannot be derived
using elementary methods and is generally given as a postulate of quantum mechanics. It is possible
to show that the time-dependent equation is at least reasonable if not derivable, but the arguments
are rather involved (cf. Merzbacher [2], Section 3.2; Levine [3], Section 1.4).

The single-particle three-dimensional time-dependent Schrddinger equation is

L OY(r,t) R _, | |
th——pr— = —5—V7U(r,t) + V(r)¢(r, 1) (21)

where V is assumed to be a real function and represents the potential energy of the system (a
complex function V' will act as a source or sink for probability, as shown in Merzbacher [2],


http://vergil.chemistry.gatech.edu/notes/quantrev/node36.html#Merzbacher:70
http://vergil.chemistry.gatech.edu/notes/quantrev/node36.html#Levine:91
http://vergil.chemistry.gatech.edu/notes/quantrev/node36.html#Merzbacher:70

problem 4.1). Wave Mechanics is the branch of quantum mechanics with equation (21) as its
dynamical law. Note that equation (21) does not yet account for spin or relativistic effects.

Of course the time-dependent equation can be used to derive the time-independent equation. If we

_ _ _ U(r,t) = 1(r)f(2)
write the wavefunction as a product of spatial and temporal terms, , then
equation (21) becomes

s0inl = 1) |10+ v )] vl o

or

nd_E
7@ dt = )

—V?+ V(r)] 2(r) (23)

2m

Since the left-hand side is a function of £ only and the right hand side is a function of L only, the
two sides must equal a constant. If we tentatively designate this constant £ (since the right-hand
side clearly must have the dimensions of energy), then we extract two ordinary differential
equations, namely

L g _ _E (24)
flt) d& &
and
ﬁﬂ
—5,-V(r) + V(r)e(r) = By(r) 2

The latter equation is once again the time-independent Schrédinger equation. The former equation
is easily solved to yield


http://vergil.chemistry.gatech.edu/notes/quantrev/node9.html#eq:TDSE3D
http://vergil.chemistry.gatech.edu/notes/quantrev/node9.html#eq:TDSE3D
http://vergil.chemistry.gatech.edu/notes/quantrev/node9.html#eq:TDSE3D

f(t] — E—sEf,r'ﬁ, (26)

The Hamiltonian in equation (25) is a Hermitian operator, and the eigenvalues of a Hermitian

f(¢)
operator must be real, so E is real. This means that the solutions are purely oscillatory,
flt) et — cosf + 1 sinf
since never changes in magnitude (recall Euler's formula ). Thus if
Y(r,t) = p(r)e E @7
U(r,) (r)
then the total wave function differs from only by a phase factor of constant
[ (r,2)|?
magnitude. There are some interesting consequences of this. First of all, the quantity is
time independent, as we can easily show:
[ (r, 8)|* = 9" (r, t)i(r, 1) = &5 (r)e My (r) = 9 () (x) (28)

Secondly, the expectation value for any time-independent operator is also time-independent,

U(r,)
if : satisfies equation (27). By the same reasoning applied above,
{A}=fW&ﬁﬁﬁnﬂ=fW&Hﬂﬂ (29)
¥(r,)
For these reasons, wave functions of the form (27) are called stationary states. The state is

“stationary," but the particle it describes is not!

Of course equation (27) represents a particular solution to equation (21). The general solution to
equation (21) will be a linear combination of these particular solutions, i.e.


http://vergil.chemistry.gatech.edu/notes/quantrev/node9.html#eq:TISE3D
http://vergil.chemistry.gatech.edu/notes/quantrev/node9.html#eq:spatxtime
http://vergil.chemistry.gatech.edu/notes/quantrev/node9.html#eq:spatxtime
http://vergil.chemistry.gatech.edu/notes/quantrev/node9.html#eq:spatxtime
http://vergil.chemistry.gatech.edu/notes/quantrev/node9.html#eq:TDSE3D
http://vergil.chemistry.gatech.edu/notes/quantrev/node9.html#eq:TDSE3D

Ylrt) = D cem ()

OR
b) S.T. Wein’s and Rayleigh Jeans’s law are the limiting cases of Planck’s expression. Justify.

In physics, the Rayleigh—Jeans Law is an approximation to

the spectral radiance of electromagnetic radiation as a function of “ = 5BGO.K H H
wavelength from a black body at a given temperature through . i —_ ::,:':LQHHM
classical arguments. For wavelength A, it is: E :: J:,’ == Wien
_E 20 -'F
B\(T) = @, 2| ff
X My
where By is the spectral radiance, the power emitted per unit s ,':
emitting area, per steradian, per unit wavelength; ¢ is the speed b 0 90 S0 1030 1300 140%

v [THz]
Comparison of Rayleigh—Jeans law with Wien
approximation and Planck’s law, for a body of
3800 K temperature.

of light; kg is the Boltzmann constant; and T is the temperature
in kelvins. For frequency #, the expression is instead

202k T

BT) = 22T

The Rayleigh—Jeans law agrees with experimental results at large wavelengths (low frequencies) but strongly disagrees at
short wavelengths (high frequencies). This inconsistency between observations and the predictions of classical physics is
commonly known as the ultraviolet catastrophe.[!]2] Its resolution in 1900 with the derivation by Max Planck of Planck's
law, which gives the correct radiation at all frequencies, was a foundational aspect of the development of guantum
mechanics in the early 2oth century.

In 1900, the British physicist Lord Rayleigh derived the A4 dependence of the Rayleigh—Jeans law based on classical
physical arguments and empirical facts.['] A more complete derivation, which included the proportionality constant, was
presented by Rayleigh and Sir James Jeans in 1905. The Rayleigh—Jeans law revealed an important error in physics theory
of the time. The law predicted an energy output that diverges towards infinity as wavelength approaches zero (as

frequency tends to infinity). Measurements of the spectral emission of actual black bodies revealed that the emission
agreed with the Rayleigh—Jeans law at low frequencies but diverged at high frequencies; reaching a maximum and then
falling with frequency, so the total energy emitted is finite.



Comparison to Planck's law

In 1900 Max Planck empirically obtained an expression for black-body radiation expressed in terms of wavelength A = ¢/v
(Planck's law):

2hc? 1
5 _he_ 7
A e*sT —1

B\(T) =

where h is the Planck constant and kg the Boltzmann constant. The Planck's law does not suffer from an ultraviolet
catastrophe, and agrees well with the experimental data, but its full significance (which ultimately led to quantum theory)
was only appreciated several years later. Since,

S
T
e’ —1+¢+E+E+“'.
then in the limit of high temperatures or long wavelengths, the term in the exponential becomes small, and the
exponential is well approximated with the Taylor polynomial’s first-order term,
_he_ he

MpT ] 4 —— .
e + N T

1 1 _ T

_he _he he
e T — 1 AkpT

This results in Planck's blackbody formula reducing to

2ckgT

B\(T) = =~

which is identical to the classically derived Rayleigh—Jeans expression.

The same argument can be applied to the blackbody radiation expressed in terms of frequency v = ¢/A. In the limit of small
frequencies, that is hy < kg T,

2mA 1 2hA kpT  2°2kT
BP(T)= cz o ~= 02 . h = cz .
ek —1

This last expression is the Rayleigh—Jeans law in the limit of small frequencies.

25.a) Write a note on Operator?



Operators

Levine [3] defines an operator as ""a rule that transforms a given function into another function” (p. 33). The
differentation operator d/dz is an example--it transforms a differentiable function f(z) into another function

f [J:] . Other examples include integration, the square root, and so forth. Numbers can also be considered as

operators (they multiply a function). McQuarrie [1] gives an even more general definition for an operator: " An
operator 1s a symbol that tells you to do something with whatever follows the symbol" (p. 79). Perhaps this

definition is more appropriate if we want to refer to the C'5 operator acting on NH 5, for example.

Linear Operators

Almost all operators encountered in quantum mechanics are linear operators. A linear operator is an operator
which satisfies the following two conditions:

-‘i(f +9) = -fif + 1519 (43)

Acf) = CcAf (44)

where £ is a constant and f and g are functions. As an example, consider the operators d/dz and (). We

can sce that d/dz is a linear operator because
(d/dz)[f(z) +g(z)] = (d/dz)f(z)+ (d/dz)g(z) (45)
(d/dz)[cf(z)] = c(d/dz)f(z) (46)

However, ()* is not a linear operator because
(f(z) +g(z))” # (£(z))" + (9(=))* 47)
The only other category of operators relevant to quantum mechanics is the set of antilinear operators, for which

ANf + pg) = NAf + p*Ag (48)

Time-reversal operators are antilinear (cf. Merzbacher [2], section 10-11).

OR
b). Compare the classical mechanics and quantum mechanics within three dimensional box.
Quantum mechanics and classical physics

Predictions of quantum mechanics have been verified experimentally to an extremely high degree of accuracy.l47)
According to the correspondence principle between classical and quantum mechanics, all objects obey the laws of
quantum mechanics, and classical mechanics is just an approximation for large systems of objects (or astatistical


https://en.wikipedia.org/wiki/Accuracy
https://en.wikipedia.org/wiki/Correspondence_principle

quantum mechanics of a large collection of particles).[48] The laws of classical mechanics thus follow
from the laws of quantum mechanics as a statistical average at the limit of large systems or large

quantum numbers.[49] However, chaotic systems do not have good quantum numbers, and quantum
chaos studies the relationship between classical and quantum descriptions in these systems.

Quantum coherence is an essential difference between classical and quantum theories as illustrated by
the Einstein— Podolsky—Rosen(EPR)paradox—
anattackonacertainphilosophicalinterpretationofquantummechanicsbyanappeal to local realism.[50]
Quantum interferenceinvolves adding together probability amplitudes, whereas classical "waves"
inferthatthereisanaddingtogetherofintensities.Formicroscopicbodies,theextensionofthesystemismuchs
maller thanthecoherencelength,whichgivesrisetolong-
rangeentanglementandothernonlocalphenomenacharacteristicof quantumsystems.[5]
Quantumcoherenceisnottypicallyevidentatmacroscopicscales,thoughanexceptiontothisrule

mayoccuratextremelylowtemperatures(i.e.approachingabsolutezero)atwhichquantumbehaviormayman

ifestitself macroscopically.l52IThisisinaccordancewiththefollowingobservations:

Many macroscopic properties of a classical system are a direct consequence of the quantum
behavior of its parts. For example, the stability of bulk matter (consisting of atoms and molecules
which would quickly collapse under electric forces alone), the rigidity of solids, and the mechanical,
thermal, chemical, optical and magnetic properties of matter are all results of the interaction of
electric charges under the rules of quantum mechanics.

While the seemingly "exotic" behavior of matter posited by quantum mechanics and relativity
theory become more apparent when dealing with particles of extremely small size or velocities
approaching the speed of light, the laws of classical, often considered "Newtonian", physics
remain accurate in predicting the behavior of the vast majority of "large" objects (on the order of

the size of large molecules or bigger) at velocities much smaller than the velocity of light.[>4!

26.a).Solve of Schrodinger equation for one-dimensional harmonic oscillator.


https://en.wikipedia.org/wiki/Chaos_theory
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https://en.wikipedia.org/wiki/Quantum_chaos
https://en.wikipedia.org/wiki/Quantum_chaos
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https://en.wikipedia.org/wiki/EPR_paradox
https://en.wikipedia.org/wiki/EPR_paradox
https://en.wikipedia.org/wiki/EPR_paradox
https://en.wikipedia.org/wiki/Local_realism
https://en.wikipedia.org/wiki/Quantum_interference#Quantum_interference
https://en.wikipedia.org/wiki/Probability_amplitude
https://en.wikipedia.org/wiki/Coherence_length
https://en.wikipedia.org/wiki/Absolute_zero
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Electric_charge
https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Speed_of_light

Harmonic oscillator

As in the classical case, the potential for the quantum harmonic oscillator is given by
1 2
V(z) = Emwzz :

This problem can either be treated by directly solving the Schrodinger equation, which is not trivial, or by using the more
elegant "ladder method" first proposed by Paul Dirac. The eigenstates are given by

)= ot ()% ().

n=012....

where H,, are the Hermite polynomials

Hy(2) = (-1)e = (7)),

and the corresponding energy levels are



En=?iw(n+%).

This is another example illustrating the quantification of energy
for bound states.

Step potential
The potential in this case 1s given by:

_Jo, =z<0,
V(m)_{‘l-i}, z > 0.

The solutions are superpositions of left- and right-moving waves:

$ ]
bk

Some trajectories of a harmonic oscillator (i.e. a
ball attached to a spring) in classical mechanics
(A-B) and quantum mechanics {C-H). In quantum
mechanics, the position of the ball is represented
by a wave (called the wave function), with the real
part shown in blue and the imaginary part shown
in red. Some of the trajectories (such as C, D, E,
and F) are standing waves (or "stationary states").
Each standing-wave frequency is proportional to a
possible energy level of the oscillator. This
"energy quantization” does not occur in classical
physics, where the oscillator can have any
energy.

1 (z) = (A_,ei"l’ - A;.e""‘l’} z<0

1
N

and
1 . .
the(z) = — (B ™" + B_e™R® z >0,
v )

with coefficients A and B determined from the boundary conditions and by imposing a continuous derivative on the
solution, and where the wave vectors are related to the energy via

k= 1,"2mEfﬁ2

and



ky = \/zm(E — Vo)/B2.

Each term of the solution can be interpreted as
an incident, reflected, or transmitted
component of the wave, allowing the calculation
of transmission and reflection coefficients.
Notably, in contrast to classical mechanics,
incident particles with energies greater than the
potential step are partially reflected.

"4
'Y
V=V,
AN
A,
+ +
B,
V=0 X
A,
x=0

Scattering at a finite potential step of height Vg, shown in green.
The amplitudes and direction of ieft- and right-moving waves are
indicated. Yellow is the incident wave, blue are reflected and
transmitted waves, red does not occur. E > V for this figure.

OR

b). Write a note on spherically symmetric potential of the Hamiltonian for H-Like systems?



Hydrogen-like atoms

A hydrogenic (hydrogen-like) atom is a two-particle system consisting of a nucleus and an electron. The two particles
interact through the potential given by Coulomb's law:

1 Zé
Vig)== 4meg r
where

= g is the permittivity of the vacuum,

= Zis the atomic number (eZ is the charge of the nucleus),

= e s the elementary charge (charge of the electron),

= ris the distance between the electron and the nucleus.
The mass mg, introduced above, is the reduced mass of the system. Because the electron mass is about 1836 times smaller
than the mass of the lightest nucleus (the proton), the value of my is very close to the mass of the electron m; for all
hydrogenic atoms. In the remaining of the article we make the approximation mg = m,. Since m, will appear explicitly in
the formulas it will be easy to correct for this approximation if necessary.

In order to simplify the Schridinger equation, we introduce the following constants that define the atomic unit of energy
and length, respectively,

)2 and _411'5(]52
an__mee’ .

Substitute y = Zr/ag and W = E/(Z?E) into the radial Schrédinger equation given above. This gives an equation in
which all natural constants are hidden,
[ 1 d? +11[l+1) 1]
2df T2

u = Wuy.

Two classes of solutions of this equation exist: (i) W is negative, the corresponding eigenfunctions are square integrable
and the values of W are quantized (discrete spectrum). (ii) W is non-negative. Every real non-negative value of W is
physically allowed (continuous spectrum), the corresponding eigenfunctions are non-square integrable. In the remaining
part of this article only class (i) solutions will be considered. The wavefunctions are known as bound states, in contrast to
the class (ii) solutions that are known as scattering states.

For negative W the quantity & = 24/—2W is real and positive. The scaling of y, i.e., substitution of £ = ey gives the
Schridinger equation:

2 (l+1) 2 1 .
o i +a-z]m—0, withz > 0.

For £ — 0o the inverse powers of x are negligible and a solution for large x is exp[—=,/2]. The other solution, exp[z/2], is
physically non-acceptable. For  — 0 the inverse square power dominates and a solution for small x is x!*%. The other
solution, x~, is physically non-acceptable. Hence, to obtain a full range solution we substitute



w(z) = 24 e 2 fi(z).

The equation for fi(x) becomes,

[z%+(2l+2—z)%+(v—l—1)] fi(z) =0 with u=(—2W)'%.

Provided » — I — 1is a non-negative integer, say k, this equation has polynomial solutions written as
(20+1) _
L (=), k=0,1;:;

which are generalized Laguerre polynomials of order k. We will take the convention for generalized Laguerre polynomials
of Abramowitz and Stegun.[?] Note that the Laguerre polynomials given in many quantum mechanical textbooks, for
instance the book of Messiah,[!] are those of Abramowitz and Stegun multiplied by a factor (21+1+k)! The definition giver
in this Wikipedia article coincides with the one of Abramowitz and Stegun.

The energy becomes

W=—L with n=k+1+1.
2n2

The principal quantum number n satisfiesn > I + 1, or I € n — 1. Since a = 2/n, the total radial wavefunction is

2zr\' _Z o\ (22
an(f)=an(E) & ™ LEJ_i (E)’

with normalization constant

_l(22\* m-u4n%
Nagr= [(Mo) ' 2n[(n+l)!]3]

which belongs to the energy

Boi k. =i B
In the computation of the normalization constant use was made of the integral [3]

® o2 —z[r@+) 12, 2n(n+1)!
/(; <" e [Ln_,_l(z)] dz = —(n—l—l)!'
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ANSWER ALL THE QUESTIONS

1. The structure of methane is
a. Linear b.Triangular planar c. tetrahedral d. Octahedral

2. Structure of phosphorous pentachloride is
a. Linear b.Trigonal bipyramidal c. Tetrahedral d. Octahedral

3. Example for a linear molecule
a. BeCly b. boron trifluoride c. methane  d. phosphorous pentachloride

4. Example for triangular planar molecule
a. BeCly b. boron trifluoride c. methane  d. phosphorous pentachloride

5. For the Cay point group, the order of the group is
a. Four b. five C. Six d. three

6. Formaldehyde has
a. Three sigma bonding molecular orbitals  b.Four sigma bonding molecular orbitals
c.Five sigma bonding molecular orbitals d.Six sigma bonding molecular orbitals

7. In the Cay point group the ‘z’ coordinate transformers is
a. Al b. A2 c.B1 d. B2

8. The symmetry or antisymmetry is with respect to
a. Subsidiary axis b. Principal axis c.Vertical axis
d.Horizontal axis

9. One of the following is an geometric operation when performed on the molecule, give rise to
an indistinguishable configuration of the same molecule
a. Diffraction b. interference c. polarization d.inversion

10. If the symmetry element is the ‘identity element” then the corresponding symmetry operation
is



a. Doing nothing b. reflection c. Inversion of all coordinates
d. Rotation through an angle of 360/n about an axis where ‘n’ is the order of the axis

11.1f the symmetry element is the ‘plane of symmetry” then the corresponding symmetry
operation is

a. Doing nothing b. reflection c. Inversion of all coordinates

d. Rotation through an angle of 360/n about an axis where ‘n’ is the order of the axis

12.If the symmetry element is the ‘proper axis of symmetry ” then the corresponding symmetry
operation is

a. Doing nothing b. reflection c. Inversion of all coordinates

d. Rotation through an angle of 360/n about an axis where ‘n’ is the order of the axis

13. The number of elements present in Csy point group
a. Four b. five C. SiX d.three

14. The order of the group is denoted by
a. h b.E c. | d.j

15. The character of any two irreducible representations of a group are
a. orthogonal b. diagonal c. parabola d. hyperbola

16. In Cyy point group the number of classes are possible
a. Four b. five C. SiX d.three

17. The molecule which possesses Ca axis of symmetry is
a. Matrices b.determinants c.Space lattices d.Miller indices

18. An array of numbers arranged in rows and columns are called
a. Matrices b.determinants c.Space lattices d.Miller indices

19. A collection of the symmetry elements present in a molecule that obeys the mathematical
rules for the formation of a group are called
a.Point groups b.Space groups c.Space lattices d. Miller indices

20. A square matrix will have
a. An equal number of rows and columns  b. An unequal number of rows and columns
c. Only rows d.Only columns

PART-B (3x2=6 MARKS)

ANSWER ALL THE QUESTIONS
21. What is meant by Abelian group?

22. Explain Null matrix.

23. What is radial distribution function?



PART-C (3x8=24 MARKYS)
ANSWER ALL THE QUESTIONS

24. a).1).What is a group?
ii). What are the cyclic, finite and infinite group’s?
iii).Define class.
OR
b). ). What are the relationships between reducible and irreducible representation of the group?
ii). What are the properties of irreducible representation?

25.a). How will you construct the character table for a Cov and Csy point group using the great
orthogonality theorem?

OR
b). Explain the symmetry selection rules for Infra-red and Raman spectra.
26. a). Write a note on Elements of Symmetry?

OR

b). Explain the great orthogonality theory and its consequences.
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PART-A (20x1=20 MARKS)
ANSWER ALL THE QUESTIONS
1. The structure of methane is
a. Linear b.Triangular planar c. tetrahedral d. Octahedral

2. Structure of phosphorous pentachloride is
a. Linear b.Trigonalbipyramidal c. Tetrahedral d. Octahedral

3. Example for a linear molecule
a. BeCl, b. boron trifluoride c. methane  d. phosphorous pentachloride

4. Example for triangular planar molecule
a. BeCl, b. boron trifluoride c. methane  d. phosphorous pentachloride

5. For the Cay point group, the order of the group is
a. Four b. five C. SiX d. three

6. Formaldehyde has
a. Three sigma bonding molecular orbitals b.Four sigma bonding molecular orbitals
c.Five sigma bonding molecular orbitals d.Six sigma bonding molecular orbitals

7. In the Cay point group the ‘z’ coordinate transformers is
a. Al b. A2 c.B1 d. B2

8. The symmetry or antisymmetry is with respect to
a. Subsidiary axis b. Principal axis c.Vertical axis
d.Horizontal axis

9. One of the following is an geometric operation when performed on the molecule, give rise to
an indistinguishable configuration of the same molecule
a. Diffraction b. interference c. polarization d.inversion



10. If the symmetry element is the ‘identity element” then the corresponding symmetry operation
s

a. Doing nothing b. reflection c. Inversion of all coordinates

d. Rotation through an angle of 360/n about an axis where ‘n’ is the order of the axis

11.1f the symmetry element is the ‘plane of symmetry” then the corresponding symmetry
operation is

a. Doing nothing b. reflection c. Inversion of all coordinates

d. Rotation through an angle of 360/n about an axis where ‘n’ is the order of the axis

12.1f the symmetry element is the ‘proper axis of symmetry ” then the corresponding symmetry
operation is

a. Doing nothing b. reflection c. Inversion of all coordinates

d. Rotation through an angle of 360/n about an axis where ‘n’ is the order of the axis

13. The number of elements present in Csy point group
a. Four b. five C. SiX d.three

14. The order of the group is denoted by
a. h b.E c. | d.j

15. The character of any two irreducible representations of a group are
a. orthogonal b. diagonal c. parabola d. hyperbola

16. In Cyy point group the number of classes are possible
a. Four b. five C. SiX d.three

17. The molecule which possesses Ca axis of symmetry is
a. Matrices b.determinants c.Space lattices d.Miller indices

18. An array of numbers arranged in rows and columns are called
a. Matrices b.determinants c.Space lattices d.Miller indices

19. A collection of the symmetry elements present in a molecule that obeys the mathematical
rules for the formation of a group are called
a.Point groups b.Space groups c.Space lattices d. Miller indices

20. A square matrix will have
a. An equal number of rows and columns b. An unequal number of rows and columns
c. Only rows d.Only columns

PART-B (3x2=6 MARKS)
ANSWER ALL THE QUESTIONS
21. What is meant by Abelian group?



An abelian group, also called a commutative group, is a group in which the result of applying
the group operation to two group elements does not depend on the order in which they are
written. That is, these are the groups that obey the axiom of commutativity.

22. Explain Null matrix.

A null matrix is basically a matrix, whose all elements are zero. In a matrix basically there are
two elements, first one is diagonal matrix and another one is non-diagonal elements. In Null
matrix both diagonal and off-diagonal elements are zero. Null matrix is also called zero matrix.

23. What is radial distribution function?

When the wavefunction, v, is squared the result is a number that is directly proportional to the
probability of finding and electron at specific coordinate in 3D space. The radial portion of the
wavefunction really only tells us if there is high or low probability at various distances from the
nucleus (possible radii for the electrons). Multiplying this probability by the area available at that
distance will give us the Radial Distribution Function for the given electron. The concentric
spherical shells have areas equal to the surface area of a sphere which is 4nr2.

PART-C (3x8=24 MARKS)
ANSWER ALL THE QUESTIONS

24. a).i).What is a group?
i1). What are the cyclic, finite and infinite group’s?
iii).Define class.

A group is a monoid each of whose elements is invertible. A group must contain at least one
element, with the unique (up to isomorphism) single-element group known as the trivial group.
The study of groups is known as group theory.



Definition 1
An infinite cyclic group is a cychie group &7 such that:

TneEgin>0 = MG adfea>=¢

Definition 2
An infinite cyclic group i a cyche group &7 such that:

YaceG:YmmunecZL : m+#n = o™ #a"

That i=, such that all the powers of @ are distinet.

The presentation of an infinite cyclic group is:

G = (a)

This specifies G as being generated by a single element of infinite order.

From Integers under Addition form Infinite Cyclic Group, the additive group of integers (2, 4+ ) forms an infinite eyelic group.
Thus the notation Z is often used for the infinite cyclic group.
This is justified as, from Cyclic Groups of Same Order are Isomorphic, Z is isomorphic to (a}.

A cyelic group is also known as a free group on one generator.

If 7 15 an mfmite cyclic group generated by ¢ < &, then g 15 an element of infinite order, and all the powers of o are different.
Thus:

&= { ..,ﬂ'31a'2,a'l,e.a,m21a3,.,,}

A class of groups is a set theoretical collection of groups satisfying the property that if G is in the
collection then every group isomorphic to G is also in the collection. This concept arose from the
necessity to work with a bunch of groups satisfying certain special property (for example
finiteness or commutativity). Since set theory does not admit the "set of all groups”, it is
necessary to work with the more general concept of class.

OR

b). i). What are the relationships between reducible and irreducible representation of the group?


https://en.wikipedia.org/wiki/Group_(mathematics)
https://en.wikipedia.org/wiki/Set_theory
https://en.wikipedia.org/wiki/Class_(set_theory)

We need to know the relationship between any arbitrary reducible
representation and the irreducible representations of that point group. As
was mentioned in the last chapter, there is no limit to the order of a
representation: that is, it may consist of matrices of any size. Some of the
reducible representations that are of use in, for example, vibrational
spectroscopy are of very large dimensions. Frequent use is made of the
representations generated by placing three Cartesian coordinate vectors on
each atom in a molecule. For an N-atomic molecule, this will give a
representation consisting of 3N x 3N matrices; for example, for benzene,
the matrices will be of dimension 36 x 36. In order to handle and analyse
such matrices, it is essential to reduce them to more manageable sizes; that
is, to reduce them eventually to those of the irreducible representations,
which are the representations of the smallest possible dimensions for any
point group. How can this be done?

5.1 Reducing representations

Consider any matrix, of dimension n % n (all transformation matrices are
square, since the number of vectors or functions is not changed by any
symmetry operation):

L T - B | 1™
dy dp ... 4
_anl L I '“.rm_

In this matrix, the zero clements (if any) will be distributed randomly
about the matrix. If, however, the matrix belongs to a reducible represen-
tation, it will be possible to rearrange the matrix so that zero elements are
distributed symmetrically about the diagonal. Thus, for a 3 % 3 matrix we
might have:

ap dp dg by by I 0
i3 a3 dn -—F bll bu 1| 0
ay ap @y 0 0 | by

The non-zero elements are now distributed in blocks along the dia-
gonal — in this case, a 2 x 2 block and a 1 % 1 block. How is such a
rearrangement brought about?

In Chapter 2, a method of defining classes of symmetry operations was
described. This involved the application of similarity transformations,
defined in terms of symmetry operations. It is found that matrix rearrange-
ment can be accomplished by means of a similarity transformation of the
original matrix. Thus, if A and B are the original and reduced matrices,
respectively, then:

XAX'=B



X is a matrix of the same dimensions as A and B, and X~ is its inverse
matrix (that is, XX™' = E). For any reducible representation, such a
similarity transformation can be carried out on the matrix corresponding to
each symmetry operation. It will be helpful to see a specific example of
such a process,

Consider the set of vectors shown in Figure 5.1 - three vectors,
pointing along the bonds of a pyramidal C3, molecule such as NH;. Now if
we carry out the symmetry operations of Cy, on these three vectors — for
example, for Cs', ry — ry, r; — ry and ry — r; — we obtain the following
transformation matrix;

—_ = =
— I — ]

Figure 5.1 A set of bond vectors for a Cs, molecule - *

ii). What are the properties of irreducible representation



The irreducible representations of a point group satisfy a number of orthogonality relationships:

1. If corresponding matrix elements in all of the matrix representatives of an irreducible representation are squared and added together, the result is equal to the order of the group divided by the
dimensionality of the irreducible representation. ie.

S Tul@hTala)y = % (15.5)
a

where k labels the irreducible representation, i and j label the row and column position within the irreducible representation, h is the order of the group, and d;, is the order of the irreducible

h
representation. e.g. The order of the group (s, is 6. If we apply the above operation to the first element in the 2x2 ( E) irreducible representation derived in Section 12, the result should be equal to -
&
[i}
B

= 3. Carrying out this operation gives

1 1 1 1 1 1 1 1
1P (=P =P+ (1P (=P (=) =l ==+ 1+ =+ = =3 15.6
WP+ (5P P+ (P4 (3P H (-5 =1+ g g+l g+T (15.6)
2 If instead of summing the squares of matrix elements in an irreducible representation, we sum the product of two different elements from within each matrix, the result is equal to zero. i.e.
> Tulg)yTelg)ey =0 (15.7)
@
where i £ i and/or j +# j'. E.g. if we perform this operation using the two elements in the first row of the 2D irreducible representation used in 1, we get:
1..v3 1. V3 \ 1.3 1, V3 V3 V3 V3 3
—— =Y —— 4 )= SY=m—=) = 0 — = — —_——= 15..
WO+ (-5)C) + -+ MO +CPER + (-5 =0+ 2 - 0= 2420 (15.8)

3. If we sum the praduct of two elements from the matrices of two different irreducible representations k and m, the result is equal to zero. ie.

3 Tulg)Tmlghey =0 (15.9)

where there is now no restriction on the values of the indices i, ', j, (apart from the rather obvious restriction that they must be less than or equal to the dimensions of the irreducible

representation). e.g. Performing this operation on the first elements of the A, and E irreducible representations we derived for (03, gives:

) +(1)(=3)+ D)(—5)+ D1+ Q) (~5)+ ()(-5) - 1= F -5 +1-2—2 0 (15.10)
‘We can combine these three results into one general equation, the Great Orthogonality Theorem?.
ST 8)is = i By (15.11)
[ Vi,
For most applications we do not actually need the full Great Orthogonality Theorem. A little mathematical trickery transforms Equation 15.11 into the ‘Little Orthogonality Theorem” (or LOT), which

is expressed in terms of the characters of the irreducible representations rather than the irreducible representations themselves.

3 xel9)xm(g) = hden (15.12)
2

Since the characters for two symmetry operations in the same class are the same, we can also rewrite the sum over symmetry operations as a sum over classes.
3 nexi(C)xm(C) = b (15.13)
i

where ng is the number of symmelry operations in class .

In all of the examples we've considered so far, the characters have been real. However, this is not necessarily true for all point groups, so to make the above equations completely general we need to

include the possibility of imaginary characters. In this case we have:

3" rexi(C)xn(C) = héy, (15.14)
.

25.a). How will you construct the character table for a C,y and Csy point group using the great
orthogonality theorem?

Once the point group of a molecule is known, we can begin to make use of character tables.
Group theoretical considerations and matrix algebra have produced a solid mathematical
foundation for the information found in character tables. However, it would be too lengthy and
beyond the scope of this course to cover this material rigorously. Fortunately, it is not necessary
to have a full and complete understanding of the background theory in order to be able to use
character tables to solve problems related to symmetry. We will approach the material from a
more descriptive view point.

What is a Character Table?

As we shall shortly discover, each point group has its own unique character table which is a
device containing useful symmetry related information. A simple way of thinking about how a
character table is constructed is to firstly, recognize that the positions of the atoms of a molecule
(let's say water for example) conform exactly and precisely to the symmetry operations for the
point group to which it belongs (Cayv for example). That is, the appearances of the molecule
before and after a symmetry operation are identical. However, molecules have other important
properties which do not behave in exactly the same way as the positions of the atoms. These



properties are often referred to as molecular properties, and can include simple translations,
rotations, vibrations, and even the behavior of electrons in atomic orbitals. They are also referred
to as "basis vectors."

An example of how we might generate information relating to a particular molecular property is
to first agree to characterize symmetric behavior at +1 and antisymmetric behavior as -1, and to
call the +1's and -1's the character of the property with respect to the symmetry operation. For
water, we place the O atom at the origin of the cartesian coordinate system and examine the
behavior of the Pxorbital on O. [Note that the + and - in the figure refer to the angular
dependence of the wave function.]

We now perform one of the symmetry operations for Cay (ignore the positions of the O and H
atoms for the moment). If we choose the C,operation then we would rotate the molecule about
the Z axis.

Effect on oxygen 2P, orbital when C,
operation is performed.

The sign of the wave function changes and we describe this as antisymmetric behavior and give
it the character -1. We can perform this analysis for all four operations for C,, and tabulate the
results.

Symmetry operations

Point E C
Lol : o, o,

in xz plane inyz plane
Effect on
Oxygen &
o 1 1 1 1
orbital

1 = unaffected or unchanged
-1 = changed or reversed



A similar treatment for the oxygen Py and P, orbitals gives the following table

Symmetry operations

Point E C o o
group C,, - v v

in xz plane inyz plane
Effect on
Oxygen = i
. 1 1 1 1
orbital
Effect on
Oxygen
o 1 1 1 1
orbital

At this point we should also point out that the P orbitals lie along the x, y, and z axes, and the
information that we have generated in the tables can equally be used to describe translations of
the molecule. A translation is the movement of a molecule as a whole. Ty stands for translation
along the x axis, and this can be depicted as an arrow pointing along the x direction. Performing
the C» operation reverses the direction of the arrow and so we assign this a -1 character (just like
a Py orbital). Since we live in a 3-dimensional universe, there are three translations Ty, Ty, and
T, representing three degrees of freedom for the molecule.

i C, I
G, "
_—) Arm—

_ Translation along x axis

Effect on translation along the x axis when C, operation is performed

In much the same way as we treated P orbitals and translations (by "inspection™) we can also
consider rotations of the molecule as a whole. Again, there are three possible rotations Ry, Ry,
and R; which can be performed by rotations about the X, y, and z axes respectively. Consider the
rotation Ry as if it were the steering wheel of an automobile - depicted here with a curly arrow.



After the C, operation, the direction of turn of the automobile has been reversed (clockwise to
anticlockwise) and so we assign a -1 character.

|

Effect on rotation about y axis (R,) when C, operation is performed

For Ry, a table of the effect on rotation about the y axis looks like this (rotations about the x and
y axis have also been added)

Symmetry Operations

Point E C, o, Oy
Group C,, inxz plane | inyz plane
Effect on

rotation

about y axis 1 -1 1 -1
Effect on

rotation

about x axis 1 e -1 1
Effect on

rotation

about z axis 1 1 -1 -1

We can condense this information about the molecular properties of water into a table - a
Character Table. The character table for water (Czy) is shown below



(o] (o 0
Cy | E |G 0« | 2
A, 1 1 1 1 z X2, y2, 22
A 1 1 1 1
% R, |xy
B, 1 A 1 1 | xR, |x
B, 1 -1 1 1 YR, | yz

The various parts of the table can be described as follows [Note that some of this nomenclature
comes from the mathematical underpinning of group theory - don't be put off by it!]

O g,
C, | E | C | o | 2
A1 1 1 1 1 Z XZ, yz' 22
A, 1 1 -1 -1 R, |xy
B, 1 -1 1 -1 xR, | xz
B, 1 -1 -1 1 Y, R, | yz




<— Point group (Schoenflies notation)

cZV
O v | < Symmetry operations
Cy | E C, | @ | W JTImENY SR
arranged into classes
A
A, ;
“Symmetry species” these symbols are
< referred to as “Mulliken symbols” and are
B, used to describe the symmetry properties of
the molecular properties in a shorthand way.
B, (The symmetry properties of the molecular

properties are referred to a “irreducible

representations”)

o o,

Chy | E [C | x | w2

A, 1 1 1 1 z X2, y2, z2
A, 1 1 -1 -1 R |xy

B1 1 '1 1 '1 x' Ry XZ

B, 1 -1 E 1 | vR | yz

The molecular properties (translations, rotations) assigned
to their symmetry species. Also called “the basis functions”
of the irreducible representations. You will always find 6
symbols here (x, y, z, R,, R, R,). They represent
mathematical functions such as orbitals, rotations etc.



o o,
Cuy | E |[C | @ | w
A, 1 1 1 1 Z  [2y%22
A, 1 1 -1 =4 R |xy
B1 1 '1 1 '1 X, Ry XZ
A
B, 1 -1 -1 1 Y, Ry | yz

A "representation” of the symmetry properties of certain molecular
properties — this line is a representation of how translations in the
x-direction (x) and rotations about the y axis (Ry) behave in C,,
point group symmetry. This is actually a mathematical code, and is
found here in its simplest form - it is therefore referred to as an
“irreducible representation” (Can also be referred to as
“symmetry species”).

a cl
Cx | E |C | @ | w
A, 1 1 1 1 z X2,.y2. 22
A 1 1 -1 -1
z R, |[xy
B, 1 I 1 1| xR, | x
B, 1 -1 -1 1 Y. R, | yz
4

The “character” of an irreducible representation (symbol y chi).



Character Tables an Example C,, : (NF,)

C3V E C31 C32 G, (0O, (O

T 11 |1 1 s

1 11 |11 (111 IR,

2 [-1 [-1 jo]o |0 [(T.T)or (RuR))

This simplifies further. Some operations are of the same class and always have the
same characterin a given irreducible representation

CLeyY are in the same class

G,, 0y Oy are in the same class

Page 50



3.4. Characters and Character Tables

3.4.1. Deriving character tables: Where do all the numbers come from?

C. E zci 3"-

A 1 1 1 z o o 2, x( - )

Ay 1 1 =1 R, y(3x? = %)

E 2 “1 0 9 (Rye R | GF =y xydxe, y2) | (2%, y2¥), boyz, 2(e* = "))
Pico 3 0 1

* A general and rigorous method for deriving character tables is based on five theorems

which in tumn are based on something called The Grear Orthogonality Theorem.
(e.g. F.A. Cotton, “Chemical Applications of Group Theory™, QD 461.C65 1990)

The five theorems are:

1) The number of irreducible representations is equal Cy
to the number of classes in the group.

e.g. NH,. point group C,,:
" \““. N\
Which C:, symmetry operations are the inverse of Ty H\H/ H
which... and which are together in one class? o
s

E'=E o' =0, Cy'=C%
0'\'.1 = G'\' (CZJ)J = CJ 0”\"‘ — 0"\'

Using the above relationships we can set up the following similarity transformations:

o.xCxa=0C Chxo xCi=0", CLxExC =E
o, XCixa"=C4 O, X0, X0, =0, o xExo,=E
ChixChixG=Cy Cixovx Chi =0 a'vxExo".=E
o' xChxav=C o' xo\vx o' =0

o'xo"\x o= o

\

Apparently {C, C4}, {o,,0'..6".},and {E} are each in aclass.
In Cs, there are three classes and hence three irreducible representations.

¢

OR

a,

76



b). Explain the symmetry selection rules for Infra-red and Raman spectra.

Selection Rules for Vibrational Spectroscopy

The fundamental modes of vibration of a molecule are active (observable) by IR or Raman
spectroscopy if they meet the appropriate selection rules.

A vibration is IR active if there is a change in dipole moment during the vibration. Fortunately
this information is also found in the character tables. Vibrations which occur with a change in
dipole moment have the same symmetry properties as translations - corresponding to the x, y or z
in the molecular properties column. In our example (water) for A: there is a z and for Bian x in
the column - so all three vibrations are IR active and observable. We would expect to see three
peaks in the IR spectrum - two with A; symmetry and one with Bi.

Raman spectroscopy involves inelastic light scattering and the selection rules are different from
those of IR. For a vibration to be Raman active there must be a change in polarizability of the
molecule. These vibrations correspond to symmetry species which have a product of two
translations. the products are found in the far right hand column of the character table and can be
simple cross products (e.g. z.y ) or squares (x?). For water all three vibrations will be Raman
active.

26. a). Write a note on Elements of Symmetry?

A symmetry element is a geometrical entity about which a symmetry operation is performed. A
symmetry element can be a point, axis, or plane. A symmetry operation is the movement of a
body (molecule) such that after the movement the molecule appears the same as before. The
existence of a symmetry operation implies the existence of a corresponding symmetry element,
and conversely, the presence of a symmetry element means that a certain symmetry operation or
set of operations is possible.

Reflections ¢ and Mirror Planes

A plane of reflection in a molecule can be viewed as a double-sided mirror which bisects the
molecule. It must pass through the molecule and cannot be completely outside it. The water
molecule has two mirror planes, one is shown below.

4 /O
/ /
H, / i By g




This plane contains the C; axis and passes between the two H atoms. The effect of this o
symmetry operation is to exchange Hi: and Hz. The other mirror plane is the one which contains
all three atoms of H.O and is perpendicular to the first mirror plane show above. For this plane,
H: and H> do not exchange positions. It is, nevertheless, a valid symmetry element and symmetry
operation for the H.O molecule.

< N N

The two planes of symmetry both contain the principle axis (C2), which is designated as the
vertical axis and are therefore denoted oy. In order to distinguish the two planes oy and o,/ are
often used where o/ contains all the atoms.

Note - the symmetry operation ¢ followed by another ¢ will result in the molecule returning to its
original configuration. In other words, ¢* = E

Inversions

Inversions (i)

The inversion operations projects each atom through the center of inversion, and out to the same
distance on the opposite side.

Note - a molecule with an inversion center can only have ONE center of inversion.
Example [AuBr4] This ion has a square-planar geometry about the central Au atom.

Brl Bz B Iy Br4
Py o i \ /
Au — >
/ N\ / \
Br, Br; Br, Br,

Note - the position of the Au atom does not change and as for o, > = E

Next Example SFs



Inversion

2

Center of
inversion

Improper Rotations Sn

An improper rotation may be thought of as two steps taken in either order. A rotation and a
reflection in a plane, perpendicular to the rotation axis. This axis is referred to as an axis of
improper rotation (or an improper axis) and has the symbol S, where n denotes the order.
Obviously, if an axis Chand a perpendicular plane exist independently in a molecule then
Snexists also. However, S, may exist when neither the C,nor the perpendicular o exist
separately. A classic example is ethane C2He in the staggered configuration. This molecule has
an Se axis which is coincident with a Cs axis (running along the C-C bond). The combination of
rotation and reflection always gives the same result regardless of the order in which they are

performed.

Another example is that of a regular tetrahedral molecule. For example: methane (CH4) has three
C> axes, each of which is simultaneously an S4 axis.



Proper Rotations - Rotation by 360°/n

This is simply rotation about an axis, which passes through the molecule by an angle of 360°/n
(or 2m/n). When repeated n times, the molecule returns to the original orientation. The
appearance of the molecule must be exactly the same after the operation.

Example 1. H.O

H>0 has a C; axis - rotation by 360%2 (180°). The axis passes through O and bisects the line
between the H atoms. This operation interchanges the H atoms as well as the O-H bonds. Since
these atoms and bonds are equivalent, there is no detectable difference after the operation.

) 2 2

rotation by 180°
, ’ C,

D C; )
FALT W LN
C

For HOD the C; operation results in the molecule having a different orientation. Therefore, for
HOD, C; is NOT a valid symmetry operation.

Hl/:)\) i, )\—l]

C, rotation by 180“C3

Example 2. Ammonia, NH3

This molecule has a 3-fold rotation axis (a Cs axis) where rotation by 360°/3 (120°) produces an
indistinguishable molecule (Cs). Rotation by 2 x 120° also produces a configuration which is
physically indistinguishable from the original (Cs?). Finally, rotation by 3 x 120° (360°) returns
the molecule to its initial position (Cs®). This is equivalent to performing no operation at all, and
we can say that Cs® = E where E is the identity operation. We include E for mathematical
reasons. There are therefore two symmetry operations associated with the C3 axis (Cs and C3?).



: Hz H3 - H} Hl
rotation by 120°
Cs
N C42 N
Z 3 -
I H2 H‘; H| H:
rotation by 240°

Cs

When only a single rotation axis is present, it is assigned to the Z axis by convention. If more
than one rotation axis exists, the C, of highest order (highest value of n) is assigned as the Z
axis.

Note - the proper rotation operation (C,) is the ONLY operation we can actually perform on
either a real molecule or its macroscopic model. The remaining operations (o, i, Sn) are non-
feasible and we have to use our imaginations a little to see how they work - they have to
be visualized.

There are five basic kinds of symmetry operations



Symbol Symmetry operation Symmetry element

E Identity (doing nothing) ----
£ Rotation by 360°/n n-fold axis
o (sigma) Reflection mirror plane
i Inversion (through a center) point
S Improper rotation n-fold axis and
a mirror plane
OR

b). Explain the great orthogonality theory and its consequences.

Great Orthogonality Theorem:

The matrices of the different Irreducible Representations (IR) possess certain well defined
interrelationships and properties. Orthogonality theorem is concerned with the elements of the
matrices which constitute the IR of a group.
The mathematical statement of this theorem is,

T [R)] (LR MNT = —2— 6, 5

ij o
\JF_F. mm nn
i
Where,
i, j— Irreducible Representations
li, lj — Its dimensions
h — Order of a group

Ti(R)mn — Element of m™ row, n' column of an i" representation



Tj(R)'mn’ - Element of m' ™ row, n' ™ column of j' ™" representation
dij dmm' Onn' — Kronecker delta

Kronecker delta can have values 0 and 1. Depending on that the main theorem can be made into
three similar equations.

le.,
1. When, I'i #T'j and j # i, then 6i; = 0

Therefore, Zr [ Ti(R)mn ] [ Tj(R)'M'n'] =0
2. When, I'i =Tj and j =i, then §j; = 1
Therefore, Zr [ Ti(R)mn ] [ Ti(R)Mn'] =0

From these two equations we can say the Orthogonality theorem as, “the sum of the product of
the irreducible representation is equal to zero”.

3. Wheni=jm=m,n=n'
h
Then, X& [ Ti(R)mn ] [ Ti(R) mn]” = l‘
From the above equations some important rules of the irreducible representations of a group and

there character were obtained.

Five Rules Obtained:

1. The sum of the squares of the dimensions of the representation = the order (h) of the
group.

e, Tt =2+ 12+ 1%+ ...... I“=h

I'i(E) —the character of the representation of E in the ith IR which is equal to the
dimension of the representation.

ie,Zi[Ti(E)>=h
2. The sum of the squares of the characters in any IR is equal to ‘h’.
ie,Zr[Ti(R)]*=h

3. The vectors whose components are the characters of two different IR are orthogonal.



oo E

ie., Zr [i(R) Tj(R) = 0 when i #j.

4. In a given representation (reducible/irreducible) the characters of all matrices belonging
to operations in the same class are identical.

Eg:- in Cay point group there are, E, 2Cs, 3 ov. there characters are same for a
particular IR.

5. No: of irreducible representation in a group = No: of classes in a group.

Applications:

Applying these 5 rules we can develop the character table for various point groups. For most
chemical applications, it is sufficient to know only the characters of the each of the symmetry
classes of a group.

Steps for The Construction of A Character Table::

Write down all the symmetry operations of the point group and group them into classes.

Note that the no: of the IR is found out using the theorem.

Interrelationships of various group operations are to be carefully followed.

Use the orthogonality and the normality theorem in fixing the characters.

Generate a representation using certain basic vectors. Try out with X, Y, Z, Rs, Ry, R; etc. as the
bases and check.
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