
MATLAB Programming Syllabus 2015 Batch

Bachelor of Science, Mathematics, 2015, KAHE Page 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021

SYLLABUS

Semester – V

L T P C

15MMU504 MAT LAB PROGRAMMING 5 0 0 5

Course Objective:

This course will introduce a comprehensive introduction to fundamental programming concepts using a

block-structured language (MATLAB).

Course Outcome:

To enable the students to learn about the Mathematical software MATLAB for high-performance

numerical computations and visualizations.

UNIT I

Introduction - Basics of MATLAB, Input – Output, File types – Platform dependence – General commands.

UNIT II

Interactive Computation: Matrices and Vectors – Matrix and Array operations – Creating and Using Inline

functions – Using Built-in Functions and On-line Help – Saving and loading data – Plotting simple graphs.

UNIT III

Programming in MATLAB: Scripts and Functions – Script files – Functions files-Language specific features –

Advanced Data objects.

UNIT IV

Applications – Linear Algebra - Solving a linear system – Finding Eigen values and Eigen vectors – Matrix

Factorizations.

UNIT V

Applications – Data Analysis and Statistics – Numerical Integration – ordinary differential equations –

Nonlinear Algebraic Equations.

TEXT BOOK

1. RudraPratap, 2003. Getting Started with MATLAB-A Quick Introduction for Scientists and Engineers,

Oxford University Press.

REFERENCES

1. William John Palm, 2005. Introduction to Matlab 7 for Engineers, McGraw-Hill Professional.New Delhi.

2. Dolores M. Etter, David C. Kuncicky, 2004.Introduction to MATLAB 7, Prentice Hall, New Delhi.

3. Kiranisingh.Y,Chaudhuri.B.B, 2007.Matlab Programming, Prentice-Hall Of India Pvt.Ltd, New Delhi.

4. Brian Hahn, 2016. Essential MATLAB for Engineers and Scientists.6
th

edition , Elsevier publication.

Lecture Plan 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 1/4

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021.

Department of Mathematics

LECTURE PLAN

Subject: MATLAB programming Subject Code: 15MMU504

S.No Lecture

Duration

Topic to be covered Support Material

Unit – I

1. 1 1 Introduction to MATLAB T1: Ch 1: Pg: 3-5

2. 2 1 MATLAB environment T1: Ch 1: Pg: 7-9

3. 3 1 MATLAB desktop R2: Ch 2: Pg: 18-20

4. 5 1 MATLAB Windows R2: Ch 2: Pg: 20-22

5. 6 1 Graphic window and Edit window R4: Ch 2: Pg: 23-24

6. 7 1 Input – Output T1: Ch 1: Pg: 10-11

7. 8 1 File types in MATLAB T1: Ch 1: Pg: 11-12

8. 1 Platform dependence T1: Ch 1: Pg: 12-13

9. 1 General commands in MATLAB T1: Ch 1: Pg: 13-14

10. 1 Matrices and Arrays T1: Ch 2: Pg: 17-20

11. 1 Example programs T1: Ch 2: Pg: 25-28

12. 1 Example programs T1: Ch 2: Pg: 33-38

13. 1 Recapitulation and discussion of possible question

Total No. of Lecture hours planned – 13 hours

T1.RudraPratap, 2003.Getting Started with MATLAB- A Quick Introduction for Scientists and

Engineers, Oxford University Press.

R2. Dolores M. Etter, David C. Kuncicky, 2004. Introductoin to MATLAB 7, Prentice Hall, New

Delhi.

R4 Brian Hahn, 2016. Essential MATLAB for Engineers and Scientists.6
th

edition , Elsevier

publication.

Unit – II

1. 1 Examples of Interactive Computation T1: Ch 3: Pg: 63-64

2. 1 Matrices and vectors T1: Ch 3: Pg: 65-66

3. 1 Matrix manipulation and Creating vectors T1: Ch 3: Pg: 66-69

4. 1 Continuation of Matrix manipulation T1: Ch 3: Pg: 70-72

5. 1 Matrix and array operations T1: Ch 3: Pg: 73-74

6. 1 Continuation of Matrix and array operations T1: Ch 3: Pg: 74-75

7. 1 Elementary math functions T1: Ch 3: Pg: 75-77

8. 1 Character strings T1: Ch 3: Pg: 77-79

9. 1 Manipulation of Character strings T1: Ch 3: Pg: 79-81

10. 1 Command line functions T1: Ch 3: Pg: 83-84

11. 1 Using built in functions T1: Ch 3: Pg: 85-87

Lecture Plan 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 2/4

12. 1 on line help T1: Ch 3: Pg: 88-90

13. 1 Saving ,loading data T1: Ch 3: Pg: 90-93

14. 1 Plotting simple graphs T1: Ch 3: Pg: 94-96

15. 1 Recapitulation and discussion of possible question

Total No. of Lecture hours planned – 15 hours

T1.RudraPratap, 2003.Getting Started with MATLAB- A Quick Introduction for Scientists and

Engineers, Oxford University Press.

Unit – III

1. 1 1 Script files T1: Ch 4: Pg: 99-101

2. 2 1 Function files T1: Ch 4: Pg: 102-104

3. 4 1 Nested Function T1: Ch 4: Pg: 105-107

4. 5 1 Sub functions T1: Ch 4: Pg: 109-110

5. 6 1 Inside of another function T1: Ch 4: Pg: 110-111

6. 7 1 Language- specific features T1: Ch 4: Pg: 111-112

7. 8 1 Types of variable in functions R3: Ch 8: Pg: 247-248

8. 9 1 Continuation of Types of variable in functions R3: Ch 8: Pg: 249-250

9. 1 Loops T1: Ch 4: Pg: 114

10. 1 Branches T1: Ch 4: Pg: 115-116

11. 1 control flow T1: Ch 4: Pg: 116-117

12. 1 Interactive input T1: Ch 4: Pg: 117-119

13. 1 Input and Output T1: Ch 4: Pg: 119-120

14. 1 Advanced data objects T1: Ch 4: Pg: 121

15. 1 Structures T1: Ch 4: Pg: 122-124

16. 1 Creating structures T1: Ch 4: Pg: 124

17. 1 manipulating structures T1: Ch 4: Pg: 124-125

18. 1 Creating cells T1: Ch 4: Pg: 125-126

19. 1 Manipulating cells T1: Ch 4: Pg: 127-128

20. 1 Recapitulation and discussion of possible question

Total No. of Lecture hours planned – 20 hours

T1.RudraPratap, 2003.Getting Started with MATLAB- A Quick Introduction for Scientists and

Engineers, Oxford University Press.

R3. Kiranisingh. Y, Chaudhuri. B. B, 2007. Matlab Programming, Prentice- Hall of India Pvt. Ltd,

New Delhi.

Unit – IV

1. 1 Solving a linear system of equations T1: Ch 5: Pg: 135-136

2. 1 Continuous of solving systems of equations R1: Ch 8: Pg: 341-344

3. 1 Continuous of solving systems of equations R1: Ch 8: Pg: 345-347

4. 1 Continuous of solving systems of equations R1: Ch 8: Pg: 348-350

5. 1 A general solution program R1: Ch 8: Pg: 354-356

6. 1 Gaussian elimination method in MATLAB T1: Ch 5: Pg: 136-137

7. 1 Finding determinant of a matrices T1: Ch 3: Pg: 86-87

8. 1 Finding eigen values and eigen vectors T1: Ch 5: Pg: 137-138

9. 1 Continuation of Finding eigen values and T1: Ch 3: Pg: 87-88

Lecture Plan 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 3/4

eigenvectors

10. 1 Matrix factorizations T1: Ch 5: Pg: 138-139

11. 1 Recapitulation and discussion of possible question

Total No. of Lecture hours planned – 11 hours

T1.RudraPratap, 2003.Getting Started with MATLAB- A Quick Introduction for Scientists and

Engineers, Oxford University Press.

R1. William John Palm, 2005. Introduction to Matlab 7 for Engineers.McGraw- Hill Professional.

New Delhi.

Unit – V

1. 1 Data Analysis and Statistics T1: Ch 5: Pg: 150-152

2. 1 Statistics and Histograms R4: Ch 5: Pg: 106-112

3. 1 Continuation of Statistics and Histograms R1: Ch 7: Pg: 298-300

4. 1 Numerical integration T1: Ch 5: Pg: 152-154

5. 1 Double integration T1: Ch 5: Pg: 154-156

6. 1 Ordinary differential equations T1: Ch 5: Pg: 156-157

7. 1 Solving First order ODE T1: Ch 5: Pg: 158-160

8. 1 Solving Second order ODE T1: Ch 5: Pg: 160-162

9. 1 The ODE suite T1: Ch 5: Pg: 163-164

10. 1 Event location T1: Ch 5: Pg: 165-167

11. 1 Nonlinear algebraic Equations T1: Ch 5: Pg: 168-169

12. 1 Advanced Topics T1: Ch 5: Pg: 169-170

13. 1 Recapitulation and discussion of possible questions

14. 1 Discussion of previous ESE question papers

15. 1 Discussion of previous ESE question papers

16. 1 Discussion of previous ESE question papers

Total No. of Lecture hours planned -16 hours

T1.RudraPratap, 2003.Getting Started with MATLAB- A Quick Introduction for Scientists and

Engineers, Oxford University Press.

R1. William John Palm, 2005. Introduction to Matlab 7 for Engineers.McGraw- Hill Professional.

New Delhi.

R4 Brian Hahn, 2016. Essential MATLAB for Engineers and Scientists.6
th

edition , Elsevier

publication.

TEXTBOOK:

T1.RudraPratap, 2003.Getting Started with MATLAB- A Quick Introduction for Scientists and

Engineers, Oxford University Press.

REFERENCES:

R1. William John Palm, 2005. Introduction to Matlab 7 for Engineers.McGraw- Hill

Professional. New Delhi.

Lecture Plan 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 4/4

R2. Dolores M. Etter, David C. Kuncicky, 2004. Introductoin to MATLAB 7, Prentice Hall,

New Delhi.

R3. Kiranisingh. Y, Chaudhuri. B. B, 2007. Matlab Programming, Prentice- Hall of India Pvt.

Ltd, New Delhi.

R4 Brian Hahn, 2016. Essential MATLAB for Engineers and Scientists.6
th

edition , Elsevier

publication.

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 1/19

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021.

Department of Mathematics

Subject: MATLAB programming Subject Code: 15MMU504 L T P C

Class : III – B.Sc. Mathematics Semester : V 5 0 0 5

UNIT I

Introduction - Basics of MATLAB, Input – Output, File types – Platform dependence –

General commands.

TEXT BOOK

1. Rudra Pratap, 2003. Getting Started with MATLAB-A Quick Introduction for Scientists

and Engineers, Oxford University Press.

REFERENCES

1. William John Palm, 2005. Introduction to Matlab 7 for Engineers, McGraw-Hill

Professional.New Delhi.

2. Dolores M. Etter, David C. Kuncicky, 2004.Introduction to MATLAB 7, Prentice Hall,

New Delhi.

3. Kiranisingh.Y,Chaudhuri.B.B, 2007.Matlab Programming, Prentice-Hall Of India Pvt.Ltd,

New Delhi.

4. Brian Hahn, 2016. Essential MATLAB for Engineers and Scientists.6
th

edition , Elsevier

publication.

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 2/19

UNIT – I

Introduction to MATLAB

What Is MATLAB?

MATLAB is a software package for high-performance numerical computation and

visualization. It provides an interactive environment with hundreds of built-in functions for

technical computation, graphics, and animation. Best of all, it also provides easy extensibility

with its own high-level programming language. The name MATLAB stands for MATrix

LABoratory.

The diagram in Fig. 1 .1 shows the main features and capabilities of MATLAB.MATLAB's

built-in functions provide excellent tools for linear algebra computations, data analysis, signal

processing, optimization, numerical solution of ordinary differential equations (ODEs),

quadrature, and many other types of scientific computations. Most of these functions use

state-of-the-art algorithms. There are number of functions for 2-D and 3-D graphics, as well

as for animation. Also, for Lhoscw ho cannot do without their Fortran or C codes, MATLAB

even provides an external interface to run those programs from within MATLAB. The user,

however, is not limited to the built-in functions; he can write his own functions in the

MATLAB language. Once written, these functions behave just like the built-in functions.

MATLAB's language is very easy to learn and to use. There are also several optional

"toolboxes" available from the developers of MATLAB. These toolboxes are collections of

functions written for special applications such as symbolic computation, image processing,

statistics, control system design, and neural networks. The list of toolboxes keeps growing

with time. There are now more than 50 such toolboxes. We do not attempt introduction to any

toolbox here, with the exception of the Symbolic Math Toolbox. The basic building block o f

MATLAB is the matrix. The fundamental data types the array. Vectors, scalars, real matrices,

and complex matrices are all automatically handled as special cases of the basic data type.

What is more, you almost ever have to declare the dimensions of a matrix. MATLAI3 simply

loves matrices and matrix operations. The built-in functions are optimized for vector

operations. Consequently, vcctorized1 commands or codes run much faster in MATLAB.

Does MATLAB Do Symbolic Calculations?

(MATLAB vs. Mathematica or Maple)

If you are new to MATLAB, you are likely to ask this question. The first thing to realize is

that MATLAB is primarily a numerical computation package, although with the Symbolic

Math Toolbox (standard with the Student Edition of MATLAB, for an introduction) it can do

symbolic algebra. 2 Mathematica and Maple are primarily symbolic algebra packages. Of

course, they do numerical computations too. In fact, if you know any of these packages really

well, you can do almost every calculation that MATLAB does using that software. So why

learn MATLAB? Well, MATLAB's ease of use is its best feature. Also, it has a shallow

learning curve (more learning with less effort) whereas the computer algebra systems have a

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 3/19

steep learning curve. Because MATLAB was primarily designed to donumerical calculations

and computer algebra systems were not, MATLAB is oftenmuch faster at these calculations--

often as fast as C or Fortran. There are otherpackages, such as Xmath, that are also closer in

aim and scope but seem to bepopular with people in some specialized application areas. The

bottom line is, innumerical computations, especially those that us vectors and matries,

MATLABbeats everything hand clown in terms of ease of use, availability of built-in

functions,ease of programming, and speed. The proof is in the phenomenal growth

ofMATLAB users around the world in the la.'lt two decades . There arc more than

2000universities and thousands of companies listed as registered users. MATLAB's

popularitytoday has forced such powerful packages as Mathematica and many othersto

provide extensions for files in MATLAB's format!

Figure 1.1: A schematic diagram of MATLAB 's main feat ures

MATLAB

Built in Functions

User Written Function

Graphics

 2-D Graphics

 3-D Graphics

 Color and

Lighting

 Animation

External

Interface

(Mex-files)

• Interface with

C, Java,and

Fortran

Programs

Computations

 Linear Algebra

 Data Analysis

 Signal Processing

 Polynomials &

Interpolation

 Quadrature

 Solution of ODEs

Toolboxes

• Signal Processing • Image Processing

• Statistics • Splines

• Control System • Robust Control

• System Identification • m-Analysis & Synthesis

• Neural Networks • Optimization

• Communications • Financial

• Symbolic Mathematics And Many More

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 4/19

MATLAB is a very powerful and sophisticatedpackage. It takes a while to understand its real

power. Unfortunately, mostpowerful packages tend to be somewhat intimidating to a

beginner. That is whythis book exists-to help you overcome the fear, get started quickly, and

becomeproductive in very little time. The most useful and easily accessible features

ofMATLAB are discussed first to make you productive and build your confidence.Several

features are discussed in sufficient depth, with an invitation to explore themore advanced

features on your own. All features are discussed through examplesusing the following

conventions:

• Typographical styles:

- All actual MATLAB commands or instructions are shown in typedface. Menu commands,

files names, etc. , are shown in sa ns serif font .

- Place holders for variables or names in a command are shown in italics.

So, a command shown as he lp topic implies that you have to type theactual name of a topic

in place of topic in the command.

- Italic text has also been used to emphasize a point and, sometimes, tointroduce a new term.

• Actual examples: Actual examples carried out in MATLAB are shown ingray, shaded

boxes. Explanatory notes have been added within small whiterectangles in the gray boxes, as

shown in Fig. 1.2. These gray, boxed figuresare intended to provide a parallel track for the

impatient reader. If you wouldrather try out MATLAB right away, you are encouraged to go

through theseboxed examples. Most of the examples are designed :oo that you can (more

orless) follow them without reading the entire text . All examples are systemindependent.

After trying out the examples, you should read the appropriatesections.

• On-line help: We encourage the use of on-line help. For almost all majortopics, we indicate

the on-line help information in a ::;mall box in the margin,as shown here on the left .

Figure 1.2: Actual examples carried out in MATLAB are shown in gray boxesthroughout

this book. The text in the white boxes inside these gray boxes areexplanatory notes.

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 5/19

Typing help topic in MATLAB with the appropriate topic name providesa list of functions

and commands for that topic. Detailed help can then beohtained for any of those commands

and functions.

 Basics of MATLAB

Here we discuss some basic features and commands . To begin, let us look at thegeneral

structure of the MATLAB environment .

MATLAB windows

On almost all systems, MATLAB works through three basic windows , which areshown in

Fig. 1.3 and discussed here.

1. MATLAB desktop: This is where MATLAB puts you when you launch it(see Fig. 1.3).

The MATLAR desktop , by default, consists of the followingsubwindows .

Command window: This is the main window. It is characterized by the MATLAB command

prompt (>>). When you launch the applicationprogram, MATLAB puts you window. All

commands, includingthose for running user-written programs, are typed m this window at

theMATLAB prompt . In MATLAB , this window is a part of the MATLABwindow (see

Fig. 1 . 3) that contains other smaller windows or panes. Ifyou can get to the command

window, we advise you to ignore the otherfoursubwindows at this point . As software

packages become more andmore powerful, their creators add more and more features to

address the needs of experienced user Unfortunately, it makes life harder for thebeginners-

there is more room for confusion, distraction, and intimidation.Although we describe the

other subwindows here that appear withthe command window,

Current Directory pane: This pane is located on the left of the Command Window i n the

default MATLAB desktop layout . This is where all yourfiles from the current directory are

listed. You can do file navigationhere. Make sure that this is the directory where you want to

work sothat MATLAB has access to your files and where it can save your newfiles. If you

change the current directory (by navigating through your filesystem), make sure that the

selected directory is also reflected in the littlewindow above the Command Window marked

Current Directory. Thislittle window and the current directory pane are interlinked;

changingthe directory in one is automatically reflected in the other.You also have several

options of what you can do with a file onceyou select it (with a mouse click). To see the

options, click the rightbutton of the mouse after selecting a file. You can run M-files,

renamethem, delete them, etc.

(File) Details pane : Just below the Current Directory pane is the Detailspane that shows the

details of a file you select in the current directorypane. These details are normally limited to

listing of variables from aMAT-file (a binary data file discussed later), showing titles of M-

files,and listing heading of cells if present in M-files. You do not need tounderstand these

details yet .

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 6/19

Workspace pane: This subwindow lists all variables that you have generatedso far and

shows their type and size. You can do various thingswith these variables, such as plotting, by

clicking on a variable and thenusing the right button on the mouse to select your options.

Command History pane: All commands typed on the MATLAB promptin the command

window get recorded, even across multiple sessions (youworked on Monday, then on

Thur::;day, and then on next Wednesday, andso on), in this window. You can select a

command from this window withthe mouse and execute it in the command window by

double-clicking onit. You can also seled a set. of commands from this window and createan

M-file with the right click of the mouse (and selecting the appropriateoption from the menu).

2. Figure window: The output of all graphics commands typed in the commandwindow are

flushed to the graphics or figure window, a separate graywindow with (default) white

background color. The user can create as manyfigure windows as the system memory will

allow.

3. Editor window: This is where you write, edit , create , and save your ownprograms in files

called M-jiles. You can use any text editor to carry out thesetasks . On most systems ,

MATLAB provides its own built-in editor. However,you can use your own editor by typing

the standard file-editing command thatyou normally use on your system. From within

MATLAB , the command istyped at the MATLAB prompt following the exclamation

character (!) . Theexclamation character prompts MATLAD to return the control

temporarilyto the local operating system, which executes the command following

thecharacter. After the editing is completed, the control is returned to MATLAB.

For example, on UNIX systems , typing !myprogram . m at the MATLABprompt (and hitting

the return key at the end) invokes the vi editor on thefilemyprogra m . m . Typing ! emac s

myprogram . m invokes Lheemacs editor.

On-line help

• On- line documentation: MATLAB provides on-line help for all its builtinfunctions and

programming language constructs . The commands lo ok for,help, helpwin, and helpdesk

provide on-line help.for a description of the help facility.

• Demo: MATLAB has a demonstration program that shows many of features.The program

includes a tutorial introduction that is worth trying.Type demo at the MATLAB prompt to

invoke the demonstration program,and follow the instructions on the screen.

Input-output

MATLAB supports interactive computation, taking the input fromthe screen, and flushing the

output to the screen. In addition, it can read input files and write output files . The following

features hold for allforms of input-output :

• Data type: The fundamental data type in MATLAB is an array. It

encompassesseveraldisLlnct data objects-integers , doubles (real numbers), matrices,character

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 7/19

strings, structures, and cells. 3 In most cases, however, younever have to worry about the data

type or the data object declarations . Forexample, there ia no need to declare variables as nml

or complex . When a real number is entered as the value of a variable, MATLAB

automatically sets thevariable to be real (double).

Figure 1.3: The MATLAB environment consists of the MATLAB desktop, a figurewindow,

and an editor window. The figure and the editor windows appear onlywhen invoked with the

appropriate commands. For example, you can open theeditor window by selecting File

→New → Blank →M - F i le, and open a blank figurewindow by selecting F i l e→New

→Figure.

• Dimensioning: Dimensioning is automatic in MATLAB . No dimension statementsare

required for vectors or arrays. You can find the dimensions of anexisting matrix or a vector

with the size and length (for vectors only) commands.

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 8/19

• Case sensitivity: MATLAB is case-sensitive; that is, it differentiates betweenthe lowercase

and uppercase letters. Thus a and A are different variables.Most MATLAB commands and

built-in function calls are typed inlowercase letters . You can turn case sensitivity on and off

with the casesencommand. However, we do not recommend it .

• Output display: The output of every command is displayed on the screenunless MATLAB

is directed otherwise . A semicolon at the end of a commandsuppresses the screen output ,

except for graphics and on-line help commands.

The following facilities are provided for controlling the screen output :

- Paged output : To direct MATLAB to show one screen of output ata time, type more on at

the MATLAB prompt . Without it , MATLAB flushes the entire output at once, without

regard to the speed at whichyou read.

- Output format :

Though computations inside MATLAB are performed using double precision,the appearance

of floating point numbers on the screen is controlledby the output format in use. There are

several different screen outputformats . The following table shows the printed value of l01r in

sevendifferent formats .

format short 31.4159

format short e 3.141 6e+00 1

format long 31.41592653589793

format long e 3.141592653589793e+001

format short g 31.416

format long g 31.4159265358979

format hex 403f6a7a2955385e

format rat 3550/ 113

format bank 31.42

The additional formats, format compact and format loose , control thespacing above and

below the displayed lines, and format + displays a + ,-, and blank for positive, negative, and

zero numbers, respectively. Thedefaultis format short . The display format is set by typing f

ormo.ttype on the command line

• Command history: MATLAB saves previously typed commands in a buffer.These

commands can be recalled with the up-arrow key (↑). This helps inediting previous

commands. You can also recall a previous command by typing the first few characters and

then pressing the ↑ key. Alternatively, youcan double-click on a command in the Command

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 9/19

History pane (where all yourcommands from even previous sessions of MATLAB are

recorded and listed)to execute it in the command window. On most UNIX systems ,

MATLAB 'scommand-line editor also understands the standard emacskeybindings.

File types

MATLAB can read and write several types of files. However, there are mainly fivedifferent

types of files for storing data or programs that you are likely to use often:

M-files are standard ASCII texL files, with a . m extension to the filename. Thereare two

types of these files: script files and junction files. Most programs you write in MATLAB are

saved as M-files. All built-infunctionR in MATLAB are M-files, most of which reside on

your computer inprecompiled format . Some built-in functions are provided with source code

inreadable M-files so that they can be copied and modified.

Mat-files are binary datafiles, with a . m a t extension to the filename. Mat-files arecreated by

MATLAB when you save data with the s ave command. The datais written in a special

format that only MATLAB can read. Mat-files can beloaded into MATLAB with the l o ad

command.

Fig-files are binary figure files with a .fig extension that can be opened again inMATLAB as

figures. Such files are created by saving a figure in this formatusing the Save or Save As

options from the File menu or using thesaveas command in the command window. A fig-file

contains all the informationrequired to recreate the figure. Such files can be opened with the

openfilename . fig command.

P-files are compiled M-files with a . p extension that can be executed in MATLABdirectly

(without being parsed and compiled). These files are created with thepcode command. If you

develop an application that other people can use butyou do not want to give them the source

code (M-file), then you give themthe corresponding p-code or the p-file.

Mex-files are MATLAB-callable Fortran, C , and Java programs, with a . mex extension

to the filename. Use of these files requires some experience with MATLABand a lot of

patience. We do not discuss Mex-files in this introductorybook.

Platform dependence

One of the best features of MATLAB is its platform independence. Once you are

inMATLAB , for the most part , it does not matter which computer you are on. Almostall

commands work the same way. The only commands that differ are the ones thatnecessarily

depend on the local operating system, such as editing (if you do not usethe built-in editor)

and saving M-files. Programs written in the MATLAB languagework exactly the same way

on all computers. The user interface (how you interactwith your computer), however, may

vary a little from platform to platform.

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 10/19

• Launching MATLAB : If MATLAB is installed on your machine correctly thenyou can

launch it by following these directions:

On PCs : Navigate and find the MATLAB folder, locate the MATLAB program,and

double-click on the program icon to launch M ATLAB. If youhave worked in MATLAB

before and have an M-file or Mat-file thatwas written by MATLAB , you can also double-

click on the file lulaunchMATLAB.

On UNIX machines: Type mat lab on the UNIX prompt and hit returnorenter. If

MATLAB is somewhere in your path, it will be launched. If itis not , ask your system

administrator.

• Creating a directory and saving files: Where should you save your files sothat MATLAB

can easily access them? MATLAB create a default foldercalledMatlab in�ide Documents (on

Macs) , or My Docu m e n ts (on PCs)where it saves your files if you do not specify any other

location. If you arethe only user of MATLAB on the computer you are working on, this is

fine.You can save all your work in this folder and access all your files easily (defaultsetup). If

not, you have to create a separate folder for saving your work.

Theoretically, you can create a directory /folder anywhere, save your files,and direct

MATLAB to find those files. The most convenient place, however,to save all user-written

files is in the default directory M ATLAB created bythe application in your Documents or

My Documents folder. This way alluser-written files are automatically accessible to

MATLAB . If you need tostore the files somewhere else , you might have to specify the path

to the filesusing the path command, or change the working directory of MATLAD tothe

desired directory with a few navigational clicks in the Current Directorypane. We

recommend the latter.

• Printing:On PCs : To print the contents of the current active window

(command,figure, or edit window) , select Print . . . from the File menu and clickPrint in the

dialog box. You can also print the contents of the figurewindow by typing print at the

MATLAB prompt.

On UNIX machines : To print a file from inside MATLAB , type the appropriateUNIX

command preceded by the exclamation character (!) . Forexample, to print the file startup.m,

type ! lpr startup .m on the MATLABprompt . To print a graph that is currently in the figure

windowsimply type print on the MATLAB prompt .

Basic Commands

At your command line type each of the following lines (but not ‘>>’). Separate each with the

‘enter’ key.

 >> 1+1;

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 11/19

 >>1+1

 >>3*2

 >>2^4

 >>16.6-3/6

The preceding lines used basic matlab operators, +,-,^,*, and / for calculations. Next, try out

some basic matlab functions by typing the lines below, each followed by the ‘enter’ key. The

argument is in the parentheses.

 >> sin (90)

 >> sin(pi/2)

 >>sind(90)

 >> round(sind(45))

Notice that the reserved word ‘pi’ is employed and that the basic trig function require radians

though there are trig functions available that work in degrees. Also, in general you may pass

anything that would return a numerical value to any basic function, e.g the use of round.

Basic Assignment of Variables

Try out the following lines at your command line.

 >> a = 1

 >> b = 2

 >> c = a + b

 >> C = A + B

>> d = 5 + c

Note that we can only add a and b because they have been previously defined. Also, since A

and B are not defined, we can not add them. Yes, matlab is case sensitive.

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 12/19

Variable Types

You have up to this point been working with scalar variables, arrays in 1D having a single

value. Matlab also supports n-dimensional arrays. Type the following:

 >> d

 >> f = [1/ 5 ,23,6,3,-4,34.6,5, 1.3^5]

 >> g = [a,b,c;0,0,7;3,2,1]

What is the function of the semicolon in this use?

What is the function of the comma? Why did we skip e as a variable name? Why do we have

integers in ‘g’ and floatingpoint numbers in ‘f’?

Accessing Variables in Arrays

Use the (row,col) location to retrieve values.

 >> c

 >> g(2,3)

>> f(1,5)

 >> g(2,3) + 4*f(1,5)

If you have not guessed yet, the comma is used to separate columns and the semicolon is used

at the end of a row in matlab matrices. The final semicolon is normally omitted.

You can also assign variables to string values

 >> h = ‘me’

 >> k = ‘oh’

 >> l = ‘my’

 >> m = ‘ ‘

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 13/19

 >> [h, k, l]

 >> [h,,m,k,m,l]

 >>h+m+k+l

Why were i and j skipped? Type i and j on your command line.

Useful Matrix Functions

The command ‘sort’ sorts within columns in ascending order by default. If this is not

possible, it defaults to a row-wise sort in ascending order.

>> sort(f)

>> sort(g)

For a quick description of how sort operates, type ‘help sort’. This will work with any

command for which matlab has a definition.

Now try these commands, max, min, mean, std, operating on f and g.. What are they doing on

f and g? Also try typing f’ (note the apostrophe).

Matrix Operations

You can perform basic operations on matrices as long as the indices agree.

>> f+2*f

>> g*g

>> g^2

>>f+g

>> f*f’

Matlab will try to operate on all elements of a matrix with an operator or a function.

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 14/19

>> g-1

>> sin(f)

>> 2*f

You may also operate on all elements explicitly.

 >>f.^2

Now

 >> f^2

 >>f.f

 >>f.f’

Note f’ is the transpose of f,f.fis the dot product. Operationg only work when indices agree.

Matrix Assignment

Use the (row,col) location to place values in a matrix.

>> mat1 = zeros(4,4)

>> mat1(2,2)=16

>> mat1(1,:)=6

>> mat1(3,:)=[3,2,1,0]

What is the purpose of the colon, : ?

Basic Plotting

Type the following commands to generate a simple line plot from data.

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 15/19

>> x=[1,2,3,4,5,6,7,8,9,10]

>> y=11-x

>> plot(x,y)

Where did all the values for y come from?

Basic Programming and Using the Editor

Click on the blank sheet icon in the matlab main toolbar. This will open a matlab editor

window. Begin typing the remainder of the tutorial in that window. The syntax for basic for

loops is like other programming languages:

for i=1:1:4

 i

 mat1(4,i)=i

pause

end

Note that the for loop is closed by an end statement. It also runs from 1 by 1 to 4 using the

colons to delimit the index definitions (i=1:4 will produce the same result since the default

increment is 1). The pause is inserted so that you can see the results.

To run the program, look for the ‘evaluate entire file’ icon on the toolbar in the editor. Click

this. You must hit the space bar to break the pause for each cycle.

By this point you should be familiar with basic matlab commands and assignments for scalar

variables and for matrix variables. You should also be comfortable with programming a

basic for loop and plotting data.

Basics:

If you type in a valid expression and press Enter, MATLAB will immediately execute it and

return the result, just like a calculator.

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 16/19

>> 2+2

ans =

4

>> 4ˆ2

ans =

16

>> sin(pi/2)

ans =

1

>> 1/0

Warning: Divide by zero.

ans =

Inf

>>exp(i*pi)

ans =

-1.0000 + 0.0000i

1 . Another

special value is NaN, which stands for not a number. NaN is used to express an undefined

value. For example,

>> Inf/Inf ans = NaN

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 17/19

* Challenge: Calculate the following statements: 2
51

and
)2/1(sin 1

and tan(e)

(Hint: >>help exp).

Here are a few other demonstration statements.

% % Anything after a % sign is a comment.

x = rand(2,2); % ; means "don’t print out result"

s = ’Hello world’; % single quotes enclose a string

t = 1 + 2 + 3 + ... % ... means continue a line

4 + 5 + 6 % ...

Here are a few useful commands:

who % gives you your variables

cd % Change current working directory.

pwd % Show (print) current working directory.

dir % List directory.

ls % List directory.

General commands you should remember

On-line help

help lists topics on which help is available

helpwin opens the interactive help window

helpdesk opens the web browser-based help facility

helptopic provides help on topic

lookfor stringlists help topics containing string

demo runs the demo program

Workspace information

who lists variables currently in the workspace

whos lists variables currently in the workspace with their size

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 18/19

what lists M- , Mat-, and Mex-files on the disk

clear clears the workspace, all variables are removed

clear x y z clears only variables x, y, and z

clear all clears all variables and functions from workspace

mlock fun locks function fun so that c lear cannot remove it

munlock fun unlocks function fun so that c l e ar can remove it

clc clears command window, cursor moves to the top

home scrolls the command window to put the curser on top

clf clears figure window

Directory information

pwd shows the current working directory

cd changes the current working directory

dir lists contents of the current directory

ls lists contents of the current directory, same as dir

path gets or sets MATLAB search path

editpath modifies MATLAB search path

copyfile copies a file

mkdir creates a directory

General information

computer tells you the computer type you are using

clock gives you wall clock time and date as a vector

date tells you the date as a string

more controls the paged output according to the screen size

ver gives the license and the MATLAB version information

bench benchmarks your computer on running MATLABcompared to other

computers

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 19/19

Termination

Control-c local abort , kills the current command execution

quit quits MATLAB

exit same as quit

UNIT – I Introduction to MATLAB 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 20/19

Part B (5x8=40 Marks)

Possible Questions

1. Explain about Matlab environment with diagrammatic representation.

2. Describe about Matlab main features with schematic diagram

3. Discuss about the Matlab Windows

4. Write a short note on (i) Matlab Desktop (ii) Fiqure window (iii)Editor window

5. List out advantages and disadvantages in Matlab.

6. Explain in detail about MAT LAB ‘ s features of input and output.

7. Write a short note on (i) Data type (ii) Output display (iii) Command History.

8. Write a brief note on Matlab platform dependence.

9. Explain in detail about Matlabfile types.

10. List out the mat lab general commands with explanation.

11. Describe about entering command and expression in Matlab with an example.

Introduction to MATLAB / 2015 Batch

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

what does MATLAB stands for ? Math Laboratory Matrix Laboratory Math Work Math Language Matrix Laboratory

what symbol precedes all comments in Matlab ? " { >> [[>>

which of the following is not pre-defined variable

in Matlab? pi inf i gravity gravity

which of the following command is used to clear

all data and variables in memory ? clc clear delete deallocate clear

_______ character in Matlab are represented in

their value in memory. decimal hex ASCII string ASCII

In Matlab, this keyword immediately moves to

the next iterartion of the loop update goto into continue continue

Possible Questions

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021

Unit I
Introduction to MATLAB

Part A (20x1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

 Subject: MATLAB programming Subject Code: 15MMU504

 Class : III - B.Sc. Mathematics Semester : V

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE

Introduction to MATLAB / 2015 Batch

which of the following will correctly define x,y

and z as symbols? syms x y z sym x,y,z syms (x,y,z) sym (x,y,z) syms x y z

which of the following is used to see if two

elements are equal in Matlab ? : .= .== is equal .==

To add a comment to the mfile, the Matlab

command is ______ % @ & (' ') %

The clc command is used to ____

erase everything

in mfile

clear the command

window clean the destop

save the existing

mfile clear the command window

The basic building block o f Matlab is the _____ array string matrix list matrix

The fundamental data type of Matlab is _______ matrix array list string array

To find the dimension of an existing matirx in

Matlab with _______ command size length dim eye size

To find the dimension of an existing a vector in

Matlab with _______ command size length dim eye length

what command is used to turn case sensitivity on

or off in Matlab ? alp cases casesen sen casesen

To suppresses the screen output we use _______

at the end of the command dot camma colon semicolon semicolon

Mat-files can be loaded into MATLAB with

the______command load lod list update load

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE

Introduction to MATLAB / 2015 Batch

Typing _____ at the Matlab prompt to print the

content of the figure window eye print copy prt print

______ command is used to clear the figure

window clc clear all clf clearf clf

______ command is used to change the current

working directry dir cd pwd ls cd

_______command is used to list a contents of the

current directory ls pwd dir cd dir

Mat-files are binary ____ files data strimg figure matrix data

mkdir command is used to create a _________ script file directory function file m file directory

clf command is used to clear the _____ window figure command editor workspace figure

which of the following is pre-defined variable in

Matlab? weight pi gravity mass pi

_____ is called a Matlab prompt " { >> [[>>

______ command is listed the M , Mat, Mex-files

on the disk what who whos when what

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 1/37

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021.

Department of Mathematics

Subject : MATLAB programming Subject Code : 15MMU504 L T P C

Class : III – B.Sc. Mathematics Semester : V 5 0 0 5

UNIT II

Interactive Computation: Matrices and Vectors – Matrix and Array operations – Creating and

Using Inline functions – Using Built-in Functions and On-line Help – Saving and loading data –

Plotting simple graphs.

TEXT BOOK

1. RudraPratap, 2003. Getting Started with MATLAB-A Quick Introduction for Scientists and

Engineers, Oxford University Press.

REFERENCES

1. William John Palm, 2005. Introduction to Matlab 7 for Engineers, McGraw-Hill

Professional.New Delhi.

2. Dolores M. Etter, David C. Kuncicky, 2004.Introduction to MATLAB 7, Prentice Hall, New

Delhi.

3. Kiranisingh.Y,Chaudhuri.B.B, 2007.Matlab Programming, Prentice-Hall Of India Pvt.Ltd,

New Delhi.

4. Brian Hahn, 2016. Essential MATLAB for Engineers and Scientists.6
th

edition , Elsevier

publication.

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 2/37

UNIT – II

INTERACTIVE COMPUTATION
In principle, one can do all calculations in MATLAB interactively by entering commands

sequentially in the command window, although a script file is perhaps a better choice for

computations that involve more thana few steps. The interactive mode of computation, however,

makes MATLAB apowerful scientific calculator that puts hundreds of built-in mathematical

functionsfor numerical calculations and sophisticated graphics at the fingertips of the user.

In this chapter , we introduce you to some of MATLAB 's built-in functions

andcapabilities, through examples of interactive computation. The basic things to keepin mind

are:

Where to type commands: All MATLAB commands or expressions are enteredin the command

window at the MATLAB prompt (»).

How to execute commands : To execute a command or statement , you mustpress return or

enter at the end.

What to do if the command is very long: If your command does not fit onone line, you can

continue the command on the next line if you type threeconsecutive periods at the end of the first

line. You can keep continuing thisway until the length of your command hits the limit , which is

4,096 characters.

How to name variables:Names of variables must begin with a letter. After thefirst letter, any

number of digits or underscores may be used, but MATLAB remembers only the first 31

characters .

What is the precision of computation: All computations are carried out internallyin double

precision unless specified otherwise. The appearance ofnumbers on the screen, however, depends

on the format in use.

How to control the display format of the output : The output appearance offloating-point

numbers (number of digits after the decimal, etc.) is controlledwith the format command. The

default is format short , which displays fourdigits after the decimal .

How to suppress the screen output : A semicolon (;) at the end of a commandsuppresses the

screen output , although the command is carried out and theresult is saved in the variable

assigned to the command or in the defaultvariable ans .

How t o recall previously typed commands: Use the up-arrow key to recallpreviously typed

commands. MATLAB uses smart recall, so you can also typeone or two letters of your command

and use the up-arrow key for recalling thecommand starting with those letters. Also, all your

commands are recordedin the command history subwindow. You can doubleclickon any

command in the command history subwindow to execute it inthe command window.

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 3/37

How to set paged-screen display: For paged-screen display (one screenful ofoutput display at a

time) use the command more on.

Where and how to save results: If you need to save some of the computed resultsfor later

processing, you can save the variables in a file in binary orASCII format with the s ave

command.

How to save figures : You can save a figure in a .fig file by selecting F i l e ---> S a veAs from

the figure window. Once you save it , you can open it later in MATLABusing open command or

by selecting F i l e ---> O pen . from the MATLABmain menu. You can also save figures in one

of numerous formats for printingor exporting to other applications.

How to print your work: You can print your entire session in MATLAB, partof it , or selected

segments of it , in one of several ways. The simplest way,perhaps, is to create a diary with the di

ary command and save your entire session in it . Then you can print the diary just the way you

would print any other file on your computer. On PC sand Macs , however, you can print the

session by selecting Print from the F i l emenu. (Before you print , make sure that the command

window i s the activewindow. If it isn't , just click on the command window to make it active).

What about comments: MATLAB takes anything following a % as a commentand ignores it . 1

You are not likely to use a lot of comments while computinginteractively, but you will use them

when you write programs in MATLAB.

Because MATLAB derives most of its power from matrix computations andassumes every

variable to be, at least potentially, a matrix, we start with descriptionsand examples of how to

enter, index, manipulate, and perform some usefulcalculations with matrices.

MATRICES AND VECTORS

Introduction to Vectors in Matlab

This is the basic introduction to Matlab. Creation of vectors is included with a few basic

operations. Topics include the following:

1. Defining a vector
2. Accessing elements within a vector
3. Basic operations on vectors

Defining a Vector

Matlab is a software package that makes it easier for you to enter matrices and vectors, and

manipulate them. The interface follows a language that is designed to look a lot like the notation

use in linear algebra. In the following tutorial, we will discuss some of the basics of working

with vectors.

http://www.cyclismo.org/tutorial/matlab/vector.html#defining#defining
http://www.cyclismo.org/tutorial/matlab/vector.html#accesing#accesing
http://www.cyclismo.org/tutorial/matlab/vector.html#ops#ops

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 4/37

If you are running windows or Mac OSX, you can start matlab by choosing it from the menu. To

start matlab on a unix system, open up a unix shell and type the command to start the software:

matlab. This will start up the software, and it will wait for you to enter your commands. In the

text that follows, any line that starts with two greater than signs (>>) is used to denote the matlab

command line. This is where you enter your commands.

Almost all of Matlab's basic commands revolve around the use of vectors. A vector is defined by

placing a sequence of numbers within square braces:

>> v = [3 1]

v =

 3 1

This creates a row vector which has the label "v". The first entry in the vector is a 3 and the

second entry is a 1. Note that matlab printed out a copy of the vector after you hit the enter key.

If you do not want to print out the result put a semi-colon at the end of the line:

>> v = [3 1];

>>

If you want to view the vector just type its label:

>> v

v =

 3 1

You can define a vector of any size in this manner:

>> v = [3 1 7 -21 5 6]

v =

 3 1 7 -21 5 6

Notice, though, that this always creates a row vector. If you want to create a column vector you

need to take the transpose of a row vector. The transpose is defined using an apostrophe ("'"):

>> v = [3 1 7 -21 5 6]'

v =

 3

 1

 7

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 5/37

 -21

 5

 6

A common task is to create a large vector with numbers that fit a repetitive pattern. Matlab can

define a set of numbers with a common increment using colons. For example, to define a vector

whose first entry is 1, the second entry is 2, the third is three, up to 8 you enter the following:

>> v = = [1:8]

v =

 1 2 3 4 5 6 7 8

If you wish to use an increment other than one that you have to define the start number, the value

of the increment, and the last number. For example, to define a vector that starts with 2 and ends

in 4 with steps of .25 you enter the following:

>> v = [2:.25:4]

v =

 Columns 1 through 7

 2.0000 2.2500 2.5000 2.7500 3.0000 3.2500 3.5000

 Columns 8 through 9

 3.7500 4.0000

Accessing elements within a vector

You can view individual entries in this vector. For example to view the first entry just type in the

following:

>> v(1)

ans =

 2

This command prints out entry 1 in the vector. Also notice that a new variable called ans has

been created. Any time you perform an action that does not include an assignment matlab will

put the label ans on the result.

To simplify the creation of large vectors, you can define a vector by specifying the first entry, an

increment, and the last entry. Matlab will automatically figure out how many entries you need

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 6/37

and their values. For example, to create a vector whose entries are 0, 2, 4, 6, and 8, you can type

in the following line:

>> 0:2:8

ans =

 0 2 4 6 8

Matlab also keeps track of the last result. In the previous example, a variable "ans" is created. To look at

the transpose of the previous result, enter the following:

>> ans'

ans =

 0

 2

 4

 6

 8

To be able to keep track of the vectors you create, you can give them names. For example, a row vector

v can be created:

>> v = [0:2:8]

v =

 0 2 4 6 8

>> v

v =

 0 2 4 6 8

>> v;

>> v'

ans =

 0

 2

 4

 6

 8

Note that in the previous example, if you end the line with a semi-colon, the result is not

displayed. This will come in handy later when you want to use Matlab to work with very large

systems of equations.

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 7/37

Matlab will allow you to look at specific parts of the vector. If you want to only look at the first

three entries in a vector you can use the same notation you used to create the vector:

>> v(1:3)

ans =

 0 2 4

>> v(1:2:4)

ans =

 0 4

>> v(1:2:4)'

ans =

 0

 4

Basic operations on vectors

Once you master the notation you are free to perform other operations:

>> v(1:3)-v(2:4)

ans =

 -2 -2 -2

For the most part Matlab follows the standard notation used in linear algebra. We will see later

that there are some extensions to make some operations easier. For now, though, both addition

subtraction are defined in the standard way. For example, to define a new vector with the

numbers from 0 to -4 in steps of -1 we do the following:

>> u = [0:-1:4]

u = [0:-1:-4]

u =

 0 -1 -2 -3 -4

We can now add u and v together in the standard way:

>> u+v

ans =

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 8/37

 0 1 2 3 4

Additionally, scalar multiplication is defined in the standard way. Also note that scalar division

is defined in a way that is consistent with scalar multiplication:

>> -2*u

ans =

 0 2 4 6 8

>> v/3

ans =

 0 0.6667 1.3333 2.0000 2.6667

With these definitions linear combinations of vectors can be easily defined and the basic

operations combined:

>> -2*u+v/3

ans =

 0 2.6667 5.3333 8.0000 10.6667

You will need to be careful. These operations can only be carried out when the dimensions of the

vectors allow it. You will likely get used to seeing the following error message which follows

from adding two vectors whose dimensions are different:

>> u+v'

??? Error using ==> plus

Matrix dimensions must agree.

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 9/37

Introduction to Matrices in Matlab

A basic introduction to defining and manipulating matrices is given here. It is assumed that you

know the basics on how to define and manipulate vectors using matlab.

1. Defining Matrices
2. Matrix Functions
3. Matrix Operations

Defining Matrices

Defining a matrix is similar to defining a vector. To define a matrix, you can treat it like a

column of row vectors (note that the spaces are required!):

>> A = [1 2 3; 3 4 5; 6 7 8]

A =

 1 2 3

 3 4 5

 6 7 8

You can also treat it like a row of column vectors:

>> B = [[1 2 3]' [2 4 7]' [3 5 8]']

B =

 1 2 3

 2 4 5

 3 7 8

(Again, it is important to include the spaces.)

If you have been putting in variables through this and the tutorial on vectors, then you probably

have a lot of variables defined. If you lose track of what variables you have defined, the whos

command will let you know all of the variables you have in your work space.

>> whos

 Name Size Bytes Class

 A 3x3 72 double array

 B 3x3 72 double array

 v 1x5 40 double array

Grand total is 23 elements using 184 bytes

http://www.cyclismo.org/tutorial/matlab/vector.html
http://www.cyclismo.org/tutorial/matlab/matrix.html#define#define
http://www.cyclismo.org/tutorial/matlab/matrix.html#functions#functions
http://www.cyclismo.org/tutorial/matlab/matrix.html#operations#operations
http://www.cyclismo.org/tutorial/matlab/vector.html
http://www.cyclismo.org/tutorial/matlab/vector.html

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 10/37

We assume that you are doing this tutorial after completing the previous tutorial. The vector v

was defined in the previous tutorial.

As mentioned before, the notation used by Matlab is the standard linear algebra notation you

should have seen before. Matrix-vector multiplication can be easily done. You have to be

careful, though, your matrices and vectors have to have the right size!

>> v = [0:2:8]

v =

 0 2 4 6 8

>> A*v(1:3)

??? Error using ==> *

Inner matrix dimensions must agree.

>> A*v(1:3)'

ans =

 16

 28

 46

Get used to seeing that particular error message! Once you start throwing matrices and vectors

around, it is easy to forget the sizes of the things you have created.

You can work with different parts of a matrix, just as you can with vectors. Again, you have to

be careful to make sure that the operation is legal.

>> A(1:2,3:4)

??? Index exceeds matrix dimensions.

>> A(1:2,2:3)

ans =

 2 3

 4 5

>> A(1:2,2:3)'

ans =

 2 4

 3 5

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 11/37

Matrix Functions

Once you are able to create and manipulate a matrix, you can perform many standard operations

on it. For example, you can find the inverse of a matrix. You must be careful, however, since the

operations are numerical manipulations done on digital computers. In the example, the matrix A

is not a full matrix, but matlab's inverse routine will still return a matrix.

>> inv(A)

Warning: Matrix is close to singular or badly scaled.

 Results may be inaccurate. RCOND = 4.565062e-18

ans =

 1.0e+15 *

 -2.7022 4.5036 -1.8014

 5.4043 -9.0072 3.6029

 -2.7022 4.5036 -1.8014

By the way, Matlab is case sensitive. This is another potential source of problems when you start

building complicated algorithms.

>> inv(a)

??? Undefined function or variable a.

Other operations include finding an approximation to the eigen values of a matrix. There are two

versions of this routine, one just finds the eigen values, the other finds both the eigen values and

the eigen vectors. If you forget which one is which, you can get more information by typing help

eig at the matlab prompt.

>> eig(A)

ans =

 14.0664

 -1.0664

 0.0000

>> [v,e] = eig(A)

v =

 -0.2656 0.7444 -0.4082

 -0.4912 0.1907 0.8165

 -0.8295 -0.6399 -0.4082

e =

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 12/37

 14.0664 0 0

 0 -1.0664 0

 0 0 0.0000

>> diag(e)

ans =

 14.0664

 -1.0664

 0.0000

Matrix Operations

There are also routines that let you find solutions to equations. For example, if Ax=b and you

want to find x, a slow way to find x is to simply invert A and perform a left multiply on both

sides (more on that later). It turns out that there are more efficient and more stable methods to do

this (L/U decomposition with pivoting, for example). Matlab has special commands that will do

this for you.

Before finding the approximations to linear systems, it is important to remember that if A and B

are both matrices, then AB is not necessarily equal to BA. To distinguish the difference between

solving systems that have a right or left multiply, Matlab uses two different operators, "/" and "\".

Examples of their use are given below. It is left as an exercise for you to figure out which one is

doing what.

>> v = [1 3 5]'

v =

 1

 3

 5

>> x = A\v

Warning: Matrix is close to singular or badly scaled.

 Results may be inaccurate. RCOND = 4.565062e-18

x =

 1.0e+15 *

 1.8014

 -3.6029

 1.8014

>> x = B\v

x =

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 13/37

 2

 1

 -1

>> B*x

ans =

 1

 3

 5

>> x1 = v'/B

x1 =

 4.0000 -3.0000 1.0000

>> x1*B

ans =

 1.0000 3.0000 5.0000

Finally, sometimes you would like to clear all of your data and start over. You do this with the

"clear" command. Be careful though, it does not ask you for a second opinion and its results are

final.

>> clear

>> whos

Vector Functions

Matlab makes it easy to create vectors and matrices. The real power of Matlab is the ease in

which you can manipulate your vectors and matrices. Here we assume that you know the basics

of defining and manipulating vectors and matrices. In particular we assume that you know how

to create vectors and matrices and know how to index into them. For more information on those

topics see our tutorial on either vectors or matrices.

In this tutorial we will first demonstrate simple manipulations such as addition, subtraction, and

multiplication. Following this basic "element-wise" operations are discussed. Once these

operations are shown, they are put together to demonstrate how relatively complex operations

can be defined with little effort.

First, we will look at simple addition and subtraction of vectors. The notation is the same as

found in most linear algebra texts. We will define two vectors and add and subtract them:

http://www.cyclismo.org/tutorial/matlab/vector.html
http://www.cyclismo.org/tutorial/matlab/matrix.html

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 14/37

>> v = [1 2 3]'

v =

 1

 2

 3

>> b = [2 4 6]'

b =

 2

 4

 6

>> v+b

ans =

 3

 6

 9

>> v-b

ans =

 -1

 -2

 -3

Multiplication of vectors and matrices must follow strict rules. Actually, so must addition. In the

example above, the vectors are both column vectors with three entries. You cannot add a row

vector to a column vector. Multiplication, though, can be a bit trickier. The number of columns

of the thing on the left must be equal to the number of rows of the thing on the right of the

multiplication symbol:

>> v*b

??? Error using ==> *

Inner matrix dimensions must agree.

>> v*b'

ans =

 2 4 6

 4 8 12

 6 12 18

>> v'*b

ans =

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 15/37

 28

There are many times where we want to do an operation to every entry in a vector or matrix.

Matlab will allow you to do this with "element-wise" operations. For example, suppose you want

to multiply each entry in vector v with its cooresponding entry in vector b. In other words,

suppose you want to find v(1)*b(1), v(2)*b(2), and v(3)*b(3). It would be nice to use the "*"

symbol since you are doing some sort of multiplication, but since it already has a definition, we

have to come up with something else. The programmers who came up with Matlab decided to

use the symbols ".*" to do this. In fact, you can put a period in front of any math symbol to tell

Matlab that you want the operation to take place on each entry of the vector.

>> v.*b

ans =

 2

 8

 18

>> v./b

ans =

 0.5000

 0.5000

 0.5000

Since we have opened the door to non-linear operations, why not go all the way? If you pass a

vector to a predefined math function, it will return a vector of the same size, and each entry is

found by performing the specified operation on the cooresponding entry of the original vector:

>> sin(v)

ans =

 0.8415

 0.9093

 0.1411

>> log(v)

ans =

 0

 0.6931

 1.0986

The ability to work with these vector functions is one of the advantages of Matlab. Now complex

operations can be defined that can be done quickly and easily. In the following example a very

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 16/37

large vector is defined and can be easily manipulated. (Notice that the second command has a ";"

at the end of the line. This tells Matlab that it should not print out the result.)

>> x = [0:0.1:100]

x =

 Columns 1 through 7

 0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000

 [stuff deleted]

 Columns 995 through 1001

 99.4000 99.5000 99.6000 99.7000 99.8000 99.9000 100.0000

>> y = sin(x).*x./(1+cos(x));

Through this simple manipulation of vectors, Matlab will also let you graph the results. The

following example also demonstrates one of the most useful commands in Matlab, the "help"

command.

>> plot(x,y)

>> plot(x,y,'rx')

>> help plot

 PLOT Linear plot.

 PLOT(X,Y) plots vector Y versus vector X. If X or Y is a matrix,

 then the vector is plotted versus the rows or columns of the matrix,

 whichever line up. If X is a scalar and Y is a vector, length(Y)

 disconnected points are plotted.

 PLOT(Y) plots the columns of Y versus their index.

 If Y is complex, PLOT(Y) is equivalent to PLOT(real(Y),imag(Y)).

 In all other uses of PLOT, the imaginary part is ignored.

 Various line types, plot symbols and colors may be obtained with

 PLOT(X,Y,S) where S is a character string made from one element

 from any or all the following 3 columns:

 b blue . point - solid

 g green o circle : dotted

r red x x-mark -. dashdot

 c cyan + plus -- dashed

 m magenta * star

 y yellow s square

 k black d diamond

 v triangle (down)

 ^ triangle (up)

< triangle (left)

> triangle (right)

 p pentagram

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 17/37

 h hexagram

 For example, PLOT(X,Y,'c+:') plots a cyan dotted line with a plus

 at each data point; PLOT(X,Y,'bd') plots blue diamond at each data

 point but does not draw any line.

 PLOT(X1,Y1,S1,X2,Y2,S2,X3,Y3,S3,...) combines the plots defined by

 the (X,Y,S) triples, where the X's and Y's are vectors or matrices

 and the S's are strings.

 For example, PLOT(X,Y,'y-',X,Y,'go') plots the data twice, with a

 solid yellow line interpolating green circles at the data points.

 The PLOT command, if no color is specified, makes automatic use of

 the colors specified by the axes ColorOrder property. The default

 ColorOrder is listed in the table above for color systems where the

 default is blue for one line, and for multiple lines, to cycle

 through the first six colors in the table. For monochrome systems,

 PLOT cycles over the axes LineStyleOrder property.

 PLOT returns a column vector of handles to LINE objects, one

 handle per line.

 The X,Y pairs, or X,Y,S triples, can be followed by

 parameter/value pairs to specify additional properties

 of the lines.

 See also SEMILOGX, SEMILOGY, LOGLOG, PLOTYY, GRID, CLF, CLC, TITLE,

 XLABEL, YLABEL, AXIS, AXES, HOLD, COLORDEF, LEGEND, SUBPLOT, STEM.

 Overloaded methods

 help idmodel/plot.m

 help iddata/plot.m

>> plot(x,y,'y',x,y,'go')

>> plot(x,y,'y',x,y,'go',x,exp(x+1),'m--')

>> whos

 Name Size Bytes Class

 ans 3x1 24 double array

 b 3x1 24 double array

 v 3x1 24 double array

 x 1x1001 8008 double array

 y 1x1001 8008 double array

Grand total is 2011 elements using 16088 bytes

The compact notation will let you tell the computer to do lots of calculations using few

commands. For example, suppose you want to calculate the divided differences for a given

equation. Once you have the grid points and the values of the function at those grid points,

building a divided difference table is simple:

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 18/37

>> coef = zeros(1,1001);

>> coef(1) = y(1);

>> y = (y(2:1001)-y(1:1000))./(x(2:1001)-x(1:1000));

>> whos

 Name Size Bytes Class

 ans 3x1 24 double array

 b 3x1 24 double array

 coef 1x1001 8008 double array

 v 3x1 24 double array

 x 1x1001 8008 double array

 y 1x1000 8000 double array

Grand total is 3008 elements using 24064 bytes

>> coef(2) = y(1);

>> y(1)

ans =

 0.0500

>> y = (y(2:1000)-y(1:999))./(x(3:1001)-x(1:999));

>> coef(3) = y(1);

>>

>>

From this algorithm you can find the Lagrange polynomial that interpolates the points you

defined above (vector x). Of course, with so many points, this might get a bit tedious.

Character Strings:

In MATLAB, these are arrays of ASCII values that are displayed as their character string

representation. For example:

>> t = ‘Hello’

t =

Hello

>> size(t)

ans =

 1 5

A character string is simply text surrounded by single quotes. Each character in a string is one

element in the array. To see the underlying ASCII representation of a character string, you can

type,

>> double(t)

ans =

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 19/37

 104 101 108 108 111

The function char provides the reverse transformation:

>> char(t)

ans =

hello

Since strings are numerical arrays with special attributes, they can be manipulated just like

vectors or matrices. For example,

>> u=t(2:4)

u =

ell

>> u=t(5:-1:1)

u =

olleh

>> u=t(2:4)’

u =

e

l

l

One can also concatenate strings directly. For instance,

>> u=’My name is ’;

>> v=’Mr. MATLAB’;

>> w=[u v]

w =

My name is Mr. MATLAB

The function disp allows you to display a string without printing its variable name. For

example:

>> disp(w)

My name is Mr. MATLAB

In many situations, it is desirable to embed a numerical result within a string. The following

string conversion performs this task.

>> radius=10; volume=(4/3)*pi*radius^3;

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 20/37

>> t=[‘A sphere of radius ‘ num2str(radius) ‘ has volume… of ‘

num2str(volume) ’.’];

>> disp(t)

It may sometimes be required to find a certain part of a longer string. For example,

>>a=’TexasTechUniversity’;

>>findstr(a,’ ‘) %% Finds spaces

ans =

6 6 11

>>findstr(a,’Tech’) %% Finds the string Tech

ans

 7

>>findstr(a,'Te') %% Finds the string starting with Te

ans =

 1 7

>>findstr(a,’tech’) %% This command is case-sensitive

ans =

 []

If it is desired to replace all the case on Tech to TECH then one can do this by using,

>>strrep(a,’Tech’,’TECH’)

ans =

TexasTECHUniversity

Relational and Logical Operators/Functions

Every time you create an M-file, you are writing a computer program using the MATLAB

programming language. A logical is a variable which is assigned to a relational or logical

expression .

>> a = true

a =

1

>> b = false

b =

0

Relational operators in MATLAB
Relational operators are used to compare two arrays of the same size or to compare an array to a

scalar. In the second case, the scalar is compared with all elements of the array and the result has

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 21/37

the same size as the array. A statement that includes a relational operator is called a logical

expression either true or false. If the statement is true, it is assigned a value of 1, and a value of 0

when it is wrong.

MATLAB's relational operators are

== equal

~= not equal

< less than

> greater than

<= less than or equal

>= greater than or equal

Note that a single = is different than double == and denotes assignment and never a test for

equality in MATLAB.

>> A=1:5, B=2.*A-1

A =

1 2 3 4 5

B =

1 3 5 7 9

>> compAB = A <B

compAB =

0 1 1 1 1

>> compAB2= A == B

compAB2 =

1 0 0 0 0

Logical operators and find command

& (logical and) operator takes two logical expressions and returns true if both expressions are

true, and false otherwise.

| (logical or) operator takes two logical expressions and returns true if either of the expressions

are true, and false only if both expressions are false.

~ (logical not) operator takes only one logical expression and returns the opposite (negation) of

that expression.

Relational and Logical functions in MATLAB: There are many useful logical functions whose

names begin with is. The results of MATLAB's logical operators and logical functions are

logical arrays of 0s and 1s.

isequal (A,B): To test whether arrays A and B are equal, that is, of the same size with

identical elements, the expression can be used:

>> isequal (A,B)

ans=

0

isempty: test for empty array

isequal: test if arrays are equal

isfinite: detect finite array elements

isinf: detect infinite array elements

isinteger: test for integer array

issorted: test for sorted vector

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 22/37

Other important logical functions are: ischar, isequalwithequalnans, isfloat, islogical,

isnan, isnumeric, isreal, isscalar, isvector.

Other important logical functions are all, any, and, find for specifying nonzero elements of

arrays:

all returns true if all elements of vector is nonzero

any returns true if any element of vector is nonzero

find command also can be used to extract the nonzero elements of an array:

>> x = [-3 1 0 -inf OJ ;

>> f = find(x)

f =

1 2 4

>> x(f)

ans=

-3 1 –Inf

>> x(find(isfinite(x)))

ans=

-3

1

0

0

Remark (Operator Precedence)

Arithmetic, relational, and logical operators can all be combined in mathematical expressions.

When an expression has such a combination, the result depends on the order in which the

operations are carried out. The following is the order used by MATLAB:

(highest) Parenthese

Exponentiation

Logical NOT (~)

Multiplication, division

Addition, subtraction

Relational operators (>,<,>=,<=,==,~=)

Logical AND (&)

(lowest) Logical OR (|)

MATLAB Functions

In MATLAB you will use built-in functions as well as functions that you create yourself.

MATLAB has many built-in functions, typing help elfun and/or help specfun calls up full lists

of elementary and special functions. These include sqrt, cos, sin, tan, log, and, exp.

For the user-defined functions, you can use inline (‘function’,’independent variable’)

command:

>> f = inline('xˆ2 + 2*x + 1', 'x')

f =

Inline function:

f(x) = x^2 + 2*x + 1

>> f(4) % Once the function is defined, you can evaluate it

ans =

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 23/37

25

 Symbolic Computation in MATLAB

You can carry out algebraic or symbolic calculations in MATLAB, such as simplifying

polynomials, differentiation with diff function, integration with int function or solving algebraic

equations. To find out about the int function, for example, from the Command Window:

>> help sym/int

To perform symbolic computations, use syms to declare the variables you plan to use as

symbolic variables. Some of the important functions are: simplify, subs, solve, diff and int.

>> syms x y

>> (x-y)*(x+y)*(x^2+2*x+1)

ans =

(x + y)*(x - y)*(x^2 + 2*x + 1)

>> f=simplify((x-y)*(x+y)*(x^2+2*x+1)) % to simplify the expression

f =

(x^2 - y^2)*(x + 1)^2

>> subs(f, x, 2) % to substite x=2 in f

ans =

36 - 9*y^2

>> solve(f) % to solve f=0 with respect to x

ans =

 y

-1

-1

-y

>> f1=diff(f,x) % to differentiate f with respect to x

f1 =

 (2*x + 2)*(x^2 - y^2) + 2*x*(x + 1)^2

>> f2=int(f,x) % to integrate f with respect to x

f2 =

x^4/2 - x*y^2 - x^3*(y^2/3 - 1/3) - x^2*y^2 + x^5/5

 Input/Output

It is possible to write programmes that accept input from the user and produce informative

output. Statements that are called input/output statements are used for these tasks with

MATLAB functions input and fprintf.

>> rad = input(„Enter the radius: ‟)

Enter the radius: 5

rad =

 5

>>name=input(„Enter your name: ‟) % to enter characters

Enter your name: „basak‟

Name=

 basak

>> fprintf(„The value of six square is %d\n‟,36)

The value of six square is 36

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 24/37

>> fprintf(„Six square is %3d and the square root of 2 is %6.2f\n‟,36,1.47)

Six square is 36 and the square root of 2 is 1.47

The character „\n‟ at the end of the string is a special character called the newline character;

when it is printed the output moves down to the next line. The %d in fprintf is sometimes called

a placeholder; it specifies where the value of the expression that is after the string is to be

printed. The character in the placeholder is called the conversion character, and it specifies the

type of value that is being printed. A list of the simple placeholders:

%d integers (it actually stands for decimal integer)

%f floats

%c single characters

%s strings

USING BUILT- IN FUNCTIONS AND ON-LINE HELP

MATLAB provides hundreds of built-in functions for numerical linear algebra, data analysis,

Fourier transforms, data interpolation and r,urve fitting, root-finding , numericalsolution of

ordinary differential equations, numerical quadrature, sparsematrix calculations, and general-

purpose graphics. There is on-line help for allbuilt-in functions. With so many built-in functions ,

it is import ant to know howto look for functions and how to learn to use them. There are several

ways to gethelp :

help the most direct on-line help: If you know the exact name of a function, you can get help on

it by typing help functionname on the command line.For example, typing help help provides help

on the function help itself.

lookfor the keyword search function: If you are looking for a function, uselookfor keyword to

get a list of functions with the string key'word in their description.For example, typing lookfor '

identity matrix ' lists functions(there are two of them) that create identity matrices.

helpwin the click and navigate help: If you want to look around and get afeel for the on-line help

by clicking and navigating through what catches your attention, use the window- help, helpwin,

To activate the help window,type helpwin at the command prompt or select Help Window from

the Helpmenu on the command window menu bar.

helpdesk the web browser-based help: MATLAB provides extensive on-linedocumentation in

both HTML and PDF formats , If you like to read on-linedocumentation and get detailed help by

clicking on hyperlinked text , use theweb browser-based help facility, helpdesk, To activate the

help window, clickon the help icon. on the menu bar. Alternatively, type helpdesk at the

commandprompt or select Product Help from the Help menu on the commandwindow menu bar

As you work more in MATLAB , you will realize that the on-line help with thecommand

help and keyword search with lookfor are the easiest and fastest waysto get help.

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 25/37

Plotting

we will introduce the basic operations for creating plots. To show how the plot command is used,

an approximation using Euler's Method is found and the results plotted. We will approximate the

solution to the D.E. y'= 1/y, y(0)=1. A step size of h=1/16 is specified and Euler's Method is

used. Once done, the true solution is specified so that we can compare the approximation with

the true value. (This example comes from the tutorial on loops.)

>> h = 1/16;

>> x = 0:h:1;

>> y = 0*x;

>> size(y)

ans =

 1 17

>> max(size(y))

ans =

 17

>> y(1) = 1;

>> for i=2:max(size(y)),

 y(i) = y(i-1) + h/y(i-1);

 end

>> true = sqrt(2*x+1);

Now, we have an approximation and the true solution. To compare the two, the true solution is

plotted with the approximation plotted at the grid points as a green 'o'. The plot command is used

to generate plots in matlab. There is a wide variety of arguments that it will accept. Here we just

want one plot, so we give it the range, the domain, and the format.

>> plot(x,y,'go',x,true)

That's nice, but it would also be nice to plot the error:

>> plot(x,abs(true-y),'mx')

Okay, let's print everything on one plot. To do this, you have to tell matlab that you want two

plots in the picture. This is done with the subplot command. Matlab can treat the window as an

array of plots. Here we will have one row and two columns giving us two plots. In plot #1 the

function is plotted, while in plot #2 the error is plotted.

>> subplot(1,2,1);

>> plot(x,y,'go',x,true)

>> subplot(1,2,2);

>> plot(x,abs(true-y),'mx')

http://www.cyclismo.org/tutorial/matlab/control.html

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 26/37

Figure 1. The two plots from the first approximation

Let's start over. A new approximation is found by cutting the step size in half. But first, the

picture is completely cleared and reset using the clf comand. (Note that I am using new vectors

x1 and y1.)

>> clf

>> h = h/2;

>> x1 = 0:h:1;

>> y1 = 0*x1;

>> y1(1) = 1;

>> for i=2:max(size(y1)),

 y1(i) = y1(i-1) + h/y1(i-1);

 end

>> true1 = sqrt(2*x1+1);

The new approximation is plotted, but be careful! The vectors passed to plot have to match. The

labels are given for the axis and a title is given to each plot in the following example. The

following example was chosen to show how you can use the subplot command to cycle through

the plots at any time.

>> plot(x,y1,'go',x,true1)

??? Error using ==> plot

Vectors must be the same lengths.

>> plot(x1,y1,'go',x1,true1)

>> plot(x1,abs(true1-y1),'mx')

>> subplot(1,2,1);

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 27/37

>> plot(x,abs(true-y),'mx')

>> subplot(1,2,2);

>> plot(x1,abs(true1-y1),'mx')

>> title('Errors for h=1/32')

>> xlabel('x');

>> ylabel('|Error|');

>> subplot(1,2,1);

>> xlabel('x');

>> ylabel('|Error|');

>> title('Errors for h=1/16')

Figure 2. The errors for the two approximations

Finally, if you want to print the plot, you must first print the plot to a file. To print a postscript

file of the current plot you can use the print command. The following example creates a

postscript file called error.ps which resides in the current directory. This new file (error.ps) can

be printed from the UNIX prompt using the lpr command.

>> print -dps error.ps

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 28/37

Creating a Plot

Try this Example

The plot function has different forms, depending on the input arguments.

 If y is a vector, plot(y) produces a piecewise linear graph of the elements of y versus the index

of the elements of y.

 If you specify two vectors as arguments, plot(x,y) produces a graph of y versus x.

Use the colon operator to create a vector of x values ranging from 0 to , compute the sine of

these values, and plot the result.

x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)

Add axis labels and a title. The characters \pi in the xlabel function create the symbol .

The FontSize property in the title function increases the size the text used for the title.

xlabel('x = 0:2\pi')
ylabel('Sine of x')
title('Plot of the Sine Function','FontSize',12)

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 29/37

Plotting Multiple Data Sets in One Graph

Try this Example

Multiple x-y pair arguments create multiple graphs with a single call to plot. MATLAB® uses a

different color for each line.

For example, these statements plot three related functions of x :

x = 0:pi/100:2*pi;
y = sin(x);
y2 = sin(x-.25);
y3 = sin(x-.5);
plot(x,y,x,y2,x,y3)

The legend function provides an easy way to identify the individual lines:

legend('sin(x)','sin(x-.25)','sin(x-.5)')

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 30/37

Specifying Line Styles and Colors

It is possible to specify color, line styles, and markers (such as plus signs or circles) when you

plot your data using the plot command:

plot(x,y,'color_style_marker')

color_style_marker contains one to four characters (enclosed in single quotes) constructed from

a color, a line style, and a marker type. For example,

plot(x,y,'r:+')

plots the data using a red-dotted line and places a + marker at each data point.

color_style_marker is composed of combinations of the following elements.

Type Values Meanings

Color 'c'

'm'

'y'

'r'

'g'

'b'

'w'

'k'

cyan

magenta

yellow

red

green

blue

white

black

Line style '-'

'--'

':'

'-.'

no character

solid

dashed

dotted

dash-dot

no line

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 31/37

Type Values Meanings

Marker type '+'

'o'

'*'

'x'

's'

'd'

'^'

'v'

'>'

'<'

'p'

'h'

no character

plus mark

unfilled circle

asterisk

letter x

filled square

filled diamond

filled upward triangle

filled downward triangle

filled right-pointing triangle

filled left-pointing triangle

filled pentagram

filled hexagram

no marker

Plotting Lines and Markers

If you specify a marker type, but not a line style, MATLAB® creates the graph using only

markers, but no line. For example,

plot(x,y,'ks')

plots black squares at each data point, but does not connect the markers with a line.

The statement

plot(x,y,'r:+')

plots a red-dotted line and places plus sign markers at each data point.

Placing Markers at Every Tenth Data Point

Try this Example

This example shows how to use fewer data points to plot the markers than you use to plot the

lines. This example plots the data twice using a different number of points for the dotted line and

marker plots.

x1 = 0:pi/100:2*pi;
x2 = 0:pi/10:2*pi;
plot(x1,sin(x1),'r:',x2,sin(x2),'r+')

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 32/37

Graphing Imaginary and Complex Data

When you pass complex values as arguments to plot, MATLAB ignores the imaginary

part, except when you pass a single complex argument. For this special case, the command is a

shortcut for a graph of the real part versus the imaginary part. Therefore,

plot(Z)

where Z is a complex vector or matrix, is equivalent to

plot(real(Z),imag(Z))

The following statements draw a 20-sided polygon with little circles at the vertices.

t = 0:pi/10:2*pi;
plot(exp(i*t),'-o')
axis equal

The axis equal command makes the individual tick-mark increments on the x- and y-axes the

same length, which makes this plot more circular in appearance.

http://in.mathworks.com/help/matlab/ref/plot.html

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 33/37

Adding Plots to an Existing Graph

The hold command enables you to add plots to an existing graph. When you type,
hold on

MATLAB does not replace the existing graph when you issue another plotting command.

Instead, MATLAB combines the new graph with the current graph.

For example, these statements first create a surface plot of the peaks function, then superimpose

a contour plot of the same function.
[x,y,z] = peaks;
% Create surface plot
surf(x,y,z)
% Remove edge lines a smooth colors
shading interp
% Hold the current graph
hold on
% Add the contour graph to the pcolor graph
contour3(x,y,z,20,'k')
% Return to default
hold off

Figure Windows

Plotting functions automatically open a new figure window if there are no figure windows

already created. If there are multiple figure windows open, MATLAB uses the one that is

designated as the “current figure” (usually, the last figure used).

To make an existing figure window the current figure, you can click the mouse while the pointer

is in that window or you can type,

figure(n)

where n is the number in the figure title bar.

To open a new figure window and make it the current figure, type

figure

http://in.mathworks.com/help/matlab/ref/hold.html
http://in.mathworks.com/help/matlab/ref/peaks.html

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 34/37

Clearing the Figure for a New Plot

When a figure already exists, most plotting commands clear the axes and use this figure to create

the new plot. However, these commands do not reset figure properties, such as the background

color or the colormap. If you have set any figure properties in the previous plot, you can use

the clf command with the reset option,

clf reset

before creating your new plot to restore the figure's properties to their defaults.

Displaying Multiple Plots in One Figure

The subplot command enables you to display multiple plots in the same window or print them

on the same piece of paper. Typing

subplot(m,n,p)

partitions the figure window into an m-by-n matrix of small subplots and selects the pth subplot for

the current plot. The plots are numbered along the first row of the figure window, then the

second row, and so on. For example, these statements plot data in three subregions of the figure

window.

x = 0:pi/20:2*pi;
subplot(3,1,1); plot(sin(x))
subplot(3,1,2); plot(cos(x))
subplot(3,1,3); plot(sin(x).*cos(x))

Functions

surf Surface plot

surfc Contour plot under a 3-D shaded surface plot

surface Create surface object

http://in.mathworks.com/help/matlab/ref/clf.html
http://in.mathworks.com/help/matlab/ref/subplot.html
https://www.mathworks.com/help/matlab/ref/surf.html
https://www.mathworks.com/help/matlab/ref/surfc.html
https://www.mathworks.com/help/matlab/ref/surface.html

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 35/37

surfl Surface plot with colormap-based lighting

surfnorm Compute and display 3-D surface normals

mesh Mesh plot

meshc Plot a contour graph under mesh graph

meshz Plot a curtain around mesh plot

hidden Remove hidden lines from mesh plot

fsurf Plot 3-D surface

fmesh Plot 3-D mesh

fimplicit3 Plot 3-D implicit function

waterfall Waterfall plot

ribbon Ribbon plot

contour3 3-D contour plot

peaks Example function of two variables

cylinder Generate cylinder

ellipsoid Generate ellipsoid

sphere Generate sphere

pcolor Pseudocolor (checkerboard) plot

surf2patch Convert surface data to patch data

https://www.mathworks.com/help/matlab/ref/surfl.html
https://www.mathworks.com/help/matlab/ref/surfnorm.html
https://www.mathworks.com/help/matlab/ref/mesh.html
https://www.mathworks.com/help/matlab/ref/meshc.html
https://www.mathworks.com/help/matlab/ref/meshz.html
https://www.mathworks.com/help/matlab/ref/hidden.html
https://www.mathworks.com/help/matlab/ref/fsurf.html
https://www.mathworks.com/help/matlab/ref/fmesh.html
https://www.mathworks.com/help/matlab/ref/fimplicit3.html
https://www.mathworks.com/help/matlab/ref/waterfall.html
https://www.mathworks.com/help/matlab/ref/ribbon.html
https://www.mathworks.com/help/matlab/ref/contour3.html
https://www.mathworks.com/help/matlab/ref/peaks.html
https://www.mathworks.com/help/matlab/ref/cylinder.html
https://www.mathworks.com/help/matlab/ref/ellipsoid.html
https://www.mathworks.com/help/matlab/ref/sphere.html
https://www.mathworks.com/help/matlab/ref/pcolor.html
https://www.mathworks.com/help/matlab/ref/surf2patch.html

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 36/37

Properties

Surface Properties Control chart surface appearance and behavior

Surface Properties Control primitive surface appearance and behavior

FunctionSurface Properties Control surface chart appearance and behavior

ImplicitFunctionSurface

Properties

Control implicit surface chart appearance and behavior

ParameterizedFunctionSurface

Properties

Control parameterized surface chart appearance and behavior

https://www.mathworks.com/help/matlab/ref/matlab.graphics.chart.primitive.surface-properties.html
https://www.mathworks.com/help/matlab/ref/matlab.graphics.primitive.surface-properties.html
https://www.mathworks.com/help/matlab/ref/matlab.graphics.function.functionsurface-properties.html
https://www.mathworks.com/help/matlab/ref/matlab.graphics.function.implicitfunctionsurface-properties.html
https://www.mathworks.com/help/matlab/ref/matlab.graphics.function.implicitfunctionsurface-properties.html
https://www.mathworks.com/help/matlab/ref/matlab.graphics.function.parameterizedfunctionsurface-properties.html
https://www.mathworks.com/help/matlab/ref/matlab.graphics.function.parameterizedfunctionsurface-properties.html

UNIT – III Interactive Computation 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 37/37

Part B (5x8=40 Marks)

Possible Questions

1. Describe in detail how you will create matrices with example.

2. Explain about Matrix Manipulation with example.

3. Write a short note on

(i) Appending row or column

(ii) Deleting a row or column

(iii) Utility matrices

4. Describe about matrix and array operation with example.

5. List out logical operations with examples.

6. Describe about elementary math functions.

7. Explain in detail about character strings with example.

8. Explain the following with example

(i) Manipulating Character String

(ii) The eval function

9. Describe about command line functions

10. Describe about built in functions and online help.

11. Describe about the saving and loading from the binary Mat-Files.

12. Explain about plotting simple graph with example.

Interactive Computation / 2015 Batch

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

The output appearance of floating point numbers

is controlled with the _________ command format long deci point format

To suppresses the screen output by using

_______ at the end of the command dot semicolon camma colon semicolon

In Matlab command _____ does not need

brackets vector string scalar matrix scalar

If we give square brackets with no elements

between them then it creates identity matrix square matrix diagonal matrix null matrix null matrix

The three consecutive periods using in matrices

are also called as ______ ellipse hyperbola parabola circle ellipse

_____ in MATLAB refers to the element aij of

matrix A Aij A{ij} A (i , j) A (j, i) A (i , j)

The dimensions of an existing matrix A may be

obtained with the command _____ rand(A) size(A) eye(A) length(A) size(A)

Possible Questions

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021

Unit II
Interactive Computation

Part A (20x1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

 Subject: MATLAB programming Subject Code: 15MMU504

 Class : III - B.Sc. Mathematics Semester : V

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE

Interactive Computation / 2015 Batch

which of the following command is used to delete

the first and third rows of matrix A A(: , [1 3]) = [] A(1 3) = []

A ([1 3] , :) =

[] A(1 ,3) = [] A ([1 3] , :) = []

The 0- 1 vector created by you is converted into a

logical array with the command ______ array logical ones zeros logical

All the elements of matrix A can be strung into a

single-column vector b by the command b = A(:) b = A(\) b = A[] b = A(") b = A(:)

If matrix A is an m x n matrix, it can be reshaped

into a p x q matrix with the command ________ reshape (A , :) reshape (A , p , q) reshape (p , q)

reshape (A ; p ;

q) reshape (A , p , q)

The transpose of matrix A is obtained by typing A" (A) A' A; A'

A null matrix A is created by the command

_____ A = { } A = () A = (0) A = [] A = []

A (2 , :) = [] this command gives

deletes the

second row of

matrix, A

Create a 2x2

matrix, A

delete the

second column

of matix, A

create a two row

matrix A

deletes the second row of

matrix, A

To cretae a matrices with ones on the diagonal by

using ____ command rand(m,n) eye(m,n) diag(m,n) zeros(m,n) eye(m,n)

To extracts the first upper off-diagonal vector of

matrix A with the ____ command diag (A , 1) eye(m,n) zeros(m,n) diag(m,n) diag (A , 1)

The command eye(2) produce a 2x2 _____

matrix zero square identity null identity

ones(3) , produce______matrices of dimension 3. square null zero identity square

To produce a = [0 0.5 1 1.5 2 2.5 3] by giving a

command as ___ a = 0 … 3 a = 0 : 0.5 : 3 a = 0.5 : 3 a = 0 : 3 a = 0 : 0.5 : 3

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE

Interactive Computation / 2015 Batch

_______ is the same as u=a : (b-a) / (n-1) : b u = log(a,b,n) u=line (a , b , n)

u=linspace (a ,

b , n)

u =

logspace(a,b,n) u=linspace (a , b , n)

______ command is round the output towards 0 ceil fix floor round fix

To converts characters to their ASCII numeric

values by using ____command strcat abs char ischar abs

To converts any uppercase letters in the string to

lowercase by using ___ command lower strcat ischar char lower

______ executes the string as a command strcat abs eval lower eval

The syntax for creating an inline function is

particularly simple

F = inline

('function')

F = inline

('function formula')

F = in('function

formula')

F = inline

('formula') F = inline ('function formula')

An ______________is created by the command

f = @(inputlist) mathematical expression vector function argument function inline functions

anonymous

function anonymous function

To evaluates f (x) at x = 5 by giving f(x)=5 fx(5) f(5) x(5) fx(5)

____loop is conditionally execute statements for else If If else If

_____ command is terminate scope of control

statements. If end for else end

To produce stunning surface plots in 3-D by

using ____ command ezsurf ezpolar ezplot ezcontour ezsurf

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 1/27

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021.

Department of Mathematics

Subject : MATLAB programming Subject Code : 15MMU504 L T P C

Class : III – B.Sc. Mathematics Semester : V 5 0 0 5

UNIT III

Programming in MATLAB: Scripts and Functions – Script files – Functions files-Language

specific features – Advanced Data objects.

TEXT BOOK

1. RudraPratap, 2003. Getting Started with MATLAB-A Quick Introduction for Scientists and

Engineers, Oxford University Press.

REFERENCES

1. William John Palm, 2005. Introduction to Matlab 7 for Engineers, McGraw-Hill

Professional.New Delhi.

2. Dolores M. Etter, David C. Kuncicky, 2004.Introduction to MATLAB 7, Prentice Hall, New

Delhi.

3. Kiranisingh.Y,Chaudhuri.B.B, 2007.Matlab Programming, Prentice-Hall Of India Pvt.Ltd,

New Delhi.

4. Brian Hahn, 2016. Essential MATLAB for Engineers and Scientists.6
th

edition , Elsevier

publication.

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 2/27

UNIT – III

Programming in MATLAB: Scripts and Functions

Script Files

Now suppose we want to modify the position vectors and find the distance between the new

coordinates, it will not be worthwhile to type all the commands again. Instead one can create a

script file, which will contain all the necessary information. To create a new script file, one can

open their favorite text editor and type the following commands,

% dist_ab.m

% Calculates distance between any two position vectors a and b

d=b-a;

dd=d*d‟;

dist_ab=sqrt(dd)

Save these contents in a file named dist_ab.mand note that the script file has a „.m‟ extension

which denotes that it is a MATLAB file. Now one can pick values for the vectors a and b by

simply typing say,

>> a=[1 2 3];

>> b=[5 5 3];

Then find the distance by simply typing

>>dist_ab

dist_ab =

 5

This program can be called repeatedly to find the distance between any two position vectors that

are entered by the user.

Function Files

It was tedious to have to assign the two vectors each time before using the above script file. One

can combine the assignment of input values with the actual instruction, which invokes the script

file by using a function m-file. Not only that, but also one can at the same time assign the answer

to an output variable.

To create a new function file, one can open their favorite text editor and type the following

commands,

% distfn.m

% Calculates the distance between two vectors a and b

% Input: a, b (position vectors)

% Output: dist_ab is the distance between a and b

function dist_ab = distfn(a , b)

 d= b – a;

dd = d*d‟;

 dist_ab = sqrt(dd);

Save these contents in a file named distfn.mand we should now be able to run,

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 3/27

>> dist_ab=distfn([1 2 3], [5 5 3])

or

>> a=[1 2 3];

>> b=[5 5 3];

>> dist_ab=distfn(a , b);

To save a certain part of the work in the MATLAB session, one can type,

>> diary work1

>> ….

>> ….

>> diary off

All the work between the diary commands will be saved into a file called work1.

Syntax

function [y1,...,yN] = myfun(x1,...,xM)

Description

example

function [y1,...,yN] = myfun(x1,...,xM) declares a function named myfun that accepts inputs

x1,...,xM and returns outputs y1,...,yN. This declaration statement must be the first executable

line of the function. Valid function names begin with an alphabetic character, and can contain

letters, numbers, or underscores.

You can save your function:

In a function file which contains only function definitions. The name of the file should match the

name of the first function in the file.

In a script file which contains commands and function definitions. Functions must be at the end

of the file. Script files cannot have the same name as a function in the file. Functions are

supported in scripts in R2016b or later.

Files can include multiple local functions or nested functions. For readability, use the end

keyword to indicate the end of each function in a file. The end keyword is required when:

Any function in the file contains a nested function.

The function is a local function within a function file, and any local function in the file uses the

end keyword.

The function is a local function within a script file.

Examples

collapse all

Function with One Output

Define a function in a file named average.m that accepts an input vector, calculates the average

of the values, and returns a single result.

function y = average(x)

if ~isvector(x)

 error('Input must be a vector')

end

y = sum(x)/length(x);

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 4/27

end

Call the function from the command line.

z = 1:99;

average(z)

ans =

 50

Function in a Script File

Define a script in a file named integrationScript.m that computes the value of the integrand at

and computes the area under the curve from 0 to . Include a local function that defines the

integrand, .

% Compute the value of the integrand at 2*pi/3.

x = 2*pi/3;

y = myIntegrand(x)

% Compute the area under the curve from 0 to pi.

xmin = 0;

xmax = pi;

f = @myIntegrand;

a = integral(f,xmin,xmax)

function y = myIntegrand(x)

y = sin(x).^3;

end

y =

 0.6495

a =

 1.3333

Function with Multiple Outputs

Define a function in a file named stat.m that returns the mean and standard deviation of an input

vector.

function [m,s] = stat(x)

n = length(x);

m = sum(x)/n;

s = sqrt(sum((x-m).^2/n));

end

Call the function from the command line.

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 5/27

values = [12.7, 45.4, 98.9, 26.6, 53.1];

[ave,stdev] = stat(values)

ave =

 47.3400

stdev =

 29.4124

Multiple Functions in a Function File

Define two functions in a file named stat2.m, where the first function calls the second.

function [m,s] = stat2(x)

n = length(x);

m = avg(x,n);

s = sqrt(sum((x-m).^2/n));

end

function m = avg(x,n)

m = sum(x)/n;

end

Function avg is a local function. Local functions are only available to other functions within the

same file.

Call function stat2 from the command line.

values = [12.7, 45.4, 98.9, 26.6, 53.1];

[ave,stdev] = stat2(values)

ave =

 47.3400

stdev =

 29.4124
What Are Nested Functions?

A nested function is a function that is completely contained within a parent function. Any

function in a program file can include a nested function.

For example, this function named parent contains a nested function named nestedfx:

function parent
disp('This is the parent function')
nestedfx

 function nestedfx
disp('This is the nested function')
 end

end

The primary difference between nested functions and other types of functions is that they can

access and modify variables that are defined in their parent functions. As a result:

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 6/27

 Nested functions can use variables that are not explicitly passed as input arguments.

 In a parent function, you can create a handle to a nested function that contains the data necessary

to run the nested function.

Requirements for Nested Functions

 Typically, functions do not require an end statement. However, to nest any function in a program

file, all functions in that file must use an end statement.

 You cannot define a nested function inside any of the MATLAB® program control statements,

such as if/elseif/else, switch/case, for, while, or try/catch.

 You must call a nested function either directly by name (without using feval), or using a

function handle that you created using the @ operator (and not str2func).

 All of the variables in nested functions or the functions that contain them must be explicitly

defined. That is, you cannot call a function or script that assigns values to variables unless those

variables already exist in the function workspace. (For more information, see Variables in Nested

and Anonymous Functions.)

Sharing Variables Between Parent and Nested Functions

In general, variables in one function workspace are not available to other functions. However,

nested functions can access and modify variables in the workspaces of the functions that contain

them.

This means that both a nested function and a function that contains it can modify the same

variable without passing that variable as an argument. For example, in each of these

functions, main1 and main2, both the main function and the nested function can access variable x:

function main1
x = 5;
nestfun1

 function nestfun1
 x = x + 1;
 end

end

function main2
nestfun2

 function nestfun2
 x = 5;
 end

x = x + 1;
end

When parent functions do not use a given variable, the variable remains local to the nested

function. For example, in this function named main, the two nested functions have their own

versions of x that cannot interact with each other:

function main
 nestedfun1
 nestedfun2

 function nestedfun1
 x = 1;
 end

 function nestedfun2
 x = 2;
 end
end

https://www.mathworks.com/help/matlab/matlab_prog/variables-in-nested-and-anonymous-functions.html
https://www.mathworks.com/help/matlab/matlab_prog/variables-in-nested-and-anonymous-functions.html

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 7/27

Functions that return output arguments have variables for the outputs in their workspace.

However, parent functions only have variables for the output of nested functions if they

explicitly request them. For example, this function parentfun does not have variable y in its

workspace:

function parentfun
x = 5;
nestfun;

 function y = nestfun
 y = x + 1;
 end

end

If you modify the code as follows, variable z is in the workspace of parentfun:

function parentfun
x = 5;
z = nestfun;

 function y = nestfun
 y = x + 1;
 end

end

Using Handles to Store Function Parameters

Nested functions can use variables from three sources:

 Input arguments

 Variables defined within the nested function

 Variables defined in a parent function, also called externally scoped variables

When you create a function handle for a nested function, that handle stores not only the name of

the function, but also the values of externally scoped variables.

For example, create a function in a file named makeParabola.m. This function accepts several

polynomial coefficients, and returns a handle to a nested function that calculates the value of that

polynomial.

function p = makeParabola(a,b,c)
p = @parabola;

 function y = parabola(x)
 y = a*x.^2 + b*x + c;
 end

end

The makeParabola function returns a handle to the parabola function that includes values for

coefficients a, b, and c.

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 8/27

At the command line, call the makeParabola function with coefficient values of 1.3, .2, and 30.

Use the returned function handle p to evaluate the polynomial at a particular point:

p = makeParabola(1.3,.2,30);

X = 25;
Y = p(X)

Y =
 847.5000

Many MATLAB functions accept function handle inputs to evaluate functions over a range of

values. For example, plot the parabolic equation from -25 to +25:

fplot(p,[-25,25])

You can create multiple handles to the parabola function that each use different polynomial

coefficients:

firstp = makeParabola(0.8,1.6,32);
secondp = makeParabola(3,4,50);
range = [-25,25];

figure
hold on
fplot(firstp,range)
fplot(secondp,range,'r:')
hold off

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 9/27

PROFILE

Profile execution time for functions

Syntax

profile action

profile action option1 ... optionN

profile option1 ... optionN

p = profile('info')

s = profile('status')

Description

example

profile action profiles the execution time for functions. Use action to start, stop, and

restart the Profiler, and view or clear profile statistics. For example, profileon starts the Profiler.

example

profile action option1 ... optionN starts or restarts the Profiler with the specified options. For

example, profile resume -history restarts the Profiler and records the sequence of function calls.

example

profile option1 ... optionN sets the specified Profiler options. If the Profiler is on and you specify

one of the options, MATLAB throws an error. To change options, first specify profile off, and

then specify the new options.

example

p = profile('info') stops the Profiler and displays a structure containing the results. To

access the data generated by profile, use this syntax.

example

s = profile('status') returns a structure with the Profiler status information.

Examples

Create the file myFunction.m using this main function and local function.

function c = myFunction(a,b)

c = sqrt(square(a)+square(b));

end

function y = square(x)

y = x.^2;

https://www.mathworks.com/help/matlab/ref/profile.html#buvf1ag-2
https://www.mathworks.com/help/matlab/ref/profile.html?searchHighlight=The%20profile&s_tid=doc_srchtitle#inputarg_action
https://www.mathworks.com/help/matlab/ref/profile.html#bux4pud-1
https://www.mathworks.com/help/matlab/ref/profile.html?searchHighlight=The%20profile&s_tid=doc_srchtitle#inputarg_action
https://www.mathworks.com/help/matlab/ref/profile.html?searchHighlight=The%20profile&s_tid=doc_srchtitle#inputarg_option1optionN
https://www.mathworks.com/help/matlab/ref/profile.html#bux4pud-1
https://www.mathworks.com/help/matlab/ref/profile.html?searchHighlight=The%20profile&s_tid=doc_srchtitle#inputarg_option1optionN
https://www.mathworks.com/help/matlab/ref/profile.html#bux4pud-1
https://www.mathworks.com/help/matlab/ref/profile.html?searchHighlight=The%20profile&s_tid=doc_srchtitle#outputarg_p
https://www.mathworks.com/help/matlab/ref/profile.html#buvf1ag-4
https://www.mathworks.com/help/matlab/ref/profile.html?searchHighlight=The%20profile&s_tid=doc_srchtitle#outputarg_s

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 10/27

end

Turn on the Profiler, and enable the function call history option. Profile a call

to the myFunction function.

profile on -history

a = rand(5);

b = rand(5);

c = myFunction(a,b);

Save the profile results.

p = profile('info')

p =

FunctionTable: [2x1 struct]

FunctionHistory: [2x6 double]

ClockPrecision: 3.3475e-07

ClockSpeed: 3.0600e+09

 Name: 'MATLAB'

 Overhead: 0

Display the function call history.

p.FunctionHistory

ans =

 0 0 1 0 1 1

 1 2 2 2 2 1

Display function entry and exit information by iterating over the function call history.

numEvents = size(p.FunctionHistory,2);

for n = 1:numEvents

 name = p.FunctionTable(p.FunctionHistory(2,n)).FunctionName;

 if p.FunctionHistory(1,n) == 0

disp(['Entered ' name]);

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 11/27

 else

disp(['Exited ' name]);

 end

end

Entered myFunction

Entered myFunction>square

Exited myFunction>square

Entered myFunction>square

Exited myFunction>square

Exited myFunction

Set the function call history to the default value.

profile -nohistory

GLOBAL

Declare variables as global

Syntax

global var1 ... varN

Description

global var1 ... varN declares variables var1 ... varN as global in scope.

Ordinarily, each MATLAB
®
 function has its own local variables, which are separate from those

of other functions and from those of the base workspace. However, if several functions all

declare a particular variable name as global, then they all share a single copy of that variable.

Any change of value to that variable, in any function, is visible to all the functions that declare it

as global.

If the global variable does not exist the first time you issue the global statement, it is initialized

to an empty 0x0 matrix.

If a variable with the same name as the global variable already exists in the current workspace,

MATLAB issues a warning and changes the value of that variable and its scope to match the

global variable.

Examples

Global Variable Between Functions

Create a function in your current working folder that sets the value of a global variable.

function setGlobalx(val)

global x

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 12/27

x = val;

Create a function in your current working folder that returns the value of a global variable. These

two functions have separate function workspaces, but they both can access the global variable.

function r = getGlobalx

global x

r = x;

Set the value of the global variable, x, and obtain it from a different workspace.

setGlobalx(1138)

r = getGlobalx

r =

 1138

Share Global Variable Between Function and Command Line

Assign a value to the global variable using the function that you defined in the previous example.

clear all

setGlobalx(42)

Display the value of the global variable, x. Even though the variable is global, it is not accessible

at the command line.

x

Undefined function or variable 'x'.

Declare x as a global variable at the command line, and display its value.

global x

x

x =

 42

Change the value of x and use the function that you defined in the previous example to return the

global value from a different workspace.

x = 1701;

r = getGlobalx

r =

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 13/27

 1701

Conditional Statements:

for Loops:

This allows a group of commands to be repeated a fixed, predetermined number of times. The

general form of a for loop is:

for x = array

 Commands …

End

For example,

>> for n=1:10

 x(n)=sin(n*pi/10);

 end

yields the vector x given by,

>> x

x =

Columns 1 through 7

0.3090 0.5878 0.8090 0.9511 1.0000 0.9511 0.8090

Columns 8 through 10

0.5878 0.3090 0.0000

Let us now use the for loop to generate the first 15 Fibonacci numbers 1,1,2,3,5,8,…

>> f=[1 1];

>> for k=1:15

 f(k+2) = f(k+1) + f(k);

 end

>> f

while Loops

This evaluates a group of commands an infinite number of times unlike the for loop that

evaluates a group of commands a fixed number of times. The general form for while loop is

 while expression

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 14/27

 Commands …

 end

For example to generate all the Fibonacci numbers less than 1000, we can do the following:

>> f=[1 1];

>> k=1;

>> while f(k) < 1000

 f(k+1) = f(k+1) + f(k);

 k = k +1;

 end

>> f

if-else-end Construct

There are times when a sequence of commands must be conditionally evaluated based on a

relational test. This is done by the if-else-end construct whose general form is,

 if expression

 Commands …

 end

For example if we want to give 20% discount for larger purchases of oranges, we say,

>> oranges=10; % number of oranges

>> cost = oranges*25 % Cost of oranges

cost =

 250

>> if oranges > 5

 cost = (1-20/100)*cost;

 end

>> cost

cost =

 200

If there are more conditions to be evaluated then one uses the more general if-else-end construct

given by,

 if expression

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 15/27

 Commands evaluated if True

 else

 Commands evaluated if False

 end

While Loops

If you don't like the for loop, you can also use a while loop. The while loop repeats a sequence of

commands as long as some condition is met. This can make for a more efficient algorithm. In the

previous example the number of time steps to make may be much larger than 20. In such a case

the for loop can use up a lot of memory just creating the vector used for the index. A better way

of implementing the algorithm is to repeat the same operations but only as long as the number of

steps taken is below some threshold. In this example the D.E. y'=x-|y|, y(0)=1, is approximated

using Euler's Method:

>> h = 0.001;

>> x = [0:h:2];

>> y = 0*x;

>> y(1) = 1;

>> i = 1;

>> size(x)

ans =

 1 2001

>> max(size(x))

ans =

 2001

>> while(i<max(size(x)))

 y(i+1) = y(i) + h*(x(i)-abs(y(i)));

 i = i + 1;

 end

>> plot(x,y,'go')

>> plot(x,y)

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 16/27

BREAK

Syntax

break

Description

break terminates the execution of a for or while loop. Statements in the loop after

the break statement do not execute.

In nested loops, break exits only from the loop in which it occurs. Control passes to the statement

that follows the end of that loop.

Examples

Sum a sequence of random numbers until the next random number is greater than an upper limit.

Then, exit the loop using a breakstatement.

limit = 0.8;

s = 0;

while 1

tmp = rand;

 if tmp> limit

 break

 end

 s = s + tmp;

end

CONTINUE

Pass control to next iteration of for or while loop

Syntax

continue

Description

Continue passes control to the next iteration of a for or while loop. It skips any remaining

statements in the body of the loop for the current iteration. The program continues execution

from the next iteration.

continue applies only to the body of the loop where it is called. In nested loops, continue skips

remaining statements only in the body of the loop in which it occurs.

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 17/27

Examples

Selectively Display Values in Loop

Try this Example

Display the multiples of 7 from 1 through 50. If a number is not divisible by 7, use continue to

skip the disp statement and pass control to the next iteration of the for loop.

for n = 1:50

 if mod(n,7)

 continue

 end

disp(['Divisible by 7: ' num2str(n)])

end

Divisible by 7: 7

Divisible by 7: 14

Divisible by 7: 21

Divisible by 7: 28

Divisible by 7: 35

Divisible by 7: 42

Divisible by 7: 49

switch-case Construct

This is used when sequences of commands must be conditionally evaluated based on repeated

use of an equality test with one common argument. In general the form is,

switch expression

 case test_expression1

 Commands_1 …

 case test_expression2

 Commands_2 …

 …..

 otherwise

Commands_n ….

end

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 18/27

Let us now consider the problem of converting entry in given units to centimeters.

% centimeter.m

% This program converts a given measument into the equivalent in cms

% It illustrates the use of SWITCH-CASE control flow

function y=centimeter(A,units)

switch units % convert A to cms

 case {'inch','in'}

 y = A*2.54;

 case {'feet','ft'}

 y = A*2.54*12;

 case {'meter','m'}

 y = A*100;

 case {'centimeter','cm'}

 y = A;

 otherwise

disp(['Unknown units: ' units])

 y = nan; %% stands for not a number

end

RETURN

Syntax

 return

Examples

In your current working folder, create a function, findSqrRootIndex, to find the index of the first

occurrence of the square root of a value within an array. If the square root isn't found, the

function returns NaN.

function idx = findSqrRootIndex(target,arrayToSearch)

idx = NaN;

if target < 0

 return

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 19/27

end

for idx = 1:length(arrayToSearch)

 if arrayToSearch(idx) == sqrt(target)

 return

 end

end

INTERACTIVE INPUT

Syntax

input(<prompt1>)

input(<prompt1>, x1, <prompt2>, x2, …)

Description

input allows interactive input of MuPAD
®
 objects.

input() displays the prompt “Please enter expression:” and waits for input by the user. The input,

terminated by pressing the Return key, is parsed and returned unevaluatedly.

input(prompt1) uses the character string prompt1 instead of the default prompt “Please enter

expression:”.

input(prompt1 x1) assigns the input to the identifier or local variable x1. The default prompt is

used, if no prompt string is specified.

Several objects can be read with a single input command. Each identifier or variable in the

sequence of arguments makes input return a prompt, waiting for input to be assigned to it. A

character string preceding an identifier or variable in the argument sequence replaces the default

prompt. Arguments that are neither prompt strings nor identifiers or variables are ignored.

The identifiers or variables x1 etc. may have values. These are overwritten by input.

input only parses the input objects for syntactical correctness. It does not evaluate them.

Example

The default prompt is displayed. The input is returned without evaluation:

input()

Please enter expression: << 1 + 2 >>

A character string is used as a prompt:

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 20/27

input("enter a number: ")

enter a number: << 5

>>

The input may be assigned to an identifier:

input(x)

Please enter expression: << 5 >>

x

A user-defined prompt is used, the input is assigned to an identifier:

input("enter a number: ", x)

enter a number: << 6

>>

x

delete x:

ADVANCED DATA OBJECTS

STRUCTURE

A structure array is a data type that groups related data using data containers called fields. Each

field can contain any type of data. Access data in a field using dot notation of the

form structName.fieldName.

Creation

When you have data to put into a new structure, create the structure using dot notation to name

its fields one at a time:

s.a = 1;

s.b = {'A','B','C'}

s =

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 21/27

struct with fields:

 a: 1

 b: {'A' 'B' 'C'}

You also can create a structure array using the struct function, described below. You can specify

many fields simultaneously, or create a nonscalar structure array.

Syntax

s = struct

s = struct(field,value)

s = struct(field1,value1,...,fieldN,valueN)

s = struct([])

s = struct(obj)

Description

s = struct creates a scalar (1-by-1) structure with no fields.

s = struct(field,value) creates a structure array with the specified field and values.

The value input argument can be any data type, such as a numeric, logical, character, or cell

array.

 If value is not a cell array, or if value is a scalar cell array, then s is a scalar structure. For

instance, s = struct('a',[1 2 3]) creates a 1-by-1 structure, where s.a = [1 2 3].

 If value is a nonscalar cell array, then s is a structure array with the same dimensions

as value. Each element of s contains the corresponding element ofvalue. For example, s =

struct('x',{'a','b'},'y','c') returns s(1).x = 'a', s(2).x = 'b', s(1).y = 'c', and s(2).y = 'c'.

 If value is an empty cell array {}, then s is an empty (0-by-0) structure.

s = struct(field1,value1,...,fieldN,valueN) creates multiple fields. Any nonscalar cell arrays in the

set value1,...,valueN must have the same dimensions.

 If none of the value inputs are cell arrays, or if all value inputs that are cell arrays are

scalars, then s is a scalar structure.

 If any of the value inputs is a nonscalar cell array, then s has the same dimensions as the

nonscalar cell array. For any value that is a scalar cell array or an array of any other data

type, struct inserts the contents of value in the relevant field for all elements of s.

 If any value input is an empty cell array, {}, then output s is an empty (0-by-0) structure.

To specify an empty field and keep the values of the other fields, use [] as a value input

instead.

s = struct([]) creates an empty (0-by-0) structure with no fields.

http://in.mathworks.com/help/matlab/ref/struct.html#inputarg_field
http://in.mathworks.com/help/matlab/ref/struct.html#inputarg_value

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 22/27

s = struct(obj) creates a scalar structure with field names and values that correspond to properties

of obj. The struct function does not convert obj, but rather creates s as a new structure. This

structure does not retain the class information, so private, protected, and hidden properties

become public fields in s. The struct function issues a warning when you use this syntax.

Examples

Create a nonscalar structure that contains a single field.

field = 'f';

value = {'some text';

 [10, 20, 30];

 magic(5)};

s = struct(field,value)

s = 3x1 struct array with fields:

 f

View the contents of each element.

s.f

ans =

'some text'

ans =

 10 20 30

ans =

 17 24 1 8 15

 23 5 7 14 16

 4 6 13 20 22

 10 12 19 21 3

 11 18 25 2 9

http://in.mathworks.com/help/matlab/ref/struct.html#inputarg_obj

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 23/27

Create a nonscalar structure that contains several fields.

field1 = 'f1'; value1 = zeros(1,10);

field2 = 'f2'; value2 = {'a', 'b'};

field3 = 'f3'; value3 = {pi, pi.^2};

field4 = 'f4'; value4 = {'fourth'};

s = struct(field1,value1,field2,value2,field3,value3,field4,value4)

s = 1x2 struct array with fields:

 f1

 f2

 f3

 f4

The cell arrays for value2 and value3 are 1-by-2, so s is also 1-by-2. Because value1 is a numeric

array and not a cell array, both s(1).f1 and s(2).f1 have the same contents. Similarly, because the

cell array for value4 has a single element, s(1).f4 and s(2).f4 have the same contents.

s(1)

ans = struct with fields:

 f1: [0 0 0 0 0 0 0 0 0 0]

 f2: 'a'

 f3: 3.1416

 f4: 'fourth'

s(2)

ans = struct with fields:

 f1: [0 0 0 0 0 0 0 0 0 0]

 f2: 'b'

 f3: 9.8696

 f4: 'fourth'

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 24/27

Create a structure with a field that contains a cell array.

field = 'mycell';

value = {{'a','b','c'}};

s = struct(field,value)

s = struct with fields:

mycell: {'a' 'b' 'c'}

CELL

Description

A cell array is a data type with indexed data containers called cells, where each cell can contain

any type of data. Cell arrays commonly contain either lists of text, combinations of text and

numbers, or numeric arrays of different sizes. Refer to sets of cells by enclosing indices in

smooth parentheses, (). Access the contents of cells by indexing with curly braces, {}.

Creation

When you have data to put into a cell array, create the array using the cell array construction

operator, {}.

C = {1,2,3;

 'text',rand(5,10,2),{11; 22; 33}}

C =

 2x3 cell array

 {[1]} {[2]} {[3]}

 {'text'} {5x10x2 double} {3x1 cell}

You also can use {} to create an empty 0-by-0 cell array.

C = {}

C =

 0x0 empty cell array

To create a cell array with a specified size, use the cell function, described below.

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 25/27

You can use cell to preallocate a cell array to which you assign data later. cell also converts

certain types of Java, .NET, and Python data structures to cell arrays of equivalent

MATLAB objects.

Syntax

C = cell(n)

C = cell(sz1,...,szN)

C = cell(sz)

D = cell(obj)

Description

C = cell(n) returns an n-by-n cell array of empty matrices.

C = cell(sz1,...,szN) returns a sz1-by-...-by-szN cell array of empty matrices

where sz1,...,szN indicate the size of each dimension. For example, cell(2,3) returns a 2-by-3 cell

array.

C = cell(sz) returns a cell array of empty matrices where size vector sz defines size(C). For

example, cell([2 3]) returns a 2-by-3 cell array.

D = cell(obj) converts a Java array, .NET System.String or System.Object array, or Python

sequence into a MATLAB cell array.

Examples

Create a 3-by-3 cell array of empty matrices.

C = cell(3)

C = 3x3 cell array

 {0x0 double} {0x0 double} {0x0 double}

 {0x0 double} {0x0 double} {0x0 double}

 {0x0 double} {0x0 double} {0x0 double}

https://www.mathworks.com/help/matlab/ref/cell.html#inputarg_n
https://www.mathworks.com/help/matlab/ref/cell.html#inputarg_sz1szN
https://www.mathworks.com/help/matlab/ref/cell.html#inputarg_sz
https://www.mathworks.com/help/matlab/ref/cell.html#inputarg_obj

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 26/27

Create a 3-by-4-by-2 cell array of empty matrices.

C = cell(3,4,2);

size(C)

ans =

 3 4 2

Functions

struct Structure array

fieldnames Field names of structure, or public fields of COM or Java object

getfield Field of structure array

isfield Determine whether input is structure array field

isstruct Determine whether input is structure array

orderfields Order fields of structure array

rmfield Remove fields from structure

setfield Assign values to structure array field

arrayfun Apply function to each element of array

structfun Apply function to each field of scalar structure

table2struct Convert table to structure array

struct2table Convert structure array to table

cell2struct Convert cell array to structure array

struct2cell Convert structure to cell array

http://in.mathworks.com/help/matlab/ref/struct.html
http://in.mathworks.com/help/matlab/ref/fieldnames.html
http://in.mathworks.com/help/matlab/ref/getfield.html
http://in.mathworks.com/help/matlab/ref/isfield.html
http://in.mathworks.com/help/matlab/ref/isstruct.html
http://in.mathworks.com/help/matlab/ref/orderfields.html
http://in.mathworks.com/help/matlab/ref/rmfield.html
http://in.mathworks.com/help/matlab/ref/setfield.html
http://in.mathworks.com/help/matlab/ref/arrayfun.html
http://in.mathworks.com/help/matlab/ref/structfun.html
http://in.mathworks.com/help/matlab/ref/table2struct.html
http://in.mathworks.com/help/matlab/ref/struct2table.html
http://in.mathworks.com/help/matlab/ref/cell2struct.html
http://in.mathworks.com/help/matlab/ref/struct2cell.html

Unit – III Programming in MATLAB: Scripts and Functions 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 27/27

Part B (5x8=40 Marks)

Possible Questions

1. Describe about script files with examples.

2. Give a brief note on executing a function with examples.

3. Explain about function files with examples.

4. Describe about executing a function inside another function and a function in input list.

5. What is a sub function? Describe about compiled functions and the profiler.

6. Explain the control flow statements with examples.

7. Define global variables.Give example for solving 1
st
 order ODE by using global

variables.

8. List out the commands for interactive user input in script file or function file.

9. Explain about the cells with examples.

10. Give a brief notes on structures with an example.

11. Expalin about the

(i)Switch case

(ii) Break with examples.

12. Give a brief notes on menu and pause commands in Matlab.

Programming in MATLAB: Scripts and Functions / 2015 Batch

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

_____is executed by typing name of the file on

the commamd line. Script file function file date file figure file Script file

A script file is an _____ with a set of vaild

MATLAB command Mex - file Mat - file M -file fig - file M -file

A ____ is most versatile data object in Matlab matrix array string cell cell

Which is these is not an aspect of a for or while

loop update initialization runner condition runner
To better manage memeory and prevent

unnecessary memory allocations, Matlab

use,_______ vectors scalars matrix math delayed copy delayed copy

To proint a new line in a fprintf statement, you

must use the following escape character \t \n \nxt \n1 \n

In Matlab this keyword immediately moves to the

next itreation of the loop continue update goto break continue

Possible Questions

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021

Unit III
Programming in MATLAB: Scripts and Functions

Part A (20x1=20 Marks)

 Subject: MATLAB programming Subject Code: 15MMU504

 Class : III - B.Sc. Mathematics Semester : V

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE

Programming in MATLAB: Scripts and Functions / 2015 Batch

Which of these is the way of access the first

element in a vector named v (assuming there is

at least one element in the vector) ? v(0) v(1) v v(: , 0) v(1)
If I want to save a formatted string to memory,

but don't want to print it out, which command

should I use ? fprintf sprintf disp echo sprintf

When used in the fprintf command ,the %g is

used as the

single character

display fixed point display

string natation

display

default number

display default number display

When used in the fprintf command ,the \n is used

to

add a space

between any two

character add a line space

place a number

into comment

clear the

comment add a line space

To display 'Question 1' ' in the command window,

the correct command is disp(Question 1)

display('Question 1

')

disp('Question

1') Question 1 disp('Question 1')

The num2str command is used to _____

convert a number

to string

convert a string to

number

concatenates

number and

string

concatenates

string convert a number to string

To join one or more strings into a single string is

known as ______ string convertion joining concatenation string theory concatenation

In ____ loop the number of repetations is already

known if while if else for for

In ____ loop execution is repeated until the

condition is satisfied if else for while if while

In ___ control structure a group of statements are

executed only if the condition is true. if if else if elseif nested if if
In ___ control structure two group of statements

are executed only if one is true and other is false

condition. if if else if elseif nested if if else

Which is provide a user the option to check a

large number of different conditions. if if else if elseif nested if if elseif

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE

Programming in MATLAB: Scripts and Functions / 2015 Batch

When one of the if structure lies entirely within

the domain of the other if strcture then it is

called___ if if else if elseif nested if nested if

____ command terminate the execution of for or

while loop switch break continue error break

______ command display the message and abort

function switch break continue error error

____ command catch the error generated by

MATLAB try-catch break continue error try-catch

The first function in the file is called ______

function Inline private primary nested primary

Additional functions defined within the same

files are called ____ primary function subfunction Inline function nested function subfunction

______ functioms are visble only to the functions

in their parent folder. Inline private primary nested private

 ______ function provide a way to pass

information without using global variables. Inline private primary nested nested

_____ error are caused by grammatical mistake in

the statement include in the program syntax condition runtime statement syntax

____ error are caused mainly due to wrong logic

used by the program. syntax condition runtime statement runtime

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE

Unit – IV Applications 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 1/17

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021.

 Department of Mathematics

Subject : MATLAB programming Subject Code : 15MMU504 L T P C

Class : III – B.Sc. Mathematics Semester : V 5 0 0 5

UNIT IV

Applications – Linear Algebra - Solving a linear system – Finding Eigen values and Eigen

vectors – Matrix Factorizations.

TEXT BOOK

1. RudraPratap, 2003. Getting Started with MATLAB-A Quick Introduction for Scientists and

Engineers, Oxford University Press.

REFERENCES

1. William John Palm, 2005. Introduction to Matlab 7 for Engineers, McGraw-Hill

Professional.New Delhi.

2. Dolores M. Etter, David C. Kuncicky, 2004.Introduction to MATLAB 7, Prentice Hall, New

Delhi.

3. Kiranisingh.Y,Chaudhuri.B.B, 2007.Matlab Programming, Prentice-Hall Of India Pvt.Ltd,

New Delhi.

4. Brian Hahn, 2016. Essential MATLAB for Engineers and Scientists.6
th

edition , Elsevier

publication.

Unit – IV Applications 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 2/17

UNIT – IV

APPLICATIONS OF MATLAB

Linear Algebra

Linear algebra functions in MATLAB provide fast, numerically robust matrix calculations.

Capabilities include a variety of matrix factorizations, linear equation solving, computation of

eigenvalues or singular values, and more

Functions

Linear Equations

mldivide Solve systems of linear equations Ax = B for x

mrdivide Solve systems of linear equations xA = B for x

decomposition Matrix decomposition for solving linear systems

lsqminnorm Minimum norm least-squares solution to linear equation

linsolve Solve linear system of equations

inv Matrix inverse

pinv Moore-Penrose pseudoinverse

lscov Least-squares solution in presence of known covariance

lsqnonneg Solve nonnegative linear least-squares problem

sylvester Solve Sylvester equation AX + XB = C for X

Eigenvalues and Singular Values

eig Eigenvalues and eigenvectors

eigs Subset of eigenvalues and eigenvectors

balance Diagonal scaling to improve eigenvalue accuracy

svd Singular value decomposition

svds Subset of singular values and vectors

gsvd Generalized singular value decomposition

ordeig Eigenvalues of quasitriangular matrices

ordqz Reorder eigenvalues in QZ factorization

ordschur Reorder eigenvalues in Schur factorization

polyeig Polynomial eigenvalue problem

qz QZ factorization for generalized eigenvalues

hess Hessenberg form of matrix

schur Schur decomposition

rsf2csf Convert real Schur form to complex Schur form

https://in.mathworks.com/help/matlab/ref/mldivide.html
https://in.mathworks.com/help/matlab/ref/mrdivide.html
https://in.mathworks.com/help/matlab/ref/decomposition.html
https://in.mathworks.com/help/matlab/ref/lsqminnorm.html
https://in.mathworks.com/help/matlab/ref/linsolve.html
https://in.mathworks.com/help/matlab/ref/inv.html
https://in.mathworks.com/help/matlab/ref/pinv.html
https://in.mathworks.com/help/matlab/ref/lscov.html
https://in.mathworks.com/help/matlab/ref/lsqnonneg.html
https://in.mathworks.com/help/matlab/ref/sylvester.html
https://in.mathworks.com/help/matlab/ref/eig.html
https://in.mathworks.com/help/matlab/ref/eigs.html
https://in.mathworks.com/help/matlab/ref/balance.html
https://in.mathworks.com/help/matlab/ref/svd.html
https://in.mathworks.com/help/matlab/ref/svds.html
https://in.mathworks.com/help/matlab/ref/gsvd.html
https://in.mathworks.com/help/matlab/ref/ordeig.html
https://in.mathworks.com/help/matlab/ref/ordqz.html
https://in.mathworks.com/help/matlab/ref/ordschur.html
https://in.mathworks.com/help/matlab/ref/polyeig.html
https://in.mathworks.com/help/matlab/ref/qz.html
https://in.mathworks.com/help/matlab/ref/hess.html
https://in.mathworks.com/help/matlab/ref/schur.html
https://in.mathworks.com/help/matlab/ref/rsf2csf.html

Unit – IV Applications 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 3/17

cdf2rdf Convert complex diagonal form to real block diagonal form

Matrix Decomposition

lu LU matrix factorization

ldl Block LDL' factorization for Hermitian indefinite matrices

chol Cholesky factorization

cholupdate Rank 1 update to Cholesky factorization

qr Orthogonal-triangular decomposition

qrdelete Remove column or row from QR factorization

qrinsert Insert column or row into QR factorization

qrupdate Rank 1 update to QR factorization

planerot Givens plane rotation

Matrix Operations

transpose Transpose vector or matrix

ctranspose Complex conjugate transpose

mtimes Matrix Multiplication

mpower Matrix power

sqrtm Matrix square root

expm Matrix exponential

logm Matrix logarithm

funm Evaluate general matrix function

kron Kronecker tensor product

cross Cross product

dot Dot product

EXAMPLES

mldivide, \

Solve systems of linear equations Ax = B for x

Syntax

x = A\B

x = mldivide(A,B)

Description

x = A\B solves the system of linear equations A*x = B. The matrices A and B must have the

same number of rows. MATLAB
®
 displays a warning message if A is badly scaled or nearly

singular, but performs the calculation regardless.

 If A is a scalar, then A\B is equivalent to A.\B.

https://in.mathworks.com/help/matlab/ref/cdf2rdf.html
https://in.mathworks.com/help/matlab/ref/lu.html
https://in.mathworks.com/help/matlab/ref/ldl.html
https://in.mathworks.com/help/matlab/ref/chol.html
https://in.mathworks.com/help/matlab/ref/cholupdate.html
https://in.mathworks.com/help/matlab/ref/qr.html
https://in.mathworks.com/help/matlab/ref/qrdelete.html
https://in.mathworks.com/help/matlab/ref/qrinsert.html
https://in.mathworks.com/help/matlab/ref/qrupdate.html
https://in.mathworks.com/help/matlab/ref/planerot.html
https://in.mathworks.com/help/matlab/ref/transpose.html
https://in.mathworks.com/help/matlab/ref/ctranspose.html
https://in.mathworks.com/help/matlab/ref/mtimes.html
https://in.mathworks.com/help/matlab/ref/mpower.html
https://in.mathworks.com/help/matlab/ref/sqrtm.html
https://in.mathworks.com/help/matlab/ref/expm.html
https://in.mathworks.com/help/matlab/ref/logm.html
https://in.mathworks.com/help/matlab/ref/funm.html
https://in.mathworks.com/help/matlab/ref/kron.html
https://in.mathworks.com/help/matlab/ref/cross.html
https://in.mathworks.com/help/matlab/ref/dot.html
https://in.mathworks.com/help/matlab/ref/mldivide.html#outputarg_x
https://in.mathworks.com/help/matlab/ref/mldivide.html#inputarg_A
https://in.mathworks.com/help/matlab/ref/mldivide.html#inputarg_B

Unit – IV Applications 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 4/17

 If A is a square n-by-n matrix and B is a matrix with n rows, then x = A\B is a solution to

the equation A*x = B, if it exists.

 If A is a rectangular m-by-n matrix with m ~= n, and B is a matrix with m rows,

then A\B returns a least-squares solution to the system of equations A*x= B.

x = mldivide(A,B) is an alternative way to execute x = A\B, but is rarely used. It enables

operator overloading for classes.

Examples

System of Equations

Try this Example

Solve a simple system of linear equations, A*x = B.

A = magic(3);

B = [15; 15; 15];

x = A\B

x =

 1.0000

 1.0000

 1.0000

Linear System with Singular Matrix

Solve a linear system of equations A*x = b involving a singular matrix, A.

A = magic(4);

b = [34; 34; 34; 34];

x = A\b

x =

 1.5000

 2.5000

 -0.5000

 0.5000

When rcond is between 0 and eps, MATLAB issues a nearly singular warning, but proceeds with

the calculation. When working with ill-conditioned matrices, an unreliable solution can result

even though the residual (b-A*x) is relatively small. In this particular example, the norm of the

residual is zero, and an exact solution is obtained, although rcond is small.

When rcond is equal to 0, the singular warning appears.

A = [1 0; 0 0];

b = [1; 1];

x = A\b

https://in.mathworks.com/help/matlab/ref/mldivide.html#outputarg_x
https://in.mathworks.com/help/matlab/ref/mldivide.html#inputarg_A
https://in.mathworks.com/help/matlab/ref/mldivide.html#inputarg_B

Unit – IV Applications 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 5/17

Finding Eigenvalues and eigenvectors

Syntax

e = eig(A)

[V,D] = eig(A)

[V,D,W] = eig(A)

e = eig(A,B)

[V,D] = eig(A,B)

[V,D,W] = eig(A,B)

[___] = eig(A,balanceOption)

[___] = eig(A,B,algorithm)

[___] = eig(___,eigvalOption)

Description

e = eig(A) returns a column vector containing the eigenvalues of square matrix A.

[V,D] = eig(A) returns diagonal matrix D of eigenvalues and matrix V whose columns are the

corresponding right eigenvectors, so that A*V = V*D.

[V,D,W] = eig(A) also returns full matrix W whose columns are the corresponding left

eigenvectors, so that W'*A = D*W'.

The eigenvalue problem is to determine the solution to the equation Av = λv, where A is an n-by-

n matrix, v is a column vector of length n, and λ is a scalar. The values of λ that satisfy the

equation are the eigenvalues. The corresponding values of v that satisfy the equation are the right

eigenvectors. The left eigenvectors, w, satisfy the equation w’A = λw’.

e = eig(A,B) returns a column vector containing the generalized eigenvalues of square

matrices A and B.

[V,D] = eig(A,B) returns diagonal matrix D of generalized eigenvalues and full matrix V whose

columns are the corresponding right eigenvectors, so that A*V = B*V*D.

[V,D,W] = eig(A,B) also returns full matrix W whose columns are the corresponding left

eigenvectors, so that W'*A = D*W'*B.

The generalized eigenvalue problem is to determine the solution to the equation Av = λBv,

where A and B are n-by-n matrices, v is a column vector of length n, and λ is a scalar. The values

of λ that satisfy the equation are the generalized eigenvalues. The corresponding values of v are

the generalized right eigenvectors. The left eigenvectors, w, satisfy the equation w’A = λw’B.

[___] = eig(A,balanceOption), where balanceOption is 'nobalance', disables the preliminary

balancing step in the algorithm. The default for balanceOption is 'balance', which enables

balancing. The eig function can return any of the output arguments in previous syntaxes.

[___] = eig(A,B,algorithm), where algorithm is 'chol', uses the Cholesky factorization of B to

compute the generalized eigenvalues. The default for algorithmdepends on the properties

of A and B, but is generally 'qz', which uses the QZ algorithm.

If A is Hermitian and B is Hermitian positive definite, then the default for algorithm is 'chol'.

https://in.mathworks.com/help/matlab/ref/eig.html#outputarg_e
https://in.mathworks.com/help/matlab/ref/eig.html#inputarg_A
https://in.mathworks.com/help/matlab/ref/eig.html#outputarg_V
https://in.mathworks.com/help/matlab/ref/eig.html#outputarg_D
https://in.mathworks.com/help/matlab/ref/eig.html#inputarg_A
https://in.mathworks.com/help/matlab/ref/eig.html#outputarg_V
https://in.mathworks.com/help/matlab/ref/eig.html#outputarg_D
https://in.mathworks.com/help/matlab/ref/eig.html#outputarg_W
https://in.mathworks.com/help/matlab/ref/eig.html#inputarg_A
https://in.mathworks.com/help/matlab/ref/eig.html#outputarg_e
https://in.mathworks.com/help/matlab/ref/eig.html#inputarg_A
https://in.mathworks.com/help/matlab/ref/eig.html#inputarg_B
https://in.mathworks.com/help/matlab/ref/eig.html#outputarg_V
https://in.mathworks.com/help/matlab/ref/eig.html#outputarg_D
https://in.mathworks.com/help/matlab/ref/eig.html#inputarg_A
https://in.mathworks.com/help/matlab/ref/eig.html#inputarg_B
https://in.mathworks.com/help/matlab/ref/eig.html#outputarg_V
https://in.mathworks.com/help/matlab/ref/eig.html#outputarg_D
https://in.mathworks.com/help/matlab/ref/eig.html#outputarg_W
https://in.mathworks.com/help/matlab/ref/eig.html#inputarg_A
https://in.mathworks.com/help/matlab/ref/eig.html#inputarg_B
https://in.mathworks.com/help/matlab/ref/eig.html#inputarg_A
https://in.mathworks.com/help/matlab/ref/eig.html#inputarg_balanceOption
https://in.mathworks.com/help/matlab/ref/eig.html#inputarg_A
https://in.mathworks.com/help/matlab/ref/eig.html#inputarg_B
https://in.mathworks.com/help/matlab/ref/eig.html#inputarg_algorithm

Unit – IV Applications 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 6/17

[___] = eig(___,eigvalOption) returns the eigenvalues in the form specified

by eigvalOption using any of the input or output arguments in previous syntaxes.

Specify eigvalOption as 'vector' to return the eigenvalues in a column vector or as 'matrix' to

return the eigenvalues in a diagonal matrix.

Examples

Eigenvalues of Matrix

Try this Example

Use gallery to create a symmetric positive definite matrix.

A = gallery('lehmer',4)

A =

 1.0000 0.5000 0.3333 0.2500

 0.5000 1.0000 0.6667 0.5000

 0.3333 0.6667 1.0000 0.7500

 0.2500 0.5000 0.7500 1.0000

Calculate the eigenvalues of A. The result is a column vector.

e = eig(A)

e =

 0.2078

 0.4078

 0.8482

 2.5362

MATRIX FACTORIZATION

svd

Singular value decomposition

Syntax

s = svd(A)

[U,S,V] = svd(A)

[U,S,V] = svd(A,'econ')

[U,S,V] = svd(A,0)

Description

s = svd(A) returns the singular values of matrix A in descending order.

[U,S,V] = svd(A) performs a singular value decomposition of matrix A, such that A = U*S*V'.

[U,S,V] = svd(A,'econ') produces an economy-size decomposition of m-by-n matrix A:

 m > n — Only the first n columns of U are computed, and S is n-by-n.

 m = n — svd(A,'econ') is equivalent to svd(A).

 m < n — Only the first m columns of V are computed, and S is m-by-m.

The economy-size decomposition removes extra rows or columns of zeros from the diagonal

matrix of singular values, S, along with the columns in either U or V that multiply those zeros in

https://in.mathworks.com/help/matlab/ref/eig.html#inputarg_eigvalOption
https://in.mathworks.com/help/matlab/ref/svd.html#outputarg_s
https://in.mathworks.com/help/matlab/ref/svd.html#inputarg_A
https://in.mathworks.com/help/matlab/math/singular-values.html
https://in.mathworks.com/help/matlab/ref/svd.html#outputarg_U
https://in.mathworks.com/help/matlab/ref/svd.html#outputarg_S
https://in.mathworks.com/help/matlab/ref/svd.html#outputarg_V
https://in.mathworks.com/help/matlab/ref/svd.html#inputarg_A
https://in.mathworks.com/help/matlab/ref/svd.html#outputarg_U
https://in.mathworks.com/help/matlab/ref/svd.html#outputarg_S
https://in.mathworks.com/help/matlab/ref/svd.html#outputarg_V
https://in.mathworks.com/help/matlab/ref/svd.html#inputarg_A

Unit – IV Applications 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 7/17

the expression A = U*S*V'. Removing these zeros and columns can improve execution time and

reduce storage requirements without compromising the accuracy of the decomposition.

[U,S,V] = svd(A,0) produces a different economy-size decomposition of m-by-n matrix A:

 m > n — svd(A,0) is equivalent to svd(A,'econ').

 m <= n — svd(A,0) is equivalent to svd(A).

Examples

Singular Values of Matrix

Try this Example

Compute the singular values of a full rank matrix.

A = [1 0 1; -1 -2 0; 0 1 -1]

A =

 1 0 1

 -1 -2 0

 0 1 -1

s = svd(A)

s =

 2.4605

 1.6996

 0.2391

LU matrix factorization

Syntax

Y = lu(A)

[L,U] = lu(A)

[L,U,P] = lu(A)

[L,U,P,Q] = lu(A)

[L,U,P,Q,R] = lu(A)

[...] = lu(A,'vector')

[...] = lu(A,thresh)

[...] = lu(A,thresh,'vector')

Description

The lu function expresses a matrix A as the product of two essentially triangular matrices, one of

them a permutation of a lower triangular matrix and the other an upper triangular matrix. The

factorization is often called the LU, or sometimes the LR, factorization. A can be rectangular.

Y = lu(A) returns matrix Y that contains the strictly lower triangular L, i.e., without its unit

diagonal, and the upper triangular U as submatrices. That is, if [L,U,P] = lu(A), then Y = U+L-

eye(size(A)). The permutation matrix P is not returned.

https://in.mathworks.com/help/matlab/ref/svd.html#outputarg_U
https://in.mathworks.com/help/matlab/ref/svd.html#outputarg_S
https://in.mathworks.com/help/matlab/ref/svd.html#outputarg_V
https://in.mathworks.com/help/matlab/ref/svd.html#inputarg_A

Unit – IV Applications 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 8/17

[L,U] = lu(A) returns an upper triangular matrix in U and a permuted lower triangular matrix

in L such that A = L*U. Return value L is a product of lower triangular and permutation

matrices.

[L,U,P] = lu(A) returns an upper triangular matrix in U, a lower triangular matrix L with a unit

diagonal, and a permutation matrix P, such that L*U = P*A. The statement lu(A,'matrix') returns

identical output values.

[L,U,P,Q] = lu(A) for sparse nonempty A, returns a unit lower triangular matrix L, an upper

triangular matrix U, a row permutation matrix P, and a column reordering matrix Q, so

that P*A*Q = L*U. If A is empty or not sparse, lu displays an error message. The

statement lu(A,'matrix') returns identical output values.

[L,U,P,Q,R] = lu(A) returns unit lower triangular matrix L, upper triangular matrix U,

permutation matrices P and Q, and a diagonal scaling matrix R so that P*(R\A)*Q = L*U for

sparse non-empty A. Typically, but not always, the row-scaling leads to a sparser and more

stable factorization. The statement lu(A,'matrix') returns identical output values.

[...] = lu(A,'vector') returns the permutation information in two row vectors p and q. You can

specify from 1 to 5 outputs. Output p is defined as A(p,:)=L*U, output q is defined

as A(p,q)=L*U, and output R is defined as R(:,p)\A(:,q)=L*U.

[...] = lu(A,thresh) controls pivoting. This syntax applies to sparse matrices only.

The thresh input is a one- or two-element vector of type single or double that defaults to [0.1,

0.001]. If A is a square matrix with a mostly symmetric structure and mostly nonzero diagonal,

MATLAB
®
 uses a symmetric pivoting strategy. For this strategy, the diagonal where

A(i,j) >= thresh(2) * max(abs(A(j:m,j)))

is selected. If the diagonal entry fails this test, a pivot entry below the diagonal is selected,

using thresh(1). In this case, L has entries with absolute value 1/min(thresh) or less.

If A is not as described above, MATLAB uses a nonsymmetric strategy. In this case, the sparsest

row i where

A(i,j) >= thresh(1) * max(abs(A(j:m,j)))

is selected. A value of 1.0 results in conventional partial pivoting. Entries in L have an absolute

value of 1/thresh(1) or less. The second element of the thresh input vector is not used when

MATLAB uses a nonsymmetric strategy.

Smaller values of thresh(1) and thresh(2) tend to lead to sparser LU factors, but the solution can

become inaccurate. Larger values can lead to a more accurate solution (but not always), and

usually an increase in the total work and memory usage. The

statement lu(A,thresh,'matrix') returns identical output values.

[...] = lu(A,thresh,'vector') controls the pivoting strategy and also returns the permutation

information in row vectors, as described above. The thresh input must precede 'vector' in the

input argument list.

Note

In rare instances, incorrect factorization results in P*A*Q ≠ L*U. Increase thresh, to a maximum

of 1.0 (regular partial pivoting), and try again.

Arguments

A Rectangular matrix to be factored.

thresh Pivot threshold for sparse matrices. Valid values are in the interval [0,1]. If you specify

the fourth output Q, the default is 0.1. Otherwise, the default is 1.0.

L Factor of A. Depending on the form of the function, L is either a unit lower triangular

Unit – IV Applications 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 9/17

matrix, or else the product of a unit lower triangular matrix with P'.

U Upper triangular matrix that is a factor of A.

P Row permutation matrix satisfying the equation L*U = P*A, or L*U = P*A*Q. Used for

numerical stability.

Q Column permutation matrix satisfying the equation P*A*Q = L*U. Used to reduce fill-in

in the sparse case.

R Row-scaling matrix

Examples

Start with

A = [1 2 3

 4 5 6

 7 8 0];

To see the LU factorization, call lu with two output arguments.

[L1,U] = lu(A)

L1 =

 0.1429 1.0000 0

 0.5714 0.5000 1.0000

 1.0000 0 0

U =

 7.0000 8.0000 0

 0 0.8571 3.0000

 0 0 4.5000

Notice that L1 is a permutation of a lower triangular matrix: if you switch rows 2 and 3, and then

switch rows 1 and 2, the resulting matrix is lower triangular and has 1s on the diagonal. Notice

also that U is upper triangular. To check that the factorization does its job, compute the product

L1*U

which returns the original A. The inverse of the example matrix, X = inv(A), is actually

computed from the inverses of the triangular factors

X = inv(U)*inv(L1)

Using three arguments on the left side to get the permutation matrix as well,

[L2,U,P] = lu(A)

returns a truly lower triangular L2, the same value of U, and the permutation matrix P.

L2 =

 1.0000 0 0

 0.1429 1.0000 0

 0.5714 0.5000 1.0000

U =

 7.0000 8.0000 0

 0 0.8571 3.0000

 0 0 4.5000

Unit – IV Applications 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 10/17

P =

 0 0 1

 1 0 0

 0 1 0

Note that L2 = P*L1.

P*L1

ans =

 1.0000 0 0

 0.1429 1.0000 0

 0.5714 0.5000 1.0000

To verify that L2*U is a permuted version of A, compute L2*U and subtract it from P*A:

P*A - L2*U

ans =

 0 0 0

 0 0 0

 0 0 0

In this case, inv(U)*inv(L) results in the permutation of inv(A) given by inv(P)*inv(A).

The determinant of the example matrix is

d = det(A)

d = 27

It is computed from the determinants of the triangular factors

d = det(L)*det(U)

The solution to Ax = b is obtained with matrix division

x = A\b

The solution is actually computed by solving two triangular systems

y = L\b

x = U\y

Cholesky factorization

Syntax

R = chol(A)

L = chol(A,'lower')

R = chol(A,'upper')

[R,p] = chol(A)

[L,p] = chol(A,'lower')

[R,p] = chol(A,'upper')

[R,p,S] = chol(A)

[R,p,s] = chol(A,'vector')

Unit – IV Applications 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 11/17

[L,p,s] = chol(A,'lower','vector')

[R,p,s] = chol(A,'upper','vector')

Description

R = chol(A) produces an upper triangular matrix R from the diagonal and upper triangle of

matrix A, satisfying the equation R'*R=A. The chol function assumes that A is (complex

Hermitian) symmetric. If it is not, chol uses the (complex conjugate) transpose of the upper

triangle as the lower triangle. Matrix A must be positive definite.

L = chol(A,'lower') produces a lower triangular matrix L from the diagonal and lower triangle of

matrix A, satisfying the equation L*L'=A. The chol function assumes that A is (complex

Hermitian) symmetric. If it is not, chol uses the (complex conjugate) transpose of the lower

triangle as the upper triangle. When A is sparse, this syntax of chol is typically faster.

Matrix A must be positive definite. R = chol(A,'upper') is the same as R = chol(A).

[R,p] = chol(A) for positive definite A, produces an upper triangular matrix R from the diagonal

and upper triangle of matrix A, satisfying the equation R'*R=A and p is zero. If A is not positive

definite, then p is a positive integer and MATLAB
®
 does not generate an error. When A is

full, R is an upper triangular matrix of order q=p-1 such that R'*R=A(1:q,1:q). When A is

sparse, R is an upper triangular matrix of size q-by-n so that the L-shaped region of the

first q rows and first q columns of R'*R agree with those of A.

[L,p] = chol(A,'lower') for positive definite A, produces a lower triangular matrix L from the

diagonal and lower triangle of matrix A, satisfying the equation L*L'=A and p is zero. If A is not

positive definite, then p is a positive integer and MATLAB does not generate an error.

When A is full, L is a lower triangular matrix of order q=p-1 such that L*L'=A(1:q,1:q).

When A is sparse, L is a lower triangular matrix of size q-by-n so that the L-shaped region of the

first q rows and first q columns of L*L' agree with those of A. [R,p] = chol(A,'upper') is the same

as [R,p] = chol(A).

The following three-output syntaxes require sparse input A.

[R,p,S] = chol(A), when A is sparse, returns a permutation matrix S. Note that the

preordering S may differ from that obtained from amd since chol will slightly change the

ordering for increased performance. When p=0, R is an upper triangular matrix such

that R'*R=S'*A*S. When p is not zero, R is an upper triangular matrix of size q-by-n so that

the L-shaped region of the first q rows and first q columns of R'*R agree with those of S'*A*S.

The factor of S'*A*S tends to be sparser than the factor of A.

[R,p,s] = chol(A,'vector'), when A is sparse, returns the permutation information as a

vector s such that A(s,s)=R'*R, when p=0. You can use the 'matrix' option in place of 'vector' to

obtain the default behavior.

[L,p,s] = chol(A,'lower','vector'), when A is sparse, uses only the diagonal and the lower triangle

of A and returns a lower triangular matrix L and a permutation vector ssuch that A(s,s)=L*L',

when p=0. As above, you can use the 'matrix' option in place of 'vector' to obtain a permutation

matrix. [R,p,s] = chol(A,'upper','vector') is the same as [R,p,s] = chol(A,'vector').

https://in.mathworks.com/help/matlab/ref/amd.html

Unit – IV Applications 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 12/17

Example 1

The gallery function provides several symmetric, positive, definite matrices.

A=gallery('moler',5)

A =

 1 -1 -1 -1 -1

 -1 2 0 0 0

 -1 0 3 1 1

 -1 0 1 4 2

 -1 0 1 2 5

C=chol(A)

ans =

 1 -1 -1 -1 -1

 0 1 -1 -1 -1

 0 0 1 -1 -1

 0 0 0 1 -1

 0 0 0 0 1

isequal(C'*C,A)

ans =

 1

For sparse input matrices, chol returns the Cholesky factor.

N = 100;

https://in.mathworks.com/help/matlab/ref/gallery.html

Unit – IV Applications 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 13/17

A = gallery('poisson', N);

N represents the number of grid points in one direction of a square N-by-N grid.

Therefore, A is N2 by N2.

L = chol(A, 'lower');

D = norm(A - L*L', 'fro');

The value of D will vary somewhat among different versions of MATLAB but will be on order

of 10−14

Orthogonal-triangular decomposition

Syntax

[Q,R] = qr(A)

[Q,R] = qr(A,0)

[Q,R,E] = qr(A)

[Q,R,E] = qr(A,'matrix')

[Q,R,e] = qr(A,'vector')

[Q,R,e] = qr(A,0)

X = qr(A)

X = qr(A,0)

R = qr(A)

R = qr(A,0)

[C,R] = qr(A,B)

[C,R,E] = qr(A,B)

[C,R,E] = qr(A,B,'matrix')

[C,R,e] = qr(A,B,'vector')

[C,R] = qr(A,B,0)

[C,R,e] = qr(A,B,0)

Description

[Q,R] = qr(A), where A is m-by-n, produces an m-by-n upper triangular matrix R and an m-by-

m unitary matrix Q so that A = Q*R.

[Q,R] = qr(A,0) produces the economy-size decomposition. If m > n, only the first n columns

of Q and the first n rows of R are computed. If m<=n, this is the same as [Q,R] = qr(A).

If A is full:

[Q,R,E] = qr(A) or [Q,R,E] = qr(A,'matrix') produces unitary Q, upper triangular R and a

permutation matrix E so that A*E = Q*R. The column permutation E is chosen so

that abs(diag(R)) is decreasing.

Unit – IV Applications 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 14/17

[Q,R,e] = qr(A,'vector') returns the permutation information as a vector instead of a matrix. That

is, e is a row vector such that A(:,e) = Q*R.

[Q,R,e] = qr(A,0) produces an economy-size decomposition in which e is a permutation vector,

so that A(:,e) = Q*R.

X = qr(A) and X = qr(A,0) return a matrix X such that triu(X) is the upper triangular factor R.

If A is sparse:

R = qr(A) computes a Q-less QR decomposition and returns the upper triangular factor R. Note

that R = chol(A'*A). Since Q is often nearly full, this is preferred to [Q,R] = QR(A).

R = qr(A,0) produces economy-size R. If m>n, R has only n rows. If m<=n, this is the same as R

= qr(A).

[Q,R,E] = qr(A) or [Q,R,E] = qr(A,'matrix') produces unitary Q, upper triangular R and a

permutation matrix E so that A*E = Q*R. The column permutation E is chosen to reduce fill-in

in R.

[Q,R,e] = qr(A,'vector') returns the permutation information as a vector instead of a matrix. That

is, e is a row vector such that A(:,e) = Q*R.

[Q,R,e] = qr(A,0) produces an economy-size decomposition in which e is a permutation vector,

so that A(:,e) = Q*R.

[C,R] = qr(A,B), where B has as many rows as A, returns C = Q'*B. The least-squares solution

to A*X = B is X = R\C.

[C,R,E] = qr(A,B) or [C,R,E] = qr(A,B,'matrix'), also returns a fill-reducing ordering. The least-

squares solution to A*X = B is X = E*(R\C).

[C,R,e] = qr(A,B,'vector') returns the permutation information as a vector instead of a matrix.

That is, the least-squares solution to A*X = B is X(e,:) = R\C.

[C,R] = qr(A,B,0) produces economy-size results. If m>n, C and R have only n rows. If m<=n,

this is the same as [C,R] = qr(A,B).

[C,R,e] = qr(A,B,0) additionally produces a fill-reducing permutation vector e. In this case, the

least-squares solution to A*X = B is X(e,:) = R\C.

Examples

Find the least squares approximate solution to A*x = b with the Q-less QR decomposition and

one step of iterative refinement:

Unit – IV Applications 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 15/17

ifissparse(A), R = qr(A);

else R = triu(qr(A)); end

x = R\(R'\(A'*b));

r = b - A*x;

err = R\(R'\(A'*r));

x = x + err;

Matrix Operations

There are also routines that let you find solutions to equations. For example, if Ax=b and you

want to find x, a slow way to find x is to simply invert A and perform a left multiply on both

sides (more on that later). It turns out that there are more efficient and more stable methods to do

this (L/U decomposition with pivoting, for example). Matlab has special commands that will do

this for you.

Before finding the approximations to linear systems, it is important to remember that if A and B

are both matrices, then AB is not necessarily equal to BA. To distinguish the difference between

solving systems that have a right or left multiply, Matlab uses two different operators, "/" and "\".

Examples of their use are given below. It is left as an exercise for you to figure out which one is

doing what.

>> v = [1 3 5]'

v =

 1

 3

 5

>> x = A\v

Warning: Matrix is close to singular or badly scaled.

 Results may be inaccurate. RCOND = 4.565062e-18

x =

 1.0e+15 *

 1.8014

 -3.6029

 1.8014

>> x = B\v

Unit – IV Applications 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 16/17

x =

 2

 1

 -1

>> B*x

ans =

 1

 3

 5

>>x1 = v'/B

x1 =

 4.0000 -3.0000 1.0000

>>x1*B

ans =

 1.0000 3.0000 5.0000

Finally, sometimes you would like to clear all of your data and start over. You do this with the

"clear" command. Be careful though, it does not ask you for a second opinion and its results are

final.

>>clear

>>whos

Unit – IV Applications 2015 Batch

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 17/17

Part B (5x8=40 Marks)

Possible Questions

1. Mention the procedure for solving a linear system of equation with example.

2. Describe in detail finding the eigen values and eigen vectors with example.

3. Explain about matrix factorization with example.

4. Describe about matrix operation in linear algebra with example.

5. Write a short note on straight line fit with example.

6. Define Gauss elimination with examples.

7. Describe about the curve fitting with polynomial functions

8. Describe in detail about curve fitting with polynomial functions.

9. Describe in detail solving a system of equations in MAT LAB with example.

10. Describe about the interpretation with example

Applications / 2015 Batch

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

____ command is used to solve linear systems if

matrix A has exploitable structure dsolve linsolve solve linear linsolve

linsolve command is used to solve linear systems

if matrix A has _____ structure exploitable decimal complex triangular exploitable

The Command for determinant is ____ dsolve det mod eye det

To evaluates f(x) at x =5 is executed in

MATLAB as x=f(5) f(x)=5 fx(5) f=5 fx(5)

To evaluates f(x,y) at x =2 and y = 3 is executed

in MATLAB as fxy=(2,3) fxy(2,3) fx(2)y(3) f(2,3) fxy(2,3)

_____ command is used to produce stunning

surface plots in 3 D ezpolar ezcontour ezcontourf ezsurf ezsurf

To solve the matrix equation in Mat lab we use

_____ command x = A\b x = A*b x = A
-1

b x = A/b x = A\b

Possible Questions

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021

Unit IV
Applications

Part A (20x1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

 Subject: MATLAB programming Subject Code: 15MMU504

 Class : III - B.Sc. Mathematics Semester : V

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE

Applications / 2015 Batch

To determine the eigen value for matrix A A = eigen (A) eig(A) eign(A) Eig(A,:) eig(A)

To solve the LU factorization by using the

command [L,U] = lu(A); {LU}=LU(A); [l,u]=A; lu=[A]; [L,U] = lu(A);

To solve the QR factorization by using the

command {q,r} = [A] {Q,R} = [A] [Q,R] = qr(A) [Q,R] = A [Q,R] = qr(A)

____ bulit in function is used to solve cholesky

factorization ch chol chl chlf chol

_______ command is used to solve singular value

decomposition

[U,D,V] =

svd(A) svd = [A] [U,D,V] = A

{u,d,v} =

SVD(A) [U,D,V] = svd(A)

interp1 command is used ____ data interpolation 1D 2D 3D fourier transform 1D

Gauss jordan reduction procedure is then used to

transform the augmented matrix is called ___

row reduced

echelon form gauss seidal

gauss

elimination

augmented

matrix row reduced echelon form
______ reduction procedure is then used to

transform the augmented matrix is called row

reduced echelon form

augmented

matrix gauss elimination gauss seidal Gauss jordan Gauss jordan
Gauss jordan reduction procedure is then used to

transform the _______ is called row reduced

echelon form gauss seidal square matrix

augmented

matrix identity matrix augmented matrix

R = chol(A) this command is used to solve LU factorization QR factorization

Cholesky

factorization

Singular value

decomposition Cholesky factorization

[U, D, V] = svd(A) is use to solve LU factorization QR factorization

Cholesky

factorization

Singular value

decomposition Singular value decomposition

[Q,R] = qr(A) this command is used to solve LU factorization QR factorization

Cholesky

factorization

Singular value

decomposition QR factorization

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE

Applications / 2015 Batch

[L,U] = lu(A) this command is used to solve LU factorization QR factorization

Cholesky

factorization

Singular value

decomposition LU factorization

Which of the following command is used to solve

linear algebra ? nzmax eigs speye spy eigs

which of the following function is used for graphs

? gplot etree speye spy gplot

interp2 command is used ____ data interpolation 1D 2D 3D fourier transform 2D

interp3 command is used ____ data interpolation 1D 2D 3D fourier transform 3D

interpft command is used ____ data interpolation 1D 2D 3D fourier transform fourier transform

spline command is used _____ interpolation that

uses cubic spline fit. 1D 2D 3D fourier transform 1D

spline command is used 1-D interpolation that

uses______. square spline cubic spline fit least square fit straight-line fit cubic spline fit

_____ command is used 1-D interpolation that

uses cubic spline fit. interp3 interpft interp2 spline spline

____ error are caused mainly due to wrong logic

used by the program. syntax condition runtime statement runtime

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 1/25

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021.

 Department of Mathematics

Subject : MATLAB programming Subject Code : 15MMU504 L T P C

Class : III – B.Sc. Mathematics Semester : V 5 0 0 5

UNIT V

Applications – Data Analysis and Statistics – Numerical Integration – ordinary differential

equations – Nonlinear Algebraic Equations.

TEXT BOOK

1. RudraPratap, 2003. Getting Started with MATLAB-A Quick Introduction for Scientists and

Engineers, Oxford University Press.

REFERENCES

1. William John Palm, 2005. Introduction to Matlab 7 for Engineers, McGraw-Hill

Professional.New Delhi.

2. Dolores M. Etter, David C. Kuncicky, 2004.Introduction to MATLAB 7, Prentice Hall, New

Delhi.

3. Kiranisingh.Y,Chaudhuri.B.B, 2007.Matlab Programming, Prentice-Hall Of India Pvt.Ltd,

New Delhi.

4. Brian Hahn, 2016. Essential MATLAB for Engineers and Scientists.6
th

edition , Elsevier

publication.

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 2/25

UNIT – V

Application of MATLAB

Data Analysis and Statistics

For performing simple data analysis tasks, such as finding mean, median, and standard

deviation, MATLAB provides an easy graphical interface that you can activate from the Tools

menu of the figure window. First , you should plot your data in the form you wish (e.g. , scatter

plot , line plot)_ Then, go to the figure window an select Data Statistics from the Too ls pull-

down menu. MATLAB shows you the basic statistics of your data in a separate window marked

Data Statistics. You can show any of the statistical measures on your plot by checking the

appropriate box. However, you are not limited to this simple interface for your statistical needs.

Several built-in functions are at your disposal for statistical calculations. These functions are

briefly discussed later. All data analysis functions take both vectors and matrices as arguments.

When a vector is given as an argument, it does not matter whether it is a row vector or a column

vector. However, when a matrix is used as an argument, the functions operate column wise on

the matrix and output a row vector that contains results of the operation on each column.

Statistics Function Summary

Function Description

max Maximum value

mean Average or mean value

median Median value

min Smallest value

mode Most frequent value

std Standard deviation

var Variance, which measures the spread or dispersion of the values

Examples

1. Calculating Maximum, Mean, and Standard Deviation

This example shows how to use MATLAB functions to calculate the maximum, mean, and

standard deviation values for a 24-by-3 matrix called count. MATLAB computes these statistics

independently for each column in the matrix.

% Load the sample data

load count.dat

% Find the maximum value in each column

mx = max(count)

% Calculate the mean of each column

mu = mean(count)

% Calculate the standard deviation of each column

sigma = std(count)

The results are

https://in.mathworks.com/help/matlab/ref/max.html
https://in.mathworks.com/help/matlab/ref/mean.html
https://in.mathworks.com/help/matlab/ref/median.html
https://in.mathworks.com/help/matlab/ref/min.html
https://in.mathworks.com/help/matlab/ref/mode.html
https://in.mathworks.com/help/matlab/ref/std.html
https://in.mathworks.com/help/matlab/ref/var.html

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 3/25

mx =

 114 145 257

mu =

 32.0000 46.5417 65.5833

sigma =

 25.3703 41.4057 68.0281

To get the row numbers where the maximum data values occur in each data column, specify a

second output parameter indx to return the row index. For example:

[mx,indx] = max(count)

These results are

mx =

 114 145 257

indx =

 20 20 20

Here, the variable mx is a row vector that contains the maximum value in each of the three data

columns. The variable indx contains the row indices in each column that correspond to the

maximum values.

To find the minimum value in the entire count matrix, 24-by-3 matrix into a 72-by-1 column

vector by using the syntax count(:). Then, to find the minimum value in the single column, use

the following syntax:

min(count(:))

ans =

 7

2. Subtracting the Mean

Subtract the mean from each column of the matrix by using the following syntax:

% Get the size of the count matrix

[n,p] = size(count)

% Compute the mean of each column

mu = mean(count)

% Create a matrix of mean values by

% replicating the mu vector for n rows

MeanMat = repmat(mu,n,1)

% Subtract the column mean from each element

% in that column

x = count - MeanMat

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 4/25

Numerical Integration

Functions

integral Numerical integration

integral2 Numerically evaluate double integral

integral3 Numerically evaluate triple integral

quadgk Numerically evaluate integral, adaptive Gauss-Kronrod quadrature

quad2d Numerically evaluate double integral, tiled method

cumtrapz Cumulative trapezoidal numerical integration

trapz Trapezoidal numerical integration

polyint Polynomial integration

del2 Discrete Laplacian

diff Differences and Approximate Derivatives

gradient Numerical gradient

polyder Polynomial differentiation

Numerical integration

Syntax

q = integral(fun,xmin,xmax)

q = integral(fun,xmin,xmax,Name,Value)

Description

q = integral(fun,xmin,xmax) numerically integrates function fun from xmin to xmax using global

adaptive quadrature and default error tolerances.

q = integral(fun,xmin,xmax,Name,Value) specifies additional options with one or

more Name,Value pair arguments. For example, specify 'WayPoints' followed by a vector of real

or complex numbers to indicate specific points for the integrator to use.

Examples

Improper Integral

Try this Example

Create the function .

fun = @(x) exp(-x.^2).*log(x).^2;

Evaluate the integral from x=0 to x=Inf.

q = integral(fun,0,Inf)

https://in.mathworks.com/help/matlab/ref/integral.html
https://in.mathworks.com/help/matlab/ref/integral2.html
https://in.mathworks.com/help/matlab/ref/integral3.html
https://in.mathworks.com/help/matlab/ref/quadgk.html
https://in.mathworks.com/help/matlab/ref/quad2d.html
https://in.mathworks.com/help/matlab/ref/cumtrapz.html
https://in.mathworks.com/help/matlab/ref/trapz.html
https://in.mathworks.com/help/matlab/ref/polyint.html
https://in.mathworks.com/help/matlab/ref/del2.html
https://in.mathworks.com/help/matlab/ref/diff.html
https://in.mathworks.com/help/matlab/ref/gradient.html
https://in.mathworks.com/help/matlab/ref/polyder.html
https://in.mathworks.com/help/matlab/ref/integral.html#inputarg_fun
https://in.mathworks.com/help/matlab/ref/integral.html#inputarg_xmin
https://in.mathworks.com/help/matlab/ref/integral.html#inputarg_xmax
https://in.mathworks.com/help/matlab/ref/integral.html#inputarg_fun
https://in.mathworks.com/help/matlab/ref/integral.html#inputarg_xmin
https://in.mathworks.com/help/matlab/ref/integral.html#inputarg_xmax
https://in.mathworks.com/help/matlab/ref/integral.html#namevaluepairarguments

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 5/25

q = 1.9475

Parameterized Function

Try this Example

Create the function with one parameter, .

fun = @(x,c) 1./(x.^3-2*x-c);

Evaluate the integral from x=0 to x=2 at c=5.

q = integral(@(x)fun(x,5),0,2)

q = -0.4605

Singularity at Lower Limit

Try this Example

Create the function .

fun = @(x)log(x);

Evaluate the integral from x=0 to x=1 with the default error tolerances.

format long

q1 = integral(fun,0,1)

q1 =

 -1.000000010959678

Evaluate the integral again, specifying 12 decimal places of accuracy.

q2 = integral(fun,0,1,'RelTol',0,'AbsTol',1e-12)

q2 =

 -1.000000000000010

Numerically evaluate double integral

Syntax

q = integral2(fun,xmin,xmax,ymin,ymax)

q = integral2(fun,xmin,xmax,ymin,ymax,Name,Value)

Description

q = integral2(fun,xmin,xmax,ymin,ymax) approximates the integral of the function z =

fun(x,y) over the planar region xmin ≤ x ≤ xmax and ymin(x) ≤ y ≤ ymax(x).

q = integral2(fun,xmin,xmax,ymin,ymax,Name,Value) specifies additional options with one or

more Name,Value pair arguments.

Examples

Integrate Triangular Region with Singularity at the Boundary

The function

https://in.mathworks.com/help/matlab/ref/integral2.html#inputarg_fun
https://in.mathworks.com/help/matlab/ref/integral2.html#inputarg_xmin
https://in.mathworks.com/help/matlab/ref/integral2.html#inputarg_xmax
https://in.mathworks.com/help/matlab/ref/integral2.html#inputarg_ymin
https://in.mathworks.com/help/matlab/ref/integral2.html#inputarg_ymax
https://in.mathworks.com/help/matlab/ref/integral2.html#inputarg_fun
https://in.mathworks.com/help/matlab/ref/integral2.html#inputarg_xmin
https://in.mathworks.com/help/matlab/ref/integral2.html#inputarg_xmax
https://in.mathworks.com/help/matlab/ref/integral2.html#inputarg_ymin
https://in.mathworks.com/help/matlab/ref/integral2.html#inputarg_ymax
https://in.mathworks.com/help/matlab/ref/integral2.html#namevaluepairarguments

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 6/25

is undefined when and are zero. integral2 performs best when singularities are on the

integration boundary.

Create the anonymous function.

fun = @(x,y) 1./(sqrt(x + y) .* (1 + x + y).^2)

fun = function_handle with value:

 @(x,y)1./(sqrt(x+y).*(1+x+y).^2)

Integrate over the triangular region bounded by and .

ymax = @(x) 1 - x;

q = integral2(fun,0,1,0,ymax)

q = 0.2854

Evaluate Double Integral in Polar Coordinates

Try this Example

Define the function

fun = @(x,y) 1./(sqrt(x + y) .* (1 + x + y).^2);

polarfun = @(theta,r) fun(r.*cos(theta),r.*sin(theta)).*r;

Define a function for the upper limit of .

rmax = @(theta) 1./(sin(theta) + cos(theta));

Integrate over the region bounded by and .

q = integral2(polarfun,0,pi/2,0,rmax)

q = 0.2854

Evaluate Double Integral of Parameterized Function with Specific Method and Error

Tolerance

Try this Example

Create the anonymous parameterized function with parameters

 and .

a = 3;

b = 5;

fun = @(x,y) a*x.^2 + b*y.^2;

Evaluate the integral over the region and . Specify the 'iterated' method and

approximately 10 significant digits of accuracy.

format long

q = integral2(fun,0,5,-5,0,'Method','iterated',...

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 7/25

'AbsTol',0,'RelTol',1e-10)

q =

 1.666666666666666e+03

Numerically evaluate double integral

Syntax

q = quad2d(fun,a,b,c,d)

[q,errbnd] = quad2d(...)

q = quad2d(fun,a,b,c,d,param1,val1,param2,val2,...)

Description

q = quad2d(fun,a,b,c,d) approximates the integral of fun(x,y) over the planar

region a≤x≤b and c(x)≤y≤d(x). fun is a function handle, c and d may each be a scalar or a

function handle.

All input functions must be vectorized. The function Z=fun(X,Y) must accept 2-D

matrices X and Y of the same size and return a matrix Z of corresponding values. The

functions ymin=c(X) and ymax=d(X) must accept matrices and return matrices of the same size

with corresponding values.

[q,errbnd] = quad2d(...). errbnd is an approximate upper bound on the absolute error, |Q - I|,

where I denotes the exact value of the integral.

q = quad2d(fun,a,b,c,d,param1,val1,param2,val2,...) performs the integration as above with

specified values of optional parameters:

AbsTol absolute error tolerance

RelTol relative error tolerance

quad2d attempts to satisfy ERRBND <= max(AbsTol,RelTol*|Q|). This is absolute error control

when |Q| is sufficiently small and relative error control when |Q| is larger. A default tolerance

value is used when a tolerance is not specified. The default value of AbsTol is 1e-5. The default

value of RelTol is 100*eps(class(Q)). This is also the minimum value of RelTol.

Smaller RelTol values are automatically increased to the default value.

MaxFunEvals Maximum allowed number of evaluations of fun reached.

The MaxFunEvals parameter limits the number of vectorized calls to fun. The default is 2000.

FailurePlot Generate a plot if MaxFunEvals is reached.

Setting FailurePlot to true generates a graphical representation of the regions needing further

refinement when MaxFunEvals is reached. No plot is generated if the integration succeeds before

reaching MaxFunEvals. These (generally) 4-sided regions are mapped to rectangles internally.

Clusters of small regions indicate the areas of difficulty. The default is false.

Singular Problem may have boundary singularities

With Singular set to true, quad2d will employ transformations to weaken boundary singularities

for better performance. The default is true. Setting Singular to false will turn these

transformations off, which may provide a performance benefit on some smooth problems.

https://in.mathworks.com/help/matlab/ref/quad2d.html
https://in.mathworks.com/help/matlab/ref/quad2d.html

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 8/25

Examples

Evaluate Double Integral

Integrate

over and .

fun = @(x,y) y.*sin(x)+x.*cos(y);

Q = quad2d(fun,pi,2*pi,0,pi)

Q = -9.8696

Compare the result to the true value of the integral, .

-pi^2

ans = -9.8696

Integrand with Singularity on Integration Boundary

Integrate the function

over the region and . This integrand is infinite at the origin (0,0), which

lies on the boundary of the integration region.

fun = @(x,y) 1./(sqrt(x + y) .* (1 + x + y).^2);

ymax = @(x) 1 - x;

Q = quad2d(fun,0,1,0,ymax)

Q = 0.2854

The true value of the integral is .

pi/4 - 0.5

ans = 0.2854

Ordinary Differential Equations
Ordinary differential equation initial value problem solvers

The Ordinary Differential Equation (ODE) solvers in MATLABsolve initial value problems with

a variety of properties. The solvers can work on stiff or nonstiff problems, problems with a mass

matrix, differential algebraic equations (DAEs), or fully implicit problems

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 9/25

Functions

Nonstiff Solvers

ode45 Solve nonstiff differential equations — medium order method

ode23 Solve nonstiff differential equations — low order method

ode113 Solve nonstiff differential equations — variable order method

ode23

Solve nonstiff differential equations — low order method

Syntax

[t,y] = ode23(odefun,tspan,y0)

[t,y] = ode23(odefun,tspan,y0,options)

[t,y,te,ye,ie] = ode23(odefun,tspan,y0,options)

sol = ode23(___)

Description

[t,y] = ode23(odefun,tspan,y0), where tspan = [t0 tf], integrates the system of differential

equations y'=f(t,y) from t0 to tf with initial conditions y0. Each row in the solution

array y corresponds to a value returned in column vector t.

All MATLAB
®
 ODE solvers can solve systems of equations of the form y'=f(t,y), or problems

that involve a mass matrix, M(t,y)y'=f(t,y). The solvers all use similar syntaxes.

The ode23s solver only can solve problems with a mass matrix if the mass matrix is

constant. ode15s and ode23t can solve problems with a mass matrix that is singular, known as

differential-algebraic equations (DAEs). Specify the mass matrix using the Mass option

of odeset.

[t,y] = ode23(odefun,tspan,y0,options) also uses the integration settings defined by options,

which is an argument created using the odeset function. For example, use

the AbsTol and RelTol options to specify absolute and relative error tolerances, or

the Mass option to provide a mass matrix.

[t,y,te,ye,ie] = ode23(odefun,tspan,y0,options) additionally finds where functions of (t,y), called

event functions, are zero. In the output, te is the time of the event, ye is the solution at the time of

the event, and ie is the index of the triggered event.

For each event function, specify whether the integration is to terminate at a zero and whether the

direction of the zero crossing matters. Do this by setting the 'Events'property to a function, such

as myEventFcn or @myEventFcn, and creating a corresponding function:

[value,isterminal,direction] = myEventFcn(t,y). For more information, see ODE Event Location.

sol = ode23(___) returns a structure that you can use with deval to evaluate the solution at any

point on the interval [t0 tf]. You can use any of the input argument combinations in previous

syntaxes.

https://in.mathworks.com/help/matlab/ref/ode45.html
https://in.mathworks.com/help/matlab/ref/ode23.html
https://in.mathworks.com/help/matlab/ref/ode113.html
https://in.mathworks.com/help/matlab/ref/ode23.html#outputarg_t
https://in.mathworks.com/help/matlab/ref/ode23.html#outputarg_y
https://in.mathworks.com/help/matlab/ref/ode23.html#inputarg_odefun
https://in.mathworks.com/help/matlab/ref/ode23.html#inputarg_tspan
https://in.mathworks.com/help/matlab/ref/ode23.html#inputarg_y0
https://in.mathworks.com/help/matlab/ref/odeset.html
https://in.mathworks.com/help/matlab/ref/ode23.html#outputarg_t
https://in.mathworks.com/help/matlab/ref/ode23.html#outputarg_y
https://in.mathworks.com/help/matlab/ref/ode23.html#inputarg_odefun
https://in.mathworks.com/help/matlab/ref/ode23.html#inputarg_tspan
https://in.mathworks.com/help/matlab/ref/ode23.html#inputarg_y0
https://in.mathworks.com/help/matlab/ref/ode23.html#inputarg_options
https://in.mathworks.com/help/matlab/ref/ode23.html#outputarg_t
https://in.mathworks.com/help/matlab/ref/ode23.html#outputarg_y
https://in.mathworks.com/help/matlab/ref/ode23.html#outputarg_te
https://in.mathworks.com/help/matlab/ref/ode23.html#outputarg_ye
https://in.mathworks.com/help/matlab/ref/ode23.html#outputarg_ie
https://in.mathworks.com/help/matlab/ref/ode23.html#inputarg_odefun
https://in.mathworks.com/help/matlab/ref/ode23.html#inputarg_tspan
https://in.mathworks.com/help/matlab/ref/ode23.html#inputarg_y0
https://in.mathworks.com/help/matlab/ref/ode23.html#inputarg_options
https://in.mathworks.com/help/matlab/math/ode-event-location.html
https://in.mathworks.com/help/matlab/ref/ode23.html#outputarg_sol

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 10/25

Examples

ODE with Single Solution Component

Try this Example

Simple ODEs that have a single solution component can be specified as an anonymous function

in the call to the solver. The anonymous function must accept two inputs (t,y) even if one of the

inputs is not used.

Solve the ODE

Use a time interval of [0,5] and the initial condition y0 = 0.

tspan = [0 5];

y0 = 0;

[t,y] = ode23(@(t,y) 2*t, tspan, y0);

Plot the solution.

plot(t,y,'-o')

Solve Nonstiff Equation

The van der Pol equation is a second order ODE

where is a scalar parameter. Rewrite this equation as a system of first-order ODEs by

making the substitution . The resulting system of first-order ODEs is

The function file vdp1.m represents the van der Pol equation using . The variables and

 are the entries y(1) and y(2) of a two-element vector, dydt.

function dydt = vdp1(t,y)

%VDP1 Evaluate the van der Pol ODEs for mu = 1

%

% See also ODE113, ODE23, ODE45.

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 11/25

% JacekKierzenka and Lawrence F. Shampine

% Copyright 1984-2014 The MathWorks, Inc.

dydt = [y(2); (1-y(1)^2)*y(2)-y(1)];

Solve the ODE using the ode23 function on the time interval [0 20] with initial values [2 0]. The

resulting output is a column vector of time points t and a solution array y. Each row

in y corresponds to a time returned in the corresponding row of t. The first column

of y corresponds to , and the second column to .

[t,y] = ode23(@vdp1,[0 20],[2; 0]);

Plot the solutions for and against t.

plot(t,y(:,1),'-o',t,y(:,2),'-o')

title('Solution of van der Pol Equation (\mu = 1) with ODE23');

xlabel('Time t');

ylabel('Solution y');

legend('y_1','y_2')

ode45

Solve nonstiff differential equations — medium order method

Syntax

[t,y] = ode45(odefun,tspan,y0)

[t,y] = ode45(odefun,tspan,y0,options)

[t,y,te,ye,ie] = ode45(odefun,tspan,y0,options)

sol = ode45(___)

Description

[t,y] = ode45(odefun,tspan,y0), where tspan = [t0 tf], integrates the system of differential

equations y'=f(t,y) from t0 to tf with initial conditions y0. Each row in the solution

array y corresponds to a value returned in column vector t.

https://in.mathworks.com/help/matlab/ref/ode45.html#outputarg_t
https://in.mathworks.com/help/matlab/ref/ode45.html#outputarg_y
https://in.mathworks.com/help/matlab/ref/ode45.html#inputarg_odefun
https://in.mathworks.com/help/matlab/ref/ode45.html#inputarg_tspan
https://in.mathworks.com/help/matlab/ref/ode45.html#inputarg_y0

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 12/25

All MATLAB
®
 ODE solvers can solve systems of equations of the form y'=f(t,y), or problems

that involve a mass matrix, M(t,y)y'=f(t,y). The solvers all use similar syntaxes.

The ode23s solver only can solve problems with a mass matrix if the mass matrix is

constant. ode15s and ode23t can solve problems with a mass matrix that is singular, known as

differential-algebraic equations (DAEs). Specify the mass matrix using the Mass option

of odeset.

ode45 is a versatile ODE solver and is the first solver you should try for most problems.

However, if the problem is stiff or requires high accuracy, then there are other ODE solvers that

might be better suited to the problem. See Choose an ODE Solver for more information.

[t,y] = ode45(odefun,tspan,y0,options) also uses the integration settings defined by options,

which is an argument created using the odeset function. For example, use

the AbsTol and RelTol options to specify absolute and relative error tolerances, or

the Mass option to provide a mass matrix.

[t,y,te,ye,ie] = ode45(odefun,tspan,y0,options) additionally finds where functions of (t,y), called

event functions, are zero. In the output, te is the time of the event, ye is the solution at the time of

the event, and ie is the index of the triggered event.

For each event function, specify whether the integration is to terminate at a zero and whether the

direction of the zero crossing matters. Do this by setting the 'Events'property to a function, such

as myEventFcn or @myEventFcn, and creating a corresponding function:

[value,isterminal,direction] = myEventFcn(t,y). For more information, see ODE Event Location.

sol = ode45(___) returns a structure that you can use with deval to evaluate the solution at any

point on the interval [t0 tf]. You can use any of the input argument combinations in previous

syntaxes.

Examples

ODE with Single Solution Component

Simple ODEs that have a single solution component can be specified as an anonymous function

in the call to the solver. The anonymous function must accept two inputs (t,y) even if one of the

inputs is not used.

Solve the ODE

Use a time interval of [0,5] and the initial condition y0 = 0.

tspan = [0 5];

y0 = 0;

[t,y] = ode45(@(t,y) 2*t, tspan, y0);

Plot the solution.

plot(t,y,'-o')

https://in.mathworks.com/help/matlab/ref/odeset.html
https://in.mathworks.com/help/matlab/math/choose-an-ode-solver.html
https://in.mathworks.com/help/matlab/ref/ode45.html#outputarg_t
https://in.mathworks.com/help/matlab/ref/ode45.html#outputarg_y
https://in.mathworks.com/help/matlab/ref/ode45.html#inputarg_odefun
https://in.mathworks.com/help/matlab/ref/ode45.html#inputarg_tspan
https://in.mathworks.com/help/matlab/ref/ode45.html#inputarg_y0
https://in.mathworks.com/help/matlab/ref/ode45.html#inputarg_options
https://in.mathworks.com/help/matlab/ref/ode45.html#outputarg_t
https://in.mathworks.com/help/matlab/ref/ode45.html#outputarg_y
https://in.mathworks.com/help/matlab/ref/ode45.html#outputarg_te
https://in.mathworks.com/help/matlab/ref/ode45.html#outputarg_ye
https://in.mathworks.com/help/matlab/ref/ode45.html#outputarg_ie
https://in.mathworks.com/help/matlab/ref/ode45.html#inputarg_odefun
https://in.mathworks.com/help/matlab/ref/ode45.html#inputarg_tspan
https://in.mathworks.com/help/matlab/ref/ode45.html#inputarg_y0
https://in.mathworks.com/help/matlab/ref/ode45.html#inputarg_options
https://in.mathworks.com/help/matlab/math/ode-event-location.html
https://in.mathworks.com/help/matlab/ref/ode45.html#outputarg_sol

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 13/25

ode113

Solve nonstiff differential equations — variable order method

Syntax

[t,y] = ode113(odefun,tspan,y0)

[t,y] = ode113(odefun,tspan,y0,options)

[t,y,te,ye,ie] = ode113(odefun,tspan,y0,options)

sol = ode113(___)

Examples

ODE with Single Solution Component

Simple ODEs that have a single solution component can be specified as an anonymous function

in the call to the solver. The anonymous function must accept two inputs (t,y) even if one of the

inputs is not used.

Solve the ODE

Use a time interval of [0,5] and the initial condition y0 = 0.

tspan = [0 5];

y0 = 0;

[t,y] = ode113(@(t,y) 2*t, tspan, y0);

Plot the solution.

plot(t,y,'-o')

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 14/25

Stiff Solvers

ode15s Solve stiff differential equations and DAEs — variable order

method

ode23s Solve stiff differential equations — low order method

ode23t Solve moderately stiff ODEs and DAEs — trapezoidal rule

ode23tb Solve stiff differential equations — trapezoidal rule + backward

differentiation formula

ode15s

Solve stiff differential equations and DAEs — variable order method

Syntax

[t,y] = ode15s(odefun,tspan,y0)

[t,y] = ode15s(odefun,tspan,y0,options)

[t,y,te,ye,ie] = ode15s(odefun,tspan,y0,options)

sol = ode15s(___)

Description

[t,y] = ode15s(odefun,tspan,y0), where tspan = [t0 tf], integrates the system of differential

equations y'=f(t,y) from t0 to tf with initial conditions y0. Each row in the solution

array y corresponds to a value returned in column vector t.

All MATLAB
®
 ODE solvers can solve systems of equations of the form y'=f(t,y), or problems

that involve a mass matrix, M(t,y)y'=f(t,y). The solvers all use similar syntaxes.

The ode23s solver only can solve problems with a mass matrix if the mass matrix is

constant. ode15s and ode23t can solve problems with a mass matrix that is singular, known as

differential-algebraic equations (DAEs). Specify the mass matrix using the Mass option

of odeset.

https://in.mathworks.com/help/matlab/ref/ode15s.html
https://in.mathworks.com/help/matlab/ref/ode23s.html
https://in.mathworks.com/help/matlab/ref/ode23t.html
https://in.mathworks.com/help/matlab/ref/ode23tb.html
https://in.mathworks.com/help/matlab/ref/ode15s.html#outputarg_t
https://in.mathworks.com/help/matlab/ref/ode15s.html#outputarg_y
https://in.mathworks.com/help/matlab/ref/ode15s.html#inputarg_odefun
https://in.mathworks.com/help/matlab/ref/ode15s.html#inputarg_tspan
https://in.mathworks.com/help/matlab/ref/ode15s.html#inputarg_y0
https://in.mathworks.com/help/matlab/ref/odeset.html

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 15/25

Examples

ODE With Single Solution Component

Try this Example

Simple ODEs that have a single solution component can be specified as an anonymous function

in the call to the solver. The anonymous function must accept two inputs (t,y) even if one of the

inputs is not used.

Solve the ODE

Use a time interval of [0,2] and the initial condition y0 = 1.

tspan = [0 2];

y0 = 1;

[t,y] = ode15s(@(t,y) -10*t, tspan, y0);

Plot the solution.

plot(t,y,'-o')

ode23t

Solve moderately stiff ODEs and DAEs — trapezoidal rule

Syntax

[t,y] = ode23t(odefun,tspan,y0)

[t,y] = ode23t(odefun,tspan,y0,options)

[t,y,te,ye,ie] = ode23t(odefun,tspan,y0,options)

sol = ode23t(___)

Description

[t,y] = ode23t(odefun,tspan,y0), where tspan = [t0 tf], integrates the system of differential

equations y'=f(t,y) from t0 to tf with initial conditions y0. Each row in the solution

array y corresponds to a value returned in column vector t.

https://in.mathworks.com/help/matlab/ref/ode23t.html#outputarg_t
https://in.mathworks.com/help/matlab/ref/ode23t.html#outputarg_y
https://in.mathworks.com/help/matlab/ref/ode23t.html#inputarg_odefun
https://in.mathworks.com/help/matlab/ref/ode23t.html#inputarg_tspan
https://in.mathworks.com/help/matlab/ref/ode23t.html#inputarg_y0

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 16/25

All MATLAB
®
 ODE solvers can solve systems of equations of the form y'=f(t,y), or problems

that involve a mass matrix, M(t,y)y'=f(t,y). The solvers all use similar syntaxes.

The ode23s solver only can solve problems with a mass matrix if the mass matrix is

constant. ode15s and ode23t can solve problems with a mass matrix that is singular, known as

differential-algebraic equations (DAEs). Specify the mass matrix using the Mass option

of odeset.

[t,y] = ode23t(odefun,tspan,y0,options) also uses the integration settings defined by options,

which is an argument created using the odeset function. For example, use

the AbsTol and RelTol options to specify absolute and relative error tolerances, or

the Mass option to provide a mass matrix.

[t,y,te,ye,ie] = ode23t(odefun,tspan,y0,options) additionally finds where functions of (t,y), called

event functions, are zero. In the output, te is the time of the event, ye is the solution at the time of

the event, and ie is the index of the triggered event.

For each event function, specify whether the integration is to terminate at a zero and whether the

direction of the zero crossing matters. Do this by setting the 'Events'property to a function, such

as myEventFcn or @myEventFcn, and creating a corresponding function:

[value,isterminal,direction] = myEventFcn(t,y). For more information, see ODE Event Location.

sol = ode23t(___) returns a structure that you can use with deval to evaluate the solution at any

point on the interval [t0 tf]. You can use any of the input argument combinations in previous

syntaxes.

Examples

ODE With Single Solution Component

Simple ODEs that have a single solution component can be specified as an anonymous function

in the call to the solver. The anonymous function must accept two inputs (t,y) even if one of the

inputs is not used.

Solve the ODE

Use a time interval of [0,2] and the initial condition y0 = 1.

tspan = [0 2];

y0 = 1;

[t,y] = ode23t(@(t,y) -10*t, tspan, y0);

Plot the solution.

plot(t,y,'-o')

https://in.mathworks.com/help/matlab/ref/odeset.html
https://in.mathworks.com/help/matlab/ref/ode23t.html#outputarg_t
https://in.mathworks.com/help/matlab/ref/ode23t.html#outputarg_y
https://in.mathworks.com/help/matlab/ref/ode23t.html#inputarg_odefun
https://in.mathworks.com/help/matlab/ref/ode23t.html#inputarg_tspan
https://in.mathworks.com/help/matlab/ref/ode23t.html#inputarg_y0
https://in.mathworks.com/help/matlab/ref/ode23t.html#inputarg_options
https://in.mathworks.com/help/matlab/ref/ode23t.html#outputarg_t
https://in.mathworks.com/help/matlab/ref/ode23t.html#outputarg_y
https://in.mathworks.com/help/matlab/ref/ode23t.html#outputarg_te
https://in.mathworks.com/help/matlab/ref/ode23t.html#outputarg_ye
https://in.mathworks.com/help/matlab/ref/ode23t.html#outputarg_ie
https://in.mathworks.com/help/matlab/ref/ode23t.html#inputarg_odefun
https://in.mathworks.com/help/matlab/ref/ode23t.html#inputarg_tspan
https://in.mathworks.com/help/matlab/ref/ode23t.html#inputarg_y0
https://in.mathworks.com/help/matlab/ref/ode23t.html#inputarg_options
https://in.mathworks.com/help/matlab/math/ode-event-location.html
https://in.mathworks.com/help/matlab/ref/ode23t.html#outputarg_sol

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 17/25

Fully Implicit Solvers

ode15i Solve fully implicit differential equations — variable order method

decic Compute consistent initial conditions for ode15i

ode15i

Solve fully implicit differential equations — variable order method

Syntax

[t,y] = ode15i(odefun,tspan,y0,yp0)

[t,y] = ode15i(odefun,tspan,y0,yp0,options)

[t,y,te,ye,ie] = ode15i(odefun,tspan,y0,yp0,options)

sol = ode15i(___)

Description

[t,y] = ode15i(odefun,tspan,y0,yp0), where tspan = [t0 tf], integrates the system of differential

equations f(t,y,y')=0 from t0 to tf with initial conditions y0 and yp0. Each row in the solution

array y corresponds to a value returned in column vector t.

[t,y] = ode15i(odefun,tspan,y0,yp0,options) also uses the integration settings defined by options,

which is an argument created using the odeset function. For example, use

the AbsTol and RelTol options to specify absolute and relative error tolerances, or

the Jacobian option to provide the Jacobian matrix.

[t,y,te,ye,ie] = ode15i(odefun,tspan,y0,yp0,options) additionally finds where functions of (t,y,y'),

called event functions, are zero. In the output, te is the time of the event, ye is the solution at the

time of the event, and ie is the index of the triggered event.

For each event function, specify whether the integration is to terminate at a zero and whether the

direction of the zero crossing matters. Do this by setting the 'Events'property to a function, such

as myEventFcn or @myEventFcn, and creating a corresponding function:

[value,isterminal,direction] = myEventFcn(t,y,yp). For more information, see ODE Event

Location.

https://in.mathworks.com/help/matlab/ref/ode15i.html
https://in.mathworks.com/help/matlab/ref/decic.html
https://in.mathworks.com/help/matlab/ref/ode15i.html#outputarg_t
https://in.mathworks.com/help/matlab/ref/ode15i.html#outputarg_y
https://in.mathworks.com/help/matlab/ref/ode15i.html#inputarg_odefun
https://in.mathworks.com/help/matlab/ref/ode15i.html#inputarg_tspan
https://in.mathworks.com/help/matlab/ref/ode15i.html#inputarg_y0
https://in.mathworks.com/help/matlab/ref/ode15i.html#inputarg_yp0
https://in.mathworks.com/help/matlab/ref/ode15i.html#outputarg_t
https://in.mathworks.com/help/matlab/ref/ode15i.html#outputarg_y
https://in.mathworks.com/help/matlab/ref/ode15i.html#inputarg_odefun
https://in.mathworks.com/help/matlab/ref/ode15i.html#inputarg_tspan
https://in.mathworks.com/help/matlab/ref/ode15i.html#inputarg_y0
https://in.mathworks.com/help/matlab/ref/ode15i.html#inputarg_yp0
https://in.mathworks.com/help/matlab/ref/ode15i.html#inputarg_options
https://in.mathworks.com/help/matlab/ref/ode15i.html#outputarg_t
https://in.mathworks.com/help/matlab/ref/ode15i.html#outputarg_y
https://in.mathworks.com/help/matlab/ref/ode15i.html#outputarg_te
https://in.mathworks.com/help/matlab/ref/ode15i.html#outputarg_ye
https://in.mathworks.com/help/matlab/ref/ode15i.html#outputarg_ie
https://in.mathworks.com/help/matlab/ref/ode15i.html#inputarg_odefun
https://in.mathworks.com/help/matlab/ref/ode15i.html#inputarg_tspan
https://in.mathworks.com/help/matlab/ref/ode15i.html#inputarg_y0
https://in.mathworks.com/help/matlab/ref/ode15i.html#inputarg_yp0
https://in.mathworks.com/help/matlab/ref/ode15i.html#inputarg_options
https://in.mathworks.com/help/matlab/math/ode-event-location.html
https://in.mathworks.com/help/matlab/math/ode-event-location.html

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 18/25

sol = ode15i(___) returns a structure that you can use with deval to evaluate the solution at any

point on the interval [t0 tf]. You can use any of the input argument combinations in previous

syntaxes.

Examples

collapse all

Solve Weissinger Implicit ODE

Try this Example

Use decic to compute consistent initial conditions for the Weissinger implicit ODE. decic holds

fixed the initial value for y(t0) and computes a consistent initial value for y'(t0).

The weissinger function evaluates the residual of the implicit ODE.

t0 = 1;

y0 = sqrt(3/2);

yp0 = 0;

[y0,yp0] = decic(@weissinger,t0,y0,1,yp0,0);

Use the result returned by decic with ode15i to solve the ODE. Plot the numerical solution, y,

against the analytical solution, ytrue.

[t,y] = ode15i(@weissinger,[1 10],y0,yp0);

ytrue = sqrt(t.^2 + 0.5);

plot(t,y,t,ytrue,'o')

Get/Set Options

odeget Extract ODE option values

odeset Create or modify options structure for ODE s

deval Evaluate differential equation solution structure

odextend Extend solution to ODE

https://in.mathworks.com/help/matlab/ref/ode15i.html#outputarg_sol
javascript:void(0);
https://in.mathworks.com/help/matlab/ref/odeget.html
https://in.mathworks.com/help/matlab/ref/odeset.html
https://in.mathworks.com/help/matlab/ref/deval.html
https://in.mathworks.com/help/matlab/ref/odextend.html

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 19/25

Non Linear Algebraic Equations

Solve system of nonlinear equations

Nonlinear system solver

Solves a problem specified by

F(x) = 0

for x, where F(x) is a function that returns a vector value.

x is a vector or a matrix; see Matrix Arguments.

Syntax

x = fsolve(fun,x0)

x = fsolve(fun,x0,options)

x = fsolve(problem)

[x,fval] = fsolve(___)

[x,fval,exitflag,output] = fsolve(___)

[x,fval,exitflag,output,jacobian] = fsolve(___)

Description

x = fsolve(fun,x0) starts at x0 and tries to solve the equations fun(x) = 0, an array of zeros.

x = fsolve(fun,x0,options) solves the equations with the optimization options specified

in options. Use optimoptions to set these options.

x = fsolve(problem) solves problem, where problem is a structure described in Input Arguments.

Create the problem structure by exporting a problem from Optimization app, as described

in Exporting Your Work.

[x,fval] = fsolve(___), for any syntax, returns the value of the objective function fun at the

solution x.

example

[x,fval,exitflag,output] = fsolve(___) additionally returns a value exitflag that describes the exit

condition of fsolve, and a structure output with information about the optimization process.

[x,fval,exitflag,output,jacobian] = fsolve(___) returns the Jacobian of fun at the solution x.

Examples

Solution of 2-D Nonlinear System

This example shows how to solve two nonlinear equations in two variables. The equations are

Convert the equations to the form .

Write a function that computes the left-hand side of these two equations.

function F = root2d(x)

http://in.mathworks.com/help/optim/ug/matrix-arguments.html
http://in.mathworks.com/help/optim/ug/fsolve.html#outputarg_x
http://in.mathworks.com/help/optim/ug/fsolve.html#inputarg_fun
http://in.mathworks.com/help/optim/ug/fsolve.html#inputarg_x0
http://in.mathworks.com/help/optim/ug/fsolve.html#outputarg_x
http://in.mathworks.com/help/optim/ug/fsolve.html#inputarg_fun
http://in.mathworks.com/help/optim/ug/fsolve.html#inputarg_x0
http://in.mathworks.com/help/optim/ug/fsolve.html#inputarg_options
http://in.mathworks.com/help/optim/ug/optimoptions.html
http://in.mathworks.com/help/optim/ug/fsolve.html#outputarg_x
http://in.mathworks.com/help/optim/ug/fsolve.html#inputarg_problem
http://in.mathworks.com/help/optim/ug/fsolve.html#buta__s-2
http://in.mathworks.com/help/optim/ug/graphical-optimization-tool.html#bqu2j29
http://in.mathworks.com/help/optim/ug/fsolve.html#outputarg_x
http://in.mathworks.com/help/optim/ug/fsolve.html#outputarg_fval
http://in.mathworks.com/help/optim/ug/fsolve.html#butbh7n-1
http://in.mathworks.com/help/optim/ug/fsolve.html#outputarg_x
http://in.mathworks.com/help/optim/ug/fsolve.html#outputarg_fval
http://in.mathworks.com/help/optim/ug/fsolve.html#outputarg_exitflag
http://in.mathworks.com/help/optim/ug/fsolve.html#outputarg_output
http://in.mathworks.com/help/optim/ug/fsolve.html#outputarg_x
http://in.mathworks.com/help/optim/ug/fsolve.html#outputarg_fval
http://in.mathworks.com/help/optim/ug/fsolve.html#outputarg_exitflag
http://in.mathworks.com/help/optim/ug/fsolve.html#outputarg_output
http://in.mathworks.com/help/optim/ug/fsolve.html#outputarg_jacobian

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 20/25

F(1) = exp(-exp(-(x(1)+x(2)))) - x(2)*(1+x(1)^2);

F(2) = x(1)*cos(x(2)) + x(2)*sin(x(1)) - 0.5;

Save this code as a file named root2d.m on your MATLAB® path.

Solve the system of equations starting at the point [0,0].

fun = @root2d;

x0 = [0,0];

x = fsolve(fun,x0)

Equation solved.

fsolve completed because the vector of function values is near zero

as measured by the default value of the function tolerance, and

the problem appears regular as measured by the gradient.

x =

 0.3532 0.6061

Solution with Nondefault Options

Examine the solution process for a nonlinear system.

Set options to have no display and a plot function that displays the first-order optimality, which

should converge to 0 as the algorithm iterates.

options = optimoptions('fsolve','Display','none','PlotFcn',@optimplotfirstorderopt);

The equations in the nonlinear system are

Convert the equations to the form .

Write a function that computes the left-hand side of these two equations.

function F = root2d(x)

F(1) = exp(-exp(-(x(1)+x(2)))) - x(2)*(1+x(1)^2);

F(2) = x(1)*cos(x(2)) + x(2)*sin(x(1)) - 0.5;

Save this code as a file named root2d.m on your MATLAB® path.

Solve the nonlinear system starting from the point [0,0] and observe the solution process.

fun = @root2d;

x0 = [0,0];

x = fsolve(fun,x0,options)

x =

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 21/25

 0.3532 0.6061

Solve a Problem Structure

Create a problem structure for fsolve and solve the problem.

Solve the same problem as in Solution with Nondefault Options, but formulate the problem using

a problem structure.

Set options for the problem to have no display and a plot function that displays the first-order

optimality, which should converge to 0 as the algorithm iterates.

problem.options = optimoptions('fsolve','Display','none','PlotFcn',@optimplotfirstorderopt);

The equations in the nonlinear system are

Convert the equations to the form .

Write a function that computes the left-hand side of these two equations.

function F = root2d(x)

F(1) = exp(-exp(-(x(1)+x(2)))) - x(2)*(1+x(1)^2);

F(2) = x(1)*cos(x(2)) + x(2)*sin(x(1)) - 0.5;

Save this code as a file named root2d.m on your MATLAB® path.

Create the remaining fields in the problem structure.

problem.objective = @root2d;

problem.x0 = [0,0];

problem.solver = 'fsolve';

Solve the problem.

x = fsolve(problem)

http://in.mathworks.com/help/optim/ug/fsolve.html#butc7f0-1

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 22/25

x =

 0.3532 0.6061

Root of nonlinear function

Syntax

x = fzero(fun,x0)

x = fzero(fun,x0,options)

x = fzero(problem)

[x,fval,exitflag,output] = fzero(___)

Description

x = fzero(fun,x0) tries to find a point x where fun(x) = 0. This solution is where fun(x) changes

sign—fzero cannot find a root of a function such as x^2.

x = fzero(fun,x0,options) uses options to modify the solution process.

x = fzero(problem) solves a root-finding problem specified by problem.

 [x,fval,exitflag,output] = fzero(___) returns fun(x) in the fval output, exitflag encoding the

reason fzero stopped, and an output structure containing information on the solution process.

Examples

Root Starting From One Point

Calculate by finding the zero of the sine function near 3.

fun = @sin; % function

x0 = 3; % initial point

x = fzero(fun,x0)

x = 3.1416

Root Starting From an Interval

http://in.mathworks.com/help/matlab/ref/fzero.html#outputarg_x
http://in.mathworks.com/help/matlab/ref/fzero.html#inputarg_fun
http://in.mathworks.com/help/matlab/ref/fzero.html#inputarg_x0
http://in.mathworks.com/help/matlab/ref/fzero.html#outputarg_x
http://in.mathworks.com/help/matlab/ref/fzero.html#inputarg_fun
http://in.mathworks.com/help/matlab/ref/fzero.html#inputarg_x0
http://in.mathworks.com/help/matlab/ref/fzero.html#inputarg_options
http://in.mathworks.com/help/matlab/ref/fzero.html#outputarg_x
http://in.mathworks.com/help/matlab/ref/fzero.html#inputarg_problem
http://in.mathworks.com/help/matlab/ref/fzero.html#outputarg_x
http://in.mathworks.com/help/matlab/ref/fzero.html#outputarg_fval
http://in.mathworks.com/help/matlab/ref/fzero.html#outputarg_exitflag
http://in.mathworks.com/help/matlab/ref/fzero.html#outputarg_output

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 23/25

Find the zero of cosine between 1 and 2.

fun = @cos; % function

x0 = [1 2]; % initial interval

x = fzero(fun,x0)

x = 1.5708

Note that and differ in sign.

Root of a Function Defined by a File

Find a zero of the function f(x) = x
3
 – 2x – 5.

First, write a file called f.m.

function y = f(x)

y = x.^3 - 2*x - 5;

Save f.m on your MATLAB
®
 path.

Find the zero of f(x) near 2.

fun = @f; % function

x0 = 2; % initial point

z = fzero(fun,x0)

z =

 2.0946

Since f(x) is a polynomial, you can find the same real zero, and a complex conjugate pair of

zeros, using the roots command.

roots([1 0 -2 -5])

ans =

 2.0946

 -1.0473 + 1.1359i

 -1.0473 - 1.1359i

Advanced Topics

The topics covered in the preceding sections of this chapter are far from exhaustivein what you

can do readily with MATLAB . These topics have been selected carefullyto introduce you to

various applications that you are likely to use frequently in yourwork. Once you gain a little bit

of experience and some confidence, you can exploremost of the advanced features of the

functions introduced as well as several functionsfor more complex applications on your own,

with the help of on-line documentation.MATLAB provides some new functions for solving two-

point boundary valueproblems, simple partial differential equations, and nonlinear function

minimizationproblems. In particular, we mention the following functions.

dde23 added in MATLAB 7, this function solves delay differential equations

(DAEs) with constant delays

ode15isolves implicit ODEs and DAEs of index 1 with the helper function

ode i c for evaluating consistent initial conditions.

bvp4c solves two-point boundary value problems (BVP) defined by a set of ODEsof the form y'

= f (x , y), and its boundary conditions y (a) and y (b) over theinterval [a, b] . The user has to

write two functions-one that specifies theequations and the other that specifies the boundary

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 24/25

conditions. Users can setseveral options for initiating the solutions. To see an example, try

executingthe built-in example t wobvp and learn how to program your BVP by following

this example (to see the functions required for twobvp , type typetwoode . mand t ypetwobc . m).

pdepe solves simple parabolic and elliptic partial differential equations (PDEs) of a single

dependent variable. This is a rather restricted utility function.However, for those who need to

solve PDEs frequently, there is the PartialDifferential Equation Toolbox.

UNIT – V Applications 2015 Batch

Prepared by: A. Henna Shenofer, Department of Mathematics, KAHE 25/25

Part B (5x8=40 Marks)

Possible Questions

1. Explain statistical tool in mat lab with examples.

2. Illustrate the numerical integration with examples

3. Describe about the double integration by using dblquad function with example

4. How to solve the ordinary differential equations with example.

5. Write mat lab commands for solving a first order linear ODE with example.

6. Write a procedure for solve the second order linear differential equation with examples.

7. Describe about the ODE suite.

8. Solve the transcendental equation sin x =e
x
- 5 using mat lab

9. Explain about finding roots of polynomial equation in mat lab.

10. Describe about solving Non- linear algebraic equation with example.

Applications / 2015 Batch

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

___ command is used to determine the largest

value in the data set sum max cumsum maxm max

Which command is used to find the standard

deviation based on sample. stade SD std sdev std

If A = [8 3 0] then median(A) = 1.5 3 8 0 3

Numerical evaluation of the integral ∫ f(x) dx is

called ___ quadrature integration function differentiation quadrature

Which is the function for double intergration int2 dblint quad dblquad dblquad

______ function is used as nonstiff solver based

on 3rd order Runge-Kutta Method ode15s ode23 ode45 ode113 ode23

______ function is used as stiff solver based on

variable order ode15s ode23 ode45 ode113 ode113

Possible Questions

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021

Unit V
Applications

Part A (20x1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

 Subject: MATLAB programming Subject Code: 15MMU504

 Class : III - B.Sc. Mathematics Semester : V

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE

Applications / 2015 Batch

Which function that get various options

parameters? odeset odeget get odegt odeget

______ function that is specified in options for 2-

D plots. odephas2 odeplot odeset odeget odephas2

Which function is stiff solver and DAE solver

based on a variable order method ode23tb ode15tb ode15s ode23s ode15s

ode23tb is stiff solver based on _____

Lower order

method Adams method

Runge-Kutta

Method Trapezoidal rule Lower order method

_____ this function solve delay differential

equations dde113 dde15 dde23 dde45 dde23

To solve two-point boundary value problem by

using _____ function bvp4c bvp2c bcp23c bvp5c bvp4c

____ this function is used to solves implicit

ODEs ode113i ode45i ode15i ode23i ode15i

Which function is used to solve simple parabolic

PDEs ? pdepe pdep pde23 pdeep pdepe

ode23s is stiff solver based on ______ Adams method

Runge-Kutta

Method Trapezoidal rule

numerical

differentiation

formula

numerical differentiation

formula

ode45 is nonstiff solver based on _____

Runge-Kutta

Method Trapezoidal rule Adams method

numerical

differentiation

formula Runge-Kutta Method

The syntax for ODE solver is

[time,sol] =

ode23('function';t

span; x0)

[time,solution] =

ode23('function',

tspan)

[time,solution] =

ode23('function',

tspan, x0)

[time,solution] =

ode45('function',

tspan, x0)

[time,solution] =

ode23('function', tspan, x0)

ode23t is stiff solver based on ______ Adams method

Runge-Kutta

Method Trapezoidal rule

numerical

differentiation

formula Trapezoidal rule

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE

Applications / 2015 Batch

ode113 is stiff solver based on ______ Adams method

Runge-Kutta

Method Trapezoidal rule

numerical

differentiation

formula Adams method

odephasa2 function that is specified in options

for____phase plots. 1-D binary 2-D 3-D 2-D

Which of the following solver based on fifth

order Runge-Kutta method ? ode15s ode23 ode45 ode113 ode45

Which function that set various options for the

solver? odeset odeget get odegt odeset

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE

 Reg. No ---------------

 (15MMU504)

KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE - 21

Department of Mathematics

Fifth Semester

First Internal Test – July - 2017

MATLAB Programming

 Date : 20.07.2017 (FN) Time: 2 Hours

 Class : III - B.Sc. Mathematics Maximum: 50 Marks

PART-A (20 x 1 =20 Marks)

Answer All the Questions

1. Which symbol precedes all comments in Mat lab?

a) " b) { c) >> d) [[

2. The fundamental data type of Matlab is _______

a) matrix b) array c) list d) string

3. Which of the following is not pre-defined variable in Mat lab?

a) pi b) inf c) i d) gravity

4. Which of the following command is used to clear all data and variables in

memory?

a) clc b) clear c) delete d) deallocate

5. ____ character in Mat lab are represented in their value in memory.

a) decimal b) hex c) ASCII d) string

6. In Mat lab, this keyword immediately moves to the next iteration of the

loop

a) update b) goto c) move d) continue

7. To add a comment to the m file, the Mat lab command is ______

a) % b) @ c) & d) (' ')

8. The clc command is used to ____

a) erase everything in m file b) clear the command window

c) clean the desktop d) save the existing mfile

9. The basic building block of Mat lab is the _____

a) array b) string c) matrix d) list

10. To find the dimension of an existing matrix in Mat lab with _______

command

a) size b) length c) dim d) eye

11. To suppresses the screen output we use _____ at the end of the command

a) dot b) camma c) colon d) semicolon

12. Mat-files can be loaded into MATLAB with the______ command

a) load b) lod c) list d) update

13. Typing _____ at the Mat lab prompt to print the content of the figure

window

a) eye b) print c) copy d) prt

14. mkdir command is used to create a _________

a) script file b) directory c) function file d) m file

15. If we give square brackets with no elements between them then it creates

a) identity matrix b) square matrix c) diagonal matrix d) null matrix

16. The three consecutive periods using in matrices are also called as ______

 a) ellipse b) hyperbola c) parabola d) circle

17. _____ in MATLAB refers to the element aij of matrix A

a) Aij b) A{ij} c) A (i , j) d) A (j, i)

18. The transpose of matrix A is obtained by typing

a) A" b) (A) c) A' d) A;

19. _______ is the same as u=a : (b-a) / (n-1) : b

a) u = log(a,b,n) b) u=line (a , b , n)

c) u=linspace (a , b , n) d) u = logspace(a,b,n)

20. ______ command is round the output towards 0

 a) ceil b) fix c) floor d) round

PART-B (3 x 10 =30 Marks)

Answer All the Questions

21. a) Discuss about the Mat lab Windows

(OR)

 b) List out the mat lab general commands with explanation.

22. a) Explain in detail about Mat lab‘s features of input and output.

(OR)

 b) Describe about elementary math functions.

23. a) Explain in detail about Mat lab file types.

(OR)

 b) Explain about Matrix Manipulation with example.

Reg. No --------------

(15MMU504)

KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE - 21

Department of Mathematics

Fifth Semester

II – Internal Test – August - 2017

MATLAB Programming

 Date : 10.08.2017 (FN) Time: 2 Hours

 Class : III - B.Sc. Mathematics Maximum: 50 Marks

PART-A (20 x 1 =20 Marks)

Answer All the Questions

1. To converts characters to their ASCII numeric values by using ____

a) strcat b) abs c) char d) ischar

2. To converts any uppercase letters in the string to lowercase by using

a) lower b) strcat c) ischar d) char

3. ______ executes the string as a command

a) strcat b) abs c) eval d) lower

4. The syntax for creating an inline function is particularly simple

a) F = inline ('function') b) F = inline ('function formula')

c) F = in('function formula') d) F = inline ('formula')

5. An ______________is created by the command

f = @(inputlist) mathematical expression

a) vector function b) argument function

c) inline functions d) anonymous function

6. To evaluates f (x) at x = 5 by giving

a) f(x)=5 b) fx(5) c) f(5) d) x(5)

7. ____loop is conditionally execute statements

a) else b) If c) If else d) for

8. _____ command is terminate scope of control statements.

a) If b) end c) for d) else

9. To produce stunning surface plots in 3-D by using ____ command

a) ezsurf b) ezpolar c) ezplot d) ezcontour

10.In Matlab command _____ does not need brackets

a) vector b) string c) scalar d) matrix

11. _____is executed by typing name of the file on the commamd line.

a) script file b) function file c) date file d) figure file

12. A ____ is most versatile data object in Matlab

a) matrix b) array c) string d) cell

13. In ___ control structure a group of statements are executed only if the

condition is true.

a) if b) if else c) if elseif d) nested if

14. ____ command terminate the execution of for or while loop

a) switch b) break c) continue d) error

15. A script file is an _____ with a set of vaild MATLAB command

a) Mex - file b) Mat - file c) M -file d) fig - file

16. Which is these is not an aspect of a for or while loop?

a) update b) initialization c) runner d) condition

17. In ___ control structure two group of statements are executed only if

one is true and other is false condition.

a) if b) if else c) if else if d) nested if

18. ______ command display the message and abort function

a) switch b) break c) continue d) error

19. ____ command catch the error generated by MATLAB

a) try-catch b) break c) continue d) error

20. To print a new line in a fprintf statement, you must use the following

escape character

a) \t b) \n c) \nxt d) \n1

PART-B (3 x 10 =30 Marks)

Answer All the Questions

21. a) Explain about plotting simple graph with example.

(OR)

 b) Explain in detail about character strings with example.

22. a) Describe about script files with examples.

(OR)

 b) List out the commands for interactive user input in script file or

 function file.

23. a) Explain the control flow statements with examples.

(OR)

 b) Give a brief notes on structures with an example.

Reg. No ----------------

(15MMU504)

KARPAGAM ACADEMY OF HIGHER EDUCATION
COIMBATORE-21

 MODEL EXAMINATION- SEP 2017

Fifth Semester

Mathematics

MATLAB Programming

Date : 14.09.2017 (FN) Time: 3 Hours

Class : III - B.Sc. Mathematics Maximum: 60 Marks

PART - A (20 x 1 =20 Marks)

Answer All the Questions:

1. _______ character in Matlab are represented in their value in

memory.

a) decimal b) hex c) ASCII d) string

2. In Matlab, this keyword immediately moves to the next iterartion

of the loop

a) update b) goto c) into d) continue

3. To suppresses the screen output we use _______ at the end of the

command

a) dot b) camma c) colon d) semicolon

4. Mat-files can be loaded into MATLAB with the______command

a) load b) lod c) list d) update

5. The 0- 1 vector created by you is converted into a logical array

with the command ______

a) array b) logical c) ones d) zeros

6. All the elements of matrix A can be strung into a single-column

vector b by the comman

a) b = A(:) b) b = A(\) c) b = A[] d) b = A(")

7. The command eye(2) produce a 2x2 _____ matrix

a) zero b) square c) identity d) null

8. To produce a = [0 0.5 1 1.5 2 2.5 3] by giving a command as ___

a) a = 0 … 3 b) a = 0 : 0.5 : 3 c) a = 0.5 : 3 d) a = 0 : 3

9. If I want to save a formatted string to memory, but don't want to

print it out, which command should I use ?

a) fprintf b) sprintf c) disp d) echo

10. When used in the fprintf command ,the %g is used as the ____

a) single character display b) fixed point display

c) string natation display d) default number display

11. When used in the fprintf command ,the \n is used to

a) add a space between any two character b) add a line space

c) place a number into comment d) clear the comment

12. The first function in the file is called ______ function

a) Inline b) private c) primary d) nested

13. To solve the QR factorization by using the command

a) {q,r} = [A] b) {Q,R} = [A] c) [Q,R] = qr(A) d) [Q,R] = A

14. ____ bulit in function is used to solve cholesky factorization

a) ch b) chol c) chl d) chlf

15. To determine the eigen value for matrix A

a) A = eigen (A) b) eig(A) c) eign(A) d) Eig(A,:)

16. spline command is used 1-D interpolation that uses______.

a) square spline b) cubic spline fit

c) least square fit d) straight-line fit

17. Which command is used to find the standard deviation based on

sample?

a) stade b) SD c) std d) sdev

18. ______ function that is specified in options for 2-D plots.

a) odephas2 b) odeplot c) odeset d) odeget

19. To solve two-point boundary value problem by using _____

function

a) bvp4c b) bvp2c c) bcp23c d) bvp5c

20. Which function is used to solve simple parabolic PDEs ?

a) pdepe b) pdep c) pde23 d) pdeep

PART-B (5 x 8 = 40 Marks)

Answer All the Questions:

21. a) Explain about Matlab environment with diagrammatic

representation.

(OR)

 b) Write a short note on (i) Matlab Desktop

 (ii) Figure window

 (iii)Editor window

22. a) Write a short note on

 (i) Appending row or column

 (ii) Deleting a row or column

 (iii) Utility matrices

(OR)

 b) Explain about plotting simple graph with example.

23. a) Define global variables. Give example for solving 1
st
 order

ODE by using global variables.

(OR)

 b) Explain about the Switch case and Break with examples.

24. a) Describe about matrix operation in linear algebra with

example.

(OR)

 b) Explain about matrix factorization with example.

25. a) Explain statistical tool in matlab with examples.

(OR)

 b) Write a procedure for solve the first order linear differential

equation with examples

	01 Syllabus.pdf (p.1)
	02 Lecture Plan.pdf (p.2-5)
	03 UNIT I.pdf (p.6-25)
	04 PART A.pdf (p.26-28)
	05 UNIT II.pdf (p.29-65)
	06 PART A.pdf (p.66-68)
	07 UNIT III.pdf (p.69-95)
	08 PART A.pdf (p.96-98)
	09 UNIT IV.pdf (p.99-115)
	10 PART A.pdf (p.116-118)
	11 UNIT V.pdf (p.119-143)
	12 PART A.pdf (p.144-146)
	13 CIA-I.pdf (p.147)
	14 CIA-II.pdf (p.148)
	15 Model.pdf (p.149-150)

