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PO: On successful completion of course the learners gain about the functions of several
variables, limit and continuity functions of two variables.

PLO: To enable the students to learn and gain knowledge about line integrals and its geometrical
applications.

UNIT I

Functions of several variables: Limit and continuity of functions of two variables, partial
differentiation, total differentiability and differentiability, sufficient condition for differentiability.
Chain rule for one and two independent parameters, directional derivatives, the gradient,
maximal and normal property of the gradient, tangent planes.

UNIT I

Extrema of functions of two variables: Method of Lagrange multipliers, constrained optimization
problems, Definition of vector field, divergence and curl.

UNIT IIT

Double integration over rectangular region: Double integration over non-rectangular region,
double integrals in polar co-ordinates, Triple integrals, Triple integral over a parallelepiped and
solid regions. Volume by triple integrals, cylindrical and spherical co-ordinates. Change of
variables in double integrals and triple integrals

UNIT IV

Line integrals: Applications of line integrals, Mass and Work. Fundamental theorem for line
integrals, conservative vector fields, independence of path.

UNITV

Green’s theorem: Surface integrals, integrals over parametrically defined surfaces. Stoke’s
theorem, The Divergence theorem.

SUGGESTED READINGS

TEXT BOOK

1. Strauss M.J., Bradley G.L. and Smith K. J., (2007). Calculus, Third Edition, Dorling
Kindersley (India) Pvt.Ltd. (Pearson Education), Delhi.

REFERENCES

1. Thomas G.B., and Finney R.L., (2005). Calculus, Ninth Edition, Pearson Education, Delhi.
2. Marsden E., Tromba A.J. and Weinstein A., (2005). Basic Multivariable Calculus, Springer
(SIE), Indian reprint, New Delhi.

3. James Stewart., (2001). Multivariable Calculus, Concepts and Contexts, Second Edition,
Brooks Cole, Thomson Learning, USA.
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Pollachi Main Road, Eachanari (Po),
Coimbatore —641 021
DEPARTMENT OF MATHEMATICS
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Lecture
S. No Duration Topics To Be Covered Support Materials
Hour
UNIT-I
S.NO DURATION | TOPICS TO BE COVERED SUPPORT
HOURS MATERIAL
1 1 Limit and continuity of functions of two T1: chap-1 Pg.No:75-80
variables
2 1 Partial differentiation, total differentiability R3: chap-15 Pg.No:914-
918
3 Tutorial
4 sufficient condition for differentiability R3: chap-15 Pg.No0:921-
925
5 1 Continuous on sufficient condition for R3: chap-15 Pg.N0:925-
differentiability-Problems 928
6 Tutorial
7 Chain rule for one and two independent R3: chap-15 Pg.N0:937-
parameters 940
8 1 directional derivatives-Problems R3: chap-15 Pg.No:946-
958
9 1 Problems for the gradient R3: chap-15 Pg.N0:958-
960
10 Tutorial
11 maximal and normal property of the gradient R3: chap-15 Pg.No0:960-
961
12 1 Continuous on maximal and normal property of | R3: chap-15 Pg.No:962-
the gradient 962
13 1 Continuous on maximal and normal property of | R3: chap-15 Pg.No:962-
the gradient 963
14 1 Tutorial
15 1 Problems about tangent planes. R3: chap-15 Pg.N0:963-
966
16 1 Continuous the problems on tangent planes. R3: chap-15 Pg.N0:963-
966
17 Tutorial
18 1 Recapitulation and Discussion of possible
questions
Total 18 Hours
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Text Book:

T1: Strauss M.J., Bradley G.L. and Smith K. J., (2007). Calculus, Third Edition, Dorling Kindersley
(India) Pvt.Ltd. (Pearson Education), Delhi.

Reference Book:

R3: James Stewart., (2001). Multivariable Calculus, Concepts and Contexts, Second Edition, Brooks

Cole, Thomson Learning, USA.
UNIT-II
1 1 Introduction to Extrema of functions of two R3: chap-15 Pg.No:970-
variables 971
2 1 Method of Lagrange multipliers R3: chap-15 Pg.No:971-
975
3 1 Problems of Method of Lagrange multipliers | R3: chap-15 Pg.No:975-
979
4 Tutorial
5 Continuous of problems on Method of R3: chap-15 Pg.No:975-
Lagrange multipliers 979
6 Constrained optimization problems R3: chap-17 Pg.No:1063
7 Continuous of problems on Constrained R3: chap-17
optimization Pg.No:1064-1067
8 Tutorial
9 Definition of vector field R3: chap-17
Pg.No:1063-1070
10 1 Examples and Problems over vector field R3: chap-17
Pg.No:1070-1075
11 1 Continuous of problems over vector field R3: chap-17
Pg.No:1070-1075
12 Tutorial
13 Problems of divergence R1: chap-10 Pg.No:806-
808
14 1 Continuous problem for divergence R1: chap-10 Pg.No:806-
808
15 Tutorial
16 Problems of Curl R1: chap-10 Pg.No:815-
818
17 1 Continuous problem for Curl R1: chap-10 Pg.No:815-
818
18 Tutorial
19 1 Recapitulation and Discussion of possible
questions
Total 19 Hours

Reference Book:

R1: Thomas G.B., and Finney R.L., (2005). Calculus, Ninth Edition, Pearson Education, Delhi.
R3: James Stewart., (2001). Multivariable Calculus, Concepts and Contexts, Second Edition, Brooks

Cole,

Thomson Learning, USA.

UNIT-III
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1 1 Introduction to Double integration over R3: chap-16 Pg.No:987-
rectangular region 990
2 1 Double integration over non-rectangular R3: chap-16 Pg.N0:990-
region 994
3 1 Continuous on Double integration over non- R3: chap-16 Pg.N0:990-
rectangular region 994
4 Tutorial
5 Double integrals in polar co-ordinates R3: chap-16
Pg.No:1010-1015
6 1 Triple integrals-Problems R3: chap-16
Pg.No0:1026-1030
8 Tutorial
9 Triple integral over a parallelepiped and solid | R3: chap-16
regions Pg.No:1030-1032
10 1 Volume by triple integrals R3: chap-16
Pg.No:1032-1035
11 1 Cylindrical and spherical co-ordinates R3: chap-16
Pg.No:1041-1048
12 Tutorial
13 Change of variables in double and triple R3: chap-16
integrals Pg.No0:1041-1048
14 1 Problems based on Change of variables in R3: chap-16
double integrals Pg.No0:1048-1055
15 1 Tutorial
16 Continuous of problems based on Change of | R3: chap-16
variables in double integrals Pg.No0:1050-1055
17 1 Continuous of problems based on Change of | R3: chap-16
variables in double integrals Pg.No0:1050-1055
18 Tutorial
19 Recapitulation and Discussion of possible
questions
Total 19 Hours

Reference Book:

R3: James Stewart., (2001). Multivariable Calculus, Concepts and Contexts, Second Edition, Brooks
Cole,Thomson Learning, USA.

UNIT-IV

1 1 Introduction to Line integrals R3: chap-17 Pg.No:1081-
1083

2 1 Applications of line integrals R3: chap-17 Pg.No:1070-
1080

3 1 Problems on Line integral R3: chap-17 Pg.No:1070-
1080

4 1 Tutorial

5 Concept about Mass and Work R1:Chap-13 Pg.No:1034-
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1035
6 1 Problems on Mass and Work R1:Chap- Pg.No:1035-
1037
7 1 Fundamental theorem for line integrals R3: chap-17 Pg.No:1083-
1090
8 1 Tutorial
9 Problems on Fundamental theorem for line R3: chap-17 Pg.No:1083-
integrals 1090
10 1 Continuous of problems on Fundamental R3: chap-17 Pg.No:1083-
theorem 1090
11 1 Conservative vector fields R2: chap-10 Pg.No:1061-
1090
12 1 Tutorial
13 1 Problems about Conservative vector fields
14 1 Problems on independence of path
15 1 Tutorial
16 1 Recapitulation and Discussion of possible
questions
Total 16 Hours

Reference Book:

R1: Thomas G.B., and Finney R.L., (2005). Calculus, Ninth Edition, Pearson Education, Delhi.
R2: Marsden E., Tromba A.J. and Weinstein A., (2005). Basic Multivariable Calculus, Springer
(SIE), Indian reprint, New Delhi.
R3: James Stewart., (2001). Multivariable Calculus, Concepts and Contexts, Second Edition, Brooks

Cole, Thomson Learning, USA.

UNIT-V

1 1 Introduction of Green’s theorem R3: chap-17
Pg.No:1091-1097

2 1 Surface integrals R3: chap-17
Pg.No:1117-1120

3 1 Problems on Surface integrals R3: chap-17
Pg.No:1120-1128

4 Tutorial

5 Integrals over parametrically defined surfaces | R1: chap- Pg.No:

6 Problems on integrals over parametrically R1: chap- Pg.No:

defined surfaces

7 Tutorial

8 Stoke’s theorem R3: chap-17
Pg.No:1128-1129

9 1 Problems on Stoke’s theorem R3: chap-17
Pg.No:1129-1133

10 Tutorial

11 Divergence theorem R3: chap-17
Pg.No:1135-1136

12 1 Problems on Divergence theorem R3: chap-17
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Pg.No:1136-1138
13 1 Continuous of problems for divergence R3: chap-17
theorem Pg.No:1136-1138
14 1 Tutorial
15 Recapitulation and Discussion of possible
questions
16 Discussion on Previous ESE Question Papers
17 Discussion on Previous ESE Question Papers
18 Discussion on Previous ESE Question Papers
Total 18 Hours

Reference Book:

R1: Thomas G.B., and Finney R.L., (2005). Calculus, Ninth Edition, Pearson Education, Delhi.
R3: Kenneth Hoffman., Ray Kunze., (2003). Linear Algebra, Second edition, Prentice Hall of

India Pvt Ltd, New Delhi.

Total no. of Hours for the Course: 90 hours
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Functions of several variables 2016-Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),

Enable | Enfighten | Enrich Coimbatore —641 021
Abeensthiote dnvertyl DEPARTMENT OF MATHEMATICS
Subject: Multivariate Calculus Semester: 111 L TP C
Subject Code: 16MMU303 Class: II-B.Sc Mathematics 6 2 0 6
UNIT 1

Functions of several variables: Limit and continuity of functions of two variables,
partial differentiation, total differentiability and differentiability, sufficient condition
for differentiability. Chain rule for one and two independent parameters, directional
derivatives, the gradient, maximal and normal property of the gradient, tangent
planes.

Text Book:

T1: Strauss M.J., Bradley G.L. and Smith K. J., (2007). Calculus, Third Edition,
Dorling Kindersley (India) Pvt.Ltd. (Pearson Education), Delhi.

Reference Book:
R3: James Stewart., (2001). Multivariable Calculus, Concepts and Contexts, Second
Edition, Brooks Cole,Thomson Learning, USA.
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UNIT-1 Functions of several variables 2016-Batch

Functions of several variables
Limit and continuity of several variables:

Limit:
DEFIMITION A functon f of two variables is a rule that assigns to each orderad
pair of real numbers {x. ¥} in a set [ a unigue real number denoted by f{x. v). The
set I is the domain »::rfl_r’ and its ramge is the set of values that f takes on, thal is.
Az v |y DL
EXAMPLE 4 Find the domain and range of g(x, ¥) = /O — 37 — ¥7.
LTl The domain of gis
D=fxMN| 99— -y=0={ry 1>+ =19
; S which is the disk with center (0. 0% and radius 3. (See Figure 4.) The range of g is
PHy=y
' {:i:=,_.-‘;'—.r:—_v!.{x.}"_IED}
= G Since - is a positive square root, - = 0. Also
\
g—xt—yl=0 > oy —y=3
So the range is
FIGURE 4

1|0 =:=3}=[0.3] 0

Domgin of gix.yl =9 -2 — 3

DEFINITION If f is a funclion of two variables with domain I3, lhen the graph of
F is the set of all points {x. v. z} in FB* such that - = f{x. ¥) and (x. ¥) is in L.

.zl

Just as the graph of a function  of one variable is a curve O with equation ¥ = fi{x}, s0
the praph of a function f of lwo variables is a surface § with equation = = flx, ¥). We can
visualize the praph 5§ of [ as lying directly above or below its domain [ in the xyv-plane,
{Sea Fipure 5.)

LEVEL CURVES

S0 far we have two methods for visualizing functons; arrow diagrams and graphs, A third
method, borrowed from mapmakess, is a contowr map on which poiats of constant eleva-
tion are joined (o form contour curves, or level curves.

DEFINITION The level curves of a function [ of bwo variables are the curves with
equations fix, ¥} = k. where £ is a constant (in the range of ).
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UNIT-1 Functions of several variables 2016-Batch

¥ I - EXAMPLE 9 A contour map for a function £ is shown in Figure 14. Use it o estimate the
5 =5 values of {1, 3 and {4, 5).

A RN : — _
25 ) B e T\ COLUTIOE The point 1. 3) lies partway between the level curves with --values 70 and 80.
S WIS VT AN We estimale that
- T T ] Ml .
A l'.l'||l"._ ||III'. I!!| .ll_ll || Fi1, 3} =173
=T A i i T /

\hew! )] et/ Similarly, we estimate thal
TrE | o F f4.5) = 56 O

AES R )= =]
9 o2 9 w5 E ) )
EXAMPLE 10 Sketch the level curves of the function f{x. ¥) = & — 3x —2¥ for the
FIGURE 14 values £ = —6. 0,6, 1.

TOLUTIGR The level curves ane
Gf—3r—v=k or B+ +ik—a)=0

This is a family of lines with slope —g The four particular kevel curves with
k=—=606and 12are3r+ 2y — 12=0.3r+ 2y — 6=0.3x + 2y = 0. and

3r 4 Iy + 6 = ). They are sketched in Figure 15. The level corves are equally spaced
parallel lines because tha graph of f is a plane {see Figore 6). (|

ki EXAMPLE 11 Sketch the level curves of the funclion

FIGURE 15
Coniour map of
fixyy=6—3x -2y

gy =40 — T —¥? for k=0,1.2.3
ILUTIGE The level curves are
VI—xF—y: =k o X Ey =0-—j

This is a family of concentric circles with center (0, 0 and radius /% — £2. The cases
k=10.1.2, 3 are shown in Figure 16 Try to visualize these kevel curves lifted up to
form a surface and compare with the graph of g (a hemisphere) in Figure 7. (See TEC
Wisoal 15.1A.)

FIGURE 1& =
Contour map of gy, ) =+/0— x* — 5 O

EXAMPLE 12 Skeich some level curves of the function hix, ¥} = 4x° + 2

iiuTiok The level corves are
41.3_'_}.'!:;: or 4= =

which, for & = 0, describes a family of ellipses with semiaxes % /2 and . Figure 17(@)
shows a contour map of & drawn by a computer with level curves corresponding to
E=025.05075 .., 4, Figure 17(b)shows these level curves lifted up 1o the praph
of k (an elliplic paraboloid) where they become horizontal races. We see from Figure 17
hiow the eraph of & is pul tooather from the level curves.
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L visual 1518 demonstranes the
connection bapween swrfaces and thelr

CONLOUT Maps.

FIGURE 17

The graph of kix, ¥)= 4 +3*
is formed by lifting the level curves. {2 Comour map by Horizontal traces are raised level curves

FUMCTIONS OF THREE OR MORE VARIABLES

A function of three variables, [, is a rule that assigns to each ordered triple (x, v, z) ina
domain [ < R 2 unique real number deaoted by fix, v, 2). For instance, the lemperature
T at a point on the surface of the earth depends on the longitude x and latitude ¥ of the
point and on the time {. so we could write T = flx. v £.

EXAMPLE |4 Find the domain of f if

Flxoy o= Ialz— ¥} + 2y sinz

OLUTICN The expression for f(x, ¥, 2) is defined as long as z — y'= 0, so the domain of 7
is
D={xy.: e Rz

This i= a half-space consisting of all points that lie above the plane - = ¥ O

I's very difficuli to visualize a function [ of three variables by its graph, since that
wiould lie in a four-dimensional space. However, we do gain some insighl into § by exam-
ining itz level surfaces, which are the surfaces with equations fix, v, z} = k. where § is
4 comstant, If the point (X, ¥, z) moves along a level surface, the value of fix, v, ) remains

fixed.

r+¥+ii=9

=y

FIGURE 10

EXAMPLE 15 Find the level surfaces of the function

fAxyzy=x*+y'+7°

SeLUTEY The level surfaces are .::3_+ ¥ + 22 = &, 'where k = (). These form a Family of
concentric spheres with radius k. (See Figure 200 Thus, as (x, v, z) varies over any
sphare with center 2, the value of F(x. v, z) remains fixed. O

Functions of any number of variables can be considered. A Tunction of n variables
is a rule that assigns a number =z = flx; X2, ..., xe) toan p-tuple (X xs, .., X ) of real
numbers. We denote by B* the set of all such n-tuptes. For exampie, if & company usas q
different ingredients in making a food product. ¢, is the cost per unit of the ith ingredient.
and x; uniis of the ith ingredient are used, then the total cost C of the ingredienis is a func-
tion of the & variables xy, %2, . ., Xa

] C=f{x, X e, ) =00, + Oy 40+ 6,

The function f is a real-valued function whose domain is a subset of B®. Sometimes we
will use vector notation (o write such functions more compactly: IFf x = {x. X, ... X0,
we often write f{x) in place of flx. ¥, ..., xe), With this notation we can réwrite the
function defined in Equation 3 as
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UNIT-1 Functions of several variables 2016-Batch

fiXl=ec+*x

where ¢ = (. 0o, Ca) and ¢ + x denotes the dol product of the vectors ¢ and x in Ve.

In view of the one-to-ong correspondence bolween points (¥, X2, ... ) in B* and
their position vectors X = (X1, Xz, ... . X} in Ve, wa have three ways of looking at a func-
tion f defined on a subset of B

I. Asa function of n real variabbes xi, %2, ..., Xa

1L Az afunction of a single point variable {x, X2, ... Xa)

3. Ag a funclion of a single vector variable x = {x;, xo. ..., Tt

LIMITS AND CONTINLITY

Let’s compare the behavior of the functions

flxy= M and gtz ¥ =

4+

¥ -7
1 4 y7

a5 xand ¥ both approack (- fand therefore the point (1, ¥) approaches the origin].

TABLE | Values of fix. ¥) TABLE 2 Valucs of gix. ¥)

P F|-10| -05 | -02 i) 0.z 0.5 1o = Yl -10 | 05 | -2 o oz 0.5 Lo
=10 | oua| OUG0O) GRS | LO0C ::-'--.‘.-E 0500 0

05| —awea| nooo| d32s| oo .:-'-"_uE a L

-2 {Le23 | -0724 ¥ MK "E 24 7

u_ T' = = = =

[i ) an I 1.8 i
I 035 i f.r*-.:-ll“ 724 | Lo '-"CI-

1 AR L 10 v QL600| 410

Tatles 1 and 2 show values of f{x, ¥} and gix. ¥}, correct to three decimal places, for
pointz {x,v) near the origin. (Motice that neither function is defined al the origin) It
appears that as (x, v) approaches (0, 0, the values of f{x. v} are approaching | whereas the
values of g{x, ¥} aren’t approaching any number. It trns oul that these guesses based on
numernical evidence are commect, and we write

sin{x® + ¥%) _ e _
lim ——=1 and lim ————— does nol exist
(e s, 0 X4y (x yie (0, ) I! Fyl

In general. we use the notation

limn ‘ﬁx. ¥vi=1L

ix yi-sla,

to indicate that the valuwes of ((x, v) approach the number L as the point (1. ¥) approaches
the point (g, b} along any path that stays within the domain of f. In other words, we can
make the values of f{x, ¥) as close to L as we like by taking the point (x, ¥ sufficiently
close to the point (@, i}, but not equal to (g, B). A more precise definifion follows,

[[] vEFMITION Let f be a function of two variables whose domain [ includes
points arbitrarily close to (g, &), Then we say that the limit of fix, ¥) as (x, ¥)
approaches (g, & is L and we wrile

r;;!.i.tuu.n_:'rfx' }1} =L

if for every number & = 0 there is a corresponding number & = () such that

if fxyveED ad B=JE—al+ (¥ —BFF <5 thea |fzy)—L|l=e
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(ther notations for the limit in Definition. | are

limfixy}=L and fla,¥) — L as (x.¥) —la b

¥ 0

Motice that | fix,¥) — L| is the distance between the numbers f(x.3) and L, and
Wi —a)t + (v — B)? iz the distance hetwaan the point (x.v) and the point (g, B). Thus
Definition 1 says that the distance between f(x, ¥) and L can be made arbitrarily smail by
making the distance from (x¥) to (@, ) sufficiently smail (but not 03, Figure | illusirates
Definition | by means of an arow diagram. If any small interval (L — e. L + £} is given
around L, then we can find a disk I with center {a, &) and radius & = 0 such that f maps
all the points in D [except possibly (g, &) into the interval (L — . L + &),

FIGURE 13

Another illustration of Definition 1 is given in Figure 2 where the surface 8 is the graph
of . If & = (0 is given, we can find & = (0 such that if {x. ¥) is restricted to lie in the disk
D and (x, ¥) = {a, b)), then the corresponding part of § lies betwean the horizontal planes
=1L —eamdz:=L+E.

For functions of a single variable, when we let 1 approach a. there are only two pos-
sible directions of approach. from the left or from the right. We recall from Chapter 2 that
if Wim, ., (X} # lim,. o F(xF, then fim,_. . F(¥) does not exist

For functions of two variables the situation is not as simple becanse we can let (x. v)
approach (@, &) from an infinite number of directions in any manner whatsoever (see
Figure 3) as long as (x, ¥) stays within the domain of f.

Definition 1 says that the distance between f{x, ¥) and L can be made arbitrarily small
by making the distance from (x. ¥) o (g, b} sufficiently small (but not 0). The definition
refers only 1o the distance betwesn (x, ¥) and (g, 7). Tt does nof refer to the direction of
approach. Therefore, if the limit exists, then f{x, ¥) must approach the same limit no mat-
ter how £x. ¥} approaches (a. &). Thus if we can find tvo different paths of approach along
which the funclion £(x, ¥) has different limits, then it follows that limiz g 5 f{x; ¥) does
nit exist

If fix, vh— L as (x. ¥) —= (g &) along a path ) and fx, v) — L2 as
(X, ¥) — (g, b) along a path C:, whese L, # Lz, then M. g 5 (X, ¥} does
ok exist.
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UNIT-1 Functions of several variables 2016-Batch

2_}-3

4 X s
UJ EXAMPLE | Show that lim - ———— does ool exist.
lr, g0 X* 4+ ¥

sowmon Let fix vl = {(x% — ¥/ (x* + ¥"). First let’s approach (0, 0) atong the x-axis.
Then ¥ = @ gives filx, 0) =x%x" = 1 forall x # 0. s0

ki firxi—1 as (x, %) — (0, 0)along the v-axis

f=—1 -

4 We now approgch along the v-axis by putting ¥ = 0. Then f(0, v) = —T = —1 for
all v # 10, 50 ¥

x
£5:1 filx,¥) —= —1 a5 {x, v) —= (0, O) along the y-axis

{%ee Figure 4.) Since § has two different limits along two different lines, the given limit
does not exist. (This confirms the conjecture we made on the basis of numerical evidence

FIGURE 4 at the beginning of this section.) I}

¥
EXAMPLE 2 Iffix, v) = ——— does  lim  fix. ¥)exist?
-+ :E' Vo, b= I3, 0k

souimion IFy = 0, thes fix. 0} = 0/x* = 0. Ther=fore

fryl—0 as  {x¥ — (0 0)along the x-avis
Ifx=10 then fI0.¥)=0/"=0.50

FAxr¥)—0 a5 (x¥)— {0.0) along the y-axis

¥
= /A = Although we have obtained identical limits along the axes, that does pol show that the
given limit is 0. Let’s now approach (0, 0 along another line, say v = x. For all x = 0,

J=u /_r-%
o 1
fAxx = 5=

.-"! Fetl T I:'I'I

/ Therefore flix, ¥ —1 as (X% — (0 Nalong vy =1

{See Figure 5.) Since we have obtained different limits along different paths, the given
FIGURE & limit does not exist. O

Figure & sheds some light on Example 2. The ridee that occurs above the line v = x cor-
responds to the fact that Fix, ¥} = 1 for all points (x.¥) on that line except the ofigin.

LA inVicual 152 a rotating line on the

surface In Figure & shows different limics at
the origin from different directions.

FIGURE &

fixyh= £ T :r_:

v

. does  lim  Fix, ) exist?

L EXAMPLE 3 If fix. ¥} =
iz p-=inal

4+
pLuTd With the solution of Example 2 in mind, let’s trv to save time by letting
{x,¥) — (0, 0} along any nonvertical line through the origin. Then v = mx. where m
i3 the shope, and

xlmxy m’x? mx

(x, ¥) = filx, mx) = = =
_r i £ } -1_! LY. {FHI}J 34 mar.q |. Iy m_u_:
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m Figure 7 shows the graph of the function in
Erzmple 3. Motice the ridge ebowe the perabila
1=y

FIGURE 7

& Ancther wey to do Exampiie 4 is 10 use the
Souesee Theorem instesd of Befinition 1. From
124 it Sodlows that
fim 3y|=10
LR (oY
and so the firs: ineguality in {3) shows that the
given limit is 0,

S0 fAz.y) =0 as {x,¥) — (0. 0) along ¥ = mx

Thus § has the same limifing value along every nonvertical line through the origin. But
that does not show that the siven limit is 0. for if we now lat (3. ¥) — (0, 0) along the
parabola x = ¥*, we have

PPN .| 3 L
Anyl=fy.3= Yy mt 2
50 flrw) —3 as {x. vl — (0. D) along x = ¥*

Since different paths bead to different limiting values, the given limil does not exist. [

MNow let’s look al limits that de exist Just as for funclions of one variable. the calcula-
tion of limits for functions of two variables can be preatly simplified by the use of proper-
ties of limits. The Limit Laws listed in Section 2.3 can be extended to functions of two
variables: The limit of a sum is the sum of the limits. the limil of a product is the product
of the limils, and 5o on. In panticular, the following squations are e,

H im x=a lim . ¥=#§ lim - c=t¢
{x, wi—in, & Lx, yi—= o B} [y =i, 0

The Squeeze Theorem alzo holds.

) ey
EXAMPLE 4 Find lim ——if il exists.
(-8 TRET W (0 et = :I."

.........

SOLUTIOH - As in Example 3, we could show that the limit along any line through the
origin iz 0. This doesn’t prove that the given limil is 0, bul the limits along the parabolas

v = x"and x = ¥° alsa mwm out to be O, 50 we begin to suspect that the limit does exist

and s egual to 0.
Let = = 0. We want to find & = 0 such that

|- 3%y

il 0= _V-'x'! 5 }.E = & then _—? Y| -
| +2®
; : _— 3y
theat s, i d=yahaytad e —5 -l',rlz' <

But x* = x* + ¥  since ¥* = 0, s0 x5 (x" + ¥*) = | and therefore

Yy

= = == 3i_1r‘: = 3-\.{1;_:5-: 3x? + ¥t
x* +:F_

k)

Thus if we choose & = £/3 and et (F = 7 + ¥ = &, then

=

3ty P
|—-ﬂ ol =3 T < 3= .‘-{i) -y
bt 3

Hence. by Definition 1.

3].
T AT o
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CONTINUITY

Recall that evaluating limits of confimuous Tunclions of a single variable is easy. It can he
accomplished by direct substibtion because the defining property of a continuous function
is lim; ., flx) = fla). Continuous functions of two variables are also defined by the direct
substitution property.

[#] CEFIMITION A funclion [ of two variables is called continuous at (4, b) if

L 'rEi-j?l.ﬂ-'f{I" ":} E _ﬂﬂ, b}

We say [ is continmous on I if iz continucuz at every point (g, &) in 0

The intuitive meaning of continuity is that if the point {x, v} changes by a small amount,
then the value of fTx. ¥) changes by a small amount. This means that a surface thal is the
eraph of a continuows function has ao hole or break.

Using the properties of limits, vou can see that sums, differences, prodocts, and quo-
tients of continuous fanctions are continuows on their domains. Let's wse this fact to give
examples of continuous functions.

A polvnomial function of two variables (or polvoomial, for shom) is a sum of terms
of the form cx™®, where ¢ is a constant and m and » are nonnegative integers. A rational
function is a ratic of polynomials. For instance,

Axy) =x*+ 55 +o6n" — T+ 6

is a podynomial, whereas
2+ 1

Ly =7 e
15 4 rational function.

The limits in (2} show that the functions f(x. ¥} = X, glx. ¥} = v, and k(x, ¥} = c are
continuous. Since any polynomial can be built up out of the simple functions £, g, and &
by multiplication and addition. it follows that all pofaomials are continuous on B
Likewise, any rational function is conlinuous on ils domain because it is a quotient of
continuous functions.

I EXAMPLE 5 Evaluate lim (xy  — i W+ )
[£3 SiE

SOLUTIN Sioce F{x ¥) =x™? — x°¥" + 3x + 2¥is a polynomial, it is conlinuons every-

where, so we can find the limit by direct substitution:

fim (% —xy + 3+ ) =17 P - PP +3:1+2:2=1 0
e =il

a

. . =¥ .
EXAMPLE & Where is the function f{x, v} = —;Jcrm timuous?

X
SELTON The function £ is discontinuous at {0, () becausa it is not defined thera,
Since f is a rational function, it is continuous on its domain, which is the set

D ={x.% |y # 0.0 |
EXAMPLE 7 Let
¥ if (v # (0,00
glx, ¥ = P
LH if {x,¥) = (0,00
Here g is defined at (0, 0) bul g is still disconlinuous there because lim;; -, o, m g{%. ¥)
does not exist (see Example 1), |
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& Figure 8 chowe the greph of the continuous EXAMPLE 8 Lat
furction in Example 8

3TN i () # (0,00
i 20 feyy=3x +y
0 if {x,3) = (0.0)

We know  is continuous for {x.y) # (0, 0) since it is equal 1o a rational function there.
Also, from Example 4. we have

/ CENr 3ty e
u.y.F-IErr'n.-:: Axy) = -:.Ilj-—n-:lrl.l:-_l x4+ y? =0=riL5)
FIGURE 8 Therefore [ is continuous at (0, 0, and so it is continuous on B2 O

Just as for functions of one variable, composition is another way of combining two con-
tinuous functons to oet a third. In fact, it can be shown that if £ is a continuous function
of two variables and g s a continuous function of a single variable that is defined on the
range of F, then the composite function it = g o f defined by hix, ¥} = gl f{x.¥)) is also a
continuous function.

EXAMPLE 9 Where is the function k{x, ¥) = srctani{v,/x) confinuous?
socirioN The Rnction f{x. ¥) = ¥/x is arational function and therefore continuous
except on the line ¥ = 0. The function gif} = arctan ! is continuous everywhere. So the
composite function

gl flx, ¥} = arctan(y/x) = hlx, ¥)
is continuous except where x = (6. The graph in Figure 9 shows the break in the graph of
h above the v-axis. O

FUMCTIOMS OF THREE OR MORE VARIABLES

FIGURE %
The function Aix, ¥)= arctaniy/x}
is discontinuous where x = O

Everything that we have doneg in this section can be extended to functions of thres or more
variables. The notation
im iy =L
0T, fozb—= 3, 8,0

means that the valoss of f{x. v, ) approach the number L as the point (x. ¥, £} approaches
the point {a, b, ¢} along any path in the domain of £ Because the distance betwesn two
points (x. ¥, z) and (a, b, c)in B? iz piven by ./ Tx — @12 + (¥ — 17 + (z — )%, we can
write the precize definition as follows: For every number & = (0 there is a comresponding
number & > such that

if (r.vz)isinthedomainof§f and D= Jx—alP+ (¥ -+ -2 =<8

then | f{x ¥z} —Ll<&

The function fis continuous at (a0, b, o) if
lim .y z)=fla b c}
Loy, =1~z b b
For instance, the function
1

F'.!.','lF.z TN T . pa—
f&y.2) TF¥E —1

is a rational function of three variables and so is continuous at every point in R except
where x7 + ¥* + z* = |_In other words, it is disconlinuous on the sphere with center the

origin and radius 1.
I we use the vector notaion introduced at the end of Saction 13.1, then we can wrle

the definitions of a limil for functions of two or three variables in a single compact form
as follows.
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[5] If f isdefined on a subset 2 of B® then lim,..., f(x) = L means that for
every number £ > 0 there is a corresponding number & = 0 such that

if xE0 md O0<|x—a|<8 then |f(x)-L|<e

Motice that if @ = 1, then x = 1 and a = 4, and (3) is just the definition of a limit for
functions of a single varable. For the case 7 = 2, we have x = {x.v}. a= {a.b},
and [x —al =T —a}* + (¥ — B%. so {5) becomes Definition 1. 1f a = 3, then

={x. ¥ z).a={a b ¢}, and (5) becomes the definition of a limil of a function of
thre variabies. In each case the definition of continuity can be written as

Ei:_m._.l‘{ll = fia)

PARTIAL DERIVATIVES

In general, if f is a function of two variables x and v, suppose we let only x vary while
keeping ¥ fixed, say ¥ = b, where b is a constanl. Then we are really considering a func-
tion of a single variable x; namely, g(x) = flx, ). If g has a derivative at g, then we call it
the partial derivative of 7 with respect to x at (@, &) and denote it by fifa, &), Thus

M o, B =g%a)  where  gix) = flx b

By the definition of a derivative, we have

- - gla + K} — gla)
g'la) = lim x

P

and s Equation | becomes

filg + h.B) — Fla. #)
I

@ fla. B = !IITgI'

Similarly, the partial derivative of [ with respect to ¥ at {4, &), denoted by fila. b), is
obtainad by keeping x fixed (x = a) and finding the ordinary derivative at b of the func-
tion G(v} = fig. ¥

Fla. b+ k) — fla, B)
[

#a.B) = lim

If r is a function of two vanables, its partial derivatives are the functions f
and f, defined by

Fix + Byl —flx v
i

Hixy = l‘ﬂl

flxy + B — flx.y
k

559 = g
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There are many allernative notations for partial derivatives. For instance, instead of
S we can write f; or Oy f (o indicate differentistion with respect to the first variable) or
fAffax. Bt here 4 ax can’t be interpreted as a ratio of difféerentials,

KOTATIONS FOR PARTIAL DERIVATIVES If z = fix. ¥), we write

e M ds, o @ o ol
ﬁh;}‘]—_r}—ﬂx axnx.}a i fi=Ihf= DS
oo e e o e
My =%= = rhﬂx._'r} = =D f=Dyf

To compute partial derivatives. all we have to do is remember from Equation | that
the partial derivative with respect to x is just the ordingry derivative of the function g of a
simzle variable thal we gel by keeping v fixed. Thus we have the following mle.

RULE FOR FINDING PARTIAL DERIVATIVES OF : =fix, v
L. Tofind f:, regard v as a constant and differentiate fix, ¥) with respect {0 x.
2. To find ;. regard x a5 a constant and differentiate f{x. ¥) with respect (o v,

EXAMPLE 1 If flx.y) =" + x** — 2y°, find £(2, 1) and £(2. 1}
oLt Holding v constant and differentiating with respact to x, we get

Ay =30 + 2xy?
and so M2 =3-224+2:2-1*=1§
Haolding x constant and differentiating with respect to v, we get
X, 3 =3x%y" — 4y

f2 1 =3-22-1_4.1=8 |

INTERPRETATIOMNS OF PARTIAL DERIVATIVES

To give a geomelric interprefation of partial derivatives, we recall that the sguation
= fix, ¥) represents @ surface S (the graph of £). IT fig, b} = ¢, then the point Pla. &, ¢}
lies on 5. By fixing v = b, we are restricting our attention to the curve ©) in which the ver-
tical plane v = b intersects 8. (In other words, O is the trace of § in the plane ¥ = §)
Likewise, the vertical plane x = g intersects § in a curve ;. Both of the curves C; and Cs
pass through the point P. (See Figure 1.}

FIGURE 1| |
The partial derivatives of fat (2, &) ore x Fl g P
the shopes of the tangents 1o O and C. fa, b 1)

Naotice that the curve C is the graph of the function g(x) = fix, B}, so the slope of its
tangent T; at P is g(a) = g, &). The curve C; is the graph of the function Gy} = fia. ¥).
=0 the slope of its tangent T2 al P is G'(F) = fila, #).
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Thus the partial deivatives fila. b) and f{g. &) can be interpreted seometrically as the
slopes of the tangent lines at Pla, £, ¢) o the traces ) and C: of § in the planes ¥ = B
and r = a.

As we have seen in the case of the heat index function, partial derivatives can also be
interpreted as rafey of change. If = = f(x. ¥), then 4z/ax reprezents the rate of change of -
with respect to 1 when ¥ is fixed. Similarly, iz /iy represents the rate of chanpe of = with
respect to ¥ when x is fixed.

EXAMPLE  If fix ») =4 — x* — 2y, find £(1, 1} and f{1, I} and interpret these num-
hers as slopes.

SGLUTIOR We have

Flx, ¥y = —2x Y = —4y
B =3 R = —4

The graph of f is the paraboloid - = 4 —x° — 2¥" and the vertical plane ¥ = | inter-
sects itin the parabola z = 2 — 22 v = 1. {Asin the preceding discussion, we label

it 7 in Figure 2.) The slope of the langenl line 1o this parsbola at the point (1, 1. 1) is
fll, 1) = —2. Similarly. the curve C: in which the plane x = | intersects the paraho-
loid is the parabolar = 3 — 2¥". x = 1, and the slope of the tangent line at (1, 1. 1) is
FL 1) = —4.(See Figure 3.}

x

FIGURE 1 FIGURE 3 H

Figure 4 is a computer-drawn counterpant to Figure 2. Part (a) shows the plane v = 1
intersecting the surface to form the carve C; and part (b) shows C, and T, [ We have used
the vector equations riff = £ 1.2 — %) for Cyand i) = {1 + 1, 1,1 — 21} for 1.
Stmilarly, Figure 5 corresponds to Figure 3.

Z%\—

FIGURE 4

FIGURE 5
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& Some computer slgetire sy=tents can plot
surfeces defined by implicit equstions in three
weriables. Figare B shows such a plot of e
surfece defined by tha equation in Example 4

FIGURE &

i i
L EXAMPLE 3 I fix.¥) = sin( = } cajcu]ate'—"r and —JF
F+¥ ix iy

SOLUTEON Using the Chain Rule for functions of one vanable, we have

df I i X x 1

— =08 -— = 08 .

X I+ drh 1+ ¥ 1+ I +'¥%
& ] T T x

= 08 -— = —pog| —— | —— [
L+y/) v ll4+¥ I+ {1+ ¥

d EXAMPLE 4 Find dz/dx and dz /0y if z is defined implicitly 45 a2 function of x and ¥
by the equation

¥l

Pyt =1

soLTeeN To find dz/dx, we differentiate implicitly with respect to x, being careful o treat
¥ as a constant:

4 0T iz
W+ 3:-;—x + 6yz + 6xr'¥ =0

Sofving this equation for dz/dx. we obtain

d 2 4
ar =4 Ixy

Similarly, implicit differentiation with respect to ¥ gives

@ v
ay 24 oy
FUMCTIONS OF MORE THAN TWO VARIABLES
Partial derivatives can also be defined for functions of three or more vanables. For example,
if [ is a function of three varables x. v, and =, then its partial derivative with respect o x
is defined as
. + hovozh — flxv=
FlEd = fia Loty ) —flxy.q)
i—il h
and it is found by regarding v and - as constants and differentiating f{x, v,z with respact
10 x. If e = f(x, ¥, z). then f; = &/ can be interpreted as the rate of chanee of w with
respect to x when ¥ and z are beld fixed. But we can’t interpret it geometrically becanse the
eraph-of f lies in four-dimensional space.
In general. if & is a function of n variables, & = fix,, To. .. .. X, ). it$ partial derivative
with respect to the ith variable 1, is
A Sl X B B X)L Bjy oo K
#x  n—0 h
and we also write
it if
— I — = = ﬂ‘- f
[ o] X f=1i Z
EXAMPLE 5 Find fr. f. and £if fix. ¥, z} = e%in =
ioLuticl Holding v and = constant and differentiating with respect o x, we have
E=wwYnz
e
Similarky, f=x"nz and E=s— |
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HIGHER DERIVATIVES

IT f is-a function of two yariables, then ils partial derivatives f and f; are also functions of
two variables, so we can consider their partial dedivatives { ;). f_r',jlr_ Ul and {5,
which are called the second partial derivatives of FIf - = f(x. ¥}, we use the following
novtation:

hh=fu=fn= %(%} = :—:; '—%
Uy =l =fn= l;_:(::.l_f) = u'}fjr = :?;-J':;x
(s i ﬁ( j—{] " }::Jr ~ = ;m

Thus the notation fy (or A" dv x) means that we first differentiate with respect to x and
then with respect to v, whereds in computing [, the order is reversed.

EXAMPLE & Find the secomd partial derivatives of
fw=x*+1% -
toLuTicl In Example 1 we found that

Ay =30+ Iny? Fla =30y — 4y

Therefore

i . . T A .
fo=— {3+ 200%) = 61 + fo = — {32 + 27 = 6ay”
ix ’ i

i . N i . 5 -
S = 3y — &) = 6ny? fo=ae (W 4 =6y -4 O
ix ’ i

Notice that [y = f; in Example 6. This is nol just a coincidence, It turns oul that the
mixed partial derivatives fi, and f,, are equal for most functions thal one meels in practice.
The following theorem, which was discoverad by the French mathematician Alexis Clairaut
(17 13-1765), gives conditions ander which we can assert that iy = fu. The proof is given
in Appendix F
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& Fqure T shows the graph of the function £

in Examiple & and the graphs of its first- end
second-order pertial derbatves for —2 s xa 2,
-2 =¥ = I. Notice that these graphs ars ton-
sisteqt with e interpretations of ff-and f as
shopes of tangent lings to fraces of the graph of
For instence, the graph of f decreases if we start
at {0 —2) and move in tha positive x-gisection;
This = refected in tha negative wafues of . You
should compere the graphs of firand i with the
greph of f to sea the elatisnships

FIGURE T
= Alexiz Clawaut was a child prodigy in CLAIRAUT'S THEOREM Suppose is defined on a disk D that conlains the point
mathematics: e raad |'Hospitals textbook {a, B, If the functions fy and fyare both continuous on £, then
on ealcudes whean he wes ten end presented a :
paper on geometry to the Feerch Academy of fivla, BY = fada. B)
Sriencas when he was 12 At the age of 18, EEA e

Clgiraut published Redhemhes o les cooes &
toutle courbure, which was the first systematic

{reatize or three-dimensinal anelyfic geomstry Partial derivatives of order 3 or higher can alzo be defined. For instance,
ard included the calouls of space caves !
- ] ( |':I:_|l- ] .-'i:’_;l'-
= {figly = — — .
Jeyr = Usrly iy | iV oax o

amnd using Clairaut’s Theorem it can be shown that frw = fuy = fie if these functions are
conlinuous.

[ EXAMPLE T Caloulate ... if fix, v, =) = sin{3x + vz)

SOLOTIOE Fr=3cos(3x + vz)
Joo = —9sin(3x + ¥z
Jery = —Dzcos(3x + )
Jirp = —9eos(3x + ¥z} + Ovzsin(3x+ vz (]
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PARTIAL DIFFEREMTIAL EQUATIONS

Partial derivalives occur in partial differential equations that express cenain physical lows.
For instance, the partial differential equation
i'w. i

a2 v’

is called Laplace’s equation after Pierre Laplace {1 749-1827). Solutions of this equation
are called barmonic fanciions; they play a role in problems of heat conduction. Auid Aow,
and electric potential.

EXAMPLE 8 Show that the function g x. ¥) = #* sin ¥ is a solution of Laplaca’s
equation.
SOLUTIGN ;=g siny fy = o8y

Hyy = 750 Y Uy = —EBINY

U + Uy = £75INY — £ siny =0

Therefore i satisfies Laplace’s equation. O

The wave equation

o SR L

At ant
et describes the motion of a waveform, which could be an ocean wave, a sound wave, a light
=) ” e wave, of a wave traveling along a vibrating string. For instance, if u(x, 1) represents the dis-
e e placement of a vibrating violin string at time { and al a distance © from one end of the
string (as in Fipure B), then u(x, ) satisfies the wave equation. Here the consiant o depends

FIGURE & on the density of the string and oa the tension in the string.

EXAMPLE 9 Verily that the function slx, #} = sinlx — af) satisfies the wave: equation.
SOLUTION u; = coslx — at) M = —sin{x — at)

= —aons(E — af) t = —a>sinx — af) =20

o

S0 u satishes the wave eguation.

EXAMPLE 9 Verify that the function w(x. ) = sin(x — af) satisfies the wave eguation.

TELUTHGN 4, = cos(x — af f, = —sinlx — af}
i, = —acos(x — af} = —a’sinly — af) = a’u,
S0 u satisfies the wave squation. |

TAMGEMT PLAMES

Suppose a surface § has equation z = F(x, ¥). where [ has continuous first partial deriva-
tives, and let P{xy, ¥o, =) be & point on 5. As in the preceding section, 1&t €, and C: be the
curves obiained by intersecting the verlical planes ¥ = % and x = x5 with the surface §.
Then the point P lies on both O and €. Let T, and T be the tangent lines to the curves C,
and C; &t the point P. Then the tanpent plane (o the surface 5 @t the point P is defined 1o
be the plane that contains both tangent nes T and 7. (See Figure 1.)

[I] Suppose f has continwous partial dervalives. An equation of the tangent plane

& Mote the similasity between the equation af a to the surface = — _ﬂJ.', 'I':l at the point HI-'_:, Yo. za) I8
tenperd plane and the equation of & lengent fing T -
¥—¥o=f{xMx — 2} z — zp = falZo. o ){x — X0} + Flxo. ¥}y — 30}
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r Figure & shows the graphs of the function |
and s linesrization L in Exampla 7.

FIGURE 5

7 ExaMPLE | Find the tangent plane to the elliptic parabaloid - = 2x* + vZ at the
point (1. 1. 3).

seekToN Let fix. ¥) =237 + ¥ Then
flx v =4x Moyvi=2%
A1) =4 =2

Then (X oives the equation of the tangent plane at (1, 1, 3) a5

r—3=dlx— I} +2Ay—1)

or z=d4x +2y—3

1 EXAMPLE 1 Show that fx, ¥} = xe™ is differentiable at (1, 09 and find its linegriza-
tion there. Then use it to approximate /1.1, —0. 1)

sacliTioN The partial derivatives are

3y =% + xye® Flx ¥)y=x"%"

flLo) =1 Lo =1

Both f;and fy are continuous functions, so [ is differentiable by Theorem 8. The
linearization is

Eix, ¥ = (0, 00 + £, 00x — 1) + f{L O}y — D)
=1+Mx—-D+1-y=x+%
The corresponding linear approximation is
wT=x+y
i1 ALl —01)y= L1 —-0I=1

Compare this with the actoal value of (1.1, —0.1) = 1L.le ™" = 093542, I

EXAMPLE 3 Al the beginning of Section 14.3 we discussed the heat index (perceived
temperature) [ as & function of the actual temperature T and the relative humidity H and
gave the following table of values from the National Weather Service.
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Relative humidity (%)

I os0 [ 55 | 60 | &5 | 70 | 75 | B0 | B5 | 90
LN ) [ UH (LF |3 [ {5} 2
gz | wodk | w3 eiE | e ez |1 | e |
Actual
emperatwe | 94 Ik | 107 [ 111 14 | 1K | 12 7 | .1
") 3 an T -
04 10 S I 7 I e 125 | 130 | 135 | 41 XF
98 [4 113 113 127 133 138 144 =0 E57
¢ S0 I 3 L A e S Y I T 147 | 1] sl &R

Find a linear approximation for the heat index [ = F(T, B} when T is near 26°F and H is

near 709, Use it to estimate the heat index when the temperature is %7°F and the relative
humidity is T2%.

LUTION W read Trom the table that 796, 70) = 125. In Section F4.3 we used the tabu-
bur values to estimate that (96, T0) = 3.75 and fx(%6, 70) = 0.9, (See pages B78—79.)
So the linear approximation is

FETLH) == f{96, T0) + F(96, TONT — 96) + ful96, TONH — 70)
=125 + 3.75(T — 96} + 0.0(H — 70)
I particular,
07, 72) = 125 + 3.75(1) + 0.9(2) = 13055
Therefore, when T° = 97°F and H = 72%: the heat index is
I=131F O

CHFFEREMTIALS

For a differentiable function of one variable, ¥ = f{x). we define the differential dx to be
an independent variable; that is. dx can be given the value of any real pumber. The differ-
ential of ¥ is then defined as

L iy = f(x) dx
(Sea Section 3.100) Fizure & shows the relationship between the increment Ay and the dif-

EL ferential dv: Av represents the change in height of the curve ¥ = f{x} and dv represents the
Fifix T change in heipht of the tangent line when ¥ changes by an amounl 4y = Ay
-7_,»_"" For a differentiable function of two variables, - = f(r, ¥}, we define the differentials
,55" ';'t— Ay dx and dv o be independent variabies; that is. they can be given any values. Then the dif-
T ferential oz, also called the total differential, is defined by
f_,.f dr=AT
\l I I iz ,:?'.!
o N & atd = | dr = flx. V) dv + FE Y dy = — i + — v
{angen fine i iy
¥= fal+ f{aqiixr — &)
FIGURE & {Compare with Equation 9.) Sometimes the notation af is used in place of d=.

If we take dx = Ax = x —a and dv = Ay = ¥ — B in Equation 10, then the differen-
tial of z is
dz = fld, B)(x — &) + fi{a, B)¥ — B}
S0, in the notation of differentials, the linear approximation (4} can be written as

Flx vye=fla.b) + dr
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Figure 7 is the three-dimensional counterparnt of Figure 6 and shows the seometric inter-
pretation of the differential d- and the increment Az: d- represents the change in height of

the tangent plane, whersas Az represents the change in height of the surface = =

when (x, ¥) changes from (@, 5 to (@ + Ax. b + AY).

i | la+Ax b Ay, flat Ao b+ Axj)
Face z = fix.y)
surface Fix.¥) —
I
- _.ﬁi:
iz
R
fa.b Fla. b} . |
Y
| fla, &)
=enill

o+ Ax b+ Ay )]

tangent plane
FIGURE 7 T= fla By= fha. Bilx— a) + £ la. 5y —5

1 EXAMPLE 4
fa) IFz = fix.¥) =x* + 3ay — ¥2 find the differential d-.

(b) If x changes from 2 to 2.05 and ¥ changes from 3 la 2.96. compare the values

of Az and d=.

SOLLTION

{a) Definition 10 gives

az iz
dr=—dx + —dv = (2x + W dr + (31 — ) dy
iy iy

# In Example d, d i close fo Az because the {b) Putting x =2, dx = Ax =005, y = 3, and dy = Ay = —0.0d, we pat
t=ngent plane is & good approximation 1o tha
surfaca x = 1 + Jxy — 7 near (2,3, 1), Iz = [2(2) + 3(3)]0.05 + [3(2) — 2{3)])(—0.04) = D65

{Sae Figure 2.

FIGURE 8

The incrament of z 15
Az = 7(2.05,2.96) — f(2,3)
= [(2.05F + 3(2.05)(2.96) — (29671 — [2* + 3203 — #]
— 0.6440

MNotice that Az = d= but d=- is easier to compute.

EXAMPLE § The base radius and height of a right circular cone are measured as 10 cm
and 25 cm, respectively, with a possible error in measurement of as much as (L1 cm in

exch. Use differsntials to estimate the maximum efror in the calcolated volume of the

O

iolunok The volome ¥ oof a cone with base radius r and height f is V = orh/3. So the
differential of ¥ is
a¥ il 2rrh

@’
= Caly el = + C e —
dV a7 dr+ ah dh 3 dr 3 dh

Since each error is at most 0.1 cm, we have |Ar) = 0.1, | Ak | = 0.1 To find the lareest
error in the volume we take the largest ermor in the measurement of rand of & Therefore
we take dr = 0.1 and g = 0.1 along with r = 10, i = 25. This pives

500 100
=——-I(0.1} + —— 0.1} =20
3 ) 3 {0.1) r
Thus the maximum error in the calculated volume is about 207 cm’® = 63 cm®. (|
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FUMCTIONS OF THREE OR MORE YARIABLES

Linesr approximations, differentiability, and differentials can be defined in 4 similar man-
nef for fonctions of more than two variables. A differentiable function is defined by an
expressicn similar to the one in Definition 7. For such functions the linear approximation
is

Flxw b= fla b.c} + fla b.elx —ay + fla, b.ooiy — 8y + fla bz — )

and the linegrization L{x, ¥, z) is the right side of this expression.
[f e = FUx, ¥ z). then the Increment of w is

Aw=Fix + Ax. ¥+ Av.z + Az) — fix v z)

The differential dw is defined in terms of the differentials dx, dy, and d- of the independ-
ent variables by

e dw e
dw="—dr+—dy + —dz
X iy dz

EXAMPLE & The dimensions of a rectangular box are measured to be 75 cm, 60 cm,
and 40 cm. and each measurement is comect to within 0.2 cm. Use differentials o esti-
mate the largest possibie ervor when the volume of the box is calculated from thess
MEESLTements.

soLlTieh IT the dimensions of the box are x, ¥, and =, its volume is ¥ = x¥z and 50

il iV AV
d’V=',—dx +r_—ﬂf_}' +——dz=yzix + xzdy + xydz
X i itz
We are piven that [Ax| = 0.2, | Av| = 0.2, and | Az | = 0.2, To find the largest erfor in
the volume, we therefore use dx = 0.2, dy = 0.2, and dz = 0.2 together with x = 75,
¥ = 6. and = = 4ik:

AV = dV = (60M40M0.2) + (T5H40MD2) + (T5H60ND2) = 1080

Thus an enror of ondy 0.2 cm in measuring each dimension could lead o an errof of as
much as 1980 cm® in the calculaied volume! This may seem like a larpe error, but it's
only aboul 1% of the volume of the box. |

THE CHAIN RULE

Then z iz a differentiable function of ¢ and

gz dx i dy
@ ox di | ay di

[Z] THE CHAIN RULE {CASE I} Suppose thatz = f{x, ¥} is a differentiable func-
tion of x and y. where 1 = gif) and ¥ = h{f} are both differentiable functions of £

EXAMPLE | If z = x*v 4 3xv*. where ¥ = 5in 2f and ¥ = cos {, find dz/df when [ = (.
WLUTioN. The Chain Rule pives

d= dz dx iz dy
— = e
it ix df iy i

= (Zry + 3 W2 cos 26) + (27 + 1209% W —sin )

It’s not pecessary to substilute the expressions for 1 and v in terms of (. We simply
obsarve that when ¢ = 0, we have x = 8in 0 = 0 and ¥ = co5 0 = L. Therefore

iz | . . :
= {0 + 32 cos ) + {0 + ON—sin() =6 O
Fr /o P
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e e L EXAMPLE 2 The pressure P (in Kilopascals). volume V-iin liters). and temperature T
{in Kelvins) of a mole of an ideal gas are related by the eguation PY = 8317, Find the
rate at which the pressure is changing when the temperature is 300 K and increasing at a

FIGURE | : rate of (L1 K5 and the volume is 100 L and increasing at a rate of 0.2 Lfs.
The curve x = sin 24, ¥ = cos |
wnLuTioN IF ¢ represents the time elapsed in seconds, then at the given instant we have

=300 dT/dt = 0.1. V = 100, dV/dr = 0.3. Since

T
P=831—
v

the Chain Rule gives
dp _apdr  aPdv _ 831 dT _ 83IT aV
i ATt aV ot Voodi ¥ o4t

831 8.31(300)
=2 - 1
T 1007

{0.2) = —0.04155

The pressura is decreasing at a rate of about (.04 kPa/s. El

We now consider the situation where z = fix, ¥) but each of x and v iz a function of bwo
variables 5 and 1= x = g{s_1). ¥ = K5, 1). Then = is indirectly a fanction of s and § and we

wish to find 4z @5 and dz/08 Recall that in computing 4z /8 we hold 5 fived and compute
the ordinary derivative of - with respect to 1. Therefore we can apply Theorem 2 o obdain

Az o dzodx dz

+
il dax al iy il

A similar greament holds for az/as and 5o we have proved the following version of the
Chain Ruale.

[3] THE CHAIN RULE (CASE 2} Suppose that - = f(x. v) is a differantiable func-
tion of x and ¥, where 1 = g5, 1) and ¥ = fis, f) are differentiable fnctions of 5
and t. Then

iz fz ix dz v dz  az ax | Az oy

A5 AT odr Ay as Mo oax oA Ay M

EXAMPLE 3 H r = e%sin v, where v = &* and ¥ = 5%, find az/as and az/ .

SOLETION Applyving Casa 2 of the Chain Rule, we gal

iy X s Ay 5

iz iz ax iz Ay 2 T i
' L ED _ (esinmir?) + (eFcos yi2e)

= 1% sin(s) + Pate® cos(s)

(1) T ) iz )
— =+ —— = (Ffan V)2 + lefoos Vs
i ik i ay i ¢ :]( / 1 s

= Zste® sinls W) + 5% cos(s) |

Casze 2 of the Chain Rule contains theee tyvpes of variables: 5 and ! are independent
variables, ¥ and v are called intermediate variables, and - i5 the dependent variable.
Notice that Theorem 2 has one term for each intermediate variable and each of these terms
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e #—:/ \\E'“a
¥ ;-
l|'l ..'._I ! IIIl : .rr .I..I Illl.

FIGURE 3

FIGURE 4

[f] THE CHAIN RULE (GENERAL VERSION) Suppose that i is a differentiable func-
tion of the n varables x;, Xz, ... X, and each x; is a differentiable fuonction of the

fr variables i, f5, .. ., In. Then uis a function of 1y, &z, . ., . g and

dw Aw ATy AN R
LNy gt T T e B TR e e

il ax; ara ah - ixe

foreachi= 1.2, ..., m.

EJ EXAMPLE 4 Write out the Chain Rule for the case where w = fix. ¥, =, f) and
y=xlu. v}, ¥ =¥ 5), = oy, o). 80d | = Nu. v).

SOLUTHON 'We apply Theorem 4 with 1 = 4 and m = 2. Figure 3 shows the tree diagram.
Although we haven't written the derivatives on the branches, it's understood that if a
branch leads from ¥ to &, then the partial derivative for that branch is Jv/ 4. With the aid
of the tree diagram, we can now write the required expressions:

Bw _ bwdx  bw iy | w e

= —_———

g Ax dm v AW az A A dw
der der 0x o iy aw fdz e dt
—_—_———— e  — e — |

ihr X de i dw iz oo af
B EXAMPLE § If o = x% + v where © = rse!, ¥ = rf%e ', and = = rs5in 1, find the
value of dufdswhen r =2 s =1.r=10.
wituTion With the help of the tree diagram in Figure 4. we have

au iu ax ooy A iz

Bs @y Ay gy A5 | Az ax
= (i) + (2 + 2N 2rse ) + (B s
Whenr=2. 5=l andi =0, wehavex =2 v=2.and z =0, 50

:—: = {6432} + (16){4) + (OW0) = 192 [

M|

EXAMPLE & IFgis, ) = fis® — 1% — 57) and [ is differentiable, show that g satisfies
the equation

LA

s iff

Lo Let x =5 — 1* and ¥ = +* — 5% Then gls, f) = f(x.¥) and the Chain Rule
gives

] i X af 4y i) af

f_Um L AT gLy

a5 1 i iy aly X oy

b _FEAD_Fan+ L

g dx M  ay M ar iy
Therefora

il B T - & e
gl b (2-“‘.—f = E-H.d—f) cx (—lnf‘r + z.n,—‘r) =0 O
et Ty cex av) T\ T b iy

EXAMPLE 7 If z = fix, ¥) has contineous second-order partial derivatives and
Ir=r*+ and v = 2rs, find(a) az/ar and (h) #zfar,

{a) The Chain Rule gives

. - G o .
O A OO WIS T
[i1g X dir ay dr ix i
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() Applying the Product Rule to the expression in part (a), we getl
o i z ¥z
c_' : (Zrd— + "i'—)
it ar ix v

g g ;] +251(f‘:
ity i 3 O i\ @y

But, using the Chain Rule again {see Figure 5). we have

a
ar . . : 1
\ a [ iz iad [ az ) ax i fdz y dy iz i -
i) St Sl [ g g e =T (2) + - 135}
; \J ar \ ax ax Vaxtar o o \axSar ax i

]

I Y s
v / h i ( =) _ B fa)ox 4 ( az\ iy a: it
E Ak A ar iy ax Vv J o ocay Vav ) ar dix sh i? "
FIGURE 5 Putting these expressions into Equation 5 and using the aquality of the mixed second-
order derivatives, we obiain
iz iz kg iz i
_,=IJ_ +2r2rr‘+25ﬁt + 5{% 2
afre X ax* iy dx . AT ay
dz i i T 2 s
=1—+4r'f—,+8r7 — + 5 —
. dx Axdv iy

IMPLICIT DIFFEREMTIATION

The Chain Rule can be used to pive 2 more complele description of the procass of implicit
differentiation thal was introduced in Sections 3.5 and 14.3. We suppose thal an equa-
tiop of the form Flx, ¥) = 0 defines ¥ implicitly as a differentiable function of x. that is,
¥ = flx}, where Fix. f(x)) = 0 for all x in the domain of f. If F iz differentizble. we can
apply Case | of the Chain Bule to differentiate hoth sides of the equation Fix, ¥) = 0 with
respect 1o x. Since both x and v are functions of x. we obtain

iF

S

[2] dx ~ #F  F
ity

To derive this equation we assumed that Fix. v) = 0 defines v implicitly as a function
of x. The Implicit Function Theorem, proved in advanced calculus, gives conditions
under which this assumption is valid; It states that if F is defined on a disk containing
(a2, &), where Fig. b} = 0, F{a. B # 0, and F; and £, are continuous on the disk, then the
aquation Fix, ¥) = (1 defines v as a function of x pear the paint (4. 5) and the derivative of
this function is given by Equation 6.

EXAMPLE B Find v if x* + ¥° = 6w,

WLUTioN The given equation can be written as
Flxyl=x'+y'— 6oy =

s Equation & gives

Prepared by U.R.Ramakrishnan, Department of Mathematics, KAHE Page 24/30



UNIT-I

Functions of several variables 2016-Batch

= The schution to Example B showid be
compered fo the ohe m Example ¥ in
Sectan 15

® The sadution o Bample ¥ should be
pompaned to the ane in Exsmple 4 in
Baction 4.3

dv Fri— 3 =6y - i3y -

dx Fy K ' yi-2x

Mow we supposa that = is given implicitly as a function z = fix. ¥} by an equation of
the form Fix, ¥, z} = 0. This means that F{x. ¥, flx. ¥)) = 0 for all {x.¥) in the domain
of £ If F and f are differentiable, then we can use the Chain Bule to differentiate the equa-
tion Fix, ¥, z) = 0 as follows:

AF dz

af dx

ax dx L iz dx

aF iy

i
But —i(m=1 ad —(y=0
ax @x

50 this equation becomes

dF _ aF ‘3z
i =
ix iz X

If aFf iz # 0. we solve for dz/ax and obiain the first formula in Eguations 7. The formula
for Az v is obtained in a similar manner,

aF dF

£ = -:'I‘II r:"z S :'.l_'lu‘-
ax af i i

iz iz

Apain, a version of the Implicit Function Theorem gives conditicns under which
our assumption is valid: If F is defined within a sphere containing (a, b, ¢), where
Fla. b, c) = 0. Fla, b, c) # 0, and F, F,, and F_ are continuous inside the sphere. then the
equation Fix, ¥, zy = 0 defines = as a function of ¥ and v near the point {a. &, ¢} and this
function is differantiable, with partial derivatives given by (7).

iz itz X 1
EXAMPLE ¢ Find —and —if x* + y* + 2 + 63y = 1.
ax ¥

sauiTion Let F{x, v, ) = x° + »¥'+ 22 4 6xyz — 1. Then, from Equations 7, we have

Bz Fa i I
ir F. 3= + 6xy =4+ Ixy
gz - Fy . I +BEE . Y AT
i E 32" 4+ By = 4+ Txy

DHRECTIOMNAL DERIVATIVES

[Z] permimion  The directional derivative of § at (x.. v in the direction of a
unit veclor u = {a, b) is

fixe + ha. v + BB — fixo, ¥o)
h

D flxa. Yo = lm‘s

if this limil exists.
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[3] THEOREM IFf f is a differentisble fanction of x and ¥, then F has a directional
derivative in the direction of any unit vector m = {a. &) and

Do flx, ¥y =Llx.¥la + flr. ¥)b

PRAOE If we define a fenction g of the single variable & by
glh) = fixa + ha, vo + kb)

then, by the definition of a derivative. we have

i glh) — g0} _ o Slxa+ ha s + hB) — Flxa. ¥a)
W - P
= D (x5, Ya)

On the other hand, we can write gth) = fix, ¥), where x = Xo + ha, ¥ = ¥ + hb.so the
Chain Rule (Theoreny [4.5.2) gives
df dx i dy

+——=flxvla + fixvb

9 = v dh

If we now put b = 0. then x = x5, ¥ = ¥, and
Hi g'(0) = felxa, yu)a + filxn, %ol b
Comparing Equations 4-and 5. we see that
Dufixo. %) = filXe. Yol a + flXo. Yo ) b o

If the unit vector m makes an angle § with the positive x-axis (as in Figure 2}. then we
can write w = {cos A, sin @) and the formula in Theorem 3 becomes

[#] Dy fix, ¥} =fidx. ) cos 8 + filx ¥) sing
EXAMPLE 1 Find the directional derivative I3, fi{x, ¥) if

fAxvi=x1 -3+ 4°
and w is the unil vector given by angle § = =6, What is Dy (1, 217

& Thedirectional demvative O, (L, 2} §oeuToN Formula 6 gives
Example ¥ represents the rate of change of z in
tha direction of . This iz the slopa of the tan
gent line fo the curve of intersection of the
saifaca z = 1% — Sxy + dy? and the vertical
plere through (1, 2, 0= the dinection of u _ a3 _ i
eiow in Figure & = {x* - 3_‘-‘]'T +(=3x + &3

Dy fx, v) = filx, ¥) cos % + felx. ¥} gin b—_r

ralt

=1 A -3+ (8- 3.3
Therefore

— . — F85 0T
D1, 2y = H3J30F - 300 + (8 — 373K = $

R R Ll = T R e
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THE GRADIENT VECTOR

e The gradient vector ¥/(2, — 1} in Bxempls 4
7= shown in Figure B with initwal
Bl=y shown is the vector ¥ that gives the dinsc-
ticn of the directional dermative. Bath of these
wechoes ane sspenimposed ona cootour plot of

the graph of f

'.I LR \k"-.

paint (2. — 1%

:f—--f-' wriz.—1 ; 3
x_ !

S — -:1.:—1: g
Q\\ Ve
\k.uﬁl .'rf-.-’%/’j

FIGURE &

DEFIMITION I 7 is a function of two variables x and ¥, then the pradient of |
is the vector function ¥V defined by

Vite v = {fln oy Flx ¥y = "f mj

EXAMPLE 3 If flx, ¥} = sin x + &%, then

Vir ¥ = {fr. k) = (cosx + ve™F ™)
and V0, 1) = (2.0} 1

With this notation for the gradient veclor, we can rewrite the expression (7) for the
directional derivalive as

[®] Dol y) = Vix v +u

This expresses the directional derivative in the direction of u as the scalar projection of the
gradient vector onto o.

I EXAMPLE 4 Find Lhe directional derivative of the function f{x, ¥} = x%% — 4v at the
puoint {2, —1) in the direction of the vector v = 21 + 5].
L00ITinN We first compute the sradient vector at (2. — 1)
Vil v = 2yl + (3 — 43§
VA2, -1 = —41 + &)

Note thal ¥ is ot 4 unit vector, but since |v| = /29 the unil vector in the direction
of ¥ is

¥ 2 3

d=—=——i+—}
¥| /29 w29

Therefore, by Equation @, we have

=)

D fi2. —1} =%F2, —1) - u=(—4i+ 8]} ( ‘E—

FUMCTIONS OF THREE YARIABLES

DEFINITION The directional derivative of f al (1. ¥o. 7o) in the direction of a
unit vectoru = {a. b, o} is

Flxy + ha, ¥y + bz + he) — flx,. ¥y 70}
k

Dy (X, ¥y, 2a) = glil'é

if this limit exists.

Jlx, + hay — lx,)
i

D, i) = ii_r_rlll
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For a function J of three variables, the gradient vector, denoted by V. or grad f, is
Vilx v, 2= {flx o) flx y, 2, flx v.o2))

of. for short,

. o, &
LU T £

i i iz

L] Vi={hntid =

Then, jost as with functions of two variables, Formuta 12 for the directional derivative can
e rewritten as

[ Dafixy, o) =Vfix.y.z)-m

EJ EXAMPLE 5 If fix v, z) = xsinyz, (a) find the gradient of f and (b} find the direc-
tional derivative of f at (1, 3. 0) in the directionof ¥ =1 + 2§ — k.

SOLUTION

fa) The gradient of Fis
VLY. 2) = (flx ¥, 2 Bl Y, o), fhx 7, 20
= {5in Yz, Xz.008 ¥z, XV CO5 ¥z}

(b At (L. 3. 0} we have V{1, 3.0} = {0.0.3). The unit vector in the direction of
vy=1T+2i—Kis

o= —-! i+ —,--2 J —--l k
B JB B
Therafore Equation 14 sives

Defi{1,3.0) = VF(1.3.0) + m

¥ o EXAMPLE &
24 2 L, WA %, Ny x - i . r ]
P e T oy {2y If fix. v} = xe? find the cate of change of f at the point 2, 0) in the direction from
l H\ i\”}: —— Pog(l2).
o (b} In what direction does § have the maximum rate of change? What is this maximum

T \\ X\\::k‘:gh" rate of change?

SOLUTEDN

gy L
3 :\“‘e{ — (a) ‘We first compute the gradient vector:
1 S
YA ¥y = {f. k) = {e¥,xeF)
RREURED V(2,00 = {1,2)
o Az {2, 0) the Function in Bxamgpia b increases i .
festest in the direction of the gradient vactor The unit vector in the direction of PO = {—15,2) ism= {— 3 ;_}. so the rate of change

VL0 = (1, 2) Motice Fom Figure 1that of £ in the direction from £ o (0 is

thiz vector appears 1o be papendicuder to the

tevel curve through (2, 0). Figure B shows tha 1 T ' P e a2 &Y

greph of f end the gradient vector. D.A12.0) 'F'_.,I"I_Z-_ 0) Il (1,2) - (=% B
=1{-2} + 2%} =1

——
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{by According o Theorem L[5, f increases fastest in the direction of the gradient vector
V{2, 0) = {1, 2}. The maximum rate of change is

IFAZ.00 =] (1.2} =45 O

EXAMPLE 7 Suppose that the temperature at a point (x; ¥, z) in space is piven by
Tix v.zh =80/ + x* + 23" + 32%), where T is measured in degrees Celsius and
X. ¥, = in meters. In which direction does the temperature increase fastest at the point
FIGURE 8 (1, I, —2)? What is the maximum rate of increase?

wLuTion The gradient of T is

ar . .aT T

YT = —I E R —j + —]'I
fisy iy iz
B 160x My i 480 K
I R e Tk (F + x%+ 29" + 3% (1 +x%+ 2" + 3%
[60

_ l — f — T
iR L aaEE - =%k

At the point {1, 1, —2) the gradient vector is
VI, 1, —2) =38(—i— 2 + 6K} =3(—i — 2j + ok)

By Theorem 15 the temperature increases fastest in the direction of the: pradient vector
WT(1.1. —2) =%{—1— 2] + 6K) or. equivalently, in the direction of —1 — 2J + 6k or
the unit vector (—1 — 2§ + 6k} 31, The maximum rate of increase is the length of the
oradient veclos:

VI 1L —2) | =3 —1—2) + 6k| =131

Therefore the maximum rate of increase of temperature is %x.-'dl = 4%C/m. (|
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Possible Questions
PART-B (2 Mark)

1. What is Chain Rule.
2. Define Maximum Principle.
3. Define Limit of a function of three variable.
4. Write the Difference between total and partial derivative.
5. If f(x,y)=x"+x7y’=2y*,find f.(1,2)and f,1,2).
6. Define Laplace equation.
7. Caleulate f, . if f(x,y,z)=sin(3x+yz).
PART-C (8 Mark)

2

1LFind lim —2_ ifit exist.

(x.2)=>(0.0) x* 4 3

2. Find the directional derivative of the function f(x, ) = x*y’ —4y at the point
(2,—1) in the direction of the vector v=2{ +5; .

3.Find Z—Z and 2—2 if zis implicitly as a function of x and y by the equation
x y

X+ +2 +6xyz=1.
4.1f f(x,y,z)=xsin yz, (a) find the gradient of f and (b) find the directional
derivative of fat (1,3,0)in the direction of v=17 +2; — k.
5. Show that f(x,y)=xe" is differentiable at (1,0) and find its Linearization and use
it toapproximate f(1.1,-0.1).
6. suppose that the temperature at the point (x, y,z) in space is given by
T(x,y,z)= 5 80 > —, where T is measured degree celsiusand x, y, z in
(I+x"+2y°+3z7)
meters. In which direction does the temperature increases fastest at the point
(1,1,—2) .What is the maximum rate of increases.

2

T f(x,p)=—2— does lim f(x,y)exist?

x4+t (£,)(0,0)

8.If g(s,t)= f(s*—t*,t* —s*)and f is differentiable, show that g satisfies the

equation ta—g+sa—g= 0.

os ot
9. Find the second partial derivatives of f(x,y)= sin(%} .
Ty

10. If z = f(x, y) has continuous partial second order derivative and x =7 +s”and

2
y=2rs, find o and 6—?
or or
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Question
Every codomain element has a preimage then f(x,y)
is
Relation is a subset of
If z= f(x, y) then the variable x and y are
Differentiation of sinhx =
If the partial derivatives are continuous then
In a polar coordinate r denotesa
The Clairaut’s theorem is
continuous.

if partial derivatives are

lim g (sinx / x) =

The equation U, +U,,=0 is called

The Linearization process gives

The notation YV F is denoted by

The equation 5x+3 =0 is gives

If z= f(x, y) then zis

cosh’x - sinh’x =

The element of R*R*R is

The Level curve of f{x, y) is

In a polar coordinates 0 denotesa

If Uy, + Uy, =0 then U is Called

The Level curve of f(x, y, z) is

The curve of a function f(x, y, z) = k is called

The range of f{x) = 2x for every x in N is

Iffix, y) =L, and f(x, y) = L, as (x, y)—(a ,b) along C, and C,

thenf has

From the below the functions of two variableis

(FxG) ()=

Yx(Vf)=

Vx (fA) is equal to

¥ (") is equal to

The divergence theorem enables to convert a surface integral

on a closed surface into a ------

If A is solenoidal , then

If ris position vector , then ¥xr=

If f=4xityj-2k then V.f=?

The function f'is said to satisfify the laplace equation if

Ifu, v and w are vectors in R thenu x (v+ w) =

F+G) ()=

F-G)n=

FxG) (=

a0

F.G@®=

The square of the time of one complete revolution of a planet

about its orbit is proportional to the cube of the length of the
of its orbit.

lim [ F(t) + G(t) ] =

lim [ F(t) - G(t) ] =

lim [ F(t) . G(t) ] =

lim [ F(t) x G(t) ] =

A vector function F(t) is said to be

domain of F

lim F(t) + lim G(t) =

sinh(2x) =

cosh’ +sinh’x =

differentiation of sinhx =

cosh’x - sinh’x =

The slope of a graph ___ on an interval where the graph is

concave up

variable .

at tif't is in the

If the curve y = x" has no atx=0

The slope of a graph __ on an interval where the graph is
concave down

The graph of the function f is concave up on any open interval I
where

The graph of the function f is concave down on any open interval
1 where

A point P(¢,f(c))onacurve is called

sinh(-x) =
coshx coshy + sinhx sinhy =
differentiation of y = In ( sinhx)

lim _ (sinx / x) =

lim o ((3x - sinx) / x) =

[lim F(t)] [ lim G(t)] =

__ ofthe projectile is v sino/g
__ ofthe projectile is 2vsino/g
F(t) . G(t) =

F(t) x G(t) =

F(t) - G(t) =

F(t) + G(t) =

F.G)' (@)=

(FxG)'(t)=

Option-1
Bijective
Function
Independent
(- coshx)

FxyFyx

distance

FxyFyx

0

Laplace

Second degree to linear
Function
Straight line
Dependent

1

(1,2)

X

distance

Laplace
fix,y,z2)=1
Identity function
2Z

Limit for L, L,

fix, y, z)
F(t) - G(t)

1
(N.fH.A+RN.A)

mr™!

line integral
div A=0

3

1

v
(uxv)+(uxw)
F(t) - G(t)
F(t) - G(t)
F(t) - G(t)
FOF

F(t) - G(t)

minor axis

lim F(t) - G(t)
lim F(t) - G(t)
lim F(t) - lim G(t)
lim F(t) - lim G(t)

bounded

lim [ F(t) + G(t) ]
2sinhxcoshx
tanhx

(- coshx)

1

behind
hyperbolic

increases
f'(x) >0

f'(x) >0

hyperbolic

(- coshx)

cosh(x +y)

sinhx

0

0

lim [ F(t) + G(t) ]
speed

speed

(F+G) (1)

(F+G) (1)

(F+G) (1)

(F+G) (1)

(F.G)® - (F.G))
(F'x G)(t) +(FxG')(1)

UNIT-I

Option-2
1-1

1-1 function
Dependent
sinh2x

Fxy = Fyx
area

FxFy

-1

Heat

Linear to linear
Divergence
Circle
Independent

0

an

2x

area

Circle
fix,y,2z) =x
Identity function
2R

a Limit for L, L,

z=f(x)

F(t) + G(t)

0

(Nx f).A+fiNxA)
me P2

volume integral
curl A =0

2

0

vf

wvtuw

F(t) + G(t)

F(t) + G(t)

F(t) + G(t)
FOF()

F(t) + G(t)

semi major axis

lim F(t) - lim G(t)

lim F(t) - lim G(t)

[lim F(t)] x [ lim G(t)]
[lim F(t)] x [ lim G(t)]

continuous

lim [ F(t) x G(t) ]
sinhx + coshx
cosh2x

sinh2x

0

increases
inflection point

Zero
fix) <1

f'(x) <1
inflection point
sinh2x

sin(x - y)
cothx

Q]

-1

lim [ F(t) x G(t) ]
Range

Range
(F-G)(®)
(F-G)(®)
(F-G)(®)
F-G)(®)
F(t). G(t)
F'(t) x G'(t)

PART-A Multiple Choice Questions (Each Question Carries One Mark)

Subject Code: 16MMU303

Option-3 Option-4
Onto Reflexive
Bijective Cartesian product
Image Function
coshx (-sinhx)
Fx=Fy FxFy
angle radius
Fx=Fy Fxy = Fyx
1 2
Wave Function

Second degree to second
Curl

Parabola
Image

cosh2x

(x, )

X2

angle

Heat equation
fix,y,z) = xty
Level curves
2N

a Limit for L, =L,

y=1x)
F(t) x G(1)
2

N .fxA+fx(N.A)
m(m+1) I™

surface integral
|A]=0
1

3

vt

uv +(u +w)
F(t) x G(t)
F(t) x G(t)
F(t) x G(t)
10

F(t) x G(t)

major axis

[lim F(t)] [ lim G(t)]
[lim F(6)] [ lim G(t)]
lim F(t) + lim G(t)
lim F(t) + lim G(t)

differentiable
lim [ F(t) . G(©) ]
coshxcoshx

1

coshx

cosh2x

zero
concavity

decreases
f'(x) <0

f'(x) <0
concavity
coshx
cosh(x-y)
tanhx

1

1

lim [ F(t) . G() ]
Distance
Distance
(FxG) (1)
(FxG) (1)
(FxG) (1)
(FxG) (1)
F'G'(t)

Fx G'(t)

Linear to second degree
Gradient

Elliptic

Isolated

sinh2x

(X, y,2)

15

radius

Harmonic

fix,y, z) = xty+z
1-1

N

Continuous for L1 = L2

z=1(xy)
F(t) / G(t
-1
(Nf) x A+ fiN x A)
(m+1) m ™"

None

div (curlA) =0
0
2
vt
ut+w
F(t) / G(t)
F(t) / G(t)
F(t) / G(t)
F(t)
F(t) . G(t)

semi minor axis

lim F(t) + lim G(t)
lim F(t) + lim G(t)
[lim F(t)] [ lim G(t)]
[lim F(t)] [ lim G(t)]

derivative

lim [ F(t) - G(1) ]
sinhxcoshx
sinh2x

(-sinhx)

sinh2x

decreases
saddle point

behind
f(x)=0

f'(x)=0
saddle point
(- sinhx)
sinh (x+y)
coshx

2

2

lim [ F(t) - G(t) ]
Time of flight

Time of flight
F.G)©®

F.G)©®

F.G)©®

F.G)@®

(F.G)® +(F.G)D
(F.G)(® +(F.G)D

Answer
Bijective
Cartesian product
Independent
coshx
Fxy = Fyx
radius
Fxy = Fyx
1
Laplace
Second degree to linear
Gradient
Straight line
Dependent
1
(%, 2)
15
angle
Harmonic
fx,y,2) = 1
Level curves
2N

a Limit for L, =L,

z=1(xy)
F(t) x G(1)
0

(Nx f).A+fiNxA)
m(m+1) 1™

volume integral
div A=0

0

3

v
(uxv)+(uxw)
F(t) + G(t)

F(t) - G(t)

F(t) x G(t)
FOF)

F(t) . G(t)

semi major axis

lim F(t) + lim G(t)

lim F(t) - lim G(t)

[lim F(t)] [ lim G(t)]
[lim F(t)] x [ lim G(t)]

continuous

lim [ F(t) + G(t) ]
2sinhxcoshx
cosh2x

coshx

1

increases
inflection point

decreases
f'(x) >0

f'(x) <0
inflection point
(- sinhx)
cosh(x +y)
cothx

1

2

lim [ F(t) . G() ]
Range

Time of flight
F.G)@®

FxG)(®)

F-G)(®)

(F+G) (1)

(F.G)® +(F.G)D
(F'x G)(t) +(FxG')(1)



Iff:A—B hence fis calleda .................

If the function fis otherwise called as ........................
f.

f.

The value of the function f for a and is denoted by

The element a may be referred to as the ....................... of fla)
The ...cooevvnnnne of a function as the image of its domain

The range of a function as the................ of its domain

The range of a function as the image of'its ...
Let f'be a mapping of A to B,Each element of Ahasa .............
and each element in B need not be appear as the image of an
element in A.

function
limit
domain
domain

a(f)
B-image
f-image
domain

range
co domain

unique preimage

form
mapping
co domain
co domain

fta)
a-image
pre-image
range

domain
image

unique image

formula
lopping
set
set

A-image

domain
co domain
image
domain

unique zero

fuzzy

inverse
element
element

f-image

codomain
image
preimage
range

unique range

function
mapping
domain

co domain

f(a)
f-image
pre-image
range

image
domain

unique image
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UNIT-1I Extrema of functions of two variables 2016-Batch

TAMGEMT PLAMNES TO LEVEL SURFACES

M Felxo, ¥o. zo)(x — Xo) + Fylxo, Yo, 2ol ¥ — Yo} + Flxn, Yo, allz — ) =0

The normal line to § at P is the line passing through P and perpendicular to the tan-
pent plane. The direction of the normal line is therefore given by the gradient vector
VF{Xa, Yo 7o) and 50, by Equation 13.5.3, its symmetric equations are

I — X ¥— Yo r—zm
—_

Filxo. ¥o, m) = Fyl . ¥, ) = F.{xo, ¥u, z0)

i EXAMPLE 8 Find the equations of the tangent plane and normal line at the point
(—2, 1, —3) o the ellipsoid

'—+1.-3+:—:=3.
4 - 9

soLimiek The ellipsoid is the level surface (with k = 3) of the function

2 -1

x
Fryzl=—+y+—
(ry.) =5+ + 2

1 Figura 10 shows the ellipsaid, tangent plane,

and ncemel fime in Example 8 Therefore we have

. X 2z
— Fix,y.2) == Fylx,y.2) = Flxy.) =5
4
27 HHEH Fr(-2,1,-3) = -1 FR(-2,1,-3) =12 F-2,1,-3)=—3
| =
. Then Equation 19 gives the equation of the tangent plane at (—2, 1, —3} as
4 ' - —Hx+ D +2Ay -1 —3:=+3N=0
]
which simplifies to3x — 6V + 2z + 1B=1D.
?h____ﬁ,_.a_m-;- By Equation 20, symmetric equations of the normal line are
T, -2
e : T+ 2 . ¥—1 =43
FIGURE 10 =1 - = - I

MAXIMUM AND MINIMUM VALUES

absolute minimum.

O

Look at the hills and valleys in the graph of £ shown in Figure 1. There are two points
(@, &) where f has a focal maximam, that is, where (g, b) is lareer than nearby values of
flx, ¥). The larger of these two values is the absolute marimum. Likewise, [ has two local
minima, where f(a. b) is smaller than nearby values. The smaller of these two values is the

ahsolute Wt e [M pEFMITION A function of twoe variables has a local maximum at (aq, &) if
minimum Flx, v) == fla, b) when (x. ¥) is near (g, ). [This means that f(x. ¥} = fla. b) for
all points (x, ¥) in some disk with center (g, b).] The number f(z. #) is called a
local maximum value. I f{x. v) = fla, #) when (x, v} is near (q, 5), then f has a
local minimum at (@, &) and g, &) is a local minimum value.

FIGURE 1

Prepared by U.R.Ramakrishnan, Department of Mathematics, KAHE Page 2/14



UNIT-1I Extrema of functions of two variables 2016-Batch

= Motice that the conclusion of Theorem  can [I] THeEoREM If f has a local maximum or minimum at (z, ) and the first-order
Egﬁﬂd;m;ﬂiﬂmﬂ of gradient vectors partial derivatives of f exist there, then fi{a, b) = 0 and fiy{a, k) = 0.
a5 i, O} = K

PRODF Let g{x) = fix, b). I f has a local maximum (or minimum) at (. &), then g has a
local maximum (or minimum) at @, so g'{a} = 0 by Fermat's Theorem (see Theorem 4.1.4).
But g'{a) = fila, b) (see Equation 15.3.1) and so fi{a, &) = 0. Similarly, by applying

Fermat’s Theorem to the function G{¥) = fa. ¥}, we oblain fi{z. §) = 0. @

If we put fi{a, 6} = 0 and fi{a, 5) = 0 in the equation of a tangent plane (Equation
15.4.2), we get - = zq. Thus the geometric interpretation of Theorem 2 is that if the graph
of f has a tangent plane at a local maximum of minimum, then the tangant plane must be
horizontal.

A point (@, b} is called a critical polnt (or stafionary point) of fif fla, 8) =0 and
fla, B) = 0, or if one of these partial derivatives does not exist. Theorem 2 says that if f
has a local maximum or minimum at {a. &), then (a, #) is a critical point of f. However, as
in single-variable calculus, not all critical poinis give rise (0 maxima or minima. At a crit-
ical point, a function could have a local maximum or a local minimum or neither.

EXAMPLE 1 Let ‘I'-l:'_I__‘.?':I = xl + .1|'3 - Ix—- E‘..I'? + 14. Then
fxy)=2x—-1 Hxyn=2m-6

These partial derivatives are equal to 0 when x = | and ¥ = 3, so the only critical point
iz (1, 3). By completing the square, we find that

fAxyi=44+(x—-1F+(y- 3P

v Since(r — 1)* = Oand (y — 3)* = 0, we have fix, ¥) = 4 for all values of x and y.
Therefore f{1.3) = 4 is a local minimum, and in fact il is the absolule minimum

FIGURE 1 of f. This can be confirmed peometrically from the graph of £, which is the elliptic

=+ ¥ -r—6y+14 paraboloid with vertex (1. 3. 4) shown in Figure 2. O

EXAMPLE 1 Find the extreme values of fix, ¥) = v* — 2.

IOLTION Since f; = —2x and f; = 2y, the only critical point is (0, 0). Notice that

fior points on the y-axis we have ¥y = 0, 50 flx,v) = —x? = 0(if x # ). However, for
points on the y-axis we have x = 0, so fix, v} = ¥* = 0(if v # 0). Thus every disk

with center (0, 0) contains points where [ takes positive values as well as points where
f takes negative values. Therefore {0, 0) = 0 can’t be an extreme value for f, so f has
no extreme value. O

[3] SECOND DERIVATIVES TEST Suppose the second partial derivatives of f are
continuous on a disk with center (a, &), and suppose that f{a, b) = 0 and
JSla. by = O [that is, {a, b) is a critical point of f]. Let

D = D(a, b) = fula, b) fiyla, b) — [fiyla, BT
(a) If D = Dand f(a, 5) = 0, then fa. b) is a local minimum.
{by If £ = 0 and fi{a. ) =< 0, then g, &) is a local maximum.

{ch If I = O, then fla. b) is not a local maximum or minimuwm.

In case {c) the point (2. b) is called a saddle point of f and the graph of f
crosses its tangent plane at (a, b).
If I = 0, the test gives no information: f could have a local maximum or local
minimum at {a, &), or {a. &) could be a saddle point of f.

To remember the formula for 12, is helpful to write it as a determinant:

_f:.l: _’-I'l'

D=
S

= fufy — Uyl
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UNIT-1I Extrema of functions of two variables 2016-Batch

L4 EXAMPLE 3 Find the local maximum and minimum values and saddle points of
firyi=x*+y' -4+ L

SOLUTION We first locate the critical points:
L=4x— 4y =4 —4x
Setting these partial derivatives equal to 0, we obtain the equations

'—y=0  and yvi—x=0

To solve these equations we substitute ¥ = x° from the first equation into the second
one. This pives

O=x"—x=xx - D =x(x— Hx*+ D=x(x® — INx* + INx* + I}

s0 there are three real roots: x = 0, 1, —1. The three critical points are (0, 0), (1, 1),
and (—1, — 1)

F' Mext we calculate the second partial derivatives and D{x, v):
)

fin = 12x2 Soy=—4 fr=12¥"

DNx, ¥) = fus fry — U]:ﬂ: = 144x*y? — 16

Since XD, 00 = — 16 = 0, it follows from case (¢) of the Second Derivatives Test that
the origin is a saddle point; that is, 7 has no local maximum or minimem at (0, 0.
Since M1, 1) = 128 = 0 and f,(1, 1) = 12 > 0, we see from case (a) of the test that
FIGURE 4 11, I} = —1 is a local minimem. Similarly, we have D(—1. —1) = 128 = 0 and

2= 2t +y*— Ay +1 Je{—1,—1) = 12 = . 50 f(—1, —1}) = —1 is also a local minimum.

The graph of f is shown in Figure 4.

® A contowr map of the function f in Exempla 3
= shown in Figuee 5. The level curves near {1, 1)
and (— 1, — 1} ere oval in shape and indicate
that a= we move eway from (1, Hhor{—1, -1}
im any direction the values of J ans increasing.
The leval curves near {(, 0, an the other hand,
resamible hyparholas. They reveal that aswe
miowe @way from tha origin fwhere the value of
= 1}, the walues of [ decresse in some directions
bt increase inothar directions. Thas the contour
map suggests the presenca of the minima end
saddle point thet we found in Example 3.

FIGURE 5

L3 in Modula 157 you can =e contoer EXAMPLE 4 Find and classify the critical points of the function
maps to estmate the locatons of critcal

points. Flx.v) = 10x%y — 55 — dy? — x* — 2y*
Also find the highest point on the graph of 1.

SoLuTioN The first-order partial derivatives are

f. = 20xy — 10x — 4x° F= 10z — 8y — By?

50 to find the critical points we need to solve the equations
El| 2x{l0y —5— 2z =0
[E] Sxl—dy—4v*=0
From Equation 4 we see that either
=0 o Wy —5—2z=0

In the first case (x = 0). Equation 5 becomes —4y(1 + ¥*) = 0, so ¥ = 0 and we
have the critical point (0, 0).

Prepared by U.R.Ramakrishnan, Department of Mathematics, KAHE Page 4/14
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UNIT-1I Extrema of functions of two variables 2016-Batch

In the second case {10y — 5 — 2x* = 0], we get
[E] =3y — 15

and, putting this in Equation 3, we have 25v — 12.5 — 4y — 4% = 0. So we have in
solve the cubic equation

M ' — 2y + 125=0
Using a graphing calculator or computer to graph the function

/F_hk\\‘ /‘ gl¥) = 4% — 21y + 125

_3 -\"\-\_ _/
V N a5 in Figure 6, we see that Equation 7 has three real roots. By zooming in. we can find
)

the roots to four decimal places:

y = —25452 y = (.6468 y = | BOR4
FIGURE &

{Altermnatively, we could have usaed Newton's method or a rootfinder to locate these
roots. ) From Equation 6, the corresponding x-values are given by

X=+/5 — 25

If vy = —2.5452 then x has no comesponding real values. If ¥ = 0.6468, then

X = +=0E567. If vy = 1 BO84, then x = +2.6442 S0 we have a total of five critical
points, which are analyzed in the following chart. All quantities are rounded (o two
decimal places.

Critical point Value of f ] Conclusion

(i, 0] LR 10.00 S0,00 ool maximum
(=2.64, 1.90) 8.50 5593 248572 ool muximum
[ =0.86, 065) 148 5.87 147.64 saddle point

Figures 7 and B give two views of the graph of f and we see that the surface opens
downward. [This can also be seen from the expression for £(x, v): The dominant terms
are —x* — 2v* when | x| and | v| are large.] Comparing the values of f at its local maxi-
mum points, we see that the absolute maximum value of §is fi+=2.64, 1.90) = 8.50. In
other words, the highest points on the praph of f are { +2.64, 1.00, &.50).

XA Visual 15.7 shows several families
of surfaces. The surface In Figures 7 and B
Iz 3 member of one of these familes.

FIGURE 7 FIGURE &

= The fve critical points of the function [ in
Exemple 4 ere shown in red in the contour map
af f in Figura 1.

FIGURE 9
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KJ EXaMPLE 5 Find the shortest distance from the point (1, 0, —2) to the plane
x+ly+z=4.

soLuTiol The distance from any point (x, ¥. z) to the point (1, 0. —2) is

d=+/x—1F+¥y +(z+2F

but if (x, ¥, z) lies on the plane x + 2v + - = 4, then z = 4 — x — 2¥ and 50 we have
=4/(x — 1P + ¥ + {6 — x — 2¥)%. We can minimize d by minimizing the simpler
oy prassion

P =flry)=x—1F+y+(6—x— D
By solving the equations
F=Hx—1)-26—-x—2¥=4x+4y— 14 =0
=2y —H6—x—2)=4x+ 10y —24 =0
we find that the only critical point is (4, £). Since f. = 4, fry =4, and fiy = 10, we
have D(x. ¥) = fezfioy — I{J[};]: =24 = 0and fr = 0, 50 by the Second Derivatives Test f
has a local minimum at (£, 2). Intuitively, we can see that this local minimum is actually

an absolute minimum because there must be a point on the given plane that is closest to
(1.0, =2). fx=2and y =2, then

—dE— TP L+t —— R —JEF+ PR+ 5F =25
tzample & could alze be sobved wsing Vi D =z~ ‘rfj} ki {}} + & =E
thovE. Compare with the mathods of _
tion 135, The shortest distance from (1,0, —2) to the plane x + 2y + = = 4 i5 3-/6. O
L EXAMPLE & A rectangular box without a lid is to be made from 12 m* of cardboard.
Find the maximum volume of such a box.

e SOLUTHON Lot the length, width, and height of the box (in meters) be x, ¥, and z, as shown
— a--l'" in Figure 10. Then the volume of the box is
Bl |
| 1| V=1xyz
S = —r We can express V as a function of just two variables x and y by using the fact that the
T area of the four sides and the battom of the box is
FIGURE 10 M+ yr+axy=12

Solving this equation for z, we get z = (12 — xy)/[2(x + ¥)]. so the expression for V

becomes
i 12—xy 12xy—xy*
Xy 2x + .‘,} 2x + _\.!
We compute the partial derivatives:
av (12 — 2xy — x7) aV (12 — 2xy — %)
ax Hx + _v]lz dy 2Hx + |1.']Iz

If V is a maximum, then aV/dx = dVfay = 0, but x = Dor y = 0 gives V = 0, s0 we
must solve the equations

IE—Z.r_'.'—.3= 12—31}'—}'3=l]

These imply that x* = y” and so x = y. (Note that x and y must both be positive in this
problem. ) If we put x = v in either equation we get 12 — 3x* = 0, which gives x = 2,
y=2andz= (12 —-2-2)[2(2 + 2)]= 1.
We could use the Second Derivatives Test to show that this gives a local maximum

of V. or we could simply argue from the physical nature of this problem that there must
be an absolute maximum volume, which has to oceur at a critical point of V, so it must
occurwhenx =2, y=2 z=1Then V=22 - | = 4, so the maximum volume of
the box is 4 m*. m
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UNIT-1I Extrema of functions of two variables 2016-Batch

[8] EXTREME VALUE THEOREM FOR FUNCTIONS OF TWO VARIABLES If f is continu-
ous on a closed, bounded set D in R*, then f attains an absolute maximum value
flxi, v1) and an absolute minimum value f{x2, v2) at some points (x,, i) and

[x2, ¥a) in D).

To find the extreme values guaranteed by Theorem 8, we note that, by Theorem 2, if f
has an extreme value at (x;, ). then (x,, i) is either a critical point of f or a boundary
point of £2. Thus we have the following extension of the Closed Interval Method.

[#] To find the absolute maximum and minimum values of a continuous function
fon aclosed, bounded set D:

1. Find the values of f at the critical points of f in .
2. Find the extreme values of f on the boundary of D.

3. The largest of the values from steps | and 2 is the absolute maximum value;
the smallest of these values is the absolute minimum value.

EXAMPLE 7 Find the absolute maximum and minimum values of the function
fle,¥) =" — 2xy + 2yonthe rectangle D = {(x,¥) [0 = x =3, 0=y = 2},

SOLUTION Since f is a polynomial, it is continuous on the closed, bounded rectangle D,

50 Theorem 8 tells us there is both an absolute maximum and an absolute minimum.
According to step | in (9), we first find the critical points. These occur when

fi=2x—2y=0 fi==2x+2=0

so the only critical point is (1, 1), and the value of f there is f(1,1) = 1.
In step 2 we look at the values of f on the boundary of D). which consists of the four
¥ line segments L, Ls, L, L, shown in Figure 12. On L, we have y = () and

L 2.7)
K Sl 2o (3.2

L) |—
ﬂ.r,l]l=x: D=x=3

Ly

This is an increasing function of x, so its minimum value is (0, 0) = 0 and its maxi-
mum value is f(3,0) = 9. On L: we have x = 3 and

L0) L; (3.0 X

F3.y)=9—4y 0=y=2

URE 12

This is a decreasing function of y, so its maximum value is (3. 0) = 9 and its minimum
value is f(3,2) = 1. On L; we have y = 2 and

fixr.2)=x*—dx+ 4 0=x=3

o v L

By the methods of Chapter 4, or simply by observing that f(x, 2) = (x — 2), we see
that the minimum value of this function is f(2, 2) = 0 and the maximum value is
fl0, 2} = 4. Finally. on L, we have x = ) and

F0, ¥} =2y 0=y=2

with maximum value f{0, 2) = 4 and minimum value f{0, 0} = 0. Thus, on the bound-
ary. the minimum value of f is () and the maximum is 9.

In step 3 we compare these values with the value f(1, 1) = 1 at the critical point and
FIGURE 13 conclude that the absolute maximum value of £ on D is f(3, 0) = 9 and the absolute
fix, yy=x"—2xy+ 2y minimum value is fi0, 0) = fi(2, 2) = 0. Figure 13 shows the graph of f. |
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FROOF OF THEQREM 3, PART (A) We compute the second-order directional derivative of [ in
the direction of u = {h, k). The first-order derivative is given by Theorem 15.6.3:

Dof = fih + [k

Applying this theorem a second time, we have

2 p_ _49 ol
Dif = DulDaf) = 2= (Duf Dt + - (Du )k

= (foui + £ + (i + FonlD
HE ﬁuhi & ¥ Eﬁvhk + f_\._vkz {by Clairsut’s Theorem

If we complete the square in this expression, we obtain

Ty ki 4
D5f=ﬁu( +":_k) +F_'.rx..j;_v_.ﬂ;]

Jax Sz

We are given that fi.{a, b) > 0 and Dia, b) = 0. But fi, and D = fi, iy — fo} are con-
tinuous functions, so there is a disk B with center (a, b) and radius & = 0 such that
Sl x, ¥) = 0 and D(x, y) = 0 whenever (x, 1} is in B Therefurﬁ b}' lmhng at Equ:mnn
10, uemcmmﬂ-)"h 1]}ﬂwh£ e ' Chi

LAGRAMNGE MULTIPLIERS

In Example 6 in Section 15.7 we maximized a volume function V' = xyz subject to the
constraint 2xz + 2yz + xy = 12, which expressed the side condition that the surface area
was 12 m”. In this section we present Lagrange’s method for maximizing or minimizing
a general function f{x, y.z) subject to a constraint {or side condition) of the form
glx.v.z) =k

It's easier to explain the geometric basis of Lagrange’s method for functions of two
variables. So we start by trying 1o find the extreme values of f(x, v} subject to a constraint

fix.vi=1 of the form glx, v) = k. In other words, we seek the extreme values of flfr v) when the
flx..\‘]=|ﬂ' point (x, ¥) is resm:ts:d lD Ile on the level curve g(x. ¥} = k. Figure | shows |.h1'-'. curve
_qu ¥)= mge[hcr with sevars T ; 'M‘memm&ﬂ =‘¢L where .
L m1=
h fen=7
s '.%] < x =7
- _ d furth
e 'pmﬂni;mia.ﬂ'ﬁnm) Ammﬁimml
3 visual 15.8 animares Figure | for This kind of argument also applies to the problem of finding the extreme values of
both level curves and fevel surfaces. Sflx, v, z) subject to the constraint g(x, v, z) = k. Thus the point (x, v, z) is restricted to lie

on the level surface § with equation glx. y, z) = k. Instead of the level curves in Figure 1,
we consider the level surfaces f(x, y. z) = ¢ and argue that if the maximum value of f
is f{xy. ¥a, Za) = ¢, then the level surface f(x, v, z) = c is tangent to the level surface
glx, v, z) = k and so the corresponding gradient vectors are parallel.
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agrange multipliers are ramed after tha
sch-ltalian mathematician Joseph-Louis
range (1736-1813). See page 217 for a
yraphical sketch of Lagrange.

u In deriving Lagrange's method we assumed
that ¥g = 0. In each of our examples you can
chack that Vg # 0 at all points whare

glx, ¥. 2) = k. See Exercize 21 for what can
go wiong if Tg = 0.

This intuitive argument can be made precise as follows. Suppose that a function f has
an extreme value at a point P{xq, Y. Zo) on the surface § and let C be a curve with vector
equation r{f} = {x{t), viz). z(r}} that lies on § and passes through P. If 1, is the parameter
value comresponding to the point P, then rif) = {xo. vo. Zo}. The composite function
Iie) = flxlr), y(r), z(r)) represents the values that f takes on the curve C. Since f has an
extreme value at (xa, vo, Zo), it follows that i has an extreme value at fa, 50 i'{ra) = 0. But
if f 1s differentiable, we can use the Chain Rule to write

0= h'(ta)
= filxu, Yo Zo)x'(fa) + flxe. Yo, 2 W'{ta) + Fxa, Yoo za)z ()

= T)r[-‘-'u. M. Za) * ')

This shows that the gradient vector ¥f{xy., ¥y. zy) is orthogonal to the tangent vector r'(r,)
to every such curve C. But we already know from Section 15.6 that the gradient vector
of g, Vglxy, va, 2a), 1s also orthogonal to r'(#, ) for every such curve_ (See Equation 15.6.18.)
This means that the gradient vectors Vf{x,, vy, zp) and Vg(xy, vg. zo) must be parallel.
Therefore, if Vgixy, va. zo) # 0, there is a number A such that

(1] YV f(xo, ¥o. za) = A Vglxs, ¥o. 20}

The number A in Equation | is called a Lagrange multiplier. The procedure based on
Equation 1 is as follows.

METHOD OF LAGRANGE MULTIPLIERS To find the maximum and minimum values
of f(x. v, z) subject to the constraint g(x, v, z) = k [assuming that these extreme
values exist and Vg # 0 on the surface glx, v, 2z} = &:

(a) Find all values of x, v, z. and A such that
Vflx, y.2) = AVglx, y. 2)
and glxr,y.z) =k

(b) Evaluate f at all the points (x, v, z) that result from step (a). The largest of
these values is the maximum value of f; the smallest is the minimum value

of f.

If we write the vector equation Vf= A Vg in terms of its components, then the equa-
tions in step (a) become

fo= Ags fr=Agq f:= Ag: glx.y.z) =k

This is a system of four equations in the four unknowns x, v, z, and A, but it is not neces-
sary to find explicit values for A.

For functions of two variables the method of Lagrange multipliers is similar to the
method just descrnibed. To find the extreme values of fix. y) subject to the constraint
glx. ¥v) = k, we look for values of x, v, and A such that

Vi(x, y) = AVg(x. ¥ and glx.y) =k

This amounts to solving three equations in three unknowns:

fi=Ag: 5= Agy glx.yl =k

Owr first illostration of Lagrange’s method is to reconsider the problem given in

Example 6 in Section 15.7.
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i EXAMPLE | A rectangular box without a lid is to be made from 12 m® of cardboard.
Find the maximum volume of such a box.

WLUTION As in Example 6 in Section 15.7, we let x. v, and = be the length, width, and
height, respectively, of the box in meters. Then we wish to maximize
V=uxyz
subject to the constraint
gl v.z2)=2xz + 2yz + xy =12

Using the method of Lagrange multipliers, we look for values of x. y. z. and A such that
VV = A Vg and g(x, v, z) = 12. This gives the equations

V= Ag, V., = Ag, V. = Ag. 2xz + 2yz +xy=12
which become
[z] vr= A(2z + v)
3] xz=Al2z + x)
[3] xy = A(2x + 2v)
[5] 2xz + Zyz +xy = 12

There are no general rules for solving systems of equations. Sometimes some ingenuity
is required. In the present example you might notice that if we multply (2) by x, (3) by v,
and (4) by z, then the left sides of these equations will be identical. Doing this, we have

= Anather method fae sohving the system of (€] xyz = Al2xz + xy)
equations [2-5) s 1o solve each of Equations 2,
3, and 4 for 4 and then to equate the resulting | xyz = A(2yz + xy)
SAPraSSIONS.

xyz = A2xz + 2yz)

We observe that A # 0 because A = 0 would imply vz = xz = xy = 0 from (2), (3). and
(4) and this would contradict (5). Therefore, from (6) and (7), we have

2xz + xy = 2yz + xy

which gives xz = yz. But z # 0 (since z = 0 would give V = 0), so x = y. From (7) and
(8) we have
2yz + xy=2xz + 2yz

which gives 2xz = xy and so (since x # 0) y = 2z. If we now put x = y = 2z in (5),
we get
42 + 422 + 422 = 12

Since x. v, and = are all positive, we therefore have z = 1 and so x = 2 and y = 2. This
agrees with our answer in Section 15.7. ||

w In geometric tenms, Example 2 asks for the [ EXAMPLE 2 Find the extreme values of the function f{x, y) = x* + 2y* on the
highest and lowest points on the curve CinFig-  cipele x2 + vI = 1.
ure 2 that lies on the paraboloid =z = x° + 2y° )

and directly above the constraint cirele SOLUTION We are asked for the extreme values of f subject to the constraint
F+y=L glx, ¥) = x* + y* = 1. Using Lagrange multipliers, we solve the equations Vf= A Vg
- and g(x, y) = 1. which can be written as
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fe = Ag, fir=Ag glx. ¥) =
or as
|E| 2x = 2xA
4y = 2yA
| r+vi=1

From (9) we have x =0 or A = L. If x = 0, then (11) gives y = = 1. If A = 1, then
¥ = 0 from (10), so then (11) gives x = *=1. Therefore f has possible extreme values

FIGURE 1 at the points {0, 1), (0, —1). (1, 0). and (—1, 0). Evaluating f at these four points, we
find that

= The geamelry behird the use of Lagrange fo.1)=2 flo.-1) =12 fALO) =1 =L =1

multipliers in Example 2 is shown in Rgwe 3. i

The extreme values of Fix, vi = x* + 2y* Therefore the maximum value of f on the circle x* + y* = Lis f{0, £1) = 2 and the

correspond to the level curves that touch the minimum value is f{*1. 0) = 1. Checking with Figure 2. we see that these values look

cirde x* + y*=1. reasonable. |

EXAMPLE 3 Find the extreme values of f{x. v) = x* + 2y onthe disk x* + ¥y = L
SOLUTION  According to the procedure in (15.7.9), we compare the values of f at the crniti-
cal points with values at the points on the boundary. Since f; = 2x and f, = 4y, the only
critical point is (0, 0). We compare the value of f at that point with the extreme values
on the boundary from Example 2:

fi0,0) =0 flxL,00=1 flo, £1)=2

Therefore the maximum value of f on the disk x* + ¥* = 1is f(0, £1) = 2 and the
IGURE 3 minimum value is f(0, 0} = 0. |

EXAMPLE 4 Find the points on the sphere x* + y* + 2% = 4 that are closest to and
farthest from the point (3. 1, —1).

S0LUTION The distance from a point (x, v, z) to the point (3, 1, —1) is

d=Jx—32+ 112+ +IF
but the algebra is simpler if we instead maximize and minimize the square of the
distance:
S =fErd=c-N+ -+ E+1)

The constraint is that the point (x, y. z) lies on the sphere, that is,

glr, v, =x"+y'+7=4

According to the method of Lagrange multipliers, we solve Vf= A Vg, g = 4. This gives

i 2x — 3) = 2xA
E] 2y — 1) = 2yA
Az + 1) =2:4
H X2+y+t=

The simplest way to solve these equations is to solve for x, v, and = in terms of A from
(12}, (13), and (14), and then substitute these values into (15). From (12) we have

r—3i=xA or Ml —A)=3 ar r=—
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[Note that | — A # 0 because A = | is impossible from (12).] Similarly. (13) and (14)

give
1 e 1
S = G
» Figure 4 shows the sphere and the nearest Fheselwe, T (15}, we: By
paint P in Example 4. Can you see how to find 52 12 (—1)
the eoordinates of P without wsing caleubus? - + + =4
(1—Ay (1—-aF [(1-—-afF
which gives (1 — AP =4%.1 — A = =/11/2, 50
_ Y
e 3
= These values of A then give the corresponding points (x, . z):
x P ESS 6 2 2 7 6 2 2
/ ¢ —_ TR T an e S
¥ ¥ JIL ST 10 JITT 11 1T

3.1.-1) . ; :
It’s easy to see that f has a smaller value at the first of these points, so the closest point

FIGURE 4 is (6411, 2/411, —2//11 ) and the farthest is (—6/y11, =2//11, 2//11). B
TWO CONSTRAINTS

Suppose now that we want to hind the maximum and mummum values of a function
Sflx. y. z) subject to two constraints (side conditions) of the form glx, y.z) = & and
hix, v, z) = c. Geometnically, this means that we are looking for the extreme values of f
when (x, v, z) is restricted to lie on the curve of intersection C of the level surfaces
glx. v, z) = kand h(x, v, z) = c. (See Figure 5.) Suppose [ has such an extreme value at a
point P{xo. ¥o. Zo). We know from the beginning of this section that Vf is orthogonal o
at P. But we also know that Vg is orthogonal to glx. v, z) = k and Vh is orthogonal to
hix, v, z) = ¢, so Vg and Vh are both orthogonal to C. This means that the gradient vector
¥ f(xy, ¥a. 2y) is in the plane determined by Vglxq, ¥g. zy) and Vhl(xy, vy, zp). (We assume
FIGURE 5 that these gradient vectors are not zero and not parallel.) So there are numbers A and p

Vii(w, yo. zo) = A Vglxo. yo. z0) + o Vhixe, vo. z)

In this case Lagrange’s method is to look for extreme values by solving five equations in
the five unknowns x, v, z, A, and p. These equations are obtained by writing Equation 16
in terms of its components and using the constraint equations:

fo=Ag. + ph,

fi = Ag, + ph,

fr=Ag: + ph:
glx, vz =k

hix,v,z)=r¢

Prepared by U.R.Ramakrishnan, Department of Mathematics, KAHE Page 12/14



UNIT-II

Extrema of functions of two variables

2016-Batch

s The cylindar x* + ¥° = | mlersects the
plane x — v + = = 1 in an ellipse {Fgure 6L
Example 5 asks for the maximum value of §
when (x, ¥, £) is restricted to lie on the ellipse.

4

3 i

1 mam
S |

LI}

» i

HHHH
—2
-1 L] I
¥

FIGURE &

@ EXAMPLE 5 Find the maximum value of the function f{x, v,z) =x + 2y + 3z on the
curve of intersection of the plane x — v + z = 1 and the cylinder x* + y* = L

SOLUTION We maximize the function f(x, v, z) = x + 2y + 3z subject to the constraints
glx,y,z2)=x— v+ z= land hix, v, z) = x* + y* = |. The Lagrange condition is
V= AVg + p Vh, so we solve the equations

ERERE

(%]

II

|

-

+
12
'

3I=A
r—y+z=1
v =1
Putting A = 3 [from (19)] in (17), we get Zxpe = —2, so x = —1/p. Similarly, (18)

gives v = 5/(2p). Substitution in (21) then gives

and so p’ = e p= i\,@ﬁ_ﬂg. Then x = :zfﬁi, y= tS,."\,f?"}'. and, from (20),
:=1—x+y=1= 7/y29. The corresponding values of f are

2 5 7 s
T+ e | + 31 £ | =3+ /O
V29 V29 _ V29 ¥

Therefore the maximum value of f on the given curve is 3 + /29, B
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Possible Questions
PART-B (2Mark)

1. Define Vector Field.
2. What is Lagrange’s Multiplier.

3. Define Limit of a function f(x, y) ( lim (x°y’ —x’y* +3x+2y)

x,3)—>(1,2)
4. Find f, f, and fif f(x,y,z)=e"Inz.
5. Verify that the function u(x,¢) = sin(x —at) satisfies the wave equation.

Define Gradient of the function f.

What is Level curve.
PART-C (8 Mark)
1. Find the Local maximum, minimum and saddle point of

f,y)=x*+y* —dxp+1.
2. Find the maximum value of the function f(x,y,z)=x+2y+ 3z on the curve of

intersection of the plane x — y + z = 1 and the cylinder x° +y* =1.
3. Find and classify the critical points of the function
f(x,y)=10x"y=5x" —4y* —x* =2y*
4. Find the points on the sphere x” + y* +z* = 4 that are closest to farthest from the
point (3,1,-1).
5. Find the shortest distant form the point (1,0,—2) to the plane x+2y+z=4.
6. Find the Extreme value of the function f(x, y) = x> +2y” on the circle x*+y* =1.
7. A rectangular box without a lid is to be made from 12m? of cardboard. Find the
maximum value of the box.
8. Find the absolute maximum and minimum of the
function f'(x, ) = x* —2xy+2y on the rectangle D ={(x,y)/0<x<3,0< y<2}.
9. () Write about Local maximum, minimum and saddle point.
(i1) Find the local minimum and saddle point of the function
f(x,y)=x"+y>—2x—-6y+14
10. A rectangular box without a lid is to be made from 12m? of cardboard. Use
Lagrange multiplier method to Find the maximum value of the box.
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UNIT-II
Question Option-1 Option-2 Option-3 Option-4 Answer
The volume of rectangular box is V= x+y+z xyt+yz+xz Xyz (xyz)"2 Xyz
The equation U, :aZUxx is called Laplace Heat Quadratic Wave Laplace

In this equation ¥ f= % V¥ g,is called
The function fis Local minimum at (a, b) if

The function is

The value of [ [ (4-x-y) dx dy x,y in (0,1) is
If X and € are lagrange’s multiplier and then the equation is

Divergence of a function fis denoted by

The operator ¥ is called
The equation of circle is

If F, Fyy - (Fy,)*> 0 and F, > 0 then f{a, b) is

Euler multiplier
fix, y) < fla, b)
Local maximum
1

YF=1Vg

V.F

integral operator

(x-a)"+(x-b)’ =1’
Local minimum

Lagrange multiplier
fix, y)>fa, b)
absolute maximum
2

VE=(hte) Vg
V*F

Matrix operator
oy =1

Local maximum

Legendre multiplier
flx, y) > fla, b)
Local minimum

3

VF=(ke) Vg

VF
Differential operator
(xty, 2=

absolute maximum

Laplace multiplier
fix, y)<f(a, b)
absolute minimum
4

YE=LVg+eVh

(Y.V)F
Laplace operator
ey =7

absolute minimum

Lagrange multiplier
f(x, y) = f{a, b)
absolute maximum
3

YE=LVg+eVh

V.F

Differential operator
(x-a)"+(x-b)’ =1’
Local minimum

If f has a local maximum or minimum at (a, b) and the first order f, (a, b) =0 or f, (a, b)

partial derivatives of f exist then fi(a,b)=0 2o fi(a,b)=0 f,(a,b)=0andf (a,b)=0 f (a,b)=0andf (a,b)=0
Curl of fis denoted by V.F V*F VF v.Vvf V*F
If r is position vector , then ¥.r = 0 1 2 3 1
If Ais irrotational , then |A|=1 VXA =0 |A] =0 V.A=0 V.A=0
The divergence of the position vector r is 1 2 r 3 1
If r=xi+yj +zk , then V.(ar) is equal to a r 0 3a 0
Which of the following is a scalar function ? VA vf V(V.A VXA YA
Given that f=x"+y’ + 7, then ¥ fis 1 3 6 0 6
Ifi, jand k are the unit vectors along the coordinate axes , then
(i.i)is 0 1 p j 1
Ifx =a(0 - sinf) and y = a ( 1- cos0) is called a equation of
hyperbola parabola cycloid solid cycloid
The parametric equation of is x = acost and y = asint ellipse circle hyperbola parabola circle
The parametric equation of is x = acost and y = bsint hyperbola parabola ellipse circle ellipse
If x = sect and y = tan t the find dy/dx 1/tan t sect / tant tant / sect 1/sect sect / tant
The parametric equation of is x =asect and y =btant  hyperbola parabola ellipse circle hyperbola
If f (x) = x + sin x , then f'(x) = sin X — X €OS X 1+ cos x cos X 1-cos x 1+ cos x
The curve represented by the parametric equations x = " and y=
t is called ellipse semicubical parabola  hyperbola parabola semicubical parabola

The volume of the cylinder is
A function with a continuous first derivative is said to be smooth

base - height base x height 2(base + height) (base x height) /2 base x height

and its graph is called smooth curve length smooth plane smooth derivative smooth curve

If a right cylinder is generated by translating a region of area A

through a distance h, then h is called circumference base height length height

A function with a continuous first derivative is said to be length smooth derivative smooth smooth curve smooth

A piece of cone is called a frustum surface area radil frustum

(base circumference x slant height ) /2 = volume of cone lateral surface area volume of solid area of revolution lateral surface area
Volume of a right circular cylinder is 2 2nr2h 2nr nr2h nr2h

is a solid that generayte when a plane region is

translated along a line or axis that is perpendicular to the region  sphere right cylinder cone pyramid right cylinder
A right cylinder is a solid that generayte when a plane region is
translated along a line or axis that is to the region perpendicular bounded parallel linear perpendicular
The volume of a solid can be obtained by integrating the
from one end of the solid to the other . length height cross sectional area surface area cross sectional area

volume of a sphere is

is a solid enclosed by two concentric right circular

cylinders

volume of a cylindrical shell =
A is a surface that is generated by revolving a plane
curve about an axis thatb lies in the same plane as the curve.

4/3 mr3

right cylinder
2n

lateral surface area

1/2 mr2h

surface area
mr2

surface of revolution

mr2h

cylindrical shell
2mr2h

area of revolution

cross sectional area

4/3 3

cylindrical shell
2n

surface of revolution
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UNIT-III Double integration over rectangular region 2016-Batch

DOUBLE INTEGRALS OVER RECTANGLES

[5] DEFINITION The double integral of f over the rectangle R is
u Motice the similasity between Definition 5 o W oon
and the definition of a single intagral in '. fley)di= lim ¥ ¥ flx}, v¥) AA
Equation 2. b Lt T |
if this limit exists.
¥ (L2 i EXAMPLE | Estimate the volume of the solid that lies above the square
2 . »(2.2) R =[0,2] x [0, 2] and below the elliptic paraboloid z = 16 — x* — 2y Divide B
= - into four equal squares and choose the sample point to be the upper right comer of
i # each square Ry, Sketch the solid and the approximating rectangular boxes.
1 *(2.1)
(1.1) S0LUTION The squares are shown in Figure 6. The paraboloid is the graph of
Ry R fix, y) = 16 — x* — 2y* and the area of each square is 1. Approximating the volume
by the Riemann sum with m = n = 2, we have
a 1 ] X

V=73 3 flx.y) Ad

=1 j=1

= i1, 1)AA + f{1.2) AA + F(2. 1) AA + f(2. 2) AA

= 13(1) + 7(1) + 1O{1) + 4(1) = 34
i EXAMPLE 2 FR={(x.¥)| -1 = x = 1_—2 = y = 2}, evaluate the integral

SOLUTION It would be very difficult to evaluate this integral directly from Definition 5 but,
because /1 — x* = 0, we can compute the integral by interpreting it as a volume. If
z= 4/l — x* then x* + z* = | and z = (), so the given double integral represents the
volume of the solid § that lies below the circular cylinder x* + z* = | and shove the
rectangle R. (See Figure 9.) The volume of § is the area of a semicircle with radius |
times the length of the cylinder. Thus

[[vVIi=s da=imtip xa=2x =
FIGURE 9 &
MIDPOINT RULE FOR DOUBLE INTEGRAL3S
|| flx.y)dA = ¥ T (5. 5) AA
"" =1 j=1
where X 1s the midpoint of [xi-. x;] and y; is the midpoint of [y-.. %]
I EXAMPLE 3 Use the Midpoint Rule with m = n = 2 to estimate the value of the
integral ‘l'_l'k (x— 3 )dd, whee R={lx.¥)|0=x=21=y=2}
¥ S0LUTION In using the Midpoint Rule with m = n = 2, we evaluate f(x, ¥) = x — 3y” at
the centers of the four subrectangles shown in Figure 10, So ¥, = 1, T = i = 2, and
2 . (2.2 V= E The area of each subrectangle is AA = :. Thus
3 "Ry "Ry -
2l er,| omy “ (x—3)dA =3 ¥ FI%.7)AA
i | i 4 =1 j=1
! : =% ¥ AA + fl3. ¥ ) AA + f(X, i) AA + (5, 3:) AA
| |
. : — =f(1.9)a4 + (LD aa +r(d3)aa + 31 aa
1 2 x
—(-EhE+ R+ R+ (R
FIGURE 10 B
Thus we have U (r—3y')dd = —11.875 |
'k
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» Double intagrals bahave this way becausa
the double sums that define them behave
thiss wary.

_PROPERTIES OF DOUBLE INTEGRALS

We list here three properties of double integrals that can be proved in the same manner as
in Section 5.2. We assume that all of the integrals exist. Properties 7 and 8 are referred to
as the linearity of the integral.

@ [ L) + gl )] da = [[ 7x b ad + [ alx. ) da
" i 'y

U cflr.y)dA = c “.ff-’f- ¥hdA where ¢ is a constant
A Y

If fx, ¥) = glx, ¥) for all (x, ¥) in R, then

[ IJ fle.y)dA = JJ glx, v) dA
EXAMPLE | Ewvaluate the iterated integrals.
{a) 1.‘3 +‘3 xy dy dx ® [*[° xy drdy
Ja h Ji o

SOLUTION

(a) Regarding x as a constant, we obtain

[

y=1 3 3
I v ¥ 1-
+ xlydy= I:'t: 2 ] =Iz(_) i Iz(_) i) g_f:
i 2 | 2 2

Thus the function A in the preceding discussion is given by Alx) = i.‘rz in this example.
We now integrate this function of x from 0 to 3:

= Thaorem 4 is namead after the Italian mathe-
matician Guido Fubini {1879-=1343), who proved
a very general version of this theanem in 1907
But the version for continuows functions was
kncnwn to the Freach mathematician Augustin-
Louis Cauchy almost a century earlies

N
l l 2y dy dx
S0 JF1 o

I
L
F
= T3

et

LW
-

s
=

| —

B
o

{(b) Here we first integrate with respect to x:

P o | o a2 T
N [ P E

=0

] y: ¢ 2
= .ll Oy dy = 9? : —T

[#] FuBINI'S THEOREM If f is continuous on the rectangle
R={(x.y)|a=x=bc=y=d} then

Hf (x, ¥} dA = P '[Jfl-\'- W dyde= [ [* flx, y) dxdy

R

More generally, this is true if we assume that f is bounded on R, f is discontin-
uous only on a finite number of smooth curves, and the iterated integrals exist.
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Ll EXAMPLE 2 Evaluate the double integral ||R {x — 3y*)dA, where
R={{x,y)|0=x=21=y= 2} (Compare with Example 3 in Section 15.1.)

SOLUTION | Fubini's Theorem gives
= Maotice the nagative angwer in Bxample 7
nathing is wrong with thal The function £ in T g
that example s not a positive function, 50 its " (x = 3y%)dA
intagral doesn't represent a volume. From "

-3 =3

Jo ;= 3y = [Ty = ]2

-

Figure 3 we see thal f i always negative on o ot £
R, 50 the value of the integral is the negatfe = i'(_-;— 'i‘]d'.r='——'?.ti|
of the volume that fies above the graph of 7 o 2

and below R.

]

SOLUTION 1 Again applying Fubini's Theorem, but this time integrating with respect to x
first, we have
=3

!'ll (x — 3y")dA = J +u' (x — 3y} dx dy

1

{f-w Lo

-y

FIGURE 3 = [fe-otay=2y~ 23f = —12 -

i EXAMPLE 3 Evaluate [[, v sin(xy) dA, where R =[1,2] x [0, =].

SOLUTION | If we first integrate with respect to x, we get

‘!J yvsin{xy) dd = Iu' .I‘: ysin(xy) dedy = J-: [—c'uslx_r}]i:f dy

= I’{—cos 2y + cos y) dy
20

L. - il
= —35in 2y + sin _'.']u =10
SOLUTION 1 If we reverse the order of integration, we get

u For a function f that takes on both pogitive "
and negative values, [, f(x. v) dA is a differ- |.
ence of volemes: V, — V., where V| is the vol- "
ume above R and below the graph of f and Va is

the velurne below R and above the graph. The To evaluate the inner integral, we use integration by parts with
fact that the integral in Example 3 i O moans

vsinfxy) dA = F r_\' sinlxy) dy dx
&1 O

that thase two volumes Vy and Vs ane equal. u=vy dy = sin(xvy) dy
{See Figure 4] - ¥l &)
cos{xy)
du = dy 7= _siey)
x
Gy [T, 1
¥ . ¥ cos(xy r
and so I "y sin(xy) dy = —=———— + —J : cos(xy) dy
Jo? : . o X yla
TCOS TX |
= ————+ — [sin(xn)]=
x x° ;
EIGURE 4 — _meoswx sin WX
X X
If we now integrate the first term by parts with u = —1/x and dv = w7 cos 7x dx, we get

du = dxfx’, v = sin wx, and

3

[ TCOS TX sinwx - Sin wx
——dx= — = 1
P

X X

i : .

TCOS TX  Si0 WX sin X

Therefore l - + - dy = ———
X X~ X
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u In Example 2, Solutions 1 and 2 are equally ; k]
straightforward, but in Example 3 the first solu- and so J‘= +" st vl — [_ SIR WX ]
tion is much easier than the second ana. There- i Jo® =Sl % i
fore, when we evaluate double integrals, it is

wise 10 choose the ordes of intagration that gives sin 2o 5

simpler imegrals. o e B L et

&=

i EXAMPLE 4 Find the volume of the solid § that is bounded by the elliptic paraboloid
x* + 2y* + z = 16, the planes x = 2 and y = 2, and the three coordinate planes.

{0LUTION We first observe that § is the solid that lies under the surface z = 16 — x* — 2y°
and above the square B = [0, 2] » [0, 2]. (See Figure 5.) This solid was considered in
Example 1 in Section 15.1. but we are now in a position to evaluate the double integral
using Fubini’s Theorem. Therefore

v=[[ 16— =2 aa = [ [1(16 — x* — 2y*)dxay
'*‘ - -

= ': [16_1- - _Ii.l"‘ - 2_"2"1;2 dy

FIGURE 5

=[[E-v)a=[f-1l=-4 E

In the special case where f(x. y) can be factored as the product of a function of x only
and a function of v only, the double integral of f can be written in a particularly simple
form. To be specific, suppose that fix, v} = glx)h(y) and R = [a. b] % [c.d]. Then
Fubini's Theorem gives

J'[_r[_r_ waa =" [" gty dxdy = [*| [* g(x)h(y) .d_t] dy
‘E o Jd W e _.d

In the inner integral. y is a constant, so h(y) is a constant and we can write

{J [1‘*.3{1] hiy) d.t] dy = I‘d |:.‘!{_\'I( I‘a glx) d.t) dy = |w glx) dx |"I hiy) dy

since _Ilf glx) dx is a constant. Therefore, in this case. the double integral of f can be writ-
ten as the product of two single integrals:

J]'ﬂ.r. wda=[["gh(y) dxdy=[* { [ gtx) hiy) de dy
& wd Sl =k wid
In the inner integral, v is a constant, so il v) is a constant and we can write

[ [Jr" glx) Al y) dx} dy = [ {m_‘-l( [ gtx) d_r)] dy = [" glx) dx [* hiy) dy

since _|:" glx) dx 15 a constant. Therefore, in this case, the double integral of f can be writ=
ten as the product of two single integrals:

B || ewnty)da = ["gxrdx [“hy)dy  where R = [a,b] X [c.d]
-'i Wil g

EXAMPLE 5 If R = [0, /2] X [0, /2], then, by Equation 5,

—_— . 2
" sin v cos vdd = l £in x de cos vdy
.!z = =0 L 2 2

= [—c-ns _1'I:E[sin _\']:u= 1:=1=1 ||
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DOUBLE INTEGRALS OVER GEMERAL REGIONS

For single integrals, the region over which we integrate is always an interval. But for
double integrals, we want to be able to integrate a function f not just over rectangles but
also over regions D of more general shape, such as the one illustrated in Figure 1. We sup-
pose that D is a bounded region, which means that [ can be enclosed in a rectangular
region R as in Figure 2. Then we define a new function £ with domain £ by

{f{x. ¥) if (x.y)isinD
Flx,v) = : e 2
’ 0 if (x,y)isin K but notin D

M

FIGURE 1 FIGURE 2

If F is integrable over R, then we define the double integral of f over D) by

([rir.y)da= ([ Fix.y)dA  where Fis given by Equation 1
A J)

&R

]

[3] If f is continuous on a type I region D such that

D={(x.y)|a=x=b gix)=y= g}

then [repaa=|" J'::‘,ﬂ.r. y) dy dx
Fil

The integral on the right side of (3) is an iterated integral that is similar to the ones we
considered in the preceding section, except that in the inner integral we regard x as being

constant not only in fix, ¥) but also in the limits of integration, g:{x) and gs(x).
We also consider plane regions of type 1L which can be expressed as

[ D={(xy)|c=y=d hly = x=hiy}

where h; and h; are continuous. Two such regions are illustrated in Figure 7.
Using the same methods that were used in establishing (3), we can show that

FIGURE 7
Some type II regions

("t b
LU' flx, ¥) dx dy

® ffrenan=f

where D is a type Il region given by Equation 4.

i1 EXAMPLE | Evaluate _I'j'" (x + 2y) dA. where D is the region bounded by the
parabolas y = 2x*and y = 1 + 17
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v _ f0LUTIoN The parabolas intersect when 2x? = | + x7, thatis, x> = 1, sox = =1. We
note that the region D, sketched in Figure 8, is a type I region but not a type II region

st 5 2
L% y=ltr g, o and we can write

| 9 \ D={Er.y:|—1£x‘5§ L, 2 =y=1+x

Since the lower boundary is v = 2x° and the upper boundary is v = | + x*, Equation 3
D ¥ gives
; [1+x*

I (x+2y)da = I”1 |77 (x + 2 dy dx
B AR

5,

= [ [y + yPoiax
FIGURE & =

= [‘] [x(l + x%) + (1 + x*) — 1(2x%) — (2x*)F]dx

=" (=3 = + 2+ x + D dx
# =1

\_i 3

4 . 2 !
g £ g £ 32
=_3__‘(_+21_+1'_+I ==
4 2 T

"WOTE | When we set up a double integral as in Example 1, it is essential to draw a

4 diagram. Often it is helpful to draw a vertical ammow as in Figure 8. Then the limits of

- integration for the inner integral can be read from the diagram as follows: The armmow

’ 4 ' starts at the lower boundary v = gi{x), which gives the lower limit in the imtegral, and

l oo the arrow ends at the upper boundary ¥ = g2(x), which gives the upper limit of integration.

4 l fie For a type Il region the arrow is drawn honzontally from the left boundary to the right
/n boundary.

EXAMPLE 2 Find the volume of the solid that lies under the paraboloid z = x* + y* and
above the region I in the xy-plane bounded by the line ¥ = 2x and the parabola y = x*.

I
-

SOLUTION | From Figure 9 we see that D isat I region and
FIGURE 9 - o o

D as a type I region
i D= {{x. Vo=x=2 f=sy= Z.r}

47 .-_‘lil 4 Therefore the volume under z = x* + v* and above D is
1
=3y ity (2 p,
24 Vv=|| (x* + y*)da = (x* + y?)dy dx
J —- a7 #0 Jrt i -
L x=Ay o
oo ay 30 e 3 248 g
LDy = ‘ [ dx = l x*(2x) + AT = .3 dx
L7 Jo - 3 = Jo 3 3
o X " {.3 o 7 el ” ! e " Tt _ 216
| 3 - 2t 5 B ), 35

FIGURE 10

50LUTIoN 1 From Figure 10 we see that D can also be written as a type I1 region:

u Figura 17 shows the solid whese valume s
i ealeulatad in Exampla 2. It fies above the D= {{-1: Mo=y=4 fy=x=.0y }
xy-plane, below the parabaloid = = x* + ¥*,

and between the plane v = 2x and the

parabolic cylinder v = £, Therefore another expression for V is

V= ([ 2+ yda= [ [+ y)dudy
- «0 J3¥
o =¥ S T i Y.
= _+.3_ d.=* = +.5\|'r:_'__'_ d.
jI.I [ 3 ? tiljrall. 2 -LI( 3 4 24 1) ?
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UNIT-III Double integration over rectangular region

FISURE: 1 [ EXAMPLE 3 Evaluate Fl'” xyv dA, where D is the region bounded by the line vy =x — 1

and the parabola v* = 2x + 6.

JOLUTION The region D is shown in Figure 12. Again [ is both type I and type I1. but the
description of D as a type I region is more complicated because the lower boundary con-
sists of two parts. Therefore we prefer to express D as a type II region:

D={xy|2sy=4 H'—3=sx=sy+1}

¥ ¥
i e
(5.4) ) - 15.4)
y=vy2x+8 L r=5—13 .
l l y=x—1 &7 x=yt1
—3% ‘ 1] X L
Ve “w—— =1, =2} —1,-2 1 -2
=—/2x+6
FIGURE 12 {a) £ as a type | region (b} I3 as a type 11 region
Then (5) gives

e CO el e s S
H aydA=| I._ . dxdy = * > dy

If we had expressed I as a type I region using Figure 12(a). then we would have
obtained

x=2y
¥ —_— —
*‘.'3 - JTEn
“.11.[.{»'1—1 nr.hdr+J i xy dy dx
—¥ -— T 1+a—1 > =
!.l
0 0.1,0)
but this would have involved more work than the other method. |

. L)

EXAMPLE 4 Find the volume of the tetrahedron bounded by the planes x + 2y + z =2,
x=2yx=0andz=

FIGURE 13
SOLUTION In a question such as this, it’s wise to draw two diagrams;-bne of the three-
b | dimensicnal solid and another of the plane region D over which it lies. Figure 13 shows
b the tetrahedron T bounded by the coordinate planes x = (), z = 0, the vertical plane
1S . =1t x =2y, and the plane x + 2y + z = 2. Since the plane x + 2y + z = 2 intersects the
= e xy-plane {whose equation is z = () in the line x + 2y = 2, we see that T lies above the
b S 3 (L. } triangular region [) in the xy-plane bounded by the lines x = 2y, x + 2y =2 and x = (.
{See Figure 14.)
-‘/) —I.i’f The plane x + 2y + z = 2 can be written as z = 2 — x — 2y, so the required volume
o = : lies under the graph of the function z = 2 — x — 2y and above
FIGURE 14 ={awlo=xr=1x2=y=1-x/2}
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Therefore

Ci—xf2

V= J‘J'- 2—x—2)dA= |u' Jm (2 — x — 2y) dy dx

= .L [2_\' — XY= _1-‘: ::;;ﬂ dx

I - 2 2 2
=I 2—.1(—.1:1—i = I—i —.T+i+i dx
(i 2 2 2 4

IA L ]
e .
—.L (x —2x+1]dx—T—.t +.t] =g a

il EXAMPLE 5 Evaluate the iterated integral _fu' _|: sin{y*) dy dx.

% S0LUTION If we try to evaluate the integral as it stands, we are faced with the task of first
' evaluating j' sin{y*) dy. But it's impossible to do so in finite terms since _| sin{ y*) dy is
not an elementary function. (See the end of Section 7.5.) So we must change the order

Ey of integration. This is accomplished by first expressing the given iterated integral as a
D Ey double integral. Using (3) backward, we have

i I:: [I sin(y?)dy dx = '-J sin(y?)dA
o T

where D={{x,}',‘l|0£x£§l,x#:'é_uﬁl}

EIGURE IS We sketch this region I in Figure 15. Then from Figure 16 we see that an alternative
D as a type I region description of D is

D={I'.1.',_1;}|{]EE_‘.‘E’= 1, 0= .tE_\'}

¥

This enables us to use (5) to express the double integral as an iterated integral in the
reverse order:

Jul [l sin(y?) dy dx = J+ sin(y?) dA

= J'- .'u sin(y?) dx dy = Ll [ sin(y?)]2 dv

i} x i

J, ysin(y)dy = —feos(y?)],

FIGURE 1& i
D as a type I region =3(1 — cos 1) B
Note:

The next property of integrals says that if we integrate the constant function f(x, y) = 1
over a region [, we get the area of I

[f 144 =AD)

Figure 19 illustrates why Equation 10 is true: A solid cylinder whose base is I? and whose
FIGURE 19 heig!'ll is 1 has volume A(D) - 1 = A(D), but we know that we can also write its volume
Cylinder with base D and height 1 as f[, 1dA. ) _ )

Finally, we can combine Properties 7, 8, and 10 to prove the following property. (See
Exercise 57.)

[l Ifm=flxy) =M forall (x, y) in D, then

mA(D) = [ flx.y) dA = MA(D)
y
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EXAMPLE 6 Use Property 11 to estimate the integral j'rl;J gioremr A where DD is the disk
with center the origin and radius 2.

SOLUTION Since —l = sinx = land — | =cosy =1, wehave —| = sinxcosy = | and

therefore

el pEmTEER o LT =

Thus, using m = ¢~ = Ife, M = ¢, and A(D) = 11'[2]12 in Property 11, we obtain

TRIPLE INTEGRALS

4w
— = H e YA = dqre | |
P aw

i

if this limit exists.

[3] DEFINITION The triple integral of f over the box B is

s I m a
UI flr.y,2)dV= lim 2 X X flxl, yh zh)AV
H

Lot a—= jm] = fe=i

FIGURE 4
A type | solid region with a type 11
projection

m FUBINI'S THEOREM FOR TRIPLE INTEGRALS If f is continuous on the rectan-
gular box B = [a. b] % [c, d] % [r. 5]. then

[I] reymvav = [ 7 [ ey 2 dwdy e
.

i EXAMPLE | Ewaluate the triple integral _|._1|,‘= xyz”dV, where B is the rectangular box
given by
B={{.1‘._1‘,:]|{]$=’_r5 l, —1l=y=2, 05:653}

SOLUTION We could use any of the six possible orders of integration. If we choose to
integrate with respect to x, then y. and then =, we obtain

3 a2 =t
_— e e[ o
J xyz dV = J'u ‘+_l J'u xvz dx dy dz = .'u 1- [ > ]x-u dydz

B

[ —
a #

A=t o 4 y=—|
s 32 21 =z

= d = — = —
L 4 : 4 ]u 4

EXAMPLE 2 Evaluate _Hlk: dV, where E is the solid tetrahedron bounded by the four
planes x =0, y=0,z=0,andx +y+z=1.

J0LUTION When we set up a triple integral it’s wise to draw mnwo diagrams: one of

the solid region E (see Figure 5) and one of its projection [J on the xy-plane (see
Figure 6). The lower boundary of the tetrahedron is the plane z = 0 and the upper

boundary isthe plane x + y + z = 1l {orz = | — x — ¥). so we use u,{x, v) = 0 and
ts{x, ¥} = 1 — x — y in Formula 7. Notice that the planesx + v+ z=1landz=10
intersect in the line x + v = 1 (or y = 1 — x) in the xy-plane. So the projection of E is

the triangular region shown in Figure 6, and we have

(7] E={l.=.'._1‘,z}!0€='16£I,ﬂi."il_x-ﬂﬂzﬁl_x_}'}
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FIGURE 5 FIGURE &
7] E={(.t,_v,:][ﬂf='x5£ L0=y=l—x0=z=1 —.'C—_‘F}

This description of E as a type | region enables us to evaluate the mtegral as follows:

5 JE=l—x—y
Hl zdV = 1-'_: E_I I‘UI_I_!r rdzdydx = r [l_‘ I::?} dy dx
E

il i) m)
A (1 i ) L
=$H"‘i1—x—ﬂ:m-dx=%* [—;] dx
“Jo Ju o “ida 3 s
. T b
=§||{1—.1']"d.r=-|- _u.. =_| [ ]
Ja 6 s |, 2

A solid region E is of type 2 if it is of the form
E= {lx. v vz €D wiy.2) = x = wily, :j}

where, this time, D is the projection of £ onto the yz-plane (see Figure 7). The back sur-
face is x = wly, z). the front surface is x = wu(y, z), and we have

J+,ﬂx BEV= l[ |:|u:|::|.ﬂr. ¥.z) d'x] dA

J o
E 7
lons f and 5).

Il EXAMPLE 3 Evaluate [[f, +/x* + 22 4V, where E is the region bounded by the parabo-
loid y = x* + 7* and the plane v = 4.

S0LUTION The solid E is shown in Figure 9. If we regard it as a type 1 region, then we
need to consider its projection D) onto the xy-plane, which is the parabolic region in
Figure 10. (The trace of ¥y = x* + =% in the plane z = 0 is the parabola y = x2)

EEEH Visual 15.6 iHuserates how solid
regions (including the one in Figure 9)
project onto coordinate planes.

FIGURE 9
Region of integration

+ From y = x* + z* we obtain z = * 'y — x?, so the lower boundary surface of E is
z = —y/y — x? and the upper surface is = = +/y — x*. Therefore the description of E as
y=4 | a type | region is
T —
D E= {l.l‘. ri)|-2=x=2 xtsy=sd, Wfy—xl=z=4y— .1.'-}
\ /
Fy=x and so we obtaln
am Y mg ,‘_..;_—‘, - -
JH VXt ztdV = | | l N+ Pdzdydx
o & 4 J=2 et J- = :

E
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P +ri=4

Y

FIGURE |1
Projection on xz-plane

B The most difficult step in evaluating a triple
integral is setting up an expression for the region
of integration [swch as Equatien 9 in Example 2).
Remamber that the limits of integration in the
inner integral contain at most two variables, the
limits of integration in the middle integral con-
1ain at most one variable, and the limits of inte-
gration in the outer integral must be constants,

FIGURE ¢

the plane y =

o

4, so taking u,(x, 2) = x* + 22 and uslx. 2) =

v"'\:--l-—"! dy

Then ﬂ):: left bDuru:Inry of E is the pambﬂlmd v = x* + z* and the right boundary is

4 in Equation 11, we have

ffj = ae=fi[ .,

Although this integral could be written as

L

rI—E

N =]

it’s easier to convert to polar coordinates in the xz-plane: x = rcos#, z

gives

]M=

4= = )T F R dedr

JJa—x-2)aFF7d
B

rsin 8. This

IIf v +"-d'V—ll{4—1: — ) F 2 dA
)

= ': +u (4 — r*yrrdrdf = +:J'¢m +: (4r — ) dr

art

;,[_

3

e

EXAMPLE 4 E‘...Juaxai, J

3
r

5

|-

1287
15

l[.xz + v') dz dy dx.

SOLUTION This iterated integral is a triple intanre] avarthe relid mericn...

E= {!.n. vof-2l=e=2 — AT =Er=E 4 - ST == 3
and the projection of £ onto the xv-planc is the disk ©° + v7 = 4. The lower surface of
E is the cone - = 'xv* + v* and its upper surface is the plane = = 2. {See Figure 9.}

This region has o much simpler description in cvlindrical coordinates:

r = -1
E= i h__ll b =
Therefore. we have

=z

"_'.I

dz oy oy

EVALUATING TRIPLE INTEGRALS WITH CYLINDRICAL COORDIMATES

* I =yl ¥)

f

I I
1 |
[ ::=u,lx._‘r]l
r=h,(#) o | || |
— T =l
. H—a.q_ e
r=ﬁ'r[-ﬁ']
FIGURE &

T 0=

5

Suppose that E is a type | region whose projection ¥ on the xy-plane is conveniently
described in polar coordinates (see Figure 6). In particular. suppose that f is continuous

and

E= {t.vr. »2) |{x ) €D, mlx, y) = z = walx, _\*}}

where [) is given in polar coordinates by

={(r.0) |a= 6= g hiB)=r=h(o)}

We know from Equation 15.6.6 that

G

E

'1. fla, y. 2)dV = |J

[ Mgl ﬂf{j ¥, _'} dz]
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But we also know how to evaluate double integrals in polar coordinates. In fact, combin-
ing Equation 3 with Equation 15.4.3, we obtain

i [ J.H-ﬂ.t. v dv= I.H l‘h’ml +.H’i‘ i ﬂﬂrcus &, rsin . z) rdz dr de
E

S &i@) o aglr cos 8, Fosin @)

Formula 4 1s the formula for triple integration in cylindrical coordinates. It says that
we comvert a triple integral from rectangular to cyhndncal coordinates by wrting

x = rcosf, y = rsin 8, leaving = as it is, using the appropriate limits of integration for z,
FIGURE 7 r. and f, and replacing dV by rdz dr d6. (Figure 7 shows how to remember this.) It is
Volume element in cylindrical worthwhile to use this formula when E is a solid region easily described in cylindrical
coordinates: dV = rdzdr 48 coordinates, and especially when the function f(x, y, ) involves the expression x* + y°.

EJ EXAMPLE 3 A solid E lies within the cylinder x* + y* = 1. below the plane z = 4
and above the paraboloid z = | — = yv*. (See Figure 8.) The density at any point is
proportional to its distance from the axis of the cylinder. Find the mass of E.

S0LUTION In cylindrical coordinates the cylinder is ¥ = | and the paraboloidis z = 1 — r,
S0 We can write

E={r6z|0=6=<2m0=r=11-rs:=4}
Since the density at (x, v, z) 1s proportional to the distance from the z-axis, the density
function is
flo,v,z) = Kx* + ¥ =Kr
r=l—d where K is the proportionality constant. Therefore, from Formula 15.6.13, the mass
- of Eis
— m= l“ Kx2+ y2dV
¥ E

2w 1

=] }'I“_:mrl rdz dr d6

FIGURE 8

‘29 ‘l
= _lu .'L. Kr'[4 — (1 — /)] drd#f
g "1 .
=K| d6| Gr*+r)dr
0 o

§ 1

127K

=2wK ri+r— = i ||
51, 5
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EXAMPLE 4 Use a triple integral to find the volume of the tetrahedron T bounded by the
planesx +2y + z=2 x =2y, x=0,andz=0.

I0LUTION The tetrahedron T and its projection £ on the xy-plane are shown in Figures 12
and 13. The lower boundary of T is the plane z = 0 and the upper boundary is the plane

x+2yt+tz=2thatisz=2—x— 2y

¥
x+2y=2
r=2y. | 1T {fory=1— xf2)
D > {1, 1
| (-3
y=xf2
1] l X
FIGURE 12 FIGURE 13
Therefore we have
¥ dz dy dx

g || Bkl 6 P
T

= [ [T e-x—2dyar=1

=2 sxf2

TRIPLE INTEGRALS IN SPHERICAL COORDINATES

FIGURE |
The spherical coordinates of a point

Pix.».z)
Flp, &, o

--..,_._____‘_\_“

Pix, v, 0)

FIGURE 5

¥

SPHERICAL COORDIMATES

The spherical coordinates (p. 8, ) of a point P in space are shown in Figure 1, where
p = | 0P| is the distance from the origin to P, # is the same angle as in cylindrical coor-

dinates, and ¢ is the angle between the positive z-axis and the line segment OF. Note that

p=0 O=d=m

P(p. 8. &)

The relationship between rectangular and spherical coordinates can be seen from Fig-
ure 5. From triangles OPQ and OPP' we have

Z= pcosd r= psin ¢
But x = rcosf and y = rsin 8, so to convert from spherical to rectangular coordinates,

we use the equations

1] X = psin ¢ cos ¥y = psin & sin & I=pCosd

Also, the distance formula shows that

E p3=x!+_'r + 2

We use this equation in converting from rectangular to spherical coordinates.
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i EXAMPLE | The point (2, ar/4, /3) is given in spherical coordinates. Plot the point
and find its rectangular coordinates.

SOLUTION We plot the point in Figure 6. From Equations | we have

— pendoost =2 s Ema| L)L) = 2
X £ sin oos sn 3 Cos 4 Bl E‘ -\J 3

y= psinrf.-sinﬂ=2ﬂn%sin%=2(%)(?|§r) = \I%

I

Thus the point (2, w/4, /3) is (v3/2. 4/3/2. 1) in rectangular coordinates. |

FIGURE &
B WARNING There is not universal agree- [ EXAMPLE 2 The point (0, 24/3, —2) is given in rectangular coordinates. Find spheri-
et on the notation for spherical coordinatas. cal coordinates for this point.
Most books on physics reverse the maanings
of @ and dvand use r in piace of p. SOLUTION From Equation 2 we have

p=Jai+yi+i=J0+12+4=4
and so Equations | give

cos g = '

cos = ._1: =0 a=—
o sin b 2

A in Module 15.8 you can investigate
SR O Sefcel n e e e (Note that 8 # 37/2 because v = 2,/3 > 0.} Therefore spherical coordinates of the

cal coordinares.
1

given point are (4. «/2. 29/3)

EVALUATING TRIPLE INTEGRALS WITH SPHERICAL COORDIMATES
Consequently, we have arrived at the following formula for triple integration in spherical
coordinates.

B [[f e av
,
=" J'*’_ﬂ p sin¢ cos 8, p sing sin 8, p cos @) p*sin d dp d8 de

where E is a spherical wedge given by
E={fp,ﬂ,¢-}]a£p£.ﬁ_ a=0=pc= d)id'}

[~ i '9.‘..5 J
g é& Formula 3 says that we convert a triple integral from rectangular coordinates to spher-
/ o = ical coordinates by writing

x = psindg cos @ ¥y = psing sin # z=pcosd

x

FIGURE 8
[ EXAMPLE 3 Evaluate [[|, ¢*™****" dV, where B is the unit ball:

B=flenale +y 2 <)
S0LUTION Since the boundary of B is a sphere. we use spherical coordinates:
s={nodlop=1 0=0<2m 02 g <]

In addition, spherical coordinates are appropriate because

r+y+2=p
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Thus (3) gives

([ et=er=r® av = U J: Ju' """ sin ¢ dp d dd
A ,

= ["singds [7"ao || per'dp

[—cns IIJ}:BTI'] I_{e"‘]:, =imle — 1) =

NOTE | It would have been extremely awkward to evaluate the integral in Example 3
without spherical coordinates. In rectangular coordinates the iterated integral would have

been
"1 -Yﬁ’ '...ﬁ"—_.r 2 F -t T ]
FoAE T
il dz dy dx
.1—I .+ = 1=x" .L..'I—J!—]:! ¥
Il EXAMFLE 4 Use spherical coordinates to find the volume of the solid that lies above
the cone z = 4/x* + v? and below the sphere x* + v* + z* = = (See Figure 9.)
_lm. oIy
'rl o o
£
[ _'{___"‘--._'l
|
W
B =3ty
FIGURE 9 ¥
= Figure 10 gives anather loak (this time 10LUTION Notice that the sphere passes through the origin and has center (0, 0, £). We
drarm by Magle) at the solid of Exarmgple 4. write the equation of the sphere in spherical coordinates as

P = pcos ¢ or p=cos ¢

The equation of the cone can be written as

peos ¢ = /p?sinid cos?B + psin’d sinlf = psin &

This gives sin ¢¢ = cos &, or ¢ = /4. Therefore the description of the solid £ in
spherical coordinates is

E={(p.0.d)|0<8<2m 0=¢=mu/4 0=p<=<cosd}

FENE 19 Figure 11 shows how E is swept out if we integrate first with respect to p, then ¢, and
then #. The volume of E is
e Tin i [lw Fefd Peosd 3 -
VIE) = m dV ju ju Ju o sind dp ddr déf
E
4 7| rmeas &
= [;"ds |"‘sin¢["’—} ddb
] o 3
=0
B3 Visual 15.8 shows an animation 2o refi 5 2 cos'd e i
of Figure 11. =Ti singh cos’dhdp=—| — o Eel)
3 h 3 4 |, B
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CHAMGE OF VARIABLES IN MULTIPLE INTEGRALS

In one-dimensional calculus we often use a change of variable (a substitution) to simplify
an integral. By reversing the roles of x and u, we can write the Substitution Rule (5.5.6) as

[ [ £e) dx = [ Flgtu))g'(u) d

=

where x = g{u) and a = gic), b = gld). Another way of wnting Formula 1 is as follows:
b ) dx = o () dx 4
ju flx) dx = Jr Jlxlu)) e

A change of variables can also be useful in double integrals. We have already seen one
example of this: conversion to polar coordinates. The new variables r and @ are related to
the old variables x and y by the equations

xX=rcosf v=rsinf

and the change of variables formula (15.4.2) can be written as

JT_HI. YIdA = +“_.I"[rcns 8, rsin 6) r dr 48
g §

B

where § is the region in the ré-plane that comresponds to the region R in the xy-plane.
More generally, we consider a change of variables that is given by a transformation T
from the ur-plane to the xy-plane:

T, ) = (x, %)

where x and y are related to « and v by the equations

x=glu, v) v = hiu. v

or, as we sometimes write,

x=xiu, v) v=vlu v

We usually assume that T is a C" transformation, which means that g and k have contin-
wous first-order partial denvatives.

A transformation T is really just a function whose domain and range are both subsets
of B* If T{u,, ) = (x,. ¥). then the point (x,, v} is called the image of the point (. ;).
If no two points have the same image, T is called one-to-one. Figure | shows the effect of
a transformation T on a region § in the wp-plane. T transforms § into a region R in the
xy-plane called the image of S, consisting of the images of all points in §.

i ¥

o u ] X
FIGURE 1
If T is a one-to-one transformation, then it has an inverse transformation 7' from the
xy-plane to the wr-plane and it may be possible to solve Equations 3 for 1 and v in terms
of x and ¥:
u = Gix,v) v = Hix, y)
= The Jaeobian is named after the German [7] DEFINITION The Jacobian of the transformation T given by x = glu. ») and
mathematician Carl Gustav Jacob Jacobi v = hiu. v)is
{1804=1851]. Although the French mathematician 2
Cauchy first used these special determimants dx  ax
imvalving partial derivatives, Jacobi deveboped . | L R PN P
tham into a method for evaluating multiphe M = o ag = _a.l;_d_" = _a.r.ﬂ.
intagrals. i, v) dy  ay du ov du du
ou dr
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EI CHANGE OF YARIABLES IN A DOUBLE INTEGRAL Suppose that T isa C' trans-
formation whose Jacobian is nonzero&%” that maps a region § in the ur-plane onto
arcgion R in the xy-plane. Suppose that f is continuous on R and that & and § are
tvpe [ or type II plane regions. Suppose also that T is one-to-one, except perhaps
on the boundary of §. Then

vl

alx.
dlae. v)

dut dr

" Fley)dd = ” flatu vl vin. v))

i 5

[d EXAMPLE 2 Use the change of variables x = r® — %, y = 2uv to evaluate the integral
_I:fl, v dA, where R is the region bounded by the v-axis and the parabolas y* = 4 — 4x
and y' =4 + 4x, y = 0.

SOLUTION The region R is pictured in Figure 2 {on page 1014). In Example 1 we discov-
ered that T(5) = R. where 5 is the square [0, 1] X [0, 1]. Indeed, the reason for making
the change of variables to evaluate the integral is that § is a much simpler region than R.
First we need to compute the Jacobian:

dr  dx
) F} T
ey -?" f"’ I e 4+ 407 =0
a[u_ ﬂ d_\' t'-f_'l' 2 2u
du  dv
Therefore, by Theorem 9,
alx, v)

franm o

R

TNl o . I
e, v) oA ,In }u (2up)d(er’ + v°) du dv

=8 J: Ll (ir'e + uv’) dude =8 .+‘ul H:r‘ﬂ - %;Fu’]::; dr

- +' (20 + 4 )dv = [o* + '] =2 =

N0TE | Example 2 was not a very difficult problem to solve because we were given a
suitable change of variables. If we are not supplied with a transformation, then the first step
is to think of an appropriate change of variables. If fix, y) is difficult to integrate, then the
form of f(x. ¥) may suggest a ransformation. If the region of integration R is awkward,
then the transformation should be chosen so that the comresponding region 8 in the ur-plane
has a convenient description.

EXAMPLE 3 Evaluate the integral [, e***/“"¥dA where R is the trapezoidal region with
vertices (1. 0), (2, 0), (0, —2), and {0, —1).

SOLUTION Simce it isn’t easy to integrate '™~ we make a change of variables sug-
gested by the form of this function:

H=x+y p=x—y¥

These equations define a transformation T~' from the xy-plane to the wr-plane.
Theorem 9 talks about a ransformation T from the we-plane to the xy-plane. It is
obtained by solving Equations 10 for x and y:

m| x=3lu+rv) y=3ilu—r
The Jacobian of T is
B ax
dlx, ¥) du i 3 3 i
————— = = = -3
dlu, v) dy dy i -3 -
du dv
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To find the region § in the wr-plane corresponding to R. we note that the sides of R lie on

the lines
a y=10 T y=2 x=0 x—y=1
-2.2) r=2 2.2 ; . : : =y
Pt and. from either Equations 10 or Equations 11, the image lines in the wr-plane are
u=—v % & n=r
=Ly Y Ly H=r v="2 = —-r r=1
A
Ll| u Thus the region § is the rapezoidal region with vertices (1, 1), (2, 2), (—2, 2), and
{—1. 1) shown in Figure 8. Since
-1
TJ IT S={{u,ﬂ}]|€v£2. —r=u<=n}
¥ Theorem 9 gives
r—y=1
i - - Al ‘%I
l L 2 ([ peesntro—nt ga = + ol i, '?“_m: de
o - ik i, o) |
N [
s = [T e de =4 ) [ee |2, do
20 =& S
FIGURE B =f:|--l|1 — 7! ?‘."-:u"L'=':|1"_-L'_'.'

Lt L

There is a similar change of variables formula for triple integrals. Let T be a transfor-
mation that maps a region § in upw-space onto a region K in vyr-space by means of the
equations

x = glu, v, w) v = hlu. v, w) z=klu, v, w)

The Jacobian of T is the following 3 X 3 determinant:

oy dr  dx

du dv  dw
dlx,y,2) _ |ay ay ay

S

dlu, v, w) du  de A
dz dz oz

on  dv  ow

Under hypotheses similar to those in Theorem 9, we have the following f-..:ihula for triple
integrals:

alx, ¥, z)

- du dv dw
ilre, v, w)

H[ flx, 3. 2)dV = JJJ Flaclu, v, w), vu, v, w), z(u, v, w))

¥

I EXAMPLE 4 Use Formula 13 to derive the formula for triple integration in spherical
coordinates.

S0LUTION Here the change of variables is given by
x= psing cosf ¥ = psind sin # 2= pcos ¢
We compute the Jacobian as follows:

a ] singhcos @ —psingsinf  pcos ¢ cos B
X, ¥, Z
———— = | sin ¢ sin @ sin ¢ cos # poos ¢b sin B
alp. 6, d) ¢ psind peos &

cos ¢ 0 —psin ¢

—psind sin #  pcos ¢ cos §
psindg cos @ peosdsin @

sin ¢¢ cos # —psin ¢ sin @
singh sin #  psin ¢ cos @

= cos ¢b — psind

= cos ¢ (—p” sin ¢ cos & sin*f — p’ sin ¢ cos & cos #)
— psin & (psin®d cos’f + psin