
Programming Fundamentals Using C/C++ Syllabus 2017-2020
Batch

Department of Computer Science, CA & IT,KAHE 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2017 onwards)

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

SUBJECT : PROGRAMMING FUNDAMENTALS USING C/C++

SEMESTER : I L T P C

SUBJECT CODE: 17CSU101 CLASS : I B.Sc.CS A 4 0 0 4

Course Objective:

1. To learn advanced features of the C++ programming language as a continuation of the previous course.

2. To learn the characteristics of the object-oriented programming language: data abstraction and

 information hiding, inheritance, and dynamic binding of the messages to the methods.

3. To learn the basic principles of the object-oriented design and software engineering in terms of

 software reuse and managing the complexity.

4. To enhance problem solving and programming skills in C++ with extensive programming projects.

5. To become familiar with the UNIX software development environment.

Course Learning Outcomes:

 After completion of this course, a student will know to do the following

1. To use the characteristics of the object-oriented programming language in a program.

2. To use the basic object-oriented design principles in computer problem solving.

3. To use the basic principles of software engineering in managing complex software projects.

4. To write program with the advanced features of the C++ programming language.

5. To develop programs in the UNIX programming environment.

UNIT-I

Introduction to C and C++:

History of C and C++, Overview of Procedural Programming and Object, Orientation

Programming, Using main () function, Compiling and Executing Simple Programs in C++. Data

Types, Variables, Constants, Operators and Basic I/O: Declaring, Defining and Initializing

Programming Fundamentals Using C/C++ Syllabus 2017-2020
Batch

Department of Computer Science, CA & IT,KAHE 2

Variables, Scope of Variables, Using Named Constants, Keywords, Data Types, Casting of Data

Types, Operators (Arithmetic, Logical and Bitwise), Using Comments in programs, Character

I/O (getc, getchar, putc, putcharetc), Formatted and Console I/O (printf(), scanf(), cin, cout),

Using Basic Header Files (stdio.h, iostream.h, conio.hetc).Expressions, Conditional

Statements and Iterative Statements:Simple Expressions in C++ (including Unary Operator

Expressions, Binary Operator Expressions),Understanding Operators Precedence in Expressions,

Conditional Statements (if construct, switch-case construct), Understanding syntax and utility of

Iterative Statements (while, do-while, and for loops), Use of break and continue in Loops, Using

Nested Statements (Conditional as well as Iterative).

UNIT-II

Functions and Arrays: Utility of functions, Call by Value, Call by Reference, Functions

returning value, Void functions, Inline Functions, Return data type of functions, Functions

parameters, Differentiating between Declaration and Definition of Functions, Command Line

Arguments/Parameters in Functions, Functions with variable number of Arguments.

Creating and Using One Dimensional Arrays (Declaring and Defining an Array, Initializing an

Array, Accessing individual elements in an Array, Manipulating array elements using loops),

Use Various types of arrays (integer, float and character arrays / Strings) Two-dimensional

Arrays (Declaring, Defining and Initializing Two Dimensional Array, Working with Rows and

Columns), Introduction to Multi-dimensional arrays.

UNIT-III

Derived Data Types (Structures and Unions): Understanding utility of structures and

unions, Declaring, initializing and using simple structures and unions, Manipulating individual

members of structures and unions, Array of Structures, Individual data members as structures,

Passing and returning structures from functions, Structure with union as members, Union with

structures as members. Pointers and References in C++: Understanding a Pointer Variable,

Simple use of Pointers (Declaring and Dereferencing Pointers to simple variables), Pointers to

Pointers, Pointers to structures, Problems with Pointers, Passing pointers as function arguments,

Returning a pointer from a function, using arrays as pointers, Passing arrays to functions.

Pointers vs. References, Declaring and initializing references, using references as function

arguments and function return values.

Programming Fundamentals Using C/C++ Syllabus 2017-2020
Batch

Department of Computer Science, CA & IT,KAHE 3

UNIT-IV

Memory Allocation in C++: Differentiating between static and dynamic memory

allocation, use of malloc, calloc and free functions, use of new and delete operators, storage of

variables in static and dynamic memory allocation.File I/O, Preprocessor Directives: Opening

and closing a file (use of fstream header file, ifstream, ofstream and fstream classes), Reading

and writing Text Files, Using put(), get(), read() and write() functions, Random access in files,

Understanding the Preprocessor Directives (#include, #define, #error, #if, #else, #elif, #endif,

#ifdef, #ifndef and #undef), Macros.

UNIT-V

Using Classes in C++: Principles of Object-Oriented Programming, Defining & Using

Classes, Class Constructors, Constructor Overloading, Function overloading in classes, Class

Variables &Functions, Objects as parameters, Specifying the Protected and Private Access, Copy

Constructors, Overview of Template classes and their use. Overview of Function Overloading

and Operator Overloading: Need of Overloading functions and operators, Overloading

functions by number and type of arguments, Looking at an operator as a function call,

Overloading Operators (including assignment operators, unary operators) Inheritance,

Polymorphism and Exception Handling: Introduction to Inheritance (Multi-Level Inheritance,

Multiple Inheritance), Polymorphism (Virtual Functions, Pure Virtual Functions), Basics

Exceptional Handling (using catch and throw, multiple catch statements), Catching all

exceptions, Restricting exceptions, Rethrowing exceptions.

Suggested Readings:

1. Herbtz Schildt, 2003,C++: The Complete Reference, 4
th

 Edition, McGraw Hill.

2. Bjarne Stroustrup, 2013, The C++ Programming Language, 4
th

 Edition, Addison-Wesley.

3. Bjarne Stroustroup, 2014, Programming - Principles and Practice using C++, 2
nd

 Edition,

 Addison-Wesley.

4. E Balaguruswamy, 2008,Object Oriented Programming with C++, 2
nd

 Edition ,Tata McGraw-

 Hill Education.

5. Paul Deitel, Harvey Deitel, 2011,C++ How to Program, 8
th

 Edition, Prentice Hall.

6. John R. Hubbard, 2000, Programming with C++, 2
nd

 Edition ,Schaum's Series.

Programming Fundamentals Using C/C++ Syllabus 2017-2020
Batch

Department of Computer Science, CA & IT,KAHE 4

7. Stefan Bjornander, 2016,C++ Windows Programming, Published by Packt Publishing Ltd.

8. Scott Meyers, 2005, Effective C++, 3
rd

 Edition, Published by Addison-Wesley.

9. Harry, H. Chaudhary, 2014 ,Head First C++ Programming: The Definitive Beginner's

 Guide, First Create space Inc, O-D Publishing, LLC USA.

10. Walter Savitch, 2007,Problem Solving with C++, Pearson Education.

11. Stanley B. Lippman, JoseeLajoie, Barbara E. Moo, 2012, C++ Primer, 5
th

 Edition, Published

 by Addison-Wesley.

12. Debasish Jana , 2014,C++ And Object-Oriented Programming Paradigm,Published by

 PHI Learning Pvt. Ltd.

13. Richard L. Stegman, 2016, Focus on Object-oriented Programming With C++,6
th

 Edition

 ,CreateSpace Independent Publishing Platform,.

14. Andrew Koeni, Barbara, E. Moo,2000,Accelerated using C++, Published by Addison-

 Wesley .

WEBSITES

1. http://www.cs.cf.ac.uk/Dave/C/CE.html

2. http://www2.its.strath.ac.uk/courses/c/

3. http://www.iu.hio.no/~mark/CTutorial/CTutorial.html

4. http://www.cplusplus.com/doc/tutorial/

5. http://www.cplusplus.com/

6. http://www.cppreference.com/

LECTURE PLAN 2017-2020

Batch

Department of Computer Science ,KAHE 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2017 onwards)

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

SUBJECT : PROGRAMMING FUNDAMENTALS USING C/C++

SEMESTER : I L T P C

SUBJECT CODE: 17CSU101 CLASS : I B.Sc.CS 4 0 0 4

LECTURE PLAN

STAFF NAME: Dr.P.TAMIL SELVAN, S.A. SATHYA PRABHA

S.No Lecture

Duration (Hr)
Topics Support Materials

UNIT-I

1. 1 Introduction to C and C++:

 History of C and C++, Overview of

Procedural Programming and Object-

Orientation Programming

T1:1-3, 12-14

T2:4-7

2. 1 Using main() function, Compiling and

Executing Simple Programs in C++.

T1:12-14

T2:28

3. 1 Data Types, Variables, Constants,

Operators and Basic I/O: Declaration,

Defining and Initializing Variables,

Scope of Variables

T1:30-31, 34-35

T2:42-46

4. 1 Using Named Constants, Keywords T1:25-30,31-34

5. 1 Data Types, Casting of Data Types T2:32-37

6. 1 Operators, Using Comments in

programs

T1:52-61

T2: 46-49

7. 1 Character I/O, Formatted and Console

I/O, Using Basic Header Files

T1:84-98

T2:21, 248-266

8. 1 Expressions, Conditional Statements

and Iterative Statements: Simple

Expressions in C++

T1: 63-67

9. 1 Understanding Operators Precedence in

Expressions

T2: 54-56

LECTURE PLAN 2017-2020

Batch

Department of Computer Science ,KAHE 2

10. 1 Conditional Statements, Understanding

syntax and utility of Iterative

Statements, , Use of break and continue

in Loops, Using Nested Statements

T1:114-126,

11. 1 Use of break and continue in Loops,

Using Nested Statements,

understanding syntax and utility of

Iterative Statements

T1: 152-166

12. 1 Recapitulation and Discussion of important

questions

Text

Book

T1: BjarneStroustroup, 2014, Programming - Principles and Practice using C++,

 2
nd

 Edition, Addison- Wesley.

T2: Bjarne Stroustrup, 2013, The C++ Programming Language, 4
th

 Edition.

 Addison-Wesley.

 Total No of Hours Planned For Unit – I 12

UNIT-II

1. 1 Functions and Arrays:

 Utility of functions, Call by Value, Call

by Reference

T1:270-272

2. 1 Functions returning value T1: 269-272

3. 1 Void functions T1: 274

4. 1 Inline Functions T2: 75-77

5. 1 Return data type of functions,

Functions parameters, Differentiating

between Declaration and Definition of

Functions,

T1:272-274

6. 1 Command Line Arguments/Parameters

in Functions,

T1:405-408

T2:301-303

7. 1 Functions with variable number of

Arguments.

T1:285-286

8. 1 Creating and Using One Dimensional

Arrays

T1: 192-199

9. 1 Various types of arrays T1: 209-210

10. 1 Two-dimensional Arrays, Introduction

to Multi-dimensional arrays.

T1:199-209

11. 1 Recapitulation and Discussion of important

questions

Text

Book

T1: BjarneStroustroup, 2014, Programming - Principles and Practice using C++,

 2
nd

 Edition, Addison- Wesley.

T2: Bjarne Stroustrup, 2013, The C++ Programming Language, 4
th

 Edition.

 Addison-Wesley.

LECTURE PLAN 2017-2020

Batch

Department of Computer Science ,KAHE 3

 Total No of Hours Planned For Unit – II 11

UNIT-III

1. 1 Derived Data Types (Structures and

Unions):

 Understanding utility of structures and

unions

T1: 371-319,

2. 1 Declaring, initializing and using simple

structures and unions

T1: 322-324

3. 1 Manipulating individual members of

structures and unions

T1: 321-322,

4. 1 Array of Structures, Individual data

members as structures

T1: 326-329

5. 1 Passing and returning structures from

functions.

T1: 333-335

6. 1 Structure with Union as members,

Union with Structures as members

T1: 335-337

7. 1 Pointers and References in C++:
 Understanding a Pointer Variable,

Simple use of Pointers

T1:351-355

8. 1 Pointers to Pointers, Pointers to

Structures

T1: 376-379

9. 1 Passing pointers as function arguments,

Returning a pointer from a function

T1:370-373

10. 1 Using arrays as pointers, Passing arrays

to functions.

T1:369-370

11. 1 Recapitulation and Discussion of important

questions

Text

Book

T1: BjarneStroustroup, 2014, Programming - Principles and Practice using C++,

 2
nd

 Edition, Addison- Wesley.

 Total No of Hours Planned For Unit – III 11

UNIT-IV

1. 1 File I/O, Preprocessor Directives:
 Opening and closing a file

T1:389-392

2. 1 Reading and writing Text Files T1:392-394

3. 1 Using put() statement T1:394-396

4. 1 Using get() statement T1:396-398

5. 1 Using read() functions T1:289-291

6. 1 Using write() functions T1:291-294

7. 1 Random access in files T1:400-405

T2:294-299

8. 1 Understanding the Preprocessor

Directives

T2:444-445,

449-453

LECTURE PLAN 2017-2020

Batch

Department of Computer Science ,KAHE 4

9. 1 Macros. T2:445-449

10. 1 Recapitulation and Discussion of important

questions

Text

Book

T1: BjarneStroustroup, 2014, Programming - Principles and Practice using C++,

 2
nd

 Edition, Addison- Wesley.

T2: Bjarne Stroustrup, 2013, The C++ Programming Language, 4
th

 Edition.

 Addison-Wesley.

 Total No of Hours Planned For Unit – IV 10

UNIT-V

1. 1 Using Classes in C++:
 Principles of Object-Oriented

Programming,

T2: 88-90

2. 1 Defining & Using Classes T2: 91-96

3. 1 Constructors T2:127-133

4. 1 Constructor Overloading T2:130-133

5. 1 Function overloading T2:80-82,

6. 1 Operator overloading T2:150-157

7. 1 Class Variables & Functions, access

specifiers

T2:98,107-109

8. 1 Overview of Template classes and their

use

T2:308-314

9. 1 Inheritance, Polymorphism and

Exception Handling

T2:176-179

10. 1 Introduction to Inheritance T2:180-182

11. 1 Polymorphism T2: 222-223

12. 1 Basics Exceptional Handling T2:326-332

13. 1 Recapitulation and Discussion of important

questions

14. 1 Discussion of previous ESE Question papers

15. 1 Discussion of previous ESE Question papers

16. 1 Discussion of previous ESE Question papers

Text

Book

T2: Bjarne Stroustrup, 2013, The C++ Programming Language, 4
th

 Edition.

Addison-Wesley.

 Total No of Hours Planned For Unit – V 16

 Total No. of Hours Planned: 60

LECTURE PLAN 2017-2020

Batch

Department of Computer Science ,KAHE 5

TEXT BOOKS

T1: Bjarne Stroustroup, 2014, Programming - Principles and Practice using C++, 2
nd

 Edition

 ,Addison- Wesley.

T2: Bjarne Stroustrup, 2013, The C++ Programming Language, 4
th

 Edition, Addison-Wesley.

T3: Harry, H. Chaudhary, 2014 ,Head First C++ Programming: The Definitive Beginner's

 Guide, First Create space Inc, O-D Publishing, LLC USA.

T4: Stanley B. Lippman, Josee Lajoie, Barbara E. Moo, 2012, C++ Primer, 5
th

Edition

 ,Published by Addison-Wesley.

T5: Paul Deitel, Harvey Deitel, 2011,C++ How to Program, 8
th

 Edition ,Prentice Hall.

T6: E Balaguruswamy, 2008,Object Oriented Programming with C++, 2
nd

 Edition ,Tata

 McGraw-Hill Education.

T7: Walter Savitch, 2007,Problem Solving with C++, Pearson Education.

T8: Scott Meyers, 2005, Effective C++,3
rd

 Edition ,Published by Addison-Wesley.

T9 : Debasish Jana , 2014,C++ And Object-Oriented Programming Paradigm,Published by

 PHI Learning Pvt. Ltd.

T10: Richard L. Stegman, 2016, Focus on Object-oriented Programming With

 C++, 6
th

 Edition. CreateSpace Independent Publishing Platform.

T11. Andrew Koeni, Barbara, E. Moo, 2000, Accelerated using C++, Published by Addison-

 Wesley.

WEBSITES

1. http://www.cs.cf.ac.uk/Dave/C/CE.html

2. http://www2.its.strath.ac.uk/courses/c/

3. http://www.iu.hio.no/~mark/CTutorial/CTutorial.html

4. http://www.cplusplus.com/doc/tutorial/

5. http://www.cplusplus.com/

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 1/50

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2017 onwards)

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

SUBJECT : PROGRAMMING FUNDAMENTALS USING C/C++

SEMESTER : I L T P C

SUBJECT CODE: 17CSU101 CLASS : I B.Sc.CS 4 0 0 4

UNIT-I

Introduction to C and C++:

History of C and C++, Overview of Procedural Programming and Object, Orientation

Programming, Using main () function, Compiling and Executing Simple Programs in C++. Data

Types, Variables, Constants, Operators and Basic I/O: Declaring, Defining and Initializing

Variables, Scope of Variables, Using Named Constants, Keywords, Data Types, Casting of Data

Types, Operators (Arithmetic, Logical and Bitwise), Using Comments in programs, Character

I/O (getc, getchar, putc, putcharetc), Formatted and Console I/O (printf(), scanf(), cin, cout),

Using Basic Header Files (stdio.h, iostream.h, conio.hetc).Expressions, Conditional

Statements and Iterative Statements:Simple Expressions in C++ (including Unary Operator

Expressions, Binary Operator Expressions),Understanding Operators Precedence in Expressions,

Conditional Statements (if construct, switch-case construct), Understanding syntax and utility of

Iterative Statements (while, do-while, and for loops), Use of break and continue in Loops, Using

Nested Statements (Conditional as well as Iterative).

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 2/50

Suggested Readings:

1. Herbtz Schildt, 2003,C++: The Complete Reference, 4
th

 Edition, McGraw Hill.

2. Bjarne Stroustrup, 2013, The C++ Programming Language, 4
th

 Edition, Addison-Wesley.

3. Bjarne Stroustroup, 2014, Programming - Principles and Practice using C++, 2
nd

 Edition,

 Addison-Wesley.

4. E Balaguruswamy, 2008,Object Oriented Programming with C++, 2
nd

 Edition ,Tata McGraw-

 Hill Education.

5. Paul Deitel, Harvey Deitel, 2011,C++ How to Program, 8
th

 Edition, Prentice Hall.

6. John R. Hubbard, 2000, Programming with C++, 2
nd

 Edition ,Schaum's Series.

7. Stefan Bjornander, 2016,C++ Windows Programming, Published by Packt Publishing Ltd.

8. Scott Meyers, 2005, Effective C++, 3
rd

 Edition, Published by Addison-Wesley.

9. Harry, H. Chaudhary, 2014 ,Head First C++ Programming: The Definitive Beginner's

 Guide, First Create space Inc, O-D Publishing, LLC USA.

10. Walter Savitch, 2007,Problem Solving with C++, Pearson Education.

11. Stanley B. Lippman, JoseeLajoie, Barbara E. Moo, 2012, C++ Primer, 5
th

 Edition, Published

 by Addison-Wesley.

12. Debasish Jana , 2014,C++ And Object-Oriented Programming Paradigm,Published by

 PHI Learning Pvt. Ltd.

13. Richard L. Stegman, 2016, Focus on Object-oriented Programming With C++,6
th

 Edition

 ,CreateSpace Independent Publishing Platform,.

14. Andrew Koeni, Barbara, E. Moo,2000,Accelerated using C++, Published by Addison-

 Wesley .

WEB SITES

1. http://www.cs.cf.ac.uk/Dave/C/CE.html

2. http://www2.its.strath.ac.uk/courses/c/

3. http://www.iu.hio.no/~mark/CTutorial/CTutorial.html

4. http://www.cplusplus.com/doc/tutorial/

5. http://www.cplusplus.com/

6. http://www.cppreference.com/

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 3/50

UNIT 1

Introduction to computers

Computer:

 It is an electronic device, It has memory and it performs arithmetic and logical operations.

Input:

The data entering into computer is known as input.

Output:

 The resultant information obtained by the computer is known as output.

Program:

 A sequence of instructions that can be executed by the computer to solve the given problem is

 known as program.

Software:

 A set of programs to operate and controls the operation of the computer is known as software.

 these are 2 types.

 1.System software.

 2.Application software.

System Software:

 It is used to manages system resources.

 Eg: Operating System.

Operating system:

 It is an interface between user and the computer. In other words operating system is a

complex set of programs which manages the resources of a computer. Resources include input,

output, processor,memory,etc. So it is called as Resource Manager.

Eg: Windows 98,WindowsXp,Windows7,Unix, Linux ,etc.

Application Software:

It is Used to develop the applications.

It is again of 2 types.

1.Languages

2.Packages.

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 4/50

Language:

 It consists a set of executable instructions. Using these instructions we can communicate with

the computer and get the required results.

Eg: C, C++,Java, etc.

Hardware:

 All the physical components or units which are connecting to the computer circuit is known as

Hardware.

ASCII character Set

ASCII - American Standard Code for Information Interchange

 There are 256 distinct ASCII characters are used by the micro computers. These values range

from 0 to 255. These can be grouped as follows.

Character Type No. of Characters

--

Capital Letters (A to Z) 26

Small Letters (a to z) 26

Digits (0 to 9) 10

Special Characters 32

Control Characters 34

Graphic Characters 128

 Total 256

Out of 256, the first 128 are called as ASCII character set and the next 128 are called as extended

ASCII character set. Each and every character has unique appearance.

Eg:

 A to Z 65 to 90

 a to z 97 to 122

 0 to 9 48 to 57

 Esc 27

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 5/50

 Backspace 8

 Enter 13

 SpaceBar 32

 Tab 9

Classification of programming languages:-

Programming languages are classifies into 2 types

1.Low level languages

2.High level languages

Low level languages:

It is also known as Assembly language and was designed in the beginning. It has some simple

instructions. These instructions are not binary codes, but the computer can understand only the

machine language, which is in binary format. Hence a converter or translator is used to translate

the low level language instructions into machine language. This translator is called as assembler.

High level languages:

These are more English like languages and hence the programmers found them very easy to

learn. To convert high level language instructions into machine language compilers and

interpreters are used.

Translators:

These are used to convert low or high level language instructions into machine language with the

help of ASCII character set. There are 3 types of translators for languages.

1) Assembler :

 It is used to convert low level language instructions into machine language.

2) Compiler:

 It is used to convert high level language instructions into machine language. It checks for the

errors in the entire program and converts the program into machine language.

3) Interpreter:

 It is also used to convert high level language instructions into machine language, But It checks

for errors by statement wise and converts into machine language.

 Debugging :

 The process of correcting errors in the program is called as debugging.

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 6/50

Introduction to C and C++:

C is computer programming language. It was designed by Dennis Ritchie at AT &T (American

Telephones and Telegraphs) BELL labs in USA.

It is the most popular general purpose programming language. We can use the 'C' language to

implement any type of applications. Mainly we are using C language to implement system

software. These are compilers, editors, drivers, databases and operating systems.

A Brief History of C:

The C programming language was developed at Bell Labs during the early 1970's. Quite

unpredictably it derived from a computer language named B and from an earlier language BCPL.

Initially designed as a system programming language under UNIX it expanded to have wide

usage on many different systems. The earlier versions of C became known as K&R C after the

authors of an earlier book, "The C Programming Language" by Kernighan and Ritchie. As the

language further developed and standardized, a version know as ANSI (American National

Standards Institute) C became dominant. As you study this language expect to see references to

both K&R and ANSI C. Although it is no longer the language of choice for most new

development, it still is used for some system and network programming as well as for embedded

systems. More importantly, there is still a tremendous amount of legacy software still coded in

this language and this software is still actively maintained.

A Brief History of C++:

Bjarne Stroustrup at Bell Labs initially developed C++ during the early 1980's. It was designed

to support the features of C such as efficiency and low-level support for system level coding.

Added to this were features such as classes with inheritance and virtual functions, derived from

the Simula67 language, and operator overloading, derived from Algol68. Don't worry about

understanding all the terms just yet, they are explained in easyCPlusPlus's C++ tutorials. C++ is

best described as a superset of C, with full support for object-oriented programming. This

language is in wide spread use.

Differences between C and C++:

Although the languages share common syntax they are very different in nature. C is a procedural

language. When approaching a programming challenge the general method of solution is to

break the task into successively smaller subtasks. This is known as top-down design. C++ is an

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 7/50

object-oriented language. To solve a problem with C++ the first step is to design classes that are

abstractions of physical objects. These classes contain both the state of the object, its members,

and the capabilities of the object, its methods. After the classes are designed, a program is

written that uses these classes to solve the task at hand.

Difference between Procedure Oriented Programming (POP) & Object Oriented

Programming (OOP)

 Procedure Oriented

Programming

Object Oriented

Programming

Divided

Into

In POP, program is divided

into small parts

called functions.

In OOP, program is divided

into parts called objects.

Importance In POP, Importance is not

given to data but to

functions as well

as sequence of actions to be

done.

In OOP, Importance is given

to the data rather than

procedures or functions

because it works as a real

world.

Approach POP follows Top Down

approach.

OOP follows Bottom Up

approach.

Access

Specifiers

POP does not have any

access specifier.

OOP has access specifiers

named Public, Private,

Protected, etc.

Data

Moving

In POP, Data can move

freely from function to

function in the system.

In OOP, objects can move

and communicate with each

other through member

functions.

Expansion To add new data and

function in POP is not so

easy.

OOP provides an easy way

to add new data and

function.

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 8/50

Data Access In POP, Most function uses

Global data for sharing that

can be accessed freely from

function to function in the

system.

In OOP, data cannot move

easily from function to

function, it can be kept

public or private so we can

control the access of data.

Data Hiding POP does not have any

proper way for hiding data

so it is less secure.

OOP provides Data Hiding

so provides more security.

Overloading In POP, Overloading is not

possible.

In OOP, overloading is

possible in the form of

Function Overloading and

Operator Overloading.

Examples Example of POP is: C, VB,

FORTRAN, and Pascal.

Example of OOP is: C++,

JAVA, VB.NET, C#.NET.

Main Function:

A program shall contain a global function named main, which is the designated start of the

program.

int main () { body }

int main (int argc, char *argv[] , other_parameters) { body }

argc - Non-negative value representing the number of arguments passed to the

program from the environment in which the program is run.

argv - Pointer to the first element of an array of pointers to null-terminated

multibyte strings that represent the arguments passed to the program

from the execution environment (argv[0]through argv[argc-1]). The

value of argv[argc] is guaranteed to be 0.

http://en.cppreference.com/w/cpp/string/multibyte
http://en.cppreference.com/w/cpp/string/multibyte

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 9/50

body - The body of the main function

other_parameters - Implementations may allow additional forms of the main function as

long as the return type remains int. A very common extension is passing

a third argument of type char*[] pointing at an array of pointers to the

execution environment variables.

The names argc and argv are arbitrary, as well as the representation of the types of the

parameters: int main(int ac, char** av) is equally valid.

Explanation:

The main function is called at program startup after initialization of the non-local objects

with static storage duration. It is the designated entry point to a program that is executed

in hosted environment (that is, with an operating system). The entry points

to freestanding programs (boot loaders, OS kernels, etc) are implementation-defined.

The main function has several special properties:

1) It cannot be used anywhere in the program

a) in particular, it cannot be called recursively

b) its address cannot be taken

2) It cannot be predefined and cannot be overloaded: effectively, the name main in the global

namespace is reserved for functions (although it can be used to name classes, namespaces,

enumerations, and any entity in a non-global namespace, except that a function called "main"

cannot be declared with C language linkage in any namespace.

3) It cannot be defined as deleted or declared with C language linkage, inline, static, or constexpr

4) The body of the main function does not need to contain the return statement: if control reaches

the end of main without encountering a return statement, the effect is that of executing return 0;

5) Execution of the return (or the implicit return upon reaching the end of main) is equivalent to

first leaving the function normally (which destroys the objects with automatic storage duration)

http://pubs.opengroup.org/onlinepubs/9699919799/functions/exec.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/exec.html
http://en.cppreference.com/w/cpp/language/initialization
http://en.cppreference.com/w/cpp/language/storage_duration
http://en.cppreference.com/w/cpp/language/language_linkage
http://en.cppreference.com/w/cpp/language/language_linkage
http://en.cppreference.com/w/cpp/language/inline
http://en.cppreference.com/w/cpp/language/static
http://en.cppreference.com/w/cpp/language/constexpr
http://en.cppreference.com/w/cpp/language/return

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 10/50

and then calling std::exitwith the same argument as the argument of the return. (std::exit then

destroys static objects and terminates the program)

6) If the main function is defined with a function-try-block, the exceptions thrown by the

destructors of static objects (which are destroyed by the implied std::exit) are not caught by it.

7) The return type of the main function cannot be deduced (auto main() {... is not allowed)

C/C++ Program Compilation:

Creating, Compiling and Running Your Program:

The stages of developing your C program are as follows.

Creating the program:

Create a file containing the complete program, such as the above example. You can use any

Ordinary editor with which you are familiar to create the file. One such editor

is textedit available on most UNIX systems.

The filename must by convention end ``.c'' (full stop, lower case c), e.g. myprog.c or progtest.c.

The contents must obey C syntax. For example, they might be as in the above example, starting

with the line /* Sample.... (or a blank line preceding it) and ending with the line } /* end of

program */ (or a blank line following it).

Compilation:

There are many C compilers around. The cc being the default Sun compiler. The GNU C

compiler gcc is popular and available for many platforms. PC users may also be familiar with the

Borland bcc compiler.

There are also equivalent C++ compilers which are usually denoted by CC (upper case CC. For

example Sun provides CC and GNU GCC. The GNU compiler is also denoted by g++

Other (less common) C/C++ compilers exist.

All the above compilers operate in essentially the same manner and share many common

command line options.

http://en.cppreference.com/w/cpp/utility/program/exit
http://en.cppreference.com/w/cpp/language/return
http://en.cppreference.com/w/cpp/utility/program/exit
http://en.cppreference.com/w/cpp/language/function-try-block
http://en.cppreference.com/w/cpp/utility/program/exit

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 11/50

To compile your program simply invoke the command cc. The command must be followed by

the name of the (C) program you wish to compile. A number of compiler options can be

specified also.

Thus, the basic compilation command is:

 cc program.c

Where program.c is the name of the file.

If there are obvious errors in your program (such as mistyping, misspelling one of the key words

or omitting a semi-colon), the compiler will detect and report them.

There may, of course, still be logical errors that the compiler cannot detect. You may be telling

the computer to do the wrong operations.

When the compiler has successfully digested your program, the compiled version, or executable,

is left in a file called a.out or if the compiler option -o is used : the file listed after the -o.

It is more convenient to use a -o and filename in the compilation as in

 cc -o program program.c

Which puts the compiled program into the file program (or any file you name following the "-o"

argument) instead of putting it in the file a.out.

Running the program:

The next stage is to actually run your executable program. To run an executable in UNIX, you

simply type the name of the file containing it, in this case program (or a.out)

This executes your program, printing any results to the screen. At this stage there may be run-

time errors, such as division by zero, or it may become evident that the program has produced

incorrect output.

If so, you must return to edit your program source, and recompile it, and run it again.

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 12/50

The C Compilation Model:

The C Compilation Model:

The Preprocessor

We will study this part of the compilation process in greater detail later

The Preprocessor accepts source code as input and is responsible for

 removing comments

 Interpreting special preprocessor directives denoted by #.

For example

 #include -- includes contents of a named file. Files usually called header files. e.g

o #include <math.h> -- standard library maths file.

o #include <stdio.h> -- standard library I/O file

 #define -- defines a symbolic name or constant. Macro substitution.

o #define MAX_ARRAY_SIZE 100

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 13/50

C Compiler:

The C compiler translates source to assembly code. The source code is received from the

preprocessor.

Assembler:

The assembler creates object code. On a UNIX system you may see files with a .o suffix

(.OBJ on MSDOS) to indicate object code files.

Link Editor:

If a source file references library functions or functions defined in other source files the link

editor combines these functions (with main()) to create an executable file. External Variable

references resolved here also.

Primitive Built-in Data Types:

C++ offer the programmer a rich assortment of built-in as well as user defined data types.

Following table lists down seven basic C++ data types:

Type Keyword

Boolean bool

Character char

Integer int

Floating point float

Double floating point double

Valueless void

Wide character wchar_t

Several of the basic types can be modified using one or more of these type modifiers:

 signed

 unsigned

 short

 long

The following table shows the variable type, how much memory it takes to store the value in

memory, and what is maximum and minimum value which can be stored in such type of

variables.

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 14/50

Type Typical Bit Width Typical Range

char 1byte
-128 to 127 or 0 to

255

unsigned char 1byte 0 to 255

signed char 1byte -128 to 127

int 4bytes
-2147483648 to

2147483647

unsigned int 4bytes 0 to 4294967295

signed int 4bytes
-2147483648 to

2147483647

short int 2bytes -32768 to 32767

unsigned short int 2bytes 0 to 65,535

signed short int 2bytes -32768 to 32767

long int 4bytes
-2,147,483,648 to

2,147,483,647

signed long int 4bytes
-2,147,483,648 to

2,147,483,647

unsigned long int 4bytes 0 to 4,294,967,295

float 4bytes
+/- 3.4e +/- 38 (~7

digits)

double 8bytes
+/- 1.7e +/- 308

(~15 digits)

long double 8bytes
+/- 1.7e +/- 308

(~15 digits)

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 15/50

wchar_t 2 or 4 bytes 1 wide character

The sizes of variables might be different from those shown in the above table, depending on the

compiler and the computer you are using.

Following is the example, which will produce correct size of various data types on your

computer.

#include <iostream.h>

int main()

{

cout <<"Size of char : "<< sizeof(char) << endl;

cout <<"Size of int : "<< sizeof(int) << endl;

cout <<"Size of short int : "<< sizeof(short int) << endl;

cout <<"Size of long int : "<< sizeof(long int) << endl;

cout <<"Size of float : "<< sizeof(float) << endl;

cout <<"Size of double : "<< sizeof(double) << endl;

cout <<"Size of wchar_t : "<< sizeof(wchar_t) << endl;

return 0;

}

This example uses endl, which inserts a new-line character after every line and << operator is

being used to pass multiple values out to the screen. We are also using sizeof() operator to get

size of various data types.

When the above code is compiled and executed, it produces the following result which can vary

from machine to machine:

Size of char : 1

Size of int : 4

Size of short int : 2

Size of long int : 8

Size of float : 4

Size of double : 8

Size of wchar_t : 4

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 16/50

Variables:

While doing programming in any programming language, you need to use various variables to

store various information. Variables are nothing but reserved memory locations to store values.

This means that when you create a variable you reserve some space in memory. You may like to

store information of various data types like character, wide character, integer, floating point,

double floating point, Boolean etc. Based on the data type of a variable, the operating system

allocates memory and decides what can be stored in the reserved memory.

What are Variables?

Variable are used in C++, where we need storage for any value, which will change in program.

Variable can be declared in multiple ways each with different memory requirements and

functioning. Variable is the name of memory location allocated by the compiler depending upon

the datatype of the variable.

Basic types of Variables

Each variable while declaration must be given a data type, on which the memory assigned to the

variable, depends. Following are the basic types of variables,

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 17/50

bool - For variable to store boolean values(True or False)

char - For variables to store character types.

int - for variable with integral values

float and double are also types for variables with large and floating point values

Declaration and Initialization:

Variable must be declared before they are used. Usually it is preferred to declare them at

the starting of the program, but in C++ they can be declared in the middle of program too, but

must be done before using them.

Example:

int i; // declared but not initialized

char c;

int i, j, k; // Multiple declaration

Initialization means assigning value to an already declared variable,

int i; // declaration

i = 10; // initialization

Initialization and declaration can be done in one single step also,

int i=10; //initialization and declaration in same step

int i=10, j=11;

If a variable is declared and not initialized by default it will hold a garbage value. Also, if a

variable is once declared and if try to declare it again, we will get a compile time error.

int i,j;

i=10;

j=20;

int j=i+j; //compile time error, cannot redeclare a variable in same scope

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 18/50

Scope of Variables

All the variables have their area of functioning, and out of that boundary they don't hold their

value, this boundary is called scope of the variable. For most of the cases its between the curly

braces,in which variable is declared that a variable exists, not outside it. We will study the

storage classes later, but as of now, we can broadly divide variables into two main types,

 Global Variables

 Local variables

Global variables:

Global variables are those, which are once declared and can be used throughout the lifetime of

the program by any class or any function. They must be declared outside the main() function. If

only declared, they can be assigned different values at different time in program lifetime. But

even if they are declared and initialized at the same time outside the main() function, then also

they can be assigned any value at any point in the program.

Example: Only declared, not initialized

include<iostream.h>

int x; // Global variable declared

int main()

{

x=10; // Initialized once

cout <<"first value of x = "<< x;

x=20; // Initialized again

cout <<"Initialized again with value = "<< x;

}

Local Variables:

Local variables are the variables which exist only between the curly braces, in which its

declared. Outside that they are unavailable and lead to compile time error.

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 19/50

Example:

include <iostream.h>

int main()

{

int i=10;

if(i<20) // if condition scope starts

{

int n=100; // Local variable declared and initialized

} // if condition scope ends

cout << n; // Compile time error, n not available here

}

Constants:

Constants refer to fixed values that the program may not alter and they are called literals.

Constants can be of any of the basic data types and can be divided into Integer Numerals,

Floating-Point Numerals, Characters, Strings and Boolean Values. Again, constants are treated

just like regular variables except that their values cannot be modified after their definition.

Syntax:

 const type constant_name;

Integer literals:

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix specifies the base or

radix: 0x or 0X for hexadecimal, 0 for octal, and nothing for decimal.

An integer literal can also have a suffix that is a combination of U and L, for unsigned and long,

respectively. The suffix can be uppercase or lowercase and can be in any order.

Here are some examples of integer literals:

212 // Legal

215u // Legal

0xFeeL // Legal

078 // Illegal: 8 is not an octal digit

032UU // Illegal: cannot repeat a suffix

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 20/50

Floating-point literals:

A floating-point literal has an integer part, a decimal point, a fractional part, and an exponent

part. You can represent floating point literals either in decimal form or exponential form.

While representing using decimal form, you must include the decimal point, the exponent, or

both and while representing using exponential form, you must include the integer part, the

fractional part, or both. The signed exponent is introduced by e or E.

Here are some examples of floating-point literals:

3.14159 // Legal

314159E-5L // Legal

510E // Illegal: incomplete exponent

210f // Illegal: no decimal or exponent

.e55 // Illegal: missing integer or fraction

Boolean literals:

There are two Boolean literals and they are part of standard C++ keywords:

 A value of true representing true.

 A value of false representing false.

You should not consider the value of true equal to 1 and value of false equal to 0.

Character literals:

Character literals are enclosed in single quotes. If the literal begins with L (uppercase only), it is

a wide character literal (e.g., L'x') and should be stored in wchar_t type of variable. Otherwise, it

is a narrow character literal (e.g., 'x') and can be stored in a simple variable of char type.

A character literal can be a plain character (e.g., 'x'), an escape sequence (e.g., '\t'), or a universal

character (e.g., '\u02C0').

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 21/50

There are certain characters in C++ when they are preceded by a backslash they will have special

meaning and they are used to represent like newline (\n) or tab (\t). Here, you have a list of some

of such escape sequence codes:

Following is the example to show few escape sequence characters:

Escape sequence Meaning

\\ \ character

\' ' character

\" " character

\? ? character

\a Alert or bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\ooo Octal number of one to three digits

\xhh . . . Hexadecimal number of one or more digits

#include <iostream.h>

int main()

{

cout <<"Hello\tWorld\n\n";

return 0;

}

When the above code is compiled and executed, it produces the following result:

Hello World

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 22/50

String literals:

String literals are enclosed in double quotes. A string contains characters that are similar to

character literals: plain characters, escape sequences, and universal characters.

You can break a long line into multiple lines using string literals and separate them using

whitespaces.

Here are some examples of string literals. All the three forms are identical strings.

"hello, dear"

"hello, \

dear"

"hello, ""d""ear"

The const Keyword:

You can use const prefix to declare constants with a specific type as follows:

Syntax:

const type variable = value; [or] type const variable=value;

Following example explains it in detail:

#include <iostream.h>

int main()

{

const int LENGTH = 10;

const int WIDTH = 5;

const char NEWLINE = '\n';

int area;

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 23/50

area = LENGTH * WIDTH;

cout << area;

cout << NEWLINE;

return 0;

}

When the above code is compiled and executed, it produces the following result:

50

Note that it is a good programming practice to define constants in CAPITALS.

Operators:

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. C++ is rich in built-in operators and provides the following types of operators:

 Arithmetic Operators

 Logical Operators

 Bitwise Operators

Arithmetic Operators:

There are following arithmetic operators supported by C++ language:

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiplies both operands A * B will give 200

/ Divides numerator by de-numerator B / A will give 2

% Modulus Operator and remainder of after an integer division B % A will give 0

++ Increment operator, increases integer value by one A++ will give 11

-- Decrement operator, decreases integer value by one A-- will give 9

http://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm
http://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 24/50

Arithmetic operator example:

include<iostream.h>

int main() {

int x,y,sum;

float average;

cout <<"Enter 2 integers : " << endl;

cin>>x>>y;

sum=x+y;

average=sum/2;

cout << "The sum of " << x << " and " << y << " is " << sum << "." << endl;

cout << "The average of " << x << " and " << y << " is " << average << "." << endl; }

Output:

Enter 2 integers: 8 4

The sum of 4 and 8 is 12.

The average of 4 and 8 is 6.

Logical Operators:

There are following logical operators supported by C++ language

Operator Description

&& Called Logical AND operator. If both the operands are non-zero, then condition becomes

true. (A && B) is false.

|| Called Logical OR Operator. If any of the two operands is non-zero, then condition

becomes true. (A || B) is true.

! Called Logical NOT Operator. Use to reverses the logical state of its operand. If a

condition is true, then Logical NOT operator will make false. !(A && B) is true.

Logical operator example:

#include<iostream.h>

void main()

{ int a, b;

cout<<”\n Enter the a and b values:”;

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 25/50

cin>>a>>b;

if(a<b)&&(b>a)

cout<<”A is small”;

else

cout<<”B is big”; }

Output:

1) Enter the a and b values: 100 300 2) Enter the a and b values: 1 3

 A is small B is big

Bitwise Operators:

Bitwise operator works on bits and performs bit-by-bit operation. The truth tables for &, |, and ^

are as follows:

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Operator Description

<< Binary Left Shift Operator

>> Binary Right Shift Operator

~ Binary Ones Complement Operator

& Binary AND Operator

^ Binary XOR Operator

| Binary OR Operator

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 26/50

Bitwise operator example: Output:

#include <iostream.h> Line 1 - Value of c is: 12

 void main() { Line 2 - Value of c is: 61

 unsigned int a = 60; // 60 = 0011 1100 Line 3 - Value of c is: 49

 unsigned int b = 13; // 13 = 0000 1101 Line 4 - Value of c is: -61

 int c = 0;

 c = a & b; // 12 = 0000 1100

 cout << "Line 1 - Value of c is : " << c << endl ;

 c = a | b; // 61 = 0011 1101

 cout << "Line 2 - Value of c is: " << c << endl ;

 c = a ^ b; // 49 = 0011 0001

 cout << "Line 3 - Value of c is: " << c << endl ;

 c = ~a; // -61 = 1100 0011

 cout << "Line 4 - Value of c is: " << c << endl; }

C++ Basic Input/Output:

C++ I/O occurs in streams, which are sequences of bytes. If bytes flows from a device like a

keyboard, a disk drive, or a network connection etc. to main memory, this is called input

operation and if bytes flow from main memory to a device likes a display screen, a printer, a

disk drive, or a network connection, etc, this is called output operation.

I/O Library Header Files:

There are following header files important to C++ programs:

Header File Function and Description

<iostream> This file defines the cin, cout, objects, which correspond to the standard input

stream, the standard output stream.

<stdio> This files defines the printf(), scanf() functions, which correspond to the standard

input, the standard output

<conio> This header declares several useful library functions for performing "console

input and output" from a program like clrscr(),getch() functions.

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 27/50

The standard output stream (cout):

The predefined object cout is an instance of ostream class. The cout object is said to be

"connected to" the standard output device, which usually is the display screen. The cout is used

in conjunction with the stream insertion operator, which is written as << which are two less than

signs as shown in the following example.

#include <iostream.h>

int main()

{

char str[] = "Hello C++";

cout <<"Value of str is : "<< str << endl;

}

When the above code is compiled and executed, it produces the following result:

Value of str is : Hello C++

The C++ compiler also determines the data type of variable to be output and selects the

appropriate stream insertion operator to display the value. The << operator is overloaded to

output data items of built-in types integer, float, double, strings and pointer values.

The insertion operator << may be used more than once in a single statement as shown above and

endl is used to add a new-line at the end of the line.

The standard input stream (cin):

The predefined object cin is an instance of istream class. The cin object is said to be attached to

the standard input device, which usually is the keyboard. The cin is used in conjunction with the

stream extraction operator, which is written as >> which are two greater than signs as shown in

the following example.

#include <iostream>

int main()

{

char name[50];

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 28/50

cout <<"Please enter your name: ";

cin >> name;

cout <<"Your name is: "<< name << endl;

}

When the above code is compiled and executed, it will prompt you to enter a name. You enter a

value and then hit enter to see the result something as follows:

Please enter your name: cplusplus

Your name is: cplusplus

The C++ compiler also determines the data type of the entered value and selects the appropriate

stream extraction operator to extract the value and store it in the given variables.

The stream extraction operator >> may be used more than once in a single statement. To request

more than one datum you can use the following:

cin >> name >> age;

This will be equivalent to the following two statements:

cin >> name;

cin >> age;

Printf and Scanf:

Printf():

Printf is a predefined function in "stdio.h" header file, by using this function, we can print the

data or user defined message on console or monitor. While working with printf(), it can take any

number of arguments but first argument must be within the double cotes (" ") and every

argument should separated with comma (,) Within the double cotes, whatever we pass, it prints

same, if any format specifies are there, then that copy the type of value. The scientific name of

the monitor is called console.

Syntax:

printf("user defined message");

Syntax:

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 29/50

prinf("Format specifers",value1,value2,..);

Example of printf() function:

int a=10;

double d=13.4;

printf("%f%d",d,a);

scanf():

scanf() is a predefined function in "stdio.h" header file. It can be used to read the input value

from the keyword.

Syntax:

scanf("format specifiers",&value1,&value2,.....);

Example of scanf function:

int a;

float b;

scanf("%d%f",&a,&b);

In the above syntax format specifier is a special character in the C language used to specify

the data type of value.

Format specifier:

Format

specifier
Type of value

%d Integer

%f Float

%lf Double

%c Single character

%s String

%u Unsigned int

%ld Long int

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 30/50

The address list represents the address of variables in which the value will be stored.

Example:

int a;

float b;

scanf("%d%f",&a,&b);

In the above example scanf() is able to read two input values (both int and float value) and

those are stored in a and b variable respectively.

Syntax :

double d=17.8;

char c;

long int l;

scanf("%c%lf%ld",&c&d&l);

Comments:

Comment in C++ Programming is similar as that of in C .Each and every language will provide

this great feature which is used to document source code. We can create more readable and eye

catching program structure using comments. We should use as many as comments in C++

program. Comment is non executable Statement in the C++.

Types of Comment in C++ Programming:

We can have two types of comment in Programming –

1. Single Line Comment - //

2. Multiple Line Comment - /* */

Single Line Comments in C++

cout<<"Hello"; //Print Hello Word

cout<<"www.c4learn.com"; //Website

cout<<"Pritesh Taral"; //Author

Multiple Line Comments in C++

%lf Long double

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 31/50

int main()

{

/* this comment

 can be considered

 as

 multiple line comment */

cout << "Hello C++ Programming";

return(0);}

Character - Input & Output:

The getchar() and putchar() Functions:

The int getchar(void) function reads the next available character from the screen and returns it

as an integer. This function reads only single character at a time. You can use this method in the

loop in case you want to read more than one character from the screen.

The int putchar(int c) function puts the passed character on the screen and returns the same

character. This function puts only single character at a time. You can use this method in the loop

in case you want to display more than one character on the screen. Check the following example

#include <stdio.h>

int main() {

int c;

printf("Enter a value :");

c = getchar();

printf("\nYou entered: ");

putchar(c);

return 0;

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 32/50

}

When the above code is compiled and executed, it waits for you to input some text. When you

enter a text and press enter, then the program proceeds and reads only a single character and

displays it as follows −

Enter a value: this is test

You entered: t

getc(), putc():

getc(), putc() functions are file handling function in C programming language which is used to

read a character from a file (getc) and display on standard output or write into a file

(putc). Please find below the description and syntax for above file handling functions.

File

operation Declaration & Description

getc()

Declaration: int getc(FILE *fp)

getc functions is used to read a character

from a file. In a C program, we read a

character asbelow.

getc (fp);

putc()

Declaration: int putc(int char, FILE *fp)

putc function is used to display a character

on standard output or is used to write into a

file. In a C program, we can use putc as

below.

putc(char,stdout);

putc(char, fp);

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 33/50

Control structures form the basic entities of a “structured programming language“. We all

know languages like C/C++ or Java are all structured programming languages. Control

structures are used to alter the flow of execution of the program. Why do we need to alter

the program flow? The reason is “decision making“! In life, we may be given with a set of

option like doing “Electronics” or “Computer science”. We do make a decision by analyzing

certain conditions (like our personal interest, scope of job opportunities etc). With the decision

we make, we alter the flow of our life’s direction. This is exactly what happens in a C/C++

program. We use control structures to make decisions and alter the direction of program flow in

one or the other path(s) available.

There are three types of control structures available in C and C++

1) Sequence structure (straight line paths)

2) Selection structure (one or many branches)

3) Loop structure (repetition of a set of activities)

All the 3 control structures and its flow of execution are represented in the flow charts given

below.

Control statements in C/C++ to implement control structures

We have to keep in mind one important fact:- all program processes can be implemented with

these 3 control structures only. That’s why I wrote “control structures are the basic entities of

a structured programming language“. To implements these “control structures” in a C/C++

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 34/50

program, the language provides ‘control statements’. So to implement a particular control

structure in a programming language, we need to learn how to use the relevant control statements

in that particular language.

The control statements are:-

 Switch

 If

 If Else

 While

 Do While

 For

As shown in the flow charts:-

 Selection structures are implemented using If , If Else and Switch statements.

 Looping structures are implemented using While, Do While and For statements.

Selection structures

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 35/50

Selection structure:

Selection structures are used to perform ‘decision making‘and then branch the program flow

based on the outcome of decision making. Selection structures are implemented in C/C++ with

If, If Else and Switch statements. If and If Else statements are 2 way branching statements where

as Switch is a multi branching statement.

Simple if statement:

The syntax format of a simple if statement is as shown below:

if (expression) // This expression is evaluated. If expression is TRUE statements inside the

braces will be executed

{

statement 1;

statement 2;

}

statement 1;// Program control is transferred directly to this line, if the expression is FALSE

statement 2;

The expression given inside the brackets after if is evaluated first. If the expression is true, then

statements inside the curly braces that follow if(expression) will be executed. If the expression is

false, the statements inside curly braces will not be executed and program control goes directly to

statements after curly braces.

Example: Output:

int main() m and n are equal

{

 int m=40,n=40;

 if (m == n)

 {

 cout<<"m and n are equal";

 }

}

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 36/50

The If Else statement:

Syntax format for If Else statement is shown below:

if(expression 1)// Expression 1 is evaluated. If TRUE, statements inside the curly braces are

executed.

{ //If FALSE program control is transferred to immedate else if statement.

statement 1;

statement 2;

}

else if(expression 2)// If expression 1 is FALSE, expression 2 is evaluated.

{

statement 1;

statement 2;

}

else if(expression 3) // If expression 2 is FALSE, expression 3 is evaluated

{

statement 1;

statement 2;

}

else // If all expressions (1, 2 and 3) are FALSE, the statements that follow this else (inside curly

braces) is executed.

{

statement 1;

statement 2;

}

other statements;

The execution begins by evaluation expression 1. If it is TRUE, then statements inside the

immediate curly braces is evaluated. If it is FALSE, program control is transferred directly to

immediate else if statement. Here expression 2 is evaluated for TRUE or FALSE. The process

continues. If all expressions inside the different if and else if statements are FALSE, then the last

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 37/50

else statement (without any expression) is executed along with the statements 1 and 2 inside the

curly braces of last else statement.

Example program to demo “If Else”:

#include <iostream.h>

int main()

{

 int m=40,n=20;

 if (m == n)

 {

 cout<<"m and n are equal";

 }

 else

 {

 cout<<"m and n are not equal";

 }return o;

 }

Switch statement:

Switch is a multi branching control statement.

Syntax for switch statement is shown below:

switch(expression) // Expression is evaluated. The outcome of the expression should be an

integer or a character constant

{

case value1: // case is the keyword used to match the integer/character constant from expression.

 //value1, value2 ... are different possible values that can come in expression

statement 1;

statement 2;

break; // break is a keyword used to break the program control from switch block.

case value2:

statement 1;

statement 2;

break;

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 38/50

default: // default is a keyword used to execute a set of statements inside switch, if no case

values match the expression value.

statement 1;

statement 2;

break;

}

Execution of switch statement begins by evaluating the expression inside the switch keyword

brackets. The expression should be an integer (1, 2, 100, 57 etc) or a character constant like ‘a’,

‘b’ etc. This expression’s value is then matched with each case values. There can be any number

of case values inside a switch statements block. If first case value is not matched with the

expression value, program control moves to next case value and so on. When a case value

matches with expression value, the statements that belong to a particular case value are

executed.

Notice that last set of lines that begins with default. The word default is a keyword in C/C++.

When used inside switch block, it is intended to execute a set of statements, if no case values

matches with expression value. So if no case values are matched with expression value, the set of

statements that follow default: will get executed.

Note: Notice the break statement used at the end of each case values set of statements. The word

break is a keyword in C++ used to break from a block of curly braces. The switch block has two

curly braces { }. The keyword break causes program control to exit from switch block.

Example program to demo working of “switch”: Output:1

#include<iostream.h> Hello user, Enter a number

void main() 3

{ INDIA

int num;

cout<<"Hello user, Enter a number"; Output:2

cin>>num; // Collects the number from user Hello user, Enter a number

switch(num) 4

{ WRONG ENTRY

case 1:

http://www.circuitstoday.com/variables-and-keywords-in-c-chapter-2
http://www.circuitstoday.com/variables-and-keywords-in-c-chapter-2

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 39/50

cout<<"UNITED STATES";

break;

case 2:

cout<<”SPAIN";

break;

case 3:

cout<<"INDIA";

default:

cout<<"WRONG ENTRY";

}

}

Note:- Switch statement is used for multiple branching. The same can be implemented using

nested “If Else” statements. But use of nested if else statements make program writing tedious

and complex. Switch makes it much easier. Compare this program with above one.

Loop structures:

A loop structure is used to execute a certain set of actions for a predefined number of times or until a

particular condition is satisfied. There are 3 control statements available in C/C++ to implement loop

structures. While, Do while and For statements.

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 40/50

The while statement:

Syntax for while loop is shown below:

while(condition)// This condition is tested for TRUE or FALSE. Statements inside curly braces are executed

as long as condition is TRUE

{

statement 1;

statement 2;

statement 3;

}

The condition is checked for TRUE first. If it is TRUE then all statements inside curly braces are

executed.Then program control comes back to check the condition has changed or to check if it is still

TRUE. The statements inside braces are executed repeatedly, as long as the condition is TRUE. When the

condition turns FALSE, program control exits from while loop.

Note:- while is an entry controlled loop. Statement inside braces are allowed to execute only if condition

inside while is TRUE.

Example program to demo working of “while loop”

An example program to collect a number from user and then print all numbers from zero to that particular

collected number is shown below. That is, if user enters 10 as input, then numbers from 0 to 10 will be

printed on screen.

Note:- The same problem is used to develop programs for do while and for loops

#include<iostream.h>

void main()

{

int num;

int count=0; // count is initialized as zero to start printing from zero.

cout<<"Hello user, Enter a number";

cin>>num; // Collects the number from user

while(count<=num) // Checks the condition - if value of count has reached value of num or not.

{ cout<<count;

count=count+1; // value of count is incremented by 1 to print next number.

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 41/50

} }

The do while statement:

Syntax for do while loop is shown below:

do

{

statement 1;

statement 2;

statement 3;

}

while(condition);

Unlike while, do while is an exit controlled loop. Here the set of statements inside braces are executed first.

The condition inside while is checked only after finishing the first time execution of statements inside

braces. If the condition is TRUE, then statements are executed again. This process continues as long as

condition is TRUE. Program control exits the loop once the condition turns FALSE.

Example program to demo working of "do while":

#include<iostream.h>

void main()

{

int num;

int count=0; // count is initialized as zero to start printing from zero.

cout<<"Hello user, Enter a number";

cin>>num; // Collects the number from user

do

{

cout<<count; // Here value of count is printed for one time intially and then only condition is checked.

count=count+1; // value of count is incremented by 1 to print next number.

}while(count<=num); }

The for statement:

Syntax of for statement is shown below:

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 42/50

for(initialization statements;test condition;iteration statements)

{

statement 1;

statement 2;

statement 3;

}

The for statement is an entry controlled loop. The difference between while and for is in the number of

repetitions. The for loop is used when an action is to be executed for a predefined number of times. The

while loop is used when the number of repetitions is not predefined.

Working of for loop:

The program control enters the for loop. At first it executes the statements given as initialization statements.

Then the condition statement is evaluated. If conditions are TRUE, then the block of statements inside curly

braces is executed. After executing curly brace statements fully, the control moves to the "iteration"

statements. After executing iteration statements, control comes back to condition statements. Condition

statements are evaluated again for TRUE or FALSE. If TRUE the curly brace statements are executed. This

process continues until the condition turns FALSE.

Note 1:- The statements given as "initialization statements" are executed only once, at the beginning of a

for loop.

Note 2: There are 3 statements given to a for loop as shown. One for initialization purpose, other for

condition testing and last one for iterating the loop. Each of these 3 statements are separated by semicolons.

Example program to demo working of "for loop":

#include<iostream.h>

void main()

{

int num,count;

cout<<"Hello user, Enter a number";

cin>>num; // Collects the number from user

for(count=0;count<=num;count++) // count is initialized to zero inside for statement. The condition is

checked and statements are executed.

{ cout<<count); // Values from 0 are printed.

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 43/50

} }

C++ Jump Statements:

The jump statements unconditionally transfer program control within a function. C++ has four statements

that perform an unconditional branch:

 break

 continue

Of these, you may use return and goto anywhere in the program whereas break and continue are used inside

smallest enclosing like loops etc. In addition to the above four, C++ provides a standard library function

exit() that helps you break out of a program. The return statement is used to return from a function.

C++ break Statement

The break statement enables a program to skip over part of the code. A break statement terminates the

smallest enclosing while, do-while, for, or switch statement. Execution resumes at the statement

immediately following the body of the terminated statement.

The following code fragment gives you an example of a break statement:

:

:

int a, b, c, i;

for(i=0; i<20; i++)

{

cout <<"Enter 2 numbers" ;

cin >> a >> b ;

if(b == 0)

break;

else

c = a/b ;

cout <<"\n Quotient ="<< c <<"\n" ;

The above code fragment inputs two numbers. If the number b is zero, the loop immediately terminated

otherwise the numbers are repeated input and their quotients are displayed.

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 44/50

If a break statement appears in a nested-loop structure, then it causes an exit from only the very loop it

appears in.

For example:

:

:

for(i=0; i<10; i++)

{

j=0;

cout <<"\n Enter character";

cin >> ch;

cout <<"\n";

for(; ;)

{

cout << ch;

j++ ;

if(j == 10)

break;

}

cout <<"\n...." ;

}

The above code fragment inputs a character and prints it 10 times. The inner loop has an infinite loop

structure but the break statement terminates it as soon as j becomes 10 and the control comes to the

statement following the inner loop which prints a line of dashes.

A break used in switch statement will affect only that switch i.e., It will terminate only the very switch it

appears in. It does not affect any loop the switch happens to be in.

C++ continue Statement:

The continue is another jump statement like the break statement as both the statements skip over a part of

the code. But the continue statement is somewhat different from break. Instead of forcing termination, it

forces the next iteration of the loop to take place, skipping any code between.

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 45/50

For the for loop, continue causes the next iteration by updating the variable and then causing the test-

expression's evaluation. For the while and do-while loops, the program control passes to the conditional

tests.

Note - The continue statement skips the rest of the loop statements and causes the next iteration of the loop.

The following code fragment gives you an example of continue statement :

:

int a, b, c, i;

for(i=0; i<20; i++)

{

cout <<"\n Enter 2 numbers" ;

cin >> a >> b ;

if(b == 0)

{

cout <<"\n The denominator cannot be zero"<<"Enter again !";

continue;

}

else

c = a/b ;

cout <<"\n Quotient ="<< c <<"\n" ;

}

Sometimes you need to abandon iteration of a loop prematurely. Both the statements break and continue can

help in that but in different situations.

Tip - Do not confuse the break (exits the block) and continue (exits the remaining statement(s)) statements.

A break statement inside a loop will abort the loop and transfer control to the statement following the loop.

A continue statement will just abandon the current iteration and let the loop start the next iteration.

C++ break and continue Statement Example:

Following example program uses two loops to perform the same thing, but replaces break statement with

continue. Have a look at one code and then the output to understand the difference between break and

continue statements:

/* C++ Jump Statements - C++ break and continue Statement */

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 46/50

#include<iostream.h>

#include<conio.h>

void main()

{

clrscr();

cout<<"The loop with \'break\' produces output as:\n";

for(int i=1; i<=10; i++)

{

if((i%3)==0)

break;

else

cout<<i<<endl;

}

cout<<"\nThe loop with \'continue\' produce output as:\n";

for(i=1; i<=10; i++)

{

if((i%3)==0)

continue;

else

cout<<i<<endl;

}

getch();

}

When the C++ program is compiling and executed, it will produce the following output:

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 47/50

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 48/50

POSSIBLE QUESTIONS

 UNIT I

 Part-A

 Online Examinations (One marks)

1. __________ is the non-structure language or object oriented language

a) Objects b) classes c) c++ d) c language

2. The ___________________is an exit-controlled loop

a) while b) do-while c) for d) switch

3. Where does the execution of the program starts?

a) user-defined function b) main function c) void function d) none

4. What are mandatory parts in function declaration?

a) return type, function name b) return type, function name, parameters

c) Both a and b d) none of the mentioned

5. Which is more effective while calling the functions?

a) Call by value b) call by reference c) call by pointer d) none

6. Which of the following correctly declares an array?

a) int array[10]; b) int array; c) array{10}; d) array array[10];

7. What is the index number of the last element of an array with 9 elements?

a) 9 b) 8 c) 0 d) Programmer-defined

8. A structure can have both variable and functions as ________

a) Objects b) classes c) members d) arguments

9. Pointer is

a) A keyword used to create variables b) A variable that stores address of an instruction

c) A variable that stores address of other variable d) All of the above

10. Which value we cannot assign to reference?

a) Integer b) floating c) unsigned d) null

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 49/50

PART B- 2 MARKS

1. Define variables?

2. How many times the following loop is executed?

int s=0,i=0;

while(i++<5)

s+=i;

3. What is Keyword?

4. Differentiate between do-while and while.

5. Define data type.

6. Write about break and continue in loops.

7. Give the difference between procedure oriented and object oriented programming.

8. Give the steps to compile and execute a C program.

9. With syntax and example explain all the different forms of if statement.

10. List the primary data types and give examples for each.

11. What is for loop? Give syntax. Explain it with example.

12. Explain in detail about various types of operators. Provide examples for each.

 PART C- 6 MARKS

1. Describe in detail about conditional statements in c++ with example program.

2. Explain with an example (i) Operators (ii) formatted and console I/O.

3. Explain looping statements with example program?

4. Describe about Constants and Keywords with example.

5. Explain While and do-While statement with example program?

6. What are the different ways of writing comment lines in C++?

7. Discuss the role of formatted console I/O operations with example.

8. What is operator? Explain any two operators with example.

Introduction to C and C++ 2017-2020

Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 50/50

9. Write note on i) stdio.h ii) iostream.h iii) conio.h

10. Give the use of comments in C program.

11. What is while loop? Give syntax. Explain it with an example program.

12. With syntax and example explain the character Input/Output methods with example.

13. What are the functions used in Formatted I/O? Explain in detail with examples.

14. Evaluate the expression using operator precedence, C=((10+5)*(6/3)/(10-5)).

15. What is the use of switch statement? Give its syntax and explain with an example.

16. Write a program to calculate factorial of a given number.

17. Write a program print the fibonacci series.

SUBJECT: PROGRAMMING FUNDAMENTALS USING

C/C++

UNIT-I

S.No
 Questions OPT1 OPT2 OPT3 OPT4 Answer

1

The decomposition of a problem into a number of

entities called___________
 objects classes methods messages objects

2

OOPS follows______________ approach in program

design

 bottom-up top-down middle top bottom-up

3 Objects take up ______________in the memory

 space address memory bytes space

4

 _________________is a collection of objects of

similar type

 Objects methods classes messages classes

5

We can create ____________of objects belonging to

that class

1 2 10
 any

number
 any number

6

The wrapping up of data & function into a single unit is

known as _______________

 Polymorphism

encapsulation
 functions

 data

members
 encapsulation

7

__________________refers to the act of representing

essential features without including the background

details or explanations

 encapsulation inheritance
 Dynamic

binding

Abstractio

n

 Abstraction

(1 mark questions)

SUBJECT CODE: 17CSU101

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Part -A Online Examinations

COIMBATORE - 21

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 CLASS : I B.Sc COMPUTER SCIENCE

BATCH : 2017-2020

8 Attributes are sometimes called______________

 data members methods messages functions data members

9

The functions operate on the datas are

called______________

 methods
 data

members
 messages classes methods

10

______________is the process by which objects of one

class acquire the properties of objects of another class

 polymorphism

encapsulation

 data

binding

Inheritance
 Inheritance

11

__________________means the ability to take more

than one form

 polymorphism

encapsulation

 data

binding
 none polymorphism

12

The process of making an operator to exhibit different

behaviors in different instances is known as

 function

overloading

 operator

overloading

 method

overloading

 message

overloadin

g

 operator

overloading

13

Single function name can be used to handle different

types of tasks is known as ___________

 function

overloading

 operator

overloading

polymorphi

sm

encapsulat

ion

 operator

overloading

14

_______________means that the code associated with

a given

 procedure call is not known until the time of the call

 late binding
 Dynamic

binding

 Static

binding
 none

 Dynamic

binding

15 Objects can be___________

 created
 created &

destroyed

permanent

temporary

 created &

destroyed

16

______________helps the programmer to build secure

programs

 Dynamic

binding
 Data hiding

 Data

building

 message

passing
 Data hiding

17

_________________techniques for communication

between objects makes the interface descriptions with

external systems much simpler

 message

passing

 Data

binding

Encapsulati

on

 Data

passing

 message

passing

18 Variables are declared in_________________

 only in main()
 anywhere in

the scope

 before the

main() only

 only at

the

beginning

 anywhere in

the scope

19 How many sections in C++?

2 4 1 5 4

20

____________________refers to permit initialization

of the variables at run time

 Dynamic

initialization

 Dynamic

binding

 Data

binding

 Dynamic

message

 Dynamic

initialization

21

_____________________provides an alias for a

previously defined variable

 static variable
 Dynamic

variable

 reference

variable

 address

of an

variable

 reference

variable

22

Reference variable must be initialized at the time of

 declaration assigning

initializatio

n

 running declaration

23 The ___________________is an exit-controlled loop

 while do-while for switch do-while

24 The ________________is an entry-entrolled loop

 while do-while for switch for

25 ____________________is an entry-controlled one

 while do-while for switch while

26

Error checking does not occur during compilation if we

are using_______________

 functions macros

 pre-

defined

functions

 operators macros

27

____________________is a function that is expanded

in line when it is invoked

 macros
 inline

function

 predefined

function

preprocess

or macros

 inline function

28

________________refers to the use of same thing for

different purposes

 overloading
 Dynamic

binding

 message

loading
 none overloading

29

_________________are extensively used for handling

class objects

 overloaded

functions
 methods objects messages

 overloaded

functions

30

____________________is used to reduce the number

of functions to be defined

 default

arguments
 methods objects classes

 default

arguments

31 Control structures are said to be_______________

 programs
 structured

programs
 statements

 case

statements

 structured

programs

32

________________________is a decision making

statement

 for jump break if if

33

The bool type data occupies ___________byte in

memory

 two one three four one

34 if-else-if ladder sometimes called________________

 if-else-if nested
 nested-if-

else-if

 if-else-if-

staircase
 if-else-if

 if-else-if-

staircase

35

How many statements are used to perform an

unconditional transfer?

2 3 4 5 4

36 The label must start with___________

 character __ number

alphanume

ric

 character

37

 ________________statement is frequently used to

terminate the loop in the switch case()

 jump goto continue break break

38

 ______________statement does not require any

condition

 for if goto while goto

39

 ____________statement is used to transfer the control

t pass on

 t the beginning of the block/loop

 break jump goto continue continue

40

________________statement is a multiway branch

statement

 for switch if while switch

41

Every case statement in switch case statement

terminates with

 ; : , >> :

42 How many types of loop control structure exist in c++?

1 3 2 4 3

43

The expression are separated by ____________in the

for loop

 : ; , ++ ;

44 Test is performed at the ____________of the for loop.

 top middle end
 program

terminates
 top

45

Condition is checked at the ____________of the loop

in the do-while statement.

 beginning end middle
 program

terminates
 end

46 Every expression always return____________

 0 or 1 1 or 2 -1 or 0 none 0 or 1

47 Which of the following loop statement uses 2 keyword?

 do-while loop for loop if loop
 while

loop
 do-while loop

48 The meaning of if(1) is________________

 always false always true
 both(a) &

(b)
 none always true

49 The for loop comprises of ______________actions

2 3 1 4 3

50

_____________statement present at the bottom of the

switch case statements

 default case label none default

51

__________________is an assignment statement that is

used

 to set the loop control variables

 Increment declaring

Initializatio

n

decrement
 Initialization

52

Which of the following control expressions are valid

for an of statement ?

 an integer

expression

 a Boolean

expression

 either A

or B

 Neither A

nor B

 a Boolean

expression

53

If the data is received from the input devices in

sequence then it is called________. Source stream
 Object

stream

Destination

stream

 Input

stream.
 Source stream

54

When the data is passed to the output devices it is

called_____ Source stream
 Object

stream

Destination

stream

 Input

stream.

 Destination

stream

55

The C++ have a number of stream classes that are used

to work with _________ operations. Console I/O
 Console and

file

 formatted

console

unformatte

d console

 Console and

file

56

The data accepted with default setting by I/O function

of the language is known as----- Formatted Unformatted

Argumente

d

files Unformatted

57

 _________ is used as the input stream to read data.

 Cout Printf Cin Scanf. Cin

58

cin and cout are ________ for input and output of data.
 user defined

stream

 system

defined

stream

 Pre

defined

stream

stream
 Pre defined

stream

59

.The data obtained or represented with some

manipulators are called ______. formatted data
 unformatted

data

 extracted

data
 None. formatted data

60

 The output formats can be controlled with

manipulators having the header file as iostream.h conio.h stdlib.h iomanip.h iomanip.h

61

The _____ and ______ are derived classes from ios

based class.
 istream and

ostream

 source and

destination

stream

 iostream

and source

stream

 None.
 istream and

ostream

62

 The manipulator << endl is equivalent to____

 ‘\t’ ’\r’ ’\n’ ’\b’ ’\n’

63 While loop is _______ statement.

entry controlled exit controlledbranching none entry controlled

64 Do.. While loop is _____ statement.

entry controlled exit controlledbranching none exit controlled

65 For loop is an _______ statement.

entry controlled exit controlledbranching none entry controlled

66 ______ statement causes loop to be continued with next iteration after skipping any statements between them.

continue goto break exit continue

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 1/40

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2017 onwards)

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

SUBJECT : PROGRAMMING FUNDAMENTALS USING C/C++

SEMESTER : I L T P C

SUBJECT CODE: 17CSU101 CLASS : I B.Sc.CS 4 0 0 4

UNIT-II

Functions and Arrays: Utility of functions, Call by Value, Call by Reference, Functions

returning value, Void functions, Inline Functions, Return data type of functions, Functions

parameters, Differentiating between Declaration and Definition of Functions, Command Line

Arguments/Parameters in Functions, Functions with variable number of Arguments.

Creating and Using One Dimensional Arrays (Declaring and Defining an Array, Initializing an

Array, Accessing individual elements in an Array, Manipulating array elements using loops),

Use Various types of arrays (integer, float and character arrays / Strings) Two-dimensional

Arrays (Declaring, Defining and Initializing Two Dimensional Array, Working with Rows and

Columns), Introduction to Multi-dimensional arrays.

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 2/40

Suggested Readings:

1. Herbtz Schildt, 2003,C++: The Complete Reference, 4
th

 Edition, McGraw Hill.

2. Bjarne Stroustrup, 2013, The C++ Programming Language, 4
th

 Edition, Addison-Wesley.

3. Bjarne Stroustroup, 2014, Programming - Principles and Practice using C++, 2
nd

 Edition,

 Addison-Wesley.

4. E Balaguruswamy, 2008,Object Oriented Programming with C++, 2
nd

 Edition ,Tata McGraw-

 Hill Education.

5. Paul Deitel, Harvey Deitel, 2011,C++ How to Program, 8
th

 Edition, Prentice Hall.

6. John R. Hubbard, 2000, Programming with C++, 2
nd

 Edition ,Schaum's Series.

7. Stefan Bjornander, 2016,C++ Windows Programming, Published by Packt Publishing Ltd.

8. Scott Meyers, 2005, Effective C++, 3
rd

 Edition, Published by Addison-Wesley.

9. Harry, H. Chaudhary, 2014 ,Head First C++ Programming: The Definitive Beginner's

 Guide, First Create space Inc, O-D Publishing, LLC USA.

10. Walter Savitch, 2007,Problem Solving with C++, Pearson Education.

11. Stanley B. Lippman, JoseeLajoie, Barbara E. Moo, 2012, C++ Primer, 5
th

 Edition, Published

 by Addison-Wesley.

12. Debasish Jana , 2014,C++ And Object-Oriented Programming Paradigm,Published by

 PHI Learning Pvt. Ltd.

13. Richard L. Stegman, 2016, Focus on Object-oriented Programming With C++,6
th

 Edition

 ,CreateSpace Independent Publishing Platform,.

14. Andrew Koeni, Barbara, E. Moo,2000,Accelerated using C++, Published by Addison-

 Wesley .

WEB SITES

1. http://www.cs.cf.ac.uk/Dave/C/CE.html

2. http://www2.its.strath.ac.uk/courses/c/

3. http://www.iu.hio.no/~mark/CTutorial/CTutorial.html

4. http://www.cplusplus.com/doc/tutorial/

5. http://www.cplusplus.com/

6. http://www.cppreference.com/

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 3/40

UNIT 2

Functions

Functions allow to structure programs in segments of code to perform individual tasks.

In C++, a function is a group of statements that is given a name, and which can be called from

some point of the program. The most common syntax to define a function is:

type name (parameter1, parameter2, ...) { statements }

Where:

- type is the type of the value returned by the function.

- name is the identifier by which the function can be called.

- parameters (as many as needed): Each parameter consists of a type followed by an identifier,

with each parameter being separated from the next by a comma. Each parameter looks very

much like a regular variable declaration (for example:int x), and in fact acts within the function

as a regular variable which is local to the function. The purpose of parameters is to allow

passing arguments to the function from the location where it is called from.

- statements is the function's body. It is a block of statements surrounded by braces { } that

specify what the function actually does.

Call by value

The call by value method of passing arguments to a function copies the actual value of an

argument into the formal parameter of the function. In this case, changes made to the parameter

inside the function have no effect on the argument.

By default, C++ uses call by value to pass arguments. In general, this means that code within a

function cannot alter the arguments used to call the function. Consider the

function swap() definition as follows.

// function definition to swap the values.

void swap(int x, int y)

{

int temp;

 temp = x; /* save the value of x */

 x = y; /* put y into x */

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 4/40

 y = temp; /* put x into y */

 return;

}

Now, let us call the function swap() by passing actual values as in the following example:

#include <iostream>

using namespace std;

// function declaration

void swap(int x, int y);

int main ()

{

 // local variable declaration:

int a = 100;

int b = 200;

cout<< "Before swap, value of a :" << a <<endl;

cout<< "Before swap, value of b :" << b <<endl;

 // calling a function to swap the values.

swap(a, b);

cout<< "After swap, value of a :" << a <<endl;

cout<< "After swap, value of b :" << b <<endl;

 return 0;

}

When the above code is put together in a file, compiled and executed, it produces the following

result:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

Which shows that there is no change in the values though they had been changed inside the

function.

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 5/40

Call by reference

The call by reference method of passing arguments to a function copies the reference of an

argument into the formal parameter. Inside the function, the reference is used to access the

actual argument used in the call. This means that changes made to the parameter affect the

passed argument.

To pass the value by reference, argument reference is passed to the functions just like any other

value. So accordingly you need to declare the function parameters as reference types as in the

following function swap(), which exchanges the values of the two integer variables pointed to

by its arguments.

// function definition to swap the values.

void swap(int&x, int&y)

{

int temp;

 temp = x; /* save the value at address x */

 x = y; /* put y into x */

 y = temp; /* put x into y */

 return;

}

For now, let us call the function swap() by passing values by reference as in the following

example:

#include <iostream>

using namespace std;

// function declaration

void swap(int&x, int&y);

int main ()

{

 // local variable declaration:

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 6/40

int a = 100;

int b = 200;

cout<< "Before swap, value of a :" << a <<endl;

cout<< "Before swap, value of b :" << b <<endl;

 /* calling a function to swap the values using variable reference.*/

swap(a, b);

cout<< "After swap, value of a :" << a <<endl;

cout<< "After swap, value of b :" << b <<endl;

 return 0;

}

When the above code is put together in a file, compiled and executed, it produces the following

result:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :200

After swap, value of b :100

C++ Inline Functions

C++ inline function is powerful concept that is commonly used with classes. If a function is

inline, the compiler places a copy of the code of that function at each point where the function is

called at compile time.

Any change to an inline function could require all clients of the function to be recompiled

because compiler would need to replace all the code once again otherwise it will continue with

old functionality.

To inline a function, place the keyword inline before the function name and define the function

before any calls are made to the function. The compiler can ignore the inline qualifier in case

defined function is more than a line.

A function definition in a class definition is an inline function definition, even without the use

of the inline specifier.

Following is an example, which makes use of inline function to return max of two numbers:

#include <iostream>

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 7/40

using namespace std;

inline intMax(int x, int y)

{

 return (x > y)? x : y;

}

// Main function for the program

intmain()

{

cout<< "Max (20,10): " <<Max(20,10) <<endl;

cout<< "Max (0,200): " <<Max(0,200) <<endl;

cout<< "Max (100,1010): " <<Max(100,1010) <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Max (20,10): 20

Max (0,200): 200

Max (100,1010): 1010

Let's have a look at an example:

// function example

#include <iostream>

using namespace std;

int addition (int a, int b)

{

int r;

 r=a+b;

 return r;

}

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 8/40

int main ()

{

int z;

 z = addition (5,3);

cout<< "The result is " << z;

}

The result is 8

This program is divided in two functions: addition and main. Remember that no matter the order

in which they are defined, a C++ program always starts by calling main. In fact, main is the only

function called automatically, and the code in any other function is only executed if its function

is called from main (directly or indirectly).

In the example above, main begins by declaring the variable z of type int, and right after that, it

performs the first function call: it calls addition. The call to a function follows a structure very

similar to its declaration. In the example above, the call to addition can be compared to its

definition just a few lines earlier:

The parameters in the function declaration have a clear correspondence to the arguments passed

in the function call. The call passes two values, 5 and 3, to the function; these correspond to the

parameters a and b, declared for functionaddition.

At the point at which the function is called from within main, the control is passed to

function addition: here, execution of main is stopped, and will only resume once

the addition function ends. At the moment of the function call, the value of both arguments

(5 and 3) are copied to the local variables int a and int b within the function.

Then, inside addition, another local variable is declared (int r), and by means of the

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 9/40

expression r=a+b, the result of aplus b is assigned to r; which, for this case, where a is 5 and b is

3, means that 8 is assigned to r.

The final statement within the function:

 return r;

Ends function addition, and returns the control back to the point where the function was called;

in this case: to functionmain. At this precise moment, the program resumes its course

on main returning exactly at the same point at which it was interrupted by the call to addition.

But additionally, because addition has a return type, the call is evaluated as having a value, and

this value is the value specified in the return statement that ended addition: in this particular case,

the value of the local variable r, which at the moment of the return statement had a value of 8.

Therefore, the call to addition is an expression with the value returned by the function, and in

this case, that value, 8, is assigned to z. It is as if the entire function call (addition(5,3)) was

replaced by the value it returns (i.e., 8).

Then main simply prints this value by calling:

 cout<< "The result is " << z;

A function can actually be called multiple times within a program, and its argument is naturally

not limited just to literals:

// function example

#include <iostream>

using namespace std;

int subtraction (int a, int b)

{

int r;

The first result is 5

The second result is 5

The third result is 2

The fourth result is 6

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 10/40

 r=a-b;

 return r;

}

int main ()

{

int x=5, y=3, z;

 z = subtraction (7,2);

cout<< "The first result is " << z << '\n';

cout<< "The second result is " << subtraction (7,2) << '\n';

cout<< "The third result is " << subtraction (x,y) << '\n';

 z= 4 + subtraction (x,y);

cout<< "The fourth result is " << z << '\n';

}

Similar to the addition function in the previous example, this example defines

a subtract function, that simply returns the difference between its two parameters. This

time, main calls this function several times, demonstrating more possible ways in which a

function can be called.

Let's examine each of these calls, bearing in mind that each function call is itself an expression

that is evaluated as the value it returns. Again, you can think of it as if the function call was itself

replaced by the returned value:

z = subtraction (7,2);

cout<< "The first result is " << z;

If we replace the function call by the value it returns (i.e., 5), we would have:

z = 5;

cout<< "The first result is " << z;

With the same procedure, we could interpret:

 cout<< "The second result is " << subtraction (7,2);

as:

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 11/40

 cout<< "The second result is " << 5;

since 5 is the value returned by subtraction (7,2).

In the case of:

 cout<< "The third result is " << subtraction (x,y);

The arguments passed to subtraction are variables instead of literals. That is also valid, and

works fine. The function is called with the values x and y have at the moment of the call: 5 and 3

respectively, returning 2 as result.

The fourth call is again similar:

 z = 4 + subtraction (x,y);

The only addition being that now the function call is also an operand of an addition operation.

Again, the result is the same as if the function call was replaced by its result: 6. Note, that thanks

to the commutative property of additions, the above can also be written as:

 z = subtraction (x,y) + 4;

With exactly the same result. Note also that the semicolon does not necessarily go after the

function call, but, as always, at the end of the whole statement. Again, the logic behind may be

easily seen again by replacing the function calls by their returned value:

z = 4 + 2; // same as z = 4 + subtraction (x,y);

z = 2 + 4; // same as z = subtraction (x,y) + 4;

Functions with no type. The use of void

The syntax shown above for functions:

type name (argument1, argument2 ...) { statements }

Requires the declaration to begin with a type. This is the type of the value returned by the

function. But what if the function does not need to return a value? In this case, the type to be

used is void, which is a special type to represent the absence of value. For example, a function

that simply prints a message may not need to return any value:

// void function example

#include <iostream>

using namespace std;

I'm a function!

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 12/40

void printmessage ()

{

cout<< "I'm a function!";

}

int main ()

{

printmessage ();

}

void can also be used in the function's parameter list to explicitly specify that the function takes

no actual parameters when called. For example, printmessage could have been declared as:

void printmessage (void)

{

cout<< "I'm a function!";

}

In C++, an empty parameter list can be used instead of void with same meaning, but the use

of void in the argument list was popularized by the C language, where this is a requirement.

Something that in no case is optional are the parentheses that follow the function name, neither

in its declaration nor when calling it. And even when the function takes no parameters, at least an

empty pair of parentheses shall always be appended to the function name. See

how printmessage was called in an earlier example:

 printmessage ();

The parentheses are what differentiate functions from other kinds of declarations or statements.

The following would not call the function:

 printmessage;

The return value of main

If the execution of main ends normally without encountering a return statement the compiler

assumes the function ends with an implicit return statement:

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 13/40

 return 0;

Note that this only applies to function main for historical reasons. All other functions with a

return type shall end with a proper return statement that includes a return value, even if this is

never used.

When main returns zero (either implicitly or explicitly), it is interpreted by the environment as

that the program ended successfully. Other values may be returned by main, and some

environments give access to that value to the caller in some way, although this behavior is not

required nor necessarily portable between platforms. The values for main that are guaranteed to

be interpreted in the same way on all platforms are:

value description

0 The program was successful

EXIT_SUCCESS

The program was successful (same as above).

This value is defined in header <cstdlib>.

EXIT_FAILURE

The program failed.

This value is defined in header <cstdlib>.

Because the implicit return 0; statement for main is a tricky exception, some authors consider it

good practice to explicitly write the statement.

Command-line parameters are passed to a program at runt-time by the operating system when the

program is requested by another program, such as a command interpreter ("shell")

like cmd.exe on Windows or bash on Linux and OS X. The user types a command and the shell

calls the operating system to run the program.

The uses for command-line parameters are various, but the main two are:

1. Modifying program behaviour - command-line parameters can be used to tell a program

how you expect it to behave; for example, some programs have a -q (quiet) option to tell

them not to output as much text.

2. Having a program run without user interaction - this is especially useful for programs that

are called from scripts or other programs.

http://www.cplusplus.com/EXIT_SUCCESS
http://www.cplusplus.com/%3Ccstdlib%3E
http://www.cplusplus.com/EXIT_FAILURE
http://www.cplusplus.com/%3Ccstdlib%3E

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 14/40

The command-line

Adding the ability to parse command-line parameters to a program is very easy. Every C and

C++ program has a mainfunction. In a program without the capability to parse its command-

line, main is usually defined like this:

 int main() Edit & Run

To see the command-line we must add two parameters to main which are, by convention,

named argc (argument count) and argv (argument vector [here, vector refers to an array, not a

C++ or Euclidean vector]). argc has the type int andargv usually has the type char** or char*

[] (see below). main now looks like this:

 int main(intargc, char* argv[]) // or char** argv Edit & Run

argc tells you how many command-line arguments there were. It is always at least 1, because the

first string in argv(argv[0]) is the command used to invoke the program. argv contains the actual

command-line arguments as an array of strings, the first of which (as we have already

discovered) is the program's name. Try this example:

#include <iostream>

intmain(intargc, char* argv[])

{

std::cout<<argv[0] <<std::endl;

 return 0;

}

This program will print the name of the command you used to run it: if you called the executable

"a.exe" (Windows) or "a.out" (UNIX) it would likely print "a.exe" or "./a.out" (if you ran it from

the shell) respectively.

Earlier it was mentioned that argc contains the number of arguments passed to the program. This

is useful as it can tell us when the user hasn't passed the correct number of arguments, and we

can then inform the user of how to run our program:

http://www.cplusplus.com/articles/DEN36Up4/
http://www.cplusplus.com/articles/DEN36Up4/

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 15/40

#include <iostream>

intmain(intargc, char* argv[])

{

 // Check the number of parameters

 if (argc< 2) {

 // Tell the user how to run the program

std::cerr<< "Usage: " <<argv[0] << " NAME" <<std::endl;

 /* "Usage messages" are a conventional way of telling the user

 * how to run a program if they enter the command incorrectly.

 */

 return 1;

 }

 // Print the user's name:

std::cout<<argv[0] << "says hello, " <<argv[1] << "!" <<std::endl;

 return 0;

}

Example output (no arguments passed):

Usage: a.exe <NAME>

Example output (one argument passed):

a.exe says hello, Chris!

Arguments and Parameters

Arguments and parameters are strings passed to your program to give it information. A program

for moving files, for example, may be invoked with two arguments - the source file and the

destination: move /path/to/source /path/to/destination (note: on Windows these paths would use

backslashes instead [and would probably have a drive prefix, like C:], In this example, the

program would look something like this:

#include <iostream>

intmain(intargc, char* argv[])

{

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 16/40

 if (argc< 3) { // We expect 3 arguments: the program name, the source path and the

destination path

std::cerr<< "Usage: " <<argv[0] << "SOURCE DESTINATION" <<std::endl;

 return 1;

 }

 return move(argv[1], argv[2]); // Implementation of the move function is platform dependent

}

If we wanted to allow the use of multiple source paths we could use a loop and a std::vector:

#include <iostream>

#include <string>

#include <vector>

intmain(intargc, char* argv[])

{

 if (argc< 3) { // We expect 3 arguments: the program name, the source path and the

destination path

std::cerr<< "Usage: " <<argv[0] << "SOURCE DESTINATION" <<std::endl;

 return 1;

 }

std::vector <std::string> sources;

std::string destination;

 for (inti = 1; i<argc; ++i) { // Remember argv[0] is the path to the program, we want from

argv[1] onwards

 if (i + 1 <argc)

sources.push_back(argv[i]); // Add all but the last argument to the vector.

 else

 destination = argv[i];

 }

 return move(sources, destination);

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 17/40

Arguments may be passed as values to options. An option usually starts with a single hyphen (-)

for a "short option" or a double hyphen (--) for a "long option" on UNIX, or a forward slash on

Windows. Hyphens (single and double) will be used in this concept. Continuing the example of

the move program, the program could use a -d/--destination option to tell it which path is the

source and which is the destination, as in move -d /path/to/destination /path/to/source and move -

-destination /path/to/destination /path/to/source. Options are always right-associative, meaning

that the argument to an option is always the text directly to the right of it.

Passing variable number of arguments

When a function is declared, the data-type and number of the passed arguments are usually fixed

at compile time. But sometimes we require a function that is able to accept a variable number of

arguments. The data-type and/or number of the passed arguments are provided at the run-time.

 The secret to passing variable number and type of arguments is the stdarg library. It

provides the va_list data-type, which can contain the list of arguments passed into a function.

The stdarg library also provides several macros : var_arg, va_start, and va_end that are useful for

manipulating the argument-list.

Functions of the macros :

(1) va_start is a macro used to initialize the argument list so that we can begin reading arguments

from it. It takes two arguments : (a) the va_list object which stores the passed arguments, and (b)

the last named argument, after which the number of arguments is variable.

(2) va_arg is the macro used to read an argument from the list. It takes two parameters: (a)

the va_list object we created, and (b) a data type. va_arg returns the next argument as this type.

(3) va_end is a macro that cleans up our va_list object when we're done with it.

Example 1 : A function accepts variable arguments of known data-type

(A simple average function, that takes variable number of arguments)

#include <stdio.h>

#include <stdarg.h>

float avg(int Count, ...)

{

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 18/40

va_list Numbers;

va_start(Numbers, Count);

int Sum = 0;

for(inti = 0; i< Count; ++i)

 Sum += va_arg(Numbers, int);

va_end(Numbers);

 return (Sum/Count);

}

intmain()

{

 float Average = avg(10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9);

printf("Average of first 10 whole numbers : %f\n", Average);

 return 0;

}

Output of the above code is :

Average of first 10 whole numbers : 4.000000

Example 2 : A function accepts variable arguments of unknown data-type

(A simple print function, that takes variable number and variable type of arguments)

Code:

#include <stdio.h>

#include <stdarg.h>

float Print(const char* Format, ...)

{

va_list Arguments;

va_start(Arguments, Format);

 double FArg;

intIArg;

for(inti = 0; Format[i] != '\0'; ++i)

 {

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 19/40

 if (Format[i] == 'f')

 {

FArg=va_arg(Arguments, double);

printf("Caught a float : %.3lf\n",FArg);

 }

 else if (Format[i] == 'i')

 {

IArg=va_arg(Arguments, int);

printf("Caught an integer : %d\n",IArg);

 }

 }

va_end(Arguments);

}

intmain()

{

Print("This is funny, isn't it ?", 1, 2, 12.1200, 3, 4);

 return 0;

}

Output of the above code is :

Caught an integer : 1

Caught an integer : 2

Caught a float : 12.120

Caught an integer : 3

Caught an integer : 4

Arrays

An array is a series of elements of the same type placed in contiguous memory locations that can

be individually referenced by adding an index to a unique identifier.

That means that, for example, five values of type int can be declared as an array without having

to declare 5 different variables (each with its own identifier). Instead, using an array, the

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 20/40

five int values are stored in contiguous memory locations, and all five can be accessed using the

same identifier, with the proper index.

For example, an array containing 5 integer values of type int called foo could be represented as:

where each blank panel represents an element of the array. In this case, these are values of

type int. These elements are numbered from 0 to 4, being 0 the first and 4 the last; In C++, the

first element in an array is always numbered with a zero (not a one), no matter its length.

Like a regular variable, an array must be declared before it is used. A typical declaration for an

array in C++ is:

type name [elements];

where type is a valid type (such as int, float...), name is a valid identifier and the elements field

(which is always enclosed in square brackets []), specifies the length of the array in terms of the

number of elements.

Therefore, the foo array, with five elements of type int, can be declared as:

 int foo [5];

NOTE: The elements field within square brackets [], representing the number of elements in the

array, must be aconstant expression, since arrays are blocks of static memory whose size must be

determined at compile time, before the program runs.

Initializing arrays

By default, regular arrays of local scope (for example, those declared within a function) are left

uninitialized. This means that none of its elements are set to any particular value; their contents

are undetermined at the point the array is declared.

But the elements in an array can be explicitly initialized to specific values when it is declared, by

enclosing those initial values in braces {}. For example:

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 21/40

 int foo [5] = { 16, 2, 77, 40, 12071 };

This statement declares an array that can be represented like this:

The number of values between braces {} shall not be greater than the number of elements in the

array. For example, in the example above, foo was declared having 5 elements (as specified by

the number enclosed in square brackets, []), and the braces {} contained exactly 5 values, one for

each element. If declared with less, the remaining elements are set to their default values (which

for fundamental types, means they are filled with zeroes). For example:

 int bar [5] = { 10, 20, 30 };

Will create an array like this:

The initializer can even have no values, just the braces:

 intbaz [5] = { };

This creates an array of five int values, each initialized with a value of zero:

When an initialization of values is provided for an array, C++ allows the possibility of leaving

the square brackets empty[]. In this case, the compiler will assume automatically a size for the

array that matches the number of values included between the braces {}:

 int foo [] = { 16, 2, 77, 40, 12071 };

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 22/40

After this declaration, array foo would be 5 int long, since we have provided 5 initialization

values.

Finally, the evolution of C++ has led to the adoption of universal initialization also for arrays.

Therefore, there is no longer need for the equal sign between the declaration and the initializer.

Both these statements are equivalent:

intfoo[] = { 10, 20, 30 };

int foo[] { 10, 20, 30 };

Static arrays, and those declared directly in a namespace (outside any function), are always

initialized. If no explicit initializer is specified, all the elements are default-initialized (with

zeroes, for fundamental types).

Accessing the values of an array

The values of any of the elements in an array can be accessed just like the value of a regular

variable of the same type. The syntax is:

name[index]

Following the previous examples in which foo had 5 elements and each of those elements was of

type int, the name which can be used to refer to each element is the following:

For example, the following statement stores the value 75 in the third element of foo:

 foo [2] = 75;

and, for example, the following copies the value of the third element of foo to a variable called x:

 x = foo[2];

Therefore, the expression foo[2] is itself a variable of type int.

Notice that the third element of foo is specified foo[2], since the first one is foo[0], the second

one is foo[1], and therefore, the third one is foo[2]. By this same reason, its last element

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 23/40

is foo[4]. Therefore, if we write foo[5], we would be accessing the sixth element of foo, and

therefore actually exceeding the size of the array.

In C++, it is syntactically correct to exceed the valid range of indices for an array. This can

create problems, since accessing out-of-range elements do not cause errors on compilation, but

can cause errors on runtime.

At this point, it is important to be able to clearly distinguish between the two uses that

brackets [] have related to arrays. They perform two different tasks: one is to specify the size of

arrays when they are declared; and the second one is to specify indices for concrete array

elements when they are accessed. Do not confuse these two possible uses of brackets []with

arrays.

intfoo[5]; // declaration of a new array

foo[2] = 75; // access to an element of the array.

The main difference is that the declaration is preceded by the type of the elements, while the

access is not.

Some other valid operations with arrays:

foo[0] = a;

foo[a] = 75;

b = foo [a+2];

foo[foo[a]] = foo[2] + 5;

For example:

// arrays example

#include <iostream>

using namespace std;

int foo [] = {16, 2, 77, 40, 12071};

int n, result=0;

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 24/40

int main ()

{

 for (n=0 ; n<5 ; ++n)

 {

 result += foo[n];

 }

cout<< result;

 return 0;

}

Multidimensional arrays

Multidimensional arrays can be described as "arrays of arrays". For example, a bidimensional

array can be imagined as a two-dimensional table made of elements, all of them of a same

uniform data type.

jimmy represents a bidimensional array of 3 per 5 elements of type int. The C++ syntax for this

is:

 int jimmy [3][5];

and, for example, the way to reference the second element vertically and fourth horizontally in

an expression would be:

 jimmy[1][3]

(remember that array indices always begin with zero).

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 25/40

Multidimensional arrays are not limited to two indices (i.e., two dimensions). They can contain

as many indices as needed. Although be careful: the amount of memory needed for an array

increases exponentially with each dimension. For example:

 char century [100][365][24][60][60];

declares an array with an element of type char for each second in a century. This amounts to

more than 3 billion char! So this declaration would consume more than 3 gigabytes of memory!

At the end, multidimensional arrays are just an abstraction for programmers, since the same

results can be achieved with a simple array, by multiplying its indices:

int jimmy [3][5]; // is equivalent to

int jimmy [15]; // (3 * 5 = 15)

With the only difference that with multidimensional arrays, the compiler automatically

remembers the depth of each imaginary dimension. The following two pieces of code produce

the exact same result, but one uses a bidimensional array while the other uses a simple array:

multidimensional array pseudo-multidimensional array

#define WIDTH 5

#define HEIGHT 3

int jimmy [HEIGHT][WIDTH];

intn,m;

int main ()

{

 for (n=0; n<HEIGHT; n++)

 for (m=0; m<WIDTH; m++)

 {

 jimmy[n][m]=(n+1)*(m+1);

 }

}

#define WIDTH 5

#define HEIGHT 3

int jimmy [HEIGHT * WIDTH];

intn,m;

int main ()

{

 for (n=0; n<HEIGHT; n++)

 for (m=0; m<WIDTH; m++)

 {

 jimmy[n*WIDTH+m]=(n+1)*(m+1);

 }

}

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 26/40

None of the two code snippets above produce any output on the screen, but both assign values to

the memory block called jimmy in the following way:

Note that the code uses defined constants for the width and height, instead of using directly their

numerical values. This gives the code a better readability, and allows changes in the code to be

made easily in one place.

Arrays as parameters

At some point, we may need to pass an array to a function as a parameter. In C++, it is not

possible to pass the entire block of memory represented by an array to a function directly as an

argument. But what can be passed instead is its address. In practice, this has almost the same

effect, and it is a much faster and more efficient operation.

To accept an array as parameter for a function, the parameters can be declared as the array type,

but with empty brackets, omitting the actual size of the array. For example:

 void procedure (intarg[])

This function accepts a parameter of type "array of int" called arg. In order to pass to this

function an array declared as:

 intmyarray [40];

 it would be enough to write a call like this:

 procedure (myarray);

Here you have a complete example:

// arrays as parameters

#include <iostream>

5 10 15

2 4 6 8 10

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 27/40

using namespace std;

void printarray (intarg[], int length) {

 for (int n=0; n<length; ++n)

cout<<arg[n] << ' ';

cout<< '\n';

}

int main ()

{

intfirstarray[] = {5, 10, 15};

intsecondarray[] = {2, 4, 6, 8, 10};

printarray (firstarray,3);

printarray (secondarray,5);

}

In the code above, the first parameter (intarg[]) accepts any array whose elements are of type int,

whatever its length. For that reason, we have included a second parameter that tells the function

the length of each array that we pass to it as its first parameter. This allows the for loop that

prints out the array to know the range to iterate in the array passed, without going out of range.

In a function declaration, it is also possible to include multidimensional arrays. The format for a

tridimensional array parameter is:

 base_type[][depth][depth]

For example, a function with a multidimensional array as argument could be:

 void procedure (intmyarray[][3][4])

Notice that the first brackets [] are left empty, while the following ones specify sizes for their

respective dimensions. This is necessary in order for the compiler to be able to determine the

depth of each additional dimension.

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 28/40

In a way, passing an array as argument always loses a dimension. The reason behind is that, for

historical reasons, arrays cannot be directly copied, and thus what is really passed is a pointer.

This is a common source of errors for novice programmers.

Manipulating array elements using loops

Arrays and loops

One of the nice things about arrays is that you can use a loop to manipulate each element.

When an array is declared, the values of each element are not set to zero automatically.

In some cases you want to “re-initialize” the array (which means, setting every element to

zero). This can be done like in the example above, but it is easier to use a loop. Here is an

example:

 #include<iostream>

 using namespace std;

 intmain()

 {

 inta[4];

 inti;

 for (i = 0; i< 4; i++)

 a[i] = 0;

 for (i = 0; i< 4; i++)

 cout<< a[i] << '\n';

 return 0;

 }

Note: In the first “for loop” all elements are set to zero. The second “for loop” will print each

element.

intarr[10];//array of integers input by user

intnum; //smallest number in array

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 29/40

inttemp; //temp variable for swapping numbers

intind; //index of where temp was found

cout<< "Enter ten random integers: " <<endl;

for(inti=0; i<10; i++)

{

cout<< "[" <<i<< "] = ";

cin>>arr[i];

}

cout<<endl;

for (int j=0; j<10; j++)

{

num = arr[j];

 temp = arr[j];

 for (int k=j; k<10; k++) /*after this loop, temp should have lowest int and ind

 should have its location*/

 {

if(temp >arr[k])

 {

 temp = arr[k];

ind = k;

 }

 }

arr[j] = temp;

arr[ind] = num;

}

for(int l = 0; l<10; l++)

{

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 30/40

cout<<arr[l] << " ";

}

Use Various types of arrays (integer, float and character arrays / Strings)

Integer array

C++ Program to store 5 numbers entered by user in an array and display first and last number

only.

#include <iostream>

using namespace std;

intmain() {

intn[5];

cout<<"Enter 5 numbers: ";

/* Storing 5 number entered by user in an array using for loop. */

 for (inti = 0; i< 5; ++i) {

cin>>n[i];

 }

cout<<"First number: "<<n[0]<<endl; // first element of an array is n[0]

cout<<"Last number: "<<n[4]; // last element of an array is n[SIZE_OF_ARRAY - 1]

 return 0;

}

Output

Enter 5 numbers: 4

-3

5

2

0

First number: 4

Last number: 0

Float array0

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 31/40

#include<iostream>

usingnamespacestd;

intmain(){

constintMAX_STUDENTS=4;

floatstudentGrades[MAX_STUDENTS]={0.0};

for(inti=0;i<MAX_STUDENTS;i++){

cout<<i<<" "<<studentGrades[i]<<'\n';

}

return0;

}

The program gave the expected results:

00

10

20

30

Character array

Character sequences

The string class is a very powerful class to handle and manipulate strings of characters.

However, because strings are, in fact, sequences of characters, we can represent them also as

plain arrays of elements of a character type.

For example, the following array:

 char foo [20];

is an array that can store up to 20 elements of type char. It can be represented as:

Therefore, this array has a capacity to store sequences of up to 20 characters. But this capacity

does not need to be fully exhausted: the array can also accommodate shorter sequences. For

example, at some point in a program, either the sequence "Hello" or the sequence "Merry

Christmas" can be stored in foo, since both would fit in a sequence with a capacity for 20

characters.

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 32/40

By convention, the end of strings represented in character sequences is signaled by a special

character: the null character, whose literal value can be written as '\0' (backslash, zero).

In this case, the array of 20 elements of type char called foo can be represented storing the

character sequences "Hello"and "Merry Christmas" as:

Notice how after the content of the string itself, a null character ('\0') has been added in order to

indicate the end of the sequence. The panels in gray color represent char elements with

undetermined values.

Initialization of null-terminated character sequences

Because arrays of characters are ordinary arrays, they follow the same rules as these. For

example, to initialize an array of characters with some predetermined sequence of characters, we

can do it just like any other array:

 charmyword[] = { 'H', 'e', 'l', 'l', 'o', '\0' };

The above declares an array of 6 elements of type char initialized with the characters that form

the word "Hello" plus anull character '\0' at the end.

But arrays of character elements have another way to be initialized: using string literals directly.

string literals have already shown up several times. These are specified by enclosing the text

between double quotes ("). For example:

 "the result is: "

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 33/40

This is a string literal, probably used in some earlier example.

Sequences of characters enclosed in double-quotes (") are literal constants. And their type is, in

fact, a null-terminated array of characters. This means that string literals always have a null

character ('\0') automatically appended at the end.

Therefore, the array of char elements called myword can be initialized with a null-terminated

sequence of characters by either one of these two statements:

1

2

charmyword[] = { 'H', 'e', 'l', 'l', 'o', '\0' };

charmyword[] = "Hello";

In both cases, the array of characters myword is declared with a size of 6 elements of type char:

the 5 characters that compose the word "Hello", plus a final null character ('\0'), which specifies

the end of the sequence and that, in the second case, when using double quotes (") it is appended

automatically.

Please notice that here we are talking about initializing an array of characters at the moment it is

being declared, and not about assigning values to them later (once they have already been

declared). In fact, because string literals are regular arrays, they have the same restrictions as

these, and cannot be assigned values.

Expressions (once myword has already been declared as above), such as:

1

2

myword = "Bye";

myword[] = "Bye";

would not be valid, like neither would be:

 myword = { 'B', 'y', 'e', '\0' };

This is because arrays cannot be assigned values. Note, though, that each of its elements can be

assigned a value individually. For example, this would be correct:

1

2

myword[0] = 'B';

myword[1] = 'y';

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 34/40

3

4

myword[2] = 'e';

myword[3] = '\0';

Strings and null-terminated character sequences

Plain arrays with null-terminated sequences of characters are the typical types used in the C

language to represent strings (that is why they are also known as C-strings). In C++, even though

the standard library defines a specific type for strings (class string), still, plain arrays with null-

terminated sequences of characters (C-strings) are a natural way of representing strings in the

language; in fact, string literals still always produce null-terminated character sequences, and

not string objects.

In the standard library, both representations for strings (C-strings and library strings) coexist, and

most functions requiring strings are overloaded to support both.

For example, cin and cout support null-terminated sequences directly, allowing them to be

directly extracted from cin or inserted into cout, just like strings. For example:

// strings and NTCS:

#include <iostream>

#include <string>

usingnamespacestd;

int main (){

char question1[] = "What is your name? ";

 string question2 = "Where do you live? ";

char answer1 [80];

 string answer2;

cout<< question1;

cin>> answer1;

cout<< question2;

cin>> answer2;

What is your name? Homer

Where do you live? Greece

Hello, Homer from Greece!

http://www.cplusplus.com/string

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 35/40

cout<<"Hello, "<< answer1;

cout<<" from "<< answer2 <<"!\n";

return 0;

}

In this example, both arrays of characters using null-terminated sequences and strings are used.

They are quite interchangeable in their use together with cin and cout, but there is a notable

difference in their declarations: arrays have a fixed size that needs to be specified either implicit

or explicitly when declared; question1 has a size of exactly 20 characters (including the

terminating null-characters) and answer1 has a size of 80 characters; while strings are simply

strings, no size is specified. This is due to the fact that strings have a dynamic size determined

during runtime, while the size of arrays is determined on compilation, before the program runs.

In any case, null-terminated character sequences and strings are easily transformed from one

another:

Null-terminated character sequences can be transformed into strings implicitly, and strings can

be transformed into null-terminated character sequences by using either of string's member

functions c_str or data:

1

2

3

4

charmyntcs[] = "some text";

string mystring = myntcs; // convert c-string to string

cout<<mystring; // printed as a library string

cout<<mystring.c_str(); // printed as a c-string

Two-Dimensional Arrays

A 2-dimensional array is an array of arrays. In other words, it is an array where each member of the

array is also an array. Consider the following table

Country\Data Map Flag Area (sq km) Population

United States

9,629,091 272,639,608

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 36/40

Cameroon

475,440 15,456,092

Guatemala

108,890 12,335,580

Italy

301,230 56,735,130

Oman

212,460 2,446,645

Declaring and Initializing a 2-Dimensional Array

This two-dimensional array is made of rows and columns . Each column represents one category of

data that everyone of the rows shares with the other rows. As different as each map looks, it still

remains a map; each country on the table is known for its map, its flag, itsarea, and its population,

though remaining different from the others. To see another two-dimensional array, look at a

calendar that displays a month with its week days.

Like the above table, a 2-dimensional array is made rows and columns. To declare it,

usedouble pair of a opening and closing square brackets. Here is an example:

 intnumberOfStudentsPerClass[12][50];

This declaration creates a first group of 12 elements; it could be an array of 12 classes. Each

element of the array contains 50 elements. In other words, each of the 12 members of the group is

an array of 50 items. Simply stated, this declarations creates 12 classes and each class contains 50

students.

Before using the members of an arrays, you should/must make sure you know the values that its

members hold. As done with one-dimensional arrays, there are two ways you can solve this

problem: you can initialize the array or you can get its values by another means.

You can initialize an array the same way you would proceed the a one-dimensional array: simply

provide a list of values in the curly brackets. A multidimensional array is represented as an

algebraic matrix as MxN. This means that the array is made of M rows and N columns. For

example, a 5x8 matrix is made of 5 rows and 8 columns. To know the actual number of members of

a multidimensional array, you can multiply the number of rows by the number of columns.

http://www.functionx.com/cpp/Lesson12.htm
http://www.functionx.com/cpp/Lesson12.htm

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 37/40

Therefore a 2x16 array contains 2*16=32 members.

Based on this, when initializing a 2-dimensional array, make sure you provide a number of values

that is less than or equal to the number of members.

Here is an example:

 double distance[2][4] = {44.14, 720.52, 96.08, 468.78, 6.28, 68.04, 364.55, 6234.12};

To locate a member of the array, this time, each must be identified by its double index. The first

member is indexed at [0][0]. The second is at [0][1]. For a 2x4 array as this one, the 5th member is

at [1][0]. You can use this same approach to display the values of the members of the array. Here is

an example:

#include <iostream>

using namespace std;

intmain()

{

 // A 2-Dimensional array

 double distance[2][4] = {44.14, 720.52, 96.08, 468.78, 6.28, 68.04, 364.55, 6234.12};

 // Scan the array from the 3rd to the 7th member

 cout<< "Members of the array";

 cout<< "\nDistance [0][0]" << ": " <<distance[0][0];

 cout<< "\nDistance [0][1]" << ": " <<distance[0][1];

 cout<< "\nDistance [0][2]" << ": " <<distance[0][2];

 cout<< "\nDistance [0][3]" << ": " <<distance[0][3];

 cout<< "\nDistance [1][0]" << ": " <<distance[1][0];

 cout<< "\nDistance [1][1]" << ": " <<distance[1][1];

 cout<< "\nDistance [1][2]" << ": " <<distance[1][2];

 cout<< "\nDistance [1][3]" << ": " <<distance[1][3];

 cout<<endl;

 return 0;

}

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 38/40

This would produce:

Members of the array

Distance [0][0]: 44.14

Distance [0][1]: 720.52

Distance [0][2]: 96.08

Distance [0][3]: 468.78

Distance [1][0]: 6.28

Distance [1][1]: 68.04

Distance [1][2]: 364.55

Distance [1][3]: 6234.12

To make the above array a little easier to read when initializing it, you can type the values of each

row on its own line. For example, the above array can be initialized as follows:

 double distance[2][4] = { 44.14, 720.52, 96.08, 468.78,

 6.28, 68.04, 364.55, 6234.12 };

C++ also allows you to include each row in its own pair of curly brackets. You must separate each

row from the next with a comma. Once again, this makes code easier to read. Here is an example:

double distance[2][4] = { { 44.14, 720.52, 96.08, 468.78 },

{ 6.28, 68.04, 364.55, 6234.12 }

 };

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 39/40

POSSIBLE QUESTIONS – UNIT II

 Part-A

 Online Examinations (One marks)

1. ________ inherits get(), getline(), read(), seekg(), and tellg() from istream.

a) conio b) ifstream c) fstream d) iostream

2. What function should be used to free the memory allocated by calloc() ?

a) dealloc(); b) malloc(variable_name, 0)

c) free(); d) memalloc(variable_name, 0)

3. The __________ is special because its name is the same as the class name.

a) Destructor b) static c) constructor d) none

4. The class __________ describes how the class function are implemented

a) Function definition b) declaration c) arguments d) none

5. A derived class with only one base class is called ________ inheritance.

a) Single b) Multi-level c) Multiple d) Hierarchical

6. The exception handling mechanism is basically built upon ______ keyword

a) try b) catch c) throw d) all the above

7. ________ functions must either be member functions or friend functions.

a) Operator b) User-defined c) Static Member d) Overloading

8. Which is more effective while calling the functions?

a) call by value b) call by reference c) call by pointer d) none

9. Where the default values of parameter have to be specified?

a) Function call b) Function definition c) Function prototype d) Both B or C

10. Which is more memory efficient?

a) structure b) union

c) both use same memory d) depends on a programmer

javascript:%20void%200;

Functions and Arrays 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 40/40

 Part-B - 2 MARKS

1. Define void functions.

2. Define inline function with example.

3. What is array write its types?

4. What is multidimensional array with example?

5. What are functions?

6. Define call by value.

7. Define call by reference.

8. What is a function? How will you define a function?

 Part-C 6 MARKS

1. Define Functions. Explain call by value with suitable example program.

2. Explicate types of arrays. Explain One Dimensional array with program.

3. Define Functions. Explain call by reference with suitable example program.

4. List out different types of arrays. Explain Multi Dimensional array with program

5. Write note on i) void functions ii) Function Parameters

6. Explain Command Line arguments with suitable example program

7. Explain Inline functions with suitable example program.

8. Write notes on i) Call by value ii)Call by reference of functions.

9. Explain in detail about String functions with syntax and example.

10. Write the syntax for declaring and initializing a multidimensional array. Give example.

11. Write in detail about functions that pass variable number of arguments. Explain with syntax

and example.

12. How will you declare and initialize a two dimensional array? Write a C program to perform

matrix addition.

13. What are functions? Explain the various categories of functions with syntax and example.

14. How will you declare and initialize a one dimensional array? Give an example

 program to assign marks of a student in an array.

SUBJECT: PROGRAMMING FUNDAMENTALS USING C/C++

UNIT-II

S.No Questions OPT1 OPT2 OPT3 OPT4 Answer

1

A member function can call another member function directly

 without using the _________ operator

Assignment
 equal dot greater than dot

2

A ______ member variable is initialized to zero when the first

object of its class is created

 Dynamic constant static protected static

3

_________ Variables are normally used to maintain values

common to the entire class.

 Private

protected
 Public static static

4

When a copy of the entire object is passed to the function it is

called as _________

 Pass by

reference

 pass by

function

 pass by

pointer
 pass by value pass by value

5

When the address of the object is transferred to the function it

is called as _________

 pass by

reference

 pass by

function

 pass by

pointer

 pass by

value
 pass by reference

6

A ________ function can be invoked like a normal function

without the help of any object

 Void friend inline
 none of the

above
 friend

SUBJECT CODE: 17CSU101

(1 mark questions)

KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE - 21

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 CLASS : I B.Sc COMPUTER SCIENCE

BATCH : 2017-2020

Part -A Online Examinations

7

The ________ member variables must be defined outside the

class.

 Static private public protected Static

8

A friend function, although not a member function, has full

access right to the ______ members of the class

 Static private public protected private

9

Function should return a _________.

value character
both (a)

and (b)
none value

10

_______________function is useful when calling function is

small Built-in Inline
user-

defined
none. Inline

11

c++ propouse a new future called _____________
function

overloading

polymorp

hism

Inline

function
calling function Inline function

12 Which of the following cannot be passed to a function?

 reference

variables
 arrays

 class

objects
 header files header files

13 Function should return a _________.

value character
both (a)

and (b)
none value

14

_______________function is useful when calling function is

small

Built-in Inline
user-

defined
none. Inline

15 Inline function needs more_____________

variables functions
memorysp

ace

control

structures
memoryspace

16

Multiple function with the same name is known as

function

overloading

Encapsula

tion

inheritanc

e

operator

overloading

function

overloading

17

The ____________ function creates a new set of variables and

 copies the values of arguments into them.

calling

function

called

function
function

function

overloading
called function

18 Function contained within a class is called a _____________

built-in
member

function

user-

defined

function

calling function member function

19

In c++,Declarations can appear________________in the body

of the function

Only at the

top
middle bottom anywhere anywhere

20 Modular structure of C language enables the program to be split into several modules called ________

structure union integers function function

21 The actual and formal arguments of functions must match in ____

 actual arguments formal arguments dummy parameters temporary variables actual arguments

22 Functions receives the values passed by the calling function and stores in_____

actual arguments formal arguments dummy parameters temporary variables formal arguments

23 In looping process first step is _________

intialise countertest for conditionincrement execution statementintialise counter

24 In case of for loop ______ section is executed before test condition is evaluated after every iteration.

increment intialise testing execution of statementsincrement

25 _____ statement is the mechanism for returning value to the calling function

return continue break goto return

26 A function can return ____ value per call

one zero two multiple one

27 ______ is a special case where a function calls itself.

recursion subroutine structure none recursion

28 ___ is a group of related data items that share a common name.

variables array function structure array

29 A ______ is an array of characters.

string variables function none string

30 Individual values in array is referred as _______.

subscript elements subelementsnone elements

31 Any subscript between _______ are valid for an array of fifty elements.

0-49 0-56 0-48 0-46 0-49

32 Value in a matrix can be represented by _______ subscript.

1 3 2 4 2

33 arrays that do not have their dimensions explicitly specified are called_____

unsized arraysundimensional arraysinitialized arraysto size arrays unsized arrays

34 In ASCII character set the uppercase alphabet represent codes _____

65 to 90 96 to 45 97 to 123 1 to 26 65 to 90

35 Modular structure of C language enables the program to be split into several modules called ________

structure union integers function function

36 The actual and formal arguments of functions must match in ____

 actual

arguments

formal

arguments

 dummy

parameters

 temporary

variables
 actual arguments

37 Functions receives the values passed by the calling function and stores in_____

actual

arguments

 formal

arguments

 dummy

parameters

 temporary

variables
 formal arguments

38 Process of calling a function using pointers to pass address of variable is known as ___________ .

 call by

value

 call by

reference

 call by

method
 call by address call by reference

39 The process of passing actual values of variable is known as ________.

 call by

value

 call by

reference

 call by

method
 call by address call by value

40 In pointers when function is called ______ are passed as actual arguments.

 values addresses operators
 none of the

above
 addresses

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 1/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2017 onwards)

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

SUBJECT : PROGRAMMING FUNDAMENTALS USING C/C++

SEMESTER : I L T P C

SUBJECT CODE: 17CSU101 CLASS : I B.Sc.CS 4 0 0 4

UNIT-III

Derived Data Types (Structures and Unions): Understanding utility of structures and

unions, Declaring, initializing and using simple structures and unions, Manipulating individual

members of structures and unions, Array of Structures, Individual data members as structures,

Passing and returning structures from functions, Structure with union as members, Union with

structures as members. Pointers and References in C++: Understanding a Pointer Variable, Simple

use of Pointers (Declaring and Dereferencing Pointers to simple variables), Pointers to Pointers,

Pointers to structures, Problems with Pointers, Passing pointers as function arguments, Returning a

pointer from a function, using arrays as pointers, Passing arrays to functions. Pointers vs. References,

Declaring and initializing references, using references as function arguments and function return

values.

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 2/46

Suggested Readings:

1. Herbtz Schildt, 2003,C++: The Complete Reference, 4
th

 Edition, McGraw Hill.

2. Bjarne Stroustrup, 2013, The C++ Programming Language, 4
th

 Edition, Addison-Wesley.

3. Bjarne Stroustroup, 2014, Programming - Principles and Practice using C++, 2
nd

 Edition,

 Addison-Wesley.

4. E Balaguruswamy, 2008,Object Oriented Programming with C++, 2
nd

 Edition ,Tata McGraw-

 Hill Education.

5. Paul Deitel, Harvey Deitel, 2011,C++ How to Program, 8
th

 Edition, Prentice Hall.

6. John R. Hubbard, 2000, Programming with C++, 2
nd

 Edition ,Schaum's Series.

7. Stefan Bjornander, 2016,C++ Windows Programming, Published by Packt Publishing Ltd.

8. Scott Meyers, 2005, Effective C++, 3
rd

 Edition, Published by Addison-Wesley.

9. Harry, H. Chaudhary, 2014 ,Head First C++ Programming: The Definitive Beginner's

 Guide, First Create space Inc, O-D Publishing, LLC USA.

10. Walter Savitch, 2007,Problem Solving with C++, Pearson Education.

11. Stanley B. Lippman, JoseeLajoie, Barbara E. Moo, 2012, C++ Primer, 5
th

 Edition, Published

 by Addison-Wesley.

12. Debasish Jana , 2014,C++ And Object-Oriented Programming Paradigm,Published by

 PHI Learning Pvt. Ltd.

13. Richard L. Stegman, 2016, Focus on Object-oriented Programming With C++,6
th

 Edition

 ,CreateSpace Independent Publishing Platform,.

14. Andrew Koeni, Barbara, E. Moo,2000,Accelerated using C++, Published by Addison-

 Wesley .

WEB SITES

1. http://www.cs.cf.ac.uk/Dave/C/CE.html

2. http://www2.its.strath.ac.uk/courses/c/

3. http://www.iu.hio.no/~mark/CTutorial/CTutorial.html

4. http://www.cplusplus.com/doc/tutorial/

5. http://www.cplusplus.com/

6. http://www.cppreference.com/

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 3/46

UNIT III

Structures

Introduction - What is structure ?

Array is a collection of data items and all data item must be of same type. In very large

applications, some data items may be related to others or group of data items may be related. Let us

consider the college and the information related to the student such as name; roll number, age, marks

etc are heterogeneous types. These items can’t be grouped using array. To group these kinds of data

items, another feature of C called structure can be used. So “structure” means that related data items

may be grouped under same name. By grouping of related items under one name called structure

name, we could write programs well.

For example, the information about an employee like employee name, department,

designation, salary details can be grouped by one name like emp_record.

How to declare the structure:

 Structure declaration is different to the conventional declarations, look the following.

 struct is a keyword to indicate that structure variable.

 member-1, member-2 are the variables of the structure.

 In the first option the <tag> name is must because using this <tag> only we can create

new structure variable as follows. The structure variable is defined as following format

only.

struct <tag> sv1,sv2...;

This declaration is just like as int a,b,c …; In the second option sv1,sv2 are the structure variables.

The structure ends with semicolon like others.

The information about students such as name, roll number and marks are grouped and declared as

follows.

struct stu

 { char name[16];

 int rollno, marks;

struct <tag>

 {

 member-1;

 member-2;

 ...

 member-n;

 };

struct [<tag>]

 {

 member-1;

 member-2;

 ...

member-n;

 }sv1,sv2...;

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 4/46

 };

struct stu s1,s2;

Here using the tag name stu the structure variable s1, s2 are created. Alternative way to

declare the structure variable is as follows.

struct stu

 { char name[16];

 int rollno, marks;

 }s1,s2;

Now without using tag name the variables s1, s2 are created. So we can use any one of the above

declarations.

Referring the data in structure:

The aim of the array and structure is basically same. In array the elements are referred

by specifying array name with index like a[5] to refer the fifth element. But in structure, the

members are referred by entirely new method as mentioned below.

The dot (.) operator is used to refer the members of the structures. For example if we wish to access

the members of the previous structure, the following procedure have to be followed.

 s1.name, s1.marks, s1. rollno

Assigning the values to the structure variable:

The values may be assigned for the array while declaring it as follows

 int a[5] = {10,20,30,40,50};

As above we can assign the value for the members of the structure as follows.

 struct stu

 { char name[15];

 int rollno, marks;

 } s1= {“Karthi”,1000,76};

Here the string value “Karthi” will be assigned to the member name, 1000 will be assigned to the

member rollno and 76 will be assigned to marks. The following program is a first one using

structure and sees how the members of the structure are being referred.

 /* Example for structure reference and assignment */

structure-name. variable name;

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 5/46

 main()

 { struct stu

 {char name[15];

int rollno, marks;

 }s1 = {"Karthi",1000,76};

 printf("\nName = %s ",s1.name);

 printf("\nroll no = %d ",s1.rollno);

 printf("\nMarks = %d ",s1.marks); }

Suppose all the values of one structure are necessary for another structure variable. The

values can be copied one by one as usual. Here structure supports the whole structure can be

assigned using = operator. Assume s1 and s2 are the structure variables and the contents of s1 should

be copied in s2 also. How?

 strcpy(s2.name, s1.name);

 s2.rollno = s1. rollno; /* copying one by one*/

 s2.marks = s1. marks.

(or)

s2 = s1;

 /* Copying entire structure to another structure */

The second one is the best way of programming approach to copying structures. An example

program to prepares a pay slip for the employee using the structure.

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 6/46

 /*To find the net pay of the employee using structure */

 main()

 { struct emp

{ char name[25];

 float bp,hra,pf,da,np;

 int empno;

 }e;

printf("\nName of the employee : ");

gets(e.name);

printf("\nEmployee No : ");

scanf("%d",&e.empno);

printf("\nBasic Pay : ");

scanf("%f",&e.bp);

 if (e.bp>5000)

 { e.da = 1.25 * e.bp; /* 125 % DA */

 e.hra = .25 * e.bp; /* 25 % HRA */

 e.pf = .12 * e.bp; /* 12 % PF */

 }

 else

 { e.da = 1.0 * e.bp; /* 100 % DA */

e.hra = .15 * e.bp; /* 15 % HRA */

e.pf = .10 * e.bp; /* 10 % PF */

 }

 e.np = e.bp + e.da + e.hra - e.pf;

 printf("\n\tKarthik Systems pvt. ltd., \n");

 printf("\nName : %s Employee No : %d \n",e.name,e.empno);

 printf("\nBasic Pay D.A H.R.A P.F Net Pay\n");

 printf("\n%5.2f %5.2f %5.2f %5.2f %5.2f ",e.bp, e.da, e.hra, e.pf,

e.np);

 }

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 7/46

Array of structures:

The above example is only for manipulating single record, that is only one employee

information. Suppose if we want to prepare more number of records, we can use the array of

structures. Array of structure is defined as simple as ordinary arrays as below

 struct emp e[100];

The above declaration indicates that e is a array of structure variable and we can store 100 employees

information. The reference of members is also similar to the array reference. So, first we have to

specify the index of the structure and necessary variables. To refer the first employee’s information

we have to use the notations

s[0].name, s[0].np etc.

Like wise all the employees information are referred and processed. The following example

illustrates the array of structures.

/* To find the class of the students */

main()

{ struct stu

{

 char name[25];

 int rollno,marks;

}s[50];

 int n,i;

char result[15];

 printf("\nHow many students : ");

scanf("%d",&n);

 printf("\nEnter %d students information\n",n);

for(i=0;i<n;i++)

 { printf("\nEnter %d persons name : ",i+1);

 scanf("%s",s[i].name);

 printf("\nRoll No : ");

 scanf("%d",&s[i].rollno);

 printf("\nMarks : ");

 scanf("%d",&s[i].marks);

}

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 8/46

printf("\nResult of the students ");

for(i=0;i<n;i++)

 { if (s[i].marks >= 60)

 strcpy(result,"First");

 if ((s[i].marks >= 50) && (s[i].marks <60))

 strcpy(result,"Second");

 if ((s[i].marks >= 40) && (s[i].marks<50))

 strcpy(result,"Third");

 if (s[i].marks < 40)

 strcpy(result,"Fail");

printf("\nResult = %s class ",result);

 } }

 As we know that the elements of array are stored continuously. In structure also the members

of structure will be stored in consecutive memory locations one after another. This is illustrated in

the following program. It has a structure stu and size of single structure is 17 bytes. (2 for age and 15

for name, so 2+15=17 bytes)

/* Array of structures */

struct

{

 int age;

 char name[15];

}stu[5];

main()

{

 int i;

 for(i=0;i<5;i++)

 printf("\nAddress is : ",&stu[i]);

}

 Address is : 1200

 Address is : 1217

 Address is : 1234

 Address is : 1251

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 9/46

 Address is : 1268

From this output it is found that the elements in structure are also stored in consecutive

memory locations.

Nested Structure

 In case of nested if, the statement part will have another if statement. In case of nested

looping also, the statement portion has another looping statement. So the nested structure also will

have another structure variable as a member.

 There is no data type for maintaining date related information. Now we are going to create a

user defined data type using structure and it can be used as a data type for date.

struct

{ int dd,mm,yy;

}d;

struct

{char name[15];

 struct d dob;

}stu;

The first structure d has three fields to represent a date by using three variables, dd (day),

mm(month) and yy(year). The second structure stu have two member fields. They are name and

date of birth (dob), which is declared using the structure d.

We have an idea about the reference of values of the structure variable. Here to access the

name is very simple and to access the dob is differ. The dob structure members are accessed by as

follows.

stu.d.dd , stu.d.dd and stu.d.dd

To refer the member dob we can simply specify stu . dob is enough. But dob is not an

ordinary variable, which is another structure variable with three members. If we made any reference

is directly via dob, we can refer by dob.membres. But if reference is through the stu, we have to use

the stu.d.dd etc., A complete program for nested structure is given below.

/* Example for Nested structure */

struct dob

{

 int dd,mm,yy;

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 10/46

};

struct

{

 char name[15];

 struct dob db;

}stu;

main()

{

 clrscr();

 printf("\eEnter the name :");

 scanf("%s",stu.name);

 printf("\nEnter the age (dd/mm/yy) :");

 scanf("%d%d%d",&stu.db.dd,&stu.db.mm,&stu.db.yy);

 printf("\nYour Name is : %s ",stu.name);

 printf("\nDate of Birth : %2d-%2d-%2d",

 stu.db.dd,stu.db.mm,stu.db.yy);

}

Enter the name : Karthi

 Enter the age (dd/mm/yy) : 3 4 1974

 Your name is : Karthi

 Date of Birth : 3-4-1974

Structures and functions:

Passing and returning various parameters and returning various values etc also given. Now let

us see, how the functions are used in structures also. In a simple function call, we have to mention

the name of the function with necessary parameters as given below to pass one integer argument.

 void display(int a);

Now we need to pass the structure to the function. What shall we do? One solution is passing

the members of structure one by one. But it is not an optimal when there are large members in a

structure. Otherwise look the following

void display(struct stu s)

/* Passing structure to the function */

struct stu /* structure is declared as global */

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 11/46

 { char name[25];

int rollno;

};

main()

{ struct stu s1; /*s1 is only local to main() */

 printf("\nName of the student : ");

 scanf("%s",s1.name);

 printf("\nRoll No. : ");

 scanf("%d",&s1.rollno);

 display(s1); /* Calling function using structure variable */ }

/* Structure stu must declared as global otherwise we can't use this name as in the

following parameter declaration */

void display(struct stu s2)

{ printf(“\nYour information is \n”);

printf("\nName : %s ",s2.name);

printf("\nRoll No : %d ",s2.rollno); }

Miscellaneous of Structures:

The structure is used to store different type of values and all the variables are stored

continuously as in the following diagram and program illustrates this.

 /* Additional to structure */

main(){ struct { int a, b; } test;

 printf("\nBase address of structure : %u ",&test);

 printf("\nAddress of first member 'a': %u ",&test.a);

 printf("\nAddress of second member 'b' : %u ",&test.b);

 printf("\nSize of the structure 'test' : %d bytes ",sizeof(test)); }

Base address of structure : 3354

Address of first member 'a' : 3354 /* 2 bytes for int */

Address of second member 'b' : 3356

Size of the structure 'test' : 4 bytes /* So 2+2=4 bytes */

Starting address of the structure test is 3354. The address of the first structure variable a is

also same i.e. 3354. The next variable b is stored in the next memory location. (i.e. 3354 + 2 = 3356

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 12/46

, integer needs 2 bytes memory) The size of the structure is 4 bytes, because of two integer

variables (2 + 2 = 4 bytes).

The memory representation of array of structures is also same for simple arrays and it will be

cleared in the following program.

/* Array of structure */

main()

{ struct

 { char name[16];

 int rollno,marks;

 }s[5]; /* five structures */

int i;

 for(i=0;i<5;i++) printf("\nAddress of structure S[%1d]= %d ",i,&s[i]);

 printf("\nSize of the entire structure = %d bytes",sizeof(s));

Address of structure S[0] = 8650

Address of structure S[1] = 8670

 Address of structure S[2] = 8690

Address of structure S[3] = 8710

Address of structure S[4] = 8730

Size of the entire structure = 100 bytes

 In the above program the structure s is declared as array of structure with the size 5.

 Address of first structure (s[0]) is 8650 and next is at 8670 etc.

 Size of the single structure is 20 bytes (16 + 2 + 2 = 20).

 So for 5 structures 100 bytes were needed.

 8650 8670 8690 86710 86920

Here each structure occupies 20 bytes of memory and single structure is stored in the memory

as follows.

UNIONS

 1st 2nd 3rd 4th 5th

 structure structure structure structure structure …..

 name rollno marks
 (16 bytes) (2 bytes) (2 bytes)

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 13/46

 Union is the best gift for the C programmers. Yes. For looking and the general declaration of

union is similar to the structure variable. Instead of the key word struct, the key word union is used.

The members of union also referred with the help of (.) dot operator.

The union variable has been mainly used to set/reset the status of the hardware, devices of the

computer system and its roll is very much in the system software development.

For example, the register has 16 bit and they are named as low byte and high byte. If any

changes in the low or high byte will affect the full word of the register.

Difference between structure and union:

In case of structure all the members occupies different memory locations depends on the

type, which it belongs to. In union memory will be allocated only for the larger size variable of the

group, no other memory allocation will be made. Now, allocated highest memory will be shared by

all the remaining variables of the union. The declaration of a union and its format is as follows

General format: Example:

We may think that the size of the union variable is 21 bytes (15+2+4). But it is not correct.

Because of union larger memory request only considered for allocation. No independent memory for

the members will be allocated.

/* Example for the union variable */

main()

{union

{ char name[15];

 int rollno;

 float marks;

} s;

printf("\nSize of the union : %d ",sizeof(s)); }

 union

 {

member-1;

member-2;

member-3;

...

member-n;

 }union-variable;

union

 {

 char name[15];

 int rollno;

 float marks;

 } stu;

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 14/46

 Size of the union : 15

In this program the maximum memory request is 15 (char name [15]). So all the remaining

members of the union rollno, marks will share the same memory area.

Let us consider a union variable with two members one is int and another one is float. In

general integer requires 2 bytes and float requires 4 bytes. But in union only the memory for float

will be allotted and this is also shared by int variable also. This discussion is illustrated in the

following diagrams.

 float

 int

Memory is shared- a proof

The following program illustrates our discussion of previous paragraph idea. The largest memory

area will be shared by the other members. If so what is going to happen when we refer. Yes.

Confusion. But be clear that two values will be accessed and changes in one disturb the other one.

/* A proof of union - sharing memory */

main()

{ union

{ char c;

 int a;

}s;

 s.c= 'z';

 printf("\nC = %c ",s.c);

 printf("\nA = %d ",s.a);

 s.a = 65;

 printf("\nNew C = %c ",s.c);

 printf("\nNew A = %d ",s.a);

 getch(); }

C = z

A = 122 /*This is not same for all execution*/

New C = A

New A = 65

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 15/46

First time the union variable a has some unexpected data. After changing its value the

character variable c value also has been changed as from ‘z’ to ‘A’. This is enough to prove whether

the memory in the union is shared or not.

Typedef inition :

This is also a user defined data type used to set a new name for the existing data types. Are

you feeling in the understanding of the word int instead of integer. If so, leave worries. The typedef

statement is used to create a new user defined data type. That is we can give a new name for the data

types like int, float etc. The declaration is similar to the simple variable declaration. The general

format of the declaration is

In feature to declare the same kind of data type we can use the new-name instead of old

data-type. Look the following example:

typedef int number;

Here number is declared as an integer data type and it is equivalent to the data type int. Now

we can use number to declare variable of integer type.

number a,b,c;

 By using the typedef the new data type string will be created as follows with the example.

There is no provision for declaring string directly.

 /* Example for typedef declaration */

 main()

{

typedef char string[80];

string name;

/* name is string type data */

printf("\nEnter a name : ");

scanf("%s",name);

printf("\n'%s' welcome to all",name);

 }

typedef data-type new-name;

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 16/46

Enter a name : Sanjai

'Sanjai' welcome to all

Enumerated data type:

Enumeration is also another type of user-defined data type, for which we are allowed to

specify the possible values for the test. We can utilize this feature to keep some names instead of

values. In some cases remembering the numeric value is difficult. String or Word is always better

instead of the numbers.

For example, in C programming language, the numeric value 0 (Zero) is treated as FALSE

and 1 is treated as TRUE. When we use these values like 0 or 1, we may confuse little bit. If the

number will increases the problem also increase.

Format of the Enumerated definition is

 enum tag

 {

 Constant-Name1=Value1,

 Constant-Name2=Value2 . . .

 } variable(s);

The following is a simple example,

 enum status

 {

 FALSE,TRUE

 };

Here the user defined data type status is created and its value may be FALSE or TRUE. In

this case, as I mentioned in the introduction the value of FALSE is actually 0 and the value of

TRUE is 1.

We can change the values by specifying its value explicitly. For example the declaration

 enum status

 {

 TRUE=1,FALSE=2

 };

 Here TRUE will be interpreted as value 1 and FALSE as 2. One more example, to keep the days

of the week. The days are mentioned like sun,mon,tuesat. But there is no constant values like this

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 17/46

for our representation. We have to use some values like 0 to represent sun, 1 to represent mon, 2

represent tue etc.

Another way of keeping the days of the week is as follows using the enumerated declaration.

 enum days

 {

 SUN, MON, TUE,WED,THU,FRI,SAT

 }dow;

Here the variable dow (day of the week) may contain any one of the value given values (SUN,MON

...) and its actual interpretation is 0,1,2 etc.

 The following is a simple program to check the value of the constant name in the enumerated

data type.

/* Example for enumerated type */

enum status

 { TRUE,FALSE };

main()

 { enum status value;

 printf("%d",TRUE); }

Bit fields :

 C permits us to use small bit fields to hold data. We have been using integer field of size 16 bit

to store data. The data item requires much less than 16 bits of space, in such case we waste memory

space. In this situation we use small bit fields in structures.

 The bit fields data type is either int or unsigned int. the maximum value that can store in

unsigned int filed is :- (2 power n) – 1 and in int filed is :- 2 power (n – 1) . Here ‘n’ is the bit

length.

Note :

scanf() statement cannot read data into bit fields because scanf() statement, scans on format data into

2 bytes address of the filed. Bit fields do not have addresses—you can't have pointers to them or

arrays of them.

Syntax :

 struct struct_name

 {

 unsigned (or) int identifier1 : bit_length;

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 18/46

 unsigned (or) int identifier2 : bit_length;

 ………………………………………….

 ………………………………………….

 unsigned (or) int identifierN : bit_length;

 };

Program : bit_stru.c

#include<stdio.h>

#include<conio.h>

struct emp

{

 unsigned eno:7;

 char ename[20];

 unsigned age:6;

 float sal;

 unsigned ms:1;

};

void main()

{

 struct emp e;

 int n;

 clrscr();

 printf("Enter eno : ");

 scanf("%d",&n);

 e.eno=n;

 printf("Enter ename : ");

 fflush(stdin);

 gets(e.ename);

 printf("Enter age : ");

 scanf("%d",&n);

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 19/46

 e.age=n;

 printf("Enter salary : ");

 scanf("%f",&e.sal);

 printf("Enter Marital Status : ");

 scanf("%d",&n);

 e.ms=n;

 clrscr();

 printf("Employ number : %d",e.eno);

 printf("\nEmploy name : %s",e.ename);

 printf("\nEmploy age : %d",e.age);

 printf("\nEmploy salary : %.2f",e.sal);

 printf("\nMarital status : %d",e.ms);

 getch();

}

POINTERS

Introduction

The word pointer is not a new word for the people and we are using this word in different places with

different interpretations. People are always have some wrong opinion about pointers, like it is very

tough to understand and hard to use etc. Why? What is in a pointer? Nothing to fear, it has lot of

advantages than others. This chapter will relieve you from fear and enjoy with the pointer and its

applications.

What is pointer?

 It is a powerful feature of C Language

 It is a new kind of data type

 It stores the addresses, not values

 It allows indirect access of data

 It allows to carry whole array to the function

 It will help in returning more than one value from function

 It helps for dynamic memory allocation

What is pointer in our regular life? It is an indicator, which helps to reach particular place. It is also

like a symbol, marker, etc. Look the following and find how the pointer is helping the people to

precede towards Coimbatore, using the Hand symbol.

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 20/46

Way to Coimbatore

 We know some basics regarding the variable declaration and how the memories are being

allotted for them. Memory is divided into small pieces to keep small data called byte (8 Bits). Our

program and data will be stored in somewhere in the memory where the free area is available. The

variables are the names used for reference but everything internally referred by the memory address.

Let us see the following diagrams and how the memory is allocated for the variables.

There is a declarative statement char ch = 'A' ;

At the time of execution the compiler will make following process.

 One byte memory is reserved for the character variable ch

 and store the character value 'A' in that memory location

 The memory allocation may be as follows

The character variable ch is stored 0001 and the value of that location is ‘A’. The address of the

variable is not constant and it may vary for next execution.

Operators in pointers:

The pointers will help us in doing variety of operations and applications. The two essential operators

are given below.

The address of ch is not a constant for every execution and for any user-defined
variable the address is not constant

 A

 .

 .
 .

000
0
000
1
000
2
 .
 .
 .
100
0
 .
 ffff

Address Value at
the
location
0001

 .

 .
 .

000
0
000
1
000
2

 .
 .

 .

1000

 .

ffff

Address
es

Content of
memory is

Empty

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 21/46

1. * -> Indirection operator, which used to retrieve the value from the memory location

2. & ->Address operator, which is used to obtain the address of variable

Now the above two operators will help in viewing address and values. Consider the declarative

statements

int a =10;

 If we refer a, it returns the value of a as 10

 If we refer &a, it returns the address of a, that is where the memory is allocated for this

variable and

 *(&a) refers to the value of a. Because &a refers the address of a and *(&a) means that

value at address of a

If we test the previous idea via a program, you may be happier. Execute the following program and

realize about the address is retrieval.

/* Program to collect the address of variable */

main()

{ int a=10;

 printf("\n Value of a = %d ",a);

 printf("\n Memory address of a = %u",&a);

}

Value of a = 10

Memory address of a = 8716

 Note:

How to declare the pointer variable?

 No need to worry about the declaration of pointer variable, it can be declared as simple

variable declaration with small change as follows.

Memory address is always a positive value. So we can use format string
character %u for printing the address.

Data-type *pointer-variable;

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 22/46

 Here, the character ‘*’ indicates that the variable is pointer variable. For example, the

declarative statement:

 int *ptr;

 Here ptr is a pointer variable and It will point to one integer memory location.

Before any operations on pointer variable, we must store the address, because the pointer variables

will have address not values.

 int *ptr;

ptr = 10;

The compiler will show an error, because we can’t store value in a variable in this manner. We can

assign the direct address or address of the variable to the pointer variable as follows.

 int a=10;

 int *ptr;

 ptr = &a; /* Address of a is assigned to ptr */

 Now the address of a is assigned to the pointer variable ptr. So, ptr will point the same

memory location where a points to.

 ptr = 0x41700000; /* Direct Address, Hexadecimal */

This assignment statement is direct address assignment and 0x41700000 is an address not a value. So

we can assign the address to the pointer variables in any one of the manners.

How to retrieve the values from the memory? We know that the * operator will help here.

Yes. If we know the address of a, then without the assistance of variable a we can access the values

of a and its illustration is as below.

 int a=10;

 int *ptr;

The following is a pictorial representation of the above declarative statements. Before processing the

assignment statement the memory representation is as follows.

 1000 a (Ordinary Variable)

 1002

 1004 ptr (Pointer Variable)

From this diagram we can conclude the following

10

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 23/46

 Address of a is 1000.

 Value at memory location 1000 is 10.

 Address of pointer variable ptr is 1004.

After the assignment statement ptr = &a, the diagram is as follows

 1000 a (Ordinary Variable)

 1002

 1004 ptr (Pointer Variable)

 From this diagram we can get the following information

 Address of a is 1000 and value at memory location 1000 is 10.

 ptr holds the address of a (i.e. 1000).

 So, ptr points to a indirectly and

 memory address of ptr is 1004

If we refer the value stored at ptr by *ptr, we may expect the result as 1000. But 1000 is not a value

and it is an address of variable a. So, *ptr returns the value stored at location 1000, and returns the

value 10, which is a value of a. The following program is illustrating the previous theoretical

discussions.

/* Accessing values indirectly using pointers */

main()

{ int a=10;

 int *ptr;

 ptr = &a;

 /*Address of a is assigned to pointer variable ptr*/

 printf("\n Value of a = %d ",a);

 printf("\n Value of a = %d ",*ptr);

 printf("\n\nMemory address of variable a = %d ",&a);

 printf("\nMemory address of variable a = %d ",ptr);

 printf("\nMemory address of variable ptr = %d ",&ptr);

}

Value of a = 10

Value of a = 10

10

1000

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 24/46

Memory address of variable a = 1000

Memory address of variable a = 1000

 Memory address of variable ptr = 5000

From the above program we can come to the conclusions that the value of a can be accessed by

referring a and using the pointer variable by *ptr.

Operations on pointer – Indirect Modification

 What we have discussed so far is about the fundamental idea of pointers. Now we are clear

about how to use pointer variable and access the value of any variable indirectly. Pointer purpose not

only stops with these operations and also is able to change the value of the specified memory

locations indirectly.

int a=10;

 int *ptr=&a; /* Address of 'a' is assigned to 'ptr' */

ptr =100; / Value of ‘a’ is changed indirectly */

We are able to refer the value of any variable indirectly without the help of that variable. The

changes on a variable can also be made without using that variable. The following program

illustrates the indirect change of value of variable.

/* Program for changing values indirectly */

main()

{ int a=10;

 int *ptr;

 ptr=&a;

 printf("\nOld Value of a = %d ",a);

 *ptr=100;

 printf("\nNew Value of a = %d ",a);

}

 Old Value of a = 10

 New Value of a = 100

In the above program we have not made any change in the value of a directly. But the statement

*ptr=100 changes the value of a as 100. Because the variable ptr is pointing to the memory address

of a. So, we changed value of a indirectly.

Pointers and Expressions:

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 25/46

 With the help of simple arithmetic operations a pointer variable can travel any location in the

memory and consider the following as a memory structure for our discussion.

 1000 1001 1002 1003 1004 1005 1006 1007

The declaration

 int *ptr ;

 Assume that the starting address of integer pointer variable ptr is pointing to the first memory

address 1000. If we increment the pointer variable ptr by 1, we may expect ptr will becomes 1001.

But it is not correct? Oh! Why? The variable ptr is an integer pointer variable. Each integer requires

two memory locations. So every increment in ptr will point to next integer memory location, here it

is 1002. Suppose ptr is a character pointer variable, for every increment of ptr, it will be pointing to

the adjacent memory location, because char need 1 byte memory. Look the following examples.

int *ptr;

 Assume ptr is now pointed the location 1000.

ptr++;

 After this statement ptr is pointed to the location 1002

ptr--;

 Now ptr is adjusted to the previous location 1000.

ptr = ptr+3;

 ptr is now at the location 1006

Note:

Pointers and Arrays - Single Dimensional

 Array is a collection of same elements and is stored in continuous memory locations. Are you

able to prove the last point, stored in continuous memory locations? You can prove this statement

when you execute the following program. Assume that the following array elements are stored in

memory as below

 int a[5] = {10,20,30,40,50 };

 The pointer variables are always adjusted to the next memory location
depending on its data type.

 Operations other than addition and subtraction are not possible

 10

0
 20

0
 30

0
 40

0
 50

0

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 26/46

 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

/* Program to check the definition of array */

 main()

 { int i, a[5] ={10,20,30,40,50};

 for(i=0;i<5;i++)

printf("\n%d is stored at location %d ",a[i],&a[i]); }

10 is stored at location 1000

20 is stored at location 1002

30 is stored at location 1004

40 is stored at location 1006

50 is stored at location 1008

 What is base address of array? How to obtain the same? Consider the following declaration

and see how the base address or starting address of the array will be obtained.

 int a[5] = {10,20,30,40,50};

First element of array is referred by a[0] and its address is by &a[0]. Here &a[0] refers to the starting

address or base address of the array a. Otherwise the name of the array itself refers the base address,

i.e. a. Once we know the starting address of array, we can travel through all the elements of the array

easily by making simple arithmetic operation.

int *ptr;

 ptr = &a[0]; /* &a[0] refers to the starting address of array */

 (or)

ptr = a; /* a also refers to the starting address */

The first element is referred by *ptr (or) *(ptr+0).

Second element is referred by *(ptr+1).

Third element is referred by *(ptr+2).

Fourth element is referred by *(ptr+3) and in common, element is referred by *(ptr+i).

 The following program is an example for processing the array elements using the pointer

variable.

 /* Program to process the array using pointers */

 main()

 {

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 27/46

 int a[5] ={10,20,30,40,50};

 int i, *ptr;

/*Starting address of array is assigned*/

ptr=&a[0];

 for(i=0;i<5;i++)

 printf("\n%d is stored at location:%d",

 *(ptr+i),(ptr+i));

 }

10 is stored at location : 1000

20 is stored at location : 1002

30 is stored at location : 1004

40 is stored at location : 1006

50 is stored at location : 1008

Now we are going to sort the numbers using pointers. We are also finding the maximum and

minimum from the set of numbers after sorting.

 /* Program to sort numbers using pointers */

 main()

{

 int a[15],n,i,j,temp,*ptr;

 printf("\nHow many numbers ");

 scanf("%d",&n);

 printf("\nEnter %d values\n",n);

 for(i=0;i<n;i++)

 scanf("%d",&a[i]);

 /* Starting address of a is assigned to ptr*/

 ptr = a;

 printf("\nValues before sorting\n");

 for(i=0;i<n;i++)

 printf("%d\t",*(ptr+i));

 for(i = 0 ; i<n-1 ;i++)

 for(j =i+1 ; j<n; j++)

 if (*(ptr+i) > *(ptr+j))

 {

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 28/46

 temp = *(ptr+i);

 *(ptr+i) = *(ptr+j); /* Swaping */

 *(ptr+j) = temp;

 }

 printf("\nValues after sorting\n");

 for(i=0; i<n; i++)

 printf("%d\t", * (ptr + i)); }

How many numbers 5

Enter 5 values

22 55 11 44 33

Values before sorting

22 55 11 44 33

Values after sorting

11 22 33 44 55

Pointers and Strings:

 String is a collection of characters and it can be also called as character array. In the previous

topic we discussed many programs using numbers. The pointers are beneficial in character-based

application also. The character pointer variable is declared as follows

char *ptr;

Here *ptr is a pointer variable, which points to the array of characters. The string value can be

assigned to the variable as below

 char name[]="Karthikeyan";

The starting address (base address) of the string is taken any one of the following ways with the help

of above declaration

 name (or) &name[0]

 /* Both are points to the starting address of the string */

The statements

 char *ptr;

char name[] =”Karthi”;

 are declarative statements and the assignment statement is

ptr = name;

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 29/46

Here the starting address of the character array variable or string variable name is assigned to the

pointer variable ptr. Now both name and ptr points to the same memory location. The following

diagram illustrates the above.

K a r t h i \0

 1000 1001 1002 1003 1004 1005 1006 1007

Now we are going to see how to access the characters of the string variable using pointers.

/* Accessing string values using pointers */

main()

{ char *ptr, name[]="Karthi";

 int i , l;

 ptr = name;

 /*Starting address is assigned to ptr*/

 l=strlen(name);

 for(i=0;i<l;i++)

 printf("%c",*(ptr+i));

 }

Karthi

How to use pointer variable to read a string value? Test the following simple program.

#include <stdio.h>

main()

{

char *s;

printf("\nEnter a string : ");

gets(s);

printf("\nYour given string is : ");

while(*s)

 printf("%c",*s++);

getch();

 }

Enter a string : You are welcome

‘ \0’ is the NULL character, which indicates end of string

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 30/46

Your given string is : You are welcome

The program given below implements the strcpy() function, it is used to copy the content of one

string to another sting variable.

 /* Implementation of strcpy command */

main()

{ char s1[15],s2[15],*ptr;

 int i,j,l;

 printf("\nEnter a source string : ");

 gets(s1);

 ptr = s1;

 l=strlen(s1);

 for(i=0;i<l;i++)

 s2[i] = *(ptr+i);

 s2[i]='\0';

 printf("\nCopied string :%s",s2);

 }

Enter a source string : karthi

Copied string :karthi

Pointers and Functions:

 We discussed the importance of function in a program and how the same is used in various

applications in the previous chapter. The drawback of simple function is that, we can't return more

than one value from it. The change made in the called function does not reflect in the calling

function. (Calling function – A function from which the new function is invoked and the Called

function – A function to which the control has to be transferred). One more problem is that we can’t

pass the entire array to the function. The problem of function is explained by using the following

program.

/* Testing the values of changes */

main()

{ int a=10;

 printf("\nBefore change : %d ",a);

 change(a);

 printf("\nAfter change : %d ",a);

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 31/46

 getch();

}

void change(int b)

{ b=100;

 printf("\nInside the function : %d ",b);}

Before change : 10

Inside the function : 100

After change : 10

In this program the value of a in main() is 10 and it is passed to the user defined function change().

The function receives the value of a via b. Inside the function the value of b has been changed as

100. But this change will affect only in b not in the value of a, because b is local to the function. The

value of a has been copied to b. This is equivalent to the statement b=a; So any changes in b will

never affect the value of a here. Go ahead and read the next topic to solve these problems.

How to change the value using function?

 Are you able to change the value of argument in the called function? If so, how? Using

pointers you can achieve this. You can pass the address of a variable to the calling function and so

the changes made in the called function will be reflected in the calling function. The following

program example illustrates this idea.

/* To changes the values of variables using pointers */

main()

{int a=10;

printf("\nValue before change = %d ",a);

change(&a); /* Passing address of a*/

printf("\nValue After change = %d ",a);

}

void change (int *b)

{ *b=100; /* Changing values indirectly */

}

Value before change = 10

Value After change = 100

How the value of a have been changed here? From the main() we are passing the address of a to the

function by the statement

 change(&a); /* Address of a is passing */

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 32/46

Now we are passing the address of a, not the value of a. So the address must be received by the

pointer variable only and the function definition will be

void change(int *b)

At the time of execution the address of a has been assigned to the pointer variable b, which is

equivalent to the following statement

int *b;

b = &a;

 Now both a and b is pointing to the same memory location and any change made in b will

automatically affect the value of a.

 Same variable name in many part of the program. Confusion. The name of the variable in one

function may be same in another function. The variable name is only for the user reference not for

the system. This problem is clearly presented in the following program.

/* Getting address of variable */

main()

{ int a=10;

 printf("\nAddress of 'a' in main : %d ",&a);

 change() ;

}

void change()

{ int a=100;

 printf("\nAddress of 'a' in function: %d ",&a);}

Address of 'a' in main : 5000

Address of 'a' in function : 7000

In this program there are two variables with same name as a. One is in main() and another is in the

user defined function change(). For every declaration the memory allocation for each variable is

different from others. So that the result of the above program is 5000 and 7000, two different

addresses even though names are same.

Call by Value & Call by reference

 A function can be invoked by so many ways as we discussed in the previous chapters. The

way of calling function can be classified into two,

1. Call by value

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 33/46

2. Call by reference

Here is a program, which finds the sum of two numbers illustrates the above ways.

Call by value:

 This can be done in two ways either using a variable or directly passing a value.

/* Passing values to the function */

main()

{int a=10,b=20,c;

c=sum(a,b); /* Passing the value of a,b */

printf("\nSum = %d ",c);}

int sum(int x, int y)

{ return (x + y);}

In this program the value of a and b has been passed to the function to find the sum. It's just like the

following simple assignment statement

 x = a and y = b;

We can pass the value to the function by giving direct value also.

 sum(10, b); sum (10,20)

Call by reference:

 What is reference? In some occasions, people may want to clarify about others using the

reference in the real life. Here the variables are indirectly using the reference instead of direct

involvement. So the function can also be invoked by using the reference that is addresses (Using

pointers). The previous program with simple modification using reference.

 /* Example for Call by Reference */

main()

{

int a=10,b=20,c;

c = sum(&a, &b); /* Passing address of a, b */

printf("\nSum = %d ",c);

}

 int sum (int *x, int *y)

 {

 return (*x+*y);

 }

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 34/46

 What is the difference between the previous two programs? In the first one values are passed

to the function in a simple manner. But in the second one, address (i.e. reference) of those variables

is passed.

Passing array to the function:

 In general we are not allowed to carry the whole array to the function. We can pass the

elements one by one. If we need to process the whole array at the same time, this provision will not

help. Now the hidden features of pointer will be used to carry the entire array without much more

risks.

How it is possible? It is very simple. Array elements are always in the continuous memory locations.

First you obtain the base address of the array. If we get the starting address of the array, we can reach

any element in the array by making simple arithmetic operations. For the function side, just we have

to pass the base address of array to the function. This idea is illustrated in the following program.

/* Passing array to the function using pointers */

main()

{ int a[]={10,20,30,40,50};

 display(a);

 /* Passing the base address of array */

}

display (int *x)

{ int i;

 printf("\n Array elements are : ");

 for(i=0;i<5;i++)

 printf("%5d",*(x+i));

}

Array elements are : 10 20 30 40 50

In the above program the starting address of array is passed to the function by the statement

 display(a);

The function will receive the starting address of array by defining the function argument as follows.

display(int *x)

This is equivalent to the assignment as x=a; The following is a program to test the previous idea by

sending an array elements to the function and the elements are doubled in the function. Finally the

changes are ensured by displaying the values in main() function.

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 35/46

/* Program to pass the whole array to the function */

#include <stdio.h>

main()

{int i, a[5]={10,20,30,40,50};

clrscr();

printf("\nElements before invoking function : ");

for(i=0;i<5;i++)

 printf("%5d",a[i]);

test(a);

printf("\nElements after invoking function : ");

for(i=0;i<5;i++)

 printf("%5d",a[i]);

getch();

}

test(int *x)

{ int i;

 for(i=0;i<5;i++)

 *(x+i) = *(x+i) * *(x+i);

}

Elements before invoking function : 10 20 30 40 50

Elements before invoking function : 100 400 900 1600 2500

I hope now you have an idea about how the array elements are carried to the function. Here is a

program to find the mean, variance and standard deviation of N floating point numbers. Formula to

calculate the standard deviation is

 Standard deviation = variance

Where

 Variance = 1/n (Xi - Mean)
2
 and i= 1 to n

 Mean = 1/n Xi

So , to find standard deviation the following is the general steps.

1. Find the sum and mean

2. Find the variance and

3. Finally calculate the standard deviation.

/*Program to find the standard deviation using pointers */

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 36/46

#include <math.h>

main()

{ float a []={1.1,2.2,3.3,4.4,5.5};

 sd(a);

}

void sd (float *x)

{

int i;

float s1=0,s2=0,s3=0,sddev,mean,var,temp;

printf("\nValues : ");

for(i=0;i<5;i++)

{

 s1 += (*(x+i)); /* Finding summation */

 printf("%5.2f\t",*(x+i));

}

mean = s1/5; /* Calculation of Mean */

for (i=0;i<5;i++)

{ temp=*(x+i)-mean;

 s2+=pow(temp,2);

}

var = s2/5; /* Calculation of variance */

sddev = sqrt(var); /* Calculation of S D */

printf("\nMean = %5.2f",mean);

printf("\nVariance = %5.2f",var);

printf("\nStd.Deviation = %5.2f",sddev); }

Values : 1.10 2.20 3.30 4.40 5.50

Mean = 3.30

Variance = 2.42

Std.Deviation = 1.56

2 D Array & Pointers

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 37/46

 As mentioned about the pointer, it gives a very good support to arrays including two-

dimensional array. Matrix is a traditional and very famous example for a two dimensional array.

Consider the following declarative statement

 int a[2] [3] ;

This declaration tells

 a is a two dimensional array

 Maximum number of elements are 6 (2 x 3 = 6)

 and all are integer type of data .

 So, each element occupies 2 bytes (Totally 12 bytes)

The values for the above two-dimensional array are initialized as below and its corresponding

memory allocation is illustrated.

 int a[2][3] = {

 {10,20,30}, First row

 {40,50,60}, Second row

 };

 10 20 30

 1000 1002 1004

 40 50 60

 1006 1008 1010

Two-dimensional array is a collection of single dimensional arrays and each single array is pointed

by the pointer variable. Here a[0] points to the first single dimensional array, a[1] points to the

second single dimensional array etc.

a [0] can be rewritten as *(a+0) and

a [1] can be rewritten as *(a+1) etc.

So, a[0] refers to the starting address of first array, and its values are referred as,

a[0][0] => First row first column

a[0][1] => First row second column etc.

a[0][0] can be referred as *(*(a+0)+0))

 *(a + 0) => Starting address of first array i.e. a[0]

(*(a+0)+0) => address of first row’s first element i.e. &a[0][0]

((a+0)+0) => Value of first row’s first element i.e. a[0][0] (* is the value at the location

operator)

Value returned by a[0] is 1000.

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 38/46

Value returned by a[1] is 1006.

Value returned by &a[0][0] is 1000

Value returned by &a[0][1] is 1002 etc

The following is an example program to check the starting address of each array.

/* To get the base addresses of 2D Array */

main()

{ int a[2][3]={ {10,20,30}, {40,50,60}, };

 int i;

 for(i=0;i<2;i++)

 printf("\nBase address of %d array :%u",i+1,a[i]);

}

Base address of 1 array : 1000

Base address of 2 array : 1006

One more program is here to give more idea about two-dimensional array and pointers.

/* Accessing the elements of array */

main()

{ int a[2][3]={ {10,20,30}, {40,50,60}, };

int i , j;

 for(i=0;i<2;i++)

 for(j=0;j<3;j++)

printf("\na[%d][%d] = %d is stored at:

 %u", i,j, a[i][j], &a[i][j]);

 getch();}

a[0][0] = 10 is stored at : 1000

a[0][1] = 20 is stored at : 1002

a[0][2] = 30 is stored at : 1004

a[1][0] = 40 is stored at : 1006

a[1][1] = 50 is stored at : 1008

a[1][2] = 60 is stored at : 1010

Referring the elements of two-dimensional array is little bit difficult than a single dimensional array.

The following is an example for this reference, which is based on the previous declaration and its

addresses. We are going to refer the element at a[1][2], the pointer notation is as follows. Here i is 1

and j is 2.

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 39/46

((a + 1)+ 2)

 1. *(a+1)

 It returns the starting address of second array equal to a[1] and it returns 1006

 2. (*(a+1)+2)

 The value returned by *(a+1) will be incremented by 2. So it returns the

address 1010.

 3. *(*(a+1)+2)

 It returns the value of that location. i.e. Value at location 1010 is 60.

 The next program illustrates how to access the elements of a two-dimensional array

using pointers

/* Accessing the elements of 2D using pointers */

main()

{

int a[2][3]={

 {10,20,30},

 {40,50,60},

 };

int i , j;

for(i=0;i<2;i++)

 for(j=0;j<3;j++)

 printf("\n%d is stored at : %u",

 ((a+i)+j),(*(a+i)+j));

 getch();

 }

10 is stored at : 1245032

20 is stored at : 1245036

30 is stored at : 1245040

40 is stored at : 1245044

50 is stored at : 1245048

60 is stored at : 1245052

Array of pointers

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 40/46

What is the use of array? Array is used to store number of elements in a single variable. The

elements may be of any type. But all of them must be of the same type. We have discussed many

programs using arrays with different type of values like integer, real and character etc.

Can we store addresses as array elements? Yes. We can. Instead of simple data, the address can be

stored. The way of declaring array of pointer is explained in the following.

 int *ptr;

Here ptr is a pointer variable, which points to one integer memory location. With small change in the

above declaration, the statement is

 int *ptr[5];

 Here ptr is variable and it is allowed to have addresses of 5 variables not values. In this case we can

store 5 different integer addresses to this array variable. Elements of the array may contain different

addresses.

 int a,b,c;

 ptr[0] = &a;

 /* Address of a is assigned to first element of array */

 ptr[1] = &b;

 /* Address of b is assigned to second element of array */

 ptr[2] = &c;

The value of a can be referred as *ptr[0]. The following is a program gives an idea of our discussion.

 /* Example for array of pointers */

 main()

 {

int a=10,b=20,c=30;

int *ptr[5]; /* Array of pointers */

clrscr();

ptr[0]=&a;

ptr[1]=&b;

ptr[2]=&c;

 /* Value of pointer variable is accessed */

 printf("\na = %d ",*ptr[0]);

 printf("\nb = %d ",*ptr[1]);

 printf("\nc = %d ",*ptr[2]);

 printf("\n Address of a = %u",&a);

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 41/46

 printf("\n Value of ptr[0]= %u",ptr[0]);

 }

 A=10

 B=20

 C=30

Address of a = 12042

Value of ptr[0] = 12042

In the above program ptr[0] holds the address of variable a. So &a and ptr[0] contains the same

values (ie address).

Calling functions using Pointers:

Normally functions are invoked by specifying its name with necessary arguments. Now we are going

to invoke the function using pointers. The address of variable can be obtained as follows.

 int a;

 printf(“\nAddress = %u “,&a);

The output of above would be address of the variable a. It may be 1240, which is not always same.

Address of the function can also obtained as illustrated below.

/* Obtaining the address of function */

main()

{ int test()

 printf(“\nAddress function test = %u “,test);

 }

This program returns the address of function test(). This address can be assigned to a pointer of the

function variable as like below.

int test(); /* Function prototype declaration */

int (*ptr)(); /* Pointer to function */

Address of function test() is assigned to the pointer variable ptr as

 ptr = test;

The function can be invoked using pointer as below

 (*ptr)(); /* Similar to calling as test() */

The following a complete program, which illustrate the above discussion like how the functions are

called using the pointers.

/* Illustrating function calling using pointers */

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 42/46

main()

{ void test();

 void (*ptr)();

 ptr = test; /* Address assignment */

 (*ptr)(); /* Function Calling */

}

void test()

{ printf("\nHello ");}

Returning address

 The previous section provides an idea about the function and pointers that indirectly returns

the address. But we can return a memory address to the calling function as like a normal function

return type. Look the following code

 int Read() => The function returns an integer value

 char Read() => The function returns an character value

 void Read() => The function returns nothing

 int * Read() => Now the function returns memory address.

The following example program illustrates the idea of returning an address from the function. The

program read the array elements in the function and returns the base address of the array to the

main() function. Later the address will be used in further process in main() function.

 /* Program which read value in function Read() and return the

address to the main() function */

#include <stdio.h>

#include <conio.h>

int * Read(int);

main()

{

int *a,n,i;

clrscr();

printf("\nEnter the size of the array :");

scanf("%d",&n);

a = Read(n);

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 43/46

printf("\nArray elements are \n");

for(i=0;i<n;i++)

 printf("%5d",*(a+i));

 getch();

}

int * Read(int m)

{

int *p,i;

p=(int *) malloc(sizeof(int) * m);

printf("\nEnter %d values ",m);

for(i=0;i<m;i++)

 scanf("%d",(p+i));

return p;}

Structures and Pointers:

The features of pointers are not limited with simple application. It is used in the structure also. The

declaration of structure pointer is as follows.

Proceed with the following example and see how an ordinary variable and pointer variables are used

in the program.

struct stu *s1; /* s1 is structure pointer */

struct

 {

 char name[15];

 int rollno;

 }s1, *s2;

In the above declaration s1 is an ordinary structure variable, but s2 is a pointer to structure variable.

The members of the structure s1 will be referred using dot (.) operator. But the members of pointer to

structure variable will be accessed using an operator called an arrow operator (). In simple

definition, instead of dot(.) operator we have to use the arrow operator. So the members of s2 are

referred as s2name and s2rollno. The following program illustrates our discussion and may be

clarified easily.

 struct structure-tag * structure-pointer;

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 44/46

/* Example for pointers and structures */

main()

{ struct stu

 {

 char name[25];

 int rollno;

};

struct stu s1, *s2;

printf("\nName of the student : ");

scanf("%s",s2->name);

printf("\nRoll No. : ");

scanf("%d",&s2->rollno);

 printf("\nName: %s\nRoll No :%d ",s2->name,s2->rollno);

 }

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 45/46

POSSIBLE QUESTIONS – UNIT III
 Part-A

 Online Examinations (One marks)

1. _________________is a collection of objects of similar type

a) Objects b) methods c) classes d) messages

2. The ___________________is an entry-controlled loop

a) while b) do-while c) for d) switch

3. Which of the following function / type of function cannot be overloaded?

a) Member function b) Static function

c) Virtual function d) Both B and C

4. Which is used to keep the call by reference value as intact?

a) static b) const c) absolute d) none

5. By default how the value are passed in c++?

a) call by value b) call by reference c) call by pointer d) none

6. Which of the following is a two-dimensional array?

a) array anarray[20][20]; b) int anarray[20][20];

c) int array[20, 20]; d)char array[20];

7. Which reference modifier is used to define reference variable?

a) & b) $ c) # d) none

8. Which of the following are themselves a collection of different data types?

a) String b)Structure c) Char d) All

9. Union differs from structure in the following way

a) All members are used at a time

b) Only one member can be used at a time

c) Union cannot have more members

d) Union initialized all members as structure

10. The ____ functions are used to handle the single character I/O operation.

a) get() and put() b)clrscr() and getch() c) cin and cout d) None

 Structures and Unions

2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 46/46

 Part-B 2 MARKS

1. What are the features and uses of pointers?

2. Define structure.

3. Define union.

4. Write about array of structure.

5. Define pointers with example.

6. What are pointers to pointers?

7. How will you declare pointer variable.

8. Pointers Vs References.

9. What is derived data type?

10. What is the purpose of & and * operators?

11. Discuss about pointers and arrays with example.

12. Distinguish between (*m) [5] and *m[5].

 Part-C 6MARKS

1. Explain pointers to pointers with suitable program.

2. How to declare and initialize structure and unions?

3. Discuss pointers to structures with example.

4. How to pass and return structures from functions?

5. Mention the difference between pointers vs. references

6. Write note on passing pointers as function arguments.

7. With proper example explain Array of structures

8. With proper example explain pointers in c++.

9. Explain Unions with simple example.

10. Write a program to swap two numbers using pointers.

11. Enumerate in detail about the array of structure with example.

12. Discuss the methods used to send pointers to functions with an example.

13. How will you declare, initialize and access a union? Explain in detail with example.

SUBJECT: PROGRAMMING

FUNDAMENTALS USING C/C++

UNIT-III

S.No Questions OPT1 OPT2 OPT3 OPT4 Answer

1

C++ supports all the features of

___________ as defined in C structures union objects classes structures

2

A structure can have both variable and

functions as ________ objects classes members arguments members

3

The class _________ describes the type and

scope of its members

calling

function

declaration objects

 none of the

above

declaration

4

The class __________ describes how the

class function are implemented

 Function

definition

declaration arguments

 none of the

above

 Function

definition

5

The keywords private and public are known

as _________ labels Static dynamic visibility const visibility

6

The class members that have been declared

as ________ can be

 accessed only from within the class Private public static protected Private

(1 mark questions)

SUBJECT CODE: 17CSU101

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Part -A Online Examinations

COIMBATORE - 21

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 CLASS : I B.Sc COMPUTER SCIENCE

BATCH : 2017-2020

7

The class members that have been declared

as ________ can be

 accessed from outside the class also Private Public static protected Public

8

The variables declared inside the class are

called as _________

 Function

variables

 data

members

 member

function

data

variables

 data

members

9

The symbol ______ is called the scope

resolution operator >> :: << ::* ::

10

A member function can call another

member function directly

 without using the _________ operator

Assignmen

t equal dot

 greater

than dot

11

A ______ member variable is initialized to

zero when the first object of its class is

created Dynamic constant static protected static

12

_________ Variables are normally used to

maintain values common to the entire class. Private protected Public static static

13

When a copy of the entire object is passed

to the function it is called as _________

 Pass by

reference

 pass by

function

 pass by

pointer

 pass by

value

 pass by

value

14

The ________ member variables must be

defined outside the class. Static private public protected Static

15

A friend function, although not a member

function, has full

access right to the ______ members of the Static private public protected private

16

__________ enables an object to initialize

itself when it is created

Destructor

constructor overloading

 none of the

above

constructor

17

________ destroys the objects when they

are no longer required

Destructor

constructor overloading

 none of the

above

Destructor

18

The __________ is special because its name

is the same as the class name.

Destructor static constructor

 none of the

above

constructor

19

A constructor that accepts no parameters is

called the __________ constructor Copy default multiple

 none of the

above default

20

Constructors are invoked automatically

when the ________ are created Datas classes objects

 none of the

above objects

21 Constructors cannot be _________ Inherited destroyed both a & b

 none of the

above Inherited

22 Constructors cannot be _________ Destroyed virtual both a & b

 none of the

above virtual

23

Constructors make _________ calls to the

operators new and

delete when memory allocation is required Explicit implicit function

 none of the

above implicit

24

The constructors that can take arguments

are called _________ constructors Copy multiple

parameterize

d

 none of the

above

parameteri

zed

25

The constructor function can also be defined

as ________ function Friend inline default

 none of the

above inline

26

When a constructor can accept a reference

to its own

 class as a parameter, in such cases it is Multiple copy default

 none of the

above copy

27

When more than one constructor function is

defined in a class,

 then the constructor is said to be Multiple copy default overloaded

overloaded

28

C++ complier has a _________ constructor,

which creates objects, even though it was

not defined in the class. Explicit default implicit

 none of the

above implicit

29

A _________ constructor is used to declare

and initialize an object from another object Default copy multiple

parameterize

d copy

30

The process of initializing through a copy

constructor is known as ________

initialization

Overloaded multiple copy

 none of the

above copy

31

A ______ constructor takes a reference to

an object of the same class as itself as an

argument Delete new copy

 none of the

above copy

32

Allocation of memory to objects at the time

of their construction is known as ________

construction Static copy dynamic

 none of the

above dynamic

33

We can create and use constant objects

using ______ keyword before object

declaration. Static new const

 none of the

above const

34 A destructor is preceded by ______ symbol Dot asterisk colon tilde tilde

35

_________ is used to allocate memory in

the constructor Delete binding free new new

36 _________ is used to free the memory new delete clrscr()

 none of the

above delete

37

Which is a valid method for accessing the

first element of the array item? item(1) item[1] item[0] item(0) item[0]

38

Which of the following statements is valid

array declaration?

 int

number

(5);

 float

avg[5];

 double [5]

marks;

 counter

int[5];

 float

avg[5];

39 An object is an _________ unit group individual both a&b

 none of the

above individual

40

Public keyword is terminated by a

Semicolon comma dot colon colon

41

Private keyword is terminated by a

_________ semicolon comma dot colon colon

42

The memory for static data is allocated only

________ twice thrice once

 none of the

above once

43

Static member functions can be invoked

using ________ name class object data function class

44 The _________ doesn’t have any argument

constructor

 copy

constructor destructor

 none of the

above

destructor

45

The _________ also allocates required

memory .

constructor destructor both a & b

 none of the

above

constructor

46

Any constructor or destructor created by the

complier will be _______ private public protected

 none of the

above public

47

_________ releases memory space occupied

by the objects

constructor destructor both a & b

 none of the

above destructor

48

Constructors and destructors are

automatically inkoved by _________

 operating

system main() complier object complier

49 Constructors is executed when ________

 object is

destroyed

 object is

declared both a & b

 none of the

above

 object is

declared

50

The destructor is executed when

 object

goes out of

scope

 when

object is

not used

 when

object

contains

 none of the

above

 object

goes out of

scope

51

The members of a class are by default

________ protected private public

 none of the

above private

52

The ________ is executed at the end of the

function when objects are of no used or

goes out of scope destructor

constructor inheritance

 none of the

above destructor

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 1/42

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2017 onwards)

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

SUBJECT : PROGRAMMING FUNDAMENTALS USING C/C++

SEMESTER : I L T P C

SUBJECT CODE: 17CSU101 CLASS : I B.Sc.CS 4 0 0 4

UNIT-IV

Memory Allocation in C++: Differentiating between static and dynamic memory

allocation, use of malloc, calloc and free functions, use of new and delete operators, storage of

variables in static and dynamic memory allocation.File I/O, Preprocessor Directives: Opening

and closing a file (use of fstream header file, ifstream, ofstream and fstream classes), Reading

and writing Text Files, Using put(), get(), read() and write() functions, Random access in files,

Understanding the Preprocessor Directives (#include, #define, #error, #if, #else, #elif, #endif,

#ifdef, #ifndef and #undef), Macros.

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 2/42

Suggested Readings:

1. Herbtz Schildt, 2003,C++: The Complete Reference, 4
th

 Edition, McGraw Hill.

2. Bjarne Stroustrup, 2013, The C++ Programming Language, 4
th

 Edition, Addison-Wesley.

3. Bjarne Stroustroup, 2014, Programming - Principles and Practice using C++, 2
nd

 Edition,

 Addison-Wesley.

4. E Balaguruswamy, 2008,Object Oriented Programming with C++, 2
nd

 Edition ,Tata McGraw-

 Hill Education.

5. Paul Deitel, Harvey Deitel, 2011,C++ How to Program, 8
th

 Edition, Prentice Hall.

6. John R. Hubbard, 2000, Programming with C++, 2
nd

 Edition ,Schaum's Series.

7. Stefan Bjornander, 2016,C++ Windows Programming, Published by Packt Publishing Ltd.

8. Scott Meyers, 2005, Effective C++, 3
rd

 Edition, Published by Addison-Wesley.

9. Harry, H. Chaudhary, 2014 ,Head First C++ Programming: The Definitive Beginner's

 Guide, First Create space Inc, O-D Publishing, LLC USA.

10. Walter Savitch, 2007,Problem Solving with C++, Pearson Education.

11. Stanley B. Lippman, JoseeLajoie, Barbara E. Moo, 2012, C++ Primer, 5
th

 Edition, Published

 by Addison-Wesley.

12. Debasish Jana , 2014,C++ And Object-Oriented Programming Paradigm,Published by

 PHI Learning Pvt. Ltd.

13. Richard L. Stegman, 2016, Focus on Object-oriented Programming With C++,6
th

 Edition

 ,CreateSpace Independent Publishing Platform,.

14. Andrew Koeni, Barbara, E. Moo,2000,Accelerated using C++, Published by Addison-

 Wesley .

WEB SITES

1. http://www.cs.cf.ac.uk/Dave/C/CE.html

2. http://www2.its.strath.ac.uk/courses/c/

3. http://www.iu.hio.no/~mark/CTutorial/CTutorial.html

4. http://www.cplusplus.com/doc/tutorial/

5. http://www.cplusplus.com/

6. http://www.cppreference.com/

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 3/42

Unit 4

Dynamic Memory Allocation

Instead of define an int variable (int number), and assign the address of the variable to

the int pointer (int *pNumber = &number), the storage can be dynamically allocated at runtime,

via a new operator. In C++, whenever you allocate a piece of memory dynamically via new, you

need to use delete to remove the storage (i.e., to return the storage to the heap).

The new operation returns a pointer to the memory allocated. The delete operator takes a pointer

(pointing to the memory allocated via new) as its sole argument.

For example,

// Static allocation

int number = 88;

int * p1 = &number; // Assign a "valid" address into pointer

// Dynamic Allocation

int * p2;// Not initialize, points to somewhere which is invalid

cout<< p2 <<endl; // Print address before allocation

p2 = new int; // Dynamically allocate an int and assign its address to pointer

// The pointer gets a valid address with memory allocated

*p2 = 99;

cout<< p2 <<endl; // Print address after allocation

cout<< *p2 <<endl; // Print value point-to

delete p2; // Remove the dynamically allocated storage

Observe that new and delete operators work on pointer.

To initialize the allocated memory, you can use an initializer for fundamental types, or invoke a

constructor for an object. For example,

// use an initializer to initialize a fundamental type (such as int, double)

int * p1 = new int(88);

double * p2 = new double(1.23);

// C++11 brace initialization syntax

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 4/42

int * p1 = new int {88};

double * p2 = new double {1.23};

// invoke a constructor to initialize an object (such as Date, Time)

Date * date1 = new Date(1999, 1, 1);

Time * time1 = new Time(12, 34, 56);

You can dynamically allocate storage for global pointers inside a function. Dynamically

allocated storage inside the function remains even after the function exits. For example,

// Dynamically allocate global pointers (TestDynamicAllocation.cpp)

#include <iostream>

using namespace std;

int * p1, * p2; // Global int pointers

// This function allocates storage for the int*

// which is available outside the function

void allocate() {

 p1 = new int; // Allocate memory, initial content unknown

 *p1 = 88; // Assign value into location pointed to by pointer

 p2 = new int(99); // Allocate and initialize

}

Int main() {

allocate();

cout<< *p1 <<endl; // 88

cout<< *p2 <<endl; // 99

 delete p1; // Deallocate

 delete p2;

 return 0;

}

The main differences between static allocation and dynamic allocations are:

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 5/42

1. In static allocation, the compiler allocates and deallocates the storage automatically, and

handle memory management. Whereas in dynamic allocation, you, as the programmer,

handle the memory allocation and deallocation yourself (via new and delete operators).

You have full control on the pointer addresses and their contents, as well as memory

management.

2. Static allocated entities are manipulated through named variables. Dynamic allocated

entities are handled through pointers.

3.

new[] and delete[] Operators

Dynamic array is allocated at runtime rather than compile-time, via the new[] operator. To

remove the storage, you need to use the delete[] operator (instead of simply delete). For example,

/* Test dynamic allocation of array (TestDynamicArray.cpp) */

#include <iostream>

#include <cstdlib>

using namespace std;

intmain() {

constint SIZE = 5;

int * pArray;

pArray = new int[SIZE]; // Allocate array via new[] operator

// Assign random numbers between 0 and 99

 for (inti = 0; i< SIZE; ++i) {

 *(pArray + i) = rand() % 100;

 }

// Print array

 for (inti = 0; i< SIZE; ++i) {

cout<< *(pArray + i) << " ";

 }

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 6/42

cout<<endl;

delete[] pArray; // Deallocate array via delete[] operator

 return 0;

}

C++03 does not allow your to initialize the dynamically-allocated array. C++11 does with the

brace initialization, as follows:

// C++11

int * p = new int[5] {1, 2, 3, 4, 5};

Pointer, Array and Function

Array is Treated as Pointer

In C/C++, an array's name is a pointer, pointing to the first element (index 0) of the array. For

example, suppose that numbers is an int array, numbers is a also an int pointer, pointing at the

first element of the array. That is, numbers is the same as &numbers[0].

Consequently, *numbers is number[0]; *(numbers+i) is numbers[i].

For example,

/* Pointer and Array (TestPointerArray.cpp) */

#include <iostream>

using namespace std;

intmain() {

constint SIZE = 5;

int numbers[SIZE] = {11, 22, 44, 21, 41}; // An int array

// The array name numbers is an int pointer, pointing at the

// first item of the array, i.e., numbers = &numbers[0]

cout<<&numbers[0] <<endl; // Print address of first element (0x22fef8)

cout<< numbers <<endl; // Same as above (0x22fef8)

cout<< *numbers <<endl; // Same as numbers[0] (11)

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 7/42

cout<< *(numbers + 1) <<endl; // Same as numbers[1] (22)

cout<< *(numbers + 4) <<endl; // Same as numbers[4] (41)

}

4.2 Pointer Arithmetic

As seen from the previous section, if numbers is an int array, it is treated as an int pointer

pointing to the first element of the array. (numbers + 1) points to the next int, instead of having

the next sequential address. Take note that an int typically has 4 bytes. That is (numbers +

1) increases the address by 4, or sizeof(int). For example,

intnumbers[] = {11 22, 33};

int * iPtr = numbers;

cout<<iPtr<<endl; // 0x22cd30

cout<<iPtr + 1 <<endl; // 0x22cd34 (increase by 4 - sizeofint)

cout<< *iPtr<<endl; // 11

cout<< *(iPtr + 1) <<endl; // 22

cout<< *iPtr + 1 <<endl; // 12

USE OF MALLOC, CALLOC AND FREE FUNCTIONS

Functions malloc, calloc, realloc and free are used to allocate /deallocate memory on heap in

C/C++ language. These functions should be used with great caution to avoid memory leaks and

dangling pointers.

malloc (Allocating uninitialized memory)

This functions allocates the memory and returns the pointer to the allocated memory. Signature

of function is

void *malloc(size_t size);

size_t corresponds to the integral data type returned by the language operator sizeof and is used

to represent the size (in bytes) of an object. It is defined (In string.h header in C language

andheader in C++) as an unsigned integral type. It is just an indication that the type is used to

hold number of memory bytes (and not usual unsigned int).

The below code allocates memory for 10 integers and assign the address of allocated memory

(address of the first byte of memory) to int pointer ptr

int * ptr = (int*) malloc(10 * sizeof(int));

http://www.ritambhara.in/memory-leaks-and-dangling-pointers/
http://www.ritambhara.in/memory-leaks-and-dangling-pointers/

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 8/42

 If the system is not able to allocate the requested memory on heap then malloc returns

NULL.

 If size is zero (malloc(0)), then malloc returns either a NULL pointer or a valid pointer

which can be passed to free function for successful memory dealocation. The actual value

depends on the implementation.

 malloc returns a void pointer which need to casted to appropriate type before

dereferencing. (The way we typecasted it to int* above.

 Memory returned by malloc is not initialized an holds garbage value.

Because malloc can return a NULL pointer in case it is not able to allocate memory, The value

returned is first checked against valid memory allocation before using the pointer.

int * ptr = (int*) malloc(10 * sizeof(int));

if(ptr == NULL)

 // Unable to allocate memory. Take Action.

else

 // Memory allocation successful. can use ptr

While specifying the size absolute values should be avoided to make the code platform

independent. For example: If you know that your compiler (plus machine) allocates 2 bytes to

integers and you want to allocate memory for one integer, than also you should NOT write code

like

int* ptr = (int*) malloc(2); // BAD CODE.. hardcode value 2

because this code will fail when will compile it on 4-byte machines (which allocates 4-bytes to

integers). A good way is to always use sizeof operator

int* ptr = (int*) malloc(sizeof(int)); // BAD CODE.. hardcode value 2

It will get the actual size of int on machine and pass that value to malloc. Such mistakes are

only committed by programmers new to C language.

calloc (Memory allocation + Initialization)

Calloc also allocates memory on heap like malloc does. The only difference is that calloc also

initialize the memory with zero (malloc returns uninitialized memory).

Signature of calloc is:

void* calloc(size_tnum, size_t size);

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 9/42

It will allocate memory to an array of num elements where each element is of size bytes. we need

to pass two parameters to calloc because it need to assign zero to each elements (hence it need to

know how many elements are there).

The below code will allocate memory of one integer on heap, initialize it with zero and store the

address in pointer ptr.

int * ptr = (int*) calloc(1, sizeof(int));

Except for initialization part, everything we wrote about malloc is true about calloc also.

Due to the alignment requirements, the number of allocated bytes is not necessarily equal to

(num*size). This is typical to the struct where individual fields are alligned to word boundaries.

Realloc (change the size of memory block on heap)

Suppose a pointer (say ptr) is pointing to a memory of 10 int on heap allocated using malloc as

below.

int * ptr = (int*)malloc(10*sizeof(int));

You want to increase the size of memory pointed to by ptr from 10 to 20, without loosing the

contents of already allocated memory. In this case you can call the realloc function. Signature

of realloc is:

void *realloc(void *ptr, size_t size);

where ptr is the pointer to the previously (currently) allocated block of memory and size is the

new size (in bytes) for the new memory block.

It is possible that the function will move the memory block to a new location because it is not

able to allocate memory just after the existing memory block as shown in the picture below:

in this case realloc will allocate memory for 20 integers somewhere else and then copy the

contents of first 10 locations from here to the new place. will deallocate the existing memory and

return a pointer to the new memory. Hence ptr will change.

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 10/42

Programmer, should be aware with this fact because it may result in dangling pointers. consider

the case below:

int * ptr1 = (int*) malloc(5 * sizeof(int));

int * ptr2 = ptr1;

ptr2 = (int*) realloc(ptr2, 10 * sizeof(int));

// ptr1 may become a dangling pointer

Int this case both ptr1 and ptr2 are pointing to the same memory location.

When realloc is called, the memory location pointed to by both the pointers may get deallocated

(in case the contiguous space is not available just after the memory block). ptr2 will now point to

the newly shifted location on the heap (returned by realloc), but ptr1 is still pointing to the old

location (which is now deallocated).

Hence, ptr1 is a dangling pointer.

 If pointer passed to realloc is null, then it will behave exactly like malloc.

 If the size passed is zero, and ptr is not NULL then the call is equivalent to free.

 If the area is moved to new location then a free on the previous location is called.

 If contents will not change in the existing region. The new memory (in case you are

increasing memory in realloc) will not be initialized and will hold garbage value.

 If realloc() fails the original block is left untouched; it is not freed or moved.

Free (Free the memory allocated using malloc, calloc or realloc)

free functions frees the memory on the heap, pointed to by a pointer. Signature of free function is

void free(void* ptr);

 ptr must be pointing to a memory which is allocated using malloc, calloc or realloc.

 If ptr is called on a memory which is not on heap or on a dangling pointer, then the

behavior is undefined.

 If ptr is NULL, then free does nothing and returns (So, its ok to call free on null pointers).

int x = 2;

int* ptr = &x;

free(ptr); //UNDEFINED.

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 11/42

int *ptr2; // UN initialized, hence dangling pointer

free(ptr2); //UNDEFINED

int *ptr3 = NULL;

free(ptr3); //OK.

 Crashes in malloc(), calloc(), realloc(), or free() are almost always related to heap corruption,

such as overflowing an allocated chunk or freeing the same pointer twice.

Use of new and delete

new/delete

 Allocate/release memory

1. Memory allocated from 'Free Store'

2. Returns a fully typed pointer.

3. new (standard version) never returns a NULL (will throw on failure)

4. Are called with Type-ID (compiler calculates the size)

5. Has a version explicitly to handle arrays.

6. Reallocating (to get more space) not handled intuitively (because of copy constructor).

7. Whether they call malloc/free is implementation defined.

8. Can add a new memory allocator to deal with low memory (set_new_handler)

9. operator new/delete can be overridden legally

10. constructor/destructor used to initialize/destroy the object

malloc/free

 Allocates/release memory

1. Memory allocated from 'Heap'

2. Returns a void*

3. Returns NULL on failure

4. Must specify the size required in bytes.

5. Allocating array requires manual calculation of space.

6. Reallocating larger chunk of memory simple (No copy constructor to worry about)

7. They will NOT call new/delete

8. No way to splice user code into the allocation sequence to help with low memory.

9. malloc/free can NOT be overridden legally

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 12/42

Table comparison of the features:

 Feature | new/delete | malloc/free

--------------------------+--------------------------------+-------------------------------

 Memory allocated from | 'Free Store' | 'Heap'

 Returns | Fully typed pointer | void*

 On failure | Throws (never returns NULL) | Returns NULL

 Required size | Calculated by compiler | Must be specified in bytes

 Handling arrays | Has an explicit version | Requires manual calculations

 Reallocating | Not handled intuitively | Simple (no copy constructor)

 Call of reverse | Implementation defined | No

 Low memory cases | Can add a new memory allocator | Not handled by user code

Overridable | Yes | No

 Use of (con-)/destructor | Yes | No

Technically memory allocated by new comes from the 'Free Store' while memory allocated by

malloc comes from the 'Heap'. Whether these two areas are the same is an implementation

details, which is another reason that malloc and new can not be mixed.

C++ Opening and Closing Files

In C++, you open a file, you must first obtain a stream. There are the following three types of

streams:

input

output

input/output

Create an Input Stream

To create an input stream, you must declare the stream to be of class ifstream. Here is the syntax:

ifstream fin;

Create an Output Stream

To create an output stream, you must declare it as class ofstream. Here is an example:

ofstreamfout;

Create both Input/Output Streams

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 13/42

Streams that will be performing both input and output operations must be declared as class

fstream. Here is an example:

fstreamfio;

Opening a File in C++

Once a stream has been created, next step is to associate a file with it. And thereafter the file is

available (opened) for processing.

Opening of files can be achieved in the following two ways :

Using the constructor function of the stream class.

Using the function open().

The first method is preferred when a single file is used with a stream. However, for managing

multiple files with the same stream, the second method is preferred. Let's discuss each of these

methods one by one.

Opening File Using Constructors

We know that a constructor of class initializes an object of its class when it (the object) is being

created. Same way, the constructors of stream classes (ifstream, ofstream, or fstream) are used to

initialize file stream objects with the filenames passed to them. This is carried out as explained

here:

To open a file named myfile as an input file (i.e., data will be need from it and no other operation

like writing or modifying would take place on the file), we shall create a file stream object of

input type i.e., ifstream type. Here is an example:

ifstreamfin("myfile", ios::in) ;

The above given statement creates an object, fin, of input file stream. The object name is a user-

defined name (i.e., any valid identifier name can be given). After creating the ifstream object fin,

the file myfile is opened and attached to the input stream, fin. Now, both the data being read

from myfile has been channelised through the input stream object.

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 14/42

Now to read from this file, this stream object will be used using the getfrom operator (">>").

Here is an example:

char ch;

fin >>ch ; // read a character from the file

float amt ;

fin >>amt ; // read a floating-point number form the file

Similarly, when you want a program to write a file i.e., to open an output file (on which no

operation can take place except writing only). This will be accomplish by

creating ofstream object to manage the output stream

associating that object with a particular file

Here is an example,

ofstreamfout("secret" ios::out) ; // create ofstream object named as fout

This would create an output stream, object named as fout and attach the file secret with it.

Now, to write something to it, you can use << (put to operator) in familiar way. Here is an

example,

int code = 2193 ;

fout<< code << "xyz" ; /* will write value of code

 and "xyz" to fout's associated

 file namely "secret" here. */

The connections with a file are closed automatically when the input and the output stream

objects expires i.e., when they go out of scope. (For example, a global object expires when the

program terminates). Also, you can close a connection with a file explicitly by using the close()

method :

fin.close() ; // close input connection to file

fout.close() ; // close output connection to file

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 15/42

Closing such a connection does not eliminate the stream; it just disconnects it from the file. The

stream still remains there. For example, after the above statements, the streams fin and fout still

exist along with the buffers they manage. You can reconnect the stream to the same file or to

another file, if required. Closing a file flushes the buffer which means the data remaining in the

buffer (input or output stream) is moved out of it in the direction it is ought to be. For example,

when an input file's connection is closed, the data is moved from the input buffer to the program

and when an output file's connection is closed, the data is moved from the output buffer to the

disk file.

Opening Files Using Open() Function

There may be situations requiring a program to open more than one file. The strategy for opening

multiple files depends upon how they will be used. If the situation requires simultaneous

processing of two files, then you need to create a separate stream for each file. However, if the

situation demands sequential processing of files (i.e., processing them one by one), then you can

open a single stream and associate it with each file in turn. To use this approach, declare a stream

object without initializing it, then use a second statement to associate the stream with a file. For

example,

ifstreamfin; // create an input stream

fin.open("Master.dat", ios::in); // associate fin stream with file Master.dat

: // process Master.dat

fin.close(); // terminate association with Master.dat

fin.open("Tran.dat", ios::in); // associate fin stream with file Tran.dat

: // process Tran.dat

fin.close(); // terminate association

The above code lets you handle reading two files in succession. Note that the first file is closed

before opening the second one. This is necessary because a stream can be connected to only one

file at a time.

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 16/42

The Concept of File Modes

The filemode describes how a file is to be used : to read from it, to write to it, to append it, and

so on.

When you associate a stream with a file, either by initializing a file stream object with a file

name or by using the open() method, you can provide a second argument specifying the file

mode, as mentioned below :

stream_object.open("filename", (filemode)) ;

The second method argument of open(), the filemode, is of type int, and you can choose one

from several constants defined in the ios class.

List of File Modes in C++

Following table lists the filemodes available in C++ with their meaning :

Constant Meaning
Stream

Type

ios :: in It opens file for reading, i.e., in input mode. ifstream

ios :: out

It opens file for writing, i.e., in output mode.

This also opens the file in ios :: trunc mode, by default.

This means an existing file is truncated when opened,

i.e., its previous contents are discarded.

ofstream

ios :: ate
This seeks to end-of-file upon opening of the file.

I/O operations can still occur anywhere within the file.

ofstream

ifstream

ios :: app
This causes all output to that file to be appended to the end.

This value can be used only with files capable of output.
ofstream

ios :: trunc
This value causes the contents of a pre-existing file by the same

name
ofstream

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 17/42

to be destroyed and truncates the file to zero length.

ios :: nocreate

This cause the open() function to fail if the file does not already

exist.

It will not create a new file with that name.

ofstream

ios ::

noreplace

This causes the open() function to fail if the file already exists.

This is used when you want to create a new file and at the same

time.

ofstream

ios :: binary

This causes a file to be opened in binary mode.

By default, files are opened in text mode.

When a file is opened in text mode,

various character translations may take place,

such as the conversion of carriage-return into newlines.

However, no such character translations occur in file opened in

binary mode.

ofstream

ifstream

However, no such character translations occur in file opened in binary mode.

ofstream

ifstream

If the ifstream and ofstream constructors and the open() methods take two arguments each, how

have we got by using just one in the previous examples ?

As you probably have guessed, the prototypes for these class member functions provide default

values for the second argument (the filemode argument). For example, the ifstreamopen()

method and constructor use ios :: in (open for reading) as the default value for the mode

argument, while the ofstream open() method and constructor use ios :: out (open for writing) as

the default.

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 18/42

The fstream class does not provide a mode by default and, therefore, one must specify the mode

explicitly when using an object of fstream class.

Both ios::ate and ios::app place you at the end of the file just opened. The difference between the

two is that the ios::app mode allows you to add data to the end of the file only, when the ios::ate

mode lets you write data anywhere in the file, even over old data.

You can combine two or more filemode constants using the C++ bitwise OR operator (symbol |).

For example, the following statement :

ofstreamfout;

fout.open("Master", ios :: app | ios :: nocreate);

will open a file in the append mode if the file exists and will abandon the file opening operation

if the file does not exist.

To open a binary file, you need to specify ios :: binary along with the file mode, e.g.,

fout.open("Master", ios :: app | ios :: binary);

or,

fout.open("Main", ios :: out | ios :: nocreate | ios :: binary);

Closing a File in C++

As already mentioned, a file is closed by disconnecting it with the stream it is associated with.

The close() function accomplishes this task and it takes the following general form :

stream_object.close();

For example, if a file Master is connected with an ofstream object fout, its connections with the

stream fout can be terminated by the following statement :

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 19/42

fout.close() ;

C++ Opening and Closing a File Example

Here is an example given, for the complete understanding on:

how to open a file in C++ ?

how to close a file in C++ ?

Let's look at this program.

/* C++ Opening and Closing a File

 * This program demonstrates, how

 * to open a file to store or retrieve

 * information to/from it. And then how

 * to close that file after storing

 * or retrieving the information to/from it. */

#include<conio.h>

#include<string.h>

#include<stdio.h>

#include<fstream.h>

#include<stdlib.h>

void main()

{

 ofstreamfout;

 ifstream fin;

 char fname[20];

 char rec[80], ch;

 clrscr();

 cout<<"Enter file name: ";

 cin.get(fname, 20);

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 20/42

 fout.open(fname, ios::out);

 if(!fout)

 {

 cout<<"Error in opening the file "<<fname;

 getch();

 exit(1);

 }

 cin.get(ch);

 cout<<"\nEnter a line to store in the file:\n";

 cin.get(rec, 80);

 fout<<rec<<"\n";

 cout<<"\nThe entered line stored in the file successfully..!!";

 cout<<"\nPress any key to see...\n";

 getch();

 fout.close();

 fin.open(fname, ios::in);

 if(!fin)

 {

 cout<<"Error in opening the file "<<fname;

 cout<<"\nPress any key to exit...";

 getch();

 exit(2);

 }

 cin.get(ch);

 fin.get(rec, 80);

 cout<<"\nThe file contains:\n";

 cout<<rec;

 cout<<"\n\nPress any key to exit...\n";

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 21/42

 fin.close();

 getch();

}

Here is the sample run of the above C++ program:

Read File in C++

To read a file in C++ programming, you have to first open that file using the function open() and

then start reading the file's content as shown here in the following program.

C++ Programming Code to Read File

First make a textual file named "filename.txt" in your BIN (for TurboC++ user) folder present

inside TurboC++ directory, to open this file for reading.

Following C++ program opens a file named filename.txt to read the content present inside this

file, if there is an error in opening a file then program puts a message on the screen for the error,

and if the file will be read then it will display the file (content of the file) but this program limits

 to only one line of the file which is to be read. To know more, go to 2nd next program,

which will clear your doubt, that program will read a file and display the contents of it. For now,

go through the following program which will read a file and display its content on the screen:

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 22/42

/* C++ Program - Read a File */

#include<iostream.h>

#include<conio.h>

#include<stdlib.h>

#include<stdio.h>

#include<fstream.h>

void main()

{

 clrscr();

 char c[1000];

 ifstreamifile;

 ifile.open("filename.txt") ;

 if(!ifile)

 {

 cout<<"Error in opening file..!!";

 getch();

 exit(1);

 }

 cout<<"Data in file = ";

 while(ifile.eof()==0)

 {

 ifile>>c;

 cout<<c<<" ";

 }

 ifile.close();

 getch();

}

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 23/42

Write To File in C++

To write some content in a file using C++ programming, you have to enter the file name with

extension to open that file using the function open(), then after opening the desired file, again ask

to the user to enter some content (some line of text) to store in the file. And at last, close the file

after use using the function close() as shown in the following program.

C++ Programming Code to Write Content to File

Following C++ program ask to the user to enter file name to open (if file present inside the

directory) or create (if file not present inside the directory), then ask to the user to enter some

line of text to store these lines inside the files for further use :

/* C++ Program - Write to File */

#include<iostream.h>

#include<conio.h>

#include<string.h>

#include<stdio.h>

#include<fstream.h>

#include<stdlib.h>

void main()

{

 clrscr();

 ofstreamfp;

 char s[100], fname[20];

 cout<<"Enter a file name with extension (like file.txt) to create a file : ";

 gets(fname);

 fp.open(fname);

 if(!fp)

 {

 cout<<"Error in opening file..!!";

 getch();

 exit(1);

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 24/42

 }

 cout<<"Enter few lines of text :\n";

 while(strlen(gets(s))>0)

 {

 fp<<s;

 fp<<"\n";

 }

 fp.close();

 getch();

}

When the above C++ program is compile and executed, it will produce the following result:

C++ program to write content to file

Here after writing four line of text that is :

hello file.txt, i am first line

i am second line

i am third line

and i am fourth line

After writing the above four line, you will press double ENTER key (line break), your all the

four line will be written in the file named file.txt and output screen backed to the source code.

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 25/42

Random access files

Random Access of Files (File Pointers)

Using file streams, we can randomly access binary files. By random access, you can go to any

position in the file as you wish (instead of going in a sequential order from the first character to

the last). Technically this bookmarker is a file pointer and it determines as to where to write the

next character (or from where to read the next character). We have seen that file streams can be

created for input (ifstream) or for output (ofstream). For ifstream the pointer is called as ‘get’

pointer and for ofstream the pointer is called as ‘put’ pointer. fstream can perform both input and

output operations and hence it has one ‘get’ pointer and one ‘put’ pointer. The ‘get’ pointer

indicates the byte number in the file from where the next input has to occur. The ‘put’ pointer

indicates the byte number in the file where the next output has to be made. There are two

functions to enable you move these pointers in a file wherever you want to:

seekg() - belongs to the ifstream class

seekp() - belongs to the ofstream class

We’ll write a program to copy the string "Hi this is a test file" into a file called mydoc.txt. Then

we’ll attempt to read the file starting from the 8th character (using the seekg() function).

Strings are character arrays terminated in a null character (‘\0’). If you want to copy a string of

text into a character array, you should make use of the function:

strcpy (character-array, text);

to copy the text into the character array (even blank spaces will be copied into the character

array). To make use of this function you might need to include the string.h header file.

#include <iostream.h>

#include <fstream.h>

#include <string.h>

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 26/42

intmain()

{

ofstream out("c:/mydoc.txt",ios::binary);

char text[80];

strcpy(text,"Hi this is a test file");

out<<text;

out.close();

ifstream in("c:/mydoc.txt",ios::binary);

in.seekg(8);

cout<<endl<<"Starting from position 8 the contents are:"<<endl;

while (!in.eof())

{

char ch;

in.get(ch);

if (!in.eof())

 {

cout<<ch;

 }

}

in.close();

return 0;

}

The output is:

Starting from position 8 the contents are:

is a test file

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 27/42

As you can see, the output doesn’t display, "Hi this " because they are the first 7 characters

present in the file. We’ve asked the program to display from the 8th character onwards using the

seekg() function.

in.seekg(8);

will effectively move the bookmarker to the 8th position in the file. So when you read the file,

you will start reading from the 8th position onwards.

The following fragment of code is interesting:

while (!in.eof())

{

char ch;

in.get(ch);

if (!in.eof())

 {

cout<<ch;

 }

}

You might be wondering as to why we need to check for the EOF again using an ‘if’ statement.

To understand the reason, try the program by removing the ‘if’ statement. The result will be

surprising and interesting. Think over it and you will be able to figure out the logic.

The syntax for seekg() or seekp() is:

seekg(position, ios::beg)

seekg(position, ios::cur)

seekg(position, ios::end)

By default (i.e. if you don’t specify ‘beg’ or ‘cur’ or ‘end’) the compiler will assume it as

ios::beg.

ios::beg – means that the compiler will count the position from the beginning of the file.

ios::cur – means the compiler starts counting from the current position.

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 28/42

ios::end – it will move the bookmarker starting from the end of the file.

Just like we have 2 functions to move the bookmarker to different places in the file, we have

another 2 functions that can be used to get the present position of the bookmarker in the file.

For input streams we have: tellg()

For output streams we have :tellp()

You would think that the value returned by tellg() and tellp () are integers. They are like

integers but they aren’t. The actual syntax for these functions will be:

streampostellg();

where streampos is an integer value that is defined in the compiler (it is actually a typedef).

Of course you can say:

int position = tellg();

Now, the variable ‘position’ will have the location of the bookmarker. But you can also say:

streampos position = tellg();

This will also give the same result. ‘streampos’ is defined internally by the compiler specifically

for file-streams.

Similarly, the syntax of seekg() and seekp () was mentioned as:

seekg(position, ios::beg)

Again in the above syntax, ‘position’ is actually of type ‘streampos’.

Sequential and Random Access Files

Basically variables are used for temporary storage and files are used for permanent storage of

data. Based on how files are accessed, they can be divided into sequential and random access

files. Actually this division of files depends on how we read and write to files (physically the file

is stored as a sequence of bytes in memory).

Random access files overcome this problem since they have fixed length records. The problem

here is that even if we want to store a small sized record we still have to occupy the entire fixed

record length. This leads to wastage of some memory space. For example if we are using 10

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 29/42

bytes to store a complete sentence in the file then even if you want to store a single letter (like

‘a’) 10 bytes will also be used up for this. But even though some memory space is wasted this

method will speed up access time (because now we know where each record is stored. If a record

length is fixed as 10 bytes, then the fifth record will start at byte number 50 and it is easier to

jump directly to that location instead of reading the first four records before accessing the fifth).

Word processing program usually store files in a sequential format while database management

programs store files in a random access format. A simple real life analogy: Audio tapes are

accessed sequentially while audio CDs (Compact Discs) are accessed randomly.

So, how do we create sequential and random access files in C++? Actually we have already

covered both these topics without explicitly using the terms sequential and random access.

Whenever you make use of the ‘read’ and ‘write’ functions to write structures/objects to a file,

you are actually creating a random access file (because every record will have the size of the

structure). Whenever you use the << and >> operator to read and write to disk files, you are

accessing the file sequentially (this was the first example program). Whenever you write to a

stream (or a file) using << operator, you are writing varying length records to the file. For

example: You might first write a string of 10 characters followed by an integer. Then you may

write another string of 20 characters followed by a ‘double’. Thus the records are all of varying

lengths.

To effectively use random access files we make use of the seekp() and seekg () functions.

Though these can be used on sequential files it will not be very useful in sequential access files

(because when you are searching for a data you are forced to read each and every character/byte,

whereas in random access files you can jump to the particular record that you are interested in).

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 30/42

Command Line Arguments

You know that functions can have arguments. You also know that main () is a function. In this

section we'll take a look at how to pass arguments to the main function. Usually filenames are

passed to the program.

First of all, let us suppose that we have a file by the name marks.cpp. From this file we make an

exe file called marks.exe. This is an executable file and you can run it from the command

prompt. The command prompt specifies what drive and directory you are currently in. The

command prompt can be seen as the ms-dos prompt.

C:\WINDOWS>

This denotes that you are currently in C drive and in the directory named Windows. (By the way,

if you want to go to the MS DOS command prompt from Windows, just go to "Start" and click

on "Run". Type "command" in the text box and click "Ok").

Your marks.exe program is in this directory (let us assume it is here. If it isn’t in this directory

then you have to change to that particular directory). To run the program you will type:

C:\WINDOWS> marks name result

You must be thinking that we will type only the name of the program? In this case the C++

program that you wrote is assumed to have arguments for the main ()function (i.e. in the

marks.cpp file you have provided arguments for the main() function):

int main (intargc, char * argv[])

argc (the first argument - argument counter) stands for the number of arguments passed from the

command line.

argv (argument vector) is an array of character type that points to the command line arguments.

In our example, the value of ‘argc’ is 3 (marks, name, result). Hence for ‘argv’ we have an array

of 3 elements. They are:

argv[0] which is marks.

argv[1] which is name

argv[2] which is result

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 31/42

Note: argv[0] will be the name that invokes the program (i.e. it is the name of the program that

you have written).

If you feel a little vague in this section don't worry. In the next section we'll take a look at a

simple program.

A program using Command Line Arguments

// This file is named test.cpp

#include <iostream.h>

int main (intargc, char * argv[])

{

cout<<"The value of argument counter (argc) is: "<<argc;

inti;

for (i = 0 ; i<argc ; i ++)

{

cout<<endl<<argv[i];

}

return 0;

}

Save the file as test.cpp. Compile it and then make the executable file (test.exe). If you run

test.exe from Windows (i.e. by just double clicking on the file),

the output will be as follows:

The value of argument counter (argc) is: 1

c:\windows\test.exe

This will be the output since you didn't specify the arguments. To specify the arguments you

have to go to DOS prompt. From there type:

c:\windows>test one two three

You have to go to the folder in which you have the test.exe file (I assume that your program is in

the windows directory in C drive).

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 32/42

The output will be:

The value of argument counter (argc) is: 4

c:\windows\t.exe

one

two

three

Preprocessor directives

Preprocessor directives are lines included in the code of programs preceded by a hash sign (#).

These lines are not program statements but directives for the preprocessor. The preprocessor

examines the code before actual compilation of code begins and resolves all these directives

before any code is actually generated by regular statements.

These preprocessor directives extend only across a single line of code. As soon as a newline

character is found, the preprocessor directive is ends. No semicolon (;) is expected at the end of a

preprocessor directive. The only way a preprocessor directive can extend through more than one

line is by preceding the newline character at the end of the line by a backslash (\).

macro definitions (#define, #undef)

To define preprocessor macros we can use #define. Its syntax is:

#define identifier replacement

When the preprocessor encounters this directive, it replaces any occurrence of identifier in the

rest of the code byreplacement. This replacement can be an expression, a statement, a block or

simply anything. The preprocessor does not understand C++ proper, it simply replaces any

occurrence of identifier by replacement.

#define TABLE_SIZE 100

int table1[TABLE_SIZE];

int table2[TABLE_SIZE];

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 33/42

After the preprocessor has replaced TABLE_SIZE, the code becomes equivalent to:

int table1[100];

int table2[100];

#define can work also with parameters to define function macros:

 #define getmax(a,b) a>b?a:b

This would replace any occurrence of getmax followed by two arguments by the replacement

expression, but also replacing each argument by its identifier, exactly as you would expect if it

was a function:

// function macro

#include <iostream>

usingnamespace std;

#define getmax(a,b) ((a)>(b)?(a):(b))

intmain()

{

int x=5, y;

 y= getmax(x,2);

cout<< y <<endl;

cout<<getmax(7,x) <<endl;

return 0;

}

5

7

Defined macros are not affected by block structure. A macro lasts until it is undefined with

the #undef preprocessor directive:

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 34/42

#define TABLE_SIZE 100

int table1[TABLE_SIZE];

#undef TABLE_SIZE

#define TABLE_SIZE 200

int table2[TABLE_SIZE];

This would generate the same code as:

int table1[100];

int table2[200];

Function macro definitions accept two special operators (# and ##) in the replacement sequence:

The operator #, followed by a parameter name, is replaced by a string literal that contains the

argument passed (as if enclosed between double quotes):

#define str(x) #x

cout<<str(test);

This would be translated into:

 cout<<"test";

The operator ## concatenates two arguments leaving no blank spaces between them:

#define glue(a,b) a ## b

glue(c,out) <<"test";

This would also be translated into:

 cout<<"test";

Because preprocessor replacements happen before any C++ syntax check, macro definitions can

be a tricky feature. But, be careful: code that relies heavily on complicated macros become less

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 35/42

readable, since the syntax expected is on many occasions different from the normal expressions

programmers expect in C++.

Conditional inclusions (#ifdef, #ifndef, #if, #endif, #else and #elif)

These directives allow to include or discard part of the code of a program if a certain condition is

met.

#ifdef allows a section of a program to be compiled only if the macro that is specified as the

parameter has been defined, no matter which its value is. For example:

#ifdef TABLE_SIZE

int table[TABLE_SIZE];

#endif

In this case, the line of code int table[TABLE_SIZE]; is only compiled if TABLE_SIZE was

previously defined with #define, independently of its value. If it was not defined, that line will

not be included in the program compilation.

#ifndef serves for the exact opposite: the code between #ifndef and #endif directives is only

compiled if the specified identifier has not been previously defined. For example:

#ifndef TABLE_SIZE

#define TABLE_SIZE 100

#endif

int table[TABLE_SIZE];

In this case, if when arriving at this piece of code, the TABLE_SIZE macro has not been defined

yet, it would be defined to a value of 100. If it already existed it would keep its previous value

since the #define directive would not be executed.

The #if, #else and #elif (i.e., "else if") directives serve to specify some condition to be met in

order for the portion of code they surround to be compiled. The condition that

follows #if or #elif can only evaluate constant expressions, including macro expressions. For

example:

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 36/42

#if TABLE_SIZE>200

#undef TABLE_SIZE

#define TABLE_SIZE 200

#elif TABLE_SIZE<50

#undef TABLE_SIZE

#define TABLE_SIZE 50

#else

#undef TABLE_SIZE

#define TABLE_SIZE 100

#endif

int table[TABLE_SIZE];

Notice how the entire structure of #if, #elif and #else chained directives ends with #endif.

The behavior of #ifdef and #ifndef can also be achieved by using the special

operators defined and !defined respectively in any #if or #elif directive:

#if defined ARRAY_SIZE

#define TABLE_SIZE ARRAY_SIZE

#elif !defined BUFFER_SIZE

#define TABLE_SIZE 128

#else

#define TABLE_SIZE BUFFER_SIZE

#endif

Line control (#line)

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 37/42

When we compile a program and some error happens during the compiling process, the compiler

shows an error message with references to the name of the file where the error happened and a

line number, so it is easier to find the code generating the error.

The #line directive allows us to control both things, the line numbers within the code files as well

as the file name that we want that appears when an error takes place. Its format is:

#line number "filename"

Where number is the new line number that will be assigned to the next code line. The line

numbers of successive lines will be increased one by one from this point on.

"filename" is an optional parameter that allows to redefine the file name that will be shown. For

example:

#line 20 "assigning variable"

int a?;

This code will generate an error that will be shown as error in file "assigning variable", line 20.

Error directive (#error)

This directive aborts the compilation process when it is found, generating a compilation error

that can be specified as its parameter:

#ifndef __cplusplus

#error A C++ compiler is required!

#endif

This example aborts the compilation process if the macro name __cplusplus is not defined (this

macro name is defined by default in all C++ compilers).

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 38/42

Source file inclusion (#include)

This directive has been used assiduously in other sections of this tutorial. When the preprocessor

finds an #includedirective it replaces it by the entire content of the specified header or file. There

are two ways to use #include:

1

2

#include <header>

#include "file"

In the first case, a header is specified between angle-brackets <>. This is used to include headers

provided by the implementation, such as the headers that compose the standard library

(iostream, string,...). Whether the headers are actually files or exist in some other form

is implementation-defined, but in any case they shall be properly included with this directive.

The syntax used in the second #include uses quotes, and includes a file. The file is searched for in

an implementation-defined manner, which generally includes the current path. In the case that the

file is not found, the compiler interprets the directive as a header inclusion, just as if the quotes

("") were replaced by angle-brackets (<>).

Pragma directive (#pragma)

This directive is used to specify diverse options to the compiler. These options are specific for

the platform and the compiler you use. Consult the manual or the reference of your compiler for

more information on the possible parameters that you can define with #pragma.

If the compiler does not support a specific argument for #pragma, it is ignored - no syntax error

is generated.

Predefined macro names

The following macro names are always defined (they all begin and end with two underscore

characters, _):

macro value

__LINE__
Integer value representing the current line in the source code file being

compiled.

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 39/42

__FILE__
A string literal containing the presumed name of the source file being

compiled.

__DATE__
A string literal in the form "Mmmddyyyy" containing the date in which

the compilation process began.

__TIME__
A string literal in the form "hh:mm:ss" containing the time at which the

compilation process began.

__cplusplus

An integer value. All C++ compilers have this constant defined to some

value. Its value depends on the version of the standard supported by the

compiler:

 199711L: ISO C++ 1998/2003

 201103L: ISO C++ 2011

Non conforming compilers define this constant as some value at most five

digits long. Note that many compilers are not fully conforming and thus

will have this constant defined as neither of the values above.

__STDC_HOSTED__

1 if the implementation is a hosted implementation (with all standard

headers available)

0 otherwise.

The following macros are optionally defined, generally depending on whether a feature is

available:

macro value

__STDC__

In C: if defined to 1, the implementation conforms

to the C standard.

In C++: Implementation defined.

__STDC_VERSION__

In C:

 199401L: ISO C 1990, Ammendment 1

 199901L: ISO C 1999

 201112L: ISO C 2011

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 40/42

In C++: Implementation defined.

__STDC_MB_MIGHT_NEQ_WC__
1 if multibyte encoding might give a character a

different value in character literals

__STDC_ISO_10646__

A value in the form yyyymmL, specifying the

date of the Unicode standard followed by the

encoding of wchar_t characters

__STDCPP_STRICT_POINTER_SAFETY__
1 if the implementation has strict pointer

safety (see get_pointer_safety)

__STDCPP_THREADS__ 1 if the program can have more than one thread

Particular implementations may define additional constants.

For example:

// standard macro names

#include <iostream>

usingnamespace std;

intmain()

{

cout<<"This is the line number

"<< __LINE__;

cout<<" of file "<< __FILE__

<<".\n";

cout<<"Its compilation began "<<

__DATE__;

cout<<" at "<< __TIME__

<<".\n";

cout<<"The compiler gives a

__cplusplus value of "<<

__cplusplus;

return 0;}

This is the line number 7 of file

/home/jay/stdmacronames.cpp.

Its compilation began Nov 1 2005

at 10:12:29.

The compiler gives a __cplusplus

value of 1

http://www.cplusplus.com/get_pointer_safety

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 41/42

POSSIBLE QUESTIONS – UNIT IV

 Part-A

 Online Examinations (One marks)

1. The wrapping up of data & function into a single unit is known as _______________

a) Polymorphism b) encapsulation c) functions d) data

members

2. ________________statement is frequently used to terminate the loop in the switch case()

a) jump b) goto c) continue d) break

3. What will you use if you are not intended to get a return value?

a) static b) const c) volatile d) void

4. Where the default values of parameter have to be specified?

a) Function call b) Function definition c)Function prototype d) Both B or C

5. Where does the return statement returns the execution of the program?

a) main function b) caller function c) same function d) none

6. What does a reference provide?

a) Alternate name for the class b) Alternate name for the variable

c) Alternate name for the pointer d) none

7. The changes made in the members of a structure are available in the calling function if

a) pointer to structure is passed as argument b) structure variable is passed

c) the member other then pointer type are passed as argument d) both option a and c

8. For accessing a structure element using a pointer, you must use?

a) Pointer operator (&) b) Dot operators(.)

c) Pointer operator(*) d) Arrow operator(->)

9. The ---------- function reads character input into the variable line

a) getline() b)line() c) gets() d) None.

10. File streams act as an ________ between programs and files.

a) interface b)converter c) translator d) operator

Dynamic Memory Allocation 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 42/42

 Part-B 2 MARKS

1. Define calloc().

2. Define malloc().

3. What is memory allocation in c++ define its types.

4. What is dynamic memory allocation in c++?

5. Write about new and delete operators with example.

6. What is preprocessor?

7. Define macros.

8. What are file stream classes?

9. How will you open a file give example?

10. Define put(), get(), read() and write() with example.

11. What is a file?

12. What is the use of file inclusion?

 Part-C 6 MARKS

1. With proper example explain malloc.

2. Write note on random access files in c++.

3. With proper example explain calloc in c++

4. Explain with example i) #include ii) #error

5. Write a program that swaps two numbers.

6. Discuss Macros with example program.

7. Write a program to display Fibonacci series using recursion.

8. Discuss the role of opening a file use of ifstream and ofstream header files.

9. With proper example explain new and delete operators in c++.

10. Explain reading and writing text files.

11. Write a program to create a file for employee pay slip and manipulate it?

12. Write a program to copy the content of a file into another using command line

13. Write in detail about conditional compilation using preprocessors

SUBJECT: PROGRAMMING FUNDAMENTALS USING

C/C++

UNIT-IV

S.no
 Questions OPT1 OPT2 OPT3 OPT4 Answer

1

The stream is an _________ between I/O devices and

the user.

 Trans later Destination

Intermediator
 None Intermediator

2

 If the data is received from the input devices in

sequence then it is called________.

 Source

stream

 Object

stream

 Destination

stream

 Input

stream
 Source stream

3

When the data is passed to the output devices it is

called_____

 Source

stream

 Object

stream

 Destination

stream

 Input

stream

 Destination

stream

4

The C++ have a number of stream classes that are used

to work with _________ operations.

 Console I/O
 Console

and file

 formatted

console
 none

 Console and

file

5

The data accepted with default setting by I/O function

of the language is known as

 Formatted

Unformatted

Argumented
 None. Unformatted

6 _________ is used as the input stream to read data.

 Cout Printf Cin Scanf Cin

(1 mark questions)

SUBJECT CODE: 17CSU101

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Part -A Online Examinations

COIMBATORE - 21

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 CLASS : I B.Sc COMPUTER SCIENCE

BATCH : 2017-2020

7

 cin and cout are ________ for input and output of

data.

 user

defined

stream

 system

defined

stream

 Pre defined

stream
 none

 system

defined stream

8

The data obtained or represented with some

manipulators are called ______.

 formatted

data

unformatted

data

 extracted

data
 None.

 formatted

data

9 The manipulator << endl is equivalent to____

 ‘\t’ ’\r’ ’\n’ ’\b’ ’\n’

10 Precision() is an __________ format function

Manipulator
 Istream ios user defined ios

11 Width of the output field is set using the ______

 width() iomanip.h

Manipulator
 None width()

12

Stream and stream classes are used to implement its I/O

operations with the ______

 the console

and disk files

 cin and

cout

manipulators
 none

 the console

and disk files

13

The interface supplied by an I/O system which is

independent of actual device is called _____

 stream class object none. stream

14 A _____ is a sequence of bytes.

 Stream class object none Stream

15

The _____ streams automatically open when the

program begins its execution

 user

defined
 predefined input output predefined

16

The class that is defined to various streams to deal with

both the console and disk files is called ________

 stream class
 derived

class
 object none stream class

17

 ____ provide an interface to physical devices through

buffers.

 stream

buffer
 iostream ostream istream stream buffer

18 The _____ are called as overloaded operators

 >> and << + and – * and && – and . >> and <<

19 The >> operator is overloaded in the _______

 istream ostream iostream None istream

20

The ____ functions are used to handle the single

character I/O operation.

 get() and

put()

 clrscr() and

getch()

 cin and

cout
 None

 get() and

put()

21

 ____ functions are used to display text more

efficiently by using the line oriented i/o functions.

 getline()

and write()

 cin and

cout

 get() and

put()
 none

 getline() and

write()

22 The getline() reads character input to the ______ line

 datatype function variable none variable

23 _____ is used to clear the flags specified.

 width() precision() setf() unsetf() unsetf()

24

_____ is used to specify the required field size for

displaying an output value

 width() self fill() none width()

25

By default the floating numbers are printed with

______ after the decimal point.

 5 digits 6 7 8 6

26 ____ returns the setting in effect until it is reset

 width precision() setf() fill() precision()

27

A _______ is a collection of related data stored in a

particular area on a disk.

 Field File Row Vector File

28

File streams act as an ________ between programs and

files.

 interface converter translator operator interface

29 _________ is to set the file buffer to read and write.

 filebuf filestream thread package filebuf

30

 ________ inherits get(), getline(), read(), seekg(), and

tellg() from istream.

 conio ifstream fstream iostream ifstream

31

 Put(), seekp(), tellp(), and write() functions are

inherited by ofstream from _______

 ostream fstream ifstream istream ostream

32

______ inherits all functions from istream and ostream

through iostream

 file stream ofstream fstream ifstream fstream

33 The eof () stands for _____.

 end of file
 error

opening file
 error of file

 none of the

above
 end of file

34

Command line arguments are used with ________

function

 main()
 member

function

 with all

function

 none of the

above
 main()

35 Feof function is used to test

End of file

condition

Beginning of

file

condition

Middle of the

file condition

Previous file

position

End of file

condition

36 __________ is a another memory allocation function theta is normally used for requesting memory space for multiple block at run time

Malloc() Realloc() Calloc() Free() Calloc()

37 With the dynamic run time allocation it is responsible to release the space when it is not required.

Malloc() Realloc() Calloc() Free() Free()

38 List , queue and stack are all inherently

One

dimensional

Two

dimensional

Multi-

dimensional
Hierarchal

One

dimensional

39 Program that processes the source code before it passes through the compiler

Preprocessor Function
Library

function

structure

function
Preprocessor

40 C preprocessor offers a special feature known as

Uncondition

al

compilation

Debugging

statement

Macro

compilation

Conditional

compilation

Conditional

compilation

41 FILE is a

Function Structure
Defined data

type
I/O function

Defined data

type

42 Getc() is used for

Write a

character

Read a

character

Append a

character

None of the

above

Read a

character

43 Fseek() is used for

Gives

current

position

Gives

previous

position

Sets the

position to

the beginning

Sets desired

point

Sets desired

point

44 Putw() is used for

Write a

integer

Read a

character

Append a

character

None of the

above
Write a integer

45 FILE is a structure defined in---

Not defined

in I/O library
I/O library Input library output library I/O library

46 Filename specified in FILE concept should have

Primary

name and

optional

Secondary

name and

optional

Only Primary

name

Only optional

period

Primary name

and optional

period

47 W mode is used for

Reading and

writing
Only reading Only writing none Only writing

48 Filename and mode should be specified in

Double

quotation

Single

quotation

With tilde

symbol
None

Double

quotation

49 Fprintf and fscanf function is used for

For printing

and reading

in the file

Only for

reading

Only for

writing

Scanning the

variables

For printing

and reading in

the file

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 1/69

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2017 onwards)

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

SUBJECT : PROGRAMMING FUNDAMENTALS USING C/C++

SEMESTER : I L T P C

SUBJECT CODE: 17CSU101 CLASS : I B.Sc.CS 4 0 0 4

UNIT-V

Using Classes in C++: Principles of Object-Oriented Programming, Defining & Using

Classes, Class Constructors, Constructor Overloading, Function overloading in classes, Class

Variables &Functions, Objects as parameters, Specifying the Protected and Private Access, Copy

Constructors, Overview of Template classes and their use. Overview of Function Overloading and

Operator Overloading: Need of Overloading functions and operators, Overloading functions by

number and type of arguments, Looking at an operator as a function call, Overloading Operators

(including assignment operators, unary operators) Inheritance, Polymorphism and Exception

Handling: Introduction to Inheritance (Multi-Level Inheritance, Multiple Inheritance),

Polymorphism (Virtual Functions, Pure Virtual Functions), Basics Exceptional Handling (using

catch and throw, multiple catch statements), Catching all exceptions, Restricting exceptions,

Rethrowing exceptions.

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 2/69

Suggested Readings:

1. Herbtz Schildt, 2003,C++: The Complete Reference, 4
th

 Edition, McGraw Hill.

2. Bjarne Stroustrup, 2013, The C++ Programming Language, 4
th

 Edition, Addison-Wesley.

3. Bjarne Stroustroup, 2014, Programming - Principles and Practice using C++, 2
nd

 Edition,

 Addison-Wesley.

4. E Balaguruswamy, 2008,Object Oriented Programming with C++, 2
nd

 Edition ,Tata McGraw-

 Hill Education.

5. Paul Deitel, Harvey Deitel, 2011,C++ How to Program, 8
th

 Edition, Prentice Hall.

6. John R. Hubbard, 2000, Programming with C++, 2
nd

 Edition ,Schaum's Series.

7. Stefan Bjornander, 2016,C++ Windows Programming, Published by Packt Publishing Ltd.

8. Scott Meyers, 2005, Effective C++, 3
rd

 Edition, Published by Addison-Wesley.

9. Harry, H. Chaudhary, 2014 ,Head First C++ Programming: The Definitive Beginner's

 Guide, First Create space Inc, O-D Publishing, LLC USA.

10. Walter Savitch, 2007,Problem Solving with C++, Pearson Education.

11. Stanley B. Lippman, JoseeLajoie, Barbara E. Moo, 2012, C++ Primer, 5
th

 Edition, Published

 by Addison-Wesley.

12. Debasish Jana , 2014,C++ And Object-Oriented Programming Paradigm,Published by

 PHI Learning Pvt. Ltd.

13. Richard L. Stegman, 2016, Focus on Object-oriented Programming With C++,6
th

 Edition

 ,CreateSpace Independent Publishing Platform,.

14. Andrew Koeni, Barbara, E. Moo,2000,Accelerated using C++, Published by Addison-

 Wesley .

WEBSITES

1. http://www.cs.cf.ac.uk/Dave/C/CE.html

2. http://www2.its.strath.ac.uk/courses/c/

3. http://www.iu.hio.no/~mark/CTutorial/CTutorial.html

4. http://www.cplusplus.com/doc/tutorial/

5. http://www.cplusplus.com/

6. http://www.cppreference.com/

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 3/69

UNIT - V

Procedure-Oriented Programming

In the procedure oriented approach, the problem is viewed as the sequence of things to be done such

as reading, calculating and printing such as cobol, fortran and c. The primary focus is on functions. A

typical structure for procedural programming is shown in figure below. The technique of hierarchical

decomposition has been used to specify the tasks to be completed for solving a problem.

Procedure oriented programming basically consists of writing a list of instructions for the computer

to follow, and organizing these instructions into groups known as functions. We normally use

flowcharts to organize these actions and represent the flow of control from one action to another.

In a multi-function program, many important data items are placed as global so that they may be

accessed by all the functions. Each function may have its own local data. Global data are more

vulnerable to an inadvertent change by a function. In a large program it is very difficult to identify

what data is used by which function. In case we need to revise an external data structure, we also

need to revise all functions that access the data. This provides an opportunity for bugs to creep in.

Another serious drawback with the procedural approach is that we do not model real world problems

very well. This is because functions are action-oriented and do not really corresponding to the

element of the problem.

Some Characteristics exhibited by procedure-oriented programming are:

• Emphasis is on doing things (algorithms).

• Large programs are divided into smaller programs known as functions.

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 4/69

• Most of the functions share global data.

• Data move openly around the system from function to function.

• Functions transform data from one form to another.

• Employs top-down approach in program design.

Object Oriented Paradigm

The major motivating factor in the invention of object-oriented approach is to remove some of the

flaws encountered in the procedural approach. OOP treats data as a critical element in the program

development and does not allow it to flow freely around the system. It ties data more closely to the

function that operate on it, and protects it from accidental modification from outside function. OOP

allows decomposition of a problem into a number of entities called objects and then builds data and

function around these objects. The organization of data and function in object-oriented programs is

shown in figure below. The data of an object can be accessed only by the function associated with

that object. However, function of one object can access the function of other objects.

Organization of data and function in OOP

Some of the features of object oriented programming are:

• Emphasis is on data rather than procedure.

• Programs are divided into what are known as objects.

• Data structures are designed such that they characterize the objects.

• Functions that operate on the data of an object are ties together in the data structure.

• Data is hidden and cannot be accessed by external function.

• Objects may communicate with each other through function.

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 5/69

• New data and functions can be easily added whenever necessary.

• Follows bottom up approach in program design.

Object-oriented programming is the most recent concept among programming paradigms and still

means different things to different people.

Basic concepts of c++

 There are few principle concepts that form the foundation of object-oriented programming:

1. Object

2. Class

3. Data Abstraction & Encapsulation

4. Inheritance

5. Polymorphism

6. Dynamic Binding

7. Message Passing

1) Object :

 Object is the basic unit of object-oriented programming. Objects are identified by its unique

name. An object represents a particular instance of a class. There can be more than one instance of an

object. Each instance of an object can hold its own relevant data.

An Object is a collection of data members and associated member functions also known as methods.

For example whenever a class name is created according to the class an object should be created

without creating object can’t able to use class.

The class of Dog defines all possible dogs by listing the characteristics and behaviors they can have;

the object Lassie is one particular dog, with particular versions of the characteristics. A Dog has fur;

Lassie has brown-and-white fur.

2) Class:

 Classes are data types based on which objects are created. Objects with similar properties and

methods are grouped together to form a Class. Thus a Class represents a set of individual objects.

Characteristics of an object are represented in a class as Properties. The actions that can be

performed by objects become functions of the class and is referred to as Methods.

When you define a class, you define a blueprint for an object. This doesn't actually define any data,

but it does define what the class name means, that is, what an object of the class will consist of and

what operations can be performed on such an object.

For example consider we have a Class of Cars under which Santro Xing, Alto and WaganR

represents individual Objects. In this context each Car Object will have its own, Model, Year of

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 6/69

Manufacture, Colour, Top Speed, Engine Power etc., which form Properties of the Car class and the

associated actions i.e., object functions like Start, Move, Stop form the Methods of Car Class.No

memory is allocated when a class is created. Memory is allocated only when an object is created,

i.e., when an instance of a class is created.

3) Data abstraction & Encapsulation :

 Encapsulation is placing the data and and its functions into a single unit. While working with

procedural languages, it is not always clear which functions work on which variables but object-

oriented programming provides you framework to place the data and the relevant functions together

in the same object.

 When using Data Encapsulation, data is not accessed directly, it is only accessible through

the functions present inside the class.

Data Abstraction increases the power of programming language by creating user defined data types.

Data Abstraction also represents the needed information in the program without presenting the

details.

Abstraction refers to the act of representing essential features without including the background

details or explanation between them.

For example, a class Car would be made up of an Engine, Gearbox, Steering objects, and many more

components. To build the Car class, one does not need to know how the different components work

internally, but only how to interface with them, i.e., send messages to them, receive messages from

them, and perhaps make the different objects composing the class interact with each other.

4) Inheritance :

 One of the most useful aspects of object-oriented programming is code reusability. As the

name suggests Inheritance is he process of forming a new class from an existing class or base class.

 The base class is also known as parent class or super class, the new class that is formed is

called derived class.

 Derived class is also known as a child class or sub class. Inheritance helps in reducing the

overall code size of the program, which is an important concept in object-oriented programming.

This is a very important concept of object-oriented programming since this feature helps to reduce

the code size.

It is classifieds into different types, they are

 Single level inheritance

 Multi-level inheritance

 Hybrid inheritance

 Hierarchial inheritance

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 7/69

5) Polymorphism :

 Polymorphism allows routines to use variables of different types at different times. An

operator or function can be given different meanings or functions. Polymorphism refers to a single

function or multi-functioning operator performing in different ways. Poly a Greek term means the

ability to take more than one form. Overloading is one type of Polymorphism. It allows an object to

have different meanings, depending on its context. When an exiting operator or function begins to

operate on new data type, or class, it is understood to be overloaded.

6) Dynamic binding :

 Binding means connecting one program to another program that is to be executed in reply to

the call. Dynamic binding is also known as late binding. The code present in the specified program is

unknown till it is executed. It contains a concept of Inheritance and Polymorphism.

7) Message Passing :

An object-oriented program consists of a set of objects that communicate with each other. The

process of programming in an object-oriented language, therefore, involves the following basic steps:

1. Creating classes that define objects and their behaviour

2. Creating objects from class definitions and

3. Establishing communication among objects.

Objects communicate with one another by sending and receiving information much the same way as

people pass messages to one another.

A message for an object is a request for execution of a procedure, and therefore will invoke a

function in the receiving object that generates the desired result . Message passing involves

specifying the name of the object, the name of the function and the information to be sent.

History of C++

C++ was written by Bjarne Stroustrup at Bell Labs during 1983-1985. C++ is an extension of C.

 Prior to 1983, Bjarne Stroustrup added features to C and formed what he called "C with Classes".

He had combined the Simula's use of classes and object-oriented features with the power and

efficiency of C. The term C++ was first used in 1983.

C And C++ Difference

 C does not have any classes or objects. It is procedure and function driven. There is no

concept of access through objects and structures are the only place where there is a access

through a compacted variable. c++ is object oriented.

 C structures have a different behaviour compared to c++ structures. Structures in c do not

accept functions as their parts.

http://www.research.att.com/~bs/homepage.html
http://www.hitmill.com/programming/cpp/simula.html
javascript:void(0)

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 8/69

 C input/output is based on library and the processes are carried out by including functions.

C++ i/o is made through console commands cin and cout.

 C functions do not support overloading. Operator overloading is a process in which the same

function has two or more different behaviours based on the data input by the user.

 C does not support new or delete commands. The memory operations to free or allocate

memory in c are carried out by malloc() and free().

 Undeclared functions in c++ are not allowed. The function has to have a prototype defined

before the main() before use in c++ although in c the functions can be declared at the point of

use.

 After declaring structures and enumerators in c we cannot declare the variable for the

structure right after the end of the structure as in c++.

 For an int main() in c++ we may not write a return statement but the return is mandatory in c

if we are using int main().

 In C++ identifiers are not allowed to contain two or more consecutive underscores in any

position. C identifiers cannot start with two or more consecutive underscores, but may

contain them in other positions.

 C has a top down approach whereas c++ has a bottom up approach.

 In c a character constant is automatically elevated to an integer whereas in c++ this is not the

case.

 In c declaring the global variable several times is allowed but this is not allowed in c++.

Applications and Benefits of using OOP

Applications of using OOP:

 User interface design such as windows, menu ,…

 Real Time Systems

 Simulation and Modeling

 Object oriented databases

 AI and Expert System

 Neural Networks and parallel programming

 Decision support and office automation system etc

Benefits of OOP

 It is easy to model a real system as real objects are represented by programming objects

in OOP. The objects are processed by their member data and functions. It is easy to

analyze the user requirements.

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 9/69

 With the help of inheritance, we can reuse the existing class to derive a new class such

that the redundant code is eliminated and the use of existing class is extended. This saves

time and cost of program.

 In OOP, data can be made private to a class such that only member functions of the class

can access the data. This principle of data hiding helps the programmer to build a secure

program that can not be invaded by code in other part of the program.

 With the help of polymorphism, the same function or same operator can be used for

different purposes. This helps to manage software complexity easily.

 Large problems can be reduced to smaller and more manageable problems. It is easy to

partition the work in a project based on objects.

 It is possible to have multiple instances of an object to co-exist without any interference

i.e. each object has its own separate member data and function.

 OOP provides a clear modular structure for programs.

 It is good for defining abstract data types.

 Implementation details are hidden from other modules and other modules has a clearly

defined interface.

 It is easy to maintain and modify existing code as new objects can be created with small

differences to existing ones.

 objects, methods, instance, message passing, inheritance are some important properties

provided by these particular languages

 encapsulation, polymorphism, abstraction are also counts in these fundamentals of

programming language.

 It implements real life scenario.

 In OOP, programmer not only defines data types but also deals with operations applied

for data structures.

 More reliable software development is possible.

 Enhanced form of c programming language.

 The most important Feature is that it’s procedural and object oriented nature.

 Much suitable for large projects.

 Fairly efficient languages.

 It has the feature of memory management.

Structure of C++ Program :

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 10/69

C++ Programming language is most popular language after C Programming language. C++ is first

Object oriented programming language.We have summarize structure of C++ Program in the

following Picture -

Section 1 : Header File Declaration Section

1. Header files used in the program are listed here.

2. Header File provides Prototype declaration for different library functions.

3. We can also include user define header file.

4. Basically all preprocessor directives are written in this section.

Section 2 : Global Declaration Section

1. Global Variables are declared here.

2. Global Declaration may include -

o Declaring Structure

o Declaring Class

o Declaring Variable

Section 3 : Class Declaration Section

1. Actually this section can be considered as sub section for the global declaration section.

2. Class declaration and all methods of that class are defined here.

Section 4 : Main Function

1. Each and every C++ program always starts with main function.

2. This is entry point for all the function. Each and every method is called indirectly through

main.

3. We can create class objects in the main.

4. Operating system call this function automatically.

// my first program in C++

#include <iostream.h>

int main ()

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 11/69

{

 cout << "Hello World!";

 return 0;

}

Hello World!

 The C++ language defines several headers, which contain information that is either necessary or

useful to your program. For this program, the header <iostream> is needed.

 The line using namespace std; tells the compiler to use the std namespace. Namespaces are a

relatively recent addition to C++.

 The next line // main() is where program execution begins. is a single-line comment available

in C++. Single-line comments begin with // and stop at the end of the line.

 The line int main() is the main function where program execution begins.

 The next line cout << "This is my first C++ program."; causes the message "This is my first

C++ program" to be displayed on the screen.

 The next line return 0; terminates main()function and causes it to return the value 0 to the

calling process.

The program has been structured in different lines in order to be more readable, but it is not

compulsory to do so. For example, instead of

int main ()

{

 cout << " Hello World ";

 return 0;

}

we could have written:

int main () { cout << " Hello World "; return 0; }in just one line and this would have had exactly the

same meaning.

Comments.

Comments are pieces of source code discarded from the code by the compiler. They do nothing.

Their purpose is only to allow the programmer to insert notes or descriptions embedded within the

source code.

C++ supports two ways to insert comments:

// line comment

/* block comment */

Inline functions

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 12/69

C++ inline function is powerful concept that is commonly used with classes. If a function is

inline, the compiler places a copy of the code of that function at each point where the function is

called at compile time.

Any change to an inline function could require all clients of the function to be recompiled because

compiler would need to replace all the code once again otherwise it will continue with old

functionality.

To inline a function, place the keyword inline before the function name and define the function

before any calls are made to the function. The compiler can ignore the inline qualifier in case defined

function is more than a line.

A function definition in a class definition is an inline function definition, even without the use of

the inlinespecifier.

Following is an example, which makes use of inline function to return max of two numbers:

#include <iostream>

 using namespace std;

inline int Max(int x, int y)

{

 return (x > y)? x : y;

}

// Main function for the program

int main()

{

 cout << "Max (20,10): " << Max(20,10) << endl;

 cout << "Max (0,200): " << Max(0,200) << endl;

 cout << "Max (100,1010): " << Max(100,1010) << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Max (20,10): 20

Max (0,200): 200

Max (100,1010): 1010

Inline function is the optimization technique used by the compilers. One can simply prepend inline

keyword to function prototype to make a function inline. Inline function instruct compiler to insert

complete body of the function wherever that function got used in code.

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 13/69

Advantages:-

1) It does not require function calling overhead.

2) It also save overhead of variables push/pop on the stack, while function calling.

3) It also save overhead of return call from a function.

4) It increases locality of reference by utilizing instruction cache.

5) After in-lining compiler can also apply intraprocedural optimization if specified. This is the most

important one, in this way compiler can now focus on dead code elimination, can give more stress on

branch prediction, induction variable elimination etc..

Disadvantages:-

1) May increase function size so that it may not fit on the cache, causing lots of cache miss.

2) After in-lining function if variables number which are going to use register increases than they

may create overhead on register variable resource utilization.

3) It may cause compilation overhead as if some body changes code inside inline function than all

calling location will also be compiled.

4) If used in header file, it will make your header file size large and may also make it unreadable.

5) If somebody used too many inline function resultant in a larger code size than it may cause

thrashing in memory. More and more number of page fault bringing down your program

performance.

6) Its not useful for embeded system where large binary size is not preferred at all due to memory

size constraints.

Function overloading

Function overloading in C++: C++ program for function overloading. Function overloading means

two or more functions can have the same name but either the number of arguments or the data type

of arguments has to be different. Return type has no role because function will return a value when it

is called and at compile time compiler will not be able to determine which function to call. In the

first example in our code we make two functions one for adding two integers and other for adding

two floats but they have same name and in the second program we make two functions with identical

names but pass them different number of arguments. Function overloading is also known as compile

time polymorphism.

#include <iostream>

 using namespace std;

 /* Function arguments are of different data type */

 long add(long, long);

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 14/69

float add(float, float);

 int main()

{

 long a, b, x;

 float c, d, y;

 cout << "Enter two integers\n";

 cin >> a >> b;

 x = add(a, b);

 cout << "Sum of integers: " << x << endl;

 cout << "Enter two floating point numbers\n";

 cin >> c >> d;

 y = add(c, d);

 cout << "Sum of floats: " << y << endl;

 return 0;

}

 long add(long x, long y)

{

 long sum;

 sum = x + y;

 return sum;

}

 float add(float x, float y)

{

 float sum;

 sum = x + y;

 return sum;

}

In the above program, we have created two functions "add" for two different data types you can

create more than two functions with same name according to requirement but making sure that

compiler will be able to determine which one to call. For example you can create add function for

integers, doubles and other data types in above program. In these functions you can see the code of

functions is same except data type, C++ provides a solution to this problem we can create a single

function for different data types which reduces code size which is via templates.

#include <iostream>

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 15/69

using namespace std;

 /* Number of arguments are different */

 void display(char []); // print the string passed as argument

void display(char [], char []);

 int main()

{

 char first[] = "C programming";

 char second[] = "C++ programming";

 display(first);

 display(first, second);

 return 0;

}

void display(char s[])

{

 cout << s << endl;

}

void display(char s[], char t[])

{

 cout << s << endl << t << endl;

}

Output of program:

C programming

C programming

C++ programming

Specifying a Class

The mechanism that allows you to combine data and the function in a single unit is called a class.

Once a class is defined, you can declare variables of that type. A class variable is called object or

instance. In other words, a class would be the data type, and an object would be the variable. Classes

are generally declared using the keyword class, with the following format:

class class_name

{

 private:

 members1;

 protected:

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 16/69

 members2;

 public:

 members3;

};

Where class_name is a valid identifier for the class. The body of the declaration can contain

members, that can be either data or function declarations, The members of a class are classified into

three categories: private, public, and protected. Private, protected, and public are reserved words and

are called member access specifiers. These specifiers modify the access rights that the members

following them acquire.

 private members of a class are accessible only from within other members of the same class.

You cannot access it outside of the class.

 protected members are accessible from members of their same class and also from members

of their derived classes.

 Finally, public members are accessible from anywhere where the object is visible.

By default, all members of a class declared with the class keyword have private access for all its

members. Therefore, any member that is declared before one other class specifier automatically has

private access.

Here is a complete example :

class student

{

 private :

 int rollno;

 float marks;

 public:

 void getdata()

 {

 cout<<"Enter Roll Number : ";

 cin>>rollno;

 cout<<"Enter Marks : ";

 cin>>marks;

 }

 void displaydata()

 {

 cout<<"Roll number : "<<rollno<<"\nMarks : "<<marks;

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 17/69

 }

};

Object Declaration

Once a class is defined, you can declare objects of that type. The syntax for declaring a object is the

same as that for declaring any other variable. The following statements declare two objects of type

student:

student st1, st2;

Accessing Class Members

Once an object of a class is declared, it can access the public members of the class.

st1.getdata();

Defining Member function of class

You can define Functions inside the class as shown in above example. Member functions defined

inside a class this way are created as inline functions by default. It is also possible to declare a

function within a class but define it elsewhere. Functions defined outside the class are not normally

inline.

When we define a function outside the class we cannot reference them (directly) outside of the class.

In order to reference these, we use the scope resolution operator, :: (double colon).

In this example, we are defining function getdata outside the class:

void student :: getdata()

{

 cout<<"Enter Roll Number : ";

 cin>>rollno;

 cout<<"Enter Marks : ";

 cin>>marks;

}

The following program demonstrates the general feature of classes. Member function initdata() is

defined inside the class. Member functions getdata() and showdata() defined outside the class.

class student //specify a class

{

 private :

 int rollno; //class data members

 float marks;

 public:

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 18/69

 void init data(int r, int m)

 {

 rollno=r;

 marks=m;

 }

 void getdata(); //member function to get data from user

 void showdata();// member function to show data

};

void student :: getdata()

{

 cout<<"Enter Roll Number : ";

 cin>>rollno;

 cout<<"Enter Marks : ";

 cin>>marks;

}

void student :: showdata()

{

 cout<<"Roll number : "<<rollno<<"\nMarks : "<<marks;

}

int main()

{ student st1, st2; //define two objects of class student

 st1.initdata(5,78); //call member function to initialize

 st1.showdata();

 st2.getdata(); //call member function to input data

 st2.showdata(); //call member function to display data

 return 0;

}

Static data members

We can define class members static using static keyword. When we declare a member of a class as

static it means no matter how many objects of the class are created, there is only one copy of the

static member.

A static member is shared by all objects of the class. All static data is initialized to zero when the

first object is created, if no other initialization is present. We can't put it in the class definition but it

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 19/69

can be initialized outside the class as done in the following example by redeclaring the static

variable, using the scope resolution operator :: to identify which class it belongs to.

Let us try the following example to understand the concept of static data members:

#include <iostream>

 using namespace std;

class Box

{ public:

 static int objectCount;

 // Constructor definition

 Box(double l=2.0, double b=2.0, double h=2.0)

 {

 cout <<"Constructor called." << endl;

 length = l;

 breadth = b;

 height = h;

 // Increase every time object is created

 objectCount++;

 }

 double Volume()

 {

 return length * breadth * height;

 }

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

// Initialize static member of class Box

int Box::objectCount = 0;

int main(void)

{ Box Box1(3.3, 1.2, 1.5); // Declare box1

 Box Box2(8.5, 6.0, 2.0); // Declare box2

 // Print total number of objects.

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 20/69

 cout << "Total objects: " << Box::objectCount << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Constructor called.

Constructor called.

Total objects: 2

Static Member Function:

By declaring a function member as static, you make it independent of any particular object of the

class. A static member function can be called even if no objects of the class exist and the static

functions are accessed using only the class name and the scope resolution operator ::.

A static member function can only access static data member, other static member functions and any

other functions from outside the class.

Static member functions have a class scope and they do not have access to the this pointer of the

class. You could use a static member function to determine whether some objects of the class have

been created or not.

Let us try the following example to understand the concept of static function members:

#include <iostream>

 using namespace std;

class Box

{ public:

 static int objectCount;

 // Constructor definition

 Box(double l=2.0, double b=2.0, double h=2.0)

 { cout <<"Constructor called." << endl;

 length = l;

 breadth = b;

 height = h;

 // Increase every time object is created

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 21/69

 objectCount++;

 }

 double Volume()

 {

 return length * breadth * height;

 }

 static int getCount()

 { return objectCount;

 }

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

// Initialize static member of class Box

int Box::objectCount = 0;

int main(void)

{ // Print total number of objects before creating object.

 cout << "Inital Stage Count: " << Box::getCount() << endl;

 Box Box1(3.3, 1.2, 1.5); // Declare box1

 Box Box2(8.5, 6.0, 2.0); // Declare box2

 // Print total number of objects after creating object.

 cout << "Final Stage Count: " << Box::getCount() << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Inital Stage Count: 0

Constructor called.

Constructor called.

Final Stage Count: 2

Example:

#include<iostream.h>

#include<conio.h>

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 22/69

 class stat

{

 int code;

 static int count;

 public:

 stat()

 {

 code=++count;

 }

 void showcode()

 {

 cout<<"\n\tObject number is :"<<code;

 }

 static void showcount()

 { cout<<"\n\tCount Objects :"<<count;

 }

};

int stat::count;

 void main()

{ clrscr();

 stat obj1,obj2;

 obj1.showcount();

 obj1.showcode();

 obj2.showcount();

 obj2.showcode();

 getch();

}

 Output:

Count Objects: 2

Object Number is: 1

Count Objects: 2

Object Number is: 2

Array of objects

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 23/69

Arrays of variables of type “class” are known as "Array of objects". The "identifier" used to refer

the array of objects is a user defined data type.

#include <iostream.h>

 const int MAX =100;

 class Details

 {

 private:

 int salary;

 float roll;

 public:

 void getname()

 { cout << "\n Enter the Salary:";

 cin >> salary;

 cout << "\n Enter the roll:";

 cin >> roll;

 }

 void putname()

 { cout << "Employees" << salary <<

 "and roll is" << roll << '\n';

 }

 };

 void main()

 { Details det[MAX];

 int n=0;

 char ans;

 do{

 cout << "Enter the Employee Number::" << n+1;

 det[n++].getname;

 cout << "Enter another (y/n)?: " ;

 cin >> ans;

 } while (ans != 'n');

 for (int j=0; j<n; j++)

 {

 cout << "\nEmployee Number is:: " << j+1;

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 24/69

 det[j].putname();

 } }

Result:

 Enter the Employee Number:: 1

 Enter the Salary:20

 Enter the roll:30

 Enter another (y/n)?: y

 Enter the Employee Number:: 2

 Enter the Salary:20

 Enter the roll:30

 Enter another (y/n)?: n

In the above example an array of object "det" is defined using the user defined data type "Details".

The class element "getname()" is used to get the input that is stored in this array of objects and

putname() is used to display the information.

Constructors

A class constructor is a special member function of a class that is executed whenever we create new

objects of that class.

A constructor will have exact same name as the class and it does not have any return type at all, not

even void. Constructors can be very useful for setting initial values for certain member variables.

Unlike normal functions, constructors have specific rules for how they must be named:

1) Constructors should always have the same name as the class (with the same capitalization)

2) Constructors have no return type (not even void)

A constructor that takes no parameters (or has all optional parameters) is called a default

constructor.

Default Constructor-: A constructor that accepts no parameters is known as default constructor. If

no constructor is defined then the compiler supplies a default constructor.

student :: student()

{

 rollno=0;

 marks=0.0;

}

Parameterized Constructor -: A constructor that receives arguments/parameters, is called

parameterized constructor.

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 25/69

student :: student(int r)

{

 rollno=r;

}

Example

#include<iostream>

#include<conio.h>

using namespace std;

class Example

 {

 // Variable Declaration

 int a,b;

 public:

 //Constructor

 Example()

 {

 // Assign Values In Constructor

 a=10;

 b=20;

 cout<<"Im Constructor\n";

 }

 void Display()

 {

 cout<<"Values :"<<a<<"\t"<<b;

 }

};

int main()

 {

 Example Object;

 // Constructor invoked.

 Object.Display();

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 26/69

 // Wait For Output Screen

 getch();

 return 0;

}

Sample Output

Im Constructor

Values :10 20

Example

#include <iostream>

 using namespace std;

 class Line

{ public:

 void setLength(double len);

 double getLength(void);

 Line(); // This is the constructor

 private:

 double length;

};

// Member functions definitions including constructor

Line::Line(void)

{

 cout << "Object is being created" << endl;

}

 void Line::setLength(double len)

{

 length = len;

}

 double Line::getLength(void)

{

 return length;

}

// Main function for the program

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 27/69

int main()

{

 Line line;

 // set line length

 line.setLength(6.0);

 cout << "Length of line : " << line.getLength() <<endl;

 return 0;

}

When the above code is compiled and executed, it produces following result:

Object is being created

Length of line : 6

Special Characteristics of Constructors

1. They should be declared in the public section.

2. They are invoked automatically when the objects are created

3. They do not have return types, not even void and therfor and they cannot return values.

4. They cannot be inherited, though a derived class can call the base class constructor

5. like other c++ functions, they can have default arguments.

6. constructors cannot be virtual

7. we cannot refer to their addresses.

8. An object with a constructor cannot be used as a member of a union.

9. They make implicit calls to the operators new and delete when memory allocation is required.

Multiple Constructors in a class

Like functions, it is also possible to overload constructors. A class can contain more than one

constructor. This is known as constructor overloading. All constructors are define with the same

name as the class. All the constructors contain different number of arguments. Depending upon

number of arguments, the compiler executes appropriate constructor.

Constructor is automatically called when object(instance of class) create. It is special member

function of the class. Which constructor has arguments that’s called Parameterized Constructor.

 One Constructor overload another constructor is called Constructer Overloading

 It has same name of class.

 It must be a public member.

 No Return Values.

 Default constructors are called when constructors are not defined for the classes.

Syntax

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 28/69

class class-name

{ Access Specifier:

 Member-Variables

 Member-Functions

 public:

 class-name()

 {

 // Constructor code

 }

 class-name(variables)

 {

 // Constructor code

 }

 ... other Variables & Functions

}

Example Program

#include<iostream>

#include<conio.h>

using namespace std;

class Example {

 // Variable Declaration

 int a,b;

 public:

 //Constructor wuithout Argument

 Example() {

 // Assign Values In Constructor

 a=50;

 b=100;

 cout<<"\nIm Constructor";

 }

 //Constructor with Argument

 Example(int x,int y) {

 // Assign Values In Constructor

 a=x;

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 29/69

 b=y;

 cout<<"\nIm Constructor";

 }

 void Display() {

 cout<<"\nValues :"<<a<<"\t"<<b;

 }

};

int main() {

 Example Object(10,20);

 Example Object2;

 // Constructor invoked.

 Object.Display();

 Object2.Display();

 // Wait For Output Screen

 getch();

 return 0;

}

Sample Output

Im Constructor

Im Constructor

Values :10 20

Values :50 100

Constructors Overloading are used to increase the flexibility of a class by having more number of

constructor for a single class. By have more than one way of initializing objects can be done using

overloading constructors.

Example:

 #include <iostream.h>

 class Overclass

 { public:

 int x;

 int y;

 Overclass() { x = y = 0; }

 Overclass(int a) { x = y = a; }

 Overclass(int a, int b) { x = a; y = b; }

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 30/69

 };

 int main()

 { Overclass A;

 Overclass A1(4);

 Overclass A2(8, 12);

 cout << "Overclass A's x,y value:: " <<

 A.x << " , "<< A.y << "\n";

 cout << "Overclass A1's x,y value:: "<<

 A1.x << " ,"<< A1.y << "\n";

 cout << "Overclass A2's x,y value:; "<<

 A2.x << " , "<< A2.y << "\n";

 return 0;

}

Result:

 Overclass A's x,y value:: 0 , 0

 Overclass A1's x,y value:: 4 ,4

 Overclass A2's x,y value:; 8 , 12

In the above example the constructor "Overclass" is overloaded thrice with different intialized values

Constructors with default arguments

Like functions, it is also possible to declare constructors with default arguments. Consider the

following example.

power (int 9, int 3);

In the above example, the default value for the first argument is nine and three for second.

power p1 (3);

In this statement, object p1 is created and nine raise to 3 expression n is calculated. Here, one

argument is absent hence default value 9 is taken, and its third power is calculated. Consider the

example on the above discussion given below.

Write a program to declare default arguments in constructor. Obtain the power of the number.

include <iostream.h>

include <conio.h>

include <math.h>

class power

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 31/69

{

 private:

 int num;

 int power;

 int ans;

 public :

power (int n=9,int p=3); //

declaration of constructor with default arguments

 void show()

 {

 cout <<"\n"<<num <<" raise to "<<power <<" is " <<ans;

 }

};

 power :: power (int n,int p)

 {

 num=n;

 power=p;

 ans=pow(n,p);

 }

main()

{

 clrscr();

 class power p1,p2(5);

 p1.show();

 p2.show();

 return 0;

}

Copy Constructor

Copy Constructor-: A constructor that initializes an object using values of another object passed to

it as parameter, is called copy constructor. It creates the copy of the passed object.

student :: student(student &t)

{

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 32/69

 rollno = t.rollno;

}

#include<iostream>

#include<conio.h>

class Example

 {

 // Variable Declaration

 int a,b;

 public:

 //Constructor with Argument

 Example(int x,int y)

 {

 // Assign Values In Constructor

 a=x;

 b=y;

 cout<<"\nIm Constructor";

 }

 void Display()

 {

 cout<<"\nValues :"<<a<<"\t"<<b;

 }

};

int main()

{ Example Object(10,20);

 //Copy Constructor

 Example Object2=Object;

 // Constructor invoked.

 Object.Display();

 Object2.Display();

 // Wait For Output Screen

 getch();

 return 0;

}

Sample Output

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 33/69

Im Constructor

Values :10 20

Values :10 20

Simple Program for Copy Constructor Using C++ Programming

#include<iostream.h>

#include<conio.h>

class copy

{ int var,fact;

 public:

 copy(int temp)

 {

 var = temp;

 }

 double calculate()

 { fact=1;

 for(int i=1;i<=var;i++)

 {

 fact = fact * i;

 }

 return fact;

 }

};

void main()

{ clrscr();

 int n;

 cout<<"\n\tEnter the Number : ";

 cin>>n;

 copy obj(n);

 copy cpy=obj;

 cout<<"\n\t"<<n<<" Factorial is:"<<obj.calculate();

 cout<<"\n\t"<<n<<" Factorial is:"<<cpy.calculate();

 getch();

}

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 34/69

Output:

Enter the Number: 5

Factorial is: 120

Factorial is: 120

Destructors

The destructor fulfills the opposite functionality. It is automatically called when an object is

destroyed, either because its scope of existence has finished (for example, if it was defined as a local

object within a function and the function ends) or because it is an object dynamically assigned and it

is released using the operator delete.

The destructor must have the same name as the class, but preceded with a tilde sign (~) and it must

also return no value.

The use of destructors is especially suitable when an object assigns dynamic memory during

its lifetime and at the moment of being destroyed we want to release the memory that the object was

allocated.

// example on constructors and destructors

#include <iostream>

using namespace std;

class CRectangle {

 int *width, *height;

 public:

 CRectangle (int,int);

 ~CRectangle ();

 int area () {return (*width * *height);}

};

CRectangle::CRectangle (int a, int b) {

 width = new int;

 height = new int;

 *width = a;

 *height = b;

}

CRectangle::~CRectangle () {

 delete width;

 delete height;

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 35/69

}

int main () {

 CRectangle rect (3,4), rectb (5,6);

 cout << "rect area: " << rect.area() << endl;

 cout << "rectb area: " << rectb.area() << endl;

 return 0;

}

Output :

rect area: 12

rectb area: 30

Following example explain the concept of destructor:

#include <iostream>

 using namespace std;

 class Line

{ public:

 void setLength(double len);

 double getLength(void);

 Line(); // This is the constructor declaration

 ~Line(); // This is the destructor: declaration

 private:

 double length;

};

 // Member functions definitions including constructor

Line::Line(void)

{ cout << "Object is being created" << endl;

}

Line::~Line(void)

{ cout << "Object is being deleted" << endl;

}

 void Line::setLength(double len)

{ length = len;

}

 double Line::getLength(void)

{ return length;

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 36/69

}

// Main function for the program

int main()

{ Line line;

 // set line length

 line.setLength(6.0);

 cout << "Length of line : " << line.getLength() <<endl;

 return 0;

}

When the above code is compiled and executed, it produces following result:

Object is being created

Length of line : 6

Object is being deleted

A destructor is a member function having same name as that of its class preceded by ~(tilde) sign

and which is used to destroy the objects that have been created by a constructor. It gets invoked

when an object’s scope is over.

~student() { }

Example : In the following program constructors, destructor and other member functions are defined

inside class definitions. Since we are using multiple constructor in class so this example also

illustrates the concept of constructor overloading

#include<iostream.h>

class student //specify a class

{

 private :

 int rollno; //class data members

 float marks;

 public:

 student() //default constructor

 {

 rollno=0;

 marks=0.0;

 }

 student(int r, int m) //parameterized constructor

 {

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 37/69

 rollno=r;

 marks=m;

 }

 student(student &t) //copy constructor

 {

 rollno=t.rollno;

 marks=t.marks;

 }

 void getdata() //member function to get data from user

 {

 cout<<"Enter Roll Number : ";

 cin>>rollno;

 cout<<"Enter Marks : ";

 cin>>marks;

 }

 void showdata() // member function to show data

 {

 cout<<"\nRoll number: "<<rollno<<"\nMarks: "<<marks;

 }

 ~student() //destructor

 {}

};

int main()

{ student st1; //defalut constructor invoked

 student st2(5,78); //parmeterized constructor invoked

 student st3(st2); //copy constructor invoked

 st1.showdata(); //display data members of object st1

 st2.showdata(); //display data members of object st2

 st3.showdata(); //display data members of object st3

 return 0;

}

OPERATOR OVERLOADING & INHERITANCE

Defining Operator Overloading

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 38/69

One of the nice features of C++ is that you can give special meanings to operators, when they

are used with user-defined classes. This is called operator overloading. You can implement C++

operator overloads by providing special member-functions on your classes that follow a particular

naming convention. For example, to overload the + operator for your class, you would provide a

member-function named operator+ on your class.

An operator is a symbol that indicates an operation. It is used to perform operation with constants

and variables. Without an operator, programmer cannot build an expression.

The operator + (plus) can be used to perform addition of two variables, but the same is not applicable

for objects. The compiler cannot perform addition of two objects. The compiler would throw an error

if addition of two objects is carried out. Operator overloading helps programmer to use these

operators with the objects of classes. The outcome of operator overloading is that objects can be used

in a natural manner as the variables of basic data types.

The following set of operators is commonly overloaded for user-defined classes:

 = (assignment operator)

 + - * (binary arithmetic operators)

 += -=

 *= (compound assignment operators)

 == != (comparison operators)

To Define an additional task to an operator, we must specify what it means in relation to the class to

which the operator is applied. This is done with help of special function called operator function,

Which describes the task.

Return type operator op(arglist)

{

Function body

}

Operator functions must be either member function or friend friend function

Friend function:

-One argument for unary operator and two for binary operator

Member function

- no argument for unary operator and one for binary operator

- object invoked implicitly

Invoked by expression such as

Op x or x op unary operator

X op y binary operator

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 39/69

RULES FOR OPERATOR OVERLOADING

1. Only existing operators can be overloaded. New operators can not be created.

2. The overloaded operator must have at least one operand that is of user defined data type.

3. We can’t change the basic meaning of an operator. That is to say, we can’t redefine the plus(+)

operator to subtract one value from other.

4. Overloaded operators follow the syntax rules of the original operators. They can’t be overridden.

5. There are some operators that can’t be overloaded.

6. We can’t use friend functions to overload certain operators. How-ever, member functions can be

used to overload them.

7. Unary operators overloaded by means of member function take no explicit arguments and return

no explicit values, but, those overloaded by means of the friend function, take one reference

argument (the object of the relevant class).

8. Binary operators overloaded through a member function, take one explicit argument and those

which are overloaded through a friend function take two explicit arguments. When using binary

operators overloaded through a member function, the left hand operand must be an object of the

relevant class.

9. Binary arithmetic operators such as +,-,* and / must explicitly return a value. They must not

attempt to change their own arguments.

Overloading unary operators

The operator ++,-- and – are unary operators. The unary operators ++ and - - can be used as prefix or

suffix with the functions. These operators have only single operand.

Example:

include<iostream.h>

Class space

{

Int x;

Int y;

Int z;

Public :

Void getdata(int a, int b, int c) ;

Void display(void);

Void operator-();

};

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 40/69

Void space :: getdata(int a, int b, int c)

{

X=a;

Y=b;

Z=c;

}

Void space:: display()

{

Cout<<x<<” “;

Cout<<y<<” “;

Cout<<z<<”\n “;

}

Void space:: operator-()

{

X=-x ;

Y=-y;

Z=-z;

}

Void main()

{

Space s ;

s.getdata(10,-20,30) ;

cout<< “ s : “;

s.display();

-s;

cout<< “ s : “;

s.display();

}

Output:

S: 10 -20 30

S: -10 20 -30

Overloading binary operators

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 41/69

When a member operator function overloads a binary operator, the function will have only

one parameter. This parameter will receive the object that is on the right side of the operator. The

object on the left side is the object that generates the call to the operator function and is passed

implicitly by this pointer.

Binary operators require two operands. Binary operators are overloaded by using member functions

and friend functions.

The unary operators take two arguments and following are the examples of Binary operators. You

use binary operators very frequently like addition (+) operator, subtraction (-) operator and division

(/) operator.

If overloaded as a member function they require one argument. The argument contains value of the

object. Which is to the right of the operator. If we want to perform the addition of two objects o1 and

o2, the overloading function should be declared as follows:

Operator(num o2);

Where, num is a class name and o2 is an object.

To call function operator the statement is as follows:

O3=o1+o2;

We know that a member function can be called by using class of that object. Hence, the called

member function is always preceded by the object. Here, in the above statement, the object o1

invokes the function operator() and the object o2 is used as an argument for the function. The above

statement can also be written as follows:

O3=o1.operator+(o2);

Here the data members of o1 are passed directly and data members of o2 are passed as an argument.

While overloading binary operators, the left-hand operand calls the operator function and righthand

operand is used as an argument.

Example

PROGRAM:

#include<iostream.h>

#include<conio.h>

 class complex

{ int a,b;

 public:

 void getvalue()

 {

 cout<<"Enter the value of Complex Numbers a,b:";

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 42/69

 cin>>a>>b;

 }

 complex operator+(complex ob)

 {

 complex t;

 t.a=a+ob.a;

 t.b=b+ob.b;

 return(t);

 }

 complex operator-(complex ob)

 { complex t;

 t.a=a-ob.a;

 t.b=b-ob.b;

 return(t);

 }

 void display()

 {

 cout<<a<<"+"<<b<<"i"<<"\n";

 }

};

 void main()

{ clrscr();

 complex obj1,obj2,result,result1;

 obj1.getvalue();

 obj2.getvalue();

 result = obj1+obj2;

 result1=obj1-obj2;

 cout<<"Input Values:\n";

 obj1.display();

 obj2.display();

 cout<<"Result:";

 result.display();

 result1.display();

 getch();

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 43/69

}

Output:

Enter the value of Complex Numbers a, b

4 5

Enter the value of Complex Numbers a, b

2 2

Input Values

4 + 5i

2 + 2i

Result

6 + 7i

2 + 3i

Example 2:

#include<iostream.h>

class money

{

int rs;

int ps;

money()

{

rs=0;

ps=0;

}

money(int r,int p)

{

rs=r;

ps=p;

}

money operator +(money);

void display();

}

money money :: operator +(money m1)

{

money temp;

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 44/69

temp.ps=m1.ps+ps;

if(temp.ps>99)

{

temp.rs++;

temp.ps-=99

}

temp.rs+=m1.rs+rs;

return temp;

}

void money :: display()

{

cout<<”Total Rupees “<<rs;

cout<<”\n Total Paise “<<ps;

}

void main()

{

money m1(10,55);

money m2(11,55);

money m3;

m3=m1+m2;

m3.display();

}

Output of the Program

Total Rupees 22

Total Paise 10

Overloading binary operators using friend functions

The friend can be used alternatively with member functions for overloading of binary operators. the

friend function requires two operands to be passed as arguments.

O3=o1+o2;

O3=operator + (o1,o2);

Both the above statements have the same meaning. In the second statement, two objects are passed to

the operator function.

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 45/69

The use of member function and friend function produces the same result. Friend functions are useful

when we require performing an operation with operand of two different types. Consider the

statements

X=y+3;

X=3+y;

Where x and y are objects of same type. The first statement is valid. However, the second statement

will not work. The first operand must be an object of the same class. This problem can be overcome

by using friend function. The friend function can be called without using object. The friend function

can be used with standard data type as left-hand operand and with an object as right-hand operand.

It is possible to overload an operator relative to a class by using a friend rather than a member

function A friend function does not have a this pointer. In the case of a binary operator, this means

that a friend operator function is passed both operands explicitly. For unary operators, the single

operand is passed.

We cannot use a friend to overload the assignment operator. The assignment operator can be

overloaded only by a member operator function.

Example

#include<iostream.h>

class myclass

{

 int num1;

 int num2;

public:

myclass()

{

 num1=0;

 num2=0;

}

myclass(int x1,int x2)

{

 num1=x1;

 num2=x2;

}

 void show()

 {

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 46/69

 cout<<endl<<"score 1:";<<num1;

 cout<<endl<<"score 2:";

 }

friend myclass operator+(myclass objmyclass1,myclass objmyclass2);

friend myclass operator*(myclass objmyclass1,myclass objmyclass2);

};

myclass operator+(myclass objmyclass1,myclass objmyclass2)

{

 myclass temp;

temp.num1=objmyclass1.num1+objmyclass2.num1;

temp.num2=objmyclass1.num2+objmyclass2.num2;

return temp;

}

myclass operator*(myclass objmyclass1,myclass objmyclass2)

{

myclass temp;

temp.num1=objmyclass1.num1*objmyclass2.num1;

temp.num2=objmyclass1.num2*objmyclass2.num2;

return temp;

}

int main()

{

 myclass player1(10.20);

 player1.show();

 myclass player2(40.30);

 player2.show();

 myclass result;

 result=player1 + player2;

 result.show();

 result=player1 * player2;

 result.show();

 return 0;

}

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 47/69

OUTPUT:

score 1:10

score 2:20

score 1:40

score 2:30

score 1:50

score 2:50

score 1:400

score 2:600

Inheritance

The mechanism that allows us to extend the definition of a class without making any physical

changes to the existing class is inheritance.

Inheritance lets you create new classes from existing class. Any new class that you create from an

existing class is called derived class; existing class is called base class.

The inheritance relationship enables a derived class to inherit features from its base class.

Furthermore, the derived class can add new features of its own. Therefore, rather than create

completely new classes from scratch, you can take advantage of inheritance and reduce software

complexity.

Forms of Inheritance

1. Single Inheritance: It is the inheritance hierarchy wherein one derived class inherits from

one base class.

2. Multiple Inheritance: It is the inheritance hierarchy wherein one derived class inherits from

multiple base class(es)

3. Hierarchical Inheritance: It is the inheritance hierarchy wherein multiple subclasses inherit

from one base class.

4. Multilevel Inheritance: It is the inheritance hierarchy wherein subclass acts as a base class

for other classes.

5. Hybrid Inheritance: The inheritance hierarchy that reflects any legal combination of other

four types of inheritance.

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 48/69

Defining Derived classes

A class that was created based on a previously existing class (i.e., base class). A derived class

inherits all of the member variables and methods of the base class from which it is derived.

In order to derive a class from another, we use a colon (:) in the declaration of the derived

class using the following format :

class derived_class: memberAccessSpecifier base_class

{

 ...

};

Where derived_class is the name of the derived class and base_class is the name of the class on

which it is based. The member Access Specifier may be public, protected or private. This access

specifier describes the access level for the members that are inherited from the base class.

Member

Access

Specifier

How Members of the Base Class Appear in the Derived Class

Private Private members of the base class are inaccessible to the derived class.

http://www.webopedia.com/TERM/C/class.html
http://www.webopedia.com/TERM/B/base_class.html

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 49/69

Protected members of the base class become private members of the derived class.

Public members of the base class become private members of the derived class.

Protected Private members of the base class are inaccessible to the derived class.

Protected members of the base class become protected members of the derived

class.

Public members of the base class become protected members of the derived class.

Public Private members of the base class are inaccessible to the derived class.

Protected members of the base class become protected members of the derived

class.

Public members of the base class become public members of the derived class.

In principle, a derived class inherits every member of a base class except constructor and destructor.

It means private members are also become members of derived class. But they are inaccessible by

the members of derived class.

 Following example further explains concept of inheritance:

class Shape

{protected:

 float width, height;

public:

 void set_data (float a, float b)

 { width = a;

 height = b;

 }

};

class Rectangle: public Shape

{public:

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 50/69

 float area ()

 {return (width * height);

 }

};

class Triangle: public Shape

{public:

 float area ()

 { return (width * height / 2);

 }

};

int main ()

{

 Rectangle rect;

 Triangle tri;

 rect.set_data (5,3);

 tri.set_data (2,5);

 cout << rect.area() << endl;

 cout << tri.area() << endl;

 return 0;

}

output :

15

5

The object of the class Rectangle contains:

Width, height inherited from Shape becomes the protected member of Rectangle.

set_data() inherited from Shape becomes the public member of Rectangle

area is Rectangle’s own public member

 The object of the class Triangle contains:

Width, height inherited from Shape becomes the protected member of Triangle.

set_data() inherited from Shape becomes the public member of Triangle

area is Triangle’s own public member

set_data () and area() are public members of derived class and can be accessed from outside class i.e.

from main()

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 51/69

Single Inheritance

In "single inheritance," a common form of inheritance, classes have only one base class. Single

inheritance enables a derived class to inherit properties and behavior from a single parent class. It

allows a derived class to inherit the properties and behavior of a base class, thus enabling code

reusability as well as adding new features to the existing code. This makes the code much more

elegant and less repetitive. Inheritance is one of the key features of object-oriented

programming Single inheritance is safer than multiple inheritance if it is approached in the right way.

It also enables a derived class to call the parent class implementation for a specific method if this

method is overridden in the derived class or the parent class constructor.

PROGRAM:PAYROLL SYSTEM USING SINGLE INHERITANCE

#include<iostream.h>

#include<conio.h>

 class emp

{ public:

 int eno;

 char name[20],des[20];

 void get()

 { cout<<"Enter the employee number:";

 cin>>eno;

 cout<<"Enter the employee name:";

 cin>>name;

 cout<<"Enter the designation:";

 cin>>des;

 }

};

 class salary:public emp

{ float bp,hra,da,pf,np;

 public:

 void get1()

 { cout<<"Enter the basic pay:";

 cin>>bp;

 cout<<"Enter the Humen Resource Allowance:";

 cin>>hra;

 cout<<"Enter the Dearness Allowance :";

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 52/69

 cin>>da;

 cout<<"Enter the Profitablity Fund:";

 cin>>pf;

 }

 void calculate()

 { np=bp+hra+da-pf;

 }

 void display()

 {

 cout<<eno<<"\t"<<name<<"\t"<<des<<"\t"<<bp<<"\t"<<hra<<"\t"<<da<<"\t"<<pf<<"\t"<<np<<"\

n";

 }

};

 void main()

{ int i,n;

 char ch;

 salary s[10];

 clrscr();

 cout<<"Enter the number of employee:";

 cin>>n;

 for(i=0;i<n;i++)

 { s[i].get();

 s[i].get1();

 s[i].calculate();

 }

 cout<<"\ne_no \t e_name\t des \t bp \t hra \t da \t pf \t np \n";

 for(i=0;i<n;i++)

 {

 s[i].display();

 }

 getch();

}

Output:

Enter the Number of employee:1

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 53/69

Enter the employee No: 150

Enter the employee Name: ram

Enter the designation: Manager

Enter the basic pay: 5000

Enter the HR allowance: 1000

Enter the Dearness allowance: 500

Enter the profitability Fund: 300

 E.No E.name des BP HRA DA PF NP

150 ram Manager 5000 1000 500 300 6200

Multilevel Inheritance

Multilevel Inheritance is a method where a derived class is derived from another derived class.

#include <iostream.h>

class mm

 {

 protected:

 int rollno;

 public:

 void get_num(int a)

 { rollno = a; }

 void put_num()

 { cout << "Roll Number Is:\n"<< rollno << "\n"; }

 };

class marks : public mm

 {

 protected:

 int sub1;

 int sub2;

 public:

 void get_marks(int x,int y)

 {

 sub1 = x;

 sub2 = y;

 }

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 54/69

 void put_marks(void)

 {

 cout << "Subject 1:" << sub1 << "\n";

 cout << "Subject 2:" << sub2 << "\n";

 }

 };

class res : public marks

 {

 protected:

 float tot;

 public:

 void disp(void)

 {

 tot = sub1+sub2;

 put_num();

 put_marks();

 cout << "Total:"<< tot;

 }

 };

int main()

 {

 res std1;

 std1.get_num(5);

 std1.get_marks(10,20);

 std1.disp();

 return 0;

 }

Result:

 Roll Number Is:

 5

 Subject 1: 10

 Subject 2: 20

 Total: 30

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 55/69

Multiple Inheritance

1. Deriving directly from more than one class is usually called multiple inheritance. Since it's

widely believed that this concept complicates the design and debuggers can have a hard time with it,

multiple inheritance can be a controversial topic. class can inherit behaviors and features from more

than one superclass. This contrasts with single inheritance, where a class may inherit from at most

one superclass.

#include<iostream.h>

#include<conio.h>

 class student

{

 protected:

 int rno,m1,m2;

 public:

 void get()

 {

 cout<<"Enter the Roll no :";

 cin>>rno;

 cout<<"Enter the two marks :";

 cin>>m1>>m2;

 }

};

class sports

{ protected:

 int sm; // sm = Sports mark

 public:

 void getsm()

 {

 cout<<"\nEnter the sports mark :";

 cin>>sm;

 }

};

class statement:public student,public sports

http://www.wikipedia.org/wiki/Class_(computer_science)
http://www.wikipedia.org/wiki/Inheritance_(computer_science)
http://www.wikipedia.org/wiki/Superclass_(computer_science)

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 56/69

{ int tot,avg;

 public:

 void display()

 { tot=(m1+m2+sm);

 avg=tot/3;

 cout<<"\n\n\tRoll No : "<<rno<<"\n\tTotal : "<<tot;

 cout<<"\n\tAverage : "<<avg;

 }

};

void main()

{ clrscr();

 statement obj;

 obj.get();

 obj.getsm();

 obj.display();

 getch();

}

Output:

 Enter the Roll no: 100

 Enter two marks

 90

 80

 Enter the Sports Mark: 90

 Roll No: 100

 Total : 260

 Average: 86.66

Hierarchical Inheritance

Hierarchical Inheritance is a method of inheritance where one or more derived classes is derived

from common base class.

Example

#include <iostream.h>

class Side

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 57/69

 { protected:

 int l;

 public:

 void set_values (int x)

 { l=x;}

 };

class Square: public Side

 { public:

 int sq()

 { return (l *l); }

 };

class Cube:public Side

 { public:

 int cub()

 { return (l *l*l); }

 };

int main ()

 { Square s;

 s.set_values (10);

 cout << "The square value is::" << s.sq() << endl;

 Cube c;

 c.set_values (20);

 cout << "The cube value is::" << c.cub() << endl;

 return 0;

 }

Result:

 The square value is:: 100

 The cube value is::8000

Hybrid Inheritance

"Hybrid Inheritance" is a method where one or more types of inheritance are combined together and

used.

Example

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 58/69

 #include <iostream>

 using namespace std;

 class student

 { protected:

 int roll_no;

 public:

 void get_no(int a)

 {

 roll_no=a;

 }

 void put_no(void)

 {

 cout << “Roll No:”<<roll_no<<”\n”;

 }

 };

class test : public student

{ protected:

 float part1,part2;

 public:

 void get_marks(float x,float y)

 {

 part1=x; part2=y;

 }

 void put_marks(void)

{cout << “Marks obtained:” << “\n”

 << “Part1= “ <<part1<<”\n”

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 59/69

 <<”Part2= “<<part2<<”\n”;

}

};

class sports

{ protected:

 float score;

 public:

 void get_score(float s)

 {

 score=s;

 }

 void put_score(void)

 {

 cout << “Sports wt:” <<score<<”\n\n”;

 }

};

class result : public test, public sports

{

 float total;

public:

 void display(void);

};

void result : : display(void)

{ total=part1 + part2 +score;

 put_no();

 put_marks();

 put_score();

 cout<<”Total score: “<<total<< “\n”;

}

int main()

{

 result stud;

 stud.get_no(1223);

 stud.get_marks(27.5, 33.0);

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 60/69

 stud.get_score(6.0);

 stud.display();

 return 0;

}

OUTPUT

Roll no 123

Marks obtained : part1=27.5

Part2=33

Sports=6

Total score = 66.5

Templates

 Templates are one of the features added to C++ recently.

 It is a new concept which enables us to define generic classes and functions and thus provides

support for generic programming.

 Generic programming is an approach where generic types are used as parameters in

algorithms so that they work for a variety of suitable data types and data structure.

 A template can be used to create a family of classes or functions.

 For example, a class template for an array class would enable us to create arrays of various

data types such as int array and float array.

 Similarly, define a template for a function, say mul(), that would help us create various

versions of mul() for multiplying int, float and double type values.

 A template can be considered as a kind of macro.

 When an object of a specific type is defined for actual use, the template definition for that

class is substitute with required data type. Since a template defined with a parameter that

would be replaced by a specified data type at the time of actual use of the class or function,

the templates are sometimes called parameterized classes or functions.

Class templates

 A simple process to create a generic class using a template with anonymous type.

 template is the keyword used to create Template

 The class template definition is very similar to an ordinary class definition expect the prefix

template<class T> and the use of type T.

 This prefix tells the compiler that is going to declare a template and use T as a type name in

the declaration.

Syntax:

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 61/69

 template <class T>

 class class-name

 { //class member specification

 //with anonymous type T

 //wherever appropriate

 };

Example:

int size=3;

template<class T>

class vector

{ T* v;

 int size;

 public:

 vector()

 { v=new T[size];

 for(int i=0;i<3;i++)

 v[i]=0;

 }

 vector(T* a)

 { for(int i=0;i<size;i++)

 v[i]=a[i];

 }

 T operator *(vector &y)

 { T sum=0;

 for(int i=0;i<size;i++)

 sum+=this->v[i]*y.v[i];

 return sum;

 }

};

Class Templates with Multiple Parameters:

 More than one generic data type in a class template.

 It is declared as a comma separated list within the template specification .

Syntax:

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 62/69

 template <class T1, class T2,…,class Tn>

 class class-name

 {//body of the class

 };

Program:

#include<iostream.h>

template<class T1, class T2>

class Test

{ T1 a;

 T2 b;

 public:

 Test(T1 x, T2 y)

 { a=x;

 b=y;

 }

 void show()

 { cout<<"\na : "<<a<<"\nb : "<<b;

 }

};

void main()

{ Test <float, int> t1(1.23,123);

 Test <int, char> t2(100,'M');

 t1.show();

 t2.show();

}

Example

#include <iostream>

using namespace std;

template <class T>

class mypair {

 T a, b;

 public:

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 63/69

 mypair (T first, T second)

 {a=first; b=second;}

 T getmax ();

};

template <class T>

T mypair<T>::getmax ()

{

 T retval;

 retval = a>b? a : b;

 return retval;

}

int main () {

 mypair <int> myobject (100, 75);

 cout << myobject.getmax();

 return 0;

}

o/p

100

Function templates

Templates are the foundation of generic programming, which involves writing code in a way that is

independent of any particular type.

A template is a blueprint or formula for creating a generic class or a function. The library containers

like iterators and algorithms are examples of generic programming and have been developed using

template concept.

There is a single definition of each container, such as vector, but we can define many different kinds

of vectors for example, vector <int> or vector <string>.

You can use templates to define functions as well as classes

 Defining function Templates that could be used to create a family of functions with different

argument types.

Syntax:

 template <class T>

 return-type function-name(argument of type T)

 {

 //body of function

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 64/69

 //with type T

 //wherever appropriate

 }

 The function template syntax is similar to that of the class template expect that defining

functions instead of classes.

 Use template parameter T as and when necessary in the function body and its argument list.

Program:

#include<iostream.h>

template<class T>

void swap(T &x, T &y)

{ T temp=x;

 x=y;

 y=temp;

}

void fun(int m,int n,float a,float b)

{ cout<<"\n m and n before swap: "<<m<<" "<<n;

 swap(m,n);

 cout<<"\n m and n after swap: "<<m<<" "<<n;

 cout<<"\n a and b before swap: "<<a<<" "<<b;

 swap(a,b);

 cout<<"\n a and b after swap: "<<a<<" "<<b;

}

void main()

{ fun(100,200,11.53,33.44);

}

The following is the example of a function template that returns the maximum of two values:

#include <iostream>

#include <string>

using namespace std;

template <typename T>

inline T const& Max (T const& a, T const& b)

{ return a < b ? b:a;

}

int main ()

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 65/69

{ int i = 39;

 int j = 20;

 cout << "Max(i, j): " << Max(i, j) << endl;

 double f1 = 13.5;

 double f2 = 20.7;

 cout << "Max(f1, f2): " << Max(f1, f2) << endl;

 string s1 = "Hello";

 string s2 = "World";

 cout << "Max(s1, s2): " << Max(s1, s2) << endl;

 return 0;}

If we compile and run above code, this would produce the following result:

Max(i, j): 39

Max(f1, f2): 20.7

Max(s1, s2): World

Function Templates with Multiple Parameters:

 Use more than one generic data type in the template statement using a comma-separated list.

Syntax:

 template <class T1, class T2,…,class Tn>

 return-type function-name(arguments of types T1,T2,….)

 {……//body of the function

 }

Overloading of Template Functions:

 A template function may be overloaded either by template functions or ordinary functions of

its name.

 The overloading resolution is accomplished as follows:

 Call an ordinary function that has an exact match.

 Call a template function that could be created with an exact match.

 Try normal overloading resolution to ordinary functions and call the one that matches.

 An error is generated if no match is found.

 No automatic conversions are applied to arguments on the template functions.

Program:

#include<iostream.h>

template<class T>

void display(T x)

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 66/69

{ cout<<"\nTemplate method : "<<x;

}

void display(int x)

{ cout<<"\nExplicit method : "<<x;

}

void main()

{ display(11.53);

 display(44);

 display("welcome"); }

Member function templates

 All the member functions were defined as inline is not necessary.

 Define members outside that class is also possible.

 The member function of the template classes are parameterized by the type arguments and

functions must be defined by the function templates.

Syntax:

 template <class T>

 return-type class-name<T>:: function-name(argument list)

 {……//body of the function

 }

Example:

template<class T>

class vector

{ T* v;

 int size=3;

 public:

 vector(int m);

 vector(T* a);

 T operator*(vector &y);

};

template<class T>

vector<T>::vector(int m)

{ v=new T[size];

 for(int i=0;i<size;i++)

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 67/69

 v[i]=0;

}

template<class T>

vector<T>::vector(T* a)

{ for(int i=0;i<size;i++)

 v[i]=a[i];

}

template<class T>

vector<T>::operator *(vector &y)

{ T sum=0;

 for(int i=0;i<size;i++)

 sum+=this->v[i]*y.v[i];

 return sum; }

POSSIBLE QUESTIONS – UNIT V

 Part-A

 Online Examinations (One marks)

1. Variables are declared in_________________

a) Only in main () b) anywhere in the scope

c) After the main () function d) the function.

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 68/69

2. ____________statement is used to transfer the control t pass on the beginning of the block/loop

a) Break b) jump c) goto d) continue

3. Which of the following function/types of function cannot have default parameters?

a) Member function of class b) main()

c) Member function of structure d) Both B and C

4. Which is more effective while calling the functions?

a) call by value b) call by reference c) call by pointer d) none

5. The operator used for dereferencing or indirection is ____

a) * b) & c) -> d) ->>

6. Which is more memory efficient?

a) Structure b) union c) both use same memory d) depends on a programmer

7. Identify the correct sentence regarding inequality between reference and pointer.

a) We cannot create the array of reference.

b) We can create the Array of reference.

c) We can use reference to reference.

d) none of the mentioned

8. The output formats can be controlled with manipulators having the header file as

a) iostream.h b) conio.h c) stdlib.h d) iomanip.h

9. A _______ is a collection of related data stored in a particular area on a disk.

a) Field b)File c) Row d)Vector

10. Which header file should be included to use functions like malloc() and calloc()?

a) memory.h b) stdlib.h c) string.h d) dos.h

 Part-B

2 MARKS
1. Define constructors with example.

2. What is copy constructor?

3. Define class.

4. What is OOP?

Using Classes in C++ 2017-2020
Batch

Prepared by Dr.P.TamilSelvan&S.A.SathyaPrabha,Department of CS,CA & IT,KAHE 69/69

5. Define function overloading.

6. What is operator overloading?

7. Define inheritance

8. What is polymorphism?

9. What is data abstraction and encapsulation?

10. What is an exception mention it syntax.

11. Define virtual functions.

 Part-C

6 MARKS

1. Explain copy constructors with suitable example program

2. Discuss the concept of virtual function with an example program

3. What do you mean by Constructor? Give example program for constructor overloading.

4. List the different types of inheritance. Explain multi-level with suitable program.

5. Explain class constructors with suitable example program

6. List the different types of inheritance. Explain multiple with suitable program.

7. Explain the concept of function overloading with a program to find the area of triangle

8. Write note on basic exception handling in c++.

9. Explain in detail about overloading operators with example

10. Write note on catching all exceptions in c++.

SUBJECT: PROGRAMMING FUNDAMENTALS

USING C/C++

UNIT-V

S.No Questions OPT1 OPT2 OPT3 OPT4 Answer

1

C++ supports all the features of ___________ as

defined in C

 structures union objects classes structures

2

A structure can have both variable and functions

as ________

 objects classes members

arguments
 members

3

The class _________ describes the type and

scope of its members

calling

function

declaration
 objects

 none of

the above
 declaration

4

The class __________ describes how the class

function are implemented

 Function

definition

declaration
 arguments

 none of

the above

 Function

definition

5

The keywords private and public are known as

_________ labels

 Static dynamic visibility const visibility

6

The class members that have been declared as

________ can be

 accessed only from within the class

 Private public static protected Private

(1 mark questions)

SUBJECT CODE: 17CSU101

KARPAGAM ACADEMY OF HIGHER EDUCATION

Part -A Online Examinations

COIMBATORE - 21

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 CLASS : I B.Sc COMPUTER SCIENCE

BATCH : 2017-2020

7

The class members that have been declared as

________ can be

 accessed from outside the class also

 Private Public static protected Public

8

The variables declared inside the class are called

as _________

 Function

variables

 data

members

 member

function

data

variables

 data

members

9

The symbol ______ is called the scope resolution

operator

 >> :: << ::* ::

10

__________ enables an object to initialize itself

when it is created

 Destructor constructor overloading
 none of

the above
 constructor

11

The __________ is special because its name is

the same as the class name.

 Destructor static constructor
 none of

the above
 constructor

12

A constructor that accepts no parameters is called

the __________ constructor

 Copy default multiple
 none of

the above
 default

13

Constructors are invoked automatically when the

________ are created

 Datas classes objects
 none of

the above
 objects

14 Constructors cannot be _________

 Inherited destroyed both a & b
 none of

the above
 Inherited

15 Constructors cannot be _________

 Destroyed virtual both a & b
 none of

the above
 virtual

16

Constructors make _________ calls to the

operators new and

delete when memory allocation is required

 Explicit implicit function
 none of

the above
 implicit

17

The constructors that can take arguments are

called _________ constructors

 Copy multiple

parameterized

 none of

the above

parameterized

18

The constructor function can also be defined as

________ function

 Friend inline default
 none of

the above
 inline

19

When a constructor can accept a reference to its

own

 class as a parameter, in such cases it is called as

 Multiple copy default
 none of

the above
 copy

20

A _________ constructor is used to declare and

initialize an object from another object

 Default copy multiple

parameteriz

ed

 copy

21

The process of initializing through a copy

constructor is known as ________ initialization

Overloaded
 multiple copy

 none of

the above
 copy

22 _________ is used to free the memory

 new delete clrscr()
 none of

the above
 delete

23

Which is a valid method for accessing the first

element of the array item?

 item(1) item[1] item[0] item(0) item[0]

24 An object is an _________ unit

 group individual both a&b
 none of

the above
 individual

25 Public keyword is terminated by a ________

 Semicolon comma dot colon colon

26 Private keyword is terminated by a _________

 semicolon comma dot colon colon

27

The memory for static data is allocated only

 twice thrice once
 none of

the above
 once

28

Static member functions can be invoked using

________ name

 class object data function class

29

When a class is declared inside a function they

are called as ________ classes.

 global invalid local
 none of

the above
 local

30

Constructors and destructors are automatically

inkoved by _________

 operating

system
 main() complier object complier

31 Constructors is executed when ________

 object is

destroyed

 object is

declared
 both a & b

 none of

the above

 object is

declared

32 The destructor is executed when __________

 object

goes out of

scope

 when

object is

not used

 when object

contains

nothing

 none of

the above

 object goes

out of scope

33 The members of a class are by default ________

 protected private public
 none of

the above
2

34

The ________ is executed at the end of the

function when objects are of no used or goes out

of scope

 destructor constructor inheritance
 none of

the above
 destructor

35 The statement catches the exception _______ .

 catch try template throw. catch

36

In a multiple catch statement the number of throw

statements are .

 same as

catch

statement

 twice than

catch
 only one none. only one

37 The exception is generated in _________block.

 try catch finally throw. try

38

The exception handling one of the function is

implicitly invoked.

abort exit assert none. abort

39

The exception handling mechanism is basically

built upon ______ keyword

try catch throw
all the

above
all the above

40

The point at which the throw is executed is called

_________.

try catch throw point exceptions throw point

41

A template function may be overloaded by

_______ function

template normal stream exception template

42

________function returns true when an input or

output operation has failed

eof() fail() bad() good() fail()

43

.In ________ inheritance, the base classes are

constructed in the order in which they appear in

the declaration of the derived class.

 Hybrid Multipath Hierarchical Multiple Multiple

44

The ________ function takes no operator.
 Operator

+()

 Operator

–()
 Friend

Conversion
operator -()

45

In overloading of binary operators, the ________

operand is used to invoke the operator function.
 Right-

hand
 Arithmetic Left-hand

Multiplicati

on

left-hand

46

________ functions may be used in place of

member functions for overloading a binary

operator

 Inline Member Conversion Friend Friend

47

The operator that cannot be overloaded is

________ Sizee of + - = single of

48

The friend functions cannot be used to overload

the ________ operator. :: ?: . = ::

49

________ is called compile time polymorphism.
 Operator

overloading

 Function

overloading

Overloading

unary

Overloadin

g binary

operator

overloading

50

________ feature can be used to add two user-

defined operator data types. Function

Overloadin

g

 Arrays Pointers overloading

51

________ operator cannot be overloaded.

 = + ?: – ?:

52

Operator overloading is done with the help of a

special function called ________ function.

Conversion
 Operator

 User-

defined
 In-built. operator

53

________ functions must either be member

functions or friend functions. Operator
 User-

defined

 Static

Member

Overloadin

g

operator

54

The overloading operator must have atleast

________ operand that is of user-defined data

type.

 Two Three One Four one

55

________ operator function should be a class

member.

Arithmetic
 Relational Casting

Overloadin

g

casting

56

The casting operator must not have any ________

Arguments
 Member Return type Operator arguments

57

The casting operator function must not specify a

________ type.

 User-

defined

type

 Return Member In-built return

58

The operator that cannot be overloaded is

________. Casting Binary Unary
 Scope

resolution

scope

resolution

59

The friend function cannot be used to overload

________ operator. + - () :: ()

60

________ operator cannot be overloaded by

friend function. [] * . ?: ?:

61

The operator that cannot be overloaded by friend

function is ________ . :: -> Single of ::

62

Operator overloading is called ________ Function

Overloadin

g

 Compile

time

polymorphi

 Casting

operator

function

Temporary

object

Compile time

polymorphism

63

Overloading feature can add two ________ data

types. In-built

Enumerated

 User-

defined
 Static User-defined

64

The mechanism of deriving a new class from an

old one is called ________
 Operator

overloading

Inheritance

Polymorphis

m

 Access

mechanism
polymorphism

	1.pdf (p.1-4)
	2.pdf (p.5-9)
	3.pdf (p.10-59)
	4.pdf (p.60-65)
	5.pdf (p.66-105)
	6.pdf (p.106-112)
	7.pdf (p.113-158)
	8.pdf (p.159-164)
	9.pdf (p.165-206)
	10.pdf (p.207-211)
	11.pdf (p.212-280)
	12.pdf (p.281-287)
	13.pdf (p.288-289)
	14.pdf (p.290)
	15.pdf (p.291)

