
Data Structures 2016

Department of Computer Science, CA & IT KAHE 1

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 Coimbatore - 641021.

 (For the candidates admitted from 2015 onwards)

 DEPARTMENT OF COMPUTER SCIENCE, CA & IT

SUBJECT:DATA STRUCTURES SEMESTER: III

CODE: 16CSU301 CLASS: II B.Sc.CS

Course Objective:

Data structures and algorithms are the building blocks in computer programming. This course

will give students a comprehensive introduction of common data structures, and algorithm

design and analysis. This course also intends to teach data structures and algorithms for solving

real problems that arise frequently in computer applications, and to teach principles and

techniques of computational complexity.

Course Outcome:

A student who successfully completes this course should, at a minimum, be able to:

 possess intermediate level problem solving and algorithm development skills on the

computer

 be able to analyze algorithms using big-Oh notation

 understand the fundamental data structures such as lists, trees, and graphs

 understand the fundamental algorithms such as searching, and sorting

UNIT-I

Arrays-Single and Multi-dimensional Arrays, Sparse Matrices (Array and Linked

Representation).Stacks Implementing single / multiple stack/s in an Array; Prefix, Infix and

Postfix expressions, Utility and conversion of these expressions from one to another;

Applications of stack; Limitations of Array representation of stack

UNIT-II

Linked Lists Singly, Doubly and Circular Lists (Array and Linked representation); Normal and

Circular, representation of Stack in Lists; Self Organizing Lists; Skip Lists Queues, Array and

Linked representation of Queue, De-queue, Priority Queues

Data Structures 2016

Department of Computer Science, CA & IT KAHE 2

UNIT-III

Trees - Introduction to Tree as a data structure; Binary Trees (Insertion, Deletion , Recursive and

Iterative Traversals on Binary Search Trees); Threaded Binary Trees (Insertion, Deletion,

Traversals); Height-Balanced Trees (Various operations on AVL Trees).

UNIT-IV

Searching and Sorting: Linear Search, Binary Search, Comparison of Linear and Binary Search,

Selection Sort, Insertion Sort, Insertion Sort, Shell Sort, Comparison of Sorting Techniques

UNIT-V

Hashing - Introduction to Hashing, Deleting from Hash Table, Efficiency of Rehash Methods,

Hash Table Reordering, Resolving collusion by Open Addressing, Coalesced Hashing, Separate

Chaining, Dynamic and Extendible Hashing, Choosing a Hash Function, Perfect Hashing,

Function

Text Book:

1. SartajSahni.(2011). Data Structures, Algorithms and applications in C++(2nded.). New Delhi:

Universities Press.

2. Aaron, M. Tenenbaum., Moshe, J. Augenstein., &YedidyahLangsam.(2009). Data Structures

Using C and C++(2nd ed.). New Delhi: PHI.

Reference Book:

1. Adam Drozdek. (2012). Data Structures and algorithm in C++(3rded.). New Delhi: Cengage

Learning.

2. Robert, L. Kruse.(1999). Data Structures and Program Design in C++. New Delhi: Pearson.

3. Malik, D.S.(2010). Data Structure using C++(2nd ed.). New Delhi: Cengage Learning,.

4. Mark Allen Weiss.(2011). Data Structures and Algorithms Analysis in Java (3rd ed.). New

Delhi:Pearson Education.

5. Aaron, M. Tenenbaum., Moshe, J. Augenstein.,& YedidyahLangsam.(2003). Data Structures

Using Java.New Delhi: PHI.

6. Robert Lafore.(2003). Data Structures and Algorithms in Java(2nd ed.). New Delhi: Pearson/

Macmillan Computer Pub.

7. John Hubbard.(2009). Data Structures with JAVA(2nd ed.). New Delhi: McGraw Hill

Education (India) Private Limited.

8. Goodrich, M., & Tamassia, R.(2013). Data Structures and Algorithms Analysis in Java(4th

ed.). New Delhi: Wiley.

9.Herbert Schildt.(2014).Java The Complete Reference (English)(9th ed.). New Delhi: Tata

McGraw Hill.

10. Malik, D. S., &Nair, P.S. (2003).Data Structures Using Java. New Delhi: Course

Technology.

Data Structures 2016

Department of Computer Science, CA & IT KAHE 3

WEB SITES:

1. http://en.wikipedia.org/wiki/Data_structure

2. http://www.cs.sunysb.edu/~skiena/214/lectures/

3. www.amazon.com/Teach-Yourself-Structures-Algorithms

END SEMESTER MARK ALLOCATION

1. PART – A

20*1=20

ONLINE EXAMINATION

20

2 PART – B

5*2=10

10

3 PART – C

5*6=30

EITHER OR TYPE

30

4 TOTAL 60

Lecture Plan 2016

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 1/4

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 LECTURE PLAN

 DEPARTMENT OF COMPUTER SCIENCE

Subject : DATA STRUCTURES Subcode : 16CSU301

CLASS : II-B.Sc (CS) Semester: III

Staff Name: S.Joyce

 UNIT-I

S.No Lecture

Duratio

n

(Hours)

Topics to be Covered Support Materials

1 1 Introduction, Arrays T1.Pg:223, 1.Pg:224

2 1 Single dimensional Arrays T1.Pg:225,226

3 1 Multi-dimensional Arrays T1.Pg:227,228

4 1 Sparse Matrices (Array Representation) T1.Pg:252

5 1 Sparse Matrices (Linked Representation) T1.Pg:254

6 1 Stacks T1.Pg:258

7 1 Implementing single multiple stacks in an Array T1.Pg:259

8 1 Prefix, Infix and Postfix expressions T2.Pg:95-99

9 1 Utility and conversion of these expressions from

one to another

 T2.Pg:99-106

10 1 Applications of stack T1.Pg:284-300

11 1 Limitations of Array representation of stack W1

12 1 Recapitulation and Discussion of Important

Questions

 Total No.of Hours Planned

for Unit I

12

Text Book:

 1. Sartaj Sahni. (2011). Data Structures, Algorithms and applications in C++(2nd ed.). New

Delhi: Universities Press.

 2. Aaron, M. Tenenbaum., Moshe, J. Augenstein., & Yedidyah Langsam. (2009). Data

Structures Using C and C++(2nd ed.). New Delhi: PHI.

Lecture Plan 2016

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 2/4

WEB SITES:

1. http://en.wikipedia.org/wiki/Data_structure

 UNIT-II

1 1 Linked Lists Singly T1.Pg:172-174

2 1 Doubly Lists T1.Pg:192

3 1 Doubly and Circular Lists (Array and Linked

representation)

 T1.Pg:194

4 1 Normal representation of Stack in Lists W1

5 1 Circular representation of Stack in Lists W1

6 1 Self Organizing Lists T1.Pg:323

7 1 Skip Lists Queues T1.Pg:324

8 1 Array representation of Queue T1.Pg:325

9 1 Linked representation of Queue T1.Pg:326-330

10 1 De-queue T1.Pg:464

11 1 Priority Queues T1.Pg:466

12 1 Recapitulation and Discussion of Important

Questions

 Total No. of Hours Planned for -Unit II 12

Text Book:

 1. Sartaj Sahni. (2011). Data Structures, Algorithms and applications in C++(2nd ed.). New

Delhi: Universities Press.

WEB SITES:

1. http://en.wikipedia.org/wiki/Data_structure

UNIT-III

1 1 Trees T1.Pg:420

2 1 Introduction to Tree as a data structure T1.Pg:421

3 1 Binary Trees (Insertion) T1.Pg:425

4 1 Binary Trees (Deletion) T1.Pg:426

5 1 Binary Trees (Recursive and Iterative) T1.Pg:427

6 1 Traversals on Binary Search Trees T1.Pg:432

7 1 Threaded Binary Trees W1

8 1 Threaded Binary Trees (Insertion, Deletion,

Traversals

 W1

9 1 Height-Balanced Trees T1.Pg:563-567

Lecture Plan 2016

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 3/4

10 1 AVL Trees T1.Pg:568-572

11 1 Operations on AVL Trees T1.Pg:573

12 1 Recapitulation and Discussion of Important

Questions

 Total No. of Hours Planned for -Unit III 12

Text Book:

 1. Sartaj Sahni. (2011). Data Structures, Algorithms and applications in C++(2nd ed.). New

Delhi: Universities Press.

WEB SITES:

1.http://www.cs.sunysb.edu/~skiena/214/lectures/

UNIT-IV

1 1 Searching T2.Pg:351

2 1 Sorting T2.Pg:352

3 1 Comparison of Linear Search W2

4 1 Binary Search W2

5 1 Comparison of Linear Search W2

6 1 Comparison of Binary Search W1

7 1 Selection Sort T2.Pg:351

8 1 Insertion Sort T2.Pg:353

9 1 Shell Sort T2.Pg:366

10 1 Comparison of Sorting Techniques W2

11 1 Recapitulation and Discussion of Important

Questions

 Total No. of Hours Planned for -Unit IV 11

Text Book:

1. Sartaj Sahni. (2011). Data Structures, Algorithms and applications in C++(2nd ed.). New

Delhi: Universities Press.

2.Aaron, M. Tenenbaum., Moshe, J. Augenstein., & Yedidyah Langsam. (2009). Data

Structures Using C and C++(2nd ed.). New Delhi: PHI.

WEB SITES:

1.http://en.wikipedia.org/wiki/Data_structure

2.http://www.cs.sunysb.edu/~skiena/214/lectures/

Lecture Plan 2016

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 4/4

UNIT-V

1 1 Hashing T2.Pg:468

2 1 Introduction to Hashing T2.Pg:469

3 1 Deleting from Hash Table T2.Pg:473

4 1 Efficiency of Rehash Methods T2.Pg:474

5 1 Hash Table Reordering T2.Pg:476

6 1 Resolving collusion by Open Addressing, W2

7 1 Coalesced Hashing, Separate Chaining T2.Pg:485-488

8 Dynamic and Extendible Hashing T2.Pg:494

9 1 Choosing a Hash Function, Perfect Hashing,

Function

 T2.Pg:505-508

10 1 Recapitulation and Discussion of Important

Questions

11 1 Discussion of Previous ESE Question Papers

12 1 Discussion of Previous ESE Question Papers

13 1 Discussion of Previous ESE Question Papers

 Total No. of Hours Planned for Unit V 13

Text Book:

1. Sartaj Sahni. (2011). Data Structures, Algorithms and applications in C++(2nd ed.). New

Delhi: Universities Press.

2. Aaron, M. Tenenbaum., Moshe, J. Augenstein., & Yedidyah Langsam. (2009). Data

Structures Using C and C++(2nd ed.). New Delhi: PHI.

WEB SITES:

1.http://en.wikipedia.org/wiki/Data_structure

2.http://www.cs.sunysb.edu/~skiena/214/lectures/

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 1/22

SYLLABUS

UNIT-I

Arrays-Single and Multi-dimensional Arrays, Sparse Matrices (Array and Linked

Representation).Stacks Implementing single / multiple stack/s in an Array; Prefix, Infix and Postfix

expressions, Utility and conversion of these expressions from one to another; Applications of stack;

Limitations of Array representation of stack.

Overview of Data Structures:

Introduction:

* To represent and store data in main memory or secondary memory we need a model. The different

models used to organize data in the main memory are collectively referred as data structures.

* The different models used to organize data in the secondary memory are collectively referred as file

structures.

Introduction to Algorithms:

Why write algorithms:

(1) To get it out of the head, human memory is unreliable!

(2) To communicate with the programmer and other algorithm developers.

(3) To prove its correctness, to analyze, to improve its efficiency, …

ALGORITHM:

What is a computer program?

(1) Steps for solving some problem, and

(2) the steps written (implemented) in a language to be understood by a compiler program (and

eventually by a CPU).

Problem Algorithm Program

Calculate

i=i
n i2

for i = 1 through n do

 accumulate i2 in x;

return x.

public static int sum(int n) {

 int partialSum = 0;

 for (int i=1; i<=n; i++)

 partialSum += i*i;

return partialSum; }

The first step in solving a computational problem is developing an algorithm.

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 2/22

It could be written in a loose fashion or in a rigorous way. Its primary purpose is to communicate the

problem solving steps unambiguously.

It must be provably correct and should terminate.

So, specification = problem definition;

algorithm = solution of the problem;

program = translation of the algorithm in a computer language.

Basic terminologies of Data Organization:

Data:

 The term ‘DATA’ simply refers to a value or a set of values. These values may represent

anything about something, like it may be Roll No of a student, marks of a student, name of an

employee, address of a person etc.

Data item:

 A data item refers to a single unit of value. For example, roll number, name, date of birth, age,

address and marks in each subject are data items. Data items that can be divided into sub items are

called group items whereas those who cannot be divided into sub items are called elementary items.

For example, an ‘address’ is a ‘group item’ as it is usually divided into sub items such as house-number,

street number, locality, city, pin code etc. Likewise, a ‘date’ can be divided into day, month and year, a

name can be divided into first name and surname. On the other hand, roll number, marks, city, pin code,

etc. are normally treated as ‘elementary items’.

Entity:

 An entity is something that has a distinct, separate existence, though it need not be a material

existence. An entity has certain ‘attributes’ or ‘properties’, which may be assigned values. The values

assigned may be either numeric or non-numeric. For example, a student is an entity. The possible

attributes for a student can be roll number, name, date of birth, sex and class. The possible values for

these attributes can be 32, kanu, 12/03/84, F, 11.

 Entity Set:

 An entity set is a collection of similar entities. For example, students of a class, employees of an

organization etc. forms an entity set.

Record:

 A record is a collection of related data items. For example, roll number, name, date of birth, sex,

and class of a particular student such as 32, kanu, 12/03/84, F, 11. In fact, a record represents an entity.

File:

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 3/22

 A file is a collection of related records. For example, a file containing records of all students in

class, a file containing records of all employees of an organization. In fact, a file represents an entity

set.

Key:

 A key is a data item in a record that takes unique values. only one data item as a key called

primary key. The other key are known as alternate key. Combination of some fields is known as

composite key.

Information:

 The terms data and information are same. Data is collection of values(raw data).Information is

a processed data.

Concept of a Data Type:

A Data-Type in programming language is an attribute of a data, which tells the computer (and the

programmer) important things about the concerned data. This involves what values it can take and what

operations may be performed upon it. i.e. it declare:

 Ø Set of values

 Ø Set of operations

 Most programming languages require the programmer to declare the data type of every data object,

and most database systems require the user to specify the type of each data field. The available data

types vary from one programming language to another, and from one database application to another,

but the following usually exist in one form or another:

Integer:

Whole number; a number that has no fractional part. It takes digits as its set of values. The operations

on integers include the arithmetic operations i.e. addition (+), subtraction (-), multiplication (*), and

division (/).

Floating-point: A number with a decimal point. For example, 3 is an integer, but .5 is a floating-point

number.

Character (text): Readable text.

Primitive Data-Type:

 A primitive data type is also called as basic data-type or built-in data type or simple data-type.

The primitive data-type is a data type for which the programming language provides built-in support;

i.e. you can directly declare and use variables of these kinds. You need not to define these data-types

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 4/22

before use. So we can also say that primitive data-type is data type that is predefined. These primitive

data types may be different for different programming languages. For example, C programming

language provides built-in support for integers (int, long), reals (float, double) and characters (char).

Abstract Data-Type:

 In computing, an abstract data type (ADT) is a specification of a set of data and the set of

operations that can be performed on the data; and this is organized in such a way that the specification

of values and operations on those values are separated from the representation of the values and the

implementation of the operations. For example, consider ‘list’ abstract data type. The primitive

operations on a list may include adding new elements, deleting elements, determining number of

elements in the list etc. Here, we are not concerned with how a list is represented and how the above-

mentioned operations are implemented. We only need to know that it is a list whose elements are of

given type, and what can we do with the list.

Polymorphic Data-types:

 A heterogeneous list is one that contains data element of variety of data types. It is desirable to

create a data type that is independent of the values stored in the list. This kind of data type is known as

polymorphic data types.

Data Structure Defined:

 In computer science, a data structure is a particular way of organizing data in a computer so that it

can be used efficiently.

 The study of data structures includes:

 * Logical description of data structures.

 * Implementation of data structures.

 * Quantitative analysis of the data structures.

Description of various Data Structures:

The various data structures are divided into following categories:

Linear Data-Structures:

 A data structure whose elements form a sequence, and every element in the structure has a

unique predecessor and unique successor. Examples of linear data structures are arrays, link-lists,

stacks and queues.

Non-linear Data-Structures:

 A data structure whose elements do not form a sequence, there is no unique predecessor or

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Algorithmic_efficiency

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 5/22

unique successor. Examples of non-linear data structures are trees and graphs.

Arrays:

 An array is a collection of variables of the same type that are referred to by a common name.

Arrays offer a convenient means of grouping together several related variables, in one dimension or

more dimensions:

 • product part numbers:

 int part_numbers[] = {123, 326, 178, 1209};

 One-Dimensional Arrays:

 A one-dimensional array is a list of related variables. The general form of a one-dimensional

array declaration is:

 type variable_name[size]

• type: base type of the array,determines the data type of each element in the array

• size: how many elements the array will hold

• variable_name: the name of the array

Examples:

int sample[10];

float float_numbers[100];

char last_name[40];

Two-Dimensional Arrays:

 A two-dimensional array is a list of one-dimensional arrays.To declare a two-dimensional integer

array two_dim of size 10,20 we would write:

int matrix[3][4];

Multidimensional Arrays:

 C++ allows arrays with more than two dimensions.

 The general form of an N-dimensional array declaration is:

 type array_name [size_1] [size_2] ... [size_N];

For example, the following declaration creates a 4 x 10 x 20 character array, or a matrix of strings:

 char string_matrix[4][10][20];

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 6/22

This requires 4 * 10 * 20 = 800 bytes.

If we scale the matrix by 10, i.e. to a 40 x 100 x 20 array, then 80,000 bytes are needed.

Linked List:

A linked list is a data structure consisting of a group of nodes which together represent a sequence.

Under the simplest form, each node is composed of a data and a reference (in other words, a link) to the

next node in the sequence; more complex variants add additional links. This structure allows for

efficient insertion or removal of elements from any position in the sequence.

A linked list whose nodes contain two fields: an integer value and a link to the next node. The last node

is linked to a terminator used to signify the end of the list.

Singly linked list

Singly linked lists contain nodes which have a data field as well as a next field, which points to the

next node in line of nodes.

A singly linked list whose nodes contain two fields: an integer value and a link to the next node

Doubly linked list

In a doubly linked list, each node contains, besides the next-node link, a second link field pointing to

the previous node in the sequence. The two links may be called forward(s) and backwards, or next

and prev(previous).

A doubly linked list whose nodes contain three fields: an integer value, the link forward to the next

node, and the link backward to the previous node

Circular list

In the last node of a list, the link field often contains a null reference, a special value used to indicate

the lack of further nodes. A less common convention is to make it point to the first node of the list; in

that case the list is said to be 'circular' or 'circularly linked'; otherwise it is said to be 'open' or 'linear'.

A circular linked list

In the case of a circular doubly linked list, the only change that occurs is that the end, or "tail", of the

said list is linked back to the front, or "head", of the list and vice versa.

Stack:

http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Node_(computer_science)
http://en.wikipedia.org/wiki/Reference_(computer_science)
http://en.wikipedia.org/wiki/Node_(computer_science)
http://en.wikipedia.org/wiki/Null_pointer#Null_pointer

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 7/22

 A stack is a basic data structure that can be logically thought as linear structure represented by a real

physical stack or pile, a structure where insertion and deletion of items takes place at one end called top

of the stack. The basic concept can be illustrated by thinking of your data set as a stack of plates or

books where you can only take the top item off the stack in order to remove things from it. This

structure is used all throughout programming.

 The basic implementation of a stack is also called a LIFO (Last In First Out) to demonstrate the

way it accesses data, since as we will see there are various variations of stack implementations.

 There are basically three operations that can be performed on stacks . They are 1) inserting an item

into a stack (push). 2) deleting an item from the stack (pop). 3) displaying the contents of the

stack(pip).

 Stack

Queues:

 A queue is a basic data structure that is used throughout programming. You can think of it as a

line in a grocery store. The first one in the line is the first one to be served. Just like a queue. A queue is

also called a FIFO (First In First Out) to demonstrate the way it accesses data.

Trees:

 A tree is a non-linear data structure that consists of a root node and potentially many levels of

additional nodes that form a hierarchy. A tree can be empty with no nodes called the null or empty tree

or a tree is a structure consisting of one node called the root and one or more subtrees.

 A binary tree is a tree data structure in which each node has at most two children (referred to as the

left child and the right child). In a binary tree, the degree of each node can be at most two. Binary trees

are used to implement binary search trees and binary heaps, and are used for efficient searching and

sorting.

Heaps:

 A heap is a specialized tree-based data structure that satisfies the heap property: If A is a parent

node of B then the key of node A is ordered with respect to the key of node B with the same ordering

applying across the heap. Either the keys of parent nodes are always greater than or equal to those of

the children and the highest key is in the root node (this kind of heap is called max heap) or the keys of

parent nodes are less than or equal to those of the children and the lowest key is in the root node (min

http://en.wikipedia.org/wiki/Tree_(data_structure)
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Child_node
http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/Binary_heap
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Sorting_algorithm
http://en.wikipedia.org/wiki/Tree_(data_structure)
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Node_(computer_science)

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 8/22

heap).

 max heap

Graphs:

 A graph data structure consists of a finite (and possibly mutable) set of ordered pairs, called edges

or arcs, of certain entities called nodes or vertices. As in mathematics, an edge (x,y) is said to point or

go from x to y. The nodes may be part of the graph structure, or may be external entities represented by

integer indices or references.

A labeled graph of 6 vertices and 7 edges.

Hash Table:

 A hash table (also hash map) is a data structure used to implement an associative array, a structure

that can map keys to values. A hash table uses a hash function to compute an index into an array of

buckets or slots, from which the correct value can be found.

 Ideally, the hash function will assign each key to a unique bucket, but this situation is rarely

achievable in practice (usually some keys will hash to the same bucket). Instead, most hash table

designs assume that hash collisions—different keys that are assigned by the hash function to the same

bucket—will occur and must be accommodated in some way.

http://en.wikipedia.org/wiki/Set_(computer_science)
http://en.wikipedia.org/wiki/Reference_(computer_science)
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Unique_key
http://en.wikipedia.org/wiki/Value_(computer_science)
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Collision_(computer_science)

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 9/22

 A small phone book as a hash table.

Common Operation on data structures:

 The following the main operations that can be performed on the data structures :

1. Traversing : It means reading and processing the each and every element of a data structure at

least once.

2. Inserting : It means inserting a value at a specified position in a data structure, this is also

know as insertion.

3. Deletion : It means deleting a particular value from a specified position in a data structure.

4. Searching : It means searching a particular data in created data structure.

5. Sorting : It means arranging the elements of a data structure in a sequential manner i.e. either in

ascending order or in descending order.

6. Merging: Combining the elements of two similar sorted structures into a single structure.

 • It contains no consideration of programming efforts

 • It masks (hides) potentially important constants.

 As an example of later limitation, imagine two algorithms, one using 500000n2 time, and

the other n3 time. The first algorithm is O(n2), which implies that it will take less time than the

other algorithm which is O(n3). However, the second algorithm will be faster for n<500000,

and this would be faster for many applications.

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 10/22

Arrays :

Introduction:

An array is a data structure. It is a collection of similar type of (homogeneous) data elements and

is represented by a single name.

It has the following features:

1. The elements are stored in continuous memory locations.

2. The n elements are numbered by consecutive numbers i.e. 1, 2, 3, , n.

E.g.

An array STUDENT containing 8 records is shown below:

STUDENT

Ritika

Gurpreet

Anupama

Hanish

Harsh

Navdeep

Shalini

Kapil

Linear Arrays:

The simplest type of data structure is a linear array. This is also called one-dimensional array. In

computer science, an array data structure or simply an array is a data structure consisting of a collection

of elements (values or variables), each identified by at least one array index or key. An array is stored

so that the position of each element can be computed from its index tuple by a mathematical formula.

For example, an array of 10 integer variables, with indices 0 through 9, may be stored as 10 words at

memory addresses 2000, 2004, 2008, … 2036, so that the element with index i has the address 2000 +

4 × i.[4]

 Because the mathematical concept of a matrix can be represented as a two-dimensional grid, two-

dimensional arrays are also sometimes called matrices. In some cases the term "vector" is used in

computing to refer to an array, although tuples rather than vectors are more correctly the mathematical

equivalent. Arrays are often used to implement tables, especially lookup tables; the word table is

sometimes used as a synonym of array.

 Arrays are among the oldest and most important data structures, and are used by almost every

program. They are also used to implement many other data structures, such as lists and strings. They

effectively exploit the addressing logic of computers. In most modern computers and many external

storage devices, the memory is a one-dimensional array of words, whose indices are their addresses.

Processors, especially vector processors, are often optimized for array operations.

 Arrays are useful mostly because the element indices can be computed at run time. Among other

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Value_%28computer_science%29
http://en.wikipedia.org/wiki/Variable_%28programming%29
http://en.wikipedia.org/wiki/Tuple
http://en.wikipedia.org/wiki/Word_%28data_type%29
http://en.wikipedia.org/wiki/Array_data_structure#cite_note-4
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Tuple
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Table_%28information%29
http://en.wikipedia.org/wiki/Lookup_table
http://en.wikipedia.org/wiki/List_%28computing%29
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/External_storage
http://en.wikipedia.org/wiki/External_storage
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Vector_processor
http://en.wikipedia.org/wiki/Run_time_%28program_lifecycle_phase%29

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 11/22

things, this feature allows a single iterative statement to process arbitrarily many elements of an array.

For that reason, the elements of an array data structure are required to have the same size and should

use the same data representation. The set of valid index tuples and the addresses of the elements (and

hence the element addressing formula) are usually,[3][5] but not always,[2] fixed while the array is in

use.

 The term array is often used to mean array data type, a kind of data type provided by most high-

level programming languages that consists of a collection of values or variables that can be selected by

one or more indices computed at run-time. Array types are often implemented by array structures;

however, in some languages they may be implemented by hash tables, linked lists, search trees, or other

data structures.

 The term is also used, especially in the description of algorithms, to mean associative array or

"abstract array", a theoretical computer science model (an abstract data type or ADT) intended to

capture the essential properties of array

Two dimensional Arrays:

 Implementing a database of information as a collection of arrays can be inconvenient when we

have to pass many arrays to utility functions to process the database. It would be nice to have a single

data structure which can hold all the information, and pass it all at once.

 2-dimensional arrays provide most of this capability. Like a 1D array, a 2D array is a collection

of data cells, all of the same type, which can be given a single name. However, a 2D array is organized

as a matrix with a number of rows and columns.

How do we declare a 2D array?

 Similar to the 1D array, we must specify the data type, the name, and the size of the array. But the

size of the array is described as the number of rows and number of columns. For example:

 int a[MAX_ROWS][MAX_COLS];

This declares a data structure that looks like:

How do we access data in a 2D array?

 Like 1D arrays, we can access individual cells in a 2D array by using subscripting expressions

http://en.wikipedia.org/wiki/Statement_%28programming%29
http://en.wikipedia.org/wiki/Array_data_structure#cite_note-garcia-3
http://en.wikipedia.org/wiki/Array_data_structure#cite_note-garcia-3
http://en.wikipedia.org/wiki/Array_data_structure#cite_note-andres-2
http://en.wikipedia.org/wiki/Array_data_type
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Search_tree
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Theoretical_computer_science
http://en.wikipedia.org/wiki/Abstract_data_type

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 12/22

giving the indexes, only now we have two indexes for a cell: its row index and its column index. The

expressions look like:

 a[i][j] = 0; or x = a[row][col];

We can initialize all elements of an array to 0 like:

 for(i = 0; i < MAX_ROWS; i++)

 for(j = 0; j < MAX_COLS; j++)

 a[i][j] = 0;

Multiple Stacks:

1. None fixed size of the stacks:

 Stack 1 expands from the 0th element to the right

 Stack 2 expands from the 12th element to the left

 As long as the value of Top1 and Top2 are not next to each other, it has free elements for

input the data in the array

 When both Stacks are full, Top1 and Top 2 will be next to each other

 There is no fixed boundary between Stack 1 and Stack 2

 Elements –1 and –2 are using to store the information needed to manipulate the stack

(subscript for Top 1 and Top 2)

2. Fixed size of the stacks:

 Stack 1 expands from the 0th element to the right

 Stack 2 expands from the 6th element to the left

 As long as the value of Top 1 is less than 6 and greater than 0, Stack 1 has free elements

to input the data in the array

 As long as the value of Top 2 is less than 11 and greater than 5, Stack 2 has free elements

to input the data in the array

 When the value of Top 1 is 5, Stack 1 is full

 When the value of Top 2 is 10, stack 2 is full

 Elements –1 and –2 are using to store the size of Stack 1 and the subscript of the array

for Top 1 needed to manipulate Stack 1

 Elements –3 and –4 are using to store the size of Stack 2 and the subscript of the array

for Top 2 needed to manipulate Stack 2

Sequential mapping of stacks into an array

• M[0..m-1]
 Example, two stacks, use M[0], M[m-1]

 Example, more than two stacks, n, use b[i]=t[i]=(m/n)*i-1

M [0 …m- 1]

m-1

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 13/22

Matrices:

 A matrix is a rectangular array of numbers or other mathematical objects, for which operations

such as addition and multiplication are defined Most commonly, a matrix over a field F is a rectangular

array of scalars from F.Most of this article focuses on real and complex matrices, i.e., matrices whose

elements are real numbers or complex numbers, respectively. More general types of entries are

discussed below. For instance, this is a real matrix:

The numbers, symbols or expressions in the matrix are called its entries or its elements. The horizontal

and vertical lines of entries in a matrix are called rows and columns, respectively.

Sparse Matrices:

 In numerical analysis, a sparse matrix is a matrix populated primarily with zeros as elements

of the table. By contrast, if a larger number of elements differ from zero, then it is common to refer to

the matrix as a dense matrix. The fraction of zero elements (non-zero elements) in a matrix is called

the sparsity (density).

 Conceptually, sparsity corresponds to systems which are loosely coupled. Consider a line of

balls connected by springs from one to the next; this is a sparse system. By contrast, if the same line of

balls had springs connecting each ball to all other balls, the system would be represented by a dense

matrix. The concept of sparsity is useful in combinatorics and application areas such as network

theory, which have a low density of significant data or connections.

Huge sparse matrices often appear in science or engineering when solving partial differential equations.

When storing and manipulating sparse matrices on a computer, it is beneficial and often necessary to

use specialized algorithms and data structures that take advantage of the sparse structure of the matrix.

Operations using standard dense-matrix structures and algorithms are relatively slow and consume

large amounts of memory when applied to large sparse matrices. Sparse data is by nature easily

compressed, and this compression almost always results in significantly less computer data storage

usage. Indeed, some very large sparse matrices are infeasible to manipulate using standard dense

algorithms.

b[0]

t[0]

b[1]

t[1]

b[n] b[2]

t[2]

http://en.wikipedia.org/wiki/Number
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29#Basic_operations
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29#Matrix_multiplication
http://en.wikipedia.org/wiki/Field_%28mathematics%29
http://en.wikipedia.org/wiki/Real_numbers
http://en.wikipedia.org/wiki/Complex_numbers
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29#More_general_entries
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Combinatorics
http://en.wikipedia.org/wiki/Network_theory
http://en.wikipedia.org/wiki/Network_theory
http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Computer_data_storage

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 14/22

The above sparse matrix contains

only 9 nonzero elements of the 35,

with 26 of those elements as zero

Sparse matrices using array and linked representation:

A matrix is a two-dimensional data object made of m rows and n columns, therefore having total m x n

values. If most of the elements of the matrix have 0 value, then it is called a sparse matrix.

Why to use Sparse Matrix instead of simple matrix ?

Storage: There are lesser non-zero elements than zeros and thus lesser memory can be used to store

only those elements.

Computing time: Computing time can be saved by logically designing a data structure traversing only

non-zero elements..

Example:

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

Representing a sparse matrix by a 2D array leads to wastage of lots of memory as zeroes in the matrix

are of no use in most of the cases. So, instead of storing zeroes with non-zero elements, we only store

non-zero elements. This means storing non-zero elements with triples- (Row, Column, value).

Sparse Matrix Representations can be done in many ways following are two common

representations:

Array representation

Linked list representation

Method 1: Using Arrays

2D array is used to represent a sparse matrix in which there are three rows named as

Row: Index of row, where non-zero element is located

Column: Index of column, where non-zero element is located

Example of sparse matrix

 [11 22 0 0 0 0 0]

 [0 33 44 0 0 0 0]

 [0 0 55 66 77 0 0]

 [0 0 0 0 0 88 0]

 [0 0 0 0 0 0 99]

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 15/22

Value: Value of the non zero element located at index – (row,column)

Sparse Matrix Array Representation

Using Linked Lists

In linked list, each node has four fields. These four fields are defined as:

 Row: Index of row, where non-zero element is located

 Column: Index of column, where non-zero element is located

 Value: Value of the non zero element located at index – (row,column)

 Next node: Address of the next node

 Using Arrays

Stack Using Array:

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 16/22

A stack data structure can be implemented using one dimensional array. But stack implemented using

array, can store only fixed number of data values. This implementation is very simple, just define a one

dimensional array of specific size and insert or delete the values into that array by using LIFO principle

with the help of a variable 'top'. Initially top is set to -1. Whenever we want to insert a value into the

stack, increment the top value by one and then insert. Whenever we want to delete a value from the

stack, then delete the top value and decrement the top value by one.

Stack Operations using Array

A stack can be implemented using array as follows...

Before implementing actual operations, first follow the below steps to create an empty stack.

Step 1: Include all the header files which are used in the program and define a constant 'SIZE' with

specific value.

Step 2: Declare all the functions used in stack implementation.

Step 3: Create a one dimensional array with fixed size (int stack[SIZE])

Step 4: Define a integer variable 'top' and initialize with '-1'. (int top = -1)

Step 5: In main method display menu with list of operations and make suitable function calls to

perform operation selected by the user on the stack.

push(value) - Inserting value into the stack

In a stack, push() is a function used to insert an element into the stack. In a stack, the new element is

always inserted at top position. Push function takes one integer value as parameter and inserts that

value into the stack. We can use the following steps to push an element on to the stack...

Step 1: Check whether stack is FULL. (top == SIZE-1)

Step 2: If it is FULL, then display "Stack is FULL!!! Insertion is not possible!!!" and terminate the

function.

Step 3: If it is NOT FULL, then increment top value by one (top++) and set stack[top] to value

(stack[top] = value).

pop() - Delete a value from the Stack

In a stack, pop() is a function used to delete an element from the stack. In a stack, the element is always

deleted from top position. Pop function does not take any value as parameter. We can use the following

steps to pop an element from the stack...

Step 1: Check whether stack is EMPTY. (top == -1)

Step 2: If it is EMPTY, then display "Stack is EMPTY!!! Deletion is not possible!!!" and terminate the

function.

Step 3: If it is NOT EMPTY, then delete stack[top] and decrement top value by one (top--).

display() - Displays the elements of a Stack

We can use the following steps to display the elements of a stack...

Step 1: Check whether stack is EMPTY. (top == -1)

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 17/22

Step 2: If it is EMPTY, then display "Stack is EMPTY!!!" and terminate the function.

Step 3: If it is NOT EMPTY, then define a variable 'i' and initialize with top. Display stack[i] value and

decrement i value by one (i--).

Step 3: Repeat above step until i value becomes '0'.

Expressions

What is an Expression?

In any programming language, if we want to perform any calculation or to frame a condition etc., we

use a set of symbols to perform the task. These set of symbols makes an expression.

An expression can be defined as follows...

An expression is a collection of operators and operands that represents a specific value.

In above definition, operator is a symbol which performs a particular task like arithmetic operation or

logical operation or conditional operation etc.,

Operands are the values on which the operators can perform the task. Here operand can be a direct

value or variable or address of memory location.

Expression Types

Based on the operator position, expressions are divided into THREE types. They are as follows...

Infix Expression

Postfix Expression

Prefix Expression

Infix Expression:

In infix expression, operator is used in between operands.

The general structure of an Infix expression is as follows...

Operand1 Operator Operand2

Example

 Infix Expression

Postfix Expression

In postfix expression, operator is used after operands. We can say that "Operator follows the

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 18/22

Operands".

The general structure of Postfix expression is as follows...

Operand1 Operand2 Operator

Example

 Postfix Expression

Prefix Expression

In prefix expression, operator is used before operands. We can say that "Operands follows the

Operator".

The general structure of Prefix expression is as follows...

Operator Operand1 Operand2

Example

 Prefix Expression

Any expression can be represented using the above three different types of expressions. And we can

convert an expression from one form to another form like Infix to Postfix, Infix to Prefix, Prefix to

Postfix and vice versa.

Utility and conversion of these expressions from one to another:

Expression Conversion

Any expression can be represented using three types of expressions (Infix, Postfix and Prefix). We can

also convert one type of expression to another type of expression like Infix to Postfix, Infix to Prefix,

Postfix to Prefix and vice versa.

To convert any Infix expression into Postfix or Prefix expression we can use the following

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 19/22

procedure...

Find all the operators in the given Infix Expression.

Find the order of operators evaluated according to their Operator precedence.

Convert each operator into required type of expression (Postfix or Prefix) in the same order.

Example

Consider the following Infix Expression to be converted into Postfix Expression...

D = A + B * C

Step 1: The Operators in the given Infix Expression : = , + , *

Step 2: The Order of Operators according to their preference : * , + , =

Step 3: Now, convert the first operator * ----- D = A + B C *

Step 4: Convert the next operator + ----- D = A BC* +

Step 5: Convert the next operator = ----- D ABC*+ =

Finally, given Infix Expression is converted into Postfix Expression as follows...

D A B C * + =

Infix to Postfix Conversion using Stack Data Structure

To convert Infix Expression into Postfix Expression using a stack data structure, We can use the

following steps...

Read all the symbols one by one from left to right in the given Infix Expression.

If the reading symbol is operand, then directly print it to the result (Output).

If the reading symbol is left parenthesis '(', then Push it on to the Stack.

If the reading symbol is right parenthesis ')', then Pop all the contents of stack until respective left

parenthesis is poped and print each poped symbol to the result.

If the reading symbol is operator (+ , - , * , / etc.,), then Push it on to the Stack. However, first pop the

operators which are already on the stack that have higher or equal precedence than current operator and

print them to the result.

Example

Consider the following Infix Expression...

(A + B) * (C - D)

The final Postfix Expression is as follows...

A B + C D - *

APPLICATION OF STACK:

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 20/22

Expression evaluation and syntax parsing:

Calculators employing reverse Polish notation use a stack structure to hold values. Expressions can be

represented in prefix, postfix or infix notations and conversion from one form to another may be

accomplished using a stack. Many compilers use a stack for parsing the syntax of expressions, program

blocks etc. before translating into low level code. Most programming languages are context-free

languages, allowing them to be parsed with stack based machines.

Backtracking:

Another important application of stacks is backtracking. Consider a simple example of finding the

correct path in a maze. There are a series of points, from the starting point to the destination. We start

from one point. To reach the final destination, there are several paths. Suppose we choose a random

path. After following a certain path, we realize that the path we have chosen is wrong. So we need to

find a way by which we can return to the beginning of that path. This can be done with the use of

stacks. With the help of stacks, we remember the point where we have reached. This is done by pushing

that point into the stack. In case we end up on the wrong path, we can pop the last point from the stack

and thus return to the last point and continue our quest to find the right path. This is called

backtracking.

The prototypical example of a backtracking algorithm is depth-first search, which finds all vertices of a

graph that can be reached from a specified starting vertex. Other applications of backtracking involve

searching through spaces that represent potential solutions to an optimization problem. Branch and

bound is a technique for performing such backtracking searches without exhaustively searching all of

the potential solutions in such a space.

Runtime memory management:

A number of programming languages are stack-oriented, meaning they define most basic operations

(adding two numbers, printing a character) as taking their arguments from the stack, and placing any

return values back on the stack. For example, PostScript has a return stack and an operand stack, and

also has a graphics state stack and a dictionary stack. Many virtual machines are also stack-oriented,

including the p-code machine and the Java Virtual Machine.

Almost all calling conventions—the ways in which subroutines receive their parameters and return

results—use a special stack (the "call stack") to hold information about procedure/function calling and

nesting in order to switch to the context of the called function and restore to the caller function when

the calling finishes. The functions follow a runtime protocol between caller and callee to save

arguments and return value on the stack. Stacks are an important way of supporting nested

or recursive function calls. This type of stack is used implicitly by the compiler to support CALL and

RETURN statements (or their equivalents) and is not manipulated directly by the programmer.

https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Backtracking
https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Stack-oriented_programming_language
https://en.wikipedia.org/wiki/PostScript
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/P-code_machine
https://en.wikipedia.org/wiki/Java_Virtual_Machine
https://en.wikipedia.org/wiki/Calling_convention
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Recursion

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 21/22

Some programming languages use the stack to store data that is local to a procedure. Space for local

data items is allocated from the stack when the procedure is entered, and is deallocated when the

procedure exits. The C programming language is typically implemented in this way. Using the same

stack for both data and procedure calls has important security implications (see below) of which a

programmer must be aware in order to avoid introducing serious security bugs into a program.

Efficient algorithms:

Several algorithms use a stack (separate from the usual function call stack of most programming

languages) as the principledata structure with which they organize their information. These include:

 Graham scan, an algorithm for the convex hull of a two-dimensional system of points. A convex

hull of a subset of the input is maintained in a stack, which is used to find and remove concavities

in the boundary when a new point is added to the hull.

 Part of the SMAWK algorithm for finding the row minima of a monotone matrix uses stacks in

a similar way to Graham scan.

 All nearest smaller values, the problem of finding, for each number in an array, the closest

preceding number that is smaller than it. One algorithm for this problem uses a stack to maintain a

collection of candidates for the nearest smaller value. For each position in the array, the stack is

popped until a smaller value is found on its top, and then the value in the new position is pushed

onto the stack.

 The nearest-neighbor chain algorithm, a method for agglomerative hierarchical clustering based

on maintaining a stack of clusters, each of which is the nearest neighbor of its predecessor on the

stack. When this method finds a pair of clusters that are mutual nearest neighbors, they are popped

and merged.

LIMITATIONS OF ARRAY REPRESENTATION OF STACK:

Under the array implementation, a fixed set of nodes represented by an array is established at the start

of execution. A pointer to a node is represented by the relative position of the node within the array.

The disadvantage of that approach is twofold. First, the number of nodes that are needed often cannot

be predicted when a program is written. Usually, the data with which the program is executed

determines the number of nodes necessary. Thus no matter how many elements the array of nodes

contains, it is always possible that the program will be executed with input that requires a larger

number.

The second disadvantage of the array approach is that whatever number of nodes are declared must

remain allocated to the program throughout its execution. For example, if 500 nodes of a given type are

declared, the amount of storage required for those 500 nodes is reserved for that purpose. If the

program actually uses only 100 or even 10 nodes in its execution the additional nodes are still reserved

and their storage cannot be used for any other purpose.

The solution to this problem is to allow nodes that are dynamic, rather than static. That is, when a node

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Graham_scan
https://en.wikipedia.org/wiki/Convex_hull
https://en.wikipedia.org/wiki/SMAWK_algorithm
https://en.wikipedia.org/wiki/All_nearest_smaller_values
https://en.wikipedia.org/wiki/Nearest-neighbor_chain_algorithm
https://en.wikipedia.org/wiki/Agglomerative_hierarchical_clustering

ARRAYS 2016-2019 BATCH

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 22/22

is needed, storage is reserved for it, and when it is no longer needed, the storage is released. Thus the

storage for nodes that are no longer in use is available for another purpose. Also, no predefined limit on

the number of nodes is established. As long as sufficient storage is available to the job as a whole, part

of that storage can be reserved for use as a node.

We have seen that we can use arrays whenever we have to store and manipulate collections of

elements.

 the dimension of an array is determined the moment the array is created, and cannot be changed

later on.

 the array occupies an amount of memory that is proportional to its size, independently of the

number of elements that are actually of interest.

 if we want to keep the elements of the collection ordered, and insert a new value in its correct

position, or remove it, then, for each such operation we may need to move many elements (on

the average, half of the elements of the array);this is very inefficient.

POSSIBLE QUESTIONS

UNIT-I

 PART-A (20 MARKS)

(Q.NO 1 TO 20 Online Examination)

 PART-B (2 MARKS)

1. Write about the Basic Terminology of Data Structures?

2. Define Array with example.

3. Define Data Structure.

4. Define Stack..

5. What is a Queue.

 PART-C (6 MARKS)

 1. Define Data Structure. Explain in detail about various data structures.

 2. Explain about Single and Multidimensional array with example.

 3. Define Sparse Matrix and how it is represented in array and Linked List.

 4. Elaborate about Prefix, Infix and Postfix Expressions with example.

S.NO QUESTIONS OPTION 1
1 ________ is a sequence of instructions to accomplish a

particular task
Data Strucuture

2 _______ criteria of an algorithm ensures that the algorithm
terminate after a particular number of steps.

effectiveness

3 An algorithm must produce __________ output(s) many

4 _______ criteria of an algorithm ensures that the algorithm must
be feasible.

effectiveness

5 _______ criteria of an algorithm ensures that each step of the
algorithm must be clear and unambiguous.

effectiveness

6 The logical or mathematical model of a particular data
organization is called as_____________

Data Structure

7 An algorithms _____________ is measured in terms of
computing time ad space consumed by it.

performance

8 Which of the following is not structured data type? Arrays

9 What is the strategy of Stack? LILO

10 What is the strategy of Queue? LILO

11 Data structures are classified as ____________ data type. User Defined

12 _______ are the commonl used ordered list. Graphs

13 Data structure can be classified as ________ data type based on
relationship with complex data element.

Linear & Non
Linear

14 A data structure whose elements forms a sequence of ordered list
is called as __________ data structure.

Non Linear

15 A data structure which represents hierarchical relationship
between the elements are called as ___________ data structure.

Linear

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 Coimbatore - 641021.

 (For the candidates admitted from 2016 onwards)

 DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 UNIT I :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

16 A data structure, which is not composed of other data structure,
is called as ___________ data structure.

Linear

17 Data structures, which are constructed from one or more
primitive data structure, are called as ___________ data
structure.

Non Primitive

18 __________ is the term that refers ti the kinds of data that
variables may hold in a programming language.

data type

19 ________ refers to the set of elements that belong to a particular
type.

data type

20 The triplet (D,F,A) r efers to a ________ where D is a set of
Domains, F is a set of Functions and A is a set of Axioms

data type

21 _________estimation is the method of analysing an algorithm
before it is executed.

Preprocess

22 In queue we can add elements at ________. Top

23 In queue we can delete elements at ________. Front

24 In Stack we can add elements at _______. Bottom

25 In Stack we can delete elements at ______ Front

26 When Top = Bottom in stack, the total no of element in the stack
is

1

27 When FRONT = REAR in queue, the total no of element in the
queue is

0

28 In Stack the TOP is decremeted by one after every ___
operation.

AddQ

29 In Stack the TOP is incremeted by one before every ___
operation.

AddQ

30 To add an item into the queue, FRONT is
incremented by one

31 In Queue FRONTis incremented then, the operation performed
on it is ________.

DelQ

32 When the maximum entries of (m*n) matrix are zeros then it is
called as _______.

Transpose matrix

33 A matrix of the form (row, col, n) is otherwise known as
_______.

Transpose matrix

34 Which of the following is a valid linear data structure. Stacks

35 Which of the following is a valid non - linear data structure. Stacks

36 A list of finite number of homogeneous data elements are called
as _________

Stacks

37 No of elements in an array is called the _________ of an array. Structure

38 _________ is the art of creating sample data upon which to run
the program

Testing

39 If a program fail to respond corectly then _________ is needed
to determine what is wrong and how to correct it.

Testing

40 A _________ is a linear list in which elements can be inserted
and deleted at both ends but not at the Middle

Queue

41 A _________ is a collection of elements such that each element
has been assigned a priority.

Priority Queue

42 A _________ is made up of Operators and Operands. Stack

43 A _____________ is a procedure or function which calls itself. Stack

44 An example for application of stack is __________. Time sharing
computer system

45 An example for application of queue is __________. Stack of coins

46 Combining elements of two similar data structure into one is
called __________

Merging

47 Adding a new element into a data structure called __________ Merging

48 The Process of finding the location of the element with the given
value or a record with the given key is __________.

Merging

49 Arranging the elements of a data structure in some type of order
is called __________.

Merging

50 The size or length of an array = __________. UB – LB + 1

51 The _______________ model of a particular data organization is
called as Data Structure.

software
Engineering

52 Combining elements of two _______ data structure into one is
called Merging

Similar

53 Searching is the Process of finding the ________ of the element
with the given value or a record with the given key.

Place

54 Length of an array is defined as ___________ of elements in it. Structure

55 In _______ search method the search begins by examining the
record in the middle of the file.

sequential

56 ________ is a internal sorting method. sorting with disks

57 Quick sort reads _______ space to implement the recursion. stack

58 The most popular method for sorting on external storage devices
is _____.

quick sort

59 The 2-way merge algorithm is almost identical to the
___________procedure.

quick

60 A ________ merge on m runs requires at most [log km] passes
over the data.

 n-way

OPTION 2 OPTION 3 OPTION 4 KEY
Algorithm Ordered List Queue Algorithm

finiteness definiteness All the above finiteness

only one atleast one zero or more atleast one

finiteness definiteness All the above effectiveness

finiteness effectiveness All the above effectiveness

Software
Engineering

Data Mining Data Ware
Housing

Data Structure

effectiveness finiteness definiteness performance

Union. Queue Linked list. Union.

FIFO FILO LIFO LIFO

FIFO FILO LIFO FIFO

Abstract Primitive & Non
Primitive

None of the
above

Primitive &
Non Primitive

Trees Stack and Queues All the above Stack and
Queues

Linear Non Linear None of the
above

Linear & Non
Linear

Linear. Primitive Non Primitive Linear.

Primitive. Non Linear Non Primitive Non Linear

KARPAGAM ACADEMY OF HIGHER EDUCATION
 Coimbatore - 641021.

 (For the candidates admitted from 2016 onwards)

 DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 UNIT I :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

Non Primitive Non Linear Primitive Primitive

Primitive. Non Linear Linear Non Primitive

data structure data Object data data type

data structure data Object data data Object

data structure data Object data data structure

Verification Priori Posteriori Priori

Bottom Front Rear Rear

Bottom Top Rear Front

Top Front Rear Top

Rear Top Bottom Top

2 3 0 0

1 2 3 0

Pop Push DelQ Pop

Pop Push DelQ Push

FRONT is
decremented by
one

REAR is
decremented by
one

REAR is
incremeted by
one

REAR is
incremeted by
one

Pop Push AddQ DelQ

Sparse Matrix Inverse Matrix None of the
above.

Sparse Matrix

Inverse Matrix Sparse Matrix None of the
above.

Sparse Matrix

Records Trees Graphs Stacks

Trees Queues Linked list. Trees

Records Arrays Linked list. Arrays

Height Width Length. Length.

Designing Analysis Debugging Testing

Designing Analysis Debugging Debugging

DeQueue Enqueue Priority Queue DeQueue

De Queue Circular Queue En Queue Priority Queue

Expression Linked list Queue Expression

Recursion Queue Tree Recursion

Waiting Audience Processing of
subroutines

None of the
above

Processing of
subroutines

Stack of bills Processing of
subroutines

Job Scheduling
in TimeSharing

Job Scheduling
in TimeSharing

Insertion Searching Sorting Merging

Insertion Searching Sorting Insertion

Insertion Searching Sorting Searching

Insertion Searching Sorting Sorting

LB + 1 UB - LB UB – 1 UB – LB + 1

logical or
mathematical

Data Mining Data Ware
Housing

logical or
mathematical

Dissimilar Even Un Even Similar

Location Value Operand Location

Height Size Number Number

fibonacci binary non-sequential binary

quick sort balanced merge
sort

sorting with
tapes

quick sort

 queue circular stacks circular queue stack

 radix sort merge sort heap sort merge sort

merge heap radix merge

 m-way k-way q-way k-way

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 1/34

SYLLABUS

UNIT-II

Linked Lists Singly, Doubly and Circular Lists (Array and Linked representation);

Normal and Circular, representation of Stack in Lists; Self Organizing Lists; Skip Lists

Queues, Array and Linked representation of Queue, De-queue, Priority Queues

Linked list:

1.Introduction:

A linked list is a data structure which can change during execution.

 – Successive elements are connected by pointers.

 – Last element points to NULL head

 – It can grow or shrink in size during execution of a program.

 – It can be made just as long as required.

 – It does not waste memory space.

Keeping track of a linked list:

 – Must know the pointer to the first element of the list (called start, head, etc.).

 • Linked lists provide flexibility in allowing the items to be rearranged efficiently.

 – Insert an element.

– Delete an element.

For insertion:

 – A record is created holding the new item.

 – The next pointer of the new record is set to link it to the item which is to follow it

in the list.

 – The next pointer of the item which is to precede it must be modified to point to

the new item.

 For deletion:

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 2/34

 – The next pointer of the item immediately preceding the one to be deleted is

altered, and

made to point to the item following the deleted item.

Linked List Defined:

 Depending on the way in which the links are used to maintain adjacency, several

different types of linked lists are possible.

Linear singly-linked list (or simply linear list).

Circular linked list:

• The pointer from the last element in the list points back to the first element.

Doubly linked list:

• Pointers exist between adjacent nodes in both directions.

• The list can be traversed either forward or backward.

• Usually two pointers are maintained to keep track of the list, head and tail.

Basic Operations on a List:

Creating a list

Traversing the list

Inserting an item in the list

Deleting an item from the list

Concatenating two lists into one

Example: Working with linked list

• Consider the structure of a node as follows:

struct stud {

 int

 roll;

 char name[25];

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 3/34

int age;

struct stud *next;

};

/* A user-defined data type called “node” */

typedef struct stud node;

node *head;

Creating a List

node *create_list()

{

int k, n;

node *p, *head;

printf ("\n How many elements to enter?");

scanf ("%d", &n);

for

{

(k=0; k<n; k++)

if (k == 0) {

head = (node *) malloc(sizeof(node));

p = head;

}

else {

p->next = (node *) malloc(sizeof(node));

p = p->next;

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 4/34

}

scanf ("%d %s %d", &p->roll, p->name, &p->age);

}

p->next = NULL;

return (head);

}

To be called from main() function as:

node *head;

.........

head = create_list();

Traversing the List:

Once the linked list has been constructed and head points to the first node of the list,

 – Follow the pointers.

 – Display the contents of the nodes as they are traversed.

 – Stop when the next pointer points to NULL.

void display (node *head)

{

int count = 1;

node *p;

p = head;

while (p != NULL)

{

printf ("\nNode %d: %d %s %d", count,

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 5/34

p->roll, p->name, p->age);

count++;

p = p->next;

}

printf ("\n");

}

To be called from main() function as:

node *head;

.........

display (head);

Inserting a Node in a List:

The problem is to insert a node before a specified node.

 – Specified means some value is given for the node (called key).

 – In this example, we consider it to be roll.

Convention followed:

– If the value of roll is given as negative, the node will be inserted at the end of the list.

When a node is added at the beginning, Only one next pointer needs to be modified.

 • head is made to point to the new node.

 • New node points to the previously first element.

 • When a node is added at the end,

– Two next pointers need to be modified.

 • Last node now points to the new node.

 • New node points to NULL.

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 6/34

 • When a node is added in the middle,

– Two next pointers need to be modified.

 • Previous node now points to the new node.

 • New node points to the next node.

void insert (node **head)

{

int k = 0, rno;

node *p, *q, *new;

new = (node *) malloc(sizeof(node));

printf ("\nData to be inserted: ");

scanf ("%d %s %d", &new->roll, new->name, &new->age);

printf ("\nInsert before roll (-ve for end):");

scanf ("%d", &rno);

p = *head;

if (p->roll == rno)

{

new->next = p;

*head = new;

}

else

{

while ((p != NULL) && (p->roll != rno))

{

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 7/34

q = p;

p = p->next;

}

if

{

(p == NULL)

/* At the end */

q->next = new;

new->next = NULL;

}

else if

(p->roll

The pointers q and p always point to consecutive nodes.

== rno)

/* In the middle */

{

q->next = new;

new->next = p;

}

}

}

To be called from main() function as:

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 8/34

node *head;

.........

insert (&head);

Deleting a node from the list:

Here also we are required to delete a

specified node.

– Say, the node whose roll field is given.

• Here also three conditions arise:

 – Deleting the first node.

 – Deleting the last node.

 – Deleting an intermediate node.

void delete (node **head)

{

int rno;

node *p, *q;

printf ("\nDelete for roll :");

scanf ("%d", &rno);

p = *head;

if (p->roll == rno)

/* Delete the first element */

{

*head = p->next;

free (p);

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 9/34

}

else

{

while ((p != NULL) && (p->roll != rno))

{

q = p;

p = p->next;

}

if

(p == NULL)

/* Element not found */

printf ("\nNo match :: deletion failed");

else if (p->roll == rno)

/* Delete any other element */

{

q->next = p->next;

free (p);

}

}

}

Circular lists:

Circular linked representation:

Circular Linked List is little more complicated linked data structure. In the circular linked

list we can insert elements anywhere in the list whereas in the array we cannot insert

element anywhere in the list because it is in the contiguous memory. In the circular linked

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 10/34

list the previous element stores the address of the next element and the last element stores

the address of the starting element. The elements points to each other in a circular way

which forms a circular chain. The circular linked list has a dynamic size which means the

memory can be allocated when it is required.

 Circular Linked List

Application of Circular Linked List

 The real life application where the circular linked list is used is our Personal

Computers, where multiple applications are running. All the running applications

are kept in a circular linked list and the OS gives a fixed time slot to all for

running. The Operating System keeps on iterating over the linked list until all the

applications are completed.

 Another example can be Multiplayer games. All the Players are kept in a Circular

Linked List and the pointer keeps on moving forward as a player's chance ends.

 Circular Linked List can also be used to create Circular Queue. In a Queue we

have to keep two pointers, FRONT and REAR in memory all the time, where as

in Circular Linked List, only one pointer is required.

Implementing Circular Linked List

Implementing a circular linked list is very easy and almost similar to linear linked list

implementation, with the only difference being that, in circular linked list the last Node

will have it's next point to the Head of the List. In Linear linked list the last Node simply

holds NULL in it's next pointer.

So this will be oue Node class, as we have already studied in the lesson, it will be used to

form the List.

class Node {

 public:

 int data;

 //pointer to the next node

 node* next;

 node() {

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 11/34

 data = 0;

 next = NULL;

 }

 node(int x) {

 data = x;

 next = NULL;

 }

}

Circular Linked List:

Circular Linked List class will be almost same as the Linked List class that we studied in

the previous lesson, with a few difference in the implementation of class methods.

class CircularLinkedList {

 public:

 node *head;

 //declaring the functions

 //function to add Node at front

 int addAtFront(node *n);

 //function to check whether Linked list is empty

 int isEmpty();

 //function to add Node at the End of list

 int addAtEnd(node *n);

 //function to search a value

 node* search(int k);

 //function to delete any Node

 node* deleteNode(int x);

 CircularLinkedList() {

 head = NULL;

 }

}

Insertion at the Beginning

Steps to insert a Node at beginning :

1. The first Node is the Head for any Linked List.

2. When a new Linked List is instantiated, it just has the Head, which is Null.

3. Else, the Head holds the pointer to the fisrt Node of the List.

4. When we want to add any Node at the front, we must make the head point to it.

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 12/34

5. And the Next pointer of the newly added Node, must point to the previous Head,

whether it be NULL(in case of new List) or the pointer to the first Node of the

List.

6. The previous Head Node is now the second Node of Linked List, because the new

Node is added at the front.

int CircularLinkedList :: addAtFront(node *n) {

 int i = 0;

 /* If the list is empty */

 if(head == NULL) {

 n->next = head;

 //making the new Node as Head

 head = n;

 i++;

 }

 else {

 n->next = head;

 //get the Last Node and make its next point to new Node

 Node* last = getLastNode();

 last->next = n;

 //also make the head point to the new first Node

 head = n;

 i++;

 }

 //returning the position where Node is added

 return i;

}

Insertion at the End:

Steps to insert a Node at the end :

1. If the Linked List is empty then we simply, add the new Node as the Head of the

Linked List.

2. If the Linked List is not empty then we find the last node, and make it' next to the

new Node, and make the next of the Newly added Node point to the Head of the

List.

int CircularLinkedList :: addAtEnd(node *n) {

 //If list is empty

 if(head == NULL) {

 //making the new Node as Head

 head = n;

 //making the next pointer of the new Node as Null

 n->next = NULL;

 }

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 13/34

 else {

 //getting the last node

 node *last = getLastNode();

 last->next = n;

 //making the next pointer of new node point to head

 n->next = head;

 }

}

Searching for an Element in the List

In searhing we do not have to do much, we just need to traverse like we did while getting

the last node, in this case we will also compare the data of the Node. If we get the Node

with the same data, we will return it, otherwise we will make our pointer point the next

Node, and so on.

node* CircularLinkedList :: search(int x) {

 node *ptr = head;

 while(ptr != NULL && ptr->data != x) {

 //until we reach the end or we find a Node with data x, we keep moving

 ptr = ptr->next;

 }

 return ptr;

}

Deleting a Node from the List

Deleting a node can be done in many ways, like we first search the Node with data which

we want to delete and then we delete it. In our approach, we will define a method which

will take the data to be deleted as argument, will use the search method to locate it and

will then remove the Node from the List.

To remove any Node from the list, we need to do the following :

 If the Node to be deleted is the first node, then simply set the Next pointer of the

Head to point to the next element from the Node to be deleted. And update the

next pointer of the Last Node as well.

 If the Node is in the middle somewhere, then find the Node before it, and make

the Node before it point to the Node next to it.

 If the Node is at the end, then remove it and make the new last node point to the

head.

node* CircularLinkedList :: deleteNode(int x) {

 //searching the Node with data x

 node *n = search(x);

 node *ptr = head;

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 14/34

 if(ptr == NULL) {

 cout << "List is empty";

 return NULL;

 }

 else if(ptr == n) {

 ptr->next = n->next;

 return n;

 }

 else {

 while(ptr->next != n) {

 ptr = ptr->next;

 }

 ptr->next = n->next;

 return n;

 }

}

Linked lists using arrays of nodes

Languages that do not support any type of reference can still create links by replacing

pointers with array indices. The approach is to keep an array of records, where each

record has integer fields indicating the index of the next (and possibly previous) node in

the array. Not all nodes in the array need be used. If records are also not supported,

parallel arrays can often be used instead.

As an example, consider the following linked list record that uses arrays instead of

pointers:

 record Entry {

 integer next; // index of next entry in array

 integer prev; // previous entry (if double-linked)

 string name;

 real balance;

 }

A linked list can be built by creating an array of these structures, and an integer variable

to store the index of the first element.

integer listHead

Entry Records[1000]

Links between elements are formed by placing the array index of the next (or previous)

cell into the Next or Prev field within a given element. For example:

https://en.wikipedia.org/wiki/Reference_%28computer_science%29
https://en.wikipedia.org/wiki/Array_data_type
https://en.wikipedia.org/wiki/Record_%28computer_science%29
https://en.wikipedia.org/wiki/Parallel_array

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 15/34

Index Next Prev Name Balance

0 1 4 Jones, John 123.45

1 −1 0 Smith, Joseph 234.56

2 (listHead) 4 −1 Adams, Adam 0.00

3 Ignore, Ignatius 999.99

4 0 2 Another, Anita 876.54

In the above example, ListHead would be set to 2, the location of the first entry in the list.

Notice that entry 3 and 5 through 7 are not part of the list. These cells are available for

any additions to the list. By creating a ListFree integer variable, a free list could be

created to keep track of what cells are available. If all entries are in use, the size of the

array would have to be increased or some elements would have to be deleted before new

entries could be stored in the list.

The following code would traverse the list and display names and account balance:

i := listHead

while i ≥ 0 // loop through the list

 print i, Records[i].name, Records[i].balance // print entry

 i := Records[i].next

Representing of a stack in Linked List:

A Linked List is an abstract data type for representing lists as collections of linked items

Instead of having an overall representation of the list, the ordering of the list is

represented locally

– That is, the information about what element comes next in a list is stored as a pointer

within the element object.

– No list object (element) knows about any other elements in the list, just the ones to

which it is adjacent

.

The basic linked list implementation is one of the easiest linked list implementations you

can do. Structurally it is a linked list.

 type Stack<item_type>

 data list:Singly Linked List<item_type>

https://en.wikipedia.org/wiki/Free_list

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 16/34

 constructor()

 list := new Singly-Linked-List()

 end constructor

 Most operations are implemented by passing them through to the underlying linked

list. When you want to push something onto the list, you simply add it to the front of the

linked list. The previous top is then "next" from the item being added and the list's front

pointer points to the new item.

 method push(new_item:item_type)

 list.prepend(new_item)

 end method

To look at the top item, you just examine the first item in the linked list.

 method top():item_type

 return list.get-begin().get-value()

 end method

When you want to pop something off the list, simply remove the first item from the

linked list.

 method pop()

 list.remove-first()

 end method

A check for emptiness is easy. Just check if the list is empty.

 method is-empty():Boolean

 return list.is-empty()

 end method

A check for full is simple. Linked lists are considered to be limitless in size.

 method is-full():Boolean

 return False

 end method

A check for the size is again passed through to the list.

 method get-size():Integer

 return list.get-size()

 end method

end type

A real Stack implementation in a published library would probably re-implement the

linked list in order to squeeze the last bit of performance out of the implementation by

leaving out unneeded functionality. The above implementation gives you the ideas

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 17/34

involved, and any optimization you need can be accomplished by inlining the linked list

code.

Self-organizing list:

A self-organizing list is a list that reorders its elements based on some self-organizing

heuristic to improve average access time. The aim of a self-organizing list is to improve

efficiency of linear search by moving more frequently accessed items towards the head of

the list. A self-organizing list achieves near constant time for element access in the best

case. A self-organizing list uses a reorganizing algorithm to adapt to various query

distributions at runtime.

Efficiency of self-organizing lists

A self organizing list rearranges the nodes keeping the most frequently accessed ones at

the head of the list. Generally, in a particular query, the chances of accessing a node

which has been accessed many times before are higher than the chances of accessing a

node which historically has not been so frequently accessed. As a result, keeping the

commonly accessed nodes at the head of the list results in reducing the number of

comparisons required in an average case to reach the desired node. This leads to better

efficiency and generally reduced query times.

Techniques for Rearranging Nodes:

While ordering the elements in the list, the access probabilities of the elements are not

generally known in advance. This has led to the development of various heuristics to

approximate optimal behavior. The basic heuristics used to reorder the elements in the list

are:

Move to Front Method (MTF)

This technique moves the element which is accessed to the head of the list. This has the

advantage of being easily implemented and requiring no extra memory. This heuristic

also adapts quickly to rapid changes in the query distribution. On the other hand, this

method may prioritize infrequently accessed nodes-for example, if an uncommon node is

accessed even once, it is moved to the head of the list and given maximum priority even

if it is not going to be accessed frequently in the future. These 'over rewarded' nodes

destroy the optimal ordering of the list and lead to slower access times for commonly

accessed elements. Another disadvantage is that this method may become too flexible

leading to access patterns that change too rapidly. This means that due to the very short

memories of access patterns even an optimal arrangement of the list can be disturbed

immediately by accessing an infrequent node in the list.

https://en.wikipedia.org/wiki/List_(computing)
https://en.wikipedia.org/wiki/Self-organizing_heuristic
https://en.wikipedia.org/wiki/Self-organizing_heuristic
https://en.wikipedia.org/wiki/Average
https://en.wikipedia.org/wiki/Access_time

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 18/34

If the 5th node is selected, it is moved to the front

 At the t-th item selection:

 if item i is selected:

 move item i to head of the list

Count Method:

In this technique, the number of times each node was searched for is counted i.e. every

node keeps a separate counter variable which is incremented every time it is called. The

nodes are then rearranged according to decreasing count. Thus, the nodes of highest

count i.e. most frequently accessed are kept at the head of the list. The primary advantage

of this technique is that it generally is more realistic in representing the actual access

pattern. However, there is an added memory requirement, that of maintaining a counter

variable for each node in the list. Also, this technique does not adapt quickly to rapid

changes in the access patterns. For example: if the count of the head element say A is 100

and for any node after it say B is 40, then even if B becomes the new most commonly

accessed element, it must still be accessed at least (100 - 40 = 60) times before it can

become the head element and thus make the list ordering optimal.

https://en.wikipedia.org/wiki/File:MTF_Algorithm.png
https://en.wikipedia.org/wiki/File:CountAlgorithm.png

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 19/34

If the 5th node in the list is searched for twice, it will be swapped with the 4th

 init: count(i) = 0 for each item i

 At t-th item selection:

 if item i is searched:

 count(i) = count(i) + 1

 rearrange items based on count

Transpose Method:

This technique involves swapping an accessed node with its predecessor. Therefore, if

any node is accessed, it is swapped with the node in front unless it is the head node,

thereby increasing its priority. This algorithm is again easy to implement and space

efficient and is more likely to keep frequently accessed nodes at the front of the list.

However, the transpose method is more cautious. i.e. it will take many accesses to move

the element to the head of the list. This method also does not allow for rapid response to

changes in the query distributions on the nodes in the list.

If the 5th node in the list is selected, it will be swapped with the 4th

 At the t-th item selection:

 if item i is selected:

 if i is not the head of list:

 swap item i with item (i - 1)

The worst case search time for a sorted linked list is O(n). With a Balanced Binary

Search Tree, we can skip almost half of the nodes after one comparison with root. For a

sorted array, we have random access and we can apply Binary Search on arrays.

One idea to make search faster for Linked Lists is Skip List. Another idea (which is

discussed in this post) is to place more frequently accessed items closer to head.. There

https://en.wikipedia.org/wiki/File:Transpose_Algorithm.png
http://www.geeksforgeeks.org/skip-list/

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 20/34

can be two possibilities. offline (we know the complete search sequence in advance) and

online (we don’t know the search sequence).

In case of offline, we can put the nodes according to decreasing frequencies of search

(The element having maximum search count is put first). For many practical applications,

it may be difficult to obtain search sequence in advance.

Competitive Analysis:

The worst case time complexity of all methods is O(n). In worst case, the searched

element is always the last element in list. For average case analysis, we need probability

distribution of search sequences which is not available many times.

For online strategies and algorithms like above, we have a totally different way of

analyzing them called competitive analysis where performance of an online algorithm is

compared to the performance of an optimal offline algorithm (that can view the sequence

of requests in advance). Competitive analysis is used in many practical algorithms like

caching, disk paging, high performance computers.

Skip List Data Structure:

A skip list is a data structure that is used for storing a sorted list of items with a help of

hierarchy of linked lists that connect increasingly sparse subsequences of the items. A

skip list allows the process of item look up in efficient manner. The skip list data

structure skips over many of the items of the full list in one step, that’s why it is known as

skip list.

Skip List

A schematic picture of the skip list data structure. Each box with an arrow represents a

pointer and a row is a linked list giving a sparse subsequence; the numbered boxes (in

yellow) at the bottom represent the ordered data sequence. Searching proceeds

downwards from the sparsest subsequence at the top until consecutive elements

bracketing the search element are found.

http://en.wikipedia.org/wiki/Competitive_analysis_(online_algorithm)
http://www.geeksforgeeks.org/analysis-of-algorithms-set-2-asymptotic-analysis/
https://en.wikipedia.org/wiki/Linked_list

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 21/34

Structure of Skip List

A skip list is built up of layers. The lowest layer (i.e. bottom layer) is an ordinary ordered

linked list. The higher layers are like ‘express lane’ where the nodes are skipped (observe

the figure).

Searching Process

When an element is tried to search, the search begins at the head element of the top list. It

proceeds horizontally until the current element is greater than or equal to the target. If

current element and target are matched, it means they are equal and search gets finished.

If the current element is greater than target, the search goes on and reaches to the end of

the linked list, the procedure is repeated after returning to the previous element and the

search reaches to the next lower list (vertically).

Implementation Details

1. The elements used for a skip list can contain more than one pointers since they are

allowed to participated in more than one list.

2. Insertion and deletion operations are very similar to corresponding linked list

operations.

 we could make the level structure quasi-random in the following way:

make all nodes level 1

j ← 1

while the number of nodes at level j > 1 do

 for each i'th node at level j do

 if i is odd

 if i is not the last node at level j

 randomly choose whether to promote it to level j+1

 else

 do not promote

 end if

 else if i is even and node i-1 was not promoted

 promote it to level j+1

 end if

 repeat

 j ← j + 1

repeat

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 22/34

Insertion in Skip List

Applications of Skip List:

1. Skip list are used in distributed applications. In distributed systems, the nodes of skip

list represents the computer systems and pointers represent network connection.

2. Skip list are used for implementing highly scalable concurrent priority queues with less

lock contention (struggle for having a lock on a data item).

Inserting element to skip list

Can we augment sorted linked lists to make the search faster?

The answer is Skip List. The idea is simple, we create multiple layers so that we can skip

some nodes. See the following example list with 16 nodes and two layers. The upper

layer works as an “express lane” which connects only main outer stations, and the lower

layer works as a “normal lane” which connects every station. Suppose we want to search

for 50, we start from first node of “express lane” and keep moving on “express lane” till

we find a node whose next is greater than 50. Once we find such a node (30 is the node in

following example) on “express lane”, we move to “normal lane” using pointer from this

node, and linearly search for 50 on “normal lane”. In following example, we start from 30

on “normal lane” and with linear search, we find 50.

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 23/34

Array and Linked Representation of Queue:

Queue Using Array

A queue data structure can be implemented using one dimensional array. But, queue

implemented using array can store only fixed number of data values. The implementation

of queue data structure using array is very simple, just define a one dimensional array of

specific size and insert or delete the values into that array by using FIFO (First In First

Out) principle with the help of variables 'front' and 'rear'. Initially both 'front' and 'rear'

are set to -1. Whenever, we want to insert a new value into the queue, increment 'rear'

value by one and then insert at that position. Whenever we want to delete a value from

the queue, then increment 'front' value by one and then display the value at 'front' position

as deleted element.

Queue Operations using Array

Queue data structure using array can be implemented as follows...

Before we implement actual operations, first follow the below steps to create an empty

queue.

Step 1: Include all the header files which are used in the program and define a constant

'SIZE' with specific value.

Step 2: Declare all the user defined functions which are used in queue implementation.

Step 3: Create a one dimensional array with above defined SIZE (int queue[SIZE])

Step 4: Define two integer variables 'front' and 'rear' and initialize both with '-1'. (int front

= -1, rear = -1)

Step 5: Then implement main method by displaying menu of operations list and make

suitable function calls to perform operation selected by the user on queue.

enQueue(value) - Inserting value into the queue

In a queue data structure, enQueue() is a function used to insert a new element into the

queue. In a queue, the new element is always inserted at rear position. The enQueue()

function takes one integer value as parameter and inserts that value into the queue. We

can use the following steps to insert an element into the queue...

Step 1: Check whether queue is FULL. (rear == SIZE-1)

Step 2: If it is FULL, then display "Queue is FULL!!! Insertion is not possible!!!" and

terminate the function.

Step 3: If it is NOT FULL, then increment rear value by one (rear++) and set queue[rear]

= value.

deQueue() - Deleting a value from the Queue

In a queue data structure, deQueue() is a function used to delete an element from the

queue. In a queue, the element is always deleted from front position. The deQueue()

function does not take any value as parameter. We can use the following steps to delete

an element from the queue...

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 24/34

Step 1: Check whether queue is EMPTY. (front == rear)

Step 2: If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not possible!!!"

and terminate the function.

Step 3: If it is NOT EMPTY, then increment the front value by one (front ++). Then

display queue[front] as deleted element. Then check whether both front and rear are equal

(front == rear), if it TRUE, then set both front and rear to '-1' (front = rear = -1).

display() - Displays the elements of a Queue

We can use the following steps to display the elements of a queue...

Step 1: Check whether queue is EMPTY. (front == rear)

Step 2: If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the function.

Step 3: If it is NOT EMPTY, then define an integer variable 'i' and set 'i = front+1'.

Step 3: Display 'queue[i]' value and increment 'i' value by one (i++). Repeat the same

until 'i' value is equal to rear (i <= rear)

Queue using Linked List:

The major problem with the queue implemented using array is, It will work for only fixed

number of data. That means, the amount of data must be specified in the beginning itself.

Queue using array is not suitable when we don't know the size of data which we are

going to use. A queue data structure can be implemented using linked list data structure.

The queue which is implemented using linked list can work for unlimited number of

values. That means, queue using linked list can work for variable size of data (No need to

fix the size at beginning of the implementation). The Queue implemented using linked

list can organize as many data values as we want.

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 25/34

In linked list implementation of a queue, the last inserted node is always pointed by 'rear'

and the first node is always pointed by 'front'.

Example

In above example, the last inserted node is 50 and it is pointed by 'rear' and the first

inserted node is 10 and it is pointed by 'front'. The order of elements inserted is 10, 15, 22

and 50.

Operations

To implement queue using linked list, we need to set the following things before

implementing actual operations.

Step 1: Include all the header files which are used in the program. And declare all the

user defined functions.

Step 2: Define a 'Node' structure with two members data and next.

Step 3: Define two Node pointers 'front' and 'rear' and set both to NULL.

Step 4: Implement the main method by displaying Menu of list of operations and make

suitable function calls in the main method to perform user selected operation.

enQueue(value) - Inserting an element into the Queue

We can use the following steps to insert a new node into the queue...

Step 1: Create a newNode with given value and set 'newNode → next' to NULL.

Step 2: Check whether queue is Empty (rear == NULL)

Step 3: If it is Empty then, set front = newNode and rear = newNode.

Step 4: If it is Not Empty then, set rear → next = newNode and rear = newNode.

deQueue() - Deleting an Element from Queue

We can use the following steps to delete a node from the queue...

Step 1: Check whether queue is Empty (front == NULL).

Step 2: If it is Empty, then display "Queue is Empty!!! Deletion is not possible!!!" and

terminate from the function

Step 3: If it is Not Empty then, define a Node pointer 'temp' and set it to 'front'.

Step 4: Then set 'front = front → next' and delete 'temp' (free(temp)).

display() - Displaying the elements of Queue

We can use the following steps to display the elements (nodes) of a queue...

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 26/34

Step 1: Check whether queue is Empty (front == NULL).

Step 2: If it is Empty then, display 'Queue is Empty!!!' and terminate the function.

Step 3: If it is Not Empty then, define a Node pointer 'temp' and initialize with front.

Step 4: Display 'temp → data --->' and move it to the next node. Repeat the same until

'temp' reaches to 'rear' (temp → next != NULL).

Step 4: Finally! Display 'temp → data ---> NULL'.

DEQUE:

Double Ended Queue (Dequeue)

Double Ended Queue is also a Queue data structure in which the insertion and deletion

operations are performed at both the ends (front and rear). That means, we can insert at

both front and rear positions and can delete from both front and rear positions.

 Double Ended Queue

Double Ended Queue can be represented in TWO ways, those are as follows...

Input Restricted Double Ended Queue

Output Restricted Double Ended Queue

Input Restricted Double Ended Queue:

In input restricted double ended queue, the insertion operation is performed at only one

end and deletion operation is performed at both the ends.

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 27/34

Output Restricted Double Ended Queue:

In output restricted double ended queue, the deletion operation is performed at only one

end and insertion operation is performed at both the ends.

Dequeue Operation:

Accessing data from the queue is a process of two tasks − access the data where front is

pointing and remove the data after access. The following steps are taken to

perform dequeueoperation −

 Step 1 − Check if the queue is empty.

 Step 2 − If the queue is empty, produce underflow error and exit.

 Step 3 − If the queue is not empty, access the data where front is pointing.

 Step 4 − Increment front pointer to point to the next available data element.

 Step 5 − Return success.

Algorithm for dequeue operation

procedure dequeue

 if queue is empty

 return underflow

 end if

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 28/34

 data = queue[front]

 front ← front + 1

 return true

end procedure

Operations on Deque:

Mainly the following four basic operations are performed on queue:

insetFront(): Adds an item at the front of Deque.

insertLast(): Adds an item at the rear of Deque.

deleteFront(): Deletes an item from front of Deque.

deleteLast(): Deletes an item from rear of Deque.

In addition to above operations, following operations are also supported

getFront(): Gets the front item from queue.

getRear(): Gets the last item from queue.

isEmpty(): Checks whether Deque is empty or not.

isFull(): Checks whether Deque is full or not.

Priority Queue:

 Priority queue is a variant of queue data structure in which insertion is performed

in the order of arrival and deletion is performed based on the priority.

There are two types of priority queues they are as follows...

1. Max Priority Queue

2. Min Priority Queue

1. Max Priority Queue:

In max priority queue, elements are inserted in the order in which they arrive the queue

and always maximum value is removed first from the queue. For example assume that we

insert in order 8, 3, 2, 5 and they are removed in the order 8, 5, 3, 2.

The following are the operations performed in a Max priority queue...

1. isEmpty() - Check whether queue is Empty.

2. insert() - Inserts a new value into the queue.

3. findMax() - Find maximum value in the queue.

4. remove() - Delete maximum value from the queue.

Max Priority Queue Representations:

There are 6 representations of max priority queue.

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 29/34

1. Using an Unordered Array (Dynamic Array)

2. Using an Unordered Array (Dynamic Array) with the index of the maximum

value

3. Using an Array (Dynamic Array) in Decreasing Order

4. Using an Array (Dynamic Array) in Increasing Order

5. Using Linked List in Increasing Order

6. Using Unordered Linked List with reference to node with the maximum

value

1. Using an Unordered Array (Dynamic Array):

In this representation elements are inserted according to their arrival order and maximum

element is deleted first from max priority queue.

For example, assume that elements are inserted in the order of 8, 2, 3 and 5. And they are

removed in the order 8, 5, 3 and 2.

Now, let us analyse each operation according to this representation...

isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time complexity

that means constant time.

insert() - New element is added at the end of the queue. This operation requires O(1)

time complexity that means constant time.

findMax() - To find maximum element in the queue, we need to compare with all the

elements in the queue. This operation requires O(n) time complexity.

remove() - To remove an element from the queue first we need to perform findMax()

which requires O(n) and removal of particular element requires constant time O(1). This

operation requires O(n) time complexity.

2. Using an Unordered Array (Dynamic Array) with the index of the maximum

value:

In this representation elements are inserted according to their arrival order and maximum

element is deleted first from max priority queue.

For example, assume that elements are inserted in the order of 8, 2, 3 and 5. And they are

removed in the order 8, 5, 3 and 2.

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 30/34

Now, let us analyse each operation according to this representation...

isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time complexity

that means constant time.

insert() - New element is added at the end of the queue with O(1) and for each insertion

we need to update maxIndex with O(1). This operation requires O(1) time complexity

that means constant time.

findMax() - To find maximum element in the queue is very simple as maxIndex has

maximum element index. This operation requires O(1) time complexity.

remove() - To remove an element from the queue first we need to perform findMax()

which requires O(1) , removal of particular element requires constant time O(1) and

update maxIndex value which requires O(n). This operation requires O(n) time

complexity.

3. Using an Array (Dynamic Array) in Decreasing Order:

In this representation elements are inserted according to their value in decreasing order

and maximum element is deleted first from max priority queue.

For example, assume that elements are inserted in the order of 8, 5, 3 and 2. And they are

removed in the order 8, 5, 3 and 2.

Now, let us analyse each operation according to this representation...

isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time complexity

that means constant time.

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 31/34

insert() - New element is added at a particular position in the decreasing order into the

queue with O(n), because we need to shift existing elements inorder to insert new

element in decreasing order. This operation requires O(n) time complexity.

findMax() - To find maximum element in the queue is very simple as maximum element

is at the beginning of the queue. This operation requires O(1) time complexity.

remove() - To remove an element from the queue first we need to perform findMax()

which requires O(1), removal of particular element requires constant time O(1) and

rearrange remaining elements which requires O(n). This operation requires O(n) time

complexity.

4. Using an Array (Dynamic Array) in Increasing Order:

In this representation elements are inserted according to their value in increasing order

and maximum element is deleted first from max priority queue.

For example, assume that elements are inserted in the order of 2, 3, 5 and 8. And they are

removed in the order 8, 5, 3 and 2.

Now, let us analyse each operation according to this representation...

isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time complexity

that means constant time.

insert() - New element is added at a particular position in the increasing order into the

queue with O(n), because we need to shift existing elements inorder to insert new

element in increasing order. This operation requires O(n) time complexity.

findMax() - To find maximum element in the queue is very simple as maximum element

is at the end of the queue. This operation requires O(1) time complexity.

remove() - To remove an element from the queue first we need to perform findMax()

which requires O(1), removal of particular element requires constant time O(1) and

rearrange remaining elements which requires O(n). This operation requires O(n) time

complexity.

5. Using Linked List in Increasing Order

In this representation, we use a single linked list to represent max priority queue. In this

representation elements are inserted according to their value in increasing order and node

with maximum value is deleted first from max priority queue.

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 32/34

For example, assume that elements are inserted in the order of 2, 3, 5 and 8. And they are

removed in the order 8, 5, 3 and 2.

Now, let us analyse each operation according to this representation...

isEmpty() - If 'head == NULL' queue is Empty. This operation requires O(1) time

complexity that means constant time.

insert() - New element is added at a particular position in the increasing order into the

queue with O(n), because we need to the position where new element has to be inserted.

This operation requires O(n) time complexity.

findMax() - To find maximum element in the queue is very simple as maximum element

is at the end of the queue. This operation requires O(1) time complexity.

remove() - To remove an element from the queue is simply removing the last node in the

queue which requires O(1). This operation requires O(1) time complexity.

6. Using Unordered Linked List with reference to node with the maximum value

In this representation, we use a single linked list to represent max priority queue. Always

we maitain a reference (maxValue) to the node with maximum value. In this

representation elements are inserted according to their arrival and node with maximum

value is deleted first from max priority queue.

For example, assume that elements are inserted in the order of 2, 8, 3 and 5. And they are

removed in the order 8, 5, 3 and 2.

Now, let us analyse each operation according to this representation...

isEmpty() - If 'head == NULL' queue is Empty. This operation requires O(1) time

complexity that means constant time.

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 33/34

insert() - New element is added at end the queue with O(1) and update maxValue

reference with O(1). This operation requires O(1) time complexity.

findMax() - To find maximum element in the queue is very simple as maxValue is

referenced to the node with maximum value in the queue. This operation requires O(1)

time complexity.

remove() - To remove an element from the queue is deleting the node which referenced

by maxValue which requires O(1) and update maxValue reference to new node with

maximum value in the queue which requires O(n) time complexity. This operation

requires O(n) time complexity.

2. Min Priority Queue Representations:

Min Priority Queue is similar to max priority queue except removing maximum element

first, we remove minimum element first in min priority queue.

The following operations are performed in Min Priority Queue...

1. isEmpty() - Check whether queue is Empty.

2. insert() - Inserts a new value into the queue.

3. findMin() - Find minimum value in the queue.

4. remove() - Delete minimum value from the queue.

Min priority queue is also has same representations as Max priority queue with minimum

value removal.

LINKED LIST 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 34/34

 POSSIBLE QUESTIONS

UNIT-I

 PART-A (20 MARKS)

(Q.NO 1 TO 20 Online Examination)

 PART-B (2 MARKS)

1. Define Linked List.

2. What is a Circular List.

3. What is a Doubly linked list.

4. What is Self Organizing List?

5. Define De-Queue

 PART-C (6 MARKS)

1. Discuss about Singly Linked List.

2. Discuss about Doubly Linked List.

3. Discuss about Circular List in detail.

4. Discuss about Representation of Stack in List.

5. Explain Normal and Circular List.

S.NO QUESTIONS OPTION 1

1 ________is a collection of data and links. Links

2 Each item in a node is called a_______. Field

3 The elements in the list are stored in a one dimensional array called
a _______

Value

4 Data movement and displacing the pointers of the Queue are
tedious proplems in _________ representation of a Queue.

Array

5 ________ list allows traversing in only one direction. Singly linked
list

6 In storage management every block is said to have three fields
namely ________

Llink, Data,
Rlink

7 ________ allows traversing in both direction. Singly linked
list

8 _________ is the process of allocating and deallocating memory to
various programs in a multiprocessing enviroment.

Job scheduling
in Time
sharing
environment

9 The best application of Doubly Linked list in computers is

Job scheduling
in Time
sharing
environment

10 List containing link to all of the available nodes is called
__________ list.

Free

11 A ______is a list that reorders its element. self-
organizing list

12 The computing time for manipulating the list is __________for
sequential Representation

Less then

13 _________contains all nodes that are not currently being used Dynamic
Memory

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 Coimbatore - 641021.

 (For the candidates admitted from 2016 onwards)

 DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 UNIT II :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

14 In singly linked list ,each node has _________field. One

15 In linked list ,each node has fields namely___________ Link, Value

16 In Doubly linked list ,each node has at least _________field. One

17 In Doubly linked list ,each node has fields namely________ Link, Data1,
Data2

18 The doubly linked list is said to be empty if it conatins _________ no nodes at
all.

19 The data field of the _________ node usually donot conatain any
information.

first

20 To search down the list of free blocks to find the first block greater
than or equal to the size of the program is called______ allocation
strategy.

Best Fit

21 Finding a free block whose size is as close as possible to the size of
the program (N), but not less than N is called _____ allocation
strategy.

Near fit

22 ________ strategy distributes the small nodes evenly and searching
for a new node starts from the node where the previous allocation
was made.

Best Fit

23 Problem in _________ allocation stratery is all small nodes collect
in the front of the av-list.

Best Fit

24 ________ is the storage allocation method that fits the program
into the largest block available.

Best Fit

25 The back pointer for each node will be referred as _________. Blink

26 Forward pointer for each node will be referred as _________. Forward

27 A___________is a linked list in which last node of the list points
to the first node in the list.

Linked list

28 A________in which each node has two pointers, a forward link
and a Backward link.

Doubly linked
circular list

29 In sparse matrices each nonzero term was represented by a node
with ______ fields.

Five

30 We want to represent n stacks with 1 ≤ i ≤ n then T(i)_______ Top of the ith

stack

31 We want to represent m queues with 1 ≤ i ≤ m then F(i)_______ Front of the (i

+ 1)th Queue

32 We want to represent m queues with 1 ≤ i ≤ m then R(i)_______ Rear of the (i

+ 1)th Queue

33 In Linked representation of Sparse Matrix, DOWN field used to
link to the next nonzero element in the same _________

Row

34 In Linked representation of Sparse Matrix, RIGHT field used to
link to the next nonzero element in the same _________

Row

35 The time complexity of the MREAD algorithm that reads a sparse
matrix of n rows, n columns and r nonzero terms is ____

O(max {n, m,
r})

36 In Available Space list combining the adjacent free blocks is called

Defragmentin
g

37 In Available Space list, the first and last word of each block are
reserved for ___________

Data

38 In Storage management, in the Available Space List, the first word
of each free block has ________fields.

4

39 In Available Space list, the last word of each free block has
________fields.

4

40 The first and last nodes of each block have tag fields, this system of
allocation and freeing is called the _________.

Tag Method

41 In Available Space list ,Tag field has the value one when the block
is _________

Allocated

42 Available Space list ,Tag field has the value Zero when the block
is _________

Allocated

43 The ______field of each storage block indicates if the block is free
are in-use.

rlink

44 In storage management the ________ field of the free block points
to the start of the block

rlink

45 __________ is the process of collecting all unused nodes and
returning them to the available space.

Compaction

46 Moving all free nodes aside to form a single contiguous block of
memeory is called __________

Compaction

47 __________ of disk space reduces the average retrieval time of
allocation.

Compaction

48 ___________ is done in two phases 1) marking used nodes and 2)
returning all unmarked nodes to available space list.

Compaction

49 Which of these sorting algorithm uses the Divide and Conquere
technique for sorting

selection sort

50 Which of these searching algorithm uses the Divide and Conquere
technique for sorting

Linear search

51 The disadvantage of _____ sort is that is need a temporary array to
sort.

Quick

52 A __________ is a set of characters is called a string. Array
53 The straight forward find operation for pattern matching,pat of size

m in string of size n needs _________ time.
O(mn)

54 Knuth,Morris and Pratt's method of pattern matching in strings
takes ________ time, if pat is of sixe m and string is size n.

O(mn)

55 _________ representation always need extensive data movement. Linked

56 Which of these representations are used for strings. sequential
representation

57 In ______ method the node is moved to the front. Front Method

58 In ______ method the node stores count of the no of times Front Method

59 In ______ method any node searched is swapped with the
preceding node.

Count Method

60 A _________ is a data structure that is used for storing a sorted list
of items.

Skip list

OPTION 2 OPTION 3 OPTION 4 KEY

Node List Item Node

Data item Pointer Data Field

List Data Link Data

Linked Circular All the above Array

Doubly
linked list

Circular Doubly
Linked List

Ordered List Singly
linked list

Link, Data,
Size

Size, Link and
Unusable

Size, Llink and
Uplink

Size, Link
and
Unusable

Doubly
linked list

Circular Singly
Linked List

Circular Queue Doubly
linked list

Processor
Management

Dynamic Storage
Management

Garbage Collection Dynamic
Storage
Management

Processing
Procedure
calls

Dynamic Storage
Management

Evaluating postfix
expressions

Dynamic
Storage
Management

Empty AV Ordered AV

organizing
list

Self list self reorganizing
list

self-
organizing
list

Greater than Less then equal Greater than equal Less then

Storage pool Garbage Waste memory Storage pool

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (For the candidates admitted from 2016 onwards)

 DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 UNIT II :(Objective Type/Multiple choice Questions each Question carries one Mark)

Two Three Five Two

Link, Link Data, Link Data, Data Data, Link

Two Three Five Three

Data and
Link

Only Llink and
Rlink

Llink, Data, Rlink Llink, Data,
Rlink

nodes with
data fields
empty.

only a head node. a node with its link
fields points to null

only a head
node.

head tail last head

First Fit Worst Fit Next Fit First Fit

First fit Best fit Next Fit Best fit

First Fit Worst Fit Next Fit Next Fit

First Fit Worst Fit Next Fit First Fit

First Fit Worst Fit Next Fit Worst Fit

Break Back Clear Blink

Flink Front Data Flink

Singly
linked
circular list

Circular list Insertion node Singly
linked
circular list

Circular list Singly linked
circular list

Linked list Doubly
linked
circular list

Six Three Four Three

Top of the (i

+ 1)th stack
Top of the (i – 1) th

stack
Top of the (i -2)th

stack
Top of the ith

stack

Front of the

ith Queue

Front of the (i – 1)
th Queue

Front of the (i -2)th

Queue

Front of the

ith Queue

Rear of the

ith Queue

Rear of the (i – 1)
th Queue

Rear of the (i -2)th

Queue

Rear of the

ith Queue

List Column Diagonal Column

Matrix Column Diagonal Row

O(m * n * r) O(m + n + r) O(max {n, m}) O(m + n + r)

Coalescing Joining Merging Coalescing

Allocation
Information

Link Value Allocation
Information

3 2 1 4

3 2 1 2

Boundary
Method

Free Method Boundary Tag
Method

Boundary
Tag Method

Coalesced Free Merge Allocated

Coalesced Free Merged Free

tag size uplink tag

llink uplink top uplink

Coalescing Garbage collection Deallocation Garbage
collection

Coalescing Garbage collection Deallocation Compaction

Coalescing Garbage collection Deallocation Compaction

Coalescing Garbage collection Deallocation Garbage
collection

insertion sort merge sort heap sort merge sort

Binary
search

fibonacci search None of the above Binary
search

Merge Heap Insertion Merge

String Heap List String

O(n2) O(m2) O(m+n) O(mn)

O(n2) O(m2) O(m+n) O(m+n)

sequential tree graph sequential

Linked
representatio
n with fixed
sized blocks

Linked
representation with
variable sized
blocks

All the above All the
above

Move
Method

Move-to-Front
Method

Count Method Move-to-
Front
Method

Move-to-
Front
Method

Count Method Transpose Method Count
Method

Transpose
Method

Move-to-Front
Method

Front Method Transpose
Method

self-
organizing
list

Self list Node list Skip list

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 1/24

SYLLABUS

UNIT-III

Trees - Introduction to Tree as a data structure; Binary Trees (Insertion, Deletion ,

Recursive and Iterative Traversals on Binary Search Trees); Threaded Binary Trees

(Insertion, Deletion, Traversals); Height-Balanced Trees (Various operations on AVL

Trees).

 Trees:
Introduction to Tree as a data structure:

A tree is a data structure made up of nodes or vertices and edges without having any

cycle. The tree with no nodes is called the null or empty tree. A tree that is not empty

consists of a root node and potentially many levels of additional nodes that form a

hierarchy.

 Tree

Terminology used in trees:

Root

The top node in a tree.

Child

A node directly connected to another node when moving away from the Root.

Parent

The converse notion of a child.

Siblings

A group of nodes with the same parent.

Descendant

A node reachable by repeated proceeding from parent to child.

Ancestor

A node reachable by repeated proceeding from child to parent.

Leaf

(less commonly called External node)

A node with no children.

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 2/24

Branch

Internal node

A node with at least one child.

Degree

The number of sub trees of a node.

Edge

The connection between one node and another.

Path

A sequence of nodes and edges connecting a node with a descendant.

Level

The level of a node is defined by 1 + (the number of connections between the node and

the root).

Height of node

The height of a node is the number of edges on the longest path between that node and a

leaf.

Height of tree

The height of a tree is the height of its root node.

Depth

The depth of a node is the number of edges from the tree's root node to the node.

Forest

A forest is a set of n ≥ 0 disjoint trees.

Binary Trees:

In a normal tree, every node can have any number of children. Binary tree is a special

type of tree data structure in which every node can have a maximum of 2 children. One is

known as left child and the other is known as right child.

A tree in which every node can have a maximum of two children is called as Binary

Tree.

In a binary tree, every node can have either 0 children or 1 child or 2 children but not

more than 2 children.

Binary Search Trees:

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-

mentioned properties −

 The left sub-tree of a node has a key less than or equal to its parent node's key.

 The right sub-tree of a node has a key greater than to its parent node's key.

Thus, BST divides all its sub-trees into two segments; the left sub-tree and the right sub-

tree and can be defined as −

left_subtree (keys) ≤ node (key) ≤ right_subtree (keys)

Representation:

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 3/24

BST is a collection of nodes arranged in a way where they maintain BST properties. Each

node has a key and an associated value. While searching, the desired key is compared to

the keys in BST and if found, the associated value is retrieved.

Following is a pictorial representation of BST −

 Binary Search Tree

We observe that the root node key (27) has all less-valued keys on the left sub-tree and

the higher valued keys on the right sub-tree.

Basic Operations:

Following are the basic operations of a tree −

Search − Searches an element in a tree.

Insert − Inserts an element in a tree.

Pre-order Traversal − Traverses a tree in a pre-order manner.

In-order Traversal − Traverses a tree in an in-order manner.

Post-order Traversal − Traverses a tree in a post-order manner.

Node:

Define a node having some data, references to its left and right child nodes.

struct node {

 int data;

 struct node *leftChild;

 struct node *rightChild;

};

Search Operation:

Whenever an element is to be searched, start searching from the root node. Then if the

data is less than the key value, search for the element in the left subtree. Otherwise,

search for the element in the right subtree. Follow the same algorithm for each node.

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 4/24

Algorithm:

struct node* search(int data){

struct node *current = root;

 printf("Visiting elements: ");

 while(current->data != data){

 if(current != NULL) {

 printf("%d ",current->data);

 //go to left tree

 if(current->data > data){

 current = current->leftChild;

 }//else go to right tree

 else {

 current = current->rightChild;

 }

 //not found

 if(current == NULL){

 return NULL;

 }

 }

 }

 return current;

}

Insert Operation:

Whenever an element is to be inserted, first locate its proper location. Start searching

from the root node, then if the data is less than the key value, search for the empty

location in the left subtree and insert the data. Otherwise, search for the empty location in

the right subtree and insert the data.

Algorithm:

 void insert(int data) {

 struct node *tempNode = (struct node*) malloc(sizeof(struct node));

 struct node *current;

 struct node *parent;

 tempNode->data = data;

 tempNode->leftChild = NULL;

 tempNode->rightChild = NULL;

 //if tree is empty

 if(root == NULL) {

 root = tempNode;

 } else {

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 5/24

 current = root;

 parent = NULL;

 while(1) {

 parent = current;

 //go to left of the tree

 if(data < parent->data) {

 current = current->leftChild;

 //insert to the left

 if(current == NULL) {

 parent->leftChild = tempNode;

 return;

 }

 }//go to right of the tree

 else {

 current = current->rightChild;

 //insert to the right

 if(current == NULL) {

 parent->rightChild = tempNode;

 return;

 }

 }

 }

 }

}

TRAVERSAL:

Traversal is a process to visit all the nodes of a tree and may print their values too.

Because, all nodes are connected via edges (links) we always start from the root (head)

node. That is, we cannot randomly access a node in a tree. There are three ways which we

use to traverse a tree −

 In-order Traversal

 Pre-order Traversal

 Post-order Traversal

Generally, we traverse a tree to search or locate a given item or key in the tree or to print

all the values it contains.

In-order Traversal

In this traversal method, the left subtree is visited first, then the root and later the right

sub-tree. We should always remember that every node may represent a subtree itself.

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 6/24

If a binary tree is traversed in-order, the output will produce sorted key values in an

ascending order.

We start from A, and following in-order traversal, we move to its left subtree B. B is also

traversed in-order. The process goes on until all the nodes are visited. The output of

inorder traversal of this tree will be −

D → B → E → A → F → C → G

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Visit root node.

Step 3 − Recursively traverse right subtree.

Pre-order Traversal:

In this traversal method, the root node is visited first, then the left subtree and finally the

right subtree.

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 7/24

We start from A, and following pre-order traversal, we first visit A itself and then move

to its left subtree B. B is also traversed pre-order. The process goes on until all the nodes

are visited. The output of pre-order traversal of this tree will be −

A → B → D → E → C → F → G

Algorithm

Until all nodes are traversed −

Step 1 − Visit root node.

Step 2 − Recursively traverse left subtree.

Step 3 − Recursively traverse right subtree.

Post-order Traversal:

In this traversal method, the root node is visited last, hence the name. First we traverse

the left subtree, then the right subtree and finally the root node.

We start from A, and following pre-order traversal, we first visit the left subtree B. B is

also traversed post-order. The process goes on until all the nodes are visited. The output

of post-order traversal of this tree will be −

D → E → B → F → G → C → A

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Recursively traverse right subtree.

Step 3 − Visit root node.

THREADED BINARY TREES:

Inorder traversal of a Binary tree is either be done using recursion or with the use of a

auxiliary stack. The idea of threaded binary trees is to make inorder traversal faster and

do it without stack and without recursion. A binary tree is made threaded by making all

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 8/24

right child pointers that would normally be NULL point to the inorder successor of the

node (if it exists).

There are two types of threaded binary trees.

Single Threaded: Where a NULL right pointers is made to point to the inorder successor

(if successor exists)

Double Threaded: Where both left and right NULL pointers are made to point to inorder

predecessor and inorder successor respectively. The predecessor threads are useful for

reverse inorder traversal and postorder traversal.

The threads are also useful for fast accessing ancestors of a node.

Following diagram shows an example Single Threaded Binary Tree. The dotted lines

represent threads.

 Representation of a Threaded Node:

struct Node

{

 int data;

 Node *left, *right;

 bool right Thread;

}

Since right pointer is used for two purposes, the boolean variable rightThread is used to

indicate whether right pointer points to right child or inorder successor. Similarly, we can

add leftThread for a double threaded binary tree.

Inorder Taversal using Threads

Following code for inorder traversal in a threaded binary tree.

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 9/24

// Utility function to find leftmost node in a tree rooted with n

struct Node* leftMost(struct Node *n)

{

 if (n == NULL)

 return NULL;

 while (n->left != NULL)

 n = n->left;

 return n;

}

// code to do inorder traversal in a threaded binary tree

void inOrder(struct Node *root)

{

 struct Node *cur = leftmost(root);

 while (cur != NULL)

 {

 printf("%d ", cur->data);

 // If this node is a thread node, then go to

 // inorder successor

 if (cur->rightThread)

 cur = cur->rightThread;

 else // Else go to the leftmost child in right subtree

 cur = leftmost(cur->right);

 }

}

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 10/24

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 11/24

INSERTION:

Insertion in Binary threaded tree is similar to insertion in binary tree but we will have to

adjust the threads after insertion of each element.

 representation of Binary Threaded Node:

struct Node

{

 struct Node *left, *right;

 int info;

 // True if left pointer points to predecessor

 // in Inorder Traversal

 boolean lthread;

 // True if right pointer points to successor

 // in Inorder Traversal

 boolean rthread;

};

In the following explanation, we have considered Binary Search Tree (BST) for insertion

as insertion is defined by some rules in BSTs.

Let tmp be the newly inserted node. There can be three cases during insertion:

Case 1: Insertion in empty tree

Both left and right pointers of tmp will be set to NULL and new node becomes the root.

root = tmp;

tmp -> left = NULL;

tmp -> right = NULL;

Case 2: When new node inserted as the left child

After inserting the node at its proper place we have to make its left and right threads

points to inorder predecessor and successor respectively. The node which was inorder

successor. So the left and right threads of the new node will be-

tmp -> left = par ->left;

tmp -> right = par;

Before insertion, the left pointer of parent was a thread, but after insertion it will be a link

pointing to the new node.

par -> lthread = par ->left;

par -> left = temp;

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 12/24

After insertion of 13,

Predecessor of 14 becomes the predecessor of 13, so left thread of 13 points to 10.

Successor of 13 is 14, so right thread of 13 points to left child which is 13.

Left pointer of 14 is not a thread now, it points to left child which is 13.

Case 3: When new node is inserted as the right child

The parent of tmp is its inorder predecessor. The node which was inorder successor of the

parent is now the inorder successor of this node tmp. So the left and right threads of the

new node will be-

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 13/24

tmp -> left = par;

tmp -> right = par -> right;

Before insertion, the right pointer of parent was a thread, but after insertion it will be a

link pointing to the new node.

par -> rthread = false;

par -> right = tmp;

Following example shows a node being inserted as right child of its parent.

After 15 inserted,

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 14/24

Successor of 14 becomes the successor of 15, so right thread of 15 points to 16

Predecessor of 15 is 14, so left thread of 15 points to 14.

Right pointer of 14 is not a thread now, it points to right child which is 15.

Height-Balanced Trees:

What if the input to binary search tree comes in a sorted (ascending or descending)

manner? It will then look like this −

It is observed that BST's worst-case performance is closest to linear search algorithms,

that is Ο(n). In real-time data, we cannot predict data pattern and their frequencies. So, a

need arises to balance out the existing BST.

Named after their inventor Adelson, Velski & Landis, AVL trees are height balancing

binary search tree. AVL tree checks the height of the left and the right sub-trees and

assures that the difference is not more than 1. This difference is called the Balance

Factor.

Here we see that the first tree is balanced and the next two trees are not balanced −

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 15/24

In the second tree, the left subtree of C has height 2 and the right subtree has height 0, so

the difference is 2. In the third tree, the right subtree of A has height 2 and the left is

missing, so it is 0, and the difference is 2 again. AVL tree permits difference (balance

factor) to be only 1.

BalanceFactor = height(left-sutree) − height(right-sutree)

If the difference in the height of left and right sub-trees is more than 1, the tree is

balanced using some rotation techniques.

AVL Rotations:

To balance itself, an AVL tree may perform the following four kinds of rotations −

 Left rotation

 Right rotation

 Left-Right rotation

 Right-Left rotation

The first two rotations are single rotations and the next two rotations are double rotations.

To have an unbalanced tree, we at least need a tree of height 2. With this simple tree, let's

understand them one by one.

Left Rotation

If a tree becomes unbalanced, when a node is inserted into the right subtree of the right

subtree, then we perform a single left rotation −

In our example, node A has become unbalanced as a node is inserted in the right subtree

of A's right subtree. We perform the left rotation by making A the left-subtree of B.

Right Rotation:

AVL tree may become unbalanced, if a node is inserted in the left subtree of the left

subtree. The tree then needs a right rotation.

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 16/24

As depicted, the unbalanced node becomes the right child of its left child by performing

a right rotation.

Left-Right Rotation:Double rotations are slightly complex version of already explained

versions of rotations. To understand them better, we should take note of each action

performed while rotation. Let's first check how to perform Left-Right rotation. A left-

right rotation is a combination of left rotation followed by right rotation.

 A node has been inserted into the right subtree of the left subtree. This makes C an

unbalanced node. These scenarios cause AVL tree to perform left-right rotation.

 We first perform the left rotation on the left subtree of C. This

makes A, the left subtree of B.

State

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 17/24

Node C is still unbalanced, however now, it is because of the left-

subtree of the left-subtree.

We shall now right-rotate the tree, making Bthe new root node of this subtree. C now

becomes the right subtree of its own left subtree.

The tree is now balanced.

Right-Left Rotation:

The second type of double rotation is Right-Left Rotation. It is a combination of right

rotation followed by left rotation

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 18/24

 A node has been inserted into the left subtree of the right subtree. This

makes A, an unbalanced node with balance factor 2.

 First, we perform the right rotation along Cnode, making C the right

subtree of its own left subtree B. Now, B becomes the right subtree of A.

 Node A is still unbalanced because of the right subtree of its right

subtree and requires a left rotation.

 A left rotation is performed by making B the new root node of the

subtree. A becomes the left subtree of its right subtree B.

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 19/24

 The tree is now balanced.

Operations on an AVL Tree:

The following operations are performed on an AVL tree

 Search

 Insertion

 Deletion

Search Operation in AVL Tree:

In an AVL tree, the search operation is performed with O(log n) time complexity. The

search operation is performed similar to Binary search tree search operation. We use the

following steps to search an element in AVL tree...

Step 1: Read the search element from the user

Step 2: Compare, the search element with the value of root node in the tree.

Step 3: If both are matching, then display "Given node found!!!" and terminate the

function

Step 4: If both are not matching, then check whether search element is smaller or larger

than that node value.

Step 5: If search element is smaller, then continue the search process in left subtree.

Step 6: If search element is larger, then continue the search process in right subtree.

Step 7: Repeat the same until we found exact element or we completed with a leaf node

Step 8: If we reach to the node with search value, then display "Element is found" and

terminate the function.

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 20/24

Step 9: If we reach to a leaf node and it is also not matching, then display "Element not

found" and terminate the function.

Insertion Operation in AVL Tree: In an AVL tree, the insertion operation is

performed with O(log n) time complexity. In AVL Tree, new node is always inserted as

a leaf node. The insertion operation is performed as follows...

Step 1: Insert the new element into the tree using Binary Search Tree insertion logic.

Step 2: After insertion, check the Balance Factor of every node.

Step 3: If the Balance Factor of every node is 0 or 1 or -1 then go for next operation.

Step 4: If the Balance Factor of any node is other than 0 or 1 or -1 then tree is said to be

imbalanced. Then perform the suitable Rotation to make it balanced. And go for next

operation.

Example: Construct an AVL Tree by inserting numbers from 1 to 8.

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 21/24

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 22/24

Deletion Operation in AVL Tree:

In an AVL Tree, the deletion operation is similar to deletion operation in BST. But after

every deletion operation we need to check with the Balance Factor condition. If the tree is

balanced after deletion then go for next operation otherwise perform the suitable rotation

to make the tree Balanced.

Skip List (Introduction):

Can we search in a sorted linked list in better than O(n) time?

The worst case search time for a sorted linked list is O(n) as we can only linearly traverse

the list and cannot skip nodes while searching. For a Balanced Binary Search Tree, we

skip almost half of the nodes after one comparison with root. For a sorted array, we have

random access and we can apply Binary Search on arrays.

A schematic picture of the skip list data structure. Each box with an arrow represents a

pointer and a row is a linked list giving a sparse subsequence; the numbered boxes (in

yellow) at the bottom represent the ordered data sequence. Searching proceeds

downwards from the sparsest subsequence at the top until consecutive elements

bracketing the search element are found.

A skip list is built in layers. The bottom layer is an ordinary ordered linked list. Each

higher layer acts as an "express lane" for the lists below, where an element in layer i

appears in layer i+1 with some fixed probability p (two commonly used values for p are

1/2 or 1/4).

Implementation details:

The elements used for a skip list can contain more than one pointer since they can

participate in more than one list.

Insertions and deletions are implemented much like the corresponding linked-list

operations, except that "tall" elements must be inserted into or deleted from more than

one linked list.

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 23/24

 Inserting element to skip list

Can we augment sorted linked lists to make the search faster?
The answer is Skip List. The idea is simple, we create multiple layers so that we can skip

some nodes. See the following example list with 16 nodes and two layers. The upper

layer works as an “express lane” which connects only main outer stations, and the lower

layer works as a “normal lane” which connects every station. Suppose we want to search

for 50, we start from first node of “express lane” and keep moving on “express lane” till

we find a node whose next is greater than 50. Once we find such a node (30 is the node in

following example) on “express lane”, we move to “normal lane” using pointer from this

node, and linearly search for 50 on “normal lane”. In following example, we start from 30

on “normal lane” and with linear search, we find 50.

What is the time complexity with two layers?
The worst case time complexity is number of nodes on “express lane” plus number of

nodes in a segment (A segment is number of “normal lane” nodes between two “express

lane” nodes) of “normal lane”. So if we have n nodes on “normal lane”, √n (square root

of n) nodes on “express lane” and we equally divide the “normal lane”, then there will be

√n nodes in every segment of “normal lane” . √n is actually optimal division with two

layers. With this arrangement, the number of nodes traversed for a search will be O(√n).

Therefore, with O(√n) extra space, we are able to reduce the time complexity to O(√n

TREES 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 24/24

POSSIBLE QUESTIONS

UNIT-III

PART-A (20 MARKS)

(Q.NO 1 TO 20 Online Examination)

PART-B (2 MARKS)

1. What is a Tree?

2. Define Binary Tree.

3. Write about Threaded Binary Tree.

4. Define Height-Balanced Tree.

5. Explain about AVL Trees.

PART-C (6 MARKS)

1. Explain Insertion, Deletion and Recursive Operations in Binary Search Tree.

2. What is Threaded Binary Tree explain in detail.

3. Write in detail about the Operations of Binary Search Tree.

4. Write about Iterative, Traversal Operations on Binary Search Trees.

5. Write about (i) Tree (ii)Binary Tree (iii)Height Balanced Trees.

1 _______________ are genealogical charts which are used to present the
data

Graphs

2 A __ is a finite set of one or more nodes, with one root node and
remaining form the disjoint sets forming the subtrees.

tree

3 A _________ is a graph without any cycle. tree
4 In binary trees there is no node with a degree greater than _____ zero
5 Which of this is true for a binary tree. It may be empty

6 The Number of subtrees of a node is called its _______. leaf
7 Nodes that have degree zero are called ________. end node
8 A binary tree with all its left branches supressed is called a _________ balanced tree

9 All node except the leaf nodes are called________. terminal node
10 The roots of the subtrees of a node X, are the _______ of X. Parent
11 X is a root then X is the ______ of its children. sub tree
12 The children of the same parent are called __________________. sibiling
13 ___________of a node are all the nodes along the path form the root to

that node.
Degree

14 The ______________of a tree is defined to be a maximum level of any
node in the tree.

weight

15 A___________ is a set of n ≥ 0 disjoint trees Group
16 A tree with any node having at most two branches is called a

_____________.
branched tree

17 A ___________of depth k is a binary tree of depth k having 2K-1 nodes. full binary tree

18 Data structure represents the hierarchical relationships between
individual data item is known as __________.

Root

19 Node at the highest level of the tree is known as _______. Child
20 The root of the tree is the _______of all nodes in the tree. Child
21 _____is a subset of a tree that is itself a tree. Branch
22 A node with no children is called _________. Root Node
23 In a tree structure a link between parent and child is called _______ Branch
24 Height – balanced trees are also referred as as ___________trees. AVL trees
25 Visiting each node in a tree exactly once is called _________ searching

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 Coimbatore - 641021.

 (For the candidates admitted from 2016 onwards)

 DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 UNIT III :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

26 In________traversal ,the current node is visited before the subtrees. PreOrder
27 In________traversal ,the node is visited between the subtrees. PreOrder
28 In________traversal ,the node is visited after the subtrees. PreOrder
29 Inorder traversal is also sometimes called______ Symmetric Order
30 Postorder traversal is also sometimes called______ Symmetric Order
31 Nodes of any level are numbered from _________ Left to right

32 ________ search involves only addition and subtraction. binary
33 A________ is defined to be a complete binary tree with the property that

the value of root node is at least as large as the value of its children node.
quick

34 Binary trees are used in ______ sorting. quick sort
35 The ____ of the heap has the largest key in the tree. Node
36 In Threaded Binary Tree ,LCHILD(P) is a normal pointer When LBIT(P)

= ____
1

37 In Threaded Binary Tree ,LCHILD(P) is a Thread When LBIT(P) = ____ 1

38 In Threaded Binary Tree ,RCHILD(P) is a normal pointer When RBIT(P)
= ____

2

39 In Threaded Binary Tree ,RCHILD(P) is a Thread When LBIT(P) = ____ 1

40 Which of these searching algorithm uses the Divide and Conquere technique
for sorting

Linear search

41 ______ algorithm can be used only with sorted lists. Linear search

42 ________ search involves comparision of the element to be found with
every elements in a list.

Linear search

43 Binary search algorithm in a list of n elements takes only _______ time. O(log2n)

44 _____ is used for decision making in eight coin problem. trees

45 The Linear search algorithm in a list of n element takes ________ time to
compare in worst case.

constant

46 Which of these is an application of trees. Finding minimum
cost spanning tree

47 ________ is an operation performed on sets union

48 In sets _______ is used to find the set containing the element i subset(i)

49 Sets are represented as _____ arrays

50 _________ is an example of application of trees in decision making. Binay search

51 In threaded binary tree, NULL pointers are replaced by references to
other nodes in the tree, called _________

threads

52 The _________ of each element in a binary tree are ordered. Trees
53 Tree is _______the no of nodes is equal to 0 subtree
54 The ________ operation on binary search tree is similar to applying

binary search technique to an sorted linear array
search

55 The deletion of a ______ node that has only a single child is also easily. leaf

56 A _________ is a complete binary tree that is also a max tree. max heap
57 In any binary tree linked list representation, if there are 2N number of

reference fields, then _______ number of reference fields are filled with
NULL

 N+1

58 If there is no in-order predecessor or in-order successor, then it point to
_____node.

 root

59 ________ pointer does not play any role except indicating there is no
link

 root

60 _____________ which make use of NULL pointer to improve its
traversal processes

 Binary Tree

Pedigree and lineal chart Line , bar chart pie chart Pedigree and lineal
chart

graph list set tree

path set list tree
one two three two
The degree of all nodes
must be <=2

It contains a
root node

All the above All the above

terminal children degree degree
leaf nodes subtree root node leaf nodes
left sub tree full binary tree right skewed tree right skewed tree

percent node non terminal children node non terminal
Children Sibling sub tree Children
Parent Sibilings subordinate Parent
leaf child subtree sibiling
sub tree Ancestors parent Ancestors

length breath height height

forest Branch sub tree forest
sub tree binary tree forest binary tree

half binary tree sub tree n branch tree full binary tree

Node Tree Address Tree

Root Sibiling Parent Root
Parent Ancestor Head Ancestor
Root Leaf Subtree Subtree
Branch Leaf Node Null tree Leaf Node
Root Leaf Subtree Branch
Binary Trees Subtree Branch Tree AVL trees
travering walk through path travering

KARPAGAM ACADEMY OF HIGHER EDUCATION
 Coimbatore - 641021.

 (For the candidates admitted from 2016 onwards)

 DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 UNIT III :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

PostOrder Inorder End Order PreOrder
PostOrder Inorder End Order Inorder
PostOrder Inorder End Order PostOrder
End Order PreOrder PostOrder Symmetric Order
End Order PreOrder PostOrder End Order
Right to Left Top to Bottom Bottom to Top Left to right

fibonacci sequential non sequential fibonacci
radix merge heap heap

merge sort heap sort lrsort heap sort
Root Leaf Branch Root
2 3 0 1

2 3 0 0

1 3 0 1

2 0 4 0

Binary search fibonacci search None of the above Binary search

Binary search insertion sort merge sort Binary search
Binary search fibonacci

search
None of the above Linear search

O(n) O(n3) O(n2) O(log2n)

graphs linked lists array trees

linear quadratic exponential constant

Decision tree Storage
management

Job sequencing Decision tree

sort rename traverse union

Disjoin(i) Union(i) Find(i) subset(i)

linked lists graphs trees trees

Optimal merge pattern Eight Coins
problem

Huffman's Message
coding

Eight Coins problem

nodes pointers tree threads

subtrees binary tree thread subtrees
one empty none empty
insert delete display search

tree nonleaf nonleaf tree nonleaf

min heap heap max-min max heap
2n+1 2n n+1 N+1

leaf nodes null empty root

leaf nodes null empty null

 Threaded Tree non Threaded
Binary Tree

 Threaded Binary
Tree

 Threaded Binary
Tree

SEARCHING AND SORTING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 1/17

SYLLABUS

UNIT-IV

Searching and Sorting: Linear Search, Binary Search, Comparison of Linear and Binary

Search, Selection Sort, Insertion Sort, Insertion Sort, Shell Sort, Comparison of Sorting

Techniques

SEARCHING:

Search is a process of finding a value in a list of values. In other words, searching is the

process of locating given value position in a list of values.

LINEAR SEARCH:

Linear search is a very simple search algorithm. In this type of search, a sequential search

is made over all items one by one. Every item is checked and if a match is found then that

particular item is returned, otherwise the search continues till the end of the data

collection.

Algorithm:

Linear Search (Array A, Value x)

Step 1: Set i to 1

Step 2: if i > n then go to step 7

Step 3: if A[i] = x then go to step 6

Step 4: Set i to i + 1

Step 5: Go to Step 2

Step 6: Print Element x Found at index i and go to step 8

Step 7: Print element not found

Step 8: Exit

Pseudocode

procedure linear_search (list, value)

 for each item in the list

 if match item == value

SEARCHING AND SORTING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 2/17

 return the item's location

 end if

 end for

end procedure

BINARY SEARCH:

Binary search is a fast search algorithm with run-time complexity of Ο(log n). This

search algorithm works on the principle of divide and conquer. For this algorithm to work

properly, the data collection should be in the sorted form.

Binary search looks for a particular item by comparing the middle most item of the

collection. If a match occurs, then the index of item is returned. If the middle item is

greater than the item, then the item is searched in the sub-array to the left of the middle

item. Otherwise, the item is searched for in the sub-array to the right of the middle item.

This process continues on the sub-array as well until the size of the subarray reduces to

zero.

How Binary Search Works:

For a binary search to work, it is mandatory for the target array to be sorted. We shall

learn the process of binary search with a pictorial example. The following is our sorted

array and let us assume that we need to search the location of value 31 using binary

search.

First, we shall determine half of the array by using this formula −

mid = low + (high - low) / 2

Here it is, 0 + (9 - 0) / 2 = 4 (integer value of 4.5). So, 4 is the mid of the array.

Now we compare the value stored at location 4, with the value being searched, i.e. 31.

We find that the value at location 4 is 27, which is not a match. As the value is greater

than 27 and we have a sorted array, so we also know that the target value must be in the

upper portion of the array.

SEARCHING AND SORTING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 3/17

We change our low to mid + 1 and find the new mid value again.

low = mid + 1

mid = low + (high - low) / 2

Our new mid is 7 now. We compare the value stored at location 7 with our target value

31.

The value stored at location 7 is not a match, rather it is more than what we are looking

for. So, the value must be in the lower part from this location.

Hence, we calculate the mid again. This time it is 5.

We compare the value stored at location 5 with our target value. We find that it is a

match.

We conclude that the target value 31 is stored at location 5.

Binary search halves the searchable items and thus reduces the count of comparisons to

be made to very less numbers.

Pseudocode

The pseudocode of binary search algorithms should look like this –

Procedure binary_search

SEARCHING AND SORTING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 4/17

 A ← sorted array

 n ← size of array

 x ← value to be searched

 Set lowerBound = 1

 Set upperBound = n

 while x not found

 if upperBound < lowerBound

 EXIT: x does not exists.

 set midPoint = lowerBound + (upperBound - lowerBound) / 2

 if A[midPoint] < x

 set lowerBound = midPoint + 1

 if A[midPoint] > x

 set upperBound = midPoint - 1

 if A[midPoint] = x

 EXIT: x found at location midPoint

 end while

 end procedure

Comparison of Linear Search vs Binary Search:

Linear Search

Binary Search

A linear search scans one item at a time, without jumping to any item .

The worst case complexity is O(n), sometimes known an O(n) search

Time taken to search elements keep increasing as the number of elements are increased.

A binary search however, cut down your search to half as soon as you find middle of a

sorted list.

The middle element is looked to check if it is greater than or less than the value to be

searched.

Accordingly, search is done to either half of the given list

Important Differences

Input data needs to be sorted in Binary Search and not in Linear Search

Linear search does the sequential access whereas Binary search access data randomly.

Time complexity of linear search -O(n) , Binary search has time complexity O(log n).

 Linear search performs equality comparisons and Binary search performs ordering

comparisons

Let us look at an example to compare the two:

Linear Search to find the element “J” in a given sorted list from A-X

SEARCHING AND SORTING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 5/17

 linear-search

Binary Search to find the element “J” in a given sorted list from A-X

 binary-search

SORTING:

Sorting is nothing but storage of data in sorted order, it can be in ascending or

descending order. The term Sorting comes into picture with the term Searching. There

are so many things in our real life that we need to search, like a particular record in

database, roll numbers in merit list, a particular telephone number, any particular page in

a book etc.

Sorting arranges data in a sequence which makes searching easier. Every record which is

going to be sorted will contain one key. Based on the key the record will be sorted. For

example, suppose we have a record of students, every such record will have the following

data:

 Roll No.

 Name

 Age

 Class

Here Student roll no. can be taken as key for sorting the records in ascending or

descending order. Now suppose we have to search a Student with roll no. 15, we don't

need to search the complete record we will simply search between the Students with roll

no. 10 to 20.

SEARCHING AND SORTING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 6/17

Selection Sort:

Selection sort is a simple sorting algorithm. This sorting algorithm is an in-place

comparison-based algorithm in which the list is divided into two parts, the sorted part at

the left end and the unsorted part at the right end. Initially, the sorted part is empty and

the unsorted part is the entire list.

The smallest element is selected from the unsorted array and swapped with the leftmost

element, and that element becomes a part of the sorted array. This process continues

moving unsorted array boundary by one element to the right.

This algorithm is not suitable for large data sets as its average and worst case

complexities are of Ο(n2), where n is the number of items.

How Selection Sort Works:

Consider the following depicted array as an example.

For the first position in the sorted list, the whole list is scanned sequentially. The first

position where 14 is stored presently, we search the whole list and find that 10 is the

lowest value.

So we replace 14 with 10. After one iteration 10, which happens to be the minimum value

in the list, appears in the first position of the sorted list.

For the second position, where 33 is residing, we start scanning the rest of the list in a

linear manner.

We find that 14 is the second lowest value in the list and it should appear at the second

place. We swap these values.

SEARCHING AND SORTING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 7/17

After two iterations, two least values are positioned at the beginning in a sorted manner.

The same process is applied to the rest of the items in the array. Following is a pictorial

depiction of the entire sorting process −

SEARCHING AND SORTING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 8/17

Algorithm:

Step 1 − Set MIN to location 0

Step 2 − Search the minimum element in the list

Step 3 − Swap with value at location MIN

Step 4 − Increment MIN to point to next element

Step 5 − Repeat until list is sorted

Pseudocode:

procedure selection sort

 list : array of items

 n : size of list

for i = 1 to n - 1

 /* set current element as minimum*/

 min = i

 /* check the element to be minimum */

 for j = i+1 to n

 if list[j] < list[min] then

 min = j;

 end if

 end for

 /* swap the minimum element with the current element*/

 if indexMin != i then

 swap list[min] and list[i]

 end if

SEARCHING AND SORTING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 9/17

 end for

end procedure

Insertion Sort:

This is an in-place comparison-based sorting algorithm. Here, a sub-list is maintained

which is always sorted. For example, the lower part of an array is maintained to be

sorted. An element which is to be 'insert'ed in this sorted sub-list, has to find its

appropriate place and then it has to be inserted there. Hence the name, insertion sort.

The array is searched sequentially and unsorted items are moved and inserted into the

sorted sub-list (in the same array). This algorithm is not suitable for large data sets as its

average and worst case complexity are of Ο(n2), where n is the number of items.

 Insertion Sort Works:

We take an unsorted array for our example.

Insertion sort compares the first two elements.

It finds that both 14 and 33 are already in ascending order. For now, 14 is in sorted sub-

list.

Insertion sort moves ahead and compares 33 with 27.

And finds that 33 is not in the correct position.

SEARCHING AND SORTING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 10/17

It swaps 33 with 27. It also checks with all the elements of sorted sub-list. Here we see

that the sorted sub-list has only one element 14, and 27 is greater than 14. Hence, the

sorted sub-list remains sorted after swapping.

By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 with 10.

These values are not in a sorted order.

So we swap them.

However, swapping makes 27 and 10 unsorted.

Hence, we swap them too.

Again we find 14 and 10 in an unsorted order.

SEARCHING AND SORTING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 11/17

We swap them again. By the end of third iteration, we have a sorted sub-list of 4 items.

This process goes on until all the unsorted values are covered in a sorted sub-list. Now

we shall see some programming aspects of insertion sort.

Algorithm

Now we have a bigger picture of how this sorting technique works, so we can derive

simple steps by which we can achieve insertion sort.

Step 1 − If it is the first element, it is already sorted. return 1;

Step 2 − Pick next element

Step 3 − Compare with all elements in the sorted sub-list

Step 4 − Shift all the elements in the sorted sub-list that is greater than the

 value to be sorted

Step 5 − Insert the value

Step 6 − Repeat until list is sorted

Pseudocode

procedure insertionSort (A : array of items)

 int holePosition

 int valueToInsert

 for i = 1 to length(A) inclusive do:

 /* select value to be inserted */

 valueToInsert = A[i]

SEARCHING AND SORTING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 12/17

 holePosition = i

 /*locate hole position for the element to be inserted */

 while holePosition > 0 and A[holePosition-1] > valueToInsert do:

 A[holePosition] = A[holePosition-1]

 holePosition = holePosition -1

 end while

 /* insert the number at hole position */

 A[holePosition] = valueToInsert

 end for

end procedure

Shell Sort:

Shell sort is a highly efficient sorting algorithm and is based on insertion sort algorithm.

This algorithm avoids large shifts as in case of insertion sort, if the smaller value is to the

far right and has to be moved to the far left.

This algorithm uses insertion sort on a widely spread elements, first to sort them and then

sorts the less widely spaced elements. This spacing is termed as interval. This interval is

calculated based on Knuth's formula as −

Knuth's Formula

h = h * 3 + 1 where − h is interval with initial value 1

This algorithm is quite efficient for medium-sized data sets as its average and worst case

complexity are of Ο(n), where n is the number of items.

Shell Sort Works:Let us consider the following example to have an idea of how shell

sort works. We take the same array we have used in our previous examples. For our

example and ease of understanding, we take the interval of 4. Make a virtual sub-list of

all values located at the interval of 4 positions. Here these values are {35, 14}, {33, 19},

{42, 27} and {10, 44}

SEARCHING AND SORTING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 13/17

We compare values in each sub-list and swap them (if necessary) in the original array.

After this step, the new array should look like this −

Then, we take interval of 2 and this gap generates two sub-lists - {14, 27, 35, 42}, {19,

10, 33, 44}

We compare and swap the values, if required, in the original array. After this step, the

array should look like this −

SEARCHING AND SORTING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 14/17

Finally, we sort the rest of the array using interval of value 1. Shell sort uses insertion

sort to sort the array.

Following is the step-by-step depiction −

SEARCHING AND SORTING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 15/17

We see that it required only four swaps to sort the rest of the array

Algorithm:

Following is the algorithm for shell sort.

Step 1 − Initialize the value of h

Step 2 − Divide the list into smaller sub-list of equal interval h

Step 3 − Sort these sub-lists using insertion sort

Step 3 − Repeat until complete list is sorted

Pseudocode:

Following is the pseudocode for shell sort.

procedure shellSort()

 A : array of items

 /* calculate interval*/

 while interval < A.length /3 do:

 interval = interval * 3 + 1

 end while

 while interval > 0 do:

 for outer = interval; outer < A.length; outer ++ do:

 /* select value to be inserted */

 valueToInsert = A[outer]

 inner = outer;

 /*shift element towards right*/

 while inner > interval -1 && A[inner - interval] >= valueToInsert do:

 A[inner] = A[inner - interval]

 inner = inner - interval

 end while

 /* insert the number at hole position */

 A[inner] = valueToInsert

 end for

 /* calculate interval*/

SEARCHING AND SORTING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 16/17

 interval = (interval -1) /3;

 end while

 end procedure

Comparison of Sorting Techniques:

Sorting: The process of ordering of elements is known as sorting. It is very important in

day to day life. Nor we neither computer can understand the data stored in an irregular

way. Sorting of comparisons can be done on the basis of complexity.

Complexity: Complexity of an algorithm is a measure of the amount of time and/or

space required by an algorithm for an input of a given size (n).There are two types of

complexity: 1.Space complexity 2. time complexity

Space complexity measures the space used by algorithm at running time. Time

complexity for an algorithm is different for different devices as different devices have

different speeds so, we measure time complexity as the no. of statements executed

indifferent cases of inputs.

 SORTING TECHNIQUES

1.Selection Sorting:-In selection sort we find the smallest number and place it at first

position, then at second and so on.

 Complexity: - An array in sorted or unsorted form doesn’t make any difference. It is

same in both best & worst cases. The first pass makes (n-1) comparisons to find smallest

number, second pass makes (n-2) and so on, then Time Complexity T(n) will be :

2.Insertion Sort: -It takes list in two parts, sorted list and unsorted list. In this sorting

technique, first element of unsorted list gets placed in previous sorted list and runs till all

elements are in sorted list.

Complexity:-

Best Case: -All elements are sorted or almost sorted. Therefore, comparison occurs

atleast one time in inner loop, then time Complexity T(n) will be

Average Case: - We consider that there will be approximately (n-1)/2 comparisons in

inner loop.

Worst Case: - In this case comparison in inner loop is done almost one in first time, 2

times in second turn, and (n-1) times in (n-1) turns.

3.Shell Sort: - This technique is mainly based on insertion sort. In a pass it sorts the

numbers when are separated at equal distance. In each consecutive pass distance will be

gradually decreases till the distance becomes 1. It uses insertion sort to sort elements with

a little change in it.

SEARCHING AND SORTING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA & IT KAHE 17/17

Complexity: - Shell sort analysis is very difficult some time complexities for certain

sequences of increments are known.

 Base Case: - O (n)

 Average Case: - nlog 2n or n 3/2

Worse Case: - It depends on gap sequence. The best known is nlog 2n.

 POSSIBLE QUESTIONS

UNIT-IV

PART-A (20 MARKS)

(Q.NO 1 TO 20 Online Examination)

PART-B (2 MARKS)

1. Define Searching.

2. What is Sorting.

3. What is Linear Search.

4. What is Binary Search.

5. Define Shell Sort.

PART-C (6 MARKS)

1. Define Searching. Write an Algorithm for Linear Search.

2. Write an Algorithm for Binary Search.

3. Compare Linear and Binary Search .

4. Write an Algorithm for Binary Search.

5. Write an Algorithm for Linear Search.

S.NO QUESTIONS
1 In a graph G(V,E), V is a finite non-empty set of _______ and E is a set of edges.

2

Iff the degree of each vertex is even, a walk starting from one vertex and going through all
the other vertices exactly once and returning to the starting vertex is called ________

3
In a undirected graph G two vertices v1 and v2 are said to be ______if there is a path in G
from v1 to v2.

4 In a Graph G if there are n vertices the adjacency list then consists of _______ nodes.

5
In a Graph G if there are n vertices the adjacency Matrix of the graph consists of _______
rows and colums.

6 In ________ graph the pair of vertices joined by any edge is unordered.
7 In__________ graph each edge is represented by the directed pair<v1,v2>.
8 The________ of a path is the number of edges on it.

9
An n vertex undirected graph with exactly n(n-1)/2 distinct edges is said to be

10 A________ is a simple path in which the first & last vertices are the same.
11 A connected component of an undirected graph is a _________ connected subgraph.
12 A ________ is a connected acyclic graph.

13
In a graph with n vertices the number of distinct unordered pairs(vi,vj) with vi not equal to
vj is _________

14 In a graph ____ of a vertex is the number of edges incident to it.
15 The ________ of a vertex is defined as the number of edges for which v is the head.
16 The ________ is defined to be the number of edges for which v is the tail

17
Directed graph is also called _______.

18
In a directed graph G(V,E) a vertex vj is ______ vi iff there is an edge <vi,vj> in E

19
A vertex vi is adjacent to vj iff _______

20
An edge connected by any 2 vertices i & j can be determined by_____

21 An edge <vi,vj> is said to ________ on two vertices vi and vj.

22
A _____ from vertex vi to vj is a seqence of vertices from vi to vj with an edge connecting
them in pairs

23 The _____ of a path is the number if edges on it.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 Coimbatore - 641021.

 (For the candidates admitted from 2016 onwards)

 DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 UNIT IV :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

24
The adjacency matrix of an undirect graph is always _____.

25 A graph with weighted edge is called a ______.

26
Any tree consisting solely of edges in G and including all vertices in G is called _______.

27 The spanning tree resulting from a call to DFS is known as a _______ spanning tree.
28 When BFS is used the resulting spanning tree is called a _____ spanning tree.

29
______ and ______ are the searching techniques used in graphs.

30
Starting from a vertex v and visiting all vertices adjacent to it before moving to the next
vertex is called _______ search

31
The all pairs shortest path problem calls for finding the ______ paths between all pairs of
vertices.

32
A ________ graph is a graph in which each vertex of G is adjacent to every other vertex
in G.

33 ________ is a collection of records, each record having one or more fields.

34
A directed graph with no directed cycle is called _____

35
If i is the predecessor of j in a network then i preceed j in the linear ordering. Such an
ordering in graphs is called ______

36 In a AOV network if i is a predecessor of j then j is the _____ of i

37
A precedence relation which is both transitive and irreflexive is a ________

38
For a network with n vertices and e edges the asymptotic computing time of the
topological ordering algorithm is ________

39
For a network with n vertices and e edges the asymptotic computing time of the
topological ordering algorithm is ________

40

A directed graph in which the vertecies represemt tasks or activities and edges represent
precedence relation between tasks is __________

41 All connected graphs with n-1 edges are called __

42

_______ of a undirected graph each edge <vi,vj> is represented by two entries, one on the
list for vi and the other on the list for vj.

43 Introducing any one edge into a spanning tree will result in a ____
44 The cost of spanning tree is the _____ cost of the edges in that tree
45 ________ assigned to the edges of a graph are called its cost or length of the link.

46 All algorithms using adjacency matrix will require atleast _____ time.

47 The fields used to distinguish among the records are known as ________.

48
In _______ search method the search begins by examining the record in the middle of the
file.

49 ________ search involves only addition and subtraction.

50
Kruskal formulated a method to determine ________ in graphs.

51
_________ sort is done in graphs

52
 An _________ requires that the collection of data fit entirely in the computer’s main
memory.

53
An _________ when the collection of data cannot fit in the computer’s main memory all
at once but must reside in secondary storage such as on a disk.

54
__________ are a specific type of Algorithms that specialize in taking in multiple sorted
lists and merging them into a single sorted list.

55 A ________ data structure, the size of the structure is fixed.
56 A ________sort is one in which successive elements are selected.

57
The straight selection sort is also known as __________

58

An ________is one that sorts a set of records by inserting records into an existing sorted
file.

59 The ________sorts separate subfilesof the original file.

60

A table of records in which a key is used for retrieval is called a__________ .

OPTION 1 OPTION 2 OPTION 3 OPTION 4 KEY
Nodes Items Vertices Circles Vertices
Kruskals path Hamiltonian

cycle
Eulerian walk Koenisberg

bridge
Eulerian walk

connected adjacent neighbours incident connected

n/2 2n n-1 n n
n/2 2n n-1 n n

directed undirected sub multi undirected
undirected multi directed sub directed
tree maximal length cycle length
connected complete directed cyclic complete

Cycle graph component matrix Cycle
tree strongly weekly maximal maximal
graph component tree list tree
n(n-1)/2 n-1 n(n-1) n/2 n(n-1)/2

path degree depth height degree
out-degree pre-degree in-degree post-degree in-degree
in-degree out-degree pre-degree post-degree out-degree
Line Graph sub graph connected

graph
di graph di graph

adjacent from adjacency
matrix

adjacent from adjacency list adjacent from

vi=vj <vi,vj> is an
edge in E

if it belongs
to a graph

vi is starting
vertex

<vi,vj> is an
edge in E

sparse matrix adjacency
matrix

linked lists tree graph adjacency
matrix

parallel incident degree loop incident
path length cycle tree path

degree length degree height length

KARPAGAM ACADEMY OF HIGHER EDUCATION
 Coimbatore - 641021.

 (For the candidates admitted from 2016 onwards)

 DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 UNIT IV :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

Unit Matrix Diagonal
Matix

Identity
Matrix

SymetricMatrix SymetricMatrix

strong graph network component sub graph network
graph spanning tree tri graph bread the first

spanning tree
spanning tree

Independent breadth first depth first dependent depth first
breadth first depth first independent dependent breadth first
Inorder,
preorder

firstfit,
bestfit

depth first,
breadth first

prefix, postfix depth first,
breadth first

breadth first depth first pre order first fit breadth first

longest shortest minimal maximal shortest

Complete Incomplete connected un connected Complete

data base file directory address file
topological
graph

subgraph connected
graph

acyclic graph acyclic graph

Heap sort Merge sort Topological
sort

linear search Topological sort

root successor path ancester successor
spanning tree depth first

searching
partial
ordering

topological
sorting

partial ordering

O(e+n) O(e) O(n) O(en) O(e+n)

linear constant quadratic exponential linear

activity on
vertex
network

topological
network

complete
network

precedence
relation
network

activity on
vertex network

digraphs cyclic graphs trees subgraphs trees
Adjacency list Inverse

adjacency list
Adjacency
multilist

adjacency
matrix

Adjacency list

cycle component digraph tree cycle
maximum average sum minimum sum
weights size depth degree weights

O(n2) O(n) O(n3) O(2n) O(n2)
records address pointers keys keys
sequential fibonacci binary non-sequential binary

Binary fibonacci sequential non sequential fibonacci
Breadth first
search

connected
component

adjacency
matrix

minimum cost
spanning tree

minimum cost
spanning tree

Merge sort Heap Topological
sort

Linear sort Topological sort

Internal sort external sort sorting searching Internal sort

Internal sort external sort sorting searching external sort

Multiway Merges Multiway
Merges

Dynamic
Merges

Multiway
Merges

static dynamic non terminal non sequential static
insertion deletion Selection shell Selection
push-down
sort

selection shell sort shell push-down sort

down sort insertion sort selection shell insertion sort

down sort insertion sort shell sort shell shell sort
insert table delete table records search table search table

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 1/22

SYLLABUS

UNIT-V

Hashing - Introduction to Hashing, Deleting from Hash Table, Efficiency of Rehash

Methods, Hash Table Reordering, Resolving collusion by Open Addressing, Coalesced

Hashing, Separate Chaining, Dynamic and Extendible Hashing, Choosing a Hash

Function, Perfect Hashing, Function

Hash Table is a data structure which stores data in an associative manner. In a hash

table, data is stored in an array format, where each data value has its own unique index

value. Access of data becomes very fast if we know the index of the desired data.

Thus, it becomes a data structure in which insertion and search operations are very fast

irrespective of the size of the data. Hash Table uses an array as a storage medium and

uses hash technique to generate an index where an element is to be inserted or is to be

located from.

Hashing

Hashing is a technique to convert a range of key values into a range of indexes of an

array. We're going to use modulo operator to get a range of key values. Consider an

example of hash table of size 20, and the following items are to be stored. Item are in the

(key,value) format.

Hash Function

(1,20)

(2,70)

(42,80)

(4,25)

(12,44)

(14,32)

(17,11)

(13,78)

(37,98)

Sr. No. Key Hash Array Index

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 2/22

1 1 1 % 20 = 1 1

2 2 2 % 20 = 2 2

3 42 42 % 20 = 2 2

4 4 4 % 20 = 4 4

5 12 12 % 20 = 12 12

6 14 14 % 20 = 14 14

7 17 17 % 20 = 17 17

8 13 13 % 20 = 13 13

9 37 37 % 20 = 17 17

Linear Probing

As we can see, it may happen that the hashing technique is used to create an already used

index of the array. In such a case, we can search the next empty location in the array by

looking into the next cell until we find an empty cell. This technique is called linear

probing.

Sr. No. Key Hash Array Index After Linear Probing, Array Index

1 1 1 % 20 = 1 1 1

2 2 2 % 20 = 2 2 2

3 42 42 % 20 = 2 2 3

4 4 4 % 20 = 4 4 4

5 12 12 % 20 = 12 12 12

6 14 14 % 20 = 14 14 14

7 17 17 % 20 = 17 17 17

8 13 13 % 20 = 13 13 13

9 37 37 % 20 = 17 17 18

Basic Operations

Following are the basic primary operations of a hash table.

Search − Searches an element in a hash table.

Insert − inserts an element in a hash table.

delete − Deletes an element from a hash table.

DataItem

Define a data item having some data and key, based on which the search is to be

conducted in a hash table.

struct DataItem {

 int data;

 int key;

};

Hash Method

Define a hashing method to compute the hash code of the key of the data item.

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 3/22

int hashCode(int key){

 return key % SIZE;

}

Search Operation

Whenever an element is to be searched, compute the hash code of the key passed and

locate the element using that hash code as index in the array. Use linear probing to get the

element ahead if the element is not found at the computed hash code.

Insert Operation

Whenever an element is to be inserted, compute the hash code of the key passed and

locate the index using that hash code as an index in the array. Use linear probing for

empty location, if an element is found at the computed hash code.

Delete Operation

Whenever an element is to be deleted, compute the hash code of the key passed and

locate the index using that hash code as an index in the array. Use linear probing to get

the element ahead if an element is not found at the computed hash code. When found,

store a dummy item there to keep the performance of the hash table intact.

Example

struct DataItem* delete(struct DataItem* item) {

 int key = item->key;

 //get the hash

 int hashIndex = hashCode(key);

 //move in array until an empty

 while(hashArray[hashIndex] !=NULL) {

 if(hashArray[hashIndex]->key == key) {

 struct DataItem* temp = hashArray[hashIndex];

 //assign a dummy item at deleted position

 hashArray[hashIndex] = dummyItem;

 return temp;

 }

 //go to next cell

 ++hashIndex;

 //wrap around the table

 hashIndex %= SIZE;

 }

 return NULL;

}

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 4/22

EFFICIENCY OF REHASH METHODS:

RE-HASHING:

 Re-hashing schemes use a second hashing operation when there is a collision. If there is

a further collision, we re-hash until an empty "slot" in the table is found.

Rehashing code:

// Grows hash array to twice its original size.

 private void rehash() {

 List<Integer>[] oldElements = elements;

 elements = (List<Integer>[])

 new List[2 * elements.length];

 for (List<Integer> list : oldElements) {

 if (list != null) {

 for (int element : list) {

 add(element);

 }

 }

 }

}

Efficiency of rehash methods:

Hash table

Type Unordered associative array

Invented 1953

Time complexity in big O notation

Algorithm Average Worst Case

Space O(n) O(n)

Search O(1) O(n)

Insert O(1) O(n)

Delete O(1) O(n)

https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/Associative_array
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Big_O_notation

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 5/22

Hash Table Reordering:

If the table size increases or decreases by a fixed percentage at each expansion, the total

cost of these resizings, amortized over all insert and delete operations, is still a constant,

independent of the number of entries n and of the number m of operations performed.

For example, consider a table that was created with the minimum possible size and is

doubled each time the load ratio exceeds some threshold. If m elements are inserted into

that table, the total number of extra re-insertions that occur in all dynamic resizings of the

table is at most m − 1. In other words, dynamic resizing roughly doubles the cost of each

insert or delete operation.

Alternatives to all-at-once rehashing:

Some hash table implementations, notably in real-time systems, cannot pay the price of

enlarging the hash table all at once, because it may interrupt time-critical operations. If

one cannot avoid dynamic resizing, a solution is to perform the resizing gradually:

Disk-based hash tables almost always use some alternative to all-at-once rehashing, since

the cost of rebuilding the entire table on disk would be too high.

Incremental resizing:

One alternative to enlarging the table all at once is to perform the rehashing gradually:

 During the resize, allocate the new hash table, but keep the old table unchanged.

 In each lookup or delete operation, check both tables.

 Perform insertion operations only in the new table.

 At each insertion also move r elements from the old table to the new table.

 When all elements are removed from the old table, deallocate it.

To ensure that the old table is completely copied over before the new table itself needs to

be enlarged, it is necessary to increase the size of the table by a factor of at least (r + 1)/r

during resizing.

RESOLVING COLLUSION :

When two different keys produce the same address, there is a collision. The keys

involved are called synonyms. Coming up with a hashing function that avoids collision is

extremely difficult. It is best to simply find ways to deal with them. The possible

solution, can be:

Spread out the records

Use extra memory

Put more than one record at a single address.

An example of Collision

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 6/22

Hash table size: 11

Hash function: key mod hash size

So, the new positions in the hash table are:

Some collisions occur with this hash function as shown in the above figure.

Another example (in a phonebook record):

Here, the buckets for keys 'John Smith' and 'Sandra Dee' are the same. So, its a collision

case.

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 7/22

Collision Resolution:Collision occurs when h(k1) = h(k2), i.e. the hash function gives

the same result for more than one key. The strategies used for collision resolution are:

 Chaining

o Store colliding keys in a linked list at the same hash table index

 Open Addressing

o Store colliding keys elsewhere in the table

Chaining:

Separate Chaining

Strategy:

Maintains a linked list at every hash index for collided elements.

Lets take the example of an insertion sequence: {0 1 4 9 16 25 36 49 64 81}.

Here, h(k) = k mod tablesize = k mod 10 (tablesize = 10)

Hash table T is a vector of linked lists

Insert element at the head (as shown here) or at the tail

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 8/22

Key k is stored in list at T[h(k)]

So, the problem is like: "Insert the first 10 preface squares in a hash table of size 10"

The hash table looks like:

Collision Resolution by Chaining: Analysis

 Load factor λ of a hash table T is defined as follows:

N = number of elements in T (“current size”)

M = size of T (“table size”)

λ = N/M (“ load factor”)

i.e., λ is the average length of a chain

 Unsuccessful search time: O(λ)

Same for insert time

 Successful search time: O(λ/2)

 Ideally, want λ ≤ 1 (not a function of N)

Potential diadvantages of Chaining

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 9/22

 Linked lists could get long

Especially when N approaches M

Longer linked lists could negatively impact performance

 More memory because of pointers

 Absolute worst-case (even if N << M):

All N elements in one linked list!

Typically the result of a bad hash function

Open Addressing:

Open Addressing

As shown in the above figure, in open addressing, when collision is encountered, the next

key is inserted in the empty slot of the table. So, it is an 'inplace' approach.

Advantages over chaining

 No need for list structures

 No need to allocate/deallocate memory during insertion/deletion (slow)

Diadvantages

 Slower insertion – May need several attempts to find an empty slot

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 10/22

 Table needs to be bigger (than chaining-based table) to achieve average-case

constant-time performance

Load factor λ ≈ 0.5

Probing

The next slot for the collided key is found in this method by using a technique

called "Probing". It generates a probe sequence of slots in the hash table and we need to

chose the proper slot for the key 'x'.

 h0(x), h1(x), h2(x), …

 Needs to visit each slot exactly once

 Needs to be repeatable (so we can find/delete what we’ve inserted)

 Hash function

o hi(x) = (h(x) + f(i)) mod TableSize

o f(0) = 0 ==> position for the 0th probe

o f(i) is “the distance to be traveled relative to the 0th probe position, during

the ith probe”.

Some of the common methods of probing are:

1. Linear Probing:

Suppose that a key hashes into a position that has been already occupied. The simplest

strategy is to look for the next available position to place the item. Suppose we have a set

of hash codes consisting of {89, 18, 49, 58, 9} and we need to place them into a table of

size 10. The following table demonstrates this process

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 11/22

The first collision occurs when 49 hashes to the same location with index 9. Since 89

occupies the A[9], we need to place 49 to the next available position. Considering the

array as circular, the next available position is 0. That is (9+1) mod 10. So we place 49 in

A[0].

Several more collisions occur in this simple example and in each case we keep looking to

find the next available location in the array to place the element. Now if we need to find

the element, say for example, 49, we first compute the hash code (9), and look in A[9].

Since we do not find it there, we look in A[(9+1) % 10] = A[0], we find it there and we

are done.

So what if we are looking for 79? First we compute hashcode of 79 = 9. We probe in

A[9], A[(9+1)]=A[0], A[(9+2)]=A[1], A[(9+3)]=A[2], A[(9+4)]=A[3] etc. Since A[3] =

null, we do know that 79 could not exists in the set.

Issues with Linear Probing:

 Probe sequences can get longer with time

 Primary clustering

o Keys tend to cluster in one part of table

o Keys that hash into cluster will be added to the end of the cluster (making

it even bigger)

o Side effect: Other keys could also get affected if mapping to a crowded

neighborhood

2. Quadratic Probing:

Although linear probing is a simple process where it is easy to compute the next available

location, linear probing also leads to some clustering when keys are computed to closer

values. Therefore we define a new process of Quadratic probing that provides a better

distribution of keys when collisions occur. In quadratic probing, if the hash value is K ,

then the next location is computed using the sequence K + 1, K + 4, K + 9 etc..

The following table shows the collision resolution using quadratic probing.

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 12/22

 Avoids primary clustering

 f(i) is quadratic in i: eg: f(i) = i2

 hi(x) = (h(x) + i2) mod tablesize

Quadratic Probing: Analysis

 Difficult to analyze

 Theorem

New element can always be inserted into a table that is at least half empty and

TableSize is prime

 Otherwise, may never find an empty slot, even is one exists

 Ensure table never gets half full

If close, then expand it

 May cause “secondary clustering”

 Deletion

Emptying slots can break probe sequence and could cause find stop prematurely

 Lazy deletion:Differentiate between empty and deleted slot

When finding skip and continue beyond deleted slots

If you hit a non-deleted empty slot, then stop find procedure returning “not found”

 May need compaction at some time

3. Double Hashing

Double hashing uses the idea of applying a second hash function to the key when a

collision occurs. The result of the second hash function will be the number of positions

form the point of collision to insert.

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 13/22

There are a couple of requirements for the second function:

 it must never evaluate to 0

 must make sure that all cells can be probed

A popular second hash function is: Hash2(key) = R - (key % R) where R is a prime

number that is smaller than the size of the table.

4. Hashing with Rehashing:

 Once the hash table gets too full, the running time for operations will start to take

too long and may fail. To solve this problem, a table at least twice the size of the original

will be built and the elements will be transferred to the new table.

The new size of the hash table:

 should also be prime

 will be used to calculate the new insertion spot (hence the name rehashing)

 This is a very expensive operation! O(N) since there are N elements to rehash and

the table size is roughly 2N. This is ok though since it doesn't happen that often.

Coalesced Hashing:

The chaining method discussed above requires additional space for maintaining

pointers. The table stores only pointers but each node of the linked list requires

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 14/22

storage space for data as well as one pointer field. Thus, for n keys, n + MAX_SIZE

pointers are needed, where MAX_SIZE is the maximum size of the table in which

values are to be inserted. If the value of n is large, the space required to store this

table is quite large.

The solution to this problem is called coalesced hashing or coalesced chaining. This

method is the hybrid of chaining and open addressing. Each index position in the

table stores key value and a pointer to the next index position. The pointer generally

points to the index position where the colliding key value will be stored.

In this method, the next available position is searched for a colliding key and is

placed in that position. After each such insertion, pointer re – adjustment is required.

After inserting the key values at the right place, the next pointer of the previous

position is made to point to the position where the colliding key is inserted. In this

method, instead of allocating new nodes for the linked list of keys with collision,

empty position from the table itself is allocated.

 For Example, the values 25, 36, and 47 will be inserted thus in the table –

 Now, we insert key value 85 into this table. This method starts inserting the collided

key values from the bottom of the table. Key value 85 will go in at index position 9 in

the table and the pointer will be re – adjusted. That is, the next pointer of position 5

will point to index position 9.

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 15/22

Index position 9 is full and any key value hashing into this position will have to be

inserted into the next available empty location, starting from the bottom of the table.

So, if we insert key value 49 into the table, it will go into index position 8 with

pointer re – adjustment. The table will look like –

This process will continue for all the colliding key values.

 DYNAMIC AND EXTENDIBLE HASHING:

For a huge database structure, it can be almost next to impossible to search all the index

values through all its level and then reach the destination data block to retrieve the

desired data. Hashing is an effective technique to calculate the direct location of a data

record on the disk without using index structure.

Hashing uses hash functions with search keys as parameters to generate the address of a

data record.

Hash Organization:

Bucket − A hash file stores data in bucket format. Bucket is considered a unit of storage.

A bucket typically stores one complete disk block, which in turn can store one or more

records.

Hash Function − A hash function, h, is a mapping function that maps all the set of

search-keys K to the address where actual records are placed. It is a function from search

keys to bucket addresses.

Static Hashing

In static hashing, when a search-key value is provided, the hash function always

computes the same address. For example, if mod-4 hash function is used, then it shall

generate only 5 values. The output address shall always be same for that function. The

number of buckets provided remains unchanged at all times.

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 16/22

Operation

 Insertion − When a record is required to be entered using static hash, the hash

function h computes the bucket address for search key K, where the record will

be stored.

Bucket address = h(K)

 Search − When a record needs to be retrieved, the same hash function can be

used to retrieve the address of the bucket where the data is stored.

 Delete − This is simply a search followed by a deletion operation.

Bucket Overflow

The condition of bucket-overflow is known as collision. This is a fatal state for any

static hash function. In this case, overflow chaining can be used.

 Overflow Chaining − When buckets are full, a new bucket is allocated for the

same hash result and is linked after the previous one. This mechanism is

called Closed Hashing.

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 17/22

 Linear Probing − When a hash function generates an address at which data is

already stored, the next free bucket is allocated to it. This mechanism is

called Open Hashing.

Dynamic Hashing:

The problem with static hashing is that it does not expand or shrink dynamically as the

size of the database grows or shrinks. Dynamic hashing provides a mechanism in which

data buckets are added and removed dynamically and on-demand. Dynamic hashing is

also known as extended hashing.

Hash function, in dynamic hashing, is made to produce a large number of values and only

a few are used initially.

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 18/22

Organization

The prefix of an entire hash value is taken as a hash index. Only a portion of the hash

value is used for computing bucket addresses. Every hash index has a depth value to

signify how many bits are used for computing a hash function. These bits can address 2n

buckets. When all these bits are consumed − that is, when all the buckets are full − then

the depth value is increased linearly and twice the buckets are allocated.

Operation

Querying − Look at the depth value of the hash index and use those bits to compute the

bucket address.

Update − Perform a query as above and update the data.

Deletion − Perform a query to locate the desired data and delete the same.

Insertion − Compute the address of the bucket

 If the bucket is already full.

1. Add more buckets.

2. Add additional bits to the hash value.

3. Re-compute the hash function.

 Else

1. Add data to the bucket,

 If all the buckets are full, perform the remedies of static hashing.

Hashing is not favorable when the data is organized in some ordering and the queries

require a range of data. When data is discrete and random, hash performs the best.

Hashing algorithms have high complexity than indexing. All hash operations are done in

constant time.

Extendible hashing:

 Extendible hashing is a type of hash system which treats a hash as a bit string, and

uses a trie for bucket lookup. Because of the hierarchical nature of the system, re-hashing

is an incremental operation (done one bucket at a time, as needed). This means that time-

sensitive applications are less affected by table growth than by standard full-table

rehashes.

Choosing a Hash Function:

Choosing a good hash function is of the utmost importance. An uniform hash function is

one that equally distributes data items over the whole hash table data structure. If the hash

function is poorly chosen data items may tend to clump in one area of the hash table and

https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Trie

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 19/22

many collisions will ensue. A non-uniform dispersal pattern and a high collision rate

cause an overall data structure performance degradation. There are several strategies for

maximizing the uniformity of the hash function and thereby maximizing the efficiency of

the hash table.

One method, called the division method , operates by dividing a data item's key value by

the total size of the hash table and using the remainder of the division as the hash

function return value. This method has the advantage of being very simple to compute

and very easy to understand.

Selecting an appropriate hash table size is an important factor in determining the

efficiency of the division method. If you choose to use this method, avoid hash table sizes

that simply return a subset of the data item's key as the hash value. For instance, a table

one-hundred items large will result put key value 12345 at location forty-five, which is

undesirable. Further, an even data item key should not always map to an even hash value

(and, likewise, odd key values should not always produce odd hash values). A good rule

of thumb in selecting your hash table size for use with a division method hash function is

to pick a prime number that is not close to any power of two (2, 4, 8, 16, 32...).

int hash_function(data_item item)

{

 return item.key % hash_table_size;

}

Sometimes it is inconvenient to have the hash table size be prime. In certain cases only a

hash table size which is a power of two will work. A simple way of dealing with table

sizes which are powers of two is to use the following formula to computer a key: k = (x

mod p) mod m. In the above expression x is the data item key, p is a prime number, and

m is the hash table size. Choosing p to be much larger than m improves the uniformity of

this key selection process.

Yet another hash function computation method, called the multiplication method, can

be used with hash tables with a size that is a power of two. The data item's key is

multiplied by a constant, k and then bit-shifted to compute the hash function return value.

A good choice for the constant, k is N * (sqrt(5) - 1) / 2 where N is the size of the hash

table.

The product key * k is then bitwise shifted right to determine the final hash value. The

number of right shifts should be equal to the log2 N subtracted from the number of bits in

a data item key. For instance, for a 1024 position table (or 210) and a 16-bit data item

key, you should shift the product key * k right six (or 16 - 10) places.

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 20/22

int hash_function(data_item item)

{

 extern int constant;

 extern int shifts;

 return (int)((constant * item.key) >> shifts);

}

Note that the above method is only effective when all data item keys are of the same,

fixed size (in bits). To hash non-fixed length data item keys another method is variable

string addition so named because it is often used to hash variable length strings. A table

size of 256 is used. The hash function works by first summing the ASCII value of each

character in the variable length strings. Next, to determine the hash value of a given

string, this sum is divided by 256. The remainder of this division will be in the range of 0

to 255 and becomes the item's hash value.

int hash_function (char *str)

{

 int total = 0;

 while (*str) {

 total += *str++;

 }

 return (total % 256);

}

Yet another method for hashing non fixed-length data is called compression function

and discussed in the one-way hashing section.

Perfect hash function:

In computer science, a perfect hash function for a set S is a hash function that maps

distinct elements in S to a set of integers, with no collisions. In mathematical terms, it is

an injective function.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Hash_collision
https://en.wikipedia.org/wiki/Injective_function

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 21/22

 In most general applications, we cannot know exactly what set of key values will

need to be hashed until the hash function and table have been designed and put to

use.

 At that point, changing the hash function or changing the size of the table will be

extremely expensive since either would require re-hashing every key.

 A perfect hash function is one that maps the set of actual key values to the table

without any collisions.

 A minimal perfect hash function does so using a table that has only as many

slots as there are key values to be hashed.

 If the set of keys IS known in advance, it is possible to construct a specialized

hash function that is perfect, perhaps even minimal perfect.

 Algorithms for constructing perfect hash functions tend to be tedious, but a

number are known.

Dynamic perfect hashing:

Using a perfect hash function is best in situations where there is a frequently queried

large set, S, which is seldom updated. This is because any modification of the set S may

cause the hash function to no longer be perfect for the modified set. Solutions which

update the hash function any time the set is modified are known as dynamic perfect

hashing, but these methods are relatively complicated to implement.

Minimal perfect hash function

A minimal perfect hash function is a perfect hash function that maps n keys

to n consecutive integers – usually the numbers from 0 to n − 1 or from 1 to n. A more

formal way of expressing this is: Let j and k be elements of some finite setS. F is a

minimal perfect hash function if and only if F(j) = F(k) implies j = k (injectivity) and

there exists an integer a such that the range of F is a..a + |S| − 1.

Order preservation

A minimal perfect hash function F is order preserving if keys are given in some

order a1, a2, ..., an and for any keys aj and ak, j < k implies F(aj) < F(ak). In this case, the

function value is just the position of each key in the sorted ordering of all of the keys. A

simple implementation of order-preserving minimal perfect hash functions with constant

access time is to use an (ordinary) perfect hash function or cuckoo hashing to store a

lookup table of the positions of each key. If the keys to be hashed are themselves stored

in a sorted array, it is possible to store a small number of additional bits per key in a data

structure that can be used to compute hash values quickly. Order-preserving minimal

perfect hash functions require necessarily Ω(n log n) bits to be represented.

https://en.wikipedia.org/wiki/Dynamic_perfect_hashing
https://en.wikipedia.org/wiki/Dynamic_perfect_hashing
https://en.wikipedia.org/wiki/Injectivity
https://en.wikipedia.org/wiki/Cuckoo_hashing

HASHING 2016 -2019 Batch

Prepared by, S.Joyce , Department of Computer Science ,CA &IT KAHE 22/22

POSSIBLE QUESTIONS

UNIT-V

PART-A (20 MARKS)

(Q.NO 1 TO 20 Online Examination)

 PART-B (2 MARKS)

1. What is Hashing?

2. Explain about Hash Table.

3. Define Hash Function.

4. Write about Resolving Collisions.

5. Write about Separate Chaining.

PART-C (6 MARKS)

1. Write about Deleting from Hash Table.

2. Discuss about Efficiency of Rehash Methods.

3. Discuss about Resolving Collusion by Open Addressing.

4. What is Coalesced Hashing

5. What is Resolving Collusion by Open Addressing.

S.NO
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

QUESTIONS
The sum over all internal nodes of the length of the paths from the root to those node is called

________ is the sum over all external nodes of the lengths of paths from the root to those nodes.

The _____node are not a part of original tree and are represented as square nodes.

The external nodes are in a binary search treeare also known as ________ nodes

A binary tree with external nodes added is an --------------- binary tree

______ is a set of name-value pairs.

Each name in the symbol tales is associated with an___

This is not an operation perform on the symbol table.

If the identifiers are known in advance and no deletion/insertions are allowed then this symbol
table is _______The cost of decoding a code word is -------------------- to the number of bits in the code

The solution of finding a binary tree with minimum weighted external path length has been given
by_____ symbol table allows insertion and deletion of names.

________ is an application of Binary trees with minimal weighted external path lengths.

If hl and hr are the heights of the left and right subtrees of a tree respectively and if |hl-hr|<=1
then this tree is called _____If hl and hr are the heights of the left and right subtrees of a tree respectively then |hl-hr| is called
its _____For an AVL Tree the balance factor is =____

If the names are ________ in the symbol table, searching is easy.

_________ allocation is not desirable for dynamic tables, where insertions and deletions are
allowed.A search in a hash table with n identifiers may take ------time

_________ data structure is used to implement symbol tables

Every binary search tree wth n nodes has ______ sqare node (external nodes).

In a Hash table the address of the identifier x is obtained by applying

The partitions of the hash table are called ________

The arithmetic functions used for Hashing is called ______

Each bucket of Hash table is said to have several ______

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 Coimbatore - 641021.

 (For the candidates admitted from 2016 onwards)

 DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 UNIT V :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

A_______ occurs when two non_identical identifiers are hashed in the same bucket.

A hashing function f transforms an identifier x into a __________ in the hash table

When a new identifier I is mapped or hashed by the function f into a full bucket then
______occursIf f(I) and F(J) are equal then Identifiers I and J are called________

A ---tree is a binary tree in which external nodes represent messages

The identifier x is divided by some number m and the remainder is used as the hash address for x
.Then f(x) isThe identifier is folded at the part boundaries and digits falling into the same position are added
together to obtain f(x).this method adding is calledIn hash table, if the identifier x has an equal chance of hashing into any of the buckets, this
function is called asEach head node is smaller than the other nodes because it has to retain

Each chain in the hash tables will have a

Folding of identifiers fron end to end to obtain a hashing function is called ____

Average number of probes needed for searching can be obtained by -------------------- probing

Rehashing is ______

_________ is a method of overflows handling.

The number of _________ over the data can be reduced by using a higer order merge (k-way
merge with k>2)A __________ is a binary tree where each node represents the smaller of its two children

In External sorting data are stored in _________

_________ techiniques are used for sorting large files

In __________ a k-way merging uses only k+1 tapes

Before merging the next phase is is necessary to ________ the output tapes

To reduce the rewind time it is overlapped with read/write on other tapes. This modification need
________Two records cannot occupy the same position such a situation is called _________

A general method for resolving hash clashes called ______

Two keys that hash into different values compete with each other in successive rehashes is
called__________________ involves two hash functions.

A hash table organized in this way is called an __________

The simplest of the chaining methods is called _________

Another method of resolving hash clashes is called _________

The most common hash function uses the ______ method

________ function depends on every single bit of the key.

______ method the key is multiplied by itself.

_______ method breaks up a key into several segments

No clashes occur under a _______ hash function.

A perfect hash function can be developed using a techinque called __________

In ______ hashing each bucket contains an indication of the no of bits.

OPTION 1 OPTION 2 OPTION 3 OPTION 4
internal path length external path length depth of the tree level of the tree

internal path length external path length depth of the tree level of the tree

internal node external node intermediate node terminal node

internal search failure round

extended expanded internal external

Symbol table Graph Node Record

name value pairs element attribute entries

insert a new name and
its value.

retrieve the attribute
of a name.

search if a name is
already present

Add or subtract two
valuesstatic empty dynamic automatic

equal not equal proportional inversely
proportionalHuffman Kruskal Euler Hamilton

Hashed Sorted Static Dynamic

Finding optimal merge
patterns

Storage compaction Recursive
Procedure calls

Job Scheduling

extended binary tree binary search tree skewed tree height balanced tree

Average height minimal depth Maximum levels Balance factor

0 -1 1 Any of the above

sorted short bold upper case

Linear Sequential Dynamic None

O(n) O(1) O(2) O(2n)

directed graphs binary search trees circular queue None

n/2 n+1 n-1 2n

sequence of
comparisions

binary searching arithmetic function collision

Nodes Buckets Roots Fields

Logical operations Rehashing Mapping function Hashing function

slots nodes fields links

KARPAGAM ACADEMY OF HIGHER EDUCATION
 Coimbatore - 641021.

 (For the candidates admitted from 2016 onwards)

 DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 UNIT V :(Objective Type/Multiple choice Questions each Question carries one Mark)

PART-A (Online Examination)

collision contraction expansion Extraction

symbol name bucket address link field slot number

underflow overflow collision rehashing

synonyms antonyms hash functions buckets

decode uncode extended none

m mod x x mod m m mod f none of these

folding at the
boundaries

shift method folding method Tag method

Equal hash function uniform hash
function

Linear hashing
function

unequal Hashing
function only a link only a link and a

record
only two link only the record

tail node link node head node null node

Shift folding boundary folding expanded folding end to end folding

quadratic linear rehashing Sequential

series of hash function linear probing quadratic functions Rebuild function

linear open addressing Adjacency lsit sequential
representation

Indexed address

records passes tapes merges

search tree decision tree extended tree selection tree

RAM memory Cache memory secondary storage
devices

Buffers

Topological sort External sorting Linear Sorting Heap sort

Internal soring Polyphase merging Linking Hashing

replace rewind remove None

double the number of
tapes (2k tapes)

only two tapes one additional tape
(k+2 tapes)

k+1 tapes

hash collision hash collision clashes

hash collision rehashing hashing collision

primary clustering primary clustering collision

primary clustering double hashing double hashing

ordered hash table double hashing double hashing

standard hashing standard coalesced
hashing

hashing coalesced hashing

standard hashing standard coalesced
hashing

separate chaining coalesced hashing

division hash chaining collision

hash division chaining collision

folding midsquare hash functions chaining

folding midsquare hash functions chaining

folding perfect midsquare collision

folding segment segmentation perfect

folding extendible segmentation perfect

KEY
internal path length

external path length

external node

failure

extended

Symbol table

attribute

Add or subtract two
valuesstatic

proportional

Huffman

Dynamic

Finding optimal
merge patterns

height balanced tree

Balance factor

Any of the above

sorted

Sequential

O(n)

binary search trees

n+1

arithmetic function

Buckets

Hashing function

slots

collision

bucket address

overflow

synonyms

decode

x mod m

folding at the
boundaries uniform hash
function only a link

head node

boundary folding

quadratic

series of hash
function linear open
addressing passes

selection tree

secondary storage
devicesExternal sorting

Polyphase merging

rewind

one additional tape
(k+2 tapes)hash collision

rehashing

primary clustering

double hashing

ordered hash table

standard coalesced
hashingseparate chaining

division

hash

midsquare

folding

perfect

segmentation

extendible

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 1/21

Register Number____________

 [16CSU301]

KARPAGAM ACADEMY OF HIGHER EDUCATION

Coimbatore-641021.

B.Sc COMPUTER SCIENCE

FIRST INTERNAL EXAMINATION - JULY 2017

Third Semester

DATA STRUCTURES – ANSWER KEY

Class : II B.Sc(CS) Duration : 2 Hours

Date & Session : 17 .7.2017 Maximum : 50 Marks

SECTION A – (20 X 1 = 20 Marks)

ANSWER ALL THE QUESTIONS

 1. A ------ is a specialized format for organizing and storing data.

a) Data b) Data structure c) Data item d) entity

 2. The term ---- simply refers to a value or set of values.

 a) Entity b) Data c) Data item d) Record

 3. A --- is a collection of related data items.

 a) Data b) Entity c) Record d) None

 4. An ---- is a list of finite number of elements of same data type.

 a) Array b) Linear array c) Non-linear d) List

 5. A linked list is a linear collection of data elements called -----

 a) Pointer b) List c) Data d) Nodes

 6. In ---- linked list each node is divided into three parts.

 a) Singly b) Doubly c) Circular d) None

 7. A stack also called a ----- system.

 a) LIFO b) FIFO c) LILO d) FILO

 8. A ---- is a tree that can have almost two children.

 a) Binary tree b) Tree c) Heap d) Graph

 9. A ---- is an ordered set (V, E) of elements called nodes.

 a) Heap b) Tree c) Graph d) Sort

10. ----- is accessing each element exactly once.

 a) Searching b) Traversal c) Insertion d) Deletion

11. A matrix is set be ------ if many of its element are zero.

 a) Dense b) Sparse c) Diagonal d) Square

12. ------ returns the number of elements in the stack.

 a) Size () b) Empty () c) pop () d) push(x)

13. In ---- notation the operator symbol is placed before its two operands.

a) Infix b) Postfix c) Prefix d) Suffix

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 2/21

14. The elements are stored column by column in ------ major order.

 a) Column b) Row c) Array d) mxn

15. A matrix is ------ iff B(i,j)=0 for i≠j

 a) Diagonal b) Tridiagonal c) Lower d) Upper

16. A ----- list is also called a two- way list

 a) Singly b) Doubly c) Circular d) All the above

17. A ----- list is a linear linked list except that the last element points to the first element.

 a) Singly b) Doubly c) Circular d) All the above

18. A stack represented using a linked list is also known as ------

 a) Linked stack b) Stack c) Array d) List

19. A Queue also called a ----- system.

 a) LIFO b) FIFO c) LILO d) FILO

20. A ---- is an effective data structure for implementing Dictionaries.

 a) Hash table b) Graph c) Tree d) Array

PART-B (3 X2 = 6 Marks)

(Answer ALL the Questions)

21. Discuss about the Basic terminology of Data structures.

 The Basic terminologies of Data Organization are,

Data:

 The term ‘DATA’ simply refers to a value or a set of values. These values may represent anything

about something, like it may be Roll No of a student, marks of a student, name of an employee, address

of a person etc.

Data item:

 A data item refers to a single unit of value. For example, roll number, name, date of birth, age, address

and marks in each subject are data items.

Entity:

 An entity is something that has a distinct, separate existence, though it need not be a material

existence. An entity has certain ‘attributes’ or ‘properties’, which may be assigned values.

Entity Set:

 An entity set is a collection of similar entities. For example, students of a class, employees of an

organization etc. forms an entity set.

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 3/21

Record:

 A record is a collection of related data items. For example, roll number, name, date of birth, sex, and

class of a particular student such as 32, kanu, 12/03/84, F, 11. In fact, a record represents an entity.

File:

 A file is a collection of related records. For example, a file containing records of all students in class,

a file containing records of all employees of an organization. In fact, a file represents an entity set.

Key:

 A key is a data item in a record that takes unique values, only one data item as a key called

primary key. The other key are known as alternate key. Combination of some fields is known as

composite key.

Information:

 The terms data and information are same. Data is collection of values(raw data).Information is a

processed data.

22. Define Array. Explain about Single Dimensional Array .

Arrays:

 An array is a collection of variables of the same type that are referred to by a common name.

Arrays offer a convenient means of grouping together several related variables, in one dimension or

more dimensions:

 product part numbers:

 int part_numbers[] = {123, 326, 178, 1209};

Single -Dimensional Arrays:

 A one-dimensional array is a list of related variables. The general form of a one-dimensional

array declaration is: type variable_name[size]

type: base type of the array, determines the data type of each element in the array

 size: how many elements the array will hold

 variable_name: the name of the array

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 4/21

Examples:

int sample[10];

float float_numbers[100];

char last_name[40];

23. Write about the Limitations of Array Representation of Stack.

 Under the array implementation, a fixed set of nodes represented by an array is established at the

start of execution. A pointer to a node is represented by the relative position of the node within the array.

The disadvantage of that approach is twofold. First, the number of nodes that are needed often cannot be

predicted when a program is written. Usually, the data with which the program is executed determines

the number of nodes necessary. Thus no matter how many elements the array of nodes contains, it is

always possible that the program will be executed with input that requires a larger number.

The second disadvantage of the array approach is that whatever number of nodes are declared must

remain allocated to the program throughout its execution.

The solution to this problem is to allow nodes that are dynamic, rather than static. That is, when a node

is needed, storage is reserved for it, and when it is no longer needed, the storage is released. Thus the

storage for nodes that are no longer in use is available for another purpose. Also, no predefined limit on

the number of nodes is established. As long as sufficient storage is available to the job as a whole, part

of that storage can be reserved for use as a node.

We have seen that we can use arrays whenever we have to store and manipulate collections of elements.

 the dimension of an array is determined the moment the array is created, and cannot be changed

later on.

 the array occupies an amount of memory that is proportional to its size, independently of the

number of elements that are actually of interest.

 if we want to keep the elements of the collection ordered, and insert a new value in its correct

position, or remove it, then, for each such operation we may need to move many elements (on

the average, half of the elements of the array);this is very inefficient.

 PART-C (3 X 8 = 24 Marks)

(Answer ALL the Questions)

24. a. Define Data structure. What are various Data structures?

 Data Structures:

 To represent and store data in main memory or secondary memory we need a model. The

different models used to organize data in the main memory are collectively referred as data

structures.

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 5/21

 The different models used to organize data in the secondary memory are collectively referred as

file structures.

Description of various Data Structures:

The various data structures are divided into following categories:

Linear Data-Structures:

 A data structure whose elements form a sequence, and every element in the structure has a unique

predecessor and unique successor. Examples of linear data structures are arrays, link-lists, stacks and

queues.

Non-linear Data-Structures:

 A data structure whose elements do not form a sequence, there is no unique predecessor or unique

successor. Examples of non-linear data structures are trees and graphs.

Arrays: An array is a collection of variables of the same type that are referred to by a common name.

Arrays offer a convenient means of grouping together several related variables, in one dimension or

more dimensions:

 product part numbers:

 int part_numbers[] = {123, 326, 178, 1209};

One-Dimensional Arrays:

 A one-dimensional array is a list of related variables. The general form of a one-dimensional

array declaration is:

 type variable_name[size]

• type: base type of the array,determines the data type of each element in the array

• size: how many elements the array will hold

• variable_name: the name of the array

 Examples:

int sample[10];

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 6/21

float float_numbers[100];

char last_name[40];

Two-Dimensional Arrays:

 A two-dimensional array is a list of one-dimensional arrays.To declare a two-dimensional integer

array two_dim of size 10,20 we would write:

int matrix[3][4];

Multidimensional Arrays:

 C++ allows arrays with more than two dimensions. The general form of an N-dimensional array

declaration is: type array_name [size_1] [size_2] ... [size_N];

For example, the following declaration creates a 4 x 10 x 20 character array, or a matrix of strings :char

string_matrix[4][10][20];

This requires 4 * 10 * 20 = 800 bytes.

If we scale the matrix by 10, i.e. to a 40 x 100 x 20 array, then 80,000 bytes are needed.

Linked List: A linked list is a data structure consisting of a group of nodes which together represent a

sequence. Under the simplest form, each node is composed of a data and a reference (in other words, a

link) to the next node in the sequence; more complex variants add additional links. This structure allows

for efficient insertion or removal of elements from any position in the sequence.

A linked list whose nodes contain two fields: an integer value and a link to the next node. The last node

is linked to a terminator used to signify the end of the list.

Singly linked list

Singly linked lists contain nodes which have a data field as well as a next field, which points to the next

node in line of nodes.

A singly linked list whose nodes contain two fields: an integer value and a link to the next node

Doubly linked list

In a doubly linked list, each node contains, besides the next-node link, a second link field pointing to

the previous node in the sequence. The two links may be called forward(s) and backwards, or next and

prev(previous).

http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Node_(computer_science)
http://en.wikipedia.org/wiki/Reference_(computer_science)

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 7/21

A doubly linked list whose nodes contain three fields: an integer value, the link forward to the next node,

and the link backward to the previous node

Circular list

In the last node of a list, the link field often contains a null reference, a special value used to indicate the

lack of further nodes. A less common convention is to make it point to the first node of the list; in that

case the list is said to be 'circular' or 'circularly linked'; otherwise it is said to be 'open' or 'linear'.

A circular linked list

In the case of a circular doubly linked list, the only change that occurs is that the end, or "tail", of the

said list is linked back to the front, or "head", of the list and vice versa.

Stack:

 A stack is a basic data structure that can be logically thought as linear structure represented by a real

physical stack or pile, a structure where insertion and deletion of items takes place at one end called top

of the stack. The basic concept can be illustrated by thinking of your data set as a stack of plates or

books where you can only take the top item off the stack in order to remove things from it. This structure

is used all throughout programming.

 The basic implementation of a stack is also called a LIFO (Last In First Out) to demonstrate the way

it accesses data, since as we will see there are various variations of stack implementations.

 There are basically three operations that can be performed on stacks . They are 1) inserting an item

into a stack (push). 2) deleting an item from the stack (pop). 3) displaying the contents of the stack(pip).

 Stack

Queues:

 A queue is a basic data structure that is used throughout programming. You can think of it as a line

http://en.wikipedia.org/wiki/Node_(computer_science)
http://en.wikipedia.org/wiki/Null_pointer#Null_pointer

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 8/21

in a grocery store. The first one in the line is the first one to be served. Just like a queue. A queue is also

called a FIFO (First In First Out) to demonstrate the way it accesses data.

Trees:

 A tree is a non-linear data structure that consists of a root node and potentially many levels of

additional nodes that form a hierarchy. A tree can be empty with no nodes called the null or empty tree

or a tree is a structure consisting of one node called the root and one or more subtrees.

 A binary tree is a tree data structure in which each node has at most two children (referred to as the

left child and the right child). In a binary tree, the degree of each node can be at most two. Binary trees

are used to implement binary search trees and binary heaps, and are used for efficient searching and

sorting.

Heaps:

 A heap is a specialized tree-based data structure that satisfies the heap property: If A is a parent

node of B then the key of node A is ordered with respect to the key of node B with the same ordering

applying across the heap. Either the keys of parent nodes are always greater than or equal to those of the

children and the highest key is in the root node (this kind of heap is called max heap) or the keys of

parent nodes are less than or equal to those of the children and the lowest key is in the root node (min

heap).

 max heap

Graphs:

 A graph data structure consists of a finite (and possibly mutable) set of ordered pairs, called edges

or arcs, of certain entities called nodes or vertices. As in mathematics, an edge (x,y) is said to point or go

from x to y. The nodes may be part of the graph structure, or may be external entities represented by

integer indices or references.

http://en.wikipedia.org/wiki/Tree_(data_structure)
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Child_node
http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/Binary_heap
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Sorting_algorithm
http://en.wikipedia.org/wiki/Tree_(data_structure)
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Node_(computer_science)
http://en.wikipedia.org/wiki/Set_(computer_science)
http://en.wikipedia.org/wiki/Reference_(computer_science)

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 9/21

A labeled graph of 6 vertices and 7 edges.

Hash Table:

 A hash table (also hash map) is a data structure used to implement an associative array, a structure

that can map keys to values. A hash table uses a hash function to compute an index into an array of

buckets or slots, from which the correct value can be found.

 Ideally, the hash function will assign each key to a unique bucket, but this situation is rarely

achievable in practice (usually some keys will hash to the same bucket). Instead, most hash table designs

assume that hash collisions—different keys that are assigned by the hash function to the same bucket—

will occur and must be accommodated in some way.

 A small phone book as a hash table.

 [OR]

 b. Define Sparse matrix and how it is Represented in Array and Linked list?

Sparse Matrices:

 In numerical analysis, a sparse matrix is a matrix populated primarily with zeros as elements

of the table. By contrast, if a larger number of elements differ from zero, then it is common to refer to

the matrix as a dense matrix. The fraction of zero elements (non-zero elements) in a matrix is called the

sparsity (density).

 Conceptually, sparsity corresponds to systems which are loosely coupled. Consider a line of

balls connected by springs from one to the next; this is a sparse system. By contrast, if the same line of

balls had springs connecting each ball to all other balls, the system would be represented by a dense

matrix. The concept of sparsity is useful in combinatorics and application areas such as network theory,

which have a low density of significant data or connections.

http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Unique_key
http://en.wikipedia.org/wiki/Value_(computer_science)
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Collision_(computer_science)
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Combinatorics
http://en.wikipedia.org/wiki/Network_theory

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 10/21

Huge sparse matrices often appear in science or engineering when solving partial differential equations.

When storing and manipulating sparse matrices on a computer, it is beneficial and often necessary to use

specialized algorithms and data structures that take advantage of the sparse structure of the matrix.

Operations using standard dense-matrix structures and algorithms are relatively slow and consume large

amounts of memory when applied to large sparse matrices. Sparse data is by nature easily compressed,

and this compression almost always results in significantly less computer data storage usage. Indeed,

some very large sparse matrices are infeasible to manipulate using standard dense algorithms.

The above sparse matrix contains

only 9 nonzero elements of the 35,

with 26 of those elements as zero

Sparse matrices using array and linked representation:

A matrix is a two-dimensional data object made of m rows and n columns, therefore having total m x n

values. If most of the elements of the matrix have 0 value, then it is called a sparse matrix.

Why to use Sparse Matrix instead of simple matrix ?

Storage: There are lesser non-zero elements than zeros and thus lesser memory can be used to store only

those elements.

Computing time: Computing time can be saved by logically designing a data structure traversing only

non-zero elements..

Example:

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

Representing a sparse matrix by a 2D array leads to wastage of lots of memory as zeroes in the matrix

are of no use in most of the cases. So, instead of storing zeroes with non-zero elements, we only store

non-zero elements. This means storing non-zero elements with triples- (Row, Column, value).

Example of sparse matrix

 [11 22 0 0 0 0 0]

 [0 33 44 0 0 0 0]

 [0 0 55 66 77 0 0]

 [0 0 0 0 0 88 0]

 [0 0 0 0 0 0 99]

http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Computer_data_storage

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 11/21

Sparse Matrix Representations can be done in many ways following are two common

representations:

Array representation

Linked list representation

Method 1: Using Arrays

2D array is used to represent a sparse matrix in which there are three rows named as

Row: Index of row, where non-zero element is located

Column: Index of column, where non-zero element is located

Value: Value of the non zero element located at index – (row,column)

Sparse Matrix Array Representation

 Using Linked Lists

In linked list, each node has four fields. These four fields are defined as:

Row: Index of row, where non-zero element is located

Column: Index of column, where non-zero element is located

Value: Value of the non zero element located at index – (row,column)

Next node: Address of the next node

 Using Arrays

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 12/21

25. a. Explain in detail about Stack.

Stack:

 A stack is a basic data structure that can be logically thought as linear structure represented by a real

physical stack or pile, a structure where insertion and deletion of items takes place at one end called top

of the stack. The basic concept can be illustrated by thinking of your data set as a stack of plates or

books where you can only take the top item off the stack in order to remove things from it. This structure

is used all throughout programming.

 The basic implementation of a stack is also called a LIFO (Last In First Out) to demonstrate the way

it accesses data, since as we will see there are various variations of stack implementations.

 There are basically three operations that can be performed on stacks . They are 1) inserting an item

into a stack (push). 2) deleting an item from the stack (pop). 3) displaying the contents of the stack(pip).

 Stack

Stack Using Array:

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 13/21

A stack data structure can be implemented using one dimensional array. But stack implemented using

array, can store only fixed number of data values. This implementation is very simple, just define a one

dimensional array of specific size and insert or delete the values into that array by using LIFO principle

with the help of a variable 'top'. Initially top is set to -1. Whenever we want to insert a value into the

stack, increment the top value by one and then insert. Whenever we want to delete a value from the

stack, then delete the top value and decrement the top value by one.

Stack Operations using Array

A stack can be implemented using array as follows...

Before implementing actual operations, first follow the below steps to create an empty stack.

Step 1: Include all the header files which are used in the program and define a constant 'SIZE' with

specific value.

Step 2: Declare all the functions used in stack implementation.

Step 3: Create a one dimensional array with fixed size (int stack[SIZE])

Step 4: Define a integer variable 'top' and initialize with '-1'. (int top = -1)

Step 5: In main method display menu with list of operations and make suitable function calls to perform

operation selected by the user on the stack.

push(value) - Inserting value into the stack

In a stack, push() is a function used to insert an element into the stack. In a stack, the new element is

always inserted at top position. Push function takes one integer value as parameter and inserts that value

into the stack. We can use the following steps to push an element on to the stack...

Step 1: Check whether stack is FULL. (top == SIZE-1)

Step 2: If it is FULL, then display "Stack is FULL!!! Insertion is not possible!!!" and terminate the

function.

Step 3: If it is NOT FULL, then increment top value by one (top++) and set stack[top] to value

(stack[top] = value).

pop() - Delete a value from the Stack

In a stack, pop() is a function used to delete an element from the stack. In a stack, the element is always

deleted from top position. Pop function does not take any value as parameter. We can use the following

steps to pop an element from the stack...

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 14/21

Step 1: Check whether stack is EMPTY. (top == -1)

Step 2: If it is EMPTY, then display "Stack is EMPTY!!! Deletion is not possible!!!" and terminate the

function.

Step 3: If it is NOT EMPTY, then delete stack[top] and decrement top value by one (top--).

display() - Displays the elements of a Stack

We can use the following steps to display the elements of a stack...

Step 1: Check whether stack is EMPTY. (top == -1)

Step 2: If it is EMPTY, then display "Stack is EMPTY!!!" and terminate the function.

Step 3: If it is NOT EMPTY, then define a variable 'i' and initialize with top. Display stack[i] value and

decrement i value by one (i--).

Step 3: Repeat above step until i value becomes '0'.

 [Or]

b. Discuss about the Applications of stack.

APPLICATION OF STACK:

Expression evaluation and syntax parsing:

Calculators employing reverse Polish notation use a stack structure to hold values. Expressions can be

represented in prefix, postfix or infix notations and conversion from one form to another may be

accomplished using a stack. Many compilers use a stack for parsing the syntax of expressions, program

blocks etc. before translating into low level code. Most programming languages are context-free

languages, allowing them to be parsed with stack based machines.

Backtracking:

Another important application of stacks is backtracking. Consider a simple example of finding the

correct path in a maze. There are a series of points, from the starting point to the destination. We start

from one point. To reach the final destination, there are several paths. Suppose we choose a random

path. After following a certain path, we realize that the path we have chosen is wrong. So we need to

find a way by which we can return to the beginning of that path. This can be done with the use of stacks.

With the help of stacks, we remember the point where we have reached. This is done by pushing that

https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Backtracking

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 15/21

point into the stack. In case we end up on the wrong path, we can pop the last point from the stack and

thus return to the last point and continue our quest to find the right path. This is called backtracking.

The prototypical example of a backtracking algorithm is depth-first search, which finds all vertices of a

graph that can be reached from a specified starting vertex. Other applications of backtracking involve

searching through spaces that represent potential solutions to an optimization problem. Branch and

bound is a technique for performing such backtracking searches without exhaustively searching all of

the potential solutions in such a space.

Runtime memory management:

A number of programming languages are stack-oriented, meaning they define most basic operations

(adding two numbers, printing a character) as taking their arguments from the stack, and placing any

return values back on the stack. For example, PostScript has a return stack and an operand stack, and

also has a graphics state stack and a dictionary stack. Many virtual machines are also stack-oriented,

including the p-code machine and the Java Virtual Machine.

Almost all calling conventions—the ways in which subroutines receive their parameters and return

results—use a special stack (the "call stack") to hold information about procedure/function calling and

nesting in order to switch to the context of the called function and restore to the caller function when the

calling finishes. The functions follow a runtime protocol between caller and callee to save arguments

and return value on the stack. Stacks are an important way of supporting nested or recursive function

calls. This type of stack is used implicitly by the compiler to support CALL and RETURN statements

(or their equivalents) and is not manipulated directly by the programmer.

Some programming languages use the stack to store data that is local to a procedure. Space for local data

items is allocated from the stack when the procedure is entered, and is deallocated when the procedure

exits. The C programming language is typically implemented in this way. Using the same stack for both

data and procedure calls has important security implications (see below) of which a programmer must be

aware in order to avoid introducing serious security bugs into a program.

Efficient algorithms:

Several algorithms use a stack (separate from the usual function call stack of most programming

languages) as the principledata structure with which they organize their information. These include:

 Graham scan, an algorithm for the convex hull of a two-dimensional system of points. A convex

hull of a subset of the input is maintained in a stack, which is used to find and remove concavities in

the boundary when a new point is added to the hull.

https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Stack-oriented_programming_language
https://en.wikipedia.org/wiki/PostScript
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/P-code_machine
https://en.wikipedia.org/wiki/Java_Virtual_Machine
https://en.wikipedia.org/wiki/Calling_convention
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Graham_scan
https://en.wikipedia.org/wiki/Convex_hull

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 16/21

 Part of the SMAWK algorithm for finding the row minima of a monotone matrix uses stacks in a

similar way to Graham scan.

 All nearest smaller values, the problem of finding, for each number in an array, the closest

preceding number that is smaller than it. One algorithm for this problem uses a stack to maintain a

collection of candidates for the nearest smaller value. For each position in the array, the stack is

popped until a smaller value is found on its top, and then the value in the new position is pushed

onto the stack.

 The nearest-neighbor chain algorithm, a method for agglomerative hierarchical clustering based

on maintaining a stack of clusters, each of which is the nearest neighbor of its predecessor on the

stack. When this method finds a pair of clusters that are mutual nearest neighbors, they are popped

and merged.

26. a. Elaborate about Prefix, Infix, and Postfix Expression with example.

 What is an Expression?

In any programming language, if we want to perform any calculation or to frame a condition etc., we use

a set of symbols to perform the task. These set of symbols makes an expression.

An expression can be defined as follows...

An expression is a collection of operators and operands that represents a specific value.

In above definition, operator is a symbol which performs a particular task like arithmetic operation or

logical operation or conditional operation etc.,

Operands are the values on which the operators can perform the task. Here operand can be a direct value

or variable or address of memory location.

Expression Types

Based on the operator position, expressions are divided into THREE types. They are as follows...

Infix Expression

Postfix Expression

Prefix Expression

Infix Expression:

In infix expression, operator is used in between operands.

The general structure of an Infix expression is as follows...

https://en.wikipedia.org/wiki/SMAWK_algorithm
https://en.wikipedia.org/wiki/All_nearest_smaller_values
https://en.wikipedia.org/wiki/Nearest-neighbor_chain_algorithm
https://en.wikipedia.org/wiki/Agglomerative_hierarchical_clustering

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 17/21

Operand1 Operator Operand2

Example

 Infix Expression

Postfix Expression

In postfix expression, operator is used after operands. We can say that "Operator follows the Operands".

The general structure of Postfix expression is as follows...

Operand1 Operand2 Operator

Example

 Postfix Expression

Prefix Expression

In prefix expression, operator is used before operands. We can say that "Operands follows the

Operator".

The general structure of Prefix expression is as follows...

Operator Operand1 Operand2

Example

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 18/21

 Prefix Expression

Any expression can be represented using the above three different types of expressions. And we can

convert an expression from one form to another form like Infix to Postfix, Infix to Prefix, Prefix to

Postfix and vice versa.

Utility and conversion of these expressions from one to another:

Expression Conversion

Any expression can be represented using three types of expressions (Infix, Postfix and Prefix). We can

also convert one type of expression to another type of expression like Infix to Postfix, Infix to Prefix,

Postfix to Prefix and vice versa.

To convert any Infix expression into Postfix or Prefix expression we can use the following

procedure...

Find all the operators in the given Infix Expression.

Find the order of operators evaluated according to their Operator precedence.

Convert each operator into required type of expression (Postfix or Prefix) in the same order.

Example

Consider the following Infix Expression to be converted into Postfix Expression...

D = A + B * C

Step 1: The Operators in the given Infix Expression : = , + , *

Step 2: The Order of Operators according to their preference : * , + , =

Step 3: Now, convert the first operator * ----- D = A + B C *

Step 4: Convert the next operator + ----- D = A BC* +

Step 5: Convert the next operator = ----- D ABC*+ =

Finally, given Infix Expression is converted into Postfix Expression as follows...

D A B C * + =

Infix to Postfix Conversion using Stack Data Structure

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 19/21

To convert Infix Expression into Postfix Expression using a stack data structure, We can use the

following steps...

Read all the symbols one by one from left to right in the given Infix Expression.

If the reading symbol is operand, then directly print it to the result (Output).

If the reading symbol is left parenthesis '(', then Push it on to the Stack.

If the reading symbol is right parenthesis ')', then Pop all the contents of stack until respective left

parenthesis is poped and print each poped symbol to the result.

If the reading symbol is operator (+ , - , * , / etc.,), then Push it on to the Stack. However, first pop the

operators which are already on the stack that have higher or equal precedence than current operator and

print them to the result.

Example

Consider the following Infix Expression...

(A + B) * (C - D)

The final Postfix Expression is as follows...

A B + C D - *

 [OR]

 b. Discuss about Representation of Stack in List.

Stack using Linked List

What is linked list ?

“A linked list is a recursive data structure that is either empty(null) or a reference to a node having a

generic item and reference to a linked list.”

Node class can be written as

1

2

3

4

5

private class Node

{

 Item item;

 Node next;

}

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 20/21

We can represent a Linked List with a variable of type Node simply by ensuring that its value is either

null or a reference to a Node whose next field is a reference to a linked list.

Node first = new Node();

Node second = new Node();

Node third = new Node();

now we set the item field in each of the nodes to the desired value.

first.item = “I”;

second.item = “will”;

thrid.item = “succeed”;

and set the next fields to build the linked list.

first.next = second;

second.next = third;

Now third.next will be null which is the value it was initialized when created.

As a result third is a linked list since it is reference to a node that had a reference to null, which is the

null reference to an empty linked list and second is a linked list since it is a reference to a node that has a

reference to third which is a linked list, and first is a linked list which is reference to a node that has a

reference to second which is a linked list.

Operations on Linked List

Insert at the beginning:

To insert the string “You” at the beginning of a linked list whose node is first, we should save first in

oldfirst, assign to first a new Node and assign its item field to “You” and its next field to oldfirst.

CIA 1-ANSWER KEY 2016-2019 Batch

Prepared by, S.Joyce , Department of Computer Science , CA & IT KAHE 21/21

Since the code for inserting a node at the beginning of a linked list involves few assignment statements,

the amount of time that its takes is independent of the length of the list.

Node oldfirst = first;

first = new Node();

first.item = “You”;

first.next = oldfirst;

Remove from the beginning this much more simpler: assign to first the value of first.next;

first = first.next

Insert at the End:

To do this operation we need a link to the last node in the list, because the node’s link has to be changed

to reference a new node containing the item to be inserted.

1

2

3

4

Node oldlast = last;

last = new Node();

last.item = “You will, Don’t Worry”

oldlast.next = last;

To insert/remove at other positions doubly linked list is more useful that single linked list. In double

linked list each node has two links, one in each direction.

For Traversal

To traverse through the list we use code like in following loop

1

2

3

4

for(Node x = first; x!= null; x = x.next)

{

 //Process x.item

}

Register no___________________

 [16CSU302]

KARPAGAM ACADEMY OF HIGHER EDUCATION

KARPAGAM UNIVERSITY

Coimbatore – 641 021

B.Sc Computer Science

FIRST INTERNAL EXAMINATION – JULY 2017

Third Semester

OPERATING SYSTEMS

Date & Session : .07.2017 &

Maximum: 50 marks Duration: 2 hours

SECTION - A (20 X 1= 20 Marks)

ANSWER ALL THE QUESTIONS

1. The term " Operating System " means ________.

a) A set of programs which controls computer working

b) The way a computer operator works

c) Conversion of high-level language in to machine level language

d) The way a floppy disk drive operates

2. ……………… is a example of an operating system that support single user process and single

thread.

a) UNIX b) MS-DOS c) OS/2 d) Windows 2000

3. File management function of the operating system includes

 a) File creation and deletion b) Disk scheduling c) Process scheduling d) Multiprogramming

4. The operating system of a computer serves as a software interface between the user and the

________.

a) Hardware b) Peripheral c) Memory d) Screen

5. What is a shell ?

a) It is a hardware component

b) It is a command interpreter

c) It is a part in compiler

d) It is a tool in CPU scheduling

6. A architecture assigns only a few essential functions to the kernel, including

address spaces, Inter

 process communication(IPC) and basic scheduling.

 a) Monolithic kernel b) Micro kernel c) Macro kernel d) Mini kernel

7.………….is a lightweight process where the context switching is low

 a) Process b)Thread c)Kernel d) Minikernel

8. Process is

 a) A program in execution b) kernel c) thread d) deadlock

9. Which of the following are the states of a process model?

 a) Delete b) Run c) New d) Both ii and iii

10. refers to the ability of an operating system to support multiple threads of

execution with a single

 process.

 a) Multithreading b) Multiprocessing c) Multiexecuting d) Bi-threading

11. …………… are very effective because a mode switch is not required to switch from one

thread to another.

 a) Kernel-level threads b) User-level threads c) Alterable threads d) Application level threads

12. is a large kernel, including scheduling file system, networking, device drivers,

memory management and more.

 a) Monolithic kernel b) Micro kernel c) Macro kernel d) Mini kernel

13. To access the services of operating system, the interface is provided by the:

 a) system calls b) API c) library d) assembly instructions

14. The main function of the command interpreter is:

a) to get and execute the next user-specified command

b) to provide the interface between the API and application program

c) to handle the files in operating system

d) none of the mentioned

15. The systems which allows only one process execution at a time, are called:

a) uniprogramming systems b) uniprocessing systems c). unitasking systems

 d) none of the mentioned

16. In Unix, Which system call creates the new process?

a) fork b) create c) new d) none of the mentioned

17. What is the ready state of a process?

a) when process is scheduled to run after some execution

b) when process is unable to run until some task has been completed

c) when process is using the CPU

d) none of the mentioned

18. The primary job of an OS is to

 a) command resource b) manage resource c) provide utilities d) Be user friendly

19. As OS that has strict time constraints

 a) Sensor Node OS b) Real Time OS c) Mainframe OS d) Timesharing OS

20. The OS that groups similar jobs is called as

 a) Network OS b) Distributed OS c) Mainframe OS d) Batch OS

javascript:%20void(0)
javascript:%20void(0)
javascript:%20void(0)
javascript:%20void(0)
javascript:%20void(0)
javascript:%20void(0)
javascript:%20void(0)
javascript:%20void(0)
javascript:%20void(0)
javascript:%20void(0)
javascript:%20void(0)
javascript:%20void(0)
javascript:%20void(0)
javascript:%20void(0)
javascript:%20void(0)
javascript:%20void(0)
javascript:%20void(0)

SECTION- B (3 X 2= 6 Marks)

Answer ALL the Questions.

21. What is Operating System?

 An operating system is a program that manages the computer hardware. An Operating

System (OS) is an interface between a computer user and computer hardware. An operating

system is a software which performs all the basic tasks like file management, memory

management, process management, handling input and output, and controlling peripheral devices

such as disk drives and printers.

22. Briefly describe Real Time System?

A real-time system is any information processing system which has to respond to

externally generated input stimuli within a finite and specified period – the correctness depends

not only on the logical result but also the time it was delivered – failure to respond is as bad as

the wrong response!

23. What is a Process?

A process generally consists of:

• The program’s instructions (aka. the “program text”)

 • CPU state for the process (program counter, registers, flags, …)

• Memory state for the process

• Other resources being used by the process

SECTION- C (3 X 8= 24 Marks)

Answer ALL the Questions.

24. a) Write about Basic OS Functions.

 Basic OS Functions

Following are some of important functions of an operating System.

 Memory Management

 Processor Management

 Device Management

 File Management

 Security

 Control over system performance

 Job accounting

 Error detecting aids

 Coordination between other software and users

Memory Management

Memory management refers to management of Primary Memory or Main Memory. Main

memory is a large array of words or bytes where each word or byte has its own address.

Main memory provides a fast storage that can be accessed directly by the CPU. For a program

to be executed, it must in the main memory. An Operating System does the following activities

for memory management −

 Keeps tracks of primary memory, i.e., what part of it are in use by whom, what part are

not in use.

 In multiprogramming, the OS decides which process will get memory when and how

much.

 Allocates the memory when a process requests it to do so.

 De-allocates the memory when a process no longer needs it or has been terminated.

Processor Management

In multiprogramming environment, the OS decides which process gets the processor when and

for how much time. This function is called process scheduling. An Operating System does the

following activities for processor management −

 Keeps tracks of processor and status of process. The program responsible for this task is

known as traffic controller.

 Allocates the processor (CPU) to a process.

 De-allocates processor when a process is no longer required.

Device Management

An Operating System manages device communication via their respective drivers. It does the

following activities for device management −

 Keeps tracks of all devices. Program responsible for this task is known as the I/O

controller.

 Decides which process gets the device when and for how much time.

 Allocates the device in the efficient way.

 De-allocates devices.

File Management

A file system is normally organized into directories for easy navigation and usage. These

directories may contain files and other directions.

An Operating System does the following activities for file management −

 Keeps track of information, location, uses, status etc. The collective facilities are often

known as file system.

 Decides who gets the resources.

 Allocates the resources.

 De-allocates the resources.

Following are some of the important activities that an Operating System performs −

 Security − By means of password and similar other techniques, it prevents unauthorized

access to programs and data.

 Control over system performance − Recording delays between request for a service

and response from the system.

 Job accounting − Keeping track of time and resources used by various jobs and users.

 Error detecting aids − Production of dumps, traces, error messages, and other

debugging and error detecting aids.

 Coordination between other softwares and users − Coordination and assignment of

compilers, interpreters, assemblers and other software to the various users of the

computer systems.

[OR]

 24. b) Explain Batch Systems in detail.

 Batch Processing Systems

To avoid the problems of early systems the batch processing systems were introduced.

The problem of early systems was more setup time. So the problem of more set up time was

reduced by processing the jobs in batches, known as batch processing system.In this approach

similar jobs were submitted to the CPU for processing and were run together.

The main function of a batch processing system is to automatically keep executing the

jobs in a batch. This is the important task of a batch processing system i.e. performed by the

'Batch Monitor' resided in the low end of main memory.

This technique was possible due to the invention of hard-disk drives and card readers.

Now the jobs could be stored on the disk to create the pool of jobs for its execution as a batch.

First the pooled jobs are read and executed by the batch monitor, and then these jobs are

grouped; placing the identical jobs (jobs with the similar needs) in the same batch, So, in the

batch processing system, the batched jobs were executed automatically one after another saving

its time by performing the activities (like loading of compiler) only for once. It resulted in

improved system utilization due to reduced turn around time.

http://ecomputernotes.com/fundamental/disk-operating-system/batch-processing-operating-system
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-cpu
http://ecomputernotes.com/fundamental/input-output-and-memory/what-are-the-different-types-of-ram-explain-in-detail

In the early job processing systems, the jobs were placed in a job queue and the memory

allocate or managed the primary memory space, when space was available in the main memory,

a job was selected from the job queue and was loaded into memory.

Once the job loaded into primary memory, it competes for the processor. When the

processor became available, the processor scheduler selects job that was loaded in the memory

and execute it.

In batch strategy is implemented to provide a batch file processing. So in this approach

files of the similar batch are processed to speed up the task.

Traditional Job Processing Batch File Processing

 In batch processing the user were supposed to prepare a program as a deck of punched cards.

The header cards in the deck were the "job control" cards which would indicate that which

compiler was to be used (like FORTRAN, COBOL compilers etc). The deck of cards would be

handed in to an operator who would collect such jobs from various users. Then the submitted

jobs were 'grouped as FORTRAN jobs, COBOL jobs etc.

In addition, these jobs were classified as 'long jobs' that required more processing time or

short jobs which required a short processing time. Each set of jobs was considered as a batch and

the processing would be done for a batch. For instance, there maybe a batch of short FORTRAN

jobs. The output for each job would be separated and turned over to users in a collection area. So

in this approach, files of the similar batch were processed to speed up the task.

In this environment there was no interactivity and the users had no direct control. In this

system, only one job could engage the processor at a time and if there was any input/ output

operation the processor had to sit idle till the completion of I/O job. So it resulted to the

underutilization of CPU time.

In batch processing system, earlier; the jobs were scheduled in the order of their arrival i.e. First

Come First Served (FCFS).Even though this scheduling method was easy and simple to

implement but unfair for the situations where long jobs are queued ahead of the short jobs. To

overcome this problem, another scheduling method named as 'Shortest Job First' was used. As

memory management is concerned, the main memory was partitioned into two fixed partitions.

The lower end of this partition was assigned to the resident portion of the OS i.e. named as Batch

Monitor. Whereas, the other partition (higher end) was assigned to the user programs.

Though, it was an improved technique in reducing the system setup time but still there were

some limitations with this technique like as under-utilization of CPU time, non-interactivity of

user with the running jobs etc. In batch processing system, the jobs of a batch were executed one

after another. But while these jobs were performing I/O operations; meantime the CPU was

sitting idle resulting to low degree of resource utilization.

25. a) Explain the Types of Operating Systems.

 Types of Operating Systems

Mainframe Operating Systems

At the high end are the operating systems for mainframes, those room-sized computers

still found in major corporate data centers. These computers differ from personal computers in

terms of their I/O capacity. A mainframe with 1000 disks and millions of gigabytes of data is not

unusual; a personal computer with these specifications would be the envy of its friends.

Mainframes are also making something of a comeback as high-end Web servers, servers

for large-scale electronic commerce sites, and servers for business-to-business transactions. The

operating systems for mainframes are heavily oriented toward processing many jobs at once,

most of which need prodigious amounts of I/O.

They typically offer three kinds of services: batch, transaction processing, and timesharing.

Batch systems

A batch system is one that processes routine jobs without any interactive user present. Claims

processing in an insurance company or sales reporting for a chain of stores is typically done in

batch mode.

Transaction-processing systems

Transaction-processing systems handle large numbers of small requests, for example, check

processing at a bank or airline reservations. Each unit of work is small, but the system must

handle hundreds or thousands per second.

Timesharing systems

Timesharing systems allow multiple remote users to run jobs on the computer at once, such as

querying a big database. These functions are closely related; mainframe operating systems often

perform all of them. An example mainframe operating system is OS/390, a descendant of

OS/360. However, mainframe operating systems are gradually being replaced by UNIX variants

such as Linux.

Server Operating Systems

One level down are the server operating systems. They run on servers, which are either very

large personal computers, workstations, or even mainframes. They serve multiple users at once

over a network and allow the users to share hardware and software resources. Servers can

provide print service, file service, or Web service. Internet providers run many server machines

to support their customers and Websites use servers to store the Web pages and handle the

incoming requests. Typical server operating systems are Solaris, FreeBSD, Linux and Windows

Server 201x.

Multiprocessor Operating Systems

An increasingly common way to get major-league computing power is to connect multiple CPUs

into a single system. Depending on precisely how they are connected and what is shared, these

systems are called parallel computers, multicomputers, or multiprocessors. They need special

operating systems, but often these are variations on the server operating systems, with special

features for communication, connectivity, and consistency.

With the recent advent of multicore chips for personal computers, even conventional

desktop and notebook operating systems are starting to deal with at least small-scale

multiprocessors and the number of cores is likely to grow over time. Luckily, quite a bit is

known about multiprocessor operating systems from years of previous research, so using this

knowledge in multicore systems should not be hard. The hard part will be having applications

make use of all this computing power. Many popular operating systems, including Windows and

Linux, run on multiprocessors.

Personal Computer Operating Systems

The next category is the personal computer operating system. Modern ones all support

multiprogramming, often with dozens of programs started up at boot time. Their job is to provide

good support to a single user. They are widely used for word processing, spreadsheets, games,

and Internet access. Common examples are Linux, FreeBSD, Windows 7, Windows 8, and

Apple’s OS X. Personal computer operating systems are so widely known that probably little

introduction is needed. In fact, many people are not even aware that other kinds exist.

Handheld Computer Operating Systems

Continuing on down to smaller and smaller systems, we come to tablets, smartphones and other

handheld computers. A handheld computer, originally known as a PDA (Personal Digital

Assistant), is a small computer that can be held in your hand during operation. Smartphones and

tablets are the best-known examples. As we have already seen, this market is currently

dominated by Google’s Android and Apple’s iOS, but they hav e many competitors. Most of

these devices boast multicore CPUs, GPS, cameras and other sensors, copious amounts of

memory, and sophisticated operating systems. Moreover, all of them have more third-party

applications (‘‘apps’’) than you can shake a (USB) stick at.

Embedded Operating Systems

Embedded systems run on the computers that control devices that are not generally thought of as

computers and which do not accept user-installed software. Typical examples are microwave

ovens, TV sets, cars, DVD recorders, traditional phones, and MP3 players. The main property

which distinguishes embedded systems from handhelds is the certainty that no untrusted software

will ever run on it. You cannot download new applications to your microwave oven—all the

software is in ROM. This means that there is no need for protection between applications,

leading to design simplification. Systems such as Embedded Linux, QNX and VxWorks are

popular in this domain.

Sensor-Node Operating Systems

Networks of tiny sensor nodes are being deployed for numerous purposes. These nodes are tiny

computers that communicate with each other and with a base station using wireless

communication. Sensor networks are used to protect the perimeters of buildings, guard national

borders, detect fires in forests, measure temperature and precipitation for weather forecasting,

glean information about enemy movements on battlefields, and much more.

The sensors are small battery-powered computers with built-in radios. They have limited

power and must work for long periods of time unattended outdoors, frequently in

environmentally harsh conditions. The network must be robust enough to tolerate failures of

individual nodes, which happen with ever-increasing frequency as the batteries begin to run

down.

Each sensor node is a real computer, with a CPU, RAM, ROM, and one or more

environmental sensors. It runs a small, but real operating system, usually one that is event driven,

responding to external events or making measurements periodically based on an internal clock.

The operating system has to be small and simple because the nodes have little RAM and battery

lifetime is a major issue. Also, as with embedded systems, all the programs are loaded in

advance; users do not suddenly start programs they downloaded from the Internet, which makes

the design much simpler. TinyOS is a well-known operating system for a sensor node.

Real-Time Operating Systems

Another type of operating system is the real-time system. These systems are characterized by

having time as a key parameter. For example, in industrial process- control systems, real-time

computers have to collect data about the production process and use it to control machines in the

factory. Often there are hard deadlines that must be met. For example, if a car is moving down an

assembly line, certain actions must take place at certain instants of time. If, for example, a

welding robot welds too early or too late, the car will be ruined. If the action absolutely must

occur at a certain moment (or within a certain range), we have a hard real-time system. Many

of these are found in industrial process control, avionics, military, and similar application areas.

These systems must provide absolute guarantees that a certain action will occur by a certain time.

A soft real-time system, is one where missing an occasional deadline, while not

desirable, is acceptable and does not cause any permanent damage. Digital audio or multimedia

systems fall in this category. Smartphones are also soft realtime systems.

Since meeting deadlines is crucial in (hard) real-time systems, sometimes the operating system is

simply a library linked in with the application programs, with ev erything tightly coupled and no

protection between parts of the system.

An example of this type of real-time system is eCos. The categories of handhelds,

embedded systems, and real-time systems overlap considerably. Nearly all of them have at least

some soft real-time aspects. The embedded and real-time systems run only software put in by the

system designers; users cannot add their own software, which makes protection easier. The

handhelds and embedded systems are intended for consumers, whereas real-time systems are

more for industrial usage. Nevertheless, they hav e a certain amount in common.

Smart Card Operating Systems

The smallest operating systems run on smart cards, which are credit-card-sized devices

containing a CPU chip. They hav e very severe processing power and memory constraints. Some

are powered by contacts in the reader into which they are inserted, but contactless smart cards

are inductively powered, which greatly limits what they can do. Some of them can handle only a

single function, such as electronic payments, but others can handle multiple functions. Often

these are proprietary systems.

Some smart cards are Java oriented. This means that the ROM on the smart card holds an

interpreter for the Java Virtual Machine (JVM). Java applets (small programs) are downloaded to

the card and are interpreted by the JVM interpreter. Some of these cards can handle multiple

Java applets at the same time, leading to multiprogramming and the need to schedule them.

Resource management and protection also become an issue when two or more applets are present

at the same time. These issues must be handled by the (usually extremely primitive) operating

system present on the card.

[OR]

 25. b) What are Multiprogramming Systems. Explain in detail.

 Multiprogramming Systems

To overcome the problem of underutilization of CPU and main memory, the multiprogramming

was introduced. The multiprogramming is interleaved execution of multiple jobs by the

same computer.

In multiprogramming system, when one program is waiting for I/O transfer; there is another

program ready to utilize the CPU. So it is possible for several jobs to share the time of the CPU.

But it is important to note that multiprogramming is not defined to be the execution of jobs at the

same instance of time. Rather it does mean that there are a number of jobs available to the CPU

(placed in main memory) and a portion of one is executed then a segment of another and so on.

Figure 1.3. A simple process of multiprogramming.

as shown in fig, at the particular situation, job' A' is not utilizing the CPU time because it is busy

in I/ 0 operations. Hence the CPU becomes busy to execute the job 'B'. Another job C is waiting

for the CPU for getting its execution time. So in this state the CPU will never be idle and utilizes

maximum of its time.

A program in execution is called a "Process", "Job" or a "Task". The concurrent execution of

programs improves the utilization of system resources and enhances the system throughput as

compared to batch and serial processing. In this system, when a process requests some I/O to

allocate; meanwhile the CPU time is assigned to another ready process. So, here when a process

is switched to an I/O operation, the CPU is not set idle.

Multiprogramming is a common approach to resource management. The essential components of

a single-user operating system include a command processor, an input/ output control system, a

http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-cpu
http://ecomputernotes.com/fundamental/input-output-and-memory/what-are-the-different-types-of-ram-explain-in-detail
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
http://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system

file system, and a transient area. A multiprogramming operating system builds on this base,

subdividing the transient area to hold several independent programs and adding resource

management routines to the operating system's basic functions.

Figure 1.4 Memory layout for a multiprogramming system.

Multiprogramming increases CPUutilization by organizing jobs (code and data) so that the

CPU always has one to execute. The idea is as follows: The operating system keeps several jobs

in memory simultaneously (Figure 1.9). Since, in general, main memory is too small to

accommodate all jobs, the jobs are kept initially on the disk in the job pool. This pool consists of

all processes residing on disk awaiting allocation of main memory. The set of jobs in memory

can be a subset of the jobs kept in the job pool. The operating system picks and begins to execute

one of the jobs in memory. Eventually, the job may have to wait for some task, such as an I/O

operation, to complete. In a non-multiprogrammed system, the CPU would sit idle. In a

multiprogrammed system, the operating system simply switches to, and executes, another job.

When that job needs to wait, the CPU switches to another job, and so on. Eventually, the

first job finishes waiting and gets the CPU back. As long as at least one job needs to execute, the

CPU is never idle. This idea is common in other life situations. A lawyer does not work for only

one client at a time, for example. While one case is waiting to go to trial or have papers typed,

the lawyer can work on another case. If he has enough clients, the lawyer will never be idle for

lack of work. (Idle lawyers tend to become politicians, so there is a certain social value in

keeping lawyers busy.)

Multiprogrammed systems provide an environment in which the various system resources (for

example, CPU, memory, and peripheral devices) are utilized effectively, but they do not provide

for user interaction with the computer system.

Time sharing (or multitasking) is a logical extension of multiprogramming. In time-sharing

systems, the CPU executes multiple jobs by switching among them, but the switches occur so

frequently that the users can interact with each program while it is running.

Time sharing requires an interactive computer system, which provides direct communication

between the user and the system. The user gives instructions to the operating system or to a

program directly, using a input device such as a keyboard, mouse, touch pad, or touch screen,

and waits for immediate results on an output device. Accordingly, the response time should be

short—typically less than one second.

A time-shared operating system allows many users to share the computer simultaneously. Since

each action or command in a time-shared system tends to be short, only a little CPU time is

needed for each user. As the system switches rapidly from one user to the next, each user is

given the impression that the entire computer system is dedicated to his use, even though it is

being shared among many users.

A time-shared operating system uses CPU scheduling and multiprogramming to provide each

user with a small portion of a time-shared computer. Each user has at least one separate program

in memory. A program loaded into memory and executing is called a process. When a process

executes, it typically executes for only a short time before it either finishes or needs to perform

I/O. I/O may be interactive; that is, output goes to a display for the user, and input comes from a

user keyboard, mouse, or other device.

Since interactive I/O typically runs at “people speeds,” it may take a long time to complete.

Input, for example, may be bounded by the user’s typing speed; seven characters per second is

fast for people but incredibly slow for computers. Rather than let the CPU sit idle as this

interactive input takes place, the operating system will rapidly switch the CPU to the program of

some other user. Time sharing and multiprogramming require that several jobs be kept

simultaneously in memory. If several jobs are ready to be brought into memory, and if there is

not enough room for all of them, then the system must choose among them. Making this decision

involves job scheduling. When the operating system selects a job from the job pool, it loads that

job into memory for execution. Having several programs in memory at the same time requires

some form of memory management. In addition, if several jobs are ready to run at the same time,

the system must choose which job will run first. Making this decision is CPU scheduling.

Finally, running multiple jobs concurrently requires that their ability to affect one another be

limited in all phases of the operating system, including process scheduling, disk storage, and

memory management. We discuss these considerations throughout the text. In a time-sharing

system, the operating system must ensure reasonable response time. This goal is sometimes

accomplished through swapping, whereby processes are swapped in and out of main memory to

the disk. A more common method for ensuring reasonable response time is virtual memory, a

technique that allows the execution of a process that is not completely in memory. The main

advantage of the virtual-memory scheme is that it enables users to run programs that are larger

than actual physical memory. Further, it abstracts main memory into a large, uniform array of

storage, separating logical memory as viewed by the user from physical memory.

This arrangement frees programmers from concern over memory-storage limitations.

A time-sharing system must also provide a file system. The file system resides on a collection of

disks; hence, disk management must be provided. In addition, a time-sharing system provides a

mechanism for protecting resources from inappropriate use.

To ensure orderly execution, the system must provide mechanisms for job synchronization and

communication, and it may ensure that jobs do not get stuck in a deadlock, forever waiting for

one another.

26. a) Explain System Calls and System Programs [OR]

System Calls

The system call provides an interface to the operating system services.

When a program in user mode requires access to RAM or a hardware resource, it must ask the

kernel to provide access to that resource. This is done via something called a system call.

Application developers often do not have direct access to the system calls, but can access them

through an application programming interface (API). The functions that are included in the API

invoke the actual system calls. By using the API, certain benefits can be gained:

 Portability: as long a system supports an API, any program using that API can compile

and run.

 Ease of Use: using the API can be significantly easier then using the actual system call.

System Call Parameters

Three general methods exist for passing parameters to the OS:

1. Parameters can be passed in registers.

2. When there are more parameters than registers, parameters can be stored in a block and

the block address can be passed as a parameter to a register.

3. Parameters can also be pushed on or popped off the stack by the operating system.

http://faculty.salina.k-state.edu/tim/ossg/glossary.html#term-system-call

Fig 2.2 System call parameters

Types of System Calls

There are 5 different categories of system calls:

process control, file manipulation, device manipulation, information maintenance and

communication.

 Process Control

A running program needs to be able to stop execution either normally or abnormally. When

execution is stopped abnormally, often a dump of memory is taken and can be examined

with a debugger.

File Management

Some common system calls are create, delete, read, write, reposition, or close. Also, there

is a need to determine the file attributes – get and set file attribute. Many times the OS

provides an API to make these system calls.

Device Management

Process usually require several resources to execute, if these resources are available, they

will be granted and control returned to the user process. These resources are also thought of

as devices. Some are physical, such as a video card, and others are abstract, such as a file.

User programs request the device, and when finished they release the device. Similar to

files, we can read, write, and reposition the device.

Information Management

Some system calls exist purely for transferring information between the user program and

the operating system. An example of this is time, or date.

The OS also keeps information about all its processes and provides system calls to report

this information.

Communication

There are two models of interprocess communication, the message-passing model and the

shared memory model.

 Message-passing uses a common mailbox to pass messages between processes.

 Shared memory use certain system calls to create and gain access to create and gain

access to regions of memory owned by other processes. The two processes exchange

information by reading and writing in the shared data.

System Call

System calls provide an interface between the process and the operating system. System

calls allow user-level processes to request some services from the operating system which

process itself is not allowed to do. In handling the trap, the operating system will enter in the

kernel mode, where it has access to privileged instructions, and can perform the desired service

on the behalf of user-level process. It is because of the critical nature of operations that the

operating system itself does them every time they are needed. For example, for I/O a process

involves a system call telling the operating system to read or write particular area and this

request is satisfied by the operating system.

System programs provide basic functioning to users so that they do not need to write their

own environment for program development (editors, compilers) and program execution (shells).

In some sense, they are bundles of useful system calls.

System Programs

System programs, also known as system utilities, provide a convenient environment for

program development and execution.

Some of them are simply user interfaces to system calls.

These programs are not usually part of the OS kernel, but are part of the overall operating

system.

They can be divided into these categories:

• File management. These programs create, delete, copy, rename, print, dump, list, and

generally manipulate files and directories.

• Status information. Some programs simply ask the system for the date, time, amount

of available memory or disk space, number of users, or similar status information. Others are

more complex, providing detailed performance, logging, and debugging information. Typically,

these programs format and print the output to the terminal or other output devices or files or

display it in a window of the GUI. Some systems also support a registry, which is used to store

and retrieve configuration information.

• File modification. Several text editors may be available to create and modify the

content of files stored on disk or other storage devices. There may also be special commands to

search contents of files or perform transformations of the text.

 • Programming-language support. Compilers, assemblers, debuggers, and interpreters

for common programming languages (such as C, C++, Java, and PERL) are often provided with

the operating system or available as a separate download.

 • Program loading and execution. Once a program is assembled or compiled, it must

be loaded into memory to be executed. The system may provide absolute loaders, relocatable

loaders, linkage editors, and overlay loaders. Debugging systems for either higher-level

languages or machine language are needed as well.

 • Communications. These programs provide the mechanism for creating virtual

connections among processes, users, and computer systems. They allow users to send messages

to one another’s screens, to browse Web pages, to send e-mail messages, to log in remotely, or to

transfer files from one machine to another.

 • Background services. All general-purpose systems have methods for launching

certain system-program processes at boot time. Some of these processes terminate after

completing their tasks, while others continue to run until the system is halted. Constantly running

system-program processes are known as services, subsystems, or daemons.

One example is the network daemon, a system needed a service to listen for network

connections in order to connect those requests to the correct processes.

Other examples include process schedulers that start processes according to a specified

schedule, system error monitoring services, and print servers. Typical systems have dozens of

daemons.

In addition, operating systems that run important activities in user context rather than in

kernel context may use daemons to run these activities. Along with system programs, most

operating systems are supplied with programs that are useful in solving common problems or

performing common operations.

Such application programs include Web browsers, word processors and text formatters,

spreadsheets, database systems, compilers, plotting and statistical-analysis packages, and games.

The view of the operating system seen by most users is defined by the application and

system programs, rather than by the actual system calls. Consider a user’s PC. When a user’s

computer is running the Mac OS X operating system, the user might see the GUI, featuring a

mouse-and-windows interface. Alternatively, or even in one of the windows, the user might have

a command-line UNIX shell. Both use the same set of system calls, but the system calls look

different and act in different ways.

26. b) Explain Process in detail and Process hierarchies.

The Process

A process generally consists of:

• The program’s instructions (aka. the “program text”)

 • CPU state for the process (program counter, registers, flags, …)

• Memory state for the process

• Other resources being used by the process

Informally, as mentioned earlier, a process is a program in execution. A process is more than the

program code, which is sometimes known as the text section. It also includes the current activity,

as represented by the value of the program counter and the contents of the processor's registers.

A process generally also includes the process stack, which contains temporary data (such as

function parameters, return addresses, and local variables), and a data section, which contains

global variables. A process may also include a heap, which is memory that is dynamically

allocated during process run time. The structure of a process in memory is shown in Figure 2.1.

We emphasize that a program by itself is not a process; a program is a passive entity, such as a

file containing a list of instructions stored on disk (often called an executable file), whereas a

process is an active entity, with a program counter specifying the next instruction to execute and

a set of associated resources. A program becomes a process when an executable file is loaded

into memory. Two common techniques for loading executable files are double-clicking an icon

representing the executable file and entering the name of the executable file on the command line

(as in prog. exe or a. out.)

Process in memory

Fig 2.3 Diagram of process state

Although two processes may be associated with the same program, they are nevertheless

considered two separate execution sequences. For instance, several users may be running

different copies of the mail program, or the same user may invoke many copies of the Web

browser program. Each of these is a separate process; and although the text sections are

equivalent, the data, heap, and stack sections vary. It is also common to have a process that

spawns many processes as it runs.

Process Hierarchies

Modern general purpose operating systems permit a user to create and destroy processes.

 In unix this is done by the fork system call, which creates a child process, and

the exit system call, which terminates the current process.

 After a fork both parent and child keep running (indeed they have the same program text)

and each can fork off other processes.

 A process tree results. The root of the tree is a special process created by the OS during

startup.

 A process can choose to wait for children to terminate. For example, if C issued a wait()

system call it would block until G finished.

Old or primitive operating system like MS-DOS are not multiprogrammed so when one process

starts another, the first process is automatically blocked and waits until the second is finished.

Fig 2.5 Process Hierarchy

Process Hierarchies

In some systems, when a process creates another process, the parent process and child process

continue to be associated in certain ways. The child process can itself create more processes,

forming a process hierarchy.

In UNIX, a process and all of its children and further descendants together form a process group.

When a user sends a signal from the keyboard, the signal is delivered to all members of the

process group currently associated with the keyboard (usually ail active processes that were

created in the current window). Individually, each process can catch the signal, ignore the signal,

or take the default action, which is to be killed by the signal.

As another example of where the process hierarchy plays a role, let us look at how UNIX

initializes itself when it is started. A special process, called init, is present in the boot image.

When it starts running, it reads a file telling how many terminals there are. Then it forks off one

new process per terminal. These processes wait for someone to log in. If a login is successful, the

login process executes a shell to accept commands. These commands may start up more

processes, and so forth. Thus, all the processes in the whole system belong to a single tree, with

init at the root.

In contrast, Windows has no concept of a process hierarchy. All processes are equal. The only

hint of a process hierarchy is that when a process is created, the parent is given a special token

(called a handle) that it can use to control the child. However, it is free to pass this token to some

other process, thus invalidating the hierarchy. Processes in UNIX cannot disinherit their children.

	1.pdf (p.1-3)
	2.pdf (p.4-7)
	3.pdf (p.8-29)
	Singly linked list
	Doubly linked list
	Circular list
	How do we access data in a 2D array?
	Sequential mapping of stacks into an array
	• M[0..m-1]

	 Example, two stacks, use M[0], M[m-1]
	 Example, more than two stacks, n, use b[i]=t[i]=(m/n)*i-1
	Expression evaluation and syntax parsing:
	Backtracking:
	Runtime memory management:
	Efficient algorithms:

	4.pdf (p.30-37)
	5.pdf (p.38-71)
	Application of Circular Linked List
	Implementing Circular Linked List
	Circular Linked List:
	Circular Linked List class will be almost same as the Linked List class that we studied in the previous lesson, with a few difference in the implementation of class methods.
	Insertion at the Beginning
	Searching for an Element in the List
	Deleting a Node from the List

	Linked lists using arrays of nodes
	Efficiency of self-organizing lists
	Move to Front Method (MTF)
	Count Method:
	Transpose Method:

	Skip List Data Structure:
	Structure of Skip List
	Searching Process
	Implementation Details

	6.pdf (p.72-79)
	7.pdf (p.80-103)
	Right-Left Rotation:
	Implementation details:

	8.pdf (p.104-109)
	9.pdf (p.110-126)
	Algorithm:
	Pseudocode:

	10.pdf (p.127-132)
	11.pdf (p.133-154)
	Open Addressing:
	Operation
	Bucket Overflow
	Dynamic perfect hashing:
	Minimal perfect hash function
	Order preservation

	12.pdf (p.155-162)
	13.pdf (p.163-183)
	Doubly linked list
	Circular list
	Expression evaluation and syntax parsing:
	Backtracking:
	Runtime memory management:
	Efficient algorithms:

	14.pdf (p.184-205)

