ELECTIVE-III 18CHP305C (APPLIED BIOINORGANIC CHEMISTRY, INORGANIC DRUG TARGETS AND METALS IN MEDICINE)

Instruction Hours/week:L: 4 T:0 P:0 Marks: Internal:40 External: 60 Total:100

External Semester Exam: 3 Hours

Course Objectives

- 1. To give the knowledge of the role of metals in human body
- 2. To learn about the physical methods in bioinorganic chemistry, metal biomolecules interactions, complexes, and drug discovery.
- 3. To give knowledge in Binding of Metal Ions and Complexes to Biomolecules
- 4. Learnt about complexes and chelating agents
- 5. Provide fundamental knowledge in Drug Discovery and Design

Course Outcomes

The student understood

- 1. The role of metals in human body
- 2. The various physical methods used in bioinorganic chemistry
- 3. The knowledge of Binding of Metal Ions and Complexes to Biomolecules
- 4. Nature of complexes and chelating agents
- 5. The process of Drug Discovery and Design

UNIT- I

Metals in the Human Body: General principles - the elements in the human body - biological significance, storage and transport of Fe, Zn, Cu, Mo, Co, Cr, V and Ni - metal functions in metalloproteins -metallo enzyme functions -supplying elements to the body - metals and human health.

UNIT- II

Physical Methods in Bioinorganic Chemistry: X-ray methods - magnetic resonance methods - mossbauer spectroscopy - magnetic measurements -other instrumental methods - atomic force microscopy - fast and time-resolved methods - stopped-flow kinetic methods - flash photolysis - time-resolved crystallography.

UNIT- III

Binding of Metal Ions and Complexes to Biomolecules: Nucleic acid structures - fundamental interactions with nucleic acids - binding interactions of tris(phenanthroline) metal complexes with DNA - techniques to monitor binding - applications of metal complexes that bind to nucleic acids -biopolymer promoted metal ligand interactions.

UNIT- IV

Complexes and Chelating Agents: Labile and inert complexes - metal-ligand selectivity-HSAB approach-chelate effect and Irving-William series -survey of metals used for diagnosis and chemotherapy-radiodiagnostic agents-Magnetic Resonance Imaging (MRI) - gold and other metal phosphines-main-group and transition metal compounds - miscellaneous metals in medicine-chelating agents and therapy - EDTA-evolution, chemical properties, *in vivo* chelation of radionuclides, dosage and toxicity.

UNIT-V

Drug Discovery and Design: Outline- therapeutic index, chemotherapeutic index, structure- activity relationship (SAR) and quantitative structure-activity relationship (QSAR)-Factors governing drug design- computer aided drug design-cancer chemotherapy-bioinorganic chemistry (DNA binding) of platinum anticancer drugs (cisplatin and carboplatin)-mechanism of action studies-clinical trials and their significance- production and quality control- patent protection.

SUGGESTED READINGS:

- 1. Taylor, D. M., & Williams, D. R. (1995). *Trace Element Medicine and Chelation Therapy* (I Edition). United Kingdom: The Royal Society of Chemistry.
- 2. AshutoshKar, (2000). *Medicinal Chemistry*. New Delhi: New Age International Publishers.
- 3. Gareth Thomas, (2000). *Medicinal Chemistry*. United Kingdom: John-Wiley & Sons Ltd.
- 4. Bertini, I., Gray, H. B., Lippard, S. J., & Valentine, J. S. (1994). *Bioinorganic Chemistry*. California: University Science books.
- 5. Roat-Malone, R. M. (2002). *Bioinorganic Chemistry*. NJ: John Wiley & Sons. Inc.

(Deemed to be University) (Established Under Section 3 of UGC Act, 1956) Coimbatore – 641 021.

LECTURE PLAN DEPARTMENT OF CHEMISTRY

STAFF NAME: Dr. E. YAMUNA SUBJECT NAME: INDUSTRIAL CHEMISTRY

SUB.CODE: 18CHP305C

SEMEST	ΓER: III	CLASS: II-M.S	Sc (CHEMISTRY)
S.No.	Lecture Duration Period	Topics to be Covered	Support Material/Page Nos
		UNIT-I (Metals in the Human Body)	
1	1	General principles	T1:16
2	1	the elements in the human body	T1:16-20
3	1	biological significance	T2:1-12
4	1	storage and transport of Fe, Zn, Cu, Mo, Co, Cr, V and Ni	T2:1-12 T2:12-30
5	1	metal functions in metalloproteins	T2:35-40
6	1	metallo enzyme functions	T2:40-54
7	1	supplying elements to the body	T1:20-21
8	1	metals and human health	T1:20-21
9	1	Recapitulations and discussion of important questions	
	Total No o	of Hours Planned For Unit 1=9	
		UNIT-II (Physical Methods in Bioinorganic Chemistry)	
1	1	X-ray methods - magnetic resonance methods	T1: 73-110
2	1	mossbauer spectroscopy	T1:114-116
3	1	magnetic measurements	T1: 116-117 T1:119
4	1	other instrumental methods	T1: 121

5	1	atomic force microscopy stopped	T1: 121-123
6	1	fast and time-resolved methods	T1: 123
7	1	flow kinetic methods	T1: 123
8	1	flash photolysis - time-resolved crystallography	T1: 124
9	1	Recapitulations and discussion of important questions	
	Total No	of Hours Planned For Unit II=9	
		UNIT-III (Binding of Metal Ions and Complexes to Biomolecules)	
1	1	Nucleic acid structures	T1: 455-458
2	1	fundamental interactions with nucleic acids	T1: 459-467
3	1	binding interactions of tris(phenanthroline) metal complexes with DNA	T1:468-472
4	1	techniques to monitor binding	T1:472-478
5	1	applications of metal complexes that bind to nucleic acids	T1:478-485
6	1	biopolymer promoted metal ligand interactions.	T1:485-487
7	1	Recapitulations and discussion of important questions	
8	1	Previous year question paper discussion	
	Total No	of Hours Planned For Unit III=8	
		UNIT-IV (Complexes and Chelating Agents)	
1	1	Labile and inert complexes-metal-ligand selectivity	T2:26-31
2	1	HSAB approach-chelate effect and Irving-William series	T2: 32-55
3	1	survey of metals used for diagnosis and chemotherapy	T1: 514
4	1	Radio diagnostic agents	T1: 514-517
5	1	Magnetic Resonance Imaging (MRI)	T1:517-520
6	1	gold and other metal phosphines	T1:520-521
7	1	main-group and transition metal compounds	T1:520-521
8	1	miscellaneous metals in medicine-chelating agents and therapy	T1:521

2018-2	2020
Batch	

9	1	EDTA-evolution, chemical properties, in vivo	T2:81-88
		chelation of radionuclides, dosage and toxicity.	
10	1	Recapitulations and discussion of important	
		questions	
11	1	Revision & Discussion of important questions	
	Total No	of Hours Planned For Unit IV=11	
		UNIT-V (Drug Discovery and Design)	
1	1	Outline- therapeutic index, chemotherapeutic index	T1: 2-3
2	1	structure- activity relationship (SAR) and quantitative	T1: 22-23
		structure-activity relationship (QSAR)	
3		Factors governing drug design	T1: 4-6
	1		
4	1	computer aided drug design	T1: 95-98
5	1	cancer chemotherapy	T1: 794-800
6	1	bioinorganic chemistry (DNA binding) of platinum	T2: 93
		anticancer drugs (cisplatin and carboplatin)	
7	1	mechanism of action studies	T1: 522-537
8	1	clinical trials and their significance	T1: 1-3
9	1	production and quality control- patent protection	W1
10	1	Recapitulations and discussion of important questions	
11	1	Previous year question paper discussion	
	Т	otal No of Hours Planned for Unit V=11	
Total	48		
Planned			
Hours			
nouis			

Text Book:

- 1. Taylor, D. M., & Williams, D. R. (1995). *Trace Element Medicine and Chelation Therapy* (I Edition). United Kingdom: The Royal Society of Chemistry.
- 2. Ashutosh Kar, (2000). *Medicinal Chemistry*. New Delhi: New Age International Publishers.
- 3. Gareth Thomas, (2000). *Medicinal Chemistry*. United Kingdom: John-Wiley & Sons Ltd.
- 4. Bertini, I., Gray, H. B., Lippard, S. J., & Valentine, J. S. (1994). *Bioinorganic Chemistry*. California: University Science books.

5. Roat-Malone, R. M. (2002). *Bioinorganic Chemistry*. NJ: John Wiley & Sons. Inc.

W1: <u>https://en.wikipedia.org/wiki/Quality_control</u>, <u>https://en.wikipedia.org/wiki/Patent</u>

1. In what form					
is iron stored in	as		as	d) as a	as
the body	transferring	as ferritin	haemoglobin	siderophore	haemoglobin2
		It reduces the		It reduces the	
		surface	It causes the	body's	
	It does not	area of the	liver	tendency to	T. 1 .
How door combon	allow	alveoli and	to malfunction,	absorb water	It does not
How does carbon monoxide affect	binding of oxygen with	disrupts gaseous	increasing bile	thereby making us feel	allow binding of oxygen with
the human body	haemoglobin	transfers	secretion	dehydrated	haemoglobin
	nuemogroom	transfers	Injures the	dellydrated	naemogioem
How does	Increases v		defence		
nitrogen affect	ulnerability to	Destroys the	mechanism of	All of the	All of the
the human body	pathogens	macrophages	the lungs	mentioned	mentioned
		Damages the	Leads to		
How does lead	Increases	cerebellum,	reproductive	A 11 C -1	A 11 C .1
affect the human	blood	liver and	disorders and	All of the	All of the
body? Iron is component	pressure white blood	kidney	osteoporosis	mentioned	mentioned
of myoglobin in	cells	muscle cells	ligament cells	red blood cells	muscle cells
Iron is	cens	indisere cenis	inguineite cents		
component of		1. 11 4			
*	mod h1 - 1 11	white blood	mugala11	ligement - 11	nod bloc 1 - 11
hemoglobin in Disease anemia is	red blood cells deficiency of	cells deficiency of	muscle cells deficiency of	ligament cells deficiency of	red blood cells
	phosphorus	•	•	calcium	deficiency of
caused by Essential element	phosphorus	magnesium	iron	calciuiii	iron
for maintenance					
and development					
of teeth and bones		methyl			
is	ethyl oxide	alcohol	calcium	acetyl	calcium
Sources of	cabbage and		cheese and egg		
calcium includes What is the name	nuts	milk and beans	yolk	all of above	all of above
of the iron containing protein that gives red blood vessels					
their colour? Theprodues	Hemocyanin	Pyrite	Hemoglobin	Myoglobin	Hemoglobin
red blood cells,				Bone	Bone
which			Bone	marrow;oxyge	marrow;oxyge
transportand	Liver,oxygen;	Liver,oxygen;	marrow;oxyge	n;carbondioxid	n;carbondioxid
some	mineral ions	carbondioxide	n;hormones	e	e
	Hydroxyl				
During the	group is lost from its carboxyl group of one amino acid and a hydrogen	Hydrogen atom is lost from its carboxyl group of one amino acid	Hydroxyl group is lost from its carboxyl group of one amino acid and a	Hydrogen atom is lost from its carboxyl group of one amino acid	Hydroxyl group is lost from its carboxyl group of one amino acid
During the formation of the	atom is lost from	and a hydroxyl group is lost	hydroxyl group is lost	and a hydrogen atom	and a hydrogen atom
peptide bond	its amino	from its amino	from its amino	is lost from its	is lost from its
which of the	group of	group of	group of	amino group	amino group
following takes	another	another amino	another amino	of another	of another
place?	amino acid	acid	acid	amino acid	amino acid
Which of the following is not the classified					
form of conjugated			Metalloprotein	Complete	
proteins?	Lipoproteins	Glycoproteins	s	proteins	Glycoproteins
Other than dairy		Cij coproteinis	~	Proteins	Sijeoproteins
products, which					
of the following					
food groups	Meat	Fish	Cereals	Vegetables	Cereals

	1		1	1	1
provides a rich					
source of calcium					
in the UK?					
Which of the					
following factors					
inhibits non-haem					
iron			** 11		
bioavailability the			Vegetable		
most?	Phytic acid	Citric acid	protein	Calcium	Phytic acid
How is iron					
transported in the					
circulation from					
the intestine to the					
sites of	As simple				
	·	Dava 1 (a	Dava 1 (a	Darrah	Derrichte
metabolism in the	Fe2+ in the	Bound to	Bound to	Bound to	Bound to
body?	serum	albumin	ferritin	transferrin	transferrin
Which of the					
following in not a					
zinc-dependent	Superoxide	Alkaline	Glutathione	DNA	Glutathione
enzyme?	dismutase	phosphatase	peroxidase	polymerase	peroxidase
Which of the		PP	P	pj-lierabe	1
following inborn					
errors of					
metabolism gives					
rise to zinc	Acrodermatiti	Wilson's	Menkes	Haemochroma	Acrodermatitis
deficiency?	senteropathica	disease	disease	tosis	enteropathica
Which of the	· · · · · · · · · · · · · · · · · · ·				· · · · ·
following foods					
might be					
considered a					
"goitrogen"?	Fish	Meat	Rice	Brassicas	Brassicas
			The iodine	UK dietary	The iodine
			content of	reference	content of
	50% of adults		organic milk is	values	organic milk is
Which of the		Dairy products	generally	recommend an	generally
	consume				
following	iodine at	are a poor	lower that the	increase in	lower that the
statements about	levels below	source of	level in non-	iodine intake	level in non-
iodine is correct?	the RNI	iodine	organic milk	in pregnancy	organic milk
In which form is					
selenium found in					
the 25 human	Selenophosph		Selenohistidin		
		Solonoovetaina		Selenate	Solonogustains
selenoproteins?	ate	Selenocysteine	e		Selenocysteine
				Signal	
Zinc finger motifs				transduction	
are a particular		Formation of	Gene	across the cell	Gene
characteristic of		the cell	regulation.	membrane.	regulation.
proteins with	Biochemical	cytoskeleton.	(The proteins	(The proteins	(The proteins
which one of the	catalysis. (The	(The proteins	are DNA-	are	are DNA-
		are structural		transmembran	
following	proteins are		binding		binding
functions?	enzymes)	proteins.)	proteins.)	e proteins.)	proteins.)
Metals are unable					
to exhibit metallic					
bonding in					
biological					
systems. True or					
		TALOD		Lithing	TDIT
false?	TRUE	FALSE		Lithium	TRUE
Which of the					
following					1
following elements are					
elements are					
elements are classed as metals?					Iron Lithium
elements are classed as metals? Please select all	Oxygon	Iron	Calcium	Chloring	Iron, Lithium,
elements are classed as metals? Please select all that apply.	Oxygen	Iron	Calcium	Chlorine	Iron, Lithium, Calcium
elements are classed as metals? Please select all that apply. Which of the	Oxygen	Iron	Calcium	Chlorine	
elements are classed as metals? Please select all that apply.	Oxygen	Iron	Calcium	Chlorine	
elements are classed as metals? Please select all that apply. Which of the	Oxygen	Iron	Calcium	Chlorine	
elements are classed as metals? Please select all that apply. Which of the following metal is involved in the	Oxygen	Iron	Calcium	Chlorine	
elements are classed as metals? Please select all that apply. Which of the following metal is	Oxygen	Iron	Calcium	Chlorine	

XX71 • 1 1	Γ				
Which metal					
forms part of the					
haem group, to					
which oxygen binds in					
haemoglobin?	Zinc	Copper	Manganese	Iron	Iron
Haemoglobin can	ZIIIC	Copper	wanganese		11011
only bind oxygen.					
True or false?	TRUE	FALSE			FALSE
In the active sites	IKUL	TALSE			TALSE
of many enzymes,					
metals are					
coordinated by					
the amino acid					
histidine. Which					
element in					
histidine donates					
the electrons that					
form the					
coordinate bond?	Carbon	Oxygen	Nitrogen	Sulfur	Nitrogen
Which of the					
following					
chemical is					
responsible for	G 1 1		0.1.1		
London smog	Sulphur	0.1.1	Sulphur	0.1.1	Sulphur
episode?	dioxide	Sulphur	trioxide	Sulphur oxide	dioxide
Environmental					
disease outbreak					
in Toyama, Japan	Lead	Cadmium	Mercury	Zinc	Cadmium
was due to Which of the	Leau	Caumum	wiercury	ZIIIC	Caumum
following					
chemical is					
responsible for					
acute lung disease					
from Bhopal gas	Methylisocya	Methylisocyan			Methylisocyan
tragedy?	nate	ade	Methyl	Methylcyanate	ate
Heavy metals like			5		
Arsenic,					
Cadmium and					
Cyanide effects	Immune	Nervous		Respiratory	Nervous
	system	system	Skin	system	system
In					
oxyhaemoglobin,					
the iron centre is					
best described by					
which of the	high-spin	high-spin	low-spin	low-spin	low-spin
following?	Fe(III)	Fe(II)	Fe(III)	Fe(II)	Fe(III)
In					
oxyhaemoglobin, the coordinated					
dioxygen is best					
described by	molecular O2	molecular O2			
which of the	with linear	with bent Fe–			
following?	Fe-O-O	0–0	[O2]–	[O2]2–	[O2]–
		A	[]] -	[[-]
		metalloprotein			
		containing two	A non-haem	A non-haem	A non-haem
		active sites:	protein with	protein with	protein with
Which statement		one, a haem Fe	one Fe centre	two Fe centres	two Fe centres
best describes	A haem	and one, a	at the active	at the active	at the active
haemerythrin?	protein	non-haem Fe	site	site	site
Which statement		Cytochromes		Cytochromes	Cytochromes
	Cytochromes				
correctly	P-450 act as	P-450 couple		P-450 contain	P-450 act as
describes the	P-450 act as monooxygena	P-450 couple to cytochrome	Cytochromes	high-spin	monooxygenas
	P-450 act as	P-450 couple	Cytochromes P-450 act as dioxygenases		

chain is: 450 oxidas cytochrome c cytochrome c1 oxidase Fe-only hydrogenase contains Fe-only hydrogenase contains Fe-only hydrogenase Fe-StS4-cluster Consists fa of an Fe4S4- onnected by an Fe2S2- group Si the active sites Si the active sites Si the active protein in and an FeMo- protein in and an FeMo- protein that operate in conjunction an FeMo- single an FeMo- grotein in and an FeMo- protein in and an FeMo- grotein in and an FeMo- protein that operate in conjunction an FeMo- single an FeMo- grotein in which the P- cluster is in an conjunction an Fe-protein an fe-sprotein in which the P- cluster is in an is an fee for cluster A fue ontaining protein in which the P- cluster is in an which the P- cluster is the adtive site condianis: A fue centre conjunction A fue centre condianist A fue centre condianist A fue centre condianist A fue centre condianist A fue centre coordinated by three Cys A fue centre coordinated by three Cys A fue centre coordinated by three Cys is a h				1		~ ~ ~ ~
bond -	450?					
A Type 1 centre exhibits an interse LACT band in the centre does not gever rise to an spectrum A Type 2 centre does not give rise to an EPR signal A Type 2 centre contains two Cu centres which are entre does not give rise to an EPR signal A Type 2 centre does not give rise to an give rise to accessible in an Fe-only hydrogenase contains (4Fe 45) units and a no FeAst- form bactrial give rise to an a Cys riselue rise group A Type 2 centra contains give rise to accessible in an Fe-only hydrogenase contains (4Fe 45) units and a no FeAst- form bactrial group A Type 2 contains (4Fe 45) units an Fe-only hydrogenase contains (4Fe 45) units an a no FeAst- form bactrial group A Type 2 condition in which the protein in which the P- condinate on which ach accessible in an Fe-only which ach accessible in an FeAst- form actrial group A Type 2 condition in which of the following is			transfer chain		an O2 carrier	bond
Centre exhibits an intense is incorrect ubout Corper proteins? Centre exhibits an intense electronic electronic peter is is to an give rise to an give rise to coreant an give rise to an give rise to give rise to an						
Which statement is incorrect Jay Types 1, 2 and 3 is incorrect Jay Types 1, 2 and 3 is incorrect Jay Types 1, 2 and 3 electronicin interme centre does not give rise to an elically centre does not give rise to an elicallytwo Cu centres antiferromagn elically couples that reredoxin, four redox couples that make use of the four Fe couples that make use of the four redox couples that make use of the four Fe couples that couples that make use of the four Fe couples that make use of the four Fe couple		• •		• •		
is incorrect about 1 LMCT hand in the centre does not electronic spectrum 2 FPR signal contains a give rise to an efficient 2 contre does not give rise to an efficient 2 contre does not give rise to an efficient 2 contre does not give rise to an efficient 2 contains a give rise to an efficient 2 contains a marke use of four redox in contains an ferredoxin in contains an ferredoxin about Fe - S to mit, each S coming from a Cys which are S2 contains a marke use of the four Fe contains is incorrect? residue ligands contains a contains a marke use of the four Fe contains a cossible in marke use of the four Fe contains a cossible in a feed-st or workidase contains a first data a unit consisting of an FedS4- from bacteria contains four data a fuelochordia and an Feolog unit consisting of an FedS4- from bacteria and an FeMo protein in an electron fro	XX71. : - 1					
Types 1, 2 and 3 centres in blue copper proteins?in the electronic spectrumcentre does not give rise to an EPR signalcontains a eticallycontains a teredoxin, four redox couples that make use of the four redox couples that or four redox countains four redox countains four redox countains four redox countains four redox countains four redox countains four redox			A T-m - 2		A	A T 2
centres in blue electronic give rise to an copper proteins? spectrum EPR signal coupled centre are EPR signal coupled centre are EPR signal coupled centre are EPR signal coupled centre are coupled centre are coupled centre are couples that make use of four redox couples that make use of the four redox couples that make use of couples that make use or couples that make use or the couples			• •		· ·	• •
copper proteins? spectrum EPR signal coupled c-antre EPR signal A rubredoxin about Fe-S A rubredoxin contains an proteins is incorrect? A rubredoxin residue A [2Fe-2S] ferredoxin contains is S form a Cys In a [4Fe-4S] ferredoxin contains an proteins is incorrect? In a [4Fe-4S] ferredoxin couples that make use of the four Fe centres are accessible in accessible in an Fe-only hydrogenase contains (4Fe-4S] an FeMo- an FeMo- protein in active site contains active site contains active site active site acoredinated by three Cys residues In a [4Fe-4S] a						
A rubredoxin contains an contains an bout Fe-S4 about Fe-S4 acches coming proteins is incorrect? A rubredoxin contains an contains an contains an contains an proteins is incorrect? A rubredoxin contains an contains an member of the electron-transfer chain is: In a [4Fe-45] ferredoxin, four redox complets that make use of the four Fe centres are accessible in Nature In a [4Fe-45] ferredoxin, four redox complets that make use of the four Fe centres are accessible in Nature Which statement about the [Fe-Fe]- hydrogenases is correct? Yeochrome P- cytochrome P- contains for a P6484- contains fer-enly hydrogenase contains fare contains fare an Fe-only hydrogenase contains fare contains fare an Fe-only hydrogenase contains fare fare484- cluster The active site consists of an an Fe-No- protein in which the P- coluster is in an is a haem protein and an FeMo- protein that operate in conjunction site a part a Cu cordinated by three Cys residues A Cu centre coordinated by three Cys residues A Cu centre coordinated by three Cys residues A Cu centre coordinated by three Cys residues Victor the following is not involved in electron transfer cantor the protein A Cu centre cordinated by three Cys residues A cu centre coordinated by three C			0	2	• •	0
A rubredoxin contains an econtains an Fe-S proteins is norrect?A rubredoxin ferredoxin four redox couples that make use of the four Fe contains six S donors, two of how for are S2- incorrect?ferredoxin residueferredoxin four redox coutains a accessible in Natureferredoxin the four Fe centres are accessible in Natureferredoxin the four Fe centres are accessible in Natureferredoxin the four Fe centres are accessible in NatureWhich statement electron-transfereytochrome P- cytochrome P cytochrome Ccytochrome c cytochrome ccytochrome c cytochrome ccytochrome c cytochrome ccytochrome c cytochrome cWhich statement about the [Fe-Fe]- hydrogenase contains (14Fe-4S]Fe-only hydrogenase contains four hydrogenaseThe active site in an Fe-only hydrogenase connacted by an an Fe-S2S-2-Fe-only hydrogenase connacted by an Fe2S2-2-Fe-only hydrogenase connacted by an an Fe2S2-2-The active site in an Fe-only an an Fe2S2-2-Fe-only hydrogenase connacted by an an Fe2S2-2-Fe-only hydrogenase connacted by an an Fe2S2-2-Fe-only hydrogenase connacted by an an Fe2S2-2-Fe-only an Fe2S2-2-Fe-only an Fe2S2-2-sic orrect?group an Fe2S2-2-an FeMo- single contains four an fe2S2-2-an Fe2Mo- singlean Fe2Mo- reversibly an Fe2Mo- protein in which the P- containing protein in which the P- conjunctionan Fe2Mo- singlean Fe2Mo- singleNitrogenase containes outherA C	copper proteins?	spectrum	LFK Signai	coupled		0
A rubredoxin contains an proteins is incorrect?A rubredoxin contains sin 5 ferredoxin contains sin 5 form a Cys residueA [2Fe-2S] ferredoxin contains sin 5 and a Cys residueforredoxin contains sin 5 and Cys which are S2- contains and cubane coreforre redox routins a make use of the four Fe accessible in accessible in make use of make use of the terminal member of the mitochondrialA [4Fe-4S] mitochondrialfour redox contains a contains a contains afour redox contains a contains a contains afour redox contains a accessible in Naturefour redox make use of the four Fe accessible in yotagenase containsHorter thich statement about the [Pe-Fe]- unit consisting to an Fe2S2- is correct?re-only whydrogenase to an Fe2S2- sitesThe active site reconsitis of an Fe3A- fe-only hydrogenase is a na Fe-only hydrogenase is a na Fe-only hydrogenase is a na Fe-only hydrogenase is a na Fe-only an Fe4S4- contains fafe form hacteria to an Fe2S2- is correct?The active site reconsitis of an Fe3A- fe2G2(Cys)2(His groupFe-only hydrogenase is a na Fe-only an Fe-only protein in which the P- origit and an FeMo- protein in which the P- origit in an Fe-only and a refMo- protein in which the P- contains;A later unit which the P- contained by there His residue.<						
A rubredoxin contains an reschuit, about Fe-S proteins is incorrect?A rubredoxin ferredoxin accussible in accussible in accussible in accussible in Naturecouples that make use of the four Fe centres are accussible in Naturecouples that make use of the four Fe centains six S contains four of an Fe4S4- tornians four hydrogenase of an Fe4S4- clustercouples that make use of the active site in an Fe-only hydrogenase connains four an are fe2S2- groupcouples that make use of the active site in an Fe-only hydrogenase connains four an are fe2S2- groupcouples that make use of the active site in an Fe-only hydrogenase connains four an are fe2S2- groupNitrogenase is correct?of an Fe4S4- clusterFe-only hydrogenase for an Fe2S2- groupFe-only hydrogenase protein in which the P- cluster is in an which the P- condinated by condinated by there Cys reduced statecouples the						
Which statement about Fe-S4 unit, contains six S about Fe-S4 niccrorect?contains six S contains six S A [4Fe-4S]make use of the four Fe centres are accessible in Naturemake use of the four Fe centres are accessible in NatureThe terminal member of the mitochondrial electron-transfer chain is:For only thydrogenase contains and a contains and a resolueNatureNatureNatureFe-only hydrogenase contains about the [Fe-Fe]- ind bout the [Fe-Fe]- unit consisting of an Fe4S4- bydrogenase isolated from C. pasteurianum a Cys residueFe-only hydrogenase contains a fee-only hydrogenase contains and a a fee-only hydrogenase contains to an Fe2S2- is correct?Fe-only hydrogenase contains and a a fee-only hydrogenase contains faffe in an Fe-only hydrogenase contains faffe in an Fe-only hydrogenase contains faffe an a Fe-only hydrogenase to an Fe2S2- is correct?Fe-only hydrogenase to an Fe2S2- is correct?Fe-only hydrogenase to an Fe2S2- is correct div a fe-fe4S4- ultist a far fe-fe4S4- protein in and a Fe/Mo- protein that operate in conjunctionThe active site in an Fe-only hydrogenase is a fe-fe4S4- protein in and a Fe2S2- is correct?A fare-only an Fe4S4- protein in an Fe4S4- protein in an Fe4S4-Fe-only hydrogenase in an Fe-only protein in an Fe4S4- protein in and a Fe4S4-Fe-only hydrogenase in an Fe-only protein in which the P- containing protein in which the P- containing operate in conjunctionA fare-only and a Fe2S2- corect protein in whic		A rubredoxin	A [2Fe–2S]			
Which statement about Fe-S proteins is from a Cys residueContains six S donors, two of donors, two of direk ars S2 ligandsA [4Fe-4S] ferredoxin contains and contains accessible in accessible in ac						
about Fe-S proteins is incorrect?each S coming the accessible in ligandscentres are contains a accessible in outbane corecentres are accessible in accessible in NatureThe terminal member of the mitochondrial electron-transferresidueigandscubane coreNatureNatureThe terminal member of the mitochondrial electron-transfercytochrome P cytochrome Pcytochrome c oxidascytochrome c cytochrome ccytochrome c cytochrome ccytochrome c cytochrome ccytochrome c oxidascytochrome ccytochrome ccytochrome c(Aire-4S) unit consisting hydrogenase contains an a unit consisting is correct?na Fe4S4- phdrogenase contains ffe7e-4S1 mit consisting to an Fe4S4- clusterFe-only hydrogenase contains ffe7e-4S1 mit consisting an Fe-conly hydrogenase contains ffe7e-4S1 mit consisting an Fe-conly hydrogenase contains ffe7e-4S1 mit consisting an Fe-conly hydrogenase contains ffe7e-4S1 mit consisting an Fe-conly hydrogenase contains ffe7e-4S1 mit consisting an Fe-conly hydrogenase is correct?Fe-only hydrogenase contains ffe7e-4S1 mit consisting an Fe-conly hydrogenase containsa Fe-S2- group an Fe-S2- as the active site contains ffe7e-4S1 mit consisting orotain in and a FeMo- protein in modich the P- containsa Fe-only an Fe-only an Fe-only containing oprotein that operate in an conjunction which the P- cubera FeMo- an Fe-only modich the P- cubera FeMo- an Fe-only mit consisting orotain in mit fire active site containsa	Which statement		contains six S	A [4Fe-4S]	the four Fe	the four Fe
incorrect?residueligandscubane coreNatureNatureThe terminal member of the mitochondrial electron-transfercytochrome P- oxidascytochrome ccytochrome ccy	about Fe–S		donors, two of		centres are	centres are
The terminal member of the mitochondrial electron-transfer chain is: cytochrome P- cytochrome c cytochrome c <t< td=""><td>proteins is</td><td>from a Cys</td><td>which are S2-</td><td>contains a</td><td>accessible in</td><td>accessible in</td></t<>	proteins is	from a Cys	which are S2-	contains a	accessible in	accessible in
member of the mitcohondrial electron-transfer chain is:cytochrome P- oxidascytochrome c oxidascytochrome c cytochrome ccytochrome c oxidascytochrome c oxidas <td>incorrect?</td> <td>residue</td> <td>ligands</td> <td>cubane core</td> <td>Nature</td> <td>Nature</td>	incorrect?	residue	ligands	cubane core	Nature	Nature
mitochondrial electron-transfer chain is:cytochrome P- cytochrome ccytochrome cc	The terminal					
electron-transfer chain is:cytochrome P- oxidascytochrome c oxidascytochrome c cytochrome ccytochrome c cytochrome ccytochrome c oxidasKFe-colly hydrogenase contains [4Fe-4S] units and a unit consisting hydrogenase clusterFe-only hydrogenase contains four (4Fe-4S]The active site in an Fe-only hydrogenase contains four in an Fe-S4- clusterThe active site in an Fe-only hydrogenase in an Fe-only hydrogenase in an Fe-S4- connected by an an terest protein in and an FeMo- protein in which the P- conjunction fireversibly contains:an Fe-protein an Fe-protein an an FeMo- protein in which the P- clusteran Fe-protein an an FeMo- protein in which the P- clusteran Fe-protein and an FeMo- protein in which the P- cluster is in an clusteran Fe-protein and an FeMo- protein in which the P- clusteran Fe-protein an an Fe-protein and an FeMo- protein in which the P- cluster is the active sitean Fe-protein an Fe-protein and an FeMo- protein in which the P- clusteran Fe-protein an Fe-protein and an FeMo- protein in which the P- cluster is the active sitean Fe-only an Fe-protein an Fe-protein an Fe-protein and an FeMo- protein in which the P- cluster is the active sitean Fe-only an Fe-protein an Fe-protein an Fe-protein <td>member of the</td> <td></td> <td></td> <td></td> <td></td> <td></td>	member of the					
chain is:450oxidascytochrome ccytochrome c1oxidaseFe-only hydrogenase contains contains 						
Fe-only hydrogenase contains [4Fe-4S] units and a about the [Fe-Fe]- hydrogenases from bacteria isolated from C. pasteurianum and D. desulfuricans is correct?Fe-only residuesFe-only hydrogenase in an Fe-only hydrogenase in an Fe-only hydrogenase is an Fe2S2/(Cys)2(His groupFe-only the active site in an Fe-only hydrogenase is an Fe4S4-cluster connected by 2 unitThe active site in an Fe-only hydrogenase in an Fe-only hydrogenase is an fe2S2- groupFe-only the active sitesFe-only the active site an Fe-Cys)2(His protein in and an FeMo- protein that operate in conjunction singleThe active site in an Fe-only protein in which the P- containing protein in which the P- containing protein that operate in conjunction which the P- coluster is in an irreversibly reduced stateFe-only reduced stateFe-only the P- containing protein in which the P- containing protein that operate in conjunction with each otherA Cu2 centre confunction with each cluster is in an irreversibly reduced stateA Cu centre coordinated by twich one axial His residuesA Cu centre coordinated by twich one axial <b< td=""><td></td><td></td><td></td><td></td><td></td><td>cytochrome c</td></b<>						cytochrome c
hydrogenase containshydrogenase containsFe-only hydrogenasefe-only hydrogenasefe-only 	chain is:		oxidas	cytochrome c	cytochrome c1	oxidase
contains [4Fe-4S] which statement about the [Fe-Fe]- hydrogenases form bacteria is contected by ocanicationreactive site in an Fe-only hydrogenase in an Fe-only hydrogenase in an Fe-only hydrogenase in an Fe-only hydrogenase in an Fe-only hydrogenase is an an Fe2S2- groupThe active site in an Fe-only hydrogenase is an an Fe2S2- groupThe active site in an Fe-only hydrogenase is an free/CS2(Cys)2(His grouphydrogenase consists of an Fe4S4- connected by an free/CS2(Cys)2(His grouphydrogenase consists of an Fe4S4- contains groupan Fe2S2- an Fe2S2- groupsitrogenase is correct?an FeMo- protein that operate in conjunction with cachan FeMo- protein in and an FeMo- protein in and an FeMo- protein that operate in conjunction with cachan FeMo- protein in and an FeMo- protein in and an FeMo- protein that operate in conjunction with cachan FeMo- protein in and an FeMo- protein in and an FeMo- protein in and an FeMo- protein in and an FeMo- protein that operate in conjunction with cachan FeMo- protein in and an FeMo- protein in and an FeMo- protein in and an FeMo- protein in which the P- cluster is in an conjunction with cachan Femo- and an FeMo- protein in and an FeMo- protein that operate in conjunction with cachan Femo- an Fe-sonly protein that operate in conjunction with tachan Femo- an Fe- protein an Fe- proteinan Femo- an Fe- proteinNitrogenase ontains:A Cu2 centre tow CysConjunction with two axial His		•				
Which statement about the [Fe-Fe]- hydrogenases from bacteria[4Fe-4S] units and a unit consisting of an Fe4S4- clusterFe-only hydrogenase contains four to an Fe4S4- clusterThe active site in an Fe-only hydrogenase in an Fe-only hydrogenase is consists of an re4S4- fe4S4-clusterThe active site in an Fe-only hydrogenase in an Fe-only hydrogenase is consists of an fe4S4-clusterConsisting of an Fe4S4- clusterD. desulfuricans is correct?connected by groupcontains four protein in and an FeMo- protein in and an FeMo- protein that operate in conjunctionan FeMo- protein in active site consists of an singleThe active site in an Fe-only an fe2S2/Cys)2(His protein in an Fe-only an Fe-protein and an FeMo- protein that operate in conjunctionan FeMo- protein in active site consists of a singlean Fe-only an Fe-only an Fe-protein an Fe-only an Fe-protein and an FeMo- protein in which the P- clusteran Fe-only and an FeMo- protein in which the P- cluster is in an irreversibly cluster site and with each condianated by three Cys residuesA haem unit with ore axial His unitsNitrogenase contains:A Cu2 centre, bridged by with two axial His unitsA Cu centre residuesA Cu centre cordinated by residuesA Cu centre cordinated by residuesCytochrome c oxidase contains aut?A Cu2 centre, bridged by with two axial His unitsA Cu centre residuesA Cu centre residuesCytochrome c: proteinprotein transfer chaina cc						•
Which statement about the [Fe-Fe]- hydrogenases isolated from C. D. desulfuricans is correct?units and a unit consisting of an Fe4S4- clusterunits and a unit consisting hydrogenase contains four ia Sthe activein an Fe-only hydrogenase is an an Fe-only hydrogenase is an an Fe2No- protein in and an FeMo- protein that operate in conjunctionin an Fe-only hydrogenase is an Fe2S2- 2 unitin an Fe-only hydrogenase is an Fe2S2- 2 unitin an Fe-only hydrogenase is an Fe2S2(Cys)2(His protein in and an FeMo- protein in and an FeMo- protein in which the active site operate in conjunctionin an Fe-only fe2(Cys)2(His protein in an Fe-Only an Fe-S02(Cys)2(His protein in and an FeMo- protein in which the active site operate in conjunctionan FeMo- an Fe-Protein an Fe-Protein and an FeMo- protein in which the protein in and an FeMo- active site operate in conjunctionan FeMo- an Fe-Protein an Fe-Protein and an FeMo- protein in which the P- clusteran Fe-only an Fe-only an Fe-only an Fe-Protein an Fe-Protein an An FeMo- protein in which the P- clusteran Fe-only an Fe-only an Fe-only an Fe-only an Fe-Protein an Fe-Protein an Fe-Protein an An FeMo- active site contains:an Fe-only an Fe-Protein an						
about the [Fe-Fe]- hydrogenases from bacteria isolated from C. pasteurianum and D. desulfuricans is correct?unit consisting of an Fe4S4- conserted by contains four [4Fe-4S] units as the active sitesThe active site nan Fe-only hydrogenase is connected by contains four hydrogenase is conserted by contains four [4Fe-4S] units a Cys residue to an Fe2S2- groupThe active site resoluted from C. pasteurianum and a Cys residue to an Fe2S2- groupThe active site consists four hydrogenase is consists four hydrogenase is conserted by 2 unithydrogenase resolute an Fe2S2(Cys)2(His protein in and an FeMo- protein in and an FeMo- protein in operate in conjunction which the active site consists of a singleThe active site resolute an Fe-only an Fe-Not an Fe-only an Fe-Not protein in and an FeMo- protein in which the P- cluster is in an cluster is the active site contains:hydrogenase consists of a an Fe-only an Fe-only an Fe-only an Fe-Not protein in and an FeMo- protein in which the P- cluster is the active site cluster is the active site cluster is the active site contains:hydrogenase consists of a an Fe-only an F	Which statement					-
hydrogenases from bacteria isolated from C. pasteurianum and D. desulfuricansof an Fe4S4- cluster connected by a Cys residue to an Fe2S2- groupFe-only hydrogenase is as the activeThe active site in an Fe-only hydrogenase is an Fe2(Cys)2(His J2 unit an Fe2S2-(Cys)4- groupof an Fe4S4- cluster connected by an Fe2S2- groupa Cys residue to an Fe2S2- is correct?a Cys residue t as the active an Fe2S2- groupan FeMo- protein in which the and an FeMo- protein in which the and an FeMo- protein in which the conjunctionan FeMo- protein in which the active site conjunctionan FeMo- protein in which the active site conjunctionan FeMo- protein in which the P- cluster is in an irreversibly reduced statean Fe-only motein in which the P- cluster is in an irreversibly reduced statean Fe-only an Fe-protein and an FeMo- protein in which the P- cluster is in an irreversibly reduced statean Fe-only motein in which the P- cluster is the active sitean Fe-only and an FeMo- protein in which the P- cluster is the active sitean Fe-only and an FeMo- protein in which the P- cluster is in an irreversibly cluster is in an which doe and the ach oordinated by two Cys residuesA Aue active siteA Aue active sitean Fe-only an Fe-only an Fe-only an Fe-only and an FeMo- protein in which doe and the ach oordinated by three Cys residuesA Cu centre coordinated by three Cys residuesA Cu centre coordinated by three His residuesA Cu centre coordinated by <br< td=""><td></td><td></td><td></td><td></td><td>•</td><td>-</td></br<>					•	-
from bacteria isolated from C. pasteurianum and D. desulfuricans is correct?cluster connected by a Cys residue to an Fe2S2- grouphydrogenase contains four f4Fe-4S1 unitsin an Fe-only hydrogenase is an met arc in an Fe2S2- groupFe4S4-cluster connected to f2S22- groupcluster connected by an met active protein in which the an FeMo- protein in ant an Fe-protein ant an Fe-protein in an fee-protein in which the P- conjunction with each conjunctionin an FeMo- protein in which the P- cluster is in an irreversiblyan Fe-only an Fe-only an Fe-only an Fe-only an Fe-protein in which the P- cluster is in an irreversiblyan Fe-only containing protein in with each active site active siteNitrogenase contains:OtherClusterA haem unit with each active siteA cu centre condinated by three Cys residuesA cu centre coordinated by three Cys residuesA cu centre is in an			Fo only	The estive site		
isolated from C. pasteurianum and D. desulfuricans is correct? group an Fe2S2- group an Fe-protein and an FeMo- protein in and an FeMo- protein that operate in conjunction Nitrogenase contains: Nitrogena			•			
pasteurianum and D. desulfuricans is correct?a Cys residue to an Fe2S2- group[4Fe-4S] units as the active sitesan Fe2C(Cys)2(His groupan Fe2S2(Cys)4- groupCys residue to an Fe2S2- groupan Fe2protein and an FeMo- protein that operate in conjunction with each otheran FeMo- protein in which the an Fe4Po- singlean FeMo- protein in which the P cluster is in an irreversiblyan Fe-only containing protein in which the P- cluster is in an irreversiblyan Fe-only containing operate in conjunctionan Fe-only containing oprotein that operate in conjunctionNitrogenase contains:with each other[3FeMo-4S] clusteran Fe-only cluster is in an irreversiblyan Fe-only cluster is in an which the P- cluster is in an irreversiblyan Fe-only cluster is in an which the P- cluster is the active sitean Fe-only containing operate in conjunction with each otherCytochrome c oxidase containsA Cu2 centre, bridged by two CysA haem unit with two axial His unitsA Cu centre coordinated by three CysA Cu centre coordinated by three CysA Cu centre coordinated by three Cys residuesA Cu centre coordinated by three Cysout?is a haem electron from cytochrome c: proteinaccepts an electron from cytochrome c oxidase in the mitochondrial electron- transfer chainis a non-haem proteinis a haem three Cys residuesCytochrome c: proteinprotein transfer chaincarbonic transfer c				•		
D. desulfuricans is correct?to an Fe2S2- groupas the active sitesFe2(Cys)2(His) groupFe2S2(Cys)4- groupan Fe2S2- groupan Fe-protein an fand an FeMo- protein that operate in conjunctionan Fe-protein which the active sitean FeMo- protein in an Fe-protein an Fe-orotein and an FeMo- protein that operate in conjunctionan FeMo- protein in which the consists of a singlean Fe-only containing protein in which the P- cluster is in an cluster is in an irreversibly clusteran Fe-only containing protein in which the P- cluster is the active sitean Fe-orotein and an FeMo- protein in which the P- cluster is the active sitean Fe-orotein and an FeMo- protein in which the P- cluster is in an elusteran Fe-orotein and an FeMo- protein in which the P- cluster is the active sitean Fe-orotein and an FeMo- protein in which the P- cluster is the active sitean Fe-orotein and an FeMo- protein in which the P- cluster is the active siteCytochrome c oxidase containsA Cu2 centre, bridged by two CysA haem unit with two axial His unitsA Cu centre coordinated by three Cys residuesA Cu centre coordinated by three Cys residuesA Cu centre coordinated by vidiazed in the mitochondrial electron from cytochrome c oxidase in the mitochondrialis a non-haem electron- transfer chain proteinis a non-haem transfer chainis a haem transfer chainWhich of the following is not involved in electron transfer?Carbonic anhydraseZn2+ is a ha		-		• •		•
is correct?groupsites)2 unitgroupgroupan Ferroteinan FeMo-protein inan FeMo-an Fe-proteinan Fe-proteinand an FeMowhich thean FeMo-an Fe-onlyan an an FeMo-protein thatoperate inconsists of awhich the P-containingprotein inoperate inconjunctionsinglecluster is in anwhich the P-containingoperate incontains:otherclusterreduced stateactive siteotherothercontains:otherclusterreduced stateA haem unitwith eachcytochrome coxidase containsA Cu2 centre,A fueHis residue,sited near a Cufollowing. WhichA Cu2 centre,A haem unitcoordinated bycoordinated bycoordinated byout?two Cyswith two axialthree Cysresiduesresiduesresiduesout?residuesthis unitsresiduesresiduesresiduesresiduesis a haemelectron fromcytochrome coxidase in themitochondrialelectron-is a haemcytochrome c:proteintransfer chainproteinsi a haemsi a haemelectron-is a haemfollowing is notis a haemelectron-is a non-haemelectron-is a haemis a haemfollowing is notcarboniccarbonicrusefor chainproteincarbonicfollowing is notinvolved inCarbonic <t< td=""><td>*</td><td></td><td></td><td></td><td></td><td></td></t<>	*					
an Fe-protein and an FeMo- protein that operate in conjunctionan FeMo- protein that operate in conjunctionan FeMo- protein in active site operate in conjunctionan FeMo- protein in conjunctionan Fe-only an Fe-only protein in 						
an Fe-protein and an FeMo- protein that operate in conjunctionprotein in which the active site consists of a singlean FeMo- protein in which the P- cluster is in an irreversibly otheran Fe-only containing protein in which the P- cluster is in an cluster is in an irreversibly cluster is in anan Fe-only containing protein in which the P- cluster is in an cluster is in an irreversibly sited near a Cuan Fe-only containing protein in which the P- cluster is in an cluster is in an irreversibly sited near a Cuan Fe-only containing protein in which the P- cluster is in an active sitean Fe-only operate in conjunctionVytochrome c oxidase contains all but one of the following. Which one is the odd one out?A Cu2 centre, bridged by two CysA haem unit with two axial three Cys residuesA cu2 centre three Cys residuesA cu centre residuesA Cu centre coordinated by three Cys residuesA cu centre residuesA cu centre coordinated by three Cys residuesA cu centre residuesA cu centre residuesCytochrome c: proteinan Aem transfer chainaccepts an electron- transfer chainis a non-haem proteinis a haem transfer chainis a non-haem proteinis a haem transfer chainCytochrome c: following is not involved in clectron transfer?Carbonic transfer chainCarbonic transfer chainCarbonic transfer chainCarbonic transfer chainWhich of the following is not involved in electron transfer?Carbonic transfer chain </td <td></td> <td>8</td> <td></td> <td></td> <td><i>8</i> • • •</td> <td>0 - 1</td>		8			<i>8</i> • • •	0 - 1
and an FeMo- protein that operate in conjunctionwhich the active site consists of a singlean FeMo- protein in which the P- cluster is in an eluster is in an which the P- cluster is in an eluster is the otherand an FeMo- protein that operate in operate in involved in electron transferand an FeMo- protein that operate in operate in operate in involved in electron transferand an FeMo- protein in operate in operate in operate in operate in involved in electron transferand an FeMo- protein transferNitrogenase out?and an FeMo-4S1 involved in electron transferinvite electron- transfer chainand an FeMo- protein in which the P- cluster is the addition electr		an Fe-protein	protein in			an Fe-protein
Nitrogenase contains:operate in conjunction with each otherconsists of a single (luster)which the P- cluster is in an irreversibly reduced stateprotein in which the P- cluster is the active siteoperate in conjunction with each otherNitrogenase contains:other[3FeMo-4S] clusterirreversibly reduced statecluster is the active siteotherCytochrome c oxidase contains all but one of the following. Which one is the odd one out?A Cu2 centre, bridged by two CysA haem unit with two axial this unitsA Cu centre coordinated by three Cys residuesA cu centre coor			·	an FeMo-	an Fe-only	and an FeMo-
Nitrogenase contains:conjunction with each othersingle [3FeMo-4S] clustercluster is in an irreversibly reduced statewhich the P- cluster is the active siteconjunction with each otherCytochrome c oxidase contains all but one of the following. Which one is the odd one out?A Cu2 centre, bridged by two CysA haem unit with two axial His unitsA Cu centre coordinated by three CysA Cu centre coordinated by three CysA Cu centre coordinated by three CysCoordinated by three Cys </td <td></td> <td>protein that</td> <td>active site</td> <td>protein in</td> <td>containing</td> <td>protein that</td>		protein that	active site	protein in	containing	protein that
Nitrogenase contains:with each other[3FeMo-4S] clusterirreversibly reduced statecluster is the active sitewith each otherCytochrome c oxidase contains all but one of the following. Which one is the odd one out?A Cu2 centre, two CysA haem unit with one axial His unitsA haem unit with one axial His residue, coordinated by three CysA Cu centre coordinated by three CysA Cu centre coordinated by three CysA Cu centre coordinated by three CysCoordinated by three CysCoordinated by three CysCoordinated by three Cysout?residuesHis unitsresiduesresiduesresiduesresiduesaccepts an electron from cytochrome c: oxidase in the mitochondrialaccepts an electron- is a naemis a non-haemelectron- is a non-haemis a haemCytochrome c: proteinproteintransfer chain zn2+ is a hardproteinKaese proteinanhydraseCytochrome c: following is not involved in answer listsCarbonic anhydraseZn2+ is a hardZn2+ is a d10Zn2+ is a d10Zn2+ is a hard ion; it is a softZn2+ is a hard		operate in	consists of a	which the P-	protein in	operate in
contains:otherclusterreduced stateactive siteotherCytochrome c oxidase contains all but one of the following. Which one is the odd one out?A Cu2 centre, bridged by two CysA haem unit A haem unit with two axial His unitsA Cu centre coordinated by three CysA Cu centre coordinated by three CysA Cu centre coordinated by three CysA Cu centre coordinated by three CysCoordinated by three CysCoordinated by three CysA Cu centre coordinated by three CysCoordinated by three CysCoordinate		•	U U			
Cytochrome c oxidase contains all but one of the following. Which one is the odd one out?A Cu2 centre, bridged by two CysA haem unit with two axial His unitsA Cu centre coordinated by three Cys residuesA cu centre coordinated by three Cys residuesCytochrome c: proteinaccepts an electron- transfer chainelectron- proteinis a non-haem proteinis a haem proteinWhich of the following is not involved in electron transfer?Carbonic anhydraseCarbonice anhydraseCarbonice anhydraseCarbonice anhydraseEach part of this answer listsZn2+ is a hard metal centre;Zn2+ is a hard metal centre; itZn2+ is a softZn2+ is a softZn2+ is a hard metal centre;						
Cytochrome c oxidase contains all but one of the following. Which one is the odd oneA Cu2 centre, bridged byA haem unit A haem unitA Cu centre coordinated by three CysA Cu centre coordinated by three CysA Cu centre coordinated by three CysCoordinated by three	contains:	other	cluster	reduced state		other
Cytochrome c oxidase containsALusHis residue, sited near a CuHis residue, sited near a Cuall but one of the following. WhichA Cu2 centre, bridged byA haem unit with two axialCoordinated by three CysCoordinated by three HisA Cu centre coordinated byone is the odd one out?two Cyswith two axial His unitsthree Cys residuesthree Cysthree Histhree Cysout?residuesHis unitsresiduesresiduesresiduesresiduesresiduesout?residuesaccepts an electron from cytochrome cis irreversibly oxidase in the mitochondrialis irreversibly oxidized in the mitochondrialresiduesCytochrome c: following is not involved inproteintransfer chain transfer chainproteintransfer chain transfer chainresiduesWhich of the following is not involved inCarboniccytochrome brubredoxinRieske proteincarbonic anhydraseEach part of this answer listsZn2+ is a hardZn2+ is a hardZn2+ is a softion; it is a softmetal centre;						
oxidase contains all but one of the following. Which one is the odd one out?A Cu2 centre, bridged by residuesA haem unit with two axial His unitsA Cu centre coordinated by three Cys residuesA Cu centre residuesA Cu centre coordinated by three Cys residuesA Cu centre residuesA Cu centre residuesA Cu centre residuesA Cu centre residuesA Cu centre						
all but one of the following. Which one is the odd one out?A Cu2 centre, bridged by residuesA haem unit with two axial His unitsA Cu centre coordinated by three Cys residuesA Cu centre coordinated by three Cys three Cys thre						
following. Which one is the odd one out?bridged by two Cys residuesA haem unit with two axial His unitscoordinated by three Cys residuescoordinated by three His residuescoordinated by three Cys residuescoordinated by three Cys three Cys three Cys three Cys t		A Cu2 contro		A Cu contra		A Cu contro
one is the odd one out?two Cys residueswith two axial His unitsthree Cys residuesthree His residuesthree Cys residuesout?residuesaccepts an electron from cytochrome c oxidase in the mitochondrialis irreversibly oxidized in the mitochondrialresiduesresiduesis a haemelectron- oxidase in the mitochondrialis a non-haem electron-electron- is a non-haemis a haem electron-Cytochrome c: proteinproteintransfer chain transfer chainproteinis a haem transfer chainWhich of the following is not involved in electron transfer?Carbonic anhydrasecytochrome b rubredoxinrubredoxin Rieske proteinCarbonic anhydraseEach part of this answer listsZn2+ is a hard metal centre;Zn2+ is a hard metal centre; itZn2+ is a soft ion; it is a softZn2+ is a soft metal centre;Zn2+ is a soft		· · · · · · · · · · · · · · · · · · ·	A hapm unit			
out?residuesHis unitsresiduesresiduesresiduesaccepts an electron from cytochrome caccepts an electron from cytochrome cis irreversiblyisaccepts an electron from cytochrome cis irreversiblyisaccepts an electron from cytochrome cis irreversiblyisaccepts an electron from cytochrome cis irreversiblyisaccepts an electron from cytochrome coxidized in the mitochondrialisis a haemelectron-is a non-haemelectron-bis a haemelectron-is a non-haemelectron-Cytochrome c:proteintransfer chainproteinWhich of the following is not involved inCarboniccarbonicelectron transfer?anhydrasecytochrome brubredoxinEach part of this answer listsZn2+ is a hard metal centre;Zn2+ is a d10Zn2+ is a d10answer listsmetal centre;metal centre; ition; it is a softmetal centre;				•	•	•
accepts an electron from cytochrome c oxidase in the mitochondrialis irreversibly oxidized in the mitochondrialis a haemelectron- mitochondrialis a non-haemelectron- mitochondrialcytochrome c: proteinproteinis a non-haemelectron- transfer chainWhich of the following is not involved in electron transfer?Carbonic anhydrasecytochrome brubredoxinEach part of this answer listsZn2+ is a hard metal centre;Zn2+ is a d10 ion; it is a softZn2+ is a soft metal centre;Zn2+ is a soft metal centre;				•		•
electron from cytochrome c oxidase in the mitochondrialis irreversibly oxidized in the mitochondrialis a haemelectron- mitochondrialis a non-haem electron-electron- is a haemCytochrome c: proteinproteintransfer chain transfer chainproteinWhich of the following is not involved in electron transfer?Carbonic anhydrasecytochrome b rubredoxinrubredoxinEach part of this answer listsZn2+ is a hard metal centre;Zn2+ is a d10 ion; it is a softZn2+ is a hard metal centre;Zn2+ is a soft ion; it is a softZn2+ is a hard metal centre;		10510005		10510005	10510000	10510000
cytochrome c oxidase in the mitochondrialis irreversibly oxidized in the mitochondrialis a haemelectron- transfer chainis a non-haem proteinelectron- transfer chainCytochrome c: proteinproteintransfer chain transfer chainproteinWhich of the following is not involved in electron transfer?Carbonic anhydrasecytochrome b rubredoxinrubredoxinEach part of this answer listsZn2+ is a hard metal centre;Zn2+ is a d10 ion; it is a softZn2+ is a hard metal centre;Zn2+ is a soft ion; it is a softZn2+ is a soft metal centre;			▲			
oxidase in the mitochondrialoxidized in the mitochondrialoxidized in the mitochondrialis a haemelectron- transfer chainis a non-haem proteinelectron- transfer chainis a haem electron- transfer chainWhich of the following is not involved inCarbonic					is irreversibly	
Mitochondrial is a haemmitochondrial electron- transfer chainmitochondrial is a non-haem proteinmitochondrial electron- transfer chainmitochondrial electron- transfer chainmitochondrial electron- transfer chainmitochondrial electron- transfer chainmitochondrial electron- transfer chainmitochondrial electron- transfer chainmitochondrial electron- transfer chainmitochondrial electron- transfer chainmitochondrial electron- transfer chainmitochondrial electronis a haem proteinWhich of the following is not involved in electron transfer?Carbonic carbonicImage: Carbonic cytochrome bImage: Carbonic rubredoxinImage: Carbonic Rieske proteinCarbonic anhydraseEach part of this answer listsZn2+ is a hard metal centre;Zn2+ is a d10 ion; it is a softZn2+ is a hard ion; it is a softZn2+ is a hard metal centre;Zn2+ is a d10 ion; it is a softZn2+ is a hard metal centre;						
is a haemelectron-is a non-haemelectron-is a haemCytochrome c:proteintransfer chainproteintransfer chainproteinWhich of the following is notinvolved in electron transfer?CarbonicCarbonic-Each part of this answer listsZn2+ is a hard metal centre;Zn2+ is a d10Zn2+ is a d10Zn2+ is a softZn2+ is a hard metal centre;						
Cytochrome c:proteintransfer chainproteintransfer chainproteinWhich of the following is not involved inCarbonicImage: Carbonic CarbonicImage: Carbonic CarbonicImage: Carbonic CarbonicImage: Carbonic Carbonicelectron transfer?anhydrasecytochrome brubredoxinRieske proteinanhydraseEach part of this answer listsZn2+ is a hard metal centre;Zn2+ is a d10 ion; it is a softZn2+ is a hard ion; it is a softZn2+ is a soft		is a haem		is a non-haem		is a haem
Which of the following is not involved in electron transfer?Carbonic cytochrome bCarbonin rubredoxinCarbonic carbonic anhydraseEach part of this answer listsZn2+ is a hard metal centre;Zn2+ is a d10 ion; it is a softZn2+ is a d10 ion; it is a softZn2+ is a hard metal centre;	Cytochrome c:		transfer chain		transfer chain	
involved in electron transfer?Carbonic anhydrasecytochrome brubredoxinRieske proteinCarbonic anhydraseEach part of this answer listsZn2+ is a hard metal centre;Zn2+ is a d10 ion; it is a softZn2+ is a d10 ion; it is a softZn2+ is a hard metal centre;						
involved in electron transfer?Carbonic anhydrasecytochrome brubredoxinRieske proteinCarbonic anhydraseEach part of this answer listsZn2+ is a hard metal centre;Zn2+ is a d10 ion; it is a softZn2+ is a d10 ion; it is a softZn2+ is a hard metal centre;	following is not					
Each part of this answer listsZn2+ is a hard metal centre;Zn2+ is a hard metal centre; itZn2+ is a d10 ion; it is a softZn2+ is a d10 metal centre;						
answer lists metal centre; metal centre; it ion; it is a soft ion; it is a soft metal centre;						
		Zn2+ is a hard				Zn2+ is a hard
properties ofit acts as aacts as a Lewisactraticitititacts as a Lewis			· · · · · ·			metal centre; it
	properties of	it acts as a	acts as a Lewis	metal centre; it	metal centre; it	acts as a Lewis
Zn2+, which may Lewis acid; it acid; it favours acts as a Lewis tolerates acid; it	Zn2+, which may	Lewis acid; it	acid; it favours	acts as a Lewis	tolerates	acid; it

or may not be correct. Which list gives properties that are correct and relevant to Zn-containing	tolerates different coordination geometries	4-coordination	acid	different coordination geometries	tolerates different coordination geometries
enzymes? Studies of Zn(II)- containing proteins often make use of Co(II)-for-Zn(II) substitution. Which statement is correct? Thioneins are rich	Tetrahedral coordination is one of several environments observed for both Co2+ and Zn2+	TTetrahedral Co2+ and Zn2+ are both diamagnetic	The ionic radius of Co2+ is significantly smaller than that of Zn2+	The visible spectra of complexes of Co2+ are similar to those of related complexes of Zn2+	Tetrahedral coordination is one of several environments observed for both Co2+ and Zn2
in which of the following amino acid residues? Haemocyanins are	cysteine	histidine	glycine	threonine	cysteine
O2-carrying copper-containing proteins in:	mammals	molluscs	bacteria	fungi Cu(II) and	molluscs
In studies of blue copper proteins, EPR spectroscopy is useful because:	Cu(I) has one unpaired electron Which of the fHae + O2 =	Cu(II) is paramagnetic	Cu(II) and Cu(I) are both paramagnetic	Cu(I) have one and two unpaired electrons, respectively	Cu(II) is paramagnetic
Which of the following equilibria has the largest value of K? (Hae = haemoglobin)	Hae(O2)ollow ing equilibria has the largest value of K? (Hae = haemoglobin)	Hae(O2) + O2 = Hae(O2)2	Hae(O2)2 + O2 = Hae(O2)3	Hae(O2)3 + O2 = Hae(O2)4	Hae(O2)3 + O2 = Hae(O2)4
Anemia affects what percentage of the population?	12%	18%	27%	32%	27%
ron deficiency anemia (IDA) is the most common type of anemia. True or false?	TRUE	FALSE			TRUE
Anemia is of particular concern in	Young children	Pregnant women	Older individuals	All of the above	All of the above
Although anemia is a significant global health issue, it is not associated with high mortality or morbidity. True or false?	TRUE	FALSE			FALSE
Iron deficiency anemia is common in adolescents with:	Asthma	Bulimia	Heavy menstrual bleeding	Obesity	Heavy menstrual bleeding
Anemia is prevalent in high- risk patients undergoing transcatheter aortic valve	TRUE	FALSE			TRUE

implantation					
(TAVI), and					
impacts mortality					
following the					
procedure. True					
or false?					
Unexplained IDA		Crohn's			
may be linked to:	Celiac disease	disease	Diverticulitis		Celiac disease
Which of the					
following					
statements about					
red blood cells					
(RBCs) is	RBCs contain	Mature RBCs	Mature RBCs		
correct?	hemoglobin	lack nuclei	lack ribosomes	all the above	all the above
Which dietary					
component is					
needed for the					
synthesis of DNA					
and influences the					
production of					
RBCs?	Calcium	iron	folic acid	Vitamin A	folic acid
What percentage					
of the body					
weight (in kg) is					
composed of					
blood? What					
percentage of this					
blood is					
composed of					
plasma?	20%; 55 %	20%; 45%	7%; 45%	7%; 55%	7%; 55%

KARPAGAM ACADEMY OF HIGHER EDUCATION Class: II M.Sc Chemistry Course Name: Industrial Chemistry

Course Code: 18CHP305C

Course Name: Industrial Chemistry Batch-2018-2020

UNIT-I

Metals in the Human Body:

General principles-the elements in the human body- metal functions in metalloproteins - metallo enzyme functions -supplying elements to the body - metals and human health-biological significance, storage and transport of Fe, Zn, Cu, Mo, Co, Cr, V and Ni.

The elements in the human body

The average amounts of some essential and non-essential elements in the human body are shown in Table 2.1. This shows that the weights of some of the essential elements in the body vary by six or more orders of magnitude. Oxygen, at- 45 kg, is by far the most abundant element with the majority being present as one simple inorganic compound: water. Some of the elements listed in Table 2.1, and marked with an asterisk, have no known beneficial function and are present in the body simply because they are present in rocks and soils and find their way into water and foodstuffs and from thence into the human body; many of these elements are present in only minute quantities.

Each of the elements shown in the three groups in Table 2.1, irrespective of whether it is essential, beneficial or even potentially toxic, has its own individual pattern of intake into the body, transfer to the blood, utilization in the tissues and finally excretion from the body. For example, hydrogen taken into the body by the ingestion of water, or the inhalation of water vapour, is rapidly and completely transferred to the blood, from where it passes into the tissues to participate in many different types of reaction, before being excreted from the body with an equivalent half-time of about 10 days. The equivalent biological half- time assumes that the material is being lost at a constant rate from a single compartment, whereas in fact more that one compartment and rate of loss may be involved. In contrast iron is taken into the body in foods or drugs, but its absorption from the gastrointestinal tract is closely controlled to meet the physiological needs of the body. However, the iron which is absorbed into the blood stream is effectively all retained in the body for a very long time. Some illustrative, nominal values for the gastrointestinal absorption and the notional equivalent half-times of excretion from the body tissues for some important elements are listed in Table 2.2.

Class: II M.Sc Chemistry Course Code: 18CHP305C

Course Name: Industrial Chemistry Batch-2018-2020

Elemental Composition of the Human Body

17

	Elements	M	lass
		g	Moles
M()/ B (MAP) (1	A. Mai	n group non-metals	
Hydrogen		7000	3500
Carbon		12 600	1050
Nitrogen		2100	75
Oxygen		45 500	1425
Phosphorus		700	22.5
Sulfur		175	5.5
Fluorine		0.8	0.02
Chlorine		105	3.0
Bromine		0.2	0.025
Iodine		0.013	0.0001
	B M	lain group metals	
Lithium	D. M	0.0007	0.0001
Boron		0.007	0.0009
Sodium		105	4.6
		140	3.6
Potassium		140	0.013
Rubidium*			
Caesium*		0.0015	0.00001
Aluminium		0.1	0.0037
Zinc		2.3	0.035
Silicon		1.4	0.05
Arsenic		0.014	0.0002
Antimony		0.07	0.0006
Selenium		0.02	0.003
Гin		0.03	0.0002
Lead		0.08	0.0004
Cadmium		0.03	0.0003
Magnesium		35	1.4
Calcium		1050	26
Strontium		0.14	0.0016
Barium*		0.016	0.00012
Radium*		3×10^{-11}	1.4×10^{-13}
Uranium*		9×10^{-5}	3.8×10^{-14}
Plutonium*		6×10^{-18}	$2.5.10^{-20}$
	C. Tra	nsition series metals	
Titanium		0.01	0.0002
Vanadium		0.02	0.0004
Chromium		0.005	0.0001
Manganese		0.02	0.00036
Iron		4.2	0.075
Cobalt		0.0007	0.0001
Nickel		0.01	0.0002
Copper		0.11	0.0016
Zirconium		0.3	0.003
Niobium		0.1	0.001
Molybdenum		0.005	0.00005

Table 2.1	The elemental	composition of	of a 70 i	kg 'refere	nce' berson
-----------	---------------	----------------	-----------	------------	-------------

* Elements with no recognized physiological role.

Some elements are essential for life and others, although not truly essential, contribute to our general well-being. Some elements, though apparently harmless at 'normal' concentrations, may be toxic if they are present in rather larger amounts. For example, the natural total body content

Table 2.2 The fractional absorption (f_1) and the notional equivalent half-time (T_{eq}) of retention in the human body of some main group and transition series metals. The f_1 is the fraction of an orally administered element which passes from the gastrointestinal tract to the blood stream; the notional T_{eq} assumes a constant rate of loss from a single compartment

Element	\mathbf{f}_1	$T_{eq}/days$	
	Main group metals		
Lithium	1	1	
Sodium	1	10	
Potassium	1	30	
Rubidium*	1	60	
Caesium*	1	110	
Magnesium	0.5	0.8	
Calcium	0.5	10000	
Strontium	0.3	10000	
Barium*	0.2	10000	
Radium*	0.2	10000	
Uranium*	0.01	10000	
Plutonium*	0.0005	10000	
	Transition series metals		
Manganese	0.1	45	
Iron	0.15	2000	
Cobalt	0.1	40	
Copper	0.5	40	
Zinc	0.5	400	
Molybdenum	0.8	45	
Nickel	0.05	1	

* Elements with no recognized physiological role.

of barium is about 2 mg, of which about 90% is locked up in the hydroxy apatite of the bone mineral but about 400 times this amount (- 800 mg) could cause death. However, because it is present as a species which is not bio-available, the so-called *Barium Meal* containing up to 200 g of the highly insoluble barium sulfate (solubility product 1.07 X lo-" mol dm-3), is routinely, and safely, administered orally to humans as a contrast medium for the radiological investigation of gastrointestinal disorders. The proper functioning of the human body requires an adequate supply of the essential and beneficial elements and this is met from the diet, and in the case of some inorganic elements to a lesser extent from drinking water. For metallic elements the adequacy of the diet with respect to the requirements for a specific metal will depend on two factors: the concentration of the element of interest in the food and water and its bio-availability. The bio-availability is the extent to which the metal concerned is transferred from the gastrointestinal tract to the blood and this depends on the chemical behaviour of the

element in the gastrointestinal tract, where the pH may vary from - 2 in the stomach to about pH 8 in the small intestine, where high concentrations of complexing ligands are also present. The bio-availability of metals is element-specific and may range from virtually 100% for Group I metals like sodium, to less than 0.1% for readily hydrolysable metals such as plutonium.

For the essential elements the amounts in the body are normally controlled by physiological mechanisms, but for the non-essential, non-beneficial elements there are no such controls and the amounts in the body generally reflect the natural occurrence of the elements in food and water. For many such elements we may consider that there is a *base load* in the human body which reflects the natural intake of the elements in the diet. For some elements, industrial, mining or other human activities, may release metals into the environment. Such activities may result in a *civilization-related load* being added to the natural base load; in some circumstances this civilization-related load may be very much greater than the base load.

Supplying Elements to the body:

In order to keep healthy the body has specific daily requirements for essential and beneficial elements and these may be expressed as 'recom- mended daily amounts' (RDAs); Some RDAs are listed in Table **2.3.** Both essential and non-essential trace elements are taken into the body with foodstuffs, and some of the elements may be biologically incorporated into the food itself while, particularly with vegetables, another part may be taken into the body in the form of soil particles which adhere to the foodstuffs it has been estimated that an adult human may ingest as much as 100 g of topsoil per year. It is important to recognize these two sources of trace elements; first of all because the bio-availability of a trace element incorporated into a food material may be markedly different to that from a soil particle. Therefore a diet that, on the basis of a total elemental analysis, appears to provide adequate amounts of a particular element may in fact be quite inadequate because a large fraction of the metal is present in a highly insoluble and poorly available form in soil particles.

Table 2.3	Typical recommendations for the daily intake of some inorganic nutrients by young adult males (from Coultate, 1991). The
	amounts absorbed from the gastrointestinal tract into the blood will generally be only a fraction of these quantities

Element	RDA/mg	Element	RDA/mg
Calcium	500	Phosphorus	800
Magnesium	350	Zinc	15
Iron	10	Iodine	0.15
Copper	2	Selenium	0.05

Biological Significance:

It is most appropriate to classify metals of interest by their impact on health effects nutritionally essential, nonessential with a possible beneficial effect, or nonessential with no beneficial effects. Table 2.4, below, lists the metals identified in the environmental chemistry paper as metals of concern; it also lists iron and magnesium, which are nutritionally essential.

			Churace		icului Lii			
Nutritionally	Essential	Metals	with	Possible	Metals	with	No	Known
Metals		Beneficia	l Effects		Benefic	ial Effe	ects	
Cobalt		Boron			Alumin	um		
Chromium III		Nickel			Antimo	ny		
Copper		Silicon			Arsenic			
Iron		Vanadiur	n		Barium			
Manganese					Berylliu	m		
Molybdenum					Cadmiu	m		
Selenium					Mercury	Y		
Zinc					Lead			
					Strontiu	m		

Table 2.4. Classification of Metals Based on Characteristics of Health Effects

The primary premise for this classification is that assessment of health risks for nutritionally essential metals requires its own approach or process: restrictive standards must allow sufficient exposure for the general population to prevent deficiencies, but nutritionally essential metals may cause adverse health effects at some levels below or beyond the level required for optimum nutrition.

Metals functions in metalloproteins:

Metal-Protein Interactions

Metals react with many different proteins in the body that may modify their toxicity and kinetics. An example is the interaction of lead with heme-synthesizing enzymes. Arsenic, cadmium, mercury, and lead interfere with enzymes involved with energy metabolism by substituting with essential metals. Many metals bind with albumin for purposes of transport in the circulatory system and across cell membranes and within cells. There are also several proteins that bind to specific metals.

Metallothioneins

Metallothioneins are a group of low-molecular-weight proteins (MW about 6,000 daltons), rich in sulfhydryl groups that serve as ligands for several essential and nonessential metals. In vitro studies have found that the highest affinity is for silver, then in descending order mercury, copper, bismuth, cadmium, lead, and zinc. However, studies of in vivo metallothioneins from various sources included zinc, copper, and cadmium. Metallothioneins have multiple binding sites that have different affinities for metals. Also, the types of metal bound to metallothioneins differ depending on the species, the organ, and previous exposures to metals, but most of them contain at least two different types of metals. For example, metallothioneins isolated from adult or fetal human livers contain mainly zinc and copper, while those from human kidneys contain cadmium, copper, and zinc.

In most cases the metallothioneins are inducible and perform a number of functions, including serving as a storage protein for zinc and copper in the liver, kidney, brain, and possibly skin and having an important protective role in cadmium toxicity.

There has been recent interest in the role of metallothionein as a modulator of immune response, and it is suggested that assessment of metallothionein status in peripheral blood monocytes may provide a non-invasive approach to assessing the risk of metal exposure to immunotoxicicty. While metallothioneins have an affinity for lead in vitro, in vivo binding to lead has not been demonstrated. Also, mercury may induce synthesis of metallothionein in vivo, but binding is only temporary regardless of the demonstrated in vitro affinity.

Transferrin

Transferrin is a glycoprotein that binds most of the ferric ion in plasma and has a role in transporting iron across cell membranes. This protein also transports aluminum and manganese.

Ferritin

Ferritin is primarily a storage protein for iron in reticuloendothelial cells of the liver, spleen, and bone. It plays an important role in turnover of iron. It has also been suggested that ferritin may serve as a general metal agonist since it binds a number of metals including cadmium, zinc, beryllium, and aluminum.

Ceruloplasmin

Ceruloplasmin is a copper-containing glycoprotein oxidase in plasma that converts ferrous to ferric iron, which then binds to transferrin.

Lead-binding protein(s)

Lead binds with a number of lead-binding proteins, but their identity or function is not as well

defined as that of other metal-specific proteins. The most studied lead-binding protein is the denatured lead-protein complex identified as the intracellular inclusion body occurring in cells, particularly in the liver and kidney in persons with high-level lead exposure. It has been suggested that lead-binding proteins may have a protective effect for lead.

Membrane carrier proteins

There are a number of recently discovered carrier proteins that transport metals across cell membranes. Many metals are transported as complexes with endogenous ligands; no transport systems are intended for the ligand itself. Many of these carrier proteins are multi-specific, accepting substrates that vary considerably but are recognized by the attached metal ion.

Metalloenzymes

Metalloenzymes are enzyme proteins containing metal ions (metal cofactors), which are directly bound to the protein or to enzyme-bound nonprotein components (prosthetic groups). About one-third of all enzymes known so far are metalloenzymes. Besides enzymes, other metalloproteins are involved in non-enzyme electron transfer reactions (cytochromes), may act as storage (e.g., ferritin for iron) or transport proteins (e.g., transferrin for iron). In the latter groups of proteins, the metal storage is reversible and the metal is a temporary component. Also ribozymes, i.e., RNA molecules with enzyme function may contain structurally and/or functionally important metal ions (mostly divalent metal ions such as Mg^{2+}) and may be therefore termed as metalloenzymes in a broader.

Biological Significance of Iron, Zinc, Copper, Molybdenum, Cobalt, Chromium, Vanadium, and Nickel

Living organisms store and transport transition metals both to give fitting concentrations of them to use in metalloproteins or cofactors and to ensure them against the harmful impacts of metal abundances; metalloproteins and metal cofactors are found in plants, creatures, and microorganisms. The ordinary fixation run for each metal in organic frameworks is limited, with the two lacks and abundances causing neurotic changes.

The transition metals and zinc are among the minimum rich metal ions in the ocean water from which contemporary organisms are thought to have advanced (Table 2.5). For a significant number of the metals, the fixation in human blood plasma enormously surpasses that in ocean water. Such information shows the significance of systems for gathering, storage, and transport of transition metals and zinc in living organisms.

Element	Sea water (M) $\times 10^8$	Human plasm $(M) \times 10^8$	
Fe	0.005-2	2230	
Zn	8.0	1720	
Cu	1.0	1650	
Mo	10.0	1000	
Co	0.7	0.0025	
Cr	0.4	5.5	
v	4.0	17.7	
Mn	0.7	10.9	
Ni	0.5	4.4	

 Table 2.5 Concentrations of transition metals and zinc in sea water and human
 plasma

The metals are by and large discovered either bound specifically to proteins or in cofactors, for example, porphyrins or cobalamins, or in bunches that are in tum bound by the protein; the ligands are normally 0, N, S, or C. Proteins with which transition metals and zinc are most ordinarily related catalyze the intramolecular or intermolecular reworking of electrons. In spite of the fact that the redox properties of the metals are imperative in a considerable lot of the reactions, in others the metal seems to add to the structure of the dynamic state, e.g., zinc in the Cu-Zn dismutases and a portion of the iron in the photosynthetic response focus. Now and again comparable reactions are catalyzed by proteins with various metal focuses; the metal restricting destinations and proteins have developed independently for each sort of metal focus. Iron is the most well-known transition metal in science.

Biological Systems of Metal Storage, Transport, and Mineralization

Storage

The storage of iron

Three properties of iron can represent its broad use in earthly natural reactions:

- effortless redox reactions of iron ions;
- a broad collection of redox possibilities accessible by ligand substitution or modification (Table 4);
- Abundance and accessibility (Table 1) under conditions obviously surviving when earthly life started

The storage of zinc, copper, vanadium, chromium, molybdenum, cobalt, nickel, and manganese

Ions of nonferrous transition metals require a substantially less mind boggling organic storage framework, in light of the fact that the solubilities are considerably higher (210 - 8 M) than those for Fe 3+. Subsequently, the storage of nonferrous transition metals is more subtle, and information is more constrained. In addition, investigations are more troublesome than for iron, on the grounds that the sums in organic frameworks are so little. Basically nothing is known yet about the storage of vanadium, chromium, molybdenum, cobalt, nickel, and manganese, with the conceivable exception of accumulations of vanadium in the platelets of tunicates.

Zinc and copper, which are utilized as a part of the most elevated concentrations of any of the non- ferrous transition metals, are particularly bound by the protein metallothionein. Like the ferritins, the metallothioneins are a group of proteins, far reaching in nature and managed by the metals they tie. As opposed to ferritin, the measures of metal put away in metallothioneins are littler (up to twelve iotas for every atom), the measure of protein in cells is less, and the format (mRNA) isn't put away. Since the cell concentrations of the metallothioneins are generally low and the measure of metal required is moderately little, it has been hard to consider the organic destiny of copper and zinc in living organisms, and to find the common part of metallothioneins. Be that as it may, the regulation of metallothionein amalgamation by metals, hormones, and development factors bears witness to the organic significance of the proteins. The abnormal metal environments of metallothioneins have pulled in the attention of bioinorganic scientific experts.

Transport

Iron

The storage of iron in people and different warm blooded animals has been managed in the past section. Just a little fraction of the body's stock of iron is in travel at any minute. The transport of iron from storage destinations in cell ferritin or hemosiderin happens by means of the serum-transport protein transferrin.

The transferrins are a class of proteins that are bilobal, with every flap reversibly (and basically autonomously) restricting ferric ion. This complexation of the metal cation happens through earlier complexation of a synergistic anion that in vivo is bicarbonate (or carbonate). Serum transferrin is a monomeric glycoprotein of atomic weight 80 kDa. The precious stone structure of the related protein, lactoferrin, has been accounted for, and as of late the structure of a mammalian transferrin has been reasoned.

Ferritin is obviously an exceptionally old protein and is found in higher creatures, plants, and even microorganisms; in plants and creatures a typical ferritin ancestor is

demonstrated by arrangement conservation. Conversely, transferrin has been in ex" istence just generally as of late, since it is just discovered ia the phylum Chordata. In spite of the fact that the two iron-restricting locales of transferrin are adequately unique to be recognizable by dynamic and a couple of different investigations, their coordination environments have been known for quite a while to be very comparative. This was first found by different spectroscopies, and most as of late was affirmed by crystalstructure examination, which demonstrates that the environment includes two phenolateoxygens from tyrosine, two oxygens from the synergistic, bidentate bicarbonate anion, nitrogen from histidine, and (a shock at the season of precious stone structure investigation) an oxygen from a carboxylate gathering of an aspartate.

Zinc, copper, vanadium, chromium, molybdenum, and cobalt

One extremely intriguing late advancement has been the characterization of sequestering specialists created by plants which complex various metal ions, not simply ferric ions. A key compound, now all around portrayed, is mugeneic corrosive. The basic and chemical similitudes of mugeneic corrosive to ethylenediaminetetraacetic corrosive (EDTA) have been noted. Like EDTA, mugeneic corrosive structures a to a great degree solid .~omplex with ferric ion, yet in addition shapes very solid buildings with copper, zinc, and other transitionmetal ions. Like the siderophores delivered by microorganisms, the coordination environment obliged by mugeneic corrosive is basically octahedral. In spite of the fact that the coordination properties of this ligand are well laid out, and it has been demonstrated that divalent metal cations, for example, copper, aggressively hinder iron take-up by this ligand, the nitty gritty procedure of metal-ion conveyance by mugeneic corrosive and related mixes has not been explained.

Question	А	В	С	D	Answer
X-ray					
diffractometers					
are not used to					
identify the					
physical					
properties of					
which of the			Polymeric		
following?	Metals	Liquids	materials	Solids	Liquids
X-ray	Wietuis	Liquids	materials	501145	Liquids
diffractometers					
provide					
provide					
information about					
the compounds			Quantitative	Either	
present in a solid			and	quantitative or	Quantitative and
sample.	Quantitative	Qualitative		qualitative	
Which of the	Quantitative	Qualitative	qualitative	qualitative	qualitative
following is the					
most common instrument for					
	Dahara				
photographic	Debye-				
recording of	Scherrer	C		C = 1 = 4 11 = 4 1 = 1	Dahara Calerman
diffraction	powder	Gamma		Scintillation	Debye-Scherrer
patterns?	camera	camera	Geiger tube	counter	powder camera
4. With the help					
of which of the					
following					
equations is the					
distance					
calculated from a					
known					
wavelength of the	~				
source and	Coolidge	Bragg's	Debye		
measured angle?	equation	equation	equation	Scherrer equation	Bragg's equation
5. In					
Diffractometer,					
the identification					
of a component of					
the sample from					
its powder					
diffraction pattern					
is based upon the					
of					
lines and their	Number,	Number,	Position,	Position,	Position,
relative	length	intensity	length	intensity	intensity

6. Diffractometers					
are similar to	Optical				
which of the	grating	Prism	Photo	Photovoltaic	Optical grating
following?	spectrometer	spectrometer	multiplier	cell	spectrometer
To no tring.	a) produces	spectrometer	manipilei	d) Reduces the	spectrometer
	less	b) Reduces	c) Increase	danger from	
7. Increasing the	susceptibility	the risk of	the signal to	metallic	c) Increase the
magnetic field?	artifacts	tissue heating	noise	projectiles	signal to noise
magnetie neia.	utilitets	tissue neuting	noise	d) the ability to	d) the ability to
				reposition the	reposition the
	a) the ease			'cross-section'	'cross-section'
	with which	its relatively	c) dose not	through the	through the body
8. A major	equipment is	low cost,	require	body without	without
advantage of MRI	updated or	compared to	specialized	repositioning	repositioning the
is	replaced	CT scans	room	the patient.	patient.
9. A growing	Teplaced		100111		patient.
application of	a) Magnetic	b) Magnetic	c) Minimal	d) Medical	b) Magnetic
MRI is "MRA",	Resonance	Resonance	Radiology	Research	Resonance
which stands for:	Amplication	Angiography	Applications	Assistance	Angiography
which stands for.	Amplication				
10 What does	a) Magnata	b) Medical	c) Magnetic	d) Maximal	c) Magnetic
10. What does	a) Magneto-	Radiometry	Resonance	Radiology	Resonance
"MRI" stand for?	Ray Idometry	Instrument	Imaging	Imaging	Imaging
11. What is a				d) localized	d) localized
major health				burns due to	burns due to
concern wth	a) Reaction to	extreme	c) Radiation	metallic	metallic
MRI?	applied drugs	cold?	dose	implants?	implants?
12. Select one of					
the following					
objects that you					
think would					
•	a) A	1		d) None of the	d) None of the
the MRI suite.	wheelchair	b) A stretcher	c) Scissors	listed	listed
13. Mass					
spectrometers are					
used to determine		Concentration	Relative		
which of the	Composition	of elements in	mass of	Properties of	Relative mass of
following?	in sample	sample	atoms	sample	atoms
14. Who invented					
mass					
spectrometers?	J.J Thompson	Goldstein	Nikola Tesla	Aston	J.J Thompson
15. In mass					
spectrometer, the					
sample that has to					
be analysed is					
bombarded with	Protons	Electrons	Neutrons	Alpha particles	Electrons

which of the					
following?					
16. Mass					
spectrometer					
separates ions on					
the basis of which			Molecular	Mass to charge	Mass to charge
of the following?	Mass	Charge	weight	ratio	ratio
			By		
			accelerating		
17. In mass		By	them		
spectrometer, the	By	accelerating	through		By accelerating
ions are sorted out	accelerating	them through	electric and		them through
in which of the	them through	magnetic	magnetic	By applying a	electric and
following ways?	electric field	field	field	high voltage	magnetic field
18. The procedure		The ions are		-ingit (onugo	inghere nete
for mass		separated by			
spectroscopy		passing them	The sample		
starts with which	The sample is	into electric	is converted		The sample is
of the following	bombarded by			The ions are	converted into
U		and magnetic	into gaseous		
processes?	electron beam	field	state	detected	gaseous state
19. In a mass					
spectrometer, the					
ion currents are					
measured using					
which of the	Scintillation		Electrometer		Electrometer
following?	counter	Ion counter	tube	Electric fields	tube
20. Which of the					
following ions			Negative		
pass through the			ions of		
slit and reach the	Negative ions	Positive ions	specific	Positive ions of	Positive ions of
collecting plate?	of all masses	of all masses	mass	specific mass	specific mass
	Impurities of			-	-
21. Which of the	masses				Impurities of
following	different from				masses different
statements is not	the one being		It is suitable		from the one
true about mass	analysed	It has great	for data	It is suitable for	being analysed
spectrometry?	interferes	sensitivity	storage	library retrieval	interferes
22. Light				-ioring round ful	
dependent stage					
can not be carried		b) carbon			
out without	a) Oxygen	dioxide	c) water	d) all of these	c) water
	a) Oxygell	UIUAIUC	c) water		
23. Photolysis of					
six water		b) 10 - 4 -	a) 10 - 4-	d) 04 -4 6	b) 10 - to
molecules results	a) 6 atoms of	b) 12 atoms	c) 18 atoms	d) 24 atoms of	b) 12 atoms of
in	hydrogen	of hydrogen	of hydrogen	hydrogen	hydrogen
24. Photolysis is	a) light	b) light	c) dark stage	d) translocation	a) light

known to occur	dependent	independent			dependent stage
only in	stage	stage			
25. Which ion is					
kinetically inert?	a) Cr2+	b) Co3+	c) Co2+	d) Fe3+	Co3+
		b) An			
		associative			
	a) A	mechanism is		d) In an	
	dissociative	a 2-step	c) In a	associative	
	mechanism is	mechanism;	dissociative	interchange	
	a 2-step	the	interchange	mechanism, the	c) In a
	mechanism	intermediate	mechanism,	entering group	dissociative
	with the	has a lower	bond	associates with	interchange
	leaving group	coordination	breaking	the substrate	mechanism,
26. Which	departing in	number than	dominates	after the leaving	bond breaking
statement is	the second	the starting	over bond	group has	dominates over
correct?	step	complex	formation	departed	bond formation
			c) The		
27. Which of the		b) The	degree of		
following cannot		absolute	folding of a		
be obtained from		configuration	Zn2Cl2		1. 771 11 . 1
an X-ray	a) A bond	of a chiral	four-	d) The vibration	d) The vibration
crystallography	angle Si-O-Si	natural	membered	frequency of a	frequency of a
study?	in a mineral	product	ring	carbonyl group	carbonyl group
			c) The		
			relative	1) NT	
			phases of diffracted X-	d) Non-	c) The relative
		b) The phase		centrosymmetric	phases of
		b) The phase of an X-ray	ray beams are lost	crystal structures	diffracted X-ray beams are lost
28. What is meant	a) The comple		when the		when the
by the 'phase	a) The sample must be in the	wave changes when it is	diffraction	always give	diffraction
problem' in X-ray	crystalline	scattered by	pattern is	centrosymmetric diffraction	pattern is
crystallography?	solid phase.	an atom	recorded	patterns	recorded
crystanography:	sond phase.		Tecoraca	d) Unit cells are	lecolded
				constructed by	
				connecting	
29. Which of the				adjacent lattice	
following	a) Lattice	b) Lattice	c) Lattices	points to give	
statements about	points are	points all	can be	the smallest	b) Lattice points
lattices and unit	chosen to lie	have identical	primitive or	possible repeat	all have identical
cells is correct?	on atoms.	surroundings.	centred.	unit	surroundings.
30. Consider the		6		d) Some	d) Some
	1			<i>'</i>	,
Bragg equation	a) Bragg	b) The d	c) The	previously	previously
Bragg equation (1.3, page 20). If	a) Bragg angles of	b) The d spacings	c) The diffraction	previously accessible	previously accessible
Bragg equation (1.3, page 20). If the value of the	a) Bragg angles of reflections	b) The d spacings become	,		-

doubled, which of the following is NOT true?				measured	measured
31. Calculation of Z (the number of molecules in the unit cell of a crystal structure) gives a value of 5. Which of the following cannot be an explanation of this unusual result?	a) An incorrect chemical formula for the compound	b) The presence of solvent of crystallization	c) An error in determining the unit cell parameters	d) An incorrect space group	d) An incorrect space group
32. The calculated value of Z is half what is expected for the probable space group of a crystal structure. On which of the following symmetry elements could the molecules lie			parameters	space group	space group
to satisfy this result?	a) Inversion	b) Twofold	c) Glide plane	d) Fourfold rotation axes	a) Inversion
 33. Calculation of Z from a crystal density measurement gives a value of 4.41 for an expected molecular mass of 451.1 daltons. What is the likely solvent of crystallization 	a) Water H2O	b) Methanol CH3OH	c) Ethanol CH3CH2OH	d) Tetrahydrofuran C4H8O	c) Ethanol CH3CH2OH
34. The scattering contribution of one individual atom or ion to the total X-ray diffraction pattern of a crystal	a) The identity of the element	b) The oxidation state	c) The isotope	d) The position of the atom/ion in the unit cell	c) The isotope

	Γ	Γ	Γ	Γ	
structure depends					
on all but one of					
the following					
properties of the					
atom/ion. Which					
is the property					
that has no effect?					
35. For a					
centrosymmetric					
crystal structure,					
all diffracted X-					
ray beams have				d) The sine	
				,	
phases of either 0				terms multiplied	
or 180°; other			-) 171	by the	d) The sine
phase values do			c) The	imaginary	terms multiplied
not occur. What		1	different	number i are all	by the imaginary
effect does this		b) Half the	phase	zero, so	number i are all
have on reverse		reflections	contributions	complex	zero, so complex
Fourier transform		make no	can be	exponentials	exponentials
calculations?	a) None	contribution	ignored	become cosines	become cosines
36. Which of the					
following is not					
usually an					
advantage of					
synchrotron					
radiation					
compared with		b) Speed of	c)		
laboratory X-ray		data	Wavelength		
sources?	a) Intensity	collection	selection	d) Cost	d) Cost
37. What is the	a) mensity	Half the value	Double the	u) cost	u) cost
magnetic field		of the field	value of the		
U	Infinity	inside	field inside	7	Zero
outside a solenoid	Шшцу	Inside	field filside	Zero	Zero
38. Which, among					
the following			a		
qualities, is not		~	Current		
affected by the	Moving	Change in	flowing in a	Stationary	Stationary
magnetic field	charge	magnetic flux	conductor	charge	charge
39. When a					
charged particle					
moves at right					
angles to the					
magnetic field,					
the variable				Moment of	
quantity is?	Momentum	Speed	Energy	inertia	Momentum
If the flow of				Half the original	
electric current is	Zero	Infinity	Maximum	value	Zero
		minity	maximum	value	

11 1					1
parallel to the					
magnetic field,					
the force will be					
41. The ratio of					
magnetic force to					
electric force on a					
charged particle					
getting					
undeflected in a					
field is?	1	0	5	3	1
42. What is the					
strength of					
magnetic field			Magnetic	Magnetic flux	Magnetic flux
known as	Flux	Density	strength	density	density
43. Weakest force	1 101	Gravitational	suchgui		Gravitational
in nature is?	Electric force		Weak force	Magnetic force	force
in nature is?	Electric force	force	weak lorce	Magnetic force	
44 11	TTata		TT.	Using a	Using a
44. How can a	Using a		Using a	permanent	permanent
magnetic field be	permanent	Electric	temporary	magnet or	magnet or
produced?	magnet	current	magnet	electric current	electric current
45. Can we see			Depends on	Only when the	
magnetic flux			the strength	field strength is	
lines?	Yes	No	of the field	very large	No
46. Magnetic					
Field lines move		South to			
from	North to south	north	West to east	East to west	North to south
47. Which of the					
following have a					
non-crystalline					
structure?	Iron	Quartz	Silica glass	Tungsten	Silica glass
48. Which of the			8	8~	8
following have a					
non-crystalline			High density	Low density	Low density
structure?	Steel	Nickel	polythene	polythene	polythene
49. Which of the			Polythene	Polythene	Polytiene
following is a characteristic of			Danga of		
			Range of	Vorvina	
crystalline	Iliah Jawak	Tam Jan 't	melting	Varying	III also de mais
structure?	High density	Low density	point	structure	High density
50. Which of the					
following is				~	
characteristic of		Well defined		Sharp	
non-crystalline	Long range of	structure and		diffraction	
structures?	periodicity	geometry	Low density	pattern	Low density
51. Which of the	Atomic	Primary	Formation of	Strong	Strong
following factor is	packing has	bonds are	1-	secondary bond	secondary bond

		-1	dimensional		
not responsible	open structure	absent			
for the formation			chain		
of a non-			molecule		
crystalline					
structure?					
52. A cubic unit					
cell satisfies					
which of the	a=b=c,	a≠b=c,	a=b≠c,	a=b=c,	a=b=c,
following	α=β=Υ=90	α=β=Υ=90	α=β=Υ=90	α≠β=Υ=90	α=β=Υ=90
equations	degree	degree	degree	degree	degree
53. A tetragon					
unit cell satisfies					
which of the	a=b=c,	a≠b=c,	a=b≠c,	a=b=c,	a=b≠c,
following	α=β=Υ=90	α=β=Υ=90	$\alpha = \beta = \Upsilon = 90$	α≠β=Υ=90	α=β=Υ=90
equations?	degree	degree	degree	degree	degree
54. An					
Orthorhombic					
unit cell satisfies					
which of the	a=b=c,	a≠b≠c,	a=b≠c,	a=b=c,	a≠b≠c,
	$\alpha = \beta = \Upsilon = 90$	$\alpha = \beta = \Upsilon = 90$	$\alpha = \beta = \Upsilon = 90$	$\alpha \neq \beta = \Upsilon = 90$	$\alpha = \beta = \Upsilon = 90$
following				· 1	
equations?	degree	degree	degree	degree	degree
55. A					
Rhombohedra					
unit cell satisfies		(1	1 /		1
which of the	a=b=c,	a≠b=c,	a=b≠c,	a=b=c,	a=b=c,
following	$\alpha = \beta = \Upsilon = 90$	α=β=Υ=90	α=β=Υ=90	α=β=Υ≠90	α=β=Υ≠90
equations?	degree	degree	degree	degree	degree
56. A Hexagonal					
unit cell satisfies	$a=b \neq c$,				
which of the	α=β=90	a≠b=c,	a=b≠c,	a=b=c,	$a=b \neq c, \alpha=\beta=90$
following	degree,	α=β=Υ=90	α=β=Υ=90	α≠β=Υ=90	degree, Y=120
equations?	Υ =120 degree	degree	degree	degree	degree
57. A Monoclinic					
unit cell satisfies					
which of the	a=b=c,	a≠b=c,	$a \neq b \neq c$,	a=b=c,	
following	α=β=90	α=β=Υ=90	α=β=90	α≠β=Υ=90	$a \neq b \neq c, \alpha = \beta = 90$
equations?	degree $\neq \Upsilon$	degree	degree $\neq \Upsilon$	degree	degree $\neq \Upsilon$
58. A Triclinic		<u> </u>		<u> </u>	
unit cell satisfies					
which of the	a=b=c,	a≠b=c,	$a \neq b \neq c, \alpha$	a=b=c,	
following	$\alpha = \beta = \Upsilon = 90$	$\alpha = \beta = \Upsilon = 90$	$\neq \beta \neq \Upsilon \neq 90$	α≠β=Υ=90	$a \neq b \neq c, \alpha \neq \beta$
equations?	degree	degree	degree	degree	$\neq \Upsilon \neq 90$ degree
59. Which one of					, i , 90 acgree
the following is					
most	Simple cubic				Simple cubic
	cell	Havagonal	Triclinic	Tetragonal	cell
symmetrical?	Cell	Hexagonal	THCHINC	Tetragonal	Cell

60. Which one of					
the following is					
least					
symmetrical?	Tetragonal	Simple cubic	Monoclinic	Triclinic	Triclinic

Class: II M.Sc Chemistry Chemistry Course Code: 18CHP305C

Course Name: Inductrial Chemistry-III

Unit: I Batch-2018-2020

UNIT-I

Physical Methods in Bioinorganic Chemistry: X-ray methods - magnetic resonance methods - mossbauer spectroscopy - magnetic measurements -other instrumental methods - atomic force microscopy - fast and time-resolved methods - stopped-flow kinetic methods - flash photolysis - time-resolved crystallography.

Class: II M.Sc ChemistryCourse Name: Inductrial Chemistry-IIIChemistry Course Code: 18CHP305CUnit: IBatch-2018-2020

3.3 X-RAY CRYSTALLOGRAPHY

3.3.1 Introduction

X-ray crystallographic molecular structures of proteins have been available since the 1960s and 1970s when pioneering work by Kendrew⁸ and Perutz⁹ produced X-ray diffraction structures of myoglobin and hemoglobin. These oxygen carrying metalloproteins are discussed in Chapter 4. Since that time the introduction of sophisticated computer hardware and software has made the solution of protein structure in the solid state using X-ray crystallography more accurate and less timeconsuming. The field continues to evolve as hardware and instrument design improvements are implemented and as crystallographers discover more powerful software algorithms for solving structures after the necessary data has been collected. At the time of this writing, 175+ X-ray crystallographic data sets were deposited in the Research Collaboratory for Structural Bioinformatics' Protein Data Bank (RCSB-PDB at http://www.rcsb.org/pdb/) for hemoglobin and hemoglobin mutants as well as 191+ data sets for myoglobin and myoglobin mutant species. Nuclear magnetic resonance protein structure determination in solution provides a complementary structural technique that does not require the production of single crystals necessary for X-ray diffraction studies. However, at this time, NMR solution structures are limited to smaller proteins of molecular weights less than 30,000. In contrast, X-ray crystallography can produce structures of proteins of up to 1×10^6 molecular weight. Recombinant DNA technology has aided the X-ray crystallographic study of proteins by allowing large amounts of a protein of interest to be produced through expression of its cloned gene in a microorganism. Sitedirected mutagenesis of a selected protein's gene has allowed researchers to study three-dimensional structural changes brought about by amino acid replacement in the protein's primary amino acid sequence. These techniques are discussed in Sections 2.3.4 and 2.3.5. Much of the discussion in this section on X-ray crystallography has been taken from a recent text written by author and crystallographer

Class: II M.Sc ChemistryCourse Name: Inductrial Chemistry-IIIChemistry Course Code: 18CHP305CUnit: IBatch-2018-2020

Jan Drenth.¹⁰ Readers are referred to the Department of Crystallography site at Würzburg University (http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/ teaching.html) for tutorials on X-ray diffraction methodology. The site includes interactive tutorials describing basic examples, reciprocal space, the crystallographic phase problem, and diffuse scattering and defect structures. Tutorials on convolution theorem, modification of a structure, solving a simple structure, anomalous scattering, and powder diffraction are also found on this site.

If all the nuclei being detected in an NMR experiment (all protons in an organic ligand molecule, for instance) resonated at the same frequency, chemists would not be very interested because little information about structure, and so on, would be gained. However, when a magnetic field is applied during an NMR experiment, electrons surrounding nuclei in the molecules under study set up a secondary magnetic field. The secondary field opposes the main field, reducing the nuclear frequency. The magnitude of the frequency change is proportional to \mathbf{B}_0 . This is important in that there will be larger separations between resonant frequencies at higher magnetic field strengths, allowing one to detect finer differences between the different protons in any liquid sample. The effect of electrons surrounding the nucleus on the nucleus in the applied magnetic field is termed screening (or shielding). Taking equation 3.30 and introducing the screening constant, σ , one finds equation 3.31:

$$\mathbf{v} = \left(\frac{\gamma}{2\pi}\right) \mathbf{B}_0(1 - \sigma) \tag{3.31}$$

The screening constant, σ , is dimensionless and usually recorded in parts per million (ppm). Contributors to σ , opposite in sign, are σ_d (the diamagnetic term) and σ_p (the paramagnetic term). The diamagnetic term depends upon the density of circulating electrons. The paramagnetic effect in this context does *not* imply the presence of unpaired electrons (to be discussed below) but is substantial, and dominates, for heavier atoms with many electrons in outer orbitals involved in chemical bonding. Several factors affect σ_p :

- 1. The inverse of the energy separation, ΔE , between ground and excited electronic states of the molecule. This means that there will be a correlation between NMR spectra and absorption in the visible and ultraviolet spectral regions.
- 2. The relative electron density in p orbitals involved in bonding.
- 3. The value of $\langle 1/r^3 \rangle$, the average inverse cube distance from the nucleus to the electronic orbitals involved.

Class: II M.Sc ChemistryCourse Name: Inductrial Chemistry-IIIChemistry Course Code: 18CHP305CUnit: IBatch-2018-2020

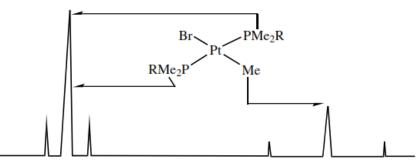
The paramagnetic screening constant becomes disproportionately larger for heavier elements; thus while ¹H, the proton, exhibits screening for its compounds within a range of 20 ppm, thallium (²⁰⁵Tl) compound screening constants range over 5500 ppm. Changes in screening of each nucleus do not increase continuously with atomic number but are periodic, following the value of $\langle 1/r^3 \rangle$, increasing along each period and then falling markedly at the beginning of the next. Screening constants change in complex manners dependent upon a number of factors including charge density near the nucleus (¹⁴N nucleus is 25 ppm more shielded in NH₃ than in NH₄⁺), the influence of neighboring π systems, and oxidation states or coordination number of the nucleus being observed (³¹P screening increases in the series $PCl_3 < PCl_4^+ < PCl_5 < PCl_6^-$). Usually, screening increases for substituted main group elements as the electronegativity of the substituent increases. The "normal" halogen effect, increased screening for the series $AlCl_4^- < AlBr_4^- <$ AlI_4^- , is found to be a decreased screening effect for certain transition metals. The nephelauxetic effect (expansion of the electron cloud and increasing electron delocalization in ligand-metal bonding) changes the screening effect down the halogen group; thus while the difference between $AlCl_4^-$ and $AlBr_4^-$ is 22 ppm, that between AlBr⁻ and AlI⁻ is 47 ppm.

Anisotropic magnets may be formed in chemical bonds within a molecule so that nuclei in the vicinity may be screened or descreened. Anisotropic behavior would be found in the vicinity of a carbonyl bond, for instance. The benzene ring exhibits ring current anisotropy, leading to large descreening (downfield shifts) of benzene protons. Molecules containing electric dipoles perturb molecular orbitals and therefore perturb the screening of a nuclei. The closer the nucleus is to the bond generating the electric field, the more they are descreened. In 1-chloropropane the descreening shifts, compared to CH₄, are α -CH₂ 3.24 ppm, β -CH₂ 1.58 ppm, and CH₃ 0.83 ppm.

Class: II M.Sc ChemistryCourse Name: Inductrial Chemistry-IIIChemistry Course Code: 18CHP305CUnit: IBatch-2018-2020

3.5.3 Spin–Spin Coupling

A nucleus under study by nuclear magnetic resonance techniques is affected by other nuclei in the same molecule. This phenomenon is known as *spin-spin coupling*. The effect arises (in adjacent nuclei) from the two electrons joining the nuclei in a covalent bond. Suppose the energy of states in which the electrons in the bond have opposing spins is lower than the state in which the electron spins are parallel. Then the ΔE between the two states (in this case a negative number) is called the coupling constant, *J*, expressed in frequency units, Hz. Internuclear


spin–spin coupling constants may be either positive or negative and depend on a number of factors:

- 1. The number and bond order of bonds intervening between the nuclei as well as the bond angles. Usually the interaction is observed only through one to four bonds, and the effect is attenuated (the *J* value becomes smaller) as the number of intervening bonds increases.
- 2. The magnetic moments of the two interacting nuclei. These are directly proportional to the product of the magnetogyric ratios $(\gamma_A \gamma_B)$ of the interacting nuclei.
- 3. The valence s electron density at the nucleus. This is affected by the s character of the bonding orbitals between the interacting nuclei.

Nuclei coupling to each other through spin–spin interactions may have very similar or very different chemical shifts. The difference or similarity will affect the appearance of the resonances associated with the coupled nuclei. Nuclei separated by small chemical shifts are denoted by the letters A, B, C while sets of nuclei separated by large chemical shifts are designated A, M, and X. The number of nuclei in each letter category is indicated by a subscript. Using the proton as an example, CH_3CH_2Cl (chloroethane) is an example of an A_3X_2 system while CH_2CHCl (vinyl chloride) is an example of an ABX system. When chemical shifts differences are large, coupling between protons on adjacent atoms will follow the simple n + 1 multiplicity rule for the number of peaks in a multiplet (the general rule is 2nI + 1, where *I* is the nuclear spin). This is named a first-order pattern. The ABX system is almost first-order, but $A_aM_bX_x$ or $A_aB_bC_c$ systems exhibit complex spin-coupling multiplet patterns.

An example of spin-spin coupling between the ¹⁹⁵Pt nucleus (I = 1/2, abundance = 33.8%) and the proton (¹H, I = 1/2, abundance = 99.985%) is shown schematically in Figure 3.19 for the complex *trans*-MeBrPt(PMe₂R)₂ (where R is a 2,4-dimethoxyphenyl group).¹⁹ The two major methyl proton resonances are indicated and are connected to the responsible peaks. The height of the central downfield methyl resonance indicates that it corresponds to the protons of four methyl groups attached to phosphorus, and thence to the magnetically inactive

Figure 3.19 ¹H spectrum of the complex *trans*-MeBrPt(PMe₂R)₂. (Adapted with permission of Nelson Thornes Ltd. from Figure 3.13 of Akitt, J. W. *NMR and Chemistry*, 3rd ed., 1992.)

Class: II M.Sc ChemistryCourse Name: Inductrial Chemistry-IIIChemistry Course Code: 18CHP305CUnit: IBatch-2018-2020

platinum nucleus. The two smaller satellite peaks at one-quarter intensity on either side of the major downfield peak originate from the same methyl protons coupled to the magnetically active ¹⁹⁵Pt nucleus. The longer coupling path from ¹⁹⁵Pt through ³¹P to ¹H results in a weaker, smaller coupling constant (a so-called ³*J* coupling) when compared to the upfield pattern for methyl protons of the methyl group directly attached to platinum. The 1:4:1 pattern for the upfield peak again indicates that the coupling corresponds to the 33.8% abundant platinum nucleus. The upfield resonance corresponds to the protons of the methyl group directly attached to the platinum atom, and thus the satellite peaks exhibit an appreciably stronger coupling and consequently a larger *J* value.

A more complete discussion of spin–spin coupling may be found in Chapter 3 of reference 19 and many instrumental chemistry texts.²

Mass bauer Spectroscopy

Mössbauer spectroscopy is a versatile technique used to study nuclear structure with the absorption and re-emission of gamma rays, part of the electromagnetic spectrum. The technique of Mössbauer spectroscopy is widely used in mineralogy to examine the valence state of iron, which is found in nature as Fe^{0} (metal), Fe^{2+} , and Fe^{3+} , as well as the type of coordination polyhedron occupied by iron atoms (trigonal, tetrahedral, octahedral, etc.). It is sometimes used to determine redox ratios in glasses and (less successfully) in rocks. Mössbauer spectroscopy is also used to assist in the identification of Fe oxide phases on the basis of their magnetic properties.

Fundamental Principles of Mössbauer Spectroscopy

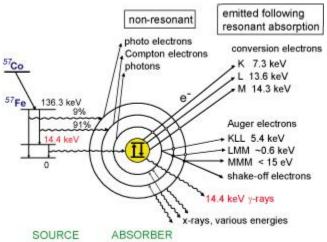


Figure 1. Details

The Mössbauer effect as generally applied to the study of minerals relies on the fact that 57 Fe, which is a decay product of 57 Co, is unstable. 57 Fe decays by giving off a gamma ray (γ -ray),

along with other types of energy. Figure 1 shows the nuclear decay scheme for ${}^{57}\text{Co} \rightarrow {}^{57}\text{Fe}$ and various backscattering processes for ${}^{57}\text{Fe}$ that can follow resonant absorption of an incident gamma photon, modified from DeGrave et al. (2005) and Dyar et al. (2006). If a nucleus gives off radiation or any other form of energy (in this case, in the form of a γ -ray), the nucleus must recoil (or move) with an equal and opposite momentum to preserve its energy (E), in the same way that a gun (by analogy, the nucleus) recoils when a bullet (the γ -ray) is fired out of it. We describe this general case in terms of energy by saying that:

 E_{γ} -rayemission = $E_{\text{transition}} - E_{\text{R}}$,

where

$E_{\gamma-rayemission} = the$	energy		of	the	emitted γ-ray
E _{transition} =the	energy	of	the	nuclear	transition
E_R = the energy of t	he recoil.				

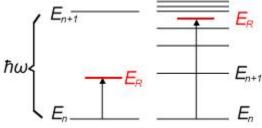
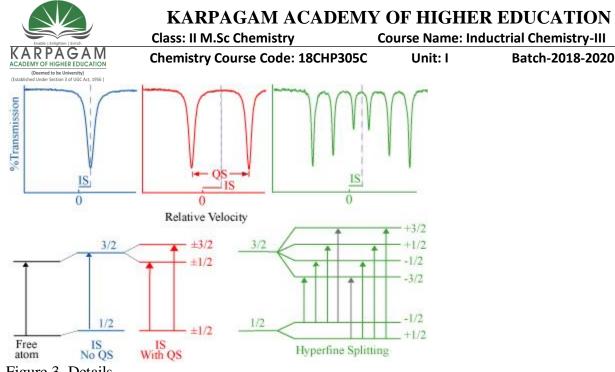
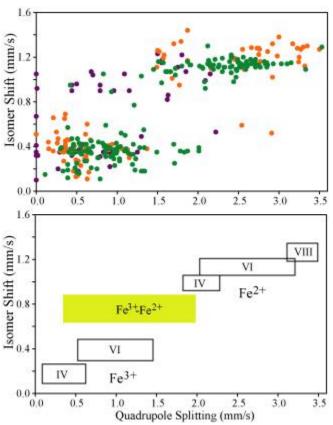
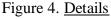


Figure 2. Details

Figure 2 shows a schematic of the vibrational energy levels in a solid. On the left, the recoil energy E_{R} of an emitted gamma photon is less than what is needed to reach the next higher energy level, so that excitation of a vibrational mode has low probability. The probability that no excitation will occur is given the symbol f, which represents the fraction of recoil-free events. A gamma ray would be emitted without losing energy to the solid, in what is called a zero-phonon transition. In other words, sometimes the nucleus absorbs the energy of the γ -ray and it doesn't recoil (instead, the entire structure, rather than just the nucleus, absorbs the energy). The variable f indicates the probability of this happening. This process of recoil-less emission forms the basis for Mössbauer spectroscopy. On the right, E_R is significantly greater in energy than the lowest excitation energy of the solid, which is E_{n+1} - E_n . Absorption of the recoil energy, E_R , by the solid thus becomes probable, and the photon emerges with energy reduced by E_R and with Doppler broadening. In the figure, ω represents frequency, and \hbar is Planck's constant divided by and This figure is adapted from May (1971) and Dyar et al. 2π. (2006).The Mössbauer effect occurs because in solids, the value of f is high enough that recoil-free absorption is possible. Thus an atom of 57 Co can decay to 57 Fe, which gives off a γ -ray, and may be absorbed without recoil by a nearby ⁵⁷Fe, which happens to have just the right splitting between the energy levels in its nucleus to absorb it. This scenario will only happen if the decaying Co atom is surrounded by the same atoms as the absorbing Fe. If the receiving Fe atoms are in a different matrix (say, in a mineral) than in the emitter, then no absorption can occur.

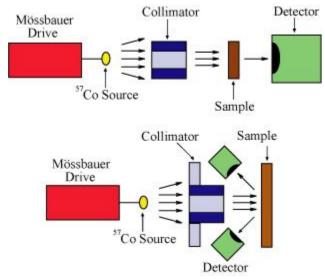


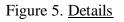

Figure 3. <u>Details</u>


When source and absorber atoms are in different local environments, their nuclear energy levels are different (Figure 3). At its simplest (blue), this appears in the transmission spectrum as a shift of the minimum away from zero velocity; this shift is generally called isomer shift (IS). The 1/2 and 3/2 labels represent the nuclear spin, or intrinsic angular moment, quantum numbers, I. Interaction of the nuclear quadrupole moment with the electric field gradient leads to splitting of the nuclear energy levels (red). For ⁵⁷Fe, this causes individual peaks in the transmission spectrum to split into doublets (red) having a quadrupole splitting of QS. When a magnetic field is present at the nucleus, Zeeman splitting takes place, yielding a sextet pattern (green); in the simplest case, the areas of the lines vary in the ratio of 3:2:1:1:2:3. For the spectrum shown, the outer lines have reduced intensity because of saturation effects. Two additional possible transitions shown in gray at lower right ($m_I = -1/2$ to +3/2 and $m_I = +1/2$ to -3/2) do not occur due to the selection rule, $|\Delta m_{\rm I}| \leq 1$. Note that the lengths of the transition arrows have been greatly shortened to allow the splittings to be seen clearly. This figure is adapted from Dyar et al. (2006). So Mössbauer spectra are described using three parameters: isomer shift (δ), which arises from the difference in s electron density between the source and the absorber, quadrupole splitting (Δ which is a shift in nuclear energy levels that is induced by an electric field gradient caused by nearby electrons, and hyperfine splitting (for magnetic materials only). Graphically, quadrupole splitting is the separation between the two component peaks of a doublet, and isomer shift is the difference between the midpoint of the doublet and zero on the velocity scale (Figure 3). Mössbauer parameters are temperature-sensitive, and this characteristic is sometimes exploited by using lower temperatures to improve peak resolution and induce interesting magnetic phenomena.

If the electrons around the Fe atom create a magnetic field, as in the case of magnetite, then the energy levels in the Fe nucleus will split to allow six possible nuclear transitions, and a sextet (six-peak) spectrum results. The positions of the peaks in the sextet defines what is called the hyperfine splitting (Hint or BHf, depending on the units used) of the nuclear energy levels.

Iron atoms in different local environments and those having different oxidation states absorb at different, diagnostic energies. A typical Mössbauer spectrum thus consists of sets of peaks (usually doublets and sextets), with each set corresponding to an iron nucleus in a specific environment in the sample (an Fe nuclear site). Different sets of peaks appear depending on what the Fe nucleus "sees" in its environment. The nuclear environment depends on a number of factors including the number of electrons (Fe⁰, Fe²⁺, Fe³⁺), the number of coordinating anions, the symmetry of the site, and the presence/absence of magnetic ordering (which may be temperaturedependent). Thus the spectrum of a given mineral may consist of a superposition of doublets and sextets.


The combination of isomer shift and quadrupole splitting parameters (along with the hyperfine field, in the case of magnetically ordered phases) is usually sufficient to identify the valence state and site occupancy of Fe in a given site and individual mineral (Figure 4). In minerals, these ranges have largely been determined empirically from Mössbauer spectra measured with use of spectrum-fitting routines commonly available to the geological community. Exact values of Mössbauer parameters are difficult to predict from theory because long-range interactions in complicated mineral structures are difficult to anticipate.


As seen in Figure 4, Fe atoms in minerals are predictably found in coordination polyhedra of

appropriate size based on radius ratios. The top half of Figure 4 plots the isomer shift and quadrupole splitting of several minerals whose iron valence state and coordination number are independently known (usually from single crystal X-ray diffraction), and the bottom of the figure shows the resultant groupings. Fe^{3+} occurs primarily in 4- or 6-coordination with oxygen, while Fe^{2+} may be rarely 4- or 5- coordinated, commonly 6-coordinated, and occasionally 8-coordinated with oxygen. Fe in 4-fold coordination with sulfur has subtly different parameters due to the effects of covalent bonding. Variations in Mössbauer parameters that are characteristic of each type of coordination polyhedron can be related to polyhedral site distortion; a thoughtful discussion of this topic can be found in Burns & Solberg (1988).

Mössbauer Spectroscopy Instrumentation - How Does It Work?

The basic elements of a Mössbauer spectrometer are a source, sample, detector, and a drive to move the source or absorber. Most commonly, this is done by moving the source toward and away from the sample, while varying velocity linearly with time. For example, for ⁵⁷Fe, moving the source at a velocity of 1 mm/sec toward the sample increases the energy of the emitted photons by about ten natural linewidths. For simplicity, "mm/sec" is the conventional "energy" unit in Mössbauer spectroscopy. It is also possible to leave the source stationary and oscillate the sample, as is done with synchrotron Mössbauer. The location of the detector relative to the source and the sample defines the geometry of the experiment (Figure 5); most commonly, either transmission or backscatter modes are used.

Applications

The combination of isomer shift and quadrupole splitting (along with the hyperfine field, in the case of magnetic phases) is used to identify the valence state and site occupancy of Fe in a given site and individual mineral (Figure 4). If the phase is magnetically ordered, additional information

in the form of a value for the magnetic field (usually given in Teslas) can help with identification of some phases.

In some cases, Mössbauer spectrometers are also used to identify minerals. This application is limited, however, by the fact that many different minerals can have site geometries that are the same, such that their Mössbauer spectra and the resultant peak parameters will also be the same. For example, the spectra of amphibole and pyroxene group minerals are all very similar, so you could not tell these minerals apart by their Mössbauer spectra alone!

Class: II M.Sc Chemistry

Course Name: Inductrial Chemistry-III Chemistry Course Code: 18CHP305C

Batch-2018-2020 Unit: I

OTHER INSTRUMENTAL METHODS 3.7

3.7.1 Atomic Force Microscopy

Atomic force microscopy (AFM) is part of a range of emerging microscopic methods for chemists and biologists that offer the magnification range of both the light and electron microscope, but allow imaging under the "natural" conditions usually associated with the light microscope. AFM offers the prospect of highresolution images of biological material, images of molecules and their interactions even under physiological conditions, and the study of molecular processes in living systems. Applications of AFM in the biosciences include analysis of (1) DNA and RNA, (2) protein-nucleic acid complexes, (3) chromosomes, (4) cellular membranes, (5) proteins and peptides, (6) molecular crystals, (7) biopolymers and biomaterials, and (8) ligand-receptor binding.

The atomic force microscope is one of about two dozen types of scannedproximity probe microscopes. All of these microscopes work by measuring a local property-height, optical absorption, or magnetism-with a probe or "tip," typically made from Si₃N₄ or Si, placed very close to the sample. The small probe-sample separation (on the order of the instrument's resolution) makes it possible to take measurements over a small area. To acquire an image, the microscope raster-scans the probe over the sample while measuring the local property in question. The resulting image resembles an image on a television screen in that both consist of many rows or lines of information placed one above the other. Unlike traditional microscopes, scanned-probe systems do not use lenses, so the size of the probe rather than diffraction effects generally limit their resolution.

The concept of resolution in AFM is different from radiation-based microscopies because AFM imaging is a three-dimensional imaging technique. There is an important distinction between images resolved by wave optics and those resolved by scanning probe techniques. The former is limited by diffraction, whereas the latter is limited primarily by apical probe geometry and sample geometry. Usually the width of a DNA molecule is loosely used as a measure of resolution, because it has a known diameter of 2.0 nm in its B form.

Class: II M.Sc ChemistryCourse Name: Inductrial Chemistry-IIIChemistry Course Code: 18CHP305CUnit: IBatch-2018-2020

Many biological processes—DNA replication, protein synthesis, drug interactions, and others—are largely governed by intermolecular forces. AFM has the ability to measure these forces, some of which may be in the nanonewton range. This makes it possible to quantify molecular interactions in biological systems such as important ligand—receptor interactions. The dynamics of many biological systems depends on the electrical properties of the sample surface, and AFM is able to image and quantify electrical surface charges. In addition to measuring binding and electrostatic forces, the atomic force microscope can also probe the micromechanical properties of biological samples. Specifically, the AFM can observe the elasticity and, in fact, the viscosity of samples ranging from live cells and membranes to bone and cartilage.

One area of significant progress for AFM has beam the imaging of nucleic acids. The ability to generate nanometer-resolved images of unmodified nucleic acids has broad biological applications. Chromosome mapping, transcription, translation, and small-molecule–DNA interactions such as intercalating mutagens provide exciting topics for high-resolution studies. The first highly reproducible AFM images of DNA were obtained only in 1991. Four major advances that have enabled clear resolution of nucleic acids are (1) control of the local imaging environment including sample modification, (2) TappingModeTM scanning techniques, (3) improved AFM probes (such as standard silicon nitride probes modified by electron beam deposition and oxide-sharpened nanoprobes), and (4) compatible substrates (such as salinized mica and carbon coated mica).

There has been recent success in imaging individual proteins and other small molecules with the AFM. Smaller molecules that do not have a high affinity for common AFM substrates have been successfully imaged by employing selective affinity binding procedures. Thiol incorporation at both the 5' and 3' ends of short PCR (polymerase chain reaction, described in Section 2.3.5) products has been shown to confer a high affinity for ultraflat gold substrates and therefore improved AFM imaging.

It is informative to compare AFM with other techniques. The scanning tunneling microscope (STM) is considered the predecessor technique to AFM. The STM may have better resolution than the AFM but can only be applied to conducting samples while AFM can be applied to both conductors and insulators. Compared with the scanning electron microscope (SEM), the AFM provides extraordinary topographic contrast, direct height measurements, and unobscured views of surface features (no coating is necessary). Compared with transmission electron microscopes, three-dimensional AFM images are obtained without expensive sample preparation and yield far more complete information than the two-dimensional profiles available

from cross-sectioned samples. New approaches in AFM have provided a solid foundation from which research is expanding into more complex analyses. Higher-resolution imaging of a variety of small molecules is improving at a rapid pace.

3.7.2 Fast and Time-Resolved Methods

3.7.2.1 Stopped-Flow Kinetic Methods. Enzyme kinetics happen on very fast time scales; for instance, it is known that the rate of reaction for copper-zinc superoxide dismutase (CuZnSOD), $\sim 1 \times 10^9 \,\text{M}^{-1} \,\text{s}^{-1}$, approaches the diffusioncontrolled rate. Chemists use various methods to study fast reactions. One of the most frequently used rapid kinetic techniques is that of stopped-flow in which the reactants (enzyme and substrate) are rapidly mixed. The lower practical limit for mixing to take place is about 0.2 ms. The stopped-flow principle of operation allows small volumes of solutions to be driven from high-performance syringes to a highefficiency mixer just before passing into a measurement flow cell. As the solutions flow through, a steady-state equilibrium is established and the resultant solution is only a few ms old as it passes through the cell. The mixed solution then passes into a stopping syringe, which then allows the flow to be instantaneously stopped. Some of the resultant solution will be trapped in the flow cell and as the reaction proceeds, the kinetics can be followed using the appropriate measurement technique. The most common method of following the kinetics is by absorbance or fluorescence spectrometry, and in these cases the measurement cell is an appropriate spectrometer flow cell. Many commercially available absorbance and fluorescence spectrometers may be modified to accept stopped-flow accessories.

KARPAGAM ACADEMY OF HIGHER EDUCATIONClass: II M.Sc ChemistryCourse Name: Inductrial Chemistry-IIIChemistry Course Code: 18CHP305CUnit: IBatch-2018-2020

In order to use the stopped-flow technique, the reaction under study must have a convenient absorbance or fluorescence that can be measured spectrophotometrically. Another method, called rapid quench or quench-flow, operates for enzymatic systems having no component (reactant or product) that can be spectrally monitored in real time. The quench-flow is a very finely tuned, computer-controlled machine that is designed to mix enzyme and reactants very rapidly to start the enzymatic reaction, and then quench it after a defined time. The time course of the reaction can then be analyzed by electrophoretic methods. The reaction time currently ranges from about 5 ms to several seconds.

3.7.2.2 *Flash Photolysis.* Time-resolved spectroscopy techniques are a powerful means of studying materials, giving information about the nature of the excitations, energy transfer, molecular motion, and molecular environment, information that is not available from steady-state measurements. Flash photolysis is a rapidly advancing field with applications in many areas of science and technology. The technique allows one to follow a reaction using fast (nanosecond to microsecond) laser excitation pulses to cause absorption in the species of interest. Following the excitation, one must use fast electronic devices to measure the light emission of absorption by the species of interest. For instance, one laboratory uses a Yag laser (266-, 355-, and 532-nm excitations) or excimer (308-nm excitation) sources with transmission (10-ns resolution) or diffuse reflectance (200-ns resolution) detection. A necessary criteria for the use of flash photolysis methods is that the molecule under study must show a detectable change upon laser excitation.

Class: II M.Sc Chemistry Course Name: Inductrial Chemistry-III

Chemistry Course Code: 18CHP305C Unit: I Batch-2018-2020

One research group used a flash-photometric method to show photochemical NO displacement by CO in myoglobin.³² Previous investigations of thermal and photochemical NO displacement by CO suggest that the local heme pocket around the ligand, although significantly altered (according to circular dichroism investigations), imposed a barrier against the outward diffusion of ligand (NO or CO) into the solvent. (Find a complete discussion of ligand attachments to hemes in myoglobin and hemoglobin in Sections 4.2, 4.3, and 4.9.) The researchers found in this case that nanosecond and picosecond flash photolysis in proteins at low pH showed an extremely efficient geminate recombination of the ligand-that is, reattachment of the ligand before its leaving the heme pocket. The process involved a four-coordinated species within the heme and took place through a singleexponential process. This occurred to a significantly larger extent for the case of NO-"chelated" protoheme (where no distal barrier for ligand is present) than for CO ligated under the same circumstances. At neutral pH, when the proximal histidine-Fe bond is intact, the geminate recombination for NO takes longer and displays multiexponential kinetics. Altogether, these results suggested that even though heme distal ligand and protein environment effects play a role in NO or CO ligation and deligation from the iron heme center, proximal ligand and protein environment effects make an important contribution in modulating ligand-iron bond formation in hemes.

3.7.2.3 *Time-Resolved Crystallography.* Time-resolved crystallography (TC) uses an intense synchrotron X-ray source and Laue data collection techniques to greatly reduce crystallographic exposure times. Normal time resolution for X-ray crystallography has been in the range of seconds or tens of seconds. TC has the potential to take snapshots of protein structural changes on a nanosecond time scale. Consequently, multiple exposures may be taken that capture the evolution of the crystallographic unit cell as it reacts over time. Traditionally, crystallographers have applied several techniques to obtain detailed structural information on reaction intermediates. The most common approach has been to design a series of stable structures that mimic normally short-lived intermediates. However, these structures

KARPAGAM ACADEMY OF HIGHER EDUCATION Class: II M.Sc Chemistry Course Name: Inductrial Chemistry-III

Chemistry Course Code: 18CHP305C Unit: I Batch-2018-2020

are stable precisely because they are not identical to the intermediates they seek to mimic, and key interactions are usually missing. Other experimental techniques and chemical intuition are called upon to supply the missing information, sometimes with only limited success. One successful attempt to understand how the attachment and release of carbon monoxide, and ultimately dioxygen, happens on a molecular scale is described in Section 4.9. In this case, Rodgers and Spiro studied the

and release of carbon monoxide, and ultimately dioxygen, happens on a molecular scale is described in Section 4.9. In this case, Rodgers and Spiro studied the nanosecond dynamics of the R to T transition in hemoglobin.³³ Using pulse-probe Raman spectroscopy, with probe excitation at 230 nm, these workers were able to model the R–T interconversion of the hemoglobin molecule as it moved from the R state (HbCO) to the T state (Hb).

Time-resolved crystallography, TC, now has the potential to offer detailed structural information on short-lived intermediates in macromolecular reactions under near-physiological, crystalline conditions, and this aids elucidation of the underlying molecular mechanisms. Interpretation of TC data has been hindered, in part due to the difficulty in extracting structural information on intermediates from time-resolved electron density maps. Under certain assumptions, these maps are weighted averages of the electron density maps of the different structural species present at the experimental time points. That is, these time-dependent electron density maps are structurally heterogeneous. Various researchers, most notably Krebs and Moffat, have proposed techniques for interpreting these maps.

KARPAGAM ACADEMY OF HIGHER EDUCATION Class: II M.Sc Chemistry Course Name: Inductrial Chemistry-III

Chemistry Course Code: 18CHP305C Unit: I Batch-2018-2020

In their 1996 *Science* article "Photolysis of the Carbon Monoxide Complex of Myoglobin: Nanosecond Time-Resolved Crystallography,"³⁴ Moffat, Wulff, and co-workers described the nanosecond time resolution of structural changes that occur in the carbon monoxide complex of myoglobin (MbCO) at room temperature on CO photodissociation by a nanosecond laser pulse. The Fe–CO bond was broken with a 10-ns laser pulse, and X-ray data sets were collected at different time delays between the laser flash and the X-ray pulse (4 ns, 1 μ s, 7.5 μ s, 50 μ s, and 1.9 ms). Although the difference maps clearly showed release of the CO molecule from the heme, they also suggested that CO recombination in the crystal form contains a fast, geminate phase with a recombination rate comparable with or greater than the maximum photolysis rate applied by the laser pulse of $10^9 \, \text{s}^{-1}$. This result

confirmed that it is much more difficult to photolyze MbCO molecules in the crystal form than in solution. A second prominent feature of the X-ray difference maps arose from the motion of the iron atom out of the heme plane and toward the proximal histidine. A third feature indicated a transient "docking site" for the photodissociated CO; however, well-populated docking sites indicating CO exit from the binding pocket were not identified. A number of small electron density features indicated structural rearrangements of aa residues surrounding the heme, especially the residues of the E and F helices implicated by other methods in heme and protein relaxation effects, and in iron ion displacement in or out of the heme plane. Their data suggested that complete iron displacement and heme relaxation occurred in <4 ns, in agreement with other spectroscopic results.

N	[[
Number of					
hydrogen					
bonds between					
adenine and					
thymine?	1	2	3	4	2
Number of					
hydrogen					
bonds between					
guanine and					
cytosine?	1	2	3	4	3
Which ratio is					
constant for					
DNA?	A + G / T + C	A + T / G + C	A + C / U + G	A + U / G + C	A + G / T + C
	The amount of	The amount of		The amount of	The amount of
	adenine and	adenine and	The amount of	adenine and	adenine and
	thymine is	guanine is	adenine and	guanine is	thymine is
. According to	equal to the	equal to the	uracil is equal	equal to the	equal to the
Chargaff's rule,	amount of	amount of	to the amount	amount of	amount of
in a DNA	guanine and	thymine and	of guanine and	uracil and	guanine and
molecule	cytosine	cytosine	cytosine	cytosine	cytosine
Arrangement				-,	
of nucleotides					X-Ray
in DNA can be		X-Ray	Light	Electron	crystallograph
seen by	Ultracentrifuge	crystallography	microscope	microscope	y
Which of the	onacentinuge	crystanography	meroscope	meroscope	у
following leads					
to disruption of					
nucleosomal			Phosphorylatio		
structure?	Acetylation	Carboxylation	n	Methylation	Methylation
One of the	Acetylation	Carboxylation	11	Wethylation	weinyiation
following					
nucleic acids					
has a left	M-RNA				
handed helix	IVI-KINA	T-RNA	A-DNA	Z-DNA	Z-DNA
Which of the	Deerethere			The aver	
following	Does not have			The sugar	
statements is	a double	The use is a is	Dees wet also	contained in	The unstant is
not true about	stranded	Thymine is	Does not obey	RNA is a	Thymine is
RNA?	structure	present	Chargaff's rule	ribose	present
Which of the		It is a	It tends to be	It has fewer	
following is	It has	permanent	found at the 3'	base pairs per	It has
true about Z-	alternating GC	conformation	end of the	turn than B-	alternating GC
DNA helix?	sequences	of DNA	genes	DNA	sequences
Which of the	The template	The two	G-C bonds are		G-C bonds are
following	strand	strands of DNA	much more	The common	much more
statements is	matches the	run parallel to	resistant to	form of DNA is	resistant to
true?	sequence of	each other	denaturation	left handed	denaturation

	the RNA		than A-T rich		than A-T rich
	transcript		regions		regions
Identify the					
purine base of					
nucleic acids in					
the following	Cytosine	Thymine	Uracil	Adenine	Adenine
Which of the					
following are					
not the					
components of	Thursing	Adamina	Cuanina	Cutacino	Thursing
RNA?	Thymine	Adenine	Guanine The bases in	Cytosine	Thymine The bases in
			nucleotides		nucleotides
			are attached	The sugar	are attached
Which of the	Sugar	Sugar	to a pentose	molecule of	to a pentose
following	component of	component of	sugar moiety	the nucleotide	sugar moiety
statements is	a nucleotide is	a nucleotide is	by a glycosidic	is in L-	by a glycosidic
true?	ribose	deoxyribose	linkage	configuration	linkage
What is the			-	a base + a	
composition of	a sugar + a	a base + a	a base + a	sugar +	a base + a
nucleoside?	phosphate	sugar	phosphate	phosphate	sugar
What is the				a base + a	a base + a
composition of	a sugar + a	a base + a	a base + a	sugar +	sugar +
nucleotide?	phosphate	sugar	phosphate	phosphate	phosphate
Group of					
adjacent	Dheanhadiaata				Dheanhadiasta
nucleotides are joined by	Phosphodieste r bond	Peptide bond	Ionic bond	Covalent bond	Phosphodieste r bond
The sugar		replide bolid			1 bond
molecule in a					
nucleotide is	Pentose	Hexose	Tetrose	Triose	Pentose
				3'-phosphate	5'-phosphate
	5'-phosphate	3'-phosphate	5'-phosphate	group of one	group of one
	group of one	group of one	group of one	nucleotide	nucleotide
	nucleotide unit	nucleotide unit	nucleotide unit	unit is joined	unit is joined
Which of the	is joined to the	is joined to the	is joined to the	to the 3'-	to the 3'-
following is	3'-hydroxyl	5'-hydroxyl	5'-hydroxyl	hydroxyl	hydroxyl
true about	group of the	group of the	group of the	group of the	group of the
phosphodiester	next	next	next	next	next
linkage?	nucleotide	nucleotide	nucleotide	nucleotide	nucleotide
Which of the	They are	At acidic or	Durinos hous	At acidic or	At acidic or
Which of the	hydrophobic	alkaline pH the bases become	Purines have	alkaline pH	alkaline pH the bases
following is false about	and relatively insoluble in	charged and	two rings in their structure,	the bases become	the bases become
purine and	water at the	their solubility	but pyrimidine	charged and	charged and
•		in water	bases have	their solubility	their solubility
pyrimidine	near-neutral	in water			THEIL SOLDONING

				decreases	decreases
Building blocks					
of nucleic acids					
are	Nucleotides	Nucleosides	Amino acids	Histones	Nucleotides
Which organic					
molecule					
below is most					
closely related					CH2 chains
to lipids?	nucleotides	amino acids	CH2 chains	-	
Which organic					
molecule					
below is most					
closely related					
to nucleic					
acids?	nucleotides	sugars	CH2 chains		nucleotides
Nucleic acids				lipids and	
include	a. glucose	glycogen	DNA and RNA	sugars.	DNA and RNA
A model of					
enzyme action	active site	activator			induced fit
is the	model	action model	induced fit model		model
Without					
enzymes, the	occur too				occur too
chemical	slowly to				slowly to
reactions in the	support life	require a	. occur at much the same rate as		support life
body would	processes	different pH	they do with enz	zymes	processes
Enzymes that					
break down					
DNA catalyze					
the hydrolysis					
of the covalent					
bonds that join					
nucleotides	The				The
together. What					The
would happen to DNA	phosphodieste r bonds	The two			phosphodiest er bonds
molecules	between	strands of the			between
treated with	deoxyribose	double helix	The pyrimidines	would be	deoxyribose
these	sugars would	would	separated from		sugars would
enzymes?	be broken	separate	sugars.		be broken
Choose the pair		Separate	Sugars.		
of terms that					
correctly					
completes this					
sentence					
Catabolism is					
to anabolism as	exergonic;				exergonic;
is to .	endergonic	work; energy	free energy; ent	rony	endergonic
is to	endergonic	work, energy	I HEE CHEISY, EIIL	тору	endergonic

	Γ	Γ		1
If an enzyme				
solution is				
saturated with				
substrate, the				
most effective				
way to obtain				
an even faster		heat the		
yield of	add more of	solution to		add more of
products is to	the enzyme	90°C	add an allosteric inhibitor	the enzyme
If an enzyme is				
added to a				
solution where				
its substrates				
and products	The reaction			
are in	would change			Nothing; the
equilibrium,	from	Additional		reaction
what would	endergonic to	product would	Nothing; the reaction would	would stay at
occur	exergonic	be formed	stay at equilibrium	equilibrium
	exergonic		σταγ αι εφαπιστιατί	equilibriulli
		. In DNA,		
		adenine pairs		
Which of these		with guanine;		DNA contains
is a difference	DNA contains	in RNA,	DNA consists of five different	thymine; RNA
between DNA	thymine; RNA	adenine pairs	nucleotides; RNA consists of	contains
and RNA?	contains uracil.	with thymine	four different nucleotides	uracil.
What name is				
given to the				
reactants in an				
enzymatically				
catalyzed				
reaction	producto	cubstrata	EA	cubstrata
	products	substrate	EA	substrate
Which of the				
following are				
nitrogenous				
bases of the	thymine and	cytosine and	guanine and adenine	cytosine and
pyrimidine type	guanine	uracil		uracil
Which of the				
following are				
nitrogenous				
bases of the	guanine and	uracil and		guanine and
purine type	adenine	cytosine	cytosine and guanine	adenine
	adennie	Cytosine		adenne
A double-				
stranded DNA				
molecule				
contains a total	240 adenine	. 120 thymine		120 thymine
of 120 purines	and 240	and 120		and 120
and 120	cytosine	adenine	240 guanine and 240 thymine	adenine
pyrimidines.	molecules	molecules	molecules	molecules

This DNA						
This DNA						
molecule could						
be comprised						
of						
. In the double						
helix structure						
of nucleic						
acids, cytosine						
hydrogen						
bonds to	ribose.	guanine	adenine		guanine	
					complementar	
. The structural					y pairing of	
feature that	twisting of the	sugar-			the	
allows DNA to	molecule to	phosphate	complementary	pairing of the	nitrogenous	
replicate is the	form an á helix	backbone	nitrogenous base	es	bases	
Which of the						
following						
describe(s)	synthesis of	breakdown of	control of			
some aspect of	macromolecul	macromolecul	enzyme			
metabolism?	es	es	activity	all the above	all the above	
Which term				•		
most precisely						
describes the						
cellular process						
of breaking						
down large						
molecules into						
smaller ones?	catalysis	catabolism	anabolism		catabolism	
	,	systems rich in				
		, energy are				
	the universe	intrinsically				
. According to	loses energy	, unstable and	energy can be		energy can be	
the first law of	because of	will give up	neither		neither	
thermodynami	heat	energy with	created nor		created nor	
cs	production	time	destroyed	A and B only	destroyed	
. How can one			,	,	,	
increase the						
rate of a		Increase the				
chemical		entropy of the	Decrease the cor	ncentration of		
reaction?	Add a catalyst	reactants	the reactants		Add a catalyst	
Which						
structural						
feature is						
shared by both	Both contain	Both contain			Both contain	
uracil and	two keto	one methyl	Both contain a fi	ve-membered	two keto	
thymine	groups	group	ring	ve membered	groups	
			-	vrimidino		
Which	Both contain a	Both contain a	Both contain a pyrimidine Both contain a			

component is	pyranose	1,1'-N-			3'-OH group
found in both	.,	glycosidic bond			0 1
adenosine and					
deoxycytidine					
, ,		Both contain			
Which property	Both contain	the same			
is shared by	the same	number of			Both contain
both GDP and	charge at	phosphate			the same
AMP?	neutral pH	groups.	Both contain the	same purine.	furanose.
	Both contain	0 1	Both exist in		
Which	two	Both can form	planar	Both exist as	Both can form
characteristic is	heterocyclic	multiple non-	configurations	neutral	multiple non-
shared by	, rings with	covalent	with a	zwitterions	covalent
, purines and	aromatic	hydrogen	hemiacetal	under cellular	hydrogen
, pyrimidines?	character	bonds.	linkage.	conditions	bonds.
	Both contain a	Both contain a		Both contain	Both contain
Which property	nitrogenous	covalent	Both contain	an aldose with	an anomeric
is found in	base, a	phosphodister	an anomeric	hydroxyl	carbon atom
nucleosides	pentose, and	bond that is	carbon atom	groups that	that is part of
and	at least one	broken in	that is part of a	can	a β-N-
nucleotides?	phosphate	strong acid	β-N-glycosidic	tautomerize	glycosidic
Which	· ·				
characteristic is					
shared by both	Both contain				
adenine and	one methyl	Both are	Both contain	Both are	Both are
cytosine?	group	anomeric	one keto group	heterocyclic	heterocyclic
Which					
component is					
found in both		Both contain			Both contain
guanosine and	Both contain	three hydroxyl	Both contain a	Both contain a	three hydroxyl
uridine	an aldohexose	groups	1′,9 - bond	pyranose	groups.
Which property		Both contain	Both contain a		Both contain a
is shared by	Both contain	the same	planar six-	Both contain	planar six-
both CTP and	the same	charge at	membered	phosphodiest	membered
dTDP?	sugar.	cellular pH	ring	er bonds	ring
	They both				
	have aromatic	They both are	They both	They both can	They both can
Which	rings that	weak bases	have multiple	form stable N-	form stable N-
characteristic is	undergo	that can be	pKa values that	glycosidic	glycosidic
found in both	substantial	positively	result in	bonds with β	bonds with β
purines and	tautomerizatio	charged at	zwitterion	D-	D-
pyrimidines?	n at nuetral pH	neutral pH	form	ribofuranose.	ribofuranose.
Which is a			Both contain a		
general	Both contain a	Both contain at	nitrogenous	Both contain a	Both contain a
property of	pentose in the	least one 5'-	base that	hemiacetal or	pentose in the
both	form of a	phosphate	forms covalent	hemiketal	form of a
nucleosides	furanose	group	H-bonds	bond	furanose

and					
nucleotides?					
nucleotides:		Each 3',5'-			Each 3',5'-
		phosphodieste			phosphodiest
	It can have a	r bond will	It can have one	Each purine	er bond will
Which	negatively-	contain one	end with a 5'-	and	contain one
structural	charged	phosphate	phosphate	pyrimidine will	phosphate
feature is	backbone	group linking	group while	be paired with	group linking
found in the	composed of	two	the other end	a	two
single-stranded	nitrogenous	deoxyribose	has a 2'-	a complementar	deoxyribose
DNA molecule?	bases	sugars	hydroxyl group	y base	sugars
	50303	If the single-	If the single-	If the single-	If the single-
	If the single-	stranded	stranded	stranded	stranded
	stranded	molecule has	molecule has	molecule has	molecule has
	molecule has	the sequence	the sequence	the sequence	the sequence
	the sequence	5'-(GATC)10,	5'-(CTGA)10,	5'-(TGAC)10,	5'-(ATGC)10,
Which is a	5'-(ATGC)10,	then its	then its	then its	then its
possible	then it double-	double-	double-	double-	double-
sequence and	stranded form	stranded form	stranded form	stranded form	stranded form
structure for	could assume a	could assume	could assume	could assume	could assume
this DNA	Z-DNA	an H-DNA	a hairpin	a cruciform	a Z-DNA
molecule?	structure	structure	structure	structure	structure.
Which					
characteristic					
does this				There are	
double-	The two			both covalent	Every base-
stranded	strands will	The helix will	Every base-	and non-	pair will
molecule have	have parallel	be right-	pair will	covalent	contain one
when it forms a	orientation	handed with	contain one	bonds	purine and
B- DNA	and identical	12 base-pairs	purine and one	between the	one
structure?	sequences.	per turn	pyrimidine	two chains	pyrimidine
Which of the					
following					
double-					
stranded DNA					
molecules					
would					
denature at a					
lower					
temperature					
than the 40	a 40 hass main	a 20 hace weite	a 20 hass main	a 10 hars main	a 10 hass ratio
base-pair	a 40 base-pair	a 30 base-pair	a 20 base-pair	a 10 base-pair	a 10 base-pair
double-	molecule in	molecule in	molecule in	molecule in	molecule in
stranded	which 25% of	which 40% of	which 10% of	which 20 % of	which 20 % of
molecule	the bases are	the bases are	the bases are	the bases are	the bases are
described	adenines	guanines	thymines	cytosines	cytosines
Which	Both will have	Both will	Both will be	Both will	Both will have

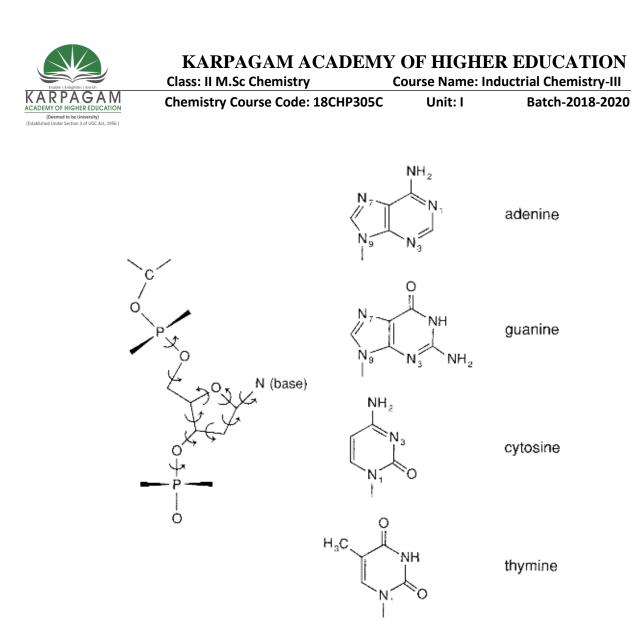
characteristic	secondary	contain	degraded by	contain four	secondary
will this	structure	inverted	base	types of base-	structure
double-		repeats		pairs	
stranded DNA					
molecule share					
with a double-					
stranded RNA					
molecule of the					
same size?					
	The single-	The single-			The single-
	stranded chain	stranded chain			stranded
Which will be a	will contain	will contain			chain will
characteristic	both ribose	both purines	The single-strand		contain one
of this one	and	and	contain one 5'-e	nd and one 3'-	5'-end and
single strand?	deoxyribose	pyrimidines	end	1	one 3'-end
Which of the					
following					
double-					
stranded DNA					
molecules					
would					
denature at					
aboutthe same					
temperature as					
the double-					
stranded				a molecule	a molecule
molecule	a molecule		a molecule	which	which
containing a 5'-	which contains	a molecule	which contains	contains a	contains a
(GA)20-3'	a (GC)20	which contains	a (GACT)10	(GGGA)10	(GACT)10
strand	strand	a (TA)20 strand	strand	strand	strand
Which					
characteristic					
will be shared					
when					
comparing the					
single 5'-					
(GA)20-3'					
strand to					
another single-					
stranded DNA		Both can form	Both could		
molecule with	Both contain a	the same	hybridize to	Both will have	Both will have
the sequence	palindromic	secondary	the same RNA	the same	the same
5'-(AT)20-3'?		structures	molecule	overall charge	overall charge
	sequence. a linear DNA	Suucluies	molecule	a circular RNA	a linear DNA
A new virus,		a linear DNA	a circular DNA		
virus X, is	molecule	a linear RNA	a circular DNA	molecule with	molecule
isolated and	containing	molecule	molecule	a molecular	containing
studied. Which	10,000 base-	containing	containing	weight of 10	10,000 base-
molecule is	pairs	plasmids	nucleosomes	billion	pairs

most likely to					
Which are			It is circular		
characteristics			and	It is linear and	
of bacterial	It is double-	It is single-	compacted	attached to a	It is double-
genetic	stranded and	stranded and	into	protein	stranded and
material?	supercoiled.	relaxed	palindromes	scaffold	supercoiled.

Course Name: Inductrial Chemistry-III

Chemistry Course Code: 18CHP305C Unit: I Batch-2018-2020

UNIT-I


Class: II M.Sc Chemistry

Binding of Metal Ions and Complexes to Biomolecules: Nucleic acid structures - fundamental interactions with nucleic acids - binding interactions of tris(phenanthroline) metal complexes with DNA - techniques to monitor binding - applications of metal complexes that bind to nucleic acids -biopolymer promoted metal ligand interactions.

A. Nucleic-Acid Structures¹

Figure 8.1 displays a single deoxyribonucleotide and the four different nucleicacid bases. As may be evident, each mononucleotide along a nucleic-acid polymer contains a variety of sites for interactions with metal ions, from electrostatic interactions with the anionic phosphate backbone to soft nucleophilic interactions with the purine heterocycles. The different nucleic-acid bases furthermore offer a range of steric and electronic factors to exploit. Coordination of a metal complex to the N7 nitrogen atom of a purine, for example, would position other coordinated ligands on the metal center for close hydrogen bonding to the O6 oxygen atom of guanine, but would lead to clashes with the amine hydrogen atoms of adenine.

The monomeric units strung together in a polynucleotide furthermore provide an array of polymeric conformers. Figure 8.2A (See color plate section, pages C-14, C-15.) shows three crystallographically characterized structures of double-helical DNA oligonucleotides,²⁻⁴ Figure 8.2B a schematic illustration of other conformations of DNA, and Figure 8.2C the crystal structure ⁵ of yeast tRNA^{Phc}. In double-helical DNA,¹ the two antiparallel polynucleotide strands

Figure 8.1

Illustration of a mononucleotide unit. Arrows indicate the various torsional angles within each unit that together generate the wide range of conformations available in the polymer. Also shown are the individual bases as well as the commonly employed numbering scheme.

are intertwined in a helix, stabilized through Watson-Crick hydrogen bonding between purines and pyrimidines, and through π - π stacking interactions among the bases arranged in the helical column. There are electrostatic repulsions between the anionic phosphate backbones of the polymer, causing a stiffening; each double-helical step has two formal negative charges. An atmosphere of metal ions condensed along the sugar-phosphate backbone serves partially to neutralize these electrostatic interactions. In the B-DNA conformation, the bases

Course Name: Inductrial Chemistry-III

Chemistry Course Code: 18CHP305C Unit: I Batch-2018-2020

are stacked essentially perpendicular to the helical axis, and the sugars are puckered in general, with a C2'-endo geometry (the C2' carbon is to the same side as the C5' position relative to a plane in the sugar ring defined by the C1', C4', and O atoms). This conformer yields a right-handed helix with two distinct, well-defined grooves, termed the major and minor. The A-form helix, while still right-handed, is distinctly different in structure. The sugar rings are puckered generally in the C3'-endo conformation, causing the bases to be pushed out from the center of the helix toward the minor groove, and tilted relative to the helix perpendicular by almost 20°. What results is a shorter and fatter helix than the B-form; the helical pitch is 28.2 Å in A-DNA for an 11-residue helix and 33.8 Å for a 10-residue helix in B-DNA. The A-form helical shape is best characterized by the very shallow minor groove surface; what was the major groove in the B-form has been pulled deeply into the interior of the A-conformer

Class: II M.Sc Chemistry

and is really not accessible to binding by small molecules in solution. Transitions to the A-conformation are promoted by hydrophobic solvents or solutions of high ionic strength. The Z-conformation is perhaps most distinctive, owing to its left-handed helicity.⁴ The conformer was dubbed Z-DNA because of the zig-zag in the helix. Alternations both in sugar puckering, between C2'-endo and C3'-endo, and in the rotation of the base about the glycosidic bond, anti or syn relative to the sugar, are evident, and lead to a dinucleoside repeating unit versus a mononucleoside repeat in the A- and B-helices. Alternating purinepyrimidine sequences have the highest propensity to undergo transitions into the Z-form. It is actually this syn conformation of purines that leads to the lefthanded helicity of the polymer. But it is not only its left-handedness that distinguishes the Z-conformation. The polymer is long and slender (the pitch is 45 Å for a 12-residue helix), and the major groove is a shallow and wide, almost convex, surface, whereas the minor groove is narrowed into a sharp and small crevice.

Even less defined structurally are other conformations of DNA, some of which are illustrated schematically in Figure 8.2B (see color plate section, page C-15). Double-helical DNA can bend,⁶ form loops and cruciforms,⁷ and fold back on itself into intramolecular triple helices, termed H-DNA.⁸ At the ends of chromosomes, four strands may even come together in a unique conforma-

Course Name: Inductrial Chemistry-III Chemistry Course Code: 18CHP305C Batch-2018-2020 Unit: I

of chromosomes, four strands may even come together in a unique conformation. These structures, characterized thus far by means of biochemical techniques, arise because of sequence and local torsional stress, or supercoiling. Many of these structures are stabilized by the binding of highly charged metal ions, probably because the highly charged metal center in a small volume can neutralize the electrostatic repulsions between polyanionic strands that are bundled together. Metal complexes can furthermore be extremely useful in targeting and characterizing these structures, as we will see. In chromosomes the DNA is packaged by histone proteins into even tighter bundles, with helical segments wrapped about the basic proteins to form superhelical nucleosomal units which are then arranged like beads on a string of more loosely packed DNA.9

Class: II M.Sc Chemistry

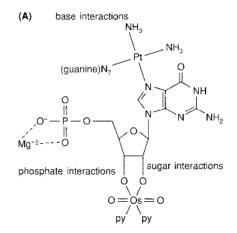
This complexity in DNA structure is in fact small compared to that of RNA. Figure 8.2C (see color plate section, page C-15) shows the first crystallographically characterized structure⁵ of an RNA polymer, yeast tRNA^{Phe}. Ostensibly single-stranded RNAs do not exist as random coils, but instead fold up into well-defined three-dimensional structures, much like proteins. The structural variety, of course, bears some resemblance to that found in DNAs. Double-helical regions in the tRNA are A-like in conformation; helices fold together as one might imagine to occur in cruciforms, and even triple-helical segments are evident where three strands fold together in the polymer. But overall our ability to characterize structures of RNA thus far is lower than that with DNAs. RNAs are less stable in solution than is DNA, and fewer chemical as well as enzymatic tools are available for structural characterization. Yet the recent discovery of ribozymes,¹⁰ the finding that RNAs can indeed catalyze nucleolytic reactions, makes our need to understand these structures even greater. Again transitionmetal chemistry may participate in stabilizing, promoting, and probing these structures.

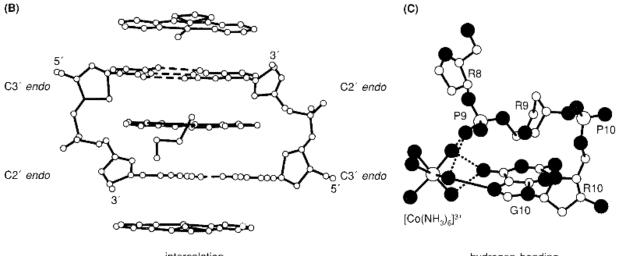
B. Fundamental Interactions with Nucleic Acids

Metal ions and complexes associate with DNA and RNA in a variety of ways, as illustrated in Figure 8.3. Both strong covalent interactions and weak noncovalent complexes are observed.¹¹ Each may yield a significant perturbation in the nucleic acid and/or may be exploited to obtain a site-specific response. Clearly there are some general guidelines, based on principles of coordination chemistry, that may be helpful in sorting out these interactions.

1. Coordination

Most prevalent among covalent complexes with DNA are those involving coordination between soft metal ions and nucleophilic positions on the bases. The structure ¹² of cis-(NH₃)₂Pt-dGpG is an example: its platinum center coordinates to the N7 position of the guanine bases. In terms of interactions with the full polynucleotide, it is likely that the *cis*-diammineplatinum center, with two coordination sites available, would yield an intrastrand crosslink between neighboring guanine residues on a strand (see Chapter 9). Other nucleophilic sites targeted by soft metal ions on the bases include the N7 position of adenine, the N3 position on cytosine, and the deprotonated N3 position on thymine and uracil.^{12,13} Some additional covalent binding to the N1 positions of the purines has also been observed. Indeed, coordination by the metal to one site on the heterocyclic base lowers the pK_a and increases the metal-binding affinity to secondary sites. It is noteworthy, however, that in base-paired double-helical DNA only the N7 positions on the purines are easily accessible in the major groove of the helix. Base binding at the purine N7 position is, of course, not limited to soft metal ions such as Pt(II), Pd(II), and Ru(II). Coordination at these sites has been evident also with first-row transition-metal ions such as Cu(II) and Zn(II).¹³ For these, as is consistent with basic coordination chemistry, the lability of complexes formed is higher.


Transition-metal ions with decreasing softness are capable of coordinating also to the phosphate oxygen atoms. The ionic versus covalent character of these complexes clearly depends on the metal ions involved. In a classic study, examining the melting temperature of double-helical DNA in the presence of dif-



Class: II M.Sc Chemistry Chemistry Course Code: 18CHP305C

Course Name: Inductrial Chemistry-III Unit: I

Batch-2018-2020

intercalation

hydrogen bonding

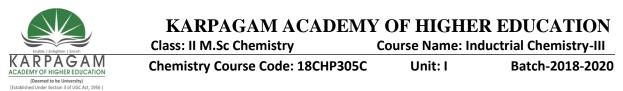
2. Intercalation and hydrogen bonding

But important interactions of metal complexes with polynucleotides are not restricted to those involving direct coordination of the metal center to the polymer. Instead, an abundance of highly selective interactions arise from an ensemble of weaker noncovalent interactions between the ligands of coordinatively saturated metal complexes and the nucleic acid. Two primary examples of noncovalent association are given by metallointercalation and hydrogen-bonding interactions of coordinated ligands.^{17,18} Planar aromatic heterocyclic ligands such as phenanthroline and terpyridine can stack in between the DNA base pairs, stabilized through dipole-dipole interactions. Here, depending on the complex and its extent of overlap with the base pairs, the free energy of stabilization can vary from ~ 2 to 10 kcal. Nonintercalative hydrophobic interactions of coordinated ligands in the DNA grooves also can occur, as we will see. Hydrogenbonding interactions of coordinated ligands with the polynucleotide are quite common, and arise in particular with the phosphate oxygen atoms on the backbone. With cobalt hexaammine, for example, hydrogen bonding to an oligonucleotide occurs between the ammine hydrogens and both phosphate oxygen atoms and purine bases.¹⁹

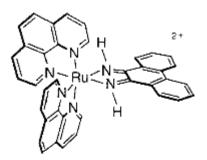
A mix of covalent and noncovalent interactions is also possible. With *cis*diammineplatinum(II) coordinated to the guanine N7 position, the ammine ligands are well-poised for hydrogen-bonding interactions with the phosphate backbone.¹² The steric constraints on the molecule must be considered, however. With Pt(terpy)Cl⁺, both intercalation of the terpy ligand and direct coordination of the platinum center (after dissociation of the coordinated chloride) are available, but not simultaneously; coordination of the platinum to the base would likely position the terpyridyl ligand away from the base stack in the DNA major groove, precluding intercalation.²⁰ Sigel and coworkers²¹ have studied the thermodynamics of noncovalent interactions coupled to direct coordination of simple first-row transition-metal complexes with mononucleotides, and these results illustrate well the interplay of weak noncovalent interactions and direct coordination in generating geometric specificity in complex formation.

Class: II M.Sc ChemistryCourse Name: Inductrial Chemistry-IIIChemistry Course Code: 18CHP305CUnit: IBatch-2018-2020

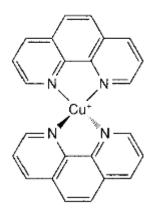
III. A CASE STUDY: TRIS(PHENANTHROLINE) METAL COMPLEXES


Now we may examine in detail the interaction of one class of metal complexes with nucleic acids, how these complexes bind to polynucleotides, the techniques used to explore these binding interactions, and various applications of the complexes to probe biological structure and function. Tris(phenanthroline) metal complexes represent quite simple, well-defined examples of coordination complexes that associate with nucleic acids. Their examination should offer a useful illustration of the range of binding modes, reactivity, techniques for study, and applications that are currently being exploited and explored. In addition, we may contrast these interactions with those of other transition-metal complexes, both derivatives of the tris(phenanthroline) family and also some complexes that differ substantially in structure or reactivity.

A. Binding Interactions with DNA


Tris(phenanthroline) complexes of ruthenium(II), cobalt(III), and rhodium(III) are octahedral, substitutionally inert complexes, and as a result of this coordinative saturation the complexes bind to double-helical DNA through a mixture of noncovalent interactions. Tris(phenanthroline) metal complexes bind to the double helix both by intercalation in the major groove and through hydrophobic association in the minor groove.^{11b,40} Intercalation and minor groove-binding are, in fact, the two most common modes of noncovalent association of small molecules with nucleic acids. In addition, as with other small molecules, a non-specific electrostatic interaction between the cationic complexes and the DNA polyanion serves to stabilize association. Overall binding of the tris(phenanthroline) complexes to DNA is moderate (log K = 4).⁴¹

The tris(phenanthroline) complexes represented


the first examples of "three-dimensional intercalators" and illustrated that octahedral metal complexes could also intercalate into the helix.^{40,45,46} Here one can consider the partial intercalation of one ligand into the helix, providing the remaining ligands on the complex an opportunity to enhance specificity or reactivity at a given site.

Curiously, one unique and apparently general characteristic of metallointercalators is their preference for intercalation from the *major groove* of the helix. Most small molecules associate with DNA from the minor groove, but metallointercalators, both those that are square planar, such as (terpyridyl)platinum(II) complexes, and those that are octahedral, such as the tris(phenanthroline) metal complexes, appear to intercalate into the major groove. This then mimics quite well the association of much larger DNA-binding proteins with the helix; DNA regulatory proteins generally appear to target the major groove. The reason why metallointercalators favor major groove association is still unclear.

[Ru(phen)₂ phi]²⁺

Cu(phen)₂+

Class: II M.Sc ChemistryCourse Name: Inductrial Chemistry-IIIChemistry Course Code: 18CHP305CUnit: IBatch-2018-2020

Figure 8.8

Some metal complexes that bind DNA noncovalently primarily through intercalation (top) or binding in the minor groove (bottom). Some metalloporphyrins also primarily associate via intercalation.

The tris(phenanthroline) metal complexes themselves do not offer an illustration of hydrogen-bonding interactions with the helix, since these ligands lack hydrogen-bonding donors and acceptors, but as mentioned already, hydrogen bonding of coordinated ligands to the helix can add some measure of stabilization, comparable to, but likely no greater in magnitude than, that provided by intercalative stacking, hydrophobic, or dispersive interactions. Indeed, mixedligand derivatives of the phenanthroline complexes have been prepared that include hydrogen-bonding groups (amides, hydroxyls, and nitro substituents) on the ancillary phenanthroline ligands, and these have shown no greater avidity for double-helical DNA than their counterparts with hydrophobic substituents.⁴² A large number of weak hydrogen-bonding interactions to DNA by one complex can be stabilizing, however, as with, for example, hexaamminecobalt(III) or hexaaquoterbium(III).

Tris(phenanthroline) metal complexes also do not offer an opportunity to explore covalent binding interactions with the helix in greater detail, but these interactions are, in fact, a major focus of Chapter 9, concerned with the mode of action of cisplatin. One derivative of the tris(phenanthroline) series, $Ru(phen)_2Cl_2$, has been shown to bind to DNA covalently.⁴⁸ In aqueous solution the dichlororuthenium(II) complex undergoes hydrolysis to form an equilibrium mixture of bis(phenanthroline) diaquo and chloroaquo species. These species bind covalently to DNA, with preferential reactivity at guanine sites. It is interesting that the same structural deformations in the DNA evident upon binding *cis*-diammineplatinum units become apparent upon coordination of bis(phenanthroline)ruthenium(II). It is also noteworthy that the chiral preference in coordination is for the Λ -isomer. As with groove binding, direct coordination to base positions requires a complementary symmetry, with the the Λ -isomer reaffirms that, rather than noncovalent intercalation (which would favor the Δ -

isomer), covalent binding dominates the interaction. The energetic stabilization in direct coordination of the ruthenium(II) center is certainly more substantial than the weaker stabilization derived from intercalation. Rh(phen)₂Cl₂⁺ and its derivatives have also been shown to bind covalently to DNA but only upon photoactivation, since light is needed to promote dissociation of the coordinated chloride and substitution of the nucleic acid base as a ligand.⁴⁹

Course Name: Inductrial Chemistry-III

Unit: I

Batch-2018-2020

B. Techniques to Monitor Binding

Many of the same techniques employed in studying the basic chemistry of coordination complexes can be be used in following the binding of transition-metal complexes to nucleic acids, but biochemical methods, with their often exquisite sensitivity, become valuable aids as well in defineating specific binding interactions. Tris(phenanthroline) metal complexes are particularly useful to illustrate this point, since here the metal center in the complex is selected in terms of the technique used for examination.

Coordination complexes are often visibly colored, and these colorations provide a useful and sensitive spectroscopic handle in following fundamental reactions. This notion holds as well with tris(phenanthroline) metal complexes in their interactions with nucleic acids. $Ru(phen)_3^{2+}$ and its derivatives are highly colored because of an intense metal-to-ligand charge-transfer band ($\lambda_{max} = 447$ nm, $\epsilon = 1.9 \times 10^4$ M⁻¹cm⁻¹). Furthermore, the complexes are highly photoluminescent ($\lambda_{em} = 610$ nm, $\tau = 0.6 \ \mu s$ in aerated aqueous solution). On binding

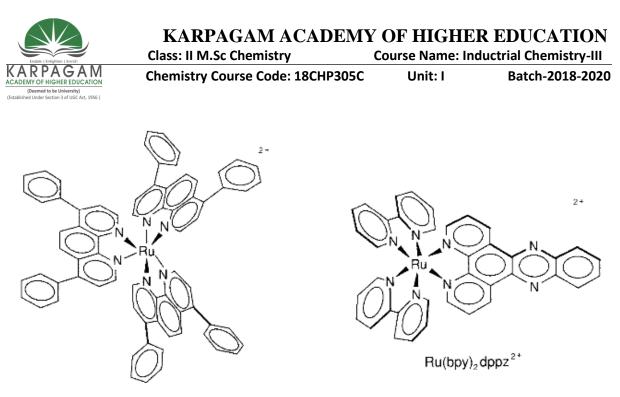
to nucleic acids these transitions are perturbed. Hypochromism is observed in the charge-transfer band, and intercalation leads to an increase in lifetime of the charge-transfer excited state.43,46 Indeed, single-photon counting experiments show a biexponential decay in emission from Ru(phen)32+ bound to double-helical DNA. The longer-lived component ($\tau = 2 \ \mu s$) has been assigned as the intercalated component and the shorter-lived 0.6 μ s component has been attributed to a mixture of free and groove-bound species. These spectroscopic perturbations permit one to define equilibrium-binding affinities for the different components of the interaction as a function of metal-center chirality and under different solution conditions.⁴¹ One can also follow the polarization of emitted

light from the complexes after excitation with polarized light, and these studies have been helpful in describing the dynamics of association of the complexes on the helix.^{41,43} Mixed-ligand complexes of ruthenium(II) show similar spectroscopic perturbations, and these have been used to characterize binding affinities and chiral preferences, as well as the extent of intercalation versus groove binding as a function of ligand substitution on the metal center.⁴² The spectroscopic handle of the metal center therefore affords a range of experiments to monitor and characterize the binding of the metal complexes to polynucleotides.

There are numerous other classic techniques of inorganic chemistry that have been or could be applied in studying the binding of metal complexes to nucleic acids. Coordination complexes have invariably been used in x-ray diffraction experiments because of the high electron density of the metal center. The tris(phenanthroline) metal complexes have not yet been applied in this context. but, as mentioned already, platinum metallointercalators were examined by fiber diffraction to delineate intercalation requirements. In fact, many nucleic-acid crystal structures have required specific metal ion additions for isomorphous heavy-metal derivatives to solve the structure. Such has certainly been true for the crystal structure of tRNA Phe, where heavy-metal ions such as platinum, osmium, and mercury were targeted to specific base positions, and lanthanide ions were used to label phosphate positions around the periphery of the molecule.53 Other techniques can also be exploited to monitor and characterize binding. A recent novel illustration is one from electrochemistry, which has been applied in monitoring the binding of $Co(phen)_3^{3+}$ to DNA.⁵⁴ Surely other techniques, from EXAFS to scanning tunneling microscopy, will be exploited in the future.

IV. APPLICATIONS OF DIFFERENT METAL COMPLEXES THAT BIND NUCLEIC ACIDS

Both the spectroscopy and the chemical reactivity of transition-metal complexes, coupled to biochemical assays, can therefore be exploited to obtain a wide range of useful reagents to probe nucleic acids. Here some specific applications are described.


Chemistry Course Code: 18CHP305C Unit: I

A. Spectroscopic Probes

As discussed above, the tris(phenanthroline)ruthenium(II) complexes offer a novel spectroscopic probe of nucleic acids, since their luminescence is increased upon intercalation into the double helix. As a result the complexes provide a simple luminescent stain for DNA in fluorescent microscopy experiments. More interesting, perhaps, is the conformational selectivity of derivatives of tris(phenanthro-

line)ruthenium. $\text{Ru}(\text{DIP})_3^{2+}$ (DIP = 4,7-diphenyl-1,10-phenanthroline) shows enantiospecificity in binding to B-form DNA.⁴⁰ Because of the steric bulk of the phenyl rings, detectable binding is seen only with the Δ -isomer in a righthanded helix; no binding is evident with the Λ -isomer. But with the left-handed Z-form helix, both isomers bind avidly.^{40,58} The shallow left-handed major groove can accomodate the two enantiomers. A left-handed but more B-like helix shows selectivity instead for the Λ -isomer. Spectroscopic experiments that measure the chiral selectivity of $\text{Ru}(\text{DIP})_3^{2+}$ isomers in binding to a given DNA then provide a novel probe for helical handedness. Indeed, Λ -Ru($\text{DIP})_3^{2+}$ was the first spectroscopic probe for Z-DNA (or other alternate conformations that are sufficiently unwound to permit binding by the bulky left-handed isomer).⁵⁸

Both simpler bipyridyl and phenanthroline derivatives as well as dppz complexes of ruthenium are currently being tethered onto other DNA binding moieties, in particular onto oligonucleotides, so as to develop new, nonradioactive luminescent probes for DNA sequences. These transition-metal complexes may provide the basis for the development of new families of DNA diagnostic agents, and many industrial laboratories are currently exploring routes to accomplish these goals. Figure 8.12 illustrates Λ -Ru(DIP)₃²⁺ and Ru(bpy)₂dppz²⁺, two complexes whose luminescence properties can be employed to probe nucleic acids.

 Λ -Ru(DIP)₃²⁺

Figure 8.12

Two spectroscopic probes of nucleic acids: Λ -Ru(DIP)₃²⁺ and Ru(bpy)₂dppz²⁺.

B. Metallofootprinting Reagents

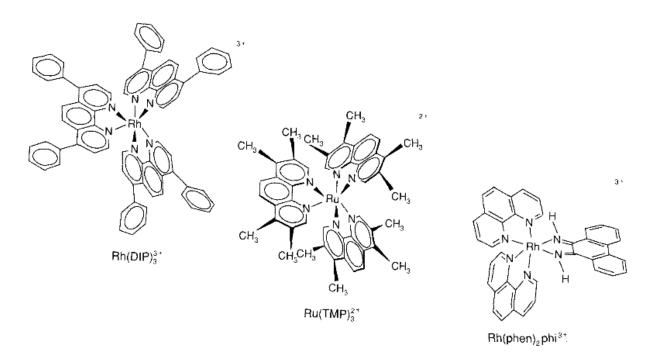
Probably the most widespread application of metal nucleic-acid chemistry in the biology community has been the utilization of metal complexes for chemical footprinting. The footprinting technique (Figure 8.11) was developed by biologists⁶² as a means of locating protein-binding sites on DNA.³²P-end-labeled double-stranded DNA fragments could be digested with a nuclease, such as DNAse, in the presence or absence of DNA-binding protein. After electrophoresis of the denatured digests and autoradiography, one would find a "foot-print," that is, the inhibition of cleavage by DNAse, at the spot bound by protein, in comparison to a randomly cleaved pattern found on the DNA in the absence of binding protein. Although DNAse is still widely used, this footprinting reagent has some disadvantages: (i) the nuclease is not sequence-neutral in its cleavage, resulting in lots of noise in the footprinting background; and (ii) since the nuclease is itself a large protein, its ability to provide high-resolution footprinting patterns of smaller molecules is quite limited.

Inorganic photochemistry has also been applied in developing metal complexes as photofootprinting reagents. Uranyl acetate, for example, at high concentrations, upon photolysis, promotes DNA cleavage.⁶⁶ It is thought that the ions interact with the phosphates, generating some excited-state radical chemistry, although no detailed characterization of this chemistry has been undertaken.

C. Conformational Probes

Metal complexes are also finding wide application in probing the local variations in conformation that arise along nucleic-acid polymers. X-ray crystallography has been critical in establishing the basic conformational families of doublehelical DNA, and to some extent how conformations might vary as a function of nucleic-acid sequence. Yet many conformations have still not been described to high resolution, and only a few oligonucleotides have been crystallized. Other techniques are therefore required to bridge the small set of oligonucleotide crystal structures that point to plausible structures and the large array of structures that arise as a function of sequence on long helical polymers. Furthermore, only a very small number of RNA polymers has been characterized crystallographically; hence other chemical methods have been needed to describe the folding patterns in these important biopolymers. Metal complexes, mainly through specific noncovalent interactions, appear to be uniquely useful in probing the structural variations in nucleic acids.

1. Nonspecific reactions of transition-metal complexes


Hydroxyl radical cleavage with Fe(EDTA)²⁻ illustrates again how simple metal complexes can be used in characterizing nucleic acids. One example involves efforts to describe the local structural variations in "bent" DNA. Biochemists had found that DNA fragments containing runs of adenines, such as in the tract dAAAAAA, possessed unusual gel-electrophoretic mobilities. Indeed, kinetoplast DNA isolated from mitochondria of trypanosomes showed a remarkable lacework pattern of structure, with loops and circles of DNA; these structures were found to be governed by the placement of these $d(A)_6$ tracts. By constructing a series of oligonucleotides with adenine runs positioned either in or out of phase relative to one another, researchers found that the adenine tracts caused a local bending of the DNA toward the minor groove.⁶ But what were the detailed characteristics of these bent sites? Using hydroxyl radical cleavage of DNA, generated with Fe(EDTA)²⁻, Tullius and coworkers found a distinctive pattern of cleavage across the adenine tracts, consistent with a locally perturbed structure.⁶⁸ Here the notion again was that Fe(EDTA)²⁻ in the presence of peroxide would generate hydroxyl radicals at a distance from the helix, and thus careful densitometric analysis of the cleavage across ³²P-end-labeled DNA fragments would reveal any differential accessibility of sugar residues to cleavage mediated by the radicals caused by the bending. The cleavage patterns suggested a smooth bending of the DNA across the tract and indicated furthermore an asymmetry in structure from the 5'- to 3'-end of the adenine run.

KARPAGAM ACADEMY OF HIGHER EDUCATIONClass: II M.Sc ChemistryCourse Name: Inductrial Chemistry-IIIChemistry Course Code: 18CHP305CUnit: IBatch-2018-2020

2. Transition-metal complexes as shape-selective probes

Transition-metal complexes have also been designed with three-dimensional structures that target complementary structures along the helical polymer. This recognition of DNA sites, based upon *shape selection*, has proved to be extremely useful both in demarcating and in characterizing structural variations along the polymer and in developing an understanding of those factors important to the recognition of specific polynucleotide sites. Complexes, basically derivatives of the tris(phenanthroline) metal series, have been designed that specifically target A- and Z-form helices, cruciforms, and even subtle variations such as differential propeller twisting within B-form DNA.^{11c} By appropriate substitution of the metal at the center of the coordinatively saturated complex, complexes that cleave the DNA at the binding site are obtained. Figure 8.14 shows some of these shape-selective conformational probes.

Figure 8.14

Shape-selective probes that target local DNA conformations. $Rh(DIP)_3^{3+}$, which with photoactivation promotes double-stranded cleavage at cruciform sites; $Ru(TMP)_3^{2+}$, a photoactivated probe for A-like conformations; and $Rh(phen)_2phi^{3+}$, which targets openings in the DNA major groove.

The most					
common					
oxidation state					
of lanthanides is	4	3	2	1	3
	completely				
	filled			elements with	
Paramagnetism	electronic sub-	unpaired	non-transition	noble gas	unpaired
is a property of	shells	electrons	elements	configuration.	electrons
The 3d element					
show variable					
oxidation states.					
What is the					
maximum					
oxidation state					
shown by the					
element Mn?	6	7	4	5	7
Colour in	, v	,		-	,
transition metal		absorption of			Incomplete
compounds is	small size	light in UV	Complete (n s)	Incomplete (n -	(n - 1) d
attributed to	metal ions	region	subshell	1) d subshell.	subshell.
In the first	metarions	region	Subshell	1) u substieli.	Substiell.
transition series,					
the element					
with highest		_		Cu	<u> </u>
melting point is	Mn	Fe	Cr		Cr
Which of the					
following does					
not form					
coloured					
complexes?	Ni (II)	Cu (I)	Fe (II)	Cr (VI)	Cu (I)
Which of the					
following				They show	They show
statements				multiple	multiple
concerning			Compounds	oxidation	oxidation
transition		They easily	containing	states always	states always
elements is not	They are all	form	their ions are	differing by	differing by
true?	metals	complexes	coloured	two units	two units
Among					
transition					
elements the					
elements the					
element with					
lowest melting					
point belongs to				12	
group	3	11	6		12
Which of the					
following triads	Ba, Sr, Ca	Rb, Cs, Fr	Sc, Ti, V	F, Cl, Br	Sc, Ti, V
	5a, 51, Ca	110, 03, 11	JC, 11, V	1,0,0	JC, 11, V

1
They have
one or more
unpaired d-
electrons
Cu and Zn
Iron
containing
molybdenum.
adding UF4(g)
HCI
AI(OH)3
Equilibrium
lies to the
right, because
CH3NH3+ is a
stronger acid
than H2O
acts as a
acts as a proton
proton
proton acceptor

	because F is more electronegativ e than I.	because the HF bond is weaker than the HI bond	more electronegativ e than F.	bond is stronger than the HI bond.	because the HF bond is stronger than the HI bond.
Which one of the following would be expected to change the value of the					
equilibrium constant?	adding reactant	adding product	adding a catalyst	changing the temperature	changing the temperature
What is the conjugate base of HCO3–?	OH-	H2CO3	CO32-	HCO₃⁺	CO32-
A Brønsted- Lowry acid is defined as a substance that	decreases [H3O+] when dissolved in water	increases [OH–] when dissolved in water	acts as a proton donor	acts as a proton acceptor	acts as a proton donor
A substance that is capable of acting as both an acid and as a base is	amphiprotic	conjugated	autosomal	binary acid- base	amphiprotic
The magnitude of Kw indicates that	water autoionizes very slowly	water autoionizes very quickly	water autoionizes only to a very small extent	the autoionization of water is exothermic	water autoionizes only to a very small extent
Which one of the following is the strongest acid?	НЮЗ	HIO2	НЮ	IO ₄ -	НІОЗ
Which one of the following binary acids is the strongest?	CH4	NH3	H2O	H2S	H2S
Which of these is not a Lewis acid?	AICI3	C4H10	FeCl3	SO3	C4H10
Increasing the magnetic field?	produuces less susceptibility artifacts.	Reduces the risk of tissue heating.	Increase the signal to noise	Reduces the danger from metallic projectiles	Increase the signal to noise
A major advantage of MRI is:	the ease with which equipment is	its relatively low cost, compared to	dose not require specialized	the ability to reposition the 'cross-section'	the ability to reposition the 'cross-

A growing	updated or replaced	CT scans	room	through the body without repositioning the patient.	section' through the body without repositioning the patient.
application of	Magnetic	Magnetic	Minimal	Medical	Magnetic
MRI is "MRA",	Resonance	Resonance	Radiology	Research	Resonance
which stands for:	Amplication	Angiography	Applications	Assistance	Angiography
		Medical	Magnetic	Maximal	Magnetic
What does	Magneto-Ray	Radiometry	Resonance	Radiology	Resonance
"MRI" stand for?	Idometry	Instrument	Imaging	Imaging	Imaging
True or False - T1 increases with magnetic field	FALSE	True			TRUE
lield	TALSE	Thue			localized
What is a major				localized burns	burns due to
health concern	Reaction to	extrerme		due to metallic	metallic
wth MRI?	applied drugs	cold?	Radiation dose	implants?	implants? Both
		CT reveals soft structures, while MRI is			methods produce cross- sectional
Compare MRI to	Both methods	better at			images at a
CT ("CAT	use X-rays, but	dense	Both methods p		specified
scans"). Which is	exposure is	material, such	sectional images		plane through
true? Select one of	higher with CT.	as bone.	plane through th	le body.	the body.
the following objects that you think would				None of the	None of the
alwasy be safe in the MRI suite.	A wheelchair	A stretcher	Scissors	listed	listed
True or False - T1 relaxation is shorter than T2 relaxation.	False	TRUE			FALSE
What is the maximum stength of magnet approved for		INOL			TALSL
medical imaging	707	1 5 7	ГОТ	207	2.0.T
of patient? Which	7.0 T	1.5 T	5.0 T	3.0 T	3.0 T
statement most	The theory considers	The theory considers	The theory rationalizes	The theory rationalizes	The theory rationalizes
correctly	considers	electrostatic	the non-	why the metal	the non-
describes crystal	interactions	interactions	degeneracy of	d orbitals are	degeneracy
uescribes crystal	interactions	IIILEI ALLIUIIS	uegeneracy of		uegeneracy

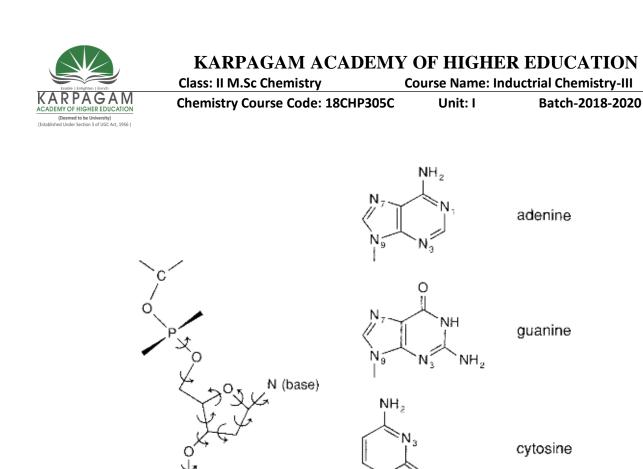
field theory for a d block complex of unspecified geometry?	between a metal centre and the surrounding ligands	between a metal ion and the surrounding ligands which are taken to be point charges	the metal d orbitals by considering the electrostatic repulsions between point charge ligands and electrons in the metal d orbitals	split into two levels	of the metal d orbitals by considering the electrostatic repulsions between point charge ligands and electrons in the metal d orbitals
Which of the following correctly places the ligands in their order in the spectrochemical	Br- < Cl- <	I− < Br− <	F- < Cl- < H2O	I− < CI− < H2O	I− < CI− < H2O
series?	NH3 < H2O	H2O < [OH]-	< NH3	< en	< en
Which of the following correctly places the metal centres in their order in the					
spectrochemical series?	Mn(II) < Fe(III) < Rh(III)	Co(III) < Co(II) < Rh(III)	Pt(IV) < Pd(II) < Ni(II)	Pd(II) < Ni(II) < Pt(IV)	Mn(II) < Fe(III) < Rh(III)
Which metal complex ion is expected to be subject to a Jahn-Teller					
distortion? Which of the	[Cr(OH2)6]3+	[Cr(NH3)6]2+	[Cr(CN)6]3–	[Cr(bpy)3]2+	[Cr(NH3)6]2+
following complex ions is tetrahedral?	[PdCl4]2–	[PtCl4]2-	[NiCl4] ²⁻	[AuCl4]–	[NiCl4]2–
Match up the correct formula and magnetic property. Which	[Zn(OH2)6]2+;	[Co(NH3)6]3+	[CoF6]3–;	[V(OH2)6]2+;	[Co(NH3)6]3+
pair is correct?	paramagnetic	; diamagnetic	diamagnetic	diamagnetic	; diamagnetic
Which	-	-	-	-	-
statement is	They are likely	They contain		They are likely	They are
incorrect about	to obey the 18-	π-acceptor	M is in a zero	to be	likely to be
typical metal	electron rule	ligands	oxidation state	paramagnetic	paramagnetic

Leader 1					I
carbonyl					
complexes					
M(CO)n?					
Which of the					
following is a π -				PF3	
donor ligand?	CI–	NH3	СО	[Co(CO)4]-	CI–
Which of the					
following					
complexes does					
not obey the 18-					
electron rule?	[Fe(CO)4]2–	[Rh(CO)2I2]–	[Mn(CO)5]–		[Rh(CO)2I2]–
		Absorptions		The absorption	For a
		in the	For a	in the	tetrahedral
		electronic	tetrahedral d4	electronic	d4 complex, 3
	The electronic	spectrum of	complex, 3	spectrum of	absorptions
Which of the	spectrum of	[Mn(OH2)6]2	absorptions	[Ti(OH2)6]3+ is	are expected
following	[Ni(NH3)6]2+	+ are	are expected	assigned to the	in its
statements is	contains 3	extremely	in its electronic	Eg ← T2g	electronic
incorrect?	absorptions	weak	spectrum	transition	spectrum
	paramagnetic		paramagnetic	paramagnetic	paramagnetic
[Cr(CN)6]3– is	with µeff ≈		with µeff <	with µeff >	with µeff ≈
expected to be:	3.87 μB	diamagnetic	3.87 μB	3.87 μB	3.87 μB
Which series					
correctly places					
the ligands in					
order of					
increasing					
nephelauxetic			en < NH3 <		
effect?	F— < Cl— < I—	I— < CI— < F—	H2O	I–< Br– < [CN]–	F— < CI— < I—
For which pair of					
complexes is the	[Rh(NH3)6]3+				[Rh(NH3)6]3+
order of values	>	[Fe(CN)6]4->	[Cr(OH2)6]2+ >	[CrF6]3->	>
of ∆oct correct?	[Co(NH3)6]3+	[Fe(CN)6]3–	[Cr(OH2)6]3+	[Cr(CN)6]3–	[Co(NH3)6]3+
The CFSE for a					
high-spin d4					
octahedral					
complex is:	–0.6∆oct	–1.8∆oct	–1.6∆oct + P	−1.2∆oct	–0.6∆oct
The visible					
spectra of salts					
of the following					
complexes are					
measured in					
aqueous					
solution. For					
which complex					
would the					
spectrum	[MnO4]-	[CoCl4]2-	[Co(OH2)6]2+	[Mn(OH2)6]2+	[MnO4]-

contain					
absorptions with					
thehighest ɛmax					
values?					
A d1 electron					
configuration					
corresponds to					
which of the					
following terms?	2D	^{1}D	2P	3P	2D
How many					
microstates are					
possible for a d2					
configuration,					
including both					
weak and strong					
field limits?	15	50	10	90	45
The 'd-d'					
transitions in an		Laporte			
octahedral	Laporte	forbidden and	Laporte	Laporte	Laporte
[NiX6]2+	forbidden but	spin	allowed and	allowed but	forbidden but
complex are:	spin allowed	forbidden	spin allowed	spin forbidden	spin allowed
Which of the	spinanowed	Torbidden	spinanowed	spinitorbidden	spinanowed
following is NOT			Scooping of		
a side effect of		Yellow vision	the T segment		
Digoxin toxicity?	Bradycardia	changes	on ECG	Hypokalemia	Hypokalemia
Which of the	Dradycaraia	changes	on Lea	пурокастна	Typokaterina
following					
chelating agents					
is recommended					
for acute Lead					
poisoning with					Discourse
signs of				Dimension	Dimercaprol
encephalopathy ?	C	Penicillamine	Calaina EDTA	Dimercaprol +	+ Calcium
•	Succimer	Peniciliamine	Calcium EDTA	Calcium EDTA	EDTA
In the complex					
[K(18-crown-					
6)]+, the					
number of 5-					
membered					
chelate rings					
that are formed					
is:	6	5	3	8	6
When [EDTA]4-					
coordinates to a					
metal ion, M2+,					
to give					
[M(EDTA)]2-, the	4	5	6	7	5

number of					
chelate rings					
formed is:					
Within the HSAB		has a low			
principle, a hard	is not very	charge	shows a prefere	nce for soft	is not very
acid:	polarizable	density	bases		polarizable

Class: II M.Sc ChemistryCourse Name: Inductrial Chemistry-IIIChemistry Course Code: 18CHP305CUnit: IBatch-2018-2020


UNIT-I

Binding of Metal Ions and Complexes to Biomolecules: Nucleic acid structures - fundamental interactions with nucleic acids - binding interactions of tris(phenanthroline) metal complexes with DNA - techniques to monitor binding - applications of metal complexes that bind to nucleic acids -biopolymer promoted metal ligand interactions.

A. Nucleic-Acid Structures¹

Figure 8.1 displays a single deoxyribonucleotide and the four different nucleicacid bases. As may be evident, each mononucleotide along a nucleic-acid polymer contains a variety of sites for interactions with metal ions, from electrostatic interactions with the anionic phosphate backbone to soft nucleophilic interactions with the purine heterocycles. The different nucleic-acid bases furthermore offer a range of steric and electronic factors to exploit. Coordination of a metal complex to the N7 nitrogen atom of a purine, for example, would position other coordinated ligands on the metal center for close hydrogen bonding to the O6 oxygen atom of guanine, but would lead to clashes with the amine hydrogen atoms of adenine.

The monomeric units strung together in a polynucleotide furthermore provide an array of polymeric conformers. Figure 8.2A (See color plate section, pages C-14, C-15.) shows three crystallographically characterized structures of double-helical DNA oligonucleotides,²⁻⁴ Figure 8.2B a schematic illustration of other conformations of DNA, and Figure 8.2C the crystal structure ⁵ of yeast tRNA^{Phc}. In double-helical DNA,¹ the two antiparallel polynucleotide strands

Figure 8.1

Ó

Illustration of a mononucleotide unit. Arrows indicate the various torsional angles within each unit that together generate the wide range of conformations available in the polymer. Also shown are the individual bases as well as the commonly employed numbering scheme.

thymine

are intertwined in a helix, stabilized through Watson-Crick hydrogen bonding between purines and pyrimidines, and through π - π stacking interactions among the bases arranged in the helical column. There are electrostatic repulsions between the anionic phosphate backbones of the polymer, causing a stiffening; each double-helical step has two formal negative charges. An atmosphere of metal ions condensed along the sugar-phosphate backbone serves partially to neutralize these electrostatic interactions. In the B-DNA conformation, the bases

Class: II M.Sc ChemistryCourse Name: Inductrial Chemistry-IIIChemistry Course Code: 18CHP305CUnit: IBatch-2018-2020

are stacked essentially perpendicular to the helical axis, and the sugars are puckered in general, with a C2'-endo geometry (the C2' carbon is to the same side as the C5' position relative to a plane in the sugar ring defined by the C1', C4', and O atoms). This conformer yields a right-handed helix with two distinct, well-defined grooves, termed the major and minor. The A-form helix, while still right-handed, is distinctly different in structure. The sugar rings are puckered generally in the C3'-endo conformation, causing the bases to be pushed out from the center of the helix toward the minor groove, and tilted relative to the helix perpendicular by almost 20°. What results is a shorter and fatter helix than the B-form; the helical pitch is 28.2 Å in A-DNA for an 11-residue helix and 33.8 Å for a 10-residue helix in B-DNA. The A-form helical shape is best characterized by the very shallow minor groove surface; what was the major groove in the B-form has been pulled deeply into the interior of the A-conformer

and is really not accessible to binding by small molecules in solution. Transitions to the A-conformation are promoted by hydrophobic solvents or solutions of high ionic strength. The Z-conformation is perhaps most distinctive, owing to its left-handed helicity.⁴ The conformer was dubbed Z-DNA because of the zig-zag in the helix. Alternations both in sugar puckering, between C2'-endo and C3'-endo, and in the rotation of the base about the glycosidic bond, anti or syn relative to the sugar, are evident, and lead to a dinucleoside repeating unit versus a mononucleoside repeat in the A- and B-helices. Alternating purinepyrimidine sequences have the highest propensity to undergo transitions into the Z-form. It is actually this syn conformation of purines that leads to the lefthanded helicity of the polymer. But it is not only its left-handedness that distinguishes the Z-conformation. The polymer is long and slender (the pitch is 45 Å for a 12-residue helix), and the major groove is a shallow and wide, almost convex, surface, whereas the minor groove is narrowed into a sharp and small crevice.

Even less defined structurally are other conformations of DNA, some of which are illustrated schematically in Figure 8.2B (see color plate section, page C-15). Double-helical DNA can bend,⁶ form loops and cruciforms,⁷ and fold back on itself into intramolecular triple helices, termed H-DNA.⁸ At the ends of chromosomes, four strands may even come together in a unique conforma-

Class: II M.Sc ChemistryCourse Name: Inductrial Chemistry-IIIChemistry Course Code: 18CHP305CUnit: IBatch-2018-2020

of chromosomes, four strands may even come together in a unique conformation. These structures, characterized thus far by means of biochemical techniques, arise because of sequence and local torsional stress, or supercoiling. Many of these structures are stabilized by the binding of highly charged metal ions, probably because the highly charged metal center in a small volume can neutralize the electrostatic repulsions between polyanionic strands that are bundled together. Metal complexes can furthermore be extremely useful in targeting and characterizing these structures, as we will see. In chromosomes the DNA is packaged by histone proteins into even tighter bundles, with helical segments wrapped about the basic proteins to form superhelical nucleosomal units which are then arranged like beads on a string of more loosely packed DNA.⁹

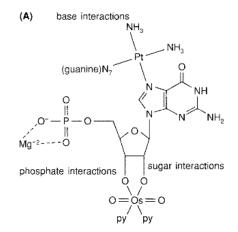
This complexity in DNA structure is in fact small compared to that of RNA. Figure 8.2C (see color plate section, page C-15) shows the first crystallographically characterized structure⁵ of an RNA polymer, yeast tRNA^{Phe}. Ostensibly single-stranded RNAs do not exist as random coils, but instead fold up into well-defined three-dimensional structures, much like proteins. The structural variety, of course, bears some resemblance to that found in DNAs. Double-helical regions in the tRNA are A-like in conformation; helices fold together as one might imagine to occur in cruciforms, and even triple-helical segments are evident where three strands fold together in the polymer. But overall our ability to characterize structures of RNA thus far is lower than that with DNAs. RNAs are less stable in solution than is DNA, and fewer chemical as well as enzymatic tools are available for structural characterization. Yet the recent discovery of ribozymes,¹⁰ the finding that RNAs can indeed catalyze nucleolytic reactions, makes our need to understand these structures even greater. Again transitionmetal chemistry may participate in stabilizing, promoting, and probing these structures.

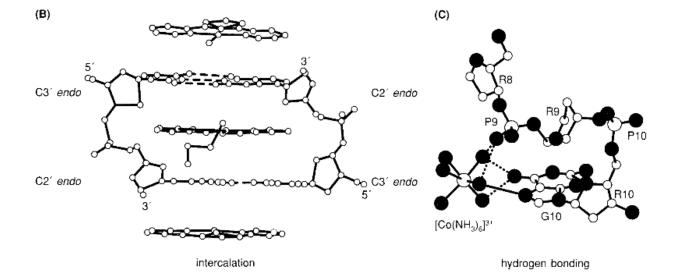
B. Fundamental Interactions with Nucleic Acids

Metal ions and complexes associate with DNA and RNA in a variety of ways, as illustrated in Figure 8.3. Both strong covalent interactions and weak noncovalent complexes are observed.¹¹ Each may yield a significant perturbation in the nucleic acid and/or may be exploited to obtain a site-specific response. Clearly there are some general guidelines, based on principles of coordination chemistry, that may be helpful in sorting out these interactions.

1. Coordination

Most prevalent among covalent complexes with DNA are those involving coordination between soft metal ions and nucleophilic positions on the bases. The structure ¹² of cis-(NH₃)₂Pt-dGpG is an example: its platinum center coordinates to the N7 position of the guanine bases. In terms of interactions with the full polynucleotide, it is likely that the *cis*-diammineplatinum center, with two coordination sites available, would yield an intrastrand crosslink between neighboring guanine residues on a strand (see Chapter 9). Other nucleophilic sites targeted by soft metal ions on the bases include the N7 position of adenine, the N3 position on cytosine, and the deprotonated N3 position on thymine and uracil.^{12,13} Some additional covalent binding to the N1 positions of the purines has also been observed. Indeed, coordination by the metal to one site on the heterocyclic base lowers the pK_a and increases the metal-binding affinity to secondary sites. It is noteworthy, however, that in base-paired double-helical DNA only the N7 positions on the purines are easily accessible in the major groove of the helix. Base binding at the purine N7 position is, of course, not limited to soft metal ions such as Pt(II), Pd(II), and Ru(II). Coordination at these sites has been evident also with first-row transition-metal ions such as Cu(II) and Zn(II).13 For these, as is consistent with basic coordination chemistry, the lability of complexes formed is higher.


Transition-metal ions with decreasing softness are capable of coordinating also to the phosphate oxygen atoms. The ionic versus covalent character of these complexes clearly depends on the metal ions involved. In a classic study, examining the melting temperature of double-helical DNA in the presence of dif-



Class: II M.Sc Chemistry Chemistry Course Code: 18CHP305C

Course Name: Inductrial Chemistry-III Unit: I

Batch-2018-2020

2. Intercalation and hydrogen bonding

But important interactions of metal complexes with polynucleotides are not restricted to those involving direct coordination of the metal center to the polymer. Instead, an abundance of highly selective interactions arise from an ensemble of weaker noncovalent interactions between the ligands of coordinatively saturated metal complexes and the nucleic acid. Two primary examples of noncovalent association are given by metallointercalation and hydrogen-bonding interactions of coordinated ligands.^{17,18} Planar aromatic heterocyclic ligands such as phenanthroline and terpyridine can stack in between the DNA base pairs, stabilized through dipole-dipole interactions. Here, depending on the complex and its extent of overlap with the base pairs, the free energy of stabilization can vary from ~ 2 to 10 kcal. Nonintercalative hydrophobic interactions of coordinated ligands in the DNA grooves also can occur, as we will see. Hydrogenbonding interactions of coordinated ligands with the polynucleotide are quite common, and arise in particular with the phosphate oxygen atoms on the backbone. With cobalt hexaammine, for example, hydrogen bonding to an oligonucleotide occurs between the ammine hydrogens and both phosphate oxygen atoms and purine bases.¹⁹

A mix of covalent and noncovalent interactions is also possible. With *cis*diammineplatinum(II) coordinated to the guanine N7 position, the ammine ligands are well-poised for hydrogen-bonding interactions with the phosphate backbone.¹² The steric constraints on the molecule must be considered, however. With Pt(terpy)Cl⁺, both intercalation of the terpy ligand and direct coordination of the platinum center (after dissociation of the coordinated chloride) are available, but not simultaneously; coordination of the platinum to the base would likely position the terpyridyl ligand away from the base stack in the DNA major groove, precluding intercalation.²⁰ Sigel and coworkers²¹ have studied the thermodynamics of noncovalent interactions coupled to direct coordination of simple first-row transition-metal complexes with mononucleotides, and these results illustrate well the interplay of weak noncovalent interactions and direct coordination in generating geometric specificity in complex formation.

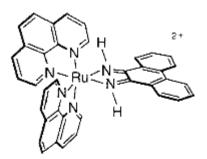
Class: II M.Sc Chemistry Course Name: Inductrial Chemistry-III

Chemistry Course Code: 18CHP305C Unit: I Batch-2018-2020

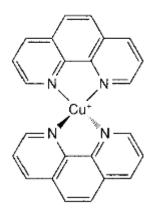
III. A CASE STUDY: TRIS(PHENANTHROLINE) METAL COMPLEXES

Now we may examine in detail the interaction of one class of metal complexes with nucleic acids, how these complexes bind to polynucleotides, the techniques used to explore these binding interactions, and various applications of the complexes to probe biological structure and function. Tris(phenanthroline) metal complexes represent quite simple, well-defined examples of coordination complexes that associate with nucleic acids. Their examination should offer a useful illustration of the range of binding modes, reactivity, techniques for study, and applications that are currently being exploited and explored. In addition, we may contrast these interactions with those of other transition-metal complexes, both derivatives of the tris(phenanthroline) family and also some complexes that differ substantially in structure or reactivity.

A. Binding Interactions with DNA


Tris(phenanthroline) complexes of ruthenium(II), cobalt(III), and rhodium(III) are octahedral, substitutionally inert complexes, and as a result of this coordinative saturation the complexes bind to double-helical DNA through a mixture of noncovalent interactions. Tris(phenanthroline) metal complexes bind to the double helix both by intercalation in the major groove and through hydrophobic association in the minor groove.^{11b,40} Intercalation and minor groove-binding are, in fact, the two most common modes of noncovalent association of small molecules with nucleic acids. In addition, as with other small molecules, a non-specific electrostatic interaction between the cationic complexes and the DNA polyanion serves to stabilize association. Overall binding of the tris(phenanthroline) complexes to DNA is moderate (log K = 4).⁴¹

The tris(phenanthroline) complexes represented


the first examples of "three-dimensional intercalators" and illustrated that octahedral metal complexes could also intercalate into the helix.^{40,45,46} Here one can consider the partial intercalation of one ligand into the helix, providing the remaining ligands on the complex an opportunity to enhance specificity or reactivity at a given site.

Curiously, one unique and apparently general characteristic of metallointercalators is their preference for intercalation from the *major groove* of the helix. Most small molecules associate with DNA from the minor groove, but metallointercalators, both those that are square planar, such as (terpyridyl)platinum(II) complexes, and those that are octahedral, such as the tris(phenanthroline) metal complexes, appear to intercalate into the major groove. This then mimics quite well the association of much larger DNA-binding proteins with the helix; DNA regulatory proteins generally appear to target the major groove. The reason why metallointercalators favor major groove association is still unclear.

[Ru(phen)₂ phi]²⁺

Cu(phen)2+

Class: II M.Sc ChemistryCourse Name: Inductrial Chemistry-IIIChemistry Course Code: 18CHP305CUnit: IBatch-2018-2020

Figure 8.8

Some metal complexes that bind DNA noncovalently primarily through intercalation (top) or binding in the minor groove (bottom). Some metalloporphyrins also primarily associate via intercalation.

The tris(phenanthroline) metal complexes themselves do not offer an illustration of hydrogen-bonding interactions with the helix, since these ligands lack hydrogen-bonding donors and acceptors, but as mentioned already, hydrogen bonding of coordinated ligands to the helix can add some measure of stabilization, comparable to, but likely no greater in magnitude than, that provided by intercalative stacking, hydrophobic, or dispersive interactions. Indeed, mixedligand derivatives of the phenanthroline complexes have been prepared that include hydrogen-bonding groups (amides, hydroxyls, and nitro substituents) on the ancillary phenanthroline ligands, and these have shown no greater avidity for double-helical DNA than their counterparts with hydrophobic substituents.⁴² A large number of weak hydrogen-bonding interactions to DNA by one complex can be stabilizing, however, as with, for example, hexaamminecobalt(III) or hexaaquoterbium(III).

Tris(phenanthroline) metal complexes also do not offer an opportunity to explore covalent binding interactions with the helix in greater detail, but these interactions are, in fact, a major focus of Chapter 9, concerned with the mode of action of cisplatin. One derivative of the tris(phenanthroline) series, $Ru(phen)_2Cl_2$, has been shown to bind to DNA covalently.⁴⁸ In aqueous solution the dichlororuthenium(II) complex undergoes hydrolysis to form an equilibrium mixture of bis(phenanthroline) diaquo and chloroaquo species. These species bind covalently to DNA, with preferential reactivity at guanine sites. It is interesting that the same structural deformations in the DNA evident upon binding *cis*-diammineplatinum units become apparent upon coordination of bis(phenanthroline)ruthenium(II). It is also noteworthy that the chiral preference in coordination is for the Λ -isomer. As with groove binding, direct coordination to base positions requires a complementary symmetry, with the the Λ -isomer reaffirms that, rather than noncovalent intercalation (which would favor the Δ -

isomer), covalent binding dominates the interaction. The energetic stabilization in direct coordination of the ruthenium(II) center is certainly more substantial than the weaker stabilization derived from intercalation. $Rh(phen)_2Cl_2^+$ and its derivatives have also been shown to bind covalently to DNA but only upon photoactivation, since light is needed to promote dissociation of the coordinated chloride and substitution of the nucleic acid base as a ligand.⁴⁹

B. Techniques to Monitor Binding

Many of the same techniques employed in studying the basic chemistry of coordination complexes can be be used in following the binding of transition-metal complexes to nucleic acids, but biochemical methods, with their often exquisite sensitivity, become valuable aids as well in defineating specific binding interactions. Tris(phenanthroline) metal complexes are particularly useful to illustrate this point, since here the metal center in the complex is selected in terms of the technique used for examination.

Coordination complexes are often visibly colored, and these colorations provide a useful and sensitive spectroscopic handle in following fundamental reactions. This notion holds as well with tris(phenanthroline) metal complexes in their interactions with nucleic acids. Ru(phen)₃²⁺ and its derivatives are highly colored because of an intense metal-to-ligand charge-transfer band (λ_{max} = 447 nm, $\epsilon = 1.9 \times 10^4$ M⁻¹cm⁻¹). Furthermore, the complexes are highly photoluminescent ($\lambda_{cm} = 610$ nm, $\tau = 0.6 \ \mu$ s in aerated aqueous solution). On binding

to nucleic acids these transitions are perturbed. Hypochromism is observed in the charge-transfer band, and intercalation leads to an increase in lifetime of the charge-transfer excited state.^{43,46} Indeed, single-photon counting experiments show a biexponential decay in emission from Ru(phen)₃²⁺ bound to double-helical DNA. The longer-lived component ($\tau = 2 \mu s$) has been assigned as the intercalated component and the shorter-lived 0.6 μs component has been attributed to a mixture of free and groove-bound species. These spectroscopic perturbations permit one to define equilibrium-binding affinities for the different components of the interaction as a function of metal-center chirality and under different solution conditions.⁴¹ One can also follow the polarization of emitted

light from the complexes after excitation with polarized light, and these studies have been helpful in describing the dynamics of association of the complexes on the helix.^{41,43} Mixed-ligand complexes of ruthenium(II) show similar spectroscopic perturbations, and these have been used to characterize binding affinities and chiral preferences, as well as the extent of intercalation versus groove binding as a function of ligand substitution on the metal center.⁴² The spectroscopic handle of the metal center therefore affords a range of experiments to monitor and characterize the binding of the metal complexes to polynucleotides.

There are numerous other classic techniques of inorganic chemistry that have been or could be applied in studying the binding of metal complexes to nucleic acids. Coordination complexes have invariably been used in x-ray diffraction experiments because of the high electron density of the metal center. The tris(phenanthroline) metal complexes have not yet been applied in this context. but, as mentioned already, platinum metallointercalators were examined by fiber diffraction to delineate intercalation requirements. In fact, many nucleic-acid crystal structures have required specific metal ion additions for isomorphous heavy-metal derivatives to solve the structure. Such has certainly been true for the crystal structure of tRNA Phe, where heavy-metal ions such as platinum, osmium, and mercury were targeted to specific base positions, and lanthanide ions were used to label phosphate positions around the periphery of the molecule.⁵³ Other techniques can also be exploited to monitor and characterize binding. A recent novel illustration is one from electrochemistry, which has been applied in monitoring the binding of $Co(phen)_3^{3+}$ to DNA.⁵⁴ Surely other techniques, from EXAFS to scanning tunneling microscopy, will be exploited in the future.

IV. APPLICATIONS OF DIFFERENT METAL COMPLEXES THAT BIND NUCLEIC ACIDS

Both the spectroscopy and the chemical reactivity of transition-metal complexes, coupled to biochemical assays, can therefore be exploited to obtain a wide range of useful reagents to probe nucleic acids. Here some specific applications are described.

A. Spectroscopic Probes

As discussed above, the tris(phenanthroline)ruthenium(II) complexes offer a novel spectroscopic probe of nucleic acids, since their luminescence is increased upon intercalation into the double helix. As a result the complexes provide a simple luminescent stain for DNA in fluorescent microscopy experiments. More interesting, perhaps, is the conformational selectivity of derivatives of tris(phenanthro-

line)ruthenium. $\text{Ru}(\text{DIP})_3^{2+}$ (DIP = 4,7-diphenyl-1,10-phenanthroline) shows enantiospecificity in binding to B-form DNA.⁴⁰ Because of the steric bulk of the phenyl rings, detectable binding is seen only with the Δ -isomer in a righthanded helix; no binding is evident with the Λ -isomer. But with the left-handed Z-form helix, both isomers bind avidly.^{40,58} The shallow left-handed major groove can accomodate the two enantiomers. A left-handed but more B-like helix shows selectivity instead for the Λ -isomer. Spectroscopic experiments that measure the chiral selectivity of $\text{Ru}(\text{DIP})_3^{2+}$ isomers in binding to a given DNA then provide a novel probe for helical handedness. Indeed, Λ -Ru(DIP)₃²⁺ was the first spectroscopic probe for Z-DNA (or other alternate conformations that are sufficiently unwound to permit binding by the bulky left-handed isomer).⁵⁸

Both simpler bipyridyl and phenanthroline derivatives as well as dppz complexes of ruthenium are currently being tethered onto other DNA binding moieties, in particular onto oligonucleotides, so as to develop new, nonradioactive luminescent probes for DNA sequences. These transition-metal complexes may provide the basis for the development of new families of DNA diagnostic agents, and many industrial laboratories are currently exploring routes to accomplish these goals. Figure 8.12 illustrates Λ -Ru(DIP)₃²⁺ and Ru(bpy)₂dppz²⁺, two complexes whose luminescence properties can be employed to probe nucleic acids.

 Λ -Ru(DIP)₃²⁺

Figure 8.12

Two spectroscopic probes of nucleic acids: Λ -Ru(DIP)₃²⁺ and Ru(bpy)₂dppz²⁺.

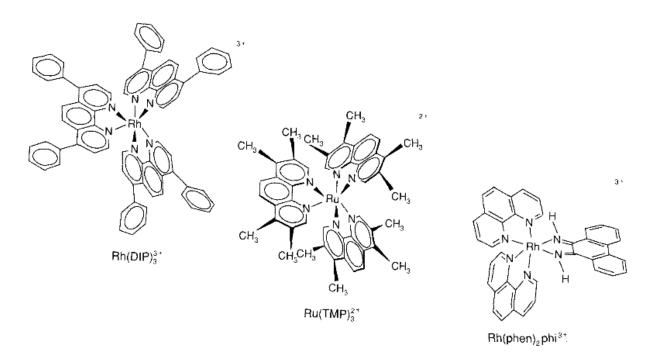
B. Metallofootprinting Reagents

Probably the most widespread application of metal nucleic-acid chemistry in the biology community has been the utilization of metal complexes for chemical footprinting. The footprinting technique (Figure 8.11) was developed by biologists⁶² as a means of locating protein-binding sites on DNA.³²P-end-labeled double-stranded DNA fragments could be digested with a nuclease, such as DNAse, in the presence or absence of DNA-binding protein. After electrophoresis of the denatured digests and autoradiography, one would find a "foot-print," that is, the inhibition of cleavage by DNAse, at the spot bound by protein, in comparison to a randomly cleaved pattern found on the DNA in the absence of binding protein. Although DNAse is still widely used, this footprinting reagent has some disadvantages: (i) the nuclease is not sequence-neutral in its cleavage, resulting in lots of noise in the footprinting background; and (ii) since the nuclease is itself a large protein, its ability to provide high-resolution footprinting patterns of smaller molecules is quite limited.

Inorganic photochemistry has also been applied in developing metal complexes as photofootprinting reagents. Uranyl acetate, for example, at high concentrations, upon photolysis, promotes DNA cleavage.⁶⁶ It is thought that the ions interact with the phosphates, generating some excited-state radical chemistry, although no detailed characterization of this chemistry has been undertaken.

C. Conformational Probes

Metal complexes are also finding wide application in probing the local variations in conformation that arise along nucleic-acid polymers. X-ray crystallography has been critical in establishing the basic conformational families of doublehelical DNA, and to some extent how conformations might vary as a function of nucleic-acid sequence. Yet many conformations have still not been described to high resolution, and only a few oligonucleotides have been crystallized. Other techniques are therefore required to bridge the small set of oligonucleotide crystal structures that point to plausible structures and the large array of structures that arise as a function of sequence on long helical polymers. Furthermore, only a very small number of RNA polymers has been characterized crystallographically; hence other chemical methods have been needed to describe the folding patterns in these important biopolymers. Metal complexes, mainly through specific noncovalent interactions, appear to be uniquely useful in probing the structural variations in nucleic acids.


1. Nonspecific reactions of transition-metal complexes

Hydroxyl radical cleavage with Fe(EDTA)²⁻ illustrates again how simple metal complexes can be used in characterizing nucleic acids. One example involves efforts to describe the local structural variations in "bent" DNA. Biochemists had found that DNA fragments containing runs of adenines, such as in the tract dAAAAAA, possessed unusual gel-electrophoretic mobilities. Indeed, kinetoplast DNA isolated from mitochondria of trypanosomes showed a remarkable lacework pattern of structure, with loops and circles of DNA; these structures were found to be governed by the placement of these $d(A)_6$ tracts. By constructing a series of oligonucleotides with adenine runs positioned either in or out of phase relative to one another, researchers found that the adenine tracts caused a local bending of the DNA toward the minor groove.⁶ But what were the detailed characteristics of these bent sites? Using hydroxyl radical cleavage of DNA, generated with Fe(EDTA)²⁻, Tullius and coworkers found a distinctive pattern of cleavage across the adenine tracts, consistent with a locally perturbed structure.⁶⁸ Here the notion again was that Fe(EDTA)²⁻ in the presence of peroxide would generate hydroxyl radicals at a distance from the helix, and thus careful densitometric analysis of the cleavage across ³²P-end-labeled DNA fragments would reveal any differential accessibility of sugar residues to cleavage mediated by the radicals caused by the bending. The cleavage patterns suggested a smooth bending of the DNA across the tract and indicated furthermore an asymmetry in structure from the 5'- to 3'-end of the adenine run.

2. Transition-metal complexes as shape-selective probes

Transition-metal complexes have also been designed with three-dimensional structures that target complementary structures along the helical polymer. This recognition of DNA sites, based upon *shape selection*, has proved to be extremely useful both in demarcating and in characterizing structural variations along the polymer and in developing an understanding of those factors important to the recognition of specific polynucleotide sites. Complexes, basically derivatives of the tris(phenanthroline) metal series, have been designed that specifically target A- and Z-form helices, cruciforms, and even subtle variations such as differential propeller twisting within B-form DNA.^{11c} By appropriate substitution of the metal at the center of the coordinatively saturated complex, complexes that cleave the DNA at the binding site are obtained. Figure 8.14 shows some of these shape-selective conformational probes.

Figure 8.14

Shape-selective probes that target local DNA conformations. $Rh(DIP)_3^{3+}$, which with photoactivation promotes double-stranded cleavage at cruciform sites; $Ru(TMP)_3^{2+}$, a photoactivated probe for A-like conformations; and $Rh(phen)_2phi^{3+}$, which targets openings in the DNA major groove.

						I
Which of						
the						
following						
agents						
used in						
drug						
combinat						
ion						
regimens						
to treat						
testicular						
carcinom						
a is mot						
likely to						
cause						
nephroto						
xicity? of						
the						
following						
agents						
used in						
drug						
combinat						
ion						
regimens						
to treat						
testicular						
carcinom						
a is mot						
likely to						
cause						
nephroto						
xicity?	Bleomycin	Cisplatin	Etoposide	Leuprolid	e	Cisplatin
The	Dicontyen	cispidin	Lioposide	Leapiona		cispidein
following						
anticanc						
er drug						
has high						
emetoge			6-			
nic				Cicolati		
	a) Vincristing	Chlorambucil	Mercaptopurin	Cisplati		Cisplatin
potentia The most	a) Vincristine		е	n		Cisplatin
The most						
effective						
antiemet						
ic for	(-)					
controllin	(a)			Data di		
g	Prochlorperazin		Metoclopramid	Prometha	IZI	
cisplatin	е	Ondansetron	е	ne		Ondansetron

induced vomiting is A patient						
is						
A natient						
-						
undergoi						
ng						
cancer						
chemoth						
erapy is						
vomiting						
frequentl						
y. A drug						
that						
might						
help in						
this						
situation	(a)			Ondansetro		
is	Bromocriptine	Cimetidine	Ketanserin	n		Ondansetron
Which						
one of						
the						
following						
statemen						
ts about						
the						
mechanis						
ms of						
action of						
drugs			La ata ada .			
	-					
	-					
	-				ble	
	•					
	guanine	acid synthesis	gonadotropins	HGPRT ase		HGPRT ase
Which of						
1						
the						
following						
following drugs or	1					
following			1	1		
following drugs or						
following drugs or drug						
following drugs or drug groups is						
following drugs or drug groups is not						
following drugs or drug groups is not useful in	a)					
following drugs or drug groups is not useful in the	a) Dexamethason					
used in cancer chemoth erapy is least accurate ? Which of	Alkylatine agents commonly attack the nucleophilic N- 7 position in guanine	Anthracyclines intercalate with base pairs to block nucleic acid synthesis	In steady doses, leuprolide inhibits the release of pituitary gonadotropins	Mercaptopuri is an irreversil inhibitor of HGPRT ase		Mercaptopurir is an irreversible inhibitor of HGPRT ase

				1	
and					
vomiting					
included					
by cancer					
chemoth					
erapy ?					
Cancer					
chemoth					
erapy					
induced					
vomiting					
that is					
not					
controlle					
d by					
metoclop					
ramide					
alone					
can be					
suppress					
ed by					
combinin	(a)				
g it with	Amphetamine	Dexamethasone	Hyoscine	Cyclizine	Dexamethasone
Dose-	Amplictamile	Dexamethasone	Tryosenie	Cyclizine	Dexamethasone
response					
curves					
are used					
for drug					
evaluatio					
n in the					
animal					
laborator					
y and in				Obtained from	
the clinic,		Llood for	Invalid in the	Obtained from	
Quantal	Llood for	Used for	Invalid in the	the study of	Llood for
dose-	Used for	determining the	presence of	intact subject but	Used for
response	determining	maximal	inhibitors of	not from isolated	determining the
curves	the therapeutic	efficacy of a	the drug being	tissue	therapeutic
are often	index of a drug	drug	studied	preparations	index of a drug
		The maximal			The maximal
	-	intensity of			intensity of
(5	The range of	response that	The		response that
'Drug	diseases in	can be	therapeutic		can be
efficacy'	which the drug	produced by	dose range of	The therapeutic	produced by
refers to	is beneficia	the drug	the drug	index of the drug	the drug
The					
therapeu					
tic index	a) Safety	Potency	Efficacy	Dose variability	Safety

of a drug is a measure of itsIt reflects forms of txicity that are important clinicallyIt takes into account idosyncratic toxic reactionIt is based on animal toxicity datag statemen t is true regarding tic index drug has a low therapeu tic index, that drug shouldIt reflects forms of toxicity that are important clinicallyIt takes into account idosyncratic toxic reactionIt is based on animal toxicity dataWhen a drug has a low therapeu tic index, that drug shouldUsed mostly used mostlyUsed mostly used mostly toxic substanceGiven only in submilligram dosesConsidered a potentially toxic substanceWhich t g phasespe cific chemoth erapeuticUsed mostly are most afrective in one are effective in all phases of theAre only effective in G0Given only in submilligram dosesConsidered a potentially toxic substance
measure of itsIt reflects forms of toxicity that are important clinicallyIt takes into account idiosyncratic toxic reactionIt is based on animal toxicity datag statemen t is true regarding tic index drug has a low therapeu tic index, that drug shouldIt reflects forms of toxicity that are important clinicallyIt takes into account idiosyncratic toxic reactionIt is based on animal toxicity dataWhen a drug has a low therapeu tic index, that drug shouldUsed mostly intravenouslyConsidered a potentially toxic substanceGiven only in submilligram dosesConsidered a potentially toxic substanceWhich statemen t reagedin g phasespe cific chemoth erapeuticUsed mostly Are most effective in oneAre effective in Are enlyAre onlyMathematic dataAre most effective in oneAre most effective in oneAre only
of itsIt isIt reflects forms of toxicity that are importantIt takes into account idiosyncraticIt is based on animal toxicity dataWhen a drug has a low therapeu tic index, that drug shouldIt is based on of toxicity that are importantIt takes into account idiosyncratic toxic reactionIt is based on animal toxicity dataWhen a drug has a low therapeu tic index, that drug shouldUsed mostly intravenouslyIt considered a potentially toxic substanceGiven only in submilligram dosesConsidered a potentially toxic substanceWhich statemen t reagedin g phasespe cific chemoth erapeuticUsed most Are most agents is effective in oneAre effective in Are effective inAre onlyAre most effective in one
Followin g statemen t is true regarding therapeu tic index drug has a low therapeu tic index, that drug shouldIt reflects forms of toxicity that are important clinicallyIt takes into account idiosyncratic toxic reactionIt is based on animal toxicity dataWhen a drug has a low therapeu tic index, that drug shouldIt is based on of toxicity that are important clinicallyIt takes into account idiosyncratic toxic reactionAll the aboveIt is based on animal toxicity dataWhen a drug has a low therapeu tic index, that drug shouldUsed mostly untravenouslyConsidered a potentially toxic substanceGiven only in submilligram dosesConsidered a potentially toxic substanceWhich statemen t reagedin g phasespe cific chemoth erapeuticUsed most Are most effective in oneAre effective in Are effective inAre onlyAre most effective in one
g statemen t is trueIt reflects forms of toxicity that are important clinicallyIt takes into account idiosyncratic toxic reactionIt is based on animal toxicity dataWhen a drug has a low therapeu tic index, that drug shouldIt is based on of toxicity that are important clinicallyIt takes into account toxic reactionAll the aboveIt is based on animal toxicity dataWhen a drug has a low therapeu tic index, that drug shouldUsed mostly intravenouslyConsidered a potentially toxic substanceGiven only in submilligram dosesConsidered a potentially toxic substanceWhich statemen t reagedin g phasespe cific chemoth erapeuticUsed most Are most affective in oneAre effective in Are effective inAre onlyAre only
statemen t is trueIt reflects forms of toxicity that are important clinicallyIt takes into account idiosyncratic toxic reactionIt is based on animal toxicity dataWhen a drug has a low therapeu tic index, that drug shouldIt is based on attendedIt is based on account idiosyncratic toxic reactionAll the aboveIt is based on animal toxicity dataWhen a drug has a low therapeu tic index, that drug shouldUsed mostly used mostlyConsidered a potentially toxic substanceGiven only in submilligram dosesConsidered a potentially toxic substanceWhich statemen t reagedin g phasespe cific chemoth erapeuticUsed most Are most agents is effective in oneAre effective in Are effective inAre onlyAre only
t is true regarding therapeu tic index dataIt reflects forms of toxicity that are important clinicallyIt takes into account idiosyncratic toxic reactionIt is based on animal toxicity dataWhen a drug has a low therapeu tic index, that drug shouldIt is based on animal toxicity clinicallyIt takes into account idiosyncratic toxic reactionAll the aboveIt is based on animal toxicity dataWhen a drug has a low therapeu tic index, that drug shouldUsed mostly intravenouslyConsidered a potentially toxic substanceGiven only in submilligram dosesConsidered a potentially toxic substanceWhich statemen t reagedin g phasespe cific chemoth erapeuticUsed most Are most agents is effective in oneAre effective in Are effective inAre onlyAre most agents isAre most effective in oneAre onlyAre onlyAre only
regarding therapeu tic indexIt is based on animal toxicity dataof toxicity that are important clinicallyaccount idiosyncratic toxic reactionIt is based on animal toxicity dataWhen a drug has a low therapeu tic index, that drug shouldUsed mostlyUsed mostlyAll the aboveAll the aboveUsed mostly beUsed mostlyUsed mostly intravenouslyConsidered a potentially toxic substanceGiven only in submilligramConsidered a potentially toxic substanceConsidered a submilligramWhich statemen t reagedin g phasespe cific chemoth erapeuticUsed most Are most agents isAre most effective in oneAre effective in Are effective inAre only
therapeu tic indexanimal toxicity dataare important clinicallyidiosyncratic toxic reactionAll the aboveanimal toxicity dataWhen a drug has a low therapeu tic index, that drug shouldUsed mostlyUsed mostlyConsidered a potentially toxic substanceGiven only in submilligramConsidered a potentially toxic substanceGiven only in submilligramConsidered a potentially toxic substanceWhich statemen t reagedin g phasespe cific chemoth erapeuticUsed most Are most agents is effective in oneAre effective in Are effective inAre onlyAre only
tic indexdataclinicallytoxic reactionAll the abovedataWhen a drug has a low therapeu tic index, that drug shouldUsed mostlyLoe down of the second s
When a drug has a low therapeu tic index, that drug shouldUsed mostlyConsidered a potentially toxic substanceGiven only in submilligram dosesConsidered a potentially toxic submilligramWhich statemen t reagedin g phasespe cific chemoth erapeuticUsed mostly intravenouslyConsidered a potentially toxic substanceGiven only in submilligram dosesConsidered a potentially toxic submilligramWhich statemen t reagedin g phasespe cific chemoth erapeuticAre most effective in oneAre effective in Are effective inAre only
drug has a low therapeu tic index, that drug shouldUsed mostly used mostlyConsidered a potentially toxic substanceGiven only in submilligram dosesConsidered a potentially toxic substanceWhich statemen t reagedin g phasespe cific chemoth erapeuticUsed mostImage: Considered a potentially toxic substanceGiven only in submilligram dosesConsidered a potentially toxic substanceWhich statemen t reagedin g phasespe cific chemoth erapeuticAre most agents is effective in oneAre effective in Are effective inAre only
a low therapeu tic index, that drug shouldUsed mostlyConsidered a potentially toxic substanceGiven only in submilligram dosesConsidered a potentially toxic submilligramWhich statemen t reagedin g phasespe cific chemoth erapeuticUsed mostly intravenouslyConsidered a potentially toxic substanceGiven only in submilligram potentially toxic submilligramWhich statemen t reagedin g phasespe cific chemoth erapeuticAre most affective in oneAre effective in Are effective inAre only
therapeu tic index, that drug shouldUsed mostlyUsed mostly intravenouslyConsidered a potentially toxic substanceGiven only in submilligram dosesConsidered a potentially toxic submilligramWhich statemen t reagedin g phasespe cific chemoth erapeuticUsed mostly intravenouslyUsed mostly intravenouslyConsidered a potentially toxic substanceGiven only in submilligram dosesConsidered a potentially toxic submilligramWhich statemen t reagedin g phasespe cific chemoth erapeuticAre most affective in oneAre effective in Are effective inAre onlyAre only
tic index, that drug shouldUsed mostly untravenouslyConsidered a potentially toxic substanceGiven only in submilligram dosesConsidered a potentially toxic substanceWhich statemen t reagedin g phasespe cific chemoth erapeuticImage: Considered a potentially toxic substanceGiven only in submilligram dosesConsidered a potentially toxic substanceConsidered a potentially toxic substanceWhich statemen t reagedinImage: Considered a potentially toxic substanceImage: Considered a potentially toxic substanceConsidered a potentially toxic substanceg phasespe cific chemoth erapeuticImage: Considered a potentially toxic substanceImage: Considered a potentially toxic substanceImage: Considered a potentially toxic substanceImage: Considered a potentially toxic substanceg phasespe cific chemothImage: Considered a potentially toxic substanceImage: Considered a potentially toxic substanceImage: Considered a potentially toxic substanceg erapeuticImage: Considered a potentially toxic substanceImage: Considered a potentially toxic substanceImage: Considered a potentially toxic substanceg erapeuticImage: Considered a potentially toxic substanceImage: Considered a potentially toxic substanceImage: Considered a potentially toxic substanceg erapeuticImage: Considered a potentially toxic substanceImage: Considered a potentially toxic substanceImage: Considered a pot
that drug shouldUsed mostlyUsed mostly intravenouslyConsidered a potentially toxic substanceGiven only in submilligram dosesConsidered a potentially toxic substanceWhich statemen t reagedinImage: Considered a potentiallyGiven only in submilligramConsidered a potentially toxic substanceGiven only in submilligramConsidered a potentially toxic substanceWhich statemen t reagedinImage: Considered a potentiallyGiven only in submilligramConsidered a potentially toxic substanceConsidered a potentially toxic substanceConsidered a potentially toxic substanceg phasespe cific chemoth erapeuticImage: Considered a potentiallyImage: Considered a potentially toxic substanceGiven only in submilligramConsidered a potentially toxic substanceConsidered a potentially toxic substanceConsidered a submilligram toxic substanceConsidered a potentially toxic substanceg phasespe cific chemoth erapeuticAre most effective in oneAre effective inAre onlyAre most effective in one
should beUsed mostly intravenouslypotentially toxic substancesubmilligram dosespotentially toxic substanceWhich statemen t reagedin g phasespe cific chemoth erapeutic agents isImage and the effective in chemothImage and the effective in chemoth
beorallyintravenouslytoxic substancedosessubstanceWhich
Which statemen Image: State of the st
statemen t reagedin g
t reagedin g phasespe cific chemoth erapeutic Are most agents is effective in one Are effective in Are only Are only
reagedingphasespecificchemotherapeuticAre mostagents iseffective in oneAre effective inAre only
g phasespe cific chemoth erapeuticLL
phasespe cific chemoth erapeuticAre most Are effective in oneAre onlyAre most effective in one
cific chemoth erapeuticAre most Afre most effective in oneAre onlyAre most effective in one
chemoth erapeuticAre mostAre mostagents iseffective in oneAre effective inAre only
erapeuticAre mostAre mostAre mostagents iseffective in oneAre effective inAre onlyeffective in one
agents is effective in one Are effective in Are only effective in one
о ,
Theycell cyclecell cyclephasealkylating agentscell cycle
Chemoth
erapeutic
index is a) LD50 LD50 LC50 a) LD50
defined (patient)/LD50 (pathogen)/LD5 (patient)/LC50 (pathogen)/LC50 (patient)/LD50
as (pathogen) 0 (patient) (pathogen) (pathogen) (pathogen) (pathogen)
Which of A more potent A more potent
the A more potent drug can produce drug can
following A more potent drug is the same
is always drug is more A more potent clinically response at same response
true efficacious drug is safer superior lower doses at lower doses
a) The study of b) The study of a) The study of d) The study of a) The study of
Which which the the structural the structural the structural
of the functional physicochemica features of a features of a
followin important to are important important to its important to its
9 the chemical to the its biological chemical stability biological

stateme	reactivity of the	absorption of a	activity		activity
nts best	drug	drug into the			
describe		blood supply			
S					
structur					
e-					
activity					
relations					
hips					
(SAR)?					
QSAR					
method	Target	Target	Ligand x-ray	Linead	Linnad
involves	structure	properties	structure	Ligand	Ligand
One of the					
following					
is not	Molecular		Topological		
used in	connectivity	Molecular	polar surface	Partition	Molecular
QSAR	index	similarity index	are	coeffient	similarity index
One of	Index	Similarity muex	are	COEITIEIT	Similarity muex
the					
following					
is a					
quantum			Highest		Highest
chemical			occupied		occupied
			molecular	Hammett	molecular
paramet	STERIMOL	Taft constant	orbital		orbital
er Which of	STENIIVIOL		UIUILAI	constant	
the					
following					
is a QSAR					
techniqu					
e performe					
d					
	Hansch	Fujita Ban	Free Wilson		Topliss
manually ?	approach	approach	approach	Topliss approach	approach
r In 3D					
QSAR,					
blue					
regions					
indicate			electron-rich	electron-	electron-
favourabl	Bulky groups	smaller groups	groups	difficient groups	difficient groups
	Burky Broups	smaner groups	Broups	anneient groups	anneient groups

e points					
for					
In 3D					
QSAR,					
green					
regions					
indicate					
favourabl					
e points			electron-rich	electron-	
for	Bulky groups	smaller groups	groups	difficient groups	Bulky groups
In 3D					
QSAR,					
red					
regions					
indicate					
favourabl					
e points			electron-rich	electron-	electron-rich
for	Bulky groups	smaller groups	groups	difficient groups	groups
In 3D	- •			_ ·	
QSAR,					
yellow					
regions					
indicate					
favourabl					
e points			electron-rich	electron-	
for	Bulky groups	smaller groups	groups	difficient groups	smaller groups
The first	Daiky Broaps	Sindher Broups	810003		
step in					
the drug					
discovery				lead	
process	lead	lead		optimizatio	lead
-	modification	identification	lead validation		identification
is The	mounication	Identification		n	Identification
The cafety of					
safety of					
the					
candidat					
e drug in					
human					
are					
studied					
in	phase I	phase II	phase III	phase IV	phase II
What is					
the					
purpose	To select a lead		To establish	To test whether	To establish the
of Phase	compound	To identify a	the safety of	the proposed	safety of
1 clinical	from a lead	target	administration	drug actually	administration
trials?	series	population.	to humans	works	to humans

Clinical					
Clinical					
develop					
ment				1.1	
represen				Laboratory	Laboratory
ts the) Project		science to	science to
shift	Laboratory	management		project	project
from	science to	responsibilities	Lead	management	management
	patented	needed to	compound to	responsibilities	responsibilities
_to	research and	manage human	patented	needed to	needed to
	manufacturing	trials to	therapeutic	manage human	manage human
·	technology	technology	research	trials	trials
		To undergo			
What is		preliminary	To create a		
the	A To verify that	testing in	basic outline		A To verify that
purpose	a drug is	healthy	for the larger		a drug is
of pre-	sufficiently safe	humans to	scale future		sufficiently safe
clinical	and effective to	monitor the	tests on a		and effective to
testing?	be tested in	effects of the	widespread		be tested in
testing.	humans	drug	population	A and B	humans
On what	Indition		population		
does					
Phase 2				People with the	People with the
clinical		Healthy	Widespread	target	target
trials		human	differentiated	disease/conditio	disease/conditi
test?	Animals	volunteers	population	n	on
What is	Annua	volunteers	population		
the					
primary		The collection		The analysis of	The collection
focus of		and analysis of	The optimal	data results from	and analysis of
Phase 3		highly specific	range of	the small-subset	highly specific
Clinical	llow to manage		effective		efficacy end-
	How to manage	efficacy end-		target	'
testing?	costs	point data	dosage.	population.	point data
Which					
phase in					
clinical					
develop					
ment is					
the					
largest					
investme					
nt of					
both					
time and	1				
			1		
money?	phase I	phase II	phase III	phase IV	phase III
money? On what	phase I		Widespread	Large-scale tests	Large-scale
money?	phase I Animals	phase II Healthy human volunteers	· ·		•

trials				disease/populati	disease/populat
test?				on	ion
Patent is	Tangible	Intellectual	Industrial		
a form of	Property	Property	property	both b and c	both b and c
Patent					
protects	Discovery	Invention	New invention	Both (a) and (b)	New invention
Patent					
right is	Exclusive right	Natural right	Property right	Both (a) and (c)	Exclusive right
Patent	Limited period				Limited period
right is	right	Territorial right) Absolute right	Both (a) and (b)	right
Patentab			Country of		
ility			Capable of		
criteria	Neveltu	lavontivo ston	Industrial		
includes	Novelty	Inventive step	application	All the above	All the above
IPC	Indian Patent	International) International Patent	International) International Patent
	Classification	Panel Code	Classification	Postal Code	Classification
means	Classification	Pallel Coue	plutonium	Postal Code	Classification
	platinum based		based		platinum based
Carbopla	anti-cancer	platinum based	anticancer	plutonium based	anti-cancer
tin is a	drug	diabetics drug	drug	diabetics drug	drug
The drug			ulug	alubeties alug	
carboplat					
in					
inhibits					
the					
synthesis					
, of	RNA	DNA	PLATIN	ALL the above	ALL the above
			plutonium		
	platinum based		based		platinum based
Cisplatin	anti-cancer	platinum based	anticancer	plutonium based	anti-cancer
is a	drug	diabetics drug	drug	diabetics drug	drug
Chemical	cis-				
ly	diamminedichl	cis-	cis-	cis-	cis-
cisplatin	oridoplatinum(I	diamminedichlo	diphenyldichlor	diamminediphen	diamminedichlo
called as)	ridoplatinum(II)	idoplatinum(II)	ylplatinum(I)	ridoplatinum(II)
What is			The purity tests	The functional	The purity tests
meant by			and purity	groups on a drug	and purity
a drug's	The molecular	The physical	standards	that are	standards
'specifica	dimensions of a	properties of a	required of a	important to its	required of a
tions'?	molecule	drug	drug	activity	drug
Which of					
the					
following					
is not a	Optimising the	Optimising the	Developing a		Optimising the
priority	overall yield of	activity of a	cheap	Optimising the	activity of a
in	a drug	drug	synthetic route	purity of a drug	drug

chemical					
develop					
ment?					
What					
term is					
used to					
signify a					
preparati					
on that					
appears					
identical					
to the					
preparati					
on of an					
active					
drug but which					
has no					
biological					
activity?	Dummy drug	Peptidomimetic	Placebo	Gazebo	Placebo
Which of		replicommetic	1 140000	Gazebo	FIACEDO
the					
following					
would					
NOT					
normally					
, be					
consider					
ed as a					
'costs of	prevention		marketing		
quality'?	costs	warranty costs	costs	inspection costs	marketing costs
Which					
one of					
the					
following					
would					
normally					
be					
consider					
ed as one					
of the	transaction				
'costs of		transport costs	appraisal costs	markating casts	appraisal costs
quality'?	costs	transport costs	appraisal costs	marketing costs	appraisal costs
Process control is			after		
carried	before	during	production		during
out	production	production	control	All of them	production
out	production	production	Control		production

r		1	[1	[]
			Customer		
		Material	needs, design		
		control, process	development,		Customer
	Customer	control,	material		needs, design
Arrange	needs, material	customer need,	control,	Material control,	development,
the steps	control, design	design	process	servicing, process	material
of QA in	development,	development,	control,	control, material	control, process
ascendin	process control,	finished	finished	control, design	control, finished
g order?	marketing	product	product	development	product
Which of	marketing	product	product	development	product
the					
following					
DNA					
binding					
proteins					
interacts					
with DNA					
in a					
sequence					
specific		DNA			
manner?	Histone H3	polymerase	NF-Kb	RNA polymerase	NF-kB
Which of					
the					
following					
is an					
equilibriu					
m					
method					
that can					
be used					
to					
accuratel					
У					
determin					
e DNA-					
protein					
dissociati					
on		Chromatin			
constant	Site directed	Immunoprecipit			
s?	mutagenesis	atio	EMSA	Footprinting	Footprinting
Of the					
methods					
describe					
d in					
Chapter					
5, which					
can be					
used to	EMSA and ChIP	EMSA only	ChIP only	footprinting	EMSA and ChIP
				iootpinning	

		ſ			
differenti					
ate					
between					
individua					
I DNA					
binding					
proteins					
or a					
protein					
complex					
that					
recogniz					
e the					
same					
DNA					
sequence					
What is					
the					
primary					
purpose					
of					
chromati					
n					
sonicatio					
n when					
performi		Melt double			
ng a ChIP		stranded DNA	Reduce		
experime	Reduce	to single	viscosity of the	Pomovo protoins	Reduce
nt?		stranded	-	Remove proteins	
	chromatin size	stranueu	sample	binding to DNA	chromatin size
Of the					
methods					
describe					
d in					
Chapter					
5, which					
can be					
used to					
detect in					
vivo					
DNA-					
protein					
interacti	ChIP and ChIP-				ChIP and ChIP-
on?	seq	Footprinting	EMSA		seq
In an	· 1		-		· · · ·
EMSA					
experime				Antibody	
nt free) Molecular	DNA digestion	immunoprecipita	Molecular
	Chargo		with DNAse		
DNA is	Charge	weight	with DNASE	tion	weight

			1	ſ	
separate					
d from					
protein-					
DNA					
complex					
es in a					
native					
gel by					
which					
following					
principle					
?					
DNA					
binding					
by					
proteins					
with the					
helix-					
turn-					
helix		interactions	hydrogen		
(HTH)	interactions	with the sugar-	bonds, salt	melting of the	melting of the
motif	with base pairs	phosphate	bridges, and	DNA at the	DNA at the
does not	in the major	backbone of	van der Waals	center of	center of
involve	-	DNA			
IIIVOIVE	groove of DNA		contacts.	symmetry	symmetry
		a specific		a specific DNA	a specific
		sequence of	a specific	sequence to	sequence of
		DNA to which	sequence of	which a	DNA to which
A	_	RNA	DNA to which a	restriction	RNA
promoter	a manager for a	polymerase	catabolic	endonuclease	polymerase
is	sports team	binds	repressor binds	binds.	binds
The					
binding					
of lac					
repressor		allosteric			
to DNA is	competitive	effects in	uncompetitive		competitive
analogou	inhibition of an	enzyme	inhibition of an	None of the	inhibition of an
s to	enzyme	regulation	enzyme	above	enzyme
The					
enhancer					
sites of	are binding				
	sites for	can act at			
eukaryoti		can act at	are found in		
С	activating	distances of	are found in		
promoter	transcription	<1000 base	eukaryotic		
S	factors	pairs	viruses	All the above	All the above

UNIT-I

Drug Discovery and Design: Outline- therapeutic index, chemotherapeutic index, structure- activity relationship (SAR) and quantitative structure-activity relationship (QSAR)-Factors governing drug design- computer aided drug design-cancer chemotherapy-bioinorganic chemistry (DNA binding) of platinum anticancer drugs (cisplatin and carboplatin)-mechanism of action studies-clinical trials and their significance- production and quality control- patent protection.

In the past few decades there has been a hiatus in the momentum of research and discovery of **'novel medicinal compounds'.** This particular trend in drug development perhaps is augmented due to **two** vital factors, namely : *first*, strict empirical and rational approach to drug design ; and *secondly*, high standards of safety and therapeutic efficacy together with tremendous increased costs of research and development and finally the clinical trials.

'Drug design' or **'tailor-made compound'** aims at developing a drug with high degree of chemotherapeutic index and specific action. It is a logical effort to design a drug on as much a rational basis as possible thus reducing to the minimum the trial and error approach. It essentially involves the study of biodynamics of a drug besides the interaction between drug molecules and molecules composing the biological objects.

Drug design seeks to explain :

- (*a*) Effects of biological compounds on the basis of molecular interaction in terms of molecular structures or precisely the physico-chemical properties of the molecules involved.
- (b) Various processes by which the drugs usually produce their pharmacological effects.
- (c) How the drugs specifically react with the protoplasm to elicit a particular pharmacological response.
- (d) How the drugs usually get modified or detoxicated, metabolized or eliminated by the organism.
- (e) Probable relationship between biological activity with chemical structure.

In short, **drug design** may be considered as an integrated whole approach which essentially involves various steps, namely : chemical synthesis, evaluation for activity-spectrum, toxicological studies, metabolism of the drug, *i.e.*, **biotransformation** and the study of the various metabolites formed, assay procedures, and lastly galenical formulation and biopharmaceutics.

The **'drug design'** in a broader sense implies random evaluation of synthetic as well as natural products in bioassay systems, creation of newer drug molecules based on biologically-active-prototypes derived from either plant or animal kingdom, synthesis of congeners displaying interesting biological actions, the basic concept of isosterism and bioisosterism, and finally precise design of a drug to enable it to interact with a receptor site efficaciously.

In the recent past, another terminology **'prodrugs'** has been introduced to make a clear distinction from the widely used term **'analogues'**. **Prodrugs** are frequently used to improve pharmacological or biological properties. **Analogues** are primarily employed to increase potency and to achieve specificity of action.

2. ANALOGUES AND PRODRUGS

In the course of **drug design** the *two* major types of chemical modifications are achieved through the formation of **analogues** and **prodrugs.**

An **analogue** is normally accepted as being that modification which brings about a carbon-skeletal transformation or substituent synthesis. *Examples* : **oxytetracycline**, **demclocycline**, **chlortetracycline**, **trans-diethylstilbesterol** with regard to **oestradiol**.

The term **prodrug** is applied to either an appropriate derivative of a drug that undergoes *in vivo* hydrolysis to the parent drug, *e.g.*, **testosterone propionate**, **chloramphenicol palmitate** and the like ; or an analogue which is metabolically transformed to a **biologically active drug**, for instance : **phenyl-butazone** undergoes *in vivo* hydroxylation to **oxyphenbutazone**.

3. CONCEPT OF 'LEAD'

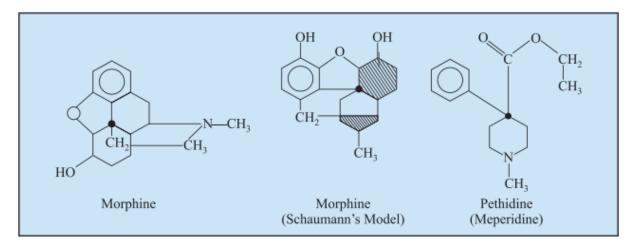
Another school of thought views **'drug design'** as the vital process of envisioning and preparing specific new molecules that can lead more efficiently to useful drug discovery. This may be considered broadly in terms of two types of investigational activities. These include :

(a) Exploration of Leads, which involves the search for a new lead ; and

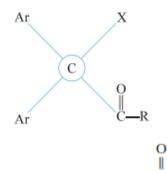
(b) Exploitation of Leads, that requires the assessment, improvement and extension of the lead.

From the practical view-point it is the latter area wherein rational approaches to drug design have been mostly productive with fruitful results.

3.1 Examples

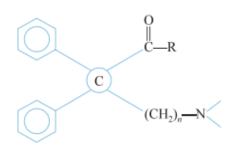

It is worthwhile to look into the right perspective of a few typical and classical examples of **drug design** as detailed below :

(i) Narcotic Analgesics


In the year 1939, Schaumann first identified and recognized the presence of a quaternary-carbonatom in the morphine molecule, which eventually formed an altogether new basis and opened up a new horizon in the field of **drug design** of narcotic analgesics. Intensive research further led to the evolution of **pethidine** (**meperidine**) which incidentally combines both the properties of **morphine** and **atropine**. It possesses a quaternary carbon-atom and quite astonishingly a much simpler chemical structure to that of **morphine**.

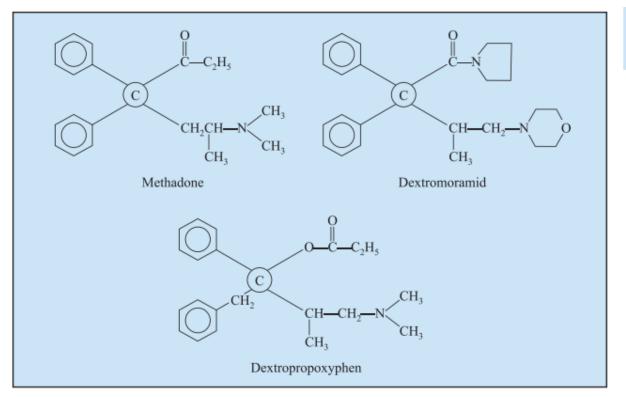
(i) Narcotic Analgesics

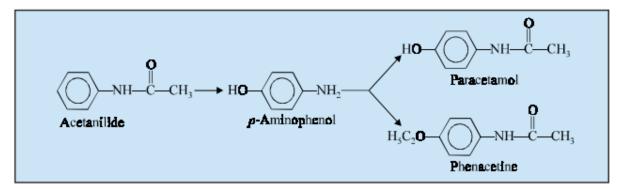
In the year 1939, Schaumann first identified and recognized the presence of a quaternary-carbonatom in the morphine molecule, which eventually formed an altogether new basis and opened up a new horizon in the field of **drug design** of narcotic analgesics. Intensive research further led to the evolution of **pethidine** (**meperidine**) which incidentally combines both the properties of **morphine** and **atropine**. It possesses a quaternary carbon-atom and quite astonishingly a much simpler chemical structure to that of **morphine**.



Ehrhardt suggested a general formula relevant to the analgesic activity in 1949 as stated below :

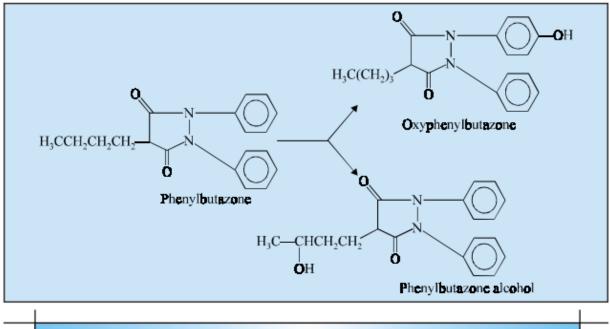
where, Ar is the aromatic ring, X the basic side chain and (--C---) carbonyl function in the form of an ester, ketone or an amide.


Later on, the above general formula was modified slightly as follows :


which successfully led to the development of the following *three* narcotic analgesics, namely : methadone, dextromoramid and dextropropoxyphen.

(ii) Antipyretic Analgesics

Another fruitful approach in **drug design** is the meticulous screening of the metabolite for probable pharmacological activity. The most interesting example is the bio-oxidation of acetanilide into *para*-aminophenol which subsequently on **chemical manipulation** has yielded better tolerated antipyretic-analgesics like **paracetamol** and **phenacetine**.



Quite recently **phenacetine** has been withdrawn completely because of its toxic after effects, though it dominated the therapeutic field for over 30 years as a potent antipyretic analgesics.

(iii) Antirheumatic Drugs

The study of the metabolite conversion of the antirheumatic drug phenylbutazone resulted in the introduction of a better tolerated drug **oxyphenylbutazone** as an **antirheumatic drug** and **phenylbutazone** alcohol as an **uricosuric agent**.

4. FACTORS GOVERNING DRUG-DESIGN

A few cardinal factors governing the efficacy towards the evaluation of drug design include :

- (*a*) The smaller the expenditure of human and material resources involved to evolve a new drug of a particular value, the more viable is the design of the programme.
- (b) Experimental animal and clinical screening operations of the new drugs.
- (c) Relationships between chemical features and biolgoical properties need to be established retrospectively.
- (*d*) **Quantitative structure-activity relationships (QSARs)** vary to an appreciable extent in depth and sophistication based on the nature of evaluation of structure or activity. A purposeful relation of structural variables must include steric factors, electronic features of component functional groups and, in general, the molecule as a whole.
- (e) The trend to synthesize a huge number of newer medicinal compounds indiscriminately for exploratory evaluation still prevails which exclusively reflects the creative genuineness and conceptual functions of a highly individualized expression of novelty by a medicinal chemist.
- (f) Introduction of functional groups in a molecule that need not essentially resemble metabolites, but are capable of undergoing bonding interactions with important functional groups of biochemical components of living organisms affords an important basis for exploration.
- (g) Disease etiologies and various biochemical processes involved prove useful.

In the recent past a tremendous aggresive thrust has been observed in the enormous development of computer-based **adsorption**, **distribution**, **metabolism**, **and elimination** (**ADME**) of molecular models. Interestingly, a plethora of **predictive ADME molecular models** are heavily dependent upon the extensive and intensive application of **QSAR****. In short, one may have a significant and appreciable insight into the design of **chemical libraries for an elaborative biological evaluation** that could be entirely based upon the ensuing spatial arrangements and descriptors which prove to be absolutely essential and necessary for various **drug-like molecules** still under detailed investigative procedures.

The **pharmaceutical scientiests** of today are adequately equipped with highly advanced and most sophisticated methodologies based upon several latest **molecular modeling software** that would certainly and legitimately help them to attain perfection in the modification of the various structural characteristic features of a '**potential-drug candidate**' in silico. In true sense, such **predictions** with regard to the **physicochemical properties** of the **potential-drug candidate** prior to the actual laboratory synthesis invariably prove to be of immense help and guidance to the on-going, time-consuming, and money-churning research undertakings.

Computer-based techniques do offer enough strength and power to accomplish difficult and intricate problems with appreciable convenience. Thus, it is quite evident that the **computer-generated molecular models** (*i.e.*, of 'newer drugs') should be accurate and precise enough to muster enough confidence amalgamated with a reasonably high-degree of success rate*** amongst its users (*i.e.*, medicinal chemists). In other words, one ought to get the procedural steps duly validated, irresective of the wisdom and intellectual calibre of CADD, with respect to the known-drug substances so as to restore and gain confidence in a plethora of circumstances when similar techniques shall be applied to the unknown-drug substances *i.e.*, the newly designed molecules. Thus, the stark reality in terms of the distinct apparent differences between a computer-generated model and reality of a known-drug must always be borne in mind while making use of computer simulations in drug-design.

Nevertheless, the fundamental objective of **computer assisted drug design (CADD)** is to generate, and subsequently understand meticulously the most complex and intricate prevailing relationships at the molecular level between a skilfully designed **drug-like molecule** and a **disease-producing target** (*i.e.*, a **macromolecule**) in order to enable a medicinal chemist to make a fairly reliable and trustworthy prediction to increase molecular interactions with utmost accuracy.

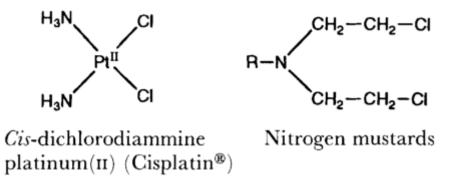
There are a plethora of very critical and most vital **pharmacokinetic** characteristic properties so as to obtain a highly specific and effective therapeutic drug substance. Lipinski *et. al.* (1997)* postulated that the *three* **major physical variables** *viz.*, **potency**, **solubility** and **permeability** may be carefully adapted to increase the overall activity of **potential oral drug** substances **predominantly**. They also observed that relatively poor permeation (*i.e.*, absorption) is commonly attributed by the following characteristic features either inducted alone or more than one right into the proposed drug molecule :

Singh *et al.* (2003)** put forward a more latest predictive model (design) for the **cytochrome P-450** (**CYP**) **3A4** metabolism. This method exclusively rests upon the **primary lateral sclerosis** (**PLS**), however, one of the descriptors is totally based on acute myocardial infarction (AMI)-calculated Hatom abstraction process.

In fact, there are several important assumptions, namely :

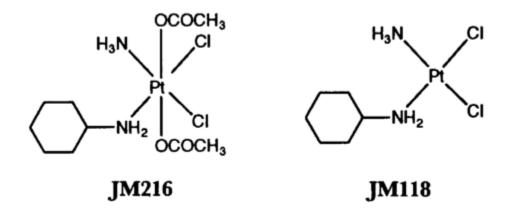
(1) **CYP-3A4**: its greater susceptibility is a determining factor of the electronic atmosphere surrounding the specific H-atom undergoing abstraction phenomenon,

(2) Abstraction of the particular H-atom designates the 'rate-determining step', and


(3) **'Drug'** undergoing the process of metabolism enjoys almost a free access in the **'active-site'**, of the specific enzyme till such time the **'most active H-atom'** is avilable abundantly.

AMI-H-atom Abstraction : The AMI-calculations essentially makes use of a procedure to explain the fact that '**unpaired electrons**' are involved, which eventually interacted on a series of known drug substances. It may be modified duly according to the availability of **chemical descriptors**.

By the year 2020, there lies a tremendous scope for the phenomenal advancement and increment of both **toxicity predictions** and **in-silico characteristic feature predictions**. The **dependability**, **versatility**, and **reliability** of the **predictive ADME** procedures and methodologies would overwhelmingly incorporate and legitimately include its dire and intimate presence in practically each and every initial molecular modeling drug-design process rather than at a stage when the drug has already conceived literally.


CHELATION AND ANTICANCER ACTIVITY

The serendipitous discovery by Professor Barnett Rosenberg in the 1960s that the presence of a platinum wire in a culture caused severe growth disturbance of micro-organisms led to other revelations that coordination compounds of Periodic Table Group VIII in the d-block of the transition series possess anticancer (cytotoxic) activity. The difficulty encountered that such complexes tend to hydrolyse rapidly was suppressed by focussing on platinum, one of the more inert complexing metal ions. The first agent was *cis*-dichlorodiammineplatinum(II), which loses two chloride ions to form a platinum chelate with two nitrogens in the pyrimidine and purine bases of the DNA chain in the cell nucleus to form an intrastrand link that interferes with the copying of the DNA chain when the cell next attempts to divide. Other long-established cytotoxic agents, such as the nitrogen mustards, are known to form similar cross-links, but between bases on each of the two strands of the DNA molecule, *i.e.* interstrand links.

The spatial separation of the chloride ions in the *cis*-platinum complexes, 0.33 nm, and those of the chlorides at the ends of the chloroethyl arms of the nitrogen mustard, 0.80 nm, suit the formation of intra- and interstrand bridges, respectively. The cell-killing effect results from an inability, or very much decreased ability, of tumour cells to repair the intrastrand breaks. Cis-dichlorodiammineplatinum(II) (Cisplatin^(B)) was introduced clinically in the UK in 1979, when it was claimed to be the first heavy metal compound marketed for use in cancer treatment. Cisplatin has proved to be a very effective agent, either used alone or in combination with vinblastine and/or other cytotoxic drugs, in the treatment of ovarian and testicular cancer and also lung cancer. However, the agent suffers from serious disadvantages: first, it must be infused intravenously, and, secondly, it is extremely toxic, causing nausea and vomiting, as well as leukopaenia and renal dysfunction. Further, some tumours develop resistance to the drug. Recent research has concentrated on overcoming

these defects; attaching a 1,1-dicarboxycyclobutane molecule to the diammineplatinum(II) to produce the *cis*-1,1-dicarboxycyclobutanediammineplatinum(II) derivative, Carboplatin[®], has removed some of the disadvantages to produce a second generation agent which is now in clinical use.

More recently, an orally active platinum drug [bis-acetatoamminedichloro(cyclohexylamine)platinum(IV)] (JM216) has been developed. This compound is completely metabolized in the body to six metabolites. The main plasma metabolite is the platinum(II) reduction product [ammine(cyclohexylamine)-dichloroplatinum(II)] (JM118) and this compound appears likely to be the active cytotoxic moiety. JM216 is now undergoing clinical trials and may well enter clinical practice by the mid-1990s. A further interesting development, that is still in the research phase, is the compound [transammine(cyclohexylamine)dichlorodihydroxoplatinum(IV)]. This is the first *trans*-platinum compound to show any selective antitumour activity *in vivo*, and in contrast to Cisplatin it appears to form interstrand cross-links in DNA.

Mechanism of action Studies

Charles River uses its adenoviral technology to elucidate the mechanism of action of small molecules. By combining the compound of interest with knockdown or overexpression of candidate gene in the same phenotypic assay, we can start to elucidate the mechanism of action of the compound(s).

In addition, we are able to access our other technologies to perform mode of action studies:

- Use of our in-house chemogenomics database to predict candidate targets
- Cross-screening of compounds of interest through panels of biochemical and cell-based assays linked by candidate pathways or candidate gene families
- Biophysical assays to look for compound binding to candidate target proteins SPR, size exclusion chromatography, X-ray crystallography