
Programming In MATLAB 2016-2019
Batch

Department of CS, CA & IT, KAHE Page 1/3

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Coimbatore-641 021

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

SUBJECT NAME : PROGRAMMING IN MATLAB

SEMESTER : III

SUBJECT CODE: 16CSU304B CLASS: II B.SC CS

Course Objective: A student who successfully completes this course should be able to learn

how to use MATLAB, learn how to program in MATLAB, ability to create a computer program

to solve problems in science and engineering.

Course Outcomes:

 To learn fundamental programming concepts using a block-structured language

(MATLAB).

 To learn General problem-solving techniques, including the concept of step-wise

refinement applied to the development of algorithms.

UNIT-I

Introduction to Programming: Components of a computer, working with numbers, Machine

code, Software hierarchy.

UNIT-II

Programming Environment: MATLAB Windows, A First Program, Expressions, Constants,

Variables and assignment statement, Arrays.

UNIT-III

Graph Plots: Basic plotting, Built in functions, Generating waveforms, Sound replay, load and

save. Procedures and Functions: Arguments and return values, M-files, Formatted console input-

output , String handling

UNIT-IV

Control Statements: Conditional statements: If, Else, Else-if, Repetition statements: While, for

loop

Programming In MATLAB 2016-2019
Batch

Department of CS, CA & IT, KAHE Page 2/3

UNIT-V

Manipulating Text: Writing to a text file, Reading from a text file, Randomising and

sorting a list, searching a list. GUI Interface: Attaching buttons to actions, Getting Input,

Getting Output

SUGGESTED BOOK

 1. Amos Gilat. MATLAB: An Introduction with Applications(2nd ed). New Delhi: Wiley.

 2. Stormy Attaway , 2009, Matlab: A Practical Introduction to Programming and Problem

Solving, 2
nd

 Edition, Butterworth Heinemann.

WEBSITES

1. http://oer.nios.ac.in/wiki/index.php/COMPUTER_AND_ITS_COMPONENTS

2. https://en.wikipedia.org/wiki/MATLAB

3. https://en.wikipedia.org/wiki/M_code

4. http://faculty.washington.edu/lum/website_professional/matlab/tutorials/Matlab_Tutorial

_Beginner/matlab_tutorial_beginner.pdf

5. https://in.mathworks.com/help/matlab/learn_matlab/expressions.html

6. https://in.mathworks.com/products/matlab/choosing_hardware.html

Programming In MATLAB 2016-2019
Batch

Department of CS, CA & IT, KAHE Page 3/3

ESE MARKS ALLOCATION

S.No Category Marks

1. Section A

20 X1 = 20

Online Examination

20

2. Section B

5x 2 =10

10

 3. Section C

5 x 6 = 30

Either ‘A’ or ‘B’ Choice

30

 Total 60

Lecture Plan 2016-2019

Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 1/3

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Coimbatore-641 021

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

STAFF NAME: D.MANJULA

SUBJECT NAME: PROGRAMMING IN MATLAB SUB.CODE: 16CSU304B

SEMESTER: III CLASS : II B.SC CS

LECTURE PLAN

S.No.

Lecture

Duration

(Period)

Topics to be Covered Support Materials

Unit – I

1. 1 Components of Computer W1,W6

2. 1 Working with numbers W2

3. 1 Machine Code W3

4. 1 Software hierarchy W1

5. 1 Matlab Architecture W1

6. 1 Recapitulation and Discussion of important questions

Total No. of Hours Planned for Unit-I 6

WEBSITES

W1 : http://oer.nios.ac.in/wiki/index.php/computer_and_its_components

W2 :https://en.wikipedia.org/wiki/MATLAB

W3: https://en.wikipedia.org/wiki/M_code

W6: https://in.mathworks.com/products/matlab/choosing_hardware.html

Unit – II

1. 1 MATLAB Windows S1:9–5, W3

2. 1 A First Program W5

3. 1 Expressions S2: 10-17, W5

4. 1 Constants S2: 14, W4

5. 1 Variables S1: 16-18

6. 1 Assignment statement S2: 6-9, W5

7. 1 Arrays
S1: 35-55,S2: 30-31,

W5

8. 1 Recapitulation and Discussion of important questions

Total No. of Hours Planned for Unit-II 8

WEBSITES

S1: Amos Gilat. MATLAB: An Introduction with Applications(2nd ed). New

Delhi: Wiley

S2: Stormy Attaway , 2009, Matlab: A Practical Introduction to

Lecture Plan 2016-2019

Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 2/3

Programming and Problem Solving, 2
nd

 Edition, Butterworth Heinemann.

W3: https://en.wikipedia.org/wiki/M_code

W4: http://faculty.washington.edu/lum/website_professional/matlab/tutorials/

Matlab_Tutorial_Beginner/matlab_tutorial_beginner.pdf

W5: https://in.mathworks.com/help/matlab/learn_matlab/expressions.html

Unit – III

1. 1 Basic plotting, Built in functions
S1: 133-139, S1: 13-

16, S2: 14-17, W5

2. 1 Generating waveforms S2: 393-394

3. 1 Sound replay W4

4. 1 Load S1: 111-112, W4

5. 1 Save S1:113, W4

6. 1 Procedure and Functions S1: 219-244, W5

7. 1 Arguments W5

8. 1 Return values W5

9. 1 M-files S1: 97-110

10. 1 Formatted console input-output W5

11. 1 String handling S1: 53-54, W5

12. 1 Recapitulation and Discussion of important questions

Total No. of Hours Planned for Unit-III 12

WEBSITES

S1: Amos Gilat. MATLAB: An Introduction with Applications(2nd ed). New

Delhi: Wiley

S2: Stormy Attaway , 2009, Matlab: A Practical Introduction to Programming

and Problem Solving, 2
nd

 Edition, Butterworth Heinemann.

W4: http://faculty.washington.edu/lum/website_professional/matlab/tutorials/

W5: https://in.mathworks.com/help/matlab/learn_matlab/expressions.html

Unit - IV

1. 1
Conditional statements

Representing Logical True and False
S1: 182-189, W5

2. 1
if Statement

S2: 82-86,W5

3. 1
if-Else Statement

S2: 87-88

4. 1 Nested if-Else Statements
S2: 88

5. 1 The Switch Statement. Menu Function

S1: 190-200,S2:93-

96, W5

6. 1
Repetition statements

For and Nested For
S2: 110-129,W2

Lecture Plan 2016-2019

Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 3/3

7. 1 While and Multiple Conditions in while
S2:143-150

8. 1 Recapitulation and Discussion of important questions

Total No. of Hours Planned for Unit-IV 8

WEBSITES

S1: Amos Gilat. MATLAB: An Introduction with Applications(2nd ed). New

Delhi: Wiley

S2: Stormy Attaway , 2009, Matlab: A Practical Introduction to Programming

and Problem Solving, 2
nd

 Edition, Butterworth Heinemann.

W2 :https://en.wikipedia.org/wiki/MATLAB

W5: https://in.mathworks.com/help/matlab/learn_matlab/expressions.html

Unit - V

1. 1
Manipulating Text

Writing to a text file
S2: 59-62,W4

2. 1 Reading from a text file S2: 61-63,W1

3. 1
Randomising

Sorting a list
S2: 372-378, W4

4. 1 Searching a list S2: 382-392, W4

5. 1
GUI Interface

Attaching buttons to actions
S2: 405-420, W4

6. 1 Getting Input S2: 409-410,W4

7. 1 Setting Output S2: 409-411,W4

8. 1 Recapitulation and Discussion of important questions

9. 1 Recapitulation and Discussion of ESE question papers

10. 1 Recapitulation and Discussion of ESE question papers

11. 1 Recapitulation and Discussion of ESE question papers

 Total No. of Hours Planned for Unit-V 11

WEBSITES

S2: Stormy Attaway , 2009, Matlab: A Practical Introduction to Programming

and Problem Solving, 2
nd

 Edition, Butterworth Heinemann.

W1 : http://oer.nios.ac.in/wiki/index.php/computer_and_its_components

W4: http://faculty.washington.edu/lum/website_professional/matlab/tutorials/

 Total No. of periods 45

Components of Computer 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 1/10

UNIT I

SYLLABUS

Introduction to Programming: Components of a computer, working with numbers, Machine

code, Software hierarchy.

INTRODUCTION TO PROGRAMMING

Components of Computer

 A computer system consists of mainly four basic units; namely input unit, storage unit,

central processing unit and output unit. Central Processing unit further includes Arithmetic logic

unit and control unit, as shown in the figure. A computer performs five major operations or

functions irrespective of its size and make. These are

 it accepts data or instructions as input,

 it stores data and instruction

 it processes data as per the instructions,

 it controls all operations inside a computer, and

 it gives results in the form of output.

Functional Units:

a. Input Unit: This unit is used for entering data and programs into the computer system by the

user for processing.

b. Storage Unit: The storage unit is used for storing data and instructions before and after

processing.

c. Output Unit: The output unit is used for storing the result as output produced by the computer

after processing.

d. Processing: The task of performing operations like arithmetic and logical operations is called

processing. The Central Processing Unit (CPU) takes data and instructions from the storage unit

and makes all sorts of calculations based on the instructions given and the type of data provided.

Components of Computer 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 2/10

It is then sent back to the storage unit. CPU includes Arithmetic logic unit (ALU) and control

unit (CU)

Arithmetic Logic Unit: All calculations and comparisons, based on the instructions provided, are

carried out within the ALU. It performs arithmetic functions like addition, subtraction,

multiplication, division and also logical operations like greater than, less than and equal to etc.

• Control Unit: Controlling of all operations like input, processing and output are performed by

control unit. It takes care of step by step processing of all operations in side the computer.

Memory

Computer‟s memory can be classified into two types; primary memory and secondary memory

RAM

a. Primary Memory can be further classified as RAM and ROM.

• RAM or Random Access Memory is the unit in a computer system. It is the place in a computer

where the operating system, application programs and the data in current use are kept

temporarily so that they can be accessed by the computer‟s processor. It is said to be „volatile‟

since its contents are accessible only as long as the computer is on. The contents of RAM are no

more available once the computer is turned off.

ROM or Read Only Memory is a special type of memory which can only be read and contents of

which are not lost even when the computer is switched off. It typically contains manufacturer‟s

instructions. Among other things, ROM also stores an initial program called the „bootstrap

loader‟ whose function is to start the operation of computer system once the power is turned on.

b. Secondary Memory

RAM is volatile memory having a limited storage capacity. Secondary/auxiliary memory is

storage other than the RAM. These include devices that are peripheral and are connected and

controlled by the computer to enable permanent storage of programs and data.

 CD ROM

Secondary storage devices are of two types; magnetic and optical. Magnetic devices include hard

disks and optical storage devices are CDs, DVDs, Pen drive, Zip drive etc.

• Hard Disk

Hard disks are made up of rigid material and are usually a stack of metal disks sealed in a box.

The hard disk and the hard disk drive exist together as a unit and is a permanent part of the

computer where data and programs are saved. These disks have storage capacities ranging from

1GB to 80 GB and more. Hard disks are rewritable.

 Compact Disk

Components of Computer 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 3/10

Compact Disk (CD) is portable disk having data storage capacity between 650-700 MB. It can

hold large amount of information such as music, full-motion videos, and text etc. CDs can be

either read only or read write type.

• Digital Video Disk

Digital Video Disk (DVD) is similar to a CD but has larger storage capacity and enormous

clarity. Depending upon the disk type it can store several Gigabytes of data. DVDs are primarily

used to store music or movies and can be played back on your television or the computer too.

These are not rewritable.

Hard Disk

Input / Output Devices:

These devices are used to enter information and instructions into a computer for storage or

processing and to deliver the processed data to a user. Input/Output devices are required for users

to communicate with the computer. In simple terms, input devices bring information into the

computer and output devices bring information OUT of a computer system. These input/output

devices are also known as peripherals since they surround the CPU and memory of a computer

system.

Input Devices

An input device is any device that provides input to a computer. There are many input devices,

but the two most common ones are a keyboard and mouse. Every key you press on the keyboard

and every movement or click you make with the mouse sends a specific input signal to the

computer.

Keyboard

• Keyboard: The keyboard is very much like a standard typewriter keyboard with a few

additional keys. The basic QWERTY layout of characters is maintained to make it easy to use

the system. The additional keys are included to perform certain special functions. These are

known as function keys that vary in number from keyboard to keyboard.

• Mouse: A device that controls the movement of the cursor or pointer on a display screen. A

mouse is a small object you can roll along a hard and flat surface. Its name is derived from its

shape, which looks a bit like a mouse. As you move the mouse, the pointer on the display screen

moves in the same direction.

• Trackball: A trackball is an input device used to enter motion data into computers or other

electronic devices. It serves the same purpose as a mouse, but is designed with a moveable ball

on the top, which can be rolled in any direction.

• Touchpad: A touch pad is a device for pointing (controlling input positioning) on a computer

display screen. It is an alternative to the mouse. Originally incorporated in laptop computers,

touch pads are also being made for use with desktop computers. A touch pad works by sensing

the user‟s finger movement and downward pressure. • Touch Screen: It allows the user to

Components of Computer 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 4/10

operate/make selections by simply touching the display screen. A display screen that is sensitive

to the touch of a finger or stylus. Widely used on ATM machines, retail point-of-sale terminals,

car navigation systems, medical monitors and industrial control panels.

Light Pen: Light pen is an input device that utilizes a light-sensitive detector to select objects on

a display screen.

• Magnetic ink character recognition (MICR): MICR can identify character printed with a

special ink that contains particles of magnetic material. This device particularly finds

applications in banking industry.

• Optical mark recognition (OMR): Optical mark recognition, also called mark sense reader is

a technology where an OMR device senses the presence or absence of a mark, such as pencil

mark. OMR is widely used in tests such as aptitude test.

• Bar code reader: Bar-code readers are photoelectric scanners that read the bar codes or

vertical zebra strips marks, printed on product containers. These devices are generally used in

super markets, bookshops etc.

Scanner

Scanner is an input device that can read text or illustration printed on paper and translates the

information into a form that the computer can use. A scanner works by digitizing an image.

Output Devices:

Output device receives information from the CPU and presents it to the user in the desired from.

The processed data, stored in the memory of the computer is sent to the output unit, which then

converts it into a form that can be understood by the user. The output is usually produced in one

of the two ways – on the display device, or on paper (hard copy).

•Monitor: is often used synonymously with “computer screen” or “display.” Monitor is an

output device that resembles the television screen (fig. 1.8). It may use a Cathode Ray Tube

(CRT) to display information. The monitor is associated with a keyboard for manual input of

characters and displays the information as it is keyed in. It also displays the program or

application output. Like the television, monitors are also available in different sizes. • Printer:

Printers are used to produce paper (commonly known as hard copy) output. Based on the

technology used, they can be classified as Impact or Non-impact printers.

Impact printers use the typewriting printing mechanism wherein a hammer strikes the paper

through a ribbon in order to produce output. Dot-matrix and Character printers fall under this

category.

http://oer.nios.ac.in/wiki/index.php/File:Basic6.png

Components of Computer 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 5/10

Non-impact printers do not touch the paper while printing. They use chemical, heat or electrical

signals to etch the symbols on paper. Inkjet, Deskjet, Laser, Thermal printers fall under this

category of printers.

 Plotter: Plotters are used to print graphical output on paper. It interprets computer commands

and makes line drawings on paper using multi colored automated pens. It is capable of producing

graphs, drawings, charts, maps etc. • Facsimile (FAX): Facsimile machine, a device that can

send or receive pictures and text over a telephone line. Fax machines work by digitizing an

image.

Sound cards and Speaker(s): An expansion board that enables a computer to manipulate and

output sounds. Sound cards are necessary for nearly all CD-ROMs and have become

commonplace on modern personal computers. Sound cards enable the computer to output sound

through speakers connected to the board, to record sound input from a microphone connected to

the computer, and manipulate sound stored on a disk.

WORKING WITH NUMBERS

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment

and fourth-generation programming language. A proprietary programming language developed

by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data,

implementation of algorithms, creation of user interfaces, and interfacing with programs written

in other languages, including C, C++, C#, Java, Fortran and Python.

Although MATLAB is intended primarily for numerical computing, an optional toolbox

uses the MuPAD symbolic engine, allowing access to symbolic computing abilities. An

additional package, Simulink, adds graphical multi-domain simulation and model-based

design for dynamic and embedded systems.

As of 2017, MATLAB has over 2 million users across industry and academia. MATLAB

users come from various backgrounds of engineering, science, and economics.

MACHINE CODE

 Machine Code

 MATLAB programming language

 Military GPS signal (or GPS_signals#Military_.28M-code.29), or half of the G & M-Code

programming language used in the CNC Machining Industry.

Every processor or processor family has its own machine code instruction set. Instructions

are patterns of bits that by physical design correspond to different commands to the machine.

Thus, the instruction set is specific to a class of processors using (mostly) the same architecture.

https://en.wikipedia.org/wiki/Multi-paradigm_programming_language
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Fourth-generation_programming_language
https://en.wikipedia.org/wiki/Proprietary_programming_language
https://en.wikipedia.org/wiki/MathWorks
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/MuPAD
https://en.wikipedia.org/wiki/Computer_algebra_system
https://en.wikipedia.org/wiki/Symbolic_computing
https://en.wikipedia.org/wiki/Simulink
https://en.wikipedia.org/wiki/Model-based_design
https://en.wikipedia.org/wiki/Model-based_design
https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Engineering
https://en.wikipedia.org/wiki/Science
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Machine_Code
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/GPS_signals
https://en.wikipedia.org/wiki/GPS_signals#Military_.28M-code.29
https://en.wikipedia.org/wiki/G_%26_M#List_of_M-codes_commonly_found_on_Fanuc_and_similarly_designed_controls
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Bit

Components of Computer 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 6/10

Successor or derivative processor designs often include all the instructions of a predecessor and

may add additional instructions.

Occasionally, a successor design will discontinue or alter the meaning of some instruction

code (typically because it is needed for new purposes), affecting code compatibility to some

extent; even nearly completely compatible processors may show slightly different behavior for

some instructions, but this is rarely a problem. Systems may also differ in other details, such as

memory arrangement, operating systems, or peripheral devices. Because a program normally

relies on such factors, different systems will typically not run the same machine code, even when

the same type of processor is used.

A machine code instruction set may have all instructions of the same length, or it may have

variable-length instructions. How the patterns are organized varies strongly with the particular

architecture and often also with the type of instruction. Most instructions have one or

more opcode fields which specifies the basic instruction type (such as arithmetic, logical, jump,

etc.) and the actual operation (such as add or compare) and other fields that may give the type of

the operand(s), the addressing mode(s), the addressing offset(s) or index, or the actual value

itself (such constant operands contained in an instruction are called immediates).
[2]

Not all machines or individual instructions have explicit operands. An accumulator

machine has a combined left operand and result in an implicit accumulator for most arithmetic

instructions. Other architectures (such as 8086 and the x86-family) have accumulator versions of

common instructions, with the accumulator regarded as one of the general registers by longer

instructions. A stack machine has most or all of its operands on an implicit stack. Special

purpose instructions also often lack explicit operands (CPUID in the x86 architecture writes

values into four implicit destination registers, for instance). This distinction between explicit and

implicit operands is important in machine code generators, especially in the register allocation

and live range tracking parts. A good code optimizer can track implicit as well as explicit

operands which may allow more frequent constant propagation, constant folding of registers (a

register assigned the result of a constant expression freed up by replacing it by that constant) and

other code enhancements.

Programs

A computer program is a sequence of instructions that are executed by a CPU. While simple

processors execute instructions one after another, superscalar processors are capable of executing

several instructions at once.

Program flow may be influenced by special 'jump' instructions that transfer execution to an

instruction other than the numerically following one. Conditional jumps are taken (execution

https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Branch_(computer_science)
https://en.wikipedia.org/wiki/Operand
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Machine_code#cite_note-2
https://en.wikipedia.org/wiki/Accumulator_machine
https://en.wikipedia.org/wiki/Accumulator_machine
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Constant_propagation
https://en.wikipedia.org/wiki/Constant_folding
https://en.wikipedia.org/wiki/Superscalar
https://en.wikipedia.org/wiki/Program_flow
https://en.wikipedia.org/wiki/Conditional_branch

Components of Computer 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 7/10

continues at another address) or not (execution continues at the next instruction) depending on

some condition.

Assembly languages

A much more readable rendition of machine language, called assembly language,

uses mnemonic codes to refer to machine code instructions, rather than using the instructions'

numeric values directly. For example, on the Zilog Z80 processor, the machine code 00000101 ,

which causes the CPU to decrement the B processor register, would be represented in assembly

language as DEC B .

Example

The MIPS architecture provides a specific example for a machine code whose instructions are

always 32 bits long. The general type of instruction is given by the op (operation) field, the

highest 6 bits. J-type (jump) and I-type (immediate) instructions are fully specified by op. R-type

(register) instructions include an additional field funct to determine the exact operation. The

fields used in these types are:

 6 5 5 5 5 6 bits

[op | rs | rt | rd |shamt| funct] R-type

[op | rs | rt | address/immediate] I-type

[op | target address] J-type

rs, rt, and rd indicate register operands; shamt gives a shift amount; and

the address or immediate fields contain an operand directly.

For example, adding the registers 1 and 2 and placing the result in register 6 is encoded:

[op | rs | rt | rd |shamt| funct]

 0 1 2 6 0 32 decimal

 000000 00001 00010 00110 00000 100000 binary

Load a value into register 8, taken from the memory cell 68 cells after the location listed in

register 3:

[op | rs | rt | address/immediate]

 35 3 8 68 decimal

 100011 00011 01000 00000 00001 000100 binary

https://en.wikipedia.org/wiki/Zilog_Z80
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/MIPS_architecture

Components of Computer 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 8/10

Jumping to the address 1024:

[op | target address]

 2 1024 decimal

 000010 00000 00000 00000 10000 000000 binary

Relationship to microcode

In some computer architectures, the machine code is implemented by an even more fundamental

underlying layer called microcode, providing a common machine language interface across a line

or family of different models of computer with widely different underlying dataflows. This is

done to facilitate porting of machine language programs between different models. An example

of this use is the IBM System/360 family of computers and their successors. With dataflow path

widths of 8 bits to 64 bits and beyond, they nevertheless present a common architecture at the

machine language level across the entire line.

Using microcode to implement an emulator enables the computer to present the architecture of

an entirely different computer. The System/360 line used this to allow porting programs from

earlier IBM machines to the new family of computers, e.g. an IBM 1401/1440/1460 emulator on

the IBM S/360 model 40.

Relationship to byte code

Machine code is generally different than byte code (also known as p-code), which is either

executed by an interpreter or itself compiled into machine code for faster (direct) execution. An

exception is when a processor is designed to use a particular byte code directly as its machine

code, such as is the case with Java processors.

Machine code and assembly code are sometimes called native code when referring to platform-

dependent parts of language features or libraries.

Storing in memory

The Harvard architecture is a computer architecture with physically separate storage and signal

pathways for the code (instructions) and data. Today, most processors implement such separate

signal pathways for performance reasons but actually implement a Modified Harvard

architecture,
[citation needed]

 so they can support tasks like loading an executable program from disk

storage as data and then executing it. Harvard architecture is contrasted to the Von Neumann

architecture, where data and code are stored in the same memory which is read by the processor

allowing the computer to execute commands.

https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Microcode
https://en.wikipedia.org/wiki/Dataflow
https://en.wikipedia.org/wiki/Porting
https://en.wikipedia.org/wiki/System/360
https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/IBM_1400_series
https://en.wikipedia.org/wiki/Bytecode
https://en.wikipedia.org/wiki/Java_processor
https://en.wikipedia.org/wiki/Native_(computing)
https://en.wikipedia.org/wiki/Harvard_architecture
https://en.wikipedia.org/wiki/Data_(computing)
https://en.wikipedia.org/wiki/Modified_Harvard_architecture
https://en.wikipedia.org/wiki/Modified_Harvard_architecture
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Data_storage_device
https://en.wikipedia.org/wiki/Data_storage_device
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Von_Neumann_architecture

Components of Computer 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 9/10

From the point of view of a process, the code space is the part of its address space where the

code in execution is stored. In multitasking systems this comprises the program's code

segment and usually shared libraries. In multi-threading environment, different threads of one

process share code space along with data space, which reduces the overhead of context

switching considerably as compared to process switching.

Readability by humans

It has been said

that machine code is so unreadable that the United States Copyright

Office cannot identify whether a particular encoded program is an original work of authorship;

however, the US Copyright Office does allow for copyright registration of computer

programs
[5]

 and a program's machine code can sometimes be decompiled in order to make its

functioning more easily understandable to humans.

Cognitive science professor Douglas Hofstadter has compared machine code to genetic code,

saying that "Looking at a program written in machine language is vaguely comparable to looking

at a DNA molecule atom by atom.

SOFTWARE HIERARCHY

The lowest level description of a computer program is just the sequence of numbers which

encode the basic CPU operations. This level is called machine code. Machine code is specific

to a given CPU manufacturer and often specific to a given model type (for example the Pentium

CPU has some codes not used by earlier 8086 CPUs). Machine code is very difficult for a

human to read or write, so the lowest level of programming done by humans is in a language in

which each basic operation is given a mnemonic code called assembly language. Humans can

read and write using assembly language which can be converted into machine code using

an assembler. Assembly language, like machine code is often specific to a particular CPU

manufacturer or model.

 The development of high-level languages meant that humans could program using a

formalism that was closer to their conceptual models of the data being manipulated: characters,

real numbers, lists, tables or database records. Such languages are easier for humans to learn and

to use, and furthermore they tend to be available across different computers; with each

manufacturer supplying a conversion program between the high-level language and the assembly

language for their CPU. Examples of high-level languages are Fortran, Pascal, Basic, C, C++,

Java and MATLAB.

 Modern computer systems need to deal with complex tasks involving multiple programs

interacting simultaneously, and the sharing of access to files on disks, to network resources and

displays. To cope with these demands, manufacturers supply operating systems (e.g. Windows,

Linux), which are themselves programs which help the user operate the computer and run

https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Virtual_address_space
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Code_segment
https://en.wikipedia.org/wiki/Code_segment
https://en.wikipedia.org/wiki/Shared_libraries
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Context_switching
https://en.wikipedia.org/wiki/Context_switching
https://en.wikipedia.org/wiki/United_States_Copyright_Office
https://en.wikipedia.org/wiki/United_States_Copyright_Office
https://en.wikipedia.org/wiki/Machine_code#cite_note-5
https://en.wikipedia.org/wiki/Decompiler
https://en.wikipedia.org/wiki/Douglas_Hofstadter
https://en.wikipedia.org/wiki/Genetic_code
https://en.wikipedia.org/wiki/DNA

Components of Computer 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 10/10

other application programs. Often individual application programs need to work together to

achieve an objective: for example a word processing application might call on a drawing package

or on a spreadsheet program to do some specific processing within a document. This idea of

combining programs is called scripting, where the specifications for which programs are to be

executed and how they should interact is specified in a script.

PART-B(2 MARKS)

POSSIBLE QUESTIONS

1. What is Machine Code?

2. What is Software hierarchy?

3. Mention any four components of a computer.

PART-C(6 MARKS)

POSSIBLE QUESTIONS

1. Explain Components of a computer in detail.

2. Describe about Working with numbers and Machine code

3. Discuss about Machine code and Software hierarchy

KARPAGAM ACADEMY OF HIGHER EDUCATION
Department of Computer Science
II B.Sc(CS) (BATCH 2016-2018)

Programming In MATLAB
PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS ONE MARK QUESTIONS
S.No Question

1 Which is not a computer classification?

2
A computer program that converts an entire program into machine language is called

3 RAM is a ___________ memory.
4 RAM stands for __________ _________Memory.
5 Hard Disk is an example for _________ memory

6 Computer system comprises of major units

7
A computer program that converts an entire program into machine language line by line is
called _____________.

8 Intel corporation produces ___________

9 _______________ do billion calculations in one second.

10 Central Processing Unit is combination of
11 Mouse is an example for ____________ device.
12 Which unit converts user data into machine readable form?
13 ________ is an example for output device.
14 _________ is an example for output device,

15 Through which device the main components of the computer communicate with each other?
16 What type of device is plotter?
17 Vacuum Tubes were replaced by _____________.
18 ___________ is faster than inkjet printer.
19 Software is a set of ___________.
20 __________ software is useful for specific application.
21 Which of the following produces the best quality graphics reproduction?
22 OCR stands _______ ________ Reader.
23 ________ is an example for Printer.
24 CD stands for ___________ _________.
25 DVD is an example for ________.
26 ____ converts the programs written in assembly language into machine instructions .
27 The instructions like MOV or ADD are called as ______ .

28 Instructions which wont appear in the object program are called as _____ .

29 The assembler stores all the names and their corresponding values in ______ .
30 The assembler stores the object code in ______ .
31 The register used to store the flags is called as ______ .
32 ________ is an example for output device.
33 _________ is an example for output device,

34 What is the responsibility of the logical unit in the CPU of a computer?
35 Punch Card System was developed by ___________.
36 The computer size was very large in
37 The section of the CPU that is responsible for performing mathematical operations
38 The brain of any computer system is ___________.
39 Primary memory stores
40 The word length of a computer is measured in
41 LSI stands for Large ____________ ____________.

42 What is the responsibility of the logical unit in the CPU of a computer?

43
_____is an input device that utilizes a light-sensitive detector to select objects on a display

screen.
44 A is a device for pointing (controlling input positioning) on a computer display screen

45
A _____ is an input device used to enter motion data into computers or other electronic
devices

46 _____ are photoelectric scanners that read the bar codes
47 ______ is specific to a given CPU manufacturer and often specific to a given model type

48
This idea of combining programs is called ____ where the specifications for which programs

are to be executed and how they should interact is specified in a script.
49 _____ function is used to find the minimum of given numbers
50 _____ function is used to find the maximum of given numbers

ONLINE EXAMINATIONS ONE MARK QUESTIONS
Option 1 Option 2 Option 3

mainframe min maxframe

Interpreter Assembler Compiler
Rigid Access Right Access Rom Access
Read Access Random Access Rough Access
Secondary Primary Tertiary

 input unit, output
unit, control unit

input unit, output unit,
control unit and storage

input unit, output unit, central
processing unit and storage
unit

Interpreter Simulator Compiler
Microprocessor CD DVD

Mainframe Computers
Mini Computer Micro computer

Control and storage Control and output unit
Arithmetic logic and input
unit

Input Output Programming
input Output unit ALU
Pendrive Monitor Memory unit
printer keyboard mircroprocessor

Keyboard
System Bus Monitor

Memory Output Storage
Transistors memory chips valves
Laser Printer Dot Matrix Radar Printer
compuer disks computer chips computer programs
Application Simulator Emulator
Laser Printer Inkjet Printer Plotter
Optional Character Operation Character Optical Character
Daisy Wheel Dolby Wheel David Wheel
Cobined Disk Cumulative Disk Cop Disk
RAM ROM VRAM
Machine compiler Interpreter Assembler
OP-Code Operators Commands

Redundant
instructions Exceptions Comments
Special purpose
Register Symbol Table Value map Set
Main memory Cache RAM
Flag register Status register Test register
Pendrive Monitor Memory unit
printer keyboard mircroprocessor

To produce result To compare numbers
To control flow of
information

Jacquard John Jogo Napier
First Generation Second Generation Third Generation
Memory Register Unit Control Unit
ALU CPU Memory unit
Data alone Programs alone Results alone
Bytes Millimeters Meters
Scale Integration Slot Integration Slow Integration

To produce result To compare numbers
To control flow of
information

touch pad Track ball keyboard
Barcode keyboard Track ball

Track ball touch pad Barcode
Bar-code readers keyboard Track ball
scripting Software hierarchy Machine code

Software hierarchy Machine code Components
min max medium
poor min max

Option 4 Answers

notebook maxframe

Commander Compiler
Random Acesss Random Access
Right Access Random Access
Territory Secondary

input, output and storage
units

input unit, output unit, central processing
unit and storage unit

Commander
Interpreter

PEN DRIVE Microprocessor

Super computer Super computer

Arithmetic logic and
control unit Arithmetic logic and control unit
Printing Input
Control unit input
Registers Monitor
mouse printer

Memory System Bus

input Output
capacitor Transistors
Tape Printer Laser Printer
computer memory computer programs
Desktop Application
Dot matrix printer Plotter
Oppo Character Optical Character
Darwin Wheel Daisy Wheel
Compact Disk Compact Disk
DRAM ROM
Converter Assembler
None OP-Code

Assembler Directives Assembler Directives

None Symbol Table
Magnetic disk Magnetic disk
Log register Status register
Registers Monitor
mouse printer

To do math’s works To compare numbers
Jackson Jacquard
Fourth Generation First Generation
ALU ALU
Control unit CPU
All the above All the above
Bits Bits
Sum Integration Scale Integration

To do math’s works To compare numbers

Barcode Light pen
touch pad touch pad

keyboard trackball
touch pad Bar-code readers
Components Machine code

scripting scripting
poor min
medium max

Programming Environment 2016- 2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 1/12

UNIT II

SYLLABUS

Programming Environment: MATLAB Windows, A First Program, Expressions, Constants,

Variables and assignment statement, Arrays.

Programming Environment

MATLAB WINDOWS

It is assumed that the software is installed on the computer, and that the user can start the

program. Once the program starts, the MATLAB desktop window opens (Figure 1-1). The

window contains four smaller windows: the Command Window, the Current Folder Window, the

Workspace Window, and the Command History Window. This is the default view that shows

four of the various windows of MATLAB. A list of several windows and their purpose is given

in Table 1-1. The Start button on the lower left side can be used to access MATLAB tools and

features. Four of the windows—the Command Window, the Figure Window, the Editor Window,

and the Help Window—are used extensively throughout the book and are briefly described on

the following pages

Command Window: The Command Window is MATLAB‟s main window and opens

when MATLAB is started. It is convenient to have the Command Window as the only visible

window, and this can be done by either closing all the other windows (click on the x at the top

right-hand side of the window you want to close)

Programming Environment 2016- 2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 2/12

Figure Window: The Figure Window opens automatically when graphics commands are

executed, and contains graphs created by these commands. An example of a Figure Window is

shown in Figure 1-2.

Editor Window: The Editor Window is used for writing and editing programs. This window is

opened from the File menu. An example of an Editor Window is shown in Figure 1-3.

Programming Environment 2016- 2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 3/12

Help Window: The Help Window contains help information. This window can be opened from

the Help menu in the toolbar of any MATLAB window. The Help Window is interactive and can

be used to obtain information on any feature of MATLAB. Figure 1-4 shows an open Help

Window.

Working In The Command Window The Command Window is MATLAB‟s main window and can be

used for executing commands, opening other windows, running programs written by the user, and

managing the software. An example of the Command Window, with several simple commands that will

be explained later in this chapter, is shown in Figure 1-5.

A FIRST PROGRAM

Matlab stores most of its numerical results as matrices. Unlike some languages (C, C++,

C#), it dynamically allocates memory to store variables. Therefore, it is not necessary to declare

variables before using them. Let‟s begin by simply adding two numbers. Click in the Command

Window. You will see a flashing “|” symbols next to the “>>” symbol. Enter the following

commands

Programming Environment 2016- 2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 4/12

 1. Type in “x = 3” then hit “enter”

 2. Type in “y = 2;” then hit “enter” (note the semicolon here!)

 3. Type “z = x + y” then hit “enter”

All declared variables appear in the workspace. Recall that these values are stored as

matrices. The “size” column tells us the dimension of the matrix. As expected, all these variables

are 1x1 scalar values. To double check on value stored in this matrix, simply double click any of

the variables in the Workspace.

Example program

 The command

disp(argument);
displays the value of the argument. This can be a number, a string in single quotes, or an expression.

For simple numbers, the arithmetic operators are: +, -, *, / and^. Try

disp(2*3+1);
or

disp(‟Hello World!‟);
Try these programs out first on the command line; then practise using the editor to enter the

commands, saving them to a file, loading the file and running the program from inside the editor.

Expressions

VARIABLES

Like most other programming languages, the MATLAB
®
 language provides

mathematical expressions, but unlike most programming languages, these expressions involve

entire matrices.

Programming Environment 2016- 2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 5/12

MATLAB does not require any type declarations or dimension statements. When MATLAB

encounters a new variable name, it automatically creates the variable and allocates the

appropriate amount of storage. If the variable already exists, MATLAB changes its contents and,

if necessary, allocates new storage. For example,

num_students = 25

creates a 1-by-1 matrix named num_students and stores the value 25 in its single element. To

view the matrix assigned to any variable, simply enter the variable name.

Variable names consist of a letter, followed by any number of letters, digits, or underscores.

MATLAB is case sensitive; it distinguishes between uppercase and lowercase

letters. A and a are not the same variable.

Although variable names can be of any length, MATLAB uses only the first N characters of the

name, (where N is the number returned by the function namelengthmax), and ignores the rest.

Hence, it is important to make each variable name unique in the first N characters to enable

MATLAB to distinguish variables.

N = namelengthmax

N = 63

Numbers

MATLAB uses conventional decimal notation, with an optional decimal point and leading

plus or minus sign, for numbers. Scientific notation uses the letter e to specify a power-of-ten

scale factor. Imaginary numbers use either i or j as a suffix. Some examples of legal numbers are

3 -99 0.0001

9.6397238 1.60210e-20 6.02252e23

1i -3.14159j 3e5i

MATLAB stores all numbers internally using the long format specified by the

IEEE
®
 floating-point standard. Floating-point numbers have a finite precision of roughly 16

significant decimal digits and a finite range of roughly 10
-308

 to 10
+308

.

Numbers represented in the double format have a maximum precision of 52 bits. Any

double requiring more bits than 52 loses some precision. For example, the following code shows

two unequal values to be equal because they are both truncated:

x = 36028797018963968;

y = 36028797018963972;

x == y

ans =

 1

Integers have available precisions of 8-bit, 16-bit, 32-bit, and 64-bit. Storing the same numbers

as 64-bit integers preserves precision:

https://in.mathworks.com/help/matlab/ref/namelengthmax.html

Programming Environment 2016- 2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 6/12

x = uint64(36028797018963968);

y = uint64(36028797018963972);

x == y

ans = 0

Matrix Operators

Expressions use familiar arithmetic operators and precedence rules.

+ Addition

- Subtraction

* Multiplication

/ Division

\ Left division

^ Power

' Complex conjugate transpose

() Specify evaluation order

Array Operators

When they are taken away from the world of linear algebra, matrices become two-dimensional

numeric arrays. Arithmetic operations on arrays are done element by element. This means that

addition and subtraction are the same for arrays and matrices, but that multiplicative operations

are different. MATLAB uses a dot, or decimal point, as part of the notation for multiplicative

array operations.

The list of operators includes

+ Addition

- Subtraction

.* Element-by-element multiplication

./ Element-by-element division

.\ Element-by-element left division

.^ Element-by-element power

.' Unconjugated array transpose

If the Dürer magic square is multiplied by itself with array multiplication

A.*A

the result is an array containing the squares of the integers from 1 to 16, in an unusual order:

ans =

 256 9 4 169

 25 100 121 64

Programming Environment 2016- 2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 7/12

 81 36 49 144

 16 225 196 1

Examples of Expressions

You have already seen several examples of MATLAB expressions. Here are a few more

examples, and the resulting values:

rho = (1+sqrt(5))/2

rho =

 1.6180

a = abs(3+4i)

a =

 5

z = sqrt(besselk(4/3,rho-i))

z =

 0.3730+ 0.3214i

huge = exp(log(realmax))

huge =

 1.7977e+308

toobig = pi*huge

toobig =

 Inf

VARIABLES AND ASSIGNMENT

 Variables are named locations in memory where numbers, strings and other elements of data

may be stored while the program is working. Variable names are combinations of letters and

digits, but must start with a latter. MATLAB does not require you to declare the names of

variables in advance of their use. This is actually a common cause of error, since it allows you to

Programming Environment 2016- 2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 8/12

refer accidentally to variables that don‟t exist. To assign a variable a value, use the assignment

statement. This takes the form

variable=expression;
for example

a=6;
or

name=‟Mark‟;
To display the contents of a variable, use

disp(variable);

Please note that −

 Once a variable is entered into the system, you can refer to it later.

 Variables must have values before they are used.

 When an expression returns a result that is not assigned to any variable, the system

assigns it to a variable named ans, which can be used later.

For example,

sqrt(78)

MATLAB will execute the above statement and return the following result −

ans = 8.8318

You can use this variable ans −

sqrt(78);

9876/ans

MATLAB will execute the above statement and return the following result −

ans = 1118.2

Programming Environment 2016- 2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 9/12

Let's look at another example −

x = 7 * 8;

y = x * 7.89

MATLAB will execute the above statement and return the following result −

y = 441.84

Multiple Assignments

You can have multiple assignments on the same line. For example,

a = 2; b = 7; c = a * b

MATLAB will execute the above statement and return the following result −

c = 14

 ARRAYS

 MATLAB is particularly powerful in the way it deals with tables of data, called arrays. An

array is simply a variable that can contain a number of values arranged in tabular form. Arrays

may be one dimensional (like a list), two dimensional (like a table), or have more dimensions.

To set the value of one element of a one dimensional array, use the notation

variable(index)=expression;

 for example

table(1)=3;

table(2)=6;

Note that indexes must be expressions evaluating to positive integers. The smallest index is 1.

To access one element from a one dimensional array, use the notation

variable(index)

for example

a=table(2);

disp(table(2));

For two dimensional arrays, use

Programming Environment 2016- 2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 10/12

variable(index,index)=expression;

to set the value and

variable(index,index)

to retrieve its value. You can store strings in tables, but each string occupies a row, and all rows

must be the same length (think of a two-dimensional array of characters).

You can assign a whole array in one operation using a notation involving square brackets: for

example:

array = [v11 v12 v13; v21 v22 v23];

where v11 is the value in row 1 col 1; v21 is the value in row 2 col 1; etc. The „;‟ marks the end

of a row.

 You can generate arrays containing sequences very easily with the „:‟ operator. The expression

start:stop

generates a sequence of integers from start to stop. The expression

start:increment:stop

generates a sequence from start to stop with the specfied increment. Try

disp(1:10);

disp(1:2:10);

 You can also select sub-parts of the array with the „:‟ operator. For example,

x(3:5)

represents the array consisting of the third through fifth elements of x. Also

y(2:2:100)

represents the array containing the even number elements of y below index 100.

 You can also add subtract, multiply and divide arrays of data using the operators we‟ve

mentioned previously. However MATLAB makes a difference between operations that work on

a cell-by-cell basis (so-called “dot” operations) as opposed to operations that work on the arrays

as a whole. For example, if you want to multiply two arrays of equal size to give a third array in

which each cell contains the product of the corresponding cells in the input, then you need to use

the “dot-multiply” operator .* for example

C = A.*B;

 Finally you can transpose rows and columns of a matrix with the ' operator, for example

disp(A')

Programming Environment 2016- 2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 11/12

PART-B(2 MARKS)

POSSIBLE QUESTIONS

1. Explain what is MATLAB? Where MATLAB can be applicable?

2. List out the operators that MATLAB allows?

3. What does MATLAB consist of?

4. What is a variable in MATLAB?

5. What is an Expression? Give one example.

6. What is an Array?

7. What is Constant?

PART-C(6 MARKS)

POSSIBLE QUESTIONS

1. Explain in detail about MATLAB Windows with neat sketch.

2. Write a note on Expressions, Constants and Variables.

3. Explain in detail about array and its types with suitable example.

S.No Question Option 1

1 MATLAB stands for __________________ Maths Laboratory

2 MATLAB was developed by _____________________________ MathsWorks

3 In MATLAB the matrix is defined as an _________ vector

4
______________ acts as an outstanding tool for visulaizing
technical data

C

5
The fundamental unit od data in any MATLAB program is the

array

6 In command window the ___________ are entered datas

7 _________ window displays plots and graphs command

8
__________ window permits a user to create and modify MATLAB
programs

command

9 MATLAB programs are saved with the extensions _________ .m

10
The _____________ window displays a list of commands that a user
has entered in the command window

edit

11
When a window is ___________ it appears as a pane within the
MATLAB desktop

docked

12
A ___________ is a collection of all the variables and arrays that
can be used by MATLAB when a particular command is executed

editor

13
__________ command is used to list all the variables and arrays in
the current workspace

string

14
A variable can be deleted from the workspace with the __________
command

delete

15
The __________ command will display a list of possible help topics
in the command window

help

16
The ______________ command searches the quick summary
information in each function for a match

lookfor

17
The term ________ is used to describe an array with only one
dimension

array

18
The term __________ is used to describe an array with two or more
dimensions

array

19
A variable o ftype ___________ is automatically created whenever a
numerical value is assigned to a variable name

double

20 MATLAB is a ___________ typed language strongly

21
The __________ operator swaps the row and columns of any array
that is given

transpose

22 The _________ function can be used ti create an all zero array ones

KARPAGAM ACADEMY OF HIGHER EDUCATION
Department of Computer Science
II B.Sc(CS) (BATCH 2016-2018)

Programming In MATLAB
PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS ONE MARK QUESTIONS

23
The __________ function can be used to generate arrays containing
all ones

ones

24
The eye function can be used to generate arrays coantining
________ matrices

square

25 MATLAB always allocated array elements in ________ major order row

26
The ________ functions returns the highest value taken on by that
subscript

ones

27 pi is an example of _________ operators

28 NaN stands for __________ Number and number

29
The default format for displaying the output can be changed by using
_________ command

path

30
The _____ function accepts an array arugment and displayus the
value of athe array in the command window

disp

31
the ________ function displays one or more values together with
realted text

disp

32
The _________ command loads data from a disk file into the current
MATLAB WORKSPACE

save

33
__________ are operations performed between arrays on an
element by element basis

matrix operations

34
In _________ the number of rows and columns in both arrays must
be the same

matrix operations

35
The MATLAB functions can return __________ results to the calling
program

more than one

36
The _________ command can be used to save a plot as a graphical
image by specifying appropriate options and a filename

plot

37
If the result of the MATLAB expression is not assigned to any
variable, then itr is stored in default variable _________

result

38 The _________ gives the transpose of x x'

39 What symbol precedes all comments in MAtlab? "
40 Which of the following is not pre defines variable in Matlab pi

41
this matlab command clears all data and variables stored in memory clc

42
characters in matlab are represented in their values in memory decimal

43 A correct name for a variable is 1arearec
44 An incorrect name for a variable is cat1
45 The _________ function converts numerical data to logical data real

46 the ______ fucntion converts logical data to numerical data real

47
The ____________ operators are operators with two numerical or
string operands that yield a logical result

logical

48
The relational operators can compare two strings only if they are of
_________ length

equal

49 the operator, == stands for not equal to

50 To join two or more statements with an or condition use the operator &

Option 2 Option 3 Option 4 Answers

Matrix Laboratory
Mathematical
Lab

Maths Lab
Matrix
Laboratory

Intel Microsoft IBM
MathsWor
ks

scalar array integer array

C++ Java MATLAB MATLAB

vector scalar none array

values commands fiels
command
s

Edit Figure Command history Figure

Edit Figure Command history Edit

.mm .mf .ml .m

figure debug command history
command
history

undocked removed deleted docked

workspace desktop none workspace

whos whose where whos

remove clear omit clear

helper lookfor order help

helper help order lookfor

vector matrix scale vector

vector matrix scale matrix

long int short double

weakly stronger thiner weakly

concatenates colon semicolon transpose

zero eye randn zero

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS ONE MARK QUESTIONS

zero eye randn ones

null identity none identity

column row & column none column

zero end repalce end

functions plotting special values
special
values

number not a number not and number
not a
number

format special null format

format special fprintf disp

format fprintf special fprintf

update load open load

array operations
vector
operations

arthimetic
operations

array
operations

array operations
vector
operations

arthimetic
operations

array
operations

exactly one only two none
more than
one

print draw multiple print

ans answer output ans

x'' x''' x x'

% // none none
inf i gravity gravity

clear delete deallocate clear

ASCII hex string ASCII

 area rec area_rec cos area_rec
 cat_1 cat_cos 1cat 1cat
logical relation array logical

logical relation array real

relational bitwise arithmetic relational

different both a&b none equal

equal to assigned to
approximately
equal to equal to

 | or U |

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 1/23

UNIT-III

SYLLABUS

Graph Plots: Basic plotting, Built in functions, Generating waveforms, Sound replay, load and

save. Procedures and Functions: Arguments and return values, M-files, Formatted console input-

output , String handling

GRAPH PLOTS

BASIC PLOTTING:

 To create XY graphs, it is easiest to form your data into two row vectors, one for the x co-

ordinates, and one for the y co-ordinates. The command

plot(x,y)

will then create a figure with points at each y value for each matching x value. You can control

the style of any line drawn through the points by a third string argument to the plot command:

plot(x,y,style);

where style is made up from characters as follows:

 Color strings are 'c', 'm', 'y', 'r', 'g', 'b', 'w', and 'k'. These correspond to cyan, magenta,

yellow, red, green, blue, white, and black.

 Linestyle strings are '-' for solid, '--' for dashed, ':' for dotted, '-.' for dash-dot, and none

for no line.

The marker types are '+', 'o', '*', and 'x' and the filled marker types 's' for square, 'd' for

diamond, '^' for up triangle, 'v' for down triangle, '>' for right triangle, '<' for left triangle, 'p' for

pentagram, 'h' for hexagram, and none for no marker.

For example:

x = [1 2 3 4];

y = [10 15 20 25];

plot(x,y,‟g-*‟);

You can plot multiple lines by repeating the arguments:

plot(x1,y1,x2,y2,…);

or

plot(x1,y1,style1,x2,y2,style2,…);

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 2/23

You can give the graph a title with the

title(label);

command, where label is a character string. Likewise you can add labels to the X and Y axes

with

xlabel(label);

and

ylabel(label);

You can add a legend with

legend(label1,label2,label3,…);

Description

Plotting functions accept line specifications as arguments and modify the graph generated

accordingly. You can specify these three components:

 Line style

 Marker symbol

 Color

Line Style Specifiers

You indicate the line styles, marker types, and colors you want to display, detailed in the

following tables:

Specifier LineStyle

'-'
Solid line (default)

'--'
Dashed line

':'
Dotted line

'-.'
Dash-dot line

Marker Specifiers

Specifier Marker Type

'+' Plus sign

'o' Circle

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 3/23

Specifier Marker Type

'*' Asterisk

'.' Point

'x' Cross

'square' or 's' Square

'diamond' or 'd' Diamond

'^' Upward-pointing triangle

'v' Downward-pointing triangle

'>' Right-pointing triangle

'<' Left-pointing triangle

'pentagram' or 'p' Five-pointed star (pentagram)

'hexagram' or 'h' Six-pointed star (hexagram)

Color Specifier

Specifier Color

r Red

g Green

b Blue

c Cyan

m Magenta

y Yellow

k Black

w White

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 4/23

t = 0:pi/20:2*pi;

plot(t,sin(t),'-.r*')

hold on

plot(t,sin(t-pi/2),'--mo')

plot(t,sin(t-pi),':bs')

hold off

BUILT IN FUNCTIONS

Generation

zeros() matrix of specified size filled with zeros

ones() matrix of specified size filled with ones

rand() generate pseudo random number(s) between 0 and 1

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 5/23

 Arithmetic

rem() remainder after integer division

abs() absolute value (also character -> number)

fix() truncate a value to its integer part (towards zero)

round() round a value to nearest integer.

sqrt() square root

sin() sine (angle in radians)

cos() cosine (angle in radians)

exp() exponential

log() natural logarithm

log10() logarithm base 10

Status

length() length of a vector (longest dimension of matrix)

size() size of a matrix [nrows, ncols]

Miscellaneous

sum() sum the elements of a vector

mean() find mean of elements of a vector

sort() sort the elements of a vector in increasing size

clock() returns date and time as a vector [year month day hour minute

seconds]

date() returns date as a string dd-mmm-yyyy

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 6/23

GENERATING WAVEFORMS

Waveforms are just long vectors with one number per amplitude sample. Usually they are

best kept scaled so that each amplitude is between –1 and 1. To generate a sinewave, first

generate a time sequence t representing the times of each sampling instant; for example:

t = 0:0.0001:2;

would generate a two second sequence with a sampling interval of 0.1ms (i.e. 10,000Hz). You

can then generate a sinewave at frequency F with the expression

y = sin(2*pi*F*t);

You can create a pulse by creating a vector of zeros and setting a single element to one. A pulse

train has a series of elements set to one. If these occurred every 100 elements, you might use the

expression

y(1:100:10000)=1;

To create a simple sawtooth, you can use the remainder function, for example

y = rem(1:10000,100)/100;

To create a noise waveform, you can use the „rand(nrows,ncols)‟ function, for example

y = rand(1,10000);

SOUND REPLAY, LOAD AND SAVE

 To replay a waveform, you can use

sound(wave,samplerate);

To ensure that the waveform is scaled to the range –1 .. +1 before replay, use

soundsc(wave,samplerate);

instead.

To save a waveform to a file, use

save filename variable;

To load a waveform from a file, use

load filename variable;

To save a waveform in a Windows compatible audio file format, use

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 7/23

wavwrite(waveform,samplerate,filename);

 To load a Windows compatible audio file, use

[waveform,samplerate,nbits]=wavread(filename);

PROCEDURE AND FUNCTIONS: ARGUMENTS AND RETURN VALUES

Functions

You can define your own functions to complement those provided by MATLAB.

Functions are the building blocks of your own programs. You should always try and divide your

programming task into separate functions, then design, code and test each one independently. It

is common to design from the top down, but build from the bottom up.

It is good practice to store each function in its own source file, with the name of the source file

matching the function. Thus a function called “myfunc” will be stored in the file “myfunc.m”.

This way, both you and MATLAB can easily find the source file for a function given its name.

The first line of a function source file should then be the function definition line, which has the

format:

function outargs=funcname(inargs);

The function name can be a mixture of letters and digits but must start with a letter. It is a good

idea to avoid names that MATLAB is already using. The inargsparameter is a list of variable

names separated by commas. These are the dummy names you will use in the code for the

function to „stand for‟ the actual arguments passed to the function when it is executed. Likewise

the outargs parameter is a list of variable names separated by commas which stand for the values

returned by the function to the calling program. Note that a function can take zero or more input

arguments and return zero or more values. Here are some example function definitions:

function y=square(x);

function av=average(x1,x2,x3,x4,x5);

function printvalue(A);

function B=readvalue();

function [mean,sttdev]=analyse(tab);

Following the function line you should write a one line comment that summarises what the

function does. For example:

% square(x) returns the square of the argument x

This line is printed out if the user types

lookfor funcname;

in the command window. All the comment lines between the function definition and the first

executable statement are printed out when the user types

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 8/23

help funcname;

in the command window. Use this facility to provide some help information to the users of your

function.

The body of your function will normally perform some computation based on the input

arguments and end by assigning some values to the output arguments. When the function is

called from another program, whatever values are supplied to the function are copied into the

dummy input arguments, then the function is executed, then the values of the output dummy

arguments are inserted into the calculation in the calling program. It is good practice to end each

function with the returnstatement to remind you that execution returns to the calling program at

this point.

function y=cube(x)

% cube(x) returns the cube of x

y = x * x * x;

return;

a=10;

b=cube(a);

disp(b); % \

disp(cube(a)); % All display 1000

disp(cube(10)); % /

It is good practice to pass all the information you need for a function through the list of input

arguments and to receive all the processed results through the output arguments. Although this

requires a lot of copying, MATLAB does this quite efficiently. Sometimes however, you may

have a number of functions that all require access to the same table of data, and you don‟t want

to keep copying the table into the function and then copying the changes back into your

program. Imagine if the table had a million elements! Under these circumstances you can

declare variables as „global‟. This means that they can be accessed both inside your program and

inside a function without having to pass the variable as a function argument. Here is an example:

function initialisetable(num)

% initialise global variable TAB to all the same value

global TAB;

TAB=num*ones(size(TAB));

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 9/23

% main program

global TAB;

TAB=zeros(1,100);

initialisetable(5);

You can also write functions which take a variable number of arguments. In fact MATLAB

allows any function to be called with fewer arguments than the definition, so it is a good idea to

always check the number of arguments supplied. The built in variable „nargin‟ contains the

number of input arguments actually supplied, and „nargout‟ contains the number of output

arguments. You can use the built in function „error()‟ to report an error if the number of

arguments is incorrect. For example:

function m=average(x,y)

if (nargin!=2)

error(‟two arguments needed in average()‟);

end

We'll meet the if statement in the next lesson.

M-FILES

MATLAB allows writing two kinds of program files −

 Scripts − script files are program files with .m extension. In these files, you write series

of commands, which you want to execute together. Scripts do not accept inputs and do

not return any outputs. They operate on data in the workspace.

 Functions − functions files are also program files with .m extension. Functions can

accept inputs and return outputs. Internal variables are local to the function.

You can use the MATLAB editor or any other text editor to create your .mfiles. In this section,

we will discuss the script files. A script file contains multiple sequential lines of MATLAB

commands and function calls. You can run a script by typing its name at the command line.

Creating and Running Script File

To create scripts files, you need to use a text editor. You can open the MATLAB editor in two

ways:

 Using the command prompt

 Using the IDE

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 10/23

If you are using the command prompt, type edit in the command prompt. This will open the

editor. You can directly type edit and then the filename (with .m extension)

edit

Or

edit <filename>

The above command will create the file in default MATLAB directory. If you want to store all

program files in a specific folder, then you will have to provide the entire path.

Let us create a folder named progs. Type the following commands at the command prompt

(>>):

mkdir progs % create directory progs under default directory

chdir progs % changing the current directory to progs

edit prog1.m % creating an m file named prog1.m

If you are creating the file for first time, MATLAB prompts you to confirm it. Click Yes.

Alternatively, if you are using the IDE, choose NEW -> Script. This also opens the editor and

creates a file named Untitled. You can name and save the file after typing the code.

Type the following code in the editor −

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 11/23

NoOfStudents = 6000;

TeachingStaff = 150;

NonTeachingStaff = 20;

Total = NoOfStudents + TeachingStaff ...

 + NonTeachingStaff;

disp(Total);

After creating and saving the file, you can run it in two ways −

 Clicking the Run button on the editor window or

 Just typing the filename (without extension) in the command prompt: >> prog1

The command window prompt displays the result −

6170

Example

Create a script file, and type the following code −

a = 5; b = 7;

c = a + b

d = c + sin(b)

e = 5 * d

f = exp(-d)

When the above code is compiled and executed, it produces the following result −

c = 12

d = 12.657

e = 63.285

f = 3.1852e-06

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 12/23

FORMATTED CONSOLE INPUT-OUTPUT

 You can control the exact way in which values are printed to the screen with the

„fprintf()‟ function (fprintf= “file print formatted”). This function takes one argument

repesenting the formatting instructions, followed by a list of values to be printed. Embedded

within the format string are „percent commands‟ which control where and how the values are to

be written. Here are some examples:

fprintf('The answer is %g seconds.\n',nsec);

fprintf('Day of the week = %s\n',dayofweek([7 12 1941]));

fprintf('Mean=%.3f ± %.4f\n',mean,stddev);

The command %g represents a general real number, %f means a fixed point number, %d a

decimal integer, and %s a string. You can put numeric values between the „%‟ and the letter to

control the field width and the number of digits after the decimal point. For example (□=space):

fprintf('%5g',10) □□□10

fprintf('%10.4f',123.456) □□123.4560

fprintf('%10s', 'fred') □□□□□□fred

You can input a value or a string from the command line with the „input()‟ function. This has

two forms depending on whether you want to input a number or a string:

yval=input('Enter a number: ');

name=input('Enter your name: ', 's');

Input and Output Commands

MATLAB provides the following input and output related commands −

Command Purpose

disp Displays contents of an array or string.

fscanf Read formatted data from a file.

format Controls screen-display format.

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 13/23

fprintf Performs formatted writes to screen or file.

input Displays prompts and waits for input.

; Suppresses screen printing.

The fscanf and fprintf commands behave like C scanf and printf functions. They support the

following format codes

STRING HANDLING

Simple strings are stored as tables with one row and a number of columns: one column per

character. You can concatenate any table or strings simply by making the contents part of one

table. For example:

str1='Hello';

str2='Mark ';

str=[str1 ' ' str2];

You can convert numbers to strings using the „sprintf()‟ function, which operates analogously to

the fprintf() function but outputs to a string rather than to the screen.

str=sprintf('%10.4f',123.45);

The „abs()‟ function can be used to find the standard character codes for a string:

disp(abs('Mark'));

 77 97 114 107

The „char()‟ function can be used to convert character codes back to a string:

disp(char([77 97 114 107]));

Mark

The „eval()‟ function can be used to evaluate an expression stored in a string. This allows you to

execute expressions typed in by the user:

expr=input('Enter an expression (e.g. "2+3*4") : ', 's');

disp(eval(expr));

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 14/23

Creating a character string is quite simple in MATLAB. In fact, we have used it many times.

For example, you type the following in the command prompt −

my_string = 'Tutorials Point'

MATLAB will execute the above statement and return the following result −

my_string = Tutorials Point

MATLAB considers all variables as arrays, and strings are considered as character arrays. Let

us use the whos command to check the variable created above −

whos

MATLAB will execute the above statement and return the following result −

Name Size Bytes Class Attributes

my_string 1x16 32 char

Interestingly, you can use numeric conversion functions like uint8 or uint16to convert the

characters in the string to their numeric codes. The charfunction converts the integer vector

back to characters −

Example

Create a script file and type the following code into it −

my_string = 'Tutorial''s Point';

str_ascii = uint8(my_string) % 8-bit ascii values

str_back_to_char= char(str_ascii)

str_16bit = uint16(my_string) % 16-bit ascii values

str_back_to_char = char(str_16bit)

When you run the file, it displays the following result −

str_ascii =

 84 117 116 111 114 105 97 108 39 115 32 80 111 105 110 116

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 15/23

str_back_to_char = Tutorial's Point

str_16bit =

 84 117 116 111 114 105 97 108 39 115 32 80 111 105 110 116

str_back_to_char = Tutorial's Point

Rectangular Character Array

The strings we have discussed so far are one-dimensional character arrays; however, we need to

store more than that. We need to store more dimensional textual data in our program. This is

achieved by creating rectangular character arrays.

Simplest way of creating a rectangular character array is by concatenating two or more one-

dimensional character arrays, either vertically or horizontally as required.

You can combine strings vertically in either of the following ways −

 Using the MATLAB concatenation operator [] and separating each row with a semicolon

(;). Please note that in this method each row must contain the same number of

characters. For strings with different lengths, you should pad with space characters as

needed.

 Using the char function. If the strings are of different lengths, char pads the shorter

strings with trailing blanks so that each row has the same number of characters.

Example

Create a script file and type the following code into it −

doc_profile = ['Zara Ali '; ...

 'Sr. Surgeon '; ...

 'R N Tagore Cardiology Research Center']

doc_profile = char('Zara Ali', 'Sr. Surgeon', ...

 'RN Tagore Cardiology Research Center')

When you run the file, it displays the following result −

doc_profile =

Zara Ali

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 16/23

Sr. Surgeon

R N Tagore Cardiology Research Center

doc_profile =

Zara Ali

Sr. Surgeon

RN Tagore Cardiology Research Center

You can combine strings horizontally in either of the following ways −

 Using the MATLAB concatenation operator, [] and separating the input strings with a

comma or a space. This method preserves any trailing spaces in the input arrays.

 Using the string concatenation function, strcat. This method removes trailing spaces in

the inputs.

Example

Create a script file and type the following code into it −

name = 'Zara Ali ';

position = 'Sr. Surgeon ';

worksAt = 'R N Tagore Cardiology Research Center';

profile = [name ', ' position ', ' worksAt]

profile = strcat(name, ', ', position, ', ', worksAt)

When you run the file, it displays the following result −

profile = Zara Ali , Sr. Surgeon , R N Tagore Cardiology

Research Center

profile = Zara Ali,Sr. Surgeon,R N Tagore Cardiology Research Center

Combining Strings into a Cell Array

From our previous discussion, it is clear that combining strings with different lengths could be a

pain as all strings in the array has to be of the same length. We have used blank spaces at the

end of strings to equalize their length.

However, a more efficient way to combine the strings is to convert the resulting array into a cell

array.

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 17/23

MATLAB cell array can hold different sizes and types of data in an array. Cell arrays provide a

more flexible way to store strings of varying length.

The cellstr function converts a character array into a cell array of strings.

Example

Create a script file and type the following code into it −

name = 'Zara Ali ';

position = 'Sr. Surgeon ';

worksAt = 'R N Tagore Cardiology Research Center';

profile = char(name, position, worksAt);

profile = cellstr(profile);

disp(profile)

When you run the file, it displays the following result −

{

 [1,1] = Zara Ali

 [2,1] = Sr. Surgeon

 [3,1] = R N Tagore Cardiology Research Center

}

String Functions in MATLAB

MATLAB provides numerous string functions creating, combining, parsing, comparing and

manipulating strings.

Following table provides brief description of the string functions in MATLAB −

Function Purpose

Functions for storing text in character arrays, combine character arrays, etc.

blanks Create string of blank characters

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 18/23

cellstr Create cell array of strings from character array

char Convert to character array (string)

iscellstr Determine whether input is cell array of strings

ischar Determine whether item is character array

sprintf Format data into string

strcat Concatenate strings horizontally

strjoin Join strings in cell array into single string

Functions for identifying parts of strings, find and replace substrings

ischar Determine whether item is character array

isletter Array elements that are alphabetic letters

isspace Array elements that are space characters

isstrprop Determine whether string is of specified category

sscanf Read formatted data from string

strfind Find one string within another

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 19/23

strrep Find and replace substring

strsplit Split string at specified delimiter

strtok Selected parts of string

validatestring Check validity of text string

symvar Determine symbolic variables in expression

regexp Match regular expression (case sensitive)

regexpi Match regular expression (case insensitive)

regexprep Replace string using regular expression

regexptranslate Translate string into regular expression

Functions for string comparison

strcmp Compare strings (case sensitive)

strcmpi Compare strings (case insensitive)

strncmp Compare first n characters of strings (case sensitive)

strncmpi Compare first n characters of strings (case insensitive)

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 20/23

Functions for changing string to upper- or lowercase, creating or removing white

space

deblank Strip trailing blanks from end of string

strtrim Remove leading and trailing white space from string

lower Convert string to lowercase

upper Convert string to uppercase

strjust Justify character array

Examples

The following examples illustrate some of the above-mentioned string functions −

FORMATTING STRINGS

Create a script file and type the following code into it −

A = pi*1000*ones(1,5);

sprintf(' %f \n %.2f \n %+.2f \n %12.2f \n %012.2f \n', A)

When you run the file, it displays the following result −

ans = 3141.592654

 3141.59

 +3141.59

 3141.59

 000003141.59

JOINING STRINGS

Create a script file and type the following code into it −

%cell array of strings

str_array = {'red','blue','green', 'yellow', 'orange'};

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 21/23

% Join strings in cell array into single string

str1 = strjoin(str_array, "-")

str2 = strjoin(str_array, ",")

When you run the file, it displays the following result −

str1 = red-blue-green-yellow-orange

str2 = red,blue,green,yellow,orange

FINDING AND REPLACING STRINGS

Create a script file and type the following code into it −

students = {'Zara Ali', 'Neha Bhatnagar', ...

 'Monica Malik', 'Madhu Gautam', ...

 'Madhu Sharma', 'Bhawna Sharma',...

 'Nuha Ali', 'Reva Dutta', ...

 'Sunaina Ali', 'Sofia Kabir'};

% The strrep function searches and replaces sub-string.

new_student = strrep(students(8), 'Reva', 'Poulomi')

% Display first names

first_names = strtok(students)

When you run the file, it displays the following result −

new_student =

{

 [1,1] = Poulomi Dutta

}

first_names =

{

 [1,1] = Zara

 [1,2] = Neha

 [1,3] = Monica

 [1,4] = Madhu

 [1,5] = Madhu

 [1,6] = Bhawna

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 22/23

 [1,7] = Nuha

 [1,8] = Reva

 [1,9] = Sunaina

 [1,10] = Sofia

}

COMPARING STRINGS

Create a script file and type the following code into it −

str1 = 'This is test'

str2 = 'This is text'

if (strcmp(str1, str2))

 sprintf('%s and %s are equal', str1, str2)

else

 sprintf('%s and %s are not equal', str1, str2)

end

When you run the file, it displays the following result −

str1 = This is test

str2 = This is text

ans = This is test and This is text are not equal

Graph Plots 2016-2019
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 23/23

 PART-B(2 MARKS)

POSSIBLE QUESTIONS

1. What is the type of program files that MATLAB allows to write?

2. What is an M-File?

3. What is String handling?

4. What is graph plots?

5. What is a function?

6. How to generate wave forms in MATLAB?

PART-C(6 MARKS)

POSSIBLE QUESTIONS

1. Explain about Basic Plotting in detail.

2. Explain in detail about M-Files.

3. Explain about Generating wave forms, Sound, replay, load and in detail.

4. Explain in detail about String handling.

5. Explain in detail about Procedures and Functions.

6. Explain in detail about Formatted Console Input- Output.

S.No Question Option 1
1 To add a comment to the mfile, the MATLAB command is %

2 When used in the fprintf command, the %g is used as the single character display

3 When used in the fprintf command, the \n is used to
add a space between any
two characters

4 The dot (.) in MATLAB is used for
element to element
mathematical operating

5 the standard inputs for the loglog command are (log(x), y)
6 The MATLAB command to make a plot is figure
7 The command to add text to the x axis of a plot is xtitle
8 To add a superscript, use the charater(s) \^
9 The command to add a legend to a plot is plot,legend

10 The LineWidth command
adjusts the overall size of
the figure font

11 The command \bf
creates bold font for all
subsequent text

12 The __________ function rounds x to the nearest integer twords zero ceil(x)

13 The _________ function rounds x to the nearest integer ceil(x)

14
When the _________ function is executed, MATLAB opens the Figure
window and displays the plot in that window

edit

15 The __________ function plots both x and y data on logarithmic axes semilogx

16
The _________ function plots x data on linear axes and y data on
logarithmix axes

semilogx

17 The basic building block in MATLAB is _________ matrix

18 The ______ command clears the screen clc

19 The ________ command clears the figure window clc

20 the _________ returns tangent of an angle given in degrees tang

21
If a step size is not specified , + ___is taken as default value of the
step size

2

22
The ___________ gives the number of elements in a row/column
vector

len(x)

KARPAGAM ACADEMY OF HIGHER EDUCATION
Department of Computer Science
II B.Sc(CS) (BATCH 2016-2018)

Programming In MATLAB

ONLINE EXAMINATIONS ONE MARK QUESTIONS
PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

23
The _________ command returns the number of elements of the
matrix in each dimentsions

len(x)

24
The __________ function concatenates a list of arrays along a
specified dimension

join

25
the __________ function gives the minimum value in row/column
vector

min

26 The ________ function gives the maximum value in row/column vector min

27 The ________ command is used to display only the subset of the data axes

28
The __________ command sets the axis increments to be equal on
both axes

axis normal

29 The _________ command makes the current axis box square axis normal

30
the ________ command cancels the effect of axis equal and axis
sqaure

axis normal

31
When a ______ command is used the additional plots will be laid on
top of the previously existing plots

hold on

32
A ________ command switches plotting behaviour back to the default
situation in which a new plot repalces the previous one

hold on

33 Each figure is identifed by the _________ window number

34 the current figure is selected with the ________ fucntion window

35 The function ______ returns the number of the current figure acf

36
A ________ is a special sequence of characters that ells the MATLAB
interperter top change its behaviour

stream modifier

37 _________ is a stream modifier which replces the normal font \rm

38 ______ plots data in polar corodinates pole

39
Functions receive input data from the program tha tinvokes them
through a list of variables called an _______ argument list

input

40
________ are just collections of MATLAB statements that are stored
in a file

function files

41
A MATLAB function is a special type of ______ that runs in its own
independent workspace

G file

42 The ________ statement marks the beginning of the function structure

43
A function is invoked by naming it in an expression together with a list
of ________ arguments

formal

44 The ________ statement is used to terminate the function stop

45
The first comment line after the function statement is called the
_______ comment line

H1

46
MATLAB programs communicate with their functionsusing a ________
scheme

pass by value

47
_________ function returns the number of actual input arguments that
were used to call the function

nargin

48
_______ fucntion returns the number of actual output arguments that
were used to call the function

nargin

49
_________ funtion returns a standard error message if a function is
called with too few or too many arguments

nargin

50
__________ displays warning messasge and continue function
excution

nargin

51
_________ is a special type of memory tha tcan be accessed from
any workspace

static memory

52 ________ provides a way to share data between functions static memory

53 A ________ variable is declared with the global statement local

54

________ is a special type of memory that can be accessed only
within the function, but is preserved unchanged between calls to the
function

static memory

55
________ are functions whose input arguments include the names of
other functions

function files

56 ________ function locates a zero of the function tha tis apssed to it. fempty

57
Variable can be converte dfrom double data type to char data type
using ________ function

char

58
The easiest way to produce two dimensional character arrays is with
the _______ fucntion

int

59
________ function can be used to remove extra blanks from a string
when it is extracted from an array

remove

60
Two dimensional character arrays can also be created with function

string

61
______ functions concatenates two or more strings ignoring trailing
blanks

strrev

62 _______ function determines if two strings are identical strrev

63
________ is a type of polar plot in which each value represented by an
arrow whose length is proportional to its value

bar plot

64
_______ function determines if the first n characters of two strings are
identical

strncmp

65
_______ determines if the first n characters of two strings are identical
ignoring cases

strncmp

66 _____ function determines if a character is a letter isalpha

67

A ______ plot is a plot in which each dat avalue is represented by a
marker and a line connecting the marker vertically to the x aixs

stair

68 _________ finds matches for string strfind

69 _______ function replaces onestring with another strfind

70 _________ function is used to justify the string strjust

71
A ____ plot is a plot in which each point is represented by a vertical
bar or horizontal bar

stair

72
________ functions removes any extra leading and trailing whitespace
from a string

deblank

73 ________ function converts a double value into a string num2str

74
dec2hex converts a _________ value into corresponding hexadecimal
string

integer

75
MATLAB function _______ converts an array to a string that MATLAB
can evaluate

mat2int

76
In ________ function the output goes into a character string instead of
the command window

fprintf

Option 2 Option 3 Option 4
 ; comment(' ') &

 fixed point display
 string notation
display

default number
display

 add a line space (enter key)
 place a number
into the comment clear the comment

 ending a command naming a figure
 requesting a
colorful candy

 (x,y) (log(x),log(y)) (log10(x),log10(y))
 fit plot pplot
 label,x xlabel xtext
 ^ \super \s
 legend,plot legend leg

 adjusts the size of the
plotted points

 changes the size
of the figure
border

 changes the
thickness of plotted
lines

 stands for best friend

 creates bold font
for all preceding
text

 creates a new line
in the title of the
plot

fix(x) floor(x) round(x)

fix(x) floor(x) round(x)

figure plotting plot

semilogy loglog log

semilogy loglog log

vector scalar functions

clr cls cle

clf cls cle

tand tan tan2

1 3 4

size(x) length(x) none

ONLINE EXAMINATIONS ONE MARK QUESTIONS
PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

length(x) size(x) none

cat rand joined

least max minum

least max minum

axis plot plotting

axis square axis on axis equal

axis square axis on axis equal

axis square axis on axis equal

hold off holded on none

hold off holded on none

screen number figure number picture number

figure subplot plotting

gaf gcf agf

modifier online modifier file modifier

\rrf \rf \fr

polar plot poles

output result fucntion

script files legal files none

M file MM file MX file

function parameters none

informal argument actual

finish end none

L1 G1 E1

pass by no values pass by parameters none

nargout nargchk erro

nargout nargchk erro

nargout nargchk erro

nargout nargchk warning

dynamic memory global memory random memory

dynamic memory global memory random memory

global persistent protected

dynamic memory global memory persistent memory

function functions sub function recursive function

fzero fnull fone

int double string

char double string

deblank trim delete

character strvcat strrev

strvcat strcat strcon

strcmp strncmp stricmp

compass plot pie plot stem plot

strcmp strcmpi stricmp

strcmp strncmpi stricmp

isletter ischar isstring

stem bar pie

strmatch strrep strrrev

strmatch strrep strrrev

strmatch strrep strrrev

stem bar pie

strtrim strrev strrep

int2str str2num none of the above

double long int none of the above

str2mat mat2str none of the above

sprintf printf print

Answers
 %
default number
display

 add a line space
(enter key)
element to
element
mathematical
operating

 (x,y)
 plot
 xlabel
 ^
 legend
 changes the
thickness of
plotted lines
creates bold font
for all
subsequent text

fix(x)

round(x)

plot

loglog

semilogy

matrix

clc

clf

tand

1

length(x)

size(x)

cat

min

max

axis

axis equal

axis square

axis normal

hold on

hold off

figure number

figure

gcf

stream modifier

\rm

polar

input

script files

M file

function

actual

end

H1

pass by value

nargin

nargout

nargchk

warning

global memory

global memory

global

persistent memory

function functions

fzero

char

char

deblank

strvcat

strcat

strcmp

compass plot

strncmp

strncmpi

isletter

stem

strmatch

strrep

strjust

bar

strtrim

num2str

double

mat2str

sprintf

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 1/23

UNIT IV

SYLLABUS

Control Statements: Conditional statements: If, Else, Else-if, Repetition statements: While, for

loop

CONDITIONAL STATEMENTS

Decision making structures require that the programmer should specify one or more

conditions to be evaluated or tested by the program, along with a statement or statements to be

executed if the condition is determined to be true, and optionally, other statements to be

executed if the condition is determined to be false.

Following is the general form of a typical decision making structure found in most of the

programming languages −

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 2/23

CONDITIONAL STATEMENTS

MATLAB provides following types of decision making statements. Click the following links to

check their detail −

Statement Description

if ... end statement

An if ... end statement consists of a boolean

expression followed by one or more

statements.

if...else...end statement

An if statement can be followed by an

optional else statement, which executes when

the boolean expression is false.

If... elseif...elseif...else...end statements

An if statement can be followed by one (or

more) optional elseif... and an else statement,

which is very useful to test various conditions.

nested if statements

You can use one if or elseif statement inside

another if or elseif statement(s).

switch statement

A switch statement allows a variable to be

tested for equality against a list of values.

nested switch statements

You can use one switch statement inside

another switch statement(s).

If end

An if ... end statement consists of an if statement and a boolean expression followed by one or

more statements. It is delimited by the end statement.

Syntax

The syntax of an if statement in MATLAB is −

https://www.tutorialspoint.com/matlab/if_end_statement_matlab.htm
https://www.tutorialspoint.com/matlab/if_else_statement_matlab.htm
https://www.tutorialspoint.com/matlab/if_elseif_else_statement.htm
https://www.tutorialspoint.com/matlab/nested_if_statements_matlab.htm
https://www.tutorialspoint.com/matlab/switch_statement_matlab.htm
https://www.tutorialspoint.com/matlab/nested_switch_statements_matlab.htm

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 3/23

if <expression>

% statement(s) will execute if the boolean expression is true

<statements>

end

If the expression evaluates to true, then the block of code inside the if statement will be

executed. If the expression evaluates to false, then the first set of code after the end statement

will be executed.

Flow Diagram

Example

Create a script file and type the following code −

a = 10;

% check the condition using if statement

 if a < 20

 % if condition is true then print the following

 fprintf('a is less than 20\n');

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 4/23

 end

fprintf('value of a is : %d\n', a);

When you run the file, it displays the following result −

a is less than 20

value of a is : 10

If else end

An if statement can be followed by an optional else statement, which executes when the

expression is false.

Syntax

The syntax of an if...else statement in MATLAB is −

if <expression>

% statement(s) will execute if the boolean expression is true

<statement(s)>

else

<statement(s)>

% statement(s) will execute if the boolean expression is false

end

If the boolean expression evaluates to true, then the if block of code will be executed, otherwise

else block of code will be executed.

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 5/23

Flow Diagram

Example

Create a script file and type the following code −

a = 100;

% check the boolean condition

 if a < 20

 % if condition is true then print the following

 fprintf('a is less than 20\n');

 else

 % if condition is false then print the following

 fprintf('a is not less than 20\n');

 end

 fprintf('value of a is : %d\n', a);

When the above code is compiled and executed, it produces the following result −

a is not less than 20

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 6/23

value of a is : 100

If elseif elseif else end statements

An if statement can be followed by one (or more) optional elseif... and an else statement, which

is very useful to test various conditions.

When using if... elseif...else statements, there are few points to keep in mind:

 An if can have zero or one else's and it must come after any elseif's.

 An if can have zero to many elseif's and they must come before the else.

 Once an else if succeeds, none of the remaining elseif's or else's will be tested.

Syntax

if <expression 1>

% Executes when the expression 1 is true

<statement(s)>

elseif <expression 2>

% Executes when the boolean expression 2 is true

<statement(s)>

Elseif <expression 3>

% Executes when the boolean expression 3 is true

<statement(s)>

else

% executes when the none of the above condition is true

<statement(s)>

end

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 7/23

Example

Create a script file and type the following code in it −

a = 100;

%check the boolean condition

 if a == 10

 % if condition is true then print the following

 fprintf('Value of a is 10\n');

 elseif(a == 20)

 % if else if condition is true

 fprintf('Value of a is 20\n');

 elseif a == 30

 % if else if condition is true

 fprintf('Value of a is 30\n');

 else

 % if none of the conditions is true '

 fprintf('None of the values are matching\n');

 fprintf('Exact value of a is: %d\n', a);

 end

When the above code is compiled and executed, it produces the following result −

None of the values are matching

Exact value of a is: 100

Nested If Statements

It is always legal in MATLAB to nest if-else statements which means you can use one if or

elseif statement inside another if or elseif statement(s).

Syntax

The syntax for a nested if statement is as follows −

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 8/23

if <expression 1>

% Executes when the boolean expression 1 is true

 if <expression 2>

 % Executes when the boolean expression 2 is true

 end

end

You can nest elseif...else in the similar way as you have nested if statement.

Example

Create a script file and type the following code in it −

a = 100;

b = 200;

 % check the boolean condition

 if(a == 100)

 % if condition is true then check the following

 if(b == 200)

 % if condition is true then print the following

 fprintf('Value of a is 100 and b is 200\n');

 end

 end

 fprintf('Exact value of a is : %d\n', a);

 fprintf('Exact value of b is : %d\n', b);

When you run the file, it displays −

Value of a is 100 and b is 200

Exact value of a is : 100

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 9/23

Exact value of b is : 200

Switch Statements

A switch block conditionally executes one set of statements from several choices. Each choice

is covered by a case statement.

An evaluated switch_expression is a scalar or string.

An evaluated case_expression is a scalar, a string or a cell array of scalars or strings.

The switch block tests each case until one of the cases is true. A case is true when −

 For numbers, eq(case_expression,switch_expression).

 For strings, strcmp(case_expression,switch_expression).

 For objects that support the eq(case_expression,switch_expression).

 For a cell array case_expression, at least one of the elements of the cell array matches

switch_expression, as defined above for numbers, strings and objects.

When a case is true, MATLAB executes the corresponding statements and then exits the switch

block.

The otherwise block is optional and executes only when no case is true.

Syntax

The syntax of switch statement in MATLAB is −

switch <switch_expression>

 case <case_expression>

 <statements>

 case <case_expression>

 <statements>

 ...

 ...

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 10/23

 otherwise

 <statements>

end

Example

Create a script file and type the following code in it −

grade = 'B';

 switch(grade)

 case 'A'

 fprintf('Excellent!\n');

 case 'B'

 fprintf('Well done\n');

 case 'C'

 fprintf('Well done\n');

 case 'D'

 fprintf('You passed\n');

 case 'F'

 fprintf('Better try again\n');

 otherwise

 fprintf('Invalid grade\n');

 end

When you run the file, it displays −

Well done

Nested Switch statements

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 11/23

It is possible to have a switch as part of the statement sequence of an outer switch. Even if the

case constants of the inner and outer switch contain common values, no conflicts will arise.

Syntax

The syntax for a nested switch statement is as follows −

switch(ch1)

 case 'A'

 fprintf('This A is part of outer switch');

 switch(ch2)

 case 'A'

 fprintf('This A is part of inner switch');

 case 'B'

 fprintf('This B is part of inner switch');

 end

 case 'B'

 fprintf('This B is part of outer switch');

end

Example

Create a script file and type the following code in it −

a = 100;

b = 200;

switch(a)

 case 100

 fprintf('This is part of outer switch %d\n', a);

 switch(b)

 case 200

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 12/23

 fprintf('This is part of inner switch %d\n', a);

 end

end

fprintf('Exact value of a is : %d\n', a);

fprintf('Exact value of b is : %d\n', b);

When you run the file, it displays −

This is part of outer switch 100

This is part of inner switch 100

Exact value of a is : 100

Exact value of b is : 200

REPETITION STATEMENTS

There may be a situation when you need to execute a block of code several number of times. In

general, statements are executed sequentially. The first statement in a function is executed first,

followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and

following is the general form of a loop statement in most of the programming languages −

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 13/23

MATLAB provides following types of loops to handle looping requirements. Click the

following links to check their detail −

Loop Type Description

while loop

Repeats a statement or group of statements while a given

condition is true. It tests the condition before executing the

loop body.

for loop

Executes a sequence of statements multiple times and

abbreviates the code that manages the loop variable.

nested loops

You can use one or more loops inside any another loop.

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a

scope, all automatic objects that were created in that scope are destroyed.

https://www.tutorialspoint.com/matlab/matlab_while_loop.htm
https://www.tutorialspoint.com/matlab/matlab_for_loop.htm
https://www.tutorialspoint.com/matlab/matlab_nested_loops.htm

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 14/23

MATLAB supports the following control statements. Click the following links to check their

detail.

Control Statement Description

break statement

Terminates the loop statement and transfers execution to the

statement immediately following the loop.

continue statement

Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

While Loop

The while loop repeatedly executes statements while condition is true.

Syntax

The syntax of a while loop in MATLAB is −

while <expression>

 <statements>

end

The while loop repeatedly executes program statement(s) as long as the expression remains true.

An expression is true when the result is nonempty and contains all nonzero elements (logical or

real numeric). Otherwise, the expression is false.

Example

Create a script file and type the following code −

a = 10;

% while loop execution

while(a < 20)

 fprintf('value of a: %d\n', a);

https://www.tutorialspoint.com/matlab/matlab_break_statement.htm
https://www.tutorialspoint.com/matlab/matlab_continue_statement.htm

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 15/23

 a = a + 1;

end

When you run the file, it displays the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

For Loop

A for loop is a repetition control structure that allows you to efficiently write a loop that needs

to execute a specific number of times.

Syntax

The syntax of a for loop in MATLAB is −

for index = values

 <program statements>

 ...

end

values has one of the following forms −

Format Description

initval:endval increments the index variable from initval to endval by 1, and

repeats execution of program statements until index is greater

than endval.

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 16/23

initval:step:endval increments index by the value step on each iteration, or decrements

when step is negative.

valArray creates a column vector index from subsequent columns of

array valArray on each iteration. For example, on the first iteration,

index = valArray(:,1). The loop executes for a maximum of n times,

where n is the number of columns of valArray, given by

numel(valArray, 1, :). The input valArraycan be of any MATLAB

data type, including a string, cell array, or struct.

Example 1

Create a script file and type the following code −

for a = 10:20

 fprintf('value of a: %d\n', a);

end

When you run the file, it displays the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

value of a: 20

Example 2

Create a script file and type the following code −

for a = [24,18,17,23,28]

 disp(a)

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 17/23

end

When you run the file, it displays the following result −

24

18

17

23

28

Nested Loop

MATLAB allows to use one loop inside another loop. Following section shows few examples to

illustrate the concept.

Syntax

The syntax for a nested for loop statement in MATLAB is as follows −

for m = 1:j

 for n = 1:k

 <statements>;

 end

end

The syntax for a nested while loop statement in MATLAB is as follows −

while <expression1>

 while <expression2>

 <statements>

 end

end

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 18/23

Example

Let us use a nested for loop to display all the prime numbers from 1 to 100. Create a script file

and type the following code −

for i=2:100

 for j=2:100

 if(~mod(i,j))

 break; % if factor found, not prime

 end

 end

 if(j > (i/j))

 fprintf('%d is prime\n', i);

 end

end

When you run the file, it displays the following result −

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

23 is prime

29 is prime

31 is prime

37 is prime

41 is prime

43 is prime

47 is prime

53 is prime

59 is prime

61 is prime

67 is prime

71 is prime

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 19/23

73 is prime

79 is prime

83 is prime

89 is prime

97 is prime

Break Statement

The break statement terminates execution of for or while loop. Statements in the loop that

appear after the break statement are not executed.

In nested loops, break exits only from the loop in which it occurs. Control passes to the

statement following the end of that loop.

Flow Diagram

Example

Create a script file and type the following code:

a = 10;

% while loop execution

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 20/23

while (a < 20)

 fprintf('value of a: %d\n', a);

 a = a+1;

 if(a > 15)

 % terminate the loop using break statement

 break;

 end

end

When you run the file, it displays the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

Continue Statements

The continue statement is used for passing control to next iteration of for or while loop.

The continue statement in MATLAB works somewhat like the break statement. Instead of

forcing termination, however, 'continue' forces the next iteration of the loop to take place,

skipping any code in between.

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 21/23

Flow Diagram

Example

Create a script file and type the following code −

a = 10;

%while loop execution

while a < 20

 if a == 15

 % skip the iteration

 a = a + 1;

 continue;

 end

fprintf('value of a: %d\n', a);

a = a + 1;

end

When you run the file, it displays the following result −

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 22/23

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Control Statements 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 23/23

PART-B(2 MARKS)

POSSIBLE QUESTIONS

1. What is If Statement and its syntax?

2. What are the types of loops does Matlab provides?

3. Write the syntax of while and for loop in MATLAB.

PART-C(6 MARKS)

POSSIBLE QUESTIONS

1. Explain Conditional statements with example.

2. Briefly describe about Repetition Statement.

3. Explain in detail while, for loop with example.

S.No Question Option 1

1

________ permits a programmer to seelct a perticular code block to
execute based on the value of a single integer, character or logical
expression

if

2
The _________ construct is a special form branching construct
designed to trap errors

try/catch

3
When an error occurs in the try block, it immediately excutes the
stements in the _________ block

else

4 The statements in the ________ block will always be excuted catch

5
The statements in the ________ block will only be executed of an
error occurred in try block

catch

6
_________ are MATLAB constructs that permit us to execute a
sequence of statements more than once

branches

7
A _________ loop is a block of statements that are repeated
indefintiely as long as some condition is satisified

do while

8
The ______ loop is a loop that executes a block of statements a
specified number of times

do while

9
The ______ of a for loop should not be modified anywhere within
the body of the loop

body

10
In MATLAB, the process of replacing loops by vectorized
statements is known as ________

scalarization

11
The JIT compiler helps to speed up the execution of _______ loops do while

12
The _______ statement terminates the execution of a loop and
passes control to the next statement after the end of the loop

break

13
the ________ statement terminates the current pass through the
loop and return control to the top of the loop

break

14
If one loop is completely inside another one, the two loops are
called ________ loops

double

15
when MATLAB encounters an _____ statement, it associates that
statement with the innermost currently open construct

break

16
If ______ loops are nested, they should have independent loop
index variables.

do while

17

If a break or continue statement appears inside a set of nested
loops, then that statement refers to the ________ of the loops
containing it.

innermost

18
Scalars and arrays of _________ data are created as the output of
relational and logic oeprators

vectorization

KARPAGAM ACADEMY OF HIGHER EDUCATION
Department of Computer Science
II B.Sc(CS) (BATCH 2016-2018)

Programming In MATLAB

ONLINE EXAMINATIONS ONE MARK QUESTIONS
PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

19 _________ arrays can serve as a mask for arithmetic oeprations logical

20
A _________ is an array that selects the elements of another array
for use in an operation

set

21
when the increment value of the index is not mentioned, it is taken
as ______ by default

2

22 In ________ structure, case can have multiple values switch case

23
If the value of switch variable is _________, then it must be
entered within single quotes

integer

24
_________ is used to terminate the program due to incorrect input
and gives the error message

break

25 The ~= operator stands for not equal to

26
The equivalent MATLAB expression for, A greater then or equal to
B is A>B

27 To end the body of a for-end loop the command is end

28 How many logic tests can be used in a while-end loop? A maximun of 1

29 The while-end loop will complete repetitions
until a logic statement is
false

30 The while loop is a(an) definite loop

31 The inline function is used to
accept inputs from the
user

32 The for-end loop will repeat a segment of program
based on a vector
counter.

33 The while-end loop is classified as a/an definite loop

34
_______forces the next iteration of the loop to take place, skipping

any code in between. break

35
The _______ statement is used for passing control to next iteration
of for or while loop 'continue'

36 The ______ statement terminates execution of for or while loop for loop

37
Statements in the loop that appear after the _____ statement are not
executed. break

38 _____ is the use of one loop inside another loop 'continue'

39 ______ increments the index variable from initval to endval by 1 initval:endval

40
A _____ is a repetition control structure to execute a specific
number of times. Switch

41
A _____ block conditionally executes one set of statements from
several choices If

42 _____ statement can be followed by an optional else statement Switch
43 For loop Begins with a ____ and ends with an end If
44 _____ is a repetition statement for
45 ______ is a decision control statement for

46
The _____ loop repeatedly executes statements while condition is
true. for loop

47
In for loop ______ increments index by the value step on each
iteration, or decrements when step is negative initval:endval

48 In _____, break exits only from the loop in which it occurs. nested loops

Option 2 Option 3 Option 4 Answers

try switch if else switch

switch if if else try/catch

while catch none catch

else try if else try

else try if else catch

loops structures union loops

while do for while

while do for while

loop index loop expression none loop index

vectorization looping branching
vectorizati
on

while for if for

continue skip end break

continue skip end continue

grouping nesting none nesting

continue end skip end

while if for for

outermost top bottom innermost

arithmetic logical none logical

ONLINE EXAMINATIONS ONE MARK QUESTIONS

arithmetic relational none logical

vector mask unmask mask

1 3 4 1

if else while for
switch
case

double float character character

continue error none error

equal to
less then or
equal to

approximately equal
to

not equal
to

A>=B A=>B A>B,A=B A>=B

over fend complete end

A maximun of 2 A maximun of 3 as many as needed
as many
as needed

until a logic
statement is true

 until a counter
has expired indefinitely

until a
logic
statement
is false

 indefinite loop infinite loop logic test
 indefinite
loop

concatenate
functions define a function

draw a line to
seperate outputs

define a
function

 while a conditional
statement is true

every time the
enter key is
pressed. indefinitely.

based on
a vector
counter.

 indefinite loop. infinite loop. ridiculous loop.
 indefinite
loop.

'continue' nested loop for loop 'continue'

nested loop break for loop continue

break 'continue' nested loop break

 for loop nested loop 'continue' break

nested loop break for loop
nested
loop

initval:step:endval valArray for loop
initval:e
ndval

If for loop For for loop

Switch For for loop Switch

 for loop If For If

for Switch for loop For

else if switch nested if For

while nested loop if if

for while nested loop While

initval:step:endval valArray For

initval:s
tep:end
val

 for loop For Switch
nested
loops

Manipulating Text 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 1/14

UNIT V

SYLLABUS

Manipulating Text: Writing to a text file, Reading from a text file, Randomising and

sorting a list, searching a list. GUI Interface: Attaching buttons to actions, Getting Input,

Getting Output

MANIPULATING TEXT

1. Writing to a text file

 To save the results of some computation to a file in text format reqires the following steps:

a. Open a new file, or overwrite an old file, keeping a „handle‟ for the file.

b. Print the values of expressions to the file, using the file handle

c. Close the file, using the file handle

The file handle is a just a variable which identifies the open file in your program. This allows

you to have any number of files open at any one time.

% open file

fid = fopen('myfile.txt','wt'); % 'wt' means "write text"

if (fid < 0)

 error('could not open file "myfile.txt"');

end;

% write some stuff to file

for i=1:100

 fprintf(fid,'Number = %3d Square = %6d\n',i,i*i);

end;

% close the file

fclose(fid);

Manipulating Text 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 2/14

2. Reading from a text file

 To read some results from a text file is straightforward if you just want to load the whole file

into memory. This requires the following steps:

a. Open an existing file, keeping a „handle‟ for the file.

b. Read expressions from the file into a single array, using the file handle

c. Close the file, using the file handle

The fscanf() function is the inverse of fprintf(). However it returns the values it reads as values

in a matrix. You can control the 'shape' of the output matrix with a third argument.

A = fscanf(fid,"%g %g %g\n",[3,inf]) % A has 3 rows and 1 col per line

disp(A(1,1)) % display first value on first line

disp(A(1,2)) % display first value on second line

disp(A(2,1)) % display second value on first line

Thus to read back the data we saved above:

% open file

fid = fopen('myfile.txt','rt'); % 'rt' means "read text"

if (fid < 0)

 error('could not open file "myfile.txt"');

end;

% read from file into table with 2 rows and 1 column per line

tab = fscanf(fid,'Number = %d Square = %d\n',[2,inf]);

% close the file

fclose(fid);

rtab = tab'; % convert to 2 columns and 1 row per line

Reading a table of strings is more complex, since the strings have to be the same length. We can

use the fgetl() function to get a line of text as characters, but we'll first need to find out the length

of the longest string, then ensure all strings are the same length. Here is a complete function for

loading a text file as a table of fixed-length strings:

Manipulating Text 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 3/14

function tab=readtextfile(filename)

% Read a text file into a matrix with one row per input line

% and with a fixed number of columns, set by the longest line.

% Each string is padded with NUL (ASCII 0) characters

%

% open the file for reading

ip = fopen(filename,'rt'); % 'rt' means read text

if (ip < 0)

 error('could not open file'); % just abort if error

end;

% find length of longest line

max=0; % record length of longest string

cnt=0; % record number of strings

s = fgetl(ip); % get a line

while (ischar(s)) % while not end of file

 cnt = cnt+1;

 if (length(s) > max) % keep record of longest

 max = length(s);

 end;

 s = fgetl(ip); % get next line

end;

% rewind the file to the beginning

frewind(ip);

% create an empty matrix of appropriate size

tab=char(zeros(cnt,max)); % fill with ASCII zeros

% load the strings for real

cnt=0;

s = fgetl(ip);

while (ischar(s))

 cnt = cnt+1;

 tab(cnt,1:length(s)) = s; % slot into table

 s = fgetl(ip);

end;

% close the file and return

fclose(ip);

return;

Manipulating Text 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 4/14

Here is an example of its use:

% write some variable length strings to a file

op = fopen('weekdays.txt','wt');

fprintf(op,'Sunday\nMonday\nTuesday\nWednesday\n');

fprintf(op,'Thursday\nFriday\nSaturday\n');

fclose(op);

% read it into memory

tab = readtextfile('weekdays.txt');

% display it

disp(tab);

3. Randomising and sorting a list

 Assuming we have a table of values, how can we randomise the order of the entries? A

good way of achieving this is analogous to shuffling a pack of cards. We pick two positions in

the pack, then swap over the cards at those two positions. We then just repeat this process

enough times that each card is likely to be swapped at least once.

function rtab=randomise(tab)

% randomise the order of the rows in tab.

% columns are unaffected

[nrows,ncols]=size(tab); % get size of input matrix

cnt = 10*nrows; % enough times

while (cnt > 0)

 pos1 = 1+fix(nrows*rand); % get first random row

 pos2 = 1+fix(nrows*rand); % get second random row

 tmp = tab(pos1,:); % save first row

 tab(pos1,:) = tab(pos2,:); % swap second into first

 tab(pos2,:) = tmp; % move first into second

 cnt=cnt-1;

end;

rtab=tab; % return randomised table

return;

This function should take two rows and return –1 if the first row sorts earlier than the second, 1 if

the second row sorts earlier than the first and 0 if there is no preference. Here is a case-

independent comparison function:

Manipulating Text 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 5/14

function flag=comparenocase(str1,str2)

% compares two strings without regard to case

% returns –1, 0, 1 if str1 is less than, equal, greater than str2.

len1=length(str1);

len2=length(str2);

for i=1:min(len1,len2)

 c1 = str1(i);

 c2 = str2(i);

 if (('a' <= c1)&(c1 <= 'z'))

 c1 = char(abs(c1)-32); % convert lower case to upper

 end;

 if (('a' <= c2)&(c2 <= 'z'))

 c2 = char(abs(c2)-32); % convert lower case to upper

 end;

 if (c1 < c2)

 flag = -1; % str1 sorts earlier

 return;

 elseif (c2 < c1)

 flag = 1; % str2 sorts earlier

 return;

 end;

end;

% strings match up to length of shorter, so

if (len1 < len2)

 flag = -1; % str1 sorts earlier

elseif (len2 < len1)

 flag = 1; % str2 sorts earlier

else

 flag = 0; % no preference

end;

return;

Here is a sort function that might be used with this comparison function.

function stab=functionsortrows(tab,funcname)

% sorts the rows of the input table using the supplied

% function name to provide an ordering on pairs of rows

[nrows,ncols]=size(tab);

for i=2:nrows % sort each row into place

 j = i;

Manipulating Text 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 6/14

 tmp = tab(j,:); % save row

 % compare this row with higher rows to see where it goes

 while ((j > 1)&(feval(funcname,tmp,tab(j-1,:))<0))

 tab(j,:) = tab(j-1,:); % shift higher rows down

 j = j - 1;

 end;

 tab(j,:) = tmp; % put in ordered place

end;

stab = tab; % return sorted table

return;

4. Searching a list

 If the list is unordered, all we can do is run down the list testing each entry in turn. This

function finds the index of a row in a table that contains (anywhere) the characters in the

supplied match string:

function idx=findstring(tab,str)

% find the row index containing a matching string

% returns 0 if the string is not found

[nrows,ncols]=size(tab);

for idx=1:nrows

 matches = findstr(tab(idx,:),str);

 if (length(matches)>0)

 return;

 end;

end;

idx=0;

return;

The process can be much faster if the listed is sorted and we are searching for an exact match

only. A so-called binary search is the fastest possible way of finding an item in a sorted list:

function idx=binarysearch(tab,val)

% returns the row index of val in sorted table tab

% returns 0 if val is not found

[nrows,ncols]=size(tab);

Manipulating Text 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 7/14

lo=1;

hi=nrows;

while (lo <= hi)

 idx = fix(lo+hi)/2;

 if (val < tab(idx,:))

 hi = idx - 1;

 elseif (val > tab(idx,:))

 lo = idx + 1;

 else

 return;

 end;

end;

idx=0;

return;

GUI INTERFACE

1. Elements of a Graphical User Interface

 By a graphical user interface, we mean that we can give a MATLAB program the look

and feel of a typical Windows application. The MATLAB GUI design system allows you to

create applications consisting of one or more „dialogs‟ containing typical „controls‟ such as

buttons, edit boxes, lists and pictures.

 One of the important aspects of a Windows application that is unlike the kind of

programs we have considered up to now is that they interact asynchronously with the user. The

user can select any function of the program at any time. This means that you need to store the

„state‟ of your program in a set of variables and be prepared to execute any function based on the

current state at any time.

 The MATLAB GUI design system helps you in this by associating functions with each

element of the dialog. Thus when you press a button, click on a menu, or enter a number in an

edit box, you can arrange for a function in your program to be called. Your task is to program

the actions related to that function, e.g. opening a file, playing a sound, or displaying the results

of a calculation.

The most common controls are:

 Menu options. Selection calls up an operation by name.

 Push buttons. Clicking calls up some operation.

Manipulating Text 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 8/14

 Edit boxes. User can enter some text or numerical value.

 List boxes. User can choose among list of items.

 Figures. Program can display graphical results.

 Text. Program can display textual result.

You can use the controls themselves to store data or you can create a set of global variables.

 2. How to build a simple dialogue

 To start the design program type 'guide' at the MATLAB prompt. You are presented

with a blank form upon which you can position controls. Choose a control from the palette and

click and size the control on the page to position it. Each control is automatically given a name

based on its type.

 When the layout is complete, you can save the design to a „.fig‟ file. This will

automatically create a matching „.m‟ program file which you can use to launch the application

and store the code that is operated by the controls. It is not necessary to store all your code in the

matching „.m‟ file; indeed it is a good idea to break up any large sections of code into its own

function blocks stored in separate files. You will see that the layout designer builds a „callback‟

function prototype in the program file for each control that provides input to the application.

This function will be called automatically when that control is activated.

We can edit the properties of the controls on the layout editor by right-clicking on them

and choosing „Property Inspector‟. In particular the „String‟ property is used to store the default

text for buttons, list boxes and edit boxes. The „Tag‟ property is the name of the control; and

until you are familiar with MATLAB, it is advisable not to change the default name. You can

also use the Property Inspector to change the name of the dialog itself.

 We can add menu options to your dialog with the „Menu Editor‟. If you leave the

callback function entry as “%automatic”, then the menu editor adds callback functions to your

program for each menu item. Otherwise create your own callback function using existing ones

as a model, and associate a call to the function with the menu item manually.

 It is important to realise that the „.m‟ file associated with your application is executed

afresh each time there is some event in the dialog. That is you must store the „current state‟ of

the program in global variables in the workspace, and not in variables local to a function. You

Manipulating Text 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 9/14

can ensure this by using a „global‟statement and initialising them in the part of the file where the

figure is initialised.

 We can access any property of any control using the „Tag‟ property of the control and the

MATLAB „get()‟ and „set()‟ functions.

value = get(handles.ControlTagName,'PropertyName');

set(handles.ControlTagName,'PropertyName','Value');

For example:

text = get(handles.edit1,'String');

set(handles.edit1,'String','100');

Note that most properties have to be get() and set() as strings. Use the num2str() and str2num()

functions to help convert between strings and numeric values.

 3. Worked example

Manipulating Text 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 10/14

GETTING INPUT, GETTING OUTPUT

uicontrol

Create user interface control object

Syntax

c = uicontrol

c = uicontrol(Name,Value,...)

c = uicontrol(parent)

c = uicontrol(parent,Name,Value,...)

uicontrol(c)

Description

c = uicontrol creates a uicontrol (push button) in the current figure and returns the uicontrol

object, c. If there is no figure available, then MATLAB
®
 creates a new figure to serve as the

parent.

c = uicontrol(Name,Value,...) creates a uicontrol and specifies one or more uicontrol property

names and corresponding values. Use this syntax to override the default uicontrol properties. The

default uicontrol style is'pushbutton'.

c = uicontrol(parent) creates a uicontrol and designates a specific parent object.

The parent argument can be a figure, uipanel, uibuttongroup, or uitab object.

c = uicontrol(parent,Name,Value,...) creates a uicontrol with a specific parent and one or more

uicontrol properties.

uicontrol(c) gives focus to a specific uicontrol object, c.

Manipulating Text 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 11/14

Specifying the Uicontrol Style

 When selected, most uicontrol objects perform a predefined action. To create a specific

type of uicontrol, set the Styleproperty as one of the following values. You can specify

part of the Style value if it is unique among all the styles. For example, instead

of 'radiobutton', you can specify 'radio'.

 'checkbox' – A check box generates an action when you select it. Use check boxes to

provide a number of independent choices. To activate a check box, click the mouse

button on the object. The check box updates its appearance when its state changes.

 'edit' – Editable text fields enable you to enter or modify text values. Use editable text

when you want free text as input. To enable multiple lines of text, set Max-Min>1.

Multiline edit boxes provide a vertical scroll bar for scrolling. The arrow keys also

provide a way to scroll. Obtain the current text by getting the String property.

The String property does not update as you type in an edit box. To execute the callback

routine for an edit text control, type in the desired text and then do one of the following:

o Click another component, the menu bar, or elsewhere on the window.

o For a single line editable text box, press Enter.

o For a multiline editable text box, press Ctl+Enter.

 'frame'

 'listbox' – List boxes display a list of items, from which you can select one or more items.

Unlike pop-up menus, list boxes do not expand when clicked.

The Min and Max properties control the selection mode:

o To enable multiple selection of items, set Max-Min > 1.

o To enable selection of only one item at a time, set Max-Min <= 1

 The Value property stores the row indexes of currently selected list box items, and is a

vector value when you select multiple items. After any mouse button up event that

changes the Value property, MATLAB evaluates the list box's callback routine. To delay

action when multiple items can be selected, you can associate a "Done" push button with

the list box. Use the callback for that button to evaluate the list box Value property.

 List boxes with the Enable property set to on differentiate between single and double left

clicks. MATLAB sets the figure SelectionType property to normal or open accordingly

before evaluating the list box Callback property. For enabled list boxes, Ctrl-left click

and Shift-left click also set the figure SelectionType property to normal or open,

respectively indicating a single or double click.

 'popupmenu' – Pop-up menus (also known as drop-down menus) display a list of choices

when you open them with a button-press. When closed, a pop-up menu indicates the

current choice. Pop-up menus are useful when you want to provide a number of mutually

exclusive choices, but do not want to take up the amount of space that a group of radio

buttons requires.

Manipulating Text 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 12/14

 'pushbutton' – Push buttons generate an action when activated. Left-click a push button to

activate it. The button appears to depress until you release the mouse button. The callback

activates when you release the mouse button while still pointing within the push button.

 'radiobutton' – Radio buttons are similar to check boxes, but are intended to be mutually

exclusive within a group of related radio buttons. When used this way, you can only

select one radio button at any given time. To activate a radio button, click and release the

mouse button over it. The easiest way to implement mutually exclusive behavior for a set

of radio buttons is to place them within a uibuttongroup.

 'slider' – Sliders accept numeric input within a specific range when you move the

“thumb” button along a bar. The location of the thumb indicates a numeric value,

assigned to the Value property when you release the mouse button. You can set the

minimum, maximum, and current values, and step sizes of a slider.

 Move the thumb by doing any one of the following:

o Press the mouse button on the thumb, and drag it along the bar.

o Click in the bar or on arrow buttons located at both ends of the bar.

o Click the keyboard arrow keys when the slider is in focus.

 'text' – Static text boxes display lines of text. You typically use static text to label other

controls, provide information to the user, or indicate values associated with a slider. If

you assign the Callback property of a static text object to a function (or a character vector

containing a MATLAB command), the static text will not respond when users try to

interact with the text. However, you can code the Button DownFcn callback to respond to

mouse clicks on the static text. 'togglebutton' – Toggle buttons are similar in appearance

to push buttons, but they visually indicate their state, either 'on' (depressed) or 'off' (up).

Clicking a toggle button changes its state, and switches its Value property between the

toggle button‟s Min and Max values.

 Examples

 Create uicontrols to allow users to adjust the appearance of a plot. For instance, create a

program file called myui.m that contains the following code.

 function myui

 % Create a figure and axes

 f = figure('Visible','off');

 ax = axes('Units','pixels');

 surf(peaks)

 % Create pop-up menu

 popup = uicontrol('Style', 'popup',...

 'String', {'parula','jet','hsv','hot','cool','gray'},...

 'Position', [20 340 100 50],...

 'Callback', @setmap);

https://in.mathworks.com/help/matlab/ref/uibuttongroup.html

Manipulating Text 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 13/14

 % Create push button

 btn = uicontrol('Style', 'pushbutton', 'String', 'Clear',...

 'Position', [20 20 50 20],...

 'Callback', 'cla');

 % Create slider

 sld = uicontrol('Style', 'slider',...

 'Min',1,'Max',50,'Value',41,...

 'Position', [400 20 120 20],...

 'Callback', @surfzlim);

 % Add a text uicontrol to label the slider.

 txt = uicontrol('Style','text',...

 'Position',[400 45 120 20],...

 'String','Vertical Exaggeration');

 % Make figure visble after adding all components

 f.Visible = 'on';

 % This code uses dot notation to set properties.

 % Dot notation runs in R2014b and later.

 % For R2014a and earlier: set(f,'Visible','on');

 function setmap(source,event)

 val = source.Value;

 maps = source.String;

 % For R2014a and earlier:

 % val = get(source,'Value');

 % maps = get(source,'String');

 newmap = maps{val};

 colormap(newmap);

 end

 function surfzlim(source,event)

 val = 51 - source.Value;

 % For R2014a and earlier:

 % val = 51 - get(source,'Value');

 zlim(ax,[-val val]);

 end

end

Manipulating Text 2016-2019
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 14/14

The resulting UI displays a plot. Users can adjust the color map, change the vertical scaling, or

clear the axes.

PART-B(2 MARKS)

POSSIBLE QUESTIONS

1. What is Get and Set in MATLAB?

2. What is Manipulating a text?

3. List out some of the common toolboxes present in Matlab?

4. Write the syntax of while and for loop in MATLAB

5. What is randomizing a list?

PART-C(6 MARKS)

POSSIBLE QUESTIONS

1. Discuss about Manipulating a text in detail with example.

2. Explain about GUI in detail.

3. Explain about Writing a text to a file, reading from a file with example

4. Explain about Getting Input and Output in detail.

5. Explain about Randomizing and sorting a list with example.

6. Explain about attaching buttons to actions

S.No Question

1 A program that response to event sis said to be _____

2 Graphical contraols and text boxes are created by the function ________

3 Toolbars are created by the fucntion

4 A ______ is a window on the computer screen

5 a most common container is a _______

6 _______ can contain components or other containers

7
A ______ is a graphical object that displays one or more text strings, which are specified in the
text field's string property

8 a text field is created by ________

9 An ________ is a graphical object that allows a user to enter one or more text strings.

10 A ________ is a component that a user can click on to trigger a specific action

11 a ________ is a type of button that has two states on and off

12
_________ are graphical objects that display many lines of text and allow a user to select one
or more of those lines

13 panels are created by the function ________

14
A _______ is a special type of figure that is sued to display information or to get input from a
user

15 ________ may be modal or non modal

16 ________ boxes are typically used for warning and error messages

17 _______ boxes prompt a user to enter one or more values that may be used by a program

18 The ________ dialog boxes allows a user to interactively select a directory

19 If the user cancels the dialog box, ________ is set to zero

20
A ______ allows a user to select actions without additional components appearing on the GUI
display

21 _______ menus are the pulled down from the menu bar at the top of a figure

22
_________ menus are pop up over the figure when a user right clicks the mouse over a
graphical object

23
Accelerator keys are __________ combinations that cause a menu item to be executed without
opening the menu first

24

__________ are single letters that can be presses to cause a menu item to execute once the
menu is open

25 _________ create a generic dialog box

26
___________ function is used to create a standard menu, or amenu item on either a standard
menu or a context menu

27 ________________ is used to create a user defined toolbar

28 ___________ is used to create a dialog box to ask a question

KARPAGAM ACADEMY OF HIGHER EDUCATION
Department of Computer Science
II B.Sc(CS) (BATCH 2016-2018)

Programming In MATLAB
PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS ONE MARK QUESTIONS

29 ________ is used to print the dialog box

30
__________ and keyboard mnemonics can be used to speed the operations of windows

31 The MATLAB graphics system is based on a hierarchical system of core ______

32 Each graphics object is known by aunique number called a _______

33 Each gaphics object has special data known as ______ associated with it

34 the highest level graphics object in MATLAB is the _________

35 Each _____ is a separetate window on the computer screen that can display graphical data

36 Each figure can contain _________ types of objects

37
The _________ is aunique integer or real number that is used by MATLAB to identify the
object

38 Each property has a _________ and an associated value

39 When an _______ is created all of its poperties are automatically initialized to default values

40

The _______ is a just a variable which identifies the open file in your
program.

41 The ______ function is the inverse of fprintf().
42 the function to get a line of text as characters

43 findstr() function is used to ______

44 GUI Stands for _______

45
_____ design system allows you to create applications consisting of one or more
‘dialogs’

46 User can enter some text or numerical value by using ______
47 Program can display graphical result by using ______ control

48
We can edit the properties of the controls on the layout editor by right-clicking on them
and choosing _________

49 We can add menu options to your dialog with the _______
50 You can control the 'shape' of the output matrix with a ______ argument.

Option 1 Option 2 Option 3 Option 4

program driven event driven events none of the above

figure plot uicontrol control

utool uitoolbar uimenu uiaxes

figure container plot workspace

figure workspace plot area

callbacks panel button group component

dynamic text field text field static text field none of the above

toolbox uitoolbar uicontrol control box

static text tool box edit boxes menus

pushbutton tool box static text field menus

pushbutton tool box static text box toggle buttons

toolbox pushbutton toggle button list boxes

unipanel upanel uipanel panel

toolbox dialog boxes toggle button menus

toolbox dialog boxes toggle button menus

non modal modal text boxes list boxes

output dialog input dialog text boxes list boxes

uiget unisetdir uigetdir dirname

directoryname pathname filename figurename

tools list box menus dialog boxes

context standard linear collinear

context standard linear collinear

CTRL + key ALT + key TAB+ key DEL+Key

Shortcut key
Keyboard
mnemonics

Acclerator keys none of the above

arrdialog create dialog dialog errdialog

menus create menu uimenu unicreate

uimenu unitools toolbar unitoolbar

inputdlg questdlg question dialog boxes

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS
ONLINE EXAMINATIONS ONE MARK QUESTIONS

inputdlg printdlg questdlg errordlg

Shortcut key
Keyboard
mnemonics

Acclerator keys none of the above

graphics system graphics objects properties

handle object term component

object properties term component

directory figures root path

figure plot handle object

six eight two seven

handle object term component

term name component name property name none of the above

handle term object data

object
file handle fgetl() ‘Menu Editor’

fscanf() fgetl() object ‘Menu Editor’

‘Menu Editor’ object file handle fgetl()

Search a string List a string
Compare a string

Delete a string

Graphical User Input
Graphical User
Interface

Geometric User
Interface

Graphical Unique
Interface

GUI
object

file handle
 ‘Property
Inspector’

Menu options Edit boxes Figures
 ‘Property
Inspector’

 Property Inspector Figures Edit boxes GUI

 Property Inspector Edit boxes Figures GUI

Figures Menu Editor Edit boxes GUI
two third four one

Answers
event
driven
uicontrol

uitoolbar

container

figure

panel
static text
field
uicontrol

edit boxes

pushbutto
n
toggle
buttons

list boxes

uipanel
dialog
boxes
dialog
boxes
modal
input
dialog
uigetdir
directoryn
ame

menus

standard

context

CTRL +
key
Keyboard
mnemonic
s
dialog

uimenu

unitoolbar

questdlg

printdlg
Keyboard
mnemonic
s
graphics
objects
handle

properties

root

figure

seven

handle

property
name

object

file handle

fscanf()

fgetl()

Compare
a string
Graphical
User
Interface

GUI
Edit
boxes
Figures
 Property
Inspector
Menu
Editor
third

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

COMPUTER SCIENCE

Third Semester

FIRST INTERNAL EXAMINATION - July 2017

PROGRAMMING IN MATLAB

Class & Section: II B.Sc (CS) A&B Duration: 2 hours

Date & Session : Maximum marks: 50 marks

Subj.Code: 16CSU304B

PART- A (20 * 1= 20 Marks)

Answer ALL the Questions

1. Finite sequence of instructions is known as___________

 a)Program b)Flow Chart c)Algorithm d) Software

2. An algorithm expressed in a programming language is called as ___________

 a)Expression b)Computer program c) Instruction d) Data

3. An algorithm can be expressed in a graphical form known as ___________,

 a)Program b) Translator c)Flow chart d) Bar chart

4. A set of computer programs and related data that provide the instructions for telling

 computer hardware what to do and how to do it is ___________

 a)Hardware b)Software c)Malware d)Shareware

5. Software designed to operate the computer hardware and to provide a platform for

 running ___________

 a)System software b)Application software

 c)Operating Systems d)Utility programs

6. A collection of programs that form a bridge between user and the hardware is _____

 a)Operating systems b)Translators c)Software d)Program

7. Program that translates a set of code written in programming language into a machine

 code ___________

 a)Translator b)Compiler c) Loader d) Linker

8. Which will translates assembly language programs into machine code ?

 a)Assembler b)Compiler c)interpreter d) editor

9. Compiler translates ___________

 a) Object code into Machine Code b) Object code into Source Code

 c) Source code to assembly code d) High level language code into object

code

10. What does Matlab stand for?

a)Math Laboratory

b) Matrix Laboratory

c) Mathworks

d) Nothing

11. The programs written in machine language are___________

 a) Machine independent b) Machine dependent

 c)Machine interconnected d) Machine interface

12. What symbol precedes all comments in Matlab?

a) *

b) %

c) //

d) <

13. Which of the following is not a pre-defined variable in Matlab.?

a) pi

b) inf

c) i

d) gravity

14. This Matlab command clears all data and variables stored in memory

a) clc

b) clear

c) delete

d) deallocate

15. Characters in Matlab are represented in their value in memory

a) decimal

b) ASCII

c) hex

d) string

16. Which of these is the way to access the first element in a vector named v (assuming

there is at least one element in the vector)?

a) v(0)

b) v(1)

c) v

d) v(: , 0)

17. Which of the following is used to see if two elements are equal in MATLAB?

a) !=

b) ==

c) isequal

d) =

18. If vector = [1 2 3 4; 11 24 92 100; 345 65 90 1]. What will the value of a be equal to

if this code is entered into MATLAB >>[a b] = size (vector)?

a) 12

c) 1

d) 4

e) 3

19. What is the value of ans that is printed when the following code is run: isnumeric(32)

a) 1

b) 0

c) 32

d) yes

20. To display Question 2 in command window, the correct command is

a) disp(Question 2)

b) display(‗Question 2‘)
c) disp(‘Question 2’)

d) Question 2

PART- B (3 * 2= 6 Marks)

Answer ALL the Questions

21. List the Matrix operators.

Operator Purpose Description

- Unary minus -A negates the elements of A .

.*
Element-wise

multiplication

A.*B is the element-by-element product of A and

B .

.^ Element-wise power
A.^B is the matrix with elements A(i,j) to the B(i,j)

power.

./ Right array division A./B is the matrix with elements A(i,j)/B(i,j) .

22. Mention type of operators used in MATLAB environment.

MATLAB allows the following types of elementary operations −

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operations

 Set Operations

23. Write in MATLAB 1. 32 + 5 2. 32+5

a= 1.32

b=5

c=2.35

d= (a+b)

e=(c+b)

disp(a)

disp(b)

PART C (3 * 8 = 24 Marks)

Answer ALL the Questions

24. a. Elaborate on Components of computers.

A computer system consists of mainly four basic units; namely input unit, storage unit,

central processing unit and output unit. Central Processing unit further includes

Arithmetic logic unit and control unit, as shown in the figure:. A computer performs five

major operations or functions irrespective of its size and make. These are

• it accepts data or instructions as input,

• it stores data and instruction

• it processes data as per the instructions,

• it controls all operations inside a computer, and

• it gives results in the form of output.

Functional Units:

a. Input Unit: This unit is used for entering data and programs into the computer system

by the user for processing.

Basic Computer Organisation

b. Storage Unit: The storage unit is used for storing data and instructions before and after

processing.

c. Output Unit: The output unit is used for storing the result as output produced by the

computer after processing.

d. Processing: The task of performing operations like arithmetic and logical operations is

called processing. The Central Processing Unit (CPU) takes data and instructions from

the storage unit and makes all sorts of calculations based on the instructions given and the

type of data provided. It is then sent back to the storage unit. CPU includes Arithmetic

logic unit (ALU) and control unit (CU)

Arithmetic Logic Unit: All calculations and comparisons, based on the instructions

provided, are carried out within the ALU. It performs arithmetic functions like addition,

subtraction, multiplication, division and also logical operations like greater than, less than

and equal to etc.

• Control Unit: Controlling of all operations like input, processing and output are

performed by control unit. It takes care of step by step processing of all operations in side

the computer.

Memory

Computer‘s memory can be classified into two types; primary memory and secondary

memory

RAM

a. Primary Memory can be further classified as RAM and ROM.

• RAM or Random Access Memory is the unit in a computer system. It is the place in a

computer where the operating system, application programs and the data in current use

are kept temporarily so that they can be accessed by the computer‘s processor. It is said

to be ‗volatile‘ since its contents are accessible only as long as the computer is on. The

contents of RAM are no more available once the computer is turned off.

ROM or Read Only Memory is a special type of memory which can only be read and

contents of which are not lost even when the computer is switched off. It typically

contains manufacturer‘s instructions. Among other things, ROM also stores an initial

program called the ‗bootstrap loader‘ whose function is to start the operation of computer

system once the power is turned on.

b. Secondary Memory

RAM is volatile memory having a limited storage capacity. Secondary/auxiliary memory

is storage other than the RAM. These include devices that are peripheral and are

connected and controlled by the computer to enable permanent storage of programs and

data.

 CD ROM

Secondary storage devices are of two types; magnetic and optical. Magnetic devices

include hard disks and optical storage devices are CDs, DVDs, Pen drive, Zip drive etc.

• Hard Disk

Hard disks are made up of rigid material and are usually a stack of metal disks sealed in a

box. The hard disk and the hard disk drive exist together as a unit and is a permanent part

of the computer where data and programs are saved. These disks have storage capacities

ranging from 1GB to 80 GB and more. Hard disks are rewritable.

• Compact Disk

Compact Disk (CD) is portable disk having data storage capacity between 650-700 MB.

It can hold large amount of information such as music, full-motion videos, and text etc.

CDs can be either read only or read write type.

CD Drive

• Digital Video Disk

Digital Video Disk (DVD) is similar to a CD but has larger storage capacity and

enormous clarity. Depending upon the disk type it can store several Gigabytes of data.

DVDs are primarily used to store music or movies and can be played back on your

television or the computer too. These are not rewritable.

Hard Disk

Input / Output Devices:

These devices are used to enter information and instructions into a computer for storage

or processing and to deliver the processed data to a user. Input/Output devices are

required for users to communicate with the computer. In simple terms, input devices

bring information INTO the computer and output devices bring information OUT of a

computer system. These input/output devices are also known as peripherals since they

surround the CPU and memory of a computer system.

Input Devices

An input device is any device that provides input to a computer. There are many input

devices, but the two most common ones are a keyboard and mouse. Every key you press

on the keyboard and every movement or click you make with the mouse sends a specific

input signal to the computer.

Keyboard

• Keyboard: The keyboard is very much like a standard typewriter keyboard with a few

additional keys. The basic QWERTY layout of characters is maintained to make it easy

to use the system. The additional keys are included to perform certain special functions.

These are known as function keys that vary in number from keyboard to keyboard.

• Mouse: A device that controls the movement of the cursor or pointer on a display

screen. A mouse is a small object you can roll along a hard and flat surface. Its name is

derived from its shape, which looks a bit like a mouse. As you move the mouse, the

pointer on the display screen moves in the same direction.

• Trackball: A trackball is an input device used to enter motion data into computers or

other electronic devices. It serves the same purpose as a mouse, but is designed with a

moveable ball on the top, which can be rolled in any direction.

• Touchpad: A touch pad is a device for pointing (controlling input positioning) on a

computer display screen. It is an alternative to the mouse. Originally incorporated in

laptop computers, touch pads are also being made for use with desktop computers. A

touch pad works by sensing the user‘s finger movement and downward pressure. • Touch

Screen: It allows the user to operate/make selections by simply touching the display

screen. A display screen that is sensitive to the touch of a finger or stylus. Widely used on

ATM machines, retail point-of-sale terminals, car navigation systems, medical monitors

and industrial control panels.

Light Pen: Light pen is an input device that utilizes a light-sensitive detector to select

objects on a display screen.

• Magnetic ink character recognition (MICR): MICR can identify character printed

with a special ink that contains particles of magnetic material. This device particularly

finds applications in banking industry.

• Optical mark recognition (OMR): Optical mark recognition, also called mark sense

reader is a technology where an OMR device senses the presence or absence of a mark,

such as pencil mark. OMR is widely used in tests such as aptitude test.

• Bar code reader: Bar-code readers are photoelectric scanners that read the bar codes or

vertical zebra strips marks, printed on product containers. These devices are generally

used in super markets, bookshops etc.

Scanner

Scanner is an input device that can read text or illustration printed on paper and

translates the information into a form that the computer can use. A scanner works by

digitizing an image.

Output Devices:

Output device receives information from the CPU and presents it to the user in the

desired from. The processed data, stored in the memory of the computer is sent to the

output unit, which then converts it into a form that can be understood by the user. The

output is usually produced in one of the two ways – on the display device, or on paper

(hard copy).

•Monitor: is often used synonymously with ―computer screen‖ or ―display.‖ Monitor is

an output device that resembles the television screen (fig. 1.8). It may use a Cathode Ray

http://oer.nios.ac.in/wiki/index.php/File:Basic6.png

Tube (CRT) to display information. The monitor is associated with a keyboard for

manual input of characters and displays the information as it is keyed in. It also displays

the program or application output. Like the television, monitors are also available in

different sizes. • Printer: Printers are used to produce paper (commonly known as hard

copy) output. Based on the technology used, they can be classified as Impact or Non-

impact printers.

Impact printers use the typewriting printing mechanism wherein a hammer strikes the

paper through a ribbon in order to produce output. Dot-matrix and Character printers fall

under this category.

Non-impact printers do not touch the paper while printing. They use chemical, heat or

electrical signals to etch the symbols on paper. Inkjet, Deskjet, Laser, Thermal printers

fall under this category of printers.

 Plotter: Plotters are used to print graphical output on paper. It interprets computer

commands and makes line drawings on paper using multi colored automated pens. It is

capable of producing graphs, drawings, charts, maps etc. • Facsimile (FAX): Facsimile

machine, a device that can send or receive pictures and text over a telephone line. Fax

machines work by digitizing an image.

Sound cards and Speaker(s): An expansion board that enables a computer to manipulate

and output sounds. Sound cards are necessary for nearly all CD-ROMs and have become

commonplace on modern personal computers. Sound cards enable the computer to output

sound through speakers connected to the board, to record sound input from a microphone

connected to the computer, and manipulate sound stored on a disk.

 (OR)

 b. Discuss on software hierarchy.

Software hierarchy

The lowest level description of a computer program is just the sequence of numbers

which encode the basic CPU operations. This level is called machine code. Machine

code is specific to a given CPU manufacturer and often specific to a given model type

(for example the Pentium CPU has some codes not used by earlier 8086 CPUs). Machine

code is very difficult for a human to read or write, so the lowest level of programming

done by humans is in a language in which each basic operation is given a mnemonic code

called assembly language. Humans can read and write using assembly language which

can be converted into machine code using an assembler. Assembly language, like

machine code is often specific to a particular CPU manufacturer or model.

The development of high-level languages meant that humans could program using a

formalism that was closer to their conceptual models of the data being manipulated:

characters, real numbers, lists, tables or database records. Such languages are easier for

humans to learn and to use, and furthermore they tend to be available across different

computers; with each manufacturer supplying a conversion program between the high-

level language and the assembly language for their CPU. Examples of high-level

languages are Fortran, Pascal, Basic, C, C++, Java and MATLAB.

Modern computer systems need to deal with complex tasks involving multiple programs

interacting simultaneously, and the sharing of access to files on disks, to network

resources and displays. To cope with these demands, manufacturers supply operating

systems (e.g. Windows, Linux), which are themselves programs which help the user

operate the computer and run other application programs. Often individual application

programs need to work together to achieve an objective: for example a word processing

application might call on a drawing package or on a spreadsheet program to do some

specific processing within a document. This idea of combining programs is

called scripting, where the specifications for which programs are to be executed and how

they should interact is specified in a script.

25. a. Explain various Matlab windows with example.

Programming Environment

MATLAB WINDOWS

It is assumed that the software is installed on the computer, and that the user can start

the program. Once the program starts, the MATLAB desktop window opens (Figure 1-1).

The window contains four smaller windows: the Command Window, the Current Folder

Window, the Workspace Window, and the Command History Window. This is the

default view that shows four of the various windows of MATLAB. A list of several

windows and their purpose is given in Table 1-1. The Start button on the lower left side

can be used to access MATLAB tools and features. Four of the windows—the Command

Window, the Figure Window, the Editor Window, and the Help Window—are used

extensively throughout the book and are briefly described on the following pages

Command Window: The Command Window is MATLAB‘s main window and

opens when MATLAB is started. It is convenient to have the Command Window as the

only visible window, and this can be done by either closing all the other windows (click

on the x at the top right-hand side of the window you want to close) or by first selecting

the Desktop Layout in the Desktop menu, and then 6 Chapter 1: Starting with MATLAB

selecting Command Window Only from the submenu that opens

 Figure Window: The Figure

Window opens automatically when graphics commands are executed, and contains

graphs created by these commands. An example of a Figure Window is shown in Figure

1-2.

Editor Window: The Editor Window is used for writing and editing programs. This

window is opened from the File menu. An example of an Editor Window is shown in

Figure 1-3.

Help Window: The Help Window contains help information. This window can be

opened from the Help menu in the toolbar of any MATLAB window. The Help Window

is interactive and can be used to obtain information on any feature of MATLAB. Figure

1-4 shows an open Help Window.

Working In The Command Window The Command Window is MATLAB‘s main

window and can be used for executing commands, opening other windows, running

programs written by the user, and managing the software. An example of the Command

Window, with several simple commands that will be explained later in this chapter, is

shown in Figure 1-5.

A FIRST PROGRAM

Matlab stores most of its numerical results as matrices. Unlike some languages

(C, C++, C#), it dynamically allocates memory to store variables. Therefore, it is not

necessary to declare variables before using them. Let‘s begin by simply adding two

numbers. Click in the Command Window. You will see a flashing ―|‖ symbols next to the

―>>‖ symbol. Enter the following commands

 1. Type in ―x = 3‖ then hit ―enter‖

 2. Type in ―y = 2;‖ then hit ―enter‖ (note the semicolon here!)

 3. Type ―z = x + y‖ then hit ―enter‖

All declared variables appear in the workspace. Recall that these values are stored

as matrices. The ―size‖ column tells us the dimension of the matrix. As expected, all

these variables are 1x1 scalar values. To double check on value stored in this matrix,

simply double click any of the variables in the Workspace.

Example program

The command

disp(argument);

displays the value of the argument. This can be a number, a string in single quotes, or an

expression. For simple numbers, the arithmetic operators are: +, -, *, / and^. Try

disp(2*3+1);

or

disp(‘Hello World!‘);

Try these programs out first on the command line; then practise using the editor to enter

the commands, saving them to a file, loading the file and running the program from

inside the editor.

(OR)

b. Write note on different Array operators with example in Matlab.

 Arrays

MATLAB is particularly powerful in the way it deals with tables of data, called arrays.

An array is simply a variable that can contain a number of values arranged in tabular

form. Arrays may be one dimensional (like a list), two dimensional (like a table), or have

more dimensions. To set the value of one element of a one dimensional array, use the

notation

variable(index)=expression;

 for example

table(1)=3;

table(2)=6;

Note that indexes must be expressions evaluating to positive integers. The smallest index

is 1. To access one element from a one dimensional array, use the notation

variable(index)

for example

a=table(2);

disp(table(2));

For two dimensional arrays, use

variable(index,index)=expression;

to set the value and

variable(index,index)

to retrieve its value. You can store strings in tables, but each string occupies a row, and

all rows must be the same length (think of a two-dimensional array of characters).

You can assign a whole array in one operation using a notation involving square brackets:

for example:

array = [v11 v12 v13; v21 v22 v23];

where v11 is the value in row 1 col 1; v21 is the value in row 2 col 1; etc. The ‗;‘ marks

the end of a row.

You can generate arrays containing sequences very easily with the ‗:‘ operator. The

expression

start:stop

generates a sequence of integers from start to stop. The expression

start:increment:stop

generates a sequence from start to stop with the specfied increment. Try

disp(1:10);

disp(1:2:10);

You can also select sub-parts of the array with the ‗:‘ operator. For example,

x(3:5)

represents the array consisting of the third through fifth elements of x. Also

y(2:2:100)

represents the array containing the even number elements of y below index 100.

You can also add subtract, multiply and divide arrays of data using the operators we‘ve

mentioned previously. However MATLAB makes a difference between operations that

work on a cell-by-cell basis (so-called ―dot‖ operations) as opposed to operations that

work on the arrays as a whole. For example, if you want to multiply two arrays of equal

size to give a third array in which each cell contains the product of the corresponding

cells in the input, then you need to use the ―dot-multiply‖ operator .* for example

C = A.*B;

Finally you can transpose rows and columns of a matrix with the ' operator, for example

disp(A')

26. a. Explain Variables and assignment in Matlab.

Variables and assignment

Variables are named locations in memory where numbers, strings and other elements of

data may be stored while the program is working. Variable names are combinations of

letters and digits, but must start with a latter. MATLAB does not require you to declare

the names of variables in advance of their use. This is actually a common cause of error,

since it allows you to refer accidentally to variables that don‘t exist. To assign a variable

a value, use the assignment statement. This takes the form

variable=expression;

for example

a=6;

or

name=‘Mark‘;

To display the contents of a variable, use

disp(variable);

Please note that −

 Once a variable is entered into the system, you can refer to it later.

 Variables must have values before they are used.

 When an expression returns a result that is not assigned to any variable, the

system assigns it to a variable named ans, which can be used later.

For example,

sqrt(78)

MATLAB will execute the above statement and return the following result −

ans = 8.8318

You can use this variable ans −

sqrt(78);

9876/ans

MATLAB will execute the above statement and return the following result −

ans = 1118.2

Let's look at another example −

x = 7 * 8;

y = x * 7.89

MATLAB will execute the above statement and return the following result −

y = 441.84

Multiple Assignments

You can have multiple assignments on the same line. For example,

a = 2; b = 7; c = a * b

MATLAB will execute the above statement and return the following result −

c = 14

 (OR)

27. b. Set up a vector called N with five elements having the values: 1, 2, 3, 4, 5.

Using N,

 create assignment statements for a vector X which will result in X having these

 values:

a. 2, 4, 6, 8, 10 b. 1/2, 1, 3/2, 2, 5/2 c. 1, 1/2, 1/3, 1/4, 1/5 d. 1, 1/4, 1/9,

1/16, 1/25

 N=[1 2 3 4 5];

 X=2*N;

 disp(X);

 X=N/2;

 disp(X);

 X=1./N;

 disp(X);

 X=1./(N.*N);

 disp(X);

a.

Register Number____________

 [16CSU304B]

KARPAGAM ACADEMY FOR HIGHER EDUCATION

KARPAGAM UNIVERSITY

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2016 onwards)

SECOND INTERNAL EXAMINATION, AUGUST 2017

Third Semester

COMPUTER SCIENCE

PROGRAMMING IN MATLAB

Maximum : 50 Marks Duration: 2 Hours

 PART-A (20 X 1 = 20 Marks)

 (Answer ALL the Questions)

1. In MATLAB the matrix is defined as an _________

a)vector b)scalar c)array d)integer

2. The fundamental unit of data in any MATLAB program is the _________

a)array b)vector c)scalar d)none

3. the operator, == stands for _______

a)not equal to b)equal to c)assigned to d)approximately equal to

4. The _____ function accepts an array argument and displays the value of the array in the

command window

a)disp b)format c)special d)fprintf

5.__________ are operations performed between arrays on an element by element basis

a)matrix operations

b)array operations

c)vector operations

d)arithmetic operations

6.To add a comment to the mfile, the MATLAB command is

a)% b) ; c)comment(' ') d)&

7.To add a superscript, use the character(s)

 a)\^ b) ^ c)\super d) \s

8.The standard inputs for the loglog command are

a)(log(x), y) b) (x,y) c) (log(x),log(y)) d) (log10(x),log10(y))

9. When a ______ command is used the additional plots will be laid on top of the previously

existing plots

 a) hold on b) hold off c) holded on d)none

10. The MATLAB command to make a plot is

a) figure b) fit c)plot d) pplot

11. The _________ command returns the number of elements of the matrix in each dimensions

a) len(x) b)length(x) c)size(x) d)none

12. A MATLAB function is a special type of ______ that runs in its own independent workspace

 a) G file b)M file c)MM file d)MX file

13. _______ function determines if the first n characters of two strings are identical

a) strncmp b)strcmp c)strcmpi d)stricmp

14. Variable can be converte dfrom double data type to char data type using ________ function

 a) char b)int c)double d)string

15. In ________ function the output goes into a character string instead of the command window

 a)fprintf b)sprintf c)printf d)print

16. _______ function replaces onestring with another

a)strfind b)strmatch c)strrep d)strrrev

17. The __________ command sets the axis increments to be equal on both axes

a)axis normal b)axis square c)axis on d)axis equal

18. _________ function is used to justify the string

a)strjust b)strmatch c)strrep d)strrrev

19. ________ are just collections of MATLAB statements that are stored in a file

a)function files b)script files c)legal files d)none

20. When used in the fprintf command, the %g is used as the

a)single character display

b)fixed point display

c)string notation display

d)default number display

PART-B (3 X 2 = 6 Marks)

(Answer ALL the Questions)

21. What is an Array?

 MATLAB is an abbreviation for "matrix laboratory." While other programming

languages mostly work with numbers one at a time, MATLAB® is designed to operate primarily

on whole matrices and arrays.

All MATLAB variables are multidimensional arrays, no matter what type of data. A matrix is a

two-dimensional array often used for linear algebra.

Array Creation

To create an array with four elements in a single row, separate the elements with either a comma

(,) or a space.

a = [1 2 3 4]

a =

 1 2 3 4

22. What is an M-File?

An m-file, or script file, is a simple text file where we can place MATLAB commands.

When the file is run, MATLAB reads the commands and executes them exactly as it would if we

had typed each command sequentially at the MATLAB prompt.

23. What is graph plots?

 plot(X,Y) creates a 2-D line plot of the data in Y versus the corresponding values in X.

 If X and Y are both vectors, then they must have equal length. The plot function

plots Y versus X.

 If X and Y are both matrices, then they must have equal size. The plot function plots

columns of Yversus columns of X.

PART-C (3 X 8 = 24 Marks)

(Answer ALL the Questions)

24. a) Explain in detail about array and its types with suitable example.

Array:

 MATLAB is particularly powerful in the way it deals with tables of data, called arrays.

An array is simply a variable that can contain a number of values arranged in tabular form.

Arrays may be one dimensional (like a list), two dimensional (like a table), or have more

dimensions. To set the value of one element of a one dimensional array, use the notation

variable(index)=expression;

 for example

table(1)=3;

table(2)=6;

Note that indexes must be expressions evaluating to positive integers. The smallest index is 1.

To access one element from a one dimensional array, use the notation

variable(index)

for example

a=table(2);

disp(table(2));

For two dimensional arrays, use

variable(index,index)=expression;

http://in.mathworks.com/help/matlab/ref/plot.html#inputarg_X
http://in.mathworks.com/help/matlab/ref/plot.html#inputarg_Y

to set the value and

variable(index,index)

to retrieve its value. You can store strings in tables, but each string occupies a row, and all rows

must be the same length (think of a two-dimensional array of characters).

You can assign a whole array in one operation using a notation involving square brackets: for

example:

array = [v11 v12 v13; v21 v22 v23];

where v11 is the value in row 1 col 1; v21 is the value in row 2 col 1; etc. The „;‟ marks the end

of a row.

 You can generate arrays containing sequences very easily with the „:‟ operator. The expression

start:stop

generates a sequence of integers from start to stop. The expression

start:increment:stop

generates a sequence from start to stop with the specfied increment. Try

disp(1:10);

disp(1:2:10);

 You can also select sub-parts of the array with the „:‟ operator. For example,

x(3:5)

represents the array consisting of the third through fifth elements of x. Also

y(2:2:100)

represents the array containing the even number elements of y below index 100.

 You can also add subtract, multiply and divide arrays of data using the operators we‟ve

mentioned previously. However MATLAB makes a difference between operations that work on

a cell-by-cell basis (so-called “dot” operations) as opposed to operations that work on the arrays

as a whole. For example, if you want to multiply two arrays of equal size to give a third array in

which each cell contains the product of the corresponding cells in the input, then you need to use

the “dot-multiply” operator .* for example

C = A.*B;

 Finally you can transpose rows and columns of a matrix with the ' operator, for example

disp(A')

[OR]

 b) Explain in detail about variables and assignment statements.

 Variables are named locations in memory where numbers, strings and other elements of data

may be stored while the program is working. Variable names are combinations of letters and

digits, but must start with a latter.

MATLAB does not require you to declare the names of variables in advance of their use.

This is actually a common cause of error, since it allows you to refer accidentally to variables

that don‟t exist. To assign a variable a value, use the assignment statement. This takes the

form

variable=expression;

for example

a=6;

or

name=‟Mark‟;

To display the contents of a variable, use

disp(variable);

 Once a variable is entered into the system, you can refer to it later.

 Variables must have values before they are used.

 When an expression returns a result that is not assigned to any variable, the system

assigns it to a variable named ans, which can be used later.

For example,

sqrt(78)

MATLAB will execute the above statement and return the following result −

ans = 8.8318

You can use this variable ans −

sqrt(78);

9876/ans

MATLAB will execute the above statement and return the following result −

ans = 1118.2

Let's look at another example −

x = 7 * 8;

y = x * 7.89

MATLAB will execute the above statement and return the following result −

y = 441.84

Multiple Assignments

You can have multiple assignments on the same line. For example,

a = 2; b = 7; c = a * b

MATLAB will execute the above statement and return the following result −

c = 14

25. a) Explain about Basic Plotting in detail.

Basic Plotting

 To create XY graphs, it is easiest to form your data into two row vectors, one for the x co-

ordinates, and one for the y co-ordinates. The command

plot(x,y)

will then create a figure with points at each y value for each matching x value. You can control

the style of any line drawn through the points by a third string argument to the plot command:

plot(x,y,style);

where style is made up from characters as follows:

 Color strings are 'c', 'm', 'y', 'r', 'g', 'b', 'w', and 'k'. These correspond to cyan, magenta,

yellow, red, green, blue, white, and black.

 Linestyle strings are '-' for solid, '--' for dashed, ':' for dotted, '-.' for dash-dot, and none

for no line.

The marker types are '+', 'o', '*', and 'x' and the filled marker types 's' for square, 'd' for

diamond, '^' for up triangle, 'v' for down triangle, '>' for right triangle, '<' for left triangle, 'p' for

pentagram, 'h' for hexagram, and none for no marker.

For example:

x = [1 2 3 4];

y = [10 15 20 25];

plot(x,y,‟g-*‟);

You can plot multiple lines by repeating the arguments:

plot(x1,y1,x2,y2,…);

or

plot(x1,y1,style1,x2,y2,style2,…);

You can give the graph a title with the

title(label);

command, where label is a character string. Likewise you can add labels to the X and Y axes

with

xlabel(label);

and

ylabel(label);

You can add a legend with

legend(label1,label2,label3,…);

Description

Plotting functions accept line specifications as arguments and modify the graph generated

accordingly. You can specify these three components:

 Line style

 Marker symbol

 Color

Line Style Specifiers

You indicate the line styles, marker types, and colors you want to display, detailed in the

following tables:

Specifier LineStyle

'-'
Solid line (default)

'--'
Dashed line

':'
Dotted line

'-.'
Dash-dot line

Marker Specifiers

Specifier Marker Type

'+' Plus sign

'o' Circle

'*' Asterisk

'.' Point

'x' Cross

'square' or 's' Square

'diamond' or 'd' Diamond

'^' Upward-pointing triangle

'v' Downward-pointing triangle

'>' Right-pointing triangle

'<' Left-pointing triangle

'pentagram' or 'p' Five-pointed star (pentagram)

'hexagram' or 'h' Six-pointed star (hexagram)

Color Specifier

Specifier Color

r Red

g Green

b Blue

c Cyan

m Magenta

y Yellow

k Black

w White

figure

t = 0:pi/20:2*pi;

plot(t,sin(t),'-.r*')

hold on

plot(t,sin(t-pi/2),'--mo')

plot(t,sin(t-pi),':bs')

hold off

Example Program

X=[0 4 2 5];

Y=[1 3 0 -2];

plot(X,Y,'*-');

[OR]

 b) Explain in detail about M-Files.

M-FILES

MATLAB allows writing two kinds of program files −

 Scripts − script files are program files with .m extension. In these files, you write series

of commands, which you want to execute together. Scripts do not accept inputs and do

not return any outputs. They operate on data in the workspace.

 Functions − functions files are also program files with .m extension. Functions can

accept inputs and return outputs. Internal variables are local to the function.

You can use the MATLAB editor or any other text editor to create your .mfiles. In this section,

we will discuss the script files. A script file contains multiple sequential lines of MATLAB

commands and function calls. You can run a script by typing its name at the command line.

Creating and Running Script File

To create scripts files, you need to use a text editor. You can open the MATLAB editor in two

ways:

 Using the command prompt

 Using the IDE

If you are using the command prompt, type edit in the command prompt. This will open the

editor. You can directly type edit and then the filename (with .m extension)

edit

Or

edit <filename>

The above command will create the file in default MATLAB directory. If you want to store all

program files in a specific folder, then you will have to provide the entire path.

Let us create a folder named progs. Type the following commands at the command prompt

(>>):

mkdir progs % create directory progs under default directory

chdir progs % changing the current directory to progs

edit prog1.m % creating an m file named prog1.m

If you are creating the file for first time, MATLAB prompts you to confirm it. Click Yes.

Alternatively, if you are using the IDE, choose NEW -> Script. This also opens the editor and

creates a file named Untitled. You can name and save the file after typing the code.

Type the following code in the editor −

NoOfStudents = 6000;

TeachingStaff = 150;

NonTeachingStaff = 20;

Total = NoOfStudents + TeachingStaff ...

 + NonTeachingStaff;

disp(Total);

After creating and saving the file, you can run it in two ways −

 Clicking the Run button on the editor window or

 Just typing the filename (without extension) in the command prompt: >> prog1

The command window prompt displays the result −

6170

Example

Create a script file, and type the following code −

a = 5; b = 7;

c = a + b

d = c + sin(b)

e = 5 * d

f = exp(-d)

When the above code is compiled and executed, it produces the following result −

c = 12

d = 12.657

e = 63.285

f = 3.1852e-06

26. a) Explain about Generating wave forms, Sound, replay, load and save in detail.

GENERATING WAVEFORMS

Waveforms are just long vectors with one number per amplitude sample. Usually they are

best kept scaled so that each amplitude is between –1 and 1. To generate a sinewave, first

generate a time sequence t representing the times of each sampling instant; for example:

t = 0:0.0001:2;

would generate a two second sequence with a sampling interval of 0.1ms (i.e. 10,000Hz). You

can then generate a sinewave at frequency F with the expression

y = sin(2*pi*F*t);

You can create a pulse by creating a vector of zeros and setting a single element to one. A pulse

train has a series of elements set to one. If these occurred every 100 elements, you might use the

expression

y(1:100:10000)=1;

To create a simple sawtooth, you can use the remainder function, for example

y = rem(1:10000,100)/100;

To create a noise waveform, you can use the „rand(nrows,ncols)‟ function, for example

y = rand(1,10000);

SOUND REPLAY, LOAD AND SAVE

 To replay a waveform, you can use

sound(wave,samplerate);

To ensure that the waveform is scaled to the range –1 .. +1 before replay, use

soundsc(wave,samplerate);

instead.

To save a waveform to a file, use

save filename variable;

To load a waveform from a file, use

load filename variable;

To save a waveform in a Windows compatible audio file format, use

wavwrite(waveform,samplerate,filename);

 To load a Windows compatible audio file, use

[waveform,samplerate,nbits]=wavread(filename);

Example program:

srate=11025;

t=0:1/srate:1;

s=sin(2*%pi*500*t);

sound(s,srate);

wavwrite(s,srate,16,'ex35.wav');

plot(t(1:100),s(1:100),'-');

[OR]

 b) Explain in detail about Formatted Console Input- Output.

We can control the exact way in which values are printed to the screen with the „fprintf()‟

function (fprintf= “file print formatted”). This function takes one argument repesenting the

formatting instructions, followed by a list of values to be printed. Embedded within the format

string are „percent commands‟ which control where and how the values are to be written. Here

are some examples:

fprintf('The answer is %g seconds.\n',nsec);

fprintf('Day of the week = %s\n',dayofweek([7 12 1941]));

fprintf('Mean=%.3f ± %.4f\n',mean,stddev);

The command %g represents a general real number, %f means a fixed point number, %d a

decimal integer, and %s a string. You can put numeric values between the „%‟ and the letter to

control the field width and the number of digits after the decimal point. For example (□=space):

fprintf('%5g',10) □□□10

fprintf('%10.4f',123.456) □□123.4560

fprintf('%10s', 'fred') □□□□□□fred

You can input a value or a string from the command line with the „input()‟ function. This has

two forms depending on whether you want to input a number or a string:

yval=input('Enter a number: ');

name=input('Enter your name: ', 's');

Input and Output Commands

MATLAB provides the following input and output related commands −

Command Purpose

disp Displays contents of an array or string.

fscanf Read formatted data from a file.

format Controls screen-display format.

fprintf Performs formatted writes to screen or file.

input Displays prompts and waits for input.

; Suppresses screen printing.

The fscanf and fprintf commands behave like C scanf and printf functions. They support the

following format codes

Register Number____________

 [16CSU304B]

KARPAGAM ACADEMY FOR HIGHER EDUCATION

KARPAGAM UNIVERSITY

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2016 onwards)

THIRD INTERNAL EXAMINATION, SEPTEMBER 2017

Third Semester

COMPUTER SCIENCE

PROGRAMMING IN MATLAB

Date & Session : 14.09.2017 Class: II B.Sc CS

Maximum : 50 Marks Duration: 2 Hours

PART-A (20 X 1 = 20 Marks)

(Answer ALL the Questions)

1. The _________ construct is a special form branching construct designed to trap errors

a) try/catch b)switch c)if d)if else

2. The statements in the ________ block will only be executed of an error occurred in try

block

a)catch b)else c)try d)if else

3. The ______ loop is a loop that executes a block of statements a specified number of

times

a)do b)while c)whiledo d) for

4. The ________ statement terminates the current pass through the loop and return

control to the top of the loop

a)break b)continue c)skip d)end

5. _________ is used to terminate the program due to incorrect input and gives the error

message

a)break b)continue c)error d)none

6. The ______ statement terminates execution of for or while loop

 a)for loop b)break c)continue d)nested loop

7. The _____ loop repeatedly executes statements while condition is true.

a) for loop b)for c)while d)nested loop

8. _____ is a repetition statement

a)for b)else if c)switch d)nested if

9. The while-end loop is classified as a/an

a)definite loop b)indefinite loop. c) infinite loop. d)ridiculous loop.

10. If ______ loops are nested, they should have independent loop index variables.

a)do while b)while c)if d)for

11. A program that response to event is said to be _____

a)program driven b)event driven c)events d)none

12. A most common container is a _______

a)figure b)workspace c)plot d)area

13. ________ may be modal or non modal

a)toolbox b)dialog boxes c)toggle button d)menus

14. Each graphics object is known by a unique number called a _______

a)Handle b)object c)term d)component

15. GUI Stands for _______

a)Graphical User Input b)Graphical User Interface

c)Geometric User Interface d)Graphical Unique Interface

16. _______ can contain components or other containers

a)callbacks b)panel c)button group d)component

17. A ______ allows a user to select actions without additional components appearing on

the GUI display

a)tools b)list box c)menus d)dialog boxes

18. Each figure can contain _________ types of objects

a)six b)eight c)two d)seven

19. The ______ function is the inverse of fprintf().

a)fscanf() b)fgetl() c)object d)Menu Editor

20. We can add menu options to your dialog with the _______

a)Figures b)Menu Editor c)Edit boxes d)GUI

PART-B (3 X 2 = 6 Marks)

(Answer ALL the Questions)

21. What is If Statement and its syntax?

Execute statements if condition is true

Syntax

if expression

 statements

elseif expression

 statements

else

 statements

end

Description

if expression, statements, end evaluates an expression, and executes a group of statements

when the expression is true. An expression is true when its result is nonempty and

contains only nonzero elements (logical or real numeric). Otherwise, the expression is

false.

http://in.mathworks.com/help/matlab/ref/if.html#bt_csfy

22. What is Manipulating a text?

 Manipulating text includes the following:

1. Writing to a text file

2. Reading from a text file

3. Randomising and sorting a list
4. Searching a list

23. What are the types of loops does Matlab provides?

 For loop

 While loop

 Nested loop

PART-C (3 X 8 = 24 Marks)

(Answer ALL the Questions)

24. a) Explain Conditional statements with example.

CONDITIONAL STATEMENTS

MATLAB provides following types of decision making statements. Click the following

links to check their detail −

Statement Description

if ... end statement

An if ... end statement consists of a boolean

expression followed by one or more

statements.

if...else...end statement

An if statement can be followed by an

optional else statement, which executes when

the boolean expression is false.

If... elseif...elseif...else...end statements

An if statement can be followed by one (or

more) optional elseif... and an else statement,

which is very useful to test various conditions.

nested if statements

You can use one if or elseif statement inside

another if or elseif statement(s).

switch statement

A switch statement allows a variable to be

tested for equality against a list of values.

nested switch statements

You can use one switch statement inside

another switch statement(s).

https://www.tutorialspoint.com/matlab/if_end_statement_matlab.htm
https://www.tutorialspoint.com/matlab/if_else_statement_matlab.htm
https://www.tutorialspoint.com/matlab/if_elseif_else_statement.htm
https://www.tutorialspoint.com/matlab/nested_if_statements_matlab.htm
https://www.tutorialspoint.com/matlab/switch_statement_matlab.htm
https://www.tutorialspoint.com/matlab/nested_switch_statements_matlab.htm

If end

An if ... end statement consists of an if statement and a boolean expression followed by

one or more statements. It is delimited by the end statement.

Syntax

The syntax of an if statement in MATLAB is −

if <expression>

% statement(s) will execute if the boolean expression is true

<statements>

end

If the expression evaluates to true, then the block of code inside the if statement will be

executed. If the expression evaluates to false, then the first set of code after the end

statement will be executed.

Flow Diagram

Example

Create a script file and type the following code −

a = 10;

% check the condition using if statement

 if a < 20

 % if condition is true then print the following

 fprintf('a is less than 20\n');

 end

fprintf('value of a is : %d\n', a);

When you run the file, it displays the following result −

a is less than 20

value of a is : 10

If else end

An if statement can be followed by an optional else statement, which executes when the

expression is false.

Syntax

The syntax of an if...else statement in MATLAB is −

if <expression>

% statement(s) will execute if the boolean expression is true

<statement(s)>

else

<statement(s)>

% statement(s) will execute if the boolean expression is false

end

If the boolean expression evaluates to true, then the if block of code will be executed,

otherwise else block of code will be executed.

Flow Diagram

Example

Create a script file and type the following code −

a = 100;

% check the boolean condition

 if a < 20

 % if condition is true then print the following

 fprintf('a is less than 20\n');

 else

 % if condition is false then print the following

 fprintf('a is not less than 20\n');

 end

 fprintf('value of a is : %d\n', a);

When the above code is compiled and executed, it produces the following result −

a is not less than 20

value of a is : 100

If elseif elseif else end statements

An if statement can be followed by one (or more) optional elseif... and an else statement,

which is very useful to test various conditions.

When using if... elseif...else statements, there are few points to keep in mind:

 An if can have zero or one else's and it must come after any elseif's.

 An if can have zero to many elseif's and they must come before the else.

 Once an else if succeeds, none of the remaining elseif's or else's will be tested.

Syntax

if <expression 1>

% Executes when the expression 1 is true

<statement(s)>

elseif <expression 2>

% Executes when the boolean expression 2 is true

<statement(s)>

Elseif <expression 3>

% Executes when the boolean expression 3 is true

<statement(s)>

else

% executes when the none of the above condition is true

<statement(s)>

end

Example

Create a script file and type the following code in it −

a = 100;

%check the boolean condition

 if a == 10

 % if condition is true then print the following

 fprintf('Value of a is 10\n');

 elseif(a == 20)

 % if else if condition is true

 fprintf('Value of a is 20\n');

 elseif a == 30

 % if else if condition is true

 fprintf('Value of a is 30\n');

 else

 % if none of the conditions is true '

 fprintf('None of the values are matching\n');

 fprintf('Exact value of a is: %d\n', a);

 end

When the above code is compiled and executed, it produces the following result −

None of the values are matching

Exact value of a is: 100

Nested If Statements

It is always legal in MATLAB to nest if-else statements which means you can use one if

or elseif statement inside another if or elseif statement(s).

Syntax

The syntax for a nested if statement is as follows −

if <expression 1>

% Executes when the boolean expression 1 is true

 if <expression 2>

 % Executes when the boolean expression 2 is true

 end

end

You can nest elseif...else in the similar way as you have nested if statement.

Example

Create a script file and type the following code in it −

a = 100;

b = 200;

 % check the boolean condition

 if(a == 100)

 % if condition is true then check the following

 if(b == 200)

 % if condition is true then print the following

 fprintf('Value of a is 100 and b is 200\n');

 end

 end

 fprintf('Exact value of a is : %d\n', a);

 fprintf('Exact value of b is : %d\n', b);

When you run the file, it displays −

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

Switch Statements

A switch block conditionally executes one set of statements from several choices. Each

choice is covered by a case statement.

An evaluated switch_expression is a scalar or string.

An evaluated case_expression is a scalar, a string or a cell array of scalars or strings.

The switch block tests each case until one of the cases is true. A case is true when −

 For numbers, eq(case_expression,switch_expression).

 For strings, strcmp(case_expression,switch_expression).

 For objects that support the eq(case_expression,switch_expression).

 For a cell array case_expression, at least one of the elements of the cell array

matches switch_expression, as defined above for numbers, strings and objects.

When a case is true, MATLAB executes the corresponding statements and then exits the

switch block.

The otherwise block is optional and executes only when no case is true.

Syntax

The syntax of switch statement in MATLAB is −

switch <switch_expression>

 case <case_expression>

 <statements>

 case <case_expression>

 <statements>

 ...

 ...

 otherwise

 <statements>

end

Example

Create a script file and type the following code in it −

grade = 'B';

 switch(grade)

 case 'A'

 fprintf('Excellent!\n');

 case 'B'

 fprintf('Well done\n');

 case 'C'

 fprintf('Well done\n');

 case 'D'

 fprintf('You passed\n');

 case 'F'

 fprintf('Better try again\n');

 otherwise

 fprintf('Invalid grade\n');

 end

When you run the file, it displays −

Well done

Nested Switch statements

It is possible to have a switch as part of the statement sequence of an outer switch. Even

if the case constants of the inner and outer switch contain common values, no conflicts

will arise.

Syntax

The syntax for a nested switch statement is as follows −

switch(ch1)

 case 'A'

 fprintf('This A is part of outer switch');

 switch(ch2)

 case 'A'

 fprintf('This A is part of inner switch');

 case 'B'

 fprintf('This B is part of inner switch');

 end

 case 'B'

 fprintf('This B is part of outer switch');

end

Example

Create a script file and type the following code in it −

a = 100;

b = 200;

switch(a)

 case 100

 fprintf('This is part of outer switch %d\n', a);

 switch(b)

 case 200

 fprintf('This is part of inner switch %d\n', a);

 end

end

fprintf('Exact value of a is : %d\n', a);

fprintf('Exact value of b is : %d\n', b);

When you run the file, it displays −

This is part of outer switch 100

This is part of inner switch 100

Exact value of a is : 100

Exact value of b is : 200

[OR]

 b) Explain in detail while, for loop with example.

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution

leaves a scope, all automatic objects that were created in that scope are destroyed.

MATLAB supports the following control statements. Click the following links to check

their detail.

Control Statement Description

break statement

Terminates the loop statement and transfers execution to the

statement immediately following the loop.

continue statement

Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

While Loop

The while loop repeatedly executes statements while condition is true.

Syntax

The syntax of a while loop in MATLAB is −

while <expression>

 <statements>

end

The while loop repeatedly executes program statement(s) as long as the expression

remains true.

An expression is true when the result is nonempty and contains all nonzero elements

(logical or real numeric). Otherwise, the expression is false.

https://www.tutorialspoint.com/matlab/matlab_break_statement.htm
https://www.tutorialspoint.com/matlab/matlab_continue_statement.htm

Example

Create a script file and type the following code −

a = 10;

% while loop execution

while(a < 20)

 fprintf('value of a: %d\n', a);

 a = a + 1;

end

When you run the file, it displays the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

For Loop

A for loop is a repetition control structure that allows you to efficiently write a loop that

needs to execute a specific number of times.

Syntax

The syntax of a for loop in MATLAB is −

for index = values

 <program statements>

 ...

end

values has one of the following forms −

Format Description

initval:endval increments the index variable from initval to endval by 1, and

repeats execution of program statements until index is greater

than endval.

initval:step:endval increments index by the value step on each iteration, or decrements

when step is negative.

valArray creates a column vector index from subsequent columns of

array valArray on each iteration. For example, on the first iteration,

index = valArray(:,1). The loop executes for a maximum of n times,

where n is the number of columns of valArray, given by

numel(valArray, 1, :). The input valArraycan be of any MATLAB

data type, including a string, cell array, or struct.

Example 1

Create a script file and type the following code −

for a = 10:20

 fprintf('value of a: %d\n', a);

end

When you run the file, it displays the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

value of a: 20

Example 2

Create a script file and type the following code −

for a = [24,18,17,23,28]

 disp(a)

end

When you run the file, it displays the following result −

24

18

17

23

28

Nested Loop

MATLAB allows to use one loop inside another loop. Following section shows few

examples to illustrate the concept.

Syntax

The syntax for a nested for loop statement in MATLAB is as follows −

for m = 1:j

 for n = 1:k

 <statements>;

 end

end

The syntax for a nested while loop statement in MATLAB is as follows −

while <expression1>

 while <expression2>

 <statements>

 end

end

Example

Let us use a nested for loop to display all the prime numbers from 1 to 100. Create a

script file and type the following code −

for i=2:100

 for j=2:100

 if(~mod(i,j))

 break; % if factor found, not prime

 end

 end

 if(j > (i/j))

 fprintf('%d is prime\n', i);

 end

end

When you run the file, it displays the following result −

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

23 is prime

29 is prime

31 is prime

37 is prime

41 is prime

43 is prime

47 is prime

53 is prime

59 is prime

61 is prime

67 is prime

71 is prime

73 is prime

79 is prime

83 is prime

89 is prime

97 is prime

Break Statement

The break statement terminates execution of for or while loop. Statements in the loop

that appear after the break statement are not executed.

In nested loops, break exits only from the loop in which it occurs. Control passes to the

statement following the end of that loop.

Flow Diagram

Example

Create a script file and type the following code:

a = 10;

% while loop execution

while (a < 20)

 fprintf('value of a: %d\n', a);

 a = a+1;

 if(a > 15)

 % terminate the loop using break statement

 break;

 end

end

When you run the file, it displays the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

Continue Statements

The continue statement is used for passing control to next iteration of for or while loop.

The continue statement in MATLAB works somewhat like the break statement. Instead

of forcing termination, however, 'continue' forces the next iteration of the loop to take

place, skipping any code in between.

Flow Diagram

Example

Create a script file and type the following code −

a = 10;

%while loop execution

while a < 20

 if a == 15

 % skip the iteration

 a = a + 1;

 continue;

 end

fprintf('value of a: %d\n', a);

a = a + 1;

end

When you run the file, it displays the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

25. a)Briefly describe about Repetition Statement with example.

REPETITION STATEMENTS

There may be a situation when you need to execute a block of code several number of

times. In general, statements are executed sequentially. The first statement in a function

is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more

complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple times

and following is the general form of a loop statement in most of the programming

languages −

MATLAB provides following types of loops to handle looping requirements. Click the

following links to check their detail −

Loop Type Description

while loop

Repeats a statement or group of statements while a given

condition is true. It tests the condition before executing the

loop body.

for loop

Executes a sequence of statements multiple times and

abbreviates the code that manages the loop variable.

nested loops

You can use one or more loops inside any another loop.

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution

leaves a scope, all automatic objects that were created in that scope are destroyed.

MATLAB supports the following control statements. Click the following links to check

their detail.

Control Statement Description

break statement

Terminates the loop statement and transfers execution to the

statement immediately following the loop.

continue statement

Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

While Loop

The while loop repeatedly executes statements while condition is true.

Syntax

The syntax of a while loop in MATLAB is −

while <expression>

 <statements>

end

https://www.tutorialspoint.com/matlab/matlab_while_loop.htm
https://www.tutorialspoint.com/matlab/matlab_for_loop.htm
https://www.tutorialspoint.com/matlab/matlab_nested_loops.htm
https://www.tutorialspoint.com/matlab/matlab_break_statement.htm
https://www.tutorialspoint.com/matlab/matlab_continue_statement.htm

The while loop repeatedly executes program statement(s) as long as the expression

remains true.

An expression is true when the result is nonempty and contains all nonzero elements

(logical or real numeric). Otherwise, the expression is false.

Example

Create a script file and type the following code −

a = 10;

% while loop execution

while(a < 20)

 fprintf('value of a: %d\n', a);

 a = a + 1;

end

When you run the file, it displays the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

For Loop

A for loop is a repetition control structure that allows you to efficiently write a loop that

needs to execute a specific number of times.

Syntax

The syntax of a for loop in MATLAB is −

for index = values

 <program statements>

 ...

end

values has one of the following forms −

Format Description

initval:endval increments the index variable from initval to endval by 1, and

repeats execution of program statements until index is greater

than endval.

initval:step:endval increments index by the value step on each iteration, or decrements

when step is negative.

valArray creates a column vector index from subsequent columns of

array valArray on each iteration. For example, on the first iteration,

index = valArray(:,1). The loop executes for a maximum of n times,

where n is the number of columns of valArray, given by

numel(valArray, 1, :). The input valArraycan be of any MATLAB

data type, including a string, cell array, or struct.

Example 1

Create a script file and type the following code −

for a = 10:20

 fprintf('value of a: %d\n', a);

end

When you run the file, it displays the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

value of a: 20

Example 2

Create a script file and type the following code −

for a = [24,18,17,23,28]

 disp(a)

end

When you run the file, it displays the following result −

24

18

17

23

28

Nested Loop

MATLAB allows to use one loop inside another loop. Following section shows few

examples to illustrate the concept.

Syntax

The syntax for a nested for loop statement in MATLAB is as follows −

for m = 1:j

 for n = 1:k

 <statements>;

 end

end

The syntax for a nested while loop statement in MATLAB is as follows −

while <expression1>

 while <expression2>

 <statements>

 end

end

Example

Let us use a nested for loop to display all the prime numbers from 1 to 100. Create a

script file and type the following code −

for i=2:100

 for j=2:100

 if(~mod(i,j))

 break; % if factor found, not prime

 end

 end

 if(j > (i/j))

 fprintf('%d is prime\n', i);

 end

end

When you run the file, it displays the following result −

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

23 is prime

29 is prime

31 is prime

37 is prime

41 is prime

43 is prime

47 is prime

53 is prime

59 is prime

61 is prime

67 is prime

71 is prime

73 is prime

79 is prime

83 is prime

89 is prime

97 is prime

Break Statement

The break statement terminates execution of for or while loop. Statements in the loop

that appear after the break statement are not executed.

In nested loops, break exits only from the loop in which it occurs. Control passes to the

statement following the end of that loop.

Flow Diagram

Example

Create a script file and type the following code:

a = 10;

% while loop execution

while (a < 20)

 fprintf('value of a: %d\n', a);

 a = a+1;

 if(a > 15)

 % terminate the loop using break statement

 break;

 end

end

When you run the file, it displays the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

Continue Statements

The continue statement is used for passing control to next iteration of for or while loop.

The continue statement in MATLAB works somewhat like the break statement. Instead

of forcing termination, however, 'continue' forces the next iteration of the loop to take

place, skipping any code in between.

Flow Diagram

Example

Create a script file and type the following code −

a = 10;

%while loop execution

while a < 20

 if a == 15

 % skip the iteration

 a = a + 1;

 continue;

 end

fprintf('value of a: %d\n', a);

a = a + 1;

end

When you run the file, it displays the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

[OR]

 b)Discuss about Manipulating a text in detail with example

 MANIPULATING TEXT

1. Writing to a text file

 To save the results of some computation to a file in text format reqires the following

steps:

a. Open a new file, or overwrite an old file, keeping a „handle‟ for the file.

b. Print the values of expressions to the file, using the file handle

c. Close the file, using the file handle

The file handle is a just a variable which identifies the open file in your program. This

allows you to have any number of files open at any one time.

% open file

fid = fopen('myfile.txt','wt'); % 'wt' means "write text"

if (fid < 0)

 error('could not open file "myfile.txt"');

end;

% write some stuff to file

for i=1:100

 fprintf(fid,'Number = %3d Square = %6d\n',i,i*i);

end;

% close the file

fclose(fid);

2. Reading from a text file

 To read some results from a text file is straightforward if you just want to load the whole

file into memory. This requires the following steps:

a. Open an existing file, keeping a „handle‟ for the file.

b. Read expressions from the file into a single array, using the file handle

c. Close the file, using the file handle

The fscanf() function is the inverse of fprintf(). However it returns the values it reads as

values in a matrix. You can control the 'shape' of the output matrix with a third

argument.

A = fscanf(fid,"%g %g %g\n",[3,inf]) % A has 3 rows and 1 col per line

disp(A(1,1)) % display first value on first line

disp(A(1,2)) % display first value on second line

disp(A(2,1)) % display second value on first line

Thus to read back the data we saved above:

% open file

fid = fopen('myfile.txt','rt'); % 'rt' means "read text"

if (fid < 0)

 error('could not open file "myfile.txt"');

end;

% read from file into table with 2 rows and 1 column per line

tab = fscanf(fid,'Number = %d Square = %d\n',[2,inf]);

% close the file

fclose(fid);

rtab = tab'; % convert to 2 columns and 1 row per line

Reading a table of strings is more complex, since the strings have to be the same length.

We can use the fgetl() function to get a line of text as characters, but we'll first need to

find out the length of the longest string, then ensure all strings are the same length. Here

is a complete function for loading a text file as a table of fixed-length strings:

function tab=readtextfile(filename)

% Read a text file into a matrix with one row per input line

% and with a fixed number of columns, set by the longest line.

% Each string is padded with NUL (ASCII 0) characters

%

% open the file for reading

ip = fopen(filename,'rt'); % 'rt' means read text

if (ip < 0)

 error('could not open file'); % just abort if error

end;

% find length of longest line

max=0; % record length of longest string

cnt=0; % record number of strings

s = fgetl(ip); % get a line

while (ischar(s)) % while not end of file

 cnt = cnt+1;

 if (length(s) > max) % keep record of longest

 max = length(s);

 end;

 s = fgetl(ip); % get next line

end;

% rewind the file to the beginning

frewind(ip);

% create an empty matrix of appropriate size

tab=char(zeros(cnt,max)); % fill with ASCII zeros

% load the strings for real

cnt=0;

s = fgetl(ip);

while (ischar(s))

 cnt = cnt+1;

 tab(cnt,1:length(s)) = s; % slot into table

 s = fgetl(ip);

end;

% close the file and return

fclose(ip);

return;

Here is an example of its use:

% write some variable length strings to a file

op = fopen('weekdays.txt','wt');

fprintf(op,'Sunday\nMonday\nTuesday\nWednesday\n');

fprintf(op,'Thursday\nFriday\nSaturday\n');

fclose(op);

% read it into memory

tab = readtextfile('weekdays.txt');

% display it

disp(tab);

3. Randomising and sorting a list

Assuming we have a table of values, how can we randomise the order of the entries? A

good way of achieving this is analogous to shuffling a pack of cards. We pick two

positions in the pack, then swap over the cards at those two positions. We then just

repeat this process enough times that each card is likely to be swapped at least once.

function rtab=randomise(tab)

% randomise the order of the rows in tab.

% columns are unaffected

[nrows,ncols]=size(tab); % get size of input matrix

cnt = 10*nrows; % enough times

while (cnt > 0)

 pos1 = 1+fix(nrows*rand); % get first random row

 pos2 = 1+fix(nrows*rand); % get second random row

 tmp = tab(pos1,:); % save first row

 tab(pos1,:) = tab(pos2,:); % swap second into first

 tab(pos2,:) = tmp; % move first into second

 cnt=cnt-1;

end;

rtab=tab; % return randomised table

return;

Sorting a list is easy if you just want some standard alphabetic ordering. But what if you

want to choose some arbitrary ordering function? For example, how could you sort

strings when case was not important? Here we use the ability of MATLAB to evaluate a

function by name (feval()) so that we can provide the name of a function for doing the

comparisons the way we want. This function should take two rows and return –1 if the

first row sorts earlier than the second, 1 if the second row sorts earlier than the first and 0

if there is no preference. Here is a case-independent comparison function:

function flag=comparenocase(str1,str2)

% compares two strings without regard to case

% returns –1, 0, 1 if str1 is less than, equal, greater than str2.

len1=length(str1);

len2=length(str2);

for i=1:min(len1,len2)

 c1 = str1(i);

 c2 = str2(i);

 if (('a' <= c1)&(c1 <= 'z'))

 c1 = char(abs(c1)-32); % convert lower case to upper

 end;

 if (('a' <= c2)&(c2 <= 'z'))

 c2 = char(abs(c2)-32); % convert lower case to upper

 end;

 if (c1 < c2)

 flag = -1; % str1 sorts earlier

 return;

 elseif (c2 < c1)

 flag = 1; % str2 sorts earlier

 return;

 end;

end;

% strings match up to length of shorter, so

if (len1 < len2)

 flag = -1; % str1 sorts earlier

elseif (len2 < len1)

 flag = 1; % str2 sorts earlier

else

 flag = 0; % no preference

end;

return;

Here is a sort function that might be used with this comparison function.

function stab=functionsortrows(tab,funcname)

% sorts the rows of the input table using the supplied

% function name to provide an ordering on pairs of rows

[nrows,ncols]=size(tab);

for i=2:nrows % sort each row into place

 j = i;

 tmp = tab(j,:); % save row

 % compare this row with higher rows to see where it goes

 while ((j > 1)&(feval(funcname,tmp,tab(j-1,:))<0))

 tab(j,:) = tab(j-1,:); % shift higher rows down

 j = j - 1;

 end;

 tab(j,:) = tmp; % put in ordered place

end;

stab = tab; % return sorted table

return;

4. Searching a list

How might we search a list of items for an item matching a specific value? If the list is

unordered, all we can do is run down the list testing each entry in turn. This function

finds the index of a row in a table that contains (anywhere) the characters in the supplied

match string:

function idx=findstring(tab,str)

% find the row index containing a matching string

% returns 0 if the string is not found

[nrows,ncols]=size(tab);

for idx=1:nrows

 matches = findstr(tab(idx,:),str);

 if (length(matches)>0)

 return;

 end;

end;

idx=0;

return;

However, the process can be much faster if the listed is sorted and we are searching for

an exact match only. A so-called binary search is the fastest possible way of finding an

item in a sorted list:

function idx=binarysearch(tab,val)

% returns the row index of val in sorted table tab

% returns 0 if val is not found

[nrows,ncols]=size(tab);

lo=1;

hi=nrows;

while (lo <= hi)

 idx = fix(lo+hi)/2;

 if (val < tab(idx,:))

 hi = idx - 1;

 elseif (val > tab(idx,:))

 lo = idx + 1;

 else

 return;

 end;

end;

idx=0;

return;

26. a)Explain about GUI Interface in detail.

GUI INTERFACE

1. Elements of a Graphical User Interface

 By a graphical user interface, we mean that we can give a MATLAB program the

look and feel of a typical Windows application. The MATLAB GUI design system

allows you to create applications consisting of one or more „dialogs‟ containing typical

„controls‟ such as buttons, edit boxes, lists and pictures.

 One of the important aspects of a Windows application that is unlike the kind of

programs we have considered up to now is that they interact asynchronously with the

user. The user can select any function of the program at any time. This means that you

need to store the „state‟ of your program in a set of variables and be prepared to execute

any function based on the current state at any time.

 The MATLAB GUI design system helps you in this by associating functions with

each element of the dialog. Thus when you press a button, click on a menu, or enter a

number in an edit box, you can arrange for a function in your program to be called. Your

task is to program the actions related to that function, e.g. opening a file, playing a sound,

or displaying the results of a calculation.

The most common controls are:

 Menu options. Selection calls up an operation by name.

 Push buttons. Clicking calls up some operation.

 Edit boxes. User can enter some text or numerical value.

 List boxes. User can choose among list of items.

 Figures. Program can display graphical results.

 Text. Program can display textual result.

You can use the controls themselves to store data or you can create a set of global

variables.

 2. How to build a simple dialogue

 To start the design program type 'guide' at the MATLAB prompt. You are

presented with a blank form upon which you can position controls. Choose a control

from the palette and click and size the control on the page to position it. Each control is

automatically given a name based on its type.

 When the layout is complete, you can save the design to a „.fig‟ file. This will

automatically create a matching „.m‟ program file which you can use to launch the

application and store the code that is operated by the controls. It is not necessary to store

all your code in the matching „.m‟ file; indeed it is a good idea to break up any large

sections of code into its own function blocks stored in separate files. You will see that

the layout designer builds a „callback‟ function prototype in the program file for each

control that provides input to the application. This function will be called automatically

when that control is activated.

 You can edit the properties of the controls on the layout editor by right-clicking

on them and choosing „Property Inspector‟. In particular the „String‟ property is used to

store the default text for buttons, list boxes and edit boxes. The „Tag‟ property is the

name of the control; and until you are familiar with MATLAB, it is advisable not to

change the default name. You can also use the Property Inspector to change the name of

the dialog itself.

 You can add menu options to your dialog with the „Menu Editor‟. If you leave

the callback function entry as “%automatic”, then the menu editor adds callback

functions to your program for each menu item. Otherwise create your own callback

function using existing ones as a model, and associate a call to the function with the

menu item manually.

 It is important to realise that the „.m‟ file associated with your application is executed

afresh each time there is some event in the dialog. That is you must store the „current

state‟ of the program in global variables in the workspace, and not in variables local to a

function. You can ensure this by using a „global‟statement and initialising them in the

part of the file where the figure is initialised.

 You can access any property of any control using the „Tag‟ property of the control

and the MATLAB „get()‟ and „set()‟ functions.

value = get(handles.ControlTagName,'PropertyName');

set(handles.ControlTagName,'PropertyName','Value');

For example:

text = get(handles.edit1,'String');

set(handles.edit1,'String','100');

Note that most properties have to be get() and set() as strings. Use the num2str() and

str2num() functions to help convert between strings and numeric values.

 3. Worked example

 [OR]

 b)Explain about attaching buttons to actions, Getting Input and Output.

GETTING INPUT, GETTING OUTPUT

uicontrol

Create user interface control object

Syntax

c = uicontrol
c = uicontrol(Name,Value,...)
c = uicontrol(parent)
c = uicontrol(parent,Name,Value,...)
uicontrol(c)

Description

c = uicontrol creates a uicontrol (push button) in the current figure and returns the

uicontrol object, c. If there is no figure available, then MATLAB
®
 creates a new figure to

serve as the parent.

c = uicontrol(Name,Value,...) creates a uicontrol and specifies one or more

uicontrol property names and corresponding values. Use this syntax to override the

default uicontrol properties. The default uicontrol style is'pushbutton'.

c = uicontrol(parent) creates a uicontrol and designates a specific parent object.

The parent argument can be a figure, uipanel, uibuttongroup, or uitab object.

c = uicontrol(parent,Name,Value,...) creates a uicontrol with a specific parent

and one or more uicontrol properties.

uicontrol(c) gives focus to a specific uicontrol object, c.

Specifying the Uicontrol Style

 When selected, most uicontrol objects perform a predefined action. To create a

specific type of uicontrol, set the Styleproperty as one of the following values.

You can specify part of the Style value if it is unique among all the styles. For

example, instead of 'radiobutton', you can specify 'radio'.

 'checkbox' – A check box generates an action when you select it. Use check

boxes to provide a number of independent choices. To activate a check box, click

the mouse button on the object. The check box updates its appearance when its

state changes.

 'edit' – Editable text fields enable you to enter or modify text values. Use

editable text when you want free text as input. To enable multiple lines of text,

set Max-Min>1. Multiline edit boxes provide a vertical scroll bar for scrolling. The

arrow keys also provide a way to scroll. Obtain the current text by getting

the String property. The String property does not update as you type in an edit

box. To execute the callback routine for an edit text control, type in the desired

text and then do one of the following:

o Click another component, the menu bar, or elsewhere on the window.

o For a single line editable text box, press Enter.

o For a multiline editable text box, press Ctl+Enter.

 'frame'

 'listbox' – List boxes display a list of items, from which you can select one or

more items. Unlike pop-up menus, list boxes do not expand when clicked.

The Min and Max properties control the selection mode:

o To enable multiple selection of items, set Max-Min > 1.

o To enable selection of only one item at a time, set Max-Min <= 1

 The Value property stores the row indexes of currently selected list box items,

and is a vector value when you select multiple items. After any mouse button up

event that changes the Value property, MATLAB evaluates the list box's callback

routine. To delay action when multiple items can be selected, you can associate a

"Done" push button with the list box. Use the callback for that button to evaluate

the list box Value property.

 List boxes with the Enable property set to on differentiate between single and

double left clicks. MATLAB sets the figure SelectionType property

to normal or open accordingly before evaluating the list box Callback property.

For enabled list boxes, Ctrl-left click and Shift-left click also set the

figure SelectionType property to normal or open, respectively indicating a

single or double click.

 'popupmenu' – Pop-up menus (also known as drop-down menus) display a list of

choices when you open them with a button-press. When closed, a pop-up menu

indicates the current choice. Pop-up menus are useful when you want to provide a

number of mutually exclusive choices, but do not want to take up the amount of

space that a group of radio buttons requires.

 'pushbutton' – Push buttons generate an action when activated. Left-click a

push button to activate it. The button appears to depress until you release the

mouse button. The callback activates when you release the mouse button while

still pointing within the push button.

 'radiobutton' – Radio buttons are similar to check boxes, but are intended to be

mutually exclusive within a group of related radio buttons. When used this way,

you can only select one radio button at any given time. To activate a radio button,

click and release the mouse button over it. The easiest way to implement mutually

exclusive behavior for a set of radio buttons is to place them within

a uibuttongroup.

 'slider' – Sliders accept numeric input within a specific range when you move

the “thumb” button along a bar. The location of the thumb indicates a numeric

value, assigned to the Value property when you release the mouse button. You

can set the minimum, maximum, and current values, and step sizes of a slider.

 Move the thumb by doing any one of the following:

o Press the mouse button on the thumb, and drag it along the bar.

o Click in the bar or on arrow buttons located at both ends of the bar.

o Click the keyboard arrow keys when the slider is in focus.

 'text' – Static text boxes display lines of text. You typically use static text to

label other controls, provide information to the user, or indicate values associated

with a slider. If you assign the Callback property of a static text object to a

function (or a character vector containing a MATLAB command), the static text

will not respond when users try to interact with the text. However, you can code

the ButtonDownFcn callback to respond to mouse clicks on the static text.

See Tips for more information.

https://in.mathworks.com/help/matlab/ref/uibuttongroup.html
https://in.mathworks.com/help/matlab/ref/uicontrol.html#f52-578590

 'togglebutton' – Toggle buttons are similar in appearance to push buttons, but

they visually indicate their state, either 'on' (depressed) or 'off' (up). Clicking a

toggle button changes its state, and switches its Value property between the

toggle button‟s Min and Max values.

 Examples

 Create uicontrols to allow users to adjust the appearance of a plot. For instance,

create a program file called myui.m that contains the following code.

 function myui

 % Create a figure and axes

 f = figure('Visible','off');

 ax = axes('Units','pixels');

 surf(peaks)

 % Create pop-up menu

 popup = uicontrol('Style', 'popup',...

 'String', {'parula','jet','hsv','hot','cool','gray'},...

 'Position', [20 340 100 50],...

 'Callback', @setmap);

 % Create push button

 btn = uicontrol('Style', 'pushbutton', 'String', 'Clear',...

 'Position', [20 20 50 20],...

 'Callback', 'cla');

 % Create slider

 sld = uicontrol('Style', 'slider',...

 'Min',1,'Max',50,'Value',41,...

 'Position', [400 20 120 20],...

 'Callback', @surfzlim);

 % Add a text uicontrol to label the slider.

 txt = uicontrol('Style','text',...

 'Position',[400 45 120 20],...

 'String','Vertical Exaggeration');

 % Make figure visble after adding all components

 f.Visible = 'on';

 % This code uses dot notation to set properties.

 % Dot notation runs in R2014b and later.

 % For R2014a and earlier: set(f,'Visible','on');

 function setmap(source,event)

 val = source.Value;

 maps = source.String;

 % For R2014a and earlier:

 % val = get(source,'Value');

 % maps = get(source,'String');

 newmap = maps{val};

 colormap(newmap);

 end

 function surfzlim(source,event)

 val = 51 - source.Value;

 % For R2014a and earlier:

 % val = 51 - get(source,'Value');

 zlim(ax,[-val val]);

 end

end

The resulting UI displays a plot. Users can adjust the color map, change the vertical

scaling, or clear the axes.

	1.pdf (p.1-3)
	2.pdf (p.4-6)
	3.pdf (p.7-16)
	4.pdf (p.17-22)
	5.pdf (p.23-33)
	6.pdf (p.34-37)
	7.pdf (p.38-60)
	8.pdf (p.61-69)
	9.pdf (p.70-92)
	10.pdf (p.93-98)
	11.pdf (p.99-112)
	12.pdf (p.113-118)
	13.pdf (p.119-133)
	14.pdf (p.134-148)
	15.pdf (p.149-189)

