
 Semester – III

 L T P C
16MMU304B PROGRAMMING WITH C AND C++ 4 2 0 6

SCOPE:

This course provides student with a comprehensive study of the fundamentals of C and C++

programming language. Classroom lectures stress the strength of C, which provide

programmers with the means of writing efficient, maintainable and portable code.

OBJECTIVES:

· Know the basic concept of computers

· Understand the concept of a program (i.e., a computer following a series of

instructions)

· Understand the concept of a loop – that is, a series of statements which is written once

but executed repeatedly- and how to use it in a programming language

· Be able to break a large problem into smaller parts, writing each part as a module or

function

· Understand the concept of a program in a high-level language being translated by a

compiler into machine language program and then executed.

UNIT I

Introduction to C and C++:

History of C and C++, Overview of Procedural Programming and Object-Orientation

Programming, Using main() function, Compiling and Executing Simple Programs in C++.

Data Types, Variables, Constants, Operators and Basic I/O: Declaring, Defining and

Initializing Variables, Scope of Variables, Using Named Constants, Keywords, Data Types,

Casting of Data Types, Operators (Arithmetic, Logical and Bitwise), Using Comments in

programs, Character I/O (getc, getchar, putc, putcharetc), Formatted and Console I/O

(printf(), scanf(), cin, cout), Using Basic Header Files (stdio.h, iostream.h,

conio.hetc).Expressions, Conditional Statements and Iterative Statements:Simple

Expressions in C++ (including Unary Operator Expressions, Binary Operator Expressions),

Understanding Operators Precedence in Expressions, Conditional Statements (if construct,

switch-case construct), Understanding syntax and utility of Iterative Statements (while, do-

while, and for loops), Use of break and continue in Loops, Using Nested Statements

(Conditional as well as Iterative)

UNIT II

Functions and Arrays: Utility of functions, Call by Value, Call by Reference,

Functions returning value, Void functions, Inline Functions, Return data type of functions,

Functions parameters, Differentiating between Declaration and Definition of Functions,

Command Line Arguments/Parameters in Functions, Functions with variable number of

Arguments.

Creating and Using One Dimensional Arrays (Declaring and Defining an Array, Initializing

an Array, ACSUessing individual elements in an Array, Manipulating array elements using

loops), Use Various types of arrays (integer, float and character arrays / Strings) Two-

dimensional Arrays (Declaring, Defining and Initializing Two Dimensional Array, Working

with Rows and Columns), Introduction to Multi-dimensional arrays.

UNIT III

Derived Data Types (Structures and Unions): Understanding utility of structures

and unions, Declaring, initializing and using simple structures and unions, Manipulating

individual members of structures and unions, Array of Structures, Individual data members as

structures, Passing and returning structures from functions, Structure with union as members,

Union with structures as members. Pointers and References in C++: Understanding a

Pointer Variable, Simple use of Pointers (Declaring and Dereferencing Pointers to simple

variables), Pointers to Pointers, Pointers to structures, Problems with Pointers, Passing

pointers as function arguments, Returning a pointer from a function, using arrays as pointers,

Passing arrays to functions. Pointers vs. References, Declaring and initializing references,

using references as function arguments and function return values

UNIT IV

Memory Allocation in C++: Differentiating between static and dynamic memory

allocation, use of malloc, calloc and free functions, use of new and delete operators, storage

of variables in static and dynamic memory allocation.File I/O, Preprocessor Directives:

Opening and closing a file (use of fstream header file, ifstream, ofstream and fstream

classes), Reading and writing Text Files, Using put(), get(), read() and write() functions,

Random aCSUess in files, Understanding the Preprocessor Directives (#include, #define,

#error, #if, #else, #elif, #endif, #ifdef, #ifndef and #undef), Macros.

UNITV

Using Classes in C++: Principles of Object-Oriented Programming, Defining &

Using Classes, Class Constructors, Constructor Overloading, Function overloading in classes,

Class Variables &Functions, Objects as parameters, Specifying the Protected and Private

ACSUess, Copy Constructors, Overview of Template classes and their use.Overview of

Function Overloading and Operator Overloading: Need of Overloading functions and

operators, Overloading functions by number and type of arguments, Looking at an operator

as a function call, Overloading Operators (including assignment operators, unary operators)

Inheritance, Polymorphism and Exception Handling: Introduction to Inheritance (Multi-

Level Inheritance, Multiple Inheritance), Polymorphism (Virtual Functions, Pure Virtual

Functions), Basics Exceptional Handling (using catch and throw, multiple catch statements),

Catching all exceptions, Restricting exceptions, Rethrowing exceptions.

SUGGESTED READINGS

1. HerbtzSchildt, (2003). C++: The Complete Reference, Fourth Edition, McGraw Hill.

2. BjarneStroustrup, (2013). The C++ Programming Language, Fourth Edition, Addison-

Wesley.

3. BjarneStroustroup, (2014).Programming Principles and Practice using C++, Second

Edition, Addison-Wesley.

4. E Balaguruswamy,(2008). Object Oriented Programming with C++, Tata McGraw-Hill

Education.New Delhi.

5. Paul Deitel, Harvey Deitel, (2011) .C++ How to Program, Eighth Edition, Prentice Hall.

6. John R. Hubbard, (2000).Programming with C++, Schaum's Series, Second Edition.

McGraw Hill Professional.
7. Andrew Koeni, Barbara, E. Moo,(2000). ACSUelerated C++, Published by Addison

Wesley .

8. Scott Meyers,(2005). Effective C++, Third Edition, Published by Addison-Wesley.

9. Harry, H. Chaudhary, (2014).Head First C++ Programming: The Definitive Beginner's

Guide, FirstCreate spaceInc, O-D Publishing, LLC USA.

10. Walter Savitch, (2007). Problem Solving with C++, Pearson Education.

11. Stanley B. Lippman, JoseeLajoie., Barbara E. Moo.,(2012). C++ Primer, Published by

Addison- Wesley, 5th Edition.

WEB SITES

1. http://www.cs.cf.ac.uk/Dave/C/CE.html

2. http://www2.its.strath.ac.uk/courses/c/

3. http://www.iu.hio.no/~mark/CTutorial/CTutorial.html

4. http://www.cplusplus.com/doc/tutorial/

5. www.cplusplus.com/

6. www.cppreference.com/

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Batch: 2016-2019

16MMU304B PROGRAMMING WITH C and C++

LECTURE PLAN

UNIT – I

SI.

NO

LECTURE

DURATION

(HR)

TOPICS TO BE COVERED SUPPORT

MATERIALS

1. 1 History of C and C++, Overview of Procedural

Programming and Object-Orientation

Programming

W1; T4: 1 -14

2. 1 Using main() function, Compiling and Executing

Simple Programs in C++.

W1; T4: 19 – 22, 26 -

30

3. 1 Data Types, Variables, Constants, Operators

and Basic I/O: Declaring, Defining and

Initializing Variables, Scope of Variables, Using

Named Constants, Keywords

W1; T4: 35-45, T1: 34

- 52

4. 1 Data Types, Casting of Data Types T4: 46-57

5. 1 Operators (Arithmetic, Logical and Bitwise) T1: 13 - 33

6. 1 Using Comments in programs T4: 23 - 25, T1: 187 –

210,250 - 254

7. 1 Character I/O (getc, getchar, putc, putcharetc) T4: 23 - 25, T1: 187 –

210,250 - 254

8. 1 Formatted and Console I/O (printf(), scanf(), cin,

cout),

T4: 23 - 25, T1: 187 –

210,250 - 254

9. 1 Using Basic Header Files (stdio.h, iostream.h,

conio.hetc).

T4: 23 - 25, T1: 187 –

210,250 - 254

10. 1 Expressions, Conditional Statements and

Iterative Statements: Simple Expressions in C++

(including Unary Operator Expressions)

T4: 58 – 60, T1: 53 -

56

11. 1 Binary Operator Expressions T4: 58 – 60, T1: 53 -

56

12. 1 Understanding Operators Precedence in

Expressions

T4: 58 – 60, T1: 53 -

56

13. 1 Conditional Statements (if construct, switch-case

construct)

T4: 64 – 69, T1: 59 –

70

14. 1 Understanding syntax and utility of Iterative

Statements (while, do-while, and for loops),

T4: 64– 69, T1: 70 – 79

15. 1 Understanding syntax and utility of Iterative

Statements (while, do-while, and for loops),

T4: 64– 69, T1: 70 – 79

16. 1 Use of break and continue in Loops T1: 80 – 88

17. 1 Using Nested Statements (Conditional as well as

Iterative)

T1: 80 – 88

18. 1 Recapitulation and Discussion on Important

Questions

Text Books:

T1 - HerbtzSchildt, "C++: The Complete Reference", Fourth Edition, McGraw Hill.2003

T4 - E Balaguruswamy, "Object Oriented Programming with C++", Tata McGraw-Hill

Education, 2008.

WEB SITES

W1 -http://www.cs.cf.ac.uk/Dave/C/CE.html

http://www.cs.cf.ac.uk/Dave/C/CE.html

UNIT – II

SI.

NO

LECTURE

DURATION

(HR)

TOPICS TO BE COVERED SUPPORT

MATERIALS

1. 1 Functions and Arrays: Utility of functions T4 : 77 – 82, T1 : 137 -

142

2. 1 Call by Value, Call by Reference, Return data type

of functions

T4 : 77 – 82, T1 : 137 -

142

3. 1 Functions returning value T4 : 82 - 84, T6 : 99,

109

4. 1 Void functions, Inline Functions T4 : 82 - 84, T6 : 99,

109

5. 1 Functions parameters T4 : 82 - 84, T6 : 99,

109

6. 1 Differentiating between Declaration and

Definition of Functions

T4 : 82 - 84, T6 : 99,

109

7. 1 Command Line Arguments T4 :85 – 90, T1: 144 -

147

8. 1 Parameters in Functions T4 :85 – 90, T1: 144 -

147

9. 1 Functions with variable number of Arguments. T4 : 769 - 770

10. 1 Creating and Using One Dimensional Arrays (

Declaring and Defining an Array, Initializing an

Array)

T1 : 89 – 92, T5 : 283

– 285

11. 1 Creating and Using One Dimensional Arrays (

Declaring and Defining an Array, Initializing an

Array)

T1 : 89 – 92, T5 : 283

– 285

12. 1 Accessing individual elements in an Array T1 : 92 - 95, T5 : 286 –

298

13. 1 Manipulating array elements using loops T1 : 92 - 95, T5 : 286 –

298

14. 1 Use Various types of arrays (integer, float and

character arrays / Strings)

T5 : 299 – 315

15. 1 Two-dimensional Arrays (Declaring, Defining and

Initializing Two Dimensional Array, Working

with Rows and Columns),

T1 : 96 – 100

16. 1 Two-dimensional Arrays (Declaring, Defining and

Initializing Two Dimensional Array, Working

with Rows and Columns),

T1 : 96 – 100

17. 1 Introduction to Multi-dimensional arrays. T1 : 101 - 108

18. 1 Recapitulation and Discussion on Important

Questions

Text Books:

T1 - HerbtzSchildt, "C++: The Complete Reference", Fourth Edition, McGraw Hill.2003

T3 - Harry, H. Chaudhary, "Head First C++ Programming: The Definitive Beginner's Guide",

First Create space Inc, O-D Publishing, LLC USA.2014

T4 - E Balaguruswamy, "Object Oriented Programming with C++", Tata McGraw-Hill

Education, 2008.

T5 - Paul Deitel, Harvey Deitel, "C++ How to Program", 8th Edition, Prentice Hall, 2011.

UNIT – III

SI.

NO

LECTURE

DURATION

(HR)

TOPICS TO BE COVERED SUPPORT

MATERIALS

1. 1 Derived Data Types (Structures and Unions):

Understanding utility of structures and unions

T1 : 161 – 163, T2 :

201 – 224

2. 1 Declaring, initializing and using simple structures

and unions

T1 : 164 – 176, T2 :

201 – 224

3. 1 Manipulating individual members of structures

and unions, Array of Structures

T1 : 176 – 180, T2 :

201 – 224

4. 1 Individual data members as structures, Passing

and returning structures from functions

T1 : 180 – 184, T2 :

201 – 224

5. 1 Structure with union as members, Union with

structures as members.

T1 : 184 – 186, T2 :

201 – 224

6. 1 Pointers and References in C++: Understanding

a Pointer Variable

T1: 113 -120

7. 1 Simple use of Pointers (Declaring and

Dereferencing Pointers to simple variables)

T1: 113 -120

8. 1 Pointers to Pointers T1: 121 – 130

9. 1 Pointers to structures T1: 121 – 130

10. 1 Problems with Pointers T1: 121 – 130

11. 1 Passing pointers as function arguments T1: 131 – 136

12. 1 Returning a pointer from a function T1: 131 – 136

13. 1 Using arrays as pointers T1: 131 – 136

14. 1 Passing arrays to functions. T1: 131 – 136

15. 1 Pointers vs. References T1: 321 – 349

16. 1 Declaring and initializing references T1: 321 – 349

17. 1 Using references as function arguments and

function return values

T6: 157 – 184, J3

18. 1 Recapitulation and Discussion on Important

Questions

Text Books:

T1 - HerbtzSchildt, "C++: The Complete Reference", Fourth Edition, McGraw Hill.2003

T2 - BjarneStroustrup, "The C++ Programming Language", 4th Edition, Addison-Wesley ,

2013.

T6 - John R. Hubbard, "Programming with C++", Schaum's Series, 2nd Edition, 2000.

JOURNALS

J3: IEEE transactions on software engineering

UNIT – IV

SI.

NO

LECTURE

DURATION

(HR)

TOPICS TO BE COVERED SUPPORT

MATERIALS

1. 1 Memory Allocation in C++: Differentiating

between static and dynamic memory allocation

T1 : 349 – 350, J1

2. 1 use of malloc, calloc and free functions T1: 753 -756

3. 1 use of new and delete operators T1: 351 - 359

4. 1 storage of variables in static and dynamic memory

allocation

T4: 114 - 118

5. 1 File I/O, Preprocessor Directives: Opening and

closing a file (use of fstream header file, ifstream,

ofstream and fstream classes),

T1: 211 -215

6. 1 File I/O, Preprocessor Directives: Opening and

closing a file (use of fstream header file, ifstream,

ofstream and fstream classes),

T1: 211 -215

7. 1 File I/O, Preprocessor Directives: Opening and

closing a file (use of fstream header file, ifstream,

ofstream and fstream classes),

T1: 211 -215

8. 1 Reading and writing Text Files T1: 216 -218

9. Using put(), get()

10. 1 Using read() and write() functions, T1: 218 - 235

11. 1 Random access in files T1: 559 - 563

12. 1 Reading and writing Text Files T1: 216 -218

13. 1 Using put(), get(), read() and write() functions, T1: 218 - 235

14. 1 Random access in files T1: 559 - 563

15. 1 Understanding the Preprocessor Directives

(#include, #define, #error, #if, #else, #elif, #endif,

#ifdef, #ifndef and #undef)

T1: 241 - 249

16. 1 Understanding the Preprocessor Directives

(#include, #define, #error, #if, #else, #elif, #endif,

#ifdef, #ifndef and #undef)

T1: 241 - 249

17. 1 Macros T1: 240, 250

18. 1 Recapitulation and Discussion on Important

Questions

Text Books:

T1 - HerbtzSchildt, "C++: The Complete Reference", Fourth Edition, McGraw Hill.2003

T4 - E Balaguruswamy, "Object Oriented Programming with C++", Tata McGraw-Hill

Education, 2008.

JOURNALS

J1: Computing in science & engineering

UNIT – V

SI.

NO

LECTURE

DURATION

(HR)

TOPICS TO BE COVERED SUPPORT

MATERIALS

1. 1 Using Classes in C++: Principles of Object-

Oriented Programming

T3 : 55 -84, J1

2. 1 Defining & Using Classes, Class Constructors,

Copy Constructors

T4: 144 -164

3. 1 Constructor Overloading, Function overloading

in classes

T1: 361 – 367

4. 1 Class Variables &Functions, Objects as

parameters, Specifying the Protected and Private

Access

T1: 290 – 293

5. 1 Overview of Template classes and their use. T1 : 461 – 487

6. 1 Overview of Function Overloading and

Operator Overloading: Need of Overloading

functions and operators

T1 : 380 – 416

7. 1 Overloading functions by number and type of

arguments

T1: 393 – 398

8. 1 Looking at an operator as a function call T1: 393 – 398

9. 1 Overloading Operators (including assignment

operators, unary operators)

T4: 171 – 200

10. 1 Inheritance, Polymorphism and Exception

Handling: Introduction to Inheritance

T4 : 201 – 248, T1:

419 – 439

11. 1 Multi-Level Inheritance, Multiple Inheritance T4 : 201 – 248, T1:

419 – 439

12. 1 Polymorphism (Virtual Functions, Pure Virtual

Functions),

T1: 440 – 460

13. 1 Basics Exceptional Handling (using catch and

throw, multiple catch statements),

T1: 489 – 510, T4: 380

– 385

14. 1 Catching all exceptions, Restricting exceptions,

Rethrowing exceptions.

T4: 386 – 400

15. 1 Recapitulation and Discussion on Important

Questions

16. 1 Summarization and Discussion of previous ESE

Questions

17. 1 Summarization and Discussion of previous ESE

Questions

18. 1 Discussion of previous ESE Questions

Text Books:

T1 - HerbtzSchildt, "C++: The Complete Reference", Fourth Edition, McGraw Hill.2003

T2 - BjarneStroustrup, "The C++ Programming Language", 4th Edition, Addison-Wesley ,

2013.

T3 - Harry, H. Chaudhary, "Head First C++ Programming: The Definitive Beginner's Guide",

First Create space Inc, O-D Publishing, LLC USA.2014

T4 - E Balaguruswamy, "Object Oriented Programming with C++", Tata McGraw-Hill

Education, 2008.

T5 - Paul Deitel, Harvey Deitel, "C++ How to Program", 8th Edition, Prentice Hall, 2011.

T6 - John R. Hubbard, "Programming with C++", Schaum's Series, 2nd Edition, 2000.

WEB SITES

W1 -http://www.cs.cf.ac.uk/Dave/C/CE.html

W2 - www.cplusplus.com/

W3 - www.cppreference.com/

JOURNALS

J1: Computing in science & engineering

J2: Science of computer programming

J3: IEEE transactions on software engineering

http://www.cs.cf.ac.uk/Dave/C/CE.html
http://www.cplusplus.com/

UNIT - I PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 1/43

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Batch 2016-2019

Subject : PROGRAMMING WITH C and C++ Sub.code : 16MMU304B

History of C / C++

C++ is an object-oriented programming language. It was developed by Bjarne Stroustrup at

AT&T Bell Laboratories in Murray Hill, New Jersey, USA, in the early 1980’s. Stroustrup,

an admirer of Simula67 and a strong supporter of C, wanted to combine the best of both the

languages and create a more powerful language that could support object-oriented

programming features and still retain the power and elegance of C. The result was C++.

Therefore, C++ is an extension of C with a major addition of the class construct feature of

Simula67. Since the class was a major addition to the original C language, Stroustrup

initially called the new language ‘C with classes’. However, later in 1983, the name was

changed to C++. The idea of C++ comes from the C increment operator ++, thereby

suggesting that C++ is an augmented version of C. C+ + is a superset of C. Almost all c

programs are also C++ programs. However, there are a few minor differences that will

prevent a c program to run under C++ complier. We shall see these differences later as and

when they are encountered. The most important facilities that C++ adds on to C are classes,

inheritance, function overloading and operator overloading. These features enable creating

of abstract data types, inherit properties from existing data types and support

polymorphism, thereby making C++ a truly object-oriented language.

Overview of Procedural Programming and Object-Orientation Programming

Procedure-Oriented Programming

In the procedure oriented approach, the problem is viewed as the sequence of things to be

done such as reading, calculating and printing such as cobol, fortran and c. The primary

focus is on functions. A typical structure for procedural programming is shown in figure

below. The technique of hierarchical decomposition has been used to specify the tasks to be

completed for solving a problem.

UNIT - I PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 2/43

Procedure oriented programming basically consists of writing a list of instructions for the

computer to follow, and organizing these instructions into groups known as functions. We

normally use flowcharts to organize these actions and represent the flow of control from

one action to another.

In a multi-function program, many important data items are placed as global so that they

may be accessed by all the functions. Each function may have its own local data. Global

data are more vulnerable to an inadvertent change by a function. In a large program it is

very difficult to identify what data is used by which function. In case we need to revise an

external data structure, we also need to revise all functions that access the data. This

provides an opportunity for bugs to creep in.

Another serious drawback with the procedural approach is that we do not model real world

problems very well. This is because functions are action-oriented and do not really

corresponding to the element of the problem.

Some Characteristics exhibited by procedure-oriented programming are:

• Emphasis is on doing things (algorithms).

• Large programs are divided into smaller programs known as functions.

• Most of the functions share global data.

• Data move openly around the system from function to function.

• Functions transform data from one form to another.

• Employs top-down approach in program design.

Object Oriented Paradigm

The major motivating factor in the invention of object-oriented approach is to remove some

of the flaws encountered in the procedural approach. OOP treats data as a critical element in

the program development and does not allow it to flow freely around the system. It ties data

more closely to the function that operate on it, and protects it from accidental modification

UNIT - I PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 3/43

from outside function. OOP allows decomposition of a problem into a number of entities

called objects and then builds data and function around these objects. The organization of

data and function in object-oriented programs is shown in figure below. The data of an

object can be accessed only by the function associated with that object. However, function

of one object can access the function of other objects.

Organization of data and function in OOP

Some of the features of object oriented programming are:

• Emphasis is on data rather than procedure.

• Programs are divided into what are known as objects.

• Data structures are designed such that they characterize the objects.

• Functions that operate on the data of an object are ties together in the data structure.

• Data is hidden and cannot be accessed by external function.

• Objects may communicate with each other through function.

• New data and functions can be easily added whenever necessary.

• Follows bottom up approach in program design.

Object-oriented programming is the most recent concept among programming paradigms

and still means different things to different people.

Basic concepts of c++

 There are few principle concepts that form the foundation of object-oriented

programming:

1. Object

2. Class

3. Data Abstraction & Encapsulation

4. Inheritance

5. Polymorphism

6. Dynamic Binding

UNIT - I PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 4/43

7. Message Passing

1) Object :

 Object is the basic unit of object-oriented programming. Objects are identified by

its unique name. An object represents a particular instance of a class. There can be more

than one instance of an object. Each instance of an object can hold its own relevant data.

An Object is a collection of data members and associated member functions also known as

methods.

For example whenever a class name is created according to the class an object should be

created without creating object can’t able to use class.

The class of Dog defines all possible dogs by listing the characteristics and behaviors they

can have; the object Lassie is one particular dog, with particular versions of the

characteristics. A Dog has fur; Lassie has brown-and-white fur.

2) Class:

 Classes are data types based on which objects are created. Objects with similar

properties and methods are grouped together to form a Class. Thus a Class represents a set

of individual objects. Characteristics of an object are represented in a class as Properties.

The actions that can be performed by objects become functions of the class and is referred

to as Methods.

When you define a class, you define a blueprint for an object. This doesn't actually define

any data, but it does define what the class name means, that is, what an object of the class

will consist of and what operations can be performed on such an object.

For example consider we have a Class of Cars under which Santro Xing, Alto and WaganR

represents individual Objects. In this context each Car Object will have its own, Model,

Year of Manufacture, Colour, Top Speed, Engine Power etc., which form Properties of the

Car class and the associated actions i.e., object functions like Start, Move, Stop form the

Methods of Car Class.No memory is allocated when a class is created. Memory is allocated

only when an object is created, i.e., when an instance of a class is created.

3) Data abstraction &Encapsulation :

 Encapsulation is placing the data and and its functions into a single unit. While

working with procedural languages, it is not always clear which functions work on which

variables but object-oriented programming provides you framework to place the data and

the relevant functions together in the same object.

 When using Data Encapsulation, data is not accessed directly, it is only accessible

through the functions present inside the class.

Data Abstraction increases the power of programming language by creating user defined

data types. Data Abstraction also represents the needed information in the program without

presenting the details.

Abstraction refers to the act of representing essential features without including the

background details or explanation between them.

UNIT - I PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 5/43

For example, a class Car would be made up of an Engine, Gearbox, Steering objects, and

many more components. To build the Car class, one does not need to know how the

different components work internally, but only how to interface with them, i.e., send

messages to them, receive messages from them, and perhaps make the different objects

composing the class interact with each other.

4) Inheritance :

 One of the most useful aspects of object-oriented programming is code reusability.

As the name suggests Inheritance is he process of forming a new class from an existing

class or base class.

 The base class is also known as parent class or super class, the new class that is

formed is called derived class.

 Derived class is also known as a child class or sub class. Inheritance helps in

reducing the overall code size of the program, which is an important concept in object-

oriented programming.

This is a very important concept of object-oriented programming since this feature

helps to reduce the code size.

It is classifieds into different types, they are

 Single level inheritance

 Multi-level inheritance

 Hybrid inheritance

 Hierarchial inheritance

5) Polymorphism :

 Polymorphism allows routines to use variables of different types at different times.

An operator or function can be given different meanings or functions. Polymorphism refers

to a single function or multi-functioning operator performing in different ways. Poly a

Greek term means the ability to take more than one form. Overloading is one type of

Polymorphism. It allows an object to have different meanings, depending on its context.

When an exiting operator or function begins to operate on new data type, or class, it is

understood to be overloaded.

6) Dynamic binding :

 Binding means connecting one program to another program that is to be executed in

reply to the call. Dynamic binding is also known as late binding. The code present in the

specified program is unknown till it is executed. It contains a concept of Inheritance and

Polymorphism.

7) Message Passing :

 An object-oriented program consists of a set of objects that communicate with each

other. The process of programming in an object-oriented language, therefore, involves the

following basic steps:

1. Creating classes that define objects and their behaviour

2. Creating objects from class definitions and

3. Establishing communication among objects.

UNIT - I PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 6/43

Objects communicate with one another by sending and receiving information much the

same way as people pass messages to one another.

A message for an object is a request for execution of a procedure, and therefore will invoke

a function in the receiving object that generates the desired result . Message passing

involves specifying the name of the object, the name of the function and the information to

be sent.

Using main() function, Compiling and Executing Simple Programs in C++

SimpleC++Program

Let us begin with a simple example of a C++ program that prints a string on the screen.

program1.10.1

#include<iostream> Using namespace std; int main()

{

cout<<” c++ is better than c \n”;

return 0;

}

1.10.1 Program feature

Like C, the C++ program is a collection of function. The above example contain only one

function main(). As usual execution begins at main(). Every C++ program must have a

main(). C++ is a free form language. With a few exception, the compiler ignore carriage

return and white spaces. Like C, the C++ statements terminate with semicolons.

1.10.2 Comments

C++ introduces a new comment symbol // (double slash). Comment start with a double

slash symbol and terminate at the end of the line. A comment may start anywhere in the

line,andwhateverfollowstillthe end of the line is ignored. Note that there is no closing

symbol.

The double slash comment is basically a single line comment. Multiline comments can be

written as follows:

// This is an example of

// C++ programto illustrate

// some of its features

The C comment symbols /*,*/ are still valid and are more suitable for multiline

comments. The following comment is allowed:

UNIT - I PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 7/43

/* This is an example of C++ programto illustrate some of its features

*/

1.10.3 Output operator

The only statement in program1.10.1 is an output statement. The statement

Cout<<”C++ is better than C.”;

Causes the string in quotation marks to be displayed on the screen. This statement

introduces two new C++ features, cout and <<. The identifier cout (pronounced as Cout) is

a predefined object that represents the standard output streamin C++. Here, the

standard output stream represents the screen. It is also possible to redirect the output to

other output devices. The operator << is called the insertion or put to operator.

1.10.4 The iostream File

The following #include directive has been used in the program:

#include <iostream>

The # include directive instructs the compiler to include the contents of the file enclosed

within angular brackets into the source file. The header file iostream.h should be included

at the beginning of all programs that use input/output statements.

1.10.5 Namespace

Namespace is a new concept introduced by the ANSI C++ standards committee. This

defines a scope for the identifiers that are used in a program. For using the identifier defined

in the namespace scope we must include the using directive, like

Using namespace std;

Here, std is the namespace where ANSI C++ standard class libraries are defined. All ANSI

C++ programs must include this directive. This will bring all the identifiers defined in std to

the current global scope. Using and namespace are the new keyword of C++.

1.10.6 Return Type of main()

In C++, main() returns an integer value to the operating system. Therefore, every main () in

UNIT - I PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 8/43

C++ should end with are turn (0) statement; otherwise a warning an error might occur.

Since main() returns an integer type for main() is explicitly specified as int. Note that the

default return type for all function in C++ is int. The following main without type and

return will run with a warning:

main ()

{

…………..

………….

}

1.11 More C++ Statements

Let us consider as lightly more complex C++ program. Assume that we should like to read

two numbers from the keyboard and display their average on the screen. C++ statements to

accomplish this is shown in program1.11.1

AVERAGE OF TWO NUMBERS

#include<iostream.h>// include header file

Using namespace std; Intmain()

{

Float number1, number2,sum, average; Cin>> number1; // Read Numbers Cin>>

number2; // fromkeyboard Sum= number1 + number2;

Average = sum/2;

Cout<< ”Sum= “ << sum<< “\n”;

Cout<< “Average = “ << average << “\n”; Return 0;

} //end of example

The output would be:

Enter two numbers: 6.5 7.5

Sum= 14

Average = 7

1.11.1Variable

The program uses four variables number1, number2, sum and average. They aredeclared as

type float by the statement.

float number1, number2, sum, average;

All variable must be declared before they are used in the program.

UNIT - I PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 9/43

1.11.2 Input Operator

The statement

cin>> number1;

is an input statement and causes the program to wait for the user to type in a number. The

number keyed in is placed in the variable number 1. The identifier cin (pronounced ‘C in’)

is a predefined object in C++ that corresponds to the standard input stream. Here, this

stream represents the keyboard.

The operator >> is known as extraction or get from operator. It extracts (or takes) the value

from the keyboard and assigns it to the variable on its right. This corresponds to a familiar

scanf() operation. Like <<, the operator >> can also be overloaded.

1.11.3 Cascading of I/O Operators

We have used the insertion operator << repeatedly in the last two statements for printing

results.

The statement

Cout<< “Sum= “ << sum<< “\n”;

First sends the string “Sum =” to cout and then sends the value of sum. Finally, it sends the

new line character so that the next output will be in the new line.The multiple use of << in

one statement is called cascading. When cascading an output operator, we should ensure

necessary blank spaces between different items. Using the cascading technique, the last two

statements can be combined as follows:

Cout<< “Sum= “ << sum<< “\n”

<< “Average = “ << average << “\n”;

This is one statement but provides two line of output. If you want only one line of output,

the statement will be:

Cout<< “Sum= “ << sum<< “,”

<< “Average = “ << average << “\n”;

The output will be:

Sum= 14, average = 7

UNIT - I PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 10/43

We can also cascade input operator >> as shown below: Cin>> number1 >> number2;

The values are assigned from left to right.That is, if we key in two values, say, 10 and

20, then 10 will be assigned to munber1 and 20 to number2.

1.12 An Example with Class

One of the major features of C++ is classes. They provide a method of binding together data

and functions which operate on them. Like structures in C, classes are user-defined data

types.

Program1.12.1 shows the use of class in a C++ program.

USE OF CLASS

 #include <iostream.h> // include header file

using namespace std;

class person

{

char name[30]; Int age;

public:

voidgetdata(void);

void display(void);

};

void person :: getdata(void)

{

cout<< “Enter name: “;

cin>> name;

cout<< “Enter age: “;

cin>> age;

UNIT - I PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 11/43

}

Void person : : display(void)

{

cout<< “\nNameame: “ << name;

cout<< “\nAge: “ << age;

}

int main()

{

person p; p.getdata(); p.display();

Return 0;

} //end of example

The output of program is:

Enter Name: Ravinder

Enter age:30

Name:Ravinder

Age: 30

The program define person as a new data of type class. The class person includes two basic

data type items and two function to operate on that data. These functions are called

member function. The main program uses person to declare variables of its type. As

pointed out earlier, class variables are known as objects. Here, p is an object of type

person. Class object are used to invoke the function defined in that class.

1.13 Structure of C++ Program

A sit can be seen from program1.12.1, at ypical C++ program would contain four sections

as shown in fig.1.9. This section may be placed in separate code files and then compiled

independently or jointly.

It is a common practice to organize a program into three separate files. The class

declarations are placed in aheaderfileand the definitions of member functions go into

anotherfile.Thisapproachenablestheprogrammer to separate the abstract specification of the

interface fromthe implementation details (member function definition).

Finally, the main programthat uses the class is places in a third file which “includes: the

previous two files as well as any other file required.

UNIT - I PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 12/43

Member function

Class Definition

Main function Program

Include Files

Class declaration

Member functions definitions

Main function program

Fig 1.9 Structure of a C++ program

This approach is based on the concept of client-server model as shown in fig. 1.10. The

class definition including the member functions constitute the server that provides

services to the main program known as client. The client uses the server through the public

interface of the class.

Fig. 1.10 The client-server model

1.14CreatingtheSourceFile

Like C programs can be created using any text editor. For example, on the UNIX, we can

use viored text editor for creating using any text editor for creating and editing the source

code. On the DOS system, we can use endlin or any other editor available or a word

processor system under non-document mode.

Some systems such as Turboc, C++ provide an integrated environment for developing and

editing programs.

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 13/43

The file name should have a proper file extension to indicate that it is a C++ implementations

use extensions such as .c,.C, .cc, .cpp and .cxx. Turboc C++ and Borland C++ use. C for

C programs and.cpp (Cplusplus) for C++ programs. Zortech C++ system use .cxx while

UNIX AT&T versionuses. C(capitalC) and.cc. The operating system manuals should be

consulted to determine the proper file name extension to be used.

1.15Compiling and Linking

The process of compiling and linking again depends upon the operating system. A few

popular systems are discussed in this section.

Unix AT&T C++

This process of implementation of a C++ program under UNIX is similar to that of a C

program. We should use the “cc” (uppercase) command to compile the program. Remember,

we use lowercase “cc” for compiling C programs. The command

CC example.C

At the UNIX prompt would compile the C++ program source code contained in the file

example.C. The compiler would produce an object file example.o and then automatically

link with the library functions to produce an executable file. The default executable filename

is a. out.

A program spread over multiple files can be compiled as follows:

CC file1.C file2.o

The statement compiles only the file file1.C and links it with the previously compiled file2.o

file. This is useful when only one of the files needs to be modified. The files that are not

modified need not be compiled again.

Data Types, Variables, Constants, Operators and Basic I/O:

Declaring, Defining and Initializing Variables, Scope of Variables

Declaration of variables

A variable provides us with named storage that our programs can manipulate. Each variable

in C++ has a specific type, which determines the size and layout of the variable's memory;

the range of values that can be stored within that memory; and the set of operations that can

be applied to the variable.

The name of a variable can be composed of letters, digits, and the underscore character. It

must begin with either a letter or an underscore. Upper and lowercase letters are distinct

because C++ is case-sensitive:

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 14/43

There are following basic types of variable in C++:

Type Description

bool Stores either value true or false.

char Typically a single octet(one byte). This is an integer type.

Int The most natural size of integer for the machine.

float A single-precision floating point value.

double A double-precision floating point value.

void Represents the absence of type.

wchar_t A wide character type.

C++ also allows defining various other types of variables which we will cover in subsequent

chapters like Enumeration, Pointer, Array, Reference, Data structures, and Classes.

Following section will cover how to define, declare and use various type of variables.

Variable Declaration in C++:

All variables must be declared before use, although certain declarations can be made

implicitly by content. A declaration specifies a type, and contains a list of one or more

variables of that type as follows:

type variable_list;

Here, type must be a valid C++ data type including char, w_char, int, float, double, bool or

any user defined object etc., and variable_list may consist of one or more identifier names

separated by commas. Some valid declarations are shown here:

int i, j, k;

char c, ch;

float f, salary;

double d;

A variable declaration with an initializer is always a definition. This means that storage is

allocated for the variable and could be declared as follows:

int i = 100;

An extern declaration is not a definition and does not allocate storage. In effect, it claims that

a definition of the variable exists elsewhere in the program. A variable can be declared

multiple times in a program, but it must be defined only once. Following is the declaration of

a variable with extern keyword:

extern int i;

Though you can declare a variable multiple times in your C++ program but it can be decalred

only once in a file, a function or a block of code.

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 15/43

Variable Initialization in C++:

Variables are initialized (assigned an value) with an equal sign followed by a constant

expression. The general form of initialization is:

variable_name = value;

Variables can be initialized (assigned an initial value) in their declaration. The initializer

consists of an equal sign followed by a constant expression as follows:

type variable_name = value;

Some examples are:

int d = 3, f = 5; // initializing d and f.

byte z = 22; // initializes z.

double pi = 3.14159; // declares an approximation of pi.

char x = 'x'; // the variable x has the value 'x'.

For declarations without an initializer: variables with static storage duration are implicitly

initialized with NULL (all bytes have the value 0); the initial value of all other variables is

undefined.

It is a good programming practice to initialize variables properly otherwise, sometime

program would produce unexpected result. Try following example which makes use of

various types of variables:

#include <iostream>

using namespace std;

int main ()

{

 // Variable declaration:

int a, b;

int c;

 float f;

 // actual initialization

 a = 10;

 b = 20;

 c = a + b;

cout<< c <<endl ;

 f = 70.0/3.0;

cout<< f <<endl ;

 return 0;

}

When the above code is compiled and executed, it produces following result:

30

23.3333

Lvalues and Rvalues:

There are two kinds of expressions in C++:

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 16/43

1. lvalue : An expression that is an lvalue may appear as either the left-hand or right-

hand side of an assignment.

2. rvalue : An expression that is an rvalue may appear on the right- but not left-hand

side of an assignment.

Variables are lvalues and so may appear on the left-hand side of an assignment. Numeric

literals are rvalues and so may not be assigned and can not appear on the left-hand side.

Following is a valid statement:

int g = 20;

But following is not a valid statement and would generate compile-time error:

10 = 20;

Tokens

C++ Tokens are the smallest individual units of a program.

Following are the C++ tokens : (most of c++ tokens are basically similar to the C tokens)

 Keywords

 Identifiers

 Constants

 Variables

 Operators

Keywords (or reserved words):- These are the words used for special purposes or predefined

tasks. These words should be written in small letters or lowercase letters. Some of the

keyword used in c++ are int, float, char, double, long, void, for, while, do, if, else ...

There are 32 of these keywords, and they are:

autoconst double float int short struct unsigned

break continue else for long signed switch void

case default enumgoto register sizeoftypedef volatile

char do extern if return static union while

There are another 30 reserved words that were not in C, are therefore new to C++,

and they are:

asmdynamic_cast namespace reinterpret_cast try

bool explicit new static_casttypeid

catch false operator template typename

class friend private this using

const_cast inline public throw virtual

delete mutable protected true wchar_t

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 17/43

The following 11 C++ reserved words are not essential when the standard ASCII character

set is being used, but they have been added to provide more readable alternatives for some of

the C++ operators, and also to facilitate programming with character sets that lack characters

needed by C++.

andbitandcomplnot_eqor_eqxor_eq

and_eqbitor not or xor

Identifiers:- refer to the names of variables, functions, arrays, classes etc. created by the

programmer.

There are some rules while defining identifiers:-

i) The first character of identifier should be an alphabet or underscore. The rest can be letters

or digits or underscore.

ii) Special characters except underscore can’t be part of identifiers.

iii) Keywords can’t be used as identifiers however keywords written in uppercase form can

be used as identifiers.

iv) Lower case and upper case letters are distinct.

v) Maximum length of an identifier can be of 31 characters. However the length varies from

one version of compiler to another version.

 Some valid examples:- sum, a1, a2, _1, _a, average, a_b, x123y...

 Some invalid examples:- 1a, a-b, float

Constants:- A value which remain constant throughout the program execution is known as

constant. An identifier can be declared as a constant as illustrated below:-

i) # define N 20

ii) # define PI 3.14

iii) constint M=35; or const m=35;

Note:- When the constant identifier is of type integer, then keyword int is optional. As a

default the identifier is considered as integer. Only one value can be declared as constant at a

time with the keyword const.

Variables:- An identifier whose value can be modified/ altered is known as a variable. A

variable can be declared as shown below.

int a;

float x;

charch;

Here a is a variable of type integer, x is a variable of type float, where asch is a variable of

type char. Values can be assigned with a, x &ch as shown below.

 a=10; x=7.5; ch=’d’; a=a+5; x=x-4;

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 18/43

 Literals:- The constant values used in c++ are known as literals, there are four type of literals

namely.

i) Integer constant:- A value written without fraction part is known as integer constant.

Example: 25, -674, 0 etc.

ii) Floating constant:- A value written with fraction part is floating value. Value of this type

can be written with or without exponent form. Example: 2.34, -9.2154, 1.21E10

iii) Character constant:- A single character written within single quotation marks is known as

character constant. Example: ‘g’, ‘9’, ‘$’ etc

iv) String constant:- It is an array of characters enclosed in double quotation marks. Example:

“Shubham”, “03-aug-2009”. Double quotation mark is a delimiter which determines length of

a string.

Operators:- C++ is rich in supporting many types of operators as illustrated below.

A statement is a command given to the system to carry out a specific task. The statement

consists of operators and operands where operators specify type of operation to be carried on

operand.

Example:

c=a+b;

Here a and b are identifiers whose value is to be added and assigned in c. ‘+’ and ‘=’ are

operators.

Operators in C++

Operator is a special symbol that tells the compiler to perform specific mathematical or

logical Operation.

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Ternary or Conditional Operators

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 19/43

Arithmetic Operators

Given table shows all the Arithmetic operator supported by C Language. Lets suppose

variable A hold 8 and B hold 3.

Operator Example (int A=8, B=3) Result

+ A+B 11

- A-B 5

* A*B 24

/ A/B 2

% A%4 0

Relational Operators

Which can be used to check the Condition, it always return true or false. Lets suppose

variable A hold 8 and B hold 3.

Operators Example (int A=8, B=3) Result

< A<B False

<= A<=10 True

> A>B True

>= A<=B False

== A== B False

!= A!=(-4) True

Logical Operator

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 20/43

Which can be used to combine more than one Condition?. Suppose you want to combined

two conditions A<B and B>C, then you need to use Logical Operator like (A<B) &&

(B>C). Here && is Logical Operator.

Operator Example (int A=8, B=3, C=-10) Result

&& (A<B) && (B>C) False

|| (B!=-C) || (A==B) True

! !(B<=-A) True

Truth table of Logical Operator

C1 C2 C1 && C2 C1 || C2 !C1 !C2

T T T T F F

T F F T F T

F T F T T F

F F F F T T

Assignment operators

Which can be used to assign a value to a variable.Lets suppose variable A hold 8 and B hold

3.

Operator Example (int A=8, B=3) Result

+= A+=B or A=A+B 11

-= A-=3 or A=A+3 5

= A=7 or A=A*7 56

/= A/=B or A=A/B 2

%= A%=5 or A=A%5 3

=a=b Value of b will be assigned to a

Left and Right Shift Operators

 The left shift operator (<<) is overloaded to designate stream output and is called

stream insertion operator.

 The right shift operator (>>) is overloaded to designate stream input and is called

stream extraction operator.

 These operators used with the standard stream object (and with other user defined

stream objects) is listed below:

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 21/43

Operators Brief description

cin
Object of istream class, connected to the standard input device, normally the

keyboard.

cout
Object of ostream class, connected to standard output device, normally the

display/screen.

cerr

Object of the ostream class connected to standard error device. This is

unbuffered output, so each insertion to cerr causes its output to appear

immediately.

clog Same as cerr but outputs to clog are buffered.

Data Types in C++

A data type determines the type and the operations that can be performed on the data. C++

provides various data types and each data type is represented differently within the

computer's memory. The various data types provided by C++ are built-in data types,derived

data types and user-defined data types as shown in Figure.

Built-In Data Types

 The basic (fundamental) data types provided by c++ are integral, floating point and void data

type. Among these data types, theintegral and floating-point data types can be preceded by

several typemodifiers. These modifiers (also known as type qualifiers) are thekeywords that

alter either size or range or both of the data types. Thevarious modifiers are short, long,

signed and unsigned. Bydefault the modifier is signed.

In addition to these basic data types, ANSI C++ has introduced two more data types namely,

bool and wchar_t.

Integral Data Type: The integral data type is used to store integers and includes char

(character) and int (integer) data types.

http://ecomputernotes.com/java/data-type-variable-and-array/explain-data-types-in-java
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
http://ecomputernotes.com/fundamental/input-output-and-memory/what-are-the-different-types-of-ram-explain-in-detail
http://ecomputernotes.com/images/Various-Data-Type-in-C.jpg

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 22/43

Char: Characters refer to the alphabet, numbers and other characters (such as {, @, #, etc.)

defined in the ASCII character set. In C++, the char data type is also treated as an integer data

type as the characters are internally stored as integers that range in value from -128 to 127.

The char data type occupies 1 byte of memory (that is, it holds only one character at a time).

The modifiers that can precede char are signed and unsigned. The various character data

types with their size and range are listed in Table

Int: Numbers without the fractional part represent integer data. In C++, the int data type is

used to store integers such as 4, 42, 5233, -32, -745. Thus, it cannot store numbers such as

4.28, -62.533. The various integer data types with their size and range are listed in Table

Floating-point Data Type: A floating-point data type is used to store real numbers such as 3

.28, 64. 755765, 8.01, -24.53. This data type includes float and double' data types. The

various floating -point data types with their size and range are listed in Table

http://ecomputernotes.com/images/Character-Data-Types.jpg
http://ecomputernotes.com/images/Integer-Data-types.jpg
http://ecomputernotes.com/images/Floating-Point-Data-Types.jpg

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 23/43

Void: The void data type is used for specifying an empty parameter list to a function and

return type for a function. When void is used to specify an empty parameter list, it indicates

that a function does not take any arguments and when it is used as a return type for a

function, it indicates that a function does not return any value. For void, no memory is

allocated and hence, it cannot store anything. As a result, void cannot be used to declare

simple variables, however, it can be used to declare generic pointers.

Bool and wcha_t : The boo1data type can hold only Boolean values, that is; either true or

false, where true represents 1 and false represents O. It requires only one bit of storage,

however, it is stored as an integer in the memory. Thus, it is also considered as an integral

data type. The bool data type is most commonly used for expressing the results of logical

operations performed on the data. It is also used as a return type of a function indicating the

success or the failure of the function.

In addition to char data type, C++ provides another data type wchar_t which is used to store

16- bit wide characters. Wide characters are used to hold large character sets associated with

some non-English languages.

Derived Data Types: Data types that are derived from the built-in data types are known as

derived data types. The various derived data types provided by C++ are arrays, junctions,

references and pointers.

ArrayAn array is a set of elements of the same data type that are referred to by the same

name. All the elements in an array are stored at contiguous (one after another) memory

locations and each element is accessed by a unique index or subscript value. The subscript

value indicates the position of an element in an array.

FunctionA function is a self-contained program segment that carries out a specific well-

defined task. In C++, every program contains one or more functions which can be invoked

from other parts of a program, if required.

ReferenceA reference is an alternative name for a variable. That is, a reference is an alias for

a variable in a program. A variable and its reference can be used interchangeably in a

program as both refer to the same memory location. Hence, changes made to any of them

(say, a variable) are reflected in the other (on a reference).

PointerA pointer is a variable that can store the memory address of another variable. Pointers

allow to use the memory dynamically. That is, with the help of pointers, memory can be

allocated or de-allocated to the variables at run-time, thus, making a program more efficient.

User-Defined Data Types

Various user-defined data types provided by C++ are structures, unions, enumerations and

classes.

Structure, Union and Class: Structure and union are the significant features of C language.

Structure and union provide a way to group similar or dissimilar data types referred to by a

single name. However, C++ has extended the concept of structure and union by incorporating

some new features in these data types to support object -oriented programming.

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 24/43

C++ offers a new user-defined data type known as class, which forms the basis of object-

oriented programming. A class acts as a template which defines the data and functions that

are included in an object of a class. Classes are declared using the keyword class. Once a

class has been declared, its object can be easily created.

Enumeration: An enumeration is a set of named integer constants that specify all the

permissible values that can be assigned to enumeration variables. These set of permissible

values are known as enumerators. For example, consider this statement.

enum country {US, UN, India, China}; // declaring anenum type

In this statement, an enumeration data-type country (country is a tag name), consisting of

enumerators US, UN and so on, is declared. Note that these enumerators represent integer

values, so any arithmetic operation can be performed on them.

By default, the first enumerator in the enumeration data type is assigned the value zero. The

value of subsequent enumerators is one greater than the value of previous enumerator. Hence,

the value of US is 0, value of UN is 1 and so on. However, these default integer values can be

overridden by assigning values explicitly to the enumerators as shown here.

 enum country {US, UN=3, India, china} ;

In this declaration, the value of US is O by default, the value of UN is 3, India is 4 and soon.

Once an enum type is declared, its variables can be declared using this statement.

 countrycountryl, country2;

These variables countryl, country2 can be assigned any of the values specified in enum

declaration only. For example, consider these statements.

 countryl India; // valid

 country2 Japan; // invalid

Though the enumerations are treated as integers internally in C++, the compiler issues a

warning, if an int value is assigned to an enum type. For example, consider these statements.

 Country1 = 3; //warning

 Country1 = UN; / /valid

 Country1 = (country) 3; / /valid

C++ also allows creating special type of enums known as anonymous enums, that is, enums

without using tag name as shown in this statement.

 enum {US, UN=3, India, China};

The enumerators of an anonymous enum can be used directly in the program as shown here.

 int count = US;

The typedef Keyword

 C++ provides a typedef feature that allows to define new data type names for existing data

types that may be built-in, derived or user-defined data types. Once the new name has been

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 25/43

defined, variables can be declared using this new name. For example, consider this

declaration.

 typedefint integer;

In this declaration, a new name integer is given to the data type into This new name now can

be used to declare integer variables as shown here.

 integer i, j, k;

Note that the typedef is used in a program to contribute to the development of a clearer

program. Moreover, it also helps in making machine-dependent programs more portable.

Header Files in C++

Header files contain definitions of Functions and Variables, which is imported or used into

any C++ program by using the pre-processor #include statement. Header file have an

extension ".h" which contains C++ function declaration and macro definition.

Each header file contains information (or declarations) for a particular group of functions.

Like stdio.h header file contains declarations of standard input and output functions available

in C++ which is used for get the input and print the output. Similarly, the header file math.h

contains declarations of mathematical functions available in C++.

Types of Header files

 System header files: It is comes with compiler.

 User header files: It is written by programmer.

Why need of header files

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 26/43

When we want to use any function in our C++ program then first we need to import their

definition from C++ library, for importing their declaration and definition we need to include

header file in program by using #include. Header file include at the top of any C++ program.

For example if we use clrscr() in C++ program, then we need to include, conio.h header file,

because in conio.h header file definition of clrscr() (for clear screen) is written in conio.h

header file.

Syntax

#include<conio.h>

See another simple example why use header files

Syntax

#include<iostream>

int main()

{

using namespace std;

cout<< "Hello, world!" <<endl;

return 0;

}

In above program print message on scree hello world! by using cout but we don't define cout

here actually already cout has been declared in a header file called iostream.

How to use header file in Program

Both user and system header files are include using the pre-processing directive #include. It

has following two forms:

Syntax

#include<file>

This form is used for system header files. It searches for a file named file in a standard list of

system directives.

Syntax

#include"file"

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 27/43

This form used for header files of our own program. It searches for a file named file in the

directive containing the current file.

Note: The use of angle brackets <> informs the compiler to search the compilers include

directory for the specified file. The use of the double quotes "" around the filename inform

the compiler to search in the current directory for the specified file.

Most programs will use iostream, BUT there are many others that are also commonly used.

The older C header file names are prefixed with the letter 'c'. Here are some of the most

common.

Input / Output

#include

<iostream>

Stream I/O. cout and cin, istream and ostream, and endl, fixed, and showpoint

manipulators.

#include

<iomanip>

More I/O manipulaters: eg, setw(w) and setprecision(p).

#include

<fstream>

File I/O. ifstream and ofstream.

#include

<sstream>

I/O to and from strings. istringstream and ostringstream.

C functions

#include

<cassert>

assert macro.

#include

<cstring>

C-string (array of chars) functions (strcpy(), ...).

#include

<cctype>

char functions.

#include

<cstdlib>

abs(), exit(), ...

#include

<climits>

CHAR_BIT (bits per char), CHAR_MIN, CHAR_MAX, SHRT_MIN,

SHRT_MAX, INT_MIN, INT_MAX, LONG_MIN, LONG_MAX, ... C++

defines a numeric_limits template.

#include

<cfloat>

FLT_MIN, FLT_MAX, FLT_DIG, DBL_MIN, DBL_MAX, DBL_DIG, ...

C++ defines a numeric_limits template.

STL (Standard Template Library)

#include

<string>

String type and functions.

#include

<vector>

Fast insertion/deletion at back, random access. Implementation: dynamic

array allocation/reallocation.

#include

<list>

Fast insertion/deletion everywhere. No direct access. Implementation: doubly

linked list.

https://www.uow.edu.au/~lukes/TEXTBOOK/notes-cpp/io/omanipulators.html
https://www.uow.edu.au/~lukes/TEXTBOOK/notes-cpp/strings/stringstream.html
https://www.uow.edu.au/~lukes/TEXTBOOK/notes-cpp/strings/header-cstring.html
https://www.uow.edu.au/~lukes/TEXTBOOK/notes-cpp/strings/header-cctype.html
https://www.uow.edu.au/~lukes/TEXTBOOK/notes-cpp/strings/header-string.html
https://www.uow.edu.au/~lukes/TEXTBOOK/notes-cpp/stl-containers/vector/header-vector.html

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 28/43

#include

<deque>

Double-ended queue with fast insertion/deletion at front and back, direct

access (one-level indirection). Implementation: multiple dynamically

allocated blocks.

#include

<stack>

stack - LIFO access, based on deque.

#include

<queue>

queue (FIFO, based on deque) and priority_queue (retrieval of highest priority

element first, based on vector).

#include

<map>

map and mulitmap classes. Fast lookup based on key yields single/multiple

entries. Implementation: balanced binary tree.

#include

<set>

set and multiset containing single/multiple values. Fast lookup.

Implementation: balanced binary tree.

Control Statements

Decision making structures require that the programmer specify one or more conditions to be

evaluated or tested by the program, along with a statement or statements to be executed if the

condition is determined to be true, and optionally, other statements to be executed if the

condition is determined to be false.

Following is the general from of a typical decision making structure found in most of the

programming languages:

C++ programming language provides following types of decision making statements

Statement Description

if statement

An if statement consists of a boolean expression followed by one

or more statements.

if...else statement

An if statement can be followed by an optional else statement,

which executes when the boolean expression is false.

switch statement

A switch statement allows a variable to be tested for equality

against a list of values.

nested if statements

You can use one if or else if statement inside another if or else if

statement(s).

nested switch statements

You can use one swicth statement inside another switch

statement(s).

The ? : Operator:

http://www.tutorialspoint.com/cplusplus/cpp_if_statement.htm
http://www.tutorialspoint.com/cplusplus/cpp_if_else_statement.htm
http://www.tutorialspoint.com/cplusplus/cpp_switch_statement.htm
http://www.tutorialspoint.com/cplusplus/cpp_nested_if.htm
http://www.tutorialspoint.com/cplusplus/cpp_nested_switch.htm

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 29/43

We have covered conditional operator ? : in previous chapter which can be used to

replace if...elsestatements. It has the following general form:

Exp1?Exp2:Exp3;

Where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The value of a ?expression is determined like this: Exp1 is evaluated. If it is true, then Exp2

is evaluated and becomes the value of the entire ?expression. If Exp1 is false, then Exp3 is

evaluated and its value becomes the value of the expression.

If statement

An if statement consists of a boolean expression followed by one or more statements.

Syntax:

The syntax of an if statement in C++ is:

if(boolean_expression)

{

// statement(s) will execute if the boolean expression is true

}

If the boolean expression evaluates to true, then the block of code inside the if statement will

be executed. If boolean expression evaluates to false, then the first set of code after the end of

the if statement (after the closing curly brace) will be executed.

Flow Diagram:

Example:

#include<iostream>

usingnamespacestd;

int main ()

{// local variable declaration:

int a =10;

// check the boolean condition

if(a <20)

{

// if condition is true then print the following

cout<<"a is less than 20;"<<endl;

http://www.tutorialspoint.com/cplusplus/cpp_conditional_operator.htm

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 30/43

}

cout<<"value of a is : "<< a <<endl;

return0;

}

When the above code is compiled and executed, it produces the following result:

ais less than 20;

value of a is:10

if-else statement

An if statement can be followed by an optional else statement, which executes when the

boolean expression is false.

Syntax:

The syntax of an if...else statement in C++ is:

if(boolean_expression)

{

// statement(s) will execute if the boolean expression is true

}

else

{

// statement(s) will execute if the boolean expression is false

}

If the boolean expression evaluates to true, then the if block of code will be executed,

otherwise else block of code will be executed.

Flow Diagram:

Example:

#include<iostream>

usingnamespacestd;

int main ()

{

// local variable declaration:

int a =100;

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 31/43

// check the boolean condition

if(a <20)

{

// if condition is true then print the following

cout<<"a is less than 20;"<<endl;

}

else

{

// if condition is false then print the following

cout<<"a is not less than 20;"<<endl;

}

cout<<"value of a is : "<< a <<endl;

return0;

}

When the above code is compiled and executed, it produces the following result:

aisnot less than 20;

value of a is:100

The if...else if...else Statement:

An if statement can be followed by an optional else if...else statement, which is very usefull

to test various conditions using single if...else if statement.

When using if , else if , else statements there are few points to keep in mind.

 An if can have zero or one else's and it must come after any else if's.

 An if can have zero to many else if's and they must come before the else.

 Once an else if succeeds, none of he remaining else if's or else's will be tested.

Syntax:

The syntax of an if...else if...else statement in C++ is:

if(boolean_expression1)

{

// Executes when the boolean expression 1 is true

}

elseif(boolean_expression2)

{// Executes when the boolean expression 2 is true

}

elseif(boolean_expression3)

{// Executes when the boolean expression 3 is true

}

else

{// executes when the none of the above condition is true.

}

Example:

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 32/43

#include<iostream>

usingnamespacestd;

int main ()

{// local variable declaration:

int a =100;

// check the boolean condition

if(a ==10)

{// if condition is true then print the following

cout<<"Value of a is 10"<<endl;

}

elseif(a ==20)

{// if else if condition is true

cout<<"Value of a is 20"<<endl;

}

elseif(a ==30)

{// if else if condition is true

cout<<"Value of a is 30"<<endl;

}

else

{// if none of the conditions is true

cout<<"Value of a is not matching"<<endl;

}

cout<<"Exact value of a is : "<< a <<endl;

return0;

}

When the above code is compiled and executed, it produces the following result:

Value of a isnot matching

Exact value of a is:100

Switch- case

A switch statement allows a variable to be tested for equality against a list of values. Each

value is called a case, and the variable being switched on is checked for each case.

Syntax:

The syntax for a switch statement in C++ is as follows:

switch(expression){

case constant-expression :

statement(s);

break;//optional

case constant-expression :

statement(s);

break;//optional

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 33/43

// you can have any number of case statements.

default://Optional

statement(s);

}

The following rules apply to a switch statement:

 The expression used in a switch statement must have an integral or enumerated type,

or be of a class type in which the class has a single conversion function to an integral or

enumerated type.

 You can have any number of case statements within a switch. Each case is followed

by the value to be compared to and a colon.

 The constant-expression for a case must be the same data type as the variable in the

switch, and it must be a constant or a literal.

 When the variable being switched on is equal to a case, the statements following that

case will execute until a break statement is reached.

 When a break statement is reached, the switch terminates, and the flow of control

jumps to the next line following the switch statement.

 Not every case needs to contain a break. If no break appears, the flow of control

will fall throughto subsequent cases until a break is reached.

 A switch statement can have an optional default case, which must appear at the end

of the switch. The default case can be used for performing a task when none of the cases is

true. No break is needed in the default case.

Flow Diagram:

Example:

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 34/43

#include<iostream>

usingnamespacestd;

int main ()

{

// local variable declaration:

char grade ='D';

switch(grade)

{

case'A':

cout<<"Excellent!"<<endl;

break;

case'B':

case'C':

cout<<"Well done"<<endl;

break;

case'D':

cout<<"You passed"<<endl;

break;

case'F':

cout<<"Better try again"<<endl;

break;

default:

cout<<"Invalid grade"<<endl;

}

cout<<"Your grade is "<< grade <<endl;

return0;

}

This would produce the following result:

You passed

Your grade is D

LOOPS:

While loop

A while loop statement repeatedly executes a target statement as long as a given condition is

true.

Syntax:

The syntax of a while loop in C++ is:

while(condition)

{

statement(s);

}

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 35/43

Here, statement(s) may be a single statement or a block of statements. The condition may be

any expression, and true is any non-zero value. The loop iterates while the condition is true.

When the condition becomes false, program control passes to the line immediately following

the loop.

Flow Diagram:

Here, key point of the while loop is that the loop might not ever run. When the condition is

tested and the result is false, the loop body will be skipped and the first statement after the

while loop will be executed.

Example:

#include<iostream>

usingnamespacestd;

int main ()

{

// Local variable declaration:

int a =10;

// while loop execution

while(a <20)

{

cout<<"value of a: "<< a <<endl;

a++;

}

return0;

}

When the above code is compiled and executed, it produces the following result:

value of a:10

value of a:11

value of a:12

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 36/43

value of a:13

value of a:14

value of a:15

value of a:16

value of a:17

value of a:18

value of a:19

for loop

A for loop is a repetition control structure that allows you to efficiently write a loop that

needs to execute a specific number of times.

Syntax:

The syntax of a for loop in C++ is:

for(init; condition; increment)

{

statement(s);

}

Here is the flow of control in a for loop:

 The init step is executed first, and only once. This step allows you to declare and

initialize any loop control variables. You are not required to put a statement here, as long as a

semicolon appears.

 Next, the condition is evaluated. If it is true, the body of the loop is executed. If it is

false, the body of the loop does not execute and flow of control jumps to the next statement

just after the for loop.

 After the body of the for loop executes, the flow of control jumps back up to

the incrementstatement. This statement allows you to update any loop control variables. This

statement can be left blank, as long as a semicolon appears after the condition.

 The condition is now evaluated again. If it is true, the loop executes and the process

repeats itself (body of loop, then increment step, and then again condition). After the

condition becomes false, the for loop terminates.

Flow Diagram:

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 37/43

Example:

#include<iostream>

usingnamespacestd;

int main ()

{

// for loop execution

for(int a =10; a <20; a = a +1)

{

cout<<"value of a: "<< a <<endl;

}

return0;

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Do..while

Unlike for and while loops, which test the loop condition at the top of the loop,

the do...while loop checks its condition at the bottom of the loop.

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to

execute at least one time.

Syntax:

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 38/43

The syntax of a do...while loop in C++ is:

do

{

statement(s);

}while(condition);

Notice that the conditional expression appears at the end of the loop, so the statement(s) in

the loop execute once before the condition is tested.

If the condition is true, the flow of control jumps back up to do, and the statement(s) in the

loop execute again. This process repeats until the given condition becomes false.

Flow Diagram:

Example:

#include<iostream>

usingnamespacestd;

int main ()

{// Local variable declaration:

int a =10;

// do loop execution

do

{cout<<"value of a: "<< a <<endl;

a = a +1;

}while(a <20);

return0;

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 39/43

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

UNCONTIONAL JUMP STATEMENTS

 C/C++ has four statements that perform an unconditional control transfer. These are

return(), goto, break and continue. Of these return() is used only in functions. The goto and

return() may be used anywhere in the program but continue and break statements may be

used only in conjunction with a loop statement. In ‘switch case’ ‘break’ is used most

frequently.

Go to Statement :

A goto statement provides an unconditional jump from the goto to a labeled statement in the

same function.

NOTE: Use of goto statement is highly discouraged because it makes difficult to trace the

control flow of a program, making the program hard to understand and hard to modify. Any

program that uses a goto can be rewritten so that it doesn't need the goto.

Syntax:

The syntax of a goto statement in C++ is:

goto label;

..

label: statement;

Where label is an identifier that identifies a labeled statement. A labeled statement is any

statement that is preceded by an identifier followed by a colon (:).

Flow Diagram:

Example:

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 40/43

#include<iostream.h>

usingnamespacestd;

int main ()

{

// Local variable declaration:

int a =10;

// do loop execution

LOOP:do

{if(a ==15)

{

// skip the iteration.

a = a +1;

goto LOOP;

}

cout<<"value of a: "<< a <<endl;

a = a +1;

}while(a <20);

return0;

}

When the above code is compiled and executed, it produces the following result:

value of a:10

value of a:11

value of a:12

value of a:13

value of a:14

value of a:16

value of a:17

value of a:18

value of a:19

One good use for the goto is to exit from a deeply nested routine. For example, consider the

following code fragment:

for(...){

for(...){

while(...){

if(...)goto stop;

.

}

}

}

stop:

cout<<"Error in program.\n";

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 41/43

Eliminating the goto would force a number of additional tests to be performed.

Break

Syntax:

The syntax of a break statement in C++ is:

break;

Flow Diagram:

Example:

#include<iostream>

usingnamespacestd;

int main ()

{

// Local variable declaration:

int a =10;

// do loop execution

do

{

cout<<"value of a: "<< a <<endl;

a = a +1;

if(a >15)

{

// terminate the loop

break;

}

}while(a <20);

return0;

}

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 42/43

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

The break statement has the following two usages in C++:

 When the break statement is encountered inside a loop, the loop is immediately

terminated and program control resumes at the next statement following the loop.

 It can be used to terminate a case in the switch.

If you are using nested loops (i.e., one loop inside another loop), the break statement will stop

the execution of the innermost loop and start executing the next line of code after the block.

Continue

The continue statement works somewhat like the break statement. Instead of forcing

termination, however, continue forces the next iteration of the loop to take place, skipping

any code in between.

For the for loop, continue causes the conditional test and increment portions of the loop to

execute. For the while and do...while loops, program control passes to the conditional tests.

The syntax of a continue statement in C++ is:

continue;

Example:

#include<iostream>

usingnamespacestd;

int main ()

{

// Local variable declaration:

int a =10;

// do loop execution

16MMU304B PROGRAMMING WITH C and C++ (2016-2017 batch) UNIT - I

D. Surya Prabha, Department of Computer Applications, KAHE 43/43

do

{

if(a ==15)

{

// skip the iteration.

a = a +1;

continue;

}

cout<<"value of a: "<< a <<endl;

a = a +1;

}while(a <20);

return0;

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Batch 2016 – 2019

16MMU304B Programming with C and C++

Part - B

(Each Question carries 2 marks)

1. What is the use of inheritance?

2. What is scope resolution operator? Give its syntax

3. Write the merits of encapsulation in OOPS.

4. Give some differences between variables and constants.

5. List the rules for naming an identifier in C++.

6. Write the general structure of a C++ program

7. What is Data Abstraction?

8. Define polymorphism.

9. Give the difference between else..if ladder and switch statements.

10. What is inline function? Give its syntax?

11. What do you mean by message passing?

12. List the advantages of OOPs.

13. Name the demerits of Structured programming over OOP.

14. Differentiate break and continue statements.

15. Discuss and analyze the merits of object oriented programming over structured

programming with appropriate examples.

16. Describe the major parts of a c++ program and explain with an example program.

17. Describe the various control structures used in c++ with syntax and example.

18. Discuss in detail about the benefits of oops concept.

19. Write in detail about method overloading with an example program.

20. What is OOP? How is it different from procedure-oriented programming?

21. Give the evolution diagram of OOPS concept.

22. What is Procedure oriented language?

23. Give some characteristics of procedure-oriented language.

24. Write any four features of OOPS.

25. What are the basic concepts of OOS?

26. What are objects?

27. What is a class?

28. What is encapsulation?

29. What is data abstraction?

30. What are data members and member functions?

31. What is dynamic binding or late binding?

32. Write the process of programming in an object-oriented language?

33. List out the advantages of OOPS.

34. What are the features required for object-based programming Language?

35. What are tokens?

Part - C

(Each Question carries 6 marks)

1. Explain the concept of iterative statements in detail with a suitable example.

2. Illustrate a simple program to convert the Celsius into Fahrenheit.

3. Illustrate in detail the simple expression statements with suitable example program.

4. How to declare and initialize references? Explain with example.

5. Explain the conditional statements in detail with an appropriate example.

6. List out the characteristics of object oriented and procedure oriented programming.

7. Explain the basic concepts of object oriented programming in detail with an example.

8. Write a program to print the table using for loop.

9. Write a program to calculate the simple interest of a given values.

10. Explain the concept of operators in detail with a suitable example.

11. Describe the use of declaring and dereferencing pointers to simple variables.

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021
DEPARTMENT OF COMPUTER APPLICATIONS

Batch 2016 – 2019
Subject : Programming with C and C++ Subject Code: 16MMU304B

UNIT - I

S.No Questions opt1 opt2 opt3 opt4 Answer

1
The decomposition of a problem into a number of entities

called___________
 objects classes methods messages objects

2 OOPS follows______________ approach in program design bottom-up top-down middle top bottom-up

3 Objects take up ______________in the memory space address memory bytes space

4
_________________is a collection of objects of similar

type
 Objects methods classes messages classes

5
We can create ____________of objects belonging to that

class
1 2 10 any number any number

6
The wrapping up of data & function into a single unit is

known as _______________
 Polymorphism encapsulation functions data members encapsulation

7
__________________refers to the act of representing

essential features without including the background details

or explanations

 encapsulation inheritance
Dynamic

binding
 Abstraction Abstraction

8 Attributes are sometimes called______________ data members methods messages functions data members

9
The functions operate on the data are

called______________
 methods data members messages classes methods

10
______________is the process by which objects of one class

acquire the properties of objects of another class
 polymorphism encapsulation data binding Inheritance Inheritance

11
__________________means the ability to take more than

one form
 polymorphism encapsulation data binding Inheritance polymorphism

12

The process of making an operator to exhibit different

behaviors in different instances is known as

function

overloading

operator

overloading

method

overloading

message

overloading

operator

overloading

13
Single function name can be used to handle different types

of tasks is known as ___________

function

overloading

operator

overloading
 polymorphism encapsulation

operator

overloading

14
_______________means that the code associated with a

given procedure call is not known until the time of the call

at run-time.

 late binding Dynamic binding Static binding random binding Dynamic binding

15 Objects can be___________ created
created &

destroyed
 permanent temporary

created &

destroyed

16
______________helps the programmer to build secure

programs
 Dynamic binding Data hiding Data building message passing Data hiding

17

_________________techniques for communication between

objects makes the interface descriptions with external

systems much simpler

 message passing Data binding Encapsulation Data passing message passing

18 Variables are declared in_________________ only in main()
anywhere in the

scope

before the

main() only

only at the

beginning

anywhere in the

scope

19 How many sections in C++? 2 4 1 5 4

20
____________________refers to permit initialization of the

variables at run time

Dynamic

initialization
 Dynamic binding Data binding Dynamic message

Dynamic

initialization

21
_____________________provides an alias for a previously

defined variable
 static variable Dynamic variable

reference

variable

address of an

variable
 reference variable

22
Reference variable must be initialized at the time of

 declaration assigning initialization running declaration

23 The ___________________is an exit-controlled loop while do-while for switch do-while

24 The ________________is an entry-entrolled loop while do-while for switch for

25 ____________________is an entry-controlled one while do-while for switch while

26
Error checking does not occur during compilation if we are

using_______________
 functions macros

pre-defined

functions
 operators macros

27
____________________is a function that is expanded in

line when it is invoked
 macros inline function

predefined

function

preprocessor

macros
 inline function

28
________________refers to the use of same thing for

different purposes
 overloading Dynamic binding message loading none overloading

29
_________________are extensively used for handling class

objects

overloaded

functions
 methods objects messages

overloaded

functions

30
____________________is used to reduce the number of

functions to be defined
 default arguments methods objects classes default arguments

31 Control structures are said to be_______________ programs
structured

programs
 statements case statements

structured

programs

32 ________________________is a decision making statement for jump break if if

33 The bool type data occupies ___________byte in memory two one three four one

34 if-else-if ladder sometimes called________________ if-else-if nested nested-if-else-if
if-else-if-

staircase
 if-else-if if-else-if-staircase

35
How many statements are used to perform an unconditional

transfer?
2 3 4 5 4

36 The label must start with___________ character __ number alphanumeric character

37
 ________________statement is frequently used to

terminate the loop in the switch case()
 jump goto continue break break

38 ______________statement does not require any condition for if goto while goto

39

____________statement is used to transfer the control t

pass on

 t the beginning of the block/loop

 break jump goto continue continue

40
________________statement is a multiway branch

statement
 for switch if while switch

41
Every case statement in switch case statement terminates

with
 ; : , >> :

42 How many types of loop control structure exist in c++? 1 3 2 4 3

43
The expression are separated by ____________in the for

loop
 : ; , ++ ;

44 Test is performed at the ____________of the for loop. top middle end program terminates top

45
Condition is checked at the ____________of the loop in the

do-while statement.
 beginning end middle program terminates end

46 Every expression always return____________ 0 or 1 1 or 2 -1 or 0 -1 or 2 0 or 1

47 Which of the following loop statement uses 2 keyword? do-while loop for loop if loop while loop do-while loop

48 The meaning of if(1) is________________ always false always true both(a) & (b) flase always true

49 The for loop comprises of ______________actions 2 3 1 4 3

50
_____________statement present at the bottom of the switch

case statements
 default case label while default

51

__________________is an assignment statement that is

used

 to set the loop control variables

 Increment declaring Initialization decrement Initialization

52
Which of the following control expressions are valid for an

of statement ?

an integer

expression

a Boolean

expression
 either A or B Neither A nor B

a Boolean

expression

53
______ is a subroutine that may include one or more

statements designed to perform a specific task
structure function program instruction function

54
______ section contains all the user defined functions that

are called in the main function
link documentation definition subprogram subprogram

55
___ is a group of related data items that share a common

name
variables array function structure array

56 A ______ is an array of characters string variables function pointers string

57

When the compiler assigns a character string to a character

array it automatically supplies a ___ character at end of the

string

/ null dot * null

58 ____ function joins two strings together strcat strcmp strcpy strlen strcat

59
____ function compares two strings identified by the

arguments
strcat strcmp strcpy strlen strcmp

60
strcmp function returns the value______ if the arguments

are equal
zero one two three zero

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 1/19

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Subject : PROGRAMMING WITH C and C++ Sub.code : 16MMU304B

2.1 INTRODUCTION

Functions are the building blocks of C++ programs where all the program activity occurs.

Function is a collection of declarations and statements.

Monolethic program (a large single list of instructions) becomes difficult to understand. For

this reason functions are used. A function has a clearly defined objective (purpose) and a

clearly defined interface with other functions in the program. Reduction in program size is

another reason for using functions. The functions code is stored in only one place in memory,

even though it may be executed as many times as a user needs.

The following program illustrates the use of a function :

//to display general message using function

#include<iostream.h>

include<conio.h>

void main()

{

void disp(); //function prototype clrscr(); //clears the screen disp(); //function call

getch(); //freeze the monitor

}

//function definition void disp()

{

cout<<”Welcome to the GJU of S&T\n”;

cout<<”Programming is nothing but logic implementation”;

}

2.2 FUNCTION DEFINITION AND DECLARATION

In C++, a function must be defined prior to it’s use in the program. The function definition

contains the code for the function. The general syntax of a function definition in C++ is

shown below:

Type name_of_the_function (argument list)

{

//body of the function

}

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 2/19

Here, the type specifies the type of the value to be returned by the function. It may be any

valid C++ data type. When no type is given, then the compiler returns an integer value from

the function.

Name_of_the_function is a valid C++ identifier (no reserved word allowed) defined by the

user and it can be used by other functions for calling this function.

Argument list is a comma separated list of variables of a function through which the function

may receive data or send data when called from other function. The following function

illustrates the concept of function definition:

//function definition add()

void add()

{

int a,b,sum;

cout<<”Enter two integers”<<endl;

cin>>a>>b;

sum=a+b;

cout<<”\nThe sum of two numbers is “<<sum<<endl;

}

The above function add () can also be coded with the help of arguments of parameters as

shown below:

//function definition add()

void add(int a, int b) //variable names are must in definition

{

int sum;

sum=a+b;

cout<<”\nThe sum of two numbers is “<<sum<<endl;

}

2.3 ARGUMENTS TO A FUNCTION

Arguments(s) of a function is (are) the data that the function receives when called/invoked

from another function.

2.3.1 PASSING ARGUMENTS TO A FUNCTION

It is not always necessary for a function to have arguments or parameters. The functions add (

) and divide () did not contain any arguments. The following example illustrates the concept

of passing arguments to function SUMFUN ():

// demonstration of passing arguments to a function

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 3/19

#include<iostream.h>

void main ()

{

float x,result; //local variables int N;

formal parameters

Semicolon here float SUMFUN(float x, int N); //function declaration

return type

………………………….

………………………….

result = SUMFUN(X,N); //function declaration

}

//function SUMFUN() definition

 No semicolon here float SUMFUN(float x,int N) //function declaration

{

………………………….

…………………………. Body of the function

………………………….

}

No semicolon here

2.3.2 DEFAULT ARGUMENTS

C++ allows a function to assign a parameter the default value in case no argument for that

parameter is specified in the function call. For example.

// demonstrate default arguments function

#include<iostream.h>

int calc(int U)

{

If (U % 2 = = 0)

return U+10; Else

return U+2

}

Void pattern (char M, int B=2)

{

for (int CNT=0;CNT<B; CNT++) cout<calc(CNT) <<M; cout<<endl;

}

Void main ()

{ Pattern(‘*’); Pattern (‘#’,4)’ Pattern (;@;,3);

}

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 4/19

2.3.3 CONSTANT ARGUMENTS

A C++ function may have constant arguments(s). These arguments(s) is/are treated as

constant(s). These values cannot be modified by the function.

For making the arguments(s) constant to a function, we should use the keyword const as

given below in the function prototype :

Void max(const float x, const float y, const float z);

Here, the qualifier const informs the compiler that the arguments(s) having const should not

be modified by the function max (). These are quite useful when call by reference method is

used for passing arguments.

2.4 CALLING FUNCTIONS

In C++ programs, functions with arguments can be invoked by:

(a) Value

(b) Reference

Call by Value: - In this method the values of the actual parameters (appearing in the function

call) are copied into the formal parameters (appearing in the function definition), i.e., the

function creates its own copy of argument values and operates on them. The following

program illustrates this concept :

//calculation of compound interest using a function

#include<iostream.h>

#include<conio.h>

#include<math.h> //for pow()function

Void main()

{

Float principal, rate, time; //local variables

Void calculate (float, float, float); //function prototype clrscr();

Cout<<”\nEnter the following values:\n”; Cout<<”\nPrincipal:”;

Cin>>principal;

Cout<<”\nRate of interest:”; Cin>>rate;

Cout<<”\nTime period (in yeaers) :”; Cin>>time;

Calculate (principal, rate, time); //function call

Getch ();

}

//function definition calculate()

Void calculate (float p, float r, float t)

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 5/19

{

Float interest; //local variable Interest = p* (pow((1+r/100.0),t))-p; Cout<<”\nCompound

interest is : “<<interest;

}

Call by Reference: - A reference provides an alias – an alternate name – for the variable, i.e.,

the same variable’s value can be used by two different names : the original name and the alias

name.

In call by reference method, a reference to the actual arguments(s) in the calling program is

passed (only variables). So the called function does not create its own copy of original

value(s) but works with the original value(s) with different name. Any change in the original

data in the called function gets reflected back to the calling function.

It is useful when you want to change the original variables in the calling function by the

called function.

//Swapping of two numbers using function call by reference

#include<iostream.h>

#include<conio.h>

void main()

{

clrscr();

int num1,num2;

void swap (int &, int &); //function prototype cin>>num1>>num2;

cout<<”\nBefore swapping:\nNum1: “<<num1;

cout<<endl<<”num2: “<<num2;

swap(num1,num2); //function call cout<<”\n\nAfter swapping : \Num1: “<<num1;

cout<<endl<<”num2: “<<num2;

getch();

}

//function fefinition swap()

void swap (int & a, int & b)

{

int temp=a;

a=b;

b=temp;

}

2.5 INLINE FUNCTIONS

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 6/19

These are the functions designed to speed up program execution. An inline function is

expanded (i.e. the function code is replaced when a call to the inline function is made) in the

line where it is invoked. You are familiar with the fact that in case of normal functions, the

compiler have to jump to another location for the execution of the function and then the

control is

returned back to the instruction immediately after the function call statement. So execution

time taken is more in case of normal functions. There is a memory penalty in the case of an

inline function.

The system of inline function is as follows :

inline function_header

{

body of the function

}

For example,

//function definition min()

inline void min (int x, int y)

cout<< (x < Y? x : y);

}

Void main()

{

int num1, num2;

cout<<”\Enter the two intergers\n”;

cin>>num1>>num2;

min (num1,num2; //function code inserted here

}

An inline function definition must be defined before being invoked as shown in the above

example. Here min () being inline will not be called during execution, but its code would be

inserted into main () as shown and then it would be compiled.

If the size of the inline function is large then heavy memory pentaly makes it not so useful

and in that case normal function use is more useful.

The inlining does not work for the following situations :

1. For functions returning values and having a loop or a switch or a goto statement.

2. For functions that do not return value and having a return statement.

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 7/19

3. For functions having static variable(s).

4. If the inline functions are recursive (i.e. a function defined in terms of itself).

The benefits of inline functions are as follows :

1. Better than a macro.

2. Function call overheads are eliminated.

3. Program becomes more readable.

4. Program executes more efficiently.

2.6 SCOPE RULES OF FUNCTIONS AND VARIABLES

The scope of an identifier is that part of the C++ program in which it is accessible. Generally,

users understand that the name of an identifier must be unique. It does not mean that a name

can’t be reused. We can reuse the name in a program provided that there is some scope by

which it can be distinguished between different cases or instances.

In C++ there are four kinds of scope as given below :

1. Local Scope

2. Function Scope

3. File Scope

4. Class Scope

Local Scope:- A block in C++ is enclosed by a pair of curly braces i.e., ‘{‘ and ‘}’. The

variables declared within the body of the block are called local variables and can be used only

within the block. These come into existence when the control enters the block and get

destroyed when the control leaves the closing brace. You should note the variable(s) is/are

available to all the enclosed blocks within a block.

For example,

int x=100;

{ cout<<x<<endl; Int x=200;

{ cout<<x<<endl; int x=300;

{

cout<<x<<endl;

}

}

cout<<x<<endl;

}

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 8/19

Function Scope : It pertains to the labels declared in a function i.e., a label can be used inside

the function in which it is declared. So we can use the same name labels in different

functions.

For example,

//function definition add1()

void add1(int x,int y,int z)

{

int sum = 0; sum = x+y+z; cout<<sum;

}

//function definition add2()

coid add2(float x,float y,float z)

{

Float sum = 0.0; sum = x+y+z; cout<<sum;

}

Here the labels x, y, z and sum in two different functions add1 () and add2 () are declared

and used locally.

File Scope : If the declaration of an identifier appears outside all functions, it is available to

all the functions in the program and its scope becomes file scope. For Example,

int x;

void square (int n)

{

cout<<n*n;

}

void main ()

{

int num;

…………........... cout<<x<<endl; cin>>num; squaer(num);

…………...........

}

Here the declarations of variable x and function square () are outside all the functions so

these can be accessed from any place inside the program. Such variables/functions are called

global.

Class Scope : In C++, every class maintains its won associated scope. The class members are

said to have local scope within the class. If the name of a variable is reused by a class

member, which already has a file scope, then the variable will be hidden inside the class.

Member functions also have class scope.

2.7 DEFINITION AND DECLARATION OF A CLASS

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 9/19

A class in C++ combines related data and functions together. It makes a data type which is

used for creating objects of this type.

Classes represent real world entities that have both data type properties

(characteristics) and associated operations (behavior).

The syntax of a class definition is shown below :

Class name_of _class

{

private : variable declaration; // data member

Function declaration; // Member Function (Method)

protected: Variable declaration; Function declaration;

public : variable declaration;

Function declaration;

};

Here, the keyword class specifies that we are using a new data type and is followed by the

class name.

The body of the class has two keywords namely :

(i) private (ii) public

In C++, the keywords private and public are called access specifiers. The data hiding concept

in C++ is achieved by using the keyword private. Private data and functions can only be

accessed from within the class itself. Public data and functions are accessible outside the

class also.

Data hiding not mean the security technique used for protecting computer databases. The

security measure is used to protect unauthorized users from performing any operation

(read/write or modify) on the data.

The data declared under Private section are hidden and safe from accidental manipulation.

Though the user can use the private data but not by accident.

The functions that operate on the data are generally public so that they can be accessed from

outside the class but this is not a rule that we must follow.

2.8 MEMBER FUNCTION DEFINITION

The class specification can be done in two part :

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 10/19

(i) Class definition. It describes both data members and member functions.

(ii) Class method definitions. It describes how certain class member functions are coded.

We have already seen the class definition syntax as well as an example. In C++, the member

functions can be coded in two ways :

(a) Inside class definition

(b) Outside class definition using scope resolution operator (::)

The code of the function is same in both the cases, but the function header is different as

explained below :

2.8.1 Inside Class Definition:

When a member function is defined inside a class, we do not require to place a membership

label along with the function name. We use only small functions inside the class definition

and such functions are known as inline functions.

In case of inline function the compiler inserts the code of the body of the function at the place

where it is invoked (called) and in doing so the program execution is faster but memory

penalty is there.

2.8.2 Outside Class Definition Using Scope Resolution Operator (::) :

In this case the function’s full name (qualified_name) is written as shown:

Name_of_the_class :: function_name

The syntax for a member function definition outside the class definition is :

return_type name_of_the_class::function_name (argument list)

{

body of function

}

Here the operator::known as scope resolution operator helps in defining the member function

outside the class. Earlier the scope resolution operator(::)was ised om situations where a

global variable exists with the same name as a local variable and it identifies the global

variable.

2.9 DECLARATION OF OBJECTS AS INSTANCES OF A CLASS

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 11/19

The objects of a class are declared after the class definition. One must remember that a class

definition does not define any objects of its type, but it defines the properties of a class. For

utilizing the defined class, we need variables of the class type. For example,

Largest ob1,ob2; //object declaration

will create two objects ob1 and ob2 of largest class type. As mentioned earlier, in C++ the

variables of a class are known as objects. These are declared like a simple variable i.e., like

fundamental data types.

In C++, all the member functions of a class are created and stored when the class is defined

and this memory space can be accessed by all the objects related to that class.

Memory space is allocated separately to each object for their data members. Member

variables store different values for different objects of a class.

2.10 ACCESSING MEMBERS FROM OBJECT(S)

After defining a class and creating a class variable i.e., object we can access the data

members and member functions of the class. Because the data members and member unctions

are parts of the class, we must access these using the variables we created. For functions are

parts of the class, we must access these using the variable we created. For Example,

Class student

{

private:

char reg_no[10];

char name[30];

int age;

char address[25];

public :

void init_data()

{

- - - - - //body of function

- - - - -

}

void display_data()

}

};

student ob; //class variable (object) created

- - - - -

- - - - -

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 12/19

Ob.init_data(); //Access the member function ob.display_data(); //Access the member

function

- - - - -

- - - - -

Here, the data members can be accessed in the member functions as these have private scope,

and the member functions can be accessed outside the class i.e., before or after the main()

function.

2.11 STATIC CLASS MEMBERS

Data members and member functions of a class in C++, may be qualified as static. We can

have static data members and static member function in a class.

2.11.1 Static Data Member: It is generally used to store value common to the whole class.

The static data member differs from an ordinary data member in the following ways :

(i) Only a single copy of the static data member is used by all the objects. (ii) It can

be used within the class but its lifetime is the whole program.

For making a data member static, we require :

(a) Declare it within the class. (b) Define it outside the class.

For example

Class student

{

Static int count; //declaration within class

};

The static data member is defined outside the class as :

int student :: count; //definition outside class

The definition outside the class is a must.

We can also initialize the static data member at the time of its definition as:

int student :: count = 0;

If we define three objects as : sudent obj1, obj2, obj3;

2.11.2 Static Member Function: A static member function can access only the static members

of a class. We can do so by putting the keyword static before the name of the function while

declaring it for example,

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 13/19

Class student

{

Static int count;

----------------- public :

static void showcount (void) //static member function

{

Cout<<”count=”<<count<<”\n”;

}

};

int student ::count=0;

Here we have put the keyword static before the name of the function shwocount (). ways:

In C++, a static member function fifers from the other member functions in the following

(i) Only static members (functions or variables) of the same class can be accessed by a

static member function.

(ii) It is called by using the name of the class rather than an object as given below:

Name_of_the_class :: function_name

For example,

student::showcount();

2.12 FRIEND CLASSES

In C++ , a class can be made a friend to another class. For example, class TWO; // forward

declaration of the class TWO class ONE

{

………………………

…………….

public:

……………..

……………..

friend class TWO; // class TWO declared as friend of class ONE

};

Now from class TWO , all the member of class ONE can be accessed.

Arrays:

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 14/19

Suppose that we want a program that can read in a list of numbers and sort that list, or find

the largest value in that list. To be concrete about it, suppose we have 15 numbers to read in

from a file and sort into ascending order. We could declare 15 variables to store the numbers,

but then how could we use a loop to compare the variables to each other? The answer is that

we cannot. The problem is that we would like to have variables with subscripts or something

like them, so that we could write something like

max = 0;

for (i = 0; i < 15 ; i++) {

if (number_i > max)

max = number_i ;

}

where somehow the variable referred to by number_i would change as i changed.

You have seen something like this already with C++ strings: if we declare

string str;

then we can write a loop like

for (int i = 0; i < str.size(); i++)

cout <_< str[i] <_< _-_ ;

in which each individual character in str is accessed using the subscript operator []. The

characters in a string form what we call an array. An array is conceptually a linear collection

of elements, indexed by subscripts, all of the same type. If we could create an array named

number with 15 elements, it would look like this: number:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Each element could be accessed using the subscript operator, as in number[1] or number[7],

and we could write a loop like

max = 0;

for (i = 0; i < 15 ; i++) {

if (number_i > max)

max = number[i] ;

}

This would make it possible to manipulate large collections of homogeneous data, meaning

data of the same type, with a single subscripted variable. Such is possible in C and C++ and

all modern programming languages. Arrays are of fundamental importance to algorithms and

computer science.

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 15/19

Declaring a (one-Dimensional) Array

Syntax:

elementtype arrayname [size_expression]

where

_ elementtype is any type that already exists

_ arrayname is the name of the array

_ size_expression is the number of elements in the array

This declares an array named arrayname whose elements will be of type elementtype , and

that has size_expression many elements.

Examples

char fname[24]; // an array named fname with 24 chars

int grade[35]; // an array named grade with 35 ints

int pixel[1024*768]; // an array named pixel with 1024*768 ints

const int MAX_STUDENTS = 100;

double average[MAX_STUDENTS]; // an array named average with 100 doubles

string fruit[5]; // an array of 5 C++ strings

The element type of an array is often called its base type. The _rst example is an array with

base type char, for example. One can say that fname is _an array of char._

Things to remember about arrays:

_ The starting index of an array is 0, not 1.

_ The last index is one less than the size of the array.

_ If the array has size elements, the range is 0..size-1.

_ Arrays contain data of a single type.

_ An array is a sequence of consecutive elements in memory and the start of the array is the

address of its first element.

_ Because the starting address of the array in memory is the address of its _rst element, and

all elements are the same size and type, the compiler can calculate the locations of the

remaining elements. If B is the starting address of the array array, and each element is 4 bytes

long, the elements are at addresses B, B + 4, B + 8, B + 12, and so on, and in general, element

array[k] is at address B + 12k.

_ Although C and C++ allow the size expression to be variable, you should not use a variable,

for reasons having to do with concepts of dynamic allocation and the lifetime of variables.

_ Use constants such as macro de_nitions or const ints as the sizes of arrays.

Initializing Declarations

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 16/19

Arrays can be initialized at declaration time in two di_erent ways.

elementtype arrayname[size expr] = { list with <= sizeexpr vals };

elementtype arrayname[] = { list with any number of values };

Examples

#define MAXSCORES 200

#define NUMFRUIT 5

const int SIZE = 100;

double numbers[SIZE]; // not initialized

string fruit[NUMFRUIT] = {"apple","pear","peach","lemon","mango"};

int power[] = {0,1,2,4,9,16,25,36,49,64,81,100};

int counts[SIZE] = {0};

int score[MAXSCORES] = {1,1,1};

The first declaration declares but does not initialize the array named numbers. The next

declares and initializes an array named fruit with five strings:

apple pear peach lemon mango

0 1 2 3 4

The third initializes an array named power, whose size is determined by the number of values

in the brace-delimited list. When the array size is given in square brackets but the number of

values in the list is less than the size, the remainder of the array is initialized to 0. In the

fourth example, all elements will be set to 0, and in the last, the first three are set to 1 and the

rest, to 0.

Rules

_ If the array size is given in brackets, then the initialized list must have at most that many

values in it. If it has fewer, the rest of the array is initialized to 0's.

_ If the size is not given in brackets, then the size is equal to the number of elements in the

initialize list.

_ If there is no initializer list, none of the array elements are initialized. They are not set to 0.

Advice

_ Always named constants for the sizes of arrays. It makes it easier to write, maintain, and

read the code.

Accessing Array Elements

An element of an array is accessed by using the subscript operator . The syntax is:

arrayname [integer-valued-expression-within-range]

Examples

cout <_< fruit[0] ; // prints apple

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 17/19

cout <_< powers[1] <_< _ _ <_< powers[2] ; // prints 1 2

fruit[3] = _apricot_; // replaces _peach_ by _apricot in fruit[3]

counts[SIZE-10] = counts[SIZE-11] + 2; // sets counts[90] to counts[89] + 2 = 2

cout <_< score[power[4]]; // power[4] = 9, so this outputs scores[9]

Notice in the last two examples that the index expression can be arbitrary integer-valued

expressions, even the value of an array of integers.

Loops and Arrays

Without loops it is very hard to use arrays. Conversely, with them they are easy to use. In

general, a loop can be used to initialize an array, to modify all elements, to access all

elements, or to search for elements within the array. An example follows.

Example 1. Finding a minimum element.

This example shows how an array can be initialized with values from an input stream using a

for-loop. The for-loop guarantees that the array is not _over_lled_ because it runs only as

many times as the array has

elements. The example uses the preceding declarations.

// read va lue s int o ar ray from s tandard input

f o r (i = 0 ; i < MAXSCORES; i++)

c in >> s c o r e [i] ;

// Let minscore be the f i r s t element as a s t a r t i n g gue s s

i n t minscore = s c o r e [0] ;

// Compare remaining ar ray alement s to cur r ent maxscore

f o r (i = 1 ; i < MAXSCORES; i++) {

i f (minscore > s c o r e [i]) // i f cur r ent element < minscore

minscore = s c o r e [i] ; // make i t new minscore

// At this point , maxscore >= s c o r e [j] , f o r a l l j = 0 , 1 , 2 , . . . i

}

cout << The minimum s c o r e i s << minscore << endl ;

In this example, the score array is filled from values entered on the standard input stream, cin.

After the entire array has been filled, a variable named minscore is set to the value of

score[0]. Then a second loop examines each element of score from score[1], to score[2], and

so on up to score[MAXSCORE-1]. If an element is smaller than minscore, its value is copied

into minscore. This implies that in each iteration of the second loop, minscore is the smallest

of the elements seen so far. This is how one searches for the minimum value in an unsorted

array.

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 18/19

Arrays in Functions

An array parameter in a function is written as a name followed by empty square brackets:

result_type function_name (..., elementtype arrayname [] ,...) ;

For example,

int max(int array[]);

void foo(int a[], int b[], double c[]);

The size of the array is not put between the square brackets. When you declare a function

with an array parameter, you just put the type and a name for the parameter followed by a

pair of empty square brackets. This tells the compiler that the corresponding argument will be

an array of that type.

How does the function know how many elements are in the array?

It doesn't. Arrays do not _know_ their size. It is not stored anywhere. The function acts on

any array of any size whose type matches the base type.

So how can you write a function that works with an array parameter?

You must always pass the size of the array as an extra parameter. For example, if we want to

write a function that finds the minimum in an integer array, the function prototype would be

int min(int array[], int size);

We would call the function by passing just the array name to it. not the name with square

brackets after it.

For example

int score[MAXSCORES];

for (i = 0; i < MAXSCORES; i++)

cin >_> score[i];

cout <_< _The minimum score is _ <_< min(score, MAXSCORES);

Notice that the score array is passed to the min() function just by writing its name. The min()

function

definition would be

int min (int array [] , int size)

{

int minvalue = array [0] ;

// Compare remaining array elements to current minvalue

f o r (i n t i = 1 ; i < s i z e ; i++) {

i f (minvalue > array [i])

UNIT - II PROGRAMMING WITH C and C++ (2016-19 batch)

 D. Surya Prabha, Department of CS, CA & IT, KAHE 19/19

minvalue = array [i] ;

// minvalue <= array [j] , f o r a l l j <= i

}

r e turn minvalue ;

}

When the function is called as in cout <_< max(score, MAXSCORES), the score array is

passed to the array parameter array, and within the function array[i] is in fact a reference to

score[i], not a copy of it , but a reference to it, i.e., another name for it. This means that

changes made to array[i] within the function are actually made to score[i] outside of the

function.

There are three types of parameter passing:

_ call by value parameters

_ call by reference parameters

_ array parameters

Array parameters are like call by reference parameters _ changes made to the array are

changes made to the corresponding array argument.

Multidimensional Arrays:

When the element type of an array is another array, it is said that the array is

multidimensional:

// array of 2 arrays of 3 int each

int a[2][3] = {{1, 2, 3}, // can be viewed as a 2 × 3 matrix

 {4, 5, 6}}; // with row-major layout

Note that when array-to-pointer decay is applied, a multidimensional array is converted to a

pointer to its first element (e.g., a pointer to its first row or to its first plane): array-to-pointer

decay is applied only once.

int a[2]; // array of 2 int

int* p1 = a; // a decays to a pointer to the first element of a

int b[2][3]; // array of 2 arrays of 3 int

// int** p2 = b; // error: b does not decay to int**

int (*p2)[3] = b; // b decays to a pointer to the first 3-element row of b

int c[2][3][4]; // array of 2 arrays of 3 arrays of 4 int

// int*** p3 = c; // error: c does not decay to int***

int (*p3)[3][4] = c; // c decays to a pointer to the first 3 × 4-element plane of c

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Batch 2016 – 2019

16MMU304B Programming with C and C++

Part - B

(Each Question carries 2 marks)
1. What is function prototype?

2. What are streams?

3. Write some of the properties of friend functions.

4. How to define a member function?

5. What is a pointer?

6. What is meant by free functions?

7. What is function prototype?

8. What is an inline function?

9. What is a default argument?

10. What are constant arguments?

11. How the class is specified?

12. How to create an object?

13. How to access a class member?

14. How the member functions are defined?

15. What is static data member?

16. What is static member function?

17. How the objects are used as function argument?

Part - C

(Each Question carries 6 marks)

1. Discuss on how to create and declare an one-dimensional array.

2. Describe the utility of functions. Write a simple program to explain the use of functions.

3. Elaborate the difference between declaration and definition of functions.

4. Write a simple program to illustrate the use of command line arguments in functions.

5. Define the terms virtual functions and pure virtual functions with a suitable program.

6. Describe in detail the need of overloading functions and operators with a suitable

program.

7. Illustrate in detail the simple expression statements with suitable example program.

8. Elaborate the difference between declaration and definition of functions.

9. Write a simple program to illustrate the use of command line arguments in functions.

10. Explain about friend function with a suitable example program.

11. How to manipulate array elements using loops in c++?

12. Explain inline functions in detail with a suitable example program.

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Batch 2016 – 2019

Subject : Programming with C and C++ Subject Code: 16MMU304B

UNIT - II

S.No Questions opt1 opt2 opt3 opt4 Answer

1 C++ supports all the features of ___________ as defined in C structures union objects classes structures

2 A structure can have both variable and functions as ________ objects classes members arguments members

3
The class _________ describes the type and scope of its

members
 Functions

Class

Declaration
 objects structures

Class

Declaration

4
The class __________ describes how the class function are

implemented

 Function

definition
 declaration arguments

class

declaration

 Function

definition

5 The keywords private and public are known as _________ Labels dynamic visibility const Labels

6
The class members that have been declared as ________ can be

 accessed only from within the class
Private public static protected Private

7
The class members that have been declared as ________ can be

accessed from outside the class also
 Private Public static protected Public

8
The variables declare inside the class is known as------------------

-

 Function

variables
 data members

 member

function

class

declaration
 data members

9
The functions which are declared inside the class are known as

 Member

function

 member

variables

 data

variables

class

declaration

 Member

function

10 The class variables are known as ________ Functions members objects class objects

11 The scop resolution operator is___________ >> :: << :; ::

12 A ________ function can call another member function directly Assignment member variables greater than member

13
A ______ member variable is initialized to zero when the first

object of its class is created
 Dynamic constant static protected static

14
_________ Variables are normally used to maintain values

common to the entire class.
 Private protected Public static static

15
When a copy of the entire object is passed to the function it is

called as _________

 Pass by

reference

 pass by

function

 pass by

pointer
 pass by value pass by value

16
When the address of the object is transferred to the function it

is called as _________

 pass by

reference

 pass by

function

 pass by

pointer

 pass by

value

 pass by

reference

17
A ________ function can be invoked like a normal function

without the help of any object
 Void friend inline public friend

18
The ________ member variables must be defined outside the

class.
 Static private public protected Static

19
A friend function, although not a member function, has full

access right to the ______ members of the class
 Static private public protected private

20
__________ enables an object to initialize itself when it is

created
 Destructor constructor overloading polymorphism constructor

21
________ destroys the objects when they are no longer

required
 Destructor constructor overloading polymorphism Destructor

22
The __________ is special because its name is the same as the

class name.
 Destructor static constructor polymorphism constructor

23
A constructor that accepts no parameters is called the

__________ constructor
 Copy default multiple polymorphism default

24
Constructors are invoked automatically when the ________ are

created
 Datas classes objects polymorphism objects

25 Constructors cannot be _________ Inherited destroyed both a & b polymorphism Inherited

26 ___________is the collection of similar data type classes variable both a & b polymorphism variable

27
Constructors make _________ calls to the operators new and

delete when memory allocation is required
 Explicit implicit function polymorphism implicit

28
The constructors that can take arguments are called _________

constructors
 Copy multiple

parameterized
polymorphism parameterized

29
The constructor function can also be defined as ________

function
 Friend inline default polymorphism inline

30
In ----------------- constructor the argument cannot be passed as

a value.
 Multiple copy default polymorphism copy

31
When more than one constructor function is defined in a

class,then the constructor is said to be _________
 Multiple copy default overloaded oerloaded

32
The -------------- constructor is also used to allocate memory

while creating objects.
 Explicit implicit dynamic

 none of the

above
dynamic

33
The --------------- is invoked whenever an object of its

associated class is created.

 Default

constructor
 destructor constructor

parameterized
constructor

34
The process of initializing through a copy constructor is known

as ________ initialization
 Overloaded multiple copy

 none of the

above
copy

35
When no------------ constructor is defined,the compiler supplies

its own copy constructor.
 Default multiple copy dynamic copy

36
Allocation of memory to objects at the time of their

construction is known as ________ construction
 Static copy dynamic multiple dynamic

37
We can create and use constant objects using ______ keyword

before object declaration.
 Static new const int const

38 A destructor is preceded by ______ symbol Dot asterisk colon tilde tilde

39
A ----------------- is used to destroy the objects that has been

created by a constructor
 destructor binding class

 copy

constructor
destructor

40
c++ compiler has an -------------------- constructor which creates

objects,even thoughit was not defined in class
 implicit dynamic copy explicit implicit

41
Which is a valid method for accessing the first element of the

array item?
 item(1) item[1] item[0] item(0) item[0]

42 Which of the following statements is valid array declaration?
 int number

(5);
 float avg[5];

 double [5]

marks;

 counter

int[5];
 float avg[5];

43 An object is an _________ unit group individual static dynamic individual

44 The scope operator is terminated by ________ Semicolon comma dot colon colon

45
A constructor that accepts no parameters is called the

__________ constructor.
default parameterized implicit dynamic default

46 The memory for static data is allocated only ________ twice thrice once several times once

47 Static member functions can be invoked using ________ name class object data function class

48
When a class is declared inside a function they are called as

________ classes.
 global invalid local multiple local

49 __________ can be virtual destructors constructors both a & b multiple destructor

50 The _________ doesn’t have any argument constructor
 copy

constructor
 destructor public destrucor

51 The _________ also allocates required memory . constructor destructor both a & b public constructor

52
Any constructor or destructor created by the complier will be

 private public protected global public

53 The class can have only ______ destructor two many one four one

54 _________ cannot be overloaded destructor constructor friend global destructor

55 _________ releases memory space occupied by the objects constructor destructor both a & b friend destructor

56
Constructors and destructors are automatically inkoved by

 operating

system
 main() complier object compiler

57 Constructors is executed when ________
 object is

destroyed

 object is

declared

 when object

is not used

 object goes

out of scope

object is

declared

58 The destructor is executed when __________
 object goes

out of scope

 when object

is not used

 when object

contains

nothing

 object is

destroyed

object goes out

of scope

59 The members of a class are by default ________ protected private public friend private

60
The ________ is executed at the end of the function when

objects are of no used or goes out of scope
 destructor constructor inheritance

copy

constructor
destructor

61 Which of the following cannot be passed to a function?
 reference

variables
 arrays class objects header files header files

62 Function should return a _________. value character
both (a) and

(b)
integer value

63
_______________function is useful when calling function is

small
Built-in Inline user-defined library Inline

64 Inline function needs more_____________ variables functions memoryspace
control

structures
memoryspace

65
Multiple function with the same name is known as

function

overloading
polymorphism both a & b

operator

overloading

function

overloading

66
The ____________ function creates a new set of variables and

 copies the values of arguments into them.

calling

function
called function

both (a) and

(b)
function called function

67 Function contained within a class is called a _____________ built-in
member

function

user-defined

function

calling

function

member

function

68
In c++,Declarations can appear________________in the body

of the function
Only at the top middle bottom anywhere anywhere

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 1/21

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Batch 2016-2019

Subject : PROGRAMMING WITH C and C++ Sub.code : 16MMU304B

Structures and Unions

Structures group members (data and functions) to create new data types. Structures

encapsulate data members (usually different data types), much like functions encapsulate

program statements. Unions are like structures, but data members overlay (share) memory,

and unions may access members as different types. We use structures and unions in

applications that need user-defined types, such as databases, windows, and graphics.

Structures

Structure definitions have several formats, all of which include data members and member

functions. To show the formats for structure definitions, let's look at structure data members

first. We'll examine structure member functions in the next section.

The first structure format appears frequently in header files.

 struct struct_name {

 Type data_member1;

 Type data_member2;

 Type data_memberN;

 };

The word struct_name is a new data type. Data members may be any type, including pointers,

references, arrays, and other structures whose types do not have the same name as struct_name.

The compiler does not allocate memory with this format because we define only a type and

not a variable.

NOTE

Structure data members cannot have the same type name as their enclosing structure, but we

can define pointers to the same structure type.

 struct node { // structure type

 int data; // data member

 node *fwd; // pointer to struct type

 node *back; // pointer to struct type

 };

Note how soon we drop the word struct from subsequent node definitions once we define it as a

type.

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 2/21

The second structure format builds a structure from an existing structure type and includes an

initialization list to initialize it.

 struct struct_name name = { init_list };

The keyword struct is optional when you define struct_name elsewhere. This format allocates

memory for structure name, which is type struct_name. The brace-enclosed initialization list is

optional.

The third structure format combines the first and second formats.

 struct struct_name {

 Type data_member1;

 Type data_member2;

 Type data_memberN;

 } name = { init_list };

This format allocates memory, and the keyword struct is necessary to define a structure type.

You may omit struct_name in this format if you don't need to use it later on in another structure

definition.

NOTE

Structure initializations require braces with init_list. Consider the following.

 struct X { // structure definition

 int num; // data member

 };

 X a = 12; // illegal - no conversion

 X a = { 12 }; // legal - initializes data member

The first initialization without braces generates a compilation error because the compiler

attempts to convert an integer 12 to a structure X type. The second initialization with braces is

correct. Always use pairs of braces to properly initialize your structures.

Member Functions

C++ also allows function declarations (called member functions) inside structures.

 struct struct_name {

 Type member_function1(signature);

 Type member_function2(signature);

 };

Typically, member function names are distinct, but the name of a member function may be

the same as another if their signatures differ. There is no size overhead for member functions

inside structures (try sizeof() to convince yourself).

Member functions are essential in object-oriented programming because new data types

combine functionality (member functions) with data (data members), all in a single unit. This

concept lets you design objects with an implementation (how objects work) and an interface

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 3/21

(how objects behave). We explore these important concepts in Chapter 4 with class

definitions.

The dot (.) operator provides access to structure members.

 struct X {

 int num; // data member

 int f(); // member function

 };

 X a = { 12 }; // initialize data member

 cout << a.num << endl; // data member, displays 12

 cout << a.f() << endl; // calls member function

Structure Pointers

Pointers may address structures. The formats are

 struct struct_name {

 Type data_member;

 Type member_function(signature);

 } *pname = { init_list };

 struct struct_name *pname = { init_list };

The brace-enclosed init_list is optional and must contain a pointer expression whose type

matches or converts to struct_name. If you initialize structure pointers, the braces surrounding

init_list are not necessary. The word struct_name is optional in the first format, and the keyword

struct is optional in the second format when you define struct_name elsewhere.

Here are the two formats to access structure members.

 struct_name_variable.member_name // structure

 struct_name_pointer->member_name // structure pointer

A structure variable name must appear to the left of the . (dot) operator and a structure pointer

name must appear to the left of the -> (arrow) operator. Here are some examples of these

operators with structure type block.

 struct block { // structure type

 int buf[80]; // data member

 char *pheap; // data member

 void header(const char *); // member function

 };

 block data = { {1,2,3}, "basic" }; // structure variable

 block *ps = &data; // structure pointer

 data.pheap++; // increment data member

 data.header("magic"); // call member function

 ps->pheap++; // increment data member

 ps->header("magic"); // call member function

 ps.pheap++; // illegal, ps is a pointer

 data->header("magic"); // illegal, data is a structure

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 4/21

The inner braces in the initialization list for data initialize only the first three integers of the

buf data member array (the remaining elements are zero). The precedence of . and -> is high;

hence, no parentheses are necessary to combine them with a ++ operator when we increment

pheap.

Be aware that memory allocation for structures does maintain the order of its data members

in structure definitions. Structures, therefore, may contain "holes" due to machine word

alignment (buf[79] in place of buf[80], for example).

Arrays with Structures

Arrays of structures and arrays of structure pointers are also possible. Two groups of formats

exist. Here is the first one.

 struct struct_name name[size] = { init_list };

 struct struct_name name[size1][size2][sizeN] = { init_list };

 struct struct_name *pname[size] = { init_list };

 struct struct_name *pname[size1][size2][sizeN] = { init_list };

The keyword struct is optional when you define struct_name elsewhere, and the rules for size are

the same as the rules for arrays of built-in types (see "Arrays" on page 35). The optional

brace-enclosed init_list initializes a data member in each array element. With arrays of

structure pointers (pname), init_list must have pointer expressions that match or convert to

struct_name. When you initialize arrays of structures or arrays of structure pointers, you must

include braces with init_list.

The second group of formats define a structure type and follow the same rules as above. The

keyword struct must appear in both formats, but struct_name is optional.

 struct struct_name {

 Type data_member;

 Type member_function(signature);

 } name[size1][size2][sizeN] = { init_list };

 struct struct_name {

 Type data_member;

 Type member_function(signature);

 } *pname[size1][size2][sizeN] = { init_list };

Here are several examples of structure arrays.

 struct block { // structure type

 int buf[80]; // data member

 char *pheap; // data member

 void header(const char *); // member function

 };

 block dbase[2] = { // array of 2 structures

 { {1,2,3}, "one" }, // initialize first element

 { {4,5,6}, "two" } // initialize second element

 };

 block *pb[2]; // array of 2 pointers to block

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 5/21

 dbase[1].pheap++; // increment data member

 dbase[1].buf[0] = 'x'; // assign to data member

 dbase[1].header("magic"); // call member function

 pb[1] = &dbase[1]; // pb[1] points to dbase[1]

 pb[1]->pheap++; // increment data member

 pb[1]->buf[0] = 'x'; // assign to data member

 pb[1]->header("magic"); // call member function

NOTE

In the above example, we use an outer pair of braces on separate lines to initialize each

member of the dbase structure array. Braces surrounding individual structure array elements

make their initializations readable and easy to modify. Remember to use at least one pair of

braces.

Nested Structures

Structure definitions that appear inside other structure definitions are nested structures. Here

is an example.

 struct team {

 struct address { // nested structure

 char location[80]; // team location

 int zipcode; // team zip code

 };

 char name[20]; // name of team

 address sponsor; // sponsor's address

 address home_field; // home field address

 };

Nested structures encapsulate structure definitions and make them an integral part of an

enclosing structure definition. Use the . or -> operators in succession to access the member

you want from a nested structure.

 team soccer = { "bears", {"123 Main", 30302}, {"8 Elm", 32240} };

 team *ps = &soccer; // structure pointer

 cout << soccer.name << endl; // displays "bears"

 cout << soccer.sponsor.zipcode << endl; // displays 30302

 cout << ps->home_field.zipcode << endl; // displays 32240

The first cout statement uses a . operator to display the team's name. Two . operators are

necessary to display the zip code of the team's sponsor in the second cout statement. The third

cout statement uses -> with structure pointer ps and . with structure data member home_field to

display the team's home field zip code.

NOTE

Nested structures can use the same name as their enclosing structure names if they nest, too.

Consider the following.

 struct X { // outer X

 struct Y { // Y nested in outer X

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 6/21

 struct X { // inner X nested in Y

 int i; // member of inner X

 };

 X mystuff; // member of Y

 int j; // member of Y

 };

 Y stuff; // member of outer X

 int k; // member of outer X

 };

A structure Y nests inside outer structure X. Structure Y also nests an inner structure X, which

is legal because its name is distinct from its immediately enclosing structure name (Y).

Sometimes name collisions do occur when you piece together existing structures to form new

ones, so be aware of this rule.

Typedefs with Structures

Chapter 2 introduces typedefs as synonyms for built-in types (see "Typedefs" on page 43).

Typedefs also apply to structures and help make structure definitions more readable.

Consider the structure definitions from the previous section.

 struct node {

 int data;

 node *fwd;

 node *back;

 };

 node element;

 node *p = &element;

Here's how we can simplify this code with the following typedef.

 typedef struct node *Pnode;

 struct node {

 int data;

 Pnode fwd;

 Pnode back;

 } ;

 node element;

 Pnode p = &element;

Pnode is a synonym for struct node *. This typedef eliminates the pointer notation from our

original code and makes it more readable.

NOTE

Create typdef names with uppercase first letters for better readability. Place typedef statements

and structure definitions in header (.h) files and #include them where necessary. Remember

that typedefs are not new types; they are just synonyms for existing ones. Typedefs,

therefore, are not type safe.

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 7/21

Structure Copy and Assignment

Sometimes you want to save a structure temporarily or initialize a new structure from another

one of the same type. The following statements attempt to copy the data members of one

structure into another structure of the same type.

 struct value { // structure definition

 double x;

 char name[10];

 } a = { 5.6, "start" }; // initialize members of struct a

 value b; // structure b of same type

 b.x = a.x // legal - copy doubles

 b.name = a.name; // illegal - not lvalues

Separate data member assignments are not only tedious for structures with a large number of

members, but assignments fail with array members (array names are not lvalues).

Fortunately, there is an easier way.

 value b = a; // structure copy

 value c;

 c = a; // structure assignment

With structures of the same type, you may copy an existing structure to a new one or assign

one structure to another. The compiler copies each member of one structure into the other

(even array members!).

Remember that references to structures do not perform structure copies.

 value f; // structure

 value & e = f; // reference to a structure

The reference e is only an alias for structure f.

NOTE

Use structure copy and assignment statements. For built-in types (char, int, float, etc.), most

compilers generate in assembly code block move instructions, which move data in memory

without loops or counters. Thus, structure copy and assignment are efficient and convenient.

Unions

Unions have the same formats and operators as structures. Unlike structures, which reserve

separate chunks of memory for each data member, unions allocate only enough memory to

accommodate the largest data member. On 16-bit and 32-bit machines, for example, the

definition

 union jack {

 long number;

 char chbuf[4];

 } chunk;

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 8/21

allocates only four bytes of memory. Variable chunk.number is a long, and chunk.chbuf[2] (for

example) is a char, both within the same memory area. Figure 3.3 shows the memory layout

for chunk.

Figure 3.3. Memory layout of a union

You may create pointers to unions and initialize unions with an lvalue of the

same data type as the union's first data member. Member functions are legal

inside union definitions, but data members with constructors are not (see

"Constructors" on page 181). Union assignment works just like structure assignment.

Maintaining data integrity for union members is the programmer's responsibility.

C++ also has anonymous unions. An anonymous union allocates memory for its largest data

member but doesn't create a type name (hence the name "anonymous"). Here's the format.

 union {

 Type data_member1;

 Type data_member2;

 Type data_memberN;

 };

A program that declares an anonymous union may access data members directly (without a .

or ->). Member functions are illegal inside anonymous union definitions.

To demonstrate anonymous unions, Listing 3.7 employs another version of itoh(), which

converts short variables to hexadecimal characters for display.

Listing 3.7 Integer-to-hexadecimal conversion, using anonymous union
 void itoh(unsigned short n) {

 union { // anonymous union

 unsigned short num;

 unsigned char s[sizeof(short)];

 };

 const char *hex = "0123456789abcdef";

 num = n; // store number as a short

 cout << hex[s[1] >> 4]; // first byte - high nibble

 cout << hex[s[1] & 15]; // first byte - low nibble

 cout << hex[s[0] >> 4]; // second byte - high nibble

 cout << hex[s[0] & 15]; // second byte - low nibble

 }

An anonymous union creates two bytes (16 bits) of memory for itoh() to access. The statement

num = n stores the number we pass to itoh() into memory as a short, and the cout statements

access the same bytes of memory as characters. We use a 4-bit right shift (>> 4) to access the

high nibble (4 bits) and a 4-bit mask (& 15) to access the low nibble. Both operations yield a

4-bit result between 0 and 15, which we use as an index with pointer hex to convert the result

to ASCII characters ('0' to 'f'). The memory that our anonymous union creates is available

only inside itoh().

Why use this technique? First, this version of itoh() executes fast. Unlike other versions, there

are no recursive calls, loops, or multiply or divide operators. Second, on some machines, the

javascript:popUp('/content/images/chap3_0135327482/elementLinks/03fig03.gif')
javascript:popUp('/content/images/chap3_0135327482/elementLinks/03fig03.gif')
javascript:popUp('/content/images/chap3_0135327482/elementLinks/03fig03.gif')

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 9/21

assembly code from this function may be smaller in size than other versions. In time-critical

code or with programs that have memory constraints, this version of itoh() may be preferable

to others.

NOTE

Unions are not always portable, due to the way different processors store bytes in memory.

Our version of itoh(), for instance, runs correctly on IntelÆ processors, but displays the bytes

in reverse order on SPARCÆ-based workstations. The following preprocessor statements

declare and initialize a const integer that identifies the machine we are using.

 #ifdef SPARC

 const int byte = 0; // SPARC-based

 #else

 const int byte = 1; // Intel

 #endif

Inside itoh(), we modify the cout statements as follows.

 cout << hex[s[byte] >> 4]; // first byte - high nibble

 cout << hex[s[byte] & 15]; // first byte - low nibble

 cout << hex[s[!byte] >> 4]; // second byte - high nibble

 cout << hex[s[!byte] & 15]; // second byte - low nibble

You may extend these preprocessor statements to handle other machines as well. This

approach lets you maintain one version of itoh() that's portable across different machines.

Declaring a pointer variable

General syntax of pointer declaration is,

data-type *pointer_name;

Data type of a pointer must be same as the data type of a variable to which the pointer

variable is pointing. void type pointer works with all data types, but is not used often used.

Initialization of Pointer variable

Pointer Initialization is the process of assigning address of a variable to pointer variable.

Pointer variable contains address of variable of same data type. In C language address

operator & is used to determine the address of a variable. The & (immediately preceding a

variable name) returns the address of the variable associated with it.

int a = 10 ;

int *ptr ; //pointer declaration

ptr = &a ; //pointer initialization

or,

int *ptr = &a ; //initialization and declaration together

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 10/21

Pointer variable always points to same type of data.

float a;

int *ptr;

ptr = &a; //ERROR, type mismatch

Note: If you do not have an exact address to be assigned to a pointer variable while

declaration, It is recommended to assign a NULL value to the pointer variable. A pointer

which is assigned a NULL value is called a null pointer.

Dereferencing of Pointer

Once a pointer has been assigned the address of a variable. To access the value of variable,

pointer is dereferenced, using the indirection operator *.

int a,*p;

a = 10;

p = &a;

printf("%d",*p); //this will print the value of a.

printf("%d",*&a); //this will also print the value of a.

printf("%u",&a); //this will print the address of a.

printf("%u",p); //this will also print the address of a.

printf("%u",&p); //this will print the address of p.

Points to remember:

1. While declaring/initializing the pointer variable, * indicates that the variable is a

pointer.

2. The address of any variable is given by preceding the variable name with Ampersand

'&'.

3. The pointer variable stores the address of a variable. The declaration int *a doesn't

mean that a is going to contain an integer value. It means that a is going to contain the

address of a variable storing integer value.

4. To access the value of a certain address stored by a pointer variable, * is used. Here,

the * can be read as 'value at'.

A Simple program to explain pointers:

#include

int main()

{

 int i = 10; /normal integer variable storing value 10

 int *a; //since '*' is used, hence its a pointer variable

 a = &i; //'&' returns the address of the variable i which is stored in the pointer variable a.

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 11/21

 //below, address of variable i, which is stored by a pointer variable a is displayed

 printf("Address of variable i is %u\n",a);

 //below, '*a' is read as 'value at a' which is 10

 printf("Value at an address, which is stored by pointer variable a is %d\n", *a);

 return 0;

}

Output:

Address of variable i is 2686728 (The address may vary)

Value at an address, which is stored by pointer variable a is 10.

Pointer to a Pointer

Pointers are used to store the address of the variables of specified datatype. But If you want to

store the address of a pointer variable, then you again need a pointer to store it. Thus,When

one pointer variable stores the address of another pointer variable, it is known as Pointer to

Pointer variable.

Syntax:

int **p1;

Here, we have used two indirection operator(*) that stores and points to the address of a

pointer variable i.e, int *. If we want to store the address of this variable p1, then the syntax

would be:

int ***p2

Hence, number of indirection operator(*) - 1 tells you to what type will the current pointer

variable will point to.

Simple program to represent Pointer to a Pointer

#include <stdio.h>

int main() {

 int a=10;

 int *p1; //this can store the address of variable a

 int **p2;

 /*this can store the address of pointer variable p1 only. It cannot store the

 address of variable a */

 p1 = &a;

 p2 = &p1;

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 12/21

 printf("Address of a = %u\n",&a);

 printf("Address of p1 = %u\n",&p1);

 printf("Address of p2 = %u\n\n",&p2);

 printf("Value at the address stored by p2 = %u\n",*p2); //this will give the address of a

 printf("Value at the address stored by p1 = %d\n\n",*p1);

 printf("Value of **p2 = %d\n", **p2); //read this *(*p2)

 /*

 This is not allowed, it will give a compiler time error

 p2 = &a;

 printf("%u",p2);

 */

 return 0;

}

Output:

Address of a = 2686724

Address of p1 = 2686728

Address of p2 = 2686732

Value at the address stored by p2 = 2686724

Value at the address stored by p1 = 10

Value of **p2 = 10

Pointer and Arrays

When an array is declared, compiler allocates sufficient amount of memory to contain all the

elements of the array. Base address i.e address of the first element of the array is also

allocated by the compiler.

Suppose we declare an array arr,

int arr[5]={ 1, 2, 3, 4, 5 };

Assuming that the base address of arr is 1000 and each integer requires two bytes, the five

elements will be stored as follows:

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 13/21

Here variable arr will give the base address, which is a constant pointer pointing to the

element, arr[0]. Therefore arr is containing the address of arr[0] i.e 1000. In short, arr has two

purpose - it is the name of an array and it acts as a pointer pointing towards the first element

in the array.

arr is equal to &arr[0] //by default

We can declare a pointer of type int to point to the array arr.

int *p;

p = arr;

or p = &arr[0]; //both the statements are equivalent.

Now we can access every element of array arr using p++ to move from one element to

another.

NOTE : You cannot decrement a pointer once incremented. p-- won't work.

Pointer to Array

As studied above, we can use a pointer to point to an Array, and then we can use that pointer

to access the array. Lets have an example,

int i;

int a[5] = {1, 2, 3, 4, 5};

int *p = a; // same as int*p = &a[0]

for (i=0; i<5; i++)

{

 printf("%d", *p);

 p++;

}

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 14/21

Pointer to Multidimensional Array

A multidimensional array is of form, a[i][j]. Lets see how we can make a pointer point to

such an array. As we know now, name of the array gives its base address. In a[i][j], a will

give the base address of this array, even a + 0 + 0 will also give the base address, that is the

address of a[0][0] element.

Here is the generalized form for using pointer with multidimensional arrays.

((a + i) + j)

is same as

a[i][j]

Pointer and Character strings

Pointer can also be used to create strings. Pointer variables of char type are treated as string.

char *str = "Hello";

This creates a string and stores its address in the pointer variable str. The pointer str now

points to the first character of the string "Hello". Another important thing to note that string

created using char pointer can be assigned a value at runtime.

char *str;

str = "hello"; //this is Legal

The content of the string can be printed using printf() and puts().

printf("%s", str);

puts(str);

Notice that str is pointer to the string, it is also name of the string. Therefore we do not need

to use indirection operator *.

Array of Pointers

We can also have array of pointers. Pointers are very helpful in handling character array with

rows of varying length.

char *name[3] = {

 "Adam",

 "chris",

 "Deniel"

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 15/21

 };

//Now see same array without using pointer

char name[3][20] = {

 "Adam",

 "chris",

 "Deniel"

 };

In the second approach memory wastage is more, hence it is prefered to use pointer in such

cases.

Pointer to Structure

Like we have array of integers, array of pointers etc, we can also have array of structure

variables. And to make the use of array of structure variables efficiently, we use pointers of

structure type. We can also have pointer to a single structure variable, but it is mostly used

with array of structure variables.

struct Book

{

 char name[10];

 int price;

}

int main()

{

 struct Book a; //Single structure variable

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 16/21

 struct Book* ptr; //Pointer of Structure type

 ptr = &a;

 struct Book b[10]; //Array of structure variables

 struct Book* p; //Pointer of Structure type

 p = &b;

}

Accessing Structure Members with Pointer

To access members of structure with structure variable, we used the dot . operator. But when

we have a pointer of structure type, we use arrow -> to access structure members.

#include <stdio.h>

int main()

{

 struct my_structure {

 char name[20];

 int number;

 int rank;

};

struct my_structure variable = {"StudyTonight",35,1};

struct my_structure *ptr;

ptr = &variable;

printf("NAME: %s\n",ptr->name);

printf("NUMBER: %d\n",ptr->number);

printf("RANK: %d",ptr->rank);

return 0;

}

Output:

NAME: StudyTonight

NUMBER: 35

RANK: 1

Pointer as Function parameter

Pointer as a function parameter list is use to hold address of argument passed during function

call. This is also known as call by reference. When a function is called by reference any

change made to the reference variable will effect the original variable.

Example: Swapping two numbers using Pointer

#include <stdio.h>

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 17/21

void swap(int *a, int *b);

int main()

{

 int m=10, n=20;

 printf("m = %d\n",m);

 printf("n = %d\n\n",n);

 swap(&m,&n); //passing address of m and n to the swap function

 printf("After Swapping:\n\n");

 printf("m = %d\n",m);

 printf("n = %d",n);

 return 0;

}

void swap(int *a, int *b)//pointer a and b holds and points to the address of m and n

{

 int temp;

 temp = *a;

 *a = *b;

 *b = temp;

}

Output:

m = 10

n = 20

After Swapping:

m = 20

n = 10

Function returning Pointer

A function can also return a pointer to the calling function. In this case you must be careful,

because local variables of function doesn't live outside the function. They have scope only till

inside the function. Hence if you return a pointer connected to a local variable, that pointer be

will pointing to nothing when function ends.

#include <stdio.h>

#include <conio.h>

int* larger(int*, int*);

void main()

{

 int a=15;

 int b=92;

 int *p;

 p=larger(&a, &b);

 printf("%d is larger",*p);

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 18/21

}

int* larger(int *x, int *y)

{

 if(*x > *y)

 return x;

 else

 return y;

}

Output:

92 is larger

Safe ways to return a valid Pointer.

1. Either use argument with functions. Because argument passed to the functions are

declared inside the calling function, hence they will live outside the function called.

2. Or, use static local variables inside the function and return it. As static variables have

a lifetime until main() exits, they will be available througout the program.

Pointer to functions

It is possible to declare a pointer pointing to a function which can then be used as an

argument in another function. A pointer to a function is declared as follows,

type (*pointer-name)(parameter);

Example :
int (*sum)(); //legal declaration of pointer to function

int *sum(); //This is not a declaration of pointer to function

A function pointer can point to a specific function when it is assigned the name of the

function.

int sum(int, int);

int (*s)(int, int);

s = sum;

s is a pointer to a function sum. Now sum can be called using function pointer s with the list

of parameter.

s (10, 20);

Example of Pointer to Function

#include <stdio.h>

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 19/21

#include <conio.h>

int sum(int x, int y)

{

 return x+y;

}

int main()

{

 int (*fp)(int, int);

 fp = sum;

 int s = fp(10, 15);

 printf("Sum is %d",s);

 getch();

 return 0;

}

Output : 25

References as Function Arguments

Function arguments may be references. The formats are

 Type function_name(Type &); // prototype

 Type function_name(Type & arg) // definition

 {

 function body

 }

Function calls with arguments initialize a reference and create an alias. Inside the body of the

function, the alias arg refers to the corresponding argument in the caller's program.

Expressions in function statements with alias names as lvalues (such as assignments or

increment operators) modify the argument in the caller. Expressions with aliases as rvalues

provide read access to function arguments.

References may appear with default arguments only if you initialize them to statics or globals

(see "static" on page 125). Here are several examples.

 static double dval = 5.6; // static

 char f(double & d = 5.6); // illegal

 char g(double & d = dval); // legal

Why use references instead of pointers in function arguments? To illustrate, let's write a

function called bump(), whose job is to increment its integer argument by one. Our first

approach doesn't work, but it tells us what we need.

 inline void bump(int m) {

 ++m; // increment by one

 }

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 20/21

 int num = 10;

 bump(num); // call by value

 cout << num << endl; // displays 10

We don't increment num because we pass it by value to bump() and modify only a local

variable (m). Let's try it again with a pointer argument instead.

 inline void bump(int *p) {

 ++*p; // increment by one

 }

 int num = 10;

 bump(&num); // call by address

 cout << num << endl; // displays 11

This time we increment num correctly. We pass num by address (&num) so that bump() can

modify it using the compact pointer expression ++*p. (This expression increments what p

points to.) Although this works, it's easy to confuse the previous expression with *p++, which

compiles but does not increment num! (Here, we increment the pointer and not what it points

to; see "Compact Pointer Expressions" on page 63.)

These kinds of mistakes can't happen with references because pointer expressions are

unnecessary. Here's the code for bump() with references.

 inline void bump(int & m) {

 ++m; // increment by one

 }

 int num = 10;

 bump(num); // call by reference

 cout << num << endl; // displays 11

This looks like a call by value, except that the function definition makes the compiler pass a

reference to bump(), rather than a value. Inside bump(), the compiler generates the code to

increment num, using the alias m. Designing bump() with references makes it easy to call (no

&) and easy to write (no pointer expressions inside the body of the function).

Constant reference arguments

 // ref.C - const reference arguments

 #include <iostream.h>

 const int MaxBuf = 20;

 struct block {

 char buf[MaxBuf];

 int used;

 };

 int main()

UNIT - III PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 21/21

 {

 void display(const block &); // prototype for display()

 block data;

 int i;

 data.used = 5;

 for (i = 0; i < data.used; i++) // assign some values

 data.buf[i] = i + 'a'

 display(data); // call by reference

 data.used = MaxBuf;

 for (i = 0; i < data.used; i++)

 data.buf[i] = i + 'a';

 display(data); // call by reference

 return 0;

 }

 void display(const block & blockref) {

 for (int i = 0; i < blockref.used; i++)

 cout << blockref.buf[i] << ' ';

 cout << endl;

 }

 $ ref

 a b c d e

 a b c d e f g h i j k l m n o p q r s t

The main() program creates a data structure of type block, and for loops fill its data member

array (buf) with characters. Data member used retains a count of the number of valid array

elements. The program calls display() twice to print out array elements. Inside display(), we

declare blockref a constant reference to block, making calls to display() efficient (no local

copies) and safe (no modifications).

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Batch 2016 – 2019

16MMU304B Programming with C and C++

Part - B

(Each Question carries 2 marks)

1. Define the term derived data type.

2. How to declare simple structures?

3. What is meant by simple structures?

4. What are pointers?

5. Write any two differences between structures and union.

6. List out the main problems with pointers.

7. How to use array as pointers?

8. What is a pointer variable?

9. Write a simple use of pointers.

10. Write a note on dereferencing pointers.

Part - C

(Each Question carries 6 marks)

1. Explain how to manipulate individual members of structures and union.

2. Describe the use of declaring and dereferencing pointers to simple variables.

3. Differentiate between call by value and call by reference with suitable example program.

4. Elaborate in detail the about the concept of pointers and discuss on passing pointers as

function arguments with suitable example program.

5. Explain array of structures with example.

6. Discuss the concept of call by function and call by reference in detail.

7. Distinguish between pointer and references with suitable examples.

8. Elaborate how to initialize individual data members as structures with suitable program.

9. Explain how to use references as function arguments and function return values.

10. How to declare and initialize references? Explain with example.

11. Explain the simple use of command line arguments.

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Batch 2016 – 2019

Subject : Programming with C and C++ Subject Code: 16MMU304B

UNIT - III

S.No Questions opt1 opt2 opt3 opt4 Answer

1
The stream is an _________ between I/O devices and the

user.
 Trans later Destination Intermediator None Intermediator

2
 If the data is received from the input devices in sequence

then it is called________.
 Source stream Object stream

 Destination

stream
 Input stream source stream

3
When the data is passed to the output devices it is

called_____
 Source stream Object stream

 Destination

stream
 Input stream destination stream

4
The C++ have a number of stream classes that are used to

work with _________ operations.
 Console I/O Console and file

 formatted

console
file console and file

5
The data accepted with default setting by I/O function of

the language is known as
 Formatted Unformatted Argumented extracted unformatted

6
The ------- system inC++ is designed to work with variety

of devices
 I/O system put() system get() system Input system I/O system

7 cin and cout are ________ for input and output of data.
 user defined

stream

 system defined

stream

 Pre defined

stream
undefined stream

system defined

stream

8
The data obtained or represented with some manipulators

are called ______.
 formatted data unformatted data extracted data unextracted data formatted data

9
The output formats can be controlled with manipulators

having the header file as
 iostream.h conio.h stdlib.h iomanip.h iomanip.h

10
 The ---------- function reads character input into the

variable line
getline() line() gets() putline() getline()

11 The manipulator << endl is equivalent to____ ‘\t’ ’\r’ ’\n’ ’\b’ \n'

12 A virtual function must be defined in _____ Friend enemy member class friend

13 To clear the flags specified --------- function is used unsetf() setf() width() flag() unsetf()

14
The function in base class is declared as virtual using the

keyword _______
 Virtual Class Pointer Structure virtual

15 Precision() is an __________ format function Manipulator Istream ios user defined ios

16 Width of the output field is set using the ______ width() setf() unsetf() line() width()

17 ______ is used to achieve run time polymorphism
 operator

overloading

 function

overloading
 inline function virtual function virtual function

18 Pointers are used to access ________ Object Virtual function Class members functions class members

19
The member functions can be refered by using the

________ and _______

 dot operator and

object

 address operator

and virtual

functions

 class and object functions
dot operator and

object

20
The paranthesis are necessary because the dot operator has

higher precedence than the __________
 dot operator this class

 indirection

operator

indirection

operator

21 The ------------ flag skip the white space on input ? ios::skipus ios::skip ios::showpoint ios::skipos ios::skipus

22 The manipulator Endif is equivalent to -------------- "\n" "\t" setf() unsetf() "\n"

23
When two or more objects are compare inside a member

function the result in return is an _________
 virtual function derived class

 invoking

objects
class invoking objects

24 Pointers are used as the objects of _______ user defined derived class virtual function object. derived class

25 Which one of following is an sequence container? stack deque queue None. deque

26
The virtual functions are accessed with the help of a

pointer declared as ____ to the base class
 Class object pointer stream pointer

27
 _____ is achieved when a virtual function is accessed

through a pointer to the base class.

 run time

polymorphism
 inheritance class constructor

run time

polymorphism

28 we cannot have virtual constructors but _____ are allowed translators virtual function
 virtual

destructor
 destructor virtual destructor

29 The virtual functions cannot be _________ class object constructors static members static members

30 The --------- is the one that is not create objects. class abstract Pointer member abstract

31
 A ____ is a function declared in a base class that has no

definition relative to the base class
 Virtual function

 pure virtual

function
 stream class

pure virtual

function

32 A ____ equated to zero is called a pure virtual function. virtual function
 pure virtual

function
 stream class. virtual function

33
Stream and stream classes are used to implement its I/O

operations with the ______

 the console and

disk files
 cin and cout manipulators streams

the console and

disk files

34 A _____ is a sequence of bytes. Stream class object files stream

35
The _____ streams automatically open when the program

begins its execution
 user defined predefined input output predefined

36
int main() { int x,y=10,z=10; x= (y==z); cout<<x;

return 0; } what will be the output ?
0 1 10 error 1

37
Templates enable us to create a range of related---------------

 classes variables objects

 main()

functions
classes

38 The _____ are called as overloaded operators >> and << + and – * and && – and . >> and <<

39 The >> operator is overloaded in the _______ istream ostream iostream streams istream

40
The ____ functions are used to handle the single character

I/O operation.
 get() and put()

 clrscr() and

getch()
 cin and cout getch() get() and put()

41
 ____ functions are used to display text more efficiently

by using the line oriented i/o functions.

 getline() and

write()
 cin and cout get() and put() get()

getline() and

write()

42 The getline() reads character input to the ______ line datatype function variable numeric variable

43
Which of the following functions give the current size of a

string object?
 width() length() setf() unsetf() length()

44 Which of the following are non-mutating algorithms ? search() rotate() count() both a and c both a and c

45
By default the floating numbers are printed with ______

after the decimal point.
 5 digits 6 7 8 6

46 ____ returns the setting in effect until it is reset width precision() setf() fill() precision()

47
Which of the following containers support the random

access iterator?
 multiset multimap vector both a and b vector

48 An exception is caused by ------------- run time error syntax error
 hardware

problem
 both b and c run time error

49
What is the error in the program? Class test { virtual void

display(); }
no error

test class contain

data member

 display() should

be defined
 both b and c no error

50 A ---- and ------ use similar syntax structure and class class and object both a&b none of the above structure and class

51 The flag formatted for the octal base is ________ ios::doc ios::hex ios::fixwd ios::oct ios::oct

52 The flag is formatted with ______ arguments. 1 2 3 4 1

53 The bit field is formatted with ______ arguments. 1 2 3 4 2

54 _____ flush all streams after insertion ios::stdio ios::shoebase ios::showpoint ios:: unitbuf ios::unitbuf

55 _____ is used as base indicator on output. ios::stdio ios::showbase ios::showpoint d ios:: unitbuf ios::showbase

56
In -------,data can be quickly inserted or deleted at either

end
 deque queue vector endif deque

57 ______ returns the previous format state.
 ios member

function
 manipulator class a and b

ios member

function

58 The bitfield used for fixed point notation is ______ ios::floatfield ios::adjustfield ios::basefield none ios::floatfield

59 The statement -------;rethrows an exception throw rethrow default exception throw

UNIT - IV PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 1/17

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Batch 2016-2019

Subject : PROGRAMMING WITH C and C++ Sub.code : 16MMU304B

Dynamic Memory Allocation

The process of allocating memory at runtime is known as dynamic memory allocation.

Library routines known as "memory management functions" are used for allocating and

freeing memory during execution of a program. These functions are defined in stdlib.h.

Function Description

malloc()
allocates requested size of bytes and returns a void pointer pointing to the

first byte of the allocated space

calloc()
allocates space for an array of elements, initialize them to zero and then

returns a void pointer to the memory

free releases previously allocated memory

realloc modify the size of previously allocated space

Memory Allocation Process

Global variables, static variables and program instructions get their memory in permanent

storage area whereas local variables are stored in a memory area called Stack. The memory

space between these two region is known as Heap area. This region is used for dynamic

memory allocation during execution of the program. The size of heap keep changing.

UNIT - IV PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 2/17

Allocating block of Memory

malloc() function is used for allocating block of memory at runtime. This function reserves a

block of memory of given size and returns a pointer of type void. This means that we can

assign it to any type of pointer using typecasting. If it fails to allocate enough space as

specified, it returns a NULL pointer.

Syntax:

void* malloc(byte-size)

Example using malloc() :

int *x;

x = (int*)malloc(50 * sizeof(int)); //memory space allocated to variable x

free(x); //releases the memory allocated to variable x

calloc() is another memory allocation function that is used for allocating memory at runtime.

calloc function is normally used for allocating memory to derived data types such as arrays

and structures. If it fails to allocate enough space as specified, it returns a NULL pointer.

Syntax:

void *calloc(number of items, element-size)

Example using calloc() :

struct employee

{

UNIT - IV PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 3/17

 char *name;

 int salary;

};

typedef struct employee emp;

emp *e1;

e1 = (emp*)calloc(30,sizeof(emp));

realloc() changes memory size that is already allocated dynamically to a variable.

Syntax:

void* realloc(pointer, new-size)

Example using realloc() :

int *x;

x=(int*)malloc(50 * sizeof(int));

x=(int*)realloc(x,100); //allocated a new memory to variable x

Diffrence between malloc() and calloc()

calloc() malloc()

calloc() initializes the allocated

memory with 0 value.

malloc() initializes the allocated memory with

garbage values.

Number of arguments is 2 Number of argument is 1

Syntax :

(cast_type *)calloc(blocks ,

size_of_block);

Syntax :

(cast_type *)malloc(Size_in_bytes);

Program to represent Dynamic Memory Allocation(using calloc())

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int i, n;

 int *element;

 printf("Enter total number of elements: ");

 scanf("%d", &n);

 element = (int*) calloc(n,sizeof(int)); /*returns a void pointer(which is type-casted to int*)

 pointing to the first block of the allocated space*/

 if(element == NULL)//If it fails to allocate enough space as specified, it returns a NULL

pointer.

 {

 printf("Error.Not enough space available");

UNIT - IV PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 4/17

 exit(0);

 }

 for(i=0;i<n;i++)

 scanf("%d",element+i); //storing elements from the user in the allocated space

 for(i=1;i<n;i++)

 {

 if(*element > *(element+i))

 *element = *(element+i);

 }

 printf("Smallest element is %d",*element);

 return 0;

}

Output:

Enter total number of elements: 5

4 2 1 5 3

Smallest element is 1

Memory Allocation:

There are three types of allocation — static, automatic, and dynamic.

Static Allocation means, that the memory for your variables is allocated when the program

starts. The size is fixed when the program is created. It applies to global variables, file scope

variables, and variables qualified with static defined inside functions.

Automatic memory allocation occurs for (non-static) variables defined inside functions, and

is usually stored on the stack (though the C standard doesn't mandate that a stack is used).

You do not have to reserve extra memory using them, but on the other hand, have also

limited control over the lifetime of this memory. E.g: automatic variables in a function are

only there until the function finishes.

void func() {

 int i; /* `i` only exists during `func` */

}

Dynamic memory allocation is a bit different. You now control the exact size and the

lifetime of these memory locations. If you don't free it, you'll run into memory leaks, which

may cause your application to crash, since at some point of time, system cannot allocate more

memory.

int* func() {

 int* mem = malloc(1024);

 return mem;

UNIT - IV PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 5/17

}

int* mem = func(); /* still accessible */

Files: Classes for file stream operations

Working With Files:

 The data is stored in secondary devices using the concept of File.

 A File is a collection of related data stored in a particular area on the disk.

 Programs typically involves either or both of the following kinds of data

communication:

 Data transfer between the console unit and the program.

 Data transfer between the program and the disk

Classes for File Stream Operations:

 The C++ I/O system contains a set of classes that define the file handling methods.

 File handling class includes ifstream, ofstream, and fstream. These classes are derived

from the corresponding iostream class.

 These are the class designed to manage the disk files

 All the classes are declared in fstream so all the program should include this header

file

File Operations:

 Open file

 Read and Write Operations

 Closing a file

Opening and closing a file

Output
Device

Program

Output Stream

Disk File

Input
Devic

e

Input Stream

UNIT - IV PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 6/17

 Use a disk file requires

 Suitable name for the file.

 Data type and structure.

 Purpose

 Opening method

 Opening Files Using Constructor:

 A constructor is used to initialize an object while it is being created.

 A file name is used to initialize the file stream object.

Steps for Creating Object:

 Create a file stream object to manage the stream using appropriate class. The class

ofstream is used to create the output stream and the class ifstream to create the input

stream

 Initialize the file object with the desired filename.

Example:

ofstream outfile(“result”);

 This create outfile as ofstream object that manages the output stream. This

statement also opens the file result and attaches to the output stream outfile.

ifstream infile(“data”)

 This create infile as ifstream object that manages the input stream. This

statement also opens the file data and attaches to the input stream infile.

Program:

#include<iostream.h>

#include<fstream.h>

void main()

{

 ofstream outf("Item");

 char name[30];

 float cost;

 cout<<"Enter the Item Name: ";

 cin>>name;

 outf<<name<<"\n";

 cout<<"Enter the Item Cost: ";

 cin>>cost;

UNIT - IV PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 7/17

 outf<<cost<<"\n";

 outf.close();

 ifstream inf("Item");

 inf>>name;

 inf>>cost;

 cout<<"\n Item Name:"<<name<<"\n";

 cout<<"Item cost:"<<cost<<"\n";

 inf.close();

}

Opening a Files Using open():

 The function open() can be used to open multiple files that use the

same stream object.

Syntax:

 File-stream-class stream-object;

 stream-object.open(“file name”);

Example:

 ofstream outfile;

 outfile.open(“data”);

 ………………..

 ………………..

 outfile.close();

Program:

#include<iostream.h>

#include<fstream.h>

void main()

{

 ofstream outf;

 char name[30];

 int i;

 outf.open("prog");

 cout<<"Enter the 3 Programming Language:\n ";

 for(i=0;i<3;i++)

 {

UNIT - IV PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 8/17

 cin>>name;

 outf<<name<<"\n";

 }

 outf.close();

 outf.open("soft");

 cout<<"Enter the 3 softwares:\n ";

 for(i=0;i<3;i++)

 {

 cin>>name;

 outf<<name<<"\n";

 }

 outf.close();

 ifstream inf;

 inf.open("prog");

 cout<<"Programming Language:\n";

 while(inf)

 {

 inf.getline(name,50);

 cout<<name<<"\n";

 }

 inf.close();

 inf.open("soft");

 cout<<"Software:\n";

 while(inf)

 {

 inf.getline(name,50);

 cout<<name<<"\n";

 }

 inf.close();

}

Detecting End of File:

 eof() function is used to detect end of File.

 It is the member function of ios class.

UNIT - IV PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 9/17

 It returns a non-zero value if the end-of-file condition is encountered and a

zero otherwise.

Example:

if(fileobj.eof() !=0)

{ exit(0);}

File Modes:

 istream and ostream constructors and function open() to create new files as well as to

open the existing files.

 open() method takes two arguments one for file name and other for mode.

Syntax:

 Stream-object.open(“file-name”,mode);

 mode specifies the purpose for which the file is opened.

 The default mode values are:

 ios::in for ifstream functions meaning open for reading only.

 ios::out for ofstream functions meaning open for writing only.

File Mode Parameters:

Parameter Meaning

ios::app Append to end of file

ios::ate Go to end of the file on opening

ios::binary Binary file

ios::in Open file for reading only

ios::nocreate Open fails if the file does not exist

ios::noreplace Opens fails if the file already exist

ios::out Open file for writing only

ios::trunc Delete the contents of the file if it exists.

 Opening a file in ios::out mode also open it in the ios::trunc mode by default.

 ios::app and ios::ate takes to the end of the file when it is opened

 The difference between ios::app and ios::ate is ios::app allows us to add data to the

end of the file but ios::app mode permits to add data or to modify data anywhere in

the file.

 ios::app can be used only with the file capable of output.

UNIT - IV PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 10/17

 Creating a stream using ifstream implies input and creating a stream using ofstream

implies output. So in this cases it is not necessary to provide the mode parameters.

 The fstream class does not provide a mode by default and therefore it is necessary to

provide the mode explicitly when using an object of fstream class.

 The mode can combine two or more parameters using the bitwise OR operator

fout.open(“data”,ios:app | ios::nocreate)

Sequential input and output operations

 The file stream support a number of member functions for performing the input

and output operations on files.

put() and get() function:

 The function put() writes a single character to the associated stream.

 The function get() reads a single character to the associated stream.

Syntax:

 File-object.get(character)

 File-object.put(character)

Program:

#include<iostream.h>

#include<fstream.h>

#include<string.h>

void main()

{

 fstream file;

 char name[30];

 int i;

 cout<<"Enter Name: ";

 cin>>name;

 int l=strlen(name);

 file.open("text",ios::in | ios::out);

 for(i=0;i<l;i++)

 {

 file.put(name[i]);

 }

UNIT - IV PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 11/17

 file.seekg(0);

 char c;

 while(file)

 {

 file.get(c);

 cout<<c;

 }

 file.close();

}

write() and read() function:

 The function write() and read() handles the data in binary form. This means

that the values stored in the disk file in the same format in which they stored in

the internal memory.

 An int takes two bytes to store its value in the binary form, irrespective of its

size.

 The binary format is more accurate for storing the numbers in the exact

internal representation.

 The binary format is much faster to saving the data to.

Syntax:

 inFile-object.read((char *) &v, sizeof(v))

 outFile-object.write((char *) &v, sizeof(v))

 The first argument is the address of variable v.

 The second argument is the length of the variable in bytes.

 The address of the variable must be cast to type char *.

Program:

#include<iostream.h>

#include<fstream.h>

#include<iomanip.h>

void main()

{

 float height[5]={176,182,167.89,177.9,160.24};

 ofstream ofile;

 int i;

UNIT - IV PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 12/17

 ofile.open("data");

 ofile.write((char *) &height, sizeof(height));

 ofile.close();

 ifstream infile;

 infile.open("data");

 infile.read((char *) &height, sizeof(height));

 for(i=0;i<5;i++)

 {

 cout.setf(ios::showpoint);

 cout<<setw(10)<<setprecision(2)<<height[i]<<endl;

 }

 infile.close();

}

Reading and Writing a Class Object:

 C++ supports features for writing to and reading from the disk files objects directly.

 The binary input and output functions read() and write() are designed to do exactly

this job.

 These functions handle the entire structure of an object as a single unit, using the

computer’s internal representation of data.

 For instance, the function write() copies a class object from the memory byte by byte

with no conversion.

 Only data members are written to the disk file and the member functions are not.

 The length of the object is obtained by sizeof operator.

Program:

#include<iostream.h>

#include<fstream.h>

#include<iomanip.h>

class Inventory

{

 char name[20];

 int code;

 float cost;

 public:

UNIT - IV PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 13/17

 void readdata();

 void show();

};

void Inventory::readdata()

{

 cout<<"Enter Name: ";

 cin>>name;

 cout<<"Enter Code: ";

 cin>>code;

 cout<<"Enter Cost: ";

 cin>>cost;

}

void Inventory::show()

{

 cout<<setiosflags(ios::left)<<setw(10)<<name

 <<setiosflags(ios::right)<<setw(10)<<code

 <<setprecision(2)<<setw(10)<<cost<<endl;

}

void main()

{

 Inventory item[3];

 fstream file;

 file.open("stock.dat",ios::in |ios::out);

 cout<<"Enter Details of Items\n";

 for(int i=0;i<3;i++)

 {

 item[i].readdata();

 file.write((char *) &item[i], sizeof(item[i]));

 }

 file.seekg(0);

 cout<<"\n\nOutput\n\n";

 for(i=0;i<3;i++)

 {

UNIT - IV PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 14/17

 file.read((char *) &item[i], sizeof(item[i]));

 item[i].show();

 }

 file.close();

}

updating a file random access

 Updating is a routine take in the maintenance of any data file.

 Updating include the following task.

 Displaying the contents of a file.

 Modifying an existing item.

 Adding a new item.

 Deleting an existing item.

Program:

#include<iostream.h>

#include<fstream.h>

#include<iomanip.h>

class Inventory

{

 char name[20];

 int code;

 float cost;

 public:

 void readdata();

 void show();

};

void Inventory::readdata()

{

 cout<<"Enter Name: ";

 cin>>name;

 cout<<"Enter Code: ";

 cin>>code;

 cout<<"Enter Cost: ";

UNIT - IV PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 15/17

 cin>>cost;

}

void Inventory::show()

{

 cout<<setiosflags(ios::left)<<setw(10)<<name

 <<setiosflags(ios::right)<<setw(10)<<code

 <<setprecision(2)<<setw(10)<<cost<<endl;

}

void main()

{

 Inventory item;

 fstream file;

 file.open("stock.dat",ios::ate| ios::in |ios::out |ios::binary);

 file.seekg(0,ios::beg);

 cout<<"\nCurrent Contant of File\n";

 while(file.read((char *) &item, sizeof(item)))

 {

 item.show();

 }

 file.clear();

 cout<<"\nAdd An Item\n";

 item.readdata();

 char ch;

 cin.get(ch);

 file.write((char *) &item, sizeof(item));

 file.seekg(0);

 cout<<"\nContant of File After Appended\n";

 while(file.read((char *) &item, sizeof(item)))

 {

 item.show();

 }

 int ls=file.tellg();

 int n=ls/sizeof(item);

UNIT - IV PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 16/17

 cout<<"\nNumber of Objects="<<n;

 cout<<"\nTotal bytes in the file="<<ls;

 cout<<"Modify An Item";

 int no;

 cout<<"\nEnter the Object Number to Update : ";

 cin>>no;

 cin.get(ch);

 int loc=(no-1)*sizeof(item);

 if(file.eof())

 file.clear();

 file.seekp(loc);

 cout<<"\nEnter New values of object:\n";

 item.readdata();

 cin.get(ch);

 file.write((char *) &item, sizeof(item))<<flush;

 file.seekg(0);

 cout<<"\nContant of File After Modified\n";

 while(file.read((char *) &item, sizeof(item)))

 {

 item.show();

 }

 file.close();

}

Command-line Arguments:

 C++ support a feature of supply of arguments to the main() function.

 The command-line arguments are achieved by the arguments of the main() function.

Syntax:

main(int argc, char *argv[])

 argc known as argument counter, represents the number of arguments in the

command line.

 argv known as argument vector, is an array of char type pointers that pointers

that points to the command line arguments.

 The size of this array will be equal to the value of argc.

UNIT - IV PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 17/17

 Arguments are supplied at the time of invoking the program.

Example:

 C:\>program-file-name first-file second-file

 Program-file-name is the name of the file containing the program to be executed.

 first-file and second-file are the file names passed to the program as command-line

arguments.

 The first argument is always the file name and contains the program to be executed.

 The value of argc would be 3 and the argv would be an array of 3 pointers to strings

 argv[0] program-file-name

 argv[1] first-file-name //used for reading purpose

 argv[2] second-file-name //used for writing purpose

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Batch 2016 – 2019

16MMU304B Programming with C and C++

Part - B

(Each Question carries 2 marks)

1. What are streams?

2. Discuss the use of delete operator.

3. How to malloc and calloc?

4. What is meant by free functions?

5. Write the use of new operator.

6. What is random access in files?

7. Define preprocessor directives.

8. Write about static memory allocation.

9. Write on dynamic memory allocation.

10. What is a macro?

11. List the use of ifstream and ofstream classes.

12. List the use of fstream header files.

13. Write the use of delete operator.

Part - C

(Each Question carries 6 marks)

1. What is meant by memory allocation? Explain the dynamic memory allocation in detail.

2. Write a C++ program to Read and Write Text files with fstream header.

3. Elaborate the use of fstream header file and ifstream file in c++ with a suitable program.

4. Discuss about storage of variables in dynamic memory allocation.

5. Explain about the use of New and Delete operators in memory.

6. Differentiate between static and dynamic memory allocation in detail.

7. Explain in detail the preprocessor directives.

8. Explain in detail opening and closing of a file with an appropriate example.

9. Elaborate in detail the storage of variables in static and dynamic memory allocation.

10. Describe the concept of reading and writing text files in c++.

11. Differentiate between static and dynamic memory allocation.

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Batch 2016 – 2019

Subject : Programming with C and C++ Subject Code: 16MMU304B

UNIT - IV

S.No Questions opt1 opt2 opt3 opt4 Answer

1 A _______ is a collection of related data stored in a particular Field File Row Vector file

2 File streams act as an ________ between programs and files. interface converter translator operator interface

3 Ifstram, Ofstream, Fstream are derived form __________. iostream ostream streambuff fstreambase fstreambase

4 Classes designed to manage the ________ files are declared random sequential disk tape disk

5 A file can be opened in ------------ ways 2 3 4 5 2

6 ________ inherits get(), getline(), read(), seekg(), and tellg() conio ifstream fstream iostream ifstream

7
The --------- condition is necessary to preventing any further

atempt to read data from the file

detection end-of-

file
 open() file end-of-file none of the above

detection end-of-

file

8 ______ inherits all functions from istream and ostream conio ofstream fstream ifstream fstream

9 The file mode parameter for opening a binary file is ios::ate ios::hex ios::dec ios::binary ios::binary

10 _______ is the file mode parameter for go to end of file on ios::ate ios::app ios::del ios::end ios::ate

11 The file mode paramenter for writing only onto the file is ios::in ios::app ios::ate ios::out ios::out

12 Opening a file in ios::out mode also opens it in the ________ ios::trunc ios::create ios::create ios::ate ios::trunc

13 Both _______ and _______ take us to the end of the file
 ios::ate,

ios::create

 ios::trunk,

ios::ate

 ios::app,

ios::ate
 ios::app, ios::out ios::app,ios::ate

14
The parameter _______ can be used only with the files

capable of output.
 ios::ate ios::app ios::in ios::create ios::app

15 The parameter ios::app can be used only with the files capable input input and output append output output

16 The eof () stands for _____. end of file error opening file error of file none of the above end of file

17 Command line arguments are used with ________ function main() member function with all function none of the above main()

18 The close() function _________. closes the file
 closes all files

opened

 closes only read

mode file
 none closes the file

19 The write() function writes ___________. single character Binary data string none of these Binary data

20 The __________ function shifts the associated files input seekg() seekp() tellg() tellp(). seekg()

21 The __________ function shifts the associated files output seekg() seekp() tellg() tellp(). tellg()

22 The object of fstream class provides ________operation
 both read and

write
 read only write only none of the above.

both read and

write

23 Each file has ------ associated pointers which is known as file 1 3 5 2 2

24 When a file is opened read or write mode a file pointer is set beginning end middle none beginning

25 The ------- seek call indicates that it stay at the current position
fout.seekg(o,ios::cu

r)

fout.seekg(m,ios::

cur)

 fout.seekg(-

m,ios::cur)
 all the above

fout.seekg(o,ios::c

ur)

26 The constructor of this class requires ________file name and ofstream ifstream fstream all the above fstream

27 Templates are suitable for _______ data type. any basic derived all the above basic

28 Templates can be declared using the keyword _______ class template try none template

29 Templates is also called as _______ class. generic container virtual base generic

30 The --------- is a routine task in the maintenance of any data updating dowmloading random none. updating

31 Select the correct Template definition _______ .
 template <class

T>

 class <template

T>
 template <T>

 template class

<T>.
template<class T>

32 Function Templates are normally defined _______ . in main function globally in a class anywhere in a class

33 The ------ arguments are typed by the user and delimited by a command-line default template counter arguments command-line

34 _____ section defines all symbolic constants link documentation definition subprogram definition

35 _____ line should not end with semicolon # define
variable

declaration

assignment

statements
function calling # define

36 The file function fclose returns the value _____ if he file is 0 1 TRUE FALSE 1

37 First parameter in the command line is always ______ file name argument count argument vector size argument count

38 A _____ is placed on the disk where a group of related data is struture union bit field file file

39 In ____ mode the existing file is opened for reading only r w a f r

40 In _____ mode the file can be opened for writing only r w a f w

41 In _____ mode the file can be opened for appending data to it r w a f a

42 The getc function will return an _______ ,when end of the file BOF EOF SOF FOF EOF

43 In fseek function value of offset should be ____ to move the 0 1 2 3 0

44 In fseek function value of offset should be ____ to move the 0 1 2 3 1

45 In fseek function value of offset should be ____ to move the 0 1 2 3 2

46
_____ is a parameter supplied to a program when the program

is invoked
argument parameter

command line

argument
values

command line

argument

47 Command line argument is supplied to the program when it is invoked developed compiled stored invoked

48
The file mode _____ is used to read and append some data

into an existing file from end of the file
"r" "r-" "r+" all "r+"

49
A _______ file is a collection of ASCII characters, with end

of line markers and end of file markers
program binary image text text

50 The files opened with mode “w allows
reading and

writing
reading only writing only

reading and

appending
writing only

51 The files opened with mode “a+” allows
reading and

writing
reading only writing only

reading and

appending

reading and

appending

52 The ________ function can be used to test for an end of file eof() feof() eol() EOF feof()

53 The negative integer constant EOF indicates the ____ end of line new line end of file
 minimum integer

range
end of file

54 fclose() function is used to close editor program all the above file file

55 File mode must be specified while ________ opening a file reading a file writing a file closing a file opening a file

56 ______ function is used to write a string into an ASCII file fwrite() writes() puts() fputs() fputs()

57 ________ is used to read a number of items from the file printf() scanf() fprintf() fscanf() fscanf()

58
____ function is used to report the status of the file and

returns a non zero integer if an error has been detected
fstatus() ferror() fnull() ifzero() ferror()

59
fseek, ftell and rewind functions are used with __________

files
sequential files indexed files

random access

files
all files

random access

files

60 _____ returns the current position of the file pointer in a file pos() fseek() ftell() fposition() ftell()

61 _____ is used to move the file pointer to the desired location pos() fseek() ftell() fposition() fseek()

62 _________ takes the filepointer and reset the position to the pos() fseek() ftell() rewind() rewind()

63 Which of the following functions will take only the file fclose() ferror() rewind() all of the above all of the above

64 _______ function is used to read some bytes from the binary read() readln() readf() fread() fread()

65 _______ function is used to write some bytes into a binary writebytes() fwrite() writef() putfile() fwrite()

66 main() function takes ________ number of arguments one two three any two

67
The ______ in the main(argc, argv) function represents an

array of character pointers that points to the command line
argc argv args cptr argv

68 In main(argc,argv),the variable argc ____

counts the number

of arguments in

command line

b) counts the

number of

functions in a

program

arranges the

argument in the

command line

sets a pointer to the

argument in the

command line

counts the number

of arguments in

command line

69 In the command line argv[0] points to the ______
program under

execution

first argument

after the program

the beginning of

the program file

all the elements in

the arguments vector

program under

execution

70 Command line arguments are used to accept argument from

command prompt

of operating

system

through scanf()

statement

through printf()

statement

through gets

function

command prompt

of operating

system

71 The malloc() function

allocates memory

and not returns a

pointer

allocates memory

and returns a

pointer to the first

byte of it

changes the size

of allocated

memory

deallocates or frees

the memory

allocates memory

and returns a

pointer to the first

byte of it

72 The ________ processes the source code before it passes interpreter preprocessor linker assembler preprocessor

73 Preoprocessor directives must be present
before the main ()

function

after the main()

function

at the end of the

program

anywhere in the

program body

before the main ()

function

74
When files are included using #include<filename> ,then the

file is searched in______

standard library

only

current directory

only
in all directories

current directories &

in standard library

standard library

only

75
FILE *fp; fp=fopen(“ fn”,”m”); In the above syntax fp is a

file name file variable

pointer to data

type FILE

pointer to function

fopen()

pointer to data

type FILE

76 ______ is analogous to getchar() function and reads a getch() gets() getc() getw() getc()

77 _____is functions used to write integers into a file putw() puts puti() putc putw()

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 1/55

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Batch 2016-2019

Subject : PROGRAMMING WITH C and C++ Sub.code : 16MMU304B

programming

 Objects

 Classes

 Data abstraction and Encapsulation

 Inheritance

 Polymorphism

 Dynamic binding

 Message passing

Objects:

 An object can be considered a "thing" that can perform a set of related activities.

 The set of activities that the object performs defines the object's behavior.

 For example, the hand can grip something or a Student (object) can give the name or

address.

 Objects are run time entity or real world entity.

Classes:

 A class is simply a representation of a type of object.

 It is the blueprint/ plan/ template that describe the details of an object.

 A class is the blueprint from which the individual objects are created.

 Class is composed of three things: a name, attributes, and operations.

 For example Student is an object has name, age, course, etc as attributes. Read, write,

etc as operations

Data abstraction and Encapsulation

 The encapsulation is the inclusion within a program object of all the resources need

for the object to function - basically, the methods and the data.

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 2/55

 In OOP the encapsulation is mainly achieved by creating classes, the classes expose

public methods and properties.

 The class is kind of a container or capsule or a cell, which encapsulate the set of

methods, attribute and properties to provide its indented functionalities to other

classes.

 In that sense, encapsulation also allows a class to change its internal implementation

without hurting the overall functioning of the system.

 That idea of encapsulation is to hide how a class does it but to allow requesting what

to do.

 Abstraction is an emphasis on the idea, qualities and properties rather than the

particulars (a suppression of detail).

 The importance of abstraction is derived from its ability to hide irrelevant details and

from the use of names to reference objects.

 Abstraction is essential in the construction of programs.

 It places the emphasis on what an object is or does rather than how it is represented

or how it works.

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 3/55

Inheritance

 Ability of a new class to be created, from an existing class by extending it, is called

inheritance.

 Different kinds of objects often have a certain amount in common with each other.

 Object-oriented programming allows classes to inherit commonly used state and

behavior from other classes.

 In this example, Bicycle now becomes the super class of MountainBike, RoadBike,

and TandemBike. In the Java programming language, each class is allowed to have

one direct super class, and each super class has the potential for an unlimited number

of subclasses:

 The new class created is called as derived class

 The existing class is called as base class.

 The base class provides the property the derived class receives the property.

 It reduces the complexity of the programming.

 This is the most common and most natural and widely accepted way of implement

this relationship.

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 4/55

Polymorphism

 Polymorphism is the process taking more then one form.

 More precisely Polymorphisms mean the ability to request that the same operations be

performed by a wide range of different types of things.

 In OOP the polymorphisms is achieved by using many different techniques named

method overloading, operator overloading and method overriding,

 The method overloading is the ability to define several methods all with the same

name.

 The operator overloading (less commonly known as ad-hoc polymorphisms) is a

specific case of polymorphisms in which some or all of operators like +, - or == are

treated as polymorphic functions and as such have different behaviors depending on

the types of its arguments.

Dynamic binding

 Dynamic binding is the process of resolving the function to be associated with the

respective functions calls during their runtime rather than compile time.

Message passing

 Every data in an object in oops that is capable of processing request known as

message.

 All objects can communicate with each other by sending message to each other

 Message passing, also known as interfacing, describes the communication between

objects using their public interfaces.

Classes and objects : Specifying a class

 Class is composed of three things: a name, attributes, and operations.

 Class is a way to bind the data and its associated functions together

 Class specification has 2 parts:

 Class Declaration.

 Class function definitions

Access Specifies:

 The Status of the accessibility of the data members are determined by the

Access Specifies

 There are 3 access specifies

 Public

 Private

 Protected

Public:

 It allows functions and data to be accessible to any part of the program.

Private:

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 5/55

 It allows functions and data cannot be accessible to any part of the program except the

class where it is declared.

Protected

 It allows functions and data to be accessible to only the derived classes.

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 6/55

Class Declaration:

Syntax:

 class class_name

 {

 private:

 variable declaration;

 function declaration;

 public:

 variable declaration;

 function declaration;

 }

Example:

 class book

 {

 int pgno;

 public:

 void getpage();

 }

Creation of Objects:

Once the class is created, one or more objects can be created from the class as objects are

instance of the class.

Just as we declare a variable of data type int as:

int x;

Objects are also declared as:

class_name followed_by object_name;

Example:

exforsys e1;

This declares e1 to be an object of class exforsys.

Accessing Class Members:

Creating Object:

 Syntax:

 classname object_name;

 Example:

 book i;

Accessing Methods:

 Syntax:

 object.function_name(argument)

 Example:

 i.getpage();

Defining member functions

Defining a Member

 Definition in 2 places

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 7/55

 Outside the class definition.

 Inside the class definition.

Outside the Class Definition

Syntax:

 RT class_name::function_name(arg list)

 {

 function body;

 }

Example:

 void book::getpage()

 {

 cout<<“Enter the page No:”;

 cin>>pgno;

 }

Constructors

A class constructor is a special member function of a class that is executed whenever we

create new objects of that class.

A constructor will have exact same name as the class and it does not have any return type at

all, not even void. Constructors can be very useful for setting initial values for certain

member variables.

Unlike normal functions, constructors have specific rules for how they must be named:

1) Constructors should always have the same name as the class (with the same capitalization)

2) Constructors have no return type (not even void)

A constructor that takes no parameters (or has all optional parameters) is called a default

constructor.

Default Constructor-: A constructor that accepts no parameters is known as default

constructor. If no constructor is defined then the compiler supplies a default constructor.

student :: student()

{

 rollno=0;

 marks=0.0;

}

Parameterized Constructor -: A constructor that receives arguments/parameters, is called

parameterized constructor.

student :: student(int r)

{

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 8/55

 rollno=r;

}

Example

#include<iostream>

#include<conio.h>

using namespace std;

class Example

 {

 // Variable Declaration

 int a,b;

 public:

 //Constructor

 Example()

 {

 // Assign Values In Constructor

 a=10;

 b=20;

 cout<<"Im Constructor\n";

 }

 void Display()

 {

 cout<<"Values :"<<a<<"\t"<<b;

 }

};

int main()

 {

 Example Object;

 // Constructor invoked.

 Object.Display();

 // Wait For Output Screen

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 9/55

 getch();

 return 0;

}

Sample Output

Im Constructor

Values :10 20

Example

#include <iostream>

 using namespace std;

 class Line

{ public:

 void setLength(double len);

 double getLength(void);

 Line(); // This is the constructor

 private:

 double length;

};

// Member functions definitions including constructor

Line::Line(void)

{

 cout << "Object is being created" << endl;

}

 void Line::setLength(double len)

{

 length = len;

}

 double Line::getLength(void)

{

 return length;

}

// Main function for the program

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 10/55

int main()

{

 Line line;

 // set line length

 line.setLength(6.0);

 cout << "Length of line : " << line.getLength() <<endl;

 return 0;

}

When the above code is compiled and executed, it produces following result:

Object is being created

Length of line : 6

Special Characteristics of Constructors

1. They should be declared in the public section.

2. They are invoked automatically when the objects are created

3. They do not have return types, not even void and therfor and they cannot return

values.

4. They cannot be inherited, though a derived class can call the base class constructor

5. like other c++ functions, they can have default arguments.

6. constructors cannot be virtual

7. we cannot refer to their addresses.

8. An object with a constructor cannot be used as a member of a union.

9. They make implicit calls to the operators new and delete when memory allocation is

required.

Multiple Constructors in a class

Like functions, it is also possible to overload constructors. A class can contain more than one

constructor. This is known as constructor overloading. All constructors are define with the

same name as the class. All the constructors contain different number of arguments.

Depending upon number of arguments, the compiler executes appropriate constructor.

Constructor is automatically called when object(instance of class) create. It is special member

function of the class. Which constructor has arguments that’s called Parameterized

Constructor.

 One Constructor overload another constructor is called Constructer Overloading

 It has same name of class.

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 11/55

 It must be a public member.

 No Return Values.

 Default constructors are called when constructors are not defined for the classes.

Syntax

class class-name

{ Access Specifier:

 Member-Variables

 Member-Functions

 public:

 class-name()

 {

 // Constructor code

 }

 class-name(variables)

 {

 // Constructor code

 }

 ... other Variables & Functions

}

Example Program

#include<iostream>

#include<conio.h>

using namespace std;

class Example {

 // Variable Declaration

 int a,b;

 public:

 //Constructor wuithout Argument

 Example() {

 // Assign Values In Constructor

 a=50;

 b=100;

 cout<<"\nIm Constructor";

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 12/55

 }

 //Constructor with Argument

 Example(int x,int y) {

 // Assign Values In Constructor

 a=x;

 b=y;

 cout<<"\nIm Constructor";

 }

 void Display() {

 cout<<"\nValues :"<<a<<"\t"<<b;

 }

};

int main() {

 Example Object(10,20);

 Example Object2;

 // Constructor invoked.

 Object.Display();

 Object2.Display();

 // Wait For Output Screen

 getch();

 return 0;

}

Sample Output

Im Constructor

Im Constructor

Values :10 20

Values :50 100

Constructors Overloading are used to increase the flexibility of a class by having more

number of constructor for a single class. By have more than one way of initializing objects

can be done using overloading constructors.

Example:

 #include <iostream.h>

 class Overclass

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 13/55

 { public:

 int x;

 int y;

 Overclass() { x = y = 0; }

 Overclass(int a) { x = y = a; }

 Overclass(int a, int b) { x = a; y = b; }

 };

 int main()

 { Overclass A;

 Overclass A1(4);

 Overclass A2(8, 12);

 cout << "Overclass A's x,y value:: " <<

 A.x << " , "<< A.y << "\n";

 cout << "Overclass A1's x,y value:: "<<

 A1.x << " ,"<< A1.y << "\n";

 cout << "Overclass A2's x,y value:; "<<

 A2.x << " , "<< A2.y << "\n";

 return 0;

}

Result:

 Overclass A's x,y value:: 0 , 0

 Overclass A1's x,y value:: 4 ,4

 Overclass A2's x,y value:; 8 , 12

In the above example the constructor "Overclass" is overloaded thrice with different

intialized values

Constructors with default arguments

Like functions, it is also possible to declare constructors with default arguments. Consider the

following example.

power (int 9, int 3);

In the above example, the default value for the first argument is nine and three for second.

power p1 (3);

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 14/55

In this statement, object p1 is created and nine raise to 3 expression n is calculated. Here, one

argument is absent hence default value 9 is taken, and its third power is calculated. Consider

the example on the above discussion given below.

Write a program to declare default arguments in constructor. Obtain the power of the

number.

include <iostream.h>

include <conio.h>

include <math.h>

class power

{

 private:

 int num;

 int power;

 int ans;

 public :

power (int n=9,int p=3); //

declaration of constructor with default arguments

 void show()

 {

 cout <<"\n"<<num <<" raise to "<<power <<" is " <<ans;

 }

};

 power :: power (int n,int p)

 {

 num=n;

 power=p;

 ans=pow(n,p);

 }

main()

{

 clrscr();

 class power p1,p2(5);

 p1.show();

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 15/55

 p2.show();

 return 0;

}

Copy Constructor

Copy Constructor-: A constructor that initializes an object using values of another object

passed to it as parameter, is called copy constructor. It creates the copy of the passed object.

student :: student(student &t)

{

 rollno = t.rollno;

}

#include<iostream>

#include<conio.h>

class Example

 {

 // Variable Declaration

 int a,b;

 public:

 //Constructor with Argument

 Example(int x,int y)

 {

 // Assign Values In Constructor

 a=x;

 b=y;

 cout<<"\nIm Constructor";

 }

 void Display()

 {

 cout<<"\nValues :"<<a<<"\t"<<b;

 }

};

int main()

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 16/55

{ Example Object(10,20);

 //Copy Constructor

 Example Object2=Object;

 // Constructor invoked.

 Object.Display();

 Object2.Display();

 // Wait For Output Screen

 getch();

 return 0;

}

Sample Output

Im Constructor

Values :10 20

Values :10 20

Simple Program for Copy Constructor Using C++ Programming

#include<iostream.h>

#include<conio.h>

class copy

{ int var,fact;

 public:

 copy(int temp)

 { var = temp;

 }

 double calculate()

 { fact=1;

 for(int i=1;i<=var;i++)

 {

 fact = fact * i;

 }

 return fact;

 }

};

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 17/55

void main()

{ clrscr();

 int n;

 cout<<"\n\tEnter the Number : ";

 cin>>n;

 copy obj(n);

 copy cpy=obj;

 cout<<"\n\t"<<n<<" Factorial is:"<<obj.calculate();

 cout<<"\n\t"<<n<<" Factorial is:"<<cpy.calculate();

 getch();

}

Output:

Enter the Number: 5

Factorial is: 120

Factorial is: 120

DESTRUCTORS

The destructor fulfills the opposite functionality. It is automatically called when an

object is destroyed, either because its scope of existence has finished (for example, if it was

defined as a local object within a function and the function ends) or because it is an object

dynamically assigned and it is released using the operator delete.

The destructor must have the same name as the class, but preceded with a tilde sign (~) and it

must also return no value.

The use of destructors is especially suitable when an object assigns dynamic memory

during its lifetime and at the moment of being destroyed we want to release the memory that

the object was allocated.

// example on constructors and destructors

#include <iostream>

using namespace std;

class CRectangle {

 int *width, *height;

 public:

 CRectangle (int,int);

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 18/55

 ~CRectangle ();

 int area () {return (*width * *height);}

};

CRectangle::CRectangle (int a, int b) {

 width = new int;

 height = new int;

 *width = a;

 *height = b;

}

CRectangle::~CRectangle () {

 delete width;

 delete height;

}

int main () {

 CRectangle rect (3,4), rectb (5,6);

 cout << "rect area: " << rect.area() << endl;

 cout << "rectb area: " << rectb.area() << endl;

 return 0;

}

Output :

rect area: 12

rectb area: 30

Following example explain the concept of destructor:

#include <iostream>

 using namespace std;

 class Line

{ public:

 void setLength(double len);

 double getLength(void);

 Line(); // This is the constructor declaration

 ~Line(); // This is the destructor: declaration

 private:

 double length;

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 19/55

};

 // Member functions definitions including constructor

Line::Line(void)

{ cout << "Object is being created" << endl;

}

Line::~Line(void)

{ cout << "Object is being deleted" << endl;

}

 void Line::setLength(double len)

{ length = len;

}

 double Line::getLength(void)

{ return length;

}

// Main function for the program

int main()

{ Line line;

 // set line length

 line.setLength(6.0);

 cout << "Length of line : " << line.getLength() <<endl;

 return 0;

}

When the above code is compiled and executed, it produces following result:

Object is being created

Length of line : 6

Object is being deleted

A destructor is a member function having sane name as that of its class preceded by ~(tilde)

sign and which is used to destroy the objects that have been created by a constructor. It gets

invoked when an object’s scope is over.

~student() { }

Example : In the following program constructors, destructor and other member functions are

defined inside class definitions. Since we are using multiple constructor in class so this

example also illustrates the concept of constructor overloading

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 20/55

#include<iostream.h>

class student //specify a class

{

 private :

 int rollno; //class data members

 float marks;

 public:

 student() //default constructor

 {

 rollno=0;

 marks=0.0;

 }

 student(int r, int m) //parameterized constructor

 {

 rollno=r;

 marks=m;

 }

 student(student &t) //copy constructor

 {

 rollno=t.rollno;

 marks=t.marks;

 }

 void getdata() //member function to get data from user

 {

 cout<<"Enter Roll Number : ";

 cin>>rollno;

 cout<<"Enter Marks : ";

 cin>>marks;

 }

 void showdata() // member function to show data

 {

 cout<<"\nRoll number: "<<rollno<<"\nMarks: "<<marks;

 }

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 21/55

 ~student() //destructor

 {}

};

int main()

{ student st1; //defalut constructor invoked

 student st2(5,78); //parmeterized constructor invoked

 student st3(st2); //copy constructor invoked

 st1.showdata(); //display data members of object st1

 st2.showdata(); //display data members of object st2

 st3.showdata(); //display data members of object st3

 return 0;

}

Templates

 Templates are one of the features added to C++ recently.

 It is a new concept which enables us to define generic classes and functions and thus

provides support for generic programming.

 Generic programming is an approach where generic types are used as parameters in

algorithms so that they work for a variety of suitable data types and data structure.

 A template can be used to create a family of classes or functions.

 For example, a class template for an array class would enable us to create arrays of

various data types such as int array and float array.

 Similarly, define a template for a function, say mul(), that would help us create

various versions of mul() for multiplying int, float and double type values.

 A template can be considered as a kind of macro.

 When an object of a specific type is defined for actual use, the template definition for

that class is substitute with required data type. Since a template defined with a

parameter that would be replaced by a specified data type at the time of actual use of

the class or function, the templates are sometimes called parameterized classes or

functions.

Class templates

 A simple process to create a generic class using a template with anonymous type.

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 22/55

 template is the keyword used to create Template

 The class template definition is very similar to an ordinary class definition expect the

prefix template<class T> and the use of type T.

 This prefix tells the compiler that is going to declare a template and use T as a type

name in the declaration.

Syntax:

 template <class T>

 class class-name

 { //class member specification

 //with anonymous type T

 //wherever appropriate

 };

Example:

int size=3;

template<class T>

class vector

{ T* v;

 int size;

 public:

 vector()

 { v=new T[size];

 for(int i=0;i<3;i++)

 v[i]=0;

 }

 vector(T* a)

 { for(int i=0;i<size;i++)

 v[i]=a[i];

 }

 T operator *(vector &y)

 { T sum=0;

 for(int i=0;i<size;i++)

 sum+=this->v[i]*y.v[i];

 return sum;

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 23/55

 }

};

Class Templates with Multiple Parameters:

 More than one generic data type in a class template.

 It is declared as a comma separated list within the template specification .

Syntax:

 template <class T1, class T2,…,class Tn>

 class class-name

 {//body of the class

 };

Program:

#include<iostream.h>

template<class T1, class T2>

class Test

{ T1 a;

 T2 b;

 public:

 Test(T1 x, T2 y)

 { a=x;

 b=y;

 }

 void show()

 { cout<<"\na : "<<a<<"\nb : "<<b;

 }

};

void main()

{ Test <float, int> t1(1.23,123);

 Test <int, char> t2(100,'M');

 t1.show();

 t2.show();

}

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 24/55

Example

#include <iostream>

using namespace std;

template <class T>

class mypair {

 T a, b;

 public:

 mypair (T first, T second)

 {a=first; b=second;}

 T getmax ();

};

template <class T>

T mypair<T>::getmax ()

{

 T retval;

 retval = a>b? a : b;

 return retval;

}

int main () {

 mypair <int> myobject (100, 75);

 cout << myobject.getmax();

 return 0;

}

o/p

100

Function templates

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 25/55

Templates are the foundation of generic programming, which involves writing code in a way

that is independent of any particular type.

A template is a blueprint or formula for creating a generic class or a function. The library

containers like iterators and algorithms are examples of generic programming and have been

developed using template concept.

There is a single definition of each container, such as vector, but we can define many

different kinds of vectors for example, vector <int> or vector <string>.

You can use templates to define functions as well as classes

 Defining function Templates that could be used to create a family of functions with

different argument types.

Syntax:

 template <class T>

 return-type function-name(argument of type T)

 {

 //body of function

 //with type T

 //wherever appropriate

 }

 The function template syntax is similar to that of the class template expect that

defining functions instead of classes.

 Use template parameter T as and when necessary in the function body and its

argument list.

Program:

#include<iostream.h>

template<class T>

void swap(T &x, T &y)

{ T temp=x;

 x=y;

 y=temp;

}

void fun(int m,int n,float a,float b)

{ cout<<"\n m and n before swap: "<<m<<" "<<n;

 swap(m,n);

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 26/55

 cout<<"\n m and n after swap: "<<m<<" "<<n;

 cout<<"\n a and b before swap: "<<a<<" "<<b;

 swap(a,b);

 cout<<"\n a and b after swap: "<<a<<" "<<b;

}

void main()

{ fun(100,200,11.53,33.44);

}

The following is the example of a function template that returns the maximum of two

values:

#include <iostream>

#include <string>

using namespace std;

template <typename T>

inline T const& Max (T const& a, T const& b)

{ return a < b ? b:a;

}

int main ()

{ int i = 39;

 int j = 20;

 cout << "Max(i, j): " << Max(i, j) << endl;

 double f1 = 13.5;

 double f2 = 20.7;

 cout << "Max(f1, f2): " << Max(f1, f2) << endl;

 string s1 = "Hello";

 string s2 = "World";

 cout << "Max(s1, s2): " << Max(s1, s2) << endl;

 return 0;}

If we compile and run above code, this would produce the following result:

Max(i, j): 39

Max(f1, f2): 20.7

Max(s1, s2): World

Function Templates with Multiple Parameters:

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 27/55

 Use more than one generic data type in the template statement using a comma-

separated list.

Syntax:

 template <class T1, class T2,…,class Tn>

 return-type function-name(arguments of types T1,T2,….)

 {……//body of the function

 }

Overloading of Template Functions:

 A template function may be overloaded either by template functions or ordinary

functions of its name.

 The overloading resolution is accomplished as follows:

 Call an ordinary function that has an exact match.

 Call a template function that could be created with an exact match.

 Try normal overloading resolution to ordinary functions and call the one that matches.

 An error is generated if no match is found.

 No automatic conversions are applied to arguments on the template functions.

Program:

#include<iostream.h>

template<class T>

void display(T x)

{ cout<<"\nTemplate method : "<<x;

}

void display(int x)

{ cout<<"\nExplicit method : "<<x;

}

void main()

{ display(11.53);

 display(44);

 display("welcome"); }

Member function templates

 All the member functions were defined as inline is not necessary.

 Define members outside that class is also possible.

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 28/55

 The member function of the template classes are parameterized by the type arguments

and functions must be defined by the function templates.

Syntax:

 template <class T>

 return-type class-name<T>:: function-name(argument list)

 {……//body of the function

 }

Example:

template<class T>

class vector

{ T* v;

 int size=3;

 public:

 vector(int m);

 vector(T* a);

 T operator*(vector &y);

};

template<class T>

vector<T>::vector(int m)

{ v=new T[size];

 for(int i=0;i<size;i++)

 v[i]=0;

}

template<class T>

vector<T>::vector(T* a)

{ for(int i=0;i<size;i++)

 v[i]=a[i];

}

template<class T>

vector<T>::operator *(vector &y)

{ T sum=0;

 for(int i=0;i<size;i++)

 sum+=this->v[i]*y.v[i];

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 29/55

 return sum;

}

Function overloading

Function overloading in C++: C++ program for function overloading. Function overloading

means two or more functions can have the same name but either the number of arguments or

the data type of arguments has to be different. Return type has no role because function will

return a value when it is called and at compile time compiler will not be able to determine

which function to call. In the first example in our code we make two functions one for adding

two integers and other for adding two floats but they have same name and in the second

program we make two functions with identical names but pass them different number of

arguments. Function overloading is also known as compile time polymorphism.

#include <iostream>

 using namespace std;

 /* Function arguments are of different data type */

 long add(long, long);

float add(float, float);

 int main()

{

 long a, b, x;

 float c, d, y;

 cout << "Enter two integers\n";

 cin >> a >> b;

 x = add(a, b);

 cout << "Sum of integers: " << x << endl;

 cout << "Enter two floating point numbers\n";

 cin >> c >> d;

 y = add(c, d);

 cout << "Sum of floats: " << y << endl;

 return 0;

}

 long add(long x, long y)

{

 long sum;

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 30/55

 sum = x + y;

 return sum;

}

 float add(float x, float y)

{

 float sum;

 sum = x + y;

 return sum;

}

In the above program, we have created two functions "add" for two different data types you

can create more than two functions with same name according to requirement but making

sure that compiler will be able to determine which one to call. For example you can create

add function for integers, doubles and other data types in above program. In these functions

you can see the code of functions is same except data type, C++ provides a solution to this

problem we can create a single function for different data types which reduces code size

which is via templates.

#include <iostream>

using namespace std;

 /* Number of arguments are different */

 void display(char []); // print the string passed as argument

void display(char [], char []);

 int main()

{

 char first[] = "C programming";

 char second[] = "C++ programming";

 display(first);

 display(first, second);

 return 0;

}

void display(char s[])

{

 cout << s << endl;

}

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 31/55

void display(char s[], char t[])

{

 cout << s << endl << t << endl;

}

Output of program:

C programming

C programming

C++ programming

Operator overloading: Defining operator overloading

 The process of giving special meaning to a method or an operator is called Operator

Overloading

 Overloading is the process of adding an extra or additional operation to an existing

operation

 Overloading consist of same name but differ in their argument list, Number of

argument or both.

 There are two types of overloading

 Function overloading

 Operator overloading

Method Overloading

• Change the meaning of a function

• The name of the function is same but differ in their operation differ in their arguments

list

• Function overloading is done by using various number arguments to a function

• Function perform different operation based on the requirements

Program:

#include<iostream.h>

class over

{

 public:

 void add(int a,int b)

 {

 cout<<"\nAddition of integer:"<<a+b;

 }

 void add(double a,double b)

 {

 cout<<"\nAddition of double:"<<a+b;

 }

 void add(int a,double b)

 {

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 32/55

 cout<<"\nAddition of integer & double:"<<a+b;

 }

void add(double a,int b)

 {

 cout<<"\nAddition of double and integer:"<<a+b;

 }

 void add(int a)

 {

 cout<<"\nOne Argument:"<<a;

 }

};

void main()

{

 over b;

 b.add(5,6);

 b.add(8.2,7.8);

 b.add(7,8.3);

 b.add(8.3,7);

 b.add(111);

}

Operator Overloading

• Mechanism of giving special meaning to an operator

• It creates a new definition for most c++ operators

• Semantics of an operator is extended

• It does not change the meaning of the operator

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 33/55

Rules for Overloading Operators:

1. Only existing operators can be overloaded. New operators cannot be created

2. The overloaded operator must have at least one operand that is of user-defined

type

3. Can not be able to change the predefined meaning of the Operator.

4. An overloaded operator follows the syntax rules of the original operators.

They can not be overridden

5. Some Operators that can not be overloaded.

6. Certain Operators can not be overloaded using the friend Function.

Operators Cannot be Overloaded

• Membership operators (.)

• Pointer-to-member operator (.*)

• Scope resolution operator (::)

• Size of operator (sizeof)

• Conditional operator (?:)

Operators Cannot be Overloaded Using friend Function

• Assignment operator (=)

• Function call operator (())

• Subscripting operator ([])

• Class member access operator (->)

Defining Operator Overloading

• Done with the help of a special function, operator function, which describes the task

Syntax:

• Declaration:

 RT operator operatorsymbol(argument list)

• Definition:

 RT classname :: operator(op-arglist)

 {

 function body }

Example:

 void operator –()

• Operator function must be either member functions or friend function

• Difference: a friend function will have only 1 argument for unary operators and 2

arguments for binary operator

Steps:

• Create a class that defines the data type that is to be used in the overloading operation

• Declare the operator function operator op() in the public part of the class

• Define the operator function to implement the required operations

Example

#include<iostream.h>

class Add

{

 int lat,log;

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 34/55

 public:

 Add(){}

 Add(int l,int lt)

 {

 lat=l;

 log=lt;

 }

 void show()

 {

 cout<<lat<<" ";

 cout<<log<<" ";

 }

 Add operator -(Add o);

};

Add Add::operator -(Add o)

{

 Add t;

 t.lat=o.lat+lat;

 t.log=o.log+log;

 return t;

}

void main()

{

 Add a(10,20),b(30,50);

 a.show();

 b.show();

 a=a-b;

 a.show();

}

Overloading unary operators

Overloading Unary Operators:

 The operator has only one Operand.

 Unary operators are unary +, unary –,++,--, this operator changes the sign of the

operand.

Program

#include<iostreams.h>

class space

{

 int x;

 int y;

 int z;

 public:

 void get(int a,int b,int c);

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 35/55

 void display(void);

 void operator -();

};

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 36/55

void space::get(int a,int b,int c)

{

 x=a;

 y=b;

 z=c;

}

void space::display(void)

{

 cout<<x<<"\n";

 cout<<y<<"\n";

 cout<<z<<"\n";

}

void space::operator -()

{

 x=-x;

 y=-y;

 z=-z;

}

void main()

{

 space s;

 s.getdata(10,-20,30);

 cout<<"\nValues before Call Operator Overloading\n";

 s.display();

 -s;

 cout<<"\nValues After Call Operator Overloading\n";

 s.display();

}

Overloading binary operators

 The operator has two Operand.

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 37/55

Program:

#include<iostreams.h>

class Time

{

 int h,m;

 public:

 Time(){}

 Time(int hr,int min)

 {

 h=hr;

 m=min;

 }

 void display(void);

 Time operator+(Time);

};

void Time::display(void)

{

 cout<<h<<"hours and"<<m<<" Min\n";

}

Time Time::operator+(Time t)

{

 Time t1;

 t1.m=m+t.m;

 int bal=t1.m/60;

 t1.m=t1.m%60;

 t1.h=h+t.h+bal;

 return(t1);

}

void main()

{

 Time h1,h2,h3;

 h1=Time(2,50);

 h2=Time(2,50);

 h3=h1+h2;

 cout<<"\nTime t1:";

 h1.display();

 cout<<"\nTime t2:";

 h2.display();

 cout<<"\nTime t3:";

 h3.display();

}

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 38/55

Overloading binary operators using friends

 Non member function of a class can be able to access the private members of a class

through friend function

 Friend Function are created with the keyword friend

 A friend function requires two arguments to be explicitly passed to it.

Program:

#include <iostream.h>

#include <conio.h>

class Point

{

 int x, y;

 public:

 Point()

 {}

 Point(int px, int py)

 {

 x = px;

 y = py;

 }

 void show()

 {

 cout << x << " ";

 cout << y << "\n";

 }

 friend Point operator+(Point op1, Point op2); // now a friend

 Point operator=(Point op2);

};

// Now, + is overloaded using friend function.

Point operator+(Point op1, Point op2)

{

 Point temp;

 temp.x = op1.x + op2.x;

 temp.y = op1.y + op2.y;

 return temp;

}

// Overload assignment for Point.

Point Point::operator=(Point op2)

{

 x = op2.x;

 y = op2.y;

 return op2; // i.e., return object that generated call

}

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 39/55

int main()

{

 clrscr();

 Point ob1(10, 20), ob2(5, 30);

 ob1 = ob1 + ob2;

 ob1.show();

 return 0; }

Inheritance :- Inheritance

 Sharing the properties of one class by the other.

 Ability of a new class to be created, from an existing class by extending it, is called

inheritance.

 Different kinds of objects often have a certain amount in common with each other.

 Object-oriented programming allows classes to inherit commonly used state and

behavior from other classes.

 A class which provides the data is called Base class

 A class receives the data is called Derived class

 No changes are made to the base class

Advantage of Inheritance:

 Reusability of code

 Save a lot of time and efforts, retyping the same

 Data and methods of super class are physically available to its subclasses

Forms of Inheritance

 In C++ there are 5 forms of inheritance.

 Single Inheritance

 Multiple Inheritance

 Multilevel Inheritance

 Hierarchical Inheritance

 Hybrid Inheritance

Defining derived classes

 Derived class can be defined by specifying the relationship with the base class in

addition to its own details.

 : (colon) operator is used for inheritance.

Syntax:

 class derived-class-name : visibility-mode base-class-name

 {

 ……………

 ……………. //derived class member functions

 …………….

 };

 The colon indicates that the derived-class-name is derived from the base-class-name.

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 40/55

 The visibility-mode is optional, if presents private or public or protected access

specifies can be specified

 By default visibility-mode is private.

 The visibility-mode specifies whether the features of the base class are privately

derived or publicly derived.

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 41/55

Example:

class ABC

{

 …………..

 …………..// base class members

}

class der : private ABC //Privately inherited from class ABC

{

 …………..

 …………..// derived class members

}

class der : public ABC //Publicly inherited from class ABC

{

 …………..

 …………..// derived class members

}

class der : ABC //Privately inherited from class ABC by default

{

 …………..

 …………..// derived class members

}

Single, multilevel, multiple, hierarchical inheritance

 Single inheritance consist of single base class and single derived class

Syntax:

class derived-class-name : visibility-mode base-class-name

{

 …………..

 …………..// derived class members

}

The colon (:), indicates that the class derived-class-name is derived from the class base-class-

name.

Base
Class

Derived
Class

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 42/55

Program:

#include<iostream.h>

class Rectangle

{

 private:

 float length ; // This can't be inherited

 public:

 float breadth ; // The data and member functions are inheritable

 void Enter_lb(void)

 {

 cout << "\n Enter the length of the rectangle : ";

 cin >> length ;

 cout << "\n Enter the breadth of the rectangle : ";

 cin >> breadth ;

 }

 float Enter_l(void)

 {

 return length ;

 }

}; // End of the class definition

class Rectangle1 : public Rectangle

{

 private:

 float area ;

 public:

 void Rec_area(void)

 {

 area = Enter_l() * breadth ;

 }

 void Display(void)

 {

 cout << "\n Length = " << Enter_l() ;

 cout << "\n Breadth = " << breadth ;

 cout << "\n Area = " << area ;

 }

};

void main(void)

{

 Rectangle1 r1 ;

 r1.Enter_lb();

 r1.Rec_area();

 r1.Display();

}

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 43/55

Visibility of Inherited Members

Base class visibility
Derived class visibility

public derivation private derivation protected derivation

private Not Inherited Not Inherited Not Inherited

protected protected private protected

public public private protected

Multilevel Inheritance:

 C++ also provides the facility of multilevel inheritance, according to which the

derived class can also be derived by another class, which in turn can further be

inherited by another and so on.

Syntax:

class derived-class-name1 : visibility-mode base-class-name

{

 …………..

 …………..// derived class members

}

class derived-class-name2 : visibility-mode derived-class-name1

{

 …………..

 …………..// derived class members

}

derived-class-name1 is inherited from base-class-name then the derived-class-name2 is

inherited from derived-class-name1.

Program:

#include<iostream.h>

Base
Class

Derived Class
1

Derived Class
2

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 44/55

class Base

{

 protected:

 int b;

 public:

 void EnterData()

 {

 cout << "\n Enter the value of b: ";

 cin >> b;

 }

 void DisplayData()

 {

 cout << "\n b = " << b;

 }

};

class Derive1 : public Base

{

 protected:

 int d1;

 public:

 void EnterData()

 {

 Base:: EnterData();

 cout << "\n Enter the value of d1: ";

 cin >> d1;

 }

 void DisplayData()

 {

 Base::DisplayData();

 cout << "\n d1 = " << d1;

 }

};

class Derive2 : public Derive1

{

 private:

 int d2;

 public:

 void EnterData()

 {

 Derive1::EnterData();

 cout << "\n Enter the value of d2: "; cin >> d2;

 }

 void DisplayData()

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 45/55

 {

 Derive1::DisplayData();

 cout << "\n d2 = " << d2;

 }

};

int main()

{

 Derive2 objd2;

 objd2.EnterData();

 objd2.DisplayData();

 return 0;

}

Multiple Inheritance

When a class is inherited from more than one base class, it is known as multiple inheritance.

Syntax:

class derived-class-name : visibility-mode base-class-name1, visibility-mode base-class-

name2

{

 …………..

 …………..// derived class members

}

derived-class-name is derived from two base classes namely base-class-name1 and base-

class-name1

Program:

#include<iostream.h>

class Circle // First base class

{

 protected:

 float radius ;

 public:

 void Enter_r(void)

 {

 cout << "\n\t Enter the radius: "; cin >> radius ;

 }

Base
Class

1

Derived
Class

Base
Class

2

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 46/55

 void Display_ca(void)

 {

 cout << "\t The area = " << (22/7 * radius*radius) ;

 }

};

class Rectangle // Second base class

{

 protected:

 float length, breadth ;

 public:

 void Enter_lb(void)

 {

 cout << "\t Enter the length : ";

 cin >> length ;

 cout <<"\t Enter the breadth : " ;

 cin >> breadth ;

 }

 void Display_ar(void)

 {

 cout << "\t The area = " << (length * breadth);

 }

};

class Cylinder : public Circle, public Rectangle // Derived class, inherited

{ // from classes Circle & Rectangle

 public:

 void volume_cy(void)

 {

 cout << "\t The volume of the cylinder is: "<< (22/7* radius*radius*length) ;

 }

};

void main(void)

{

 Circle c ;

 cout << "\n Getting the radius of the circle\n" ;

 c.Enter_r();

 c.Display_ca();

 Rectangle r ;

 cout << "\n\n Getting the length and breadth of the rectangle\n\n";

 r.Enter_lb();

 r.Display_ar();

 Cylinder cy ;

 cout << "\n\n Getting the height and radius of the cylinder\n";

 cy.Enter_r();

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 47/55

 cy.Enter_lb();

 cy.volume_cy();

}

Hierarchical Inheritance:

 When two or more classes are derived from a single base class, then Inheritance is

called the hierarchical inheritance.

 In this type there exists a hierarchical relation in the inheritance.

Syntax:

class derived-class-name1 : visibility-mode base-class-name

{

 …………..

 …………..// derived class members

}

class derived-class-name2 : visibility-mode base-class-name

{

 …………..

 …………..// derived class members

}

derived-class-name1, derived-class-name2 are two derived class derived from the class base-

class-name.

Example:

#include<iostream.h>

const int len = 20 ;

class student

{

 private:

 char F_name[len] , L_name[len] ;

 int age,roll_no ;

 public:

Base
Class

Derived Class
1

Derived Class
1

Derived Class
1

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 48/55

 void Enter_data(void)

 {

 cout << "\n\t Enter the first name: " ; cin >> F_name ;

 cout << "\t Enter the second name: "; cin >> L_name ;

 cout << "\t Enter the age: " ; cin >> age ;

 cout << "\t Enter the roll_no: " ; cin >> roll_no ;

 }

 void Display_data(void)

 {

 cout << "\n\t First Name = " << F_name ;

 cout << "\n\t Last Name = " << L_name ;

 cout << "\n\t Age = " << age ;

 cout << "\n\t Roll Number = " << roll_no ;

 }

};

class arts : public student

{

 private:

 char asub1[len] ;

 char asub2[len] ;

 char asub3[len] ;

 public:

 void Enter_data(void)

 {

 student :: Enter_data();

 cout << "\t Enter the subject1 of the arts student: ";

 cin >> asub1 ;

 cout << "\t Enter the subject2 of the arts student: ";

 cin >> asub2 ;

 cout << "\t Enter the subject3 of the arts student: ";

 cin >> asub3 ;

 }

 void Display_data(void)

 {

 student :: Display_data();

 cout << "\n\t Subject1 of the arts student = " << asub1 ;

 cout << "\n\t Subject2 of the arts student = " << asub2 ;

 cout << "\n\t Subject3 of the arts student = " << asub3 ;

 }

};

class science : public student

{

 private:

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 49/55

 char csub1[len], csub2[len], csub3[len] ;

 public:

 void Enter_data(void)

 {

 student :: Enter_data();

 cout << "\t Enter the subject1 of the science student: ";

 cin >> csub1;

 cout << "\t Enter the subject2 of the science student: ";

 cin >> csub2 ;

 cout << "\t Enter the subject3 of the science student: ";

 cin >> csub3 ;

 }

 void Display_data(void)

 {

 student :: Display_data();

 cout << "\n\t Subject1 of the science student = " << csub1 ;

 cout << "\n\t Subject2 of the science student = " << csub2 ;

 cout << "\n\t Subject3 of the science student = " << csub3 ;

 }

};

void main(void)

{

 arts a ;

 cout << "\n Entering details of the arts student\n" ;

 a.Enter_data();

 cout << "\n Displaying the details of the arts student\n" ;

 a.Display_data();

 science s ;

 cout << "\n\n Entering details of the science student\n" ;

 s.Enter_data();

 cout << "\n Displaying the details of the science student\n" ;

 s.Display_data();

}

Hybrid inheritance

 Combination of multiple and multilevel inheritance is called hybrid inheritance.

Syntax:

class derived-class-name1 : visibility-mode base-class-name

{

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 50/55

 …………..

 …………..// derived class members

}

class derived-class-name2 : visibility-mode base-class-name

{

 …………..

 …………..// derived class members

}

class derived-class-name3 : visibility-mode derived-class-name1, visibility-mode derived-

class-name2

{

 …………..

 …………..// derived class members

}

Example:

#include<iostream.h>

#include<conio.h>

class stu

{

 protected:

 int rno;

 public:

 void get_no(int a)

 {

 rno=a;

 }

 void put_no(void)

 {

 cout<<"Roll no"<<rno<<"\n";

 }

};

class test:public stu

{

 protected:

 float part1,part2;

 public:

 void get_mark(float x,float y)

 {

 part1=x;

 part2=y;

 }

 void put_marks()

 {

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 51/55

 cout<<"Marks obtained:"<<"part1="<<part1<<"\n"<<"part2="<<part2<<"\n";

 }

};

class sports

{

 protected:

 float score;

 public:

 void getscore(float s)

 {

 score=s;

 }

 void putscore(void)

 {

 cout<<"sports:"<<score<<"\n";

 }

};

class result: public test, public sports

{

 float total;

 public:

 void display(void);

};

void result::display(void)

{

 total=part1+part2+score;

 put_no();

 put_marks();

 putscore();

 cout<<"Total Score="<<total<<"\n";

}

int main()

{

 clrscr();

 result stu;

 stu.get_no(111);

 stu.get_mark(27.5,33.0);

 stu.getscore(10.0);

 stu.display();

 return 0;

}

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 52/55

Virtual base classes

 In some situations which requires the use of both multiple and multilevel inheritance

 Consider a situation where all three kinds if inheritance, namely multiple, multilevel

and hierarchical inheritance are involved.

 In the above figure ‘Child’ has two base classes ‘Parent1’ and ‘Parent2’ which

themselves have common base class ‘Grand Parents’.

 The ‘Child’ inherits the traits of ‘Grand Parent’ via two separate paths.

 It can also inherit directly as shown by broken line.

 The ‘Grand Parents’ is sometimes referred as indirect base class.

 In the above case there exist a problem all the public and protected members of

‘Grand Parents’ are inherited into ‘Child’ twice, first via ‘Parent 1’ and again via

‘Parent 2’. This introduces ambiguity and should be avoided.

 The duplication of inherited members due to these multiple paths can be avoided by

making the common base class as virtual base class while declaring the direct or

intermediate base class.

Syntax:

class base-class-name

{

 …………..

 …………..// base class members Grand Parents

}

 class derived-class-name1 : virtual visibility-mode base-class-name

Parent 1

Child

Parent 2

Grand
Parents

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 53/55

{

 …………..

 …………..// derived class members Parent1

}

class derived-class-name2 : visibility-mode virtual base-class-name

{

 …………..

 …………..// derived class members Parent2

}

class derived-class-name3 : visibility-mode derived-class-name1, visibility-mode derived-

class-name2

{

 …………..

 …………..// derived class members Child

}

 When a class is made ‘virtual’ base class, c++ takes necessary care to see that only

one copy of that class is inherited, regardless of how many inheritance paths exist

between the virtual base class and a derived class.

Program:

#include<iostream.h>

#include<conio.h>

class stu

{

 protected:

 int rno;

 public:

 void get_no(int a)

 {

 rno=a;

 }

 void put_no(void)

 {

 cout<<"Roll no"<<rno<<"\n";

 }

};

class test:virtual public stu//Virtually inherited

{

 protected:

 float part1,part2;

 public:

 void get_mark(float x,float y)

 {

 part1=x;

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 54/55

 part2=y;

 }

 void put_marks()

 {

 cout<<"Marks obtained:\npart1="<<part1<<"\n"<<"part2="<<part2<<"\n";

 }

};

class sports: public virtual stu

{

 protected:

 float score;

 public:

 void getscore(float s)

 {

 score=s;

 }

 void putscore(void)

 {

 cout<<"sports:"<<score<<"\n";

 }

};

class result: public test, public sports

{

 float total;

 public:

 void display(void);

};

void result::display(void)

{

 total=part1+part2+score;

 put_no();

 put_marks();

 putscore();

 cout<<"Total Score="<<total<<"\n";

}

int main()

{

 clrscr();

 result stu;

 stu.get_no(123);

 stu.get_mark(27.5,33.0);

 stu.getscore(6.0);

 stu.display();

UNIT - V PROGRAMMING WITH C and C++ (2016-19 batch)

D. Surya Prabha, Department of CS, CA & IT, KAHE 55/55

 return 0;

}

Abstract classes

 abstract keyword is used to create abstract class.

 An abstract class is one that is not used to create object

 An abstract class is designed only to act as a base class.

Exception handling

Exceptions are run-time anomalies, such as division by zero, that require immediate handling

when encountered by your program. The C++ language provides built-in support for raising

and handling exceptions. With C++ exception handling, your program can communicate

unexpected events to a higher execution context that is better able to recover from such

abnormal events. These exceptions are handled by code that is outside the normal flow of

control

The C++ language provides built-in support for handling anomalous situations, known as

exceptions, which may occur during the execution of your program. The try, throw, and catch

statements implement exception handling. With C++ exception handling, your program can

communicate unexpected events to a higher execution context that is better able to recover

from such abnormal events. These exceptions are handled by code that is outside the normal

flow of control. The Microsoft C++ compiler implements the C++ exception handling model

based on the ANSI C++ standard.

The following syntax shows a try block and its handlers:

 try {

 // code that could throw an exception

}

[catch (exception-declaration) {

 // code that executes when exception-declaration is thrown

 // in the try block

}

[catch (exception-declaration) {

 // code that handles another exception type

}] . . .]

// The following syntax shows a throw expression:

throw [expression]

C++ also provides a way to explicitly specify whether a function can throw exceptions. You

can use exception specifications in function declarations to indicate that a function can throw

an exception. For example, an exception specification throw(...) tells the compiler that a

function can throw an exception, but doesn't specify the type, as in this example:

void MyFunc() throw(...) {

 throw 1;

}

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Batch 2016 – 2019

16MMU304B Programming with C and C++

Part - B

(Each Question carries 2 marks)

1. What is meant by inheritance?

2. What is meant by multilevel inheritance?

3. Define the terms constructor and destructor.

4. List out the principles of object oriented programming.

5. Write a note on exceptional handling.

6. List out the basics of exceptional handling.

7. What are virtual functions?

8. How to look at an operator as a function call.

9. Define the term pure virtual functions.

10. What are overloading operators?

11. How to restrict exceptions?

12. How to rethrow exceptions?

13. What is meant by polymorphism?

14. Write a note on template classes.

Part - C

(Each Question carries 6 marks)

1. Define the terms virtual functions and pure virtual functions with a suitable program.

2. Describe in detail the need of overloading functions and operators with a suitable

program.

3. Write a note on template classes and their uses.

4. Elaborate in detail the concept of multilevel inheritance with a suitable program.

5. Elaborate the concept of operator overloading with a suitable example program.

6. Describe the exceptional handling concept in detail with suitable example.

7. Explain the different types of polymorphism in detail with suitable example.

8. Discuss on constructor overloading in detail with suitable example.

9. Write a C++ program to throw multiple exceptions and define multiple catches.

10. How to overloading functions by number and type of arguments?

11. Elaborate in detail the concept of exceptional handling.

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Batch 2016 – 2019

Subject : Programming with C and C++ Subject Code: 16MMU304B

UNIT - V

S.No Questions opt1 opt2 opt3 opt4 Answer

1 In a multiple catch statement the number of throw statements are .
 same as catch

statement
 twice than catch only one thrice than catch only one

2 The exception is generated in _________block. try catch finally throw. try

3 The exception handling one of the function is implicitly invoked. abort exit assert throw abort

4 The exception handling mechanism is basically built upon ______ try catch throw exit all the above

5 The point at which the throw is executed is called _________. try throw throw point exit throw point

6 A template function may be overloaded by _______ function template ordinary both (a)and (b). virtual both (a) and (b)

7
________function returns true when an input or output operation has

failed
eof() fail() bad() good() fail()

8
consider the following statements int x=10, y=15; x=((x<y) ? (y+x) :(y-

x); what will be the value of x after executing the statements?
10 25

error.cannot be

executed
5 25

9 .In multi-level inheritance, the ________ are executed in the order of Derivations Constructors Destructors Containership constructors

10 .A class that contains objects of other classes is known as ________. class Nesting Subclass Inheritance nesting

11 Exception handling is new feature added to ---------- c++ ANSI C++ both a and b C ANSI C++

12 .The grand parent class is sometimes referred to as ________ class. Ancestor Virtual base Indirect base Direct base indirect base

13 Errors such as over - flow belongs to ----------- error synchronous Visibility asynchronous none of the above synchronous

14 The errors caused by keyboards are called as----- error asynchronous synchronous visibility none of the above asynchronous

15
The public member of a class can be accessed by its own objects using

the ________ operator.
 Scope resolution Relational Arithmetic Dot dot

16 The -------- should always be placed last in the list of handlers catch(…) catch() throw(…) throw() catch(…)

17
. If the data is received from the input devices in sequence then it is

called________.
 Source stream Object stream

 Destination

stream
 Input stream. source stream

18 A ---------- is an object that actually stores data iterator container algorithm none of the above container

19 The ________ function takes no operator. Operator +() Operator –() Friend Conversion operator -()

20
In overloading of binary operators, the ________ operand is used to

invoke the operator function.
 Right-hand Arithmetic Left-hand Multiplication left-hand

21
________ functions may be used in place of member functions for

overloading a binary operator
 Inline Member Conversion Friend Friend

22 The operator that cannot be overloaded is ________ Sizee of + - = single of

23 The friend functions cannot be used to overload the ________ operator. :: ?: . = ::

24 ________ is called compile time polymorphism.
 Operator

overloading

 Function

overloading

 Overloading

unary operator

 Overloading binary

operator

operator

overloading

25 ________ feature can be used to add two user-defined operator data Function Overloading Arrays Pointers overloading

26 ________ operator cannot be overloaded. = + ?: – ?:

27
Operator overloading is done with the help of a special function called

________ function.
 Conversion Operator User-defined In-built. operator

28 ________ functions must either be member functions or friend functions. Operator User-defined Static Member Overloading operator

29
The overloading operator must have atleast ________ operand that is of

user-defined data type.
 Two Three One Four one

30 ________ operator function should be a class member. Arithmetic Relational Casting Overloading casting

31 The casting operator must not have any ________ Arguments Member Return type Operator arguments

32 The casting operator function must not specify a ________ type. User-defined type Return Member In-built return

33 The operator that cannot be overloaded is ________. Casting Binary Unary Scope resolution scope resolution

34 The friend function cannot be used to overload ________ operator. + - () :: ()

35 ________ operator cannot be overloaded by friend function. [] * . ?: ?:

36 The operator that cannot be overloaded by friend function is ________ . :: -> Single of ::

37 Operator overloading is called ________
 Function

Overloading

 Compile time

polymorphism

 Casting

operator function
 Temporary object

Compile time

polymorphism

38 Overloading feature can add two ________ data types. In-built Enumerated User-defined Static User-defined

39
The mechanism of deriving a new class from an old one is called

 Operator

overloading
 Inheritance Polymorphism Access mechanism polymorphism

40 ________ provides the concept of reusability. Overloading Message passing
 Data

abstraction
 inheritance inheritance

41 Only ----------------- operator can be overloaded. Inheritance Encapsulation Polymorphism existing existing

42
The mechanism of deriving a class from another derived class is known

as ------------------
 Derived class Subclass

 Virtual base

class

 multilevel

inheritance

multilevel

inheritance

43
A class can inherit the attributes of two or more classes is known as -------

 Abstract class

multiple

inheritance
 Derived class

 hierarchical

inheritance

multiple

inheritance

44 A derived class with only one base class is called ________ inheritance. Single Multi-level Multiple Hierarchical single

45 The derived class inherits some or all of the properties of ________ Member Base Father Ancestor base

46 A derived class can have only one ________ class. Derived Base Child Member base

47 ________ class inherits some or all of the properties of base class. Base Virtual base Subclass Derived derived

48
A class that inherits properties from more than one class is known as

________ inheritance.
 Multiple Multilevel Single Hybrid multiple

49
A public member of a class can be accessed by its own objects using -----

----------- operator
 Hierarchical dot (.) Multi-level Hybrid dot (.)

50 The base class are separated by --------------------- dot (.) commas (,) and (&) colon (:) commas (,)

51 A ________ can inherit properties from more than one class. Class Member class Base class class

52 A class can be derived from another ________ class. Member Common base Derived Indirect base class derived

53 A ----------------- resolution may also arise in single inheritance ambiguity scope properties Subclass ambiguity

54
A private member of a class cannot be inherited either in public mode or

in ________ mode.
 Private Protected Visibility Nesting private

55 The ------------- section is nothing but the body of constructor Assignment Private Public Protected assignment

56
The initialization section basically contains a list of initializations are

separated by -----------------
 commas (,) dot (.) semicolon (;) colon (:) commas (,)

57 A ________ member of a class cannot be inherited in public mode. Public Protected Private Access private

58 A member inherited in public mode becomes ________ in the derived Private Class Public Protected protected

59 A protected member inherited in ________ mode becomes private in the Protected Visibility Private Public private

60 A public member inherited in ________ mode becomes public. Private Public Visibility Protected public

61
The mechanism of deriving certain properties of one class into another is

called as ----------------
 nesting class member class inheritance Visibility inheritance

Reg.No ----------------------

 [16MMU304B]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

B.Sc., Mathematics
(For the candidates admitted from 2016 onwards)

 Third Semester

First Internal Exam July 2017

PROGRAMMING WITH C AND C++

Duration: 2 Hrs Maximum Marks: 50 Marks

Date & Session: Class: II BSc (Maths).,

PART-A (20 x 1 = 20 Marks)

Answer all the questions

1. C++ was originally developed by ___________

a) Clocksin and Mellish b) Donald E. Knuth c) Sir Richard Hadlee d) Bjame Strostrup

2. C++ is an extension of C with a major addition of the class construct feature of _______

a) Simula67 b) Simula57 c) Simula47 d) Simula87

3. C++ has the name as __________ before it was changed to C++.

a) Improved C b) Integrated C c) C with classes d) C with Simula

4. _________ refer to the names of variables, functions, arrays, classes etc. created by the

programmer.

a) Keywords b) Identifiers c) Constraints d) Strings

5. The wrapping up of data and functions into a single unit is known as ___________

a) abstraction b) inheritance c) polymorphism d) encapsulation

6. ___________ refers to the act of representing essential features without including the

background details or explanations.

a) abstraction b) inheritance c) polymorphism d) encapsulation

7. ___________ is the process by which objects of one class acquire the properties of objects

of another class.

a) abstraction b) inheritance c) polymorphism d) encapsulation

8. The __________ Operator is known as insertion operator.

a) >> b) > c) << d) <

9. In OOP, a problem is considered as a collection of number of entities called ___________

a) class b) objects c) functions d) message

10. When a function is defined inside a class, this function is called ___________

a) Inside function b) Class function c) Inline function d) Interior function

11. Which of the following cannot be passed to a function?

a) Reference variable b) Arrays c) Class objects d) Header files

12. In C++, the keyword void was used ___________

a) To specify the return type of function when it is not returning any value.

b) To indicate an empty argument list to a function. c) To declare the generic pointers.

d) All of the above.

13. Procedure oriented programming basically consists of writing a list of insturctions or

actions for the computer to follow and organizing these instructions into groups known as

a) procedures b) functions c) flowchart d) instructions

14. cout stands for

a) class output b) character output c) common output d) call output

15. The C++ header file _____________ contains function prototypes for the standard input

and standard output functions.

a) <iomanip> b) <fstream> c) <iostream> d) <cstdio>

16. The fields in a structure of a c program are by default

a) protected b) public c) private d) shared

17. Everything defined at the program scope level (ie. outside functions and classes) is said to

be ____________

a) local scope b) regional scope c) global scope d) static scope

18. Overloading is otherwise known as __________

a) Virtual polymorphism b) transient polymorphism

c) pseudo polymorphism d) adhoc polymorphism

19. Which of the following term is used for a function defined inside a class?

a) member variable b) class function c) classic function d) member function

20. To overload an operator ____________ keyword must be used along with the operator to

be overloaded.

a) Over b) Overload c) Void d) Operator

PART-B (3 x 2 = 6 Marks)

Answer all the questions

1. What is meant by functions?

A function is a group of statements that together perform a task. Every C++ program has at

least one function, which is main(), and all the most trivial programs can define additional

functions.

You can divide up your code into separate functions. How you divide up your code among

different functions is up to you, but logically the division usually is such that each function

performs a specific task.

A function declaration tells the compiler about a function's name, return type, and

parameters. A function definition provides the actual body of the function.

2. What is a token? What are the available tokens in c++?

A token is the smallest element of a C++ program that is meaningful to the compiler. The

C++ parser recognizes these kinds of tokens: identifiers, keywords, literals, operators,

punctuators, and other separators. A stream of these tokens makes up a translation unit.

Tokens are usually separated by white space. White space can be one or more:

 Blanks

 Horizontal or vertical tabs

 New lines

 Formfeeds

 Comments

3. Illustrate the structure of a c++ program.

C++ Programming language is most popular language after C Programming language. C++ is

first Object oriented programming language.We have summarize structure of C++ Program

in the following Picture -

Section 1 : Header File Declaration Section

1. Header files used in the program are listed here.

2. Header File provides Prototype declaration for different library functions.

3. We can also include user define header file.

4. Basically all preprocessor directives are written in this section.

Section 2 : Global Declaration Section

1. Global Variables are declared here.

2. Global Declaration may include -

o Declaring Structure

o Declaring Class

o Declaring Variable

Section 3 : Class Declaration Section

1. Actually this section can be considered as sub section for the global declaration

section.

2. Class declaration and all methods of that class are defined here.

Section 4 : Main Function

1. Each and every C++ program always starts with main function.

2. This is entry point for all the function. Each and every method is called indirectly

through main.

3. We can create class objects in the main.

4. Operating system call this function automatically.

PART-B (3 x 8= 24 Marks)

Answer all the questions

24. (a) Describe the characteristics of procedure oriented programming and object oriented

programming.

Some Characteristics exhibited by procedure-oriented programming are:

• Emphasis is on doing things (algorithms).

• Large programs are divided into smaller programs known as functions.

• Most of the functions share global data.

• Data move openly around the system from function to function.

• Functions transform data from one form to another.

• Employs top-down approach in program design.

Some of the features of object oriented programming are:

• Emphasis is on data rather than procedure.

• Programs are divided into what are known as objects.

• Data structures are designed such that they characterize the objects.

• Functions that operate on the data of an object are ties together in the data structure.

• Data is hidden and cannot be accessed by external function.

• Objects may communicate with each other through function.

• New data and functions can be easily added whenever necessary.

• Follows bottom up approach in program design.

(OR)

(b) Write a short notes on functions.

A function is a group of statements that together perform a task. Every C++ program has at

least one function, which is main(), and all the most trivial programs can define additional

functions.

A function declaration tells the compiler about a function's name, return type, and

parameters. A function definition provides the actual body of the function.

The C++ standard library provides numerous built-in functions that your program can call.

For example, function strcat() to concatenate two strings, function memcpy() to copy one

memory location to another location and many more functions.

A function is known with various names like a method or a sub-routine or a procedure etc.

Defining a Function

The general form of a C++ function definition is as follows −

return_type function_name(parameter list) {

 body of the function

}

A C++ function definition consists of a function header and a function body. Here are all the

parts of a function −

 Return Type − A function may return a value. The return_type is the data type of

the value the function returns. Some functions perform the desired operations without

returning a value. In this case, the return_type is the keyword void.

 Function Name − This is the actual name of the function. The function name and the

parameter list together constitute the function signature.

 Parameters − A parameter is like a placeholder. When a function is invoked, you

pass a value to the parameter. This value is referred to as actual parameter or

argument. The parameter list refers to the type, order, and number of the parameters

of a function. Parameters are optional; that is, a function may contain no parameters.

 Function Body − The function body contains a collection of statements that define

what the function does.

Example

Following is the source code for a function called max(). This function takes two parameters

num1 and num2 and return the biggest of both −

// function returning the max between two numbers

int max(int num1, int num2) {

 // local variable declaration

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

Function Declarations

A function declaration tells the compiler about a function name and how to call the function.

The actual body of the function can be defined separately.

A function declaration has the following parts −

return_type function_name(parameter list);

For the above defined function max(), following is the function declaration −

int max(int num1, int num2);

Parameter names are not important in function declaration only their type is required, so

following is also valid declaration −

int max(int, int);

Function declaration is required when you define a function in one source file and you call

that function in another file. In such case, you should declare the function at the top of the file

calling the function.

25. (a) Explain in detail the basic concept of OOPS.

There are few principle concepts that form the foundation of object-oriented programming:

1. Object

2. Class

3. Data Abstraction & Encapsulation

4. Inheritance

5. Polymorphism

6. Dynamic Binding

7. Message Passing

1) Object :

 Object is the basic unit of object-oriented programming. Objects are identified by its

unique name. An object represents a particular instance of a class. There can be more than

one instance of an object. Each instance of an object can hold its own relevant data.

An Object is a collection of data members and associated member functions also known as

methods.

For example whenever a class name is created according to the class an object should be

created without creating object can’t able to use class.

The class of Dog defines all possible dogs by listing the characteristics and behaviors they

can have; the object Lassie is one particular dog, with particular versions of the

characteristics. A Dog has fur; Lassie has brown-and-white fur.

2) Class:

 Classes are data types based on which objects are created. Objects with similar

properties and methods are grouped together to form a Class. Thus a Class represents a set of

individual objects. Characteristics of an object are represented in a class as Properties. The

actions that can be performed by objects become functions of the class and is referred to as

Methods.

When you define a class, you define a blueprint for an object. This doesn't actually define

any data, but it does define what the class name means, that is, what an object of the class

will consist of and what operations can be performed on such an object.

For example consider we have a Class of Cars under which Santro Xing, Alto and WaganR

represents individual Objects. In this context each Car Object will have its own, Model, Year

of Manufacture, Colour, Top Speed, Engine Power etc., which form Properties of the Car

class and the associated actions i.e., object functions like Start, Move, Stop form the

Methods of Car Class.No memory is allocated when a class is created. Memory is allocated

only when an object is created, i.e., when an instance of a class is created.

3) Data abstraction & Encapsulation :

 Encapsulation is placing the data and and its functions into a single unit. While

working with procedural languages, it is not always clear which functions work on which

variables but object-oriented programming provides you framework to place the data and the

relevant functions together in the same object.

 When using Data Encapsulation, data is not accessed directly, it is only accessible

through the functions present inside the class.

Data Abstraction increases the power of programming language by creating user defined

data types. Data Abstraction also represents the needed information in the program without

presenting the details.

Abstraction refers to the act of representing essential features without including the

background details or explanation between them.

For example, a class Car would be made up of an Engine, Gearbox, Steering objects, and

many more components. To build the Car class, one does not need to know how the different

components work internally, but only how to interface with them, i.e., send messages to

them, receive messages from them, and perhaps make the different objects composing the

class interact with each other.

4) Inheritance :

 One of the most useful aspects of object-oriented programming is code reusability. As

the name suggests Inheritance is he process of forming a new class from an existing class or

base class.

 The base class is also known as parent class or super class, the new class that is

formed is called derived class.

 Derived class is also known as a child class or sub class. Inheritance helps in reducing

the overall code size of the program, which is an important concept in object-oriented

programming.

This is a very important concept of object-oriented programming since this feature

helps to reduce the code size.

It is classifieds into different types, they are

 Single level inheritance

 Multi-level inheritance

 Hybrid inheritance

 Hierarchial inheritance

5) Polymorphism :

 Polymorphism allows routines to use variables of different types at different times.

An operator or function can be given different meanings or functions. Polymorphism refers to

a single function or multi-functioning operator performing in different ways. Poly a Greek

term means the ability to take more than one form. Overloading is one type of Polymorphism.

It allows an object to have different meanings, depending on its context. When an exiting

operator or function begins to operate on new data type, or class, it is understood to be

overloaded.

6) Dynamic binding :

 Binding means connecting one program to another program that is to be executed in

reply to the call. Dynamic binding is also known as late binding. The code present in the

specified program is unknown till it is executed. It contains a concept of Inheritance and

Polymorphism.

7) Message Passing :

 An object-oriented program consists of a set of objects that communicate with each

other. The process of programming in an object-oriented language, therefore, involves the

following basic steps:

1. Creating classes that define objects and their behaviour

2. Creating objects from class definitions and

3. Establishing communication among objects.

Objects communicate with one another by sending and receiving information much the same

way as people pass messages to one another.

A message for an object is a request for execution of a procedure, and therefore will invoke a

function in the receiving object that generates the desired result . Message passing involves

specifying the name of the object, the name of the function and the information to be sent.

 (OR)

(b) Write a short note on built-in data types.

These data types are built-in or predefined data types and can be used directly by the user to

declare variables. example: int, char , float, bool etc. Primitive data types available in C++

are:

 Integer

 Character

 Boolean

 Floating Point

 Double Floating Point

 Valueless or Void

 Wide Character

primitive data types available in C++.

 Integer: Keyword used for integer data types is int. Integers typically requires 4 bytes

of memory space and ranges from -2147483648 to 2147483647.

 Character: Character data type is used for storing characters. Keyword used for

character data type is char. Characters typically requires 1 byte of memory space and

ranges from -128 to 127 or 0 to 255.

 Boolean: Boolean data type is used for storing boolean or logical values. A boolean

variable can store either true or false. Keyword used for boolean data type is bool.

 Floating Point: Floating Point data type is used for storing single precision floating

point values or decimal values. Keyword used for floating point data type is float.

Float variables typically requires 4 byte of memory space.

 Double Floating Point: Double Floating Point data type is used for storing double

precision floating point values or decimal values. Keyword used for double floating

point data type is double. Double variables typically requires 8 byte of memory

space.

 void: Void means without any value. void datatype represents a valueless entity. Void

data type is used for those function which does not returns a value.

 Wide Character: Wide character data type is also a character data type but this data

type has size greater than the normal 8-bit datatype. Represented by wchar_t. It is

generally 2 or 4 bytes long.

26. (a) Write a simple program to show the use of a class.

// Header Files

#include <iostream>

#include<conio.h>

using namespace std;

// Class Declaration

class person {

 //Access - Specifier

public:

 //Variable Declaration

 string name;

 int number;

};

//Main Function

int main() {

 // Object Creation For Class

 person obj;

 //Get Input Values For Object Varibales

 cout << "Enter the Name :";

 cin >> obj.name;

 cout << "Enter the Number :";

 cin >> obj.number;

 //Show the Output

 cout << obj.name << ": " << obj.number << endl;

 getch();

 return 0;

}

 (OR)

(b) Write a simple program to calculate the average of two numbers.

#include <iostream>

using namespace std;

int main(){

http://www.geeksforgeeks.org/wide-char-and-library-functions-in-c/

 int x,y,sum;

 float average;

 cout << "Enter 2 integers : " << endl;

 cin>>x>>y;

 sum=x+y;

 average=sum/2;

 cout << "The sum of " << x << " and " << y << " is " << sum << "." << endl;

 cout << "The average of " << x << " and " << y << " is " << average << "." << endl;

}

Reg.No ----------------------

 [16MMU304B]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

B.Sc., Mathematics
(For the candidates admitted from 2016 onwards)

 Third Semester

First Internal Exam July 2017

PROGRAMMING WITH C AND C++

Duration: 2 Hrs Maximum Marks: 50 Marks

Date & Session: Class: II BSc (Maths).,

PART-A (20 x 1 = 20 Marks)

Answer all the questions

1. C++ was originally developed by ___________

a) Clocksin and Mellish b) Donald E. Knuth c) Sir Richard Hadlee d) Bjame Strostrup

2. C++ is an extension of C with a major addition of the class construct feature of _______

a) Simula67 b) Simula57 c) Simula47 d) Simula87

3. C++ has the name as __________ before it was changed to C++.

a) Improved C b) Integrated C c) C with classes d) C with Simula

4. _________ refer to the names of variables, functions, arrays, classes etc. created by the

programmer.

a) Keywords b) Identifiers c) Constraints d) Strings

5. The wrapping up of data and functions into a single unit is known as ___________

a) abstraction b) inheritance c) polymorphism d) encapsulation

6. ___________ refers to the act of representing essential features without including the

background details or explanations.

a) abstraction b) inheritance c) polymorphism d) encapsulation

7. ___________ is the process by which objects of one class acquire the properties of objects

of another class.

a) abstraction b) inheritance c) polymorphism d) encapsulation

8. The __________ Operator is known as insertion operator.

a) >> b) > c) << d) <

9. In OOP, a problem is considered as a collection of number of entities called ___________

a) class b) objects c) functions d) message

10. When a function is defined inside a class, this function is called ___________

a) Inside function b) Class function c) Inline function d) Interior function

11. Which of the following cannot be passed to a function?

a) Reference variable b) Arrays c) Class objects d) Header files

12. In C++, the keyword void was used ___________

a) To specify the return type of function when it is not returning any value.

b) To indicate an empty argument list to a function. c) To declare the generic pointers.

d) All of the above.

13. Procedure oriented programming basically consists of writing a list of insturctions or

actions for the computer to follow and organizing these instructions into groups known as

a) procedures b) functions c) flowchart d) instructions

14. cout stands for

a) class output b) character output c) common output d) call output

15. The C++ header file _____________ contains function prototypes for the standard input

and standard output functions.

a) <iomanip> b) <fstream> c) <iostream> d) <cstdio>

16. The fields in a structure of a c program are by default

a) protected b) public c) private d) shared

17. Everything defined at the program scope level (ie. outside functions and classes) is said to

be ____________

a) local scope b) regional scope c) global scope d) static scope

18. Overloading is otherwise known as __________

a) Virtual polymorphism b) transient polymorphism

c) pseudo polymorphism d) adhoc polymorphism

19. Which of the following term is used for a function defined inside a class?

a) member variable b) class function c) classic function d) member function

20. To overload an operator ____________ keyword must be used along with the operator to

be overloaded.

a) Over b) Overload c) Void d) Operator

PART-B (3 x 2 = 6 Marks)

Answer all the questions

1. What is meant by functions?

2. What is a token? What are the available tokens in c++?

3. Illustrate the structure of a c++ program.

PART-B (3 x 8= 24 Marks)

Answer all the questions

24. (a) Describe the characteristics of procedure oriented programming and object oriented

programming.

(OR)

(b) Write a short notes on functions.

25. (a) Explain in detail the basic concept of OOPS.

 (OR)

(b) Write a short note on built-in data types.

26. (a) Write a simple program to show the use of a class.

 (OR)

(b) Write a simple program to calculate the average of two numbers.

Reg.No ----------------------

 [16MMU304B]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

B.Sc., Mathematics
(For the candidates admitted from 2016 onwards)

Third Semester

Second Internal Exam August 2017

PROGRAMMING WITH C AND C++

Duration: 2 Hrs Maximum Marks: 50 Marks

Date & Session: Class: II BSc (Maths).,

PART-A (20 x 1 = 20 Marks)

Answer all the questions

1. C++ supports all the features of ___________ as defined in C

 a) structures b) union c) object d) classes

2. A structure can have both variable and functions as ________

 a) objects b) classes c) members d) arguments

3. The class _________ describes the type and scope of its members

 a) calling function b) declaration c) objects d)function

4. The class __________ describes how the class function are implemented

 a) function definition b) declaration c) arguments d) function

5. The keywords private and public are known as _________ labels

 a) static b) dynamic c) visibility d) const

6. Which is a valid method for accessing the first element of the array item?

 a) item(1) b) item[1] c) item[0] d) item(0)

7. Which of the following statements is valid array declaration?

 a) int number (5); b) float avg[5]; c) double [5] marks; d) counter int[5];

8. The symbol ______ is called the scope resolution operator

 a) > b) :: c) << d) ::*

9. A member function can call another member function directly without using the

_________ operator

 a) assignment b) equal c) dot d)greater than

10. A ______ member variable is initialized to zero when the first object of its class is created

 a) dynamic b) constant c) static d) protected

11. _________ Variables are normally used to maintain values common to the entire class.

 a) private b) protected c) public d) static

12. When a copy of the entire object is passed to the function it is called as _________

 a) pass by reference b) pass by function c) pass by pointer d) pass by value

13. When the address of the object is transferred to the function it is called as _________

 a) pass by reference b) pass by function c) pass by pointer d) pass by value

14. Pointers are used to access ________

 a) Object b) Virtual function c) Class members d) functions

15. The member functions can be refered by using the ________ and _______

 a) dot operator and object b) address operator and virtual functions c) class and object

d) dot and direct operator

16. The paranthesis are necessary because the dot operator has higher precedence than the

 a) dot operator b) this c) class d) indirection operator

17. ______ is used to represent an object that involves a member function.

 a) friend b) this c) class d) virtual

18. The this pointer acts as an _____ argument to all the member function

 a) implicit b) explicit c) formal d) actual.

19. When two or more objects are compare inside a member function the result in return is an

 a) virtual function b) derived class c) invoking objects d) base class

20. Pointers are used as the objects of _______

a) user defined b) derived class c) virtual function d) object.

PART-B (3 x 2 = 6 Marks)

Answer all the questions

21. What is an array?

22. How the objects are used as function argument?

23. Define call by reference.

PART-B (3 x 8= 24 Marks)

Answer all the questions

24. a) Elaborate in detail the multi-dimensional array with a suitable example program.

 (OR)

 b) Explain on declaring and initializing unions with a simple program.

25. a) Write a note on passing entire structures to functions with a suitable example program..

 (OR)

 b) Write a c++ program store and calculate the sum of 5 numbers entered by the user

using arrays.

26. a) Write a c++ program to convert the temperature in Celsius to Fahrenheit.

 (OR)

 b) Write a c++ program to check whether the number is palindrome or not.

Reg.No ----------------------

 [16MMU304B]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

B.Sc., Mathematics
(For the candidates admitted from 2016 onwards)

Third Semester

Second Internal Exam August 2017

PROGRAMMING WITH C AND C++

Duration: 2 Hrs Maximum Marks: 50 Marks

Date & Session: Class: II BSc (Maths).,

PART-A (20 x 1 = 20 Marks)

Answer all the questions

1. C++ supports all the features of ___________ as defined in C

 a) structures b) union c) object d) classes

2. A structure can have both variable and functions as ________

 a) objects b) classes c) members d) arguments

3. The class _________ describes the type and scope of its members

 a) calling function b) declaration c) objects d)function

4. The class __________ describes how the class function are implemented

 a) function definition b) declaration c) arguments d) function

5. The keywords private and public are known as _________ labels

 a) static b) dynamic c) visibility d) const

6. Which is a valid method for accessing the first element of the array item?

 a) item(1) b) item[1] c) item[0] d) item(0)

7. Which of the following statements is valid array declaration?

 a) int number (5); b) float avg[5]; c) double [5] marks; d) counter int[5];

8. The symbol ______ is called the scope resolution operator

 a) > b) :: c) << d) ::*

9. A member function can call another member function directly without using the

_________ operator

 a) assignment b) equal c) dot d)greater than

10. A ______ member variable is initialized to zero when the first object of its class is created

 a) dynamic b) constant c) static d) protected

11. _________ Variables are normally used to maintain values common to the entire class.

 a) private b) protected c) public d) static

12. When a copy of the entire object is passed to the function it is called as _________

 a) pass by reference b) pass by function c) pass by pointer d) pass by value

13. When the address of the object is transferred to the function it is called as _________

 a) pass by reference b) pass by function c) pass by pointer d) pass by value

14. Pointers are used to access ________

 a) Object b) Virtual function c) Class members d) functions

15. The member functions can be refered by using the ________ and _______

 a) dot operator and object b) address operator and virtual functions c) class and object

d) dot and direct operator

16. The paranthesis are necessary because the dot operator has higher precedence than the

 a) dot operator b) this c) class d) indirection operator

17. ______ is used to represent an object that involves a member function.

 a) friend b) this c) class d) virtual

18. The this pointer acts as an _____ argument to all the member function

 a) implicit b) explicit c) formal d) actual.

19. When two or more objects are compare inside a member function the result in return is an

 a) virtual function b) derived class c) invoking objects d) base class

20. Pointers are used as the objects of _______

a) user defined b) derived class c) virtual function d) object.

PART-B (3 x 2 = 6 Marks)

Answer all the questions

21. What is an array?

An array is a data structure which allows a collective name to be given to a group of

elements which all have the same type. An individual element of an array is identified by its

own unique index (or subscript).

An array can be thought of as a collection of numbered boxes each containing one data item.

The number associated with the box is the index of the item. To access a particular item the

index of the box associated with the item is used to access the appropriate box. The index

must be an integer and indicates the position of the element in the array. Thus the elements of

an array are ordered by the index.

22. How the objects are used as function argument?

If a function is to use arguments, it must declare variables that accept the values of the

arguments. These variables are called the formal parameters of the function.

The formal parameters behave like other local variables inside the function and are created

upon entry into the function and destroyed upon exit.

23. Define call by reference.

This method copies the reference of an argument into the formal parameter. Inside the

function, the reference is used to access the actual argument used in the call. This means that

changes made to the parameter affect the argument.

PART-B (3 x 8= 24 Marks)

Answer all the questions

24. a) Elaborate in detail the multi-dimensional array with a suitable example program.

C++ allows multidimensional arrays. Here is the general form of a multidimensional array

declaration −

type name[size1][size2]...[sizeN];

For example, the following declaration creates a three dimensional 5 . 10 . 4 integer array −

int threedim[5][10][4];

Two-Dimensional Arrays

The simplest form of the multidimensional array is the two-dimensional array. A two-

dimensional array is, in essence, a list of one-dimensional arrays. To declare a two-

dimensional integer array of size x,y, you would write something as follows −

type arrayName [x][y];

Where type can be any valid C++ data type and arrayName will be a valid C++ identifier.

A two-dimensional array can be think as a table, which will have x number of rows and y

number of columns. A 2-dimensional array a, which contains three rows and four columns

can be shown as below −

Thus, every element in array a is identified by an element name of the form a[i][j], where a

is the name of the array, and i and j are the subscripts that uniquely identify each element in

a.

Initializing Two-Dimensional Arrays

Multidimensioned arrays may be initialized by specifying bracketed values for each row.

Following is an array with 3 rows and each row have 4 columns.

int a[3][4] = {

 {0, 1, 2, 3} , /* initializers for row indexed by 0 */

 {4, 5, 6, 7} , /* initializers for row indexed by 1 */

 {8, 9, 10, 11} /* initializers for row indexed by 2 */

};

The nested braces, which indicate the intended row, are optional. The following initialization

is equivalent to previous example −

int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

Accessing Two-Dimensional Array Elements

An element in 2-dimensional array is accessed by using the subscripts, i.e., row index and

column index of the array. For example −

int val = a[2][3];

The above statement will take 4
th

 element from the 3
rd

 row of the array. You can verify it in

the above digram.

#include <iostream>

using namespace std;

int main () {

 // an array with 5 rows and 2 columns.

 int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};

 // output each array element's value

 for (int i = 0; i < 5; i++)

 for (int j = 0; j < 2; j++) {

 cout << "a[" << i << "][" << j << "]: ";

 cout << a[i][j]<< endl;

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

a[0][0]: 0

a[0][1]: 0

a[1][0]: 1

a[1][1]: 2

a[2][0]: 2

a[2][1]: 4

a[3][0]: 3

a[3][1]: 6

a[4][0]: 4

a[4][1]: 8

 (OR)

 b) Explain on declaring and initializing unions with a simple program.

Both structure and union are collection of different datatype. They are used to group number

of variables of different type in a single unit.

Union declaration

Declaration of union must start with the keyword union followed by the union name and

union's member variables are declared within braces.

Syntax for declaring union

 union union-name

 {

 datatype var1;

 datatype var2;

 - - - - - - - - - -

 - - - - - - - - - -

 datatype varN;

 };

Accessing the union members

We have to create an object of union to access its members. Object is a variable of type

union. Union members are accessed using the dot operator(.) between union's object and

union's member name.

Syntax for creating object of union

 union union-name obj;

Example for creating object & accessing union members

 #include<iostream.h>

 union Employee

 {

 int Id;

 char Name[25];

 int Age;

 long Salary;

 };

 void main()

 {

 Employee E;

 cout << "\nEnter Employee Id : ";

 cin >> E.Id;

 cout << "\nEnter Employee Name : ";

 cin >> E.Name;

 cout << "\nEnter Employee Age : ";

 cin >> E.Age;

 cout << "\nEnter Employee Salary : ";

 cin >> E.Salary;

 cout << "\n\nEmployee Id : " << E.Id;

 cout << "\nEmployee Name : " << E.Name;

 cout << "\nEmployee Age : " << E.Age;

 cout << "\nEmployee Salary : " << E.Salary;

 }

 Output :

 Enter Employee Id : 1

 Enter Employee Name : Kumar

 Enter Employee Age : 29

 Enter Employee Salary : 45000

 Employee Id : -20536

 Employee Name : ?$?$ ��?

 Employee Age : -20536

 Employee Salary : 45000

25. a) Write a note on passing entire structures to functions with a suitable example program.

When an element of a structure is passed to a function, you are actually passing the values of

that element to the function. Therefore, it is just like passing a simple variable (unless, of

course, that element is complex such as an array of character). For example, consider the

following structure :

struct date

{

 short day ;

 short month ;

 short year ;

}Bdate ;

Individual elements of this structure can be passed as follows :

func1(Bdate.day, Bdate.month, Bdate.year) ;

The above function-call invokes a function, func1() by passing values of individual structure

elements of structure Bdate.

The function can either receive the values by creating its own copy for them (call by value) or

by creating references for the original variables (call by reference). If You want that the

values of the structure elements should not be altered by the function, then you should pass

the structure elements by value and if you want the function to alter the original values, then

you should pass the structure elements by reference.

/* C++ Passing Structure to Function - Call by Value */

#include<iostream.h>

#include<conio.h>

struct distance

{

 int feet;

 int inches;

};

void prnsum(distance l1, distance l2); // function prototype

void main()

{

 clrscr();

 distance length1, length2; // two structures of type distance declared

 /* Read values for length1 */

 cout<<"Enter length 1:\n";

 cout<<"Feet: ";

 cin>>length1.feet;

 cout<<"\nInches: ";

 cin>>length1.inches;

 /* Read values for length2 */

 cout<<"\n\nEnter length 2:\n";

 cout<<"Feet: ";

 cin>>length2.feet;

 cout<<"\nInches: ";

 cin>>length2.inches;

 prnsum(length1, length2); // print sum of length1 and length2

 getch();

} // end of main()

void prnsum(distance l1, distance l2)

{

 distance l3; // new structure

 l3.feet=l1.feet+l2.feet+(l1.inches+l2.inches)/12; // 1 feet=12 inches

 l3.inches=(l1.inches+l2.inches)%12;

 cout<<"\n\nTotal Feet: "<<l3.feet<<"\n";

 cout<<"Total Inches: "<<l3.inches;

}

 (OR)

 b) Write a c++ program store and calculate the sum of 5 numbers entered by the user

using arrays.

include <iostream>

using namespace std;

int main()

{

 int numbers[5], sum = 0;

 cout << "Enter 5 numbers: ";

 // Storing 5 number entered by user in an array

 // Finding the sum of numbers entered

 for (int i = 0; i < 5; ++i)

 {

 cin >> numbers[i];

 sum += numbers[i];

 }

 cout << "Sum = " << sum << endl;

 return 0;

}

26. a) Write a c++ program to convert the temperature in Celsius to Fahrenheit.

#include<iostream.h>

#include<conio.h>

void main()

{

 float cel, far;

 clrscr();

 cout<<"Enter temp. in Celsius: ";

 cin>>cel;

 far = cel * 9/5 + 32;

 cout<<"Temp. in Fahrenheit: "<<far;

 getch();

}

 (OR)

 b) Write a c++ program to check whether the number is palindrome or not.

#include <iostream>

using namespace std;

int main()

{

 int n, num, digit, rev = 0;

 cout << "Enter a positive number: ";

 cin >> num;

 n = num;

 do

 {

 digit = num % 10;

 rev = (rev * 10) + digit;

 num = num / 10;

 } while (num != 0);

 cout << " The reverse of the number is: " << rev << endl;

 if (n == rev)

 cout << " The number is a palindrome";

 else

 cout << " The number is not a palindrome";

 return 0;

}

Reg.No ----------------------

 [16MMU304B]

Karpagam Academy of Higher Education

(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

B.Sc., Mathematics
(For the candidates admitted from 2016 onwards)

Third Semester

Third Internal Exam September 2017

PROGRAMMING WITH C AND C++

Duration: 2 Hrs Maximum Marks: 50 Marks

Date & Session: Class: II BSc (Maths).,

PART-A (20 x 1 = 20 Marks)

Answer ALL the questions

1. _________ is used to allocate memory in the constructor

a) delete b) binding c) free d) new

2. The write() function writes ___________.

a) single character b) object c) string d) signed character

3. A _______ is a collection of related data stored in a particular area on a disk.

a) field b) file c) row d) vector

4. _________ is used to free the memory

a) new b)delete c) clrscr() d)update

5. ________ inherits get(), getline(), read(), seekg(), and tellg() from istream.

a)conio b)ifstream c)fstream d)iostream

6. __________ enables an object to initialize itself when it is created

a) Destructor b) constructor c) overloading d)overriding

7. The constructor function can also be defined as ________ function

Friend b)inline c)default d)numeric

8. File streams act as an ________ between programs and files.

a)interface b)converter c)translator d)operator

9. Ifstream, Ofstream, Fstream are derived form __________.

a)iostream b)ostream c)streambuff d)fstreambase

10. ________________refers to the use of same thing for different purposes

a) Overloading b)Dynamic binding c)message loading d) overriding

11. _________ is to set the file buffer to read and write.

a)filebuf b)filestream c) thread d)package

12. To add data at the end of file, the file must be opened in _______ mode.

a) read() b)write() c)append() d)write and append

13. When a file is opened read or write mode a file pointer is set at _____of the file.

a) beginning b)end c)middle d)least significant

14. The constructors that can take arguments are called _________ constructors

a) Copy b)multiple c)parameterized d)levels

15. A public member inherited in ________ mode become private in the derived class.

a) Visibility b)Private c)Protected d)Public

16. _________________are extensively used for handling class objects

a)overloaded functions b)methods c)objects d)messages

17. The eof () stands for _____.

end of file b)error opening file c) error of file d)enum of file

18. "Constructors make _________ calls to the operators new and delete when memory

allocation is required"

a) Explicit b)implicit c)function d)header

19. ________ class inherits some or all of the properties of base class.

Base b)Virtual base c)Subclass d)Derived

20. Error checking does not occur during compilation if we are using_______________

a) functions b)macros c)pre-defined functions d) operators

PART-B (3 x 2 = 6 Marks)

Answer ALL the questions

21. Discuss the use of malloc and calloc?

22. What is meant by free functions?

23. List out the principles of object oriented programming.

Part - C (5X6=30 Marks)

(Answer All the Questions)

24. a) Describe the concept of reading and writing text files in c++.

 (OR)

 b) Differentiate between static and dynamic memory allocation.

25. a) Explain in detail the preprocessor directives.

 (OR)

 b) Elaborate in detail the concept of multilevel inheritance with a suitable program

26. a) Write a note on template classes and their uses.

 (OR)

 b) Describe the exceptional handling concept in detail with suitable example.

Reg.No ----------------------

 [16MMU304B]

Karpagam Academy of Higher Education

KARPAGAM UNIVERSITY
 (Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

B.Sc., Mathematics
(For the candidates admitted from 2016 onwards)

Third Semester

Third Internal Exam September 2017

PROGRAMMING WITH C AND C++

Duration: 2 Hrs Maximum Marks: 50 Marks

Date & Session: Class: II BSc (Maths).,

PART-A (20 x 1 = 20 Marks)

Answer ALL the questions

1. _________ is used to allocate memory in the constructor

a) delete b) binding c) free d) new

2. The write() function writes ___________.

a) single character b) object c) string d) signed character

3. A _______ is a collection of related data stored in a particular area on a disk.

a) field b) file c) row d) vector

4. _________ is used to free the memory

a) new b)delete c) clrscr() d)update

5. ________ inherits get(), getline(), read(), seekg(), and tellg() from istream.

a)conio b)ifstream c)fstream d)iostream

6. __________ enables an object to initialize itself when it is created

a) Destructor b) constructor c) overloading d)overriding

7. The constructor function can also be defined as ________ function

Friend b)inline c)default d)numeric

8. File streams act as an ________ between programs and files.

a)interface b)converter c)translator d)operator

9. Ifstream, Ofstream, Fstream are derived form __________.

a)iostream b)ostream c)streambuff d)fstreambase

10. ________________refers to the use of same thing for different purposes

a) Overloading b)Dynamic binding c)message loading d) overriding

11. _________ is to set the file buffer to read and write.

a)filebuf b)filestream c) thread d)package

12. To add data at the end of file, the file must be opened in _______ mode.

a) read() b)write() c)append() d)write and append

13. When a file is opened read or write mode a file pointer is set at _____of the file.

a) beginning b)end c)middle d)least significant

14. The constructors that can take arguments are called _________ constructors

a) Copy b)multiple c)parameterized d)levels

15. A public member inherited in ________ mode become private in the derived class.

a) Visibility b)Private c)Protected d)Public

16. _________________are extensively used for handling class objects

a)overloaded functions b)methods c)objects d)messages

17. The eof () stands for _____.

end of file b)error opening file c) error of file d)enum of file

18. "Constructors make _________ calls to the operators new and delete when memory

allocation is required"

a) Explicit b)implicit c)function d)header

19. ________ class inherits some or all of the properties of base class.

Base b)Virtual base c)Subclass d)Derived

20. Error checking does not occur during compilation if we are using_______________

a) functions b)macros c)pre-defined functions d) operators

PART-B (3 x 2 = 6 Marks)

Answer ALL the questions

21. Discuss the use of malloc and calloc?

There are two major differences between malloc and calloc in C programming language: first,

in the number of arguments. The malloc() takes a single argument, while calloc() takess two.

Second, malloc() does not initialize the memory allocated, while calloc() initializes the

allocated memory to ZERO.

Both malloc and calloc are used in C language for dynamic memory allocation they obtain

blocks of memory dynamically. Dynamic memory allocation is a unique feature of C

language that enables us to create data types and structures of any size and length suitable to

our programs.

22. What is meant by free functions?

Free() Function is used to free the memory pointed by the pointer back to the memory heap.

This function should be called on a pointer that was used either with "calloc()" or "malloc()",

otherwise the function will destroy the memory management making a system to crash.

23. List out the principles of object oriented programming.

In order for a programming language to be object-oriented, it has to enable working with

classes and objects as well as the implementation and use of the fundamental object-oriented

principles and concepts: inheritance, abstraction, encapsulation and polymorphism. Let’s

summarize each of these fundamental principles of OOP:

- Encapsulation

It is used to hide unnecessary details in our classes and provide a clear and simple interface

for working with them.

- Inheritance

It explains how class hierarchies improve code readability and enable the reuse of

functionality.

- Abstraction

It helps to work through abstractions: to deal with objects considering their important

characteristics and ignore all other details.

- Polymorphism

It explains how to work in the same manner with different objects, which define a specific

implementation of some abstract behavior.

Part - C (5X6=30 Marks)

(Answer All the Questions)

24. a) Describe the concept of reading and writing text files in c++.

//C++ program to write and read text in/from file.

#include <iostream>

#include <fstream>

using namespace std;

int main()

{

 fstream file; //object of fstream class

 //opening file "sample.txt" in out(write) mode

 file.open("sample.txt",ios::out);

 if(!file)

 {

 cout<<"Error in creating file!!!"<<endl;

 return 0;

 }

 cout<<"File created successfully."<<endl;

 //write text into file

 file<<"ABCD.";

 //closing the file

 file.close();

 //again open file in read mode

 file.open("sample.txt",ios::in);

 if(!file)

 {

 cout<<"Error in opening file!!!"<<endl;

 return 0;

 }

 //read untill end of file is not found.

 char ch; //to read single character

 cout<<"File content: ";

 while(!file.eof())

 {

 file>>ch; //read single character from file

 cout<<ch;

 }

 file.close(); //close file

 return 0;

}

 (OR)

 b) Differentiate between static and dynamic memory allocation.

Static memory allocation: The compiler allocates the required memory space for a declared

variable.By using the address of operator,the reserved address is obtained and this address

may be assigned to a pointer variable.Since most of the declared variable have static

memory,this way of assigning pointer value to a pointer variable is known as static memory

allocation. memory is assigned during compilation time.

Dynamic memory allocation: It uses functions such as malloc() or calloc() to get memory

dynamically.If these functions are used to get memory dynamically and the values returned

by these functions are assingned to pointer variables, such assignments are known as dynamic

memory allocation.memory is assined during run time.

25. a) Explain in detail the preprocessor directives.

Preprocessor directives are lines included in the code of programs preceded by a hash sign

(#). These lines are not program statements but directives for the preprocessor. The

preprocessor examines the code before actual compilation of code begins and resolves all

these directives before any code is actually generated by regular statements.

These preprocessor directives extend only across a single line of code. As soon as a newline

character is found, the preprocessor directive is ends. No semicolon (;) is expected at the end

of a preprocessor directive. The only way a preprocessor directive can extend through more

than one line is by preceding the newline character at the end of the line by a backslash (\).

macro definitions (#define, #undef)

To define preprocessor macros we can use #define. Its syntax is:

#define identifier replacement

When the preprocessor encounters this directive, it replaces any occurrence of identifier in

the rest of the code by replacement. This replacement can be an expression, a statement, a

block or simply anything. The preprocessor does not understand C++ proper, it simply

replaces any occurrence of identifier by replacement.

1

2

3

#define TABLE_SIZE 100

int table1[TABLE_SIZE];

int table2[TABLE_SIZE];

After the preprocessor has replaced TABLE_SIZE, the code becomes equivalent to:

1

2

int table1[100];

int table2[100];

#define can work also with parameters to define function macros:

 #define getmax(a,b) a>b?a:b

This would replace any occurrence of getmax followed by two arguments by the replacement

expression, but also replacing each argument by its identifier,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

// function macro

#include <iostream>

using namespace std;

#define getmax(a,b) ((a)>(b)?(a):(b))

int main()

{

 int x=5, y;

 y= getmax(x,2);

 cout << y << endl;

 cout << getmax(7,x) << endl;

 return 0;

}

5

7
Edit & Run

Defined macros are not affected by block structure. A macro lasts until it is undefined with

the #undef preprocessor directive:

1

2

3

4

5

#define TABLE_SIZE 100

int table1[TABLE_SIZE];

#undef TABLE_SIZE

#define TABLE_SIZE 200

int table2[TABLE_SIZE];

This would generate the same code as:

1

2

int table1[100];

int table2[200];

Function macro definitions accept two special operators (# and ##) in the replacement

sequence:

The operator #, followed by a parameter name, is replaced by a string literal that contains the

argument passed (as if enclosed between double quotes):

http://www.cplusplus.com/doc/tutorial/preprocessor/

1

2

#define str(x) #x

cout << str(test);

This would be translated into:

 cout << "test";

The operator ## concatenates two arguments leaving no blank spaces between them:

1

2

#define glue(a,b) a ## b

glue(c,out) << "test";

This would also be translated into:

 cout << "test";

Because preprocessor replacements happen before any C++ syntax check, macro definitions

can be a tricky feature. But, be careful: code that relies heavily on complicated macros

become less readable, since the syntax expected is on many occasions different from the

normal expressions programmers expect in C++.

 (OR)

 b) Elaborate in detail the concept of multilevel inheritance with a suitable program

Inheritance is one of the core feature of an object-oriented programming language. It allows

software developers to derive a new class from the existing class. The derived class inherits

the features of the base class (existing class).

n C++ programming, not only you can derive a class from the base class but you can also

derive a class from the derived class. This form of inheritance is known as multilevel

inheritance.

class A

{

...

};

class B: public A

{

...

};

class C: public B

{

...

};

Here, class B is derived from the base class A and the class C is derived from the derived

class B.

#include <iostream>

using namespace std;

class A

{

 public:

 void display()

 {

 cout<<"Base class content.";

 }

};

class B : public A

{

};

class C : public B

{

};

int main()

{

 C obj;

 obj.display();

 return 0;

}

26. a) Write a note on template classes and their uses.

Templates are a way of making classes more abstract by letting to define the behavior of the

class without actually knowing what datatype will be handled by the operations of the class.

In essence, this is what is known as generic programming; this term is a useful way to think

about templates because it helps remind the programmer that a templated class does not

depend on the datatype (or types) it deals with. To a large degree, a templated class is more

focused on the algorithmic thought rather than the specific nuances of a single datatype.

Templates can be used in conjunction with abstract datatypes in order to allow them to handle

any type of data.

The format for declaring function templates with type parameters is:

template <class identifier> function_declaration;

template <typename identifier> function_declaration;

The only difference between both prototypes is the use of either the keyword class or the

keyword typename. Its use is indistinct, since both expressions have exactly the same

meaning and behave exactly the same way.

One example is:

template <class myType>

myType GetMax (myType a, myType b) {

 return (a>b?a:b);

}

 (OR).

 b) Describe the exceptional handling concept in detail with suitable example.

Exceptions are run-time anomalies, such as division by zero, that require immediate

handling when encountered by your program. The C++ language provides built-in support for

raising and handling exceptions. With C++ exception handling, your program can

communicate unexpected events to a higher execution context that is better able to recover

from such abnormal events. These exceptions are handled by code that is outside the normal

flow of control

The C++ language provides built-in support for handling anomalous situations,

known as exceptions, which may occur during the execution of your program. The try, throw,

and catch statements implement exception handling. With C++ exception handling, your

program can communicate unexpected events to a higher execution context that is better able

to recover from such abnormal events. These exceptions are handled by code that is outside

the normal flow of control. The Microsoft C++ compiler implements the C++ exception

handling model based on the ANSI C++ standard.

The following syntax shows a try block and its handlers:

 try {

 // code that could throw an exception

}

[catch (exception-declaration) {

 // code that executes when exception-declaration is thrown

 // in the try block

}

[catch (exception-declaration) {

 // code that handles another exception type

}] . . .]

// The following syntax shows a throw expression:

throw [expression]

C++ also provides a way to explicitly specify whether a function can throw

exceptions. You can use exception specifications in function declarations to indicate that a

function can throw an exception. For example, an exception specification throw(...) tells the

compiler that a function can throw an exception, but doesn't specify the type, as in this

example:

#include <iostream>

#include <exception>

using namespace std;

struct MyException : public exception {

 const char * what () const throw () {

 return "C++ Exception";

 }

};

int main() {

 try {

 throw MyException();

 } catch(MyException& e) {

 std::cout << "MyException caught" << std::endl;

 std::cout << e.what() << std::endl;

 } catch(std::exception& e) {

 //Other errors

 }

}

	01 16MMU304B Syllabus.pdf (p.1-3)
	02 Lecture Plan C++ 16MMU304B.pdf (p.4-11)
	03 Lecture notes unit 1.pdf (p.12-54)
	04 Unit 1 Possible Questions.pdf (p.55-56)
	05 Unit 1 QP Objectives .pdf (p.57-58)
	06 Lecture notes unit 2.pdf (p.59-77)
	07 Unit 2 Possible Questions.pdf (p.78)
	08 Unit 2 QP Objectives.pdf (p.79-81)
	09 Lecture notes unit 3.pdf (p.82-102)
	10 Unit 3 Possible Questions.pdf (p.103)
	11 Unit 3 QP Objectives II BSC MATHS.pdf (p.104-105)
	12 Lecture notes unit 4.pdf (p.106-122)
	13 Unit 4 Possible Questions.pdf (p.123)
	14 Unit 4 QP Objectives II BSC MATHS.pdf (p.124-125)
	15 Lecture notes unit 5.pdf (p.126-180)
	16 Unit 5 Possible Questions.pdf (p.181)
	17 Unit 5 QP Objectives II BSC MATHS.pdf (p.182-183)
	18.pdf (p.184-193)
	19 II BscMaths Proginc final.pdf (p.194-195)
	19 Second internals II BSc Maths.pdf (p.196-197)
	20 Second internals Maths answer key.pdf (p.198-206)
	21 third internals final.pdf (p.207-208)
	22 third internals with answer.pdf (p.209-217)

