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1 1 Field axioms and order axioms T1:Chap 1, Pg.No : 1-4
) 1 Concepts about integers, unique T1 : Chap 1, Pg.No : 4-6
Factorization theorem
3 1 Continuation of unique Factorization T1 : Chap 1, Pg.No : 4-6
theorem
4 1 Rational numbers T1 : Chap 1, Pg.No : 6-7
5 1 Irrational numbers T1 : Chap 1, Pg.No : 6-7
6 1 Theorems for irrational numbers T1 : Chap 1, Pg.No : 6-7
7 1 Upper bounds, Completeness axiom T1 : Chap 1, Pg.No : 8-9, 36
] 1 Some properties of the Supremum T1 : Chap 1, Pg.No :36

Properties of the integers deduced from T1: Chap 1, Pg.No: 10

9 1 .
the completeness axiom-
10 1 The Archimedean property, T1: Chap 1, Pg.No : 10-1
11 1 Absolute values T1:Chap 1, Pg.No: 11-2
12 1 The triangle inequality T1: Chap 1, Pg.No : 12-3
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1 1 Basic notions of a set theory R2 : Chap 9 Pg.No :245-246

) 1 Cartesian product of two sets R2 : Chap 9 Pg.No :247-254

3 1 Theorems for Cartesian product of two R2 : Chap 9 Pg.No :247-254
sets

4 1 Relations and function R2 : Chap 9 Pg.No :254-267

5 1 Examples of Relation and function R2 : Chap 9 Pg.No :254-267

6 1 One —one functions and inverse and R2 : Chap 9 Pg.No :267-269
composite functions

7 1 Examples of 1-1, inverse and composite | R2 : Chap 9 Pg.No :267-269
function

8 1 Sequence and similar sets R2 : Chap 9 Pg.No :269-277

9 1 Theorems for Sequence and similar sets R2 : Chap 9 Pg.No :269-277

10 1 Finite and infinite sets R4: Chap 2, Pg.No :24-26

11 1 Countable and uncountable sets R4: Chap 2, Pg.No :26-29

12 1 Theorems for Countable and uncountable | R4: Chap 2, Pg.No :26-29
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13 1 Set algebra R4: Chap 2, Pg.No :29-30
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Pg.No :281-283
3 1 Basic Definitions with examples R2 : Chap 10
Pg.No :281-283
4 1 Open balls and open sets R2 : Chap 10
Pg.No :283-287
5 1 Theorems for open Sets R2 : Chap 10
Pg.No :283-287
6 1 The Structure of open Sets in R" R2 : Chap 10
Pg.No :287-288
7 1 Closed sets and adherent points R2 : Chap 10
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Pg.No :288-290
] Theorems for Closed sets R2 : Chap 10
Pg.No :288-290
9 1 Constructions from Sample data R2 : Chap 10
Pg.No :290-300
10 1 The Bolzano —Weierstrass theorem R4: Chap 2 Pg.No :40-
42
11 1 Continuation of the Bolzano —Weierstrass R4: Chap 2 Pg.No :40-
theorem 42
12 1 Cantor intersection theorem R4: Chap 2 Pg.No : 45-
47
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47
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1 1
304
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3 1 Continuation of Lindelof covering theorem | R2: Chap 11
Pg.No :304-312
4 1 Continuation of Lindelof covering theorem
5 1 Lemma for Heine Borel covering theorem R2 : Chap 11
Pg.No :304-312
6 1 Heine Borel covering theorem R2: Chap 11
Pg.No :312-317
7 1 Continuous of Heine Borel covering theorem | R2 : Chap 11
Pg.No :312-317
3 1 Compactness in R" R2 : Chap 11
Pg.No :317-321
9 1 Theorems for Compactness in R" R2 : Chap 11
Pg.No :317-321
10 1 Metric Spaces R2: Chap 11
Pg.No :321-323
1 1 Point set topology in metric spaces R2 : Chap 11
Pg.No :323-325
12 1 Compact subsets of a metric space R4: Chap 2, Pg.No :30-36
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13 1 Theorem for Compact subsets of a metric R4: Chap 2, Pg.No :30-36
space
14 1 Boundary of a set R4: Chap 3, Pg.No :52-57
1 Recapitulation and discussion of possible
15 . :
questions on unit [V
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UNIT-V
1 1 Convergent sequences in a metric space T1 : Chap 4, Pg.No :70-
72
) 1 Cauchy sequences T1 : Chap 4, Pg.No :72-
74
3 1 Theorem for Cauchy’s theorem T1 : Chap 4, Pg.No :72-
74
1 Completeness sequences T1 : Chap 4, Pg.No :74
1 complete metric Spaces T1 : Chap 4, Pg.No :74-
76
6 1 Limit of a function R3 : Chap 3, Pg.No :82-
84
7 Problems for limit of a function
8 Problems for limit of a function R5 : Chap 4, Pg.No :102
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THE REAL AND
COMPLEX NUMBER SYSTEMS

THE FIELD AXIOMS

Along with the set R of real numbers we assume the existence of two operations,
called addition and multiplication, such that for every pair of real numbers x and y
the sum x + y and the product xy are real numbers uniquely determined by x

and y satisfying the following axioms. (In the axioms that appear below, x, y,
z represent arbitrary real numbers unless something is said to the contrary.)

Axiom1l, x + y =y + x, xy = yx (commutative laws).
Axiom 2. x + (y + z) = (x + y) + z, x(yz) = (xy)z (associative laws).
Axiom 3. x(y + z) = xy + xz (distributive law).

Axiom 4. Given any two real numbers x and y, there exists a real number z such that
X + z = y. This z is denoted by y — x,; the number x — x is denoted by 0. (It
can be proved that 0 is independent of x.) We write —Xx for 0 — x and call —Xx the
negative of x.

Axiom 5. There exists at least one real number x # 0. If x and y are two real
numbers with x # 0, then there exists a real number z such that xz = y. This z is
denoted by y|x; the number x|x is denoted by 1 and can be shown to be independent of
x. We write x™' for 1/x if x # 0 and call x~* the reciprocal of x.

THE ORDER AXIOMS

We also assume the existence of a relation < which establishes an ordering among
the real numbers and which satisfies the following axioms:

Axiom 6. Exactly one of the relations x = y, x < y, x > y holds.
NOTE. x > y means the same as y < x.

Axiom 7. If x < y, then for every z we have x + z < y + z.
Axiom 8. If x > Oandy > 0, then xy > 0.

Axiom 9. If x > yandy > z, then x > z.

NOTE. A real number x is called positive if x > 0, and negative if x < 0. We
denote by R* the set of all positive real numbers, and by R~ the set of all negative
real numbers.

From these axioms we can derive the usual rules for operating with inequalities.
For example, if we have x < y, then xz < yz if z is positive, whereas xz > yz if

z is negative. Also, if x > y and z > w where both y and w are positive, then
Xz > yw.

Theorem

Given real numbers a and b such that

- a<b+e foreverye > 0. (D
Then a < b.
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Proof. If b < a, then inequality (1) is violated for ¢ = (@ — b)/2 because

a—b=a+b<a+a
2 2 2

Therefore, by Axiom 6 we must have a < b.

INTEGERS
Definition

A set of real numbers is called an inductive set if it has the following
two properties.:

a) The number 1 is in the set.

b) For every x in the set, the number x + 1 is also in the set.

For example, R is an inductive set. So is the set R*. Now we shall define the
positive integers to be those real numbers which belong to every inductive set.
Definition

A real number is called a positive integer if it belongs to every
inductive set. The set of positive integers is denoted by Z" .
THE UNIQUE FACTORIZATION THEOREM FOR INTEGERS
If n and d are integers and if n = cd for some integer ¢, we say d is a divisor of n,
or n is a multiple of d, and we write d|n (read: d divides n). An integer » is called
a prime if n > 1 and if the only positive divisors of nare 1 and n. If n > 1 and n
is not prime, then n is called composite. The integer 1isneither prime nor composite.
This section derives some elementary results on factorization of integers,
culminating in the unigue factorization theorem, also called the fundamental theorem
of arithmetic.
The fundamental theorem states that (1) every integer n > 1 can be represented
as a product of prime factors, and (2) this factorization can be done in only one
way, apart from the order of the factors. It is easy to prove part (1).

Theorem
Every integer n > 1 is either a prime or a product of primes.
Proof. We use induction on n. The theorem holds trivially for n = 2. Assume
it is true for every integer kK with 1 < k < n. If n is not prime it has a positive
divisor d with 1 < d < n. Hence n = cd, where 1 < ¢ < n. Since both ¢ and
d are <n, each is a prime or a product of primes; hence # is a product of primes.

b+e=0>b+

= 4a.

Before proving part (2), uniqueness of the factorization, we introduce some
further concepts.
If dla and d|b we say d is a common divisor of a and b. The next theorem
shows that every pair of integers a and b has a common divisor which is a linear
. combination of @ and b.

Theorem
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Every pair of integers a and b has a common divisor d of the form

d = ax + by

where x and y are integers. Moreover, every common divisor of a and b divides
this d.

Proof. First assume that @ > 0, b > 0 and use induction on n = a + b. If
n=0thena = b = 0, and we can take d = 0 with x = y = 0. Assume, then,
that the theorem has been proved for 0, 1,2,...,n — 1. By symmetry, we can
assume a > b. If b = Otaked = a,x =1,y = 0. If b > 1 we can apply the
induction hypothesis to @ — b and b, since their sumisa =n — b <n — 1.
Hence there is a common divisordof @ — b and b of the formd = (a — b)x + by.
This d also divides (@ — b) + b = a, so d is a common divisor of @ and b and
we have d = ax + (y — x)b, a linear combination of a and 5. To complete the
proof we need to show that every common divisor divides d. Since a common
divisor divides a and b, it also divides the linear combination ax + (y — x)b = d.
This completes the proof ifa > 0 and b > 0. If one or both of a and 4 is negative’
apply the result just proved to |a| and |b].

Theorem
"(Euclid’s Lemma). If albc and (a, b) = 1, then alc.

Proof. Since (a, b) = 1 we can write 1 = ax + by. Therefore ¢ = acx + bcy.
But alacx and albey, so alc.

Theorem

If a prime p divides ab, then pla or p|b. More generally, if a prime p,

divides a product a, - - - a,, then p divides at least one of the factors.

Proof. Assume plab and that p does not divide a. If we prove that (p, a) = 1,
then Euclid’s Lemma implies plb. Letd = (p, a). Thend|psod = 1ord = p.
We cannot have d = p because d|a but p does not divide . Hence d = 1.

Theorem

( Unique factorization theorem). Every integer n > 1 can be repre-

sented as a product of prime factors in only one way, apart from the order of the
factors.

Proof. We use induction on n. The theorem is true for n = 2. Assume, then,
that it is true for all integers greater than 1 and less than n. If n is prime there is
nothing more to prove. Therefore assume that n is composite and that » has two
factorizations into prime factors, say

n=pi1Py"""Ps=49192"" "4+ (2)

We wish to show that s = ¢ and that each p equals some ¢. Since p, divides the
product ¢,q, * ** g, it divides at least one factor. Relabel the ¢’s if necessary so
that p,|g,. Then p, = ¢, since both p, and ¢, are primes. In (2) we cancel p,
on both sides to obtain

n
- = Pyt Py =g v
P1
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Since n is composite, | < n/p; < n; so by the induction hypothesis the two
factorizations of n/p, are identical, apart from the order of the factors. Therefore
the same is true in (2) and the proof is complete.

RATIONAL NUMBERS

Quotients of integers a/b (where b # 0) are called rational numbers. For example,
1/2, —7/5, and 6 are rational numbers. The set of rational numbers, which we
denote by Q, contains Z as a subset. The reader should note that all the field
axioms and the order axioms are satisfied by Q.

IRRATIONAL NUMBERS

Real numbers that are not rational are called irrational. For example, the numbers
ﬁ, e, n and €* are irrational.

Theorem
If n is a positive integer which is not a perfect square, then \/ nis
irrational. ' ) ' '

Proof. Suppose first that n contains no square factor >1. We assume that v/7 is

rational and obtain a contradiction. Let Vn = a/b, where a and b are integers
having no factor in common. Then nb®> = a? and, since the left side of this equation
is a multiple of n, so too is a*>. However, if a* is a multiple of », a itself must be a
multiple of n, since » has no square factors > 1. (This is easily seen by examining
the factorization of a into its prime factors.) This means that a = cn, where c is
some integer. Then the equation nb® = a? becomes nb* = c2n?, or b* = nc>.
The same argument shows that b must also be a multiple of n. Thus a and b are
both multiples of #, which contradicts the fact that they have no factor in common.
This completes the proof if # has no square factor > 1.
Theorem

If €=14+x+ x*21 + X*/3! + vt 4 Xn! + -+, then the
number e is irrational.

Proof. We shall prove that e~ is irrational. The series for ™! is an alternating
series with terms which decrease steadily in absolute value. In such an alternating
series the error made by stopping at the nth term has the algebraic sign of the first
neglected term and is less in absolute value than the first neglected term. Hence,
if 5, = Y%_ (—1)*/k!, we have the inequality

S 1
O<e 821-|<(?,;)—!,
from which we obtain
1 1
O0< k-1t =5, <— <=, 3
( )N (e S2k-1) % =2 3

for any integer k > 1. Now (2k — 1)! 5,,_, is always an integer. If e~ ! were
rational, then we could choose k so large that (2k — 1)! e~ would also be an
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integer. Because of (3) the difference of these two integers would be a number
between 0 and 4, which is impossible. Thus ¢! cannot be rational, and hence e
cannot be rational.
UPPER BOUNDS, MAXIMUM ELEMENT, LEAST UPPER BOUND
(SUPREMUM)

m& .rl
Let § be a set of real numbers. If there is a real number b such

that x < b for every x in S, then b is called an upper bound for S and we say that
S is bounded above by b.

We say an upper bound because every number greater than b will also be an
upper bound. If an upper bound b is also a member of S, then b is called the
largest member or the maximum element of S. There can be at most one such b.
If it exists, we write

b = max S.

A set with no upper bound is said to be unbounded above.

Definitions of the terms lower bound, bounded below, smallest member (or
minimum element) can be similarly formulated. If S has a minimum element we
denote it by min S.

Examples
1. The set R* = (0, + o) is unbounded above. It has no upper bounds and no max-
imum element. It is bounded below by 0 but has no minimum element.

2. The closed interval S = [0, 1] is bounded above by 1 and is bounded below by 0.
In fact, max § = 1 and min § = 0.

3. The half-open interval § = [0, 1) is bounded above by 1 but it has no maximum
element. Its minimum element is 0.

m E L] r L]
Let S be a set of real numbers bounded above. A real number b is
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called a least upper bound for S if it has the following two properties:
a) b is an upper bound for S.
| b) No number less than b is an upper bound for S.

Examples. If S = [0, 1] the maximum element 1 is also a least upper bound for §. If
§ = [0, 1) the number 1 is a least upper bound for S, even though S has no maximum
element.

It is an easy exercise to prove that a set cannot have two different least upper
bounds. Therefore, if there is a least upper bound for S, there is only one and we
can speak of the least upper bound.

It is common practice to refer to the least upper bound of a set by the more
concise term supremum, abbreviated sup. We shall adopt this convention and write

b=sup§

to indicate that b is the supremum of S. If S has a maximum element, then

max S = sup S. _
The greatest lower bound, or infimum of S, denoted by inf S, is defined in an

analogous fashion.

THE COMPLETENESS AXIOM
Every nonempty set S of real numbers which is bounded above has a

_supremum; that is, there is a real number b such that b = sup S.

As a consequence of this axiom it follows that every nonempty set of real

numbers which is bounded below has an infimum.

Theorem

( Approximation property). Let S be a nonempty set of real numbers
with a supremum, say b = sup S. Then for every a < b there is some x in S such
that

a<x<hb

Proof. First of all, x < bforall xin S. If we had x < a for every x in S, then a
would be an upper bound for S smaller than the least upper bound. Therefore
x > a for at least one x in S.
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Theorem

( Additive property). Given nonempty subsets A and B of R, let C
denote the set

C={x+y:xeA, yeB}
If each of A and B has a supremum, then C has a supremum and
sup C = sup A + sup B.

Proof. Let a=sup A, b=supB. If zeC then z = x + y, where xe€ /
ye€B,soz=x+y < a+ b. Hencea + b isan upper bound for C, so C has
supremum, say ¢ = sup C, and ¢ < a + b. We show next that ¢ + b < |
Choose any ¢ > 0. By Theorem 1.14 there is an x in 4 and a y in B such that

a—¢e<x and b—¢g<y.
Adding these inequalities we find
a+b—-2<x+y<ec

Thus,a + b < ¢ + 2efor every ¢ > 0 so, by Theorem 1.1,a + b < c.
Theorem

(Comparison property). Given nonempty subsets S and T of R such
that s < t for every sin S and t in T. If T has a supremum then S has a supremum
and

sup S < sup T.
PROPERTIES OF THE INTEGERS DEDUCED FROM THE
COMPLETENESS AXIOM

Theorem
The set Z* of positive integers 1, 2, 3, . .. is unbounded above.

Proof. If Z* were bounded above then Z* would have a supremum, say a =
sup Z*. By Theorem 1.14 we would have @ — 1 < n for some n in Z*. Then
n+ 1> aforthisn. Sincen + 1€ Z* this contradicts the fact that a = sup Z*.

Theorem
THE ARCHIMEDEAN PROPERTY OF THE REAL NUMBER SYSTEM

For every real x there is a positive integer n such that n > x.
Theorem

If x > 0 and if y is an arbitrary real number, there is a positive
integer n such that nx > y.

RATIONAL NUMBERS WITH FINITE DECIMAL REPRESENTATION
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" A real number of the form

al aZ au
r=ay+ = + 2 40 4 2,
710 102 10"

where a, is a nonnegative integer and a,, . . ., a, are integers satisfying 0 < a; < 9,
is usually written more briefly as follows:

r=a,.a,a," " a,.
This is said to be a finite decimal representation of r. For example,

5 {.. 2 29 2 .5
== =05 —==002 Z=l4=4- =712
10 50  10? 4 10 102

FINITE DECIMAL APPROXIMATIONS TO REAL NUMBERS
Theorem

Assume x > 0. Then for every integer n > 1 there is a finite
decimal r, = ay.a,a, * * * a, such that

B | -

r,Sx-::r,,+L.

Proof. Let S be the set of all nonnegative integers <x. Then S is nonempty,
since 0 € S, and S is bounded above by x. Therefore S has a supremum, say
a, = sup S. It is easily verified that a, € S, so g, is a nonnegative integer. We
call a, the greatest integer in x, and we write a, = [x]. Clearly, we have

auﬂx‘:an'l"l.

Now let a; = [10x — 10a,], the greatest integer in 10x — 10g,. Since
0 < 10x — 10a, = 10(x — a,) < 10, we have 0 < a, < 9 and

a; < 10x — 10a, < a; + 1.
In other words, a, is the largest integer satisfying the inequalities

a, a; + 1
g+ — < x<ay+ 5
%77 10 " 10

More generally, having chosen a,, ..., a,_, with 0 < g, < 9, let g, be the
~ largest integer satisfying the inequalities

a, a, a, a, + 1
Qo+ 2+ -2 <x<AF L4+
°7 10 10" ° " 10 10"

Then 0 < a, < 9 and we have

@

1
Ns<x<r,+—,
107
where r, = a,.a,a, * ** a,. This completes the proof. It is easy to verify that x is

actually the supremum of the set of rational numbers r,, r,, ... .
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ABSOLUTE VALUES AND THE TRIANGLE INEQUALITY
the absolute value of x, denoted by |x|, is defined as follows:

%] = X, ifx >0,
-x, ifx<0.
Theorem
For arbitrary real x and y we have

lx + | < Ix| + |y (the triangle inequality).

Proof. We have —|x| < x < |x| and —|y|] < y < |y]. Addition gives us
—(x| + |yl) < x + y < |x| + |y|, and from Theorem 1.21 we conclude that

|x + y| < |x| + |y|. This proves the theorem.

The triangle inequality is often used in other forms. For example, if we take

x=a—cand y = ¢ — b in Theorem 1.22 we find

la — bl <la— ¢ + |c — bl

Also, from Theorem 1.22 we have |x| > |x + y| — |y|. Taking x = a + b,

y = —b, we obtain

la + b = |a| — |b].
Interchanging @ and b we also find |a + b| > |b| — |a| = —(la| — |b]), and
hence

la + b = |la| — |B]|.
By induction we can also prove the generalizations

[y + %3 + 00 4+ X ] < x| + Ixa] + 000+ Ix
and
ey + %3 + s x] 2 x| = bl =00 = el

THE CAUCHY-SCHWARZ INEQUALITY

Theorem
(Cauchy-Schwarz inequality). If a,,...,a, and b,,..., b, are
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arbitrary real numbers, we have
n 2 n n
(Z akb,‘) < (E ) 3 b:).
k=1 k=1 k=1
Moreover, if some a, # 0 equality holds if and only if there is a real x such that
ax + b, = 0 foreachk =1,2,...,n.
Proof. A sum of squares can never be negative. Hence we have

i (@ax + b)Y >0

k=1

for every real x, with equality if and only if each term is zero. This inequality can
be written in the form

Ax®* +2Bx + C 2 0,
where

A=Ya, B=Yab C=3 b
k=1

k=1

If A > 0,putx = — BJ/A toobtain B> — AC < 0, which is the desired inequality.
If A = 0, the proof is trivial.

NOTE. In vector notation the Cauchy-Schwarz inequality takes the form
(a*b)* < [lal*|b]?,

where a = (a,,...,a,),b = (b,, ..., b,) are two n-dimensional vectors,
ab = z ak'bh
k=1

is their dot product, and ||a] = (a-a)'/? is the length of a.
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9.

Possible Questions
PART-B (8 Mark)

Prove that the set Z*are positive integers is unbounded above.

Prove that every pair of integers a & b has a common divisor of the form
d=ax+by where x &y are integers

State and prove Cauchy Schwarz inequality.

Prove that V2 is irrational

State and prove the Triangle Inequality.

State and prove Archimedean property.

Prove that every integer n > 1 can be represented as a product of prime factors
in only one way apart from the order of the factors.

State and prove Unique Factorization Theorem

Prove that every integer n > 1 is either prime or product of primes.

10. Prove that if a > 0 then we have the inequality |x| < a if and only if -a <x < a.
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Subject Name: Real Analysis-1 Subject Code: 15MMU501
UNIT-I

Question Option-1 Option-2 Option-3 Option-4 Answer
x(y +z) =xy + Xz i8 - - law commutative associative distributive closure distributive
If x <y, then for every z we have ----------- (x+z)<(y+z) (x+z)>(y+z) (x+z)=(y+2) x+z=0 (x+z)<(y+2z)
Ifx>0and y >0, then --------------—- xy less than equal to 0 xy >0 xy greater than equal to 0 [xy <0 xy >0
If x >y and y >z, then ----------- x <y X=z x>z x<z x>z
If a less than equal to b + §$ for every $ >0, then -- a<b a>b a greater than equal to b a less than equal to b a less than equal to b
The set of all points between a and b is called integer interval elements set interval
The set {x: a <X <b} i§ -------------- (a, b) [a, b] (a, b] [a, b) (a, b)
A real number is called a positive integer if it belongs to -----
—————— interval open interval closed interval inductive set inductive set
If d is a divisor of n, then -----------—-—- n=c¢ n<cd n>cd n=cd n=cd
If ajbc and (a, b) =1, then ----------------—- alc ab bla cla alc

Unique factorisation
If albc and (a, b) =1, then alc is -- theorem additive property approximation property |Euclid's lemma Euclid's lemma
Rational numbers is of the form - pq ptq p/q p-q p/q
The constant value ¢ is - rational irrational prime composite irrational
An integer n is called ---
ofnare l andn rational irrational prime composite prime
If dfa and d|b, then d is called --------—-- LCM common divisor prime function common divisor
If (a, b) = 1, then a and b are called --------------- twin prime common factor LCM relatively prime relatively prime
If an upper bound 'b' of a set S is also a member of S then 'b'
is called ---—- rational irrational maximum element minimum element maximum element
If an lower bound 'b' of a set S is also a member of S then 'b'
is called - - rational irrational maximum element minimum element minimum element
A set with no upper bound is called ---- bounded above bounded below prime function bounded above
A set with no lower bound is called ---- bounded above bounded below prime function bounded below
The least upper bound is called ---- bounded above bounded below supremum infimum supremum
The greatest lower bound is called bounded above bounded below supremum infimum infimum
The supremum of {3, 4} is ---- 3 4 3,4 [3, 4] 4
Every finite set of numbers is - bounded unbounded prime bounded above bounded
A set S of real numbers which is bounded above and
bounded below is called -------—- bounded set inductive set super set subset bounded set
The set N of natural numbers is - bounded not bounded irrational rational not bounded
The completeness axiom is b=supS S=supb b=infS S=infb b=sup S
The infimum of {3, 4} is ------------ 3 4 3,4 [3, 4] 3
Sup C = Sup A + Sup B is called -------------- property approximation additive archimedean comparison additive
For any real x, there is a positive integer n such that ----------|
- n>x n<x n=x n=0 n>x
If x > 0 and if'y is an arbitrary real number, there is a
positive number n such that nx > y i§ -------------- property |approximation additive archimedean comparison archimedean
The set of positive integers is ------------- bounded above bounded below unbounded above unbounded below unbounded above
The absolute value of x is denoted by --------------- x| x| x<0 x>0 x|
If x <0 then --------------- x| =x x| = |x| |Ix]| = -x x| =-x x| =-x
IfS=[0, 1) thensup S = 0 1 (0, 1) [0,1] 1
|a] + |b| greater equal to |a + |a + b| less than equal to [|a + b| less than equal to |a |

Triangle inequality is --- - b| la] > Ja + bl [b| > |a+Db| la |+ bl + |b|
Jx + | greater than equal o - [+ bl e[l -] [k[= ] [kl
Set of real numbers S is bounded above implies S has a ------
o supremum infimum additive property comparison property supremum
In { 3n+2)/(2n + 1) such that n is in N}, the greatest
lower bound is -------------—- 5 divided by 3 8 divided by 5 11 divided by 47 3 divided by 2 3 divided by 2
In Cauchy-Schwarz inequality, the equality holds iff ---------{ akx =0 akx + bkx =0 akx + bk =0 bk=0 akx + bk =0

The linear combination of ged (117,213) =3 can be written -

11*213 + (-20)*117

10%213 + (-20)*117

11*117 + (-20)*213

20%213 + (-25)*117

11*213 + (-20)*117

The smallest 3 digit prime number is ------------------ 104 103 102 101 101
The total number of primes less than 50 is
14 15 16 18 15
Given integers a and b, there is a common divisor d then d = axtby ax*by ax/by by/ax axtby
If d is ged of a and b then d is 0 >0 <0 less than aor equal to 0 [>0
Given integers a and b, number of ged is 4 3 5 1 1
aand b are said to be realtively prime if ged is
4 3 2 1 1
Suppose A is a finite subset of natural numbers and let B . . . . . . I
only negative pair some negative pair 0 only only positive pair only positive integers

={(a,b): a,b in A}. Then B contains

aand b are said to be not realtively prime if ged is

not equal to 4

not equal to 3

not equal to 2

not equal to 1

not equal to 1




if d is ged of 2 and 5th Fermat number then d is

1 2 3 4 1
If abc and (a,b)=1 then alb alc bla blc alc
the number is a neither prime nor composite. 1 2 3 4 1
Let A be the set of even prime numbers. Then number of
clements in A is 1 2 3 4 1
The ged of 8 and 5 is 1 2 3 4 1
The total number of primes upto 100 is 21 22 23 25 25

The consecutive integers will always be

even numbers

odd numbers

relatively prime numbers

not relatively prime
numbers

relatively prime numbers

The product of two prime numbers will always be

even number

odd number

neither prime nor
composite

composite

composite

Let A be the set of all prime numbers. Then number of
elements in A is

countable

uncountable

finite

empty

countable

If A is the set of even prime numbers and B is the set of odd
prime numbers. Then

Ais a subset of B

B is a subset of A

A and B are disjoint

A and B are not disjoint

A and B are disjoint

If a prime p does not divide a then (a,p) is

1 2 3 4 1
If a prime p divides abedef then p divides

aorbor....orf aandband...and f |aonly b only aorbor...orf
The prime power factorization of 7007 is (7"3)*11*3 (7"2)*11*3 T*11*3 T*(1172)*3 (772)*11*3

Every integer n>1 can be expressed as a product of prime
power factors in

only one way

in two different ways

in three different ways

in more than three
different ways

only one way

If n=P1*P2*._... *Ps = Q1*Q2*....*Qt then

s<t

t<s

t=s

t+5=0

t=s
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SOME BASIC NOTIONS
OF SET THEORY

NOTATIONS
Sets will usually be denoted by capital letters:

A B, Covny i X,

and elements by lower-case letters: a, b, ¢, ..., x, y, z. We write x € S to mean
“x is an element of S,” or “x belongs to S.” If x does not belong to S, we write
x ¢ S. We sometimes designate sets by displaying the elements in braces; for
example, the set of positive even integers less than 10 is denoted by {2, 4, 6, 8}.
If S is the collection of all x which satisfy a property P, we indicate this briefly by
writing § = {x: x satisfies P}.

From a given set we can form new sets, called subsets of the given set. For
example, the set consisting of all positive integers less than 10 which are divisible

by 4, namely, {4, 8}, is a subset of the set of even integers less than 10. In general,
we say that a set 4 is a subset of B, and we write A S B whenever every element
of A also belongs to B. The statement A = B does not rule out the possibility
that B = A. In fact, we have both 4 < Band B = A if, and only if, 4 and B have
the same elements. In this case we shall call the sets 4 and B equal and we write
A = B. If A and B are not equal, we write 4 # B. If A < Bbut 4 # B, then
we say that A4 is a proper subset of B.

It is convenient to consider the possibility of a set which contains no elements
whatever; this set is called the empty set and we agree to call it a subset of every
set. The reader may find it helpful to picture a set as a box containing certain
objects, its elements. The empty set is then an empty box. We denote the empty
set by the symbol 0.

ORDERED PAIRS

Suppose we have a set consisting of two elements @ and b; that is, the set {a, b}.
By our definition of equality this set is the same as the set {b, a}, since no question
of order is involved. However, it is also necessary to consider sets of two elements
in which order is important. For example, in analytic geometry of the plane, the
coordinates (x, y) of a point represent an ordered pair of numbers. The point (3, 4)
is different from the point (4, 3), whereas the ser {3, 4} is the same as the set {4, 3}.
When we wish to consider a set of two elements @ and b as being ordered, we shall
enclose the elements in parentheses: (a, b). Then a is called the first element and
b the second. It is possible to give a purely set-theoretic definition of the concept
of an ordered pair of obiects (a. b). One such definition is the following:
Definition

(a, b) = {{a}, {a, b}}.

This definition states that (@, b) is a set containing two elements, {a} and
{a, b}. Using this definition, we can prove the following theorem:

Theorem
(a, b) = (c, d) if,and only if,a = cand b = d.

CARTESIAN PRODUCT OF TWO SETS
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Definition
Given two sets A and B, the set of all ordered pairs (a, b) such that
a€ Aandb € B is called the cartesian product of A and B, and is denoted by A x B.

Example. If R denotes the set of all real numbers, then R x R is the set of all complex
numbers.

RELATIONS AND FUNCTIONS

Let x and y denote real numbers, so that the ordered pair (x, y) can be thought of
as representing the rectangular coordinates of a point in the xy-plane (or a com-
plex number). We frequently encounter such expressions as

xy=1 x*+y*=1, x*+y*<l, x<y. (a)
Definition
Any set of ordered pairs is called a relation.

If S is a relation, the set of all elements x that occur as first members of pairs
(x, y) in S'is called the domain of S, denoted by 2(S). The set of second members
y is called the range of S, denoted by Z(S).
Definition
A function F is a set of ordered pairs (x, y), no two of which have
the same first member. That is, if (x, y) € Fand (x,z) € F, then y = z.

The definition of function requires that for every x in the domain of F there is
exactly one y such that (x, y) € F. It is customary to call y the value of F at x and
to write

y = F(x)
instead of (x, y) € F to indicate that the pair (x, y) is in the set F.

FURTHER TERMINOLOGY CONCERNING FUNCTIONS

When the domain 2(F) is a subset of R, then F is called a function of one real
variable. If 9(F) is a subset of C, the complex number system, then F is called a
JSunction of a complex variable.

If 9(F) is a subset of a cartesian product 4 x B, then F is called a function
of two variables. In this case we denote the function values by F(a, b) instead of

F((a, b)). A function of two real variables is one whose domain is a subset of
R x R.

If S is a subset of 2(F), we say that F is defined on S. In this case, the set
of F(x) such that x € S is called the image of S under F and is denoted by F(S). If
T is any set which contains F(S), then F is also called a mapping from S to T.
This is often denoted by writing

F:S-T.

If F(S) = T, the mapping is said to be onto T. A mapping of S into itself is some-
times called a transformation.
ONE-TO-ONE FUNCTIONS AND INVERSES
Definition
Let F be a function defined on S. We say F is one-to-one on S if,
and only if, for every x and y in S,

F(x) = F(y) implies x = y.
Definition
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Given a relation S, the new relation S defined by
S = {@a, b): (b, @) € S}
is called the converse of S.
Thus an ordered pair (a, ) belongs to S if, and only if, the pair (b, a), with
elements interchanged, belongs to S. When S is a plane relation, this simply means

that the graph of S is the reflection of the graph of S with respect to the line
y = x. Inthe relation defined by x < y, the converse relation is defined by y < x.

Theorem
If the function F is one-to-one on its domain, then F is also a Sfunction.

Proof. To show that Fis a function, we must show that if (x, y) € Fand (x,2) e F,
then y = z. But (x, y) € F means that (y, x) € F; that is, x = F(y). Similarly,
(x, z) € F means that x = F(z). Thus F(y) = F(z) and, since we are assuming
that F is one-to-one, this implies y = z. Hence, F is a function.

NOTE. The same argument shows that if F is one-to-one on a subset S of Y(F),
then the restriction of F to S has an inverse.

COMPOSITE FUNCTIONS

Definition

Given two functions F and G such that R(F) < 9(G), we can form
a new function, the composite G o F of G and F, defined as follow.;': for everyvx in
the domain of F, (G - F)(x) = G[F(x)].

Since Z(F) = 2(G), the element F(x) is in the domain of G, and therefore it
makes sense to consider G[F(x)]. In general, it is not true that Go F = Fo G.
In fact, F - G may be meaningless unless the range of G is contained in the domain

of F. However, the associative law,

Ho(GoF) = (H-G)F,

SEQUENCES

Definition

By a finite sequence of n terms we shall understand a function F
whose domain is the set of numbers {1, i, —— ’

The range of F is the set {F(1), F(2), F(3),..., F(n)}, customarily written
{F,, F,, F5, ..., F,}. The elements of the range are called rerms of the sequence
and, of course, they may be arbitrary objects of any kind.

Let s = {s,} be an infinite sequence, and let & be a function whose domain is
the set of positive integers and whose range is a subset of the positive integers.

Assume that k is “order-preserving,” that is, assume that

k(m) < k(n), if m < n.
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Then the composite function s o k is defined for all integers » > 1, and for every
such n we have

(s°k)n) = Syen)-

Such a composite function is said to be a subsequence of s. Again, for brevity,
we often use the notation {s;,} or {s; } to denote the subsequence of {s,} whose
nth term is 8y,

Example. Let 5 = {l/n} and let k be defined by k(n) = 2". Thens<k = {1/2"}.
SIMILAR (EQUINUMEROUS) SETS

Definition

Two sets A and B are called similar, or equinumerous, and we write

A ~ B, if and only if there exists a one-to-one function F whose domain is the set A
and whose range is the set B.

FINITE AND INFINITE SETS

A set S is called finite and is said to contain n elements if
S adl, 2 ... 08

The integer n is called the cardinal number of S. It is an easy exercise to prove
that if {I,2,...,n} ~ {1,2,...,m} then m = n. Therefore, the cardinal
number of a finite set is well defined. The empty set is also considered finite. Its
cardinal number is defined to be 0.

Sets which are not finite are called infinite sets. The chief difference between
the two is that an infinite set must be similar to some proper subset of itself,
whereas a finite set cannot be similar to any proper subset of itself. (See Exercise
2.13.) For example, the set Z™ of all positive integers is similar to the proper subset
{2, 4, 8, 16, ...} consisting of powers of 2. The one-to-one function F which
makes them similar is defined by F(x) = 2* for each x in Z.".

COUNTABLE AND UNCOUNTABLE SETS
A set S is said to be countably infinite if it is equinumerous with the set of all
positive integers; that is, if
S~ {1,23,...}
In this case there is a function f which establishes a one-to-one correspondence

between the positive integers and the elements of S; hence the set § can be dis-
played as follows:

S = {f(1), f2),/),...}.
Definition
A set S is called countable if it is either finite or countably infinite.
A set which is not countable is called uncountable.

The words denumerable and nondenumerable are sometimes used in place of
countable and uncountable.

Theorem
Every subset of a countable set is countable.
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Proof. Let S be the given countable set and assume A < S. If A is finite, there is
nothing to prove, so we can assume that A4 is infinite (which means § is also in-
finite). Let s = {s,} be an infinite sequence of distinct terms such that

S={Sla"2""}'

Define a function on the positive integers as follows:

Let k(1) be the smallest positive integer m such that s, € 4. Assuming that
k(1), k(2), ..., k(n — 1) have been defined, let k(n) be the smallest positive
integer m > k(n — 1) such that s, e A. Then k is order-preserving: m > n
implies k(m) > k(n). Form the composite function s k. The domain of 5o k is
the set of positive integers and the range of s k is A. Furthermore, 5o k is one-
to-one, since

s[k(n)] = s[k(m)],
implies
Skim) = Sk(m)s
which implies k(n) = k(m), and this implies » = m. This proves the theorem.
UNCOUNTABILITY OF THE REAL NUMBER SYSTEM
Theorem

The set of all real numbers is uncountable.

Proof. 1t suffices to show that the set of x satisfying 0 < x < 1 is uncountable.
If the real numbers in this interval were countable, there would be a sequence
s = {s,} whose terms would constitute the whole interval. We shall show that this
is impossible by constructing, in the interval, a real number which is not a term
of this sequence. Write each s, as an infinite decimal:

Sy = O, Uy otty ...,

where each u, ;is0, 1, ..., or 9. Consider the real number y which has the decimal
expansion

y = 0.0,0,0;...,
where
1, i, %1,
v, = ’
2 ifu,, = 1.

Then no term of the sequence {s,} can be equal to y, since y differs from s, in the
first decimal place, differs from s, in the second decimal place, ..., from s, in
the nth decimal place. (A situation like s, = 0.1999... and y = 0.2000...
cannot occur here because of the way the v, are chosen.) Since 0 < y < 1, the
theorem is proved.

Theorem

Let Z* denote the set of all positive integers. Then the cartesian
product Z+ x Z7 is countable.

Proof. Define a function fon Z* x Z* as follows:
f(m, n) = 2™3", if(m,mye Z* x Z7.

Then fis one-to-one on Z* x Z* and the range of fis a subset of Z*.
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COUNTABLE COLLECTIONS OF COUNTABLE SETS
Definition

If F is a collection of sets such that every two distinct sets in F are
disjoint, then F is said to be a collection of disjoint sets.

Theorem

If F is a countable collection of disjoint sets, say F = {A,, A,, ...},
such that each set A, is countable, then the union U, 1 A, is also countable.

Proof. Let A, = 091G 830-.-}, n=1,2,..., and let § =, 4,

Then every element x of S'is in at least one of the sets in F and hence x = a,, , for
some pair of integers (m, n). The pair (m, n) is uniquely determined by x, smoe
F is a collection of disjoint sets. Hence the function f defined by f(x) = (m, n) if
X = a,,, x € S, has domain S. The range f(S)is a subset of Z* x Z* (where Z*
is the set of positive integers) and hence is countable. But f'is one-to-one and there-
fore S ~ f(S), which means that S is also countable.

Theorem
If F={A;, A, ...} u a munrabfe collection of _sets, let

- —— - |

G={B,B,,...}, where B .31 = A and'forn > 1;
Then G is a collection of disjoint sets, and we have

U A* - U Bi.‘
k=1 k=1

Proof. Each set B, is constructed so that it has no elements in common with the
earlier sets B,, B,,..., B,_,. Hence G is a collection of disjoint sets. Let
A=), 4, and B = )=, B,. We shall show that 4 = B. First of all, if
x € A, then x € A, for some k. If n is the smallest such k, then x e A, but
xé¢ U =1 A, which means that x € B,, and therefore x € B. Hence 4 < B.
Convcrsely, if x € B, then x € B, for some n, and therefore x € A, for this same .
Thus x € A and this proves that B < 4.

Theorem

If F is a countable collection of countable sets, then the union of all
sets in F is also a countable set.
Example 1. The set Q of all rational numbers is a countable set.

Proof. Let A, denote the set of all positive rational numbers having denominator 7.
The set of all positive rational numbers is equal to Uk=l Ai. From this it follows that
Q is countable, since each 4, is countable.

Example 2. The set S of intervals with rational endpoints is a countable set.

Proof. Let {xq, x,,...} denote the set of rational numbers and let A, be the set of all
intervals whose left endpoint is x, and whose right endpoint is rational. Then A, is
countable and § = ()=, 4,.
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3.

B

oo

B2 oo~

Possible Questions
PART-B (8 Mark)

Show that the Cartesian product Z* x Z* where Z* is a set of positive integers
IS a countable set.
If F={A1, Ao, ... } is a countable collection of sets and G = {By, Bo, ... }
when Bi=A:

forn>1, By = An- UZ]A,, then prove that G is a collection of

disjoint sets, and we

have U=, 4, = Uy, B,.
Let F be the collection of sets, then for any set B, prove that
i)B-UA=N(B-A)

AeFAeF

i) B-NA=U (B-A)
AeFAeF
Prove that the set of all real number is countable.
Prove that (a,b)=(c,d) iff a=c& b=d.
Two functions F and G are equal iff
)D(F) =D(G) [F,G have the same domain.]

i) F(X) =G(x) VxinD(F).
Prove that the set of rational is countable.
Prove that every subset of countable set is countable.
Prove that the set of real numbers is uncountable.

. Show that the Cartesian product Z* x Z* where Z* is a set of positive integers

is a countable set.
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Question Option-1 Option-2 Option-3 Option-4 Answer
Let S be the set of of all 26 letters in the alphabet and let A
be the set of letters in the word "trivial". Then the number
of elements in S-A is is 19 20 21 22 20
Let A={1,2}. Then AX A= {(1,1),(2,2)} {(1,2),2,1)} {(1,1)(1,2),2,1),(2,2)}  |{(1,1),(2,2),2,1)} {(1,1)(1,2),(2,1),(2,2)}
Let A={1,2} and B={a,b,c}. Then number of elements in A
XB= 2 3 2%2%2 2*3 2*3
Suppose n(A)=a and n(B)=b. Then number of elements in
AXBis a b ab ath ab
Let A={1,2} and B={a,b,c}. Then which of the following
element does not belongs to A X B = (1,2) (3.0) (c,2) (1,c) (c,2)
Let F be a function and (x,y) in F and (x,z) in F. Then we
must have x=y y=z z=x X=X y=z

Let f:A—B then which of the followin is always true?

range of f is not equal to
B

range of fis a subset of
B

range of f is containing
B

range of f is proper subset of B

range of fis a subset of B

If the number of elements in a set S is 5. Then the number

of elements of the power set P(S) is 5 6 16 32 32
If range of f is equal to codomain set, then f'is

into onto one-one many to one onto
The inverse relationof f is a function only if fis

into onto one-one bijection bijection
The Inverse function is always into onto one-one bijection bijection
If A and B contains n elements then number bijection
between A and B is n! n n+1 n-1 n!

Let fbe a function from A to B. Then we call fas a
sequence only if Aisa

set of positive integers

set of all real numbers

set of all rationals

set of irrationals

set of positive integers

Two sets A and B are said to be similar iff there is a

function f exists such that fis into one-one onto bijection bijection
If two sets A={1,2,...,m} and B={1,2,..,n} are smilar then

m<n n<m n=m n>0 n=m
Which of the following is an example for countable? set of real numbers set of all irrationals set of all rationals (0,1) set of all rationals
Number of elements in the set of all real numbers is

finite countably infinite 10000000000 uncountable uncountable
The union of elements A and B is the set of elements
belongs to either A or B neither A not B both A and B A and not in B either A or B
The set of elements belongs A and not in B is

B A B-A A-B A-B
The set of elements belongs B and not in A
is B A B-A A-B B-A
Countable union of countable set is uncountable countable finite countably infinite countable
The set of elements in N X N is uncountable countable finite countably infinite countable
The set of elements in Z X R is uncountable countable finite countably infinite uncountable
The set of elements in R x R is uncountable countable finite countably infinite uncountable
The set of sequences consists of only 1 and 0 is

uncountable countbale finite countably infinite uncountable
Every subset of a countable set is uncountable countable finite countably infinite countable
Every subset of a finite set is uncountable countable finite countably infinite finite
Fibonnaci numbers is_an example for uncountable set countable set finite set infinte set countable
Suppose A and B is countable then A X B is

uncountable countable finite infinite countable
A XBis similar to A B A XA AXB AXB
The set of all even integers is uncountable countable finite infinite countable
The set A = {x/xin (0,1]} is uncountable countable finite countably infinite uncountable
The set K = {1,2,.....,100000} is uncountable countable infinite countably infinite countable
Suppose fis a one to one function. Then x not eqaul y
implies f(x) is not equal to f(y) [f(x)=f(y) f(x)<f(y) f(x)>f(y) f(x) is not equal to f(y)
Suppose fis a one to one function. Then f(x)=f(y) implies

X=-y y=x+10 X=y X is not eqaul y X=y
Let f be a bijection between A and B and A is counatble
then B is uncountable countable finite similar to R countable
Let f be a function defined on A and itself such that f(x)=x.
Then fis onto one to one bijection neither one to one nor onto bijection
Constant function is an example for onto one to one many to one bijection many to one
Stricly increasing function is an onto function one to one many to one bijection one to one
Strictly decreasing function is an onto function one to one many to one bijection one to one
If g(x) =3x +x +5, then g(2) 8 9 13 17 13
A = {x/ X # X }represents {1} {} {0} {2} {}
If a set A has n elements, then the total number of subsets
of Ais n! 2n 2" n 2"
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ELEMENTS OF
POINT SET TOPOLOGY
EUCLIDEAN SPACE R"

A point in two-dimensional space is an ordered pair of real numbers (x,, x,).
Similarly, a point in three-dimensional space is an ordered triple of real numbers
(xy, X3, x3). It is just as easy to consider an ordered n-tuple of real numbers
(x4, X2,..., X,) and to refer to this as a point in n-dimensional space.

Definition
Let n > 0 be an integer. An ordered set of n real numbers

(Xy, X3, ..., x,) is called an n-dimensional point or a vector with n components.
Points or vectors will usually be denoted by single bold-face letters; for example,

x=(-x1;x1)---)xn} or Y‘:(J’l-}'zs---s}’n)-

The number x, is called the kth coordinate of the point x or the kth component of
the vector x. The set of all n-dimensional points is called n-dimensional Euclidean
space or simply n-space, and is denoted by R".

Definition
Letx = (x4,...,x)andy = (yy,...,y,) bein R". We define:
a) Equality:

x =yif,andonly if, x; = y;, ..., Xy = Vp.
b) Sum:

X+ Yy =0+ Y. X+ Vo)
¢) Multiplication by real numbers (scalars):

ax = (ax,, ..., ax,) (a real).
d) Difference:
x—y=x+ (=1y.
e) Zero vector or origin:
0=0,...50)
f) Inner product or dot product:

n
Xy =) %l
k=1

g) Norm or length:
n 1/2
Xl = (x-x)"/? = (Z xi) :
k=1

The norm ||x — y|| is called the distance between x and y.

NOTE. In the terminology of linear algebra, R" is an example of a linear space.

Theorem
Let x and y denote points in R". Then we have:
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a) x|l = 0, and |x|| = 0 if, and only if, x = 0.

b) llax|| = |a| ||x|| for every real a.

) llx =yl = ly — x|.

d) [x-y| < x| |yl (Cauchy-Schwarz inequality).

e) Ix + yl < Ix| + Iyl (triangle inequality).

Proof. Statements (a), (b) and (c) are immediate from the definition, and the

Cauchy-Schwarz inequality was proved in Theorem 1.23. Statement (e) follows
from (d) because

Ix + ylI> = E (X +'p)? = Z (x3 + 2% 0 + YD)

k=1 k=1
= [IxI? + 2x-y + llyl> < IxII* + 2]l llyll + Iyl = Clixll + lyl)>
NOTE. Sometimes the triangle inequality is written in the form
Ix = z| < [x -yl + lly — zl.
This follows from (e) by replacing x by x — yand y by y — z. We also have

lxl = Iyl < Ix — yl.
Definition
The unit coordinate vector u, in R" is the vector whose kth com-
ponent is | and whose remaining components are zero. Thus,

w, =(1,0,...,0, w;=(010,..,0),...,u,=(0,0,...,0,1).

If x=(x,...,x,) then x =xyu, + -+ x,0, and x;, = X*uy, x, =
X*uy, ..., X, = Xx*u,. The vectors u,, ..., u, are also called basis vectors.

OPEN BALLS AND OPEN SETS IN R”"

Let a be a given point in R” and let r be a given positive number. The set of all
points x in R" such that

[x —a] <r,

is called an open n-ball of radius r and center a. We denote this set by B(a) or
by B(a; r).

The ball B(a; r) consists of all points whose distance from a is less than r.
In R' this is simply an open interval with center at a. In R? it is a circular disk,
and in R? it is a spherical solid with center at a and radius r.

Definition of an interior point. Let S be a subset of R", and assume that a € S.

Then a is called an interior point of S if there is an open n-ball with center at a, all of
whose points belong to S.

In other words, every interior point a of S can be surrounded by an n-ball
B(a) = S. The set of all interior points of S is called the interior of S and is
denoted by int S. Any set containing a ball with center a is sometimes called a
neighborhood of a.
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Definition of an open set. A set S in R" is called open if all its points are interior

points.
NOTE. A set S.is open.if and only if § = int §S.

Theorem

T he union of any collection of open sets is an open set.

Proof. Let Fbe a collection of open sets and let S denote their union, § = |J ,.r 4.
Assume x € S. Then x must belong to at least one of the sets in F, say x € 4.
Since A is open, there exists an open n-ball B(x) € A. But A c §,s0 B(x) = §
and hence x is an interior point of S. Since every point of S is an interior point,
S is open.

Theorem

The intersection of a finite collection of open sets is open.

Proof. Let S = (i, A, where each A, is open. Assume x € S. (If S is empty,
there is nothing to prove.) Then x € 4, for every k = 1, 2,..., m, and hence
there is an open n-ball B(x; r,) < A,. Let r be the smallest of the positive numbers
FisFay...,rm Then Xxe B(x;r) © §. That is, x is an interior point, so S is

open.
Definition of component interval. Let S be an ~open_subset uj R'. An open

interval I (which may be finite or infinite) is called a component mterval of Sif
I = § and if there is no open interval J # I such that I < J < 8.

In other words, a component interval of S is not a proper subset of any other
open interval contained in S.

Theorem
Every point of a nonemply open set S belongs to one and only one

ey e

componem interval of S.

Proof. Assume x € S. Then x is contained in some open interval I with I < S.
There are many such intervals but the “largest” of these will be the desired com-
ponent interval. We leave it to the reader to verify that this largest interval is
I, = (a(x), b(x)), where

a(x) = inf {a: (a, x) = S}, b(x) = sup {b: (x, b) = S}.

Here a(x) might be — oo and b(x) might be + 0. Clearly, there is no open interval
J such that I, < J < §, so I, is a component interval of S containing x. If J;
is another component interval of S containing x, then the union I.vJ,is an
open interval contained in S and containing both I, and J,. Hence, by the defi-
nition of component interval, it follows that I, u J, = I, and I.ul, = J,_so
I, =1,

Theorem

( Represenmtmn theorem for open sets on the real line). Every non-
empty open set S in R" is the union of a countable collection of disjoint component
intervals of S.
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Proof. If x € S, let I, denote the component interval of S containing x. The union
of all such intervals I, is clearly S. If two of them, /, and I,, have a point in
common, then their union I, U I, is an open interval contained in S and containing
both I, and 1, Hence I, I, =1, and I, U I, = I,s0 I, = 1,. Therefore the
intervals 7, form a disjoint collection.

It remains to show that they form a countable collection. For this purpose,
let {x,, x;, X3, ...} denote the countable set of rational numbers. In each com-
ponent interval I, there will be infinitely many x,, but among these there will be
exactly one with smallest index n. We then define a function F by means of the
equation F(I,) = n, if x, is the rational number in 7, with smallest index n. This
function F is one-to-one since F(I,) = F(I,) = n implies that I, and J, have x, in
common and this implies /, = I,. Therefore F establishes a one-to-one corre-
spondence between the intervals /., and a subset of the positive integers. This
completes the proof.

CLOSED SETS
Definition of a closed set. A set S in R" is called closed if its complement
R" — S is open.

Examples. A closed interval [a, b] in R! is a closed set. The cartesian product
[ah bl] MmN [0,,, b,,]

of n one-dimensional closed intervals is a closed set in R" called an n-dimensional closed
interval [a, b].

Theorem
The union of a finite collection of closed sets is closed, and the

intersection of an arbitrary collection of closed sets is closed.

Theorem

If A is open and B is closed, then A — B is open and B — A is
closed.

Proof. We simply note that 4 — B = A n (R" — B), the intersection of two
open sets, and that B — A = B n (R" — A), the intersection of two closed sets.
ADHERENT POINTS. ACCUMULATION POINTS

Closed sets can also be described in terms of adherent points and accumulation

points.
Definition of an adherent point. Let S be a subset of R", and x a point in R,

x not necessarily in S. Then x is said to be adherent to S if every n-ball B(x) contains
at least one point of S.

Examples
1. If x € S, then x adheres to S for the trivial reason that every n-ball B(x) contains x.
2. If S is a subset of R which is bounded above, then sup S is adherent to S.

Some points adhere to S because every ball B(x) contains points of S distinct
from x. These are called accumulation points.

Definition of an accumulation point. If S < R" and x € R", then x is called
an accumulation point of S if every n-ball B(X) contains at least one point of S

distinct from x.
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In other words, x is an accumulation point of S if, and only if, x adheres to
S — {x}. If x € S but x is not an accumulation point of S, then x is called an

isolated point of S.
Examples
1. The set of numbers of the form 1/n,n = 1, 2, 3,. .., has 0 as an accumulation point.
2. The set of rational numbers has every real number as an accumulation point.
3. Every point of the closed interval [a, b] is an accumulation point of the set of num-
bers in the open interval (a, b).
Theorem

If x is an accumulation point of S, then every n-ball B(x) contains
infinitely many points of S.
Proof. Assume the contrary; that is, suppose an n-ball B(x) exists which contains

only a finite number of points of S distinct from x, say a,, a, ..., a,,. If r denotes
the smallest of the positive numbers

”x = a, II) ”x - aZ”! “ ey “X - am“a

then B(x; r/2) will be an n-ball about x which contains no points of S distinct
from x. This is a contradiction.

CLOSED SETS AND ADHERENT POINTS

A closed set was defined to be the complement of an open set. The next theorem
describes closed sets in another way.

Theorem
A set S in R" is closed if, and only if, it contains all its adherent

points.

Proof. Assume S is closed and let x be adherent to S. We wish to prove that x € S.
We assume x ¢ S and obtain a contradiction. If x ¢ S then x € R* — S and, since
R" — S is open, some n-ball B(x) lies in R — S. Thus B(x) contains no points of
S, contradicting the fact that x adheres to S.

To prove the converse, we assume S contains all its adherent points and show
that S is closed. Assume x € R" — S. Then x ¢ S, so x does not adhere to S.
Hence some ball B(x) does not intersect S, so B(x) < R" — S. Therefore R — S
is open, and hence S is closed.

Definition of closure. The set of all adherent points of a set S is called the
closure of S and is denoted by §.

Theorem

A set S in R" is closed if, and only if, it contains all its accumulation
points.

THE BOLZANO-WEIERSTRASS THEOREM

Definition of a bounded set. A set S inR" is said to be bounded if it lies entirely
within an n-ball B(a; r) for some r > 0 and some a in R".

Theorem

( Bolzano-Weierstrass). If a bounded set S in R" contains infinitely
many points. then there is at least one point in R" which is an accumulation point of S.
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Proof. To help fix the ideas we give the proof first for R'. Since S is bounded,
it lies in some interval [ —a, a]. At least one of the subintervals [ —a, 0] or [0, a]
contains an infinite subset of S. Call one such subinterval [a,, b,]. Bisect [a,, b,]
and obtain a subinterval [a,, b,] containing an infinite subset of S, and continue
this process. In this way a countable collection of intervals is obtained, the nth
interval [a,, b,] being of length b, — a, = a/2"~'. Clearly, the sup of the left
endpoints a, and the inf of the right endpoints b, must be equal, say to x. [Why
are they equal?] The point x will be an accumulation point of S because, if r is
any positive number, the interval [a,, b,] will be contained in B(x; r) as soon as n
is large enough so that b, — a, < r/2. The interval B(x; r) contains a point of S
distinct from x and hence x is an accumulation point of S. This proves the theorem
for R'. (Observe that the accumulation point x may or may not belong to S.)

Next we give a proof for R”, n > 1, by an extension of the ideas used in treating
R!'. (The reader may find it helpful to visualize the proof in R? by referring to
Fig. 3.1.)

Since S is bounded, S lies in some n-ball B(0; a), a > 0, and therefore within
the n-dimensional interval J, defined by the inequalities

—-a<x<a (o= 12050
Here J, denotes the cartesian product
Jy = I x I§P x oo x I8V

that is, the set of points (x, ..., X,), where x, € I{") and where each I{" is a
one-dimensional interval —a < x; < a. Each interval I{? can be bisected to

n

r}
i
. W—

form two subintervals If!) and I{!}, defined by the inequalities
IfY: —a < x, <0 I$:0 < x, < a.
Next, we consider all possible cartesian products of the form
I{R % Y. % <o« X ISP, (a)
where each k; = 1 or 2. There are exactly 2" such products and, of course, each
such product is an n-dimensional interval. The union of these 2" intervals is the
original interval J,, which contains S; and hence at least one of the 2" intervals in

(a) must contain infinitely many points of S. One of these we denote by J,, which
can then be expressed as
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Jg = I3 x I x -+ x I,

where each I{* is one of the subintervals of I{! of length a. We now proceed
with J, as we did with J,, bisecting each interval /{*) and arriving at an n-dimen-
sional interval J; containing an infinite subset of §. If we continue the process,
we obtain a countable collection of n-dimensional intervals J,, J,, Js, ..., where
the mth interval J,, has the property that it contains an infinite subset of S and
can be expressed in the form

Jo =1 x I x -+« x I'™,  where I{™ < I{V.
Writing
I:u] = [ﬂ](‘m)’ b}‘“}],
we have
m .. a
bﬂ}—a£)=2—m;i (kﬁl,z,"',ﬂ).

For each fixed k, the sup of all left endpoints a{™, (m = 1, 2, ...), must therefore
be equal to the inf of all right endpoints b{™, (m = 1, 2, ...), and their common
value we denote by #,. We now assert that the point t = (f,, ¢5,..., 1,) is an

accumulation point of S. To see this, take any n-ball B(t; r). The point t, of
course, belongs to each of the intervals J,, J,, ... constructed above, and when
m is such that a/2™"? < r/2, this neighborhood will include J,. But since J,,
contains infinitely many points of S, so will B(t; r), which proves that t is indeed
an accumulation point of S.

THE CANTOR INTERSECTION THEOREM

Theorem

Let {Q,, Q3, ...} be a countable collection of nonempty sets in R"
such that:

1) QI:‘I‘IEQk (k=1,2.3,..-).
ii) Each set Qy is closed and Q, is bounded.

Then the intersection [\, Qy is closed and nonempty.

Proof. Let S = (), O, Then S is closed because of Theorem 3.13. To show
that S is nonempty, we exhibit a point x in S. We can assume that each Q, con-
tains infinitely many points; otherwise the proof is trivial. Now form a collection
of distinct points 4 = {x,, X,, ...}, where x, € Q,. Since A4 is an infinite set
contained in the bounded set Q,, it has an accumulation point, say x. We shall
show that x € S by verifying that x € Q, for each k. It will suffice to show that x
is an accumulation point of each @,, since they are all closed sets. But every
neighborhood of x contains infinitely many points of A4, and since all except
(possibly) a finite number of the points of A belong to Q,, this neighborhood also
contains infinitely many points of Q,. Therefore x is an accumulation point of
0, and the theorem is proved.
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o~

~No

Possible Questions
PART-B (8 Mark)

Prove that intersection of a finite collection of open set is open.

If A'is open and B is closed prove that A — B is open and B — A is closed.
Prove that union of any collection of open sets is an open set.

Prove that a set S is closed if and only if S = §.

Let (X, d) be a metric space, x € X,and & = 0. Prove that then B(x, &) is
open and C(x, &) is closed.

If A is open and B is closed prove that A — B is open and B — A is closed.
Prove that if (S, d) be a metric space subspace of (M, d) and let X be a subset
of S. Then X is open in S iff X=AnNS for some set a which is open in M.
Prove that a set S in R" is closed if and only if it contains all its adherent
points.

Prove that every point of a non empty open set s belongs to one and only one
component interval of S.
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Question

Option-1

Option-2

Option-3

Option-4

Answer

Let X in n dimensional space. Then we must have

norm of X is 0

norm of x is 1

norm of X is greater
than 0

norm of X is greater
than or equal to 0

norm of X is greater than or
equal to 0

A set S is closed if

complement of S is
open

complement of S is
closed

complement of S is
nether open nor closed

complement of S is
both open and closed

complement of S is open

A set S is open if

complement of S is
closed

complement of S is
closed

complement of S is
nether open nor closed

complement of S is
both open and closed

complement of S is closed

Let a is said to be adherent point of S if every every n ball

atleast one point

atmost one point

contains center a onl atleast center a otherthan center a otherthan a atleast center a
Suppose X is an accumulation point then S is
finite set empty set infinite countable set infinte set
The set of all accumulation points of (0,1] is
[0.1] ©.n ©.1] [0.1] [0.1]
The set of limit points of {1,2,...,10} is empty set {0,1,2,...,10} [0,1] [0,1] empty set
Number of limit points of a finite is 0 1 2 3 0
Number of limit points of set of all integers is
0 1 2 3 0
Number of limit points of set of all rationals is
0 1 2 2 0
The number of limit points of a set {1/n: where n=1, 2, 3, ...
}is 1 2 3 4 1
The limit point of the set {1/n: where n=1, 2, 3, ... } is
0 1 2 3 0
Every finite set is an open set a closed set neither open nor closed|both open and closed set|a closed set
Number of isloated points of [a,b] where a and b in R is
1 2 3 0 0
The collection of all intervals of the form 1/n<x<2/n,
n=1,2,... is an open covering of (1,2) (0,1) R 4 (1,2)
The set of all interior points of A=[a,b] is (a,b) (a,b] [a,b) [a,b] [a,b]
Which of the following is not a limit point of [0,1) ? 1 2 0 12 2
If A = closure of A, then A is open closed both open and closed |neither open nor closed |closed
The set of all interior of a finite set Ais empty set A R Z empty set
The set of all interior points of set of all rational is
empty set A R V4 empty set
Let A= {1, 1/2, 1/3, ...} then the set of all interior points of
A is empty set A R Z empty set
In a discrete metric space, for any set A , the set of interior
poits of A= empty set A R Z A
With usual metric in R, let A=[0.1]. The set of all interior
points of A is empty set A R Z A
If A is open then Interior of A= empty set A R Z A
If A = interiot of A,then A is closed open both open and closed |neither open nor closed |open
For any closed set the closure of A is empty set A R Z A
In R with usual metric, (0,1] is closed open both open and closed |neither open nor closed |neither open nor closed
In R with usual metric, (0,1) is closed open both open and closed |neither open nor closed |open
In R with usual metric, [0,1] is closed open both open and closed |neither open nor closed |closed
In R with usual metric, [a,b) is closed open both open and closed |neither open nor closed |neither open nor closed
The set of all integers is closed open both open and closed |neither open nor closed |closed
In R with usual metric every singleton set is
not closed not open both open and closed _|neither open nor closed |closed
Every subset of a discrete metric space is
not closed not open both open and closed |neither open nor closed |both open and closed
In any metric (M.,d) , the empry set is not closed not open both open and closed |neither open nor closed |both open and closed
In any metric space (M,d), M is not closed not open both open and closed |neither open nor closed |both open and closed
In any metric space the union of a finite number of closed sets
is closed open both open and closed _|neither open nor closed |closed
In any metric space the arbitrary intersection of closed sets is
closed open both open and closed |neither open nor closed |closed
In any metric space the arbitrary union of open sets is
closed open both open and closed _|neither open nor closed |open
In any metric, the intersection of finite number of open sets is
closed open both open and closed |neither open nor closed |open
In a discrete metric space the union of arbitrary number of
closed sets is not closed not open both open and closed _|neither open nor closed |both open and closed
In a discrete metric space the interection of arbitrary open
sets is not closed not open both open and closed |neither open nor closed |both open and closed
Number of limit points of a subset of discrete metric space
0 1 2 3 0
Closure of R is R z N R
some of adherent points |no adherent points of |only finite number of
A is closed iff A contains all adherent points of A [of A A adhrent points of A all adhrent points of A

A is closed iff A contains

all accumulation points
of A

some of accumulation
points of A

no accumulation
points of A

only finite number of
accumulation points of
A

all accumulation points of A

x is an accumulation point of A then every n ball of x
contains

atleast one point other
than x

atmost one point other
than x

exactly one point
other than x

no point other than x

atleast one point other than x

Every n ball of x contains more than one point other than x is
called

adherent point

accumulation point

isolated point

not an adherent point

accumulation point




If every point of A is an interior point then A is called

closed open both open and closed _|neither open nor closed |open
Let (M,d) be a discrete metric space with 5 elements. Then
the number of open subsets of M is 32 5 10 5! 32
Let(M,d) be a discrete metric space with 5 elements. Then the
number of closed sets is 32 5 10 120 32
Which of the following is not a bounded set? R [a,b] [a,b) (a,b] R
The set of all even prime numbers is unbounded bounded infinite uncountable bounded
The set of all even prime numbers is closed open both open and closed |neither open nor closed |closed
The set of all odd prime numbers _is bounded unbounded open finite unbounded
The set of all prime numbers _is bounded unbounded open finite unbounded
The set of all prime numbers is bl bl finite bounded countable
If A is open and B is closed then B-A open closed both open and closed _|neither open nor closed |closed
If A is open and B is closed then A-B is open closed both open and closed _|neither open nor closed |open
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Theorem

Definition of a covering. A collection F of sets is said to be a covering of a
given set S if S © \Jr A. The collection F is also said to cover S. If Fis a
collection of open sets, then F is called an open covering of S.

Examples
1. The collection of all intervals of the form I/n < x < 2/n, (n = 2,3,4,...), is an
open covering of the interval 0 < x < 1. This is an example of a countable covering.

2. The real line R! is covered by the collection of all open intervals (a, b). This covering
is not countable. However, it contains a countable covering of R', namely, all inter-
vals of the form (n, n + 2), where n runs through the integers.

Let G = {A,, A,, ...} denote the countable collection of all n-
balls having rational radii and centers at points with rational coordinates. Assume
x € R" and let S be an open set in R" which contains x. Then at least one of the
n-balls in G contains x and is contained in S. That is, we have

xed, =8  forsome Ay in G,

Proof. The collection G is countable because of Theorem 2.27. If x e R" and if S
is an open set containing x, then there is an #-ball B(x; r)  S. We shall find a
point y in S with rational coordinates that is “near”” x and, using this point as
center, will then find a neighborhood in G which lies within B(x; r) and which
contains x. Write

X = (X3, X35 0005 Xp)s

and let y, be a rational number such that |y, — x| < r/(4n) for each
k=1,2,...,n Then

r
lly — x|l < 1y; — x|l + -+ |y — x| <1-

Next, let ¢ be a rational number such that r/4 < ¢ < r/2. Then x € B(y; g) and
B(y;q) < B(x;r) = §. But B(y; g)e G and hence the theorem is proved.

Figure 3.2
Theorem
( Lindelof covering theorem). Assume A = R" and let F be an open

covering of A. Then there is a countable subcollection of F which also covers A.

Proof. Let G = {A4,, A,,...} denote the countable collection of all n-balls
having rational centers and rational radii. This set G will be used to help us extract
a countable subcollection of F which covers A.
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Assume x € A. Then there is an open set S in F such that x € S, By Theorem
3.27 there is an n-ball A, in G such that x € 4, < S. There are, of course, infinitely
many such A, corresponding to each S, but we choose only one of these, for ex-
ample, the one of smallest index, say m = m(x). Then we have x € Ay € S.
The set of all n-balls 4,,,, obtained as x varies over all elements of 4 is a countable
collection of open sets which covers 4. To get a countable subcollection of F

which covers A4, we simply correlate to each set Ayxy one of the sets S of F which
contained A,,,. This completes the proof.

THE HEINE-BOREL COVERING THEOREM
Theorem

(Heine-Borel). Let F be an open covering of a closed and bounded

set A in R". Then a finite subcollection of F also covers A.

Proof. A countable subcollection of F, say {/,, I,, ...}, covers A, by Theorem
3.28. Consider, for m > 1, the finite union

This is open, since it is the union of open sets. We shall siow that for some value
of m the union S,, covers A.

For this purpose we consider the complement R" — S, which is closed.
Define a countable collection of sets {Qy, Q,, ...} as follows: @, = A, and for
m> 1,

O.=AnR" - S5,).

That s, Q,, consists of those points of A which lie outside of S,,. If we can show that
for some value of m the set Q,, is empty, then we will have shown that for this m
no point of A lies outside S,,; in other words, we will have shown that some S,
covers A.

Observe the following properties of the sets Q,,: Each set O, is closed, since
it is the intersection of the closed set A and the closed set R" — S,. The sets On
are decreasing, since the S,, are increasing; that is, On+1 € On The sets 0,
being subsets of 4, are all bounded. Therefore, if no set Q,, is empty, we can apply
the Cantor intersection theorem to conclude that the intersection N, O, is
also not empty. This means that there is some point in 4 which is in all the sets
O, or, what is the same thing, outside all the sets S,,. But this is impossible, since
A € |J&, Si._Therefore some Q,, must be empty, and this completes the proof,

COMPACTNESS IN R”

Definition of a compact set. A set S in R" is said to be compact if, and only if,
“every open c:ouerir;g"of S contains aﬁm‘!e subcover, that is, a finite subcollection which
also covers S.
The Heine-Borel theorem states that every closed and bounded set in R" is
compact. Now we prove the converse result.
Theorem

Let S be a subset of R". Then the following three statements are

Prepared by U.R.Ramakrishnan, Department of Mathematics, KAHE Page 3/9



UNIT-IV Covering 2015-Batch

- - - e e ——

equivalent :

a) S is compact.
b) S is closed and bounded.

c) Every infinite subset of S has an accumulation point in S.

Proof. As noted above, (b) implies (a). If we prove that (a) implies (b), that (b)
implies (c) and that (c) implies (b), this will establish the equivalence of all three
statements.

Assume (a) holds. We shall prove first that S is bounded. Choose a point p
in §. The collection of n-balls B(p; k), k = 1,2,...,is an open covering of S.
By compactness a finite subcollection also covers S and hence S is bounded.

Next we prove that S is closed. Suppose S is not closed. Then there is an
accumulation point y of Ssuch thaty ¢ S. If x € S, let ry = |x — y|l/2. Eachr,
is positive since y ¢ S and the collection {B(x; ry) : X € S} is an open covering of
S. By compactness, a finite number of these neighborhoods cover S, say

s = ) B n).

Let r denote the smallest of the radii r,, r,, .. ., r,. Then it is easy to prove that
the ball B(y; r) has no points in common with any of the balls B(x,; r,). In fact,
if xe B(y; r), then |x — y| < r < r,, and by the triangle inequality we have
Iy — xll < lly = x| + [Ix = x|, so

Ix = xell 2 Iy = %l = lIx =yl = 27, — |x = y[| > r,.

Hence x ¢ B(x,; r,). Therefore B(y; r) n S is empty, contradicting the fact that
y is an accumulation point of S. This contradiction shows that S is closed and hence
(a) implies (b).

Assume (b) holds. In this case the proof of (¢) is immediate, because if T is
an infinite subset of S then T is bounded (since S is bounded), and hence by the
Bolzano-Weierstrass theorem T has an accumulation point x, say. Now x is also
an accumulation point of S and hence x € S, since S is closed. Therefore (b)
implies (c).

Assume (c) holds. We shall prove (b). If S is unbounded, then for every
m > 0 there exists a point X, in S with ||x,,| > m. Thecollection 7" = {x;, X3, ...}
is an infinite subset of S and hence, by (c), 7 has an accumulation point y in S.
But form > 1 + |y| we have

Xy — ¥l 2 X = Iyl > m — |lyll > 1,

contradicting the fact that y is an accumulation point of 7. This proves that S is
bounded. _

To complete the proof we must show that S'is closec'i. Lt_‘.t x be an accu_mulauon
point of S. Since every neighborhood of x contains infinitely many points o_f S,
we can consider the neighborhoods B(x; 1/k), where k = 1, 2, ..., and obtain a
countable set of distinct points, say T = {x;, X3, ...}, Cf)ntained in :S, such_that
X, € B(x; 1/k). The point x is also an accumulation point of 7. Since T is an
infinite subset of S, part (c) of the theorem tells us that 7" must have an .accumula-
tion point in S. The theorem will then be proved if we show that x is the only
accumulation point of 7.
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To do this, suppose that y # x. Then by the triangle inequality we have
ly = xll < lly = %l + Ix — x| < lly — xl + 1k, ifxeT.

If ko is taken so large that 1/k < 3]y — x|| whenever k > k,, the last inequality
leads to 3|ly — x| < |ly — x/l. This shows that x, ¢ B(y; r) when k > ko, if
r = 3y — x|. Hence y cannot be an accumulation point of 7. This completes
the proof that (c) implies (b).

METRIC SPACES

Definition of a metric space. A metric space is a nonempty set M of objects
(called points) together with a function d from M x M to R (called the metric of

the space) satisfying the following four properties for all points x, y, z in M:
1. d(x, x) = 0.

2.d(x,y) > 0if x # y.

3. d(x, y) = d(y, x).

4. d(x, y) < d(x, z) + d(z, ).

The nonnegative number d(x, y) is to be thought of as the distance from x to
y. In these terms the intuitive meaning of properties | through 4 is clear. Property
4 is called the triangle inequality.

M and the metric d play a role in the definition of a metric space.
Examples

1. M = R";d(x,y) = |x — y|. This is called the Euclidean metric. Whenever we refer
to Euclidean space R”, it will be understood that the metric is the Euclidean metric
unless another metric is specifically mentioned.

2. M = C, the complex plane; d(z,, z;) = |z; — z,|. As a metric space, C is indistin-
guishable from Euclidean space R? because it has the same points and the same metric.

3. M any nonempty set; d(x, y) = 0if x = y, d(x,y) = 1if x # y. This is called the
discrete metric, and (M, d) is called a discrete metric space.

4. If (M, d) is a metric space and if S is any nonempty subset of M, then (S, d) is also a
metric space with the same metric or, more precisely, with the restriction of d to
§ x S as metric. This is sometimes called the relative metric induced by d on S, and
S is called a metric subspace of M. For example, the rational numbers Q with the
metric d(x, ¥) = |x — y| form a metric subspace of R.

5. M =R? dx,y) = V(x, — »)* + 4x, — y»)?, where X = (x;, x;) and y =
(¥1, ¥2). The metric space (M, d) is not a metric subspace of Euclidean space R?
because the metric is different.

6. M = {(x, x3): x] + x3 = 1}, the unit circle in R?; d(x, y) = the length of the
smaller arc joining the two points x and y on the unit circle.

7. M = {(x,, x5, x3): x7 + x3 + x2 = 1}, the unit sphere in R?; d(x, y) = the length
of the smaller arc along the great circle joining the two points x and v.

8. M= Rn;d(x:’ﬂ= le _}'1| e L - |xl| o= ynl'
9. M=R"dx,y) = max {|x; — »l|...., |x, — ¥}

POINT SET TOPOLOGY IN METRIC SPACES

The basic notions of point set topology can be extended to an arbitrary metric
space (M, d).
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If a € M, the ball B(a; r) with center a and radius r > 0 is defined to be the
set of all x in M such that

d(x,a) <r.

Sometimes we denote this ball by By(a; r) to emphasize the fact that its points
come from M. If S is a metric subspace of M, the ball Bg(a; r) is the intersection
of S with the ball By(a; r).

Examples. In Euclidean space R' the ball B(0; 1) is the open interval (=1, 1). In the
metric subspace S = [0, 1] the ball Bg(0; 1) is the half-open interval [0, 1).

NOTE. The geometric appearance of a ball in R" need not be “spherical” if the
metric is not the Euclidean metric. (See Exercise 3.27.)

If S € M, a point a in S is called an interior point of S if some ball B(a; r)
lies entirely in S. The interior, int S, is the set of interior points of S. A set S is
called open in M if all its points are interior points; it is called closed in Mif M — S

is open in M.
Examples.
1. Every ball By(a; r) in a metric space M is open in M.
2. In a discrete metric space M every subset S is open. In fact, if x € §, the ball B(x; %)

consists entirely of points of S (since it contains only x), so S is open. Therefore every
subset of M is also closed!

3. In the metric subspace S = [0, 1] of Euclidean space R, every interval of the form
[0, x) or (x, 1], where 0 < x < 1, is an open set in S. These sets are not open in R’.

Theorem

Let (S, d) be a metric subspace of (M, d), and let X be a subset of
S. Then X is open in S if, and only if,

X=AnS
Jfor some set A which is open in M.

Proof. Assume A is openin M and let X = An S. If xe X, then xe€ 4 so
By(x;r) < A for some r > 0. Hence Bg(x;r) = By(x;r)n S AnS=X
so X is open in S.

Conversely, assume X is open in S. We will show that X = 4 n S for some
open set 4 in M. For every x in X there is a ball Bg(x; r,) contained in X. Now
Bg(x; ry) = By(x; ry) n S, soif we let

A= | Bu(x; 1),
xeX

then A is open in M and it is easy to verifythat A n S = X.
Theorem

Let (S, d) be a metric subspace of (M, d) and let Y be a subset of
S. Then Y is closed in S if, and only if, Y = B n S for some set B which is closed
in M.

Proof. If Y = B n S, where B is closed in M\ then B = M — A where A is open
inMsoY=SnB=Sn(M—- A) =S — A; hence Y is closed in S.

Conversely, if Yisclosed in S,let X = S — Y. Then Xisopenin Sso X =

A n S, where A is open in M and
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Y=S-X=S-(AnS)=S—-A=Sn(M-—-A)=Sn8B,
where B = M — A is closed in M. This completes the proof.

If S € M, a point x in M is called an adherent point of S if every ball By(x; r)
contains at least one point of S. If x adheres to S — {x} then x is called an
accumulation point of S. The closure S of S is the set of all adherent points of S,
and the derived set S’ is the set of all accumulation points of S. Thus, § = Su §".

The following theorems are valid in every metric space (M, d) and are proved
exactly as they were for Euclideah space R". In the proofs, the Euclidean distance
[x — y|| need only be replaced by the metric d(x, y).

Theorem
a) The union of any collection of open sets is open, and the inter-
section of a finite collection of open sets is open.
b) The union of a finite collection of closed sets is closed, and the intersection of any
collection of closed sets is closed.

Theorem
If A is open and B is closed, then A — B is open and B — A is

closed.
Theorem
For any subset S of M the following statements are eguivalent:
a) S is closed in M.
b) S contains all its adherent points.
¢) S contains all its accumulation points.
d s=_S.

Example. Let M = Q, the set of rational numbers, with the Euclidean metric of R'.
Let S consist of all rational numbers in the open interval (a, b), where both a and b are
irrational. Then S is a closed subset of Q.

COMPACT SUBSETS OF A METRIC SPACE

Let (M, d) be a metric space and let S be a subset of M. A collection F of open

subsets of M is said to be an open covering of S if § = |J 4cr 4.
A subset S of M is called compact if every open covering of S contains a finite
subcover. S is called bounded if § < B(a; r) for some r > 0 and some a in M.

Theorem
Let S be a compact subset of a metric space M. Then:
i) S is closed and bounded.

i) Every infinite subset of S has an accumulation point in S.
Proof. To prove (i) we refer to the proof of Theorem 3.31 and use that part of the

argument which showed that (a) implies (b). The only change is that the Euclidean
distance |x — y| is to be replaced throughout by the metric d(x, y).
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To prove (ii) we argue by contradiction. Let T be an infinite subset of S and
assume that no point of S is an accumulation point of 7. Then for each point x in
S there is a ball B(x) which contains no point of T (if x ¢ T') or exactly one point
of T (x itself, if x € T). As x runs through S, the union of these balls B(x) is an
open covering of S. Since S is compact, a finite subcollection covers S and hence
also covers T. But this is a contradiction because T is an infinite set and each ball
contains at most one point of 7.

Theorem
Let X be a closed subset of a compact metric space M. Then X is

compact.

Proof. Let F be an open covering of X, say X < |J,.r 4. We will show that a
finite number of the sets 4 cover X. Since X is closed its complement M — X is
open, so Fu {(M — X)} is an open covering of M. But M is compact, so this

covering contains a finite subcover which we can assume includes M — X. There-
fore

Mc A v--"VA, V(M- X).
This subcover also covers X and, since M — X contains no points of X, we can

delete the set M — X from the subcover and still cover X. Thus X € 4, u--- U 4,
so X is compact.

BOUNDARY OF A SET
Definition
Let S be a subset of a metric space M. A point x in M is called a

boundary point of S if every ball By (x; r) contains at least one point of S and at

least one point of M — S. The set of all boundary points of S is called the boundary
of S and is denoted by 0S.

The reader can easily verify that
0S=SnM-=3S.

This formula shows that 4S is closed in M.

Example In R" the boundary of a ball B(a; r) is the set of points x such that [x — a| = r.
In RY, the boundary of the set of rational numbers is all of R,
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Possible Questions
PART-B (8 Mark)

1. Let S be a compact subset of a metric space M. then prove that
i) S is closed and bounded
if) Every infinite subset of S has an accumulation point of S.

2. Prove that every convergence sequence is a Cauchy sequence.

3. Prove that in a metric space (S,d) a sequence {Xn}converges to p if and only if
every subsequence {Xkm} converges to p.

4. Let X be a closed subset of a compact metric space M. Then prove that X is
compact.

5. Prove that a sequence {xn} in the metric space (S, d) can converge to atmost
one point in S..

6. Let fand g be complex valued functions defined on a subset A of a metric
space (S, d). Let p be an accumulation point of A, and assume that lim f(x) = a
and lim g(x) = b. Then prove that lim f(x) g(x) = ab

7. Ina metric space (S, d) assume that x,— p and let T = {xq, X2, ...} (ie) the
range of the sequence {xn} then prove that i) T is bounded and ii) p is an
adherent point of T.

8. State and prove the Heine — Borel theorem.

9. Prove that closed intervals in IR are compact.

10. Assume p is an accumulation point of A and assume beT then prove that
lim,__f(x) =pifandonlyif lim, . f(xn) =b for every sequence {xn} of

XD

points in which converges to p.
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Subject Name: Real Analysis-I

Subject Code: 15MMUS01

UNIT-IV
Question Option-1 Option-2 Option-3 Option-4 Answer

‘With usual metric, R is closed compact not compact bounded not compact
If every open covering of S contains a finite subcover the A is called is

closed compact open unbounded compact
With usual metric, (0,1) is closed compact not comapct unbounded not compact
With usual metric, [0,1) is closed compact not compact unbounded not compact
With usual metric, (0,1] is closed compact not compact unbounded not compact
With usual metric [0, «) is closed compact not compact bounded not compact
With usual metric [a,b] is compact not compact unbounded open comapct
Any compact set is closed open both open and closed neither open nor closed |closed
Any compact set is bounded unbounded both open and closed neither open nor closed |bounded
A closed sub set of a compact metric space is not comapct unbounded open compact compact
Every finite metric space is not comapct unbounded open compact compact
If A and B are compact subsets of a metric space then the union of A nd B is

not comapct unbounded open compact compact
Any closed interval [a,b] is comapct unbounded not compact open comapct

S is closed and
A set S in n dimensional space is compact iff S is open only S is closed only S is closed and bounded |8 is either open or closed |bounded
S is closed and

Every infinite subset of S has an accumulation point in S is S is open only S is closed only S is closed and bounded |S is either open or closed |[bounded
Every infinite subset of S has an accumulation point in S is compact unbounded not comapct open compact

The collection of all open intervals is an open covering of R. The open covering is

uncountable covering

countable covering

finite covering

countably infinite
covering

uncountable covering

The collection of all open intervals (n,n+1), n in Z is an open covering of R. The

open covering is

uncountable covering

countable covering

finite covering

unbounded covering

countable covering

‘Which of the following is not true?

[a,b] is compact

[1,100] is compact

(1,100) is compact

[0,11 X [0,1]X [0,1] is
compact

(1,100) is compact

Let A be a subset of a compact set B. Then A is compact if A is

neither closed nor

both closed and

bounded closed bounded both closed and bounded |bounded
union of S and T is intersection of S and T is |intersection of S and
If S is compact and T is compact then which of the following statement is true?  |S-T is compact T-S is compact compact compact T is compact
The intersection of any collection of compact subsets is compact not compact unbounded open compact
The union of finite number of compact subset is compact not compact unbounded open compact
The union of any collection of compact subsets is compact not compact both bounded and closed |closed not compact
Let A = {I/n: nin N}. A is not a compact since A is not bounded closed bounded not closed not closed
Let A= {0,1, 1/2, 1/4,1/8, ...}. A is not compact since A is neither bounded nor
bounded closed bounded and closed closed bounded and closed
Let (M, d) be a metric space then d(x, y) > 0 if X<y y<x x=y X is not equal to y
Let (M,d) be a metric space. Then value of d(x,y) is 0 1 either 0 or 1 0and 1 either 0 or 1
Every n ball in a metric space is open closed unbounded neither open nor closed |open
neither closed nor
In discrete metric space, every subset is open unbounded bounded bounded and not closed [open
Let (M, d) be a metric space then D(x, y) = d(x, y)/1+d(x, y) then D(x, y) is greater than or equal to |greater than or equal
|greater than O less than 0 equal to 0 0 to 0
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CONVERGENT SEQUENCES

3.1 Definition A sequence {p,} in a metric space X is said to converge if there
is a point p € X with the following property: For every e > 0 there is an integer
N such that n = N implies that d(p,, p) < &. (Here d denotes the distance in X.)

In this case we also say that {p,} converges to p, or that p is the limit of
{p,} [see Theorem 3.2(b)], and we write p, — p, or

lim p,=p.

A=*on
If {p,} does not converge, it is said to diverge.

As examples, consider the following sequences of complex numbers
(that is, X = R?):

(@) 1fs, =1/n, thenlim, s, =0; the range is infinite, and the sequence
is bounded.

(b) 1f 5, =n? the sequence {s,} is unbounded, is divergent, and has
infinite range.

(¢) Ifs,=14 [(— 1)"/n], the sequence {s,} converges to 1, is bounded,
and has infinite range.

(d) If s, =i", the sequence {s,} is divergent, is bounded, and has finite
range.

(e) Ifs,=1(n=1,2,3,...), then {s,} converges to 1, is bounded, and
has finite range.

We now summarize some important properties of convergent sequences
in metric spaces.

Theorem Let{p,} be a sequence in a meiric space X.

(@) {p.} converges to p € X if and only if every neighborhood of p contains
Py for all but finitely many n.

(b) Ifpe X, p' €X, and if {p,} converges to p and to p', then p’' = p.

(¢) If{p,} converges, then {p,} is bounded.

(d) If E< Xandifpis a limit point of E, then there is a sequence {p,} in E

such that p = lim p,,.

Proof (a) Suppose p,—p and let V¥ be a neighborhood of p. For
some & > 0, the conditions d(g, p) <&, g€ X imply g € ¥. Correspond-
ing to this e, there exists N such that n = N implies d(p,, p) <e&. Thus
n = N implies p, € V.

Conversely, suppose every neighborhood of p contains all but
finitely many of the p,. Fix ¢ >0, and let V" be the set of all ¢ € X such
that d(p, g) < e&. By assumption, there exists N (corresponding to this V)
such that p,e V if n = N. Thus d(p,,p) <e if n = N; hence p,—p.
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(b) Lete >0 be given. There exist integers NV, N’ such that

n>N implies d(p,,p)< -2‘3

n>N' implies d(p,,p) < §
Hence if n > max (N, N'), we have

d(p, p") < d(p, p,) + d(p,, p’) <e.

Since & was arbitrary, we conclude that d(p, p’) = 0.
(¢) Suppose p,—p. There is an integer N such that n> N

implies d(p,, p) <1. Put
r = max {19 d(pb P). ey d(pN ’ P)}-

Then d(p,,p)<rforn=1,2,3,....

(d) For each positive integer n, there is a point p, € E such that
d(p,, p) <1/n. Given ¢ >0, choose N so that Ne>1. If n> N, it
follows that d(p,, p) <&. Hence p, —p.

This completes the proof.

SUBSEQUENCES

3.5 Definition Given a sequence {p,}, consider a sequence {n;} of positive
integers, such that n; <n, <ny <---. Then the sequence {p,} is called a
subsequence of {p,}. If {p,} converges, its limit is called a subsequential limit
of {p,}.

It is clear that {p,} converges to p if and only if every subsequence of
{p.} converges to p. We leave the details of the proof to the reader.

3.6 Theorem

(@) If {p} is a sequence in a compact metric space X, then some sub-
sequence of {p,} converges to a point of X.
(b) Every bounded sequence in R* contains a convergent subsequence.

Proof

(a) Let E be the range of {p,}. If E is finite then there is a p € E and a
sequence {n,} with n; <n; <n, <---, such that

Py =DPny="""= P
The subsequence {p, } so obtained converges evidently to p.

If E is infinite, Theorem 2.37 shows that E has a limit point p € X.
Choose n; so that d(p, p, ) <1. Having chosen ny, ..., n,.,, we see from
Theorem 2.20 that there is an integer n, > n,_, such that d(p, p,) < 1/i.
Then {p, } converges to p.

(5) This follows from (), since Theorem 2.41 implies that every bounded
subset of R* lies in a compact subset of R,
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CAUCHY SEQUENCES

3.8 Definition A sequence {p,} in a metric space X is said to be a Cauchy
sequence if for every & > 0 there is an integer N such that d(p,, p.) <eifn = N
and m = N.

In our discussion of Cauchy sequences, as well as in other situations
which will arise later, the following geometric concept will be useful.

3.9 Definition Let E be a nonempty subset of a metric space X, and let S be
the set of all real numbers of the form d(p, q), with p € E and g € E. The sup
of Sis called the diameter of E.

If{p,}is a sequence in X and if Ey, consists of the points py, Py 1, Pryszs+oos
it is clear from the two preceding definitions that {p,} is @ Cauchy sequence
if and only if

lim diam E, = 0.

N—=m

Theorem

(a) In any metric space X, every convergent sequence is a Cauchy sequence,

(b) If X is a compact metric space and if {p,} is a Cauchy sequence in X,
then {p,} converges to some point of X.

(¢) In R*, every Cauchy sequence converges.

Proof

(@) If p,—+p and if & > 0, there is an integer N such that d(p, p,) < &
for all n = N. Hence

(P> Pm) < d(Pr,> p) + d(p, Pm) < 2&
as soon as n = N and m = N. Thus {p,} is a Cauchy sequence.

() Let {p,} be a Cauchy sequence in the compact space X. For
N=1, 2,3, ..., et E, be the set consisting of py, Pn+1> Pn+2s ++-
Then

(3) lim diam E, = 0,

N =+ oo

by Definition 3.9 and Theorem 3.10(g). Being a closed subset of the
compact space X, each E, is compact (Theorem 2.35). Also Ey 2 Ey,,,
so that Ey = Ey. ;.

Theorem 3.10(b) shows now that there is a unique p € X which lies
in every Ey.

Let ¢ >0 be given. By (3) there is an integer Ny such that
diam Ey <& if N= Ny. Since peE,, it follows that d(p,q) <& for
every g € Ey, hence for every g€ Ey. In other words, d(p, p,) <e if
n = Ny. This says precisely that p, — p.

(¢) Let {x,} be a Cauchy sequence in R*. Define £y as in (b), with x,
in place of p;. For some N, diam Ey < 1. The range of {x,} is the union
of Eyx and the finite set {x,,..., Xy_;}. Hence {x,} is bounded. Since
every bounded subset of R* has compact closure in R* (Theorem 2.41),
(c) follows from (&).

3.12 Definition A metric space in which every Cauchy sequence converges is
said to be complete.
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CONTINUOUS FUNCTIONS

4.5 Definition Suppose X and Y are metric spaces, E < X, p € E, and f maps
E into Y. Then fis said to be continuous at p if for every ¢ > 0 there exists a
d > 0 such that

dy(f(x). f(p)) < &

for all points x € E for which dy(x, p) < é.

4.8 Theorem A mapping f of a metric space X into a metric space Y iy con-

tinuous on X if and only if f ' (V') is open in X for every open set V in Y.
Proof Suppose fis continuous on X and Fis an open set in Y. We have
to show that every point of f~'(F) is an interior point of /(). So,
suppose p e X and f(p) € V. Since V is open, there exists ¢ > 0 such that
ye Vif dy(f(p), y) < &; and since f is continuous at p, there exists § > 0
such that dy(f(x), f(p)) < & if dy(x, p) <. Thus xef~!(V) as soon as
dy(x, p) < d.

Conversely, suppose f (V) is open in X for every open set Fin ¥,

Fix pe X and ¢ > 0, let " be the set of all y & ¥ such that dy(y, f(p)) < &.
Then V is open; hence f~'(V) is open; hence there exists § > 0 such that
xef~1(V)as soon as dy(p, x) <&. But if xe f~1(V), then f(x)e V, so

that dy(f(x), /() <.
This completes the proof.

Corollary A mapping [ of a metric space X into a metric space Y is continuous if
and only if f ~(C) is closed in X for every closed set C in Y.

49 Theorem Letfandg be complex continuous functions on a metric space X.
Then f + g, fg, and f'|g are continuous on X.

CONTINUITY AND COMPACTNESS

4.13 Definition A mappingf of a set E into R* is said to be bounded if there is
a real number M such that |f(x)| < M for all xe E.

4,14 Theorem Suppose f is a continuous mapping of a compact metric space
X into a metric space Y. Then f(X) is compact.

Proof Let{V,} be an open cover of f(X). Since fis continuous, Theorem
4.8 shows that each of the sets f~'(V,) is open. Since X is compact,
there are finitely many indices, say «;, ..., «,, such that

(12) Xcf (V) v uf(V,)
Since f(f ~'(E)) = E for every E c ¥, (12) implies that
(13) JX)eV,uul,.

This completes the proof.

Note: We have used the relation f(f~'(E)) c E, valid for Ec Y. If
E c X, then f~!(f(E)) > E; equality need not hold in either case.
We shall now deduce some consequences of Theorem 4.14,
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4.15 Theorem Iff is a continuous mapping of a compact metric space X into
R*, then £(X) is closed and bounded. Thus, f is bounded.

4.18 Definition Let f'be a mapping of a metric space X into a metric space Y.
We say that [ is uniformly continuous on X if for every & > 0 there exists § > 0
such that

(15) dy(f(p).f(g) <e

for all p and ¢ in X for which dy(p, g) < 6.

4.19 Theorem Let f be a continuous mapping of a compact metric space X
into a metric space Y. Then [ is uniformly continuous on X.

Proof Let ¢ >0 be given. Since f/ is continuous, we can associate to
each point p € X a positive number ¢(p) such that

(16) g X, dy(p,q) < 9(p) implies dy(f(p), @) <3

Let J(p) be the set of all 4 € X for which

an dx(p, q) < ¢(p).

Since p e J(p), the collection of all sets J(p) is an open cover of X; and
since X is compact, there is a finite set of points p,, ..., p, in X, such that

(18) XeJ(p) v uli(py)
We put
(19) 0 =3 min [¢(py), ..., ¢(pa)]-

Then & > 0. (This is one point where the finiteness of the covering, in-
herent in the definition of compactness, is essential. The minimum of a
finite set of positive numbers is positive, whereas the inf of an infinite set
of positive numbers may very well be 0.)

Now let g and p be points of X, such that dy(p, g) < 4. By (18), there
is an integer m, 1 < m < n, such that p e J(p,,); hence

(20) dx(P, pm) < 10(P),

and we also have

dy(q, Pm) < dy(p, @) + dx(p, pw) < 6 + 1$(P) < D(Py).
Finally, (16) shows that therefore

dy(f(p). f(@) < dy(f (). f(pm)) + dx{(f (), f(Pw)) < €.

This completes the proof.
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CONTINUITY AND CONNECTEDNESS

4.22 Theorem If fis a continuous mapping of a metric space X into a metric
space Y, and if E is a connected subset of X, then f(E) is connected.

Proof Assume, on the contrary, that f(E) =4 u B, where 4 and B are
nonempty separated subsetsof ¥. PutG=En fY(4), H=E n f(B).

Then E = G u H, and neither G nor H is empty.

Since A = A (the closure of A4), we have G = f ~(A); the latter set is
closed, since f'is continuous; hence G < f ~'(A4). It follows that f(G) = A.
Since f(H) = B and 4 n B is empty, we conclude that G n H is empty.

The same argument shows that G n H is empty. Thus G and H are
separated. This is impossible if E is connected.
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Possible Questions
PART-B (8 Mark)

1. Let S be a compact subset of a metric space M. then prove that
i) S is closed and bounded
if) Every infinite subset of S has an accumulation point of S.

2. Prove that every convergence sequence is a Cauchy sequence.

3. Prove that in a metric space (S,d) a sequence {Xn}converges to p if and only if
every subsequence {Xkm} converges to p.

4. Let X be a closed subset of a compact metric space M. Then prove that X is
compact.

5. Prove that a sequence {xn} in the metric space (S, d) can converge to atmost
one point in S..

6. Let fand g be complex valued functions defined on a subset A of a metric
space (S, d). Let p be an accumulation point of A, and assume that lim f(x) = a
and lim g(x) = b. Then prove that lim f(x) g(x) = ab

7. Ina metric space (S, d) assume that x,— p and let T = {xq, x2, ...} (ie) the
range of the sequence {xn} then prove that i) T is bounded and ii) p is an
adherent point of T.

8. State and prove the Heine — Borel theorem.

9. Prove that closed intervals in IR are compact.

10. Assume p is an accumulation point of A and assume beT then prove that
lim,__f(x) =pifandonlyif lim, . f(xn) =b for every sequence {xn} of

XD

points in which converges to p.
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Subject Name: Real Analysis-I

Question
A sequence of {Xn} with Xn >Xn+1 for all ni is

MEqueme is bounded above then

If {an } decreasing sequence is bounded below then
The limit of a function F(x) = (x"2)+2x as x—3 is
m F(x) = 5x as x> is

The limit of a function F(x) = 1/x as x— is

The limit of a function F(x) = 1/x as x—1 is

Fibonacci sequence is
A sequence in a metric space (S,d) can converge

Suppose a sequence in a metric space (S,d) converges to
both a and b. Then we must have

In a metric space (S,d), a sequence converges to p. Then
range of the sequence is

The range of a constant sequence is

Suppose in a metric space (S,d), a sequence converges to p.
Then the point p is
Suppose in a metric space (S,d) , a sequence converges to p
and the rnage of the sequence is infinite. Then p is

Suppose in a metric space, a sequence converges. Then

A sequence is said to be bounded if if its range is

If {Xn} with Xn = 1/n then therange of the sequence
If {Xn} with Xn = 1/n then therange of the sequence
If {Xn} with Xn = 1/n then the sequence

If {Xn} with Xn = n"2 then the sequence
If {Xn} with Xn =n"2 then the range of the sequence

If {Xn} with Xn =n"2 then the range of the sequence

If {Xn} with Xn = i"n then the sequence
If {Xn} with Xn = i"n then the range of the sequence

If {Xn} with Xn = i"n then the range of the sequence

If {Xn} with Xn =1 then the sequence
If {Xn} with Xn = i"n then the range of the sequence

If {Xn} with Xn

“n then the range of the sequence
If Xn—X and Yn—Y then Xn+Yn is converge to

If Xn—X and Yn—Y then XnYn is converge to

If Xn—X then C Xn converges to

If Xn—X then 1/Xn converges to 1/X if

In Euclidean metric space every cauchy sequence is
Every convergent sequence is a

A metric space is called complete if

Any discrete metric space is

A subset A of a complete metric space S is complete if A is
The set of all rationals is

Every compact metric space is

N+ 1)—V(n-1) converges to

Let X be a space with the discrete metric. Let x €X. Show
that B(x, 12)=B(x, 12) =

Option-1

increasing sequence

seqeunce converges to inf of sequence converges to sup

its range of its range

seqeunce converges to inf of sequence converges to sup
its range of its range

13 12

exists exists ans is 1

0 -1

0 2

an increasing sequence

at least one point

a<b

bounded
infinite

an adherent point of S

an adherent point of S

every sequence in a metric

space converges
unbounded
finite

unbounded
converges

converges
unbounded

finite
converges

unbounded

finite
converges

4

boundea
Xy

Xy
c
x=0

convergent

constant seqeunce
every cauchy sequence
converges

complete

open
open
open

0

12}

UNIT-V
Option-2

decreasing sequence

a decresing sequence

more than two point

a>b

unbounded
countably infinite

an accumulation point of S

an accumulation point of S

every subsequence of
convergent sequence
converges

bounded

{1}

bounded
diverges

diverges

bounded

i}

diverges
bounded

infinite
diverges

{1
unbounded
x+y

xty

X

x=1

divergent

cauchy sequence

some cauchy sequence
converges

not complete

closed
closed

complete

1

i}

Subject Code:

Option-3
bounded sequence
sequence converges to 1
sequence converges to 2
14

does not exists

-1
constant sequence

atmost one point

a-b=1

finite
uncountable

an isolated point of S

an isolated point of S
some subsequence of
convergent sequence
converges

countable

4
4

oscilates

oscilates

it
4

oscilates
i
i

oscilates

{1,0}

{1,0}

xly

Xy

c/x

x=2

oscilates

increasing sequence
no cauchy sequence
converges

bounded

both open and closed
both open and closed
not complete

2

2}

15SMMU501

Option-4
constant sequence
sequence converges to 0
sequence converges to 1
15
exists and is 0
2

1
bounded sequence

more than three point

a=b

infinite

singlton set

not an adherent point of

S

not an accumulation
point of S

some sequence in a
metric space converges

uncountable
infinite

{1,0}
converges to 1

converges to 2
(0.1

infinite
converges to 0

10,1}

10,1}
converges to 0

{1,2,3}
{0}
Xy
Xy

X

convergent to 0
decreasing sequence
every cauchy seqeunce
diverges

unbounded

not closed

not complete
not bounded

ix}

Answer

decresing sequence

sequence converges to sup

of its range

sequence converges to inf of

its range
15

does not exists

1
an incresing sequence

atmost one point

a=b

bounded
singleton set

an adherent point of S

an accumulation point of S

every subsequence of
convergent sequence
converges

bounded

infinite

bounded
converges

diverges
unbounded

infinite
diverges

bounded

finite
converges

{1
bounded

xty

Xy

X

X is not equal to y

converges

cauchy sequence
every cauchy sequence
converges

complete

closed
not complete

complete

0

x}



Which of the following is complete susbset of [0,1]? (0,1.234) (0,0.234) [0.0.234] (0,0.345) [0,0.234]
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11. If S is a relation, the set of all elements that occur as first
members in S is called --------

Fifth Semester a. Function  b. Codomain  ¢. Domain d. Range
I Internal Test - July'2017 12. If f(x) = f(y) implies x =y then fis a -------------- function
Real Analysis a. One-one b. Onto c. Into d. Inverse
Date: -07-2017 Time: 2 Hours 13. If dis a divisor of n, then ------------nm--
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3. The inequality [x + | >’ ______________ is’hol ds a. Unbounded above b. Unbounded below
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17. Every finite set of numbers is ----------

4. The coordinates (x, y) of a point represent an --------------- of .
numbers a. Bounded  b. Unbounded c. Prime d. Bounded above
a. Function b. Relation c. Ordered pair d. Set 18. Sup C :. Sup .A + Sup B is called o property
5. One-one function is also called ------------- a. App r9x1mat10n b Addlthﬁ.:
a. Injective  b. Bijective  c. Transformation ~d. Codomain & Archimedean d. Comparison
6. Similar sets are also called as ----------—--- set 19. A x B denotes the ----------- of the.sets Aand B
a. Denumerable b, Countable c. Finite  d. Equinumerous a. Product b. Polar form c. Cartesian product d. Complement
2 The set of rational NUMbers iS —eeeereeeeeoe 20. Uncountable sets are also called --------------- set
a. Uncountable  b. Finite  c. Countable d. Complete a. D.en}nnerable b. Non-denumerable
8. The set of points between a and b is called ---------------- ¢. Similar d Equal
a. Integer b. Interval c. Element d. Set PART-B (3X10=30 Marks)
9. If(a, b) =1 then aand b are called -------------- Answer all the Questions:
a.Prime b. Common factor c¢. LCM d. Relatively prime 21. (a) Prove that every integer n > 1 can be represented as a

10. The completeness axiom is ---------------- product of prime factors in only one way apart from the order

a.b=supS b.S=supb c.b=infS d. S=infb of the factors.

(OR)
(b) Prove that the set of real numbers is uncountable.



22. (a) Prove that e is irrational.
(OR)
(b) State and prove Archimedean property.

23. (a) State and prove Cauchy-Schwarz inequality..
(OR)
(b) Prove that n is irrational.
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PART - A (20 x1=20 Marks)

Answer all the questions
1. The inverse relation of fis & function only if fig eemmsee,
a) ito b) onfo £) one-lo-one d) bijection
2 INtwosets A={1.2....m) and B={1.2,....n} are similar then -rmrereeee,
gmen bjn<m ¢} n=m d)n=0
3. Countable union of countable gef f§ seesesecess,
1) uncountable b) countable ' ¢} finite d) countably infinite
4.1fa set A has n element , then the total number of subsets of A is ———.
ajn! b) 2n g7 djn
5. Suppose f s 2 one-to-one function, Then x not equal y implies e,
D) BipFy) Py Ofdy)
6. Let e a function defined on A and itself such that f{x)=x. Then fis ===,
" a)onte  b)onedoone c)bijection * d) neither one-to-one nor onlo
7. The set of all even integers is seemreee
ajuncountable  b)countable <) finited) infinie
8. The set of sequences consists of anly | and 0 i
a)uncountable  bjcontable  ¢)finic  d)infinite
9, Let I:A=B then which of the following is always true?
) range of {is not equal to B ) range of [ a subset of B
) range of i containing B d) range of s proper subset of B

10, Fibonnaci numhers is 0 example 1o ——eese :

a} uncountable b) countabls ¢} fimite d) infimite

11, Let X be in n dimensional space, Then we must have .

a)norm of xis 0 b) norm of xis |

¢) norm of  is greaterthan 0 ) norm of » i grester than or equal o §

12, Every finite set i§ ===,

) an open set b) a closed set

¢ neither apen nor closed  djboth open and closed set

13, The set of all interfor points of a set of all rational is ———.

#) empty set kA tjR )2

14, 1f A is open and B is closed the B-A i§ smemeeeme.

aopen bjclosed c)bothopenandelosed  d) neither open ner closed
15, Every n ball of x contains more ths cne poin thas X is called ———.

1) adherent point b) accumulation point
¢) isolated point - d) not an adherent point
16, Which of the following is not a limat peint of [0,1)?
gl b)2 ¢)0 d)172

17, % s an accumulation point of A then every n ball of x contains :
2) atleast one point other than X b) atmost one point other than x

¢) exactly one point otherthanx ) no point other than x

18. The set of prime niumbers is e,

gopen b finite ¢)bounded  d) unbounded

19, Which of the following is not a bounded set?

3R blab]  fab)  d)ab

20, A set is closed if
&) complement of § is closed

b) complement of § is open

¢) complement of § is neither open nor elosed
d) complement of § s both open and closed

SR
- "



PART-B(3110=3) Mnrk:
Answer all the questions
21, 8) Prove that the set of all real numbers B s uncountable.
(OR)
)IfF={Ay, Ay, ... }is a countable collecton of sets and
G= (B, By, ... ) when Bi=Aforn>1,B,=A,-Ulh4,
then prove that G is a collection of disoint e, and we
have Ufﬂdt . Ufllﬂk'

12, 3)Prove that the Carteianprocuct 1* x 2 s countable whero T' dncie
thesetof all posive inters
(OR)
b) Deteing whether ., ) deied on Rbyd, y) = ()i meri
5pAce of ol
13.4)1) State and prove Triangle inequality.
i) Define Meiric space wih example,
(OR)
b) Prove thatthe union of any colleeion ofapen se is apen.



(1SMMUS01)
KARPAGAM UNIVERSITY
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Class: III B.Sc Mathematics

Time: 3 Hours
Maximum: 60 Marks

PART - A (20 x 1 =20 Marks)
Answer all the questions
1. If d is a divisor of n, then ----------------

ayn=c b)yn<ecd c)n>cd dyn=cd

2. If ajbc and (a, b) = 1 then -----------

a) alc b) ajb c)cla d) bla

3. The greatest lower bound is called ----------

a) unbounded above b) unbounded below

C) supremum d) infimum

4. If x <0 then -----------

a) x| =x b) [[x|[ = [x| olxl=-x  dx==x
5.If (x,y) €F and (x, z) € F, then ------------

a)xX=1z b)x=y oxy=z dy=z

6. If m <n then K(n) < K(m) implies that K is a ------------
a) sequence b) subsequence
c) order preserving d) equinumerous

7. The set of those elements which belongs to either A or b or
both is called ------- .

a) complement b) union c) intersection  d) disjoint
8. The set S of intervals with rational end points is ------------
set.

a) uncountable b) finite c) countable d) disjoint
R e

a)lly—xl D)l -1yl o) lIxl +liyll  d)lIxyll

10. In R3, the open ball B(a; r) is -------------

a) open interval b) closed interval

c) spherical solid d) circular disc

11. Every singleton set is ------------

a) bounded b) unbounded c) open d) closed
12. A collection F of sets is said to be a covering of a given set

a)ScUA Db)AcUS
13. d(x, y) = ------------
a)d(xy)  b)d(y,x) c¢)dx+y) d) d(x-y)
14. The metric (R", d) is called ------------ metric
a) Euclidean b) complex c) discrete

) S=UA d) A =US

d) bounded
15. An increasing sequence which is bounded above will
converge to its ----------

a) supremum b) infimum c¢) fixed point  d) adherent point



16. Every closed set is -------------
a) convergent  b)divergent c) Euclidean  d) complete
17. A real valued continuous function f is said to be two valued

a) f(S) < {0, 1} b) f(S) = (0, 1)

¢) f(S) < [0, 1] d) f(S) = {0, 1}

18. If f: [0, 1] — S such that f{0) = a and f(1) = b, then a set S
in R" is called --------

a) arcwise connected b) jointly connected
c) simply connected d) eventually connected
19. A set in R" is called a ---------- if it is the union of an open

connected set with some or all its boundary points.

a) component b) path c) region d) interval

20. The function f(x) = x*> where x belongs to R! and A = (0, 1]
1S =mmmmmmmmmem on A.
a) continuous

¢) not continuous

b) uniformly continuous
d) analytic

PART - B (5 x 8 =40 marks)

Answer all the questions
21. a) State and prove Cauchy Schwarz inequality.
(OR)
b) Prove that V2 is irrational.
22. a) Prove that the set of real numbers is uncountable.
(OR)
b) Show that the Cartesian product Z* x Z*" where Z* is a
set of positive integers is a countable set.
23. a) Prove that union of any collection of open sets is an open
set.

(OR)

b) Prove that a set S is closed if and only if S =§.

24. a) Prove that closed intervals in R are compact.
(OR)
b) State and prove the Heine — Borel theorem.

25. a) Prove that every arcwise connected set S in R" is
connected.
(OR)
b) Let f: S—M be a function from a metric space S to
another metric space M. Let X be a connected subset of
S. If f is continuous on X, then prove that f(X) is a
connected subset of M.
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