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PO: This course will enhance the learner to understand the important concepts such as complex
number system, complex plane analyticity of a function, function of complex variables etc which
plays a crucial role in the application of two dimensional problems in Science.

PLO: To enable the students to learn various aspects complex number system, complex function
and complex integration

UNIT I
Complex number system:Complex number-Field of a complex numbers-Conjugation —Absolute
value of a complex number.

Complex plane: Complex number by points-nth root of a complex number-Angle between two rays-
Elementary transformation- Stereographic projection.

UNIT Il

Analytic functions: Limit of a function —continuity —differentiability — Analytical function defined in
a region —necessary conditions for differentiability —sufficient conditions for differentiability —
Cauchy-Riemann equation in polar coordinates —Definition of entire function.

UNIT 111

Power Series: Absolute convergence —circle of convergence —Analyticity of the sum of a power
series-Uniqueness of representation of a function by a power series- Elementary functions :
Exponential, Logarithmic, Trigonometric and Hyperbolic functions. Harmonic functions: Definition
and determination.

UNIT IV
Bilinear transformation-Circles and Inverse points-Transformation mappings w=Z22 ,w=212,w=ez, w
=sin Z,and w=cos Z -Conformal mapping-isogonal mapping.

UNIT V

Complex integration: Simple rectifiable oriented curves —Integration of complex functions- Definite
integral-Interior and Exterior of a closed curve-Simply connected region-Cauchy*s fundamental
theorem-Cauchy*s formula for higher derivatives- Morera“s theorem.

TEXT BOOK
1.Duraipandian.P., Lakshmi Duraipandian.,1997.Complex analysis,Emerald publishers, Chennai-2

REFERENCES
1. Lars V.Ahlfors.,1979. Complex Analysis, Third edition, Mc-Graw Hill Book Company,New Delhi
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) Lecture Plan
Subject Name: COMPLEX ANALYSIS-I Subject Code: 15MMU502
Lecture
S. No Duration Topics To Be Covered Support Materials
Hour
UNIT-I
1. 1 Complex number system- Introduction T1.Ch 1: pg:1-2
2 1 Field of Complex numbers, Field of Real numbers | R1:Ch 1:1.1:pg:1-4
' and its problems
3 1 Conjugation, Theorems on Conjugation related T1.Ch1:pg:3-4
' examples
4 1 Absolute value of Complex number and its R1.Ch 1:1.4: pg:5-7
' inequalities related examples
5 1 Continuaion of Absolute value of Complex number | R1.Ch 1:1.4: pg:7-9
' and its inequalities related examples
6 1 Complex plane: complex number by points and n'" | T1.Ch 2: pg:9-12
' roots of a complex number problems
1 Continuaion of Complex plane: complex number T1.Ch 2: pg:12-14
1. by points and n™ roots of a complex number
problems
8 1 Angle between two rays, Equations of straight lines | R2: Ch 1.6: 12-15
' and circle examples
9 1 Continuaion of Angle between two rays, Equations | R2: Ch 1.6: 15-17
' of straight lines and circle examples
10. 1 Elementary Transformation R2: Ch 1.6:18-20
11. 1 Continuaion of Elementary Transformation R2: Ch 1.6:20-22
12 1 Continuaion of Elementary Transformation R2: Ch 1.6:22-24
13 1 Infinity and Extended complex plane and its T1.Ch 2: pg:20-23
examples
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14 1 Stereographic projection related problems R3.Ch 1:1.8:pg:15-17
15 1 Recapitulation and Discussion of possible
questions
Total 15Hours
Text book
T1. Duraipandian.P., Lakshmi Duraipandian.,1997.Complex analysis,Emerald publishers,
Chennai-2 .
References

R1. Lars V.Ahlfors.,1979. Complex Analysis, Third edition, Mc-Graw Hill Book Company,New Delhi

R2. Arumugam.S., Thangapandi Isaac., and A.Somasundaram., 2002. Complex Analysis, SCITECH
Publications Pvt. Ltd,Chennai.

R3. Choudhary.B., 2003. The Elements of Complex Analysis ,New Age International Pvt.Ltd ,New

Delhi.
UNIT-II
1 1 Analytic functions: complex functions: definition | T1.Ch 4: pg:33-40
' and examples
Limit and continuity of a function: definition and R4.Ch 2: 2.1:pg:83-87
2. 1 examples
3 1 Limit and continuity of a function: definition and T1.Ch 4: pg:40-46
' examples
Uniform continuity and Differentiability of a T1.Ch 4: pg:46-48
4. 1 function and its examples
5 1 Uniform continuity and Differentiability of a R4.Ch 2: 2.1:pg:88-92
' function and its examples
Analytical function defined in a regionrelated T1.Ch 4: pg:50-51
6. 1 examples
7. 1 Necessary conditions for differentiability T1.Ch 4: pg:51-54
8. 1 Sufficient conditions for differentiability T1.Ch 4: pg:54-55
9 1 Cauchy-Riemann equation in polar coordinates R6: Ch 1:1.9:pg:29-31
related examples
10 1 Cauchy-Riemann equation in polar coordinates R6: Ch 1:1.9:pg:31-33
related examples
11 1 Related concepts on Cauchy-Riemann equation in | T1.Ch 4: pg:57-58
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polar coordinates

12 1 Entire functions and its problems R5: Ch 2: 2.9:pg:61-63
13 1 Continuation of Entire functions and its problems | R5: Ch 2: 2.9:pg:63-65
14 1 Continuation of Entire functions and its problems | R5: Ch 2: 2.9:pg:65-67
15 1 Recapitulation and Discussion of possible
questions

Total 15 Hours

Text book

T1. Duraipandian.P., Lakshmi Duraipandian.,1997.Complex analysis,Emerald publishers,

Chennai-2 .

References

R4. Ponnusamy.S., 2004. Foundations of Complex Analysis, Narosa Publishing House, Chennai.

R5. Vasishtha A.R ., 2005. Complex Analysis, Krishna Prakashan Media Pvt. Ltd., Meerut.

R6. Narayanan .S., T.K Manichavachagam Pillay, 1992. Complex Analysis. S.Viswanathan
(printers & publishers) pvt Ltd, Madras.

UNIT-I1
1 1 Power Series :Introduction T1.Ch 6: pg:71-74
2 1 Absolute convergence of power series and Circle R6: Ch 1:1.7.1:pg:18-22
of convergence -Theorems and its examples
3 1 Absolute convergence of power series and Circle T1.Ch 6: pg:81-84
of convergence -Theorems and its examples
4 1 Uniform convergence of Power Series related R5: Ch 5:5.6:pg:221-223
examples
5 1 Uniform convergence of Power Series related R5: Ch 5:5.6:pg:223-225
examples
6 1 Analyticity of the sum of power series problems T1.Ch 6: pg:84-87
7 1 Uniqueness of Representation of a function by
power series
R2:Chap 4:4.2:pg:101-103
8 1 Uniqueness of Representation of a function by

power series

R2:Chap 4:4.2:pg:103-105
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9 1 Elementary functions : Exponential functions T1.Ch 6: pg:87-88
Theorems and its examples
10 1 Elementary functions : Exponential functions T1.Ch 6: pg:88- 89
Theorems and its examples
11 1 Logarithmic functions and its Problems T1.Ch 6: pg:90-92
12 1 Trigonometric functions and its Problems R6: Ch 1:1.8:pg:25-27
13 1 Hyperbolic functions-related examples R6: Ch 1:1.8:pg:28-29
14 1 Hyperbolic functions-related examples R6: Ch 1:1.8:pg:29-31
15 1 Recapitulation and Discussion of possible
questions
Total 15Hours
Textbook:
T1. Duraipandian.P., Lakshmi Duraipandian.,1997.Complex analysis,Emerald publishers,
Chennai-2 .
References

R2. Arumugam.S., Thangapandi Isaac., and A.Somasundaram., 2002. Complex Analysis, SCITECH
Publications Pvt. Ltd,Chennai.
R5. Vasishtha A.R ., 2005. Complex Analysis, Krishna Prakashan Media Pvt. Ltd., Meerut.
R6. Narayanan .S., T.K Manichavachagam Pillay, 1992. Complex Analysis. S.Viswanathan
(printers & publishers) pvt Ltd, Madras.

UNIT-IV

1 1 Harmonic functions and Conjugate Harmonic T1.Ch 6: pg:93-96
functions

2 1 Determination and problems T1.Ch 6: pg:97-99

3 1 Continuation of problems on determination T1.Ch 6: pg:99-100

4 1 Continuation of problems on determination T1.Ch 6: pg:100-102

5 1 Bilinear transformation-Theorem related T1.Ch 7: pg:103-104
problems

6 1 Bilinear transformation-Theorem related T1.Ch 7: pg:105-106
problems

7 1 Bilinear transformation-Theorem related T1.Ch 7: pg:106-107
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problems
8 1 Circles and inverse points related problems T1.Ch 7: pg:113-116
9 1 Transformation mappings w = z> and w =z R2:Ch 5: pg:118-119
10 1 Transformation mappings w = z> and w =z R2:Ch 5: pg:119-121
11 1 Transformation mappings w = e’ T1.Ch7: pg:117-118
12 1 Transformation mappings w = sin z and w=cos z | R2:Ch 5: pg:124-126
13 1 Conformal Mapping-Theorem related examples T1.Ch 7: pg:120-122
14 1 Conformal Mapping-Theorem related examples T1.Ch 7: pg:123-124
15 1 Recapitulation and Discussion of possible

questions
Total 15Hours
Textbook:
T1. Duraipandian.P., Lakshmi Duraipandian.,1997.Complex analysis,Emerald publishers,
Chennai-2 .
References

R2. Arumugam.S., Thangapandi Isaac., and A.Somasundaram., 2002. Complex Analysis, SCITECH
Publications Pvt. Ltd,Chennai.

UNIT-V

Complex Integration: Simple rectifiable oriented
curve and its Theorems

R1.Ch 4:4.1: pg:104-105

Complex Integration: Simple rectifiable oriented
curve and its Theorems

R1.Ch 4:4.1: pg:106-107

Complex Integration: Simple rectifiable oriented
curve and its Theorems

R1.Ch 4:4.1: pg:107-109

Integration of complex function- Definite Integral -

Theorem and its problems

R3.Ch 3:3.1: pg:194-196
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5 1 Integration of complex function- Definite Integral - | R3.Ch 3:3.1: pg:196-198
Theorem and its problems

6 1 Interior and exterior of a closed curve, simply R6.Ch 3:3.1: pg:94-96
connected region related examples

7 1 Cauchy’s Fundamental Theorem and related R3.Ch 3:3.4: pg:220-223
examples

8 1 Cauchy’s Fundamental Theorem and related R3.Ch 3:3.4: pg:223-225
examples

1 Cauchy’s formula for higher derivative related R3.Ch 3:3.1: pg:226-229

9 problems

10 1 Cauchy’s formula for higher derivative related R3.Ch 3:3.1: pg:229-231
problems

11 1 Morera’s Theorem and related examples R6.Ch 3:3.7: pg:121-123

12 1 Recapitulation and Discussion of possible
questions

13 1 Discussion on Previous ESE Question Papers

14 1 Discussion on Previous ESE Question Papers

15 1 Discussion on Previous ESE Question Papers

Total 15 Hours

REFERENCES

R1. Lars V.Ahlfors.,1979. Complex Analysis, Third edition, Mc-Graw Hill Book Company,New Delhi
R3. Choudhary.B., 2003. The Elements of Complex Analysis ,New Age International Pvt.Ltd ,New

Delhi.

R6. Narayanan .S., T.K Manichavachagam Pillay, 1992. Complex Analysis. S.Viswanathan
(printers & publishers) pvt Ltd, Madras.

Total no. of Hours for the Course: 75 hours
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DEPARTMENT OF MATHEMATICS

Subject: COMPLEX ANALYSIS-I ~ Semester: V LTP C
Subject Code: 15MMU502 Class: I-B.Sc Mathematics 5005
UNIT I

Complex number system:Complex number-Field of a complex numbers-Conjugation —Absolute value of
a complex number.

Complex plane: Complex number by points-nth root of a complex number-Angle between two rays-
Elementary transformation- Stereographic projection.

TEXT BOOK

1.Duraipandian.P., Lakshmi Duraipandian.,1997.Complex analysis,Emerald publishers,
Chennai-2

REFERENCES

1. Lars V.Ahlfors.,1979. Complex Analysis, Third edition, Mc-Graw Hill Book Company,New Delhi
2. Arumugam.S., Thangapandi Isaac., and A.Somasundaram., 2002. Complex Analysis, SCITECH
Publications Pvt. Ltd,Chennai.

3. Choudhary.B., 2003. The Elements of Complex Analysis ,New Age International Pvt.Ltd ,New Delhi.
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DEFINITION

A complex number is any number of the form z = a + ib where a and
b are real numbers and i is the imaginary unit.

Terminology

The notations a + ib and a + bi are used interchangeably.
The real number a in z = a+ ib is called the real part of z; the real number b
Is called the imaginary part of z.The real and imaginary parts of a complex
number z are abbreviated Re(z) and Im(z), respectively.F or example, if
z=4 —9i, then Re(z) =4 and Im(z) = —9.A real constant multiple
of the imaginary unit is called a pure imaginary number.F or example,
Z = 61 Is a pure imaginary number.Tw o complex numbers are equal if their
corresponding real and imaginary parts are equal.

Complex numbers z1 = al + ibl and z2 = a2 + ib2 are equal, z1 = z2, if
al =a2 and bl =b2.

In terms of the symbols Re(z) and Im(z), Definition 1.2 states that z1 = z2 if
Re(z1) = Re(z2) and Im(z1) = Im(z2).

The totality of complex numbers or the set of complex numbers is usually
denoted by the symbol C.Because any real number a can be written as

z = a + 01, we see that the set R of real numbers is a subset of c.

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 2/16
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Arithmetic Operﬂtinns Complex numbers can be added, subtracted,
multiplied. and divided. If z; = ay + ih; and 29 = as + by, these operations
are defined as follows.

Addition: 21+ 20 = (ay +iby) 4 (a2 +ibo) = (24 + as) +i(b + ba)
Subtraction: zi—za = (a; +ib) — (az + iba) = (@1 —aa) +i(bi — ba)
Multiplication: 2y - 20 = (ay +iby)(aq 4 iby)

=ajas — bybo + i(bias + a1ba)

21 aj + iby

BT i, ]

e ag # 0, or by #
_aaa +biby | biag —aiby

i :
a%—‘.—b% ﬂ%—i—hé

Division:

The familiar commutative, associative, and distributive laws hold for com-
plex numbers:

) 2+ x2 = 22+ 2
Commutative laws:
£1E3 = 2234

o 1 21+ (z2+23) = (21 +22) + 23
Associative laws:

z1(2aza) = (2122)29
Distributive law:  z1(z2 + 23) = 2122 + 2123

In view of these laws, there 18 no need to memorize the definitions of
addition, subtraction, and multiplication.

Additron, Subtraction. and Multiplication

(i) To add (subtract) two complexr numbers, simply add (subtract) the
corresponding real and imaginary parts.

(i1) To multiply two complex numbers, use the distributive law and the
fact that i* = —1.
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EXAMPLE 1 Addition and Multiplication
Ifzy =2+ 4i and 29 = —3 + 84, find (a) 21 + 22 and (b) 2129,

Solution (a) By adding real and imaginary parts. the sum of the two complex
numbers zy and 2o 1s

2tz =244d) 4+ (—3+8)=(2-3)+ (4 +8)i=—-1+124.
(b) By the distributive law and i2 = —1, the product of z; and 2 is

ziza = (24 44) (—3 + 8Bi) = (24 4i) (—3) + (24 44) (8d)
= —6 — 127 + 16i + 32i°
= (—6 —32) 4 (16 — 12)i = —38  4i.

ZGENGMNNTAE The zero in the complex number system is the num-
ber (0 4 0§ and the unity is 1 + 0i. The zero and unity are denoted by 0 and

1, respectively. The zero is the additive identity in the complex number
system since, for any complex number z = a + ib, we have z + 0 = z. To see
this, we use the definition of addition:

2 4+0=(a+ib)+(0+0i)=a+04+ib+0)=a+ib =z

Similarly, the unity is the multiplicative identity of the system since, for
any complex number z, we have z- 1 =z« (1 + i) = 2.

There 15 also no need to memorize the definition of division, but before
discussing why this 1s so, we need to introduce another concept.

OfDVITETR  [f 2 is a complex number, the number obtained by changing
the sign of 1ts imaginary part is called the complex conjugate, or simply
conjugate, of z and 1s denoted by the symbol z. In other words, if = = a +ib,

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE
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then its conjugate is = = a — ibh. For example, if z = 6 + 34, then £ =6 — 34;
ifz = —6 — 4, them £ = —5h 44 If = is a real number, say, = = T, then
£ = 7. From the definitions of addition and subtraction of complex numbers,
it 1= readily shown that the conjugate of a sum and difference of two complex
numbers is the sum and difference of the conjugates:

zy +22 = E1 + a2, = — 22 =51 — ZFa. (1)

Moreover., we have the following three additional properties:

o 1
Z1Za = Z152, e
z2

Of course, the conjugate of any finite sum (product) of complex numbers is
the sum (product) of the conjugates.

The definitions of addition and multiplication show that the sum and
product of a complex number z with its conjugate Z is a real number:

Rl | R
L
|
3]
.
I

z4+Z={a+ib) + (a—ib) = 2a (3)
2z = (a+ ib)(a — ib) = a® — 2b% = a? + b, (4)

The difference of a complex number > with its conjugate Z is a pure imaginary
number:

z— 2= (a+ib) — (a — ib) = 2ib. (5)

Since a = Re(z) and b = Im(z), (3) and (5) yield two useful formulas:

& — Z

= (6)

T

]

z -+

Re(z) = 5

and Im(z) =

b

However, (4) is the important relationship in this discussion because it enables
us to approach division in a practical manner.

Division
To divide z) by za, multiply the numerator and denominator of z1 /20 by
the conjugate of zo. That is,

Zy Zt. 2 ZiZ2
e e e L (7)
<2 Za Za fazZa
and then use the fact that zoza is the sum of the squares of the real and
imaginary parts of za.

In the complex number system, every number z has a unigue
additive inverse. As in the real number system, the additive inverse of
=z = a + ib is its negative, —z, where —z = —a — ib. For any complex number
z, we have z 4+ (—z) = (. Similarly, every nonzero complex number z has a
multiplicative inverse. In symbols, for =z & 0 there exists one and only one
nonzero complex number z—! such that zz—! = 1. The multiplicative inverse
=z~ ! is the same as the reciprocal 1/z.
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y-axis

or Because of the correspondence between a complex
HESERATY XS number » = r + iy and one and only one point (z, y) in a coordinate plane,

pp kit we shall use the terms compler number and point interchangeably. The coor-
y (xy) dinate plane llustrated in Figure 1.1 is called the complex plane or simply
the z-plane. The horizontal or z-axis is called the real axis because each
point on that axis represents a real number. The vertical or y-axis is called

: T-axis the imaginary axis because a point on that axis represents a pure imaginary
or
real axis mumber.

Figure 1.1 z-plane

In other courses you have undoubtedly seen that the numbers
in an ordered pair of real numbers can be interpreted as the components of
a vector. Thus, a complex mumber 2 = 4 iy can also be viewed as a two-

z=1+iy dimensional position vector, that 1s. a vector whose initial point is the origin
and whoese terminal point is the point (r,y). See Figure 1.2, This vector
interpretation prompts us to define the length of the vector 2 as the distance
v/ 22+ from the origin to the point (z,y). This length is given a special
name.

Definition 1.3 Modulus

Figure 1.2 z as a position vector

The modulus of a complex mmmber = = & + 1y, 1s the real number

2| = Va? + 12 (1)

The modulus |z| of a complex number = is also called the absolute value
of 2. We shall use both words modulus and absolute value throughout this
text.

| EXAMPLE 1 Modulus of a Complex Number

If 2 =2 -3 then from (1) we find the modulus of the number to he

2] = /Z+ (—3)% = VI3. If 2 = —0i, then (1) gives |-9i| = \/(<0)2 =0.

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 6/16
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Ity
or

{a) Vector sum

5-3 3
oar
(-1, -1y

'

"

e
K
e

b+ b+

5

(b} Vector difference

Figure 1.3 Sum and difference

of vectors
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IEE GCIECENE  The addition of complex numbers 2; = ; + iy and

20 = Tg 41y given in Section 1.1, when stated in terms of ordered pairs:

(z1, 1)+ (2. o) = (21 + 22, 1+ 1)

15 simply the component definition of vector addition. The vector interpre-
tation of the sum 2, + 2 is the vector shown i Figure 1.3(a) as the main
diagonal of a parallelogram whose mitial point is the origin and terminal point
18 (1422, y1+y2). The difference 25 — 2y can be drawn either starting from
the terminal point of 2; and ending at the terminal point of 25, or as a position
vector whose imtial point is the origin and terminal point is (x3—z1, 12 —11).
See Figure 1.3(b). In the case z = 29 -2y, it follows from (1) and Figure 1.3(b)
that the distance between two points 2y =y + iy, and 29 = 19 + ity
in the complex plane is the same as the distance between the origin and the
point (z3 — 21, yo —y1); that is, |2 = lza — 21| = |(zg — 1) + (g — m)| or

i-'.'-j = -:]l = \,-':[.l'.'j — Iy )<+ 2 — 1 _:"Il {5.]

When z; = 0, we see again that the modulus |2g| represents the distance

between the origin and the point 2.

L2

EXAMPLE 2 Set of Points in the Complex Plane

Describe the set of points » in the complex plane that satisfy |z| =

z—i.

Solution We can interpret the given equation as equality of distances: The
distance from a point 2 to the origin equals the distance from 2 to the pomnt
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i. Geometrically, it seems plausible from Figure 1.4 that the set of points =
y lie on a horizontal line. To establish this analytically, we use (1) and (5) to
N ot write |z| = |2 —i| as:

“ial Val+y? = 2T+ (y—1)2
x 4yt =22+ (y—1)°
iyt =2y 241

Figure 1.4 Horizontal line is the set of

ints satisfying |z| = |z — 1. : 2 z a8 2 i
Ll it Lo e The last equation yields y = é- Since the equality is true for arbitrary z,
y = % s an equation of the horizontal line shown in color in Figure 1.4.
Complex numbers satisfying |z| = |z — i| can then be written as - = = + +i, |

In the Remarks at the end of the last section we pointed
out that no order relation can be defined on the system of complex numbers.
However, since |z| is a real number, we can compare the absolute values of
two complex numbers. For example, if 24 = 3 4+ 44 and 23 = 5 — i, then
|21] = +/25 = 5 and |23| = /26 and, consequently, |z;| < |2g]. In view of (1),
a geometric interpretation of the last inequality is simple: The point (3, 4) is
closer to the origin than the point (5, —1).

Now consider the triangle given in Figure 1.5 with vertices at the origin,
z1, and 2y + 2. We know from geometry that the length of the side of the
triangle corresponding to the vector z; 4+ 29 cannot be longer than the sum

of the lengths of the remaining two sides. In symbols we can express this
observation by the inequality

= |zy + za| < 21| + |2al. 16)

Exercises 1.2. The result in {6) is known as the triangle inequality. Now from the identity
z1 = 21+ 23 + (—z22), (6) gives

|z1] =21 + 22+ (—22)| = |21 + 22| + |—22].

Since |z2| = |—z2| (see Problem 47 in Exercises 1.2), solving the last result for
|21 + 23| yields another important inequality:

|zi + 22| = |z1| — |22]. (T)
But because z; + 22 = 20 + 23, (7) can be written in the alternative form
|21 + 23| = |29 + 21| = 22| — |21]| = = {|z1] — |22]) and so combined with the
last result implies

|21 + 22| 2 | |21] — |2 (8)
It also follows from (6) by replacing 22 by —za2 that |2 4+ (—z0)| < |21| +
|{—=22)| = |21| + |za]. This result is the same as

|21 — 22| < 21| + |22 (9)
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ar Form of Complex Numbers

Recall from calculus that a point P in the plane whose rectangular coordinates are
(x, ) can also be described in terms of polar coordinates. The polar coordinate system.
invented by Isaac Newton, consists of point O called the pole and the horizontal half-line
emanating from the pole called the polar axis. If v is a directed distance from the pole to
P and # is an angle of inclination (in radians) measured from the polar axis to the line OP,
then the point can be deseribed by the ordered pair (r, #). called the polar coordinates of
P. See Figure 1.6.

IS ETS B0l Suppose, as shown in Figure 1.7, that a polar coordinate

P, @) system is superimposed on the complex plane with the polar axis coinciding
with the positive r-axis and the pole O at the origin. Then =, y, r and # are
; related by @ = r cos #, y = r sin #. These equations enable us to express a
\19 nonzero complex number z = r 4 iy as 2 = (r cos #)+ i(r sin #) or
o P -
ik ke z=r(cosd 4 18mf). (1)
axis

We say that (1) is the polar form or polar representation of the complex
Figpare 1.6 Polar coondinates number z. Again, from Figure 1.7 we see that the coordinate r can be inter-
' preted as the distance from the origin to the point (z, y). In other words, we

shall adopt the convention that r is never negative' so that we can take r to

be the modulus of =, that is, » — |z|. The angle # of inclination of the vector
=z, which wsll ul'u.—'u.ys be mieasured in radians rom the 1)u:-i1.1\'1_- real axis, is
positive when measured counterclockwise and negative when measured clocle-
wise. The angle # is called an argument of > and is denoted by @ — arg(=).
/ wermin 8 An argument. # of a complex number must satisfy the equations cos & — x/fr
and sin & y/r. An arpument of a complex number z is not unique since
| cos & and sin @ arc 2w-periodic; in other words, if #5 is an argument of =,
== v = then necessarily the angles &n = 2w, &0 &= 4w, ... are also argpuments of z. In
x=rcomd ﬁ::r practice we use tan @ = y/x to find . However, because tan # is w-periodic,
=ome care must be exercised in using the last egquation. A calculator will give
only angles satisfving —= /2 < l-H_‘H._1|;_I',I'I,-"_i') - w /2, that 1s, angles n the first
and fourth guadrants. We have to choose @ consistent with the gquadrant in
s corofisl using tan = {4/ g= which =z is located; this may require adding or subtracting 7 to tan lf_y/.-r']
when appropriate. The following example illustrates how this is done.

Ir. &) orix, vl

=

Figure 1.7 Polar coordinates in the

complax plana

| EXAMPLE 1 A Complex WNumber in Polar Form
Express —+/3 — i in polar form.

- - - ! ] 3
v Solution With x = — /3 and y = —1 we obtain r = l&] = A (—+3) g = {—1)"
= 2. Now g/z = —1/(—+/3) = 1//3, and so a calculator gives tan—1! {1/,/3)
= 7/6, which is an _angle whose terminal side is in the first quadrant. But
since the point [—V’ﬁ‘ —1) lHes in the third gquadrant, we take the solution of
tan? = —1/({—+/3) = 1/+/3 to bhe @ = arg(z) = n/6 + 7 = Trn /6. See Figure

1.8, It follows= from (1} that a polar form of the number is

it i} g s T b s T 2
[l ., R ==2 | cos " -+ i sln = R {2)

Figure 1.8 ar‘,'.[ W3 1'}

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 9/16
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Principal Argument The symbol arg(z) actually represents a set of

values, but the argument & of a complex number that lies in the interwval
—ar == & = w is called the principal value of arg(z) or the principal argu-
ment of 2. The principal arcument of = is unigue and is represented by the
symbol Arg(=), that is,

—gr == Arp(=z) =< .
For example, if = = i, we see in Figure 1.9 that some wvalues of arg{i) are
w2, S22, —3w /2, and so on, but Arg(i) = /2. Similarly, we see from
Figure 1.10 that the argyument of —/3 — Z that lies in the interval (—m, 7).
the principal argunment of =z, is Arg{z) = /6 — 7 = —bw /6. Using Arg(=z) we

can express the complex number in (2) in the alternative polar formm:

2o () o ()]

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 10/16
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_ 3% - -3
|'l/ e 1\] \' | o 1
[ { )
|I III. |I III
\ \ // {I_{'I

N s
’-'/‘2 -
~— =z=—A3F i
Figure 1.9 Some arguments of i Figure 1.10 Principal argument
z = —/3—i

In general, arg(z) and Arg(z) are related by

arg(z) = Arg(z) +2nw, n=0, =1, =2, .... (3
For example, arg(i) = % + 2nw. For the choices n = 0 and » = —1, (3) gives
arg(i) = Argl(i) = 7 /2 and arg(i) = —37 /2, respectively.

LU RN iAT o) iTelztATe s -t la MBSRS T3 s8 The polar form of a complex number
is especially convenient when multiplying or dividing two complex numbers.
Suppose

zy = m{cosf; +isin®; ) and =23 = ro(cosfs +isinfa),

where #; and #5 are any arguments of z; and 2o, respectively. Then

z1z2 = T2 [cos @ cost —sin# sinfs + i (sinf) cosfa +cosfy sinda)]  (4)
and, for ze 7 0,
z—l = ::—1 [cos 81 cos Bs + sin @4 sin B2 + i (sin &4 cos B2 — cos # sin H2)] . (5)
2 2

From the addition formulas? for the cosine and sine, {4} and {5) can be rewrit-

ten as
z1zo = 71712 [cos (61 + #2) + isin {1 4+ &2)] (G)
and Sl ,—1[c05{191—92}+isin (1 — f2)]. {7
Zop ]

Inspection of the expressions in (6) and (7) and Figure 1.11 shows that the
lengths of the two wvectors zjzo and 23 /25 are the product of the lengths of 2
and zs and the quotient of the lengths of =y and zg, respectively. See (3) of
Section 1.2. Moreover, the arguments of z,2s and =z, /2o are given by

: i
arg{zyzs) = arg{z ) +arg(za) and arg l:—) — arg{=zy) — arg{za). (8)

de Moivre’s Formula When z = cos@ +iéisiné, we have |z]| =r =1,

and so (9) yields
(cos 6 4+ isin &)™ = cosnd 4+ isinné. {10)

This last result is known as de Moivre’s formula and is useful in deriving
certain trigonometric identities involving cosnf and sinné.

EXANMPLE 4 de Moivre's Formula
From {10}, with 8 — 7/6, cosf — +/3/2 and siné — 1/2:

Wi 1. i . m . "
(T—l—ai) =cus39—|—zs1n39=cos(3-3)—:—asun (EAE)

T W ,
= tEisin - = i

2 2

= COs8
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Suppose z = r(cosf +isinf) and w = p{cos ¢ + isin¢) are polar
forms of the complex numbers z and w. Then, in view of (9) of Section 1.3,
the equation w™ = z becomes

pcosng + isinng) = r(cosf + isinf). (1)
From (1), we can conclude that

pr=r (2)

s cosng 4+ isinhg = cosf +isinfd. (3)

See Problem 47 in Exercises 1.3,

From (2), we define p = /7 to be the unique positive nth root of the
positive real number r. From (3), the definition of equality of two complex
numbers implies that

cosng =cosf# and sinng =sinf.

These equalities, m turn, indicate that the arguments # and ¢ are related by
ng = 0 + 2k, where k is an integer. Thus,

# + 2kw

mn

As k takes on the successive integer values k=0, 1, 2, ..., n—1 we obtamn
n distinct nth roots of z: these roots have the same modulus {7 but different
arguments. Notice that for £ > n we obtain the same roots because the sine
and cosine are 2w-periodic. To see why this is so, suppose k = n + m, where
m=0, 1,2, .... Then

84+ 2(n4m)r 04 2mm
B n B n

o + 27

5 . (84 2mmw : 8+ 2mm
and sin ¢ = sin — ) COS ¢ = cos —

We summarize this result. The n nth roots of a nonzero complex number
z =r{cos# +isind) are given by

= i 4 o e
) — ":"J' [l.'u.ﬁ (f +-,._ ) + i 8in (%)] . (4}

where =10, 1, 2, ..., n—1.

EXAMPLE 1| Cube Roots of a Complex Number
Find the three cube roots of z = i.
Solution Keep in mind that we are basically solving the equation w® = i.

Now with r = 1, # = arg(i) = 7/2. a polar form of the given number is given
by z = cos(7/2) + isin(x/2). From (4), with n = 3, we then obtamn

w, = A [mﬁ (@) o (W’?";ﬁ)} L k=0,1,2.

el2/16
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Hence the three roots are,

k=10,
k=1,
k=2
e E
w3 =2 and 37 = 3 are the prin-
cipal square root of 4 and the prin-
cipal cube root of 27, respectivaly.
my \\q‘%
||I l.'
| / |
I T
\ |
\'\ .-/'r
o L
1=

Figure 1.12 Thres cube roots of i
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=ms%+z’siu%=§+%i
=ms%+t’sin%=—§+li
—m53ﬁ+isin = s i

B 2 g

IE5uhiTus I 3A M EsTe0d  On page 17 we pointed out that the symbol

arg(z) really stands for a set of arguments for a complex number z. Stated
another way, for a given complex number = # 0, arg{z) is infinife-valued. In
like manner, =%/™ is n-valued: that is, the symbol 2!/ represents the set of
n nth roots wy, of 2. The unique root of a complex number = (obtained by
using the principal value of arg(z) with & = 0} is naturally referred to as the
principal nth root of w. In Example 1, since Arg(i) = 7/2, we see that
wy = %ﬂ—k %a' is the principal cube root of i. The choice of Arg(z) and k=0
puarantees us that when z is a positive real number r, the principal nth root
is §r.

Since the roots given by (4) have the same modulus, the n nth roots of a
nonzero complex mumber z lie on a circle of radius {7 centered at the origin
in the complex plane. Moreover, since the difference between the arguments
of any two successive roots wy and wyyq is 27 /n, the n nth roots of 2 are
equally spaced on this circle, beginning with the root whose argument is 8/n.
Figure 1.12 shows the three cube roots of i obtained in Example 1 spaced at
equal angular intervals of 27 /3 on the cireumference of a unit cirele beginning
with the root wg whose argument is 7/6.

As the next example shows, the roots of a complex number do not have
to be “nice” numbers as in Example 1.

EXAMPLE 2
Find the four fourth roots of 2 =1 4+ 14.

Fourth Roots of a Complex Number

Solution In this case, r = /2 and ¢ = arg(z) = 7/4. From (4) with n = 4,

we obtain
wy, = \4/5[-:05 (@) 4 isin (@)] pode=l AL 2o

With the aid of a calculator we find

e e Tt Ty T 99905

k=0, wy=+2 [cot. T +isin IG] == 1.1664 + 0.23204

k=1, w =2 cos% + isin gl—g] =~ —0.2320 + 1.1664:
177 177

k=2 ws=+3 cosl—g+1’sinl‘—g] = —1.1664 — 0.2320:
OI'I -ri

k=3, wi= Y3 |cos 22X +isin£b——r] ~ 0.2320 — 1.1664i.

16 16

2015
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rd \
*

g ) As shown in Figure 1.13, the four roots lie on a circle centered at the origin of
radius r = /2 ~ 119 and are spaced at equal angular intervals of 2r/4 = 7/2
radians, beginning with the root whose argument is 7/16.

~_ |}~
Wy

Figure 1.13 Four fourth roots of 1+ 4

STEREOGRAPHIC PROJECTION

Since we have a notion of distance (i.e., d(z,w) = |z — w|) in C we
may view C as a metric space. It is clear that this space is complete
in the sense that any Cauchy sequence converges; to see this note that
since |Rez| < |z| and |Imz| < |z| < |Rez| + |Imz| for any z € C
it follows that if z; = =; + dy;, 7 = 1,2,... is a Cauchy sequence in
C, then =;,  =1,2,... and y;, 7 = 1,2,... are Cauchy sequences in
R. Furthermore, f r; — r € R and y; — y € R as 5 — oo, then
x; +ty; — =+ iy € C as 3 — oc. Thus the completeness of C follows
from that of R.

From the point of view of topology, it would be even better if C
were compact, i.e., any open cover of C should have a finite subcover.
This is not true, however, as can be seen by considering the open cover
of C consisting of all open balls |z| < R centered at (), which obviously
has no finite subcover. One can make C compact without changing
its topology by adding (at least) one ‘ideal’ point and modifying the
metric. This ene-point compactification of the complex plane is very
important in the theory of functions of a complex variable and we will
give a very enlightening geometric interpretation of it in this section.

Imagine C as the zizs-plane in B* and let S be the unit sphere;
it will intersect C along the unit circle. Call the point (0,0,1) on the
sphere the North pole N (so that (0,0, —1) is the South pole). We can
map C in a one-to-one fashion onto Sz \ { N} by mapping =z € C onto
the point (x1,x2,x3) € 55 such that the straight line connecting z with
N goes through (1, x2, r3). This map is called stereographic projection
and has many interesting properties, as we shall see. In this connection
52 is called the Riemann sphere.

It is nearly obvious that this stereographic projection is a bi-con-
tinuous map, using the topology induced by the metric of B?. To make
absolutely sure, let us find the mapping explicitly. The line through
N and z = =z + iy € C is (&y,x9,x3) = (0,0,1) + t(x,y,—1). The
intersection with Sy is given by # satisfying t2(z2 4+ %) + (1 —#)2 =1
which gives t = 0, i.e., N, and the more interesting ¢t = 2/(x% +y%+1).

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 14/16
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FIGURE 1. Stereographic projection

We therefore get

i 2Rez
S P I
~ 2Imz
R PP
P -1
S !

Since |z|*> + 1 = 2/(1 — z3) by the third equation the inverse is easily
seen to be given by
Ty + ixs

1— g
It is clear that these maps are both continuous (note that (zy, 9, 23) €
Sa \ {N} so z3 # 1). We may now introduce a new metric in C by
setting the distance between points in C equal to the Euclidean distance
between their image points on Sa.

EXERCISE 1.12. Show that this metric is given by

z—w|
|z + 1)Y2(Jw]? + 1)V

Also show that the distance between the image of z and N is

dlz,w)=2
(2,w) {

R S
(l2+1)t2"

In view of Exercise 1.12 we may now add to C an ‘ideal’ point oo,
the image of which under stereographic projection is N. This new set
is called the extended complex plane and we denote it by C*. Using the
metric of Exercise 1.12 in C* the extended plane becomes homeomor-
phic to the Riemann sphere with the topology of Euclidean distance.
Since Ss is compact, so is the extended plane; we have compactified
the plane. For the statement of the next theorem, note that a circle
in S? is the intersection of S? by a non-tangential plane, and any such
(non-empty) intersection is a circle,
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UNIT-I
1. If Z1 and Z, are any two complex numbers ,then prove that Z, + Z, = Z; + Z,.
ii) Show that every complex numbers z whose absolute value is 1, can be expressed in
the form z = (1+it)/(1-it),t is a real number.
2. Explain the Stereographic projection of a complex plane.
3. 1) Show that the argument of the product of two complex numbers is the sum of the
arguments of the complex numbers.
i) Show that, if | Z| < % then | (1+i) 23+iz| < %
4. Show that stereographic projection maps circles on the Riemann sphere onto circles or
Straight lines in the complex plane.

5.1) If Zyand Z; are any two complex numbers ,then prove that (Z1 Z2) = Z1 Zo
i) If Z1 and Z, are any two complex numbers, then arg (?) = argZ, —argZ,
2

6. If Z, Z1 and Z> are any three complex numbers, then prove that
i) -| ZI<Re Z<|Z), | ZI< Im Z< |2,
i) | Z1+Za|<| Z1 [+|Z2|
i) | Z1-Z22| | Z1|-1Z2] |
7.1f Zy and Z> are the images in the complex plane of two diametrically opposite points on
the Riemann sphere,show that Z; Z, =-1
8. Explain the transformation w=1/z.
9. Explain about the transformation w=az.
10. If z,21,2; are any three complex number then prove that i) |z| =| Z7] i) zz™= |z

i) [2122]=|z1]|z2]
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Subject Name: COMPLEX ANLAYSIS-I
UNIT-I
Question Option-1 Option-2

The multiplicative identity of complex number is (0,1) (1,0)
The inverse of (a,p) under addition is (-o,B) (-0,-B)
| Z, Zo)= [EANEN |z | |||
The value of i* is 1 -1

The Equation of the unit sphere is

The element (1,

The element (O,
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If Z, and Z, are any two complex numbers ,then arg(Z,7Z,) = arg(Z,)+arg(Z,)
x2+y2+22=1
0) is the ------- Additive identity
0) is the ---------- Additive identity
If |Z,| = |Z,| and arg(Z,)= arg(Z,) then ----- 7.7,

The Equation of the unit circle whose centre is the origin is |Z| =1

The complex plane containing all the finite complex

numbers and infinity is called the

infinite complex plane

The mversion w = 1/z maps the region | z | <1 into the

region
The square of

| w]<

real number is --------- Non negative

The absolute value of z = x+iy is Vx

If Z,and Z, ar

The mapping W=1/Z is called an

The polar form

If Z, and Z, are any two complex numbers ,then

e any two complex numbers ,then | Z, +Z,|£| Z, [+|Z,|

Linear transformation
of x+iy is r(cos q +isinq )

| Z,-Z,|£] Z, |+|Z,

The complex plane containing all the finite complex

numbers 1s called the

infinite complex plane

The conjugation of 5+i3 is 5

If Z, and Z, are any two complex numbers ,then

arg(Z1/72) = arg(Z,)+arg(Z,)

The mapping W=Z+b ,b is a complex number, is called the Linear transformation

All the complex numbers except infinity are called

If x= rcos0 , y = rsinf then for z we get

Complex numbers

7z=1Cc0s0+ r sinO

The angle made by the vector (x,y)measured in the

anticlockwise direction 1is

From x= rcos0

mod of z
The argument 0 is ------------- as it can take infinite values unique
and y = rsinf weget 6 = sin”’ y/x
arg z

arg z

The argument of the product of two complex numbers is---

- of the complex number

arg ((zl.Z2)
arg (zl . z2)

The cross ratio

Ifz=-1+1i,then z-1=........

The sum of the arguments
arg z,+ arg 7,
of the form.....

(21-22)( Zp-24)/( 21-24)( Z5-23)
-1+1

The stereographic projection of the complex point z = (V2

1) is (12, 112, 0)
The inversion w = 1/z maps the region | z | >1 into the

region | w <1
Under the transformation w = az there are ------ fixed

points one

According to D

The transformation w = az=b , where a, b are complex

e Moivre’s theorem (cos 0 +isin 0)" = n . . n
cos O +isin” 6

Rotation and Homothetic

constants ,is a composition of ...... tranformations

The fixed points for w = (2z-1) / (z+3) are

0,00

The equation zZ + az + az + ¢ =0 , where c is real and a is

complex , is a equation of a

Line

arg(Z,2,) = arg(Z,)-

arg(Z,)
X2+y2+Z2=2

Multiplicative identity

Multiplicative identity

7,7,

|Z-a| =1

extended complex

plane

| w>1
Non positive

Vy

| Z, +Z,|=| Z, |+|Z,|

Translation

r(cos q -isinq )

| Zy-Zy|=| Z, [+{Z,]
extended complex
plane

3

arg(Z,/Z,) = arg(Z,)-

arg(Z,)
Translation

Complex plane

7= 1s1n0 + ircosd

norm of z

not unique
-1

cos y/x

-arg z

the argument of the

sum

arg z, argz,

(21-23)( 2y-24)/( 2,-

24)( Zy-25)

-1-i
0,42, 1)
| w|>1

two

cosn 0+isinn 0

Translation and
Rotation 1/2

Ray

Subject Code:

Option-3
(0,0)
(o,B)
EAREY

0

arg(Z2,7Z,) =
arg(Z,)/arg(Z,)

Xz—y2+zz= 1
identity

identity
ANYD

1Z| =0

complex plane

|w|=1
Negative
Vx-y

| 2, +Z,P | Z, |+[Z,]

Inversion

cos ( +ising

| Zi-ZoPI | Zy 2o |

complex plane
5+i3

arg(zl /Zz) =
arg(Z,)/arg(Z,)

Inversion

finite complex
numbers

7= rcos0-+irsind

argument of z

finite
tan'ly/x
arg(-z)

the argument of the

division

argz,/argz,

(21-25)( Zp-24)/( 24~

Z4)
-D/2 +11/2

(12,172, 1/2)
|w =1

Z€10

ncos 0+insin 0

Rotation ,
Homothetic and
Translation

2/3
Ellipse

15SMMUS02

Option-4
(0,1)
(0,-P)
|z | +] 2]

1

arg(2,2,) =
arg(Z,)*arg(Z,)

Xz—y2—22=1

unique

unique
7,7,

ZI#1

finite complex
plane

| w|<1
absolute value
\/><2+y2

Answer
(1,0)
(-.-p)

| Z1 | | %) |
-1

arg(Z,2,) =
arg(Z,)/arg(Z,)
x2+y2+22=1
Multiplicative
identity
Additive
identity

2,-7,

Z) =1

extended
complex plane

|w|>1
absolute value
\/X2+y2
| Z, +Z,|£| Z,

| Zy +Z,|#| Z, |+|Z,] |+Z,

Rotation

r(cos q - sinq )

Inversion

r(cos q +ising
)

| Z,-Z,P| | Z, |-

| Z1-Z,|# Z, [+|Z,| |Z,] |

finite complex
plane
5-i3

arg(Z,/2,) =
arg(Z,)*arg(Z,)

Rotation
infinite complex
numbers

z= 1rc0s0-1rsind
0
infinite

cot']y/x
arg 1/z

the product of the

ar guments

arg(z, +2,)

(21-2)/( 21-24)( Z,-

z3)
-D/2 -11/2
(0, 0,1)

| w <1

o0

Homothetic and
Translation

-12+i(\3/2) , -
1/2-i(/3/2)

circle

finite complex
plane
5-i3

arg(Zl /Z2) =
arg(Z,)-arg(Z,)

Translation
finite complex
numbers

7= rcosf+irsing
argument of z

not unique
tan']y/x

-arg z

the argument
of the sum

arg 7z, argz,
(z1-23)( 25~
24)/( 21-24)( Z5-
z3)

-1-1

(N2, 172,
1/2)

[w]<1

two

cosn O+isinn 0

Rotation
Homothetic
and Translation

-1/2+i(\3/2)
-1/2-i(\3/2)

circle
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Limits

The description of a real limit given in the section intro-
duction is only an intuitive definition of this concept. In order to give the
rigorous definition of a real limit, we must precisely state what is meant by
the phrases “arbitrarily close to” and “sufficiently close to.” The first thing to

recognize is that a precise statement of these terms should involve the use of
absolute values since |a — b| measures the distance between two points on the
real number line. On the real line, the points x and xy are close if |[r — x| is a
small positive number. Similarly, the points f(x) and L are close if | f{x) — L|
i= a small positive number. In mathematics, it is customary to let the Greek
letters = and 4 represent small positive real numbers. Hence, the expression
“f(zx) can be made arbitrarily close to L” can be made precise by stating
that for any real numhber = = 0, = can be chosen so that |f(x) — L| = =. In
our intuitive definition we require that |f(x) — L| < = whenever values of =
are “sufficiently close to, but not equal to, xp.” This means that there is
some distance & = 0 with the property that if = is within distance & of =g
and ¥ # xy, then |f(r) — L| < =. In other words, if 0 < |r — xy| < &, then
|f(x} — L] = =. The real number 4 is not unique and, in general, depends on
the choice of =, the function f, and the point zp. In summary, we have the
following precise definition of the real limit:

Limit of a Real Function f(x)
The limit of f as x© tends zy erists and is equal to L
if for every = > 0 there exists a § > 0 such that |f(z) —L| <= (1)

whenever 0 < |z — zg| < 4.

The geometric interpretation of (1) is shown in Figure 2.50. In this figure
we see that the graph of the function y = f(x) over the interval (xg—4, To+4§),

excluding the point xg, lies between the lines w = L — g and v = L + =
shown dashed in Figure 2.50. In the terminology of mappings, the interval
{ro — 4, mp + &§), excluding the point x = xg., shown in color on the r-axis

is mapped onto the set shown in black in the interval (L — =, L 4 =) on the
y-axis. For the limit to exist, the relationship exhibited in Figure 2.50 must
exist for any cholce of £ = (0. We also see in Figure 2.50 that if a smaller = 1s
chosen, then a smaller 4 may be needed.

A complex limit is, in essence, the same as a real
limit except that it is based on a notion of “close” in the complex plane.
Because the distance in the complex plane between two points z; and z2 is
given by the modulus of the difference of z; and 23, the precise definition of
a complex limit will involve |z3 — z7|. For example, the phrase “f{z) can be
made arbitrarily close to the complex number L.” can be stated precisely as:
for every £ = 0, z can be chosen so that |f(z) — L| < =. Since the modulus of
a complex number is a real number, both = and 4 still represent small positive
real numbers in the following definition of a complex limit. The complex
analogue of (1) is:
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¥
Definition 2.8 Limit of a Complex Function

Suppose that a complex function f is defined in a deleted neighborhood
i of zp and suppose that L is a complex number. The limit of f as =z

—
ez zu',-' tends to z; exists and is equal to L, written as ]1m f(z) = L, if
o for every £ = 0 there exists a 4§ = 0 such that |f(z) L| < £ whenever

x 0< |~—H[]| < 0.

{a) Deleted d-neighborhood of z5

Becanse a complex function f has no graph, we rely on the concept of
complex mappings to gain a geometric understanding of Definition 2.8. Recall
P from Section 1.5 that the set of points w in the complex plane satisfying
:' Al ‘: i — L| < = is called a neighborhood of L, and that this set consists of all
"1‘ ﬁzl 4 'r" points in the complex plane lying within, but not on, a circle of radius =

Ry centered at the point L. Also recall from Section 1.5 that the set of points
satisfying the inequalities 0 < |z — zp| < 4 is called a deleted neighborhood of
zg and consists of all points in the neighborhood |z — 25| < 4 excluding the

{b) e-neighborhood of L point zp. By Definition 2.8, if llm f(z) =L and if = is any positive number,

T

then there is a deleted nmghhorhood of zp of radius & with the property that

ig 2.51 T i ne
Figure 2.51 The geometric meaning for every point z in this deleted neighborhood, f(z) is in the = neighborhood

of a complex limit of L. That is, f maps the deleted neighborhood 0 < |z — 20| < & in the
z-plane into the neighborhood |w — L| < = in the w-plane. In Figure 2.51(a),
¥ the deleted neighborhood of z5 shown in color 18 mapped onto the set shown
4 in dark gray in Figure 2.51(b). As required by Definition 2.8, the image lies
3 within the s-neighborhood of L shown in light gray in Figure 2.51(b).
2

Complex and real limits have many common properties, but there is at
least one very important difference. For real functions, lim f(z) = L if and
r—ry

_1 / .

] = I/l 5 only if hm f(r) =L and lim f(x)= L. That is, there are two directions
=1 T—'Tg :r—r:rn

from which = can approach zp on the real line, from the right (denoted by

Figure 2.52 The limit of f does not 1T — z}) or from the left (denoted by * — x5 ). The real limit exists if and

exist as r approaches 0. only if these two one-sided limits have the same value. For example, consider

the real function defined hy:

¥
2 x =0
flz) =
r—1 =0
The limit of f as x approaches to () does not exist since 111[111 flz) = 111'[1]1 2 =10,
-

but 11551_ flz) = l]_n[]ll (x —1) = —1. See Figure 2,52,

For limits of complex functions, z is allowed to approach zg from any
direction in the complex plane, that is, along any curve or path through z;.
See Figure 2.53. In order that lim f(z) exists and equals L, we require that

z—z0

igure 2.53 Di ays -
Figure 2.53 Different ways to approach f(z) approach the same complex number L along every possible curve through

zp. Put in a negative way:

z0 in a limit
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Furthermaore, for zp = 1 — i we have:
flzo)=fl1—1d) = (l—i}g—t[l—t’}+2=1—3'é.

Since lim f(z) = f(zn), we conclude that f(z) =22 —iz 4+ 2 is continuous at
z—+zq

the point zp =1 — 1.

As Example 5 indicates, the continuity of complex polynomial and ratio-
nal functions is easily determined using Theorem 2.2 and the limits in (15) and
(16). More complicated functions, however, often require other techniques.

| EXAMPLE 6 Discontinuity of Principal Square Root Function
Show that the principal square root function f(z) = 212 defined by (7) of
Section 2.4 is discontinuous at the point zp = —1.

N Solution We show that f(z) = 2'/? is discontinuous at zp = —1 by demon-
T TN i strating that the imit lim f(z) = li1'111 z'/2 does not exist. In order to do so,
= z—+2g = —
\ we present two ways of letting z approach —1 that yield different values of this
- + limit. Before we begin, recallli_gmm (7) of Section 2.4 that the principal square

J root function is defined by = |z|e*A=20/2 | Now consider = approaching
/ —1 along the quarter of the unit circle lying in the second quadrant. See
S Figure 2.54. That is, consider the points |z| =1, 7/2 < arg(z) < 7. In expo-
nential form, this approach can be deseribed as z = %, m/2 <8 < m, with #
approaching w. Thus, by setting |z| = 1 and letting Arg(z) = ¢ approach w,
re 2.54 Figure for Example 6 we obtaln:

im z /<= hm z|eMMEEND = 1im 4/ 1e™2
' 2 _ iATR()/2 _ i /Tei)2
1 z——1 B—ar

T——

However, since €/ = cos (#/2) +isin (0/2), this simplifies to:

: ] ]
lim 2?2 = lim (cos = +isin= | = cos
z——1 #— 2 2

3 Hising =04i(1) =i (18)
Next, we let = approach —1 along the quarter of the unit circle lying in the
third quadrant. Again refer to Figure 2.54. Along this curve we have the
points z = €, —7 < 6 < —7 /2, with # approaching —7. By setting |z| = 1
and letting Arg(z) = # approach —m we find:

. . Az . . 4 .8
lim 2% = lim |z|.¢3"ﬁ'”g':'l’f2 = lim ¢®?= lim (cos= +isin= | = —i. (19)
z——1 z——1 f——= = —= 2 2

Because the complex values in (18) and (19) do not agree, we conclude that
1i1'111 21/2 does not exist. Therefore, the principal square root function f (z)=

E—b—

21/2 is discontinuous at the point zg = —1.
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Properties of Continuous Functions LR TEER LR
continity is defined using the complex limit, various properties of complex
limits can be translated into statements about contimuty. Consider Theorem
2.1, which describes the connection between the complex limit of f(z) =
u(r, y)+iv(z, y) and the real limits of u and v. Using the following definition
of continuity for real functions F(z, y), we can restate this theorem about
limits as a theorem about continuity.

Continuity of a Real Function F(x,y)
A function F is continuous at a point (xg, y) if

F(z, y) = F(zo0, w). (20)

(z.¥)—(T0.v0)

Again, this definition of continuity is analogous to (17). From (20) and The-
orem 2.1, we obtain the following result.

Theorem 2.3 Real and Imaginary Parts of a Continuous Function

Suppose that f(z) = u(x, y) +iv(z, y) and 2y = xg + iyy. Then the
complex function f is continuous at the point zg if and only if both real
functions u and v are continuous at the point (xo, yo).

Proof Assume that the complex function f is continuous at zp. Then from
Definition 2.9 we have:

lim f() = £(20) = u(zo, ) + iv(o. w0). (21)

By Theorem 2.1, this implies that:

lim u(z, y) = u(xp, yo) and lim v(z, y) = v(zo, yo). (22)
{I;!I'}I—-"I:IU:!,I]]:I I:i',y]—a[:zn,yn}

Therefore, from (20), both u and v are continuous at (xo, yo). Conversely, if
u and v are continuous at (xp, yo), then

lim u(x, y) = u(ro,yo) and lim v(x, y) = v(zo, yo).
{z.y)—(zo.u0) (= ¥)— (0. u0)
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Suppose 2 = r+iy and zp = xp+iyp; then the change
in zg is the difference Az =z —zpor Az =x —wo +i(ly— o) = Az +iAy. It
a complex function w = f(z) is defined at z and zp, then the corresponding
change in the function is the difference Aw = f(zp + Az) — flz0). The
derivative of the function f is defined in terms of a limit of the difference
quotient Aw/Az as Az — (.

Definition 3.1 Derivative of Complex Function

Suppose the complex function f is defined in a neighborhood of a point
zg. The derivative of f at zp, denoted by f'(20)., is
flzo+ Az) flzn

f'(z0) _\‘n e : (1)

provided this limit exists.

If the limit in (1) exists, then the function f is said to be differentiable
at zg. Two other symbols denoting the derivative of w = f(z) are w' and
dw/dz. If the latter notation is used, then the value of a derivative at a

. . . . dw
specified point 2p 1s written —

z=zg

| EXAMPLE 1 Using Definition 3.1
Use Definition 3.1 to find the derivative of f(z) = 22 — 5z.

Solution Because we are going to compute the derivative of f at any point,
we replace zg in (1) by the symbol z. First,

flz+Az)=(z+ A2)? —5(z+ Az) = 22 4 22A2 + (Az)? — 52 — 5A=.
Second,

fle+ A=) = f(z) = 22+ BAz+ (&3]? — 52z —BAz — (22 —52)
— 22Az 4 (Az)? — 5Az.
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Then, finally, (1) gives

2zAz + (Az)? — 5Az

flz)= .&l;ll]aﬂ Mz
~ im Az(2z + Az —5)
Mz Az

= lim (2z + Az —5).
Az—D"

The limit 1s f'(z) = 22 — 5.

The familiar rules of differentiation in the
calculus of real variables carry over to the calculus of complex variables. If
f and g are differentiable at a point z, and ¢ is a complex constant, then (1)
can he used to show:

Differentiation Rules

Constant Rules: %c =0 and EI%“;.:_i*'[:z} = ef'{=) (2)
Sum Rule:  [f(z) £4()] = /() £4/(2) (3)
Product Rule: d—i[f{z]g{z}] = f(z)d'(z) + f'(z)g(=z) (4)
) d i . I
CJuotient Hule: = [;[(jﬂ = 9(z)] (E{z}f;(z}g () (5)
d
Chain Rule:  =f(9(2)) = '(9())9'(2)- (6)

The power rule for differentiation of powers of z is also valid:

d

n—1
—Z
dz

"=nz""", mnan integer. (7)

Combining (7) with (6) gives the power rule for functions:

%[g{z]]n = n[g{z]]”_]g’{z], nan integer. (8)
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(a) Az — 0 along a line parallel
to r-axis

¥

(b) Az —0 along a line parallel
to y-axis

X

Figure 3.1 Approaching z along a
horizontal line and then along a
vertical line

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE

| EXAMPLE 2 Using the Rules of Differentiation

Differentiate:
(a) f(z) =32* =52 +22 (b) f(2) =

4;’—11 (€) f(z) = (22 + 32)°

Solution

(a) Using the power rule (7), the sum rule (3), along with (2), we obtain
Fl(z)=3-427-5.3224+2.1=12" — 1527 4 2.

(b) From the quotient rule (5),

Fo) = (4z+1)-22—-2"-4 4224+22
G =7z i

(c) In the power rule for functions (8) we identify n = 5, g(z) = iz2 + 3z, and
g'(z) = 2iz + 3, so that

f'(z) = 5(i2” + 32)%(2iz + 3).

For a complex function f to be differentiable at a point zp, we know from

f(z0 + Az) — f(zo)

must exist and

the preceding chapter that the limit ,.-_\limu

equal the same complex number from any directic‘?;lz; that 1s, the limit must
exist regardless how Az approaches 0. This means that in complex analysis,
the requirement of differentiability of a function f(z) at a point zq is a far
greater demand than in real calenlus of functions f(x) where we can approach
a real number xg on the number line from only two directions. If a complex
function is made up by specifving its real and imaginary parts u and v, such
as f(z) = x + 4iy, there is a good chance that it is not differentiable.

EXAMPLE 2 A Function That Is Nowhere Differentiable
Show that the function f(z) = x + 4iy is not differentiable at any point =.

Solution Let z be any point in the complex plane. With Az = Ax + iAy.
Flz+Az) — f(z) = (z + Ax) + di(y + Ay) — x — diy = Axr 4 diAy
Flz+ Az) — f(=) Ar 4+ dily

and so &I;rgu Az T arto Az + iAy ()
Now, as shown in Figure 3.1(a), if we let Az — 0 along a line parallel to

the x-axis, then Ay = 0 and Az = Az and

i JEHA) () L A
AT R AT (o
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NIEAS A AT MA 0] Even though the requirement of differentiability

is a stringent demand, there is a class of functions that 1s of great importance
whose members satisfy even more severe requirements. These functions are
called analytic functions.

Definition 3.2 Analyticity at a Point

A complex function w = f(z) is said to be analytic at a point 2 if f
is differentiable at zg and at every point in some neighborhood of zp.

A function f is analytic in a domain D if 1t 1s analytic at every point
in D). The phrase “analytic on a domain D" is also used. Although we shall
not use these terms in this text, a function f that is analytic throughout a
domain D) is called holomorphic or regular.

Very Important g You should reread Definition 3.2 carefully. Analyticity at a point is not
the same as differentiability at a point. Analyticity at a peint is a neighbor-
hood property; in other words, analyticity is a property that is defined over
an open set. It is left as an exercise to show that the function f(z) = |2|” is
differentiable at z = 0 but is not differentiable anywhere else. Even though
flz) = |M|2 is differentiable at z = 0, it is not analytic at that point because
there exists no neighborhood of z = 0 throughout which f is differentiable;
hence the function f(z) = |2|” is nowhere analytic. See Problem 19 in Exer-
cises 3.1

In contrast, the simple polynomial f(z) = 2* is differentiable at every
point z in the complex plane. Hence, f(z) = z° is analytic everywhere.

A function that is analytic at every point 2 in the
complex plane is said to be an entire function. In view of differentiation
rules (2), (3), (7), and (5), we can conclude that polynomial functions are
differentiable at every point z in the complex plane and rational functions
are analytic throughout any domain ) that contains no points at which the
denominator is zero. The following theorem summarizes these results,
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Theorem 3.1 Polynomial and Rational Functions

(i) A polynomial function p(z) = apz™ + n_1z™ 4 b a4 ag,
where n 1s a nonnegative integer, is an entire function.
y : : _plx) ;
(i) A rational function f(z) = m, where p and g are polynomial
functions, is analytic in any domain [J that contains no point zg for
which g(zg) = 0.

ST BV SRS Since the rational function f(z) = 42/ (2% — 22 4 2)

i are goros of the denominator = is discontinuous at 1 +4i and 1 — ‘i, f fails to be analytic at these pOi'l'ltS, Thus
ff. by (i) of Theorem 3.1, f is not analytic in any domain containing one or hoth
of these points. In general, a point z at which a complex function w = f(z)
fails to be analytic is called a singular point of f. We will discuss singular

points in greater depth in Chapter 6.
If the functions f and g are analytic in a domain I, it can be proved that:

Analytieity of Sum, Product, and Quotient

The sum f(z) + g(z). difference f(z) — g(z), and product f(z)g(z) are
analytic. The quotient f(z)/g(z) is analytic provided g(z) #0 in D.

An Alternative Definition of f'(z) BRI R RLRm NN
to define the derivative of a function f using an alternative form of the differ-
ence quotient Aw/Az. Since Az = z — zp, then z = 20 + Az, and so (1) can
be written as

(12)

In contrast to what we did in Example 1, if we wish to compute f" at a
general point z using (12), then we replace zp by the symbol z after the limit
is computed. See Problems 7-10 in Exercises 3.1.

As in real analysis, if a function f is differentiable at a point, the function
is necessarily continuous at the point. We use the form of the derivative given
in (12) to prove the last statement.

fiz) — flzo)

Theorem 3.2 Differentiability Implies Continuity

If f is differentiable at a point zy In a domain [, then f is continuous
at zp.

Proof The limits lim 1(z) = f(z0) and lim (z — zg) exist and equal f'(zg)

z—zo =2 z—zn
and {, respectively. Hence by Theorem 2.2(iii} of Section 2.6, we can write
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the following limit of a produact as the product of the limits:

Fl=) — Flzod

Jim (=) — f=0)) — lim T2 20 (= — =0}
— 111-11M_ lim {= — zp) = " (za) -0 = 0.
=—+=o = — =0 =— =0
From lim (f{z) — f{zo)) = 0 we conclude that lim f(z) = f(z0). In view of
Deﬁniii::;jQ_g, JF is continuaons at =qg.- T =,

OFf course the converse of Theorem 2.2 is not true: continuity of a func-
tiomn F at a point does not guarantee that F is differentiable at the point. It
follows from Theorem 2.3 that the simple function Ff(z) = x + 4iy is contin-
unons everywhere because the real and imaginary parts of Ff, w(a, ) = & and
w{ar, ) = 4dy are continuous at any point (o, o). Yet we saw in Example 3
that F{z) = o + 4diy is not differentiable at any point =.

we see that if a function f{z) = u(z, y) +iv(z, y) is differentiable at a point
z, then the functions v and v must satisfy a pair of equations that relate their
first-order partial derivatives.

Theorem 3.4 Cauchy-Riemann Equations

Suppose f(z) = u(z, y)+iv(z, y) is differentiable at a point = = x + iy.
Then at z the first-order partial derivatives of © and v exist and satisfy
the Cauchy-Riemann equations

du  dv hu v

Proof The derivative of f at z is given hy
m flz+ Az) — f[zj‘

fz) = ali_;n Az @)
By writing f(z) = u(z, y) +iviz, y) and Az = Az + iAy, (2) becomes
v e wlr 4+ Ax,y 4+ Ay) +iv(r + Az, y 4+ Ay) — u(z, y) —iv(x, y)
f1e) = Jim, Az Ay v

Sinece the limit (2) is assumed to exist, Az can approach zero from any con-
venient direction. In particular, if we choose to let Az — 0 along a horizontal
line, then Ay =0 and Az = Ax. We can then write (3) as

u(r+ Ax,y) —u(z,y) +i[v(z + Az, y) — v(z,y)]

lim

f'(2)

Ar—0 Ax (4}
— lim ulr + Az, y) — ulz,y) 4 lim vir + Axr,y) —v(r,y) .
Ar—0 Ax Ar— Ax

The existence of f'(z) implies that each limit in (4) exists. These limits are
the definitions of the first-order partial derivatives with respect to = of u and
v, respectively. Hence, we have shown two things: both du/dx and dv/dx
exist at the point z, and that the derivative of f is

dv

, du
fz) = 5= +ig-. (5)
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We now let &z — 0 along a vertical line. With Ax = 0 and Az = iday.
{3) becomes

u(@.y + Ay) —wlw.y) . vz + Ay) — v(zy)
o AN Y] Spy—0 fFaNT;

(=) = Jlim (6)

In this case (6) shows us that du/dy and v /Oy exist at z and that

=i e 18
£(2) = —ige + 5o )

By equating the real and imaginary parts of (5) and (7T) we obtain the pair of
equations in (1. =N

Because Theorem 3.4 states that the Cauchy-Riemann equations (1) hold
at z as a necessary consequence of f being differentiable at z, we cannot use
the theorem to help us determine where f is differentiable. But it is important
to realize that Theorem 3.4 can tell us where a function f does not possess a
derivative. If the equations in (1) are not satisfied at a point z, then f cannot
be differentiable at z. We have already seen in Example 3 of Section 3.1 that
flz) = & + 4iy 1s not differentiable at any point z. If we identify «w = x and
v = 4y, then du/dr =1, dvj/oy =4, du/oy = 0,and v/dx = 0. In view of

e v
—— =1 — =4
ax #By

the two equations in (1) cannot be simultaneously satisfied at any point z. In
other words, f is nowhere differentiable.

It also follows from Theorem 3.4 that if a complex function f(z) =
u(x, yl+ivir, y) is analytic throughout a domain [0, then the real functions w
and w©» satisfy the Cauchy-Riemann equations (1) at every point
in [

A Sufficient Condition for Analyticity [T T VSRR
Cauchy-Riemann equations do not ensure analyticity of a function f(z) =
u(x, y) +iv(x, y) at a point z = r + iy. It is possible for the Cauchy-
Riemann equations to be satisfied at = and yet f(z) may not be differentiable
at z, or f(z) may be differentiable at z but nowhere else. In either case, f
is not analytic at 2. See Problem 35 in Exercises 3.2. However, when we
add the condition of continuity to u and v and to the four partial derivatives
du/dr, du/dy, dv/dz, and dv /Ay, it can be shown that the Cauchy-Riemann
equations are not only necessary but also sufficient to guarantee analyticity
of f(z) = u(x, y)+iv{z, y) at z. The proof is long and complicated and so
we state only the result.

Theorem 3.5 Criterion for Analyticity

Suppose the real functions u(x, y) and v(z, y) are continuous and have
contimionus first-order partial derivatives in a domain D). If u and v satisfy
the Cauchy-Riemann equations (1) at all points of IJ, then the complex
function f(z) = u(x, y) 4 iv(x, y) is analytic in D.
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Possible questions

1. Treating f(z) as a function of x &y and x &y is a function of z & z show that
)(3+ 2) F DI = 4l @)1
i) (2 + %) loglf'(z)| = .
2. State and prove C-R equations in polar coordinates.
3. Prove that the necessary condition for a function to be differentiable at a point is the
Continuity of the function at the point.
4. Show that in a compact set every continuous function is uniformly continuous.
5. Suppose f(z) is a function differentiable in a region D and the mapping w=f(z) is one to one
and the inverse mapping is z=¢ (w).If zo is a point in D such that £'(zo)#0, then
i) The inverse function ¢ (w) is differential at wo, where wo= f (z0) and
i) > (wo) =1/ £ (z0)
6. Prove that an analytic function f (z) and the C-R equations can be put in the condensed

af
form -, = 0.
7. Suppose f(z)= u(x,y)+iv(x,y) is a single valued function defined in a neighbourhood of

Zo=Xo +iyo.Then the necessary condition for the differentiability of f(z) at zo is the existence of
the partial derivatives ux ,uy,Vx,Vy at (Xo,Yo),which satisfy the relations ux=vy,uy=-Vvx.

8. Show that the single valued continuous functionf(z) = z¥/? = r%(cosge + sin%@),
r>0,0< 8 < 2m is analytic, Find f'(z).
9. Derive the C-R equations in polar coordinates.
10. Prove that if f(z) is continuous at z=zo and if for any M>0 there exists a d such that

| f(z)|>M for all z in the disc | z-zo|<d then 1/f(z) is continuous at z=zo,
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Subject Name: COMPLEX ANALYSIS-I Subject Code: 15MMUS502
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Question Option-1 Option-2 Option-3 Option-4
If f(z) of f has only one value it is called ----------- valued
function. single multi double many
If [f(z) | <Mforallzins , then f(z) is said t0 ~-------—---
inS multi valued continuous bounded analytic
The limit of a function is ----------- unique does not exist different multivalued
If f(z) = 2iz is defined then .. . .= 2 21 -2 1
If | f(z) f(zo,| <eforallzinS with |z—z,| <5 then f(z)
1S bounded continuous unique does not exist
If f (z) and g(z) are continuous at z, then f(z) £ g(z) is Continuous at z, differentiable at z, Continuous at z differentiable at z
If f (z) and g(z) are continuous at z, then f(z ) /g(z) is Continuous at z, differentiable at z, Continuous at z differentiable at z
In a compact set every continuous function is bounded in s uniformly continuous in s unique does not exist
If | f(z)) f(z,) | <eforallz, z,Swith |z, —z,| <§ then
f(z) is bounded in s uniformly continuous in s unique does not exist

If a function is differentiable at all points in some
neighbourhood of a point , then the function is said to be ---

- at that point bounded analytic differentiable compact
A function which is analytic everywhere in the finite plane
is called an - -- function. single multi entire continuous
f(z) is a function differentiable at z0O , then f(z) is Continuous at z, compact at z Continuous at z differentiable at z
A ---- point of a function is a point at which the function
ceases to be analytic non singular Singular entire continuous
f(z) = | z | S T — everywhere analytic not analytic continuous exist
f'(2) f'(2) +¢g'(2) f'(2)- g'(2) f'(2).g'(2)
Zf N gi;;‘(ﬂ” ' o)+ @)~ g f@). ¢'@)
cf'(z) f'(z) f'(z)+c f'(z)/c
A/ 1l - '(g(2). g'2) @) . '@ f'@)- ¢ f@- '@
Tﬁy%gﬁgﬂt of two polynomials is called a Exponential function logarithmic function Continuous function rational function

If f(z) and g(z) are continuous at z, then f(z)/g(z), g(z)#0 is differentiable at z,, differentiable at z

Continuous at z,, Continuous at z

If f(1/z) is analytic at O then f(z) is Analytic at oo Continuous at oo Differentiable at co Differentiable at O
The cartesian coordinates of C-R equations are u,=v, and u,=-vy u,=vy and u,=-vy u,=v, and u,= -vy u,=1 and u,=-vy
A function of complex variable is sometimes called a complex variable variable complex function constant

If the product of the slopes is -1, then the curves cut each

other ------ diagonally orthogonally at the origin at the point 1
The function that is multiple valued is f(z) = 2* f(z) =¢” f(z) = 1/z f(z) =z"

logz is a ------------- valued function single multi double three
A o 0A 1/A 0

If lim__.o F(2) = A thenim___. 7 0A 1/A o0

If f(z) = 1/2* then  lin,..[0)- 0 2 1 -1

If f(zy) = oo, the function f(z) 1s ............... atz = z, continuous not continuous differentiable bounded

The function f(z) = Re z/ | z | , when z #0 ; f(z) = 0

when f(z)=0 is................ continuous not continuous differentiable bounded

The function |z | is ......cooe.... at that point. continuous analytic not analytic bounded

If f(z) = u +1v is analytic , then u(x,y) and v(x,y) are

................. Functions harmonic analytic continuous bounded

The function f(z) = log z,then u(r,0) = ...... v(r,0) =

........... log6,logr r, log logr,0 1,0

Iff(z)=1/z then o0 -1 0 1

A continuous function f(z) defined on a set D is uniformly
continuous when D is bounded D is closed D is compact D is open

Answer
single

bounded
unique
21

continuous
Continuous at z,
Continuous at z,,

bounded in s
uniformly continuous
ins

analytic

entire
Continuous at z,,

Singular
not analytic
f'z) + g'(2)
fi(z). g'(2)
cf'(z)

f'(2(z)). g'(z)
rational function

Continuous at z,,
Analytic at o
u,=vy and u,=-vy
complex function

orthogonally
f(z) = 12
multi

A

A

0
not continuous

not continuous

not analytic
harmonic

logr, 0
0

D is compact
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The notion of a power series 1s important in the study
of analytic functions. An infimite series of the form

s

Zu;_.[: — .‘.|.]L' —ag+ a1z —zg) 4+ ax(z — .:._|:|'3_|_ o (11)
=10

where the coefficients a; are complex constants, is called a power series in
z —zp. The power series (11) is said to be centered at zp; the complex point
zp is referred to as the center of the series. In (11) it is also convenient to
define (z — 25)? = 1 even when z = z;.

(83 10e] Sl QO aAY S y(=iile=l Every complex power series (11) has a ra-

dius of convergence. Analogous to the concept of an interval of convergence
for real power series, a complex power series (11) has a circle of conver-
gence, which is the circle centered at zg of largest radins R = 0 for which
(11} converges at every point within the circle |z — z0| = K. A power series
converges absolutely at all points = within its circle of convergence, that is,
for all z satisfying |z — zo| < R, and diverges at all points z exterior to the
circle, that is, for all z satisfying |z — zp| = K. The radius of convergence can
be:

(i) B =10 (in which case (11) converges only at its center z = zp),

(#1) R a finite positive number (in which case (11) converges at all interior
points of the circle |z — zg| = R}, or

(iii) R = oo (in which case (11} converges for all z}.

A power series may converge at some, all, or at none of the points on the
actual circle of convergence. See Figure 6.3 and the next example.
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I EXAMPLE 5 Circle of Convergence

k+1

o0
Consider the power series ¥ - By the ratio test (9),
k=1
zn+2
n+l)|_ o _
am || = o gl =1
n

Thus the series converges absolutely for |z| < 1. The circle of convergence
ig |z|] = 1 and the radius of convergence is R = 1. Note that on the circle

1

of convergence |z| = 1, the series does not converge absolutely since 3,7 | z

is the well-known divergent harmonic series. Bear in mind this does not say
that the series diverges on the circle of convergence. In fact, at z = —1,

(=1 . . . .
E:C:l L i1s the convergent alternating harmonic series. Indeed, it can
be shown that the series converges at all points on the circle |z| = 1 except at
z=1.

It should be clear from Theorem 6.4 and Example 5 that for a power series
S pak(z — z0)F, the limit (9) depends only on the coefficients ag. Thus, if

1
(i) lim Tnill_p, # 0, the radius of convergence is R = T (12)

e—00 ﬂ.n

(ii) lim ﬂ;H = 0, the radius of convergence is B = oo (13)

. s
(fi) lim |—tL
n—oo| g

= oo, the radius of convergence is i = (. (14)

Similar conclusions can be made for the root test (10) by utilizing

lim {/Jan]. (15)

n— o0

For example, if limy, .o §/|an| =L # 0, then R =1/L.

EXAMPLE ¢ Radius of Convergence

oo {_1 JI:-I—I
Consider the power series ) ————
k=1

T (z— 1 —i)*. With the identification
ap = (—1)"*1 /n! we have

[_1}n+2
fim [A2EDN oy L
n—ool (1)1 | " mmsom4 1

n!

ze 3/17
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| EXAMPLE 7 Radius of Convergence

2k +5 2n45
root test in the form (15) g‘n-’ca

6n+ 1
lim 3/Jan] = lim e — —3

1— 00 n—oo 2n4 5

6k 4+ 1 6 1y
Consider the power series z ( + ) (ﬁ—Zi]‘[". With a,, = (i) , the

By reasoning similar to that lcading to (12), we conclude that the radius Df
convergence of the series is R = 7. The circle of Dom-crgence is |z —2i| = g
the power series converges absolutely for |z —2i| < 3 |

A solution @{x, y) of Laplace’s equation (1)

in a domain ) of the plane is given a special name.

Definition 3.3 Harmonic Functions

A real-valued function ¢ of two real variables x and y that has continu-
ous first and second-order partial derivatives in a domain I and satisfies
Laplace’s equation is said to be harmonic in D).

Theorem 3.7 Harmonic Functions

Suppose the complex function f{z) = w{x, w) + iv(xr., y) is analytic in a
domain /. Then the functions u(xr, ¥) and v(x, y) are harmonic in .

Proof Assume f(z) = u(x, y) + iv{xr, y) is analytic in a domain I and that
u and v have continuous second-order partial derivatives in 2.7 Since f is
analytic, the Cauchy-Riemann equations are satisfied at every point z. Differ-
entiating both sides of du/dxr = v /Iy with respect to r and differentiating

both sides of du/dy = —Ov,/dx with respect to y give, respectively,
2 2 2 2.
31.::61! and aa_u-,:_at.. (2)
A2 S dy e Sy

With the assumption of continmity, the mixed partials 8_2va Axdy and 621!.,-"3“3;33:
are equal. Hence, by adding the two eguations in {(2) we see that
82 82u 2
_6x2_|__3y_2 =0 or Ve = 0.
This shows that w(x, y) is harmonic.
MNow differentiating both sides of du/dr = dv/dy with respect to g and

differentiating both sides of &u/dy = —J9v/0x with respect to r, give, in turn,
8FufFydr = B‘Qv’fayz and 8?u/8xdy = —?v/3%x. Subtracting the last two
equations yields V2o = 0. R
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ULk RATEL LLlINFLERG '.'U'J.IJ '.J.E‘ul."u AL AL "'IIN"L.:' H,-'l — Lhi H H I “Fals I

In Example 2, by combining u and its harmonic conjugate v as u(z,y) +
iw(z,y), the resulting complex function

f(z2) =2 =3z — Sy +i(32 — P + 52 4+ C)

s an analytic function throughout the domain IJ consisting, in this case, of the

T ™ 1 4 ' L d a T .o~
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(a) Verify that the function u(z, y) = x° — 3zy? — by is harmonic in the entire
complex plane.

(b) Find the harmomc conjugate function of wu.

Solution

(a) From the partial derivatives

du 5 o u o . 0%u
EZSI—gy..@:ﬁl"%:—s.fy—d..@:—ﬁﬂ:
we see that u satisfies Laplace’s equation
#u  u
E_Fﬂ_y?_ﬁx_ﬁx_ﬂ'

(b) Since the conjugate harmonic function v must satisfy the Cauchy-Riemann
equations dv/dy = du/dr and dv/dr = —0u/dy, we must have

A v
%zﬂx?—ﬂyz and = = 6zy + 5. (3)

Partial integration of the first equation in (3) with respect to the variable
y gives v(z, y) = 3r%y — y* + h(z). The partial derivative with respect to
x of this last equation is

dv

i by + h'(z).
When this result is substituted into the second equation in (3) we obtain
h'(x) = 5, and so h(x) = 5z 4+ C, where C' is a real constant. Therefore,
the harmonic conjugate of u is v(z, y) = 3y — y* + 5z + C.
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Exponential Function and its Derivative iR g g
peating the definition of the complex exponential function given in Section
2.1.

Definition 4.1 Complex Exponential Function

The function e* defined by
e* = ¢ cos I~ ie” sy {”

18 called the complex exponential function.

(One reason why it 1s natural to call this function the ezponential function
was pointed out in Section 2.1. Namely, the function defined by (1) agrees
with the real exponential function when z is real. That is, if 2 is real, then
z =1+ 04, and Definition 4.1 gives:

U = % (cos 0+ isin0) = (1 +i-0) = €. (2)

The complex exponential function also shares important differential prop-
erties of the real exponential function. Recall that two important properties
of the real exponential function are that e* is differentiable everywhere and

d e -
that d—ET = ¢” for all z. The complex exponential function ¢* has similar
T
properties.
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Theorem 4.1 Analyticity of e*

The exponential function e is entire and its derivative is given by:

Proof In order to establish that & is entire, we use the criterion for analyt-
icity given in Theorem 3.5. We first note that the real and imaginary parts,
u(z, y) = e cosy and v(r, y) = e*siny, of € are continious real functions
and have continuous first-order partial derivatives for all (z, y). In addition,
the Cauchy-Riemann equations in u and v are easily verified:

du dv du . dv

e et cosy = % and 3_1; = —eTsiny = ~5
Therefore, the exponential function e is entire by Theorem 3.5. By (9) of
Section 3.2, the derivative of an analytic function f is given by f'(z) = % +
i%, and so the derivative of ¥ 1s:

d du  dv

EE‘T=a+ia=ercnﬁy+ierﬂny=ez. L

Using the fact that the real and imaginary parts of an analytic function
are harmonic conjugates, we can also show that the only entire function f that
agrees with the real exponential function T for real input and that satisfies
the differential equation f'(z) = f(z) 15 the complex exponential function e*
defined by (1). See Problem 50 in Exercises 4.1.

| EXAMPLE 1 Derivatives of Exponential Functions

Find the derivative of each of the following functions:
(a) iz? (22 — &%) and (b) ="~ (1+)=+3,

Solution (a) Using (3) and the product rule (4) in Section 3.1:

ﬂTi[t'z‘1 {22 — 53]] = iz (22 —e®) + 423 {zz — ez}
B

. K - x . =
= 6iz® — izle® — dizde®.

(b) Using (3) and the chain rule (6) in Section 3.1:

d

M=) +3 | 2 (146248 IR
pE [e ] € (22 —1—14).

/17
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Modulus, Argument, and Conjugate [RINTRI I IERE I T

and conjugate of the exponential function are easily determined from (1). If
we express the complex number w = e* in polar form:

w=e"cosy+ie”siny =r (cosf +isinf),

then we see that r = ¢® and # = y+ 2nm, for n =0, £1,£2, ... . Because r
is the modulus and # is an argument of w, we have:

|e*| = e* (4)
and arg(e®) =y+2nwr, n=0, £1,£2,... . (5)

We know from calculus that e® = 0 for all real r, and so it follows from (4)
that |e*| = (. This implies that ¢ # 0 for all complex z. Put another way, the
point w = { is not in the range of the complex function w = *. Equation (4)
does not, however, rule out the possibility that €* is a negative real number.
In fact, you should verify that if, say, z = mi, then €™ is real and e™ < 0.

A formula for the conjugate of the complex exponential = is found using
properties of the real cosine and sine functions. Since the real cosine function
is even, we have cosy = cos(—y) for all y, and since the real sine function is
odd, we have —siny = sin(—y) for all y, and so:

& = e"cosy —ie”siny = e cos(—y) + i sin(—y) = eV = e~
Therefore, for all complex z, we have shown:
= (6)

Complex Logarithmic Function

In real analysis, the natural logarithm function lnx i1s often defined as an
inverse function of the real exponential functionm e*. From this point on,
we will use the alternative notation log, r to represent the real exponential
function. Because the real exponential function is one-to-one on its domain R,
there is no ambignity involved in defining this inverse function. The situation
is very different in complex analysis becanse the complex exponential function
£% 1s not a one-to-one function on its domain C. In fact, given a fixed nonzero
complex number z, the equation €% = z has infinitely many solutions. For
example, you should werify that %?Tt'.. -g-'.rri_. and —%7.’1' are all solutions to the
equation e = i. To see why the equation €™ = 2z has infinitely many solutions,
in general, suppose that w = u+4iv is a solution of € = z. Then we must have
|le*| = |z| and arg(e™) = arg(z). From (4) and (5}, it follows that e = |z|
and v = arg(z), or, equivalently, u = log,_ |z| and v = arg({z). Therefore, given
a nonzero complex number = we have shown that:

If e = =, then w = log, |z| + iarg(z). (10}

Because there are infinitely many arguments of z, (10) gives infinitely many
solutions w to the equation €* = z. The set of values given by (10) defines a
multiple-valued function w = &/(z), as described in Section 2.4, which is called
the complex logarithm of z and denoted by Inz. The following definition

e e T O e et
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The multiple-valued function In z defined by:
Inz = log, |z| + i arg(z) (11)

15 called the combplex logarithm.

Hereafter, the notation In z will always be used to denote the multiple-
valued complezr logarithm. By switching to exponential notation = = re” in
(11), we obtain the following alternative description of the complex logarithm:

Inz =log.r+i(f +2nm), n=0, £1, £2,.... (12)

From (10) we see that the complex logarithm can be used to find all
solutions to the exponential equation €¥ = 2 when 2 is a nonzero complex
number.

Theorem 4.3 Algebraic Properties of In z

If z; and 29 are nonzero complex numbers and n is an integer, then

(i) In(z122) =Inz; + Inzo

(ii) In (2—1) =Inz —Inz

2

(i) Inz = nln 2.

Proof of (i) By Definition 4.2,

Inz; + Inze =log, |2| +iarg(zy) + log, |2a| + iarg (za)
= log, |21 +log, |z| +i(arg(z) +arg (23)) . (13)
Because the real logarithm has the property log.a + log. b = log, (ab) for
a > 0 and b > 0, we can write log, |z122| = log, |z1| + log, |z2|. Moreover,

from (8) of Section 1.3, we have arg(z) + arg (z2) = arg(zy22). Therefore,
(13) can be rewritten as:

Inzy +Inz =log, |z129| +iarg (z122) = In(z122). &,

Proofs of Theorems 4.3(ii) and 4.3(iii) are similar. See Problems 53 and

54 in Exercises 4.1.
The complex function Ln 2 defined by:
Lnz =log, |z| + iArg(z)

is called the principal value of the complex logarithm.
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EXAMPLE 4 Principal Value of the Complex Logarithm

Compute the principal value of the complex logarithm Ln = for
(a) =2 =1 (b)z=1+: (c) 2= —2

Solution In each part we apply (14) of Definition 4.3.
(a) For =z =i, we have |z| = 1 and Arg(z) = 7 /2, and so:
Lni =log,_ 1+ %i.
Howewver, since log, 1 = 0, this simplifies to:

Lni = —i.

ko] =

(b) For = = 1 + i, we have |z] = +2 and Arg(z) = 7 /4, and so:
Ln(l + i) = log, +v2 + %i.
Because log,_ W2 = -% log,_ 2, this can also be written as:

Ln(l + i) = % log, 2 + I?'_i =~ 0.3466 + 0.7854i.

{c) For r = —2, we have |z| = 2 and Arg(z) = m, and so:

Ln{—2) =log_ 2 + i = 0.6931 + 3.14164.
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Ln =z as an Inverse Function Because Ln z is one of the values of
the complex logarithm In =z, it follows from (10) that:

el = = for all = # 0. (16)

This sugpgests that the logarithmic function Ln 2 is an inverse function of
exponential function e*. Because the complex exponential function is not
one-to—one on its domain, this statement is not completely accurate. Rather,
the relationship between these functions is similar to the relationship be-
tween the squaring function z2? and the principal square root function z1/2 =
A zle ==02 defined by (7) in Section 2.4. The exponential function must
first be restricted to a domain on which it is one-to-one in order to have a
well-defined inverse function. In Problem 52 in Exercises 4.1, you will be
asked to show that & is a one-to-one function on the fundamental region
—o0 < T < o0, —T < Yy < 7w, shown in Figure 4.1.

We now show that if the domain of &% is restricted to the fundamental
region, then the principal value of the complex logarithm Ln = is its inverse

function. To justify this claim, consider a point =z = x4+ iy in the fundamental
region —oo =< xr < oo, — < gy =< 7. From (4) and (5), we have that || = &%
and arg (e} = y 4+ 2nw, n an integer. Thus, i is an argument of e*. Since =z 1s

in the fundamental region, we also have —w = y =< 1, and from this it follows
that g is the principal argument of e¥. That i1s, Arg(e®) = y. In addition, for
the real logarithm we have log, e® = x, and so from Definition 4.3 we obtain:

Lne® = log, |e°| + iArg (%)
= log,_ e® + iy
= x + iy.

Thus, we have shown that:
Ime*=2if —oc < <oc and —m-<y=<m. (17)

From (16) and (17). we conclude that Ln =z is the inverse function of e de-
fined on the fundamental region. The following summarizes the relationship
between these functions.

Complex Trigonometric Functions
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If & is a real variable, then it follows from Definition 4.1 that:
e =cosxr +isine and e ' =cosr — isinT. (1)
By adding these equations and simplifying, we obtain an equation that relates
the real cosine function with the complex exponential function:
ix . — i
en 4 e
COS T = ———————— (2)
2
In a similar manner, if we subtract the two equations in (1), then we obtain
an expression for the real sine function:
i ct’z‘ _ e—z':r“
siny = ————. 3
s 5 (3)
The formulas for the real cosine and sine functions given in (2) and (3) can
be used to define the compler sine and cosine functions. Namely, we define
these complex trigonometric functions by replacing the real variable = with
the complex variable = in (2} and (3). This discussion i1s summarized in the
following definition.

Definition 4.6 Complex Sine and Cosine Functions

The complex sine and cosine functions are defined hy:

. — and cose — ¢ (4)

It follows from (2) and (3) that the complex sine and cosine functions defined
by (4) agree with the real sine and cosine functions for real input. Analogous to
real trigonometric functions, we next define the complex tangent, cotangent,
secant, and cosecant functions using the complex sine and cosine:

sin COS =

tanz = . Cobz = =-— . BRCE = . and cscz = — .
Cosz 8N z COS 2 sln z

These functions also agree with their real counterparts for real input.
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EX ANMNPI.E 1 valunes of Complex Trigonometric Functions

In each part, express the wvalue of the given trigonometric function in the formT
e — b

{a) cosd () sime (2 4 £) (<) tan (7w — 2&)

Solutiomn For each expression we apply the appropriate formuala from (4) oa
{5) and simplify.

(=) B (4).

COSs = - = — — == 1.5431.

(b By (4},

eT(2H4E) o —E(2 45
sim (2 4+ &) — =7
e—1+22 12
- 2z
el ocos2 + isin 2) — e(cos{ —2) + dsin(—2))

=3
0.9781 4+ 280624
== Tz
A~ 14031 — 0. 4S9 14,

(<) By the first entry in {(5) together with {(4) we hawve:

. iy — (T o Sr 20y y2q | 2D 2D
amn (7T — e — (cﬂ,“izi} P cfslwfﬁil}_l,-’z - Ecil’:rr—'z-i} + e—a’lw—?il} &
2 a2
= _%1 ~ —0.9640%.
= (=]

Complex Hyvperbolic Functions

PREPARED BY K.PAVITHRA, MATHEMATICS, KAHE Page 14/17
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The real hyperbolic sine and hyperbolic cosine functions are defined using the
real exponential function as follows:

, et —e™F et +eF
sinhr = =————— and coshr = —————

2 2

The complex hyperbolic sine and cosine functions are defined in an analogous
manner using the compler exponential function.

Definition 4.7 Complex Hyperbolic Sine and Cosine

The complex hyperbolic sine and hyperbolic cosine functions are

defined by:

sinh : —J and coshz=5"°% (25)

Since the complex exponential function agrees with the real exponen-
tial function for real input, it follows from (25) that the complex hyperbolic
functions agree with the real hyperbohe functions for real input. However,
unlike the real hyperbolic functions whose graphs are shown in Figure 4.11,
the complex hyperbolic functions are periodic and have infinitely many zeros.
See Problem 50 in Exercises 4.3.

The complex hyperbolic tangent, cotangent, secant, and cosecant are de-
fined in terms of sinh # and cosh z:

simb = cosh = 1 1
tanh z —= —— coth 2 = ————— | sech 2 —= ———, and csch 2 —= ———.
cosh = sinkh = cosh = sinh =

[26)

Observe that the hyperbolic sine and cosine functions are entire because

the functions ¢ and & % are entire. Moreowver, from the chain rule

Section 3.1, we hawve:

o o e — f.=*;) e + e =
— sinh = = R —_—

oz oLz 2

simh = cosh =.

A similar computation for cosh =z yields

= cosh = sinh =.

(6) in

PREPARED BY K.PAVITHRA, MATHEMATICS, KAHE
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POSSIBLE QUESTIONS

Zn
2" (1+in?)

1. i). Find the radius of convergence of the power series f(z) = 2.5
ii) State and prove Euler’s relation.
2. State and prove Abel’s theorem.
3. Prove that the sum of a convergent power series in z is analytic in the interior of its circle

of convergence.

4. Find the domain of convergence of

pxr (S iz (&) i 2 ()

1+2z2

5. State and prove Unigqueness theorem
6. Find the radii of convergence of the following power series
)y i) ¥ 2% 2
n n

7. 1f a power series in z is convergent at z =z, then it converges absolutely in the circular

Opendisc | Z|<| Z4].
8. 1) Define circle of convergence.

ii) Prove that a power series is divergent in the exterior of its circle of convergence.
9. Explain about an exponential function.

10. Find the radii of convergence of the following power series

. 2)m .. 2+in
) X-—-z" i) X —-z"

PREPARED BY K.PAVITHRA, MATHEMATICS, KAHE Page 16/17
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Subject Name: COMPLEX ANALYSIS-I

UNIT-III
Question Option-1
The power series of the form aj+ a;(z—a) + a,(z — a)2 +.... Is said to be a series
about z=0
The power series ap+ a;z + a,z “t. converges absolutely in the open disc
........ | z | =R
The circle of the convergence of the series ag+ a;z + a,z SRS | z | >R
The circle of the convergence of the series ay+ a;z-a) + ayz-a) EE N | z-a | >R

A power series ... in the exterior of its circle of convergence absolutely convergent
If R =0 the series is divergent in the extended plane except at z=0

The sequence {z,} is bounded if there exists a constant M such that ------ for all

n. | Z, | =M

For all finite z= h + ik, |e”| = ...... etk

Euler’s relation ¢* " = e(cos y +isin y)

The polar form r (cos 0 + 1 sinf) of a complex numbers in exponential form as re’

e’ is not defined at Z =00

The inverse function of the exponential function is the ...... Trignometric functions

Logarithamic function log z = n=0, %1, £2 log r + 10 + n(2m1)
2 (logz) = z

dz -

siniz sinz

cosiz COSZ

tanz and secz are analytic in a bounded region in which tanz #0

cot z and cosecz are analytic in a bounded region in which cotz#0

2 . 12
cosh”z —sinh“z = 0

singular points of logz are

z=0and z=o
Principle value of logz is obtained when n = 0
The logarithmic function is a ------ valued function single
In a complex fieldz=x +iythen0=.......... sin”! (y/x)
The sum f(z) of a powerseries is analytic in ............ | z | >R
A power Series ............... is the interior of the circle of convergence converges
The radius of convergence of the series Y (2+in)/2" .z"............ 2
Sin ( ey — sinz
If ut+iv is analytic then v+iu is............ analytic
coshiz cOSZ
a“isa............... valued function single
The function a” = e”os

: : 2
The radius of convergence of the series > n” .z ............

C0SZ; COSZ, - SInZ;sinz,
Cos (Zl + Z2) =

The radius of convergence of the series Y n" .z"............ 1

Subject Code: 15MMUS02

Option-2

|Z|>R
|z|<R

|z—a|<R

converges
z=1

e"( sin y + icosy)

i0
v

z=0
hyberbolic
functions

log 1/r + ie’ +n
(2m1)

=

=

sinhz
icosz
secz#0
cosecz # 0

1

z=1and z =0
-1

multiple
cos'l(y/x)

| z | <R

diverges
0

COSz

not analytic
Cosiz
double

loga
eg

c0Sz; Sinz, -
SINZ;COSZ,

0

Option-3

|z—a| =0

diverges
Z= ©

|zn|ZM

h
€

e’ (cosx +
1Sinx)

10
Ie

z=1
harmonic
functions

logr + ie +
n(2mi)

-Z
1sinz
icoshz
sinz # 0
sinz # 0
-1
z=0and z = -
1
1
two
tan'l(y/x)

| z| <R
uniformly
converges
o0

tanz

continuous
sinz

multiple

alogz

COSZ| COSZ, +
sinz;sinz,

2

Option-4

|z—a|=R

Answer

|z—a|=R

uniformly convergent diverges

z =-1

|Zn|>M

k
€

e’(sinx + icosx)

1/re®

7z=-1
Logarithmic
functions

logr + 10 + n2xn

z

e

1sinhz
coshz
cosz#0
cosz #0

o0

z=landz=

Zero
Cot'l(y/X)
|z|=R

converges absolutely

1
cosecz

conjugate

coshiz

triple
-zloga

€

n

sinz, COSzZ, -
C0SZ,S1nz,

n

z=0

|2, | <M

h
€

e“(cos y +
isin y)

i0
e

Z=00
Logarithmic
functions
logr+i0 +
n(2mi)

1

1sinhz
coshz
sinz # 0
cosz #0

1
z=0and z
= o0
0
multiple
tan'l(y/x)

| z | <R
converges
absolutely
2
cosz

not analytic
cOoSzZ

multiple

zloga
e g

COSZ; COSZ, -
sinz;sinz,

0
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Conformal Mappings
Theorem 2.12

If f = w+iv 18 holomorphic defined in an open connected domain £2 < C, l
then the level sets of u and v

(a) u(z,y)=C, (bjv(z.y)=K

where C', K are constants, is orthogonal at every point where f'(z) # 0
and u, v intersect.

m

. . T
iy f iy u(z,y)

T, Y)

The proof used the Cauchy-Riemann equations. We look into this; it turns
out if we map curves by a holomorphic f, such that f'(z) # 0 at the point of
intersection, then the angle between the curves is always preserved.

Let us consider a smooth curve v € C parameterised by z(t) = x(f)+iy(t),t
[a,b]. For each tq € [a,b], there is the direction vector
Li, = {z(to) +t2'(to),t € R}
= {z(to) + tz’(to) + (u(to) + ty'(to) }

Consider now two curves, 71,7z parameterised by z;(t),z2(t). Let ¢t € [0,1]
and assume that at t = 0, z,(0) = z2(0). We define the angle between the
curves vy, and 72 to be arg(z5(0) — 21 (0}).

Definition (Conformal). We say that a complex function f is conformal
is an open set ! C C if it is holomorphic in € and f'(z) # 0,¥z € Q.

E.g f(z) = 2? i conformal in C\ {0}.

PREPARED BY K. PAVITHRA, KAHE Page 2/20
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Mobius transformation

Definition. A Mobius transformation (also called a bilinear transforma-
tion) is a map

a,bye,de Ciad —be#0

Remark. If ad —be=0 = £ = % = constant = f(z) = constant.

If f is holomorphic in C\{—d/c},

F6) = G 70 ()

cE
and defined for z # —d/c.

Theorem 6.2

The inverse of a Mobius tranformation 1= a Mobins tranformation.

Proof. We want to find g(w) such that g(f(z) = z. Then take

dw — b az+ b
glw) = — = where f(z) = = u
Let +b +b
Iz 1 Ly — d2% 2
fl[*‘J_ C]E—Fd], fZl:*‘J caz + dp

PREPARED BY K. PAVITHRA, KAHE Page 3/20
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Then Az + B
fro falz) = filfalz)) = C; 1 D

Here A = ayag + bica, B = aiba + b, C = c1a1 + dyea, D = c1bg + dyda.
Then

AD — BC = (aydy — byey ) (azda — bacz) # 0

S0 the composition is also a Mobius transformation. We can write this as

A B _jm b az by

8 T \ey dy cg dg
For the inverse mapping, we have

a B\' 1 d —b

e d T ad—bel—c a
Special Mobius tranformations

(M1) 2+ az. In this case, b=0,c =0,d =1.

— If|a| =1,a =" 2 = re'® = az = re®+?), This is the rotation
anticlockwise.

~ Ifa = |a|e’,|a| # 1 = az = |a| - r¥®*+¥), This is a rotation &
dilation.

(M2) 2 +—2+4+b(a=d=1,c=0). This is a translation by b
(M3) 252 (a=d=0,b=c=1).

Note that (M1), (M2), (M3) transformations map circles onto circles.

Theorem 6.2

az + b . .
pi is a composition of trans-

Every Mobius transformation f(z) =
m
formations of the type (M1), (M2) and (M3)

Proof.

— Case 1: Let ¢ =0 and d # 0. We wish to take f(z) = %"ﬁ =gz 0 (z).
Let g1(z) = g2 (M1) and ga2(2) = 2 +5 (M2). Then

b az+b
f(z) = g2(g1(2)) = g_|_E= -

=W =

— Case 2: ¢ # (), we want to take f(2) = gsogaogaogaogfz). Let

01(2) = 2 (M1), ga(2) = 2 +d (M2), ga(2) = £ (M3), s0 that age 4/20

1
ez +d

g3(gz(qn(2)) =
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Then Az + B
fro falz) = filfalz)) = C; 1 D

Here A = ayag + bica, B = aiba + b, C = c1a1 + dyea, D = c1bg + dyda.
Then

AD — BC = (aydy — byey ) (azda — bacz) # 0

S0 the composition is also a Mobius transformation. We can write this as

A B _jm b az by

8 T \ey dy cg dg
For the inverse mapping, we have

a B\' 1 d —b

e d T ad—bel—c a
Special Mobius tranformations

(M1) 2+ az. In this case, b=0,c =0,d =1.

— If|a| =1,a =" 2 = re'® = az = re®+?), This is the rotation
anticlockwise.

~ Ifa = |a|e’,|a| # 1 = az = |a| - r¥®*+¥), This is a rotation &
dilation.

(M2) 2 +—2+4+b(a=d=1,c=0). This is a translation by b
(M3) 252 (a=d=0,b=c=1).

Note that (M1), (M2), (M3) transformations map circles onto circles.

Theorem 6.2

az + b . .
pi is a composition of trans-

Every Mobius transformation f(z) =
m
formations of the type (M1), (M2) and (M3)

Proof.

— Case 1: Let ¢ =0 and d # 0. We wish to take f(z) = %"ﬁ =gz 0 (z).
Let g1(z) = g2 (M1) and ga2(2) = 2 +5 (M2). Then

b az+b
f(z) = g2(g1(2)) = g_|_E= -

=W =

— Case 2: ¢ # (), we want to take f(2) = gsogaogaogaogfz). Let

01(2) = 2 (M1), ga(2) = 2 +d (M2), ga(2) = £ (M3), s0 that 2ge 5/20

1
ez +d
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Now let g4(z) = %[bc — ad) z, which is (M1), so that

constant
be — ad 1
9a(g3(g2(n (2)))) = ¢ cz4d
Finally take gs(2) =24 3, 50
be—ad ex+da
gs(94(ga(gz(g(2))))) = c T+ d
_ lbe—ad+a(cz +d)
T e cr 4d

acz +be  az4b
N clez + d) Cer4d

Corollary 6.4. Mabius transformation maps circles into circles and interior
points into interior points. (Here we mean that straight lines are also circles
whose radius equal infinity!)

Let H = {2 = r+iy € Cst. Im» = y > 0}. A remarkable surprising
fact 1= that the unbounded set H is conformally equivalent to the umt disec.
Moreover, an explicit formula is

z A —w _

i—
m_ﬂuj_i—kz 14w

Theorem 6.5

Let I = {# : |#| < 1}. Then the map f : H — D is a conformal map
with inverse g : D — H.

FProof. We have f(z) = :__'_—i Iflmz >0 = =z # —i = [ is holomorphic
and f'(z) #0, ¥z : Im = > 0. Since, using (1):

FC) = e
witha=—-1.b=di,c=1.d=1i.
Then i _g;
f'lz) = Zt+i)Z  (z41)2 70

Hence f is conformal. Similarly with g.

Now if we write 2 = = + iy, we find

2 2?4 (y—1)? _y Page 6/20
r? +(y+1)2

i—:rz

I

—r—iy+1i
r4iy+4i

) =
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Similarly writing w = u + iv, we see that |w| < 1 < u* 4+ v < 1. Now

1—w 1 —u—iw
Imgiz}ﬂﬂ(u—w)ﬂﬁ(m)

(1 —u—iv)(l4+u—iv)

= Re (1+u}2+uﬂ
C(l—w®)—?
(L 4u)Z 42 >0
Sog:D— H.
Finally,
_ - i(l4w) —i(l—w)  2wi
fﬂf{w}_ﬂg[w”_ﬂii;—::_i(1+w)+iq1—w}_ 2
Similarly g o f(z) = =. m

Clearly f is holomorphic on C\{—i}. In particular, f is continuous on the
boundary of H, dH = {z = = +i0}.

i1—T
=il = =1
1 emerio = |2
Now , . . -
i—T —T .
f{z)_ﬁ+:.,r_ 1+ x2 + 1-|-::.-21'

Let x = tan#, # € (—m /2, 7/2), then

i—z_l—ta.ngii'_'_ 2tand
i+r 1+tan®f 1+ tanZ@
= cos 2 + isin 20 =

g

Here, f maps 00— —1, 00— +1.

If w = f(xz) is a Mobius is a transformation that maps the distinct points
(21,29, 23) Into the distinet points (wy, wy, wy) respectively, then

£— 2 zg—za_w—wl U — Uig e
£—23 Bg—%1 w — ug e — Wy
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Proof. Consider the Mobius transformation

1 2z — 43

Z
Z

giz) =
{J 3 f2— 3%

It maps 27, 22, 23 —+ 0,1, oo respectively. Similarly

W — 1 Wy — g

h(w) =

W — g Wg — Wy

maps wy, we, we to 0,1, 00. So h™! o g maps z;, 2o, 21 into wy, wa, ws.

Example 6.7. Find a Mobius transformation w = f(z) such that f maps
the points 1,i, -1 — —1,0,1.

We have 2y = 1.2, =14,29 = —1;uy = -1, =0, wq = 1. So

z—1 i+1 w41 0-1
41 i—1 w—1 041

and
i+l 144 (i) 2
i— 1 1-i 2 a2~ 7
Then
:F *:LJ_’: — f(w—1)(z—1) = (w+ V(= +1)
= w((i(z—1)— (z+1)) =iz —1) + (2 +1)
oo Emitrtl (i)l :af_+§;i: z—i
ir—i—z—1 diz(l4i)—(i4+1) iz—1 iz —1
0—i
Let:r=IZI=>u=D_1—z.

f(z) y

AR
Example 6.8. Find a Mobius transformation w = f(z) that maps the

points z; = —i, 2, = 1,24 = oo onto the points wy = 1, w, =i, wy3 = —1,
l.e.

Page 8/20
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We caleulate

. 247 1 — 24 . =41 1-1/t
lim - = lim . -
za—oo z — 323 144 t—}U:E—ll,u'rt 14+
_ im 244 t—1
otz —1 1+
_z4id =1 =4
-1 14 14

Thus
z 41 _w—wy wp— w3 w—1 i4+1

14+i w—ws ws—uy u-'—|—1.z'—1

and so
(= +0)(i — D(w+1) = (w— 1)(i +1)°
#(i—1)+(i—1)

YT A=)+ (1430

Example 6.9. w= f(x) = log » with the negative imaginary axis as the
branch eut. This is a conformal mapping that takes the upper half-plane
to the strip

lw=u+iv,ueR,0<v <}

. f(z) L

—

A

il

If ¢ € (—00,0) = log(z) =Inz+im. If v €€ (0,00) = log(z) = Inx.

We already considered a theorem saying that
g:D— H={w:Imw > 0}
Then

1 —w
14w

g(w) =i

Corollary 6.10. Let w = F(z) = log(i1=£) and G(w) = i=e" Both F and G

1+z T itew
are conformal and they are inverses to each other. F maps formally the unit
disc to {w:w=u+iv,iR,0<v < 7h

Example 6.11 (Joukowski's aerofoils).

w—2 [fz-1 2 Page 9/20
242 \z+1
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[tcanhesimp]iﬁedlt:':z—l—%:’—tl'—l,su

w—i_%"—l—i_zz—iz-l—l z  [fz—1)\*
w+2_3_“;|'_1+2_z?+22+1 z \z+1

This transformation maps a circle with the centre —1/4 +i/2.

),
R T —————

Let f:f1; — £1; be conformal and let ¢ be a harmonic on £2; (Ad = 0).
‘We can consider ¢ as a real part of a holomorphic function. Then ¢ o f
15 harmonic on £1.

Proof. Let g = ¢+ i) be holomorphic and let w = f(z) = u + iv.
g(w) = g o f(z) = ¢(u(z,y),v(z,y)) + itp(u(z,y), v(z,y))
Since g o f is holomorphic, ¢(u(z, y), v(x,y)) is harmonic, and so

ﬂg:ﬂ?b(ﬂ-l::r, yj,v[:r, FJ} =10 [ |

6.2 * Dirichlet Problem in a strip *

The Dirichlet problem in an open set £2 consists of solving the following equa-
tion

Au =0in 0

u = f on 911

Consider now
Q={z:iz=z+iyzeR0<y<m}

Here u(x,0) = fo(z),u(x, ) = fi(z). We assume that f; and f, are continu-
ous and vanish at infinity, imj.|ee f;(z) = 0,5 = 0,1.

We introduce

1 A1—w i—ef
F{w)=;lﬂg(zl+w), G(z‘]_ﬂ-i-l—ez
!] F maps the unit disc on the strip £2 and we can define —

ge 10/20
fi(B) = fi(F(e*®) —im), —w<f<0
fo(6) = fo(F(e®), 0<f<n
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and

- Al -m<6<0
fwj_{fn(ﬁ] D= <m

We reduce the problem on the strip to the problem on D= {z : |z| < 1},

Au=10
o = f

The solution of this problem can be written via the Poisson integral:

re®) = o [ gt T ) 40
C2m J 1 —2cos(f — @) 412 '
Poisso;Karnal
We derive this by considering l
Pr[aj — Z :Ir_|'r.t|E'i.ﬂuf\'l
writing w = re'?
R S
pard —~ l-w 1-w

l-wm+(l-w@w  1-|w?
C (l-w(l-w [L—w]?
1 —r

1 —2cosflr +r2

6.3 * Univalent functions *

Felina. We finally look at some univalent functions (non-examinable).

Definition. A single valued function f is called univalent in Q c C if it
never takes the same value twice, that is f(z1) # f(z=2) for all 21, 22 such
that =1 # =z,

Hemark. For a holomorphie function, the condition f'(z) # 0 is equivalent to
univalence.

Consider a class S of univalent functions on the unit dise I = {z : |z| < 1}
such that f(0) =0, f'(0) + 1. For such f € S we have f(z) = 2 +az2* +....
The leading example of a function from class S is the Koebe function,

- =2(l4z422 4. )P =242243"= . ge 11/20

K(z) = i
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The Koebe function maps the unit disc IJ on the {2 = C\(—oc,—1/4), since

1142\ 1
K[zj_i(l—z) 1

_3([1%)2_(1_3)2) 1 (1+23+32_1+23_32)
!

4 (1—=z)2 (1—=z)2
T -z
And the conformal mapping
v 1+=
11—z

maps I onto Rew >0 [z =i+ i, z2=1r 00,2 =0 1]

. f(z) |

T

A L
N

The square of this maps onto C\(—o0, 0), so K (z) maps D onto C\(—oo, —1/4).

Examples 6.13. Univalent functions:
(i) The identity f(z) = =.
(ii) f(z)==2(1—2)"" the maps D onto Rew > 1/2.
(iii) f(z) = z(1 —2*)~! maps D onto Q\{(—o00, —1/2) U (1/2, +0c)}.

Closely related to 5 is the class ¥ of functions
glz)=z24+b+ bzt b a2 .
holomorphic and univalent in {=: |2| > 1}
Theorem 6.14: Area

Let g € ¥. Then

= s]

D onbaf <1

n=l1

Proof. Let us recall Green's Theorem:

\?.{Pdu—l_de:f\/;; (g—g) du dv

1ge 12/20
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Harmonic Conjugate
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In a simply connected domain £2, every harmonic function » has a harmonic
conjugate v defined the the line integral

(o2
T

w2 =vey)= [ (<5 e+

B

where the path of integration = 15 a curve starting at a fixed base-point
(ro,v0) € 2 with end point (z,y) € 2. The integral is independent of the
path:

(z,y)

[-‘I-'m yn]

Let us assume that ~ is a closed curve and show that

Green’s formula 1s

fPﬂ+Qdy=[L(§—§—j) dr dy

Let P=—8% Q= 2%, then

FPu  Fu du o
0= —+ — | dedy = - dr4+—4d
fL(aﬂ+ay) 1= (-5 4+ 5 )

b

Now
o o
viz,y) = ——d.'r-l——d)
(@) L(ﬂy 7
T Gu ¥ Ou
= — d;r—l—f—d
fn Ay o oz "
So

A e 14/20
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PrOPOSITION 1.21. A Mdbius transform different from the identity
has either one or two firpoints, as a map defined on the extended plane.

EXERCISE 1.22. Find the fixed points of the linear transformations
z 2z - 3z-4 . z
T2-1 YT3oa YT YTaT:

In particular, a Mdbius transform that leaves three distinct points
mnvariant is the identity. It also follows that there can be at most
one Mébius transform that takes three given, distinct points into three
specified, distinct points. Because, if there were two, say f and g, then
f~1og would be a transform different from the identity and leaving the
given points invariant. Conversely, we will prove that there actually
always exists a Mdébius transform that takes the given points into the
specified ones. To see this, define the cross ratio of four distinet points
Zp, 21, 23, z3 in C* by

w

S e IR

20, 21, Z9, 23) =
(z0. 21, 22, z3) 70— 23 21 — 23

when all the points are finite. If one of them is oo, the cross ratio is
defined as the appropriate limit of the expression above. The following
proposition follows by inspection.

PROPOSITION 1.23. Suppose zq, za, zq are distinct points in C*. The
unique Mdbius transform taking these points to 1,0, 00 in order is z —
(z, 21, 2, 23).

It is now clear that to find the unique Mébius transform taking the
distinet points zq, 29, z9 into the distinet points wq, ws, wq in order, one
simply has to solve for w in (w, wy, we, ws) = (z, z1, 29, 23).

EXERCISE 1.24. Find the Mdébius transformation that carries 0. 1,
—1 in order into 1, —1, 0.

EXERCISE 1.25. Show that any Mdbius transformation which leaves
R U {oo} invariant may be written with real coefficients.

EXERCISE 1.26. Show that the map z — ﬁ maps the right half-

plane (i.e., the set Re z > 0) onto the interior of the unit circle.

PREPARED BY K. PAVITHRA, KAHE Page 15/20
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Two points z and z* are said to be symmetric with respect to R if
z* =7Z. If T is a Mobius transform that maps RU{oo} onto itself, then
according to Exercise 1.25 one may write T with real coefficients. It
follows that Tz and T(z") are symmetric with respect to the real axis
if and only if z and z* are. To generalize the concept of symmetry with
respect to the real axis to symmetry with respect to any circle in the
extended plane we make the following definition.

DEFINITION 1.27. Let I be a circle in C*. Two points z and z* are
said to be symmetric with respect to I if there is a Mdbius transform
T which maps I' onto the real axis for which T(2%) = T'z.

By the reasoning just before the definition it is clear that this is a
genuine extension of the notion of conjugate points and that z and z*
are symmetric with respect to I' precisely if T(z*) = Tz for any Mobius
transform T that takes I' to the real axis. For, if T and S both take I’
onto the real axis and T'(z*) = Tz, then U = ST~! maps the real axis
onto itself so that S(z*) = UT(z*) = U(Tz) = UTz = Sz. There is
therefore for every z precisely one point z* so that z, z* are symmetric
with respect to I'. A similar calculation proves the next theorem.

THEOREM 1.28. Suppose S is a Mdbius transform that takes the
circle I' € C* onto the circle I € C*. Then the points z and z* are
symmetric with respect to ' if and only Sz and S(z*) are symmetric
with respect to 7.

PrROOF. If T maps I' onto the real axis, then U = TS~ maps
I'" onto the real axis. But US(z") = T(z") and USz = Tz so that
US(z") = USz if and only if T(2*) = Tz. The theorem follows. [l

In short, Theorem 1.28 says that symmetry is preserved by Mdébius
transforms. The next theorem allows us to calculate the symmetric
point to any given z and circle.

THEOREM 1.29. If ' is a straight line, then z and =z are symmetric
with respect to U precisely if they are each others mirror image in I
If I is a genuwine circle with center a and radius R, then a and oo are
symmetric with respect to U. If z is finite and # a, then z and z* are
symmetric precisely if (z* — a)(z — a) = R%,

Proor. If I is a straight line it is mapped onto the real axis by a
translation or a rotation and these transformations obwviously preserve
mirror images.

If I' is a circle with center a and radius R the map z — ii:g;g takes
I' onto the real axis (since a + R+— 0, a — R — o0 and a — iR — 1).
Now a and oo are mapped onto —i and @ respectively, so they are a
syminetric pair. If z has neither of these values a simple calculation

shows that z and z® are mapped onto conjugate points precisely if
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In particular the fact that the center of a circle and oo are symmetric
with respect to the circle are often very helpful in trying to find maps
that take a given circle into another.

EXERCISE 1.30. Find the Mabius transform which carries the circle
|z| = 2 into |z + 1| = 1, the point —2 into the origin, and the origin
mto z.

ExeErcise 1.31. Find all Mébius transforms that leave the circle
|z| = R invariant. Which of these leave the interior of the circle
invariant?

EXERCISE 1.32. Suppose a Mdbius transform maps a pair of con-
centric circles onto a pair of concentric circles. Is the ratio of the radi
invariant under the map?

EXERCISE 1.33. Find all circles that are orthogonal to |z| = 1 and
|z — 1] = 4.

We will end this section by discussing conjugacy classes of Mibius
transforms.

DEFINITION 1.34. Two Mébius transforms S and T are called con-
jugate if there is a Mobius transform U such that S = U~'TU.

Conjugacy is obviously an equivalence relation, i.e., if we write
S ~ T when S is conjugate to T', then we have:

(1) § ~ S for any Mobius transform S. (reflexive)
(2) IfES~T, then T ~ S (symmetric)
(3) f S~ T and T ~ W, then S ~ W. (transitive)

It follows that the set of all Mébius transforms is split into egquivalence
classes such that every transform belongs to exactly one equivalence
class and 1s equivalent to all the transforms in the same class, but to
no others.

EXERCISE 1.35. Prove the three properties above and the statement
about equivalence classes. What are the elements of the equivalence
class that contains the identity transform?”

The concept of conjugacy has importance in the theory of (discrete)
dynamical systems. This is the study of sequences generated by the
iterates of some map, i.e., if S 15 a map of some set M into itself,
one studies sequences of the form z, Sz S%z, ... where z € M. This
sequence is called the (forward) orbit of z under the map S. One
1s particularly interested in what happens ‘in the long run’, e.g., for
which z’s the sequence has a limit (and what the limit then is), for
which z's the sequence is periodic and for which z’s there seems to be

o |
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On the other hand, if A is neither positive nor of absolute value 1
there is no disk which is invariant under T,. Show this as an exercise!
The transforms in the conjugacy class of T are called parabolic, those in
the conjugacy class of Ty for some A > 0 but # 1 are called hyperbolic
and those in the conjugacy class of Ty for some A # 1 with [A| = 1
are called elliptic. The reason for these names will be clear from the
result of Exercise 1.37. The remaining Mdbius transforms are called
loxodromic. This is because they are conjugate to a Ty for which the
sequence of iterates z, Tz, T z,... lie on a logarithmic spiral, which
under stereographic projection becomes a curve known as a loxodrome.

EXERCISE 1.37. Suppose that the coefficients of the transformation
_az+b
ez +d
are normalized by ad—be = 1. Show that S is elliptic if 0 < (a+4-d)? < 4,
parabolic if (a + d)* = 4, hyperbolic if (a + d)? > 4 and loxodromic in
all other cases. Hint: The determinant and the trace a + d of a matrix

(2B} is invariant under conjugation by an invertible matrix.

Sz

EXERCISE 1.38. Show that a linear transformation which satisfies
5™ = § for some integer n is necessarily elliptic,

ExERrcISE 1.39. If S is hyperbolic or loxodromic, show that S"z
converges to a fixpoint as n — oo, the same for all z which are not equal
to the other fixpoint. The exceptional fixpoint is called repelling, the
other one attractive. What happens when n — —oc? What happens
in the parabolic and elliptic cases”

EXERCISE 1.40. Find all linear transformations that are rotations
of the Riemann sphere.
Hint: The antipodal point to a point on the unit sphere is obtained by
multiplication by —1. Use the fact that an antipodal pair is mapped
onto an antipodal pair by a rotation.
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POSSIBLE QUESTIONS
1. Show that a function f(z)=u(x,y)+iv(x.y) defined in a region D is analytic in it iff u(x,y)
and v(x,y) are conjugate harmonic functions.
2.Prove that the cross ratio is preserved by a Bilinear transformation.
3. Show that a bilinear transformation maps straight lines and circles into straight lines and
circles.
4. Find the analytic function f(z)=u + iv given that u-v = e*( cosy — siny) .
5. Find the analytic function f(z) if its real part is u(x,y)= x3 — 3xy? + 3x? — 3y? + 1.
6. i) Prove that under a bilinear transformation no two points in z plane go to the same
point in w plane.
ii) Prove that the cross ratio is preserved by a bilinear transformation.
7. Iff(z) =u +ivand u-v =e*(cos y — siny), find f(z) in terms of z.
8. Show that the transformation w=z2 transform the families of lines x=h and y=k into
co focal parabolas having w=0 as the common focus.
9.Show that the function u(x,y) =sin x coshy is harmonic .Find its harmonic conjugate v(X,y)
and the analytic function f(z)=u + iv
10. Prove that the bilinear transformation which transforms z1,z2,z3 into wi,wz,ws is

(W-w1)(W2-W3) [ (W-W3) (W2-W1)= (Z-21)( Z2-23) | ( Z-23)( Z2-21).
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Subject Name: COMPLEX ANALYSIS-I

Question
The Laplace equation of the form

If U:XZ—y2 then Uyy = ?
If u(x,y)=e¢"cosy then find u,="?

The second order partial derivatives exist, continuous and satisfies the
laplace equation is called functions

If U=x"-y then U,, = ?

The fixed point’s transformation is also known as ...... points
transformation

The bilinear transformation of the form W=

A function which is .......... in region which is not close may or may not be
bounded in it.

The function 1/(1+z) is analytic at infinity because the function 1/(1+1/z) is

If a function is differentiable at a points then the function is said to be ....

The Laplace equation of the format
The bilinear transformation is also known as ......... transformation

The equations u,=v, and u=-v, are
If u or v is not harmonic , then u+ivis .........

If f(z) =u(x,y) + 1v(x,y) is analytic in domain d iff u(x,y) and v(x,y) are

In a two dimensional flow the stream function is tan'ly/x then the velocity
potential is

By Milne — Thomson method if u (x,y) = X — y2 then f(z) =

The function f(z) = 2748 Valued function

The transformation w = z° maps the -------------- onto the straight lines

If f(z) = u+iv is an analytic function then -if(z) =

The value of m such that 2x — x” + my 2 may be harmonic is ----
If f(z) = u+iv is an analytic function then(1 -1)f(z) =

If f(z) = u+iv is an analytic function then(1+1)f(z) =

Harmonic functions in polar coordinates are

The function ----------- is called zhukosky's function

If w=utivunder w=z+1/zthenu=....

If w=utivunder w=z+1/zthenv=....

A circle whose centre is origin goes onto an ...... whose centre is the origin
under the zhukosky's transformation.

A ray emanating from the origin goes onto a ..... Whose centre is the origin
under the zhukosky's transformation

The principle value of log z are ....

. The partial derivatives are all ----- in domain D
W =CO0S Z1S a -----—- function

A(z) =xy + 1y 18 --------

. The function f(z) = |z| is differentiable -----

If f(z) has the derivative only at the origin, it is ------
f(z)=1/zis a ------ function

An analytic function with constant real part is ------

An analytic function with constant imaginary part is ------

An analytic function with constant modulus part is ------

Both real part and imaginary part of any analytic function satisfies ------

UNIT-1V
Option-1

U +U,,=0
3

X
€ COSX

Analytic
3

mobius
az+b/cz+d

Analytic

Analytic at 0

analytic at that point
U +Uy,=0
non mobius

Polar equation
analytic

harmonic

12log(x> +y?)
72

single

parabola

u-iv

1

(u+v)+i(v-u)
(u+v)+i(v-u)

U, + lru, +1/1 ugy

1/z

u=(r+ 1/r)cos6

v =(r+ 1/r)cos6

parabola

parabola
logr

analytic
analytic

analytic

on real part

analytic everywhere
differentiable
constant

constant

constant

wave equation

Option-2
Uy-Uyy=0
1

X
e cosy

Continuous
2

invariant
az+b/c+d

differentiable

continuous at 0

- (Deemed to be University Established Under Section 3 of UGC Act 1956)
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Option-3
VxtUy,=0
0

cosy

differentiable
0

constant
az+b

continuous
differentiable
at0

continuous at that differentiabe

point
Uy-Uy,=0
linear

Euler equation

not analytic
conjugate
harmonic

Sin™ y/x
2X+2y

multi

hyperbola
v+iu

2

(u+v)-i(v-u)
(u+v)-1(v-u)
U, +ru, +1/

Ugg
7z+1/z

u=(r-1/r)cosd

v = rs1nf

hyperbola

hyperbola
logr+10

not analytic
continuous

continuous
on imaginary
part

not analytic
nowhere
continuous
real

real

real
polynomial
equation

at that point
Vxt+Uy,=0
mobius

C - R equation

conjugate
harmonic

differentiable

lo g(x2 + y2)
X+y
double

ellipse
u+v

0
(u-v)+i(v-u)
(u-v)+i(u+v)

Urr +1/r2 Ugg

z
u=(r+
1/r)sin6

Option-4
VixtVx,=0
2

X
€

harmonic

1

bilinear
az+b/c

bounded

analytic at 1

not
differentiable at
that point

Vixt+Vy,=0
non linear

coordinates

diffrentiable

continuous

cos” y/x
z
triple

rectangular
hyperbola
v+i(-u)

3

(u+v)+i(v+u)
(u+v)+i(v+u)
U, + 1/ru, +1/°

Ugg
sinz

u= rcos

v=(r - 1/r)sin® v = r cos0

ellipse

ellipse
logl/r

does not
exists

not analytic
analytic
anywhere

at the origin
analytic
nowhere
analytic
imaginary
imaginary
imaginary

del operator

rectangular
hyperbola
rectangular
hyperbola
logr-i0

continuous
limit

limit

at the point 2
continuous
nowhere

not analytic
not analytic
not analytic
not analytic
laplace's
equation

Answer
Uy t+U,,=0
2
X
€ cosy

harmonic

2

constant
az+b/cz+d

Analytic
Analytic at 0

differentiabe at that
point

Uy +Uy,=0

mobius

C - R equation
not analytic

conjugate harmonic

12log(x* +y?)
ZZ
double

rectangular
hyperbola
v+i(-u)

1
(u+v)+i(v-u)
(u-v)+i(u+v)

U, + 1/ru, +1/r% ugg

z+1/z

u=(r+ 1/r)cosd

v= (1 - 1/r)sin0

ellipse

hyperbola
logr+10

analytic
analytic

continuous

at the origin
not analytic
nowhere
analytic
constant
constant
constant

laplace's equation
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DS i ViRl a1l 1t is likely that you have retained at least two as-

sociations from your study of elementary calculus: the derivative with slope,
and the definite integral with area. But as the derivative f'(z) of a real fune-
tion y = f(z) has other uses besides finding slopes of tangent lines, =o too
the value of a definite integral fj f{z)dr need not be area “under a curve.”
Recall, if F(x) is an antiderivative of a continuous function f, that is, F is a
funetion for which F'(zx} = f(z), then the definite integral of f on the interval
[a, b] is the number

b
[ 1@ ds= F@)s = Fb) - Fla). )

For example, f_gt ridr = %"EEF—I = -g—( —=) = 3. Bear in mind that the fun-
damental theorem of calculus, just given in (1), is a method of evaluating
f; f(x) dx; it 1s not the definition of j;bf(:rj d.

In the discussion that follows we present the definitions of two types of
real integrals. We begin with the five steps leading to the definition of the
definite (or Riemann) integral of a function f; we follow it with the definition
of line integrals in the Cartesian plane. Both definitions rest on the limit

concept.
Steps Leading to the Defintion of the
Definite Integral
p ‘ 1. Let f be a function of a single variable z defined at all points in a
o clred i 1,1
i=x & % x=h

2. Let P be a partition;

Flgure 5.1 Paruuun of [a, b] with 7, Q=00 < Ty < T < e & By g <Tq=b
i each subinterval [zx_1, 2]
of [a, b] into n subintervals [z_y, 2] of length Azy = 2y — 23y
See Fiqure 5.1.
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3. Let |P| be the norm of the partition P of [a, b], that is, the length
of the longest subinterval

4. Choose a number xj in each subinterval [zr_1, x] of [a, B]. See
Figure 5.1.

5. Form n products f(zf)Aze, k=1, 2, ..., n, and then sum these
products:

> flzi) Ay
k=1

Definition 5.1 Definite Integral

The definite integral of f on [a, b is

B n
flzx)dr = lim flzp) Azy.. (2)

Whenever the limit in (2) exists we say that f is integrable on the
interval [a, b] or that the definite integral of f exists. It can be proved that
if f is continuous on [a, b], then the integral defined in (2) exists.

The notion of the definite integral Jfr: flz) dx, that is, integration of a real
function f{x) over an interval on the z-aris from & = a to x = b can be
generalized to integration of a real multivariable function Gz, y) on a curve
C from point A to point B in the Cartesian plane. To this end we need to
introduce some terminology about curves.
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Bl RO - A i iu:l In definite integration we normally assume

that the interval of integration is @ < # < b and the symbol fab flz)dr indi-
cates that we are integrating in the positive direction on the z-axis. Integra-
tion in the opposite direction, from x = b to z = a, results in the negative of
the original integral:

/ " fla)da = - { ’ fla)de. (14)

Line integrals possess a property similar to (14), but first we have to introduce
the notion of orientation of the path C'. If €' is not a closed curve, then we
say the positive direction on (', or that ' has positive orientation, if we
traverse C' from its initial point A to its terminal point B. In other words,
if © = z(t), ¥y = y(t), a < t < b are parametric equations for ', then the
positive direction on €' corresponds to increasing values of the parameter ¢,
If ' is traversed in the sense opposite to that of the positive orientation, then
(' is =aid to have negative orientation. If €' has an orientation (positive or
negative), then the opposite curve, the curve with the opposite orientation.
will be denoted by the symbol —C'. In Figure 5.8 if we assume that A4 and
B are the initial and terminal points of the curve C, respectively, then the
arrows on curve (' indicate that we are traversing the curve from its initial
point to its terminal point, and so ' has positive orientation. The curve to
the right of C' that is labeled —C' then has negative orientation. Finally, if —C

denotes the curve having the opposite orientation of €', then the analogue of
(14) for line integrals 1s

fCde+Qdy=— | Pdz+Qdy. (15)
or. equivalently

f_cpdﬁgdﬁjgpdﬁody:n. (16)
For example, in part (a) of Example 1 we saw that [,ay®dr = —64; we

conclude from (15) that [ xy® dr = 64.

It is important to be aware that a line integral is independent of the
parametrization of the curve C, provided C' is given the same orientation
by all sets of parametric equations defining the curve. See Problem 33 in
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Curves Revisited Suppose the continuous real-valued hinctions

x = x(t), y = y(t), a = t < b, are parametric equations of a curve ' in
the complex plane. If we use these equations as the real and imaginary parts
in z = r+ iy, we saw in Section 2.2 that we can describe the points z on C' by
means of a complex-valued function of a real variable ¢ called a parametriza-
tion of C:

z(t) = z2(t) +aylt), a<+< b (1)

For example, the parametric equations * = cost, y = sint, 0 < t < 27,
describe a unit circle centered at the origin. A parametrization of this circle
is z(t) = cost + isint, or z(t) = €",0 < t < 27. See (6)-(10) in Section 2.2.

The point z(a) = z(a) + 1y(a) or A = (z(a). yla)) is called the initial
point of C' and z(b) = x(b) +iy(b) or B = (x(b), y(b}) is its terminal point.
We also saw in Section 2.7 that z(t) = z(t) + iy(t) could also be interpreted
as a two-dimensional vector function. Consequently, z(a) and z(b) can be
interpreted as position vectors. As f varies from t = a tot = b we can
envision the curve €' being traced out by the moving arrowhead of z(#). See
Figure 5.15.

The notions of curves in the complex plane that are smooth,
piecewise smooth, simple, closed, and simple closed are easily formulated in
terms of the vector function (1). Suppose the derivative of (1) is z'(t) =
z'(t) + 1y'(t). We say a curve €' in the complex plane is smooth if 2'(t)
is continuous and never zero in the interval a < t < b. As shown Figure
5.16, since the vector z'(t) is not zero at any point P on C, the vector 2'(t) is
tangent to ' at P. In other words, a smooth curve has a continuously turning
tangent; put vet another way, a smooth curve can have no sharp corners or
cusps. oee Figure 5.17. A piecewise smooth curve ' has a continuously
turning tangent, except possibly at the points where the component smooth
curves (', U5, . . . , C,, are jomed together. A curve ' in the complex plane
is said to be a simple if z(t1) # z(t2) for t; # to, except possibly for t = a
and t =b. C is a closed curve if z(a) = z(b). C is a simple closed curve
if z(t1) # z(ta) for t1 # t2 and z(a) = z(b). In complex analysis, a piecewise
smooth curve (' is called a contour or path.

Just as we did in the preceding section, we define the positive direction
on a contour ' to be the direction on the curve corresponding to increasing
values of the parameter £. It is also said that the curve ' has positive
orientation. In the case of a simple closed curve ', the positive direction
roughly corresponds to the counterclockwise direction or the direction that
a person must walk on €' in order to keep the interior of ' to the left. For
example, the circle z(t) = ¢'*, 0 < ¢ < 27, has positive orientation. See Figure
5.18. The negative direction on a contour ' is the direction opposite the

= positive direction. If C' has an orientation, the opposite curve, that is, a
! curve with opposite orientation, is denoted by —C'. On a simple closed curve,
the negative direction corresponds to the clockwise direction.

m A ramtaoral of s Binetsom £ el cormalesvar s le o
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Evaluation of Contour Integrals EMBEEIGINEtTR3 GRS e

how to evaluate a contour integral |, f(z) dz, let us write (2) in an abbreviated

form. If we use u+1iv for f, Az +iAy for Az, limfor lim , Y for ¥} | and
|1Plj—0

then suppress all subscripts, (2) becomes

/C f(z)dz =tm Y (u+iv)(Az +iAy)
= lim [Z(uﬂ.m — vAy) + iZ{vﬂLI + u:‘ly}] .

The interpretation of the last line 1s

ff{z} z=fud1.'—vdy—|—if vdr +udy. (9)
2. # C

See Definition 5.2, In other words, the real and imaginary parts of a con-
tour integral f:‘_'.‘ flz)dz are a pair of real line integrals fc.ud:l: — wdy and
fcvr:f;r +udy. Now if z = z(t), y = y(t), @ <t < b are parametric equations
of C, then dz = 2/(t) dt, dy = y'(t)dt. By replacing the symbols =, y, dz,

The following properties of contour integrals are analogous
to the properties of real line integrals as well as the properties listed in (5)—8).

Theorem 5.2 Properties of Contour Integrals

Suppose the functions f and g are confinuous in a domain I, and ' is a
smooth curve lying entirely in 1. Then

() fc.‘ kEf(z)dz = kfc, fiz)dz, k a complex constant.

(1) [~ [F(=) + g(=)ldz = [ fiz)d=z + [ g(=z)d=.

(#232) [~ Fl=z)d= = _,':._—_.‘ Ffl=)d= <+ f(_-..ﬂ fl=z)d=z, where C consists of the
smooth curves €' and % joined end to end.
(iv) [ - Ffl=z)d=z = — [ f(=z)d=z, where —C denotes the curve having the

opposite orientation of .

The four parts of Theorem 5.2 also hold if € is a piecewise smooth curve

im J.
P Sz es = P uiEiy) en gy S S STy e, ) oy
[ o« o
s F 3] fs L7 . [ 1) O
=fL(—E—a—y) aatiff E—a—y) A ()

Because f is analytic in ), the real functions w and v satisfy the Cauchy-
Riemann equations, du/8xr = v /iy and Ou/Oy = — v /8x, at every point in

PREPARED BY K.PAVITHRA Page 6/20
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). Expressed yet another way, a simply connected domain has no “holes” in
it. The entire complex plane 1s an example of a simply connected domain;
the annulus defined by 1 < |z| < 2 is not simply connected. (Why?) A do-
main that is not simply connected is called a multiply connected domain;
that is, a multiply connected domain has *holes” in it. Note in Figure 5.27
that if the curve Cs enclosing the “hole” were shrunk to a point, the curve
would have to leave D) eventually. We call a domain with one “hole” doubly
connected, a domain with two “holes” triply connected, and so on. The
open disk defined by |z| < 2 is a simply connected domain; the open circular
annulus defined by 1 < |z| < 2 is a doubly connected domain.

(OETT NN =118 In 1825 the French mathematician Louis- Augustin
Cauchy proved one the most important theorems in complex analysis.

C'auchy’s Theorem

Suppose that a function [ is analytic in a simply connected domain
D and that ' is continuous in D. Then for every simple closed (1)
contour C' in D, fc. f(z)d==10.

Cauchy’s Proof of (1) The proof of this theorem is an immediate conse-
quence of Green's theorem in the plane and the Cauchy-Riemann equations.
Recall from calculus that if €' is a positively oriented. piecewise smooth, sim-
ple closed curve forming the boundary of a region B within D, and if the
real-valued functions P(z, y) and Q)(z, y) along with their first-order partial
derivatives are continuous on a domain that contains C' and R, then

j{szJery ff (@—E) dA. (2)

Now in the statement (1) we have assumed that f’ is continuous throughout
the domain [). As a consequence, the real and imaginary parts of f(z) = u+iv
and their first partial derivatives are continuous throughout ). By (9) of
Section 5.2 we write 55{, f(z) dz in terms of real line integrals and apply Green’s
theorem (2) to each line integral:

}i flz)dz = f’. u(w,y) dz — v(z,y) dy + *Ef v(z,y) dz + ulz,y) dy

“J(=-5)wrif[E-5)w ®

Because f is analytic in D), the real functions 4 and v satisfy the Cauchy-
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D. Using the Cauchy-Riemann equations to replace du/8y and Ou/8zx in (3)
shows that

g s ] Cmra)urifl (5-m) ¢
=ffR{m dAﬂ'f/;m} dA =0,

This completes the proof. =Y

In 1883 the French mathematician Edouard Goursat proved that the
assumption of continuity of f' is not necessary to reach the conclusion of
Cauchy's theorem. The resulting modified version of Cauchy's theorem is
known today as the Cauchy-Goursat theorem. As one might expect, with
fewer hypotheses, the proof of this version of Cauchy’'s theorem is more com-
plicated than the one just presented. A form of the proof devised by Goursat
is outlined in Appendix IL.

Theorem 5.4 Cauchy-Goursat Theorem

Suppose that a function f is analytic in a simply connected domain [).
Then for every simple closed contour C' in D, ‘fc_, f(z)dz = 0.

Since the interior of a simple closed contour is a simply connected domain,
the Cauchy-Goursat theorem can be stated in the slightly more practical man-
ner:

If f is analytic at all points within and on a simple closed contour C,
then §. f(z)dz = 0. (4)

EXAMPLE 1 Applyving the Cauchy-Goursat Theorem
Evaluate ﬁ:‘.‘ e® dz, where the contour C' is shown in Figure 5.28.
Solution The function f(z) = &* is entire and consequently is analytic at all

points within and on the simple closed contour C'. It follows from the form of
the Cauchy-Goursat theorem given in (4) that §,. ¢* dz = 0. |

The point of Example 1 is that 35::‘ e® dz = 0 for any simple closed contour
in the complex plane. Indeed. it follows that for any simple closed contour
C and any entire function f, such as f(z) = sinz, f(z) = cosz, and p(z) =
anz" + 812"+ -+a1z +ap, n=0,1,2,... ,that /20

ﬁsinzfﬁ::ﬂ, jt{cosﬂ:rﬁ::[l, jt{p{zjdz:ﬂ?
L&y o o
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- d 2w n = 1
-/' : — . (6)
Jo k€ — 2ag) 0. i 1

The fact that the integral in (6) is zero when n # 1 follows only partially
from the Cauchy-Goursat theorem. When n is zero or a negative integer,
1/(z— 20)" is a polynomial and therefore entire. Theorem 5.4 and the dis-
cussion following Example 1 then indicates that .‘ﬁj dzf(z —2z)" = 0. It is
left as an exercise to show that the integral is still zero when n is a positive
integer different from 1. See Problem 24 in Exercises 5.3.

Analyticity of the function [ at all points within and on a simple closed
contour ' is sufficient to guarantee that .55-:' f(z) dz = 0. However, the result
in (6) emphasizes that analyticity is not necessary; in other words, it can
happen that ﬁ:‘ f(z)dz = 0 without f being analytic within C'. For instance,
if €' in Example 2 is the circle |z| = 1, then (6), with the identifications n = 2

d P
and zg = 0, immediately gives jtg — = 0. Note that f(z) =1 /z* is not
o<

(2]

analytic at z = 0 within C.

EXAMPLE 4 Applying Formula (6)

5z +7
Evaluate f ,,Ldz, where C is circle |z — 2| = 2.

Solution Since the denominator factors as 2% +2z — 3 = (z — 1)(z + 3) the
integrand fails to be analytic at z = 1 and z = —3. Of these two points, only
z = 1 lies within the contour €', which is a circle centered at z = 2 of radius
r = 2. Now by partial fractions

52+7 3 ' 2
2423 z—1 2z2+3
8z + 7 L | 1
and so ;:qaz;dzzﬂhé dz +2 ) —mdz. (7)
o 2 ds—3 g=—1 ozt

In view of the result given in (6), the first integral in (7} has the value 271,
whereas the value of the second integral is 0 by the Cauchy-Goursat theorem.

—i| = 1, which from {l{]'}_ of Section 2.2 can be parametrized by z = i + &%,
O0<+t < 27. From z — 7 = e* and dz = ie*dt we obtain

d= d= 2T jeit i
r— i TS (H' = .E. ﬂfi’ == 2‘.ITI..
oT—% c =% Jo et o

PREPARED BY K.PAVITHRA Page 9/20
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oz + 7
Evaluate f %da where €' is circle |z — 2| = 2.
a2t —3

Solution Since the denominator factors as 2* + 2z —3 = (z — 1)(z + 3) the
integrand fails to be analytic at z = 1 and z = —3. Of these two points, only
z = 1 lies within the contour €', which is a circle centered at z = 2 of radius
r = 2. Now by partial fractions

Sz +T B 3 i 2
2+2:-3 z—-1 z+3
2 ) 1 1
and so %dez=3f dz-l—?ﬁ. —dz. (7)
;_—-:f"-l-ﬂz—E C:'E_l ,_-;z-l—._’:

In view of the result given in (6), the first integral in (7) has the value 271,
whereas the value of the second integral is 0 by the Canchy-Goursat theorem.

Hence, (7) becomes

Dz +7T . y .
ﬁma& — 3(2mi) + 2(0) = 6mi.

PREPARED BY K.PAVITHRA Page 10/20
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5.5.1 Cauchy’s Two Integral Formulas

I Bis-iA Yoiweilil=0 If f is analytic in a simply connected domain I and
zp is any point in D), the quotient f(z)/(z — 20) is not defined at zy and

hence is not analytic in I). Therefore., we cannof conclude that the integral
of f(z)/(z — zp) around a simple closed contour €' that contains zp is zero
by the Cauchy—Goursat theorem. Indeed. as we shall now see, the integral of
flz)/(z — zn) around C' has the value 27: f{zg). The first of two remarkable
formulas is known simply as the Cauchy integral formula.

Theorem 5.9 Cauchy’s Integral Formula

Suppose that f is analytic in a simply connected domain D and O is
any simple closed contour lyving entirely within IJ). Then for any point zg

within €,

1 s

d=. (1)

Irl v !
o LS - a
27 -z —2zp

Proof Let D be a simply connected domain, € a simple closed contour in
D, and z3 an interior point of C. In addition. let '} be a circle centered at
zp with radius small enough so that ) lies within the interior of €. By the
principle of deformation of contours, (5) of Section 5.3, we can write

5£—f{z) =y 1@ 4 (2)
C % —=z0 oy, £ — 20

We wish to show that the value of the integral on the right is 27i f{zg). To this
end we add and subtract the constant f(zp) in the numerator of the integrand,

16) g, § L0 SCA+IC),,

< — Zp

Oy T — Zp

= f{:g]ﬁ L gy g LD —Hza) (3)

Z 2y &y = — Zpn

From (6) of Section 5.3 we know that

% : dz = 2t (4)
'y

z — Zo

PREPARED BY K.PAVITHRA Page 11/20
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and so (3) becomes

Md: = 2mi f(z0) + Mdz-

cy ¥ 20 y z —2zn

(3)

Since f is continuous at zp, we know that for any arbitrarily small £ = 0
there exists a § > 0 such that |f(z) — f(zg)| < € whenever |z — z5| < 4. In
particular, if we choose the circle € to be |z —zp| = rinﬁ < &, then by the
ML-mequality (Theorem 5.3) the absolute value of the integral on the right

side of the equality in (5) satisfies

Fiz) — flag) ;. £ Y
Ciﬁda‘imzlﬂ (E)—ZWL

In other words, the absolute value of the integral can be made arbitrarily
small by taking the radius of the circle C'; to be sufficiently small. This can

happen only if the integral is 0. Thus (5) is ﬁ dz = 2wt f(zg). The

2 &R
theorem is proved by dividing both sides of the last result by 2mi. L=

Because the symbol z represents a point on the contour C', (1) indicates
that the values of an analytic function f at points zy inside a simple closed
contour ' are determined by the values of f on the contour C.

Cauchy’s integral formula (1) can be used to evaluate contour integrals.
Since we often work problems without a simply connected domain explicitly
defined, a more practical restatement of Theorem 5.9 is:

If f is analytic at all points within and on a simple closed contour C, and

zo s any point interior to C, then f(z0) = ﬁ zf(zj =
O£ —&p

EXAMPLE 1 Using Cauchy’s Integral Formula

P_dz 44
Evaluate f % dz, where C' is the circle |z| = 2.
o Ztd

Solution First, we identify f(z) = 22 —42 +4 and 2y = —i as a point within
the circle C. Next, we observe that f is analytic at all points within and on
the contour €. Thus, by the Cauchy integral formula (1) we obtain

]

z=—4 4

jé. ++ dz = 2mif(—i) = 2mi(3 + 4i) = w(—8 + 6i).
o - 1

PREPARED BY K.PAVITHRA Page 12/20
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al=tatalala M Qotuisiil =8  We shall now build on Theorem 5.9 by using it to
prove that the values of the derivatives f(")(zg),n = 1, 2, 3, ... of an analytic
function are also given by a integral formula. This second integral formula is
similar to (1) and is known by the name Cauchy’s integral formula for
derivatives.

Theorem 5.10 Cauchy’s Integral Formmla for Derivatives

Suppose that f is analytic in a simply connected domain ) and C' is

any simple closed contour lying entirely within ). Then for any point =g
within C',
]

. ,1 I_ fla) (6)

271 Jo (2 — 2+

Partial Proof We will prove (6) only for the case n = 1. The remainder

of the proof can be completed using the principle of mathematical induction.
We begin with the definition of the derivative and (1):

e 1 ey . f @
_a.lil_‘fuzﬂ.ﬁz[jf{:z—{zwraz}dz Cz—zud}

= ﬁ /) dz.

Az—02mi Jio (2 — 20 — Az)(z — z0)

Before continuing, let us set out some preliminaries. Continuity of f on the
contour C' guarantees that f is bounded (see page 124 of Section 2.6), that
is, there exists a real number M such that |f(z)| < M for all points z on C.

PREPARED BY K.PAVITHRA Page 13/20
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In addition, let L be the length of €' and let § denote the shortest distance
between points on €' and the point z5. Thus for all points z on ' we have

L i

|z —zo| = 6 or '5_’252.

2
|z — 2
Furthermore, if we choose |Az| < %ﬁ , then by (10) of Section 1.2,

|2 — 20— Da| > ||z — 20| — |B2|| 2 8 — |A2| = §8

1 & 2
and so, m =%
Now,
f(z) j{ flz) l
—_— iz — d=
_ﬁv (z —z0)? o (z — zp — Az)(z— z0)
- —Az f(z) 2M L |Az|
B ﬁ{z—zﬂ—ﬂz}iz—zn}gdz'i A3

Because the last expression approaches zero as Az — 0, we have shown that

f.r[-zu-jl LR f{zﬂ + :ﬁ’:} - f{zﬁ} _ 1 .¢. f(’:} dz.

Az—0 Az 2mi Jo (2 —2g)°

which is (6) for n = 1. L=

Like (1), formula (6) can be used to evaluate integrals.

EXAMPLE 3 Using Cauchy’s Integral Formula for Derivatives

z+1 oz ;
Evaluate f e dz, where (' is the circle |z| = 1.
oz + 2123

Solution Inspection of the integrand shows that it is not analytic at z =0
and z = —2¢, but only z = 0 lies within the closed contour. By writing the
integrand as

z+1
z+1 249
24+ 2§23 23

we can identify, zg = 0, n = 2, and f(z) = (z + 1)/ (2 + 2i). The quotient
rule gives f"(z) = (2 —4i)/(z + 2i)%and so f”(0) = (2i —1)/4i. Hence from
= (6) we find
]

z+1 2L, _ w .
imdz=jf (U}—_I-i-a:.,
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EXAMPLE 4 Using Cauchy’s Integral Formula for Derivatives

3
£ 3 : : : - o
Evaluate / ﬁ dz . where ' is the figure-eight contour shown in Figure
o ZlE — 1)

5.45.

Solution Although €' is not a simple closed contour, we can think of it as
the union of two simple closed contours 'y and C3 as indicated in Figure
5.45. Since the arrows on ('} How clockwise or in the negative direction, the

opposite curve —C'y has positive orientation. Hence, we write

3 i a
Z 3 3 z 3
Je #(z — 1) c, #(z —1) G #(z—1)
2 +3 22 +3

(z —i)2 -
=‘j£ —dz+f — & oy~ -l
—y = C‘z{z_i}

and we are in a position to use both formulas (1) and (6).
To evaluate I we identify z5 = 0, f(z) = (2*+3)/(z—i)?, and f(0) = —3.
By (1) it follows that

z3+ 3
(z —i)? ; i3 ;
I = ——— dz = 2mi f(0) = 2mi(—3) = —6mi.
oy

e

To evaluate s we now identify zo = i, n = 1, f(z) = (2 + 3)/2, f'(z) =
(2z% — 3) /2%, and f'(i) = 3 +2:. From (6) we obtain
25 43

omri
i — E __ do = 2T £1(3) = 2mi(3 + 24) = —dm + 6.
cy (2 —1)° 1!

Finally. we get

443 _ . |
el S S S T
0 =& =
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=TV NERIE 'S We begin with an inequality derived from the

Cauchy integral formula for derivatives,

Theorem 5.12 Cauchy’s Inequality

Suppose that f is analytic in a simply connected domain D and € is a
circle defined by |z — zy| = r that lies entirelv in D. If |f(z)]| < M for all

points z on €', then

IM
Proof From the hypothesis,
1)U
{z _zﬂ]n+! +1 = ],.-n—i‘

Thus from (6) and the ML-mequality (Theorem 5.3), we have

f(z) nl M n!M
j‘gmﬂ‘g S i S

n!

() ‘
‘ f zﬂ ??T

The number M in Theorem 5.12 depends on the circle [z — zp| = r. But
notice in (7) that if n =0, then M > | f(zq) | for any circle C centered at zg
as long as C lies within D. In other words, an upper bound M of |f(z)| on C
cannot be smaller than | f(zp)|.
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is analytic in view of Theorem 5.11. Since f(z) = F'(z), we see that f is

analytic m D). =)

An alternative proof of this last result is outlined in Problem 31 in Exer-
c1ses 9.5,

We could go on at length stating more and more results whose proofs rest
on a foundation of theory that includes the Cauchy-Goursat theorem and the
Cauchy mtegral formulas. But we shall stop after one more theorem.

In Section 2.6 we saw that if a function f is continuous on a closed and
bounded region R, then f is bounded; that is, there is some constant M such
that |f(z)| < M for z in R. If the boundary of R is a simple closed curve C,
then the next theorem, which we present without proof, tells us that |f(z)|
assumes its maximum value at some point z on the boundary .

Theorem 5.16 Maximum Modulus Theorem

Suppose that f is analytic and nonconstant on a closed region R bounded
by a simple closed curve C. Then the modulus | f(z)| attains its maximum

on C,

If the stipulation that f(z) # 0 for all z in R is added to the hypotheses
of Theorem 5.16, then the modulus | f(z)| also attains its minimum on C. See
Problems 27 and 33 in Exercises 5.5.

EXAMPLE 5 Maximum Modulus

Find the maximum modulus of f(z) = 2z + 5¢ on the closed circular region

defined by |z| < 2.

Solution From (2) of Section 1.2 we know that |2|° = zZ. By replacing the
symbol z by 2z + 51 w<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>