
VISUAL PROGRAMMING 2015-Batch

Department of Computer Science, CA & IT, KAHE Page 1\3

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Established under Section 3 of UGC Act 1956)

Pollachi Main Road, Eacharani Post, Coimbatore-641 021

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

Subject : VISUAL PROGRAMMING SEMESTER: V L T P C

SUBJECT CODE: 15CSU501 CLASS : III B.Sc.CS 4 1 0 5

PROGRAM OUTCOME:

 This course enables to understand the visual platform and apply the power of .Net

technologies in programming. No explicit prerequisite course work is required, but students are

expected to have a fundamental understanding of Language Basics, Programming Fundamental and

OOP's Concepts

PROGRAM LEARNING OUTCOMES:

A student who successfully completes this course should, at a minimum, be able to:

 Grasp the fundamentals of a programming language and know the basic differences between

programming languages

 Apply the processes involved in Software Development

 Program logics and different platforms to build effective software

 Choose the architecture based on the problem to be solved

 Apply the power of .Net technologies and reason why it is popular today

 Differentiate between the types of applications supported by .Net

 Build, compile, and execute a VB.NET program

 Apply techniques to develop error-free software

UNIT-I

Getting Started With VB.NET: The Integrated Development Environment-IDE Components-

Visual Basic: The Language -Variables-Constants-Arrays – Variables as Objects-Flow Control

Statements- Writing and Using Procedures: Module Coding – Arguments-Working with Forms:

Appearance of Forms- Loading and Showing Forms.

UNIT-II

Basic Windows Controls: Textbox Control- ListBox, CheckedListBox-Scrollbar and

TrackBar Controls. More Windows Control: The common Dialog Controls-The Rich TextBox

Control.The TreeView and ListView Controls -Designing Menus. Multiple Document Interface

UNIT- III

Handling Strings, characters and Dates: Handling Strings and Characters – Handling Dates.

Working with Folders and Files: Accessing Folders and Files – Accessing Files. Drawing and

Painting with Visual Basic: Displaying Images – Drawing with GDI –

Co-ordinate Transformation – Bitmaps.

VISUAL PROGRAMMING 2015-Batch

Department of Computer Science, CA & IT, KAHE Page 2\3

UNIT-IV
Web forms and ASP.NET: Web forms, web controls-ASP.NET Configuration, Scope and

state- ASP.NET and state-The Application Object-ASP sessions-The Session object-ASP.NET

objects and components-Active server components and controls.

UNIT-V
Web server and ASP.NET-ASP.NET and SQL server-Using SQL server, using database in

ASP.NET applications, ActiveX data objects-The ADO.NET objects model.

TEXT BOOK

1. Jeffrey R. Shapiro. 2008. The Complete Reference Visual Basic.Net, 1st Edition, Tata -McGraw-

Hill Edition, New Delhi.

2. Evangelos Petroutsos. 2014. Mastering Vb. Net, SYBEX Inc., USA.

3. Dave Mercer. 2015. ASP.NET – Beginner’s Guide. 2nd Edition, New Delhi: MCGraw Hill.

REFERENCES

1. Richard Bowman. 2002. Visual Basic.Net, Hungry Minds Inc. Publication, Canada

2. Bill Evjen, Scott Hanselman, Farhan Mohammed, Srinivasa Siva Kumar and Devin Rader. 2012.

Asp.Net 2.0, Wiley Publication, USA.

3. Greg BucZek. Asp.Net Tips and Techniques, 1st Edition, New Delhi: Tata McGraw Hill

Publications 2014.

WEB SITES

1. http://visualbasic.w3computing.com/vb2008/

2. http://www.tutorialspoint.com/vb.net/vb.net_environment_setup.htm

3. http://www.msdotnet.co.in

4. http://www.w3schools.com/

VISUAL PROGRAMMING 2015-Batch

Department of Computer Science, CA & IT, KAHE Page 3\3

ESE MARKS ALLOCATION

1

Section A

20 X 1 = 20

Online Examination

20

2

Section B

5 X 8 = 40

Either ‘A’ OR ‘B’ Choice

40

3
Total 60

LECTURE PLAN 2015-batch

 Mr. K.Yuvaraj & K.Kathirvel, Department of CS, CA & IT, KAHE 1\8

KARPAGAM ACADEMY OF HIGHER EDUCATION

Pollachi Main Road, Eacharani Post, Coimbatore-641 021

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

 STAFF NAME : K.YUVARAJ & S.MANJUPRIYA

 SUBJECT NAME : VISUAL PROGRAMMING

 SUBJECT CODE : 15CSU501

SEMESTER : V

 CLASS & SECTION : III B.Sc. (CS)

LECTURE PLAN 2015-batch

 Mr. K.Yuvaraj & K.Kathirvel, Department of CS, CA & IT, KAHE 2\8

S.NO

Lecture

Duration

(Hour)

Topics To Be Covered
Support

Materials/ Pg. No

UNIT I

1. 1 Introduction W1

2. 1

GETTING STARTED WITH VB.NET

 Integrated Development Environment

 Start Page, Project Types

T1: 3 – 12

3. 1

IDE Component

 IDE Menu, Toolbox, Window, Solution Explorer,

Properties Window, Output Window, Command Window,

Task List Window.

T1 : 19 – 30

W2

4. 1

VISUAL BASIC : THE LANGUAGE

- Variables

 Declaring Variables, Types of Variables,

Converting Variable Types, User-Defined Data

Types, A Variable’s Scope, The Lifetime of a

Variable.

T1 : 80 – 119

W3

5. 1

- Constants

- Arrays

 Declaring, initializing arrays, Array limits,

Multidimensional arrays, dynamic arrays, arrays of

arrays.

T1 :120- 129

6. 1 Tutorial

7. 1
- Variables as Objects

 What is an object?, Formatting numbers and dates
T1 :130-135

8. 1
- Flow Control Statement

 Test structures, loops, nested control, exit

statements.

T1 : 136- 148

W2

9. 1

Writing and Using Procedures

- Module Coding

 subroutines, functions,

 Calling functions and subroutines

T1:151 - 159

LECTURE PLAN 2015-batch

 Mr. K.Yuvaraj & K.Kathirvel, Department of CS, CA & IT, KAHE 3\8

10. 1

- Arguments

 Argument-Passing mechanisms, Event Handler

Arguments, Passing an Unknown number of

arguments

T1:160 - 169

11. 1
 Named Arguments, More types of function return

values, Overloading functions

T1: 170 – 180

W4

12. 1 Tutorials

13. 1
Working with Forms

- Appearance of Forms

Properties, Placing controls, setting the tab order,

T1: 185 - 193

14. 1
VB.NET at work Anchoring And Docking, form

event's
T1: 194 - 206

15. 1
- Loading and Showing Forms

 startup, controlling forms, Forms Vs Dialog boxes,

multiple forms

T1: 207 - 217

16. 1 Recapitulation and Discussion of Important Questions

Total No of Hours Planned for Unit I : 16

 Text Book T1: Evangelos Petroutsos, 2014. Mastering Vb. Net, SYBEX Inc., USA

Websites

 W1 : http://howtostartprogramming.com/vb-net/

 W2 : http://visualbasic.w3computing.com/vb2008/1/vb-2008

 W3 : http://www.tutorialspoint.com/vb.net/vb.net_variables.htm

 W4 : http://www.dotnetperls.com

UNIT II

1. 1

Basic Windows Controls

- Textbox Control

 Basic properties, Text-manipulation properties, Text-

selection properties and methods, capturing keystrokes

W5

T1: 241 - 262

2. 1 - Tutorials

http://howtostartprogramming.com/vb-net/
http://visualbasic.w3computing.com/vb2008/1/vb-2008

LECTURE PLAN 2015-batch

 Mr. K.Yuvaraj & K.Kathirvel, Department of CS, CA & IT, KAHE 4\8

3. 1
- ListBox, CheckedListBox

 Properties, items collection,
T1: 263 - 270

4. 1
- Scrollbar Controls

- Track Bar Controls
T1: 279 - 286

5. 1

More Windows Control

- The common Dialog Controls

 Color Dialog, Font Dialog,

W2

T1: 289 - 296

6. 1 Open Dialog, Save As Dialog, Print Dialog T1:297 – 304

7. 1

- The Rich TextBox Control

 RTF language, properties, Methods, cutting, pasting,

searching

T1: 307 - 317

8. 1 Tutorials

9. 1
The Tree view Control

- Add new item at design time and at run time

T1: 746 – 767

W6

10. 1
The List View Control

- Column Collection, List Item Object, item collection
T1: 768 - 783

11. 1

Designing Menus

- menu editor, menu item object properties,

- manipulating menus at runtime, iterating a menu's items

T1: 219 - 230

12. 1

Multiple Document Interface

- MDI applications-basics, building an MDI, built-in

capabilities,

-

T1: 837

13. 1 Accessing child forms, ending an MDI applications. W7

14. 1 Recapitulation and Discussion of Important Questions

15. 1 Tutorials

Total No of Hours Planned for Unit II : 15

Text Book T1: Evangelos Petroutsos, 2014. Mastering Vb. Net, SYBEX Inc., USA

LECTURE PLAN 2015-batch

 Mr. K.Yuvaraj & K.Kathirvel, Department of CS, CA & IT, KAHE 5\8

Websites

 W2 : http://visualbasic.w3computing.com/vb2008/1/vb-2008

 W5 : http://www.vb6.us/tutorials/

 W6 : http://vb.net-informations.com

 W7 : https://msdn.microsoft.com/

UNIT - III

1. 1
HANDLING STRINGS, CHARACTERS AND DATES

- Handling Strings and Characters

 char, String

T1: 530-534

W8

2. 1 - String Builder T1: 534-544

3. 1 - Handling Dates

 DateTime, TimeSpan
T1: 552-567

4. 1
WORKING WITH FOLDERS AND FILES

- - Accessing Folders and Files

 Directory class, File Class

T1: 570-578

5. 1 Directory Info Class, File Info Class, Path Class T1: 584-587

6. 1
Tutorial

7. 1 - Accessing Files

 File Stream, Stream Writer, Stream Reader Object
T1: 594-601

8. 1
 Sending Data to a file, Binary Writer, Binary Reader

Object
T1: 602- 607

9. 1

DRAWING AND PAINTING WITH VB

- Displaying Images

 Image object, exchanging images through the

clipboard

T1: 620-630

W2

10. 1 - Drawing with GDI+

 Basic Drawing Object, Drawing Shapes

T1: 632-633

W9

11. 1 Drawing Methods Gradients, Clipping T1: 642-665

12. 1
Tutorials

13. 1 Coordinate Transformations

Specifying Transformations
T1: 668-675

14. 1

Bitmaps

Specifying Colors

Defining Colors

Processing Bitmaps

W10

T1: 681-697

http://visualbasic.w3computing.com/vb2008/1/vb-2008
http://vb.net-informations.com/

LECTURE PLAN 2015-batch

 Mr. K.Yuvaraj & K.Kathirvel, Department of CS, CA & IT, KAHE 6\8

15. 1 Recapitulation and Discussion of Important Questions

Total No of Hours Planned for Unit III : 15

Text Book
T1: Evangelos Petroutsos, 2014. Mastering Vb. Net, SYBEX Inc., USA

Websites W2 : http://visualbasic.w3computing.com/vb2008/1/vb-2008

W8 : http://www.go4expert.com

W9 : www.dotnetheaven.com

W10: http://www.yevol.com/en/vb/applicationdesign/lesson09.html

Unit - IV

1. 1
Web Forms And ASP.NET

- Web Forms
T2: 155 - 161

2. 1 Tutorials

3. 1 - Web Forms (Cont..) T2: 162 - 170

4. 1 - Web Controls W11

5. 1 - Web Controls (Cont…) W11

6. 1
ASP.Net Configuration, Scope and State

- ASP.Net And Configuration
T2: 183 - 191

7. 1
- ASP.Net and State

 Visitor status and state

 State Maintenance in ASP.Net

T2: 192 -198

8. 1 Tutorials

9. 1
- The Application Object

 Scope, Events, Collections, Methods
T2: 206 – 210

http://www.yevol.com/en/vb/applicationdesign/lesson09.htm

LECTURE PLAN 2015-batch

 Mr. K.Yuvaraj & K.Kathirvel, Department of CS, CA & IT, KAHE 7\8

10. 1

- ASP Sessions

Sessions in Asp.Net

Enabling and Disabling ASP Sessions

T2: 212 -213

W12

11. 1
- The Session Object

 Event handler, properties, Collections and Methods
T2: 213 – 219

12. 1

ASP.NE Objects And Components

- Active Server Components and Controls

Creating Server Components with ASP

T2: 278 – 283

13. 1
The Ad Rotator Component

The ASP.NET Ad Rotator Server Control
W3

14. 1 Tutorials

15. 1 Recapitulation and Discussion of Important Questions

Total No of Hours Planned for Unit IV : 15

Text Book T2: Dave Mercer.2015.ASP.NET – Beginner’s Guide. 2nd Edition, New Delhi:

McGraw Hill.

Websites W3 : http://www.tutorialspoint.com/vb.net/vb.net_variables.htm

W11: http://www.slideshare.net

W12: http://asp.net-tutorials.com/

UNIT - V

1. 1

Web Services and ASP.NET

- Web Services Development

- What is XML?

T2: 311 – 316

2. 1 - WSDL and SOAP
T2: 322 – 325

W13

3. 1 Tutorials

4. 1
ASP.NET and SQL Server

 - Microsoft Enterprise Servers
T2: 339-342

5. 1
Using SQL Server

- Setting Up SQL Server
T2: 343 – 344

http://www.tutorialspoint.com/vb.net/vb.net_variables.htm
http://asp.net-tutorials.com/

LECTURE PLAN 2015-batch

 Mr. K.Yuvaraj & K.Kathirvel, Department of CS, CA & IT, KAHE 8\8

6. 1

Using Database in ASP.NET Applications

- Database Design

- Relational Database

T2: 344- 360

7. 1 Building Database Tables W14

8. 1

ActiveX data objects

- Data consumers and data providers

- The ADO Object Model

T2: 361 – 364

9. 1 Tutorials

10. 1 The ADO.Net Object Model T2: 365 W15

11. 1 Recapitulation and Discussion of Important Questions

12. 1 Discussion of previous year ESE Question Paper

13. 1 Discussion of previous year ESE Question Paper

14. 1 Discussion of previous year ESE Question Paper

Total No of Hours Planned for Unit V : 14

Text Book T2: Dave Mercer.2015. ASP.NET – Beginner’s Guide. 2nd Edition, New Delhi:

McGraw Hill.

Websites W13: https://www.w3.org/

W14: http://www.tutorialspoint.com/listtutorial/

W15: http://www.w3schools.com/asp/ado_intro.asp

 Total No of Hours Planned for this course: 75

https://www.w3.org/TR/wsdl

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 1/54

UNIT-I

 SYLLABUS

Getting Started With VB.NET: The Integrated Development Environment-IDE Components-

Visual Basic: The Language -Variables-Constants-Arrays – Variables as Objects-Flow Control

Statements- Writing and Using Procedures: Module Coding – Arguments-Working with

Forms: Appearance of Forms- Loading and Showing Forms.

Integrated Development Environment
The Start Page

When you run the Visual Basic Setup program, it allows you to place the program

items in an existing program group or create a new program group and new program items for

Visual Basic in Windows. You are then ready to start Visual Basic from Windows.

To start Visual Basic from Windows

1. Click Start on the Task bar.

2. Select Programs, Visual Studio and then Microsoft Visual Basic 6.0.–or–

Click Start on the Task bar.

Select Programs.

Use the Windows Explorer to find the Visual Basic executable file.

3. Double-click the Visual Basic icon.

You can also create a shortcut to Visual Basic, and double-click the shortcut.

When you first start Visual Basic, you see the interface of the integrated development

environment, as shown in Figure 2.1.

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 2/54

Figure 2.1 The Visual Basic integrated development environment

Using the Windows Form Designer

Figure The Windows Forms Toolbox of the Visual Studio IDE

The control’s properties will be displayed in the Properties window This window, at the far

left edge of the IDE, displays the properties of the selected control on the form. If the

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 3/54

Properties window is not visible, select View ➢Properties Window, or press F4. If no control is

selected, the properties of the selected item in the Solution Explorer will be displayed. Place

another TextBox control on the form. The new control will be placed almost on top of the

previous one. Reposition the two controls on the form with the mouse. Then right-click one of

them and, from the context menu, select Properties.

Figure - The properties of a TextBox control

In the Properties window, also known as the Property Browser, you see the properties that

determine the appearance of the control, and in some cases, its function. Locate the TextBox

control’s Text property and set it to “My TextBox Control” by entering the string (without the

quotes) into the box next to property name. Select the current setting, which is TextBox1, and

type a new string. The control’s Text property is the string that appears in the control.

Then locate its BackColor property and select it with the mouse. A button with an arrow will

appear next to the current setting of the property. Click this button and you will see a dialog

box with three tabs (Custom, Web, and System), as shown in Figure 1.6. On this dialog box,

you can select the color, from any of the three tabs, that will fill the control’s background. Set

the control’s background color to yellow and notice that the control’s appearance will change

on the form..

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 4/54

Figure - Setting a color property in the Properties dialog box

Figure - The appearance of a TextBox control displaying multiple text lines

Project Types

All the project types supported by Visual Studio are displayed on the New Project dialog box,

and they’re the following:

Class library A class library is a basic code-building component, which has no visible

interface and adds specific functionality to your project. Simply put, a class is a collection of

functions that will be used in other projects beyond the current one.

Windows control library A Windows control (or simply control), such as a TextBox or

Button, is a basic element of the user interface. If the controls that come with Visual Basic (the

ones that appear in the Toolbox by default) don’t provide the functionality you need, you can

build your own custom controls.

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 5/54

Console application A Console application is an application with a very limited user interface.

This type of application displays its output on a Command Prompt window and receives input

from the same window.

Windows service A Windows service is a new name for the old NT services, and they’re

longrunning applications that don’t have a visible interface. These services can be started

automatically when the computer is turned on, paused, and restarted. An application that

monitors and reacts to changes in the file system is a prime candidate for implementing as a

Windows service.

ASP.NET Web application Web applications are among the most exciting new features of

Visual Studio. A Web application is an app that resides on a Web server and services requests

made through a browser. An online bookstore, for example, is a Web application. The

application that runs on the Web server must accept requests made by a client (a remote

computer with a browser) and return its responses to the requests in the form of HTML pages.

ASP.NET Web service A Web service is not the equivalent of a Windows service. A Web

service is a program that resides on a Web server and services requests, just like a Web

application, but it doesn’t return an HTML page. Instead, it returns the result of a calculation or

a database lookup. Requests to Web services are usually made by another server, which is

responsible for processing the data

Web control library Just as you can build custom Windows controls to use with your

Windows forms, you can create custom Web controls to use with your Web pages.

The IDE Components

The IDE of Visual Studio.NET contains numerous components, and it will take you a while to

explore them. It’s practically impossible to explain what each tool, each window, and each

menu does.

The IDE Menu

The IDE main menu provides the following commands, which lead to submenus. Notice that

most menus can also be displayed as toolbars. Also, not all options are available at all times.

The options that cannot possibly apply to the current state of the IDE are either invisible or

disabled. The Edit menu is a typical example.

File Menu

The File menu contains commands for opening and saving projects, or project items, as well as

the commands for adding new or existing items to the current project.

Edit Menu

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 6/54

The Edit menu contains the usual editing commands. Among the commands of the Edit menu

are the Advanced command and the IntelliSense command.

Advanced Submenu

The more interesting options of the Edit ➢ Advanced submenu are the following. Notice that

the Advanced submenu is invisible while you design a form visually and appears when you

switch to the code editor.

View White Space Space characters (necessary to indent lines of code and make it easy to

read) are replaced by periods.

Word Wrap When a code line’s length exceeds the length of the code window, it’s

automatically wrapped.

Comment Selection/Uncomment Selection Comments are lines you insert between your

code’s statements to document your application. Sometimes, we want to disable a few lines

from our code, but not delete them (because we want to be able to restore them).

IntelliSense Submenu

The Edit ➢ IntelliSense menu item leads to a submenu with four options, which are described

next. IntelliSense is a feature of the editor (and of other Microsoft applications) that displays as

much information as possible, whenever possible.

List Members When this option is on, the editor lists all the members (properties, methods,

events, and argument list) in a drop-down list.

TextBox1.

a list with the members of the TextBox control will appear (as seen in Figure). Select the

Text property and then type the equal sign, followed by a string in quotes like the following:

TextBox1.Text = “Your User Name”

If you select a property that can accept a limited number of settings, you will see the names of

the appropriate constants in a drop-down list. If you enter the following statement:

TextBox1.TextAlign =

you will see the constants you can assign to the property (as shown in Figure, they are the

values HorizontalAlignment.Center, HorizontalAlignment.Right, and

HorizontalAlignment.Left).

Parameter Info While editing code, you can move the pointer over a variable, method, or

property and see its declaration in a yellow tooltip.

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 7/54

Figure - Viewing the members of a control in an IntelliSense dropdown list

Quick Info This is another IntelliSense feature that displays information about commands and

functions. When you type the opening parenthesis following the name of a function, for

example, the function’s arguments will be displayed in a tooltip box (a yellow horizontal box).

View Menu

This menu contains commands to display any toolbar or window of the IDE. You have already

seen the Toolbars menu (earlier, under “Starting a New Project”). The Other Windows

command leads to submenu with the names of some standard windows, including the Output

and Command windows.

The Output window is the console of the application. The compiler’s messages, for example,

are displayed in the Output window. The Command window allows you to enter and execute

statements. When you debug an application, you can stop it and enter VB statements in the

Command window.

Project Menu

This menu contains commands for adding items to the current project (an item can be a form, a

file, a component, even another project). The last option in this menu is the Set As StartUp

Project command, which lets you specify which of the projects in a multiproject solution is the

startup project (the one that will run when you press F5).

Build Menu

The Build menu contains commands for building (compiling) your project. The two basic

commands in this menu are the Build and Rebuild All commands. The Build command

compiles (builds the executable) of the entire solution, but it doesn’t compile any components

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 8/54

of the project that haven’t changed since the last build. The Rebuild All command does the

same, but it clears any existing files and builds the solution from scratch.

Debug Menu

This menu contains commands to start or end an application, as well as the basic debugging

tools

Data Menu

This menu contains commands you will use with projects that access data.

Format Menu

The Format menu, which is visible only while you design a Windows or Web form, contains

commands for aligning the controls on the form.

Tools Menu

This menu contains a list of tools, and most of them apply to C++. The Macros command of

he Tools menu leads to a submenu with commands for creating macros. Just as you can create

macros in an Office application to simplify many tasks, you can create macros to automate

many of the repetitive tasks you perform in the IDE. I’m not going to discuss macros in this

book, but once you familiarize yourself with the environment, you should look up the topic of

writing macros in the documentation.

Window Menu

This is the typical Window menu of any Windows application. In addition to the list of open

windows, it also contains the Hide command, which hides all Toolboxes and devotes the entire

window of the IDE to the code editor or the Form Designer. The Toolboxes don’t disappear

completely. They’re all retracted, and you can see their tabs on the left and right edges of the

IDE window. To expand a Toolbox, just hover the mouse pointer over the corresponding tab.

Help Menu

This menu contains the various help options. The Dynamic Help command opens the Dynamic

Help window, which is populated with topics that apply to the current operation. The Index

command opens the Index window, where you can enter a topic and get help on the specific

topic.

The Toolbox Window

Here you will find all the controls you can use to build your application’s interface. The

Toolbox window is usually retracted, and you must move the pointer over it to view the

Toolbox. This window contains these tabs:

Crystal Reports

Data

XML Schema

Dialog Editor

Web Forms

Components

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 9/54

Windows Forms

HTML

Clipboard Ring

General

Solution Explorer Window

The Solution Explorer window gives an overview of the solution we are working with and lists

all the files in the project. An image of the Solution Explorer window is shown on the right.

Properties Window

The properties window allows us to set properties for various objects at design time. For

example, if you want to change the font, font size, backcolor, name, text that appears on a

button, textbox etc, you can do that in this window. Below is the image of properties window.

You can view the properties window by selecting View->Properties Window from the main

menu or by pressing F4 on the keyboard.

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 10/54

Output Window

The output window as you can see in the image below displays the results of building and

running applications. When a project is compiled the result of compilation, Build succeeded or

failed are displayed in the output wndow

Command Window

The command window in the image below is a useful window. Using this window we can add

new item to the project, add new project and so on. You can view the command window by

selecting View->Other Windows -> Command Window from the main menu. The command

window in the image displays all possible commands with File.

Task List Window

The task list window displays all the tasks that VB .NET assumes we still have to finish. You

can view the task list window by selecting View->Show tasks->All or View->Other Windows-

>Task List from the main menu. The image below shows that. As you can see from the image,

the task list displayed "TextBox1 not declared", "RichTextBox1 not declared". The reason for

that message is, there were no controls on the form and attempts where made to write code for a

textbox and a rich textbox. Task list also displays syntax errors and other errors you normally

encounter during coding.

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 11/54

VISUAL BASIC: THE LANGUAGE

Variables

 A variable is nothing but a name given to a storage area that our programs can

manipulate. Each variable in VB.Net has a specific type, which determines the size and layout

of the variable's memory; the range of values that can be stored within that memory; and the

set of operations that can be applied to the variable.

Declaring Variables

 To declare a variable, use the Dim statement followed by the variable's name, the As

keyword, and its type, as follows:

Dimmeters As Integer

Dim greetings As String

 The first variable, meters, will store integers, such as 3 or 1,002; the second variable,

greetings, will store text. You can declare multiple variables of the same or different type in the

same line, as follows:

Dim Qty As Integer, Amount As Decimal, CardNum As String

 If you want to declare multiple variables of the same type, you need not repeat the type.

Just separate all the variables of the same type with commas and set the type of the last

variable:

Dim Length, Width, Height As Integer, Volume, Area As Double

 This statement declares three Integer variables and two Double variables. Double

variables hold fractional values (or floating-point values, as they're usually called) that are

similar to the Single data type, except that they can represent noninteger values with greater

accuracy.

Variable-Naming Conventions

 When declaring variables, you should be aware of a few naming conventions. A

variable's name

 Must begin with a letter, followed by more letters or digits.

 Can't contain embedded periods or other special punctuation symbols. The only special

character that can appear in a variable's name is the underscore character.

 Mustn't exceed 255 characters.

 Must be unique within its scope. This means that you can't have two identically named

variables in the same subroutine, but you can have a variable named counter in many

different subroutines.

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 12/54

Variable names in VB 2008 are case-insensitive: myAge, myage, and MYAGE all refer to the

same variable in your code. Actually, as you enter variable names, the editor converts their

casing so that they match their declaration.

Variable Initialization

 The general form of initialization is:

variable_name = value;

for example,

Dim pi As Double

pi = 3.14159

You can initialize a variable at the time of declaration as follows:

Dim StudentID As Integer = 100

Dim StudentName As String = "Bill Smith"

Example

Try the following example which makes use of various types of variables:

Module variablesNdataypes

 Sub Main()

 Dim a As Short

 Dim b As Integer

 Dim c As Double

 a = 10

 b = 20

 c = a + b

 Console.WriteLine("a = {0}, b = {1}, c = {2}", a, b, c)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

a = 10, b = 20, c = 30

Types of Variables

Visual Basic recognizes the following five categories of variables:

 Numeric

 String

 Boolean

 Date

 Object

Data Type Identifier

 Finally, you can omit the As clause of the Dim statement, yet create typed variables,

with the variable declaration characters, or data type identifiers. These characters are special

symbols that you append to the variable name to denote the variable's type. To create a string

variable, you can use this statement:

Dim myText$

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 13/54

The dollar sign signifies a string variable. Notice that the name of the variable includes the

dollar sign — it's myText$, not myText. To create a variable of a particular type, use one of the

data declaration characters shown in the following table. (Not all data types have their own

identifiers.)

Table 2.3 - Data Type Definition Characters

Symbol Data Type Example

$ String A$, messageText$

% Integer (Int32) counter%, var%

& Long (Int64) population&, colorValue&

! Single distance!

Double ExactDistance

@ Decimal Balance@

 Using type identifiers doesn't help to produce the cleanest and easiest-to-read code.

The Strict and Explicit options

 The Visual Basic compiler provides three options that determine how it handles

variables:

 The Explicit option indicates whether you will declare all variables.

 The Strict option indicates whether all variables will be of a specific type.

 The Infer option indicates whether the compiler should determine the type of a variable

from its value.

To change the default behavior, you must insert the following statement at the beginning of the

file:

Option Explicit Off

The Option Explicit statement must appear at the very beginning of the file. This setting affects

the code in the current module, not in all files of your project or solution. You can turn on the

Strict (as well as the Explicit) option for an entire solution. Open the solution's properties

dialog box (right-click the solution's name in Solution Explorer and select Properties), select

the Compile tab, and set the Strict and Explicit options accordingly, as shown in Figure

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 14/54

Figure - Setting the variable-related options in the Visual Studio Options dialog box

The Strict option requires that variables are declared with a specific type. In other words, the

Strict option disallows the use of generic variables that can store any data type.

The default value of the Explicit statement is On. This is also the recommended value, and you

should not make a habit of changing this setting. In the section "Reasons for Decalring

Variables" later in this chapter, you will see an example of the pitfalls you'll avoid by declaring

your variables. By setting the Explicit option to Off, you're telling VB that you intend to use

variables without declaring them. As a consequence, VB can't make any assumption about the

variable's type, so it uses a generic type of variable that can hold any type of information.

These variables are called Object variables, and they're equivalent to the old variants.

While the option Explicit is set to Off, every time Visual Basic runs into an undeclared variable

name, it creates a new variable on the spot and uses it. The new variable's type is Object, the

generic data type that can accommodate all other data types. Using a new variable in your code

is equivalent to declaring it without type. Visual Basic adjusts its type according to the value

you assign to it. Create two variables, var1 and var2, by referencing them in your code with

statements like the following ones:

Option Strict On

If you attempt to execute any of the last two code segments while the Strict option is on, the

compiler will underline a segment of the statement to indicate an error. If you rest the pointer

over the underlined segment of the code, the following error message will appear in a tip box:

Option strict disallows implicit conversions from String to Double

(or whatever type of conversion is implied by the statement).

When the Strict option is set to On, the compiler doesn't disallow all implicit conversions

between data types. For example, it will allow you to assign the value of an integer to a Long,

but not the opposite. The Long value might exceed the range of values that can be represented

by an Integer variable.

Object Variables

 Variants — variables without a fixed data type— were the bread and butter of VB

programmers up to version 6. Variants are the opposite of strictly typed variables: They can

store all types of values, from a single character to an object. If you're starting with VB 2008,

you should use strictly typed variables. However, variants are a major part of the history of

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 15/54

VB, and most applications out there (the ones you may be called to maintain) use them. I will

discuss variants briefly in this section and show you what was so good (and bad) about them.

Variants, or object variables, were the most flexible data types because they could

accommodate all other types. A variable declared as Object (or a variable that hasn't been

declared at all) is handled by Visual Basic according to the variable's current contents. If you

assign an integer value to an object variable, Visual Basic treats it as an integer. If you assign a

string to an object variable, Visual Basic treats it as a string. Variants can also hold different

data types in the course of the same program. Visual Basic performs the necessary conversions

for you.

To declare a variant, you can turn off the Strict option and use the Dim statement without

specifying a type, as follows:

Dim myVar

If you don't want to turn off the Strict option (which isn't recommended, anyway), you can

declare the variable with the Object data type:

Dim myVar As Object

Every time your code references a new variable, Visual Basic will create an object variable.

For example, if the variable validKey hasn't been declared, when Visual Basic runs into the

following line, it will create a new object variable and assign the value 002-6abbgd to it:

validKey = "002-6abbgd"

You can use object variables in both numeric and string calculations. Suppose that the variable

modemSpeed has been declared as Object with one of the following statements:

Dim modemSpeed ' with Option Strict = Off

Dim modemSpeed As Object ' with Option Strict = On

and later in your code you assign the following value to it:

modemSpeed = "28.8"

The modemSpeed variable is a string variable that you can use in statements such as the

following:

MsgBox "We suggest a " & modemSpeed & " modem."

This statement displays the following message:

"We suggest a 28.8 modem."

Converting Variable Types

 In many situations, you will need to convert variables from one type into another. Table

2.4 shows the methods of the Convert class that perform data-type conversions.

In addition to the methods of the Convert class, you can still use the data-conversion functions

of VB (CInt() to convert a numeric value to an Integer, CDbl() to convert a numeric value to a

Double, CSng() to convert a numeric value to a Single, and so on), which you can look up in

the documentation. If you're writing new applications in VB 2008, use the new Convert class

to convert between data types.

To convert the variable initialized as the following

Dim A As Integer

to a Double, use the ToDouble method of the Convert class:

DimBAsDouble

B = Convert.ToDouble(A)

Suppose that you have declared two integers, as follows:

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 16/54

DimAAsInteger,BAsInteger

A=23

B = 7

The result of the operation A / B will be a Double value. The following statement

Debug.Write(A / B)

displays the value 3.28571428571429. The result is a Double value, which provides the

greatest possible accuracy. If you attempt to assign the result to a variable that hasn't been

declared as Double, and the Strict option is on, then VB 2008 will generate an error message.

No other data type can accept this value without loss of accuracy. To store the result to a Single

variable, you must convert it explicitly with a statement like the following:

Convert.ToSingle(A / B)

You can also use the DirectCast() function to convert a variable or expression from one type to

another. The DirectCast() function is identical to the CType() function. Let's say the variable A

has been declared as String and holds the value 34.56. The following statement converts the

value of the A variable to a Decimal value and uses it in a calculation:

DimAAsString="34.56"

DimBAsDouble

B = DirectCast(A, Double) / 1.14

The conversion is necessary only if the Strict option is on, but it's a good practice to perform

your conversions explicitly. The following section explains what might happen if your code

relies on implicit conversions.

Table 2.4 - The Data-Type Conversion Methods of the Convert Class

Method Converts Its Argument To

ToBoolean Boolean

ToByte Byte

ToChar Unicode character

ToDateTime Date

ToDecimal Decimal

ToDouble Double

ToInt16 Short Integer (2-byte integer, Int16)

ToInt32 Integer (4-byte integer, Int32)

ToInt64 Long (8-byte integer, Int64)

ToSByte Signed Byte

CShort Short (2-byte integer, Int16)

ToSingle Single

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 17/54

ToString String

ToUInt16 Unsigned Integer (2-byte integer, Int16)

ToUInt32 Unsigned Integer (4-byte integer, Int32)

ToUInt64 Unsigned Long (8-byte integer, Int64)

Constants
Some variables don't change value during the execution of a program. These variables are

constants that appear many times in your code. For instance, if your program does math

calculations, the value of pi (3.14159. . .) might appear many times. Instead of typing the value

3.14159 over and over again, you can define a constant, name it pi, and use the name of the

constant in your code. The statement

circumference = 2 * pi * radius

is much easier to understand than the equivalent

circumference = 2 * 3.14159 * radius

You could declare pi as a variable, but constants are preferred for two reasons:

Constants don't change value. This is a safety feature. After a constant has been declared,

you can't change its value in subsequent statements, so you can be sure that the value specified

in the constant's declaration will take effect in the entire program.

Constants are processed faster than variables. When the program is running, the values of

constants don't have to be looked up. The compiler substitutes constant names with their

values, and the program executes faster.

' The following statements declare constants.

Const maxval As Long = 4999

Public Const message As String = "HELLO"

Private Const piValue As Double = 3.1415

Example

The following example demonstrates declaration and use of a constant value:

Module constantsNenum

 Sub Main()

 Const PI = 3.14149

 Dim radius, area As Single

 radius = 7

 area = PI * radius * radius

 Console.WriteLine("Area = " & Str(area))

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Area = 153.933

Print and Display Constants in VB.Net

VB.Net provides the following print and display constants:

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 18/54

Constant Description

vbCrLf Carriage return/linefeed character combination.

vbCr Carriage return character.

vbLf Linefeed character.

vbNewLine Newline character.

vbNullChar Null character.

vbNullString
Not the same as a zero-length string (""); used for calling external

procedures.

vbObjectError

Error number. User-defined error numbers should be greater than this

value. For example:

Err.Raise(Number) = vbObjectError + 1000

vbTab Tab character.

vbBack Backspace character.

Arrays
An array stores a fixed-size sequential collection of elements of the same type. An array is used

to store a collection of data, but it is often more useful to think of an array as a collection of

variables of the same type.

All arrays consist of contiguous memory locations. The lowest address corresponds to the first

element and the highest address to the last element.

Creating Arrays in VB.Net

To declare an array in VB.Net, you use the Dim statement. For example,

Dim intData(30) ' an array of 31 elements

Dim strData(20) As String ' an array of 21 strings

Dim twoDarray(10, 20) As Integer 'a two dimensional array of integers

Dim ranges(10, 100) 'a two dimensional array

You can also initialize the array elements while declaring the array. For example,

Dim intData() As Integer = {12, 16, 20, 24, 28, 32}

Dim names() As String = {"Karthik", "Sandhya","Shivangi", "Ashwitha", "Somnath"}

Dim miscData() As Object = {"Hello World", 12d, 16ui, "A"c}

Initializing Arrays

 Just as you can initialize variables in the same line in which you declare them, you can

initialize arrays, too, with the following constructor (an array initializer, as it's called):

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 19/54

Dim arrayname() As type = {entry0, entry1, ... entryN}

Here's an example that initializes an array of strings:

Dim Names() As String = {"Joe Doe", "Peter Smack"}

This statement is equivalent to the following statements, which declare an array with two

elements and then set their values:

DimNames(1)AsString

Names(0)="JoeDoe"

Names(1) = "Peter Smack"

Array Limits

 The first element of an array has index 0. The number that appears in parentheses in the

Dim statement is one fewer than the array's total capacity and is the array's upper limit (or

upper bound). The index of the last element of an array (its upper bound) is given by the

method GetUpperBound, which accepts as an argument the dimension of the array and returns

the upper bound for this dimension.

The arrays we examined so far are one-dimensional and the argument to be passed to

the GetUpperBound method is the value 0. The total number of elements in the array is given

by the method GetLength, which also accepts a dimension as an argument. The upper bound of

the following array is 19, and the capacity of the array is 20 elements:

Dim Names(19) As Integer

The first element is Names(0), and the last is Names(19). If you execute the following

statements, the highlighted values will appear in the Output window:

Debug.WriteLine(Names.GetLowerBound(0))

0

Debug.WriteLine(Names.GetUpperBound(0))

19

To assign a value to the first and last element of the Names array, use the following statements:

Names(0)="Firstentry"

Names(19) = "Last entry"

If you want to iterate through the array's elements, use a loop like the following one:

DimiAsInteger,myArray(19)AsInteger

Fori=0TomyArray.GetUpperBound(0)

myArray(i)=i*1000

Next

The actual number of elements in an array is given by the expression

myArray.GetUpperBound(0) + 1. You can also use the array's Length property to retrieve the

count of elements. The following statement will print the number of elements in the array

myArray in the Output window:

Debug.WriteLine(myArray.Length)

Dynamic Arrays

Dynamic arrays are arrays that can be dimensioned and re-dimensioned as par the need of the

program. You can declare a dynamic array using the ReDim statement.

Syntax for ReDim statement:

ReDim [Preserve] arrayname(subscripts)

Where,

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 20/54

The Preserve keyword helps to preserve the data in an existing array, when you resize it.

arrayname is the name of the array to re-dimension.

subscripts specifies the new dimension.

Module arrayApl

 Sub Main()

 Dim marks() As Integer

 ReDim marks(2)

 marks(0) = 85

 marks(1) = 75

 marks(2) = 90

 ReDim Preserve marks(10)

 marks(3) = 80

 marks(4) = 76

 marks(5) = 92

 marks(6) = 99

 marks(7) = 79

 marks(8) = 75

 For i = 0 To 10

 Console.WriteLine(i & vbTab & marks(i))

 Next i

 Console.ReadKey()

 End Sub

End Module

Multi-Dimensional Arrays

VB.Net allows multidimensional arrays. Multidimensional arrays are also called rectangular

arrays.

You can declare a 2-dimensional array of strings as:

Dim twoDStringArray(10, 20) As String

or, a 3-dimensional array of Integer variables:

Dim threeDIntArray(10, 10, 10) As Integer

The following program demonstrates creating and using a 2-dimensional array:

Module arrayApl

 Sub Main()

 ' an array with 5 rows and 2 columns

 Dim a(,) As Integer = {{0, 0}, {1, 2}, {2, 4}, {3, 6}, {4, 8}}

 Dim i, j As Integer

 ' output each array element's value '

 For i = 0 To 4

 For j = 0 To 1

 Console.WriteLine("a[{0},{1}] = {2}", i, j, a(i, j))

 Next j

 Next i

 Console.ReadKey()

 End Sub

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 21/54

End Module

Reinitializing Arrays
We can change the size of an array after creating them. The ReDim statement assigns a

completely new array object to the specified array variable. You use ReDim statement to

change the number of elements in an array. The following lines of code demonstrate that. This

code reinitializes the Test array declared above.

Dim Test(10) as Integer

ReDim Test(25) as Integer

'Reinitializing the array

When using the Redim statement all the data contained in the array is lost. If you want to

preserve existing data when reinitializing an array then you should use the Preserve keyword

which looks like this:

Dim Test() as Integer={1,3,5}

'declares an array an initializes it with three members

ReDim Preserve Test(25)

'resizes the array and retains the the data in elements 0 to 2

Flow Control statements
Decision making structures require that the programmer specify one or more conditions to be

evaluated or tested by the program, along with a statement or statements to be executed if the

condition is determined to be true, and optionally, other statements to be executed if the

condition is determined to be false

Decision Statements

Applications need a mechanism to test conditions and take a different course of action

depending on the outcome of the test. Visual Basic provides three such decision, or

conditional, statements:

 If. . .Then

 If. . .Then. . .Else

 Select Case

Loop Statements

Loop statements allow you to execute one or more lines of code repetitively. Many tasks

consist of operations that must be repeated over and over again, and loop statements are an

important part of any programming language. Visual Basic supports the following loop

statements:

http://visualbasic.w3computing.com/vb2008/3/vb-if-then-statement.php
http://visualbasic.w3computing.com/vb2008/3/vb-if-then-else.php
http://visualbasic.w3computing.com/vb2008/3/vb-select-case.php

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 22/54

 For. . .Next

 Do. . .Loop

 While. . .End While

Decision Statements

1) If Then Statement

 If Then statement is a control structure which executes a set of code only when the given

condition is true.

Syntax:

If [Condition] Then

 [Statements]

In the above syntax when the Condition is true then the Statements after Then are executed.

Flow Diagram:

Example:

Private Sub Button1_Click_1(ByVal sender As System.Object,

 ByVal e As System.EventArgs) Handles Button1.Click

 If Val(TextBox1.Text) > 25 Then

 TextBox2.Text = "Eligible"

 End If

Description:
In the above If Then example the button click event is used to check if the age got

using TextBox1 is greater than 25, if true a message is displayed in TextBox2

2) If Then Else Statement

 If Then Else statement is a control structure which executes different set of code statements

when the given condition is true or false.

http://visualbasic.w3computing.com/vb2008/3/vb-for-next-statement.php
http://visualbasic.w3computing.com/vb2008/3/vb-do-while-loop.php
http://visualbasic.w3computing.com/vb2008/3/vb-while-end-while.php

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 23/54

Syntax:

If [Condition] Then

 [Statements]

Else

 [Statements]

In the above syntax when the Condition is true, the Statements after Then are executed.If the

condition is false then the statements after the Else part is executed.

Flow Diagram:

Example:

 Private Sub Button1_Click(ByVal sender As System.Object,

 ByVal e As System.EventArgs) Handles Button1.Click

 If Val(TextBox1.Text) >= 40 Then

 MsgBox("GRADUATED")

 Else

 MsgBox("NOT GRADUATED")

 End If

 End Sub

Description:
In the above If Then Else example the marks are entered in TextBox1.When a button is clicked

a message GRADUATED is displayed if the condition (>40) is true and NOT

GRADUATED if it is false.

3) Nested If Then Else Statement

 Nested If..Then..Else statement is used to check multiple conditions using if then else

statements nested inside one another.

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 24/54

Syntax:

If [Condition] Then

 If [Condition] Then

 [Statements]

 Else

 [Statements]

Else

 [Statements]

In the above syntax when the Condition of the first if then else is true, the second if then else

is executed to check another two conditions. If false the statements under the Else part of the

first statement is executed.

Flow Diagram

Example:
 Private Sub Button1_Click(ByVal sender As System.Object,

 ByVal e As System.EventArgs) Handles Button1.Click

 If Val(TextBox1.Text) >= 40 Then

 If Val(TextBox1.Text) >= 60 Then

 MsgBox("You have FIRST Class")

 Else

 MsgBox("You have SECOND Class")

 End If

 Else

 MsgBox("Check your Average marks entered")

 End If

 End Sub

Description:

In the above nested if then else statement example first the average mark is checked if it is

more than 40, if true the second if then else control is used check for first or second class. If the

first condition is false the statements under the else part is executed.

4) Select Case Statement

 Select case statement is used when the expected results for a condition can be known

previously so that different set of operations can be done based on each condition.

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 25/54

Syntax:

 Select Case Expression

 Case Expression1

 Statement1

 Case Expression2

 Statement2

 Case Expressionn

 Statementn

 ...

 Case Else

 Statement

 End Select

In the above syntax, the value of the Expression is checked with Expression1..n to check if

the condition is true. If none of the conditions are matched the statements under the Case

Else is executed.

Flow Diagram:

Example:
 Private Sub Button1_Click(ByVal sender As System.Object,

 ByVal e As System.EventArgs) Handles Button1.Click

 Dim c As String

 c = TextBox1.Text

 Select c

 Case "Red"

 MsgBox("Color code of Red is::#FF0000")

 Case "Green"

 MsgBox("Color code of Green is::#808000")

 Case "Blue"

 MsgBox("Color code of Blue is:: #0000FF")

 Case Else

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 26/54

 MsgBox("Enter correct choice")

 End Select

 End Sub

Description:

In the above example based on the color input in TextBox1, the color code for RGB colors are

displayed, if the color is different then the statement under Case Else is executed. Thus we can

easily execute the select case statement.

Loop Statements

1) Do While Loop Statement

 Do While Loop Statement is used to execute a set of statements only if the condition is

satisfied. But the loop get executed once for a false condition once before exiting the loop. This

is also know as Entry Controlledloop.

Syntax:
 Do While [Condition]

 [Statements]

 Loop

In the above syntax the Statements are executed till the Condition remains true.

Example:

 Private Sub Form1_Load(ByVal sender As System.Object,

 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim a As Integer

 a = 1

 Do While a < 100

 a = a * 2

 MsgBox("Product is::" & a)

 Loop

 End Sub

Description:

In the above Do While Loop example the loop is continued after the value 64 to display 128

which is false according to the given condition and then the loop exits.

2) Do Loop While Statement

 Do Loop While Statement executes a set of statements and checks the condition, this is

repeated until the condition is true. .It is also known as an Exit Control loop

Syntax:

 Do

 [Statements]

 Loop While [Condition]

In the above syntax the Statements are executed first then the Condition is checked to find if

it is true.

Example:

 Private Sub Form1_Load(ByVal sender As System.Object,

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 27/54

 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim cnt As Integer

 Do

 cnt = 10

 MsgBox("Value of cnt is::" & cnt)

 Loop While cnt <= 9

 End Sub

Description:
In the above Do Loop While example, a message is displayed with a value 10 only after which

the condition is checked, since it is not satisfied the loop exits.

3) For Next Loop Statement

 For Next Loop Statement executes a set of statements repeatedly in a loop for the given

initial, final value range with the specified step by step increment or decrement value.

Syntax:
 For counter = start To end [Step]

 [Statement]

 Next [counter]

In the above syntax the Counter is range of values specified using the Start ,End parameters.

The Step specifies step increment or decrement value of the counter for which the statements

are executed.

Example:

 Private Sub Form1_Load(ByVal sender As System.Object,

 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim i As Integer

 Dim j As Integer

 j = 0

 For i = 1 To 10 Step 1

 j = j + 1

 MsgBox("Value of j is::" & j)

 Next i

 End Sub

Description:
In the above For Next Loop example the counter value of i is set to be in the range of 1 to 10

and is incremented by 1. The value of j is increased by 1 for 10 times as the loop is repeated.

Nested Control Structures
You can place, or nest, control structures inside other control structures (such as an If. . .Then

block within a For. . .Next loop). Control structures in Visual Basic can be nested in as many

levels as you want. The editor automatically indents the bodies of nested decision and loop

structures to make the program easier to read.

When you nest control structures, you must make sure that they open and close within the same

structure. In other words, you can't start a For. . .Next loop in an If statement and close the loop

after the corresponding End If. The following code segment demonstrates how to nest several

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 28/54

flow-control statements. (The curly brackets denote that regular statements should appear in

their place and will not compile, of course.)

Fora=1To100

{statements}

Ifa=99Then

{statements}

EndIf

Whileb<a

{statements}

Iftotal<=0Then

{statements}

EndIf

EndWhile

Forc=1toa

{statements}

Nextc

Next a

Listing 3.7: Simple Nested If Statements

DimIncomeAsDecimal

Income=Convert.ToDecimal(InputBox("Enteryourincome"))

IfIncome>0Then

IfIncome>12000Then

MsgBox"You will pay taxes this year"

Else

MsgBox"You won't pay any taxes this year"

End If

Else

MsgBox"Bummer"

End If

The Exit Statement
The Exit statement allows you to exit prematurely from a block of statements in a control

structure, from a loop, or even from a procedure. Suppose that you have a For. . .Next loop that

calculates the square root of a series of numbers. Because the square root of negative numbers

can't be calculated (the Math.Sqrt method will generate a runtime error

Fori=0ToUBound(nArray)

IfnArray(i)<0Then

MsgBox("Can'tcompletecalculations"&vbCrLf&_

"Item"&i.ToString&"isnegative!"

ExitFor

EndIf

nArray(i)=Math.Sqrt(nArray(i))

Next

If a negative element is found in this loop, the program exits the loop and continues with the

statement following the Next statement.

There are similar Exit statements for the Do loop (Exit Do), the While loop (Exit While), the

Select statement (Exit Select), and for functions and subroutines (Exit Function and Exit Sub).

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 29/54

If the previous loop was part of a function, you might want to display an error and exit not only

the loop, but also the function itself by using the Exit Function statement.

WRITING AND USING PROCEDURE

Procedures are also used for implementing repeated tasks, such as frequently used calculations.

The two types of procedures supported by Visual Basic-subroutines and functions

MODULAR CODING

The idea of breaking a large application into smaller, more manageable sections is not new to

computing. Few tasks, programming or otherwise, can be managed as a whole. The event

handlers are just one example of breaking a large application into smaller tasks. Some event

handlers may require a lot of code.

Subroutines

A subroutine is a block of statements that carries out a well-defined task. The block of

statements is placed within a set of Sub. . .End Sub statements and can be invoked by name.

The following subroutine displays the current date in a message box and can be called by its

name, ShowDate():

Sub ShowDate()

MsgBox(Now().ToShortDateString)

End Sub

Most procedures also accept and act upon arguments. The ShowDate() subroutine displays the

current date in a message box. If you want to display any other date, you have to implement it

differently and add an argument to the subroutine:

Sub ShowDate(ByVal birthDate As Date)

MsgBox(birthDate.ToShortDateString)

End Sub

birthDate is a variable that holds the date to be displayed; its type is Date. The ByVal keyword

means that the subroutine sees a copy of the variable, not the variable itself. What this means

practically is that the subroutine can't change the value of the variable passed by the calling

application. To display the current date in a message box, you must call the ShowDate()

subroutine as follows from within your program:

ShowDate() -To display any other date with the second implementation of the subroutine, use a

statement like the following:

Dim myBirthDate = #2/9/1960#

ShowDate(myBirthDate)

Or, you can pass the value to be displayed directly without the use of an intermediate variable:

ShowDate(#2/9/1960#)

Functions

A function is similar to a subroutine, but a function returns a result. Because they return values,

functions — like variables — have types. The value you pass back to the calling program from

a function is called the return value, and its type must match the type of the function. Functions

accept arguments, just like subroutines. The statements that make up a function are placed in a

set of Function. . .End Function statement

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 30/54

A procedure is a group of statements that together perform a task, when called. After the

procedure is executed, the control returns to the statement calling the procedure. VB.Net has

two types of procedures:

 Functions

 Sub procedures or Subs

Functions return a value, where Subs do not return a value.

Defining a Function
 The Function statement is used to declare the name, parameter and the body of a

function. The syntax for the Function statement is:

[Modifiers] Function FunctionName [(ParameterList)] As ReturnType

 [Statements]

End Function

Where,

 Modifiers: specifiy the access level of the function; possible values are: Public, Private,

Protected, Friend, Protected Friend and information regarding overloading, overriding,

sharing, and shadowing.

 FunctionName: indicates the name of the function

 ParameterList: specifies the list of the parameters

 ReturnType: specifies the data type of the variable the function returns

Example
 Following code snippet shows a function FindMax that takes two integer values and

returns the larger of the two.

Function FindMax(ByVal num1 As Integer, ByVal num2 As Integer) As Integer

 ' local variable declaration */

 Dim result As Integer

 If (num1 > num2) Then

 result = num1

 Else

 result = num2

 End If

 FindMax = result

End Function

Function Returning a Value

In VB.Net a function can return a value to the calling code in two ways:

 By using the return statement

 By assigning the value to the function name

The following example demonstrates using the FindMax function:

Module myfunctions

 Function FindMax(ByVal num1 As Integer, ByVal num2 As Integer) As Integer

 ' local variable declaration */

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 31/54

 Dim result As Integer

 If (num1 > num2) Then

 result = num1

 Else

 result = num2

 End If

 FindMax = result

 End Function

 Sub Main()

 Dim a As Integer = 100

 Dim b As Integer = 200

 Dim res As Integer

 res = FindMax(a, b)

 Console.WriteLine("Max value is : {0}", res)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces following result:

Max value is : 200

More Types of Function Return Values

1) Functions returning Structures

Suppose you need a function that returns a customer's savings and checking account balances.

So far, you've learned that you can return two or more values from a function by supplying

arguments with the ByRef keyword. A more elegant method is to create a custom data type (a

structure) and write a function that returns a variable of this type.

Here's a simple example of a function that returns a custom data type. This example outlines

the steps you must repeat every time you want to create functions that return custom data

types:

1. Create a new project and insert the declarations of a custom data type in the declarations

section of the form:

Structure CustBalance

Dim SavingsBalance As Decimal

Dim CheckingBalance As Decimal

End Structure

2. Implement the function that returns a value of the custom type. In the function's body, you

must declare a variable of the type returned by the function and assign the proper values to its

fields. The following function assigns random values to the fields CheckingBalance and

SavingsBalance. Then assign the variable to the function's name, as shown next:

Function GetCustBalance(ID As Long) As CustBalance

Dim tBalance As CustBalance

tBalance.CheckingBalance = CDec(1000 + 4000 * rnd())

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 32/54

tBalance.SavingsBalance = CDec(1000 + 15000 * rnd())

Return(tBalance)

End Function

3. Place a button on the form from which you want to call the function. Declare a variable of

the same type and assign to it the function's return value. The example that follows prints the

savings and checking balances in the Output window:

Private Sub Button1 Click(...) Handles Button1.Click

Dim balance As CustBalance

balance = GetCustBalance(1)

Debug.WriteLine(balance.CheckingBalance)

Debug.WriteLine(balance.SavingsBalance)

End Sub

The code shown in this section belongs to the Structures sample project. Create this project

from scratch, perhaps by using your own custom data type, to explore its structure and

experiment with functions that return custom data types.

2) Function Returning Arrays

In addition to returning custom data types, VB 2008 functions can also return arrays. This is an

interesting possibility that allows you to write functions that return not only multiple values,

but also an unknown number of values.

In this section, we'll write the Statistics() function, similar to the CalculateStatistics() function

you saw a little earlier in this chapter. The Statistics() function returns the statistics in an array.

Moreover, it returns not only the average and the standard deviation, but the minimum and

maximum values in the data set as well. One way to declare a function that calculates all the

statistics is as follows:

Function Statistics(ByRef DataArray() As Double) As Double()

This function accepts an array with the data values and returns an array of Doubles. To

implement a function that returns an array, you must do the following:

1. Specify a type for the function's return value and add a pair of parentheses after the

type's name. Don't specify the dimensions of the array to be returned here; the array

will be declared formally in the function.

2. In the function's code, declare an array of the same type and specify its dimensions. If

the function should return four values, use a declaration like this one:

Dim Results(3) As Double

The Results array, which will be used to store the results, must be of the same type as

the function— its name can be anything.

3. To return the Results array, simply use it as an argument to the Return statement:

Return(Results)

4. In the calling procedure, you must declare an array of the same type without

dimensions:

Dim Statistics() As Double

5. Finally, you must call the function and assign its return value to this array:

Stats() = Statistics(DataSet())

Here, DataSet is an array with the values whose basic statistics will be calculated by the

Statistics() function. Your code can then retrieve each element of the array with an index value

as usual.

ARGUMENTS

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 33/54

Subroutines and functions aren't entirely isolated from the rest of the application. Most

procedures accept arguments from the calling program. Recall that an argument is a value you

pass to the procedure and on which the procedure usually acts. This is how subroutines and

functions communicate with the rest of the application.

Subroutines and functions may accept any number of arguments, and you must supply a value

for each argument of the procedure when you call it. Some of the arguments may be optional,

which means you can omit them; you will see shortly how to handle optional arguments.

The custom function Min(), for instance, accepts two numbers and returns the smaller one:

Function Min(ByVal a As Single, ByVal b As Single) As Single

Min = IIf(a < b, a, b)

End Function

IIf() is a built-in function that evaluates the first argument, which is a logical expression. If the

expression is True, the IIf() function returns the second argument. If the expression is False,

the function returns the third argument.

To call the Min() custom function, use a few statements like the following:

Dim val1 As Single = 33.001

Dim val2 As Single = 33.0011

Dim smallerVal as Single

smallerVal = Min(val1, val2)

Debug.Write("The smaller value is " & smallerVal)

If you execute these statements (place them in a button's Click event handler), you will see the

following in the Immediate window:

The smaller value is 33.001

If you attempt to call the same function with two Double values, with a statement like the

following, you will see the value 3.33 in the Immediate window:

Debug.WriteLine(Min(3.33000000111, 3.33000000222))

The compiler converted the two values from Double to Single data type and returned one of

them.

Interesting things will happen if you attempt to use the Min() function with the Strict option

turned on. Insert the statement Option Strict On at the very beginning of the file, or set Option

Strict to On in the Compile tab of the project's Properties pages. The editor will underline the

statement that implements the Min() function: the IIf() function. The IIf() function accepts two

Object variables as arguments, and returns one of them as its result. The Strict option prevents

the compiler from converting an Object to a numeric variable. To use the IIf() function with the

Strict option, you must change its implementation as follows:

Function Min(ByVal a As Object, ByVal b As Object) As Object

Min = IIf(Val(a) < Val(b), a, b)

End Function

Argument Passing Mechanisms

One of the most important topics in implementing your own procedures is the mechanism used

to pass arguments. The examples so far have used the default mechanism: passing arguments

by value. The other mechanism is passing them by reference. Although most programmers use

the default mechanism, it's important to know the difference between the two mechanisms and

when to use each.

 Passing arguments By Value

 Passing arguments by Reference

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 34/54

 Returning Multiple Values

 Passing Objects as Arguments

Passing arguments by value

This is the default mechanism for passing parameters to a method. In this mechanism, when a

method is called, a new storage location is created for each value parameter. The values of the

actual parameters are copied into them. So, the changes made to the parameter inside the

method have no effect on the argument.

In VB.Net, you declare the reference parameters using the ByVal keyword. The following

example demonstrates the concept:

Module paramByval

 Sub swap(ByVal x As Integer, ByVal y As Integer)

 Dim temp As Integer

 temp = x ' save the value of x

 x = y ' put y into x

 y = temp 'put temp into y

 End Sub

 Sub Main()

 ' local variable definition

 Dim a As Integer = 100

 Dim b As Integer = 200

 Console.WriteLine("Before swap, value of a : {0}", a)

 Console.WriteLine("Before swap, value of b : {0}", b)

 ' calling a function to swap the values '

 swap(a, b)

 Console.WriteLine("After swap, value of a : {0}", a)

 Console.WriteLine("After swap, value of b : {0}", b)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces following result:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

It shows that there is no change in the values though they had been changed inside the

function.

Passing Parameters by Reference
 A reference parameter is a reference to a memory location of a variable. When you pass

parameters by reference, unlike value parameters, a new storage location is not created for

these parameters. The reference parameters represent the same memory location as the actual

parameters that are supplied to the method.

In VB.Net, you declare the reference parameters using the ByRef keyword. The following

example demonstrates this:

Module paramByref

http://visualbasic.w3computing.com/vb2008/3/vb-arguments-returning-multiple-values.php
http://visualbasic.w3computing.com/vb2008/3/vb-passing-objects-arguments.php

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 35/54

 Sub swap(ByRef x As Integer, ByRef y As Integer)

 Dim temp As Integer

 temp = x ' save the value of x

 x = y ' put y into x

 y = temp 'put temp into y

 End Sub

 Sub Main()

 ' local variable definition

 Dim a As Integer = 100

 Dim b As Integer = 200

 Console.WriteLine("Before swap, value of a : {0}", a)

 Console.WriteLine("Before swap, value of b : {0}", b)

 ' calling a function to swap the values '

 swap(a, b)

 Console.WriteLine("After swap, value of a : {0}", a)

 Console.WriteLine("After swap, value of b : {0}", b)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces following result:

Before swap, value of a : 100

Before swap, value of b : 200

After swap, value of a : 200

After swap, value of b : 100

Returning Multiple Values

If you want to write a function that returns more than a single result, you will most likely pass

additional arguments by reference and set their values from within the function's code. The

CalculateStatistics() function, calculates the basic statistics of a data set. The values of the data

set are stored in an array, which is passed to the function by reference. The CalculateStatistics()

function must return two values: the average and standard deviation of the data set. Here's the

declaration of the CalculateStatistics() function:

Function CalculateStatistics(ByRef Data() As Double, ByRef Avg As Double, ByRef StDev

As Double) As Integer

The function returns an integer, which is the number of values in the data set. The two

important values calculated by the function are returned in the Avg and StDev arguments:

Function CalculateStatistics(ByRef Data() As Double, ByRef Avg As Double, ByRef StDev

As Double) As Integer

Dim i As Integer, sum As Double, sumSqr As Double, points As Integer

points = Data.Length

For i = 0 To points - 1

sum = sum + Data(i)

sumSqr = sumSqr + Data(i) ˆ 2

Next

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 36/54

Avg = sum / points

StDev = System.Math.Sqrt(sumSqr / points - Avg ˆ 2)

Return(points)

End Function

To call the CalculateStatistics() function from within your code, set up an array of Doubles and

declare two variables that will hold the average and standard deviation of the data set:

Dim Values(99) As Double

' Statements to populate the data set

Dim average, deviation As Double

Dim points As Integer

points = Stats(Values, average, deviation)

Debug.WriteLine points & " values processed."

Debug.WriteLine "The average is " & average & " and"

Debug.WriteLine "the standard deviation is " & deviation

Using ByRef arguments is the simplest method for a function to return multiple values.

However, the definition of your functions might become cluttered, especially if youwant to

returnmore than a few values. Another problem with this technique is that it's not clear whether

an argument must be set before calling the function. As you will see shortly, it is possible for a

function to return an array or a custom structure with fields for any number of values.

Passing Objects as Arguments

When you pass objects as arguments, they're passed by reference, even if you have specified

the ByVal keyword. The procedure can access and modify the members of the object passed as

an argument, and the new value will be visible in the procedure that made the call.

The following code segment demonstrates this. The object is an ArrayList, which is an

enhanced form of an array. The ArrayList is discussed in detail later in the tutorial, but to

follow this example all you need to know is that the Add method adds new items to the

ArrayList, and you can access individual items with an index value, similar to an array's

elements. In the Click event handler of a Button control, create a new instance of the ArrayList

object and call the PopulateList() subroutine to populate the list. Even if the ArrayList object is

passed to the subroutine by value, the subroutine has access to its items:

Private Sub Button1 Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles Button1.Click

Dim aList As New ArrayList()

PopulateList(aList)

Debug.WriteLine(aList(0).ToString)

Debug.WriteLine(aList(1).ToString)

Debug.WriteLine(aList(2).ToString)

End Sub

Sub PopulateList(ByVal list As ArrayList)

list.Add("1")

list.Add("2")

list.Add("3")

End Sub

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 37/54

The same is true for arrays and all other collections. Even if you specify the ByVal keyword,

they're passed by reference.

Passing unknown number of Arguments

VB 2008 supports the ParamArray keyword, which allows you to pass a variable number of

arguments to a procedure.

Let's look at an example. Suppose that you want to populate a ListBox control with elements.

To add an item to the ListBox control, you call the Add method of its Items collection as

follows:

ListBox1.Items.Add("new item")

This statement adds the string new item to the ListBox1 control. If you frequently add multiple

items to a ListBox control from within your code, you can write a subroutine that performs this

task. The following subroutine adds a variable number of arguments to the ListBox1 control:

Sub AddNamesToList(ByVal ParamArray NamesArray() As Object)

Dim x As Object

For Each x In NamesArray

ListBox1.Items.Add(x)

Next x

End Sub

This subroutine's argument is an array prefixed with the keyword ParamArray, which holds all

the parameters passed to the subroutine. If the parameter array holds items of the same type,

you can declare the array to be of the specific type (string, integer, and so on). To add items to

the list, call the AddNamesToList() subroutine as follows:

AddNamesToList("Robert", "Manny", "Renee", "Charles", "Madonna")

If you want to know the number of arguments actually passed to the procedure, use the Length

property of the parameter array. The number of arguments passed to the AddNamesToList()

subroutine is given by the following expression:

NamesArray.Length

The following loop goes through all the elements of the NamesArray and adds them to the list:

Dim i As Integer

For i = 0 to NamesArray.GetUpperBound(0)

ListBox1.Items.Add(NamesArray(i))

Next i

VB arrays are zero-based (the index of the first item is 0), and the GetUpperBound method

returns the index of the last item in the array.

A procedure that accepts multiple arguments relies on the order of the arguments. To omit

some of the arguments, you must use the corresponding comma. Let's say you want to call such

a procedure and specify the first, third, and fourth arguments. The procedure must be called as

follows:

ProcName(arg1, , arg3, arg4)

The arguments to similar procedures are usually of equal stature, and their order doesn't make

any difference. A function that calculates the mean or other basic statistics of a set of numbers,

or a subroutine that populates a ListBox or ComboBox control, are prime candidates for

implementing this technique. If the procedure accepts a variable number of arguments that

aren't equal in stature, you should consider the technique described in the following section. If

the function accepts a parameter array, this must the last argument in the list, and none of the

other parameters can be optional.

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 38/54

Param Arrays
At times, while declaring a function or sub procedure you are not sure of the number of

arguments passed as a parameter. VB.Net param arrays (or parameter arrays) come into help at

these times.

The following example demonstrates this:

Module myparamfunc

 Function AddElements(ParamArray arr As Integer()) As Integer

 Dim sum As Integer = 0

 Dim i As Integer = 0

 For Each i In arr

 sum += i

 Next i

 Return sum

 End Function

 Sub Main()

 Dim sum As Integer

 sum = AddElements(512, 720, 250, 567, 889)

 Console.WriteLine("The sum is: {0}", sum)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces following result:

The sum is: 2938

Named Arguments

The main limitation of the argument-passing mechanism, though, is the order of the arguments.

By default, Visual Basic matches the values passed to a procedure to the declared arguments

by their order.

This limitation is lifted by Visual Basic's capability to specify named arguments. With named

arguments, you can supply arguments in any order because they are recognized by name and

not by their order in the list of the procedure's arguments. Suppose you've written a function

that expects three arguments: a name, an address, and an email address:

Function Contact(Name As String, Address As String, EMail As String)

When calling this function, you must supply three strings that correspond to the arguments

Name, Address, and EMail, in that order. However, there's a safer way to call this function:

Supply the arguments in any order by their names. Instead of calling the Contact() function as

follows:

Contact("Peter Evans", "2020 Palm Ave., Santa Barbara, CA 90000", _

"PeterEvans@example.com")

you can call it this way:

Contact(Address:="2020 Palm Ave., Santa Barbara, CA 90000", _

EMail:="PeterEvans@example.com", Name:="Peter Evans")

The := operator assigns values to the named arguments. Because the arguments are passed by

name, you can supply them in any order.

To test this technique, enter the following function declaration in a form's code:

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 39/54

Function Contact(ByVal Name As String, ByVal Address As String, _

ByVal EMail As String) As String

Debug.WriteLine(Name)

Debug.WriteLine(Address)

Debug.WriteLine(EMail)

Return ("OK")

End Function

Then call the Contact() function from within a button's Click event with the following

statement:

Debug.WriteLine(Contact(Address:="2020 Palm Ave., Santa Barbara, CA 90000", _

Name:="Peter Evans", EMail:="PeterEvans@example.com"))

You'll see the following in the Immediate window:

Peter Evans

2020 Palm Ave., Santa Barbara, CA 90000

PeterEvans@example.com

OK

The function knows which value corresponds to which argument and can process them the

same way that it processes positional arguments. Notice that the function's definition is the

same, whether you call it with positional or named arguments. The difference is in how you

call the function and not how you declare it.

Named arguments make code safer and easier to read, but because they require a lot of typing,

most programmers don't use them. Besides, when IntelliSense is on, you can see the definition

of the function as you enter the arguments, and this minimizes the chances of swapping two

values by mistake.

Named Visual Basic Arguments

Some obvious ways to write readable code include the use of program comments in your code

-- no matter what the language you are using to develop your program, all major languages

provide for comments. Something else that can make your Visual Basic more readable is the

use of Named Arguments.

This is illustrated by executing the Visual Basic MsgBox Function to display a Windows

Message Box. The Visual Basic MsgBox function has one required argument (Prompt), and

four optional arguments (Buttons, Title, HelpFile and Context).

MsgBox "I love Visual Basic"

By default, this code will display a Message Box with a single command button captioned OK,

with the text "I love Visual Basic", and the Visual Basic Project name displayed in the Title

Bar of the Message Box.

Suppose I'm not happy with the default Title in the Message Box, and I decide I want to

customize it. Doing this is easy-all I need to do is supply the Title argument to the MsgBox

function. However, since Title is the third argument, I either need to supply the second

argument -- Buttons, which is by default presumed to be the value vbOKOnly -- or provide a

'comma placeholder', like this.

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 40/54

MsgBox "I love Visual Basic",, "SearchVB.Com"

Notice the two commas back-to-back, with no value in-between. This is the 'comma

placeholder' and is how we tell VB that although we have a value for the third argument, we

have no explicit value for the second argument.

When we execute this code, we'll see a Message Box that reads "I love Visual Basic", and that

has "SearchVB.Com" for its Title Bar.

Named Arguments can make passing optional arguments easier-and make your code infinitely

easier to read and modify. For instance, the code we wrote above can be re-written the

following way using Named Arguments.

MsgBox Prompt:="I love Visual Basic", Title:="SearchVB.Com"

With Named Arguments, we specify the name of the argument, followed by a colon and equals

sign (:=), then the value for the argument. By using Named Arguments, we don't need to

provide a 'comma placeholder' for the second argument Buttons. Since we are naming the

argument, VB knows that 'SearchVB.Com' is the value for the Optional Argument 'Title'. And

since we name the arguments, being able to read and understand the code in the future is much

easier.

Overloading Functions

Function overloading, means that you can have multiple implementations of the same function,

each with a different set of arguments and possibly a different return value. Yet all overloaded

functions share the same name.

The Next method of the System.Random class returns an integer value from –2,147,483,648 to

2,147,483,647. (This is the range of values that can be represented by the Integer data type.)

We should also be able to generate random numbers in a limited range of integer values. To

emulate the throw of a die, we want a random value in the range from 1 to 6, whereas for a

roulette game we want an integer random value in the range from 0 to 36. You can specify an

upper limit for the random number with an optional integer argument. The following statement

will return a random integer in the range from 0 to 99:

randomInt = rnd.Next(100)

You can also specify both the lower and upper limits of the random number's range. The

following statement will return a random integer in the range from 1,000 to 1,999:

randomInt = rnd.Next(1000, 2000)

The same method behaves differently based on the arguments we supply. The behavior of the

method depends either on the type of the arguments, the number of the arguments, or both. As

you will see, there's no single function that alters its behavior based on its arguments. There are

as many different implementations of the same function as there are argument combinations.

All the functions share the same name, so they appear to the user as a single multifaceted

function. These functions are overloaded, and you'll see how they're implemented in the

following section.

Let's return to the Min() function we implemented earlier in this chapter. The initial

implementation of the Min() function is shown next:

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 41/54

Function Min(ByVal a As Double, ByVal b As Double) As Double

Min = IIf(a < b, a, b)

End Function

To write a Min() function that can handle both numeric and string values, you must, in essence,

write two Min() functions. All Min() functions must be prefixed with the Overloads keyword.

The following statements show two different implementations of the same function:

Overloads Function Min(ByVal a As Double, ByVal b As Double) As Double

Min = Convert.ToDouble(IIf(a < b, a, b))

End Function

Overloads Function Min(ByVal a As String, ByVal b As String) As String

Min = Convert.ToString(IIf(a < b, a, b))

End Function

We need a third overloaded form of the same function to compare dates. If you call the Min()

function, passing as an argument two dates, as in the following statement, the Min() function

will compare them as strings and return (incorrectly) the first date.

Debug.WriteLine(Min(#1/1/2009#, #3/4/2008#))

This statement is not even valid when the Strict option is on, so you clearly need another

overloaded form of the function that accepts two dates as arguments, as shown here:

Overloads Function Min(ByVal a As Date, ByVal b As Date) As Date

Min = IIf(a < b, a, b)

End Function

If you now call the Min() function with the dates #1/1/2009# and #3/4/2008#, the function will

return the second date, which is chronologically smaller than the first.

Event-Handler Arguments

Events are basically a user action like key press, clicks, mouse movements etc., or some

occurrence like system generated notifications. Applications need to respond to events when

they occur.

Clicking on a button, or entering some text in a text box, or clicking on a menu item all are

examples of events. An event is an action that calls a function or may cause another event.

Event handlers are functions that tell how to respond to an event.

VB.Net is an event-driven language. There are mainly two types of events:

 Mouse events

 Keyboard events

Handling Mouse Events
Mouse events occur with mouse movements in forms and controls. Following are the various

mouse events related with a Control class:

 MouseDown - it occurs when a mouse button is pressed

 MouseEnter - it occurs when the mouse pointer enters the control

 MouseHover - it occurs when the mouse pointer hovers over the control

 MouseLeave - it occurs when the mouse pointer leaves the control

 MouseMove - it occurs when the mouse pointer moves over the control

 MouseUp - it occurs when the mouse pointer is over the control and the mouse

button is released

 MouseWheel - it occurs when the mouse wheel moves and the control has

focus

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 42/54

The event handlers of the mouse events get an argument of type MouseEventArgs.

The MouseEventArgs object is used for handling mouse events. It has the following properties:

 Buttons - indicates the mouse button pressed

 Clicks - indicates the number of clicks

 Delta - indicates the number of detents the mouse wheel rotated

 X - indicates the x-coordinate of mouse click

 Y - indicates the y-coordinate of mouse click

Handling Keyboard Events
Following are the various keyboard events related with a Control class:

 KeyDown - occurs when a key is pressed down and the control has focus

 KeyPress - occurs when a key is pressed and the control has focus

 KeyUp - occurs when a key is released while the control has focus

The event handlers of the KeyDown and KeyUp events get an argument of

type KeyEventArgs. This object has the following properties:

 Alt - it indicates whether the ALT key is pressed/p>

 Control - it indicates whether the CTRL key is pressed

 Handled - it indicates whether the event is handled

 KeyCode - stores the keyboard code for the event

 KeyData - stores the keyboard data for the event

 KeyValue - stores the keyboard value for the event

 Modifiers - it indicates which modifier keys (Ctrl, Shift, and/or Alt) are pressed

 Shift - it indicates if the Shift key is pressed

The event handlers of the KeyDown and KeyUp events get an argument of

type KeyEventArgs. This object has the following properties:

 Handled - indicates if the KeyPress event is handled

 KeyChar - stores the character corresponding to the key pressed

WORKING WITH FORMS

In Visual Basic, the form is the container for all the controls that make up the user interface.

When a Visual Basic application is executing, each window it displays on the desktop is a

form. In previous chapters, we concentrated on placing the elements of the user interface on

forms, setting their properties, and adding code behind selected events. Now, we’ll look at

forms themselves and at a few related topics, such as menus (forms are the only objects that

can have menus attached), how to design forms that can be automatically resized, and how to

access the controls of one form from within another form’s code. The form is the top-level

object in a Visual Basic application, and every application starts with the form.

The forms that constitute the visible interface of your application are called Windows forms;

this term includes both the regular forms and dialog boxes, which are simple forms you use for

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 43/54

very specific actions, such as to prompt the user for a specific piece of data or to display

critical information. A dialog box is a form with a small number of controls, no menus, and

usually an OK and a Cancel button to close it. These are also called Modal Forms and the

regular forms are non-Modal.

APPEARANCE OF FORMS

Applications are made up of one or more forms (usually more than one), and the forms are

what users see. You should craft your forms carefully, make them functional, and keep them

simple and intuitive. You already know how to place controls on the form, but there’s more to

designing forms than populating them with controls. The main characteristic of a form is the

title bar on which the form’s caption is displayed.

Clicking the icon on the left end of the title bar opens the Control menu, which contains the

commands shown in Table 2.1 On the right end of the title bar are three buttons: Minimize,

Maximize, and Close. Clicking these buttons performs the associated function. When a form is

maximized, the Maximize button is replaced by the Restore button. When clicked, this button

resets the form to the size and position before it was maximized. The Restore button is then

replaced by the Maximize button

Commands of the Control Menu of the Form

Command Effect

Restore
Restores a maximized form to the size it was before it was maximized;

 available only if the form has been maximized.

Move Lets the user move the form around with the arrow keys.

Size Lets the user resize the form with the arrow keys.

Minimize Minimizes the form.

Maximize Maximizes the form.

Close Closes the current form

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 44/54

Properties of the Form Object

You're familiar with the appearance of forms, even if you haven't programmed in the Windows

environment in the past; you have seen nearly all types of windows in the applications you're

using every day. The floating toolbars used by many graphics applications, for example, are

actually forms with a narrow title bar. The dialog boxes that display critical information or

prompt you to select the file to be opened are also forms. You can duplicate the look of any

window or dialog box through the following properties of the Form object.

AcceptButton, CancelButton

These two properties let you specify the default Accept and Cancel buttons. The Accept button

is the one that's automatically activated when you press Enter, no matter which control has the

focus at the time, and is usually the button with the OK caption. Likewise, the Cancel button is

the one that's automatically activated when you hit the Esc key and is usually the button with

the Cancel caption. To specify the Accept and Cancel buttons on a form, locate the

AcceptButton and CancelButton properties of the form and select the corresponding controls

from a drop-down list, which contains the names of all the buttons on the form. For more

information on these two properties, see the section "Forms versus Dialog Boxes in VB.NET,"

later in this chapter.

AutoScaleMode

This property determines how the control is scaled, and its value is a member of the AutoScale-

Mode enumeration: None (automatic scaling is disabled), Font (the controls on the form are

scaled relative to the size of their font), Dpi, which stands for dots per inch (the controls on the

form are scaled relative to the display resolution), and Inherit (the controls are scaled according

to the AutoScaleMode property of their parent class). The default value is Font; if you change

the form's font size, the controls on it are scaled to the new font size.

AutoScroll

The AutoScroll property is a True/False value that indicates whether scroll bars will be

automatically attached to the form if the form is resized to a point that not all its controls are

visible. Use this property to design large forms without having to worry about the resolution of

the monitor on which they'll be displayed. The AutoScroll property is used in conjunction with

two other properties (described a little later in this

section): AutoScrollMargin and AutoScrollMinSize. Note that the AutoScroll property

applies to a few controls as well, including the Panel and SplitContainer controls. For example,

you can create a form with a fixed and a scrolling pane by placing two Panel controls on it and

setting the AutoScroll property of one of them (the Panel you want to scroll) to True.

AutoScrollPosition

This property is available from within your code only (you can't set this property at design

time), and it indicates the number of pixels that the form was scrolled up or down. Its initial

value is zero, and it assumes a value when the user scrolls the form (provided that the form's

AutoScroll property is True). Use this property to find out the visible controls from within your

code, or scroll the form programmatically to bring a specific control into view.

AutoScrollMargin

This is a margin, expressed in pixels, that's added around all the controls on the form. If the

form is smaller than the rectangle that encloses all the controls adjusted by the margin, the

appropriate scroll bar(s) will be displayed automatically.

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 45/54

AutoScrollMinSize

This property lets you specify the minimum size of the form before the scroll bars are attached.

If your form contains graphics that you want to be visible at all times, set the Width and Height

members of the AutoScrollMinSize property to the dimensions of the graphics. (Of course, the

graphics won't be visible at all times, but the scroll bars indicate that there's more to the form

than can fit in the current window.) Notice that this isn't the form's minimum size; users can

make the form even smaller. To specify a minimum size for the form, use the MinimumSize

property, described later in this section.

FormBorderStyle

 The FormBorderStyle property determines the style of the form's border; its value is

one of the FormBorderStyle enumeration's members, which are shown in Table 2.3. You can

make the form's title bar disappear altogether by setting the form's FormBorderStyle property

to FixedToolWindow, the ControlBox property to False, and the Text property (the form's

caption) to an empty string
Tabel 2.3 - The FormBorderStyle Enumeration

Value Effect

None A borderless window that can't be resized. This setting is rarely used.

Sizable (default) A resizable window that's used for displaying regular forms.

Fixed3D
A window with a fixed visible border, ‘‘raised'' relative to the main area. Unlike the

None setting, this setting allows users to minimize and close the window.

FixedDialog A fixed window used to implement dialog boxes.

FixedSingle A fixed window with a single-line border.

FixedToolWindow
A fixed window with a Close button only. It looks like a toolbar displayed by drawing

and imaging applications.

SizableToolWindow
Same as the FixedToolWindow, but is resizable. In addition, its caption font is smaller

than the usual.

 ControlBox

This property is also True by default. Set it to False to hide the control box icon and disable the

Control menu. Although the Control menu is rarely used, Windows applications don't disable

it. When the ControlBox property is False, the three buttons on the title bar are also disabled. If

you set the Text property to an empty string, the title bar disappears altogether.

MinimizeBox, MaximizeBox

These two properties, which specify whether the Minimize and Maximize buttons will appear

on the form's title bar, are True by default. Set them to False to hide the corresponding buttons

on the form's title bar.

MinimumSize, MaximumSize

These two properties read or set the minimum and maximum size of a form. When users resize

the form at runtime, the form won't become any smaller than the dimensions specified by the

MinimumSize property and no larger than the dimensions specified by the MaximumSize

property. The MinimumSize property is a Size object, and you can set it with a statement like

the following:

Me.MinimumSize = New Size(400, 300)

Or you can set the width and height separately:

Me.MinimumSize.Width = 400

Me.MinimumSize.Height = 300

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 46/54

The MinimumSize.Height property includes the height of the form's title bar; you should take

that into consideration. If the minimum usable size of the form is 400 × 300, use the following

statement to set the MinimumSize property:

Me.MinimumSize = New Size(400, 300 + SystemInformation.CaptionHeight)

The default value of both properties is (0, 0), which means that no minimum or maximum size

is imposed on the form, and the user can resize it as desired.

KeyPreview

This property enables the form to capture all keystrokes before they're passed to the control

that has the focus. Normally, when you press a key, the KeyPress event of the control with the

focus is triggered (as well as the KeyUp and KeyDown events), and you can handle the

keystroke from within the control's appropriate handler. In most cases, you let the control

handle the keystroke and don't write any form code for that.

SizeGripStyle

This property gets or sets the style of the sizing handle to display in the bottom-right corner of

the form. You can set it to a member of the SizeGripStyle enumeration: Auto (the size grip is

displayed as needed), Show (the size grip is displayed at all times), or Hide (the size grip is not

displayed, but users can still resize the form with the mouse).

StartPosition, Location

The StartPosition property, which determines the initial position of the form when it's first

displayed, can be set to one of the members of the FormStartPosition enumeration: Center-

Parent (the form is centered in the area of its parent form), CenterScreen (the form is centered

on the monitor), Manual (the position of the form is determined by the Location property),

WindowsDefaultLocation (the form is positioned at the Windows default location), and

WindowsDefaultBound (the form's location and bounds are determined by Windows defaults).

The Location property allows you to set the form's initial position at design time or to change

the form's location at runtime.

TopMost

This property is a True/False value that lets you specify whether the form will remain on top of

all other forms in your application. Its default property is False, and you should change it only

on rare occasions. Some dialog boxes, such as the Find & Replace dialog box of any text-

processing application, are always visible, even when they don't have the focus.

Size

Use the Size property to set the form's size at design time or at runtime. Normally, the form's

width and height are controlled by the user at runtime. This property is usually set from within

the form's Resize event handler to maintain a reasonable aspect ratio when the user resizes the

form. The Form object also exposes the Width and Height properties for controlling its size.

Placing Controls on Forms

The first step in designing your application's interface is, of course, the analysis and careful

planning of the basic operations you want to provide through your interface. The second step is

to design the forms. Designing a form means placing Windows controls on it, setting the

controls' properties, and then writing code to handle the events of interest.

To place controls on your form, you select them in the Toolbox and then draw, on the form, the

rectangle in which the control will be enclosed. Or you can double-click the control's icon to

place an instance of the control on the form. All controls have a default size, and you can resize

the control on the form by using the mouse.

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 47/54

Setting the TabIndex Property
Another important issue in form design is the tab order of the controls on the form. As you

know, pressing the Tab key at runtime takes you to the next control on the form. The order of

the controls is the order in which they were placed on the form, but this is never what we want.

When you design the application, you can specify in which order the controls receive the focus

(the tab order, as it is known) with the help of the TabIndex property. Each control has its own

TabIndex setting, which is an integer value. When the Tab key is pressed, the focus is moved

to the control whose tab order immediately follows the tab order of the current control. The

values of the TabIndex properties of the various controls on the form need not be consecutive.

To specify the tab order of the various controls, you can set their TabIndex property in the

Properties window or you can choose the Tab Order command from the View menu. The tab

order of each control will be displayed on the corresponding control, as shown in Figure 5.3.

Setting the Tab order by using the TabIndex property of the form

To set the tab order of the controls, click each control in the order in which you want them to

receive the focus. You must click all of them in the desired order, starting with the first control

in the tab order. Each control's index in the tab order appears in the upper-left corner of the

control. When you're finished, choose the Tab Order command from the View menu again to

hide these numbers. As you place controls on the form, don't forget to lock them, so that you

won't move them around by mistake as you work with other controls. You can lock the

controls in their places either by setting each control's Locked property to True or by locking

all the controls on the form at once via the Format > Lock Controls command.

Anchoring and Docking Controls

Anchoring Controls
The Anchor property lets you attach one or more edges of the control to corresponding edges

of the form. The anchored edges of the control maintain the same distance from the

corresponding edges of the form.

Place a TextBox control on a new form, set its MultiLine property to True, and then open the

control's Anchor property in the Properties window. You will see a rectangle within a larger

rectangle and four pegs that connect the small control to the sides of the larger box. The large

box is the form, and the small one is the control. The four pegs are the anchors, which can be

either white or gray. The gray anchors denote a fixed distance between the control and the

form. By default, the control is placed at a fixed distance from the top-left corner of the form.

When the form is resized, the control retains its size and its distance from the top-left corner of

the form.

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 48/54

 The settings of the Anchor property

We want our TextBox control to fill the width of the form, be aligned to the top of the form,

and leave some space for a few buttons at the bottom. We also want our form to maintain this

arrangement, regardless of its size. Make the TextBox control as wide as the form (allowing,

perhaps, a margin of a few pixels on either side). Then place a couple of buttons at the bottom

of the form and make the TextBox control tall enough that it stops above the buttons. This is

the form of the Anchor property example project.

Now open the TextBox control's Anchor property and make all four anchors gray by clicking

them. This action tells the Form Designer to resize the control accordingly at runtime, so that

the distances between the sides of the control and the corresponding sides of the form are the

same as those you set at design time. Select each button on the form and set their Anchor

properties in the Properties window: Anchor the left button to the left and bottom of the form,

and the right button to the right and bottom of the form.

Resize the form at design time without running the project, and you'll see that all the controls

are resized and rearranged on the form at all times. Figure shows the Anchor project's main

form in two different sizes.

Use the Anchor property of the various controls to design forms that can be resized

gracefully at runtime.

Yet, there's a small problem: If you make the form very narrow, there will be no room for both

buttons across the form's width. The simplest way to fix this problem is to impose a minimum

size for the form. To do so, you must first decide the form's minimum width and height and

then set the MinimumSize property to these values. You can also use the AutoScroll properties,

but it's not recommended that you add scroll bars to a small form like ours.

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 49/54

Docking Controls
In addition to the Anchor property, most controls provide the Dock property, which determines

how a control will dock on the form. The default value of this property is None.

Create a new form, place a multiline TextBox control on it, and then open the control's Dock

property. The various rectangular shapes are the settings of the property. If you click the

middle rectangle, the control will be docked over the entire form: It will expand and shrink

both horizontally and vertically to cover the entire form. This setting is appropriate for simple

forms that contain a single control, usually a TextBox, and sometimes a menu. Try it out.

Let's create a more complicated form with two controls (see the Docking sample project). The

form shown in Figure contains a TreeView control on the left and a ListView control on the

right. The two controls display folder and file data on an interface that's very similar to that of

Windows Explorer. The TreeView control displays the directory structure, and the ListView

control displays the selected folder's files.

Setting the Dock property of the controls to Fill so the form at runtime will be filled with

controls even when it is re-sized

Place a TreeView control on the left side of the form and a ListView control on the right side

of the form. Then dock the TreeView to the left and the ListView to the right. If you run the

application now, as you resize the form, the two controls remain docked to the two sides of the

form — but their sizes don't change. If you make the form wider, there will be a gap between

the two controls. If you make the form narrower, one of the controls will overlap the other.

End the application, return to the Form Designer, select the ListView control, and set its Dock

property to Fill. This time, the ListView will change size to take up all the space to the right of

the TreeView. The ListView control will attempt to fill the form, but it won't take up the space

of another control that has been docked already.

Form Events

 The Form object triggers several events. The most important are Activated, Deactivate,

Form-Closing, Resize, and Paint.

The Activated and Deactivate Events

When more than one form is displayed, the user can switch from one to the other by using the

mouse or by pressing Alt+Tab. Each time a form is activated, the Activated event takes place.

Likewise, when a form is activated, the previously active form receives the Deactivate event.

Insert in these two event handlers the code you want to execute when a form is activated (set

certain control properties, for example) and when a form loses the focus or is deactivated.

These two events are the form's equivalents of the Enter and Leave events of the various

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 50/54

controls. Notice an inconsistency in the names of the two events: the Activated event takes

place after the form has been activated, whereas the Deactivate event takes place right before

the form is deactivated.

The FormClosing and FormClosed Events

The FormClosing event is fired when the user closes the form by clicking its Close button. If

the application must terminate because Windows is shutting down, the same event will be fired

as well. Users don't always quit applications in an orderly manner, and a professional

application should behave gracefully under all circumstances. The same code you execute in

the application's Exit command must also be executed from within the closing event.

Listing: Cancelling the Closing of a Form

Public Sub Form1 FormClosing(...) Handles Me.FormClosing

Dim reply As MsgBoxResult

reply = MsgBox("Document has been edited. " &

"OK to terminate application, Cancel to " &

"return to your document.", MsgBoxStyle.OKCancel)

If reply = MsgBoxResult.Cancel Then

e.Cancel = True

End If

End Sub

The e argument of the FormClosing event provides the CloseReason property, which reports

how the form is closing. Its value is one of the following members of the CloseReason

enumeration: FormOwnerClosing, MdiFormClosing, None, TaskManagerClosing,

WindowsShutDown. The names of the members are self-descriptive, and you can query the

CloseReason property to determine how the window is closing.

The FormClosed event fires after the form has been closed. You can find out the action that

caused the form to be closed through the e.CloseReason property, but it's too late to cancel the

closing of the form.

The Resize, ResizeBegin, and ResizeEnd Events

The Resize event is fired every time the user resizes the form by using the mouse. With

previous versions of VB, programmers had to insert quite a bit of code in the Resize event's

handler to resize the controls and possibly rearrange them on the form.With the Anchor and

Dock properties, much of this overhead can be passed to the form itself. If you want the two

sides of the form to maintain a fixed ratio, however, you have to resize one of the dimensions

from within the Resize event handler

Private Form1 Resize(...) Handles Me.Resize

Me.Width = (0.75 * Me.Height)

End Sub

The Resize event is fired continuously while the form is being resized. If youwant to keep track

of the initial form's size and perform all the calculations after the user has finished resizing the

form, you can use the ResizeBegin and ResizeEnd events, which are fired at the beginning and

after the end of a resize operation, respectively. Store the form's width and height to two global

variables in the ResizeBegin event and use these two variables in the ResizeEnd event handler.

The Scroll Event

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 51/54

The Scroll event is fired by forms that have their AutoScroll property set to True when the user

scrolls the form. The second argument of the Scroll event handler exposes the OldValue and

NewValue properties, which are the displacements of the form before and after the scroll

operation. This event can be used to keep a specific control in view when the form's contents

are scrolled.

The AutoScroll property is handy for large forms, but it has a serious drawback: It scrolls the

entire form. In most cases, we want to keep certain controls in view at all times. Instead of a

scrollable form, you can create forms with scrollable sections by exploiting the AutoScroll

properties of the Panel and/or the SplitContainer controls. You can also reposition certain

controls from within the form's Scroll event handler. Let's say you have placed a few controls

on a Panel container and you want to keep this Panel at the top of a scrolling form. The

following statements in the form's Scroll event handler reposition the Panel at the top of the

form every time the user scrolls the form:

Private Sub Form1 Scroll(...) Handles Me.Scroll

Panel1.Top = Panel1.Top + (e.NewValue - e.OldValue)

End Sub

The Paint Event

This event takes place every time the form must be refreshed, and we use its handler to execute

code for any custom drawing on the form. When you switch to another form that partially or

totally overlaps the current one and then switch back to the first form, the Paint event will be

fired to notify your application that it must redraw the form. The form will refresh its controls

automatically, but any custom drawing on the form won't be refreshed automatically.

LOADING AND SHOWING FORMS

One of the operations you’ll have to perform with multi-form applications is to load and

manipulate forms from within other forms’ code. For example, you may wish to display a

second form to prompt the user for data specific to an application. You must explicitly load the

second form, read the information entered by the user, and then close the form. Or, you may

wish to maintain two forms open at once and let the user switch between them.. To show

Form2 when an action takes place on Form1, first declare a variable that references Form2:

Dim frm As New Form2

This declaration must appear in Form1 and must be placed outside any procedure. (If you place

it in a procedure’s code, then every time the procedure is executed, a new reference to Form2

will be created. This means that the user can display the same form multiple times.

Then, to invoke Form2 from within Form1, execute the following statement:

 frm.Show

This statement will bring up Form2 and usually appears in a button’s or menu item’s Click

event handler. At this point, the two forms don’t communicate with one another. However,

they’re both on the desktop and you can switch between them. There’s no mechanism to move

information from Form2 back to Form1, and neither form can access the other’s controls or

variables. The Show method opens Form2 in a modaless manner. The two forms are equal in

stature on the desktop, and the user can switch between them. You can also display the second

form in a modal manner, which means that users won’t be able to return to the form from

which they invoked it.

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 52/54

While a modal form is open, it remains on top of the desktop and you can’t move the focus to

the any other form of the same application (but you can switch to another application). To open

a modal form, use the statement

 frm.ShowDialog

The modal form is, in effect, a dialog box, like the Open File dialog box. You must first select

a file on this form and click the Open button, or click the Cancel button, to close the dialog box

and return to the form from which the dialog box was invoked.

The Startup Form
A typical application has more than a single form. When an application starts, the main form is

loaded. You can control which form is initially loaded by setting the startup object in the

Project Properties window. To open this, right-click the project’s name in the Solution

Explorer and select Properties. In the project’s Property Pages, select the Startup Object from

the drop-down list.

You can also start an application with a subroutine without loading a form. This subroutine

must be called Main() and must be placed in a Module. Right-click the project’s name in the

Solution Explorer window and select the Add Item command. When the dialog box appears,

select a Module. Name it StartUp (or anything you like; you can keep the default name

Module1) and then insert the Main() subroutine in the module. The Main() subroutine usually

contains initialization code and ends with a statement that displays one of the project’s forms;

to display the AuxiliaryForm object from within the Main() subroutine, use the following

statements:

Module StartUpModule

Sub Main()

System.Windows.Forms.Application.Run(New _ AuxiliaryForm())

End Sub

End Module

Then, you must open the Project Properties dialog box and specify that the project’s startup

object is the subroutine Main(). When you run the application, the form you specified in the

Run method will be loaded.

Controlling One Form from within Another
Loading and displaying a form from within another form’s code is fairly trivial. In some

situations, this is all the interaction you need between forms. Each form is designed to operate

independently of the others, but they can communicate via public variables (see, “Private &

Public Variables”). In most situations, however, you need to control one form from within

another’s code. Controlling the form means accessing its controls and setting or reading values

from within another form’s code.

Example:

 TextPad is a text editor that consists of the main form and an auxiliary form for the Find &

Replace operation. All other operations on the text are performed with the commands of the

menu you see on the main form. When the user wants to search for and/or replace a string, the

program displays another form on which they specify the text to find, the type of search, and so

on. When the user clicks one of the Find & Replace form’s buttons, the corresponding code

must access the text on the main form of the application and search for a word or replace a

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 53/54

string with another. The Find & Replace dialog box not only interacts with the TextBox control

on the main form, it also remains visible at all times while it’s open, even if it doesn’t have the

focus, because its TopMost property was set to True. In the Properties window, you can

specify which form is to be displayed when the application starts.

Forms Vs Dialog Boxes

A dialog box is simply a modal form. When we display forms as dialog boxes, we change the

border of the forms to the setting FixedDialog and invoke them with the ShowDialog method.

Modeless forms are more difficult to program, because the user may switch among them at any

time. Not only that, but the two forms that are open at once must interact with one another.

When the user acts on one of the forms, this may necessitate some changes in the other, and

you’ll see shortly how this is done.

Unit-1 Getting Started With VB.NET 2015-Batch

 Mr.K.yuvaraj & K.Kathirvel Department Of CS, CA & IT, KAHE 54/54

PART-B

POSSIBLE QUESTIONS(5X8=40 Marks)

1. Discuss in detail about IDE components in VB.NET with neat sketch.

2. Discuss about the properties of forms in VB.Net with neat sketch. .

3. Explain in detail about types of variables in VB.NET with example

4. Explain in detail about Argument Passing Mechanism

5. Explicate the appearance of forms in VB.NET with neat sketch.

6. Explain in detail about control flow statements with examples

7. Discuss the following with examples (i) Variables (ii) Constants

(iii)Arrays

8. Elucidate the process of loading and showing forms with neat sketch.

9. Compare and contrast the subroutines and functions and give example.

questions opt1 opt2 opt3
.Net is a technology developed by
_________ company

Microsoft
Sun
Microsystems

IBM

VB.Net is a
_____________programming
paradigm.

Procedural Structured Object Oriented

IDE stands for _____________
Internet Design
Environment

Integrated
Development
Environment

Internet
Distributed
Environment

The final compiled version of a
Project is ____

Form Software Components

______ is a collection of files that
can be compiled to create a
distributed component

Form Software Components

_______menu contains commands
for opening and saving projects

File Edit View

Every object has a distinct set of
attributes knowns as

members datas properties

The property that must be set first
for any new object is the ________

Name Colour Size

Objects that can be placed on a
form are called ________

Pictures Tools Buttons

Controls that do not have physical
appearance are called ________

invisible-at-runtime-
controls

visible-at-
runtime-controls

virtual controls

The Design window
appears__________ by default.

Auto-Hidden Docked Floating

________ windows appears
attached to the side, top or bottom
of the work area or to some other
window

Auto-Hidden Docked Floating

_________window gives an
overview of the solution we are
working with and lists all the files
in the project.

Solution Explorer
Properties
window

Explorer

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 Pollachi Main Road, Eacharani Post, Coimbatore-641 021

 CLASS : III-B.Sc COMPUTER SCIENCE(2015-2018)
 Online Examination

 VISUAL PROGRAMMING (15CSU501)

______window allows us to set
properties for various objects at
design time

Explorer
Solution
Explorer

Properties
window

_________window as you can see
in the image below displays the
results of building and running
applications

Command window output window Task window

When we type the period(dot) after
the object name a small dropdown
list containing all the properties
and methods related to that object
appears. This feature is called

IntelliSense OnlineHelp QuickMenu

____window displays all the tasks
that VB .NET

Task window output window
command
window

_______is nothing but a name
given to a storage area that our
programs can manipulate.

Variable name
variable
declaration

variable
initialization

To declare a variable, use the
_____statement followed by the
variable's name, the As keyword,
and its type,

Dim integer String

The data type of the variable is
defined by using the --------- clause

in where as

 ------- is the operator used for
string concatenation

Cat Str ^

Logical operators are also called
________ operators

Boolean Relational comparision

In Select Case _______ Case is
used to define codes that executes,
if the expression does not evaluate
to any of the Case statement

Default Otherwise Else

_______data type can be used for
currency values

Currency Dollar Object

Which function returns the
system's current date and time

DateTime.Now
DateTime.Toda
y

DateTime.Syste
m

What statement is used to close a
loop started with For statement?

Close End For Loop

What statement is used to
terminate a Do..Loop without
evaluating the test expression?

End Do Loop Exit

 --------- method is create a new
String object with the same content

CopyTo() Copy() Format()

The ----------- function remeove an
item from a specified position

Add Insert() RemoveAt

The String data type comes from
the ------- class

System.String System System.Forms

The String is ----------- locatable mutable immutable
The --------- function in String
Class will insert a String in a
specified index in the String
instance.

Length() Insert() Length()

Which of the following when
turned on do not allow to use any
variable without proper
declaration?

Option Restrict Option Explicit Option Implicit

Which of the following methods
cane be used to add items to an
ArrayList class?

Insert method
collection
method

top method

Parameters to methods in VB.NET
are declared by default as ---------

 ByVal ByRef Val

Which of the following does not
denote a arithmetic operator
allowed in VB.Net?

Mod / *

Which of the following denote the
method used for compatible type
conversions?

TypeCov() Type() CTyp()

Which of the following does not
denote a data type in VB.Net?

Boolean Float Decimal

The fornat used for Date is --------- {0:D} {0:T} {0:DD}

The fornat used for Time is --------- {0:D} {0:T} {0:TT}

___________ is an alternative to
If…Then….Else.

select…case case…select select

 Do Loop While Statement
executes a set of statements and
checks the condition, this is
repeated until the condition is true.
.It is also known as ____

Exit control Entry control control

_____ is the value range of integer -32767 to 32768 -32768 to 32767 32767 to -32768

_____ are used for storing values
temporarily.

character constant variable

_________ is the value range of
byte

0 to 255 1 to 255 0 to 266

The ___________ statement first
executex the statemetn and then
test the condition after each
execution

do….while while….do select….case

___________ structure executes
the statements until the condition
is satisfied

do…loop do..loop until do while…loop

do…loop until is --------- loop finite infinite long
__________ function retrives only
date

 for…next next…for exit for

A __________ loop can be
terminated by an exit for statement

 for…next next…for exit for

do….while loop is terminated
using __________ statement

 exit for for exit exit do

A sequence of variables by the
same name can be referred using

 arrays modules sub-routines

_______operator in VB is used for
string concatenation

& * +

_____is the container for all the
controls that make up the user
interface.

Form form window tool window

The forms that constitute the
visible interface of your
application are called______

forms Windows forms Form window

Which helps the user are not sure
of the number of arguments passed
as a parameter while declaring a
function or sub procedure

Named Arrays Param Arrays Unknown arrays

The default value of
FormBorderStyle property is

FixedSingle
FixedToolWind
ow

Sizable

This property is used to
change/display the titile of the
form

Name Text Title

Which of the following statement
should be used to return the control
from the middle of a subroutine?

Exit Exit Subroutine Exit Sub

How many values is a subroutine
capable of returning?

0 1
Any number of
values

opt4 answer
Apple
compters

Microsoft

Monolithic Object Oriented

Interface
Design
Environment

Integrated
Development
Environment

Files Components

Project Project

Project File

methods properties

Binding Name

Controls Controls

physical
controls

invisible-at-
runtime-controls

Closed Docked

Closed Docked

Output
Solution
Explorer

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 Pollachi Main Road, Eacharani Post, Coimbatore-641 021

 CLASS : III-B.Sc COMPUTER SCIENCE(2015-2018)

 VISUAL PROGRAMMING (15CSU501)

Code Window
Properties
window

ToolBar
Window

output window

DropHelp IntelliSense

Property
window

Task window

constants Variable

Dim as Dim

is as

& &

String Boolean

False Else

Decimal Decimal

DateTime.Curr
ent

DateTime.Now

Next End For

Exit Do Exit Do

Compare() Copy()

Remove Remove

System.Array System.String

notable immutable

Format() Insert()

 Option All Option Explicit

 Add method Add method

Ref ByVal

~ ~

CType() CType()

Byte Float

{0:Dy} {0:D}

{0:TTY} {0:T}

Case select…case

loopback Exit control

32768 to -
32767

-32768 to 32767

module variable

 1 to 266 0 to 255

while do….while

if….else do..loop until

small infinite

exit do for…next

 for exit for…next

do exit exit do

functions arrays

| &

Code Window Form

Parent Form Windows forms

Arrays Param Arrays

SizableToolWi
ndow

Sizable

Form Name

All the above Exit Sub

Asmany
argments it use

0

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

1/48

UNIT-II

 SYLLABUS

Basic Windows Controls: Textbox Control- ListBox, CheckedListBox-Scrollbar

and TrackBar Controls. More Windows Control: The common Dialog Controls-The Rich

TextBox Control.The TreeView and ListView Controls -Designing Menus. Multiple

Document Interface

Basic Windows Controls

The TextBox Control
The TextBox control is the primary mechanism for displaying and entering text.

It is a small text editor that provides all the basic text-editing facilities: inserting and

selecting text, scrolling if the text doesn’t fit in the control’s area, and even exchanging

text with other applications through the Clipboard.

TextBox Examples

Basic Properties of the TextBox Control
Let’s start with the properties that specify the appearance and, to some degree, the

functionality of the TextBox control; these properties are usually set at design time

through the Propertieswindow.

TextAlign
This property sets (or returns) the alignment of the text on the control, and its

value is a member of the HorizontalAlignment enumeration: Left, Right, or Center.

MultiLine
This property determines whether the TextBox control will hold a single line or

multiple lines of text. Every time you place a TextBox control on your form, it’s sized for

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

2/48

a single line of text and you can change its width only. To change this behavior, set the

MultiLine property to True. When creating multiline TextBoxes, you will most likely

have to set one or more of the MaxLength, ScrollBars, and WordWrap properties in the

Properties window.

MaxLength
This property determines the number of characters that the TextBox control will

accept. Its default value is 32,767, which was the maximum number of characters the VB

6 version of the control could hold. Set this property to zero, so that the text can have any

length, up to the control’s capacity limit — 2,147,483,647 characters, to be exact.

ScrollBars
This property lets you specify the scroll bars you want to attach to the TextBox if

the text exceeds the control’s dimensions. Single-line text boxes can’t have a scroll bar

attached, even if the text exceeds the width of the control. Multiline text boxes can have a

horizontal or a vertical scroll bar, or both.

WordWrap
This property determines whether the text is wrapped automatically when it

reaches the right edge of the control. The default value of this property is True. If the

control has a horizontal scroll bar, however, you can enter very long lines of text.

AcceptsReturn, AcceptsTab
These two properties specify how the TextBox control reacts to the Return (Enter)

and Tab keys. The Enter key activates the default button on the form, if there is one. The

default button is usually an OK button that can be activated with the Enter key, even if it

doesn’t have the focus.

The default value of the AcceptsReturn property is True, so pressing Enter creates

a new line on the control. If you set it to False, users can still create new lines in the

TextBox control, but they’ll have to press Ctrl+Enter.

Likewise, the AcceptsTab property determines how the control reacts to the Tab

key.Normally, the Tab key takes you to the next control in the Tab order, and we

generally avoid changing the default setting of the AcceptsTab property.

CharacterCasing
This property tells the control to change the casing of the characters as they’re

entered by the user. Its default value is Normal, and characters are displayed as typed.

You can set it to Upper or Lower to convert the characters to upper- or lowercase

automatically.

PasswordChar
This property turns the characters typed into any character you specify. If you

don’t want to display the actual characters typed by the user (when entering a password,

for instance), use this property to define the character to appear in place of each character

the user types.

The default value of this property is an empty string, which tells the control to

display the characters as entered. If you set this value to an asterisk (*), for example, the

user sees an asterisk in the place of every character typed. This property doesn’t affect the

control’s Text property, which contains the actual characters. If the PasswordChar

property of the TextBox control is set to any character, the user can’t copy or cut the

text on the control.

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

3/48

ReadOnly, Locked
If you want to display text on a TextBox control but prevent users from editing it

(such as for an agreement or a contract they must read, software installation instructions,

and so on), you can set the ReadOnly property to True.When ReadOnly is set to True,

you can put text on the control from within your code, and users can view it, yet they

can’t edit it.

Text-Manipulation Properties
Most of the properties for manipulating text in a TextBox control are available at

runtime only. This section presents a breakdown of each property.

Text
The most important property of the TextBox control is the Text property, which

holds the control's text. You can set this property at design time to display some text on

the control initially. Notice that there are two methods of setting the Text property at

design time. For single-line TextBox controls, set the Text property to a short string, as

usual. For multiline TextBox controls, open the Lines property and enter the text in the

String Collection Editor window, which will appear.

Dim strLen As Integer = TextBox1.Text.Length

The IndexOf method of the String class will locate a specific string in the control's text.

The following statement returns the location of the first occurrence of the string Visual in

the text:

Dim location As Integer

location = TextBox1.Text.IndexOf("Visual")

Formore information on locating strings in a TextBox control, see the section "VB 2008

The TextPad Project" later in this chapter, where we'll build a text editor with search-and-

replace capabilities. For a detailed discussion of the String class, see Chapter, "Handling

Strings, Characters, and Dates."

To store the control's contents in a file, use a statement such as the following:

StrWriter.Write(TextBox1.Text)

Similarly, you can read the contents of a text file into a TextBox control by using a

statement such as the following:

TextBox1.Text = StrReader.ReadToEnd

Listing 6.1: Locating All Instances of a String in a TextBox

Dim startIndex = -1

startIndex = TextBox1.Text.IndexOf("Basic", startIndex + 1)

While startIndex > 0

Console.WriteLine "String found at " & startIndex

startIndex = TextBox1.Text.IndexOf("Basic", startIndex + 1)

End While

The following statement appends a string to the existing text on the control:

TextBox1.Text = TextBox1.Text & newString

To append a string to a TextBox control, use the following statement:

TextBox1.AppendText(newString)

TextBox1.AppendText(newString & vbCrLf)

Lines

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

4/48

In addition to the Text property, you can access the text on the control by using

the Lines property. The Lines property is a string array, and each element holds a

paragraph of text. The first paragraph is stored in the element Lines(0), the second

paragraph in the element Lines(1), and so on. You can iterate through the text lines with a

loop such as the following:

Dim iLine As Integer

For iLine = 0 To TextBox1.Lines.GetUpperBound(0) - 1

{ process string TextBox1.Lines(iLine) }

Next

READONLY, LOCKED

If you want to display text on a TextBox control but prevent users from editing it

(an agreement or a contract they must read, software installation instructions, and so on),

you can set the ReadOnly property to True. When ReadOnly is set to True, you can put

text on the control from within your code, and users can view it, yet they can’t edit it

PASSWORDCHAR
Available at design time, this property turns the characters typed into any character you

specify. If you don’t want to display the actual characters typed by the user (when

entering a password, for instance), use this property to define the character to appear in

place of each character the user types.

The default value of this property is an empty string, which tells the control to display the

characters as entered. If you set this value to an asterisk (*), for example, the user sees an

asterisk in the place of every character typed.

Text-Selection Properties
The TextBox control provides three properties for manipulating the text selected

by the user: SelectedText, SelectionStart, and SelectionLength. Users can select a range

of text with a click-and-drag operation, and the selected text will appear in reverse color.

You can access the selected text from within your code through the SelectedText

property, and its location in the control's text through the SelectionStart and

SelectionLength properties.

SelectedText
This property returns the selected text, enabling you to manipulate the current selection

from within your code. For example, you can replace the selection by assigning a new

value to the SelectedText property. To convert the selected text to uppercase, use the

ToUpper method of the String class:

TextBox1.SelectedText = TextBox1.SelectedText.ToUpper

SelectionStart, SelectionLength
Use these two properties to read the text selected by the user on the control, or to

select text from within your code. The SelectionStart property returns or sets the position

of the first character of the selected text, somewhat like placing the cursor at a specific

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

5/48

location in the text and selecting text by dragging the mouse. The SelectionLength

property returns or sets the length of the selected text.

Dim seekString As String = "Visual"

Dim strLocation As Long

strLocation = TextBox1.Text.IndexOf(seekString)

If strLocation > 0 Then

TextBox1.SelectionStart = strLocation

TextBox1.SelectionLength = seekString.Length

End If

TextBox1.ScrollToCaret()

HideSelection
The selected text in the TextBox does not remain highlighted when the user

moves to another control or form; to change this default behavior, set the HideSelection

property to False. Use this property to keep the selected text highlighted, even if another

form or a dialog box, such as a Find & Replace dialog box, has the focus. Its default

value is True, which means that the text doesn't remain highlighted when the TextBox

loses the focus.

Locating the Cursor Position in the Control
The SelectionStart and SelectionLength properties always have a value even if no

text is selected on the control. In this case, SelectionLength is 0, and SelectionStart is the

current position of the pointer in the text. If you want to insert some text at the pointer's

location, simply assign it to the SelectedText property, even if no text is selected on the

control.

Text-Selection Methods
In addition to properties, the TextBox control exposes two methods for selecting text.

You can select some text by using the Select method, whose syntax is shown next:

TextBox1.Select(start, length)

The Select method is equivalent to setting the SelectionStart and SelectionLength

properties. To select the characters 100 through 105 on the control, call the Select method,

passing the values 99 and 6 as arguments:

TextBox1.Select(99, 6)

TextBox1.Select(3, 4)

If you insert a line break every third character and the text becomes the following, the

same statement will select the characters DE only:

ABC

DEF

GHI

In reality, it has also selected the two characters that separate the first two lines, but

special characters aren’t displayed and can’t be highlighted. The length of the selection,

however, is 4. A variation of the Select method is the SelectAll method, which selects all

the text on the control.

Undoing Edits - CanUndo property
An interesting feature of the TextBox control is that it can automatically undo the

most recent edit operation. To undo an operation from within your code, you must first

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

6/48

examine the value of the CanUndo property. If it’s True, the control can undo the

operation; then you can call the Undo method to undo the most recent edit.

The ListBox, CheckedBox, and ComboBox Controls
The ListBox, CheckedListBox, and ComboBox controls present lists of choices,

from which the user can select one or more. The ListBox control occupies a user-

specified amount of space on the form and is populated with a list of items. If the list of

items is longer than can fit on the control, a vertical scroll bar appears automatically.

The CheckedListBox control is a variation of the ListBox control. It’s identical to

the ListBox control, but a check box appears in front of each item. The user can select

any number of items by selecting the check boxes in front of them. As you know, you can

also select multiple items from a ListBox control by pressing the Shift and Ctrl keys.

The ComboBox control also contains multiple items but typically occupies less

space on the screen. The ComboBox control is an expandable ListBox control: The user

can expand it to make a selection, and collapse it after the selection is made. The real

advantage of the ComboBox control, however, is that the user can enter new information

in the ComboBox, rather than being forced to select from the items listed.

Basic Properties The ListBox, CheckedListBox, and ComboBox

Controls
In this section, you’ll find the properties that determine the functionality of the

three controls. These properties are usually set at design time, but you can change their

setting from within your application’s code.

IntegralHeight
This property is a Boolean value (True/False) that indicates whether the control’s

height will be adjusted to avoid the partial display of the last item. When set to True, the

control’s actual height changes in multiples of the height of a single line, so only an

integer number of rows are displayed at all times.

Items
The Items property is a collection that holds the control’s items. At design time,

you can populate this list through the String Collection Editor window. At runtime, you

can access and manipulate the items through the methods and properties of the Items

collection, which are described shortly.

MultiColumn
A ListBox control can display its items in multiple columns if you set its

MultiColumn property to True. The problem with multicolumn ListBoxes is that you

can’t specify the column in which each item will appear. ListBoxes with many items and

their MultiColumn property set to True expand horizontally, not vertically. A horizontal

scroll bar will be attached to a multicolumn ListBox, so that users can bring any column

into view. This property does not apply to the ComboBox control.

SelectionMode
This property, which applies to the ListBox and CheckedListBox controls only,

determines how the user can select the list’s items. The possible values of this property—

members of the SelectionMode enumeration— are shown in Table 4.3.
Table 4.3 - The SelectionMode Enumeration

Value Description

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

7/48

None No selection at all is allowed.

One (Default) Only a single item can be selected.

MultiSimple Simple multiple selection: A mouse click (or pressing the spacebar)

selects or deselects an item in the list. You must click all the items

you want to select.

MultiExtended Extended multiple selection: Press Shift and click the mouse (or

press one of the arrow keys) to expand the selection. This process

highlights all the items between the previously selected item and the

current selection. Press Ctrl and click the mouse to select or deselect

single items in the list.

Sorted
When this property is True, the items remain sorted at all times. The default is

False, because it takes longer to insert new items in their proper location. This property’s

value can be set at design time as well as runtime.

Text
The Text property returns the selected text on the control. Although you can set

the Text property for the ComboBox control at design time, this property is available

only at runtime for the other two controls. Notice that the items need not be strings.

The Items Collection
To manipulate a ListBox control from within your application, you should be able to do

the following:

 Add items to the list

 Remove items from the list

 Access individual items in the list

If you add a Color object and a Rectangle object to the Items collection with the

following statements:

ListBox1.Items.Add(New Font("Verdana", 12, FontStyle.Bold)

ListBox1.Items.Add(New Rectangle(0, 0, 100, 100))

then the following strings appear on the first two lines of the control:

[Font: Name=Verdana, Size=12, Units=3, GdiCharSet=1, gdiVerticalFont=False]

{X=0, Y=0, Width=100, Height=100}

However, you can access the members of the two objects because the ListBox stores

objects, not their descriptions.

Debug.WriteLine(ListBox1.Items.Item(1).Width)

100

If ListBox1.Items.Item(0).GetType Is GetType(Rectangle) Then

Debug.WriteLine(CType(ListBox1.Items.Item(0), Rectangle).Width)

End If

The Add Method
To add items to the list, use the Items.Add or Items.Insert method. The syntax of

the Add method is as follows:

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

8/48

ListBox1.Items.Add(item)

The following loop adds the elements of the array words to a ListBox control, one at a

time:

Dim words(100) As String

{ statements to populate array }

Dim i As Integer

For i = 0 To 99

ListBox1.Items.Add(words(i))

Next

Similarly, you can iterate through all the items on the control by using a loop such as the

following:

Dim i As Integer

For i = 0 To ListBox1.Items.Count - 1

{ statements to process item ListBox1.Items(i) }

Next

You can also use the For Each . . . Next statement to iterate through the Items collection,

as shown here:

Dim itm As Object

For Each itm In ListBox1.Items

{ process the current item, represented by the itm variable }

Next

The Insert Method
To insert an item at a specific location, use the Insert method, whose syntax is as

follows:

ListBox1.Items.Insert(index, item)

The Clear Method
The Clear method removes all the items from the control. Its syntax is quite

simple:

List1.Items.Clear

The Count Property
This is the number of items in the list. If you want to access all the items with a

For . . . Next loop, the loop's counter must go from 0 to ListBox.Items.Count - 1, as

shown in the example of the Add method.

The CopyTo Method
The CopyTo method of the Items collection retrieves all the items from a ListBox

control and stores them in the array passed to the method as an argument. The syntax of

the CopyTo method is

ListBox.CopyTo(destination, index)

The Remove and RemoveAt Method
To remove an item from the list, you must first find its position (index) in the list,

and all the Remove method passing the position as argument:

ListBox1.Items.Remove(index)

The index parameter is the order of the item to be removed, and this time it’s not optional.

The following statement removes the item at the top of the list:

 ListBox1.Remove(0)

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

9/48

If the control contains strings, pass the string to be removed. If the same string

appears multiple times on the control, only the first instance will be removed. If the

control contains object, pass a variable that references the item you want to remove.

You can also remove an item by specifying its position (reference) in the list via the

RemoveAt method, which accepts as argument the position of the item to be removed:

ListBox1.Items.RemoveAt(index)

The index parameter is the order of the item to be removed, and the first item's order is 0.

The Contains Method
The Contains method of the Items collection — not to be confused with the

control's Contains method — accepts an object as an argument and returns a True/False

value that indicates whether the collection contains this object. Use the Contains method

to avoid the insertion of identical objects into the ListBox control. The following

statements add a string to the Items collection, only if the string isn't already part of the

collection:

Dim itm As String = "Remote Computing"

If Not ListBox1.Items.Contains(itm) Then

ListBox1.Items.Add(itm)

End If

Searching
 Two of the most useful methods of the ListBox control are

theFindString and FindStringExact methods, which allow you to quickly locate any

item in the list. The FindString method locates a string that partially matches the one

you’re searching for;FindStringExact finds an exact match. If you’re searching for Man,

and the control contains a name such as Mansfield, FindStringmatches the item,

but FindStringExact does not.

Both the FindString and FindStringExact methods perform case-insensitive searches. If

you’re searching for visual, and the list contains the item Visual, both methods will locate

it. Their syntax is the same:

 itemIndex = ListBox1.FindString(searchStr As String)

where searchStr is the string you’re searching for. An alternative form of both methods

allows you to specify the order of the item at which the search will begin:

 itemIndex = ListBox1.FindString(searchStr As String, startIndex As Integer)

The startIndex argument allows you to specify the beginning of the search, but you can’t

specify where the search will end.

The ComboBox Control
 The ComboBox control is similar to the ListBox control in the sense that it

contains multiple items and the user may select one, but it typically occupies less space

onscreen. The ComboBox is practically an expandable ListBox control, which can grow

when the user wants to make a selection and retract after the selection is made. Normally,

the ComboBox control displays one line with the selected item, as this control doesn’t

allow multiple item selection. The essential difference, however, between ComboBox

and ListBox controls is that the ComboBox allows the user to specify items that don’t

exist in the list.

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

10/48

Table 4.4 - Styles of the ComboBox Control

Value Effect

DropDown

(Default) The control is made up of a drop-down list, which is

visible at all times, and a text box. The user can select an item

from the list or type a new one in the text box.

DropDownList

This style is a drop-down list from which the user can select

one of its items but can’t enter a new one. The control displays a

single item, and the list is expanded as needed.

Simple
The control includes a text box and a list that doesn’t drop

down. The user can select from the list or type in the text box.

 The DropDown and Simple ComboBox controls allow the user to select an item from the

list or enter a new one in the edit box of the control. Moreover, they’re collapsed by

default and they display a single item, unless the user expands the list of items to make a

selection. The DropDownList ComboBox is similar to a ListBox control in the sense that

it restricts the user to selecting an item (the user cannot enter a new one).

Figure 4.6 - VB.NET ComboBox control's Simple style, DropDown style and

DropDownList style.

Adding Items to the ComboBox Control
 Although the ComboBox control allows users to enter text in the control’s edit

box, it doesn’t provide a simple mechanism for adding new items at runtime. Let’s say

you provide a ComboBox with city names. Users can type the first few characters and

quickly locate the desired item.

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

11/48

Figure 4.7 - Adding items to ComboBox control at runtime - VB.NET

The ScrollBar and TrackBar Controls
 The ScrollBar and TrackBar controls let the user specify a magnitude by scrolling

a selector between its minimum and maximum values. In some situations, the user

doesn’t know in advance the exact value of the quantity to specify (in which case, a text

box would suffice), so your application must provide a more-flexible mechanism for

specifying a value, along with some type of visual feedback.

The vertical scroll bar that lets a user move up and down a long document is a typical

example of the use of the ScrollBar control. The scroll bar and visual feedback are the

prime mechanisms for repositioning the view in a long document or in a large picture

thatwon’t fit entirely in its window.

The TrackBar control is similar to the ScrollBar control, but it doesn’t cover a continuous

range of values. The TrackBar control has a fixed number of tick marks, which the

developer can label. Users can place the slider’s indicator to he desired value.Whereas

the ScrollBar control relies on some visual feedback outside the control to help the user

position the indicator to the desired value, the TrackBar control forces the user to select

from a range of valid values.

The ScrollBar Control
 There’s no ScrollBar control per se in the Toolbox; instead, there are two versions

of it: the HScroll-Bar and VScrollBar controls. They differ only in their orientation, but

because they share the same members, I will refer to both controls collectively as

ScrollBar controls. Actually, both controls inherit from the ScrollBar control, which is an

abstract control: It can be used to implement vertical and horizontal scroll bars, but it

can’t be used directly on a form. Moreover, the HScrollBar and VScrollBar controls are

not displayed in the Common Controls tab of the Toolbox. You have to open the All

Windows Forms tab to locate these two controls.

Minimum - The control’s minimum value. The default value is 0, but because this is an

Integer value, you can set it to negative values as well.

Maximum - The control’s maximum value. The default value is 100, but you can set it to

any value that you can represent with the Integer data type.

Value - The control’s current value, specified by the indicator’s position.

The ScrollBar Control’s Events
 The user can change the ScrollBar control’s value in three ways: by clicking the

two arrows at its ends, by clicking the area between the indicator and the arrows, and by

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

12/48

dragging the indicator with the mouse. You can monitor the changes of the ScrollBar’s

value from within your code by using two events: ValueChanged and Scroll. Both events

are fired every time the indicator’s position is changed. If you change the control’s value

from within your code, only the ValueChanged event will be fired.

The Scroll event can be fired in response to many different actions, such as the scrolling

of the indicator with the mouse, a click on one of the two buttons at the ends of the scroll

bars, and so on. If you want to know the action that caused this event, you can examine

the Type property of the second argument of the event handler. The settings of the e.Type

property are members of the ScrollEventType enumeration (LargeDecrement,

SmallIncrement, Track, and so on).

The TrackBar Control
 The TrackBar control is similar to the ScrollBar control, but it lacks the

granularity of ScrollBar. Suppose that you want the user of an application to supply a

value in a specific range, such as the speed of a moving object. Moreover, you don’t want

to allow extreme precision; you need only a few settings, as shown in the examples in

this page. The user can set the control’s value by sliding the indicator or by clicking on

either side of the indicator.

Granularity is how specific youwant to be inmeasuring. Inmeasuring distances between

towns, a granularity of amile is quite adequate. In measuring (or specifying) the

dimensions of a building, the granularity could be on the order of a foot or an inch. The

TrackBar control lets you set the type of granularity that’s necessary for your application.

Similar to the ScrollBar control, SmallChange and LargeChange properties are available.

SmallChange is the smallest increment by which the Slider value can change. The user

can change the slider by the SmallChange value only by sliding the indicator. (Unlike the

ScrollBar control, there are no arrows at the two ends of the Slider control.) To change

the Slider’s value by LargeChange, the user can click on either side of the indicator.

Common Dialog Controls
The common dialog controls are invisible at runtime, and they're not placed on your

forms, because they're implemented as modal dialog boxes and they're displayed as

needed. You simply add them to the project by double-clicking their icons in the

Toolbox; a new icon appears in the components tray of the form, just below the Form

Designer. The common dialog controls in the Toolbox are the following:

 OpenFileDialog - Lets users select a file to open. It also allows the selection of

multiple files for applications that must process many files at once.

 SaveFileDialog - Lets users select or specify the path of a file in which the

current document will be saved.

 ColorDialog - Lets users select a color from a list of predefined colors or specify

custom colors. FontDialog Lets users select a typeface and style to be applied to

the current text selection. The Font dialog box has an Apply button, which you

can intercept from within your code and use to apply the currently selected font

to the text without closing the dialog box.

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

13/48

Figure 4.10 - Common Font and Open dialog controls

There are three more common dialog controls: the PrintDialog, PrintPreviewDialog, and

PageSetupDialog controls. These controls are discussed in detail in Chapter, "Printing

with Visual Basic 2008," in the context of VB's printing capabilities.

Using the Common Dialog Controls
To display any of the common dialog boxes from within your application, you

must first add an instance of the appropriate control to your project. Then you must set

some basic properties of the control through the Properties window. Most applications set

the control's properties from within the code because common dialogs interact closely

with the application. When you call the Color common dialog, for example, you should

preselect a color from within your application and make it the default selection on the

control. When prompting the user for the color of the text, the default selection should be

the current setting of the control's ForeColor property. Likewise, the Save dialog box

must suggest a filename when it first pops up (or the file's extension, at least).

Here is the sequence of statements used to invoke the Open common dialog and retrieve

the selected filename:

If OpenFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

fileName = OpenFileDialog1.FileName

' Statements to open the selected file

End If

The ShowDialog method returns a value indicating how the dialog box was closed. You

should read this value from within your code and ignore the settings of the dialog box if

the operation was cancelled.

The variable fileName in the preceding code segment is the full pathname of the file

selected by the user. You can also set the FileName property to a filename, which will be

displayed when the Open dialog box is first opened:

OpenFileDialog1.FileName = "C:\WorkFiles\Documents\Document1.doc"

If OpenFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

fileName = OpenFileDialog1.FileName

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

14/48

' Statements to open the selected file

End If

Similarly, you can invoke the Color dialog box and read the value of the selected color by

using the following statements:

ColorDialog1.Color = TextBox1.BackColor

If ColorDialog1.ShowDialog = DialogResult.OK Then

TextBox1.BackColor = ColorDialog1.Color

End If

The ShowDialog method is common to all controls. The Title property is also common to

all controls and it's the string displayed in the title bar of the dialog box. The default title

is the name of the dialog box (for example, Open, Color, and so on), but you can adjust it

from within your code with a statement such as the following:

ColorDialog1.Title = "Select Drawing Color"

Color Dialog Box Control
The Color dialog box, shown in Figure 4.11, is one of the simplest dialog boxes.

Its Color property returns the color selected by the user or sets the initially selected color

when the user opens the dialog box.

The following statements set the initial color of the ColorDialog control, display the

dialog box, and then use the color selected in the control to fill the form. First, place a

ColorDialog control in the form and then insert the following statements in a button’s

Click event handler:

Private Sub Button1 Click(...) Handles Button1.Click

ColorDialog1.Color = Me.BackColor

If ColorDialog1.ShowDialog =

Windows.Forms.DialogResult.OK Then

Me.BackColor = ColorDialog1.Color

End If

End Sub

The following sections discuss the basic properties of the ColorDialog control.

Figure 4.11 - The Color Dialog Box

AllowFullOpen

Set this property to True if you want users to be able to open the dialog box and define

their own custom colors, like the one shown in Figure 8.2. The AllowFullOpen property

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

15/48

doesn’t open the custom section of the dialog box; it simply enables the Define Custom

Colors button in the dialog box. Otherwise, this button is disabled.

AnyColor

This property is a Boolean value that determines whether the dialog box displays all

available colors in the set of basic colors.

Color

This is the color specified on the control. You can set it to a color value before showing

the dialog box to suggest a reasonable selection. On return, read the value of the same

property to find out which color was picked by the user in the control:

ColorDialog1.Color = Me.BackColor

If ColorDialog1.ShowDialog = DialogResult.OK Then

Me.BackColor = ColorDialog1.Color

End If

CustomColors

This property indicates the set of custom colors that will be shown in the dialog box. The

Color dialog box has a section called Custom Colors, in which you can display 16

additional custom colors. The CustomColors property is an array of integers that

represent colors. To display three custom colors in the lower section of the Color dialog

box, use a statement such as the following:

Dim colors() As Integer = {222663, 35453, 7888}

ColorDialog1.CustomColors = colors

You’d expect that the CustomColors property would be an array of Color values, but it’s

not. You can’t create the array CustomColors with a statement such as this one:

Dim colors() As Color = {Color.Azure, Color.Navy, Color.Teal}

Because it’s awkward to work with numeric values, you should convert color values to

integer values by using a statement such as the following:

Color.Navy.ToArgb

The preceding statement returns an integer value that represents the color navy. This

value, however, is negative because the first byte in the color value represents the

transparency of the color. To get the value of the color, you must take the absolute value

of the integer value returned by the previous expression. To create an array of integers

that represent color values, use a statement such as the following:

Dim colors() As Integer = {Math.Abs(Color.Gray.ToArgb),

Math.Abs(Color.Navy.ToArgb), Math.Abs(Color.Teal.ToArgb)}

Now you can assign the colors array to the CustomColors property of the control, and the

colors will appear in the Custom Colors section of the Color dialog box.

SolidColorOnly

This indicates whether the dialog box will restrict users to selecting solid colors

only. This setting should be used with systems that can display only 256 colors. Although

today few systems can’t display more than 256 colors, some interfaces are limited to this

number. When you run an application through Remote Desktop, for example, only the

solid colors are displayed correctly on the remote screen, regardless of the remote

computer’s graphics card (and that’s for efficiency reasons).

Font Dialog Box Control
The Font dialog box, shown in Figure 4.12, lets the user review and select a font

and then set its size and style. Optionally, users can also select the font’s color and even

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

16/48

apply the current settings to the selected text on a control of the form without closing the

dialog box, by clicking the Apply button.

FontDialog1.Font = TextBox1.Font

If FontDialog1.ShowDialog = DialogResult.OK Then

TextBox1.Font = FontDialog1.Font

End If

Use the following properties to customize the Font dialog box before displaying it.

Figure 4.12 - The Font Dialog Control

AllowScriptChange

This property is a Boolean value that indicates whether the Script combo box will be

displayed in the Font dialog box. This combo box allows the user to change the current

character set and select a non-Western language (such as Greek, Hebrew, Cyrillic, and so

on).

AllowVerticalFonts

This property is a Boolean value that indicates whether the dialog box allows the display

and selection of both vertical and horizontal fonts. Its default value is False, which

displays only horizontal fonts.

Color, ShowColor

The Color property sets or returns the selected font color. To enable users to select a

color for the font, you must also set the ShowColor property to True.

FixedPitchOnly

This property is a Boolean value that indicates whether the dialog box allows only

the selection of fixed-pitch fonts. Its default value is False, which means that all fonts

(fixed- and variable-pitch fonts) are displayed in the Font dialog box. Fixed-pitch fonts,

or monospaced fonts, consist of characters of equal widths that are sometimes used to

display columns of numeric values so that the digits are aligned vertically.

Font

This property is a Font object. You can set it to the preselected font before

displaying the dialog box and assign it to a Font property upon return. You’ve already

seen how to preselect a font and how to apply the selected font to a control from within

your application.

You can also create a new Font object and assign it to the control’s Font property. Upon

return, the TextBox control’s Font property is set to the selected font:

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

17/48

Dim newFont As Font("Verdana", 12, FontStyle.Underline)

FontDialog1.Font = newFont

If FontDialog1.ShowDialog() = DialogResult.OK Then

TextBox1.ForeColor = FontDialog1.Color

End If

FontMustExist

This property is a Boolean value that indicates whether the dialog box forces the

selection of an existing font. If the user enters a font name that doesn’t correspond to a

name in the list of available fonts, a warning is displayed. Its default value is True, and

there’s no reason to change it.

MaxSize, MinSize

These two properties are integers that determine the minimum and maximum

point size the user can specify in the Font dialog box. Use these two properties to prevent

the selection of extremely large or extremely small font sizes, because these fonts might

throw off a well-balanced interface (text will overflow in labels, for example).

ShowApply

This property is a Boolean value that indicates whether the dialog box provides an

Apply button. Its default value is False, so the Apply button isn’t normally displayed. If

you set this property to True, you must also program the control’s Apply event — the

changes aren’t applied automatically to any of the controls in the current form.

The following statements display the Font dialog box with the Apply button:

Private Sub Button2 Click(...) Handles Button2.Click

FontDialog1.Font = TextBox1.Font

FontDialog1.ShowApply = True

If FontDialog1.ShowDialog = DialogResult.OK Then

TextBox1.Font = FontDialog1.Font

End If

End Sub

The FontDialog control raises the Apply event every time the user clicks the

Apply button. In this event’s handler, you must read the currently selected font and use it

in the form, so that users can preview the effect of their selection:

Private Sub FontDialog1 Apply(...) Handles FontDialog1.Apply

TextBox1.Font = FontDialog1.Font

End Sub

ShowEffects

This property is a Boolean value that indicates whether the dialog box allows the

selection of special text effects, such as strikethrough and underline. The effects are

returned to the application as attributes of the selected Font object, and you don’t have to

do anything special in your application.

Open Dialog Box and Save Dialog Box Controls
Open and Save As, the two most widely used common dialog boxes (see Figure

4.13), are implemented by the OpenFileDialog and SaveFileDialog controls. Nearly

every application prompts users for filenames, and the .NET Framework provides two

controls for this purpose. The two dialog boxes are nearly identical, and most of their

properties are common, so we'll start with the properties that are common to both controls.

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

18/48

When either of the two controls is displayed, it rarely displays all the files in any given

folder. Usually the files displayed are limited to the ones that the application recognizes

so that users can easily spot the file they want. The Filter property limits the types of files

that will appear in the Open or Save As dialog box.

Figure 4.13 - The OpenDialog and SaveDialog controls

The extension of the default file type for the application is described by the

DefaultExtension property, and the list of the file types displayed in the Save As Type

box is determined by the Filter property.

To prompt the user for a file to be opened, use the following statements. The Open dialog

box displays the files with the extension .bin only.

OpenFileDialog1.DefaultExt = ".bin"

OpenFileDialog1.AddExtension = True

OpenFileDialog1.Filter = "Binary Files|*.bin"

If OpenFileDialog1.ShowDialog() =

Windows.Forms.DialogResult.OK Then

Debug.WriteLine(OpenFileDialog1.FileName)

End If

The following sections describe the properties of the OpenFileDialog and SaveFileDialog

controls.

AddExtension

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

19/48

This property is a Boolean value that determines whether the dialog box automatically

adds an extension to a filename if the user omits it. The extension added automatically is

the one specified by the DefaultExtension property, which you must set before calling the

ShowDialog method. This is the default extension of the files recognized by your

application.

CheckFileExists

This property is a Boolean value that indicates whether the dialog box displays a warning

if the user enters the name of a file that does not exist in the Open dialog box, or if the

user enters the name of a file that exists in the Save dialog box.

CheckPathExists

This property is a Boolean value that indicates whether the dialog box displays a warning

if the user specifies a path that does not exist, as part of the user-supplied filename.

DefaultExt

This property sets the default extension for the filenames specified on the control. Use

this property to specify a default filename extension, such as .txt or .doc, so that when a

file with no extension is specified by the user, the default extension is automatically

appended to the filename. You must also set the AddExtension property to True. The

default extension property starts with the period, and it's a string — for example, .bin.

DereferenceLinks

This property indicates whether the dialog box returns the location of the file referenced

by the shortcut or the location of the shortcut itself. If you attempt to select a shortcut on

your desktop when the DereferenceLinks property is set to False, the dialog box will

return to your application a value such as C:\WINDOWS\SYSTEM32\lnkstub.exe, which

is the name of the shortcut, not the name of the file represented by the shortcut. If you set

the DereferenceLinks property to True, the dialog box will return the actual filename

represented by the shortcut, which you can use in your code.

FileName

Use this property to retrieve the full path of the file selected by the user in the control. If

you set this property to a filename before opening the dialog box, this value will be the

proposed filename. The user can click OK to select this file or select another one in the

control. The two controls provide another related property, the FileNames property,

which returns an array of filenames. To find out how to allow the user to select multiple

files, see the discussion of the MultipleFiles and FileNames properties in ‘‘VB 2008 at

Work: Multiple File Selection'' at the end of this section.

Filter

This property is used to specify the type(s) of files displayed in the dialog box. To display

text files only, set the Filter property to Text files|*.txt. The pipe symbol separates the

description of the files (what the user sees) from the actual extension (how the operating

system distinguishes the various file types).

If you want to display multiple extensions, such as .BMP, .GIF, and .JPG, use a

semicolon to separate extensions with the Filter property. Set the Filter property to the

string Images|*.BMP; *.GIF;*.JPG to display all the files of these three types when the

user selects Images in the Save As Type combo box, under the box with the filename.

Don't include spaces before or after the pipe symbol because these spaces will be

displayed on the dialog box. In the Open dialog box of an image-processing application,

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

20/48

you'll probably provide options for each image file type, as well as an option for all

images:

OpenFileDialog1.Filter =

"Bitmaps|*.BMP|GIF Images|*.GIF|" &

"JPEG Images|*.JPG|All Images|*.BMP;*.GIF;*.JPG"

FilterIndex

When you specify more than one file type when using the Filter property of the Open

dialog box, the first file type becomes the default. If you want to use a file type other than

the first one, use the FilterIndex property to determine which file type will be displayed

as the default when the Open dialog box is opened. The index of the first type is 1, and

there's no reason to ever set this property to 1. If you use the Filter property value of the

example in the preceding section and set the FilterIndex property to 2, the Open dialog

box will display GIF files by default.

InitialDirectory

This property sets the initial folder whose files are displayed the first time that the Open

and Save dialog boxes are opened. Use this property to display the files of the

application's folder or to specify a folder in which the application stores its files by

default. If you don't specify an initial folder, the dialog box will default to the last folder

where the most recent file was opened or saved. It's also customary to set the initial folder

to the application's path by using the following statement:

OpenFileDialog1.InitialDirectory = Application.ExecutablePath

The expression Application.ExecutablePath returns the path in which the application's

executable file resides.

RestoreDirectory

Every time the Open and Save As dialog boxes are displayed, the current folder is the one

that was selected by the user the last time the control was displayed. The

RestoreDirectory property is a Boolean value that indicates whether the dialog box

restores the current directory before closing. Its default value is False, which means that

the initial directory is not restored automatically. The InitialDirectory property overrides

the RestoreDirectory property.

The following four properties are properties of the OpenFileDialog control only:

FileNames, MultiSelect, ReadOnlyChecked, and ShowReadOnly.

FileNames

If the Open dialog box allows the selection of multiple files (see the later section "VB

2008 at Work: Multiple File Selection"), the FileNames property contains the pathnames

of all selected files. FileNames is a collection, and you can iterate through the filenames

with an enumerator. This property should be used only with the OpenFileDialog control,

even though the SaveFileDialog control exposes a FileNames property.

MultiSelect

This property is a Boolean value that indicates whether the user can select multiple files

in the dialog box. Its default value is False, and users can select a single file. When the

MultiSelect property is True, the user can select multiple files, but they must all come

from the same folder (you can't allow the selection of multiple files from different

folders). This property is unique to the OpenFileDialog control.

ReadOnlyChecked, ShowReadOnly

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

21/48

The ReadOnlyChecked property is a Boolean value that indicates whether the Read-Only

check box is selected when the dialog box first pops up (the user can clear this box to

open a file in read/write mode). You can set this property to True only if the

ShowReadOnly property is also set to True. The ShowReadOnly property is also a

Boolean value that indicates whether the Read-Only check box is available..

The OpenFile and SaveFile Methods

The OpenFileDialog control exposes the OpenFile method, which allows you to quickly

open the selected file. Likewise, the SaveFileDialog control exposes the SaveFile method,

which allows you to quickly save a document to the selected file.

OpenDialog and SaveDialog controls example: Multiple File Selection

The Open dialog box allows the selection of multiple files. This feature can come

in handy when you want to process files en masse. You can let the user select many files,

usually of the same type, and then process them one at a time. Or, you might want to

prompt the user to select multiple files to be moved or copied.

Figure 4.14 - Selecting multiple files in an open dialog box - Visual Basic

The code behind the Open Files button is shown in Listing 4.17. In this example, I used

the array's enumerator to iterate through the elements of the FileNames array. You can

use any of the methods discussed in the section "Arrays in Visual basic 2008" to iterate

through the array.

Listing 4.17: Processing Multiple Selected Files
Private Sub bttnFile Click(...) Handles bttnFile.Click

OpenFileDialog1.Multiselect = True

OpenFileDialog1.ShowDialog()

Dim filesEnum As IEnumerator

ListBox1.Items.Clear()

filesEnum = OpenFileDialog1.FileNames.GetEnumerator()

While filesEnum.MoveNext

ListBox1.Items.Add(filesEnum.Current)

End While

End Sub

Print Dialog Box Control
A PrintDialog control is used to open the Windows Print Dialog and let user select the

printer, set printer and paper properties and print a file. A typical Open File Dialog looks

like Figure 1 where you select a printer from available printers, set printer properties, set

http://visualbasic.w3computing.com/vb2008/2/vb-arrays.php

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

22/48

print range, number of pages and copies and so on. Clicking on OK button sends the

document to the printer.

Figure 1

Creating a PrintDialog

We can create a PrintDialog at design-time as well as at run-time.
Design-time

To create a PrintDialog control at design-time, you simply drag and drop a PrintDialog

control from Toolbox to a Form in Visual Studio. After you drag and drop a PrintDialog

on a Form, the PrintDialog looks like Figure 2.

Figure 2

Run-time

Creating a PrintDialog control at run-time is simple. First step is to create an instance of

PrintDialog class and then call the ShowDialog method. The following code snippet

creates a PrintDialog control.

Dim PrintDialog1 As New PrintDialog()

PrintDialog1.ShowDialog()

Printing Documents

PrintDocument object represents a document to be printed. Once a PrintDocument is

created, we can set the Document property of PrintDialog as this document. After that we

can also set other properties. The following code snippet creates a PrintDialog and sends

some text to a printer.

Imports System.Drawing.Printing

Public Class Form1

 Private Sub PrintButton_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles PrintButton.Click

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

23/48

 Dim printDlg As New PrintDialog()

 Dim printDoc As New PrintDocument()

 printDoc.DocumentName = "Print Document"

 printDlg.Document = printDoc

 printDlg.AllowSelection = True

 printDlg.AllowSomePages = True

 If (printDlg.ShowDialog() = DialogResult.OK) Then

 printDoc.Print()

 End If

 End Sub

End Class

The RichTextBox Control

The RichTextBox control is the core of a full-blown word processor. It provides

all the functionality of a TextBox control; it can handle multiple typefaces, sizes, and

attributes, and offers precise control over the margins of the text (see Figure 4.16). You

can even place images in your text on a RichTextBox control (although you won’t have

the kind of control over the embedded images that you have with Microsoft Word).

The fundamental property of the RichTextBox control is its Rtf property. Similar

to the Text property of the TextBox control, this property is the text displayed on the

control. Unlike the Text property, however, which returns (or sets) the text of the control

but doesn’t contain formatting information, the Rtf property returns the text along with

any formatting information.

Figure 4.16 - A word processor based on the functionality of the RichTextBox control

The RTF Language

A basic knowledge of the RTF format, its commands, and how it works will

certainly help you understand the RichTextBox control’s inner workings. RTF is a

language that uses simple commands to specify the formatting of a document. These

commands, or tags, are ASCII strings, such as \par (the tag that marks the beginning of a

new paragraph) and \b (the tag that turns on the bold style). And this is where the value of

the RTF format lies. RTF documents don’t contain special characters and can be easily

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

24/48

exchanged among different operating systems and computers, as long as there is an RTF-

capable application to read the document. Let’s look at an RTF document in action.

Open the WordPad application (choose Start > Programs > Accessories > WordPad)

and enter a few lines of text (see Figure 4.17). Select a few words or sentences, and

format them in different ways with any of WordPad’s formatting commands. Then save

the document in RTF format: Choose File > Save As, select Rich Text Format, and then

save the file as Document.rtf. If you open this file with a text editor such as Notepad,

you’ll see the actual RTF code that produced the document. A section of the RTF file for

the document shown in Figure 4.17 is shown in Listing 4.20.

Figure 4.17 - The formatting applied to the text by using WordPad’s commands is stored

along with the text in RTF format.

Listing 4.20: The RTF Code for the First Paragraph of the Document in Figure 4.17
{\rtf1\ansi\ansicpg1252\deff0\deflang1033

{\fonttbl{\f0\fnil\fcharset0 Verdana;}{\f1\fswiss\fcharset0 Arial;}}

\viewkind4\uc1\pard\nowidctlpar\fi720 \b\f0\fs18 RTF

\b0 stands for \i Rich Text Format\i0 ,

which is a standard for storing formatting

information along with the text. The beauty

of the RichTextBox control for programmers

is that they don\rquote t need to supply the

formatting codes. The control provides simple

properties that turn the selected text into bold,

change the alignment of the current paragraph, and so on.\par

RTF is similar to Hypertext Markup Language (HTML), and if you’re familiar with

HTML, a few comparisons between the two standards will provide helpful hints and

insight into the RTF language. Like HTML, RTF was designed to create formatted

documents that could be displayed on different systems. The following RTF segment

displays a sentence with a few words in italics:

\bRTF\b0 (which stands for Rich Text Format) is a \i

document formatting language\i0 that uses simple

commands to specify the formatting of the document.

The following is the equivalent HTML code:

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

25/48

RTF (which stands for Rich Text Format) is a

<i>document formatting language</i> that uses simple

commands to specify the formatting of the document.

The and <i> tags of HTML, for example, are equivalent to the \b and \i tags of RTF.

The closing tags in RTF are \b0 and \i0, respectively.

The RichTextBox’s Properties
The RichTextBox control provides properties for manipulating the selected text

on the control. The names of these properties start with the Selection or Selected prefix,

and the most commonly used ones are shown in Table 4.5. Some of these properties are

discussed in further detail in following sections.

SelectedText
The SelectedText property represents the selected text, whether it was selected by

the user via the mouse or from within your code. To assign the selected text to a variable,

use the following statement:

selText=RichTextbox1.SelectedText

You can also modify the selected text by assigning a new value to the SelectedText

property. The following statement converts the selected text to uppercase:

RichTextbox1.SelectedText =

RichTextbox1.SelectedText.ToUpper

You can assign any string to the SelectedText property. If no text is selected at the time,

the statement will insert the string at the location of the pointer.

Table 4.5 - RichTextBox Properties for Manipulating Selected Text

Property What It Manipulates

SelectedText The selected text

SelectedRtf The RTF code of the selected text

SelectionStart The position of the selected text’s first character

SelectionLength The length of the selected text

SelectionFont The font of the selected text

SelectionColor The color of the selected text

SelectionBackColor The background color of the selected text

SelectionAlignment The alignment of the selected text

SelectionIndent,

SelectionRightIndent,

SelectionHangingIndent

The indentation of the selected text

RightMargin The distance of the text’s right margin from the left edge of

the control

SelectionTabs An array of integers that sets the tab stop positions in the

control

SelectionBullet Whether the selected text is bulleted

BulletIndent The amount of bullet indent for the selected text

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

26/48

SelectionStart, SelectionLength

+

electionLength, report (or set) the position of the first selected character in the text and the

length of the selection, respectively, regardless of the formatting of the selected text. One

obvious use of these properties is to select (and highlight) some text on the control:

RichTextBox1.SelectionStart = 0

RichTextBox1.SelectionLength = 100

You can also use the Select method, which accepts as arguments the starting location and

the length of the text to be selected.

SelectionAlignment
Use this property to read or change the alignment of one or more paragraphs. This

property’s value is one of the members of the HorizontalAlignment enumeration: Left,

Right, and Center. Users don’t have to select an entire paragraph to align it; just placing

the pointer anywhere in the paragraph will do the trick, because you can’t align part of

the paragraph.

SelectionIndent, SelectionRightIndent, SelectionHangingIndent
These properties allow you to change the margins of individual paragraphs. The

SelectionIndent property sets (or returns) the amount of the text’s indentation from the left

edge of the control. The SelectionRightIndent property sets (or returns) the amount of the

text’s indentation from the right edge of the control. The SelectionHangingIndent property

indicates the indentation of each paragraph’s first line with respect to the following lines

of the same paragraph. All three properties are expressed in pixels.

The SelectionHangingIndent property includes the current setting of the SelectionIndent

property. If all the lines of a paragraph are aligned to the left, the SelectionIndent property

can have any value (this is the distance of all lines from the left edge of the control), but

the SelectionHangingIndent property must be zero. If the first line of the paragraph is

shorter than the following lines, the SelectionHangingIndent has a negative value. Figure

4.18 shows several differently formatted paragraphs. The settings of the SelectionIndent

and SelectionHangingIndent properties are determined by the two sliders at the top of the

form.

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

27/48

Figure 4.18 - Various combinations of the SelectionIndent and SelectionHangingIndent

properties produce all possible paragraph styles.

SelectionBullet, BulletIndent
You use these properties to create a list of bulleted items. If you set the

SelectionBullet property to True, the selected paragraphs are formatted with a bullet style,

similar to the tag in HTML. To create a list of bulleted items, select them from

within your code and assign the value True to the SelectionBullet property. To change a

list of bulleted items back to normal text, make the same property False.

The paragraphs formatted as bullets are also indented from the left by a small amount. To

set the amount of the indentation, use the BulletIndent property, which is also expressed

in pixels.

SelectionTabs
Use this property to set the tab stops in the RichTextBox control. The Selection

tab should be set to an array of integer values, which are the absolute tab positions in

pixels. Use this property to set up a RichTextBox control for displaying tab-delimited

data.

Methods Of the RichTextBox control
The first two methods of the RichTextBox control you need to know are SaveFile

and LoadFile. The SaveFile method saves the contents of the control to a disk file, and the

LoadFile method loads the control from a disk file.

SaveFile
The syntax of the SaveFile method is as follows:

RichTextBox1.SaveFile(path, filetype)

where path is the path of the file in which the current document will be saved. By default,

the SaveFile method saves the document in RTF format and uses the .RTF extension.

You can specify a different format by using the second optional argument, which can

take on the value of one of the members of the RichTextBoxStreamType enumeration,

described in Table 4.6.

Table 4.6 - The RichTextBoxStreamType Enumeration

Format Effect

PlainText Stores the text on the control without any formatting

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

28/48

RichNoOLEObjs
Stores the text without any formatting and ignores any

embedded OLE objects

RichText
Stores the text in RTF format (text with embedded RTF

commands)

TextTextOLEOb

js
Stores the text along with the embedded OLE objects

UnicodePlainTe

xt
Stores the text in Unicode format

 LoadFile

Similarly, the LoadFile method loads a text or RTF file to the control. Its syntax is

identical to the syntax of the SaveFile method:

RichTextBox1.LoadFile(path, filetype)

The filetype argument is optional and can have one of the values of the

RichTextBoxStreamType enumeration. Saving and loading files to and from disk files is as

simple as presenting a Save or Open common dialog to the user and then calling one of

the SaveFile or LoadFile methods with the filename returned by the common dialog box.

Select, SelectAll

The Select method selects a section of the text on the control, similar to setting the

SelectionStart and SelectionLength properties. The Select method accepts two arguments:

the location of the first character to be selected and the length of the selection:

RichTextBox1.Select(start, length)

The SelectAll method accepts no arguments and it selects all the text on the control.

Tree View and List View Controls
The TreeView control implements a data structure known as a tree. A tree is the

most appropriate structure for storing hierarchical information. The organizational chart

of a company, for example, is a tree structure. Every person reports to another person

above him or her, all the way to the president or CEO. Figure 4.21 depicts a possible

organization of continents, countries, and cities as a tree. Every city belongs to a country,

and every country to a continent. In the same way, every computer file belongs to a folder

that may belong to an even bigger folder, and so on up to the drive level. You can’t draw

large tree structures on paper, but it’s possible to create a similar structure in the

computer’s memory without size limitations.

Figure 4.21 - The World View as Tree

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

29/48

Note: The items displayed on a TreeView control are just strings. Moreover, the

TreeView control doesn’t require that the items be unique. You can have identically

named nodes in the same branch — as unlikely as this might be for a real application.

There’s no property that makes a node unique in the tree structure or even in its own

branch.

Figure 4.22 - The tree implemented with a TreeView control

The tree structure is ideal for data with parent-child relations (relations that can be

described as belongs to or owns). The continents-countries-cities data is a typical

example. The folder structure on a hard disk is another typical example. Any given folder

is the child of another folder or the root folder.

The ListView control implements a simpler structure, known as a list. A list’s

items aren’t structured in a hierarchy; they are all on the same level and can be traversed

serially, one after the other. You can also think of the list as a multidimensional array, but

the list offersmore features. A list item can have subitems and can be sorted according to

any column. For example, you can set up a list of customer names (the list’s items) and

assign a number of subitems to each customer: a contact, an address, a phone number,

and so on. Or you can set up a list of files with their attributes as subitems. Figure 4.23

shows a Windows folder mapped on a ListView control. Each file is an item, and its

attributes are the subitems. As you already know, you can sort this list by filename, size,

file type, and so on. All you have to do is click the header of the corresponding column.

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

30/48

Figure 4.23 - A folder’s files displayed in a ListView control (Details view)

The ListView control is a glorified ListBox control. If all you need is a control to store

sorted objects, use a ListBox control. If you want more features, such as storing multiple

items per row, sorting them in different ways, or locating them based on any subitem’s

value, you must consider the ListView control. You can also look at the ListView control

as a view-only grid.

The TreeView and ListView controls are commonly used along with the ImageList

control. The ImageList control is a simple control for storing images so they can be

retrieved quickly and used at runtime. You populate the ImageList control with the

images you want to use on your interface, usually at design time, and then you recall

them by an index value at runtime. Before we get into the details of the TreeView and

ListView controls, a quick overview of the ImageList control is in order.

TreeView Control
Let’s start our discussion of TreeView control with a few simple properties that

you can set at design time. To experiment with the properties discussed in this section,

open the TreeView Example project. The project’s main form is shown in Figure 4.25.

After setting some properties (they are discussed next), run the project and click the

Populate button to populate the control. After that, you can click the other buttons to see

the effect of the various property settings on the control.

http://visualbasic.w3computing.com/vb2008/4/vb-treeview-example.php

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

31/48

Figure 4.25 - The TreeView Example project demonstrates the basic properties and

methods of the TreeView control.

Here are the basic properties that determine the appearance of the control:

 ShowCheckBoxes - If this property is True, a check box appears in front of each

node. If the control displays check boxes, you can select multiple nodes;

otherwise, you’re limited to a single selection.

 FullRowSelect - This True/False value determines whether a node will be

selected even if the user clicks outside the node’s caption.

 HideSelection - This property determines whether the selected node will remain

highlighted when the focus is moved to another control. By default, the selected

node doesn’t remain highlighted when the control loses the focus.

 HotTracking - This property is another True/False value that determines whether

nodes are highlighted as the pointer hovers over them.When it’s True, the

TreeView control behaves like a web document with the nodes acting as

hyperlinks — they turn blue while the pointer hovers over them. Use the

NodeMouseHover event to detect when the pointer hovers over a node.

 Indent - This property specifies the indentation level in pixels. The same

indentation applies to all levels of the tree—each level is indented by the same

number of pixels with respect to its parent level.

 PathSeparator - A node’s full name is made up of the names of its parent nodes,

separated by a backslash. To use a different separator, set this property to the

desired symbol.

 ShowLines - The ShowLines property is a True/False value that determines

whether the control’s nodes will be connected to its parent items with lines.

These lines help users visualize the hierarchy of nodes, and it’s customary to

display them.

 ShowPlusMinus - The ShowPlusMinus property is a True/False value that

determines whether the plus/minus button is shown next to the nodes that have

children. The plus button is displayed when the node is collapsed, and it causes

the node to expand when clicked. Likewise, the minus sign is displayed when

the node is expanded, and it causes the node to collapse when clicked. Users can

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

32/48

also expand the current node by pressing the left-arrow button and collapse it

with the right-arrow button.

 ShowRootLines - This is another True/False property that determines whether

there will be lines between each node and root of the tree view. Experiment with

the ShowLines and ShowRootLines properties to find out how they affect the

appearance of the control.

 Sorted - This property determines whether the items in the control will be

automatically sorted. The control sorts each level of nodes separately. In our

Globe example, it will sort the continents, then the countries within each

continent, and then the cities within each country.

Adding New Items at Design Time
Let’s look now at the process of populating the TreeView control. Adding an

initial collection of nodes to a TreeView control at design time is trivial. Locate the

Nodes property in the Properties window, and you’ll see that its value is Collection. To

add items, click the ellipsis button, and the TreeNode Editor dialog box will appear, as

shown in Figure 4.26. To add a root item, just click the Add Root button. The new item

will be named Node0 by default. You can change its caption by selecting the item in the

list and setting its Text property accordingly. You can also change the node’s Name

property, as well as the node’s appearance by using the NodeFont, FontColor, and

ForeColor properties.

To specify an image for the node, set the control’s ImageList property to the name of an

ImageList control that contains the appropriate images, and then set either the node’s

ImageKey property to the name of the image, or the node’s ImageIndex property to the

index of the desired image in the ImageList control. If you want to display a different

image when the control is selected, set the SelectedImageKey or the SelectedImageIndex

property accordingly.

Figure 4.26 - The TreeNode Editor dialog box

Click the Add Root button first. A new node is added automatically to the list of nodes,

and it is named Node0. Select it with the mouse, and its properties appear in the right

pane of the TreeNode Editor window. Here you can change the node’s Text property to

Countries. You can specify the appearance of each node by setting its font and

fore/background colors.

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

33/48

Adding New Items at Runtime
Adding items to the control at runtime is a bit more involved. All the nodes

belong to the control's Nodes collection, which is made up of TreeNode objects. To

access the Nodes collection, use the following expression, where TreeView1 is the

control's name and Nodes is a collection of TreeNode objects:

TreeView1.Nodes

This expression returns a collection of TreeNode objects and exposes the proper members

for accessing and manipulating the individual nodes. The control's Nodes property is the

collection of all root nodes.

To access the first node, use the expression TreeView.Nodes(0) (this is the Globe node

in our example). The Text property returns the node's value, which is a string.

TreeView1.Nodes(0).Text is the caption of the root node on the control. The caption of

the second node on the same level is TreeView1.Nodes(1).Text, and so on.

The following statements print the strings shown highlighted below them (these strings

are not part of the statements; they're the output that the statements produce):

Debug.WriteLine(TreeView1.Nodes(0).Text)

Countries

Debug.WriteLine(TreeView1.Nodes(0).Nodes(0).Text)

UnitedStates

Debug.WriteLine(TreeView1.Nodes(0).Nodes(0).Nodes(1).Text)

New York

Let's take a closer look at these expressions. TreeView1.Nodes(0) is the first root node,

the Countries node. Under this node, there is a collection of nodes, the

TreeView1.Nodes(0).Nodes collection. Each node in this collection is a country name.

The first node in this collection is United States, and you can access it with the

expression TreeView1.Nodes(0).Nodes(0). If you want to change the appearance of the

node United States, type a period after the preceding expression to access its properties

(the NodeFont property to set its font, the ForeColor property to set it color, the

ImageIndex property, and so on). Likewise, this node has its own Nodes collection,

which contains the states under the specific country.

Adding New Nodes

The Add method adds a new node to the Nodes collection. The Addmethod

accepts as an argument a string or a TreeNode object. The simplest form of the Add

method is

newNode = Nodes.Add(nodeCaption)

where nodeCaption is a string that will be displayed on the control. Another form of the

Add method allows you to add a TreeNode object directly (nodeObj is a properly

initialized TreeNode variable):

newNode = Nodes.Add(nodeObj)

To use this form of the method, you must first declare and initialize a TreeNode object:

Dim nodeObj As New TreeNode

nodeObj.Text = "Tree Node"

nodeObj.ForeColor = Color.BlueViolet

TreeView1.Nodes.Add(nodeObj)

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

34/48

The last overloaded form of the Add method allows you to specify the index in the

current Nodes collection, where the node will be added:

newNode = Nodes.Add(index, nodeObj)

The nodeObj TreeNode object must be initialized as usual. To add a child node to the

root node, use a statement such as the following:

TreeView1.Nodes(0).Nodes.Add("United States")

To add a state under United States, use a statement such as the following:

TreeView1.Nodes(0).Nodes(1).Nodes.Add("New York")

The expressions can get quite lengthy. The proper way to add child items to a node is to

create a TreeNode variable that represents the parent node, under which the child nodes

will be added. Let's say that the CountryNode variable in the following example

represents the node United States:

Dim CountryNode As TreeNode

CountryNode = TreeView1.Nodes(0).Nodes(2)

Then you can add child nodes to the ContinentNode node:

CountryNode.Nodes.Add("New York")

CountryNode.Nodes.Add("California")

To add yet another level of nodes, the city nodes, create a new variable that represents a

specific state. The Add method actually returns a TreeNode object that represents the

newly added node, so you can add a state and a few cities by using statements such as the

following:

Dim StateNode As TreeNode

StateNode = CountryNode.Nodes.Add("New York")

StateNode.Nodes.Add("Alberny")

StateNode.Nodes.Add("Amsterdam")

StateNode.Nodes.Add("Auburn")

Then you can continue adding states under another country as follows:

StateNode = CountryNode.Nodes.Add("United Kingdom")

StateNode.Nodes.Add("London")

StateNode.Nodes.Add("Manchester")

The ListView Control
The ListView control is similar to the ListBox control except that it can display its

items in many forms, along with any number of subitems for each item. To use the

ListView control in your project, place an instance of the control on a form and then set

its basic properties, which are described in the following list.

View and Arrange - Two properties determine how the various items will be displayed

on the control: the View property, which determines the general appearance of the items,

and the Arrange property, which determines the alignment of the items on the control's

surface. The View property can have one of the values shown in Table 4.8.

Table 4.8: Settings of the View Property of VB.NET ListView Control

Setting Description

LargeIcon

(Default)

Each item is represented by an icon and a caption below the

icon.

SmallIcon Each item is represented by a small icon and a caption that

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

35/48

appears to the right of the icon.

List Each item is represented by a caption.

Details
Each item is displayed in a column with its subitems in adjacent

columns.

Tile

Each item is displayed with an icon and its subitems to the right

of the icon. This view is available only on Windows XP and

Windows Server 2003.

 The Arrange property can have one of the settings shown in Table 4.9.

Table 4.9: Settings of the Arrange Property of VB.NET ListView Control

Setting Description

Default
When an item is moved on the control, the item remains where it is

dropped.

Left Items are aligned to the left side of the control.

SnapToGri

d

Items are aligned to an invisible grid on the control. When the user

moves an item, the item moves to the closest grid point on the

control.

Top Items are aligned to the top of the control.

 HeaderStyle - This property determines the style of the headers in Details view. It has

no meaning when the View property is set to anything else, because only the Details view

has columns. The possible settings of the HeaderStyle property are shown in Table 4.10.

Table 4.10: Settings of the HeaderStyle Property of VB.NET ListView Control

Setting Description

Clickable Visible column header that responds to clicking

Nonclickable (Default) Visible column header that does not respond to clicking

None No visible column header

 AllowColumnReorder - This property is a True/False value that determines whether the

user can reorder the columns at runtime, and it's meaningful only in Details view. If this

property is set to True, the user can move a column to a new location by dragging its

header with the mouse and dropping it in the place of another column.

Activation - This property, which specifies how items are activated with the mouse, can

have one of the values shown in Table 4.11.

Table 4.11: Settings of the Activation Property of VB.NET ListView Control

Setting Description

OneClick

Items are activated with a single click. When the cursor is

over an item, it changes shape, and the color of the item's text

changes.

Standard (Default)
Items are activated with a double-click. No change in the

selected item's text color takes place.

TwoClick Items are activated with a double-click, and their text

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

36/48

changes color as well.

 FullRowSelect - This property is a True/False value, indicating whether the user can

select an entire row or just the item's text, and it's meaningful only in Details view. When

this property is False, only the first item in the selected row is highlighted.

GridLines - Another True/False property. If True, grid lines between items and subitems

are drawn. This property is meaningful only in Details view.

Group - The items of the ListView control can be grouped into categories. To use this

feature, you must first define the groups by using the control's Group property, which is a

collection of strings. You can add as many members to this collection as you want.

LabelEdit - The LabelEdit property lets you specify whether the user will be allowed to

edit the text of the items. The default value of this property is False. Notice that the

LabelEdit property applies to the item's Text property only; you can't edit the subitems

(unfortunately, you can't use the ListView control as an editable grid).

MultiSelect - A True/False value, indicating whether the user can select multiple items

from the control. To select multiple items, click them with the mouse while holding down

the Shift or Ctrl key. If the control's ShowCheckboxes property is set to True, users can

select multiple items by marking the check box in front of the corresponding item(s).

Scrollable - A True/False value that determines whether the scroll bars are visible. Even

if the scroll bars are invisible, users can still bring any item into view. All they have to do

is select an item and then press the arrow keys as many times as needed to scroll the

desired item into view.

Sorting - This property determines how the items will be sorted, and its setting can be

None, Ascending, or Descending. To sort the items of the control, call the Sort method,

which sorts the items according to their caption. It's also possible to sort the items

according to any of their subitems, as explained in the section "Sorting the ListView

Control" later in this chapter.

DESIGNING MENUS

The MenuStrip class is the foundation of menus functionality in Windows Forms. If you

have worked with menus in .NET 1.0 and 2.0, you must be familiar with the MainMenu

control. In .NET 3.5 and 4.0, the MainMenu control is replaced with the MenuStrip

control.

Menu Editor

Menus can be attached only to forms, and they're implemented through the MenuStrip

control. The items that make up the menu are ToolStripMenuItem objects. As you will

see, the MenuStrip control and ToolStripMenuItem objects give you absolute control

over the structure and appearance of the menus of your application. The MenuStrip

control is a variation of the Strip control, which is the base of menus, toolbars, and status

bars.

We can create a MenuStrip control using a Forms designer at design-time or using the

MenuStrip class in code at run-time or dynamically. To create a MenuStrip control at

design-time, you simply drag and drop a MenuStrip control from Toolbox to a Form in

Visual Studio. After you drag and drop a MenuStrip on a Form, the MenuStrip1 is added

to the Form and looks like Figure below. Once a MenuStrip is on the Form, you can add

menu items and set its properties and events.

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

37/48

Creating a MenuStrip control at run-time is merely a work of creating an instance of

MenuStrip class, set its properties and adds MenuStrip class to the Form controls.

First step to create a dynamic MenuStrip is to create an instance of MenuStrip class. The

following code snippet creates a MenuStrip control object.

VB.NET Code:

Dim MainMenu As New MenuStrip()

In the next step, you may set properties of a MenuStrip control. The following code

snippet sets background color, foreground color, Text, Name, and Font properties of a

MenuStrip.

MainMenu.BackColor = Color.OrangeRed

MainMenu.ForeColor = Color.Black

MainMenu.Text = "File Menu"

MainMenu.Font = New Font("Georgia", 16)

Once the MenuStrip control is ready with its properties, the next step is to add the

MenuStrip to a Form. To do so, first we set MainMenuStrip property and then use

Form.Controls.Add method that adds MenuStrip control to the Form controls and

displays on the Form based on the location and size of the control. The following code

snippet adds a MenuStrip control to the current Form.

Me.MainMenuStrip = MainMenu

Controls.Add(MainMenu)

Setting MenuStrip Properties

After you place a MenuStrip control on a Form, the next step is to set properties.

The easiest way to set properties is from the Properties Window. You can open Properties

window by pressing F4 or right click on a control and select Properties menu item.

The Properties window looks like Figure below.

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

38/48

Name

Name property represents a unique name of a MenuStrip control. It is used to access the

control in the code. The following code snippet sets and gets the name and text of a

MenuStrip control.

MainMenu.Name = "MailMenu"

Positioning a MenuStrip

The Dock property is used to set the position of a MenuStrip. It is of type DockStyle that

can have values Top, Bottom, Left, Right, and Fill. The following code snippet sets

Location, Width, and Height properties of a MenuStrip control.

MainMenu.Dock = DockStyle.Left

Font

Font property represents the font of text of a MenuStrip control. If you click on the Font

property in Properties window, you will see Font name, size and other font options. The

following code snippet sets Font property at run-time.

MainMenu.Font = new Font("Georgia", 16)

Background and Foreground

BackColor and ForeColor properties are used to set background and foreground color of

a MenuStrip respectively. If you click on these properties in Properties window, the

Color Dialog pops up.

Alternatively, you can set background and foreground colors at run-time. The following

code snippet sets

BackColor and ForeColor properties.

MainMenu.BackColor = System.Drawing.Color.OrangeRed

MainMenu.ForeColor = System.Drawing.Color.Black

Then the MenuStrip looks like Figure below.

MenuStrip Items A Menu control is nothing without menu items. The Items property is

used to add and work with items in a MenuStrip. We can add items to a MenuStrip at

design-time from Properties Window by clicking on Items Collection as you can see in

Figure below.

When you click on the Collections, the String Collection Editor window will pop up

where you can type strings. Each line added to this collection will become a MenuStrip

item. (See the Figure below.)

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

39/48

A ToolStripMenuItem represents a menu items. The following code snippet creates a

menu item and sets its properties.

 Dim FileMenu As New ToolStripMenuItem("File")

 FileMenu.BackColor = Color.OrangeRed

 FileMenu.ForeColor = Color.Black

 FileMenu.Text = "File Menu"

 FileMenu.Font = New Font("Georgia", 16)

 FileMenu.TextAlign = ContentAlignment.BottomRight

 FileMenu.TextDirection = ToolStripTextDirection.Vertical90

 FileMenu.ToolTipText = "Click Me"

Figure showing Menu Item Collection

Once a menu item is created, we can add it to the main menu by using

MenuStrip.Items.Add method. The following code snippet adds FileMenu item to the

MainMenu.

MainMenu.Items.Add(FileMenu)

Adding Menu Item Click Event Handler

The main purpose of a menu item is to add a click event handler and write code that we

need to execute on the menu item click event handler. For example, on File >> New

menu item click event handler, we may want to create a new file. To add an event handler,

you go to Events window and double click on Click and other as you can see in Figure

below.

We can also define and implement an event handler dynamically. The following code

snippet defines and implements these events and their respective event handlers.

Dim NewMenuItem As New ToolStripMenuItem("New", Nothing, New

EventHandler(AddressOf NewMenuItemClick))

Private Sub NewMenuItemClick(ByVal sender As Object, ByVal e As EventArgs)

MessageBox.Show("New menu item clicked!")

End Sub

Manipulating Menu’s at Runtime

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

40/48

Dynamic menus change at runtime to display more or fewer commands, depending on the

current status of the program. This section explores two techniques for implementing

dynamic menus:

 Creating short and long versions of the same menu

 Adding and removing menu commands at runtime

Iterating a Menu’s Items

The last menu-related topic in this chapter demonstrates how to iterate through all the

items of a menu structure, including their submenus, at any depth. The main menu of an

application can be accessed by the expression Me.MenuStrip1 (assuming that you’re

using the default names). This is a reference to the top-level commands of the menu,

which appear in the form’s menu bar. Each command, in turn, is represented by a

ToolStripMenuItem object. All the items under a menu command form a

ToolStripMenuItems collection, which you can scan to retrieve the individual commands.

The first command in a menu is accessed with the expression Me.MenuStrip1.Items(0);

this is the File command in a typical application. The expression

Me.MenuStrip1.Items(1) is the second command on the same level as the File command

(typically, the Edit menu).

To access the items under the first menu, use the DropDownItems collection of the top

command. The first command in the File menu can be accessed by this expression:

Me.MenuStrip1.Items(0).DropDownItems(0)

The same items can be accessed by name as well, and this is how you should manipulate

the menu items from within your code. In unusual situations, or if you’re using dynamic

menus to which you add and subtract commands at runtime, you’ll have to access the

menu items through the DropDownItems collection.

MULTIPLE DOCUMENT INTERFACE

MDI Overview

This session introduces the concept of Multiple Document Interface (MDI) and to create

menus within an MDI application. You will learn to create an MDI application in

Microsoft Visual Studio .NET and learn why you might want to use this type of interface.

You will learn about child forms that are contained within the MDI application, and learn

to create shortcut, or context-sensitive, menus.

MDI is a popular interface because it allows you to have multiple documents (or forms)

open in one application. Examples of MDI applications include Microsoft Word,

Microsoft Excel, Microsoft PowerPoint®, and even the Visual Studio integrated

development environment itself. Each application consists of one (or more) parent

windows, each containing an MDI client area—the area where the child forms (or

documents) will be displayed. Code you write displays as many instances of each of the

child forms that you want displayed, and each child form can only be displayed within

the confines of the parent window—this means you can't drag the child forms outside the

MDI container. Figure shows a basic MDI application in use.

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

41/48

Using MDI – multiple windows contained within the parent area

Single Document Interface

MDI is only one of several possible paradigms for creating a user interface. You can also

create applications that display just a single form. They're easier to create, in fact. Those

applications are called Single Document Interface (SDI) applications. Microsoft

Windows® Notepad is an SDI application, and you can only open a single document at a

time. (If you want multiple documents open, you simply run Notepad multiple times.)

You are under no obligation to create your applications using the MDI paradigm. Even if

you have multiple forms in your project, you can simply have each one as a stand-alone

form, not contained by any parent form.

Uses of MDI

MDI are used most often in applications where the user might like to have multiple forms

or documents open concurrently. Word processing applications (like Microsoft Word),

spreadsheet applications (like Microsoft Excel), and project manager applications (like

Microsoft Project) are all good candidates for MDI applications. MDI is also handy when

you have a large application, and you want to provide a simple mechanism for closing all

the child forms when the user exits the application

Creating an MDI Parent Form

To create an MDI parent form, you can simply take one of your existing forms and set its

IsMDIContainer property to True. This form will now be able to contain other forms as

child forms. You may have one or many container forms within your application.

Tip Note the difference here between Visual Studio .NET and Microsoft Visual Basic®

6.0 behavior. In Visual Basic 6.0, you could only have a single MDI parent form per

application, and you had to use the Project menu to add that one special form. In Visual

Studio .NET, you can turn any form into an MDI parent form by simply modifying a

property, and you can have as many MDI parent forms as you require within the same

project.

You may have as many different child forms (the forms that remain contained within the

parent form) as you want in your project. A child form is nothing more than a regular

form for which you dynamically set the MdiParent property to refer to the MDI

container form.

Run-time Features of MDI Child Forms

At run time, the MDI parent form and the MDI child forms take on special features:

 All child forms are displayed within the MDI parent's client area. The client area

is the area below the MDI parent's title bar, any menus, and any tool bars.

 Child forms can be moved and sized only within the MDI parent's client area.

 Child forms can be minimized and their icon will be displayed within the parent's

client area.

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

42/48

 Child forms can be maximized within the parent's client area and the caption of

the child form is appended to the caption of the MDI form.

 Windows automatically gives child forms that have their FormBorderStyle

property set to a sizable border a default size. This size is based on the size of the

MDI parent's client area. You can override this by setting the FormBorderStyle

property of the child form to any of the fixed type of borders.

 Child forms cannot be displayed modally.

Create an MDI Project

In this section, you will walk through the steps of creating a simple MDI application

using Visual Studio .NET. To do this, you will create a new form that will be the MDI

parent form. You will add some menus to this new form, and then you will load the

product form from a menu as a child form.

Create the MDI Parent Form

To create the MDI parent form

1. Open Visual Studio .NET

2. Create a new Windows application project.

3. Set the name of the project to MDI.sln.

4. Rename the form that is created automatically to frmMain.vb.

5. With the frmMain selected, set the form's IsMdiContainer property to True.

6. Set the WindowState property to Maximized.

Now we have created an MDI parent form.

Creating Menus in MDI Main Form

Your main form will require menus so that you can perform actions such as opening child

forms, copying and pasting data, and arranging windows. Visual Studio .NET includes a

new menu designer that makes creating & modifying menus easy.

To add menus to your MDI parent form

1. Double-click the MenuStrip tool in the Toolbox window to add a new object named

MenuStrip1 to the form tray.

2. At the top of the MDI parent form, click the box with Type Here in it and type &File.

3. Press Enter to move to the next menu item and type &Products.

4. Press Enter to move to the next menu item and type a hyphen (-).

5. Press Enter and type E&xit.

You have now created the first drop-down menu on your main form. You should have

something that looks like Figure.

The menu designer allows you to type your menu structure in a WYSIWYG fashion

To the right of the File menu and at the same level, you'll see another small box with the

text, Type Here. Click it and type the following menu items by pressing Enter after each

one.

 &Edit

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

43/48

 Cu&t

 &Copy

 &Paste

Once more to the right of the Edit menu and at the same level, add the following menu

items in the same manner.

 &Window

 &Cascade

 Tile &Horizontal

 Tile &Vertical

 &Arrange Icons

Creating Names for Each Menu

After creating all the menu items, you'll need to set the Name property for each. (Because

you'll refer to the name of each menu item from any code you write concerning that menu

item, it's important to choose a name you can understand from within your code.) Instead

of clicking each menu item one at a time and then moving over to the Properties window

to set the Name property, Visual Studio provides a shortcut: Right-click an item in the

menu, then select Edit Names from the context menu..

Use the following names for your menu items:

 mnuFile

 mnuFProducts

 mnuFExit

 mnuEdit

 mnuECut

 mnuECopy

 mnuEPaste

 mnuWindow

 mnuWCasade

 mnuWHorizontal

 mnuWVertical

 mnuWArrange

Test out your application: Press F5 and you should see your main MDI window appear

with your menu system in place.

Display a Child Form

To add the code that displays the child form, frmProducts, make sure the main form is

open in Design view, and on the File menu, double-click Products. Visual Studio .NET

will create the stub of the menu item's Click event handler for you. Modify the procedure

so that it looks like the following:

Private Sub mnuFProducts_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles_ mnuFProducts.Click

 Dim frm As New frmProducts()

 frm.MdiParent = Me

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

44/48

 frm.Show()

End Sub

This code declares a variable, frm, which refers to a new instance of the frmProducts

form in the sample project. Then, you set the MdiParent property of the new form,

indicating that its parent should be the current form (using the Me keyword). Finally, the

code calls the Show method of the child form, making it appear on the screen.

Child Menus in MDI Applications

In Visual Studio .NET, however, you can control how the menus interact, using the

MergeOrder and MergeType properties of the individual menu items.

The MergeOrder property controls the relative position of the menu item when its menu

structure gets merged with the parent form's menus. The default value for this property is

0, indicating that this menu item will be added at the end of the existing menu items. The

MergeType property controls how the menu item behaves when it has the same merge

order as another menu item being merged. Table shows a list of the possible values you

can assign to the MergeType property.
The MergeType property allows you to specify what happens when menu items merge

Value Description

Add The MenuItem is added to the
collection of existing MenuItem

objects in a merged menu.

(Default)

MergeIte

ms

All submenu items of this

MenuItem are merged with those

of existing MenuItem objects at

the same position in a merged

menu.
Remove The MenuItem is not included in a

merged menu.

Replace The MenuItem replaces an existing

MenuItem at the same position in a

merged menu.

By default, a menu item's MergeOrder property is set to 0. The MergeType property is

set to Add by default. This means that if you create a child form with a menu on it, the

menu will be added at the end of the main menu. Consider Figure 3, which shows a child

form called from the parent form's main menu. This form has a Maintenance menu on it

(and the parent form does not). All of the items on the parent's main menu have their

MergeOrder properties set to 0 and this menu's MergeOrder property is set to 0, so this

menu will be added at the end of the main menu on the MDI parent form.

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

45/48

A child form that has menus will by default be added to the end of the main menu

To create the form in Figure 3
1. On the Project menu, click Add Windows Form.

2. Set the new form's name to frmChildWithMenus.vb.

3. Add a MenuStrip control to this form.

4. Set the Name property for the MenuStrip control to mnuMainMaint.

5. Add the following menus as shown in Table 2.
 Windows Form menus

Menu Name

&Maintenance mnuMaint

&Suppliers mnuMSuppliers

&Categories mnuMCategories

If you were to call this form exactly like you did the Products form in the previous

section you will see that your main form looks like Figure 4. You can see that by default,

the menu is added to the end of this form.

Menus are added to the end of the main menu by default

Call this form by adding a new menu item under the File menu:

1. Open frmMain.vb in Design view.

2. Click on the separator after the Products menu item and press the Insert key to

add a new menu item.

3. Type Child form with Menus as the text of this new menu item.

4. Set the Name property of this new menu item to mnuFChild.

5. Double click this new menu item and modify its Click event handler so that it

looks like this:

Private Sub mnuFChildMenus_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles mnuFChildMenus.Click

 Dim frm As New frmChildWithMenus()

 frm.MdiParent = Me

 frm.Show()

End Sub

Note: If you wish to merge the Maintenance menu in between the Edit and Window

menus, you could set the MergeOrder property on the Edit menu item to 1, and the

MergeOrder property on the Window menu to a 2. Then on the Maintenance menu

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

46/48

item on frmChildWithMenus, set the MergeOrder property to 1 and leave the

MergeType with its default value, Add. Taking these steps will add the Maintenance

menu after the menu on the main form with the same MergeOrder number as it has (that

is, after the Edit menu, but before the Window menu).

Working with MDI Child Forms

If you have multiple child forms open, you may want to have them arrange themselves,

much as you can do in Word or Excel, choosing options under the Window menu. Table

lists the available options when arranging child windows.

Choose one of these values when arranging child windows
Menu Item Enumerated Value

Tile Horizontal MdlLayout.TileHorizontal

Tile Vertical MdiLayout.TileVertical

Cascade MdiLayout.Cascade

Arrange Icons MdiLayout.ArrangeIcons

Add some menus to your main form for each of these options:

1. Open frmMain.vb in Design view.

2. On the Window menu, double-click Cascade.

3. For the Cascade menu item, modify the Click event handler so that it looks like

the following:

Private Sub mnuWCascade_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles mnuWCascade.Click

 Me.LayoutMdi(MdiLayout.Cascade)

End Sub

On the Window menu, double-click each menu item and add the appropriate code.

Tracking Child Windows

Visual Basic .NET will keep track of all child forms that you create, and it's easy to

create a window list menu to manage the child windows. If you wish to see a list of all of

the child forms and be able to give a specific child form focus, follow these steps:

1. Load frmMain in Design view.

2. Select frmMain's Window menu.

3. In the Properties window, set the MdiList to True.

4. Run the project, open a couple of Products forms, and then click the Window

drop-down menu. You should see each instance of the Product form that you

opened displayed in the window list.

Ending an MDI Application

In most cases, ending an application with the End statement isn’t necessarily the

most user-friendly approach. Before you end an application, you must always offer your

users a chance to save their work. Ideally, you should maintain a True/False variable

whose value is set every time the user edits the open document terminating an MDI

application with the End statement is unacceptable. First, you need a mechanism to detect

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

47/48

whether a document needs to be saved or not. In a text-processing application, you can

examine the Modified property of the TextBox control.

Insert the proper code in the Close command’s event handler to detect whether the

document being closed contains unsaved data and prompt the user accordingly. When the

user clicks the child form’s Close button, the child form’s Closing event is fired, this time

by the child form. Finally, when the MDI form is closed, each of the child forms receives

the Closing event. In addition, the MDI form’s Closing event is also fired. Normally,

there’s no reason to program this event. As long as you handle the Closing event of the

child form, no data will be lost. In the Closing event, you can cancel the operation of

closing a document, or the MDI form itself, by settings the e.Cancel property to True.

To close the active child form, execute the following statements (they must appear in the

Close command’s Click event handler):

Private Sub FileExit_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles FileExit.Click

Me.Close()

End Sub

The Close method invokes the Closing event of the child form.

Unit-2 Basic Windows Controls 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

48/48

PART-B

POSSIBLE QUESTIONS(8 MARKS)

1. Discuss about some basic properties of Textbox Control

2. Elucidate in detail about the Multiple Document Interface.

3. Illustrate the use of Open and Save Dialog Boxes with neat diagram.

4. How will you manipulate Menu’s at run-time? Explain in detail.

5. Explain in detail about scrollbar and trackbar Controls.

6. Explain in detail about Text-Manipulation and Selection Properties with example

7. Explain in detail about Tree View and List View Controls.

8. Discuss about the properties and methods of Rich Textbox Control with example.

9. Write program to demonstrate Mouse Events

questions opt1 opt2 opt3 opt4
The ----- event happens when
the mouse pointer hovers over
the form/control

MouseWheel MouseUp MouseDown MouseHover

the ____occurs when a mouse
button is pressed

MouseDown MouseUp MouseWheel MouseHover

 ------ specifies number of times
the mouse button is pressed and
released

Button Click Delta X

If the number of items exceed
the value that can be displayed,
______ bars will automatically
appear on the control

icon option button
 command
button

 scroll bars

__________ provides easy
navigation through a list of
items or a large amount of
information

 scroll bar
command
button

 tool bar tool box

the _______ToolWindow, but
is resizable. In addition, its
caption font is smaller than the
usual.

Sizable non sizable large small

The _____ is an one example of
breaking a large application into
smaller tasks.

Event Handler Coding function subroutine

when a mouse button is pressed
______ event will fired

Mouse Enter Mouse Up Mouse down MouseHover

_____________ is a segment
of the code that is executed
each time an external condition
triggers the event

Event Handler function Coding
built-in
function

Which property has to be set to
minimize maximize ot restore a
form in code?

Windows
Applications

WindowState
FormBorderStyl
e

WindowSize

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 Pollachi Main Road, Eacharani Post, Coimbatore-641 021

 CLASS : III-B.Sc COMPUTER SCIENCE(2015-2018)
 Online Examination

 VISUAL PROGRAMMING (15CSU501)

Which property is used to
specify the tab order of the
various controls

tab order Accept return Control Box Auto tab

The tab order command will
appear in which menu

File Format View Edit

Which property is used to not
move the controls around the
forms.

Control Top Locked Name

The user action like key press,
clicks, mouse movements are
called __

Handlers Triggers Events Methods

_____ event is fired when a key
is released while the control has
focus

Key Up Key press Key Down Key Enter

___ allows the user to open the
menu by pressing the Alt key
and a letter

Access key shortcut key accept key Tab key

The ___________ property is
one that automatically activated
when you press Enter

Accept button Cancel button Control box Border style

A ------- is a component used to
accept input from the user or
display the information on the
form

text container control counter

Which controls do not have
events?

TextBox Label ToolTip ImageList

____________ refers to the
position a control has relative to
the edge of the form

Anchor Dock Key stokes Key preview

_________ refers to how much
space the control to take up on
the form

Anchor Dock Key stokes Key preview

The _______ event takes place
every time the form must be
refreshed

Resize Paint Close refersh

The default value of
FormBorderStyle property is

FixedSingle
FixedToolWin
dow

Sizable
SizableToolW
indow

The _______ property
determines the initial position
of the form when its first
displayed

initial position Start position sizedripstyle none

the _____ value position the
form at the default location and
size determined by windows

WindowsDefault
Location

WindowsDefa
ult Bounds

Fixed Dialog Fixed 3D

To attach the scroll bar
automatically to the form,
which property to set true.

Auto Scale Auto scroll Auto scroll bar Auto accept

Without the _______ the form
cannot be repositioned by the
user

Minimize /
Maximize button

Border Title bar Control Menu

_____ method does not simply
hides the form, but destroy it
completely

Close() Hide() Distroy() Remove()

The simplest method for two
forms to communicate with
each other is via ____ variables

Private Common public form

How many parent form will be
in MDI

2 0 1 many

Which class is used to run the
EXE application file in
VB.NET

Process Application Exe Execute

What is the property used to
enlarge the inmage in picture
box?

Size SizeMode Mode Stretch

What is the default event for
Picture Box?

Click Disposed Layout Resize

The textbox can accept a
maximum of ------ characters

1024.00 2048.00 156.00 1028.00

The -------- property allows you
to display multiple lines of text
in a textbox control

Text Multiline PasswordChar Autosize

The -------- property allows
automatic resizing of the label
control according to the length
of its caption

Text Multiline PasswordChar Autosize

The ----------- is used to display
the text as a link

label textbox linklabel listview

The ----------- property is used
to get or set the color used to
display the active link

LinkColor
DisabledLinkC
olor

ActiveLinlColo
r

LinkVisited

The ----------- property is used
to get or set a value indicating
whether a link should be
displayed as though it was
vivited

LinkColor
DisabledLinkC
olor

LinkVisited
ActiveLinlCol
or

The ------- property is used to
get or set the mode behavior of
the listbox control

Sorted SelectionMode SelectedIndex SelectedItem

The ------- property is used to
set or retrieve the currently
selected item in the combobox
control

Sorted SelectionMode SelectedIndex SelectedItem

The --------- control is used to
set Yes/No options

CheckBox RadioButton GroupBox Button

The --------- control is used to
group related controls together

RadioButton StatusBar GroupBox CheckBox

The -------- property is used to
specify whether or not the
statusbar should display panels

Text Checked SelectedIndex ShowPanels

The -------- property is used to
specify the location of a control
in terms of X and Y coordinates

Name Visible Location Enabled

In VB.Net the -------- class is
the base class for displaying
common dialog boxes.

Inherits String CommonDialog MyBase

The classes that are inherited
from the CommonDialog class
are categorized as --------

4.00 6.00 5.00 3.00

Button class is based on -------
class

Stirng TextBoxBase ButtonBase Windows

The ------ property doesn't allow
the user to enter

Enabled Multiline ReadOnly TextAllign

The default event of the
CheckBox is -----------

Click
CheckedChang
e

Changed DoubleClick

RadioButton control is based on
the -------- class

Stirng TextBoxBase ButtonBase Windows

The ListBox control is based on
the -------- class

Stirng TextBoxBase ButtonBase ListControl

To display the list as multiple
columns in list box ---------
property is used

SelectionMode SelectedIndex SelectedItem MultiColumn

The default event of ListBox is
the ---------

Click
CheckedChang
e

DoubleClick
SelectedIndex
Changed

The --------------- property in the
Appearance section of the
properties window

TextAllign ReadOnly Enabled
DropDownSty
le

The ----------- Gets/Sets
whether the tree node is
checked

ReadOnly Checked IsEditing IsSelected

The --------- Gets the collection
of nodes in the current node

Checked IsEditing IsSelected Nodes

Default event of the Tree View
control is the --------------

Click Selected AfterSelect Load

 ---------- is a combination of a
ListBox and a CheckBox

DropDownBox
CheckedListBo
x

LinkBox TreeView

 -------- cannot display captions
where as GroupBoxes can

Panels PictureBox Splitter ToolTip

To assign ToolTip's with
controls ------- is used

SetTip SetToolTip GetTip SetTool

Notable property in
ErrorProvider is ---------

AutoScroll SetTip Allign BlinkRate

The default event of the
MenuItem is ----------

CheckedChange AfterSelect Click Active

The ------- property is used to
display a menu item as a radio
button

RadioCheck Checked Shortcut DefaultItem

The menus that appear on the
menu bar are created using the
-------- object

MenuItem MainMenu Context
MenuDesigne
r

The --------- property allows to
set the initial directory which
should open while using the
OpenFileDialog.

InitialDirectory FilterIndex RestoreIndex ShowHelp

The ------ property
checks whether the
specified path exists before
returning from the dialog.

InitialDirectory
CheckPathExis
ts

RestoreIndex FilterIndex

WindowState property is ---------
----- by default

Normal Maximized Minimuzed Flat

This property is used to
change/display the titile of the
form

Name Text Title Form

The default BackColor of the
Form is the system color named

gray white pale control

Toolbar items are part of ---------
--- collection

items Buttons properties Opions

The control with the tab index --
----- first gets focus when the
form is shown

0.00 1.00
Maximum
value

Minimum
value

What is the return type of
InputBox() function

Integer Object String Double

In Message Box which is the
required parameter, that must
be supplied a value?

prompt button title name

If the number of items exceed
the value that can be displayed,
______ bars will automatically
appear on the control

Icon option button
command
button

scroll bars

The _______ method is used to
add items to a list at run time.

item index remove item add item

The __________ property sets
the index number of the
currently selected item

 index number list index list count none

The sorted property is set to
____ to enable a list to appear
in alphanumeric order

0.00 1.00 TRUE FALSE

__________ box saves the
space on a form

list box tool box combo box none

__________ used in groups to
display multiple choices from
which the user can select one or
more.

option button check box combo box label box

In _____ control the user can
set the control’s value by
sliding the indicator or by
clicking on either side of the
indicator.

Scroll Bar Track Bar status bar image bar

The ___________ method is
used to remove an item from
the list

item index remove item add item

 When a common dialog control
is added, a new icon appears in
the ____ of the form

component tray component list status bar
 component
bar

The ________ property is used
to wrap the text in Textbox
control when text reaches the
right edge

Wrap Word Word Wrap Accept returns Accept Tab

Each item in a Tree View is
called _____

branch subtree leaf node

In _______ Dialog control the
user review and select a font
and then set its size and style

Color Dialog Font Dialog Open Dialog Format Dialog

Which property is used to
specify the type(s) of files
displayed in the dialog box

DereferenceLinks Filter File Name Text

answer

MouseHover

MouseDown

Click

 scroll bars

 scroll bar

Sizable

Event Handler

Mouse down

Event Handler

WindowState

tab order

View

Locked

Events

Key Up

Access key

Accept button

control

ImageList

Anchor

Dock

Paint

Sizable

Start position

WindowsDefa
ult Bounds

Auto scroll

Title bar

Close()

public

1

Process

SizeMode

Click

2048.00

Multiline

Autosize

linklabel

ActiveLinlCol
or

LinkVisited

SelectionMod
e

SelectedItem

CheckBox

GroupBox

ShowPanels

Location

CommonDial
og

5.00

ButtonBase

ReadOnly

CheckedChan
ge

ButtonBase

ListControl

MultiColumn

SelectedIndex
Changed

DropDownSt
yle

Checked

Nodes

AfterSelect

CheckedListB
ox

Panels

SetToolTip

BlinkRate

Click

RadioCheck

MainMenu

InitialDirector
y

CheckPathExi
sts

Normal

Text

control

Buttons

0.00

String

prompt

scroll bars

add item

 list index

TRUE

combo box

check box

Track Bar

 remove item

component
tray

 Word Wrap

node

Font Dialog

Filter

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

1/44

UNIT- III

 SYLLABUS

Handling Strings, characters and Dates: Handling Strings and Characters –

Handling Dates. Working with Folders and Files: Accessing Folders and Files –

Accessing Files. Drawing and Painting with Visual Basic: Displaying Images – Drawing

with GDI – Co-ordinate Transformation – Bitmaps.

Handling Strings, Characters and Dates

The .NET Framework provides two basic classes for manipulating text: the String and

String-Builder classes.

The distinction between the two classes is that the String class is better suited for static

strings, whereas the StringBuilder class is better suited for dynamic strings. Use the

String class for strings that don’t change frequently in the course of an application, and

use the StringBuilder class for strings that grow and shrink dynamically. The two classes

expose similar methods, but the String class’s methods return new strings; if you need to

manipulate large strings extensively, using the String class might fill the memory quite

quickly.

Handling String and Characters

The Char Class
The Char data type stores characters as individual, double-byte (16-bit), Unicode

values; and it exposes methods for classifying the character stored in a Char variable.

You can use methods such as IsDigit and IsPunctuation on a Char variable to determine

its type, and other similar methods that can simplify your string validation code.

To use a character variable in your application, you must declare it with a statement such

as the following one:

Dim ch As Char

ch = Convert.ToChar("A")

Properties

The Char class provides two trivial properties: MaxValue and MinValue. They return the

largest and smallest character values you can represent with the Char data type.

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

2/44

Methods

The Char data type exposes several useful methods for handling characters. All the

methods described here have the same syntax: They accept either a single argument,

which is the character they act upon, or a string and the index of a character in the string

on which they act.

GetNumericValue

This method returns a positive numeric value if called with an argument that is a digit,

and the value −1 otherwise. If you call the GetNumericValue with the argument 5, it will

return the numeric value 5. If you call it with the symbol @, it will return the value −1.

GetUnicodeCategory

This method returns a numeric value that is a member of the UnicodeCategory

enumeration and identifies the Unicode group to which the character belongs. The

Unicode groups characters into categories such as math symbols, currency symbols, and

quotation marks. Look up the UnicodeCategory enumeration in the documentation for

more information.

IsLetter, IsDigit, IsLetterOrDigit

These methods return a True/False value indicating whether their argument, which is a

character, is a letter, decimal digit, or letter/digit, respectively. You can write an event

handler by using the IsDigit method to accept numeric keystrokes and to reject letters and

punctuation symbols.

IsLower, IsUpper

These methods return a True/False value indicating whether the specified character is

lowercase or uppercase, respectively.

IsNumber

This method returns a True/False value indicating whether the specified character is a

number. The IsNumber method takes into consideration hexadecimal digits (the

characters 0123456789-ABCDEF) in the same way as the IsDigit method does for

decimal numbers.

IsPunctuation, IsSymbol, IsControl

These methods return a True/False value indicating whether the specified character is a

punctuation mark, symbol, or control character, respectively. The Backspace and Esc

keys, for example, are ISO (International Organization for Standardization) control

characters.

IsSeparator

This method returns a True/False value indicating whether the character is categorized as

a separator (space, new-line character, and so on).

IsWhiteSpace

This method returns a True/False value indicating whether the specified character is

white space. Any sequence of spaces, tabs, line feeds, and form feeds is considered white

space. Use this method along with the IsPunctuation method to remove all characters in a

string that are not words.

ToLower, ToUpper

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

3/44

These methods convert their argument to a lowercase or uppercase character,

respectively, and return it as another character.

ToString

This method converts a character to a string. It returns a single-character string, which

you can use with other string-manipulation methods or functions.

The String Class

The String class implements the String data type, which is one of the richest data

types in terms of the members it exposes. We have used strings extensively in earlier

chapters, but this is a formal discussion of the String data type and all of the functionality

it exposes.

To create a new instance of the String class, you simply declare a variable of the String

type. You can also initialize it by assigning to the corresponding variable a text value:

Dim title As String = "Visual Basic 2008 Tutorial"

The Replace method, like all other methods of the String class, doesn’t operate directly

on the string to which it’s applied. Instead, it creates a new string and returns it as a new

string. You can also use Visual Basic’s string-manipulation functions to work with

strings. For example, you can replace the string VB with Visual Basic by using the

following statement:

newTitle = Replace(title, "VB", "Visual Basic")

Like the methods of the String class, the string-manipulation functions don’t act on the

original string; they return a new string.

Properties

The String class exposes only two properties, the Length and Chars properties, which

return a string’s length and its characters, respectively. Both properties are read-only.

Length

The Length property returns the number of characters in the string and is read-only. To

find out the number of characters in a string variable, use the following statement:

chars = myString.Length

Chars

The Chars property is an array of characters that holds all the characters in the string.

Methods

All the functionality of the String class is available through methods, which are described

next. They are all shared methods: They act on a string and return a new string with the

modified value.

Compare

This method compares two strings and returns a negative value if the first string is less

than the second, a positive value if the second string is less than the first, and zero if the

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

4/44

two strings are equal. Of course, the simplest method of comparing two strings is to use

the comparison operators, as shown here:

If name1 < name 2 Then

' name1 is alphabetically smaller than name 2

Else If name 1 > name 2 Then

' name2 is alphabetically smaller than name 1

Else

' name1 is the same as name2

End If

CompareOrdinal

The CompareOrdinal method compares two strings similar to the Compare method, but it

doesn’t take into consideration the current locale. This method returns zero if the two

strings are the same, and a positive or negative value if they’re different. These values,

however, are not 1 and −1; they represent the numeric difference between the Unicode

values of the first two characters that are different in the two strings.

Concat

This method concatenates two or more strings (places them one after the other) and forms

a new string. The simpler form of the Concat method has the following syntax and it is

equivalent to the & operator:

newString = String.Concat(string1, string2)

This statement is equivalent to the following:

newString = string1 & string2

Copy

The Copy method copies the value of one string variable to another. Notice that the value

to be copied must be passed to the method as an argument. The Copy method doesn’t

apply to the current instance of the String class. Most programmers will use the

assignment operator and will never bother with the Copy method.

EndsWith, StartsWith

These two methods return True if their argument ends or starts with a user-supplied

substring. The syntax of these methods is as follows:

found = str.EndsWith(string)

found = str.StartsWith(string)

These two methods are equivalent to the Left() and Right() functions, which extract a

given number of characters from the left or right end of the string, respectively.

IndexOf, LastIndexOf

These two methods locate a substring in a larger string. The IndexOf method starts

searching from the beginning of the string, and the LastIndexOf method starts searching

from the end of the string. Both methods return an integer, which is the order of the

substring’s first character in the larger string (the order of the first character is zero).

To locate a string within a larger one, use the following forms of the IndexOf method:

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

5/44

pos = str.IndexOf(searchString)

pos = str.IndexOf(SearchString, startIndex)

pos = str.IndexOf(SearchString, startIndex, endIndex)

The startIndex and the endIndex arguments delimit the section of the string where the

search will take place, and pos is an integer variable.

The last three overloaded forms of the IndexOf method search for an array of characters

in the string:

str.IndexOf(Char())

str.IndexOf(Char(), startIndex)

str.IndexOf(Char(), startIndex, endIndex)

IndexOfAny

This is an interesting method that accepts as an argument an array of arguments and

returns the first occurrence of any of the array’s characters in the string. The syntax of the

IndexOfAny method is

Dim pos As Integer = str.IndexOfAny(chars)

where chars is an array of characters.

This method attempts to locate the first instance of any member of the chars array in the

string. If the character is found, its index is returned. If not, the process is repeated with

the second character, and so on until an instance is found or the array has been exhausted.

Insert

The Insert method inserts one or more characters at a specified location in a string and

returns the new string. The syntax of the Insert method is as follows:

newString = str.Insert(startIndex, subString)

startIndex is the position in the str variable, where the string specified by the second

argument will be inserted.

Join

This method joins two or more strings and returns a single string with a separator

between the original strings. Its syntax is the following, where separator is the string that

will be used as the separator, and strings is an array with the strings to be joined:

newString = String.Join(separator, strings)

Split

Just as you can join strings, you can split a long string into smaller ones by using the Split

method, whose syntax is the following, where delimiters is an array of characters and str

is the string to be split:

strings() = String.Split(delimiters, str)

The string is split into sections that are separated by any one of the delimiters specified

with the first argument. These strings are returned as an array of strings.

Splitting Strings with Multiple Separators
The delimiters array allows you to specify multiple delimiters, which makes it a

great tool for isolating words in a text. You can specify all the characters that separate

words in text (spaces, tabs, periods, exclamation marks, and so on) as delimiters and pass

them along with the text to be parsed to the Split method.

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

6/44

The statements in Listing 3.3 isolate the parts of a path, which are delimited by a

backslash character.

Listing 3.3: Extracting a Path’s Components
Dim path As String = "c:\My Documents\Business\Expenses"

Dim delimiters() As Char = {"\"c}

Dim parts() As String

parts = path.Split(delimiters)

Dim iPart As IEnumerator

iPart = parts.GetEnumerator

While iPart.MoveNext

Debug.WriteLine(iPart.Current.tostring)

End While

Remove

The Remove method removes a given number of characters from a string, starting at a

specific location, and returns the result as a new string. Its syntax is the following, where

startIndex is the index of the first character to be removed in the str string variable and

count is the number of characters to be removed:

newSrting = str.Remove(startIndex, count)

Replace

This method replaces all instances of a specified character (or substring) in a string with a

new one. It creates a new instance of the string, replaces the characters as specified by its

arguments, and returns this string. The syntax of this method is

newString = str.Replace(oldChar, newChar)

where oldChar is the character in the str variable to be replaced, and newChar is the

character to replace the occurrences of oldChar.

You can change the last statement to replace tabs with a specific number of spaces —

usually three, four, or five spaces.

Dim txt, newTxt As String

Dim vbTab As String = vbCrLf

txt = "some text with two tabs"

newTxt = txt.Replace(vbTab, " ")

PadLeft, PadRight

These two methods align the string left or right in a specified field and return a fixed-

length string with spaces to the right (for right-padded strings) or to the left (for left-

padded strings). After the execution of these statements

Dim LPString, RPString As String

RPString = "[" & "Learning VB".PadRight(20) & "]"

LPString = "[" & "Learning VB".PadLeft(20) & "]"

the values of the LPString and RPString variables are as follows:

[Mastering VB]

[Mastering VB]

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

7/44

There are eight spaces to the left of the left-padded string and eight spaces to the right of

the right-padded string.

The StringBulider Class
The StringBuilder class stores dynamic strings and exposes methods to

manipulate them much faster than the String class. As you will see, the StringBuilder

class is extremely fast, but it uses considerably more memory than the string it holds. To

use the StringBuilder class in an application, you must import the System.Text

namespace (unless you want to fully qualify each instance of the StringBuilder class in

your code). Assuming that you have imported the System.Text class in your code

module, you can create a new instance of the class via the following statement:

Dim txt As New StringBuilder

To create a new instance of the StringBuilder class, you can call its constructor without

any arguments, or pass the initial string as an argument:

Dim txt As New StringBuilder("some string")

Properties

You have already seen the two basic properties of the StringBuilder class: the Capacity

and MaxCapacity properties. In addition, the StringBuilder class provides the Length and

Chars properties, which are the same as the corresponding properties of the String class.

The Length property returns the number of characters in the current instance of the

StringBuilder class, and the Chars property is an array of characters. Unlike the Chars

property of the String class, this one is read/write.

Methods

Many of the methods of the StringBuilder class are equivalent to the methods of the

String class, but they act directly on the string to which they’re applied, and they don’t

return a new string.

Append

The Append method appends a base type to the current instance of the StringBuilder

class, and its syntax is the following, where the value argument can be a single character,

a string, a date, or any numeric value:

SB.Append(value)

When you append numeric values to a StringBuilder, they’re converted to strings;

the value appended is the string returned by the type’s ToString method. You can also

append an object to the StringBuilder — the actual string that will be appended is the

value of the object’s ToString property.

AppendFormat

The AppendFormat method is similar to the Append method. Before appending the

string, however, AppendFormat formats it. The string to be appended contains format

specifications and the appropriate values. The syntax of the AppendFormat method is as

follows:

SB.AppendFormat(string, values)

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

8/44

The first argument is a string with embedded format specifications, and values is an array

with values (objects, in general

Insert

This method inserts a string into the current instance of the StringBuilder class, and its

syntax is as follows:

SB.Insert(index, value)

The index argument is the location where the new string will be inserted in the current

instance of the StringBuilder, and value is the string to be inserted.

Remove

This method removes a number of characters from the current StringBuilder, starting at a

specified location; its syntax is the following, where startIndex is the position of the first

character to be removed from the string, and count is the number of characters to be

removed:

SB.Remove(startIndex, count)

Replace

This method replaces all instances of a string in the current StringBuilder object with

another string. The syntax of the Replace method is the following, where the two

arguments can be either strings or characters:

SB.Replace(oldValue, newValue)

Unlike the String class, the replacement takes place in the current instance of the

StringBuilder class and the method doesn’t return another string.

ToString

Use this method to convert the StringBuilder instance to a string and assign it to a String

variable. The ToString method returns the string represented by the StringBuilder

variable to which it’s applied.

Handling Dates
The Date Time Class

The DateTime class is used for storing date and time values, and it’s one of the

Framework’s base data types. Date and time values are stored internally as Double

numbers. The integer part of the value corresponds to the date, and the fractional part

corresponds to the time. To convert a DateTime variable to a Double value, use the

method ToOADateTime, which returns a value that is an OLE (Object Linking and

Embedding) Automation-compatible date. The value 0 corresponds to midnight of

December 30, 1899.

To initialize a DateTime variable, supply a date value enclosed in a pair of pound

symbols. If the value contains time information, separate it from the date part by using a

space:

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

9/44

Dim date1 As Date = #4/15/2007#

Dim date2 As Date = #4/15/2007 2:01:59#

Properties

The DateTime class exposes the following properties, which are straightforward.

Date, TimeOfDay

The Date property returns the date from a date/time value and sets the time to midnight.

The TimeOfDay property returns the time part of the date. The following statements

Dim date1 As DateTime

date1 = Now()

Debug.WriteLine(date1)

Debug.WriteLine(date1.Date)

Debug.WriteLine(date1.TimeOfDay)

will print something like the following values in the Output window:

8/5/2007 9:41:55 AM

8/5/2007 12:00:00 AM

09:41:55.5296000

DayOfWeek, DayOfYear

Hour, Minute, Second, Millisecond

These properties return the corresponding time part of the date value passed as an

argument. If the current time is 9:47:24 p.m., the three properties of the DateTime class

will return the integer values 9, 47, and 24 when applied to the current date and time:

Debug.WriteLine("The current time is " & Date.Now.ToString)

Debug.WriteLine("The hour is " & Date.Now.Hour)

Debug.WriteLine("The minute is " & Date.Now.Minute)

Debug.WriteLine("The second is " & Date.Now.Second)

Day, Month, Year
These three properties return the day of the month, the month, and the year of a DateTime

value, respectively. The Day and Month properties are numeric values, but you can

convert them to the appropriate string (the name of the day or month) with the

WeekDayName() and MonthName() functions.

Ticks
This property returns the number of ticks from a date/time value. Each tick is 100

nanoseconds (or 0.0001 milliseconds). To convert ticks to milliseconds, multiply them by

10,000 (or use the TimeSpan object’s TicksPerMillisecond property.

Methods

The DateTime class exposes several methods for manipulating dates. The most practical

methods add and subtract time intervals to and from an instance of the DateTime class.

Compare

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

10/44

Compare is a shared method that compares two date/time values and returns an integer

value indicating the relative order of the two values. The syntax of the Compare method

is the following, where date1 and date2 are the two values to be compared:

order = System.DateTime.Compare(date1, date2)

DaysInMonth

This shared method returns the number of days in a specific month. Because February

contains a variable number of days depending on the year, the DaysInMonth method

accepts as arguments both the month and the year:

monDays = DateTime.DaysInMonth(year, month)

FromOADate
This shared method creates a date/time value from an OLE Automation-compatible date.

newDate = DateTime.FromOADate(dtvalue)

The argument dtvalue must be a Double value in the range from −657,434 (first day of

year 100) to 2,958,465 (last day of year 9999).

IsLeapYear
This shared method returns a True/False value that indicates whether the specified year is

a leap year:

Dim leapYear As Boolean = DateTime.IsLeapYear(year)

Add

This method adds a TimeSpan object to the current instance of the DateTime class.

Dim TS As New TimeSpan()

Dim thisMoment As Date = Now()

TS = New TimeSpan(3, 6, 2, 50)

Debug.WriteLine(thisMoment)

Debug.WriteLine(thisMoment.Add(TS))

The values printed in the Output window when I tested this code segment were as

follows:

9/1/2007 10:10:49 AM

9/4/2007 4:13:39 PM

Subtract

This method is the counterpart of the Add method; it subtracts a TimeSpan object from

the current instance of the DateTime class and returns another Date value.

Adding Intervals to Dates

Various methods add specific intervals to a date/time value. Each method accepts the

number of intervals to add (days, hours, milliseconds, and so on) to the current instance

of the DateTime class. These methods are the following: AddYears, AddMonths,

AddDays, AddHours, AddMinutes, AddSeconds, AddMilliseconds, and AddTicks.

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

11/44

To add 3 years and 12 hours to the current date, use the following statements:

Dim aDate As Date

aDate = Now()

aDate = aDate.AddYears(3)

aDate = aDate.AddHours(12)

If the argument is a negative value, the corresponding intervals are subtracted from the

current instance of the class.

ToString

This method converts a date/time value to a string, using a specific format. The DateTime

class recognizes numerous format patterns, which are listed in the following two tables.

Table lists the standard format patterns, and Table lists the characters that can format

individual parts of the date/time value. You can combine the custom format characters to

format dates and times in any way you wish.

The syntax of the ToString method is the following, where formatSpec is a format

specification:

aDate.ToString(formatSpec)

The D named date format, for example, formats a date value as a long date; the following

statement will return the highlighted string shown below the statement:

Debug.Writeline(#9/17/2010#.ToString("D"))

Friday, September 17, 2010

Table 3.1 lists the named formats for the standard date and time patterns. The format

characters are case-sensitive — for example, g and G represent slightly different patterns.

Named

Format
Output Format Name

d MM/dd/yyyy ShortDatePattern

D dddd, MMMM dd, yyyy LongDatePattern

F
dddd, MMMM dd, yyyy

HH:mm:ss.mmm

FullDateTimePattern (long date and

long time)

f
dddd, MMMM dd, yyyy

HH:mm.ss

FullDateTimePattern (long date and

short time)

g MM/dd/yyyy HH:mm general (short date and short time)

G MM/dd/yyyy HH:mm:ss General (short date and long time)

M m MMMM dd MonthDayPattern (month and day)

r, R
ddd, dd MMM yyyy

HH:mm:ss GMT
RFC1123Pattern

Table 3.2: Date Format Specifier

Format

Character
Description

d The date of the month

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

12/44

dd The day of the month with a leading zero for single-digit days

ddd
The abbreviated name of the day of the week (a member of the

AbbreviatedDayNames enumeration)

dddd
The full name of the day of the week (a member of the

DayNamesFormat enumeration)

M The number of the month

MM
The number of the month with a leading zero for single-digit

months

MMM
The abbreviated name of the month (a member of the

AbbreviatedMonthNames enumeration)

MMMM The full name of the month

The following examples format the current date by using all the format patterns listed in

Table 13.1. An example of the output produced by each statement is shown under each

statement, indented and highlighted.

Debug.WriteLine(now().ToString("d"))

6/1/2008

Debug.WriteLine(now().ToString("D"))

Sunday, June 01, 2008

Debug.WriteLine(now().ToString("f"))

Sunday, June 01, 2008 10:29 AM

Debug.WriteLine(now().ToString("F"))

Sunday, June 01, 2008 10:29:35 AM

Debug.WriteLine(now().ToString("g"))

6/1/2008 10:29 AM

Debug.WriteLine(now().ToString("G"))

6/1/2008 10:29:35 AM

To display the full month name and the day in the month, for instance, use the following

statement:

Debug.WriteLine(now().ToString("MMMM d")).

Date Conversion Methods

The DateTime class supports methods for converting a date/time value to many of the

other base types, which are presented here briefly.

ToFileTime, FromFileTime
The ToFileTime method converts the value of the current Date instance to the format of

the local system file time. There’s also an equivalent FromFileTime method, which

converts a file time value to a Date value.

ToLongDateString, ToShortDateString

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

13/44

These two methods convert the date part of the current DateTime instance to a string with

the long (or short) date format. The following statement will return a value like the one

highlighted, which is the long date format:

Debug.WriteLine(Now().ToLongDateString)

Tuesday, July 15, 2008

ToLongTimeString, ToShortTimeString
These two methods convert the time part of the current instance of the Date class to a

string with the long (or short) time format. The following statement will return a value

like the one highlighted:

Debug.WriteLine(Now().ToLongTimeString)

6:40:53 PM

ToOADate

This method converts the DateTime instance into an OLE Automation-compatible date (a

long value).

ToUniversalTime, ToLocalTime

ToUniversalTime converts the current instance of the DateTime class into universal

coordinated time (UCT). The method ToLocalTime converts a UCT time value to local

time.

Dates as Numeric Values

The Date type encapsulates complicated operations, and it’s worth taking a look at the

inner workings of the classes that handle dates and times. Let’s declare two variables to

experiment a little with dates: a Date variable, which is initialized to the current date, and

a Double variable.

Dim Date1 As Date = Now()

Dim dbl As Double

Insert a couple of statements to convert the date to a Double value and print it:

dbl = Date1.ToOADate

Debug.WriteLine(dbl)

The TimeSpan Class

The last class discussed in this chapter is the TimeSpan class, which represents a

time interval and can be expressed in many different units — from ticks and milliseconds

to days. The TimeSpan is usually the difference between two date/time values, but you

can also create a TimeSpan for a specific interval and use it in your calculations.

To use the TimeSpan variable in your code, just declare it with a statement such as the

following:

Dim TS As New TimeSpan

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

14/44

You can initialize an instance of the TimeSpan object by creating two date/time values

and getting their difference, as in the following statements:

Dim TS As New TimeSpan

Dim date1 As Date = #4/11/1985#

Dim date2 As Date = Now()

TS = date2.Subtract(date1)

Debug.WriteLine(TS)

Depending on the day on which you execute these statements, they will print something

like the following in the Output window:

8086.15:37:01.6336000

Properties

The TimeSpan type exposes the properties described in the following sections. Most of

these properties are shared.

Field Properties
TimeSpan exposes the simple properties shown in Table 13.3, which are known as fields

and are all shared.

Table 3: The Fields of the TimeSpan Object

Property Returns

Empty An Empty TimeSpan object

MaxValue The largest interval you can represent with a TimeSpan object

MinValue The smallest interval you can represent with a TimeSpan object

TicksPerDay The number of ticks in a day

TicksPerHour The number of ticks in an hour

TicksPerMillisecond The number of ticks in a millisecond

TicksPerMinute The number of ticks in one minute

TicksPerSecond The number of ticks in one second

Zero A TimeSpan object of zero duration

 Interval Properties

In addition to the fields, the TimeSpan class exposes two more groups of properties that

return the various intervals in a TimeSpan value (shown in Tables 13.4 and 13.5). The

members of the first group of properties return the number of specific intervals (days,

hours, and so on) in a TimeSpan value. The second group of properties returns the entire

TimeSpan’s duration in one of the intervals recognized by the TimeSpan method.

Table 3.4: The Intervals of a TimeSpan Value

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

15/44

Property Returns

Days The number of whole days in the current TimeSpan.

Hours The number of whole hours in the current TimeSpan.

Millisecon

ds

The number of whole milliseconds in the current TimeSpan. The largest

value of this property is 999.

Minutes
The number of whole minutes in the current TimeSpan. The largest

value of this property is 59.

Seconds
The number of whole seconds in the current TimeSpan. The largest

value of this property is 59.

Ticks The number of whole ticks in the current TimeSpan.

Table 3.5: The Total Intervals of a TimeSpan Value

Property Returns

TotalDays The number of days in the current TimeSpan

TotalHours The number of hours in the current TimeSpan

TotalMilliseconds The number of whole milliseconds in the current TimeSpan

TotalMinutes The number of whole minutes in the current TimeSpan

Duration

This property returns the duration of the current instance of the TimeSpan class. The

duration is expressed as the number of days followed by the number of hours, minutes,

seconds, and milliseconds. The following statements create a TimeSpan object of a few

seconds (or minutes, if you don’t mind waiting) and print its duration in the Output

window.

Dim T1, T2 As DateTime

T1 = Now

MsgBox("Click OK to continue")

T2 = Now

Dim TS As TimeSpan

TS = T2.Subtract(T1)

Debug.WriteLine("Total duration = " & TS.Duration.ToString)

Debug.WriteLine("Minutes = " & TS.Minutes.ToString)

Debug.WriteLine("Seconds = " & TS.Seconds.ToString)

Debug.WriteLine("Ticks = " & TS.Ticks.ToString)

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

16/44

Debug.WriteLine("Milliseconds = " & TS.TotalMilliseconds.ToString)

Debug.WriteLine("Total seconds = " & TS.TotalSeconds.ToString)

If you place these statements in a button’s Click event handler and execute them, you’ll

see a series of values like the following in the Immediate window:

Total duration = 00:01:34.2154752

Minutes = 1

Seconds = 34

Ticks = 942154752

Milliseconds = 94215,4752

Total seconds = 94,2154752

Methods

There are various methods for creating and manipulating instances of the TimeSpan

class, and they’re described in the following sections.

Interval Methods
The methods in Table 13.6 create a new TimeSpan object of a specific duration. The

TimeSpan’s duration is specified as a number of intervals, accurate to the nearest

millisecond.

All methods accept a single argument, which is a Double value that represents the

number of the corresponding intervals (days, hours, and so on).

Parse(string)

This method creates a new TimeSpan object from a string with the TimeSpan format

(days;followed by a period; followed by the hours, minutes, and seconds separated by

colons). The following statements create a new TimeSpan variable with a duration of 3

days, 12 hours, 20 minutes, 30 seconds, and 500 milliseconds:

Dim SP As New TimeSpan()

SP = TimeSpan.Parse("3.12:20:30.500")

Debug.WriteLine(SP)

3.12:20:30.5000000

Accessing Files and Folders
The Directory Class

The System.IO.Directory class exposes all the members you need to manipulate

folders. Because the Directory class belongs to the System.IO namespace, you must

import the IO namespace into any project that might require the Directory object's

members with the following statement:

Imports System.IO

Methods

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

17/44

The Directory object exposesmethods for accessing folders and their contents, which are

described in the following sections.

 CreateDirectory

 Delete

 Exists

 Move

 GetCurrentDirectory, SetCurrentDirectory

 GetDirectoryRoot

 GetDirectories

 GetFiles

 GetFileSystemEntries

 GetCreationTime, SetCreationTime

 GetLastAccessTime, SetLastAccessTime

 GetLastWriteTime, SetLastWriteTime

 GetLogicalDrives

 GetParent

CreateDirectory

This method creates a new folder, whose path is passed to the method as a string

argument:

Directory.CreateDirectory(path)

The CreateDirectory method returns a DirectoryInfo object, which contains information

about the newly created folder. The DirectoryInfo object is discussed later in this chapter,

along with the FileInfo object. Notice that the CreateDirectory method can create

multiple nested folders in a single call. The following statement will create the folder

folder1 (if it doesn't exist), folder2 (if it doesn't exist) under folder1, and finally folder3

under folder2 in the C: drive:

Directory.CreateDirectory("C:\folder1\folder2\folder3")

Delete

This method deletes a folder and all the files in it. If the folder contains subfolders, the

Delete method will optionally remove the entire directory tree under the node you're

removing. The simplest form of the Delete method accepts as an argument the path of the

folder to be deleted:

Directory.Delete(path)

To delete a folder recursively (that is, also delete any subfolders under it), use the

following form of the Delete method, which accepts a second argument:

Directory.Delete(path, recursive)

Exists

http://visualbasic.w3computing.com/vb2008/11/vb-directory-class.php#createdirectory
http://visualbasic.w3computing.com/vb2008/11/vb-directory-class.php#delete
http://visualbasic.w3computing.com/vb2008/11/vb-directory-class.php#exists
http://visualbasic.w3computing.com/vb2008/11/vb-directory-class.php#move
http://visualbasic.w3computing.com/vb2008/11/vb-directory-class.php#getcurrentdirectory
http://visualbasic.w3computing.com/vb2008/11/vb-directory-class.php#getdirectoryroot
http://visualbasic.w3computing.com/vb2008/11/vb-directory-class.php#getdirectories
http://visualbasic.w3computing.com/vb2008/11/vb-directory-class.php#getfiles
http://visualbasic.w3computing.com/vb2008/11/vb-directory-class.php#getfilesystementries
http://visualbasic.w3computing.com/vb2008/11/vb-directory-class.php#getcreationtime
http://visualbasic.w3computing.com/vb2008/11/vb-directory-class.php#getlastaccesstime
http://visualbasic.w3computing.com/vb2008/11/vb-directory-class.php#getlastwritetime
http://visualbasic.w3computing.com/vb2008/11/vb-directory-class.php#getlogicaldrives
http://visualbasic.w3computing.com/vb2008/11/vb-directory-class.php#getparent

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

18/44

This method accepts a path as an argument and returns a True/False value indicating

whether the specified folder exists:

Directory.Exists(path)

Move

This method moves an entire folder to another location in the file system; its syntax is the

following, where source is the name of the folder to be moved and destination is the

name of the destination folder:

Directory.Move(source, destination)

GetCurrentDirectory, SetCurrentDirectory

Use these methods to retrieve and set the path of the current directory. By default, the

GetCurrentDirectory method returns the folder in which the application is running.

SetCurrentDirectory accepts a string argument, which is a path, and sets the current

directory to the specified path. You can change the current folder by specifying an

absolute or a relative path, such as the following:

Directory.SetCurrentDirectory("..\Resources")

GetDirectoryRoot

This method returns the root part of the path passed as argument, and its syntax is the

following:

root = Directory.GetDirectoryRoot(path)

GetDirectories

This method retrieves all the subfolders of a specific folder and returns their names as an

array of strings:

Dim Dirs() As String

Dirs = Directory.GetDirectories(path)

GetFiles

This method returns the names of the files in the specified folder as an array of strings.

The syntax of the GetFiles method is the following, where path is the path of the folder

whose files you want to retrieve and files is an array of strings that's filled with the names

of the files:

Dim files() As String = Directory.GetFiles(path)

GetCreationTime, SetCreationTime

These methods read or set the date that a specific folder was created. The

GetCreationTime method accepts a path as an argument and returns a Date value:

Dim CreatedOn As Date

CreatedOn = Directory.GetCreationTime(path)

SetCreationTime accepts a path and a date value as arguments and sets the specified

folder's creation time to the value specified by the second argument:

Directory.SetCreationTime(path, datetime)

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

19/44

GetLastAccessTime, SetLastAccessTime

These two methods are equivalent to the GetCreationTime and SetCreationTime

methods, except they return and set the most recent date and time that the file was

accessed.

GetLastWriteTime, SetLastWriteTime

These two methods are equivalent to the GetCreationTime and SetCreationTime

methods, but they return and set the most recent date and time the file was written to.

GetLogicalDrives

This method returns an array of strings, which are the names of the logical drives on the

computer. The statements in Listing 5 print the names of all logical drives.

Listing 5: Retrieving the Names of All Drives on the Computer
Dim drives() As String

drives = Directory.GetLogicalDrives

Dim drive As String

For Each drive In drives

Debug.WriteLine(drive)

Next

When executed, these statements will produce a list such as the following:

C:\

D:\

E:\

F:\

Notice that the GetLogicalDrives method doesn't return any floppy drives, unless there's a

disk inserted into the drive.

GetParent

This method returns a DirectoryInfo object that represents the properties of a folder's

parent folder. The syntax of the GetParent method is as follows:

Dim parent As DirectoryInfo = Directory.GetParent(path)

The name of the parent folder, for example, is parent.Name, and its full name is

parent.FullName.

The File Class

The System.IO.File class exposes methods for manipulating files (copying them, moving

them around, opening them, and closing them), similar to the methods of the Directory

class. The names of the methods are self-descriptive, and most of them accept as an

argument the path of the file on which they act. Use these methods to implement the

common operations that users normally perform through the Windows interface, from

within your application.

Methods

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

20/44

Many of the following methods allow you to open existing or create new files. We'll use

some of these methods later in the chapter to write data to, and read from, text and binary

files.

AppendText

This method appends some text to a file, whose path is passed to the method as an

argument, along with the text to be written:

File.AppendText(path, text)

Copy

This method copies an existing file to a new location; its syntax is the following, where

source is the path of the file to be copied and destination is the path where the file will be

copied to:

File.Copy(source, destination)

If the destination file exists, the Copy method will fail. An exception will be thrown also

if either the source or the destination folder does not exist.

Create

This method creates a new file and returns a FileStream object, which you can use to

write to or read from the file. (The FileStream object is discussed in detail later in this

chapter, along with the methods for writing to or reading from the file.) The simplest

form of the Create method accepts a single argument, which is the path of the file you

want to create:

Dim FStream As FileStream = File.Create(path)

 CreateText

This method is similar to the Create method, but it creates a text file and returns a

StreamWriter object for writing to the file. The StreamWriter object is similar to the

FileStream object but is used for text files only, whereas the FileStream object can be

used with both text and binary files.

Dim SW As StreamWriter = File.CreateText(path)

Delete

This method removes the specified file from the file system. The syntax of the Delete

method is the following, where path is the path of the file you want to delete:

File.Delete(path)

Exists

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

21/44

This method accepts as an argument the path of a file and returns a True/False value that

indicates whether a file exists. The following statements delete a file, after making sure

that the file exists:

If File.Exists(path) Then

File.Delete(path)

Else

MsgBox("The file " & path & " doesn't exist")

End If

GetAttributes

The GetAttributes method accepts a file path as an argument and returns the attributes of

the specified file as a FileAttributes object. A file can have more than a single attribute

(for instance, it can be hidden and compressed).

GetCreationTime, SetCreationTime

The GetCreationTime method returns a date value, which is the date and time the file was

created. This value is set by the operating system, but you can change it with the

SetCreationTime method. SetCreationTime accepts as an argument the file's path and the

new creation time:

File.SetCreationTime(path, datetime)

GetLastAccessTime, SetLastAccessTime

The GetLastAccessTime method returns a date value, which is the date and time the

specified file was accessed for the last time. Use the SetLastAccessTime method to set

this value.

GetLastWriteTime, SetLastWriteTime

The GetLastWriteTime method returns a date value, which is the date and time that the

specified file was written to for the last time. To change this attribute, use the

SetLastWriteTime method.

Move

This method moves the specified file to a new location. You can also use the Move

method to rename a file by simply moving it to another name in the same folder. Moving

a file is equivalent to copying it to another location and then deleting the original file.

The Move method works across volumes:

File.Move(sourceFileName, destFileName)

Open

This method opens an existing file for read-write operations. The simplest form of the

method is the following, which opens the file specified by the path argument and returns

a FileStream object to this file:

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

22/44

FStream = File.Open(path)

You can use the FStream object's methods to write to or read from the file. The following

form of the method allows you to specify the mode in which you want to open the file,

where the fileMode argument can have one of the values shown in Table below.

FStream = File.Open(path, fileMode)

FileMode Enumeration

Value Effect

Append
Opens the file in write mode, and all the data you write to the file are appended

to its existing contents.

Create
Requests the creation of a new file. If a file by the same name exists, this will

be overwritten.

CreateNew

Requests the creation of a new file. If a file by the same name exists, an

exception will be thrown. This mode will create and open a file only if it doesn't

already exist and it's the safest mode.

Open Requests that an existing file be opened.

OpenOrCre

ate

Opens the file in read-write mode if the file exists, or creates a new file and

opens it in read-write mode if the file doesn't exist.

Truncate
Opens an existing file and resets its size to zero bytes. As you can guess, this

file must be opened in write mode.

OpenRead

This method opens an existing file in read mode and returns a FileStream object

associated with this file. You can use this stream to read from the file. The syntax of the

OpenRead method is the following:

Dim FStream As FileStream = File.OpenRead(path)

The OpenRead method is equivalent to opening an existing file with read-only access via

the Open method.

OpenText

This method opens an existing text file for reading and returns a StreamReader object

associated with this file. Its syntax is the following:

Dim SR As StreamReader = File.OpenText(path)

OpenWrite

This method opens an existing file in write mode and returns a FileStrem object

associated with this file. The syntax of the OpenRead method is as follows, where path is

the path of the file:

Dim FStream As FileStream = File.OpenWrite(path)

The DirectoryInfo Class

To create a new instance of the DirectoryInfo class that references a specific folder,

supply the folder's path in the class's constructor:

Dim DI As New DirectoryInfo(path)

CreateSubdirectory

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

23/44

This method creates a subfolder under the folder specified by the current instance of the

class, and its syntax is as follows:

DI.CreateSubdirectory(path)

GetFileSystemInfos

This method returns an array of FileSystemInfo objects, one for each item in the folder

referenced by the current instance of the class. The items can be either folders or files. To

retrieve information about all the entries in a folder, create an instance of the

DirectoryInfo class and then call its GetFileSystemInfos method:

Dim DI As New DirectoryInfo(path)

Dim itemsInfo() As FileSystemInfo

itemsInfo = DI.GetFileSystemInfos()

The FileInfo Class

The FileInfo class exposes many properties and methods, which are equivalent to the

members of the File class, so I'm not going to repeat all of them here. The

Copy/Delete/Move methods allow you to manipulate the file represented by the current

instance of the FileInfo class, similar to the methods by the same name of the File class.

Length Property

This property returns the size of the file represented by the FileInfo object in bytes. The

File class doesn't provide an equivalent property or method.

CreationTime, LastAccessTime, LastWriteTime Properties

These properties return a date value, which is the date the file was created, accessed for

the last time, or written to for the last time, respectively. They are equivalent to the

methods of the File object by the same name and the Get prefix.

Name, FullName, Extension Properties

These properties return the filename, full path, and extension, respectively, of the file

represented by the current instance of the FileInfo class. They have no equivalents in the

File class because the File class's methods require that you specify the path of the file, so

its path and extension are known.

CopyTo, MoveTo Methods

These two methods copy or move, respectively, the file represented by the current

instance of the FileInfo class. Both methods accept a single argument, which is the

destination of the operation (the path to which the file will be copied or moved). If the

destination file exists already, you can overwrite it by specifying a second optional

argument, which has a True/False value:

FileInfo.CopyTo(path, force)

Directory Method

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

24/44

This method returns a DirectoryInfo value that contains information about the file's

parent directory.

DirectoryName Method

This method returns a string with the name of the file's parent directory. The following

statements return the two (identical) strings shown highlighted in this code segment:

Dim FI As FileInfo

FI = New FileInfo("c:\folder1\folder2\folder3\test.txt")

Debug.WriteLine(FI.Directory().FullName)

c:\folder1\folder2\folder3

Debug.WriteLine(FI.DirectoryName()) c:\folder1\folder2\folder3

The Path Class

The Path class contains an interesting collection of methods, which you can think of as

utilities. The Path class's methods perform simple tasks such as retrieving a file's name

and extension, returning the full path description of a relative path, and so on. The Path

class's members are shared, and you must specify the path on which they will act as an

argument.

Properties

The Path class exposes the following properties. Notice that none of these properties

applies to a specific path; they're general properties that return settings of the operating

system. The FileSystem component doesn't provide equivalent properties to the ones

discussed in this section.

DirectorySeparatorChar

This property returns the directory separator character, which is the backslash character

(\).

InvalidPathChars

This property returns the list of invalid characters in a path as an array of the following

characters:

/ \ " < > —

You can use these characters to validate user input or pathnames read from a file. If you

have a choice, let the user select the files through the Open dialog box, so that their

pathnames will always be valid.

PathSeparator, VolumeSeparatorChar

These properties return the separator characters that appear between multiple paths (:)

and volumes (;), respectively.

Methods

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

25/44

The most useful methods exposed by the Path class are utilities for manipulating

filenames and pathnames, described in the following sections. Notice that the methods of

the Path class are shared: You must specify the path on which they will act as an

argument.

ChangeExtension

This method changes the extension of a file. Its syntax is as follows:

newExtension = Path.ChangeExtension(path, extension)

Combine

This method combines two path specifications into one. Its syntax is as follows:

newPath = Path.Combine(path1, path2)

Use this method to combine a folder path with a file path. The following expression will

return the highlighted string:

Path.Combine("c:\textFiles", "test.txt")

c:\textFiles\test.txt

GetDirectoryName

This method returns the directory name of a path. The following statement:

Path.GetDirectoryName("C:\folder1\folder2\folder3\Test.txt")

will return this string:

C:\folder1\folder2\folder3

GetFileName, GetFileNameWithoutExtension

These two methods return the filename in a path, with and without its extension,

respectively.

GetFullPath

This method returns the full path of the specified path; you can use it to convert relative

pathnames to fully qualified pathnames. The following statement returned the highlighted

string on my computer (it will be quite different on your computer, depending on the

current directory):

Console.WriteLine(Path.GetFullPath("..\..\Test.txt"))

C:\WorkFiles\Learn VB\Chapters\Chapter 11\Projects\Test.txt

GetTempFile, GetTempPath

The GetTempFile method returns a unique filename, which you can use as a temporary

storage area from within your application. The name of the temporary file can be

anything, because no user will ever access it. In addition, the GetTempFile method

creates a zero-length file on the disk, which you can open with the Open method. A

typical temporary filename is the following:

C:\DOCUME˜1\TOOLKI˜1\LOCALS˜1\Temp\tmp105.tmp

It was returned by the following statement on my system:

Debug.WriteLine(Path.GetTempFile)

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

26/44

HasExtension

This method returns a True/False value, indicating whether a path includes a file

extension.

Accessing Files

There are two types of files: text files and binary files. To access a file, you must first set

up a Stream object. Stream objects are created by the various methods that open or create

files, as you have seen in the previous sections, and they return information about the file

they're connected to.

Using Streams

Another benefit of using streams is that you can combine them. The typical example is

that of encrypting and decrypting data. Data is encrypted through a special type of

Stream, the CryptoStream.

The FileStream Class

The Stream class is an abstract one, and you can't use it directly in your code. To

prepare your application to write to a file, you must set up a FileStream object, which is

the channel between your application and the file. The methods for writing and reading

data are provided by the StreamReader/StreamWriter or BinaryReader/BinaryWriter

classes, which are created on top of the FileStream object.

Properties

You can use the following properties of the FileStream object to retrieve information

about the underlying file.

Length

This read-only property returns the length of the file associated with the FileStream

current object in bytes.

Position

This property gets or sets the current position within the stream. You can compare the

Position property to the Length property to find out whether you have reached the end of

an existing file. When these two properties are equal, there are no more data to read.

Methods

The FileStream object exposes a fewmethods, which are discussed here. Themethods for

accessing a file's contents are discussed in the following section.

Lock

This method allows you to lock the file you're accessing, or part of it. The syntax of the

Lock method is the following, where position is the starting position and length is the

length of the range to be locked:

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

27/44

Lock(position, length)

To lock the entire file, use this statement:

FileStream.Lock(1, FileStream.Length)

Seek

This method sets the current position in the file represented by the FileStream object:

FileStream.Seek(offset, origin)

The new position is offset bytes from the origin. In place of the origin argument, use one

of he SeekOrigin enumeration members, listed in Table below.

Table: SeekOrigin Enumeration

Value Effect

Begin The offset is relative to the beginning of the file.

Current The offset is relative to the current position in the file.

End The offset is relative to the end of the file.

SetLength

This method sets the length of the file represented by the FileStream object. Use this

method after you have written to an existing file to truncate its length. The syntax of the

SetLength method is this:

FileStream.SetLength(newLength)

The StreamWriter Class

The StreamWriter class is the channel through which you send data to a text file.

To create a new StreamWriter object, declare a variable of the StreamWriter type. The

first overloaded form of the constructor accepts a file's path as an argument and creates a

new StreamWriter object for the file:

Dim SW As New StreamWriter(path)

NewLine Property

The StreamWriter object provides a handy property, the NewLine property, which allows

you to change the string used to terminate each line in the file. This terminator is written

to the text file by the WriteLine method, following the text. The default line-terminator

string is a carriage return followed by a line feed (\r\n). The StreamReader object doesn't

provide a similar property. It reads lines terminated by the carriage return (\r), line feed

(\n), or carriage return/line feed (\r\n) characters only.

Methods

To send information to the underlying file, use the following methods of the

StreamWriter object.

AutoFlush

This property is a True/False value that determines whether the methods that write to the

file (the Write and WriteString methods) will also flush their buffer. If you set this

property to False, the buffer will be flushed when the operating system gets a chance,

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

28/44

when the Flush method is called, or when you close the FileStream object. When

AutoFlush is True, the buffer is flushed with every write operation.

Close

This method closes the StreamWriter object and releases the resources associated with it

to the system. Always call the Close method after you finish using the StreamWriter

object. If you have created the StreamWriter object on top of a FileStream object, you

must also close the underlying stream too.

Flush

This method writes any data in the buffer to the underlying file.

WriteLine(data)

This method is identical to the Write method, but it appends a line break after saving the

data to the file. You will find examples on using the StreamWriter class after we discuss

the methods of the StreamReader class.

The StreamReader Class

The StreamReader class provides the necessary methods for reading from a text file and

exposes methods that match those of the StreamWriter class (the Write and WriteLine

methods). The StreamReader class's constructor is overloaded. You can specify the

FileStream object it will use to read data from the file, the encoding scheme, and the

buffer size. The simplest form of the constructor is the following:

Dim SR As New StreamReader(FS)

Methods

The StreamReader class provides the following methods for writing data to the

underlying file.

Close

The Close method closes the current instance of the StreamReader class and releases any

system resources associated with this object.

Peek

The Peek method returns the next character as an integer value, without actually

removing it from the input stream. The Peek method doesn't change the current position

in the stream. If there are no more characters left in the stream, the value −1 is returned.

The Peek method will also return −1 if the current stream doesn't allow peeking.

Read

This method reads a number of characters from the StreamReader class to which it's

applied and returns the number of characters read. The syntax of the Read method is as

follows, where count is the number of characters to be read, starting at the startIndex

location in the file:

charsRead = SR.Read(chars, startIndex, count)

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

29/44

ReadBlock

This method reads a number of characters from a text file and stores them in an array of

characters. It accepts the same arguments as the Read method and returns the number of

characters read.

Dim chars(count - 1) As Char

charsRead = SR.Read(chars, startIndex, count)

ReadLine

This method reads the next line from the text file associated with the StreamReader class

and returns a string. If you're at the end of the file, the method returns the Null value. The

syntax of the ReadLine method is the following:

Dim txtLine As String

txtLine = SR.ReadLine()

ReadToEnd

The last method for reading characters from a text file reads all the characters from the

current position to the end of the file. We usually call this method once to read the entire

file with a single statement and store its contents to a string variable. The syntax of the

ReadToEnd method is as follows:

allText = SR.ReadToEnd()

The BinaryWriter Class

To prepare your application to write to a binary file, you must set up a BinaryWriter

object, with the statement shown here, where FS is a properly initialized FileStream

object:

Dim BW As New BinaryWriter(FS)

To specify the encoding of the text in the binary file, use the following form of the

method:

Dim BW As New BinaryWriter(FS, encoding)

Dim BW As New BinaryWriter(path, encoding)

Methods

The BinaryWriter class exposes the following methods for manipulating binary files.

Close

This method flushes and closes the current BinaryWriter and releases any system

resources associated with it.

Flush

This method clears all buffers for the current writer and writes all buffered data to the

underlying file.

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

30/44

Seek

This method sets the position within the current stream. Its syntax is the following, where

origin is a member of the SeekOrigin enumeration and offset is the distance from the

origin:

Seek(offset, origin)

Write

The Write method writes a value to the current stream. This method is heavily

overloaded, but it accepts a single argument, which is the value to be written to the file.

The data type of its argument determines how it will be written. The Write method can

save all the base types to the file in their native format, unlike the Write method of the

TextWriter class, which stores them as strings.

WriteString

Whereas all other data types can be written to a binary file with the Write method, strings

must be written with the WriteString method. This method writes a length-prefixed string

to the file and advances the current position by the appropriate number of bytes. The

string is encoded by the current encoding scheme, and the default value is

UTF8Encoding.

The BinaryReader Class

The BinaryReader class provides the methods you need to read data from a binary file.

As you have seen, binary files might also hold text, and the BinaryReader class provides

the ReadString method to read strings written to the file by the WriteString method.

To use the methods of the BinaryReader class in your code, you must first create an

instance of the class. The BinaryReader object must be associated with a FileStream

object, and the simplest form of its constructor is the following, where streamObj is the

FileStream object:

Dim BR As New BinaryReader(streamObj)

.

Methods

The BinaryReader class exposes the following methods for accessing the contents of a

binary file.

Close

This method is the same as the Close method of the StreamReader class. It closes the

current reader and releases the underlying stream.

PeekChar

This method returns the next available character from the streamwithout repositioning the

current pointer. The character read is returned as an integer, or −1 if there are no more

characters to be read from the stream.

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

31/44

Drawing and Painting with Visual Basic
In general, graphics fall into two major categories: vector and bitmap. Vector graphics

are images generated by graphics methods such as DrawLine and DrawEllipse. The

drawing you create is based on mathematical descriptions of the various shapes. Bitmap

graphics are images made up of pixels arranged in rows and columns. Each pixel is

represented by a Long numeric value, which is the pixel's color.

Display and size images. - The most appropriate control for displaying images is the

PictureBox control. You can assign an image to the control through its Image property,

either at design time or at runtime. To display a user-supplied image at runtime, call the

DrawImage method of the control's Graphics object.

Generate graphics by using the drawing methods. - Every object you draw on, such as

forms and PictureBox controls, exposes the CreateGraphics method, which returns a

Graphics object. The Paint event's e argument also exposes the Graphics object of the

control or form. To draw something on a control, retrieve its Graphics object and then

call the Graphics object's drawing methods.

Display text in various ways, including gradient fills. - The Graphics object provides

the DrawString method, which prints a user-supplied string on a control. You can also

specify the coordinates of the string's upper-left corner and its font. To position the string,

you need to know its dimensions..

Drawing with GDI+
The most recent version on GDI is called GDI+.One of the basic characteristics of

GDI is that it's stateless. This means that each graphics operation is totally independent of

the previous one and can't affect the following one. To draw a line, you must specify a

Pen object and the two endpoints of the line.

The GDI+ classes reside in the following namespaces, and you must import one or more

of them in your projects: System.Drawing, System.Drawing2D,

System.Drawing.Imaging, and System.Drawing.Text. This chapter explores all three

aspects of GDI+ — namely vector drawing, imaging, and typography.

Here are the statements to draw a line on the form:

Dim redPen As Pen = New Pen(Color.Red, 2)

Dim point1 As Point = New Point(10,10)

Dim point2 As Point = New Point(120,180)

Me.CreateGraphics.DrawLine(redPen, point1, point2)

The Basic Drawing Objects

This is a good point to introduce some of the objects we'll be using all the time when

drawing. No matter what you draw or which drawing instrument you use, one or more of

the objects discussed in this section will be required.

The Graphics Object

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

32/44

The Graphics object is the drawing surface — your canvas. All the controls you can draw

on expose a Graphics property, which is an object, and you can retrieve it with the

CreateGraphics method. Start by declaring a variable of the Graphics type and initialize it

to the Graphics object returned by the control's CreateGraphics method:

Dim G As Graphics

G = PictureBox1.CreateGraphics

DpiX, DpiY - These two properties return the horizontal and vertical resolutions of the

drawing surface, respectively. Resolution is expressed in pixels per inch (or dots per inch,

if the drawing surface is your printer). On an average monitor, these two properties return

a resolution of 96 dots per inch (dpi).

PageUnit - This property determines the units in which you want to express the

coordinates on the Graphics object; its value can be a member of the GraphicsUnit

enumeration

TextRenderingHint - This property specifies how the Graphics object will render text;

its value is one of the members of the TextRenderingHint enumeration: AntiAlias,

AntiAliasGrid- Fit, ClearTypeGridFit, SingleBitPerPixel, SingleBitPerPixelGridFit, and

SystemDefault.

SmoothingMode - This property is similar to the TextRenderingHint, but it applies to

shapes drawn with the Graphics object's drawing methods. Its value is one of the

members of the SmoothingMode enumeration: AntiAlias, Default, HighQuality,

HighSpeed, Invalid, and None.

The Point Class

The Point class represents a point on the drawing surface and is expressed as a pair of (x,

y) coordinates. The x-coordinate is its horizontal distance from the origin, and the y-

coordinate is its vertical distance from the origin. The origin is the point with coordinates

(0, 0), and this is the top-left corner of the drawing surface.

The Rectangle Class

Another class that is often used in drawing is the Rectangle class. The Rectangle object is

used to specify areas on the drawing surface. Its constructor accepts as arguments the

coordinates of the rectangle's top-left corner and its dimensions:

Dim box As Rectangle

box = New Rectangle(X, Y, width, height)

The following statement creates a rectangle whose top-left corner is 1 pixel to the right

and 1 pixel down from the origin, and its dimensions are 100 by 20 pixels:

box = New Rectangle(1, 1, 100, 20)

The Size Class

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

33/44

The Size class represents the dimensions of a rectangle; it's similar to a Rectangle object,

but it doesn't have an origin, just dimensions. To create a new Size object, use the

following constructor:

Dim S1 As New Size(100, 400)

The Color Class

The Color class represents colors, and there are many ways to specify a color. We'll

discuss the Color class in more detail in Chapter 19, "Manipulating Images and Bitmaps."

In the meantime, you can specify colors by name. Declare a variable of the Color type

and initialize it to one of the named colors exposed as properties of the Color class:

Dim myColor As Color

myColor = Color.Azure

The Font Class

The Font class represents fonts, which are used when rendering strings via the

DrawString method. To specify a font, you must create a new Font object; set its family

name, size, and style; and then pass it as argument to the DrawString method. To create a

new Font object, use a statement like the following:

Dim drawFont As New Font(”Verdana”, 12, FontStyle.Bold)

The Pen object exposes these properties:

Alignment - Determines the alignment of the Pen, and its value is one of the members of

the PenAlignment enumeration: Center or Inset. When set to Center, the width of the pen

is centered on the outline (half the width is inside the shape, and half is outside). When

set to Inset, the entire width of the pen is inside the shape. The default value of this

property isPenAlignment.Center.

LineJoin - Determines how two consecutive line segments will be joined. Its value is one

of the members of the LineJoin enumeration: Bevel, Miter, MiterClipped, and Round.

StartCap, EndCap Determines the caps at the two ends of a line segment, respectively.

Their value is one of the members of the LineCap enumeration: Round, Square, Flat,

Diamond, and so on.

DashCap - Determines the caps to be used at the beginning and end of a dashed line. Its

value is one of the members of the DashCap enumeration: Flat, Round, and Triangle.

DashStyle - Determines the style of the dashed lines drawn with the specific Pen. Its

value is one of the members of the DashStyle enumeration (Solid, Dash, DashDot,

DashDotDot, Dot, and Custom).

PenType - Determines the style of the Pen; its value is one of the members of the

PenType enumeration: HatchFilled, LinearGradient, PathGradient, SolidColor, and

TextureFill.

The Brush Class

The Brush class represents the instrument for filling shapes; you can create brushes that

fill with a solid color, a pattern, or a bitmap. In reality, there's no Brush object. The Brush

class is actually an abstract class that is inherited by all the classes that implement a

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

34/44

brush, but you can't declare a variable of the Brush type in your code. The brush objects

are shown in Table below.

Table - Brush Styles

Brush Fill Effect

SolidBrush Fills shapes with a solid color

HatchBrush Fills shapes with a hatched pattern

LinearGradientBrush Fills shapes with a linear gradient

PathGradientBrush Fills shapes with a gradient that has one starting color and many ending colors

Solid Brushes
To fill a shape with a solid color, you must create a SolidBrush object with the following

constructor, where brushColor is a color value, specified with the help of the Color

object: Dim sBrush As SolidBrush

sBrush = New SolidBrush(brushColor)

Every filled object you draw with the sBrush object will be filled with the color of the

brush.

Hatched Brushes

To fill a shape with a hatch pattern, you must create a HatchBrush object with the

following constructor:

Dim hBrush As HatchBrush

HBrush = New HatchBrush(hatchStyle, hatchColor, backColor)

The HatchStyle enumeration has 54 members, so Table belowshows only a few common

patterns.

Table - The HatchStyle Enumeration

Value Effect

BackwardDiagonal Diagonal lines from top-right to bottom-left

Cross Vertical and horizontal crossing lines

DiagonalCross Diagonally crossing lines

ForwardDiagonal Diagonal lines from top-left to bottom-right

Horizontal Horizontal lines

Vertical Vertical lines

Gradient Brushes
A gradient brush fills a shape with a specified gradient. The LinearGradientBrush fills a

shape with a linear gradient, and the PathGradientBrush fills a shape with a gradient that

has one starting color and one or more ending colors. Gradient brushes are discussed in

detail in the section titled "Gradients," later in this chapter.

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

35/44

Textured Brushes
In addition to solid and hatched shapes, you can fill a shape with a texture by using a

TextureBrush object. The texture is a bitmap that is tiled as needed to fill the shape.

Textured brushes are used to create rather fancy graphics, and we won't explore them in

this tutorial.

The Path Class
The Path class represents shapes made up of various drawing entities, such as lines,

rectangles, and curves. You can combine as many of these drawing entities as you'd like

and build a new entity, which is called a path. Paths are usually closed and filled with a

color, a gradient, or a bitmap. You can create a path in several ways. The simplest

method is to create a new Path object and then use one of the following methods to

append the appropriate shape to the path:

 AddArc

 AddEllipse

 AddPolygon

 AddBezier

 AddLine

 AddRectangle

 AddCurve

 AddPie

 AddString

The following method draws an ellipse:

Me.CreateGraphics.DrawEllipse(mypen, 10, 30, 40, 50)

To add the same ellipse to a Path object, use the following statement:

Dim myPath As New Path

myPath.AddEllipse(10, 30, 40, 50)

To display the path, call the DrawPath method, passing a Pen and Path object as

arguments:

Me.CreateGraphics.DrawPath(myPen, myPath)

Drawing Shapes

Before getting into the details of the drawing methods, however, let's write a simple

application that draws a couple of simple shapes on a form. First, we must create a

Graphics object with the following statements:

Dim G As Graphics

G = Me.CreateGraphics

Everything you'll draw on the surface represented by the G object will appear on the

form. Then, we must create a Pen object to draw with. The following statement creates a

Pen object that's 1 pixel wide and draws in blue:

Dim P As New Pen(Color.Blue)

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

36/44

Persistent Drawing

If you switch to the Visual Studio IDE or any other window, and then return to the form

of the SimpleShapes application, you'll see that the drawing has disappeared! The same

will happen if you minimize the window and then restore it to its normal size. Everything

you draw on the Graphics object is temporary. It doesn't become part of the Graphics

object and is visible only while the control, or the form, need not be redrawn. As soon as

the form is redrawn, the shapes disappear.

Drawing Methods

The Framework provides several drawing methods, one for each basic shape. All drawing

methods have a few things in common. The first argument is always a Pen object, which

will be used to render the shape on the Graphics object.

Table below shows the names of the drawing methods. The first column contains the

methods for drawing stroked shapes, and the second column contains the corresponding

methods for drawing filled shapes (if there's a matching method).

Table - The Drawing Methods

Drawing Method Filling Method Description

DrawArc Draws an arc

DrawBezier

Draws very smooth curves with fixed

endpoints, whose exact shape is determined by
two control points

DrawBeziers Draws multiple Bezier curves in a single call

DrawClosedCur
ve

FillClosedCur
ve

Draws a closed curve

DrawCurve Draws curves that pass through certain points

DrawLine

The DrawLine method draws a straight-line segment between two points with a pen

supplied as an argument. The simplest forms of the DrawLine method are the following,

where point1 and point2 are either Point or PointF objects, depending on the coordinate

system in use:
Graphics.DrawLine(pen, X1, Y1, X2, Y2)

Graphics.DrawLine(pen, point1, point2)

DrawRectangle

The DrawRectangle method draws a stroked rectangle and has two forms:

Graphics.DrawRectangle(pen, rectangle)

Graphics.DrawRectangle(pen, X1, Y1, width, height)

DrawEllipse

An ellipse is an oval or circular shape, determined by the rectangle that encloses it. To

draw an ellipse, call the DrawEllipse method, which has two basic forms:

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

37/44

Graphics.DrawEllipse(pen, rectangle)

Graphics.DrawEllipse(pen, X1, Y1, width, height)

The arguments are the same as with the DrawRectangle method because an ellipse is

basically a circle deformed to fit in a rectangle. The two ellipses and their enclosing

rectangles shown in Figure 14.7 were generated with the statements of Listing 14.5.

Figure 14.7 - Two ellipses with their enclosing rectangles

Listing 14.5: Drawing Ellipses and Their Enclosing Rectangles

Private Sub bttnEllipses_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles bttnEllipses.Click

Dim G As Graphics

G = PictureBox1.CreateGraphics

G.Clear(PictureBox1.BackColor)

G.SmoothingMode = Drawing.Drawing2D.SmoothingMode.AntiAlias

G.FillRectangle(Brushes.Silver, ClientRectangle)

Dim R1, R2 As Rectangle

R1 = New Rectangle(10, 10, 160, 320)

R2 = New Rectangle(200, 85, 320, 160)

G.DrawEllipse(New Pen(Color.Black, 3), R1)

G.DrawRectangle(Pens.Black, R1)

G.DrawEllipse(New Pen(Color.Black, 3), R2)

G.DrawRectangle(Pens.Red, R2)

End Sub

DrawPie

A pie is a shape similar to a slice of pie (an arc along with the two line segments that

connect its endpoints to the center of the circle or the ellipse, to which the arc belongs).

The DrawPie method has two forms:

Graphics.DrawPie(pen, rectangle, start, sweep)

Graphics.DrawPie(pen, X, Y, width, height, start, sweep)

The statements of Listing 14.6 create a pie chart by drawing individual pie slices. Each

pie starts where the previous one ends, and the sweeping angles of all pies add up to 360

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

38/44

degrees, which corresponds to a full rotation (a full circle). Unlike the other samples of

this section, I've used the FillPie method, because we hardly ever draw the outlines of the

pies; we fill each one with a different color instead. Figure 14.8 shows the output

produced by Listing 14.6.

Figure 14.8 - A simple pie chart generated with the FillPie method

Listing 14.6: Drawing a Simple Pie Chart with the FillPie Methods

Private Sub Button2_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button2.Click

Dim g As System.Drawing.Graphics

g = Me.CreateGraphics

Dim brush As System.Drawing.SolidBrush

Dim rect As Rectangle

brush = New System.Drawing.SolidBrush(Color.Green)

Dim Angles() As Single = {0, 43, 79, 124, 169, 252, 331, 360}

Dim colors() As Color = {Color.Red, Color.Cornsilk, _

Color.Firebrick, Color.OliveDrab, _

Color.LawnGreen, Color.SandyBrown, Color.MidnightBlue}

g.Clear(Color.Ivory)

rect = New Rectangle(100, 10, 300, 300)

Dim angle As Integer

For angle = 1 To Angles.GetUpperBound(0)

brush.Color = colors(angle - 1)

g.FillPie(brush, rect, Angles(angle - 1), Angles(angle) - Angles(angle - 1))

Next

g.DrawEllipse(Pens.Black, rect)

End Sub

DrawPolygon

The DrawPolygon method draws an arbitrary polygon. It accepts two arguments: the Pen

that it will use to render the polygon and an array of points that define the polygon. The

syntax of the DrawPolygon method is the following:

Graphics.DrawPolygon(pen, points())

where points is an array of points, which can be declared with a statement like the

following:

Dim points() As Point = {New Point(x1, y1), New Point(x2, y2), ...}

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

39/44

DrawCurve

Curves are smooth lines drawn as cardinal splines. The simplest form of the DrawCurve

method has the following syntax, where points is an array of points:

Graphics.DrawCurve(pen, points, tension)

DrawBezier

The DrawBezier method draws Bezier curves, which are smoother than cardinal splines.

A Bezier curve is defined by two endpoints and two control points. The DrawBezier

method accepts a pen and four points as arguments:

Graphics.DrawBexier(pen, X1, Y1, X2, Y2, X3, Y3, X4, Y4)

Graphics.DrawBezier(pen, point1, point2, point3, point4)

DrawPath

This method accepts a Pen object and a Path object as arguments and renders the

specified path on the screen:

Graphics.DrawPath(pen, path)

DrawString, MeasureString

The DrawString method renders a string in a single line or multiple lines. As a

reminder, the TextRenderingHint property of the Graphics object allows you to specify

the quality of the rendered text. The simplest f orm of the DrawString method is the

following:

Graphics.DrawString(string, font, brush, X, Y)

The simplest form of the MeasureString method is the following, where string is the

string to be rendered and font is the font in which the string will be rendered:

Dim textSize As SizeF

textSize = Me.Graphics.MeasureString(string, font)

The StringFormat Object

Some of the overloaded forms of the DrawString method accept an argument of the

StringFormat type. This argument determines characteristics of the text and exposes a

few properties of its own, which include the following:

 Alignment - Determines the alignment of the text; its value is a member of the

StringAlignment enumeration: Center (text is aligned in the center of the layout

rectangle), Far (text is aligned far from the origin of the layout rectangle), and

Near (text is aligned near the origin of the layout rectangle).

 Trimming - Determines how text will be trimmed if it doesn't fit in the layout

rectangle. Its value is one of the members of the StringTrimming enumeration:

Character (text is trimmed to the nearest character), EllipsisCharacter (text is

trimmed to the nearest character and an ellipsis is inserted at the end to indicate

that some of the text is missing), EllipsisPath (text at the middle of the string is

removed and replaced by an ellipsis), EllipsisWord (text is trimmed to the nearest

word and an ellipsis is inserted at the end), None (no trimming), and Word (text is

trimmed to the nearest word).

 FormatFlags - Specifies layout information for the string. Its value can be one of

the members of the StringFormatFlags enumeration. The two members of this

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

40/44

enumeration that you might need often are DirectionRightToLeft (prints to the left

of the specified point) and DirectionVertical.

DrawImage

The DrawImage method, which renders an image on the Graphics object, is a heavily

overloaded and quite flexiblemethod. The following form of themethod draws the image

at the specified location. Both the image and the location of its top-left corner are passed

to the method as arguments (as Image and Point arguments, respectively):

Graphics.DrawImage(img, point)

Gradients

In this section, you'll look at the tools for creating gradients. The techniques for gradients

can get quite complicated, but I will limit the discussion to the types of gradients you'll

need for business or simple graphics applications.

Linear Gradients

 To draw a linear gradient, you must create an instance of the LinearGradientBrush class

with a statement like the following:

Dim lgBrush As LinearGradientBrush

lgBrush = New LinearGradientBrush(rect, startColor, endColor, gradientMode)

Path Gradients

This is the ultimate gradient tool. Using a PathGradientBrush, you can create a gradient

that starts at a single point and fades into multiple different colors in different directions.

You can fill a rectangle starting from a point in the interior of the rectangle, which is

colored, say, black.

Each corner of the rectangle might have a different ending color. The PathGradientBrush

will change color in the interior of the shape and will generate a gradient that's smooth in

all directions. Figure 14.14 shows a rectangle filled with a path gradient, although the

gray shades on the printed page won't show the full impact of the gradient. Open the

Gradients project you downloaded earlier to see the same figure in color (use the Path

Gradient button).

Figure 14.14 - A path gradient starting at the middle of the rectangle

Clipping

The SetClip method has the following forms:

Graphics.SetClip(Graphics)

Graphics.SetClip(Rectangle)

Graphics.SetClip(GraphicsPath)

Graphics.SetClip(Region)

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

41/44

Applying Transformations
In computer graphics, there are three types of transformations: scaling, translation, and

rotation:

The scaling transformation changes the dimensions of a shape but not its basic form. If

you scale an ellipse by 0.5, you'll get another ellipse that's half as wide and half as tall as

the original one. The translation transformation moves a shape by a specified distance. If

you translate a rectangle by 30 pixels along the x-axis and 90 pixels along the y-axis, the

new origin will be 30 pixels to the right and 90 pixels down from the original rectangle's

top-left corner.

The rotation transformation rotates a shape by a specified angle, expressed in degrees;

360 degrees correspond to a full rotation, and the shape appears the same. A rotation by

180 degrees is equivalent to flipping the shape vertically and horizontally.

Transformations are stored in a 5 × 5 matrix, but you need not set it up yourself. The

Graphics object provides the ScaleTransform, TranslateTransform, and RotateTransform

methods, and you can specify the transformation to be applied to the shape by calling one

or more of these methods and passing the appropriate argument(s).

The ScaleTransform method accepts as arguments scaling factors for the horizontal and

vertical directions:

Graphics.ScaleTransformation(Sx, Sy)

The TranslateTransform method accepts two arguments, which are the displacements

along the horizontal and vertical directions:

Graphics.TranslateTransform(Tx, Ty)

The Tx and Ty arguments are expressed in the coordinates of the current coordinate

system. The shape is moved to the right by Tx units and down by Ty units. If one of the

arguments is negative, the shape is moved in the opposite direction (to the left or up).

The RotateTransform method accepts a single argument, which is the angle of rotation

expressed in degrees:

Graphics.RotateTransform(rotation)

The rotation takes place about the origin. As you will see, the final position and

orientation of a shape is different if two identical rotation and translation transformations

are applied in a different order.

Every time you call one of these methods, the elements of the transformation matrix are

set accordingly. All transformations are stored in this matrix, and they have a cumulative

effect. If you specify two translation transformations, for example, the shape will be

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

42/44

translated by the sum of the corresponding arguments in either direction. These two

transformations:

Graphics.TranslateTransform(10, 40)

Graphics.TranslateTransform(20, 20)

are equivalent to the following one:

Graphics.TranslateTransform(30, 60)

To start a new transformation after drawing some shapes on the Graphics object, call the

Reset-Transform method, which clears the transformation matrix.

Bitmaps
Specifying Colors

The model of designing colors based on the intensities of their RGB components is called

the RGB model, and it's a fundamental concept in computer graphics. If you aren't

familiar with this model, this section is well worth reading. Nearly every color you can

imagine can be constructed by mixing the appropriate percentages of the three basic

colors.

Defining Colors

To manipulate colors, use the Color class of the Framework. This is a shared

class, and you need not create new Color objects; just call the appropriate property or

method of the Color class. The Color class exposes 128 predefined colors as properties,

which you can access by name, and additional members for specifying custom colors. For

example, you can define colors by using the FromARGB method of the Color class. This

method accepts three arguments, which are the components of the primary colors in the

desired color:

Color.FromARGB(Red, Green, Blue)

The method returns a Color value, which you can assign to a variable of the same type, or

use it directly as the value of a Color property. To change the form's background color to

yellow, you can assign the value returned by the FromARGB method to the BackColor

property of a form or control:

Form1.BackColor = FromARGB(255, 128, 128)

Alpha Blending

Besides the red, green, and blue components, a Color value might also contain a

transparency component. This value determines whether the color is opaque (255) or

transparent (0). In the case of transparent colors, you can specify the degree of

transparency. This component is the alpha component. The following statement creates a

new color value, which is yellow and 25 percent transparent:

Dim trYellow As Color

trYellow = Color.FromARGB(192, Color.Yellow)

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

43/44

The preceding statements print the logo at two locations on the image of the PictureBox1

control with different colors, as shown in Figure 15.2.

Figure 15.2 - Watermarking an image with a semitransparent string

Figure 15.3 - Creating a 3D effect by superimposing transparency on an opaque and a

semitransparent string

The code behind the Draw Semi-Transparent Text button is quite simple, really. First it

draws the string with the solid blue brush:

brush = New SolidBrush(Color.FromARGB(255, 0, 0, 255))

Processing Bitmaps

A bitmap is a two-dimensional array of color values. These values are stored in

disk files, and when an image is displayed on a PictureBox or Form control, each of its

color values is mapped to a pixel on the PictureBox or form. This is true when the image

isn't resized, of course.

Refreshing the Image

When you draw on a bitmap, which is associated with the Image property of a PictureBox

control, the image on the control isn't refreshed every time the bitmap is modified.

Instead, the image is modified when the Paint event has a chance to be serviced. The

processing is implemented with two nested loops that iterate through the bitmap's rows

and columns, as in the following code:

For pxlCol As Integer = 0 To PictureBox1.Image.Height - 1

For pxlRow As Integer = 0 To PictureBox1.Image.Width - 1

' statements to process current pixel:

' (pxlRow, pxlCol)

Next

Next

Unit-3 Handling Strings, characters and Dates 2015-
Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE

44/44

The image on the control won't be refreshed until the outer loop has finished. As a result,

users can't see the progress of the operation; they will see the new image after all its

pixels have been processed.

To force the PictureBox control to refresh its image, you must call the Refresh method.

PART-B

POSSIBLE QUESTIONS(8 MARKS)

1. How the dates are handled in VB.NET. Explain its methods with example

2. Elaborate Directory Class and File Class with example

3. Explain in detail about bitmaps in VB.NET.

4. Write a program to draw Ellipses and enclosing it with rectangles in VB.NET

5. Explain the properties and methods of the Char Class with syntax and example.

6. Discuss about displaying images in Vb.NET

7. Elaborate the time span class with an example.

8. Explicate the methods in drawing with GDI with example.

9. Explain in detail about handling strings in VB.NET with examples.

10. Elucidate the different methods of co-ordinate transformation

questions opt1
The ____ data type stores characters as individual char
. _____ class is used to store the string and also to
manipulate the string

The string class

The _____ method to accept numeric keystrokes and to
reject letters and punctuation symbols.

IsDigit

The ____method takes into consideration hexadecimal
digits

IsLetter

_____methods convert their argument to the lowercase
character

ToUpper

_____methods convert their argument to the uppercase
character

ToUpper

The String class implements the _____ data type char
The____method concatenates the two or more strings strcat
The ____method copies the value of one string variable to
another

string

The______method inserts one or more characters at a
specified location in a string

add

The ____method joins two or more strings concat
split a long string into smaller ones by using the____
method

strsplit()

The ____ method removes a given number of characters
from a string

Remove

The____Method replaces all instances of a specified
character

remove

There are eight spaces to the left of the _____string left

The tick property in DateTime Class, Each tick represents
_______ nanoseconds

10

The _____ method is used to find the given character is
lower case

. Islower()

. _____ class is used to store the string and also to
manipulate the string

The string class

The _____ method appends a base type to the current
instance of the StringBuilder class,

Append Format

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 Pollachi Main Road, Eacharani Post, Coimbatore-641 021

 CLASS : III-B.Sc COMPUTER SCIENCE(2015-2018)
 Online Examination

 VISUAL PROGRAMMING (15CSU501)

_____________method returns the number of days in a
specific month

DaysInMonth

The day of the month with a leading zero for single-digit
days_______

d

_______The full name of the month mm
________time converts the current instance of the
DateTime class into universal coordinated time (UCT).

ToUniversalTime

_________ method converts a UCT time value to local
time.

ToUniversalTime

______ method creates a new folder CreateDirectory

_____ method deletes a folder and all the files in it. delete
The____ method accepts a path as an argument and returns
a True/False value indicating whether the specified folder
exists

exit

The_____ method moves an entire folder to another
location in the file system

move

_____accepts a string argument, which is a path, and sets
the current directory to the specified path.

GetCurrentDirectory

______ method accepts a path as an argument and returns a
Date value

GetCreationTime

____ time accepts a path and a date value as arguments and
sets the specified folder's

GetCreationTime

The _____File class exposes methods for manipulating files System.IO.

The___ method creates a new file and returns a FileStream
object

create

The___ character returns the directory separator character /

The___ method changes the extension of a file ChangeExtension

The___method sets the current position in the file
represented by the FileStream object

seekorigin

The___ property gets or sets the current position within the
stream.

Position

The ____ class is the channel through which you send data
to a text file.

StreamWriter

The___ method writes any data in the buffer to the
underlying file.

AutoFlush

The____ method doesn't change the current position in the
stream.

seek

The ____ class provides the methods you need to read data
from a binary file.

BinaryReader

The_____ method returns the next available character from
the streamwithout repositioning the current pointer

Peek

______ is represented by a Long numeric value, which is
the pixel's color.

pixelcolor

The most recent version on GDI is called____ GDI+.
The____ coordinate is its horizontal distance from the
origin

y

The____ coordinate is its vertical distance from the origin y
the ____ coordinate to top-left corner of the drawing
surface.

y

The _____class represents the dimensions of a rectangle NewSize
____Determines how two consecutive line segments will be
joined

merge

________Determines the caps to be used at the beginning
and end of a dashed line

Dashcap

______Determines the style of the dashed lines drawn with
the specific Pen

DashCap

The ____ class represents the instrument for filling shapes Brush

_____ brush Fills shapes with a gradient that has one
starting color and many ending colors

Brush

____text is trimmed to the nearest word and an ellipsis is
inserted at the end

EllipsisPath

____text is aligned far from the origin of the layout
rectangle

Center

___________ control executes timer events at specifies
intervals of time

time

 What increments of time is applied interval property of the
timer control____

Seconds

The _____ transformation changes the dimensions of a
shape but not its basic form

Rotation

RGB components is called ______ ARGB

A rotation by ____ degrees is equivalent to flipping the
shape vertically and horizontally.

360

GDI stands for ________ Global design interface

Which object is used to draw gon the Graphics object
surface?

pencil

Which method is used to draw a string in the specified font
on the graphics surface

DrawString()

The _____ transformation changes the dimensions of a
shape but not its basic form

Rotation

______Determines the style of the dashed lines drawn with
the specific Pen

DashCap

The ____ class represents the instrument for filling shapes Brush

_____ brush Fills shapes with a gradient that has one
starting color and many ending colors

Brush

A ______ is a collection of colored pixels, arranged in rows
and columns

Colors

opt2 opt3 opt4 answer
character both a & b none char

the char class
stringbuilder
class

both a&b
the string
class

IsLetter
IsLetter/IsDig
it

none IsDigit

IsLetter/IsNumber IsNumber none

IsNumber

ToLower IsUpper IsLower ToLower

ToLower IsUpper IsLower ToUpper

String charstring none String
cat concat none concat

Copy strcat none Copy

 Insert both a&b none Insert

merge join both a&b join

Split strspliting none Split

delete both a &b none Remove

Replace ReplaceAll All Replace

right-padded left-padded none
left-
padded

100 1000 none 100

IslowerCase() Tolower() Isletter()
Tolower(
)

the char class
stringbuilder
class

both a&b
the string
class

Append both a&b none Append

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 Pollachi Main Road, Eacharani Post, Coimbatore-641 021

 CLASS : III-B.Sc COMPUTER SCIENCE(2015-2018)
 Online Examination

 VISUAL PROGRAMMING (15CSU501)

month daymonth none
DaysIn
Month

dd ddd dddd dd

mmm mmmm m mmmm

ToLocalTime
UniversalTim
e

LocalTime
ToUniver
salTime

LocalTime ToLocalTime
UniversalTi
me

ToLocalT
ime

Directory.CreateD
irectory(path)

directory(path
)

none
CreateDir
ectory

remove both a&b none delete

exists exitsub none exists

moveall both a&b none move

SetCurrentDirecto
ry

GetDirectorie
s

none
SetCurre
ntDirecto
ry

SetCreationTime creationTime none
GetCreati
onTime

SetCreationTime creationTime none
SetCreati
onTime

import system.io.
imports
system.io.

none
System.I
O.

add insert none create

\ " <> \

ChangingExtensio
n

Extension none
ChangeE
xtension

seek seekoffset none seek

PositionOn OnPosition none Position

FileStreamWriter FileWriter none
StreamW
riter

Flush Auto none Flush

SeekOrigin Peek PeekOrigin Peek

BinaryWriter StreamReader
StreamWrit
er

BinaryRe
ader

PeekChar Seek SeekChar PeekChar

pixel color none pixel

GDI GDI- none GDI+.

x (0,0) none x

x (0,0) none y

x (0,0) none (0,0)

Size Sizeobject none Size

join LineJoin none
LineJoin

startcap endcap Linecap DashCap

DashStyle DashDot
DashDotDo
t

DashStyl
e

SolidBrush HatchBrush
PathGradie
ntBrush

Brush

PathGradientBrus
h

HatchBrush SolidBrush
PathGrad
ientBrush

EllipsisWord
EllipsisChara
cter

none
EllipsisP
ath

Far Near none Far

watch timer none timer

Nanoseconds milliseconds minutes

Translation scaling none scaling

RGB custom colors none RGB

90 180 0 180

Graphics design
interchange

Graphics
design
interface

Global data
interchange

Graphics
design
interface

pen image controls pen

DrawLetters() DrawChar()
DrawImage
()

DrawStr
ing()

Translation scaling shape scaling

DashStyle DashDot
DashDotDo
t

DashStyle

SolidBrush HatchBrush
PathGradie
ntBrush

Brush

PathGradientBru
sh

HatchBrush SolidBrush
PathGradie
ntBrush

Bitmaps blending images Bitmaps

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 1/32

UNIT-IV

 SYLLABUS

Web forms and ASP.NET: Web forms, web controls-ASP.NET Configuration, Scope and

state- ASP.NET and state-The Application Object-ASP sessions-The Session object-ASP.NET

objects and components-Active server components and controls.

 Web forms and ASP.NET

What is Web Forms?

Web Forms is one of the 3 programming models for creating ASP.NET web sites and web

applications.

The other two programming models are Web Pages and MVC (Model, View, Controller).

Web Forms is the oldest ASP.NET programming model, with event driven web pages written as

a combination of HTML, server controls, and server code.

Web Forms are compiled and executed on the server, which generates the HTML that displays

the web pages.

Web Forms comes with hundreds of different web controls and web components to build user-

driven web sites with data access.

• Based on Microsoft ASP.NET technology, in which code that runs on the server

dynamically generates Web page output to the browser or client device.

• Compatible with any browser or mobile device. An ASP.NET Web page automatically

renders the correct browser-compliant HTML for features such as styles, layout, and so

on.

• Compatible with any language supported by the .NET common language runtime, such as

Microsoft Visual Basic and Microsoft Visual C#.

• Built on the Microsoft .NET Framework. This provides all the benefits of the framework,

including a managed environment, type safety, and inheritance.

• Flexible because you can add user-created and third party controls to them

ASP.NET Web Forms offer

• Separation of HTML and other UI code from application logic.

• A rich suite of server controls for common tasks, including data access.

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 2/32

• Powerful data binding, with great tool support.

• Support for client-side scripting that executes in the browser.

• Support for a variety of other capabilities, including routing, security, performance,

internationalization, testing, debugging, error handling and state management.

Features of ASP.NET Web Forms

• Server Controls

• Master Pages

• Working with Data

• Membership

• Client Script and Client Frameworks

• Security

• Performance

• Debugging and Error Handling

All server controls must appear within a <form> tag, and the <form> tag must contain the

runat="server" attribute. The runat="server" attribute indicates that the form should be processed

on the server. It also indicates that the enclosed controls can be accessed by server scripts:

<form runat="server">

...HTML + server controls

</form>

Note: The form is always submitted to the page itself. If you specify an action attribute, it is

ignored. If you omit the method attribute, it will be set to method="post" by default. Also, if you

do not specify the name and id attributes, they are automatically assigned by ASP.NET.

Note: An .aspx page can only contain ONE <form runat="server"> control!

Stages in Web Forms Processing

• The ASP.NET page framework processes Web Forms pages in distinct stages.

• During each stage of Web Forms processing, events may be raised, and any event

handler that corresponds to the event runs.

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 3/32

• These methods provide you with entry points — hooks — that allow you to update the

contents of the Web Forms page.

The table below lists the most common stages of page processing, the events raised when they

occur, and typical uses at each stage. These stages are repeated each time the form is requested

or posted. The Page.IsPostBack property allows you to test whether the page is being processed

for the first time

ASP.NET Configuration, Scope and state

The behavior of an ASP.NET application is affected by different settings in the configuration

files:

 machine.config

 web.config

The machine.config file contains default and the machine-specific value for all supported

settings. The machine settings are controlled by the system administrator and applications are

generally not given access to this file.

An application however, can override the default values by creating web.config files in its roots

folder. The web.config file is a subset of the machine.config file.

If the application contains child directories, it can define a web.config file for each folder.

Scope of each configuration file is determined in a hierarchical top-down manner.

Any web.config file can locally extend, restrict, or override any settings defined on the upper

level.

Visual Studio generates a default web.config file for each project. An application can execute

without a web.config file, however, you cannot debug an application without a web.config file.

https://msdn.microsoft.com/en-us/library/system.web.ui.page.ispostback(v=vs.71).aspx

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 4/32

In this application, there are two web.config files for two projects i.e., the web service and the

web site calling the web service.

The web.config file has the configuration element as the root node. Information inside this

element is grouped into two main areas: the configuration section-handler declaration area, and

the configuration section settings area.

The following code snippet shows the basic syntax of a configuration file:

<configuration>

 <!-- Configuration section-handler declaration area. -->

 <configSections>

 <section name="section1" type="section1Handler" />

 <section name="section2" type="section2Handler" />

 </configSections>

 <!-- Configuration section settings area. -->

 <section1>

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 5/32

 <s1Setting1 attribute1="attr1" />

 </section1>

 <section2>

 <s2Setting1 attribute1="attr1" />

 </section2>

 <system.web>

 <authentication mode="Windows" />

 </system.web>

</configuration>

Configuration Section Handler declarations

The configuration section handlers are contained within the <configSections> tags. Each

configuration handler specifies name of a configuration section, contained within the file, which

provides some configuration data. It has the following basic syntax:

<configSections>

 <section />

 <sectionGroup />

 <remove />

 <clear/>

</configSections>

It has the following elements:

 Clear - It removes all references to inherited sections and section groups.

 Remove - It removes a reference to an inherited section and section group.

 Section - It defines an association between a configuration section handler and a

configuration element.

 Section group - It defines an association between a configuration section handler and a

configuration section.

Application Settings

The application settings allow storing application-wide name-value pairs for read-only access.

For example, you can define a custom application setting as:

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 6/32

<configuration>

 <appSettings>

 <add key="Application Name" value="MyApplication" />

 </appSettings>

</configuration>

For example, you can also store the name of a book and its ISBN number:

<configuration>

 <appSettings>

 <add key="appISBN" value="0-273-68726-3" />

 <add key="appBook" value="Corporate Finance" />

 </appSettings>

</configuration>

STATE MANAGEMENT

State management means to preserve state of a control, web page, object/data, and user

in the application explicitly because all ASP.NET web applications are stateless, i.e., by default,

for each page posted to the server, the state of controls is lost. Nowadays all web apps demand a

high level of state management from control to application level.

In ASP.NET, there are 2 state management methodologies. These are:

Client Side State Management

Whenever we do use client side state management, the state related information will directly get

stored on the client side. That particular information will travel back and communicate with

every request generated by the user then afterwards provides responses after server side

communication.

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 7/32

This architecture is something like that:

Server Side State Management

Server side state management is different from client side state management but the operations

and working is somewhat same in functionality. In server side state management, all the

information is stored in the user memory. Due to this functionality, there are more secure

domains at server side in comparison to client side state management.

The structure is something like that:

It will be a little difficult to directly evaluate what will be better for our application. We cannot

directly say that we are going to use client side or server side architecture of state management.

State Management | Techniques

State management techniques are based on client side and server side. Their functionality differs

according to the change in state so, here is the hierarchy:

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 8/32

Client Side | Techniques

Client side state management techniques are:

 View State

 Hidden field

 Cookies

 Control State

 Query Strings

Server Side | Technique

Server side state management techniques are:

 Session State

 Application State

Levels of state management

1. Control level: In ASP.NET, by default controls provide state management automatically.

2. Variable or object level: In ASP.NET, member variables at page level are stateless and thus

we need to maintain state explicitly.

3. Single or multiple page level: State management at single as well as multiple page level i.e.,

managing state between page requests.

4. User level: State should be preserved as long as a user is running the application.

5. Application level: State available for complete application irrespective of the user, i.e.,

should be available to all users.

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 9/32

6. Application to application level: State management between or among two or more

applications.

Client Side | Techniques

View State

In general, we can say it is used for storing user data in ASP.NET. Sometimes in ASP.NET

applications, users want to maintain or store their data temporarily after a post back. In this case,

VIEW STATE is the most used and preferred way of doing this mechanism.

This property is enabled by default, but we can make changes according to our functionality,

what we need to do is just change EnableViewState value to either TRUE for enabling it

or FALSE for opposite operation.

[View State Management]

// Page Load Event

protected void Page_Load(object sender, EventArgs e)

{

 if (IsPostBack)

 {

 if (ViewState["count"] != null)

 {

 int ViewstateVal = Convert.ToInt32(ViewState["count"]) + 1;

 View.Text = ViewstateVal.ToString();

 ViewState["count"]=ViewstateVal.ToString();

 }

 else

 {

 ViewState["count"] = "1";

 }

 }

}

// Click Event

protected void Submit(object sender, EventArgs e)

{

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 10/32

 View.Text=ViewState["count"].ToString();

}

Points to Remember

Some of the features of view state are:

 It is page level state management

 Used for holding data temporarily

 Can store any type of data

 Property dependent

Hidden Field

Hidden field is used for storing small amount of data on client side. In most simple words, it’s

just a container that contains some objects but their result does not get rendered on our web

browser. It is invisible in the browser.

It stores one value for the single variable and it is the preferable way when a variable’s value is

hanged frequently but we don’t need to keep track of that every time in our application or web

program.

[Hidden Field Management]

// Hidden Field

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 11/32

int newVal = Convert.ToInt32(HiddenField1.Value) + 1;

HiddenField1.Value = newVal.ToString();

Label2.Text = HiddenField1.Value;

Points to Remember

Some features of hidden fields are:

 Contains small amount of memory

 Direct functionality access

Cookies

Cookie is a small text file that gets stored in users hard drive using client’s browser. Cookies are

just used for the sake of user’s identity matching as it only stores information such as sessions

ids, some frequent navigation or postback request objects.

Whenever we get connected to the internet for accessing particular service, that cookie file gets

accessed from our hard drive via our browser for identifying user. The cookie access depends

upon the life cycle of expiration of that particular cookie file.

[Cookie Management]

int postbacks = 0;

if (Request.Cookies["number"] != null)

{

 postbacks = Convert.ToInt32(Request.Cookies["number"].Value) + 1;

}

// Generating Response

else

{

 postbacks = 1;

}

Response.Cookies["number"].Value = postbacks.ToString();

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 12/32

Result.Text = Response.Cookies["number"].Value;

Cookie | Types

Persistent Cookie

Cookie having expiration date is called persistent cookie. These type of cookies reach their end

as their expiration dates comes to end. In this cookie, we set an expiration date.

Response.Cookies["UserName"].Value = "Abhishek";

Response.Cookies["UserName"].Expires = DateTime.Now.AddDays(1);

HttpCookie aCookie = new HttpCookie("Session");

aCookie.Value = DateTime.Now.ToString();

aCookie.Expires = DateTime.Now.AddDays(1);

Response.Cookies.Add(aCookie);

Non-Persistent Cookie

Non-persistent type of cookie doesn’t get stored in client’s hard drive permanently. It maintains

user information as long as user accesses or uses the services. It's simply the opposite procedure

of persistent cookie.

HttpCookie aCookie = new HttpCookie("Session");

aCookie.Value = DateTime.Now.ToString();

aCookie.Expires = DateTime.Now.AddDays(1);

Response.Cookies.Add(aCookie);

Points to Remember

Some features of cookie are:

 Store information temporarily

 It’s just a simple small sized text file

 Can be changed according to requirement

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 13/32

 User preferred

 Requires only few bytes or KBs of space for creating cookies

Control State

Control state is based on custom control option. For expected results from CONTROL STATE,

we need to enable the property of view state. As I already described, you can manually change

those settings.

Points to Remember

Some features of query strings are:

 Used for enabling View State Property

 Defines custom view

 View State property declaration

 Can’t be modified

 Accessed directly or disabled

Query Strings

Query strings are used for some specific purpose. These in general case are used for holding

some value from a different page and move these values to the different page. The information

stored in it can be easily navigated from one page to another or to the same page as well.

[Query Strings]

// Getting data

if (Request.QueryString["number"] != null)

{

 View.Text = Request.QueryString["number"];

}

// Setting query string

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 14/32

int postbacks = 0;

if (Request.QueryString["number"] != null)

{

 postbacks = Convert.ToInt32(Request.QueryString["number"]) + 1;

}

else

{

 postbacks = 1;

}

Response.Redirect("default.aspx?number=" + postbacks);

Points to Remember

Some of the features are:

 It's generally used for holding values

 Works temporarily

 Switches information from one to another page

 Increased performance

 It uses real and virtual path values for URL routing

Server side

1. Session

Session management is a very strong technique to maintain state. Generally session is used to

store user's information and/or uniquely identify a user (or say browser). The server maintains

the state of user information by using a session ID. When users makes a request without a

session ID, ASP.NET creates a session ID and sends it with every request and response to the

same user.

How to get and set value in Session:

Session["Count"] = Convert.ToInt32(Session["Count"]) + 1;//Set Value to The Session

Label2.Text = Session["Count"].ToString(); //Get Value from the Sesion

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 15/32

Session Events in ASP.NET

To manage a session, ASP.NET provides two events: session_start and session_end that is

written in a special file called Global.asax in the root directory of the project.

2. Application

Application state is a server side state management technique. The date stored in application

state is common for all users of that particular ASP.NET application and can be accessed

anywhere in the application. It is also called application level state management. Data stored in

the application should be of small size.

How to get and set a value in the application object:

Application["Count"] = Convert.ToInt32(Application["Count"]) + 1; //Set Value to The

Application Object

Label1.Text = Application["Count"].ToString(); //Get Value from the Application Object

Application events in ASP.NET

There are three types of events in ASP.NET. Application event is written in a special file

called Global.asax. This file is not created by default, it is created explicitly by the developer in

the root directory. An application can create more than one Global.asax file but only the root one

is read by ASP.NET.

Application_start: The Application_Start event is raised when an app domain starts. When the

first request is raised to an application then the Application_Start event is raised. Let's see

theGlobal.asax file.

void Application_Start(object sender, EventArgs e)

{

 Application["Count"] = 0;

}

Application_Error: It is raised when an unhandled exception occurs, and we can manage the

exception in this event.

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 16/32

Application_End: The Application_End event is raised just before an application domain ends

because of any reason, may IIS server restarting or making some changes in an application

cycle.

Global.asax in ASP.NET

The Global.asax, also known as the ASP.NET application file, is used to serve

application-level and session-level events. Global.asax is helpful in ASP.NET projects. With it

we can store variables that persist through requests and sessions. We store these variables once

and use them often. We add static fields to our Global.asax file.

Global.asax is a file used to declare application-level events and objects. Global.asax is

the ASP.NET extension of the ASP Global.asa file. Code to handle application events (such as

the start and end of an application) reside in Global.asax. Such event code cannot reside in the

ASP.NET page or web service code itself, since during the start or end of the application, its

code has not yet been loaded (or unloaded). Global.asax is also used to declare data that is

available across different application requests or across different browser sessions. This process

is known as application and session state management.

 The Global.asax file must reside in the IIS virtual root. Remember that a virtual root can

be thought of as the container of a web application. Events and state specified in the global file

are then applied to all resources housed within the web application. If, for example, Global.asax

defines a state application variable, all .aspx files within the virtual root will be able to access the

variable.

 Like an ASP.NET page, the Global.asax file is compiled upon the arrival of the first

request for any resource in the application. The similarity continues when changes are made to

the Global.asax file: ASP.NET automatically notices the changes, recompiles the file, and directs

all new requests to the newest compila

 The Global.asax file, also known as the ASP.NET application file, is an optional file that

contains code for responding to application-level events raised by ASP.NET or by HttpModules.

The Global.asax file resides in the root directory of an ASP.NET-based application. At run time,

Global.asax is parsed and compiled into a dynamically generated .NET Framework class derived

from the HttpApplication base class. The Global.asax file itself is configured so that any direct

URL request for it is automatically rejected; external users cannot download or view the code

written within it.

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 17/32

 The ASP.NET Global.asax file can coexist with the ASP Global.asax file. You can create

a Global.asax file either in a WYSIWYG designer, in Notepad, or as a compiled class that you

deploy in your application's \Bin directory as an assembly. However, in the latter case, you still

need a Global.asax file that refers to the assembly.

 The Global.asax file is optional. If you do not define the file, the ASP.NET page

framework assumes that you have not defined any application or session event handlers.

When you save changes to an active Global.asax file, the ASP.NET page framework detects that

the file has been changed. It completes all current requests for the application, sends the

Application_OnEnd event to any listeners, and restarts the application domain. In effect, this

reboots the application, closing all browser sessions and flushing all state information.

The Global.asa file

The Global.asa file is an optional file that can contain declarations of objects, variables,

and methods that can be accessed by every page in an ASP application.

All valid browser scripts (JavaScript, VBScript, JScript, PerlScript, etc.) can be used within

Global.asa.

The Global.asa file can contain only the following:

 Application events

 Session events

 <object> declarations

 TypeLibrary declarations

 the #include directive

Note: The Global.asa file must be stored in the root directory of the ASP application, and each

application can only have one Global.asa file.

ASP Application Object

A group of ASP files that work together to perform some purpose is called an application.

The Application object is used to tie these files together.

Application Object

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 18/32

An application on the Web may consists of several ASP files that work together to

perform some purpose. The Application object is used to tie these files together.

The Application object is used to store and access variables from any page, just like the Session

object. The difference is that ALL users share ONE Application object (with Sessions there is

ONE Session object for EACH user).

The Application object holds information that will be used by many pages in the

application (like database connection information). The information can be accessed from any

page. The information can also be changed in one place, and the changes will automatically be

reflected on all pages.

The Application object's collections, methods, and events are described below:

Collections

Collection Description

Contents Contains all the items appended to the application through a script command

StaticObjects Contains all the objects appended to the application with the HTML <object>

tag

Methods

Method Description

Contents.Remove Deletes an item from the Contents collection

Contents.RemoveAll() Deletes all items from the Contents collection

Lock Prevents other users from modifying the variables in the Application object

Unlock Enables other users to modify the variables in the Application object (after

it has been locked using the Lock method)

Events

Event Description

Application_OnEnd Occurs when all user sessions are over, and the application ends

Application_OnStart Occurs before the first new session is created (when the Application object

is first referenced

http://www.w3schools.com/asp/coll_contents_app.asp
http://www.w3schools.com/asp/coll_staticobjects_app.asp
http://www.w3schools.com/asp/met_contents_remove_app.asp
http://www.w3schools.com/asp/met_contents_removeall_app.asp
http://www.w3schools.com/asp/met_lock_unlock.asp
http://www.w3schools.com/asp/met_lock_unlock.asp
http://www.w3schools.com/asp/ev_app_onend_onstart.asp
http://www.w3schools.com/asp/ev_app_onend_onstart.asp

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 19/32

ASP Session Object

A Session object stores information about, or change settings for a user session.

Session Object

When you are working with an application on your computer, you open it, do some changes and

then you close it. This is much like a Session. The computer knows who you are. It knows when

you open the application and when you close it. However, on the internet there is one problem:

the web server does not know who you are and what you do, because the HTTP address doesn't

maintain state.

ASP solves this problem by creating a unique cookie for each user. The cookie is sent to the

user's computer and it contains information that identifies the user. This interface is called the

Session object.

The Session object stores information about, or change settings for a user session.

Variables stored in a Session object hold information about one single user, and are available to

all pages in one application. Common information stored in session variables are name, id, and

preferences. The server creates a new Session object for each new user, and destroys the Session

object when the session expires.

The Session object's collections, properties, methods, and events are described below:

Collections

Collection Description

Contents Contains all the items appended to the session through a script

command

StaticObjects Contains all the objects appended to the session with the HTML

<object> tag

Properties

Property Description

CodePage Specifies the character set that will be used when displaying dynamic

content

LCID Sets or returns an integer that specifies a location or region. Contents

like date, time, and currency will be displayed according to that location

or region

http://www.w3schools.com/asp/coll_contents_sess.asp
http://www.w3schools.com/asp/coll_staticobjects_sess.asp
http://www.w3schools.com/asp/prop_codepage.asp
http://www.w3schools.com/asp/prop_lcid.asp

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 20/32

SessionID Returns a unique id for each user. The unique id is generated by the

server

Timeout Sets or returns the timeout period (in minutes) for the Session object in

this application

Methods

Method Description

Abandon Destroys a user session

Contents.Remove Deletes an item from the Contents collection

Contents.RemoveAll() Deletes all items from the Contents collection

Events

Event Description

Session_OnEnd Occurs when a session ends

Session_OnStart Occurs when a session starts

http://www.w3schools.com/asp/prop_sessionid.asp
http://www.w3schools.com/asp/prop_timeout.asp
http://www.w3schools.com/asp/met_abandon.asp
http://www.w3schools.com/asp/met_contents_remove_sess.asp
http://www.w3schools.com/asp/met_contents_removeall_sess.asp
http://www.w3schools.com/asp/ev_sess_onend_onstart.asp
http://www.w3schools.com/asp/ev_sess_onend_onstart.asp

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 21/32

ASP Objects

• Request and Response Objects

• Application and Session Objects

• Server objects

ASP Components

• Content Linking Component

• AdRotator Component

• Browser Capabilities Component

• Content Rotator Component

• MyInfo Component

• Tools Component

• Counters component

• Page Counter Component

ASP COMPONENTS

ASP AdRotator Component

The ASP AdRotator component creates an AdRotator object that displays a different image each

time a user enters or refreshes a page. A text file includes information about the images.

Note: The AdRotator does not work with Internet Information Server 7 (IIS7).

Syntax

<%

set adrotator=server.createobject("MSWC.AdRotator")

adrotator.GetAdvertisement("textfile.txt")

%>

Example

<%

url=Request.QueryString("url")

If url<>"" then Response.Redirect(url)

%>

<!DOCTYPE html>

<html>

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 22/32

<body>

<%

set adrotator=Server.CreateObject("MSWC.AdRotator")

response.write(adrotator.GetAdvertisement("textfile.txt"))

%>

</body>

</html>

ASP AdRotator Properties

Property Description Example

Border Specifies the

size of the

borders

around the

advertisement

<%

set

adrot=Server.CreateObject("MSWC.AdRotator")

adrot.Border="2"

Response.Write(adrot.GetAdvertisement("ads.txt"))

%>

Clickable Specifies

whether the

advertisement

is a hyperlink

<%

set

adrot=Server.CreateObject("MSWC.AdRotator")

adrot.Clickable=false

Response.Write(adrot.GetAdvertisement("ads.txt"))

%>

TargetFrame Name of the

frame to

display the

advertisement

<%

set

adrot=Server.CreateObject("MSWC.AdRotator")

adrot.TargetFrame="target='_blank'"

Response.Write(adrot.GetAdvertisement("ads.txt"))

%>

ASP AdRotator Methods

Method Description Example

GetAdvertisement Returns

HTML that

displays the

advertisement

in the page

<%

set

adrot=Server.CreateObject("MSWC.AdRotator")

Response.Write(adrot.GetAdvertisement("ads.txt"))

%>

ASP Content Rotator Component

The ASP Content Rotator component creates a ContentRotator object that displays a different

content string each time a visitor enters or refreshes a page.

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 23/32

A text file, called the Content Schedule File, includes the information about the content strings.

The content strings can contain HTML tags so you can display any type of content that HTML

can represent: text, images, colors, or hyperlinks.

Syntax

<%

Set cr=Server.CreateObject("MSWC.ContentRotator")

%>

Example

<html>

<body>

<%

set cr=server.createobject("MSWC.ContentRotator")

response.write(cr.ChooseContent("text/textads.txt"))

%>

</body>

</html>

ASP Content Rotator Component's Methods

Method Description Example

ChooseContent Gets and

displays a

content

string

<%

dim cr

Set

cr=Server.CreateObject("MSWC.ContentRotator")

response.write(cr.ChooseContent("text/textads.txt"))

%>

Output:

GetAllContent Retrieves

and

displays all

of the

content

strings in

the text file

<%

dim cr

Set

cr=Server.CreateObject("MSWC.ContentRotator")

response.write(cr.GetAllContent("text/textads.txt"))

%>

Output:

This is a great day!!

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 24/32

ASP Browser Capabilities Component

The ASP Browser Capabilities component creates a BrowserType object that determines the

type, capabilities and version number of a visitor's browser.

When a browser connects to a server, a User Agent header is also sent to the server. This header

contains information about the browser.

The BrowserType object compares the information in the header with information in a file on the

server called "Browscap.ini".

If there is a match between the browser type and version number in the header and the

information in the "Browscap.ini" file, the BrowserType object can be used to list the properties

of the matching browser. If there is no match for the browser type and version number in the

Browscap.ini file, it will set every property to "UNKNOWN".

Syntax

<%

Set MyBrow=Server.CreateObject("MSWC.BrowserType")

%>

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 25/32

ASP Browser Capabilities Example

The example below creates a BrowserType object in an ASP file, and displays some of the

capabilities of your browser:

Example

<!DOCTYPE html>

<html>

<body>

<%

Set MyBrow=Server.CreateObject("MSWC.BrowserType")

%>

<table border="0" width="100%">

<tr>

<th>Client OS</th><th><%=MyBrow.platform%></th>

</tr><tr>

<td >Web Browser</td><td ><%=MyBrow.browser%></td>

</tr><tr>

<td>Browser version</td><td><%=MyBrow.version%></td>

</tr><tr>

<td>Frame support?</td><td><%=MyBrow.frames%></td>

</tr><tr>

<td>Table support?</td><td><%=MyBrow.tables%></td>

</tr><tr>

<td>Sound support?</td><td><%=MyBrow.backgroundsounds%></td>

</tr><tr>

<td>Cookies support?</td><td><%=MyBrow.cookies%></td>

</tr><tr>

<td>VBScript support?</td><td><%=MyBrow.vbscript%></td>

</tr><tr>

<td>JavaScript support?</td><td><%=MyBrow.javascript%></td>

</tr>

</table>

</body>

</html>

Output:

Client OS WinNT

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 26/32

Web Browser IE

Browser version 5.0

Frame support? True

Table support? True

Sound support? True

Cookies support? True

VBScript support? True

JavaScript support? True

ASP Content Linking Component

The ASP Content Linking component is used to create a quick and easy navigation system!

The Content Linking component returns a Nextlink object that is used to hold a list of Web pages

to be navigated.

Syntax

<%

Set nl=Server.CreateObject("MSWC.NextLink")

%>

ASP Content Linking Example

First we create a text file - "links.txt":

asp_intro.asp ASP Intro

asp_syntax.asp ASP Syntax

asp_variables.asp ASP Variables

asp_procedures.asp ASP Procedures

Then we create an include file, "nlcode.inc". The .inc file creates a NextLink object to navigate

between the pages listed in "links.txt".

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 27/32

"nlcode.inc":

<%

dim nl

Set nl=Server.CreateObject("MSWC.NextLink")

if (nl.GetListIndex("links.txt")>1) then

 Response.Write("<a href='" & nl.GetPreviousURL("links.txt"))

 Response.Write("'>Previous Page")

end if

Response.Write("<a href='" & nl.GetNextURL("links.txt"))

Response.Write("'>Next Page")

%>

In each of the .asp pages listed in the text file "links.txt", put one line of code: <!-- #include

file="nlcode.inc"-->. This line will include the code in "nlcode.inc" on every page listed in

"links.txt" and the navigation will work.

ASP Content Linking Component's Methods

Method Description Example

GetListCount Returns the

number of

items listed

in the

Content

Linking

List file

<%

dim nl,c

Set

nl=Server.CreateObject("MSWC.NextLink")

c=nl.GetListCount("links.txt")

Response.Write("There are ")

Response.Write(c)

Response.Write(" items in the list")

%>

Output:

There are 4 items in the list

GetListIndex Returns the

index

number of

the current

item in the

Content

Linking

List file.

The index

number of

the first

item is 1. 0

<%

dim nl,c

Set

nl=Server.CreateObject("MSWC.NextLink")

c=nl.GetListIndex("links.txt")

Response.Write("Item number ")

Response.Write(c)

%>

Output:

Item number 3

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 28/32

is returned

if the

current

page is not

in the

Content

Linking

List file

GetNextDescription Returns the

text

description

of the next

item listed

in the

Content

Linking

List file. If

the current

page is not

found in

the list file

it returns

the text

description

of the last

page on the

list

<%

dim nl,c

Set

nl=Server.CreateObject("MSWC.NextLink")

c=nl.GetNextDescription("links.txt")

Response.Write("Next ")

Response.Write("description is: ")

Response.Write(c)

%>

Next description is: ASP Variables

GetNextURL Returns the

URL of the

next item

listed in the

Content

Linking

List file. If

the current

page is not

found in

the list file

it returns

the URL of

the last

page on the

list

<%

dim nl,c

Set

nl=Server.CreateObject("MSWC.NextLink")

c=nl.GetNextURL("links.txt")

Response.Write("Next ")

Response.Write("URL is: ")

Response.Write(c)

%>

Next URL is: asp_variables.asp

GetNthDescription Returns the

description

<%

dim nl,c

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 29/32

of the Nth

page listed

in the

Content

Linking

List file

Set

nl=Server.CreateObject("MSWC.NextLink")

c=nl.GetNthDescription("links.txt",3)

Response.Write("Third ")

Response.Write("description is: ")

Response.Write(c)

%>

Third description is: ASP Variables

GetNthURL Returns the

URL of the

Nth page

listed in the

Content

Linking

List file

<%

dim nl,c

Set

nl=Server.CreateObject("MSWC.NextLink")

c=nl.GetNthURL("links.txt",3)

Response.Write("Third ")

Response.Write("URL is: ")

Response.Write(c)

%>

Third URL is: asp_variables.asp

GetPreviousDescription Returns the

text

description

of the

previous

item listed

in the

Content

Linking

List file. If

the current

page is not

found in

the list file

it returns

the text

description

of the first

page on the

list

<%

dim nl,c

Set

nl=Server.CreateObject("MSWC.NextLink")

c=nl.GetPreviousDescription("links.txt")

Response.Write("Previous ")

Response.Write("description is: ")

Response.Write(c)

%>

Previous description is: ASP Variables

GetPreviousURL Returns the

URL of the

previous

item listed

in the

<%

dim nl,c

Set

nl=Server.CreateObject("MSWC.NextLink")

c=nl.GetPreviousURL("links.txt")

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 30/32

Content

Linking

List file. If

the current

page is not

found in

the list file

it returns

the URL of

the first

page on the

list

Response.Write("Previous ")

Response.Write("URL is: ")

Response.Write(c)

%>

Previous URL is: asp_variables.asp

ASP Content Rotator Component

The ASP Content Rotator component creates a ContentRotator object that displays a different

content string each time a visitor enters or refreshes a page.

A text file, called the Content Schedule File, includes the information about the content strings.

The content strings can contain HTML tags so you can display any type of content that HTML

can represent: text, images, colors, or hyperlinks.

Syntax

<%

Set cr=Server.CreateObject("MSWC.ContentRotator")

%>

Example

<html>

<body>

<%

set cr=server.createobject("MSWC.ContentRotator")

response.write(cr.ChooseContent("text/textads.txt"))

%>

</body>

</html>

ASP Content Rotator Component's Methods

Method Description Example

ChooseContent Gets and

displays a

content

string

<%

dim cr

Set

cr=Server.CreateObject("MSWC.ContentRotator")

response.write(cr.ChooseContent("text/textads.txt"))

%>

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 31/32

Output:

GetAllContent Retrieves

and

displays all

of the

content

strings in

the text file

<%

dim cr

Set

cr=Server.CreateObject("MSWC.ContentRotator")

response.write(cr.GetAllContent("text/textads.txt"))

%>

Output:

This is a great day!!

Unit-4 Web forms and ASP.NET 2015-Batch

Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
. 32/32

PART-B

POSSIBLE QUESTIONS(8Marks)

1. Illustrate the steps to create a web forms in ASP.NET with neat sketch

2. Explain in detail about collections, methods and events of the application objects.

3. Explain the basic web controls in ASP.Net and its usage.

4. Discuss in detail about the session object in ASP.NET.

5. Discuss the application configuration for ASP.NET.

6. Explicate the various methods of state maintenance in ASP.NET.

7. Explain in detail about active server components and controls.

8. Explicate the objects used to manage the ASP.NET state.

questions opt1 opt2 opt3 opt4
What is the extension of a
web user control file ?

.Asmx .Ascx .Aspx .Aspz

Select the validation control
used for “PatternMatching”

FieldValidator

RegularExpr
essionValida
tor

RangeValidator

PatternValid
ator

Which of the following server
control shows data in a tabular
format?

ListBox Repeater Data Source GridView

Skins with SkindID’s are
known as ______

Application
Skins

Named
Skins

Default Skins
Reference
Skins

Which of the following
webserver control used as
container for other server
controls in a ASP.Net Page?

PlaceHolder Table Panel IamgeMap

Attribute must be set on a
validator control for the
validation to work.

ControlToValida
te

ControlToBi
nd

ValidateControl Validate

If a developer of ASP.NET
defines style information in a
common location.Then that
location is called as

Master Page Theme Customization Skin

_______ checks the required
fields have a value entered by
the user submitting the form

RangeValidator
CustomVali
dator

CompareValida
tor

RequiredFiel
dValidator

_________ forms a group of
radio buttons that can be
selected in a mutually
exclusive manner

RadioButton
CheckBoxLi
st

RadioButtonLis
t

DropDownLi
st

Which of the following does
not have any visible interface?

Datagrid Repeater DropdownLi Datalist

In ASP.NET in form page the
object which contains the user
name is ______ ?

Page.User.Identit
y

Page.User.Is
InRole

Page.User.Nam
e

Page.User.R
ole

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 Pollachi Main Road, Eacharani Post, Coimbatore-641 021

 CLASS : III-B.Sc COMPUTER SCIENCE(2015-2018)
 Online Examination

 VISUAL PROGRAMMING (15CSU501)

Which of the following
method must be overridden in
a custom control?

The Paint()
method

The
Control_Bui
ld() method

The default
constructor

The Render()
method

Which is the file extension
used for an ASP.NET file?

.asn .asp .aspn .aspx

Which property is used
to name a web control?

ControlName Designation ID Name

Which user action will not
generate a server-side event?

Mouse Move Text Change Button Click Load

What class does the ASP.Net
Web Form class inherit from
by default?

System.Web.For
m

System.Web
.UI.Form

System.Web.G
UI.Page

System.Web.
UI.Page

Which of the following
denote the web control
associated with Table Control
function of ASP.Net?

DataList ListBox TableRow
TableColum
n

ASP.Net separates the
HTML output from program
logic using a feature named as

Exception Code-behind Code-front Code-back

_______ Web Controls are
used to achieve graphics in
the display.

AdRotator LinkButton TextBox Calendar

The Asp.net server control
provides an alternative way of
displaying text on web page is

<asp:listitem>
<asp:button
>

<asp:label> <asp:image>

The ___________attribute
specifies where to store
session state information and
it may set to Off.

Cookieless Mode Timeout
ConnectionSt
ring

Which attribute specifies the
number of minutes before a
session is abandoned because
it is idle?

Cookieless Mode Timeout
ConnectionSt
ring

Which attribute specifies the
server and port for storing
session state remotely?

Cookieless Mode Timeout
ConnectionSt
ring

The current status of a Web
Forms page and its controls is
called the

viewstate webstatus round trips
request/respo
nse cycle.

ASP.NET applications uses
______ protocol.

WSDL SOAP HTTP TCP/IP

______ dynamically buids
Web-based client server
applications.

XML VB ASP.NET None

The extension of all
ASP.NET files are______

asp aspx asa asax

All controls with the attribute
RUNAT="SERVER" are
called __________

web controls
server
controls

html controls .net controls

ASP.NET applications are
configured with special _____
file

XML HTML VB NONE

The configuration setting of
the ASP.NET applications are
in a file named _________

ASP.config Web.config Session.config Config.Net

Which of the following is
used to store the state
information of the server side

Sesson State
object

Cookies Hidden fields
Query
Strings

Which of the following is
used to store the state
information of the client side

Sesson State
object

Cookies
Application
state objects

Databases

DOM stands for
Design Object
Model

Document
Oreinted
Modelling

Document
Object Model

Database
Object
Model

The term __________ refers
to the current condition of an
application and each of its
parts.

section attribute state cookie

Which object has the state
information

Request Object
Response
Object

Application
Object

Server
Object

The root element of the
web.config file is

<configuration>
<system.web
>

<compilation>
<httpHandler
s>

Whenever an individual user
first requests a page of wep
application_________ is
created.

Session Object
Response
Object

Application
Object

Server
Object

Whenever the first page of a
web applicatiom is requests
for the first time__________
is created.

Session Object
Response
Object

Application
Object

Server
Object

Cookies are read and written
using the _________ object

Request Object
Response
Object

Application
Object

Server
Object

Codes that execute in
response to starting an
Application are placed in
subroutine.

Applicaion_onSt
art

Applicaion_
Start

Application_Be
ginRequest

Application-
Error

This method allows only the
current page access the
Contents collection of the
Application object

Set() Contents() Current() Lock()

__________ maintains the
state informations across page
requests.

session scope acess specifiers form

_________ is created for
every user, only when he
requests the page for first time

Application
Object

Request
Object

Response
Object

Session
Object

The_________ control is used
to enforce a value-required
rule

Compare
Validator

Range
Validator

Required Field
Validator

Regular
Expression
Validator

The ________ control is used
to make comparisons between
two form elements

Compare
Validator

Range
Validator

Required Field
Validator

Regular
Expression
Validator

A valid comment block in
ASP.NET is

<!- - - Comment -
- - >

<!- -
Comment - -
>

<% - -
Comment - -
%>

<% ! - -
Comment - -
>

______ refers to the current
Object

Me this super Current

Which session method ends
the current usr session and
destroys the session object
when the page has finished
executing.

remove() removeAll() Abandon()
AbandonAll(
)

________ are small strings of
text with a name/value pairs
that are attached to the end of
the URL and sent with page
requests.

Hidden fields
Query
String

View State
property

Cookies

answer

. Ascx

RegularExpressionV
alidator

 GridView

Named Skins

Panel

ControlToValidate

Theme

RequiredFieldValida
tor

RadioButtonList

Repeater

Page.User.Identity

 KARPAGAM ACADEMY OF HIGHER EDUCATION

The Render() method

.aspx

ID

Mouse Move

System.Web.UI.Page

TableRow

Code-behind

AdRotator

<asp:label>

Mode

Timeout

ConnectionString

viewstate

HTTP

ASP.NET

aspx

server controls

XML

Web.config

Sesson State object

Cookies

Document Object
Model

state

Application Object

<configuration>

Session Object

Application Object

Response Object

Applicaion_Start

Lock()

session

Session Object

Required Field
Validator

Compare Validator

<% - - Comment - -
%>

Me

Abandon()

Query String

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
1/30

UNIT-V

 SYLLABUS

Web server and ASP.NET-ASP.NET and SQL server-Using SQL server, using database

in ASP.NET applications, ActiveX data objects-The ADO.NET objects model

Web services and ASP.NET

A web service is a web-based functionality accessed using the protocols of the web to be used

by the web applications. There are three aspects of web service development:

 Creating the web service

 Creating a proxy

 Consuming the web service

Creating a Web Service

A web service is a web application which is basically a class consisting of methods that could

be used by other applications. It also follows a code-behind architecture such as the ASP.NET

web pages, although it does not have a user interface.

To understand the concept let us create a web service to provide stock price information. The

clients can query about the name and price of a stock based on the stock symbol. To keep this

example simple, the values are hardcoded in a two-dimensional array. This web service has

three methods:

 A default HelloWorld method

 A GetName Method

 A GetPrice Method

Take the following steps to create the web service:

Step (1) : Select File -> New -> Web Site in Visual Studio, and then select ASP.NET Web

Service.

Step (2) : A web service file called Service.asmx and its code behind file, Service.cs is created

in the App_Code directory of the project.

Step (3) : Change the names of the files to StockService.asmx and StockService.cs.

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
2/30

Step (4) : The .asmx file has simply a WebService directive on it:

<%@ WebService Language="C#" CodeBehind="~/App_Code/StockService.cs"

Class="StockService" %>

Step (5) : Open the StockService.cs file, the code generated in it is the basic Hello World

service.

Step (6) : Change the code behind file to add the two dimensional array of strings for stock

symbol, name and price and two web methods for getting the stock information.

Step (7) : Running the web service application gives a web service test page, which allows

testing the service methods.

Step (8) : Click on a method name, and check whether it runs properly.

Step (9) : For testing the GetName method, provide one of the stock symbols, which are hard

coded, it returns the name of the stock

Web Services Framework

The core enabling technologies for web services follow:

 XML Data

 WSDL Interface

 SOAP Communication

 UDDI Registry

Layers of the Web Services Protocol Stack

XML Data

The eXtensible Markup Language (XML) is a bundle of specifications that provides the

foundation of all web services technologies. Using the XML structure and syntax as the

https://docs.oracle.com/cd/E23943_01/doc.1111/e10807/c25_wsdl_and_soap.htm#BEHCAIAH
https://docs.oracle.com/cd/E23943_01/doc.1111/e10807/c25_wsdl_and_soap.htm#BEHGGDJB
https://docs.oracle.com/cd/E23943_01/doc.1111/e10807/c25_wsdl_and_soap.htm#BEHJHBIA
https://docs.oracle.com/cd/E23943_01/doc.1111/e10807/c25_wsdl_and_soap.htm#BEHGFDJG

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
3/30

foundation allows for the exchange of data between different programming languages,

middleware, and database management systems.

The XML syntax incorporates instance data, typing, structure, and semantic information

associated with data. XML describes data independently and also provides information for

mapping the data to software systems or programming languages. Because of this flexibility, any

software program can be mapped to web services.

When web services are invoked, the underlying XML syntax provides the data encapsulation and

transmission format for the exchanged data. The XML elements and attributes define the type

and structure information for the data. XML provides the capability to model data and define the

structure specific to the programming language (such as Java, C#, or Visual Basic), the database

management system, or the software application. Web services use the XML syntax to specify

how data is represented, how the data is transmitted, and how the service interacts with the

referenced application.

WSDL

WSDL stands for Web Services Description Language. It is the standard format for describing a

web service. WSDL was developed jointly by Microsoft and IBM.

Features of WSDL

 WSDL is an XML-based protocol for information exchange in decentralized and

distributed environments.

 WSDL definitions describe how to access a web service and what operations it will

perform.

 WSDL is a language for describing how to interface with XML-based services.

 WSDL is an integral part of Universal Description, Discovery, and Integration (UDDI),

an XML-based worldwide business registry.

 WSDL is the language that UDDI uses.

 WSDL is pronounced as 'wiz-dull' and spelled out as 'W-S-D-L'.

WSDL Usage

WSDL is often used in combination with SOAP and XML Schema to provide web services over

the Internet. A client program connecting to a web service can read the WSDL to determine

what functions are available on the server. Any special datatypes used are embedded in the

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
4/30

WSDL file in the form of XML Schema. The client can then use SOAP to actually call one of

the functions listed in the WSDL.

WSDL stands for Web Services Description Language. It is the standard format for describing a

web service. WSDL was developed jointly by Microsoft and IBM.

Features of WSDL

 WSDL is an XML-based protocol for information exchange in decentralized and

distributed environments.

 WSDL definitions describe how to access a web service and what operations it will

perform.

 WSDL is a language for describing how to interface with XML-based services.

 WSDL is an integral part of Universal Description, Discovery, and Integration (UDDI),

an XML-based worldwide business registry.

 WSDL is the language that UDDI uses.

 WSDL is pronounced as 'wiz-dull' and spelled out as 'W-S-D-L'.

SOAP

SOAP is an acronym for Simple Object Access Protocol. It is an XML-based messaging

protocol for exchanging information among computers. SOAP is an application of the XML

specification.

Points to Note

Below mentioned are some important point which the user should take note of. These points

briefly describes the nature of SOAP −

 SOAP is a communication protocol designed to communicate via Internet.

 SOAP can extend HTTP for XML messaging.

 SOAP provides data transport for Web services.

 SOAP can exchange complete documents or call a remote procedure.

 SOAP can be used for broadcasting a message.

 SOAP is platform- and language-independent.

 SOAP is the XML way of defining what information is sent and how.

 SOAP enables client applications to easily connect to remote services and invoke remote

methods.

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
5/30

Although SOAP can be used in a variety of messaging systems and can be delivered via a

variety of transport protocols, the initial focus of SOAP is remote procedure calls transported

via HTTP.

Other frameworks including CORBA, DCOM, and Java RMI provide similar functionality to

SOAP, but SOAP messages are written entirely in XML and are therefore uniquely platform-

and language-independent.

A SOAP message is an ordinary XML document containing the following elements −

 Envelope − Defines the start and the end of the message. It is a mandatory element.

 Header − Contains any optional attributes of the message used in processing the

message, either at an intermediary point or at the ultimate end-point. It is an optional

element.

 Body − Contains the XML data comprising the message being sent. It is a mandatory

element.

 Fault − An optional Fault element that provides information about errors that occur

while processing the message.

All these elements are declared in the default namespace for the SOAP envelope −

http://www.w3.org/2001/12/soap-envelope and the default namespace for SOAP encoding and

data types is − http://www.w3.org/2001/12/soap-encoding

NOTE − All these specifications are subject to change. So keep updating yourself with the

latest specifications available on the W3 website.

SOAP Message Structure

The following block depicts the general structure of a SOAP message −

<?xml version="1.0"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"

SOAP-ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <SOAP-ENV:Header>

 ...

 ...

 </SOAP-ENV:Header>

http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-encoding

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
6/30

 <SOAP-ENV:Body>

 ...

 ...

 <SOAP-ENV:Fault>

 ...

 ...

 </SOAP-ENV:Fault>

 ...

 </SOAP-ENV:Body>

</SOAP_ENV:Envelope>

UDDI Registry

The Universal Description Discovery and Integration (UDDI) service provides registry and

repository services for storing and retrieving web services interfaces. UDDI is a public or private

XML-based directory for registering and looking up web services.

Content Server currently does not publish to any public or private UDDI sources. However, this

does not prevent users from integrating Content Server with other applications using web

services.

USING SQL SERVER, USING DATABASE IN ASP.NET APPLICATIONS:

ASP.NET allows the following sources of data to be accessed and used:

 Databases (e.g., Access, SQL Server, Oracle, MySQL)

 XML documents

 Business Objects

 Flat files

ASP.NET hides the complex processes of data access and provides much higher level of classes

and objects through which data is accessed easily. These classes hide all complex coding for

connection, data retrieving, data querying, and data manipulation.

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
7/30

ADO.NET is the technology that provides the bridge between various ASP.NET control objects

and the backend data source. In this tutorial, we will look at data access and working with the

data in brief.

Retrieving and Displaying Data

It takes two types of data controls to retrieve and display data in ASP.NET:

 A data source control - It manages the connection to the data, selection of data, and other jobs

such as paging and caching of data etc.

 A data view control - It binds and displays the data and allows data manipulation.

We will discuss the data binding and data source controls in detail later. In this section, we will

use a SqlDataSource control to access data and a GridView control to display and manipulate

data in this chapter.

We will also use an Access database, which contains the details about .Net books

available in the market. Name of our database is ASPDotNetStepByStep.mdb and we will use

the data table DotNetReferences.

The table has the following columns: ID, Title, AuthorFirstName, AuthorLastName, Topic, and

Publisher.

Here is a snapshot of the data table: Let us directly move to action, take the following steps:

(1) Create a web site and add a SqlDataSourceControl on the web form.

(2) Click on the Configure Data Source option.

(3) Click on the New Connection button to establish connection with a database.

Once the connection is set up, you may save it for further use. At the next step, you are asked to

configure the select statement:

Select the columns and click next to complete the steps. Observe the WHERE…,

ORDER BY…, and the Advanced… buttons. These buttons allow you to provide the

ASP.NET where clause, order by clause, and specify the insert, update, and delete commands of

SQL respectively. This way, you can manipulate the data.

(6) Add a GridView control on the form. Choose the data source and format the control using

AutoFormat option.

After this, the formatted GridView control displays the column headings, and the application is

ready to execute.

ACTIVEX DATA OBJECTS:

What is ADO?

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
8/30

 ADO is a Microsoft technology

 ADO stands for ActiveX Data Objects

 ADO is a Microsoft Active-X component

 ADO is automatically installed with Microsoft IIS

 ADO is a programming interface to access data in a database

Accessing a Database from an ASP Page

The common way to access a database from inside an ASP page is to:

1. Create an ADO connection to a database

2. Open the database connection

3. Create an ADO recordset

4. Open the recordset

5. Extract the data you need from the recordset

6. Close the recordset

7. Close the connection

ADO.NET provides a bridge between the front end controls and the back end database. The

ADO.NET objects encapsulate all the data access operations and the controls interact with these

objects to display data, thus hiding the details of movement of data.

The following figure shows the ADO.NET objects at a glance:

ADO and ADO.NET Objects

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
9/30

ADO Objects

• Connection objects

• Command Objects

• Recordset Objects

ADO.NET Objects

Dataset and DataReader Objects

DataTable Object

Datatable mapping, dataview and datarelation objects

ADO Database Connection

Before a database can be accessed from a web page, a database connection has to be established.

Create a DSN-less Database Connection

The easiest way to connect to a database is to use a DSN-less connection. A DSN-less

connection can be used against any Microsoft Access database on your web site.

If you have a database called "northwind.mdb" located in a web directory like "c:/webdata/", you

can connect to the database with the following ASP code:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

%>

Note, from the example above, that you have to specify the Microsoft Access database driver

(Provider) and the physical path to the database on your computer.

Create an ODBC Database Connection

If you have an ODBC database called "northwind" you can connect to the database with the

following ASP code:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Open "northwind"

%>

With an ODBC connection, you can connect to any database, on any computer in your network,

as long as an ODBC connection is available.

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
10/30

An ODBC Connection to an MS Access Database

Here is how to create a connection to a MS Access Database:

1. Open the ODBC icon in your Control Panel.

2. Choose the System DSN tab.

3. Click on Add in the System DSN tab.

4. Select the Microsoft Access Driver. Click Finish.

5. In the next screen, click Select to locate the database.

6. Give the database a Data Source Name (DSN).

7. Click OK.

Note that this configuration has to be done on the computer where your web site is located. If

you are running Personal Web Server (PWS) or Internet Information Server (IIS) on your own

computer, the instructions above will work, but if your web site is located on a remote server,

you have to have physical access to that server, or ask your web host to do this for you.

The ADO Connection Object

The ADO Connection object is used to create an open connection to a data source. Through this

connection, you can access and manipulate a database.

ADO Recordset

To be able to read database data, the data must first be loaded into a recordset.

Create an ADO Table Recordset

After an ADO Database Connection has been created, as demonstrated in the previous chapter, it

is possible to create an ADO Recordset.

Suppose we have a database named "Northwind", we can get access to the "Customers" table

inside the database with the following lines:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=Server.CreateObject("ADODB.recordset")

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
11/30

rs.Open "Customers", conn

%>

Create an ADO SQL Recordset

We can also get access to the data in the "Customers" table using SQL:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

%>

Extract Data from the Recordset

After a recordset is opened, we can extract data from recordset.

Suppose we have a database named "Northwind", we can get access to the "Customers" table

inside the database with the following lines:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

for each x in rs.fields

 response.write(x.name)

 response.write(" = ")

 response.write(x.value)

next

%>

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
12/30

The ADO Recordset Object

The ADO Recordset object is used to hold a set of records from a database table.

ADO Queries

We may use SQL to create queries to specify only a selected set of records and fields to view.

Display Selected Data

We want to display only the records from the "Customers" table that have a "Companyname"

that starts with an A (remember to save the file with an .asp extension):

Example

<html>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=Server.CreateObject("ADODB.recordset")

sql="SELECT Companyname, Contactname FROM Customers

WHERE CompanyName LIKE 'A%'"

rs.Open sql, conn

%>

<table border="1" width="100%">

 <tr>

 <%for each x in rs.Fields

 response.write("<th>" & x.name & "</th>")

 next%>

 </tr>

 <%do until rs.EOF%>

 <tr>

 <%for each x in rs.Fields%>

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
13/30

 <td><%Response.Write(x.value)%></td>

 <%next

 rs.MoveNext%>

 </tr>

 <%loop

 rs.close

 conn.close%>

</table>

</body>

</html>

ADO Sort

We may use SQL to specify how to sort the data in the record set.

Sort the Data

We want to display the "Companyname" and "Contactname" fields from the "Customers" table,

ordered by "Companyname" (remember to save the file with an .asp extension):

Example

<html>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

sql="SELECT Companyname, Contactname FROM

Customers ORDER BY CompanyName"

rs.Open sql, conn

%>

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
14/30

<table border="1" width="100%">

 <tr>

 <%for each x in rs.Fields

 response.write("<th>" & x.name & "</th>")

 next%>

 </tr>

 <%do until rs.EOF%>

 <tr>

 <%for each x in rs.Fields%>

 <td><%Response.Write(x.value)%></td>

 <%next

 rs.MoveNext%>

 </tr>

 <%loop

 rs.close

 conn.close%>

</table>

</body>

</html>

ADO Add Records

We may use the SQL INSERT INTO command to add a record to a table in a database.

Add a Record to a Table in a Database

We want to add a new record to the Customers table in the Northwind database. We first create a

form that contains the fields we want to collect data from:

<html>

<body>

<form method="post" action="demo_add.asp">

<table>

<tr>

<td>CustomerID:</td>

<td><input name="custid"></td>

</tr><tr>

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
15/30

<td>Company Name:</td>

<td><input name="compname"></td>

</tr><tr>

<td>Contact Name:</td>

<td><input name="contname"></td>

</tr><tr>

<td>Address:</td>

<td><input name="address"></td>

</tr><tr>

<td>City:</td>

<td><input name="city"></td>

</tr><tr>

<td>Postal Code:</td>

<td><input name="postcode"></td>

</tr><tr>

<td>Country:</td>

<td><input name="country"></td>

</tr>

</table>

<input type="submit" value="Add New">

<input type="reset" value="Cancel">

</form>

</body>

</html>

When the user presses the submit button the form is sent to a file called "demo_add.asp". The

"demo_add.asp" file contains the code that will add a new record to the Customers table:

<html>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
16/30

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

sql="INSERT INTO customers (customerID,companyname,"

sql=sql & "contactname,address,city,postalcode,country)"

sql=sql & " VALUES "

sql=sql & "('" & Request.Form("custid") & "',"

sql=sql & "'" & Request.Form("compname") & "',"

sql=sql & "'" & Request.Form("contname") & "',"

sql=sql & "'" & Request.Form("address") & "',"

sql=sql & "'" & Request.Form("city") & "',"

sql=sql & "'" & Request.Form("postcode") & "',"

sql=sql & "'" & Request.Form("country") & "')"

on error resume next

conn.Execute sql,recaffected

if err<>0 then

 Response.Write("No update permissions!")

else

 Response.Write("<h3>" & recaffected & " record added</h3>")

end if

conn.close

%>

</body>

</html>

Important

If you use the SQL INSERT command be aware of the following:

 If the table contains a primary key, make sure to append a unique, non-Null value to the

primary key field (if not, the provider may not append the record, or an error occurs)

 If the table contains an AutoNumber field, do not include this field in the SQL INSERT

command (the value of this field will be taken care of automatically by the provider)

What about Fields With no Data?

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
17/30

In a MS Access database, you can enter zero-length strings ("") in Text, Hyperlink, and Memo

fields IF you set the AllowZeroLength property to Yes.

Note: Not all databases support zero-length strings and may cause an error when a record with

blank fields is added. It is important to check what data types your database supports.

ADO Update Records

We may use the SQL UPDATE command to update a record in a table in a database.

Update a Record in a Table

We want to update a record in the Customers table in the Northwind database. We first create a

table that lists all records in the Customers table:

<html>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=Server.CreateObject("ADODB.Recordset")

rs.open "SELECT * FROM customers",conn

%>

<h2>List Database</h2>

<table border="1" width="100%">

<tr>

<%

for each x in rs.Fields

 response.write("<th>" & ucase(x.name) & "</th>")

next

%>

</tr>

<% do until rs.EOF %>

<tr>

<form method="post" action="demo_update.asp">

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
18/30

<%

for each x in rs.Fields

 if lcase(x.name)="customerid" then%>

 <td>

 <input type="submit" name="customerID" value="<%=x.value%>">

 </td>

 <%else%>

 <td><%Response.Write(x.value)%></td>

 <%end if

next

%>

</form>

<%rs.MoveNext%>

</tr>

<%

loop

conn.close

%>

</table> </body>

</html>

If the user clicks on the button in the "customerID" column he or she will be taken to a new file

called "demo_update.asp". The "demo_update.asp" file contains the source code on how to

create input fields based on the fields from one record in the database table. It also contains a

"Update record" button that will save your changes:

<html>

<body>

<h2>Update Record</h2>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
19/30

conn.Open "c:/webdata/northwind.mdb"

cid=Request.Form("customerID")

if Request.form("companyname")="" then

 set rs=Server.CreateObject("ADODB.Recordset")

 rs.open "SELECT * FROM customers WHERE customerID='" & cid & "'",conn

 %>

 <form method="post" action="demo_update.asp">

 <table>

 <%for each x in rs.Fields%>

 <tr>

 <td><%=x.name%></td>

 <td><input name="<%=x.name%>" value="<%=x.value%>"></td>

 <%next%>

 </tr>

 </table>

 <input type="submit" value="Update record">

 </form>

<%

else

 sql="UPDATE customers SET "

 sql=sql & "companyname='" & Request.Form("companyname") & "',"

 sql=sql & "contactname='" & Request.Form("contactname") & "',"

 sql=sql & "address='" & Request.Form("address") & "',"

 sql=sql & "city='" & Request.Form("city") & "',"

 sql=sql & "postalcode='" & Request.Form("postalcode") & "',"

 sql=sql & "country='" & Request.Form("country") & "'"

 sql=sql & " WHERE customerID='" & cid & "'"

 on error resume next

 conn.Execute sql

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
20/30

 if err<>0 then

 response.write("No update permissions!")

 else

 response.write("Record " & cid & " was updated!")

 end if

end if

conn.close

%>

</body>

</html>

ADO Delete Records

We may use the SQL DELETE command to delete a record in a table in a database.

Delete a Record in a Table

We want to delete a record in the Customers table in the Northwind database. We first create a

table that lists all records in the Customers table:

<html>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=Server.CreateObject("ADODB.Recordset")

rs.open "SELECT * FROM customers",conn

%>

<h2>List Database</h2>

<table border="1" width="100%">

<tr>

<%

for each x in rs.Fields

 response.write("<th>" & ucase(x.name) & "</th>")

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
21/30

next

%>

</tr>

<% do until rs.EOF %>

<tr>

<form method="post" action="demo_delete.asp">

<%

for each x in rs.Fields

 if x.name="customerID" then%>

 <td>

 <input type="submit" name="customerID" value="<%=x.value%>">

 </td>

 <%else%>

 <td><%Response.Write(x.value)%></td>

 <%end if

next

%>

</form>

<%rs.MoveNext%>

</tr>

<%

loop

conn.close

%>

</table>

</body>

</html>

If the user clicks on the button in the "customerID" column he or she will be taken to a new file

called "demo_delete.asp". The "demo_delete.asp" file contains the source code on how to create

input fields based on the fields from one record in the database table. It also contains a "Delete

record" button that will delete the current record:

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
22/30

<html>

<body>

<h2>Delete Record</h2>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

cid=Request.Form("customerID")

if Request.form("companyname")="" then

 set rs=Server.CreateObject("ADODB.Recordset")

 rs.open "SELECT * FROM customers WHERE customerID='" & cid & "'",conn

 %>

 <form method="post" action="demo_delete.asp">

 <table>

 <%for each x in rs.Fields%>

 <tr>

 <td><%=x.name%></td>

 <td><input name="<%=x.name%>" value="<%=x.value%>"></td>

 <%next%>

 </tr>

 </table>

 <input type="submit" value="Delete record">

 </form>

<%

else

 sql="DELETE FROM customers"

 sql=sql & " WHERE customerID='" & cid & "'"

 on error resume next

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
23/30

 conn.Execute sql

 if err<>0 then

 response.write("No update permissions!")

 else

 response.write("Record " & cid & " was deleted!")

 end if

end if

conn.close

%>

</body>

</html>

ADO Command Object

Command Object

The ADO Command object is used to execute a single query against a database. The query can

perform actions like creating, adding, retrieving, deleting or updating records.

If the query is used to retrieve data, the data will be returned as a RecordSet object. This means

that the retrieved data can be manipulated by properties, collections, methods, and events of the

Recordset object.

The major feature of the Command object is the ability to use stored queries and procedures with

parameters.

ProgID

set objCommand=Server.CreateObject("ADODB.command")

Properties

Property Description

ActiveConnection Sets or returns a definition for a connection if the connection is

closed, or the current Connection object if the connection is open

CommandText Sets or returns a provider command

CommandTimeout Sets or returns the number of seconds to wait while attempting to

execute a command

http://www.w3schools.com/Asp/prop_comm_activeconn.asp
http://www.w3schools.com/Asp/prop_comm_commandtext.asp
http://www.w3schools.com/Asp/prop_commandtimeout.asp

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
24/30

CommandType Sets or returns the type of a Command object

Name Sets or returns the name of a Command object

Prepared Sets or returns a Boolean value that, if set to True, indicates that the

command should save a prepared version of the query before the first

execution

State Returns a value that describes if the Command object is open, closed,

connecting, executing or retrieving data

Methods

Method Description

Cancel Cancels an execution of a method

CreateParameter Creates a new Parameter object

Execute Executes the query, SQL statement or procedure in the

CommandText property

Collections

Collection Description

Parameters Contains all the Parameter objects of a Command Object

Properties Contains all the Property objects of a Command Object

ADO Connection Object

Connection Object

The ADO Connection Object is used to create an open connection to a data source. Through this

connection, you can access and manipulate a database.

If you want to access a database multiple times, you should establish a connection using the

Connection object. You can also make a connection to a database by passing a connection string

via a Command or Recordset object. However, this type of connection is only good for one

specific, single query.

http://www.w3schools.com/Asp/prop_comm_commandtype.asp
http://www.w3schools.com/Asp/prop_comm_name.asp
http://www.w3schools.com/Asp/prop_comm_prepared.asp
http://www.w3schools.com/Asp/prop_comm_state.asp
http://www.w3schools.com/Asp/met_comm_cancel.asp
http://www.w3schools.com/Asp/met_comm_createparameter.asp
http://www.w3schools.com/Asp/met_comm_execute.asp

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
25/30

ProgID

set objConnection=Server.CreateObject("ADODB.connection")

Properties

Property Description

Attributes Sets or returns the attributes of a Connection object

CommandTimeout Sets or returns the number of seconds to wait while attempting to

execute a command

ConnectionString Sets or returns the details used to create a connection to a data source

ConnectionTimeout Sets or returns the number of seconds to wait for a connection to open

CursorLocation Sets or returns the location of the cursor service

DefaultDatabase Sets or returns the default database name

IsolationLevel Sets or returns the isolation level

Mode Sets or returns the provider access permission

Provider Sets or returns the provider name

State Returns a value describing if the connection is open or closed

Version Returns the ADO version number

Methods

Method Description

BeginTrans Begins a new transaction

Cancel Cancels an execution

Close Closes a connection

CommitTrans Saves any changes and ends the current transaction

http://www.w3schools.com/Asp/prop_conn_attributes.asp
http://www.w3schools.com/Asp/prop_conn_commandtimeout.asp
http://www.w3schools.com/Asp/prop_conn_connectionstring.asp
http://www.w3schools.com/Asp/prop_conn_connectiontimeout.asp
http://www.w3schools.com/Asp/prop_conn_cursorlocation.asp
http://www.w3schools.com/Asp/prop_conn_defaultdb.asp
http://www.w3schools.com/Asp/prop_conn_isolationlevel.asp
http://www.w3schools.com/Asp/prop_conn_mode.asp
http://www.w3schools.com/Asp/prop_conn_provider.asp
http://www.w3schools.com/Asp/prop_conn_state.asp
http://www.w3schools.com/Asp/prop_conn_version.asp
http://www.w3schools.com/Asp/met_conn_begintrans.asp
http://www.w3schools.com/Asp/met_conn_cancel.asp
http://www.w3schools.com/Asp/met_conn_close.asp
http://www.w3schools.com/Asp/met_conn_begintrans.asp

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
26/30

Execute Executes a query, statement, procedure or provider specific text

Open Opens a connection

OpenSchema Returns schema information from the provider about the data source

RollbackTrans Cancels any changes in the current transaction and ends the transaction

Events

Event Description

BeginTransComplete Triggered after the BeginTrans operation

CommitTransComplete Triggered after the CommitTrans operation

ConnectComplete Triggered after a connection starts

Disconnect Triggered after a connection ends

ExecuteComplete Triggered after a command has finished executing

InfoMessage Triggered if a warning occurs during a ConnectionEvent operation

RollbackTransComplete Triggered after the RollbackTrans operation

WillConnect Triggered before a connection starts

WillExecute Triggered before a command is executed

Collections

Collection Description

Errors Contains all the Error objects of the Connection object

Properties Contains all the Property objects of the Connection object

ADO.NET is designed to help developers work efficiently with multi tier databases, across

intranet or Internet scenarios.

http://www.w3schools.com/Asp/met_conn_execute.asp
http://www.w3schools.com/Asp/met_conn_open.asp
http://www.w3schools.com/Asp/met_conn_openschema.asp
http://www.w3schools.com/Asp/met_conn_begintrans.asp
http://www.w3schools.com/Asp/ev_conn_transcomplete.asp
http://www.w3schools.com/Asp/ev_conn_transcomplete.asp
http://www.w3schools.com/Asp/ev_conn_connect.asp
http://www.w3schools.com/Asp/ev_conn_connect.asp
http://www.w3schools.com/Asp/ev_conn_execute.asp
http://www.w3schools.com/Asp/ev_conn_infomessage.asp
http://www.w3schools.com/Asp/ev_conn_transcomplete.asp
http://www.w3schools.com/Asp/ev_conn_connect.asp
http://www.w3schools.com/Asp/ev_conn_execute.asp

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
27/30

 The ADO.NET object model consists of two key components as follows:

 Connected model (.NET Data Provider - a set of components including the Connection,

Command, DataReader, and DataAdapter objects)

 Disconnected model (DataSet).

Connection

 The Connection object is the first component of ADO.NET. The connection object opens

a connection to your data source.

 All of the configurable aspects of a database connection are represented in the Connection

object, which includes ConnectionString and ConnectionTimeout.

 Connection object helps in accessing and manipulating a database. Database transactions are

also dependent upon the Connection object.

 In ADO.NET the type of the Connection is depended on what Database system you are working

with. The following are the commonly using the connections in the ADO.NET

 SqlConnection

 OleDbConnection

 OdbcConnection

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
28/30

Command

 The Command object is used to perform action on the data source. Command object can

execute stored procedures and T-SQL commands.

 You can execute SQL queries to return data in a DataSet or a DataReader object.

Command object performs the standard Select, Insert, Delete and Update T-SQL operations.

 DataReader

 The DataReader is built as a way to retrieve and examine the rows returned in response to

your query as quickly as possible.

No DataSet is created; in fact, no more than one row of information from the data source is in-

memory at a time. This makes the DataReader quiet efficient at returning large amounts of data.

The data returned by a DataReader is always read only. This class was built to be a lightweight

forward only, read only, way to run through data quickly (this was called a firehose cursor in

ADO).

 However, if you need to manipulate schema or use some advance display features such as

automatic paging, you must use a DataAdapter and DataSet.

DataReader object works in connected model.

 DataAdapter

 The DataAdapter takes the results of a database query from a Command object and

pushes them into a DataSet using the DataAdapter.Fill() method. Additionally the

DataAdapter.Update() method will negotiate any changes to a DataSet back to the original data

source.

 DataAdapter object works in connected model. DataAdapter performs five following steps:

1. Create/open the connection

2. Fetch the data as per command specified

3. Generate XML file of data

4. Fill data into DataSet.

5. Close connection.

Command Builder

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
29/30

 It is used to save changes made in-memory cache of data on backend. The work of

Command Builder is to generate Command as per changes in DataRows.

 Command Builder generates command on basis of row state. There are five row state:

1. Unchanged

2. Added

3. Deleted

4. Modified

5. Detached

Command Builder works on add, delete and modified row state only.

 Detached is used when object is not created from row state.

 Transaction

 The Transaction object is used to execute backend transaction. Transactions are used to

ensure that multiple changes to database rows occur as a single unit of work.

The Connection class has a BeginTransaction method that can be used to create a Transaction.

 A definite best practice is to ensure that Transactions are placed in Using statements for rapid

cleanup if they are not committed. Otherwise the objects (and any internal locks that may be

needed) will remain active until the GC gets around to cleaning it up.

 Unit-5 Web server and ASP.NET 2015-Batch

 Mr. K.Yuvaraj & K.Kathirvel Department of CS, CA & IT, KAHE
30/30

PART-B

POSSIBLE QUESTIONS(8 MARKS)

1. Elucidate the standards used by web services in ASP.NET

2. Explain in detail about ActiveX data objects

3. Discuss in detail about the purpose of WSDL and SOAP in ASP.NET.

4. Explain the various ADO objects used to work with the data retrieved from the database.

5. Illustrate the steps to create and access the Web Service.

6. Describe the process of building database tables in SQL Server in detail

7. Discuss in detail about how ASP.NET application will interact with database.

questions opt1 opt2 opt3 opt4

WSDL stands for ____________
Web Service
Development
Language

Web Service
Descriptive
Language

Windows
System
Development
Language

Window
Service
Dimensionin
g Language

SOAP stands for ________
System Object
Analysis
Program

System Object
Analysis
Program

Simple
Object
Access
Protocol

Service
Object
Analysis
Protocol

_________ has no user interface Web Services
Web
Application

Windows
Applications

All the above

If an XML Document conforms
to a DTD, then it is said to be

small valid documented well formed

XML documents should be
_______ , otherwise an XML
processor will generate an error

small valid documented well formed

Web services created in
ASP.NET have ___ for file
extension.

aspx asx asmx asp

_________ are used to resolve
naming collsions

classes namespaces methods packages

Web services that runs on its own
are called

standalone
services

automatic
services

web
references

None of the
Above

________ provides a language for
describing Web Services

UDDI WSDL DDT XML

__________ provides a consistent
set of statements that can be used
from the WSDL.

UDDI WSDL DDT XML

When making a Web Service
with VS.NET and the Web
Services template, the processing
codes are entered in

the Visual Basic
file

the interface
file

the Code-
Behind of
the service

None of the
Above

To access a Web Service within a
Web Form add a _____

call statement
Object of Web
Service

hyperlink
web
reference

WSDL description and discovery
information are kept in _______

the .aspx file the .asmx file
the .vsdisco
file

the .wsdl file

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 Pollachi Main Road, Eacharani Post, Coimbatore-641 021

 CLASS : III-B.Sc COMPUTER SCIENCE(2015-2018)
 Online Examination

 VISUAL PROGRAMMING (15CSU501)

What is the SQL command for
specifying criteria in a SELECT
statement?

WITHIN WHERE FROM FOR

What are the SQL text field
delimiters?

Single Quote Double Quote
The Percent
sign

The Slash
sign

What SQL aggregate function is
used to add all values in a
particular field

ADD SUM TOTAL COUNT

_________ are the user interfaces
of database applications used for
accessing and navigating data
tables

Queries Reports Forms Tables

____ are utility tools for
retrieving, updating and deleting
records

Queries Reports Forms Tables

The basic unit of storage in a
database is a ____

Queries Records Forms Tables

In a Database table Data is stored
in the form of ________

Queries Records Forms Tables

In a record each individual item
of data are stored in __________

Queries Records Fields Tables

__________ is used to uniquely
identify each record in a database

Index Primary key Field Data

Which of these providers is used
to access Microsofr Access
databases

Jet OLEDB 4.0 ODBC drivers
MSDataShap
e

SQL Server

Which of these does not belong to
ADO.NET Object Model

Request Object
Connection
Object

Dataset
Object

DataReader
Object

__________ Object is specifically
designed to run commands
against a data store

Connection Command
Dataset
Object

DataReader
Object

__________ Object allows to
connect to the data stores

Connection Command
Dataset
Object

DataReader
Object

Which of these is a Access Data
Type used to specify web
addresses and URLs

Text BLOB Memo Hyperlink

In Access, the Image data type are
stored using _______ data type

Text BLOB Memo Number

In SQL, the Image data type are
stored in ________ format

Text Unicode Binary Special

SQL supports _________ type of
relationships

one-to-one one-to-many
many-to-
many

All the
above

If a Web Service is to be
discovered a ______ document
must be available

UDDI WSDL DDT XML

The Code Behind page of
ASP.NET Web service files,
created in VB has ________ file
extension

.aspx.vb .aspw.vb .asm.vb .asmx.vb

What fundamental difference
between web services and web
applications made with web
forms affects users?

Web services
have no user
interface

Web services
respond much
more quickly

web services
are written in
XML

All the above

________ query adds records
matching some criteria from one
table to another table

select delete append update

The result of _________ query
contain every record matcing the
specified criteria.

select delete append update

________ query changes all
records matching specified
criteria form their existing value
to a new value

select delete append update

Equi-join in SQL is also known
as ______

Inner join Outer join Left join Right join

The _________ control ensure
that the end user value is between
a specified range

Compare
Validator

Range
Validator

Required
Field
Validator

Regular
Expression
Validator

Content pages use the ________
as file extension

.aspx .asp .vb.aspx
none of the
all

The page directives includes an
_________ attribute that can be
used to remove theming from
asp.net pages

stylesheettheme
EnableThemin
g

runat none

Expansion for CSS
Compare Style
sheet

Cascading
structured sheet

Cascading
Style sheet

Commenting
style sheet

In .net Framework __________ is
a set of computer software
components that can be used by
programmers to access data and
data services

Access Oracle SQL server ADO.Net

_________ object is responsible
for using stored procedures,
queries etc

Connection
object

Command
object

Data Adapter Datareader

_________ object acts as a bridge
between datastore and DataSet

Connection
object

Command
object

Data
Adapter

Datareader

 Which objects is used to create
foreign key between tables?

DataRelation

DataRelationsh
ip

DataConstrai
nt

Datakey

Which method of command
object doesn’t return any row?

ExecuteReader
ExecuteNonQu
ery

ExecuteQuer
y

ExecuteScala
r

Select the Interface which
provides Fast, connected forward-
only access to data

 IdataRecord Idatabase IdataReader Irecorder

Which architecture does Datasets
follow?

Parallel disconnected
Connection-
oriented

Distributed

Data source controls do not
render any ________markup to
the client.

XML javascript vbscript HTML

Where do we store connection
string in ASP.NET?

Web.config App.config Global.asax
Console.confi
g

Which of the following is not a
member of ConnectionObject?

EndTransaction
BeginTransacti
on

Open Execute

The Command object in
ADO.NET executes a
_______against the database and
retrieves a DataReader or DataSet
Object

Function Command Subroutine Object

Which of these data source
controls do not implement
Caching?

LinqDataSource

ObjectDataSou
rce

SqlDataSourc
e

XmlDataSour
ce

Which method do you invoke on
the DataAdapter control to load
your generated dataset with data?

Load () Fill() DataList DataBind

______ method copies the
structure of the DataSet including
all DataTable Schemas, relations,
constraints and does not copy any
data.

Copy CopyAll Clone Finalize

DataReaderObject is suitable
for______ access such populating
a list and then breaking the
connection.

Write-only Read-Write
Read-Write-
Execute

Read-only

The____________ property sets
the number of seconds that the
cache remains valid.

CacheExpiratio
nPolicy

CacheDuration
CacheKeyDe
pendency

EnableCachi
ng

Which objects is used to create
foreign key between tables?

DataRelation
DataRelationsh
ip

DataConstrai
nt

Datakey

ADO.Net provides the ability to
create and process in-memory
databases called

views relations datasets tables

_________________object can
hold more than one rowset from
the same data source and the
relationships between them

DataReader
object

Dataset object
OleDB
connection
object

Data Adapter

The ________ method of the
RadioButtonList control binds the
data source with the
RadioButtonList control.

DataSource DataBind() DataMember DataView

DropDownList control is used to
give a _______ select option to
the user from multiple listed
items

multiple Two single four

Method name that fires when user
changes the selection of the
dropdown box

AppendDataBo
undItems

AutoPostBack SelectedItem
OnSelectedIn
dexChanged

answer

Web Service
Descriptive
Language

Simple Object
Access Protocol

Web Services

valid

well formed

asmx

namespaces

standalone
services

WSDL

UDDI

the Code-
Behind of the
service

web reference

the .vsdisco file

WHERE

Single Quote

SUM

Forms

Queries

Tables

Records

Fields

Primary key

Jet OLEDB 4.0

Request Object

Command

Connection

Hyperlink

BLOB

Binary

All the above

WSDL

.asmx.vb

Web services
have no user
interface

append

select

update

Inner join

Range
Validator

.aspx

EnableTheming

Cascading Style
sheet

ADO.Net

Command
object

Data Adapter

DataRelation

ExecuteNonQuer
y

IdataReader

disconnected

HTML

Web.config

Execute

Command

 LinqDataSource

Fill()

Clone

Read-only

CacheDuration

DataRelation

datasets

Dataset object

DataBind()

single

OnSelectedIndex
Changed

First Internal Answer Key , Visual Programming Page 1/47

Register Number: ____________

[15CSU501]

KARPAGAM ACADEMY OF HIGHER EDUCATION
Karpagam University

(Under Section 3 of UGC Act 1956)

Eachanari, Coimbatore-641021.

(For the candidates admitted from 2015 onwards)

DEPARTMENTOF CS,CA& IT

FIRST INTERNAL EXAMINATION – 2017

Fifth Semester

Visual Programming
Date & Session: 17-7-2017 & AN Duration:2 Hours

Marks : 50

__

PART-A(20*1=20 Marks)

 (Answer All The Questions)

1. VB.Net is a _____________programming paradigm.

a. Procedural b. Structured c. Object Oriented d. Monolithic

2. IDE stands for _____________

a. Internet Design Environment c. Integrated Development Environment

b. Internet DistributedEnvironment d. Interface Design Environment

3. The final compiled version of a Project is ____

a. Form b. Software c. Components d. Files

4.______ is a collection of files that can be compiled to create a distributed component

 a. Form b. Software c. Components d. Project

5. Which function returns the system’s current date and time

a. DateTime.Now b. DateTime.Today c. DateTime.System d. DateTime.Current

6. Parameters to methods in VB.NET are declared by default as ---------

a. ByVal b. ByRef c. Val d. Ref

7. The String is -----------

a. locatable b. mutable c. immutable d. notable

8._____ is the value range of integer

a. -32767 to 32768 b. -32768 to 32767 c. 32767 to -32768 d. 32768 to -32767

9._____ is used for storing values temporarily.

a. character b. constant c. variable d. module

10. This property is used to change/display the title of the form

a. Name b. Text c. Title d. Form

First Internal Answer Key , Visual Programming Page 2/47

11. Which of the following statement should be used to return the control from the middle of a subroutine?

a. Exit b. Exit Subroutine c. Exit Sub d. All the above

12. How many values is a subroutine capable of returning?

a. 0 b. 1 c. Any number of values d. Asmany arguments it use

13. ------ specifies number of times the mouse button is pressed and released

a. Button b. Click c. Delta d. X

14. When a mouse button is pressed ______ event will fired

a. Mouse Enter b. Mouse Up c. Mouse down d. MouseHover

15. _____provides easy navigation through a list of items or a large amount of information

a. scroll bar b. command button c. tool bar d. tool box

16. The user action like key press, clicks, mouse movements are called ______________

a. Handlers b. Triggers c. Events d. Methods

17. The ------- property is used to get or set the mode behavior of the listbox control

a. Sorted b. SelectionMode c. SelectedIndex d. SelectedItem

18. The ------- property is used to set or retrieve the currently selected item in the combobox control

a. Sorted b. SelectionMode c. SelectedIndex d. SelectedItem

19. The -------- property allows automatic resizing of the label control according to the length of it’scaption.

a. Text b. Multiline c. PasswordChar d. Autosize

20. A ------- is a component used to accept input from the user or display the information on the form

a. text b. container c. control d. counter

PART – B (3 * 10 = 30 Marks)

(Answer ALL the Questions)

21. a) Discuss in detail about IDE components in VB.NET with neat sketch.
The IDE Components

The IDE of Visual Studio.NET contains numerous components, and it will take you a while to

explore them. It’s practically impossible to explain what each tool, each window, and each menu does.

The IDE Menu

The IDE main menu provides the following commands, which lead to submenus. Notice that most

menus can also be displayed as toolbars. Also, not all options are available at all times. The options that cannot
possibly apply to the current state of the IDE are either invisible or disabled. The Edit menu is a typical example.

First Internal Answer Key , Visual Programming Page 3/47

File Menu

The File menu contains commands for opening and saving projects, or project items, as well as the

commands for adding new or existing items to the current project.

Edit Menu

The Edit menu contains the usual editing commands. Among the commands of the Edit menu are the
Advanced command and the IntelliSense command.

Advanced Submenu

The more interesting options of the Edit ➢ Advanced submenu are the following. Notice that the

Advanced submenu is invisible while you design a form visually and appears when you switch to the code editor.

View White Space Space characters (necessary to indent lines of code and make it easy to

read) are replaced by periods.

Word Wrap When a code line’s length exceeds the length of the code window, it’s automatically wrapped.

Comment Selection/Uncomment Selection Comments are lines you insert between your

code’s statements to document your application. Sometimes, we want to disable a few lines from our code, but
not delete them (because we want to be able to restore them).

IntelliSense Submenu

The Edit ➢ IntelliSense menu item leads to a submenu with four options, which are described next.

IntelliSense is a feature of the editor (and of other Microsoft applications) that displays as much information as

possible, whenever possible.

List Members When this option is on, the editor lists all the members (properties, methods,

events, and argument list) in a drop-down list.

TextBox1.

a list with the members of the TextBox control will appear (as seen in Figure 1.12). Select the

Text property and then type the equal sign, followed by a string in quotes like the following:

TextBox1.Text = “Your User Name”

If you select a property that can accept a limited number of settings, you will see the names of the appropriate
constants in a drop-down list. If you enter the following statement:

TextBox1.TextAlign =

you will see the constants you can assign to the property (as shown in Figure 1.13, they are the values

HorizontalAlignment.Center, HorizontalAlignment.Right, and HorizontalAlignment.Left).

Parameter Info While editing code, you can move the pointer over a variable, method, or property and see its

declaration in a yellow tooltip.

Figure - Viewing the members of a control in an IntelliSense dropdown list

First Internal Answer Key , Visual Programming Page 4/47

Quick Info This is another IntelliSense feature that displays information about commands and
functions. When you type the opening parenthesis following the name of a function, for example, the function’s
arguments will be displayed in a tooltip box (a yellow horizontal box).

View Menu
This menu contains commands to display any toolbar or window of the IDE. You have already seen the

Toolbars menu (earlier, under “Starting a New Project”). The Other Windows command leads to submenu with

the names of some standard windows, including the Output and Command windows.

The Output window is the console of the application. The compiler’s messages, for example, are

displayed in the Output window. The Command window allows you to enter and execute statements. When you

debug an application, you can stop it and enter VB statements in the Command window.

Project Menu

This menu contains commands for adding items to the current project (an item can be a form, a file, a
component, even another project). The last option in this menu is the Set AsStartUp Project command, which lets

you specify which of the projects in a multiproject solution is the startup project (the one that will run when you

press F5).

Build Menu

The Build menu contains commands for building (compiling) your project. The two basic commands in

this menu are the Build and Rebuild All commands. The Build command compiles (builds the executable) of the
entire solution, but it doesn’t compile any components of the project that haven’t changed since the last build.

The Rebuild All command does the same, but it clears any existing files and builds the solution from scratch.

Debug Menu

This menu contains commands to start or end an application, as well as the basic debugging tools

Data Menu

This menu contains commands you will use with projects that access data.

Format Menu

The Format menu, which is visible only while you design a Windows or Web form, contains commands
for aligning the controls on the form.

Tools Menu

This menu contains a list of tools, and most of them apply to C++. The Macros command of he Tools

menu leads to a submenu with commands for creating macros. Just as you can create macros in an Office

application to simplify many tasks, you can create macros to automate many of the repetitive tasks you perform
in the IDE. I’m not going to discuss macros in this book, but once you familiarize yourself with the environment,

you should look up the topic of writing macros in the documentation.

First Internal Answer Key , Visual Programming Page 5/47

Window Menu
This is the typical Window menu of any Windows application. In addition to the list of open windows, it

also contains the Hide command, which hides all Toolboxes and devotes the entire window of the IDE to the

code editor or the Form Designer. The Toolboxes don’t disappear completely. They’re all retracted, and you can
see their tabs on the left and right edges of the IDE window. To expand a Toolbox, just hover the mouse pointer

over the corresponding tab.

Help Menu
This menu contains the various help options. The Dynamic Help command opens the Dynamic

Help window, which is populated with topics that apply to the current operation. The Index command opens the

Index window, where you can enter a topic and get help on the specific topic.

(OR)

b) (i) Explain in detail about types of variables in VB.NET with example.

Variables

 A variable is nothing but a name given to a storage area that our programs can manipulate. Each

variable in VB.Net has a specific type, which determines the size and layout of the variable's memory;

the range of values that can be stored within that memory; and the set of operations that can be applied

to the variable.

Declaring Variables
 To declare a variable, use the Dim statement followed by the variable's name, the As keyword, and its

type, as follows:

DimmetersAs Integer

Dim greetings As String

 The first variable, meters, will store integers, such as 3 or 1,002; the second variable, greetings, will store

text. You can declare multiple variables of the same or different type in the same line, as follows:

Dim QtyAs Integer, Amount As Decimal, CardNum As String

 If you want to declare multiple variables of the same type, you need not repeat the type. Just separate all

the variables of the same type with commas and set the type of the last variable:

Dim Length, Width, Height As Integer, Volume, Area As Double

 This statement declares three Integer variables and two Double variables. Double variables hold

fractional values (or floating-point values, as they're usually called) that are similar to the Single data type,

except that they can represent noninteger values with greater accuracy.

Variable-Naming Conventions

 When declaring variables, you should be aware of a few naming conventions. A variable's name

 Must begin with a letter, followed by more letters or digits.
 Can't contain embedded periods or other special punctuation symbols. The only special character that

can appear in a variable's name is the underscore character.

 Mustn't exceed 255 characters.
 Must be unique within its scope. This means that you can't have two identically named variables in the

same subroutine, but you can have a variable named counter in many different subroutines.

Variable names in VB 2008 are case-insensitive: myAge, myage, and MYAGE all refer to the same variable in

your code. Actually, as you enter variable names, the editor converts their casing so that they match their

declaration.

Variable Initialization

 The general form of initialization is:

variable_name= value;

for example,

First Internal Answer Key , Visual Programming Page 6/47

Dim pi AsDouble

pi=3.14159

You can initialize a variable at the time of declaration as follows:

DimStudentIDAsInteger=100

DimStudentNameAsString="Bill Smith"

Example

Try the following example which makes use of various types of variables:

ModulevariablesNdataypes

SubMain()

Dim a AsShort

Dim b AsInteger

Dim c AsDouble

a =10

 b =20

 c = a + b

Console.WriteLine("a = {0}, b = {1}, c = {2}", a, b, c)

Console.ReadLine()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result:

a = 10, b = 20, c = 30

Types of Variables
 Visual Basic recognizes the following five categories of variables:

 Numeric

 String

 Boolean
 Date

 Object

Data Type Identifier

 Finally, you can omit the As clause of the Dim statement, yet create typed variables, with the variable

declaration characters, or data type identifiers. These characters are special symbols that you append to the

variable name to denote the variable's type. To create a string variable, you can use this statement:

Dim myText$

The dollar sign signifies a string variable. Notice that the name of the variable includes the dollar sign — it's

myText$, not myText. To create a variable of a particular type, use one of the data declaration characters shown

in the following table. (Not all data types have their own identifiers.)

Table 2.3 - Data Type Definition Characters

Symbol Data Type Example

$ String A$, messageText$

% Integer (Int32) counter%, var%

& Long (Int64) population&, colorValue&

! Single distance!

First Internal Answer Key , Visual Programming Page 7/47

 Using type identifiers doesn't help to produce the cleanest and easiest-to-read code.

The Strict and Explicit options

 The Visual Basic compiler provides three options that determine how it handles variables:

 The Explicit option indicates whether you will declare all variables.

 The Strict option indicates whether all variables will be of a specific type.

 The Infer option indicates whether the compiler should determine the type of a variable from its value.

To change the default behavior, you must insert the following statement at the beginning of the file:

Option Explicit Off

 The Option Explicit statement must appear at the very beginning of the file. This setting affects the

code in the current module, not in all files of your project or solution. You can turn on the Strict (as well as the

Explicit) option for an entire solution. Open the solution's properties dialog box (right-click the solution's name

in Solution Explorer and select Properties), select the Compile tab, and set the Strict and Explicit options

accordingly, as shown in Figure

Figure - Setting the variable-related options in the Visual Studio Options dialog box

 The Strict option requires that variables are declared with a specific type. In other words, the Strict

option disallows the use of generic variables that can store any data type.

 The default value of the Explicit statement is On. This is also the recommended value, and you should

not make a habit of changing this setting. In the section "Reasons for Decalring Variables" later in this chapter,

you will see an example of the pitfalls you'll avoid by declaring your variables. By setting the Explicit option to

Off, you're telling VB that you intend to use variables without declaring them. As a consequence, VB can't make

any assumption about the variable's type, so it uses a generic type of variable that can hold any type of

information. These variables are called Object variables, and they're equivalent to the old variants.

While the option Explicit is set to Off, every time Visual Basic runs into an undeclared variable name, it creates

a new variable on the spot and uses it. The new variable's type is Object, the generic data type that can

accommodate all other data types. Using a new variable in your code is equivalent to declaring it without type.

Visual Basic adjusts its type according to the value you assign to it. Create two variables, var1 and var2, by

referencing them in your code with statements like the following ones:

Option Strict On

 If you attempt to execute any of the last two code segments while the Strict option is on, the compiler

will underline a segment of the statement to indicate an error. If you rest the pointer over the underlined segment

of the code, the following error message will appear in a tip box:

Option strict disallows implicit conversions from String to Double

(or whatever type of conversion is implied by the statement).

First Internal Answer Key , Visual Programming Page 8/47

 When the Strict option is set to On, the compiler doesn't disallow all implicit conversions between data

types. For example, it will allow you to assign the value of an integer to a Long, but not the opposite. The Long

value might exceed the range of values that can be represented by an Integer variable.

Object Variables

 Variants — variables without a fixed data type— were the bread and butter of VB programmers up to

version 6. Variants are the opposite of strictly typed variables: They can store all types of values, from a single

character to an object. If you're starting with VB 2008, you should use strictly typed variables. However, variants

are a major part of the history of VB, and most applications out there (the ones you may be called to maintain)

use them. I will discuss variants briefly in this section and show you what was so good (and bad) about them.

Variants, or object variables, were the most flexible data types because they could accommodate all other types.

A variable declared as Object (or a variable that hasn't been declared at all) is handled by Visual Basic according

to the variable's current contents. If you assign an integer value to an object variable, Visual Basic treats it as an

integer. If you assign a string to an object variable, Visual Basic treats it as a string. Variants can also hold

different data types in the course of the same program. Visual Basic performs the necessary conversions for you.

To declare a variant, you can turn off the Strict option and use the Dim statement without specifying a type, as

follows:

Dim myVar

 If you don't want to turn off the Strict option (which isn't recommended, anyway), you can declare the

variable with the Object data type:

Dim myVar As Object

Every time your code references a new variable, Visual Basic will create an object variable. For example, if the

variable validKey hasn't been declared, when Visual Basic runs into the following line, it will create a new object

variable and assign the value 002-6abbgd to it:

validKey = "002-6abbgd"

You can use object variables in both numeric and string calculations. Suppose that the variable modemSpeed has

been declared as Object with one of the following statements:

Dim modemSpeed ' with Option Strict = Off

Dim modemSpeed As Object ' with Option Strict = On

and later in your code you assign the following value to it:

modemSpeed = "28.8"

The modemSpeed variable is a string variable that you can use in statements such as the following:

MsgBox "We suggest a " &modemSpeed&" modem."

This statement displays the following message:

"We suggest a 28.8 modem."

Converting Variable Types

 In many situations, you will need to convert variables from one type into another. Table 2.4

shows the methods of the Convert class that perform data-type conversions.

In addition to the methods of the Convert class, you can still use the data-conversion functions of VB

(CInt() to convert a numeric value to an Integer, CDbl() to convert a numeric value to a Double, CSng()

to convert a numeric value to a Single, and so on), which you can look up in the documentation. If

you're writing new applications in VB 2008, use the new Convert class to convert between data types.

To convert the variable initialized as the following

Dim A As Integer

to a Double, use the ToDouble method of the Convert class:

DimBAsDouble

B = Convert.ToDouble(A)

Suppose that you have declared two integers, as follows:

First Internal Answer Key , Visual Programming Page 9/47

DimAAsInteger,BAsInteger

A=23

B = 7

The result of the operation A / B will be a Double value. The following statement

Debug.Write(A / B)

 displays the value 3.28571428571429. The result is a Double value, which provides the

greatest possible accuracy. If you attempt to assign the result to a variable that hasn't been declared as

Double, and the Strict option is on, then VB 2008 will generate an error message. No other data type

can accept this value without loss of accuracy. To store the result to a Single variable, you must convert

it explicitly with a statement like the following:

Convert.ToSingle(A / B)

 You can also use the DirectCast() function to convert a variable or expression from one type

to another. The DirectCast() function is identical to the CType() function. Let's say the variable A has

been declared as String and holds the value 34.56. The following statement converts the value of the A

variable to a Decimal value and uses it in a calculation:

DimAAsString="34.56"

DimBAsDouble

B = DirectCast(A, Double) / 1.14

The conversion is necessary only if the Strict option is on, but it's a good practice to perform your

conversions explicitly. The following section explains what might happen if your code relies on

implicit conversions.

Table 2.4 - The Data-Type Conversion Methods of the Convert Class

Method Converts Its Argument To

ToBoolean Boolean

ToByte Byte

ToChar Unicode character

ToDateTime Date

ToDecimal Decimal

ToDouble Double

ToInt16 Short Integer (2-byte integer, Int16)

ToInt32 Integer (4-byte integer, Int32)

ToInt64 Long (8-byte integer, Int64)

ToSByte Signed Byte

CShort Short (2-byte integer, Int16)

ToSingle Single

ToString String

First Internal Answer Key , Visual Programming Page 10/47

 (ii) Explain in detail about Argument Passing Mechanism in functions with example.

Argument Passing Mechanisms

One of the most important topics in implementing your own procedures is the mechanism used

to pass arguments. The examples so far have used the default mechanism: passing arguments by value.

The other mechanism is passing them by reference. Although most programmers use the default

mechanism, it's important to know the difference between the two mechanisms and when to use each.

 Passing arguments By Value

 Passing arguments by Reference

 Returning Multiple Values

 Passing Objects as Arguments
Passing arguments by value

This is the default mechanism for passing parameters to a method. In this mechanism, when a

method is called, a new storage location is created for each value parameter. The values of the actual

parameters are copied into them. So, the changes made to the parameter inside the method have no

effect on the argument.

In VB.Net, you declare the reference parameters using the ByVal keyword. The following example

demonstrates the concept:

ModuleparamByval

Subswap(ByVal x AsInteger,ByVal y AsInteger)

Dim temp AsInteger

temp= x ' save the value of x

 x = y ' put y into x

 y = temp 'put temp into y

EndSub

SubMain()

' local variable definition

Dim a AsInteger=100

Dim b AsInteger=200

Console.WriteLine("Before swap, value of a : {0}", a)

Console.WriteLine("Before swap, value of b : {0}", b)

' calling a function to swap the values '

swap(a, b)

Console.WriteLine("After swap, value of a : {0}", a)

Console.WriteLine("After swap, value of b : {0}", b)

Console.ReadLine()

EndSub

EndModule

When the above code is compiled and executed, it produces following result:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

It shows that there is no change in the values though they had been changed inside the function.

Passing Parameters by Reference

 A reference parameter is a reference to a memory location of a variable. When you pass

parameters by reference, unlike value parameters, a new storage location is not created for these

http://visualbasic.w3computing.com/vb2008/3/vb-arguments-returning-multiple-values.php
http://visualbasic.w3computing.com/vb2008/3/vb-passing-objects-arguments.php

First Internal Answer Key , Visual Programming Page 11/47

parameters. The reference parameters represent the same memory location as the actual parameters that

are supplied to the method.

In VB.Net, you declare the reference parameters using the ByRef keyword. The following example

demonstrates this:

ModuleparamByref

Subswap(ByRef x AsInteger,ByRef y AsInteger)

Dim temp AsInteger

temp= x ' save the value of x

 x = y ' put y into x

 y = temp 'put temp into y

EndSub

SubMain()

' local variable definition

Dim a AsInteger=100

Dim b AsInteger=200

Console.WriteLine("Before swap, value of a : {0}", a)

Console.WriteLine("Before swap, value of b : {0}", b)

' calling a function to swap the values '

swap(a, b)

Console.WriteLine("After swap, value of a : {0}", a)

Console.WriteLine("After swap, value of b : {0}", b)

Console.ReadLine()

EndSub

EndModule

When the above code is compiled and executed, it produces following result:

Before swap, value of a : 100

Before swap, value of b : 200

After swap, value of a : 200

After swap, value of b : 100

Returning Multiple Values

 If you want to write a function that returns more than a single result, you will most likely pass

additional arguments by reference and set their values from within the function's code. The

CalculateStatistics() function, calculates the basic statistics of a data set. The values of the data set are

stored in an array, which is passed to the function by reference. The CalculateStatistics() function must

return two values: the average and standard deviation of the data set. Here's the declaration of the

CalculateStatistics() function:
Function CalculateStatistics(ByRef Data() As Double, ByRefAvg As Double, ByRefStDev As Double) As

Integer

 The function returns an integer, which is the number of values in the data set. The two important

values calculated by the function are returned in the Avg and StDev arguments:

Function CalculateStatistics(ByRef Data() As Double, ByRefAvg As Double, ByRefStDev As Double) As

Integer

Dim i As Integer, sum As Double, sumSqr As Double, points As Integer

points = Data.Length

For i = 0 To points - 1

sum = sum + Data(i)

sumSqr = sumSqr + Data(i) ˆ 2

First Internal Answer Key , Visual Programming Page 12/47

Next

Avg = sum / points

StDev = System.Math.Sqrt(sumSqr / points - Avg ˆ 2)

Return(points)

End Function

To call the CalculateStatistics() function from within your code, set up an array of Doubles and declare two

variables that will hold the average and standard deviation of the data set:

Dim Values(99) As Double

' Statements to populate the data set

Dim average, deviation As Double

Dim points As Integer

points = Stats(Values, average, deviation)

Debug.WriteLine points & " values processed."

Debug.WriteLine "The average is "& average & " and"

Debug.WriteLine "the standard deviation is " & deviation

 Using ByRef arguments is the simplest method for a function to return multiple values. However, the

definition of your functions might become cluttered, especially if youwant to returnmore than a few values.

Another problem with this technique is that it's not clear whether an argument must be set before calling the

function. As you will see shortly, it is possible for a function to return an array or a custom structure with fields

for any number of values.

Passing Objects as Arguments

 When you pass objects as arguments, they're passed by reference, even if you have specified

the ByVal keyword. The procedure can access and modify the members of the object passed as an

argument, and the new value will be visible in the procedure that made the call.
The following code segment demonstrates this. The object is an ArrayList, which is an enhanced form of an

array. The ArrayList is discussed in detail later in the tutorial, but to follow this example all you need to know is

that the Add method adds new items to the ArrayList, and you can access individual items with an index value,

similar to an array's elements. In the Click event handler of a Button control, create a new instance of the

ArrayList object and call the PopulateList() subroutine to populate the list. Even if the ArrayList object is passed

to the subroutine by value, the subroutine has access to its items:

Private Sub Button1 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

Button1.Click

Dim aList As New ArrayList()

PopulateList(aList)

Debug.WriteLine(aList(0).ToString)

Debug.WriteLine(aList(1).ToString)

Debug.WriteLine(aList(2).ToString)

End Sub

Sub PopulateList(ByVal list As ArrayList)

list.Add("1")

list.Add("2")

list.Add("3")

End Sub

First Internal Answer Key , Visual Programming Page 13/47

The same is true for arrays and all other collections. Even if you specify the ByVal keyword, they're passed by

reference.

Passing unknown number of Arguments

 VB 2008 supports the ParamArray keyword, which allows you to pass a variable number of

arguments to a procedure.
Let's look at an example. Suppose that you want to populate a ListBox control with elements. To add an item to

the ListBox control, you call the Add method of its Items collection as follows:

ListBox1.Items.Add("new item")

This statement adds the string new item to the ListBox1 control. If you frequently add multiple items to a

ListBox control from within your code, you can write a subroutine that performs this task. The following

subroutine adds a variable number of arguments to the ListBox1 control:

Sub AddNamesToList(ByValParamArrayNamesArray() As Object)

Dim x As Object

For Each x In NamesArray

ListBox1.Items.Add(x)

Next x

End Sub

 This subroutine's argument is an array prefixed with the keyword ParamArray, which holds all the

parameters passed to the subroutine. If the parameter array holds items of the same type, you can declare the

array to be of the specific type (string, integer, and so on). To add items to the list, call the AddNamesToList()

subroutine as follows:

 AddNamesToList("Robert", "Manny", "Renee", "Charles", "Madonna")

 If you want to know the number of arguments actually passed to the procedure, use the Length

property of the parameter array. The number of arguments passed to the AddNamesToList() subroutine is given

by the following expression:

NamesArray.Length

The following loop goes through all the elements of the NamesArray and adds them to the list:

Dim i As Integer

For i = 0 to NamesArray.GetUpperBound(0)

ListBox1.Items.Add(NamesArray(i))

Next i

VB arrays are zero-based (the index of the first item is 0), and the GetUpperBound method returns the index of

the last item in the array.

 A procedure that accepts multiple arguments relies on the order of the arguments. To omit some of the

arguments, you must use the corresponding comma. Let's say you want to call such a procedure and specify the

first, third, and fourth arguments. The procedure must be called as follows:

ProcName(arg1, , arg3, arg4)

 The arguments to similar procedures are usually of equal stature, and their order doesn't make any

difference. A function that calculates the mean or other basic statistics of a set of numbers, or a subroutine that

populates a ListBox or ComboBox control, are prime candidates for implementing this technique. If the

procedure accepts a variable number of arguments that aren't equal in stature, you should consider the technique

described in the following section. If the function accepts a parameter array, this must the last argument in the

list, and none of the other parameters can be optional.

First Internal Answer Key , Visual Programming Page 14/47

Param Arrays

 At times, while declaring a function or sub procedure you are not sure of the number of

arguments passed as a parameter. VB.Net param arrays (or parameter arrays) come into help at these

times.

The following example demonstrates this:

Modulemyparamfunc

FunctionAddElements(ParamArrayarrAsInteger())AsInteger

Dim sum AsInteger=0

DimiAsInteger=0

ForEachiInarr

sum+=i

Nexti

Return sum

EndFunction

SubMain()

Dim sum AsInteger

sum=AddElements(512,720,250,567,889)

Console.WriteLine("The sum is: {0}", sum)

Console.ReadLine()

EndSub

EndModule

When the above code is compiled and executed, it produces following result:

The sum is: 2938

22. a) (i) Explain in detail about control flow statements with examples.

Flow Control statements

Decision making structures require that the programmer specify one or more conditions to be

evaluated or tested by the program, along with a statement or statements to be executed if the condition

is determined to be true, and optionally, other statements to be executed if the condition is determined

to be false

Decision Statements

Applications need a mechanism to test conditions and take a different course of action depending

on the outcome of the test. Visual Basic provides three such decision, or conditional, statements:
 If. . .Then

 If. . .Then. . .Else
 Select Case

http://visualbasic.w3computing.com/vb2008/3/vb-if-then-statement.php
http://visualbasic.w3computing.com/vb2008/3/vb-if-then-else.php
http://visualbasic.w3computing.com/vb2008/3/vb-select-case.php

First Internal Answer Key , Visual Programming Page 15/47

Loop Statements

Loop statements allow you to execute one or more lines of code repetitively. Many tasks consist of

operations that must be repeated over and over again, and loop statements are an important part of any

programming language. Visual Basic supports the following loop statements:
 For. . .Next

 Do. . .Loop

 While. . .End While

Decision Statements

1) If Then Statement

 If Then statement is a control structure which executes a set of code only when the given condition is true.

Syntax:

If [Condition] Then

 [Statements]

In the above syntax when the Condition is true then the Statements after Then are executed.

Flow Diagram:

Example:

Private Sub Button1_Click_1(ByVal sender As System.Object,

ByVal e AsSystem.EventArgs) Handles Button1.Click

 If Val(TextBox1.Text) > 25 Then

 TextBox2.Text = "Eligible"

 End If
Description:

In the above If Then example the button click event is used to check if the age got using TextBox1 is

greater than 25, if true a message is displayed in TextBox2

2) If Then Else Statement

 If Then Else statement is a control structure which executes different set of code statements when the given

condition is true or false.

http://visualbasic.w3computing.com/vb2008/3/vb-for-next-statement.php
http://visualbasic.w3computing.com/vb2008/3/vb-do-while-loop.php
http://visualbasic.w3computing.com/vb2008/3/vb-while-end-while.php

First Internal Answer Key , Visual Programming Page 16/47

Syntax:

If [Condition] Then

 [Statements]

Else

 [Statements]

In the above syntax when the Condition is true, the Statements after Then are executed.If the

condition is false then the statements after the Else part is executed.

Flow Diagram:

Example:

 Private Sub Button1_Click(ByVal sender As System.Object,

ByVal e AsSystem.EventArgs) Handles Button1.Click

 If Val(TextBox1.Text) >= 40 Then

MsgBox("GRADUATED")

 Else

MsgBox("NOT GRADUATED")

 End If

 End Sub
Description:

 In the above If Then Else example the marks are entered in TextBox1.When a button is

clicked a message GRADUATED is displayed if the condition (>40) is true and NOT

GRADUATED if it is false.

3) Nested If Then Else Statement

 Nested If..Then..Else statement is used to check multiple conditions using if then else statements nested

inside one another.

Syntax:

If [Condition] Then

 If [Condition] Then

 [Statements]

First Internal Answer Key , Visual Programming Page 17/47

 Else

 [Statements]

Else

 [Statements]

 In the above syntax when the Condition of the first if then else is true, the second if then else

is executed to check another two conditions. If false the statements under the Else part of the first

statement is executed.

Flow Diagram

Example:

 Private Sub Button1_Click(ByVal sender As System.Object,

ByVal e AsSystem.EventArgs) Handles Button1.Click

 If Val(TextBox1.Text) >= 40 Then

 If Val(TextBox1.Text) >= 60 Then

MsgBox("You have FIRST Class")

 Else

MsgBox("You have SECOND Class")

 End If

 Else

MsgBox("Check your Average marks entered")

 End If

 End Sub
Description:

 In the above nested if then else statement example first the average mark is checked if it is

more than 40, if true the second if then else control is used check for first or second class. If the first

condition is false the statements under the else part is executed.
4) Select Case Statement

 Select case statement is used when the expected results for a condition can be known previously so that

different set of operations can be done based on each condition.

Syntax:

 Select Case Expression

 Case Expression1

 Statement1

 Case Expression2

 Statement2

 Case Expressionn

First Internal Answer Key , Visual Programming Page 18/47

Statementn

 ...

 Case Else

 Statement

 End Select

 In the above syntax, the value of the Expression is checked with Expression1..n to check if

the condition is true. If none of the conditions are matched the statements under the Case Else is

executed.

Flow Diagram:

Example:

 Private Sub Button1_Click(ByVal sender As System.Object,

ByVal e AsSystem.EventArgs) Handles Button1.Click

 Dim c As String

 c = TextBox1.Text

 Select c

 Case "Red"

MsgBox("Color code of Red is::#FF0000")

 Case "Green"

MsgBox("Color code of Green is::#808000")

 Case "Blue"

MsgBox("Color code of Blue is:: #0000FF")

 Case Else

MsgBox("Enter correct choice")

 End Select

 End Sub
Description:

 In the above example based on the color input in TextBox1, the color code for RGB colors

are displayed, if the color is different then the statement under Case Else is executed. Thus we can

easily execute the select case statement.

First Internal Answer Key , Visual Programming Page 19/47

Loop Statements

1) Do While Loop Statement

 Do While Loop Statement is used to execute a set of statements only if the condition is satisfied. But the loop

get executed once for a false condition once before exiting the loop. This is also know as Entry Controlledloop.

Syntax:

 Do While [Condition]

 [Statements]

Loop

In the above syntax the Statements are executed till the Condition remains true.
Example:

 Private Sub Form1_Load(ByVal sender As System.Object,

ByVal e AsSystem.EventArgs) Handles MyBase.Load

Dim a As Integer

 a = 1

Do While a < 100

 a = a * 2

MsgBox("Product is::" & a)

Loop

 End Sub
Description:

 In the above Do While Loop example the loop is continued after the value 64 to display 128

which is false according to the given condition and then the loop exits.
2) Do Loop While Statement

 Do Loop While Statement executes a set of statements and checks the condition, this is repeated until the

condition is true. .It is also known as an Exit Control loop

Syntax:

 Do

 [Statements]

 Loop While [Condition]

In the above syntax the Statements are executed first then the Condition is checked to find if it is true.
Example:

 Private Sub Form1_Load(ByVal sender As System.Object,

ByVal e AsSystem.EventArgs) Handles MyBase.Load

Dim cnt As Integer

 Do

 cnt = 10

MsgBox("Value of cnt is::" &cnt)

 Loop While cnt<= 9

 End Sub
Description:

In the above Do Loop While example, a message is displayed with a value 10 only after which the

condition is checked, since it is not satisfied the loop exits.

First Internal Answer Key , Visual Programming Page 20/47

3) For Next Loop Statement

 For Next Loop Statement executes a set of statements repeatedly in a loop for the given initial, final value

range with the specified step by step increment or decrement value.

Syntax:

 For counter = start To end [Step]

 [Statement]

 Next [counter]

In the above syntax the Counter is range of values specified using the Start ,End parameters.

The Step specifies step increment or decrement value of the counter for which the statements are

executed.
Example:

 Private Sub Form1_Load(ByVal sender As System.Object,

ByVal e AsSystem.EventArgs) Handles MyBase.Load

Dim i As Integer

 Dim j As Integer

j = 0

 For i = 1 To 10 Step 1

 j = j + 1

MsgBox("Value of j is::" & j)

 Next i

 End Sub
Description:

 In the above For Next Loop example the counter value of i is set to be in the range of 1 to 10

and is incremented by 1. The value of j is increased by 1 for 10 times as the loop is repeated.

Nested Control Structures
 You can place, or nest, control structures inside other control structures (such as an If. . .Then block

within a For. . .Next loop). Control structures in Visual Basic can be nested in as many levels as you want. The

editor automatically indents the bodies of nested decision and loop structures to make the program easier to read.

When you nest control structures, you must make sure that they open and close within the same structure. In

other words, you can't start a For. . .Next loop in an If statement and close the loop after the corresponding End

If. The following code segment demonstrates how to nest several flow-control statements. (The curly brackets

denote that regular statements should appear in their place and will not compile, of course.)

Fora=1To100

{statements}

Ifa=99Then

{statements}

EndIf

Whileb<a

{statements}

Iftotal<=0Then

{statements}

EndIf

EndWhile

Forc=1toa

{statements}

Nextc

Next a

First Internal Answer Key , Visual Programming Page 21/47

Listing 3.7: Simple Nested If Statements

DimIncomeAsDecimal

Income=Convert.ToDecimal(InputBox("Enteryourincome"))

IfIncome>0Then

IfIncome>12000Then

MsgBox"You will pay taxes this year"

Else

MsgBox"You won't pay any taxes this year"

End If

Else

MsgBox"Bummer"

End If

The Exit Statement
 The Exit statement allows you to exit prematurely from a block of statements in a control structure,

from a loop, or even from a procedure. Suppose that you have a For. . .Next loop that calculates the square root

of a series of numbers. Because the square root of negative numbers can't be calculated (the Math.Sqrt method

will generate a runtime error

Fori=0ToUBound(nArray)

IfnArray(i)<0Then

MsgBox("Can'tcompletecalculations"&vbCrLf&_

"Item"&i.ToString&"isnegative!"

ExitFor

EndIf

nArray(i)=Math.Sqrt(nArray(i))

Next

If a negative element is found in this loop, the program exits the loop and continues with the statement following

the Next statement.

 There are similar Exit statements for the Do loop (Exit Do), the While loop (Exit While), the Select

statement (Exit Select), and for functions and subroutines (Exit Function and Exit Sub). If the previous loop was

part of a function, you might want to display an error and exit not only the loop, but also the function itself by

using the Exit Function statement.

(ii) Discuss the following with examples (i) Constants(ii) Arrays

Constants

Some variables don't change value during the execution of a program. These variables are constants that

appear many times in your code. For instance, if your program does math calculations, the value of pi (3.14159. .

.) might appear many times. Instead of typing the value 3.14159 over and over again, you can define a constant,

name it pi, and use the name of the constant in your code. The statement

circumference = 2 * pi * radius

is much easier to understand than the equivalent

circumference = 2 * 3.14159 * radius

You could declare pi as a variable, but constants are preferred for two reasons:

Constants don't change value. This is a safety feature. After a constant has been declared, you can't change its

value in subsequent statements, so you can be sure that the value specified in the constant's declaration will take

effect in the entire program.

First Internal Answer Key , Visual Programming Page 22/47

Constants are processed faster than variables. When the program is running, the values of constants don't

have to be looked up. The compiler substitutes constant names with their values, and the program executes

faster.

' The following statements declare constants.

ConstmaxvalAsLong=4999

PublicConst message AsString="HELLO"

PrivateConstpiValueAsDouble=3.1415

Example

The following example demonstrates declaration and use of a constant value:

ModuleconstantsNenum

SubMain()

Const PI =3.14149

Dim radius, area AsSingle

radius=7

area= PI * radius * radius

Console.WriteLine("Area = "&Str(area))

Console.ReadKey()

EndSub

EndModule

When the above code is compiled and executed, it produces the following result:

Area = 153.933

Print and Display Constants in VB.Net

VB.Net provides the following print and display constants:

Constant Description

vbCrLf Carriage return/linefeed character combination.

vbCr Carriage return character.

vbLf Linefeed character.

vbNewLine Newline character.

vbNullChar Null character.

vbNullString Not the same as a zero-length string (""); used for calling external procedures.

vbObjectError

Error number. User-defined error numbers should be greater than this value.

For example:

Err.Raise(Number) = vbObjectError + 1000

vbTab Tab character.

vbBack Backspace character.

Arrays

An array stores a fixed-size sequential collection of elements of the same type. An array is used

to store a collection of data, but it is often more useful to think of an array as a collection of variables of

the same type.

First Internal Answer Key , Visual Programming Page 23/47

All arrays consist of contiguous memory locations. The lowest address corresponds to the first element

and the highest address to the last element.

Creating Arrays in VB.Net

To declare an array in VB.Net, you use the Dim statement. For example,

DimintData(30) ' an array of 31 elements

DimstrData(20)AsString ' an array of 21 strings

DimtwoDarray(10,20)AsInteger 'a two dimensional array of integers

Dimranges(10,100) 'a two dimensional array

You can also initialize the array elements while declaring the array. For example,

DimintData()AsInteger={12,16,20,24,28,32}

Dimnames()AsString={"Karthik","Sandhya","Shivangi","Ashwitha","Somnath"}

DimmiscData()AsObject={"Hello World",12d,16ui,"A"c}

Initializing Arrays

 Just as you can initialize variables in the same line in which you declare them, you can

initialize arrays, too, with the following constructor (an array initializer, as it's called):

Dim arrayname() As type = {entry0, entry1, ... entryN}

Here's an example that initializes an array of strings:

Dim Names() As String = {"Joe Doe", "Peter Smack"}

This statement is equivalent to the following statements, which declare an array with two elements and

then set their values:

DimNames(1)AsString

Names(0)="JoeDoe"

Names(1) = "Peter Smack"

Array Limits

 The first element of an array has index 0. The number that appears in parentheses in the Dim

statement is one fewer than the array's total capacity and is the array's upper limit (or upper bound). The

index of the last element of an array (its upper bound) is given by the method GetUpperBound, which

accepts as an argument the dimension of the array and returns the upper bound for this dimension.

The arrays we examined so far are one-dimensional and the argument to be passed to the

GetUpperBound method is the value 0. The total number of elements in the array is given by the

method GetLength, which also accepts a dimension as an argument. The upper bound of the following

array is 19, and the capacity of the array is 20 elements:

Dim Names(19) As Integer

The first element is Names(0), and the last is Names(19). If you execute the following statements, the

highlighted values will appear in the Output window:

Debug.WriteLine(Names.GetLowerBound(0))

0

Debug.WriteLine(Names.GetUpperBound(0))

19

To assign a value to the first and last element of the Names array, use the following statements:

Names(0)="Firstentry"

Names(19) = "Last entry"

First Internal Answer Key , Visual Programming Page 24/47

If you want to iterate through the array's elements, use a loop like the following one:

DimiAsInteger,myArray(19)AsInteger

Fori=0TomyArray.GetUpperBound(0)

myArray(i)=i*1000

Next

 The actual number of elements in an array is given by the expression

myArray.GetUpperBound(0) + 1. You can also use the array's Length property to retrieve the count of

elements. The following statement will print the number of elements in the array myArray in the

Output window:

Debug.WriteLine(myArray.Length)

Dynamic Arrays

 Dynamic arrays are arrays that can be dimensioned and re-dimensioned as par the need of the

program. You can declare a dynamic array using the ReDim statement.

Syntax for ReDim statement:

ReDim [Preserve] arrayname(subscripts)

Where,

 The Preserve keyword helps to preserve the data in an existing array, when you resize it.

arrayname is the name of the array to re-dimension.

subscripts specifies the new dimension.

ModulearrayApl

SubMain()

Dimmarks()AsInteger

ReDimmarks(2)

marks(0)=85

marks(1)=75

marks(2)=90

ReDimPreservemarks(10)

marks(3)=80

marks(4)=76

marks(5)=92

marks(6)=99

marks(7)=79

marks(8)=75

Fori=0To10

Console.WriteLine(i&vbTab& marks(i))

Nexti

Console.ReadKey()

EndSub

EndModule

Multi-Dimensional Arrays

 VB.Net allows multidimensional arrays. Multidimensional arrays are also called rectangular

arrays.

You can declare a 2-dimensional array of strings as:

DimtwoDStringArray(10,20)AsString

or, a 3-dimensional array of Integer variables:

DimthreeDIntArray(10,10,10)AsInteger

The following program demonstrates creating and using a 2-dimensional array:

First Internal Answer Key , Visual Programming Page 25/47

ModulearrayApl

SubMain()

' an array with 5 rows and 2 columns

Dim a(,)AsInteger={{0,0},{1,2},{2,4},{3,6},{4,8}}

Dim i, j AsInteger

' output each array element's value '

Fori=0To4

For j =0To1

Console.WriteLine("a[{0},{1}] = {2}",i, j, a(i, j))

Next j

Nexti

Console.ReadKey()

EndSub

EndModule

Reinitializing Arrays

 We can change the size of an array after creating them. The ReDim statement assigns a

completely new array object to the specified array variable. You use ReDim statement to change the

number of elements in an array. The following lines of code demonstrate that. This code reinitializes

the Test array declared above.
Dim Test(10) as Integer

ReDimTest(25) as Integer

'Reinitializing the array

 When using the Redim statement all the data contained in the array is lost. If you want to

preserve existing data when reinitializing an array then you should use the Preserve keyword

which looks like this:
Dim Test() as Integer={1,3,5}

'declares an array an initializes it with three members

ReDim Preserve Test(25)

'resizes the array and retains the the data in elements 0 to 2

(OR)

b) (i) Explain about Modular Coding with example.

MODULAR CODING

The idea of breaking a large application into smaller, more manageable sections is not new to

computing. Few tasks, programming or otherwise, can be managed as a whole. The event handlers are just one

example of breaking a large application into smaller tasks. Some event handlers may require a lot of code.

Subroutines

A subroutine is a block of statements that carries out a well-defined task. The block of

statements is placed within a set of Sub. . .End Sub statements and can be invoked by name.

The following subroutine displays the current date in a message box and can be called by its name,

ShowDate():

Sub ShowDate()

MsgBox(Now().ToShortDateString)

End Sub

First Internal Answer Key , Visual Programming Page 26/47

Most procedures also accept and act upon arguments. The ShowDate() subroutine displays the current

date in a message box. If you want to display any other date, you have to implement it differently and

add an argument to the subroutine:

Sub ShowDate(ByValbirthDate As Date)

MsgBox(birthDate.ToShortDateString)

End Sub

birthDate is a variable that holds the date to be displayed; its type is Date. The ByVal keyword

means that the subroutine sees a copy of the variable, not the variable itself. What this means

practically is that the subroutine can't change the value of the variable passed by the calling application.

To display the current date in a message box, you must call the ShowDate() subroutine as follows from

within your program:

ShowDate() -To display any other date with the second implementation of the subroutine, use a

statement like the following:

Dim myBirthDate = #2/9/1960#

ShowDate(myBirthDate)

Or, you can pass the value to be displayed directly without the use of an intermediate variable:

ShowDate(#2/9/1960#)

Functions

A function is similar to a subroutine, but a function returns a result. Because they return values,

functions — like variables — have types. The value you pass back to the calling program from a

function is called the return value, and its type must match the type of the function. Functions accept

arguments, just like subroutines. The statements that make up a function are placed in a set of Function.

. .End Function statement

A procedure is a group of statements that together perform a task, when called. After the procedure

is executed, the control returns to the statement calling the procedure. VB.Net has two types of

procedures:

 Functions

 Sub procedures or Subs

Functions return a value, where Subs do not return a value.

Defining a Function

 The Function statement is used to declare the name, parameter and the body of a function. The

syntax for the Function statement is:

[Modifiers] FunctionFunctionName[(ParameterList)]AsReturnType

 [Statements]

EndFunction

Where,

 Modifiers: specifiy the access level of the function; possible values are: Public, Private,

Protected, Friend, Protected Friend and information regarding overloading, overriding, sharing, and

shadowing.

 FunctionName: indicates the name of the function

 ParameterList: specifies the list of the parameters

 ReturnType: specifies the data type of the variable the function returns

Example

 Following code snippet shows a function FindMax that takes two integer values and returns

the larger of the two.

Function FindMax(ByVal num1 AsInteger,ByVal num2 AsInteger)AsInteger

First Internal Answer Key , Visual Programming Page 27/47

' local variable declaration */

Dim result AsInteger

If(num1 > num2)Then

result= num1

Else

result= num2

EndIf

FindMax= result

EndFunction

Function Returning a Value

 In VB.Net a function can return a value to the calling code in two ways:

 By using the return statement

 By assigning the value to the function name

The following example demonstrates using the FindMax function:

Modulemyfunctions

Function FindMax(ByVal num1 AsInteger,ByVal num2 AsInteger)AsInteger

' local variable declaration */

Dim result AsInteger

If(num1 > num2)Then

result= num1

Else

result= num2

EndIf

FindMax= result

EndFunction

SubMain()

Dim a AsInteger=100

Dim b AsInteger=200

Dim res AsInteger

res=FindMax(a, b)

Console.WriteLine("Max value is : {0}", res)

Console.ReadLine()

EndSub

EndModule

When the above code is compiled and executed, it produces following result:

Max value is : 200

More Types of Function Return Values

1) Functions returning Structures

 Suppose you need a function that returns a customer's savings and checking account balances. So far,

you've learned that you can return two or more values from a function by supplying arguments with the ByRef

keyword. A more elegant method is to create a custom data type (a structure) and write a function that returns a

variable of this type.

Here's a simple example of a function that returns a custom data type. This example outlines the steps you must

repeat every time you want to create functions that return custom data types:

First Internal Answer Key , Visual Programming Page 28/47

1. Create a new project and insert the declarations of a custom data type in the declarations section of the form:

Structure CustBalance

Dim SavingsBalance As Decimal

Dim CheckingBalance As Decimal

End Structure

2. Implement the function that returns a value of the custom type. In the function's body, you must declare a

variable of the type returned by the function and assign the proper values to its fields. The following function

assigns random values to the fields CheckingBalance and SavingsBalance. Then assign the variable to the

function's name, as shown next:

Function GetCustBalance(ID As Long) As CustBalance

Dim tBalance As CustBalance

tBalance.CheckingBalance = CDec(1000 + 4000 * rnd())

tBalance.SavingsBalance = CDec(1000 + 15000 * rnd())

Return(tBalance)

End Function

3. Place a button on the form from which you want to call the function. Declare a variable of the same type and

assign to it the function's return value. The example that follows prints the savings and checking balances in the

Output window:

Private Sub Button1 Click(...) Handles Button1.Click

Dim balance As CustBalance

balance = GetCustBalance(1)

Debug.WriteLine(balance.CheckingBalance)

Debug.WriteLine(balance.SavingsBalance)

End Sub

The code shown in this section belongs to the Structures sample project. Create this project from scratch, perhaps

by using your own custom data type, to explore its structure and experiment with functions that return custom

data types.

2) Function Returning Arrays
 In addition to returning custom data types, VB 2008 functions can also return arrays. This is an

interesting possibility that allows you to write functions that return not only multiple values, but also an

unknown number of values.

 In this section, we'll write the Statistics() function, similar to the CalculateStatistics() function you saw

a little earlier in this chapter. The Statistics() function returns the statistics in an array. Moreover, it returns not

only the average and the standard deviation, but the minimum and maximum values in the data set as well. One

way to declare a function that calculates all the statistics is as follows:

Function Statistics(ByRefDataArray() As Double) As Double()

 This function accepts an array with the data values and returns an array of Doubles. To implement a

function that returns an array, you must do the following:

1. Specify a type for the function's return value and add a pair of parentheses after the type's name. Don't
specify the dimensions of the array to be returned here; the array will be declared formally in the

function.

2. In the function's code, declare an array of the same type and specify its dimensions. If the function

should return four values, use a declaration like this one:

Dim Results(3) As Double

The Results array, which will be used to store the results, must be of the same type as the function— its

name can be anything.

3. To return the Results array, simply use it as an argument to the Return statement:

Return(Results)

4. In the calling procedure, you must declare an array of the same type without dimensions:

First Internal Answer Key , Visual Programming Page 29/47

Dim Statistics() As Double

5. Finally, you must call the function and assign its return value to this array:

Stats() = Statistics(DataSet())

Here, DataSet is an array with the values whose basic statistics will be calculated by the Statistics() function.

Your code can then retrieve each element of the array with an index value as usual.

 (ii) Discuss in detail about loading and showing forms.

LOADING AND SHOWING FORMS

One of the operations you’ll have to perform with multi-form applications is to load and manipulate

forms from within other forms’ code. For example, you may wish to display a second form to prompt the user for

data specific to an application. You must explicitly load the second form, read the information entered by the

user, and then close the form. Or, you may wish to maintain two forms open at once and let the user switch

between them.. To show Form2 when an action takes place on Form1, first declare a variable that references

Form2:

Dim frm As New Form2

This declaration must appear in Form1 and must be placed outside any procedure. (If you place it in a

procedure’s code, then every time the procedure is executed, a new reference to Form2 will be created. This

means that the user can display the same form multiple times.

Then, to invoke Form2 from within Form1, execute the following statement:

frm.Show

This statement will bring up Form2 and usually appears in a button’s or menu item’s Click event

handler. At this point, the two forms don’t communicate with one another. However, they’re both on the desktop

and you can switch between them. There’s no mechanism to move information from Form2 back to Form1, and

neither form can access the other’s controls or variables. The Show method opens Form2 in a modaless manner.

The two forms are equal in stature on the desktop, and the user can switch between them. You can also display

the second form in a modal manner, which means that users won’t be able to return to the form from which they

invoked it.

While a modal form is open, it remains on top of the desktop and you can’t move the focus to the any

other form of the same application (but you can switch to another application). To open a modal form, use the

statement

frm.ShowDialog

The modal form is, in effect, a dialog box, like the Open File dialog box. You must first select a file on

this form and click the Open button, or click the Cancel button, to close the dialog box and return to the form

from which the dialog box was invoked.

The Startup Form

A typical application has more than a single form. When an application starts, the main form is loaded.

You can control which form is initially loaded by setting the startup object in the Project Properties window. To

open this, right-click the project’s name in the Solution Explorer and select Properties. In the project’s Property

Pages, select the Startup Object from the drop-down list.

You can also start an application with a subroutine without loading a form. This subroutine must be called

Main() and must be placed in a Module. Right-click the project’s name in the Solution Explorer window and

select the Add Item command. When the dialog box appears, select a Module. Name it StartUp (or anything you

like; you can keep the default name Module1) and then insert the Main() subroutine in the module. The Main()

subroutine usually contains initialization code and ends with a statement that displays one of the project’s forms;

to display the AuxiliaryForm object from within the Main() subroutine, use the following statements:

First Internal Answer Key , Visual Programming Page 30/47

Module StartUpModule

Sub Main()

System.Windows.Forms.Application.Run(New _ AuxiliaryForm())

End Sub

End Module

Then, you must open the Project Properties dialog box and specify that the project’s startup object is the

subroutine Main(). When you run the application, the form you specified in the Run method will be loaded.

Controlling One Form from within Another

Loading and displaying a form from within another form’s code is fairly trivial. In some situations, this

is all the interaction you need between forms. Each form is designed to operate independently of the others, but

they can communicate via public variables (see, “Private & Public Variables”). In most situations, however, you

need to control one form from within another’s code. Controlling the form means accessing its controls and

setting or reading values from within another form’s code.

Example:

TextPad is a text editor that consists of the main form and an auxiliary form for the Find & Replace

operation. All other operations on the text are performed with the commands of the menu you see on the main

form. When the user wants to search for and/or replace a string, the program displays another form on which

they specify the text to find, the type of search, and so on. When the user clicks one of the Find & Replace

form’s buttons, the corresponding code must access the text on the main form of the application and search for a

word or replace a string with another. The Find & Replace dialog box not only interacts with the TextBox

control on the main form, it also remains visible at all times while it’s open, even if it doesn’t have the focus,

because its TopMost property was set to True. In the Properties window, you can specify which form is to be

displayed when the application starts.

Forms Vs Dialog Boxes
A dialog box is simply a modal form. When we display forms as dialog boxes, we change the border of

the forms to the setting FixedDialog and invoke them with the ShowDialog method. Modeless forms are more

difficult to program, because the user may switch among them at any time. Not only that, but the two forms that

are open at once must interact with one another. When the user acts on one of the forms, this may necessitate

some changes in the other, and you’ll see shortly how this is done.

23. a) (i) Discuss about some basic properties of Textbox Control

The TextBox Control
The TextBox control is the primary mechanism for displaying and entering text. It is a small

text editor that provides all the basic text-editing facilities: inserting and selecting text, scrolling if the

text doesn’t fit in the control’s area, and even exchanging text with other applications through the

Clipboard.

First Internal Answer Key , Visual Programming Page 31/47

Figure 4.1 - TextBox Examples

Basic Properties of the TextBox Control
Let’s start with the properties that specify the appearance and, to some degree, the functionality

of the TextBox control; these properties are usually set at design time through the Propertieswindow.

TextAlign
This property sets (or returns) the alignment of the text on the control, and its value is a member

of the HorizontalAlignment enumeration: Left, Right, or Center.

MultiLine
This property determines whether the TextBox control will hold a single line or multiple lines

of text. Every time you place a TextBox control on your form, it’s sized for a single line of text and you

can change its width only. To change this behavior, set the MultiLine property to True. When creating

multiline TextBoxes, you will most likely have to set one or more of the MaxLength, ScrollBars, and

WordWrap properties in the Properties window.

MaxLength
This property determines the number of characters that the TextBox control will accept. Its

default value is 32,767, which was the maximum number of characters the VB 6 version of the control

could hold. Set this property to zero, so that the text can have any length, up to the control’s capacity

limit — 2,147,483,647 characters, to be exact.

ScrollBars
This property lets you specify the scroll bars you want to attach to the TextBox if the text

exceeds the control’s dimensions. Single-line text boxes can’t have a scroll bar attached, even if the text

exceeds the width of the control. Multiline text boxes can have a horizontal or a vertical scroll bar, or

both.

WordWrap
This property determines whether the text is wrapped automatically when it reaches the right

edge of the control. The default value of this property is True. If the control has a horizontal scroll bar,

however, you can enter very long lines of text.

AcceptsReturn, AcceptsTab
These two properties specify how the TextBox control reacts to the Return (Enter) and Tab

keys. The Enter key activates the default button on the form, if there is one. The default button is

usually an OK button that can be activated with the Enter key, even if it doesn’t have the focus.

First Internal Answer Key , Visual Programming Page 32/47

The default value of the AcceptsReturn property is True, so pressing Enter creates a new line on

the control. If you set it to False, users can still create new lines in the TextBox control, but they’ll have

to press Ctrl+Enter.

Likewise, the AcceptsTab property determines how the control reacts to the Tab key.Normally,

the Tab key takes you to the next control in the Tab order, and we generally avoid changing the default

setting of the AcceptsTab property.

CharacterCasing
This property tells the control to change the casing of the characters as they’re entered by the

user. Its default value is Normal, and characters are displayed as typed. You can set it to Upper or

Lower to convert the characters to upper- or lowercase automatically.

PasswordChar
This property turns the characters typed into any character you specify. If you don’t want to

display the actual characters typed by the user (when entering a password, for instance), use this

property to define the character to appear in place of each character the user types.

The default value of this property is an empty string, which tells the control to display the

characters as entered. If you set this value to an asterisk (*), for example, the user sees an asterisk in the

place of every character typed. This property doesn’t affect the control’s Text property, which contains

the actual characters. If the PasswordChar property of the TextBox control is set to any character,

the user can’t copy or cut the text on the control.

ReadOnly, Locked
If you want to display text on a TextBox control but prevent users from editing it (such as for an

agreement or a contract they must read, software installation instructions, and so on), you can set the

ReadOnly property to True.WhenReadOnly is set to True, you can put text on the control from within

your code, and users can view it, yet they can’t edit it.

Text-Manipulation Properties
Most of the properties for manipulating text in a TextBox control are available at runtime only.

This section presents a breakdown of each property.

Text

The most important property of the TextBox control is the Text property, which holds the

control's text. You can set this property at design time to display some text on the control initially.

Notice that there are two methods of setting the Text property at design time. For single-line TextBox

controls, set the Text property to a short string, as usual. For multiline TextBox controls, open the Lines

property and enter the text in the String Collection Editor window, which will appear.

Dim strLen As Integer = TextBox1.Text.Length

The IndexOf method of the String class will locate a specific string in the control's text. The following

statement returns the location of the first occurrence of the string Visual in the text:

Dim location As Integer

location = TextBox1.Text.IndexOf("Visual")

Formore information on locating strings in a TextBox control, see the section "VB 2008 The TextPad

Project" later in this chapter, where we'll build a text editor with search-and-replace capabilities. For a

detailed discussion of the String class, see Chapter, "Handling Strings, Characters, and Dates."

To store the control's contents in a file, use a statement such as the following:

StrWriter.Write(TextBox1.Text)

Similarly, you can read the contents of a text file into a TextBox control by using a statement such as

the following:

TextBox1.Text = StrReader.ReadToEnd

Listing 6.1: Locating All Instances of a String in a TextBox

Dim startIndex = -1

startIndex = TextBox1.Text.IndexOf("Basic", startIndex + 1)

First Internal Answer Key , Visual Programming Page 33/47

While startIndex> 0

Console.WriteLine "String found at " &startIndex

startIndex = TextBox1.Text.IndexOf("Basic", startIndex + 1)

End While

The following statement appends a string to the existing text on the control:

TextBox1.Text = TextBox1.Text &newString

To append a string to a TextBox control, use the following statement:

TextBox1.AppendText(newString)

TextBox1.AppendText(newString&vbCrLf)

Lines

In addition to the Text property, you can access the text on the control by using the Lines

property. The Lines property is a string array, and each element holds a paragraph of text. The first

paragraph is stored in the element Lines(0), the second paragraph in the element Lines(1), and so on.

You can iterate through the text lines with a loop such as the following:

Dim iLine As Integer

For iLine = 0 To TextBox1.Lines.GetUpperBound(0) - 1

{ process string TextBox1.Lines(iLine) }

Next

READONLY, LOCKED

If you want to display text on a TextBox control but prevent users from editing it (an agreement or a

contract they must read, software installation instructions, and so on), you can set the ReadOnly property to True.

When ReadOnly is set to True, you can put text on the control from within your code, and users can view it, yet

they can’t edit it

PASSWORDCHAR

Available at design time, this property turns the characters typed into any character you specify. If you don’t

want to display the actual characters typed by the user (when entering a password, for instance), use this property

to define the character to appear in place of each character the user types.

The default value of this property is an empty string, which tells the control to display the characters as entered.

If you set this value to an asterisk (*), for example, the user sees an asterisk in the place of every character typed.

Text-Selection Properties
The TextBox control provides three properties for manipulating the text selected by the user:

SelectedText, SelectionStart, and SelectionLength. Users can select a range of text with a click-and-

drag operation, and the selected text will appear in reverse color. You can access the selected text from

within your code through the SelectedText property, and its location in the control's text through the

SelectionStart and SelectionLength properties.

SelectedText

This property returns the selected text, enabling you to manipulate the current selection from within

your code. For example, you can replace the selection by assigning a new value to the SelectedText

property. To convert the selected text to uppercase, use the ToUpper method of the String class:

TextBox1.SelectedText = TextBox1.SelectedText.ToUpper

SelectionStart, SelectionLength

Use these two properties to read the text selected by the user on the control, or to select text

from within your code. The SelectionStart property returns or sets the position of the first character of

First Internal Answer Key , Visual Programming Page 34/47

the selected text, somewhat like placing the cursor at a specific location in the text and selecting text by

dragging the mouse. The SelectionLength property returns or sets the length of the selected text.

Dim seekString As String = "Visual"

Dim strLocation As Long

strLocation = TextBox1.Text.IndexOf(seekString)

If strLocation> 0 Then

TextBox1.SelectionStart = strLocation

TextBox1.SelectionLength = seekString.Length

End If

TextBox1.ScrollToCaret()

 (ii) Elucidate in detail about Scroll Bar and Track Bar Controls with example coding.

ScrollBars
This property lets you specify the scroll bars you want to attach to the TextBox if the text

exceeds the control’s dimensions. Single-line text boxes can’t have a scroll bar attached, even if the text

exceeds the width of the control. Multiline text boxes can have a horizontal or a vertical scroll bar, or

both.

WordWrap
This property determines whether the text is wrapped automatically when it reaches the right

edge of the control. The default value of this property is True. If the control has a horizontal scroll bar,

however, you can enter very long lines of text.

AcceptsReturn, AcceptsTab
These two properties specify how the TextBox control reacts to the Return (Enter) and Tab

keys. The Enter key activates the default button on the form, if there is one. The default button is

usually an OK button that can be activated with the Enter key, even if it doesn’t have the focus.

The default value of the AcceptsReturn property is True, so pressing Enter creates a new line on

the control. If you set it to False, users can still create new lines in the TextBox control, but they’ll have

to press Ctrl+Enter.

Likewise, the AcceptsTab property determines how the control reacts to the Tab key.Normally,

the Tab key takes you to the next control in the Tab order, and we generally avoid changing the default

setting of the AcceptsTab property.

CharacterCasing
This property tells the control to change the casing of the characters as they’re entered by the

user. Its default value is Normal, and characters are displayed as typed. You can set it to Upper or

Lower to convert the characters to upper- or lowercase automatically.

PasswordChar
This property turns the characters typed into any character you specify. If you don’t want to

display the actual characters typed by the user (when entering a password, for instance), use this

property to define the character to appear in place of each character the user types.

The default value of this property is an empty string, which tells the control to display the

characters as entered. If you set this value to an asterisk (*), for example, the user sees an asterisk in the

place of every character typed. This property doesn’t affect the control’s Text property, which contains

the actual characters. If the PasswordChar property of the TextBox control is set to any character,

the user can’t copy or cut the text on the control.

ReadOnly, Locked
If you want to display text on a TextBox control but prevent users from editing it (such as for an

agreement or a contract they must read, software installation instructions, and so on), you can set the

ReadOnly property to True.WhenReadOnly is set to True, you can put text on the control from within

your code, and users can view it, yet they can’t edit it.

First Internal Answer Key , Visual Programming Page 35/47

Text-Manipulation Properties
Most of the properties for manipulating text in a TextBox control are available at runtime only.

This section presents a breakdown of each property.

Text

The most important property of the TextBox control is the Text property, which holds the

control's text. You can set this property at design time to display some text on the control initially.

Notice that there are two methods of setting the Text property at design time. For single-line TextBox

controls, set the Text property to a short string, as usual. For multiline TextBox controls, open the Lines

property and enter the text in the String Collection Editor window, which will appear.

Dim strLen As Integer = TextBox1.Text.Length

The IndexOf method of the String class will locate a specific string in the control's text. The following

statement returns the location of the first occurrence of the string Visual in the text:

Dim location As Integer

location = TextBox1.Text.IndexOf("Visual")

Formore information on locating strings in a TextBox control, see the section "VB 2008 The TextPad

Project" later in this chapter, where we'll build a text editor with search-and-replace capabilities. For a

detailed discussion of the String class, see Chapter, "Handling Strings, Characters, and Dates."

To store the control's contents in a file, use a statement such as the following:

StrWriter.Write(TextBox1.Text)

Similarly, you can read the contents of a text file into a TextBox control by using a statement such as

the following:

TextBox1.Text = StrReader.ReadToEnd

Listing 6.1: Locating All Instances of a String in a TextBox

Dim startIndex = -1

startIndex = TextBox1.Text.IndexOf("Basic", startIndex + 1)

While startIndex> 0

Console.WriteLine "String found at " &startIndex

startIndex = TextBox1.Text.IndexOf("Basic", startIndex + 1)

End While

The following statement appends a string to the existing text on the control:

TextBox1.Text = TextBox1.Text &newString

To append a string to a TextBox control, use the following statement:

TextBox1.AppendText(newString)

TextBox1.AppendText(newString&vbCrLf)

 (OR)

 b) Illustrate the Common Dialog controls and necessary diagram with example.

Common Dialog Controls

The common dialog controls are invisible at runtime, and they're not placed on your forms,

because they're implemented as modal dialog boxes and they're displayed as needed. You simply add

them to the project by double-clicking their icons in the Toolbox; a new icon appears in the

components tray of the form, just below the Form Designer. The common dialog controls in the

Toolbox are the following:

 OpenFileDialog - Lets users select a file to open. It also allows the selection of multiple files

for applications that must process many files at once.

 SaveFileDialog - Lets users select or specify the path of a file in which the current document

will be saved.
 ColorDialog - Lets users select a color from a list of predefined colors or specify custom colors.

FontDialog Lets users select a typeface and style to be applied to the current text selection. The Font

First Internal Answer Key , Visual Programming Page 36/47

dialog box has an Apply button, which you can intercept from within your code and use to apply the
currently selected font to the text without closing the dialog box.

Figure 4.10 - Common Font and Open dialog controls

There are three more common dialog controls: the PrintDialog, PrintPreviewDialog, and

PageSetupDialog controls. These controls are discussed in detail in Chapter, "Printing with Visual

Basic 2008," in the context of VB's printing capabilities.

Using the Common Dialog Controls

To display any of the common dialog boxes from within your application, you must first add an

instance of the appropriate control to your project. Then you must set some basic properties of the

control through the Properties window. Most applications set the control's properties from within the

code because common dialogs interact closely with the application. When you call the Color common

dialog, for example, you should preselect a color from within your application and make it the default

selection on the control. When prompting the user for the color of the text, the default selection should

be the current setting of the control's ForeColor property. Likewise, the Save dialog box must suggest a

filename when it first pops up (or the file's extension, at least).

Here is the sequence of statements used to invoke the Open common dialog and retrieve the selected

filename:

If OpenFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

fileName = OpenFileDialog1.FileName

' Statements to open the selected file

End If

The ShowDialog method returns a value indicating how the dialog box was closed. You should read

this value from within your code and ignore the settings of the dialog box if the operation was

cancelled.

The variable fileName in the preceding code segment is the full pathname of the file selected by the

user. You can also set the FileName property to a filename, which will be displayed when the Open

dialog box is first opened:

OpenFileDialog1.FileName = "C:\WorkFiles\Documents\Document1.doc"

If OpenFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

fileName = OpenFileDialog1.FileName

' Statements to open the selected file

End If

Similarly, you can invoke the Color dialog box and read the value of the selected color by using the

following statements:

ColorDialog1.Color = TextBox1.BackColor

If ColorDialog1.ShowDialog = DialogResult.OK Then

First Internal Answer Key , Visual Programming Page 37/47

TextBox1.BackColor = ColorDialog1.Color

End If

The ShowDialog method is common to all controls. The Title property is also common to all controls

and it's the string displayed in the title bar of the dialog box. The default title is the name of the dialog

box (for example, Open, Color, and so on), but you can adjust it from within your code with a

statement such as the following:

ColorDialog1.Title = "Select Drawing Color"

Color Dialog Box Control
The Color dialog box, shown in Figure 4.11, is one of the simplest dialog boxes. Its Color

property returns the color selected by the user or sets the initially selected color when the user opens the

dialog box.

The following statements set the initial color of the ColorDialog control, display the dialog box, and

then use the color selected in the control to fill the form. First, place a ColorDialog control in the form

and then insert the following statements in a button’s Click event handler:

Private Sub Button1 Click(...) Handles Button1.Click

ColorDialog1.Color = Me.BackColor

If ColorDialog1.ShowDialog =

Windows.Forms.DialogResult.OK Then

Me.BackColor = ColorDialog1.Color

End If

End Sub

The following sections discuss the basic properties of the ColorDialog control.

Figure 4.11 - The Color Dialog Box

AllowFullOpen

Set this property to True if you want users to be able to open the dialog box and define their own

custom colors, like the one shown in Figure 8.2. The AllowFullOpen property doesn’t open the custom

section of the dialog box; it simply enables the Define Custom Colors button in the dialog box.

Otherwise, this button is disabled.

AnyColor

This property is a Boolean value that determines whether the dialog box displays all available colors in

the set of basic colors.

Color

This is the color specified on the control. You can set it to a color value before showing the dialog box

to suggest a reasonable selection. On return, read the value of the same property to find out which color

was picked by the user in the control:

First Internal Answer Key , Visual Programming Page 38/47

ColorDialog1.Color = Me.BackColor

If ColorDialog1.ShowDialog = DialogResult.OK Then

Me.BackColor = ColorDialog1.Color

End If

CustomColors

This property indicates the set of custom colors that will be shown in the dialog box. The Color dialog

box has a section called Custom Colors, in which you can display 16 additional custom colors. The

CustomColors property is an array of integers that represent colors. To display three custom colors in

the lower section of the Color dialog box, use a statement such as the following:

Dim colors() As Integer = {222663, 35453, 7888}

ColorDialog1.CustomColors = colors

You’d expect that the CustomColors property would be an array of Color values, but it’s not. You can’t

create the array CustomColors with a statement such as this one:

Dim colors() As Color = {Color.Azure, Color.Navy, Color.Teal}

Because it’s awkward to work with numeric values, you should convert color values to integer values

by using a statement such as the following:

Color.Navy.ToArgb

The preceding statement returns an integer value that represents the color navy. This value, however, is

negative because the first byte in the color value represents the transparency of the color. To get the

value of the color, you must take the absolute value of the integer value returned by the previous

expression. To create an array of integers that represent color values, use a statement such as the

following:

Dim colors() As Integer = {Math.Abs(Color.Gray.ToArgb), Math.Abs(Color.Navy.ToArgb),

Math.Abs(Color.Teal.ToArgb)}

Now you can assign the colors array to the CustomColors property of the control, and the colors will

appear in the Custom Colors section of the Color dialog box.

SolidColorOnly

This indicates whether the dialog box will restrict users to selecting solid colors only. This

setting should be used with systems that can display only 256 colors. Although today few systems can’t

display more than 256 colors, some interfaces are limited to this number. When you run an application

through Remote Desktop, for example, only the solid colors are displayed correctly on the remote

screen, regardless of the remote computer’s graphics card (and that’s for efficiency reasons).

Font Dialog Box Control
The Font dialog box, shown in Figure 4.12, lets the user review and select a font and then set its

size and style. Optionally, users can also select the font’s color and even apply the current settings to

the selected text on a control of the form without closing the dialog box, by clicking the Apply button.

FontDialog1.Font = TextBox1.Font

If FontDialog1.ShowDialog = DialogResult.OK Then

TextBox1.Font = FontDialog1.Font

End If

Use the following properties to customize the Font dialog box before displaying it.

First Internal Answer Key , Visual Programming Page 39/47

Figure 4.12 - The Font Dialog Control

AllowScriptChange

This property is a Boolean value that indicates whether the Script combo box will be displayed in the

Font dialog box. This combo box allows the user to change the current character set and select a non-

Western language (such as Greek, Hebrew, Cyrillic, and so on).

AllowVerticalFonts

This property is a Boolean value that indicates whether the dialog box allows the display and selection

of both vertical and horizontal fonts. Its default value is False, which displays only horizontal fonts.

Color, ShowColor

The Color property sets or returns the selected font color. To enable users to select a color for the font,

you must also set the ShowColor property to True.

FixedPitchOnly

This property is a Boolean value that indicates whether the dialog box allows only the selection

of fixed-pitch fonts. Its default value is False, which means that all fonts (fixed- and variable-pitch

fonts) are displayed in the Font dialog box. Fixed-pitch fonts, or monospaced fonts, consist of

characters of equal widths that are sometimes used to display columns of numeric values so that the

digits are aligned vertically.

Font

This property is a Font object. You can set it to the preselected font before displaying the dialog

box and assign it to a Font property upon return. You’ve already seen how to preselect a font and how

to apply the selected font to a control from within your application.

You can also create a new Font object and assign it to the control’s Font property. Upon return, the

TextBox control’s Font property is set to the selected font:

Dim newFont As Font("Verdana", 12, FontStyle.Underline)

FontDialog1.Font = newFont

If FontDialog1.ShowDialog() = DialogResult.OK Then

TextBox1.ForeColor = FontDialog1.Color

End If

FontMustExist

This property is a Boolean value that indicates whether the dialog box forces the selection of an

existing font. If the user enters a font name that doesn’t correspond to a name in the list of available

fonts, a warning is displayed. Its default value is True, and there’s no reason to change it.

MaxSize, MinSize

These two properties are integers that determine the minimum and maximum point size the user

can specify in the Font dialog box. Use these two properties to prevent the selection of extremely large

or extremely small font sizes, because these fonts might throw off a well-balanced interface (text will

overflow in labels, for example).

First Internal Answer Key , Visual Programming Page 40/47

ShowApply

This property is a Boolean value that indicates whether the dialog box provides an Apply

button. Its default value is False, so the Apply button isn’t normally displayed. If you set this property

to True, you must also program the control’s Apply event — the changes aren’t applied automatically

to any of the controls in the current form.

The following statements display the Font dialog box with the Apply button:

Private Sub Button2 Click(...) Handles Button2.Click

FontDialog1.Font = TextBox1.Font

FontDialog1.ShowApply = True

If FontDialog1.ShowDialog = DialogResult.OK Then

TextBox1.Font = FontDialog1.Font

End If

End Sub

The FontDialog control raises the Apply event every time the user clicks the Apply button. In

this event’s handler, you must read the currently selected font and use it in the form, so that users can

preview the effect of their selection:

Private Sub FontDialog1 Apply(...) Handles FontDialog1.Apply

TextBox1.Font = FontDialog1.Font

End Sub

ShowEffects

This property is a Boolean value that indicates whether the dialog box allows the selection of

special text effects, such as strikethrough and underline. The effects are returned to the application as

attributes of the selected Font object, and you don’t have to do anything special in your application.

Open Dialog Box and Save Dialog Box Controls
Open and Save As, the two most widely used common dialog boxes (see Figure 4.13), are

implemented by the OpenFileDialog and SaveFileDialog controls. Nearly every application prompts

users for filenames, and the .NET Framework provides two controls for this purpose. The two dialog

boxes are nearly identical, and most of their properties are common, so we'll start with the properties

that are common to both controls.

When either of the two controls is displayed, it rarely displays all the files in any given folder. Usually

the files displayed are limited to the ones that the application recognizes so that users can easily spot

the file they want. The Filter property limits the types of files that will appear in the Open or Save As

dialog box.

First Internal Answer Key , Visual Programming Page 41/47

Figure 4.13 - The OpenDialog and SaveDialog controls

The extension of the default file type for the application is described by the DefaultExtension property,

and the list of the file types displayed in the Save As Type box is determined by the Filter property.

To prompt the user for a file to be opened, use the following statements. The Open dialog box displays

the files with the extension .bin only.

OpenFileDialog1.DefaultExt = ".bin"

OpenFileDialog1.AddExtension = True

OpenFileDialog1.Filter = "Binary Files|*.bin"

If OpenFileDialog1.ShowDialog() =

Windows.Forms.DialogResult.OK Then

Debug.WriteLine(OpenFileDialog1.FileName)

End If

The following sections describe the properties of the OpenFileDialog and SaveFileDialog controls.

AddExtension

This property is a Boolean value that determines whether the dialog box automatically adds an

extension to a filename if the user omits it. The extension added automatically is the one specified by

the DefaultExtension property, which you must set before calling the ShowDialog method. This is the

default extension of the files recognized by your application.

CheckFileExists

This property is a Boolean value that indicates whether the dialog box displays a warning if the

user enters the name of a file that does not exist in the Open dialog box, or if the user enters the name

of a file that exists in the Save dialog box.

First Internal Answer Key , Visual Programming Page 42/47

CheckPathExists

This property is a Boolean value that indicates whether the dialog box displays a warning if the

user specifies a path that does not exist, as part of the user-supplied filename.

DefaultExt

This property sets the default extension for the filenames specified on the control. Use this

property to specify a default filename extension, such as .txt or .doc, so that when a file with no

extension is specified by the user, the default extension is automatically appended to the filename. You

must also set the AddExtension property to True. The default extension property starts with the period,

and it's a string — for example, .bin.

DereferenceLinks

This property indicates whether the dialog box returns the location of the file referenced by the

shortcut or the location of the shortcut itself. If you attempt to select a shortcut on your desktop when

the DereferenceLinks property is set to False, the dialog box will return to your application a value such

as C:\WINDOWS\SYSTEM32\lnkstub.exe, which is the name of the shortcut, not the name of the file

represented by the shortcut. If you set the DereferenceLinks property to True, the dialog box will return

the actual filename represented by the shortcut, which you can use in your code.

FileName

Use this property to retrieve the full path of the file selected by the user in the control. If you set

this property to a filename before opening the dialog box, this value will be the proposed filename. The

user can click OK to select this file or select another one in the control. The two controls provide

another related property, the FileNames property, which returns an array of filenames. To find out how

to allow the user to select multiple files, see the discussion of the MultipleFiles and FileNames

properties in ‘‘VB 2008 at Work: Multiple File Selection'' at the end of this section.

Filter

This property is used to specify the type(s) of files displayed in the dialog box. To display text

files only, set the Filter property to Text files|*.txt. The pipe symbol separates the description of the

files (what the user sees) from the actual extension (how the operating system distinguishes the various

file types).

If you want to display multiple extensions, such as .BMP, .GIF, and .JPG, use a semicolon to separate

extensions with the Filter property. Set the Filter property to the string Images|*.BMP; *.GIF;*.JPG to

display all the files of these three types when the user selects Images in the Save As Type combo box,

under the box with the filename.

Don't include spaces before or after the pipe symbol because these spaces will be displayed on the

dialog box. In the Open dialog box of an image-processing application, you'll probably provide options

for each image file type, as well as an option for all images:

OpenFileDialog1.Filter =

"Bitmaps|*.BMP|GIF Images|*.GIF|" &

"JPEG Images|*.JPG|All Images|*.BMP;*.GIF;*.JPG"

FilterIndex

When you specify more than one file type when using the Filter property of the Open dialog box, the

first file type becomes the default. If you want to use a file type other than the first one, use the

FilterIndex property to determine which file type will be displayed as the default when the Open dialog

box is opened. The index of the first type is 1, and there's no reason to ever set this property to 1. If you

use the Filter property value of the example in the preceding section and set the FilterIndex property to

2, the Open dialog box will display GIF files by default.

InitialDirectory

This property sets the initial folder whose files are displayed the first time that the Open and Save

dialog boxes are opened. Use this property to display the files of the application's folder or to specify a

folder in which the application stores its files by default. If you don't specify an initial folder, the dialog

First Internal Answer Key , Visual Programming Page 43/47

box will default to the last folder where the most recent file was opened or saved. It's also customary to

set the initial folder to the application's path by using the following statement:

OpenFileDialog1.InitialDirectory = Application.ExecutablePath

The expression Application.ExecutablePath returns the path in which the application's executable file

resides.

RestoreDirectory

Every time the Open and Save As dialog boxes are displayed, the current folder is the one that

was selected by the user the last time the control was displayed. The RestoreDirectory property is a

Boolean value that indicates whether the dialog box restores the current directory before closing. Its

default value is False, which means that the initial directory is not restored automatically. The

InitialDirectory property overrides the RestoreDirectory property.

The following four properties are properties of the OpenFileDialog control only: FileNames,

MultiSelect, ReadOnlyChecked, and ShowReadOnly.

FileNames

If the Open dialog box allows the selection of multiple files (see the later section "VB 2008 at

Work: Multiple File Selection"), the FileNames property contains the pathnames of all selected files.

FileNames is a collection, and you can iterate through the filenames with an enumerator. This property

should be used only with the OpenFileDialog control, even though the SaveFileDialog control exposes

a FileNames property.

MultiSelect

This property is a Boolean value that indicates whether the user can select multiple files in the

dialog box. Its default value is False, and users can select a single file. When the MultiSelect property

is True, the user can select multiple files, but they must all come from the same folder (you can't allow

the selection of multiple files from different folders). This property is unique to the OpenFileDialog

control.

ReadOnlyChecked, ShowReadOnly

The ReadOnlyChecked property is a Boolean value that indicates whether the Read-Only check

box is selected when the dialog box first pops up (the user can clear this box to open a file in read/write

mode). You can set this property to True only if the ShowReadOnly property is also set to True. The

ShowReadOnly property is also a Boolean value that indicates whether the Read-Only check box is

available..

The OpenFile and SaveFile Methods

The OpenFileDialog control exposes the OpenFile method, which allows you to quickly open

the selected file. Likewise, the SaveFileDialog control exposes the SaveFile method, which allows you

to quickly save a document to the selected file.

OpenDialog and SaveDialog controls example: Multiple File Selection

The Open dialog box allows the selection of multiple files. This feature can come in handy

when you want to process files en masse. You can let the user select many files, usually of the same

type, and then process them one at a time. Or, you might want to prompt the user to select multiple files

to be moved or copied.

First Internal Answer Key , Visual Programming Page 44/47

Figure 4.14 - Selecting multiple files in an open dialog box - Visual Basic

The code behind the Open Files button is shown in Listing 4.17. In this example, I used the array's

enumerator to iterate through the elements of the FileNames array. You can use any of the methods

discussed in the section "Arrays in Visual basic 2008" to iterate through the array.

Listing 4.17: Processing Multiple Selected Files
Private Sub bttnFileClick(...) Handles bttnFile.Click

OpenFileDialog1.Multiselect = True

OpenFileDialog1.ShowDialog()

Dim filesEnum As IEnumerator

ListBox1.Items.Clear()

filesEnum = OpenFileDialog1.FileNames.GetEnumerator()

While filesEnum.MoveNext

ListBox1.Items.Add(filesEnum.Current)

End While

End Sub

Print Dialog Box Control
A PrintDialog control is used to open the Windows Print Dialog and let user select the printer, set

printer and paper properties and print a file. A typical Open File Dialog looks like Figure 1 where you

select a printer from available printers, set printer properties, set print range, number of pages and

copies and so on. Clicking on OK button sends the document to the printer.

Figure 1

Creating a PrintDialog

http://visualbasic.w3computing.com/vb2008/2/vb-arrays.php

First Internal Answer Key , Visual Programming Page 45/47

We can create a PrintDialog at design-time as well as at run-time.

Design-time

To create a PrintDialog control at design-time, you simply drag and drop a PrintDialog control from Toolbox to a

Form in Visual Studio. After you drag and drop a PrintDialog on a Form, the PrintDialog looks like Figure 2.

Figure 2

Run-time
Creating a PrintDialog control at run-time is simple. First step is to create an instance of PrintDialog class and

then call the ShowDialog method. The following code snippet creates a PrintDialog control.

Dim PrintDialog1 AsNewPrintDialog()

PrintDialog1.ShowDialog()

Printing Documents

PrintDocument object represents a document to be printed. Once a PrintDocument is created, we can

set the Document property of PrintDialog as this document. After that we can also set other properties.

The following code snippet creates a PrintDialog and sends some text to a printer.
ImportsSystem.Drawing.Printing

PublicClassForm1

 PrivateSubPrintButton_Click(ByVal sender AsSystem.Object, ByVal e AsSystem.EventArgs)

HandlesPrintButton.Click

 DimprintDlgAsNewPrintDialog()

 DimprintDocAs NewPrintDocument()

 printDoc.DocumentName = "Print Document"

 printDlg.Document = printDoc

 printDlg.AllowSelection = True

 printDlg.AllowSomePages = True

 If (printDlg.ShowDialog() = DialogResult.OK) Then

 printDoc.Print()

 EndIf

 EndSub

EndClass

Second Internal Question Answer Key, Visual Programming, Page 1/41

Register Number: ____________

[15CSU501]

KARPAGAM ACADEMY OF HIGHER EDUCATION
karpagam university

(Under Section 3 of UGC Act 1956)

Eachanari, Coimbatore-641021.

(For the candidates admitted from 2015 onwards)

DEPARTMENT OF CS,CA & IT

SECOND INTERNAL EXAMINATION, AUGUST– 2017

Fifth Semester

Visual Programming

Date & Session: 07-08-2017 & AN Duration: 2 Hours

Marks : 50
__

PART-A(20*1=20 Marks)

(Answer ALL The Questions)

1. The ____ class represents the instrument for filling shapes

a. Brush c. SolidBrush

b. HatchBrush d.pathGradientBrush

2. The _____ method appends a base type to the current instance of the StringBuilder class,

a.Append Format b. Append c. both a&b d.none

3. _____ class is used to store the string and also to manipulate the string

a. The string class b.the char class c. stringbuilderclass d. both a&b

4. _____ brush Fills shapes with a gradient that has one starting color and many ending colors

a. Brush b. PathGradientBrush c. HatchBrush d. SolidBrush

5. The tick property in DateTime Class, Each tick represents _______ nanoseconds

a. 10 b.100 c.1000 d.none

6. The____ coordinate is its horizontal distance from the origin

a. Y b. x c. (0,0) d. none

7. A ______ is a collection of colored pixels, arranged in rows and columns

a. Colors b.Bitmaps

c.blending

d. images

8. The___method sets the current position in the file represented by the FileStream object

a. Seekorigin b. seek c. seekoffset d. none

9. The ____ class is the channel through which you send data to a text file.

a. StreamWriter b.FileStreamWriter c. FileWriter d. None

10. GDI stands for ________

a. Global design interface

b. Graphical Device Interface

c. Graphics design interface

d. Global data interchange

11. The ____ coordinate to top-left corner of the drawing surface.

a. y b. x c. (0,0) d. none

12. Which object is used to draw gon the Graphics object surface?

a. pencil

b. pen

c. image

d. controls

13. Which method is used to draw a string in the specified font on the graphics surface

a. DrawString() c.DrawLetters()

 b. DrawChar() d.DrawImage()

Second Internal Question Answer Key, Visual Programming, Page 2/41

14. The _____ transformation changes the dimensions of a shape but not its basic form

a. Rotation

b. Translation

c. scaling

d. shape

15. ______Determines the style of the dashed lines drawn with the specific Pen

a. DashCap b. DashStyle c. DashDot d. DashDotDo

16. To display the list as multiple columns in list box --------- property is used

a. SelectionMode

b. SelectedIndex

c. SelectedItem

d. MultiColumn

17. ____ Control, the user specify a magnitude by scrolling a sector between its min and max

values.

a. ScrollBar b. TrackBar c. VolumeBar d.Both A and B

18. The tab order command will appear in which menu

a. File

b. Format

c. View

d. Edit

19. _______The full name of the month

Second Internal Question Answer Key, Visual Programming, Page 3/41

a. mm b. mmm c. mmmm d.m

 20. How many parent form will be in MDI______?

 a.2 0 b. 1 c. many d.0

PART-B (3 X 10 = 30 Marks)

(Answer ALL The Questions)

21. a) Discuss in detail about Tree view and List view controls with example.

 Tree View and List View Controls
The TreeView control implements a data structure known as a tree. A tree is the

most appropriate structure for storing hierarchical information. The organizational chart

of a company, for example, is a tree structure. Every person reports to another person

above him or her, all the way to the president or CEO. Figure 4.21 depicts a possible

organization of continents, countries, and cities as a tree. Every city belongs to a country,

and every country to a continent. In the same way, every computer file belongs to a folder

that may belong to an even bigger folder, and so on up to the drive level. You can’t draw

large tree structures on paper, but it’s possible to create a similar structure in the

computer’s memory without size limitations.

Figure 4.21 - The World View as Tree

Note: The items displayed on a TreeView control are just strings. Moreover, the

TreeView control doesn’t require that the items be unique. You can have identically

named nodes in the same branch — as unlikely as this might be for a real application.

There’s no property that makes a node unique in the tree structure or even in its own

branch.

Second Internal Question Answer Key, Visual Programming, Page 4/41

Figure 4.22 - The tree implemented with a TreeView control

The tree structure is ideal for data with parent-child relations (relations that can be

described as belongs to or owns). The continents-countries-cities data is a typical

example. The folder structure on a hard disk is another typical example. Any given folder

is the child of another folder or the root folder.

The ListView control implements a simpler structure, known as a list. A list’s

items aren’t structured in a hierarchy; they are all on the same level and can be traversed

serially, one after the other. You can also think of the list as a multidimensional array, but

the list offersmore features. A list item can have subitems and can be sorted according to

any column. For example, you can set up a list of customer names (the list’s items) and

assign a number of subitems to each customer: a contact, an address, a phone number,

and so on. Or you can set up a list of files with their attributes as subitems. Figure 4.23

shows a Windows folder mapped on a ListView control. Each file is an item, and its

attributes are the subitems. As you already know, you can sort this list by filename, size,

file type, and so on. All you have to do is click the header of the corresponding column.

Figure 4.23 - A folder’s files displayed in a ListView control (Details view)

The ListView control is a glorified ListBox control. If all you need is a control to

store sorted objects, use a ListBox control. If you want more features, such as storing

Second Internal Question Answer Key, Visual Programming, Page 5/41

multiple items per row, sorting them in different ways, or locating them based on any

subitem’s value, you must consider the ListView control. You can also look at the

ListView control as a view-only grid.

The TreeView and ListView controls are commonly used along with the ImageList

control. The ImageList control is a simple control for storing images so they can be

retrieved quickly and used at runtime. You populate the ImageList control with the

images you want to use on your interface, usually at design time, and then you recall

them by an index value at runtime. Before we get into the details of the TreeView and

ListView controls, a quick overview of the ImageList control is in order.

TreeView Control
Let’s start our discussion of TreeView control with a few simple properties that

you can set at design time. To experiment with the properties discussed in this section,

open the TreeView Example project. The project’s main form is shown in Figure 4.25.

After setting some properties (they are discussed next), run the project and click the

Populate button to populate the control. After that, you can click the other buttons to see

the effect of the various property settings on the control.

Figure 4.25 - The TreeView Example project demonstrates the basic properties and

methods of the TreeView control.

Here are the basic properties that determine the appearance of the control:

 ShowCheckBoxes - If this property is True, a check box appears in front of each

node. If the control displays check boxes, you can select multiple nodes;

otherwise, you’re limited to a single selection.

 FullRowSelect - This True/False value determines whether a node will be

selected even if the user clicks outside the node’s caption.

 HideSelection - This property determines whether the selected node will remain

highlighted when the focus is moved to another control. By default, the selected

node doesn’t remain highlighted when the control loses the focus.

 HotTracking - This property is another True/False value that determines whether

nodes are highlighted as the pointer hovers over them.When it’s True, the

TreeView control behaves like a web document with the nodes acting as

http://visualbasic.w3computing.com/vb2008/4/vb-treeview-example.php

Second Internal Question Answer Key, Visual Programming, Page 6/41

hyperlinks — they turn blue while the pointer hovers over them. Use the

NodeMouseHover event to detect when the pointer hovers over a node.

 Indent - This property specifies the indentation level in pixels. The same

indentation applies to all levels of the tree—each level is indented by the same

number of pixels with respect to its parent level.

 PathSeparator - A node’s full name is made up of the names of its parent nodes,

separated by a backslash. To use a different separator, set this property to the

desired symbol.

 ShowLines - The ShowLines property is a True/False value that determines

whether the control’s nodes will be connected to its parent items with lines.

These lines help users visualize the hierarchy of nodes, and it’s customary to

display them.

 ShowPlusMinus - The ShowPlusMinus property is a True/False value that

determines whether the plus/minus button is shown next to the nodes that have

children. The plus button is displayed when the node is collapsed, and it causes

the node to expand when clicked. Likewise, the minus sign is displayed when

the node is expanded, and it causes the node to collapse when clicked. Users can

also expand the current node by pressing the left-arrow button and collapse it

with the right-arrow button.

 ShowRootLines - This is another True/False property that determines whether

there will be lines between each node and root of the tree view. Experiment with

the ShowLines and ShowRootLines properties to find out how they affect the

appearance of the control.

 Sorted - This property determines whether the items in the control will be

automatically sorted. The control sorts each level of nodes separately. In our

Globe example, it will sort the continents, then the countries within each

continent, and then the cities within each country.

Adding New Items at Design Time
Let’s look now at the process of populating the TreeView control. Adding an

initial collection of nodes to a TreeView control at design time is trivial. Locate the

Nodes property in the Properties window, and you’ll see that its value is Collection. To

add items, click the ellipsis button, and the TreeNode Editor dialog box will appear, as

shown in Figure 4.26. To add a root item, just click the Add Root button. The new item

will be named Node0 by default. You can change its caption by selecting the item in the

list and setting its Text property accordingly. You can also change the node’s Name

property, as well as the node’s appearance by using the NodeFont, FontColor, and

ForeColor properties.

To specify an image for the node, set the control’s ImageList property to the name of an

ImageList control that contains the appropriate images, and then set either the node’s

ImageKey property to the name of the image, or the node’s ImageIndex property to the

index of the desired image in the ImageList control. If you want to display a different

image when the control is selected, set the SelectedImageKey or the SelectedImageIndex property

accordingly.

Second Internal Question Answer Key, Visual Programming, Page 7/41

Figure 4.26 - The TreeNode Editor dialog box

Click the Add Root button first. A new node is added automatically to the list of nodes,

and it is named Node0. Select it with the mouse, and its properties appear in the right

pane of the TreeNode Editor window. Here you can change the node’s Text property to

Countries. You can specify the appearance of each node by setting its font and

fore/background colors.

Adding New Items at Runtime
Adding items to the control at runtime is a bit more involved. All the nodes belong to the

control's Nodes collection, which is made up of TreeNode objects. To access the Nodes

collection, use the following expression, where TreeView1 is the control's name and Nodes is a

collection of TreeNode objects:

TreeView1.Nodes

This expression returns a collection of TreeNode objects and exposes the proper members for

accessing and manipulating the individual nodes. The control's Nodes property is the collection

of all root nodes.

To access the first node, use the expression TreeView.Nodes(0) (this is the Globe node in our

example). The Text property returns the node's value, which is a string.

TreeView1.Nodes(0).Text is the caption of the root node on the control. The caption of the

second node on the same level is TreeView1.Nodes(1).Text, and so on.

The following statements print the strings shown highlighted below them (these strings are not

part of the statements; they're the output that the statements produce):

Debug.WriteLine(TreeView1.Nodes(0).Text)

Countries

Debug.WriteLine(TreeView1.Nodes(0).Nodes(0).Text)

UnitedStates

Debug.WriteLine(TreeView1.Nodes(0).Nodes(0).Nodes(1).Text)

New York

Let's take a closer look at these expressions. TreeView1.Nodes(0) is the first root node, the

Countries node. Under this node, there is a collection of nodes, the TreeView1.Nodes(0).Nodes

Second Internal Question Answer Key, Visual Programming, Page 8/41

collection. Each node in this collection is a country name. The first node in this collection is

United States, and you can access it with the expression TreeView1.Nodes(0).Nodes(0). If you

want to change the appearance of the node United States, type a period after the preceding

expression to access its properties (the NodeFont property to set its font, the ForeColor property

to set it color, the ImageIndex property, and so on). Likewise, this node has its own Nodes

collection, which contains the states under the specific country.

Adding New Nodes

The Add method adds a new node to the Nodes collection. The Addmethod accepts as an

argument a string or a TreeNode object. The simplest form of the Add method is

newNode = Nodes.Add(nodeCaption)

where nodeCaption is a string that will be displayed on the control. Another form of the Add

method allows you to add a TreeNode object directly (nodeObj is a properly initialized

TreeNode variable):

newNode = Nodes.Add(nodeObj)

To use this form of the method, you must first declare and initialize a TreeNode object:

Dim nodeObj As New TreeNode

nodeObj.Text = "Tree Node"

nodeObj.ForeColor = Color.BlueViolet

TreeView1.Nodes.Add(nodeObj)

The last overloaded form of the Add method allows you to specify the index in the current Nodes

collection, where the node will be added:

newNode = Nodes.Add(index, nodeObj)

The nodeObj TreeNode object must be initialized as usual. To add a child node to the root node,

use a statement such as the following:

TreeView1.Nodes(0).Nodes.Add("United States")

To add a state under United States, use a statement such as the following:

TreeView1.Nodes(0).Nodes(1).Nodes.Add("New York")

The expressions can get quite lengthy. The proper way to add child items to a node is to create a

TreeNode variable that represents the parent node, under which the child nodes will be added.

Let's say that the CountryNode variable in the following example represents the node United

States:

Dim CountryNode As TreeNode

CountryNode = TreeView1.Nodes(0).Nodes(2)

Then you can add child nodes to the ContinentNode node:

CountryNode.Nodes.Add("New York")

CountryNode.Nodes.Add("California")

To add yet another level of nodes, the city nodes, create a new variable that represents a specific

state. The Add method actually returns a TreeNode object that represents the newly added node,

so you can add a state and a few cities by using statements such as the following:

Dim StateNode As TreeNode

StateNode = CountryNode.Nodes.Add("New York")

StateNode.Nodes.Add("Alberny")

Second Internal Question Answer Key, Visual Programming, Page 9/41

StateNode.Nodes.Add("Amsterdam")

StateNode.Nodes.Add("Auburn")

Then you can continue adding states under another country as follows:

StateNode = CountryNode.Nodes.Add("United Kingdom")

StateNode.Nodes.Add("London")

StateNode.Nodes.Add("Manchester")

The ListView Control
The ListView control is similar to the ListBox control except that it can display its

items in many forms, along with any number of subitems for each item. To use the

ListView control in your project, place an instance of the control on a form and then set

its basic properties, which are described in the following list.

View and Arrange - Two properties determine how the various items will be displayed

on the control: the View property, which determines the general appearance of the items,

and the Arrange property, which determines the alignment of the items on the control's

surface. The View property can have one of the values shown in Table 4.8.

Table 4.8: Settings of the View Property of VB.NET ListView Control

Setting Description

LargeIcon

(Default)
Each item is represented by an icon and a caption below the icon.

SmallIcon
Each item is represented by a small icon and a caption that appears to

the right of the icon.

List Each item is represented by a caption.

Details
Each item is displayed in a column with its subitems in adjacent

columns.

Tile

Each item is displayed with an icon and its subitems to the right of

the icon. This view is available only on Windows XP and Windows

Server 2003.

 The Arrange property can have one of the settings shown in Table 4.9.

Table 4.9: Settings of the Arrange Property of VB.NET ListView Control

Setting Description

Default
When an item is moved on the control, the item remains where it is

dropped.

Left Items are aligned to the left side of the control.

SnapToGrid
Items are aligned to an invisible grid on the control. When the user

moves an item, the item moves to the closest grid point on the control.

Top Items are aligned to the top of the control.

Second Internal Question Answer Key, Visual Programming, Page 10/41

 HeaderStyle - This property determines the style of the headers in Details view. It has

no meaning when the View property is set to anything else, because only the Details view

has columns. The possible settings of the HeaderStyle property are shown in Table 4.10.

Table 4.10: Settings of the HeaderStyle Property of VB.NET ListView Control

Setting Description

Clickable Visible column header that responds to clicking

Nonclickable (Default) Visible column header that does not respond to clicking

None No visible column header

 AllowColumnReorder - This property is a True/False value that determines whether the

user can reorder the columns at runtime, and it's meaningful only in Details view. If this

property is set to True, the user can move a column to a new location by dragging its

header with the mouse and dropping it in the place of another column.

Activation - This property, which specifies how items are activated with the mouse, can

have one of the values shown in Table 4.11.

Table 4.11: Settings of the Activation Property of VB.NET ListView Control
Setting Description

OneClick
Items are activated with a single click. When the cursor is over an

item, it changes shape, and the color of the item's text changes.

Standard (Default)
Items are activated with a double-click. No change in the selected

item's text color takes place.

TwoClick
Items are activated with a double-click, and their text changes

color as well.

 FullRowSelect - This property is a True/False value, indicating whether the user can

select an entire row or just the item's text, and it's meaningful only in Details view. When

this property is False, only the first item in the selected row is highlighted.

GridLines - Another True/False property. If True, grid lines between items and subitems

are drawn. This property is meaningful only in Details view.

Group - The items of the ListView control can be grouped into categories. To use this

feature, you must first define the groups by using the control's Group property, which is a

collection of strings. You can add as many members to this collection as you want.

LabelEdit - The LabelEdit property lets you specify whether the user will be allowed to

edit the text of the items. The default value of this property is False. Notice that the

LabelEdit property applies to the item's Text property only; you can't edit the subitems

(unfortunately, you can't use the ListView control as an editable grid).

MultiSelect - A True/False value, indicating whether the user can select multiple items

from the control. To select multiple items, click them with the mouse while holding down

the Shift or Ctrl key. If the control's ShowCheckboxes property is set to True, users can

select multiple items by marking the check box in front of the corresponding item(s).

Scrollable - A True/False value that determines whether the scroll bars are visible. Even

if the scroll bars are invisible, users can still bring any item into view. All they have to do

is select an item and then press the arrow keys as many times as needed to scroll the

desired item into view.

Sorting - This property determines how the items will be sorted, and its setting can be

None, Ascending, or Descending. To sort the items of the control, call the Sort method,

Second Internal Question Answer Key, Visual Programming, Page 11/41

which sorts the items according to their caption. It's also possible to sort the items

according to any of their subitems, as explained in the section "Sorting the ListView

Control" later in this chapter.

DESIGNING MENUS
The MenuStrip class is the foundation of menus functionality in Windows Forms. If you

have worked with menus in .NET 1.0 and 2.0, you must be familiar with the MainMenu control.

In .NET 3.5 and 4.0, the MainMenu control is replaced with the MenuStrip control.

Menu Editor

Menus can be attached only to forms, and they're implemented through the MenuStrip

control. The items that make up the menu are ToolStripMenuItem objects. As you will see, the

MenuStrip control and ToolStripMenuItem objects give you absolute control over the structure

and appearance of the menus of your application. The MenuStrip control is a variation of the

Strip control, which is the base of menus, toolbars, and status bars.

We can create a MenuStrip control using a Forms designer at design-time or using the

MenuStrip class in code at run-time or dynamically. To create a MenuStrip control at design-

time, you simply drag and drop a MenuStrip control from Toolbox to a Form in Visual Studio.

After you drag and drop a MenuStrip on a Form, the MenuStrip1 is added to the Form and looks

like Figure below. Once a MenuStrip is on the Form, you can add menu items and set its

properties and events.

Creating a MenuStrip control at run-time is merely a work of creating an instance of

MenuStrip class, set its properties and adds MenuStrip class to the Form controls.

First step to create a dynamic MenuStrip is to create an instance of MenuStrip class. The

following code snippet creates a MenuStrip control object.

VB.NET Code:

Dim MainMenu As New MenuStrip()

In the next step, you may set properties of a MenuStrip control. The following code snippet sets

background color, foreground color, Text, Name, and Font properties of a MenuStrip.

MainMenu.BackColor = Color.OrangeRed

MainMenu.ForeColor = Color.Black

MainMenu.Text = "File Menu"

MainMenu.Font = New Font("Georgia", 16)

Second Internal Question Answer Key, Visual Programming, Page 12/41

Once the MenuStrip control is ready with its properties, the next step is to add the MenuStrip to a

Form. To do so, first we set MainMenuStrip property and then use Form.Controls.Add method

that adds MenuStrip control to the Form controls and displays on the Form based on the location

and size of the control. The following code snippet adds a MenuStrip control to the current Form.

Me.MainMenuStrip = MainMenu

Controls.Add(MainMenu)

Setting MenuStrip Properties

After you place a MenuStrip control on a Form, the next step is to set properties.

The easiest way to set properties is from the Properties Window. You can open Properties

window by pressing F4 or right click on a control and select Properties menu item.

The Properties window looks like Figure below.

Name

Name property represents a unique name of a MenuStrip control. It is used to access the control

in the code. The following code snippet sets and gets the name and text of a MenuStrip control.

MainMenu.Name = "MailMenu"

Positioning a MenuStrip

The Dock property is used to set the position of a MenuStrip. It is of type DockStyle that can

have values Top, Bottom, Left, Right, and Fill. The following code snippet sets Location, Width,

and Height properties of a MenuStrip control.

MainMenu.Dock = DockStyle.Left

Font

Font property represents the font of text of a MenuStrip control. If you click on the Font

property in Properties window, you will see Font name, size and other font options. The

following code snippet sets Font property at run-time.

MainMenu.Font = new Font("Georgia", 16)

Background and Foreground

BackColor and ForeColor properties are used to set background and foreground color of

a MenuStrip respectively. If you click on these properties in Properties window, the Color Dialog

pops up.

Alternatively, you can set background and foreground colors at run-time. The following code

snippet sets

BackColor and ForeColor properties.

Second Internal Question Answer Key, Visual Programming, Page 13/41

MainMenu.BackColor = System.Drawing.Color.OrangeRed

MainMenu.ForeColor = System.Drawing.Color.Black

Then the MenuStrip looks like Figure below.

MenuStrip Items A Menu control is nothing without menu items. The Items property is used to

add and work with items in a MenuStrip. We can add items to a MenuStrip at design-time from

Properties Window by clicking on Items Collection as you can see in Figure below.

When you click on the Collections, the String Collection Editor window will pop up where you

can type strings. Each line added to this collection will become a MenuStrip item. (See the Figure

below.)

A ToolStripMenuItem represents a menu items. The following code snippet creates a menu item

and sets its properties.

 Dim FileMenu As New ToolStripMenuItem("File")

 FileMenu.BackColor = Color.OrangeRed

 FileMenu.ForeColor = Color.Black

 FileMenu.Text = "File Menu"

 FileMenu.Font = New Font("Georgia", 16)

 FileMenu.TextAlign = ContentAlignment.BottomRight

 FileMenu.TextDirection = ToolStripTextDirection.Vertical90

 FileMenu.ToolTipText = "Click Me"

Figure showing Menu Item Collection

Once a menu item is created, we can add it to the main menu by using MenuStrip.Items.Add

method. The following code snippet adds FileMenu item to the MainMenu.

MainMenu.Items.Add(FileMenu)

Second Internal Question Answer Key, Visual Programming, Page 14/41

Adding Menu Item Click Event Handler

The main purpose of a menu item is to add a click event handler and write code that we need

to execute on the menu item click event handler. For example, on File >> New menu item click

event handler, we may want to create a new file. To add an event handler, you go to Events

window and double click on Click and other as you can see in Figure below.

We can also define and implement an event handler dynamically. The following code snippet

defines and implements these events and their respective event handlers.

Dim NewMenuItem As New ToolStripMenuItem("New", Nothing, New

EventHandler(AddressOf NewMenuItemClick))

Private Sub NewMenuItemClick(ByVal sender As Object, ByVal e As EventArgs)

MessageBox.Show("New menu item clicked!")

End Sub

Manipulating Menu’s at Runtime
Dynamic menus change at runtime to display more or fewer commands, depending on the current

status of the program. This section explores two techniques for implementing dynamic menus:

 Creating short and long versions of the same menu

 Adding and removing menu commands at runtime

Iterating a Menu’s Items

The last menu-related topic in this chapter demonstrates how to iterate through all

the items of a menu structure, including their submenus, at any depth. The main menu of

an application can be accessed by the expression Me.MenuStrip1 (assuming that you’re

using the default names). This is a reference to the top-level commands of the menu,

which appear in the form’s menu bar. Each command, in turn, is represented by a

ToolStripMenuItem object. All the items under a menu command form a

ToolStripMenuItems collection, which you can scan to retrieve the individual commands.

The first command in a menu is accessed with the expression Me.MenuStrip1.Items(0);

this is the File command in a typical application. The expression

Me.MenuStrip1.Items(1) is the second command on the same level as the File command

(typically, the Edit menu).

To access the items under the first menu, use the DropDownItems collection of the top

command. The first command in the File menu can be accessed by this expression:

Me.MenuStrip1.Items(0).DropDownItems(0)

The same items can be accessed by name as well, and this is how you should manipulate

the menu items from within your code. In unusual situations, or if you’re using dynamic

Second Internal Question Answer Key, Visual Programming, Page 15/41

menus to which you add and subtract commands at runtime, you’ll have to access the

menu items through the DropDownItems collection.

 (OR)

 b) Explain in detail about RichTextbox controls and Overview of MDI in

VB.NET with example.

The RichTextBox Control
The RichTextBox control is the core of a full-blown word processor. It provides

all the functionality of a TextBox control; it can handle multiple typefaces, sizes, and

attributes, and offers precise control over the margins of the text (see Figure 4.16). You

can even place images in your text on a RichTextBox control (although you won’t have

the kind of control over the embedded images that you have with Microsoft Word).

The fundamental property of the RichTextBox control is its Rtf property. Similar

to the Text property of the TextBox control, this property is the text displayed on the

control. Unlike the Text property, however, which returns (or sets) the text of the control

but doesn’t contain formatting information, the Rtf property returns the text along with

any formatting information.

Figure 4.16 - A word processor based on the functionality of the RichTextBox control

The RTF Language

A basic knowledge of the RTF format, its commands, and how it works will

certainly help you understand the RichTextBox control’s inner workings. RTF is a

language that uses simple commands to specify the formatting of a document. These

commands, or tags, are ASCII strings, such as \par (the tag that marks the beginning of a

new paragraph) and \b (the tag that turns on the bold style). And this is where the value of

the RTF format lies. RTF documents don’t contain special characters and can be easily

exchanged among different operating systems and computers, as long as there is an RTF-

capable application to read the document. Let’s look at an RTF document in action.

Open the WordPad application (choose Start > Programs > Accessories >

WordPad) and enter a few lines of text (see Figure 4.17). Select a few words or

sentences, and format them in different ways with any of WordPad’s formatting

Second Internal Question Answer Key, Visual Programming, Page 16/41

commands. Then save the document in RTF format: Choose File > Save As, select Rich

Text Format, and then save the file as Document.rtf. If you open this file with a text

editor such as Notepad, you’ll see the actual RTF code that produced the document. A

section of the RTF file for the document shown in Figure 4.17 is shown in Listing 4.20.

Figure 4.17 - The formatting applied to the text by using WordPad’s commands is stored

along with the text in RTF format.

Listing 4.20: The RTF Code for the First Paragraph of the Document in Figure 4.17

{\rtf1\ansi\ansicpg1252\deff0\deflang1033

{\fonttbl{\f0\fnil\fcharset0 Verdana;}{\f1\fswiss\fcharset0 Arial;}}

\viewkind4\uc1\pard\nowidctlpar\fi720 \b\f0\fs18 RTF

\b0 stands for \i Rich Text Format\i0 ,

which is a standard for storing formatting

information along with the text. The beauty

of the RichTextBox control for programmers

is that they don\rquote t need to supply the

formatting codes. The control provides simple

properties that turn the selected text into bold,

change the alignment of the current paragraph, and so on.\par

RTF is similar to Hypertext Markup Language (HTML), and if you’re familiar

with HTML, a few comparisons between the two standards will provide helpful hints and

insight into the RTF language. Like HTML, RTF was designed to create formatted

documents that could be displayed on different systems. The following RTF segment

displays a sentence with a few words in italics:

\bRTF\b0 (which stands for Rich Text Format) is a \i

document formatting language\i0 that uses simple

commands to specify the formatting of the document.

The following is the equivalent HTML code:

RTF (which stands for Rich Text Format) is a

<i>document formatting language</i> that uses simple

commands to specify the formatting of the document.

The and <i> tags of HTML, for example, are equivalent to the \b and \i tags of RTF. The

closing tags in RTF are \b0 and \i0, respectively.

Second Internal Question Answer Key, Visual Programming, Page 17/41

The RichTextBox’s Properties
The RichTextBox control provides properties for manipulating the selected text

on the control. The names of these properties start with the Selection or Selected prefix,

and the most commonly used ones are shown in Table 4.5. Some of these properties are

discussed in further detail in following sections.

SelectedText
The SelectedText property represents the selected text, whether it was selected by the

user via the mouse or from within your code. To assign the selected text to a variable, use

the following statement:

selText=RichTextbox1.SelectedText

You can also modify the selected text by assigning a new value to the SelectedText property.

The following statement converts the selected text to uppercase:

RichTextbox1.SelectedText =

RichTextbox1.SelectedText.ToUpper

You can assign any string to the SelectedText property. If no text is selected at the time, the

statement will insert the string at the location of the pointer.

Table 4.5 - RichTextBox Properties for Manipulating Selected Text

Property What It Manipulates

SelectedText The selected text

SelectedRtf The RTF code of the selected text

SelectionStart The position of the selected text’s first character

SelectionLength The length of the selected text

SelectionFont The font of the selected text

SelectionColor The color of the selected text

SelectionBackColor The background color of the selected text

SelectionAlignment The alignment of the selected text

SelectionIndent,

SelectionRightIndent,

SelectionHangingIndent

The indentation of the selected text

RightMargin The distance of the text’s right margin from the left edge of the

control

SelectionTabs An array of integers that sets the tab stop positions in the control

SelectionBullet Whether the selected text is bulleted

BulletIndent The amount of bullet indent for the selected text

SelectionStart, SelectionLength

Second Internal Question Answer Key, Visual Programming, Page 18/41

+

electionLength, report (or set) the position of the first selected character in the text and the

length of the selection, respectively, regardless of the formatting of the selected text. One

obvious use of these properties is to select (and highlight) some text on the control:

RichTextBox1.SelectionStart = 0

RichTextBox1.SelectionLength = 100

You can also use the Select method, which accepts as arguments the starting location and

the length of the text to be selected.

SelectionAlignment
Use this property to read or change the alignment of one or more paragraphs. This

property’s value is one of the members of the HorizontalAlignment enumeration: Left, Right,

and Center. Users don’t have to select an entire paragraph to align it; just placing the

pointer anywhere in the paragraph will do the trick, because you can’t align part of the

paragraph.

SelectionIndent, SelectionRightIndent,

SelectionHangingIndent
These properties allow you to change the margins of individual paragraphs. The

SelectionIndent property sets (or returns) the amount of the text’s indentation from the left

edge of the control. The SelectionRightIndent property sets (or returns) the amount of the text’s

indentation from the right edge of the control. The SelectionHangingIndent property indicates

the indentation of each paragraph’s first line with respect to the following lines of the

same paragraph. All three properties are expressed in pixels.

The SelectionHangingIndent property includes the current setting of the SelectionIndent property. If

all the lines of a paragraph are aligned to the left, the SelectionIndent property can have any

value (this is the distance of all lines from the left edge of the control), but the

SelectionHangingIndent property must be zero. If the first line of the paragraph is shorter than

the following lines, the SelectionHangingIndent has a negative value. Figure 4.18 shows several

differently formatted paragraphs. The settings of the SelectionIndent and SelectionHangingIndent

properties are determined by the two sliders at the top of the form.

Second Internal Question Answer Key, Visual Programming, Page 19/41

Figure 4.18 - Various combinations of the SelectionIndent and SelectionHangingIndent properties

produce all possible paragraph styles.

SelectionBullet, BulletIndent
You use these properties to create a list of bulleted items. If you set the SelectionBullet

property to True, the selected paragraphs are formatted with a bullet style, similar to the

 tag in HTML. To create a list of bulleted items, select them from within your code

and assign the value True to the SelectionBullet property. To change a list of bulleted items

back to normal text, make the same property False.

The paragraphs formatted as bullets are also indented from the left by a small amount. To

set the amount of the indentation, use the BulletIndent property, which is also expressed in

pixels.

SelectionTabs
Use this property to set the tab stops in the RichTextBox control. The Selection

tab should be set to an array of integer values, which are the absolute tab positions in

pixels. Use this property to set up a RichTextBox control for displaying tab-delimited

data.

Methods Of the RichTextBox control
The first two methods of the RichTextBox control you need to know are SaveFile

and LoadFile. The SaveFile method saves the contents of the control to a disk file, and the

LoadFile method loads the control from a disk file.

SaveFile
The syntax of the SaveFile method is as follows:

RichTextBox1.SaveFile(path, filetype)

where path is the path of the file in which the current document will be saved. By default,

the SaveFile method saves the document in RTF format and uses the .RTF extension.

You can specify a different format by using the second optional argument, which can

take on the value of one of the members of the RichTextBoxStreamType enumeration,

described in Table 4.6.

Table 4.6 - The RichTextBoxStreamType Enumeration

Format Effect

PlainText Stores the text on the control without any formatting

RichNoOLEObj

s

Stores the text without any formatting and ignores any embedded OLE

objects

RichText Stores the text in RTF format (text with embedded RTF commands)

TextTextOLEOb

js
Stores the text along with the embedded OLE objects

UnicodePlainTe

xt
Stores the text in Unicode format

 LoadFile

Similarly, the LoadFile method loads a text or RTF file to the control. Its syntax is

identical to the syntax of the SaveFile method:

Second Internal Question Answer Key, Visual Programming, Page 20/41

RichTextBox1.LoadFile(path, filetype)

The filetype argument is optional and can have one of the values of the RichTextBoxStreamType

enumeration. Saving and loading files to and from disk files is as simple as presenting a

Save or Open common dialog to the user and then calling one of the SaveFile or LoadFile

methods with the filename returned by the common dialog box.

Select, SelectAll

The Select method selects a section of the text on the control, similar to setting the

SelectionStart and SelectionLength properties. The Select method accepts two arguments: the

location of the first character to be selected and the length of the selection:

RichTextBox1.Select(start, length)

The SelectAll method accepts no arguments and it selects all the text on the control.

22. a) Explain in detail about Handling dates in VB.NET with suitable examples.

Handling Dates
The Date Time Class

The DateTime class is used for storing date and time values, and it’s one of the

Framework’s base data types. Date and time values are stored internally as Double

numbers. The integer part of the value corresponds to the date, and the fractional part

corresponds to the time. To convert a DateTime variable to a Double value, use the

method ToOADateTime, which returns a value that is an OLE (Object Linking and

Embedding) Automation-compatible date. The value 0 corresponds to midnight of

December 30, 1899.

To initialize a DateTime variable, supply a date value enclosed in a pair of pound

symbols. If the value contains time information, separate it from the date part by using a

space:

Dim date1 As Date = #4/15/2007#

Dim date2 As Date = #4/15/2007 2:01:59#

Properties

The DateTime class exposes the following properties, which are straightforward.

Date, TimeOfDay
The Date property returns the date from a date/time value and sets the time to midnight.

The TimeOfDay property returns the time part of the date. The following statements

Dim date1 As DateTime

date1 = Now()

Debug.WriteLine(date1)

Debug.WriteLine(date1.Date)

Debug.WriteLine(date1.TimeOfDay)

will print something like the following values in the Output window:

8/5/2007 9:41:55 AM

8/5/2007 12:00:00 AM

09:41:55.5296000

DayOfWeek, DayOfYear

Second Internal Question Answer Key, Visual Programming, Page 21/41

Hour, Minute, Second, Millisecond
These properties return the corresponding time part of the date value passed as an

argument. If the current time is 9:47:24 p.m., the three properties of the DateTime class

will return the integer values 9, 47, and 24 when applied to the current date and time:

Debug.WriteLine("The current time is " & Date.Now.ToString)

Debug.WriteLine("The hour is " & Date.Now.Hour)

Debug.WriteLine("The minute is " & Date.Now.Minute)

Debug.WriteLine("The second is " & Date.Now.Second)

Day, Month, Year

These three properties return the day of the month, the month, and the year of a

DateTime value, respectively. The Day and Month properties are numeric values, but you

can convert them to the appropriate string (the name of the day or month) with the

WeekDayName() and MonthName() functions.

Ticks

This property returns the number of ticks from a date/time value. Each tick is 100

nanoseconds (or 0.0001 milliseconds). To convert ticks to milliseconds, multiply them by

10,000 (or use the TimeSpan object’s TicksPerMillisecond property.

Methods

The DateTime class exposes several methods for manipulating dates. The most

practical methods add and subtract time intervals to and from an instance of the

DateTime class.

Compare
Compare is a shared method that compares two date/time values and returns an

integer value indicating the relative order of the two values. The syntax of the Compare

method is the following, where date1 and date2 are the two values to be compared:

order = System.DateTime.Compare(date1, date2)

DaysInMonth
This shared method returns the number of days in a specific month. Because

February contains a variable number of days depending on the year, the DaysInMonth

method accepts as arguments both the month and the year:

monDays = DateTime.DaysInMonth(year, month)

FromOADate
This shared method creates a date/time value from an OLE Automation-

compatible date.

newDate = DateTime.FromOADate(dtvalue)

The argument dtvalue must be a Double value in the range from −657,434 (first day of

year 100) to 2,958,465 (last day of year 9999).

IsLeapYear

Second Internal Question Answer Key, Visual Programming, Page 22/41

This shared method returns a True/False value that indicates whether the specified year is

a leap year:

Dim leapYear As Boolean = DateTime.IsLeapYear(year)

Add
This method adds a TimeSpan object to the current instance of the DateTime class.

Dim TS As New TimeSpan()

Dim thisMoment As Date = Now()

TS = New TimeSpan(3, 6, 2, 50)

Debug.WriteLine(thisMoment)

Debug.WriteLine(thisMoment.Add(TS))

The values printed in the Output window when I tested this code segment were as

follows:

9/1/2007 10:10:49 AM

9/4/2007 4:13:39 PM

Subtract

This method is the counterpart of the Add method; it subtracts a TimeSpan object from

the current instance of the DateTime class and returns another Date value.

Adding Intervals to Dates

Various methods add specific intervals to a date/time value. Each method accepts the

number of intervals to add (days, hours, milliseconds, and so on) to the current instance

of the DateTime class. These methods are the following: AddYears, AddMonths,

AddDays, AddHours, AddMinutes, AddSeconds, AddMilliseconds, and AddTicks.

To add 3 years and 12 hours to the current date, use the following statements:

Dim aDate As Date

aDate = Now()

aDate = aDate.AddYears(3)

aDate = aDate.AddHours(12)

If the argument is a negative value, the corresponding intervals are subtracted from the

current instance of the class.

ToString

This method converts a date/time value to a string, using a specific format. The

DateTime class recognizes numerous format patterns, which are listed in the following

two tables. Table lists the standard format patterns, and Table lists the characters that can

format individual parts of the date/time value. You can combine the custom format

characters to format dates and times in any way you wish.

The syntax of the ToString method is the following, where formatSpec is a format

specification:

aDate.ToString(formatSpec)

Second Internal Question Answer Key, Visual Programming, Page 23/41

The D named date format, for example, formats a date value as a long date; the following

statement will return the highlighted string shown below the statement:

Debug.Writeline(#9/17/2010#.ToString("D"))

Friday, September 17, 2010

Table 9.1 lists the named formats for the standard date and time patterns. The format

characters are case-sensitive — for example, g and G represent slightly different patterns.

Named

Format
Output Format Name

d MM/dd/yyyy ShortDatePattern

D dddd, MMMM dd, yyyy LongDatePattern

F
dddd, MMMM dd, yyyy

HH:mm:ss.mmm

FullDateTimePattern (long date and

long time)

f
dddd, MMMM dd, yyyy

HH:mm.ss

FullDateTimePattern (long date and

short time)

g MM/dd/yyyy HH:mm general (short date and short time)

G MM/dd/yyyy HH:mm:ss General (short date and long time)

M m MMMM dd MonthDayPattern (month and day)

r, R
ddd, dd MMM yyyy HH:mm:ss

GMT
RFC1123Pattern

Table 9.2: Date Format Specifier

Format

Character
Description

d The date of the month

dd The day of the month with a leading zero for single-digit days

ddd
The abbreviated name of the day of the week (a member of the

AbbreviatedDayNames enumeration)

dddd
The full name of the day of the week (a member of the

DayNamesFormat enumeration)

M The number of the month

MM The number of the month with a leading zero for single-digit months

MMM
The abbreviated name of the month (a member of the

AbbreviatedMonthNames enumeration)

MMMM The full name of the month

The following examples format the current date by using all the format patterns listed in

Table 13.1. An example of the output produced by each statement is shown under each

statement, indented and highlighted.

Second Internal Question Answer Key, Visual Programming, Page 24/41

Debug.WriteLine(now().ToString("d"))

6/1/2008

Debug.WriteLine(now().ToString("D"))

Sunday, June 01, 2008

Debug.WriteLine(now().ToString("f"))

Sunday, June 01, 2008 10:29 AM

Debug.WriteLine(now().ToString("F"))

Sunday, June 01, 2008 10:29:35 AM

Debug.WriteLine(now().ToString("g"))

6/1/2008 10:29 AM

Debug.WriteLine(now().ToString("G"))

6/1/2008 10:29:35 AM

To display the full month name and the day in the month, for instance, use the following

statement:

Debug.WriteLine(now().ToString("MMMM d")).

Date Conversion Methods

The DateTime class supports methods for converting a date/time value to many of the

other base types, which are presented here briefly.

ToFileTime, FromFileTime
The ToFileTime method converts the value of the current Date instance to the format of

the local system file time. There’s also an equivalent FromFileTime method, which

converts a file time value to a Date value.

ToLongDateString, ToShortDateString

These two methods convert the date part of the current DateTime instance to a string with

the long (or short) date format. The following statement will return a value like the one

highlighted, which is the long date format:

Debug.WriteLine(Now().ToLongDateString)

Tuesday, July 15, 2008

ToLongTimeString, ToShortTimeString
These two methods convert the time part of the current instance of the Date class to a

string with the long (or short) time format. The following statement will return a value

like the one highlighted:

Debug.WriteLine(Now().ToLongTimeString)

6:40:53 PM

ToOADate
This method converts the DateTime instance into an OLE Automation-compatible date (a

long value).

ToUniversalTime, ToLocalTime

Second Internal Question Answer Key, Visual Programming, Page 25/41

ToUniversalTime converts the current instance of the DateTime class into universal

coordinated time (UCT). The method ToLocalTime converts a UCT time value to local

time.

Dates as Numeric Values

The Date type encapsulates complicated operations, and it’s worth taking a look at the

inner workings of the classes that handle dates and times. Let’s declare two variables to

experiment a little with dates: a Date variable, which is initialized to the current date, and

a Double variable.

Dim Date1 As Date = Now()

Dim dbl As Double

Insert a couple of statements to convert the date to a Double value and print it:

dbl = Date1.ToOADate

Debug.WriteLine(dbl)

The TimeSpan Class

The last class discussed in this chapter is the TimeSpan class, which represents a

time interval and can be expressed in many different units — from ticks and milliseconds

to days. The TimeSpan is usually the difference between two date/time values, but you

can also create a TimeSpan for a specific interval and use it in your calculations.

To use the TimeSpan variable in your code, just declare it with a statement such as the

following:

Dim TS As New TimeSpan

You can initialize an instance of the TimeSpan object by creating two date/time values

and getting their difference, as in the following statements:

Dim TS As New TimeSpan

Dim date1 As Date = #4/11/1985#

Dim date2 As Date = Now()

TS = date2.Subtract(date1)

Debug.WriteLine(TS)

Depending on the day on which you execute these statements, they will print something

like the following in the Output window:

8086.15:37:01.6336000

Properties

The TimeSpan type exposes the properties described in the following sections. Most of

these properties are shared.

Field Properties

Second Internal Question Answer Key, Visual Programming, Page 26/41

TimeSpan exposes the simple properties shown in Table 13.3, which are known as fields

and are all shared.

Table 9.3: The Fields of the TimeSpan Object

Property Returns

Empty An Empty TimeSpan object

MaxValue The largest interval you can represent with a TimeSpan object

MinValue The smallest interval you can represent with a TimeSpan object

TicksPerDay The number of ticks in a day

TicksPerHour The number of ticks in an hour

TicksPerMillisecond The number of ticks in a millisecond

TicksPerMinute The number of ticks in one minute

TicksPerSecond The number of ticks in one second

Zero A TimeSpan object of zero duration

 Interval Properties

In addition to the fields, the TimeSpan class exposes two more groups of

properties that return the various intervals in a TimeSpan value (shown in Tables 13.4

and 13.5). The members of the first group of properties return the number of specific

intervals (days, hours, and so on) in a TimeSpan value. The second group of properties

returns the entire TimeSpan’s duration in one of the intervals recognized by the

TimeSpan method.

Table 9.4: The Intervals of a TimeSpan Value

Property Returns

Days The number of whole days in the current TimeSpan.

Hours The number of whole hours in the current TimeSpan.

Millisecon

ds

The number of whole milliseconds in the current TimeSpan. The largest

value of this property is 999.

Minutes
The number of whole minutes in the current TimeSpan. The largest

value of this property is 59.

Seconds
The number of whole seconds in the current TimeSpan. The largest

value of this property is 59.

Ticks The number of whole ticks in the current TimeSpan.

Table 9.5: The Total Intervals of a TimeSpan Value

Property Returns

TotalDays The number of days in the current TimeSpan

Second Internal Question Answer Key, Visual Programming, Page 27/41

TotalHours The number of hours in the current TimeSpan

TotalMilliseconds The number of whole milliseconds in the current TimeSpan

TotalMinutes The number of whole minutes in the current TimeSpan

Duration

This property returns the duration of the current instance of the TimeSpan class. The

duration is expressed as the number of days followed by the number of hours, minutes,

seconds, and milliseconds. The following statements create a TimeSpan object of a few

seconds (or minutes, if you don’t mind waiting) and print its duration in the Output

window.

Dim T1, T2 As DateTime

T1 = Now

MsgBox("Click OK to continue")

T2 = Now

Dim TS As TimeSpan

TS = T2.Subtract(T1)

Debug.WriteLine("Total duration = " & TS.Duration.ToString)

Debug.WriteLine("Minutes = " & TS.Minutes.ToString)

Debug.WriteLine("Seconds = " & TS.Seconds.ToString)

Debug.WriteLine("Ticks = " & TS.Ticks.ToString)

Debug.WriteLine("Milliseconds = " & TS.TotalMilliseconds.ToString)

Debug.WriteLine("Total seconds = " & TS.TotalSeconds.ToString)

If you place these statements in a button’s Click event handler and execute them, you’ll

see a series of values like the following in the Immediate window:

Total duration = 00:01:34.2154752

Minutes = 1

Seconds = 34

Ticks = 942154752

Milliseconds = 94215,4752

Total seconds = 94,2154752

Methods

There are various methods for creating and manipulating instances of the

TimeSpan class, and they’re described in the following sections.

Interval Methods

The methods in Table 13.6 create a new TimeSpan object of a specific duration.

The TimeSpan’s duration is specified as a number of intervals, accurate to the nearest

millisecond.

All methods accept a single argument, which is a Double value that represents the

number of the corresponding intervals (days, hours, and so on).

Second Internal Question Answer Key, Visual Programming, Page 28/41

Parse(string)

This method creates a new TimeSpan object from a string with the TimeSpan

format (days;followed by a period; followed by the hours, minutes, and seconds separated

by colons). The following statements create a new TimeSpan variable with a duration of

3 days, 12 hours, 20 minutes, 30 seconds, and 500 milliseconds:

Dim SP As New TimeSpan()

SP = TimeSpan.Parse("3.12:20:30.500")

Debug.WriteLine(SP)

3.12:20:30.5000000

(OR)

 b) Discuss the following with examples

(i) Displaying Images.

Display and size images. - The most appropriate control for displaying images is the

PictureBox control. You can assign an image to the control through its Image property,

either at design time or at runtime. To display a user-supplied image at runtime, call the

DrawImage method of the control's Graphics object.

Generate graphics by using the drawing methods. - Every object you draw on, such as

forms and PictureBox controls, exposes the CreateGraphics method, which returns a

Graphics object. The Paint event's e argument also exposes the Graphics object of the

control or form. To draw something on a control, retrieve its Graphics object and then

call the Graphics object's drawing methods.

Display text in various ways, including gradient fills. - The Graphics object provides

the DrawString method, which prints a user-supplied string on a control. You can also

specify the coordinates of the string's upper-left corner and its font. To position the string,

you need to know its dimensions..

(ii) Bitmaps.

Bitmaps
Specifying Colors

The model of designing colors based on the intensities of their RGB components

is called the RGB model, and it's a fundamental concept in computer graphics. If you

aren't familiar with this model, this section is well worth reading. Nearly every color you

can imagine can be constructed by mixing the appropriate percentages of the three basic

colors.

Defining Colors

To manipulate colors, use the Color class of the Framework. This is a shared

class, and you need not create new Color objects; just call the appropriate property or

method of the Color class. The Color class exposes 128 predefined colors as properties,

which you can access by name, and additional members for specifying custom colors. For

Second Internal Question Answer Key, Visual Programming, Page 29/41

example, you can define colors by using the FromARGB method of the Color class. This

method accepts three arguments, which are the components of the primary colors in the

desired color:

Color.FromARGB(Red, Green, Blue)

The method returns a Color value, which you can assign to a variable of the same

type, or use it directly as the value of a Color property. To change the form's background

color to yellow, you can assign the value returned by the FromARGB method to the

BackColor property of a form or control:

Form1.BackColor = FromARGB(255, 128, 128)

Alpha Blending

Besides the red, green, and blue components, a Color value might also contain a

transparency component. This value determines whether the color is opaque (255) or

transparent (0). In the case of transparent colors, you can specify the degree of

transparency. This component is the alpha component. The following statement creates a

new color value, which is yellow and 25 percent transparent:

Dim trYellow As Color

trYellow = Color.FromARGB(192, Color.Yellow)

The preceding statements print the logo at two locations on the image of the PictureBox1

control with different colors, as shown in Figure 15.2.

Figure 15.2 - Watermarking an image with a semitransparent string

Figure 15.3 - Creating a 3D effect by superimposing transparency on an opaque and a

semitransparent string

The code behind the Draw Semi-Transparent Text button is quite simple, really. First it

draws the string with the solid blue brush:

Second Internal Question Answer Key, Visual Programming, Page 30/41

brush = New SolidBrush(Color.FromARGB(255, 0, 0, 255))

Processing Bitmaps

A bitmap is a two-dimensional array of color values. These values are stored in

disk files, and when an image is displayed on a PictureBox or Form control, each of its

color values is mapped to a pixel on the PictureBox or form. This is true when the image

isn't resized, of course.

Refreshing the Image

When you draw on a bitmap, which is associated with the Image property of a

PictureBox control, the image on the control isn't refreshed every time the bitmap is

modified. Instead, the image is modified when the Paint event has a chance to be

serviced. The processing is implemented with two nested loops that iterate through the

bitmap's rows and columns, as in the following code:

For pxlCol As Integer = 0 To PictureBox1.Image.Height - 1

For pxlRow As Integer = 0 To PictureBox1.Image.Width - 1

' statements to process current pixel:

' (pxlRow, pxlCol)

Next

Next

The image on the control won't be refreshed until the outer loop has finished. As a result,

users can't see the progress of the operation; they will see the new image after all its

pixels have been processed.

To force the PictureBox control to refresh its image, you must call the Refresh method.

iii) Write note on GDI.

Drawing with GDI+
The most recent version on GDI is called GDI+.One of the basic characteristics of GDI is

that it's stateless. This means that each graphics operation is totally independent of the previous

one and can't affect the following one. To draw a line, you must specify a Pen object and the two

endpoints of the line.

The GDI+ classes reside in the following namespaces, and you must import one or more of them

in your projects: System.Drawing, System.Drawing2D, System.Drawing.Imaging, and

System.Drawing.Text. This chapter explores all three aspects of GDI+ — namely vector drawing,

imaging, and typography.

Here are the statements to draw a line on the form:

Dim redPen As Pen = New Pen(Color.Red, 2)

Dim point1 As Point = New Point(10,10)

Dim point2 As Point = New Point(120,180)

Me.CreateGraphics.DrawLine(redPen, point1, point2)

Second Internal Question Answer Key, Visual Programming, Page 31/41

The Basic Drawing Objects

This is a good point to introduce some of the objects we'll be using all the time

when drawing. No matter what you draw or which drawing instrument you use, one or

more of the objects discussed in this section will be required.

The Graphics Object

The Graphics object is the drawing surface — your canvas. All the controls you

can draw on expose a Graphics property, which is an object, and you can retrieve it with

the CreateGraphics method. Start by declaring a variable of the Graphics type and

initialize it to the Graphics object returned by the control's CreateGraphics method:

Dim G As Graphics

G = PictureBox1.CreateGraphics

DpiX, DpiY - These two properties return the horizontal and vertical resolutions of the

drawing surface, respectively. Resolution is expressed in pixels per inch (or dots per inch,

if the drawing surface is your printer). On an average monitor, these two properties return

a resolution of 96 dots per inch (dpi).

PageUnit - This property determines the units in which you want to express the

coordinates on the Graphics object; its value can be a member of the GraphicsUnit

enumeration

TextRenderingHint - This property specifies how the Graphics object will render text;

its value is one of the members of the TextRenderingHint enumeration: AntiAlias,

AntiAliasGrid- Fit, ClearTypeGridFit, SingleBitPerPixel, SingleBitPerPixelGridFit, and

SystemDefault.

SmoothingMode - This property is similar to the TextRenderingHint, but it applies to

shapes drawn with the Graphics object's drawing methods. Its value is one of the

members of the SmoothingMode enumeration: AntiAlias, Default, HighQuality,

HighSpeed, Invalid, and None.

The Point Class

The Point class represents a point on the drawing surface and is expressed as a

pair of (x, y) coordinates. The x-coordinate is its horizontal distance from the origin, and

the y-coordinate is its vertical distance from the origin. The origin is the point with

coordinates (0, 0), and this is the top-left corner of the drawing surface.

The Rectangle Class

Another class that is often used in drawing is the Rectangle class. The Rectangle

object is used to specify areas on the drawing surface. Its constructor accepts as

arguments the coordinates of the rectangle's top-left corner and its dimensions:

Second Internal Question Answer Key, Visual Programming, Page 32/41

Dim box As Rectangle

box = New Rectangle(X, Y, width, height)

The following statement creates a rectangle whose top-left corner is 1 pixel to the right

and 1 pixel down from the origin, and its dimensions are 100 by 20 pixels:

box = New Rectangle(1, 1, 100, 20)

23. a) Discuss about File Accessing methods in VB.NET with suitable examples.

 Accessing Files

There are two types of files: text files and binary files. To access a file, you must first set

up a Stream object. Stream objects are created by the various methods that open or create

files, as you have seen in the previous sections, and they return information about the file

they're connected to.

Using Streams

Another benefit of using streams is that you can combine them. The typical example is

that of encrypting and decrypting data. Data is encrypted through a special type of

Stream, the CryptoStream.

The FileStream Class

The Stream class is an abstract one, and you can't use it directly in your code. To

prepare your application to write to a file, you must set up a FileStream object, which is

the channel between your application and the file. The methods for writing and reading

data are provided by the StreamReader/StreamWriter or BinaryReader/BinaryWriter

classes, which are created on top of the FileStream object.

Properties

You can use the following properties of the FileStream object to retrieve information

about the underlying file.

Length

This read-only property returns the length of the file associated with the FileStream

current object in bytes.

Position

This property gets or sets the current position within the stream. You can compare the

Position property to the Length property to find out whether you have reached the end of

an existing file. When these two properties are equal, there are no more data to read.

Methods

The FileStream object exposes a fewmethods, which are discussed here. Themethods for

accessing a file's contents are discussed in the following section.

Second Internal Question Answer Key, Visual Programming, Page 33/41

Lock

This method allows you to lock the file you're accessing, or part of it. The syntax of the

Lock method is the following, where position is the starting position and length is the

length of the range to be locked:

Lock(position, length)

To lock the entire file, use this statement:

FileStream.Lock(1, FileStream.Length)

Seek

This method sets the current position in the file represented by the FileStream object:

FileStream.Seek(offset, origin)

The new position is offset bytes from the origin. In place of the origin argument, use one

of he SeekOrigin enumeration members, listed in Table 11.6.

Table 11.6: SeekOrigin Enumeration

Value Effect

Begin The offset is relative to the beginning of the file.

Current The offset is relative to the current position in the file.

End The offset is relative to the end of the file.

SetLength

This method sets the length of the file represented by the FileStream object. Use this

method after you have written to an existing file to truncate its length. The syntax of the

SetLength method is this:

FileStream.SetLength(newLength)

The StreamWriter Class

The StreamWriter class is the channel through which you send data to a text file.

To create a new StreamWriter object, declare a variable of the StreamWriter type. The

first overloaded form of the constructor accepts a file's path as an argument and creates a

new StreamWriter object for the file:

Dim SW As New StreamWriter(path)

NewLine Property

The StreamWriter object provides a handy property, the NewLine property, which

allows you to change the string used to terminate each line in the file. This terminator is

written to the text file by the WriteLine method, following the text. The default line-

terminator string is a carriage return followed by a line feed (\r\n). The StreamReader

object doesn't provide a similar property. It reads lines terminated by the carriage return

(\r), line feed (\n), or carriage return/line feed (\r\n) characters only.

Methods

To send information to the underlying file, use the following methods of the

StreamWriter object.

Second Internal Question Answer Key, Visual Programming, Page 34/41

AutoFlush

This property is a True/False value that determines whether the methods that write

to the file (the Write and WriteString methods) will also flush their buffer. If you set this

property to False, the buffer will be flushed when the operating system gets a chance,

when the Flush method is called, or when you close the FileStream object. When

AutoFlush is True, the buffer is flushed with every write operation.

Close

This method closes the StreamWriter object and releases the resources associated

with it to the system. Always call the Close method after you finish using the

StreamWriter object. If you have created the StreamWriter object on top of a FileStream

object, you must also close the underlying stream too.

Flush

This method writes any data in the buffer to the underlying file.

WriteLine(data)

This method is identical to the Write method, but it appends a line break after

saving the data to the file. You will find examples on using the StreamWriter class after

we discuss the methods of the StreamReader class.

The StreamReader Class

The StreamReader class provides the necessary methods for reading from a text

file and exposes methods that match those of the StreamWriter class (the Write and

WriteLine methods). The StreamReader class's constructor is overloaded. You can

specify the FileStream object it will use to read data from the file, the encoding scheme,

and the buffer size. The simplest form of the constructor is the following:

Dim SR As New StreamReader(FS)

Methods

The StreamReader class provides the following methods for writing data to the

underlying file.

Close

The Close method closes the current instance of the StreamReader class and releases any

system resources associated with this object.

Peek

The Peek method returns the next character as an integer value, without actually

removing it from the input stream. The Peek method doesn't change the current position

in the stream. If there are no more characters left in the stream, the value −1 is returned.

The Peek method will also return −1 if the current stream doesn't allow peeking.

Second Internal Question Answer Key, Visual Programming, Page 35/41

Read

This method reads a number of characters from the StreamReader class to which

it's applied and returns the number of characters read. The syntax of the Read method is

as follows, where count is the number of characters to be read, starting at the startIndex

location in the file:

charsRead = SR.Read(chars, startIndex, count)

ReadBlock

This method reads a number of characters from a text file and stores them in an array of

characters. It accepts the same arguments as the Read method and returns the number of

characters read.

Dim chars(count - 1) As Char

charsRead = SR.Read(chars, startIndex, count)

ReadLine

This method reads the next line from the text file associated with the

StreamReader class and returns a string. If you're at the end of the file, the method returns

the Null value. The syntax of the ReadLine method is the following:

Dim txtLine As String

txtLine = SR.ReadLine()

ReadToEnd

The last method for reading characters from a text file reads all the characters

from the current position to the end of the file. We usually call this method once to read

the entire file with a single statement and store its contents to a string variable. The

syntax of the ReadToEnd method is as follows:

allText = SR.ReadToEnd()

The BinaryWriter Class

To prepare your application to write to a binary file, you must set up a

BinaryWriter object, with the statement shown here, where FS is a properly initialized

FileStream object:

Dim BW As New BinaryWriter(FS)

To specify the encoding of the text in the binary file, use the following form of the

method:

Dim BW As New BinaryWriter(FS, encoding)

Dim BW As New BinaryWriter(path, encoding)

Methods

The BinaryWriter class exposes the following methods for manipulating binary files.

Second Internal Question Answer Key, Visual Programming, Page 36/41

Close

This method flushes and closes the current BinaryWriter and releases any system

resources associated with it.

Flush

This method clears all buffers for the current writer and writes all buffered data to the

underlying file.

Seek

This method sets the position within the current stream. Its syntax is the following, where

origin is a member of the SeekOrigin enumeration and offset is the distance from the

origin:

Seek(offset, origin)

Write

The Write method writes a value to the current stream. This method is heavily

overloaded, but it accepts a single argument, which is the value to be written to the file.

The data type of its argument determines how it will be written. The Write method can

save all the base types to the file in their native format, unlike the Write method of the

TextWriter class, which stores them as strings.

WriteString

Whereas all other data types can be written to a binary file with the Write method,

strings must be written with the WriteString method. This method writes a length-

prefixed string to the file and advances the current position by the appropriate number of

bytes. The string is encoded by the current encoding scheme, and the default value is

UTF8Encoding.

The BinaryReader Class

The BinaryReader class provides the methods you need to read data from a binary

file. As you have seen, binary files might also hold text, and the BinaryReader class

provides the ReadString method to read strings written to the file by the WriteString

method.

To use the methods of the BinaryReader class in your code, you must first create

an instance of the class. The BinaryReader object must be associated with a FileStream

object, and the simplest form of its constructor is the following, where streamObj is the

FileStream object:

Dim BR As New BinaryReader(streamObj)

.

Methods

The BinaryReader class exposes the following methods for accessing the contents of a

binary file.

Second Internal Question Answer Key, Visual Programming, Page 37/41

Close

This method is the same as the Close method of the StreamReader class. It closes the

current reader and releases the underlying stream.

PeekChar

This method returns the next available character from the streamwithout

repositioning the current pointer. The character read is returned as an integer, or −1 if

there are no more characters to be read from the stream.

 (OR)

 b) Explain the following with example. i) Designing Menus. ii) String Handling

in VB.Net

 Handling String and Characters

 The Char Class

The Char data type stores characters as individual, double-byte (16-bit), Unicode

values; and it exposes methods for classifying the character stored in a Char variable.

You can use methods such as IsDigit and IsPunctuation on a Char variable to determine

its type, and other similar methods that can simplify your string validation code.

To use a character variable in your application, you must declare it with a statement such

as the following one:

Dim ch As Char

ch = Convert.ToChar("A")

Properties

The Char class provides two trivial properties: MaxValue and MinValue. They

return the largest and smallest character values you can represent with the Char data type.

Methods

The Char data type exposes several useful methods for handling characters. All

the methods described here have the same syntax: They accept either a single argument,

which is the character they act upon, or a string and the index of a character in the string

on which they act.

GetNumericValue

This method returns a positive numeric value if called with an argument that is a

digit, and the value −1 otherwise. If you call the GetNumericValue with the argument 5,

it will return the numeric value 5. If you call it with the symbol @, it will return the value

−1.

Second Internal Question Answer Key, Visual Programming, Page 38/41

GetUnicodeCategory

This method returns a numeric value that is a member of the UnicodeCategory

enumeration and identifies the Unicode group to which the character belongs. The

Unicode groups characters into categories such as math symbols, currency symbols, and

quotation marks. Look up the UnicodeCategory enumeration in the documentation for

more information.

IsLetter, IsDigit, IsLetterOrDigit

These methods return a True/False value indicating whether their argument,

which is a character, is a letter, decimal digit, or letter/digit, respectively. You can write

an event handler by using the IsDigit method to accept numeric keystrokes and to reject

letters and punctuation symbols.

IsLower, IsUpper

These methods return a True/False value indicating whether the specified

character is lowercase or uppercase, respectively.

IsNumber

This method returns a True/False value indicating whether the specified character

is a number. The IsNumber method takes into consideration hexadecimal digits (the

characters 0123456789-ABCDEF) in the same way as the IsDigit method does for

decimal numbers.

IsPunctuation, IsSymbol, IsControl

These methods return a True/False value indicating whether the specified

character is a punctuation mark, symbol, or control character, respectively. The

Backspace and Esc keys, for example, are ISO (International Organization for

Standardization) control characters.

IsSeparator

This method returns a True/False value indicating whether the character is

categorized as a separator (space, new-line character, and so on).

IsWhiteSpace

This method returns a True/False value indicating whether the specified character is

white space. Any sequence of spaces, tabs, line feeds, and form feeds is considered white

space. Use this method along with the IsPunctuation method to remove all characters in a

string that are not words.

ToLower, ToUpper

These methods convert their argument to a lowercase or uppercase character,

respectively, and return it as another character.

Second Internal Question Answer Key, Visual Programming, Page 39/41

ToString

This method converts a character to a string. It returns a single-character string,

which you can use with other string-manipulation methods or functions.

The String Class

The String class implements the String data type, which is one of the richest data

types in terms of the members it exposes. We have used strings extensively in earlier

chapters, but this is a formal discussion of the String data type and all of the functionality

it exposes.

To create a new instance of the String class, you simply declare a variable of the String

type. You can also initialize it by assigning to the corresponding variable a text value:

Dim title As String = "Visual Basic 2008 Tutorial"

The Replace method, like all other methods of the String class, doesn’t operate

directly on the string to which it’s applied. Instead, it creates a new string and returns it as

a new string. You can also use Visual Basic’s string-manipulation functions to work with

strings. For example, you can replace the string VB with Visual Basic by using the

following statement:

newTitle = Replace(title, "VB", "Visual Basic")

Like the methods of the String class, the string-manipulation functions don’t act on the

original string; they return a new string.

Properties

The String class exposes only two properties, the Length and Chars properties,

which return a string’s length and its characters, respectively. Both properties are read-

only.

Length

The Length property returns the number of characters in the string and is read-

only. To find out the number of characters in a string variable, use the following

statement:

chars = myString.Length

Chars

The Chars property is an array of characters that holds all the characters in the

string.

Methods

All the functionality of the String class is available through methods, which are

described next. They are all shared methods: They act on a string and return a new string

with the modified value.

Second Internal Question Answer Key, Visual Programming, Page 40/41

Compare

This method compares two strings and returns a negative value if the first string is

less than the second, a positive value if the second string is less than the first, and zero if

the two strings are equal. Of course, the simplest method of comparing two strings is to

use the comparison operators, as shown here:

If name1 < name 2 Then

' name1 is alphabetically smaller than name 2

Else If name 1 > name 2 Then

' name2 is alphabetically smaller than name 1

Else

' name1 is the same as name2

End If

CompareOrdinal

The CompareOrdinal method compares two strings similar to the Compare

method, but it doesn’t take into consideration the current locale. This method returns zero

if the two strings are the same, and a positive or negative value if they’re different. These

values, however, are not 1 and −1; they represent the numeric difference between the

Unicode values of the first two characters that are different in the two strings.

Concat

This method concatenates two or more strings (places them one after the other)

and forms a new string. The simpler form of the Concat method has the following syntax

and it is equivalent to the & operator:

newString = String.Concat(string1, string2)

This statement is equivalent to the following:

newString = string1 & string2

Copy

The Copy method copies the value of one string variable to another. Notice that

the value to be copied must be passed to the method as an argument. The Copy method

doesn’t apply to the current instance of the String class. Most programmers will use the

assignment operator and will never bother with the Copy method.

EndsWith, StartsWith

These two methods return True if their argument ends or starts with a user-

supplied substring. The syntax of these methods is as follows:

found = str.EndsWith(string)

found = str.StartsWith(string)

These two methods are equivalent to the Left() and Right() functions, which extract a

given number of characters from the left or right end of the string, respectively.

IndexOf, LastIndexOf

These two methods locate a substring in a larger string. The IndexOf method

starts searching from the beginning of the string, and the LastIndexOf method starts

searching from the end of the string. Both methods return an integer, which is the order of

the substring’s first character in the larger string (the order of the first character is zero).

Second Internal Question Answer Key, Visual Programming, Page 41/41

To locate a string within a larger one, use the following forms of the IndexOf method:

pos = str.IndexOf(searchString)

pos = str.IndexOf(SearchString, startIndex)

pos = str.IndexOf(SearchString, startIndex, endIndex)

The startIndex and the endIndex arguments delimit the section of the string where the

search will take place, and pos is an integer variable.

The last three overloaded forms of the IndexOf method search for an array of characters

in the string:

str.IndexOf(Char())

str.IndexOf(Char(), startIndex)

str.IndexOf(Char(), startIndex, endIndex)

IndexOfAny

This is an interesting method that accepts as an argument an array of arguments

and returns the first occurrence of any of the array’s characters in the string. The syntax

of the IndexOfAny method is

Dim pos As Integer = str.IndexOfAny(chars)

where chars is an array of characters.

This method attempts to locate the first instance of any member of the chars array

in the string. If the character is found, its index is returned. If not, the process is repeated

with the second character, and so on until an instance is found or the array has been

exhausted.

Insert

The Insert method inserts one or more characters at a specified location in a string

and returns the new string. The syntax of the Insert method is as follows:

newString = str.Insert(startIndex, subString)

startIndex is the position in the str variable, where the string specified by the second

argument will be inserted.

Join

This method joins two or more strings and returns a single string with a separator

between the original strings. Its syntax is the following, where separator is the string that

will be used as the separator, and strings is an array with the strings to be joined:

newString = String.Join(separator, strings)

Split

Just as you can join strings, you can split a long string into smaller ones by using

the Split method, whose syntax is the following, where delimiters is an array of

characters and str is the string to be split:

strings() = String.Split(delimiters, str)

The string is split into sections that are separated by any one of the delimiters specified

with the first argument. These strings are returned as an array of strings.

Second Internal Question Answer Key, Visual Programming, Page 42/41

Splitting Strings with Multiple Separators
The delimiters array allows you to specify multiple delimiters, which makes it a

great tool for isolating words in a text. You can specify all the characters that separate

words in text (spaces, tabs, periods, exclamation marks, and so on) as delimiters and pass

them along with the text to be parsed to the Split method.

The statements in Listing 9.3 isolate the parts of a path, which are delimited by a

backslash character.

Listing 9.3: Extracting a Path’s Components

Dim path As String = "c:\My Documents\Business\Expenses"

Dim delimiters() As Char = {"\"c}

Dim parts() As String

parts = path.Split(delimiters)

Dim iPart As IEnumerator

iPart = parts.GetEnumerator

While iPart.MoveNext

Debug.WriteLine(iPart.Current.tostring)

End While

Remove

The Remove method removes a given number of characters from a string, starting

at a specific location, and returns the result as a new string. Its syntax is the following,

where startIndex is the index of the first character to be removed in the str string variable

and count is the number of characters to be removed:

newSrting = str.Remove(startIndex, count)

Replace

This method replaces all instances of a specified character (or substring) in a

string with a new one. It creates a new instance of the string, replaces the characters as

specified by its arguments, and returns this string. The syntax of this method is

newString = str.Replace(oldChar, newChar)

where oldChar is the character in the str variable to be replaced, and newChar is the

character to replace the occurrences of oldChar.

You can change the last statement to replace tabs with a specific number of spaces —

usually three, four, or five spaces.

Dim txt, newTxt As String

Dim vbTab As String = vbCrLf

txt = "some text with two tabs"

newTxt = txt.Replace(vbTab, " ")

PadLeft, PadRight

These two methods align the string left or right in a specified field and return a

fixed-length string with spaces to the right (for right-padded strings) or to the left (for

left-padded strings). After the execution of these statements

Second Internal Question Answer Key, Visual Programming, Page 43/41

Dim LPString, RPString As String

RPString = "[" & "Learning VB".PadRight(20) & "]"

LPString = "[" & "Learning VB".PadLeft(20) & "]"

the values of the LPString and RPString variables are as follows:

[Mastering VB]

[Mastering VB]

There are eight spaces to the left of the left-padded string and eight spaces to the right of

the right-padded string.

The StringBulider Class
The StringBuilder class stores dynamic strings and exposes methods to

manipulate them much faster than the String class. As you will see, the StringBuilder

class is extremely fast, but it uses considerably more memory than the string it holds. To

use the StringBuilder class in an application, you must import the System.Text

namespace (unless you want to fully qualify each instance of the StringBuilder class in

your code). Assuming that you have imported the System.Text class in your code

module, you can create a new instance of the class via the following statement:

Dim txt As New StringBuilder

To create a new instance of the StringBuilder class, you can call its constructor without

any arguments, or pass the initial string as an argument:

Dim txt As New StringBuilder("some string")

Properties

You have already seen the two basic properties of the StringBuilder class: the

Capacity and MaxCapacity properties. In addition, the StringBuilder class provides the

Length and Chars properties, which are the same as the corresponding properties of the

String class. The Length property returns the number of characters in the current instance

of the StringBuilder class, and the Chars property is an array of characters. Unlike the

Chars property of the String class, this one is read/write.

Methods

Many of the methods of the StringBuilder class are equivalent to the methods of

the String class, but they act directly on the string to which they’re applied, and they

don’t return a new string.

Append

The Append method appends a base type to the current instance of the

StringBuilder class, and its syntax is the following, where the value argument can be a

single character, a string, a date, or any numeric value:

SB.Append(value)

When you append numeric values to a StringBuilder, they’re converted to strings;

the value appended is the string returned by the type’s ToString method. You can also

Second Internal Question Answer Key, Visual Programming, Page 44/41

append an object to the StringBuilder — the actual string that will be appended is the

value of the object’s ToString property.

AppendFormat

The AppendFormat method is similar to the Append method. Before appending

the string, however, AppendFormat formats it. The string to be appended contains format

specifications and the appropriate values. The syntax of the AppendFormat method is as

follows:

SB.AppendFormat(string, values)

The first argument is a string with embedded format specifications, and values is an array

with values (objects, in general

Insert

This method inserts a string into the current instance of the StringBuilder class, and its

syntax is as follows:

SB.Insert(index, value)

The index argument is the location where the new string will be inserted in the current

instance of the StringBuilder, and value is the string to be inserted.

Remove

This method removes a number of characters from the current StringBuilder,

starting at a specified location; its syntax is the following, where startIndex is the position

of the first character to be removed from the string, and count is the number of characters

to be removed:

SB.Remove(startIndex, count)

Replace

This method replaces all instances of a string in the current StringBuilder object

with another string. The syntax of the Replace method is the following, where the two

arguments can be either strings or characters:

SB.Replace(oldValue, newValue)

Unlike the String class, the replacement takes place in the current instance of the

StringBuilder class and the method doesn’t return another string.

ToString

Use this method to convert the StringBuilder instance to a string and assign it to a

String variable. The ToString method returns the string represented by the

	1.pdf (p.1-3)
	2.pdf (p.4-11)
	3.pdf (p.12-65)
	Integrated Development Environment
	The Start Page
	events, and argument list) in a drop-down list.
	Variables
	Example
	Example (1)
	Print and Display Constants in VB.Net
	Creating Arrays in VB.Net
	Array Limits
	Dynamic Arrays
	Multi-Dimensional Arrays
	Decision Statements
	Loop Statements
	Decision Statements (1)
	Flow Diagram:
	Loop Statements (1)

	Nested Control Structures
	The Exit Statement
	Defining a Function
	Example
	Function Returning a Value
	Passing Parameters by Reference
	Param Arrays
	Handling Mouse Events
	Handling Keyboard Events
	Properties of the Form Object
	AcceptButton, CancelButton
	AutoScaleMode
	AutoScroll
	AutoScrollPosition
	AutoScrollMargin
	AutoScrollMinSize
	FormBorderStyle
	MinimizeBox, MaximizeBox
	MinimumSize, MaximumSize
	KeyPreview
	SizeGripStyle
	StartPosition, Location
	TopMost
	Size

	Setting the TabIndex Property
	Anchoring Controls
	Docking Controls
	The Activated and Deactivate Events
	The FormClosing and FormClosed Events
	The Resize, ResizeBegin, and ResizeEnd Events
	The Scroll Event
	The Startup Form
	Controlling One Form from within Another

	4.pdf (p.66-75)
	5.pdf (p.76-123)
	Basic Properties of the TextBox Control
	TextAlign
	MultiLine
	MaxLength
	ScrollBars
	WordWrap
	AcceptsReturn, AcceptsTab
	CharacterCasing
	PasswordChar
	ReadOnly, Locked

	Text
	Lines
	READONLY, LOCKED
	PASSWORDCHAR
	SelectedText
	SelectionStart, SelectionLength
	HideSelection
	Locating the Cursor Position in the Control

	Undoing Edits - CanUndo property
	Basic Properties The ListBox, CheckedListBox, and ComboBox Controls
	IntegralHeight
	Items
	MultiColumn
	SelectionMode
	Sorted
	Text

	The Add Method
	The Insert Method
	The Clear Method
	The Count Property
	The CopyTo Method
	The Remove and RemoveAt Method
	The Contains Method
	The ScrollBar Control
	The ScrollBar Control’s Events

	The TrackBar Control
	Using the Common Dialog Controls
	AllowFullOpen
	AnyColor
	Color
	CustomColors
	SolidColorOnly
	AllowScriptChange
	AllowVerticalFonts
	Color, ShowColor
	FixedPitchOnly
	Font
	FontMustExist
	MaxSize, MinSize
	ShowApply
	ShowEffects
	AddExtension
	CheckFileExists
	CheckPathExists
	DefaultExt
	DereferenceLinks
	FileName
	Filter
	FilterIndex
	InitialDirectory
	RestoreDirectory
	FileNames
	MultiSelect
	ReadOnlyChecked, ShowReadOnly
	The OpenFile and SaveFile Methods
	OpenDialog and SaveDialog controls example: Multiple File Selection
	The RTF Language
	SelectedText (1)
	SelectionStart, SelectionLength (1)
	SelectionAlignment
	SelectionIndent, SelectionRightIndent, SelectionHangingIndent
	SelectionBullet, BulletIndent
	SelectionTabs
	Methods Of the RichTextBox control
	SaveFile
	Select, SelectAll

	Adding New Nodes
	MDI Overview
	Single Document Interface
	Uses of MDI
	Creating an MDI Parent Form
	To create an MDI parent form, you can simply take one of your existing forms and set its IsMDIContainer property to True. This form will now be able to contain other forms as child forms. You may have one or many container forms within your application.
	Run-time Features of MDI Child Forms

	Create an MDI Project
	Create the MDI Parent Form
	Creating Menus in MDI Main Form
	Your main form will require menus so that you can perform actions such as opening child forms, copying and pasting data, and arranging windows. Visual Studio .NET includes a new menu designer that makes creating & modifying menus easy.

	To add menus to your MDI parent form
	Creating Names for Each Menu
	Display a Child Form
	Child Menus in MDI Applications

	Working with MDI Child Forms

	6.pdf (p.124-137)
	7.pdf (p.138-181)
	Properties
	Methods
	GetNumericValue
	GetUnicodeCategory
	IsLetter, IsDigit, IsLetterOrDigit
	IsLower, IsUpper
	IsNumber
	IsPunctuation, IsSymbol, IsControl
	IsSeparator
	IsWhiteSpace
	ToLower, ToUpper
	ToString

	Properties (1)
	Length
	Chars

	Methods (1)
	Compare
	CompareOrdinal
	Concat
	Copy
	EndsWith, StartsWith
	IndexOfAny
	Insert
	Join
	Split
	Remove
	Replace
	PadLeft, PadRight

	Properties (2)
	Methods (2)
	Append
	AppendFormat
	Insert
	Remove
	Replace
	ToString
	Properties
	Methods
	Date Conversion Methods
	Dates as Numeric Values

	The TimeSpan Class
	Properties
	Methods
	Methods (1)
	CreateDirectory
	Delete
	Exists
	Move
	GetCurrentDirectory, SetCurrentDirectory
	GetDirectoryRoot
	GetDirectories
	GetFiles
	GetCreationTime, SetCreationTime
	GetLastAccessTime, SetLastAccessTime
	GetLastWriteTime, SetLastWriteTime
	GetLogicalDrives
	GetParent

	Methods (2)
	AppendText
	Copy
	Create
	Delete
	Exists
	GetAttributes
	GetCreationTime, SetCreationTime
	GetLastAccessTime, SetLastAccessTime
	GetLastWriteTime, SetLastWriteTime
	Move
	Open
	OpenRead
	OpenText
	OpenWrite

	The DirectoryInfo Class
	CreateSubdirectory
	GetFileSystemInfos

	The FileInfo Class
	Length Property
	CreationTime, LastAccessTime, LastWriteTime Properties
	Name, FullName, Extension Properties
	CopyTo, MoveTo Methods
	Directory Method
	DirectoryName Method

	Properties (1)
	DirectorySeparatorChar
	InvalidPathChars
	PathSeparator, VolumeSeparatorChar

	Methods (3)
	ChangeExtension
	Combine
	GetDirectoryName
	GetFileName, GetFileNameWithoutExtension
	GetFullPath
	GetTempFile, GetTempPath
	HasExtension

	Accessing Files
	Using Streams

	The FileStream Class
	Properties
	Length
	Position
	Methods

	Lock
	Seek

	The StreamWriter Class
	NewLine Property
	Methods
	AutoFlush
	Close
	Flush
	WriteLine(data)

	The StreamReader Class
	Methods
	Close
	Peek
	Read
	ReadBlock
	ReadLine
	ReadToEnd

	The BinaryWriter Class
	Methods
	Close
	Flush
	Seek
	Write
	WriteString

	The BinaryReader Class
	Methods
	Close
	PeekChar

	Drawing and Painting with Visual Basic
	Drawing with GDI+
	The Basic Drawing Objects
	The Graphics Object
	The Point Class
	The Rectangle Class
	The Size Class
	The Color Class
	The Font Class
	The Brush Class
	The Path Class

	Drawing Shapes
	Persistent Drawing

	Drawing Methods
	DrawLine
	DrawRectangle
	DrawEllipse
	DrawPie
	DrawPolygon
	DrawCurve
	DrawBezier
	DrawPath
	DrawString, MeasureString
	The StringFormat Object

	DrawImage

	Gradients
	Linear Gradients
	Path Gradients

	Clipping
	Applying Transformations
	Defining Colors
	Alpha Blending

	Processing Bitmaps
	Refreshing the Image

	8.pdf (p.182-189)
	9.pdf (p.190-221)
	What is Web Forms?
	Configuration Section Handler declarations
	Application Settings
	Client Side State Management
	Server Side State Management

	State Management | Techniques
	Client Side | Techniques
	Server Side | Technique
	Levels of state management
	Client Side | Techniques (1)
	View State
	[View State Management]
	Points to Remember

	Hidden Field
	[Hidden Field Management]
	Points to Remember

	Cookies
	[Cookie Management]

	Cookie | Types
	Persistent Cookie
	Non-Persistent Cookie
	Points to Remember

	Control State
	Points to Remember

	Query Strings
	[Query Strings]
	Points to Remember

	Server side
	1. Session
	Session Events in ASP.NET

	2. Application
	Application events in ASP.NET

	Global.asax in ASP.NET
	The Global.asa file
	ASP Application Object
	Application Object
	Collections
	Methods
	Events

	ASP Session Object
	Session Object
	Collections
	Properties
	Methods
	Events

	ASP COMPONENTS
	ASP AdRotator Component
	Syntax

	Example
	ASP AdRotator Properties
	ASP AdRotator Methods
	ASP Content Rotator Component
	Syntax

	Example (1)
	ASP Content Rotator Component's Methods
	ASP Browser Capabilities Component
	Syntax

	ASP Browser Capabilities Example
	Example (2)
	ASP Content Linking Component
	Syntax

	ASP Content Linking Example
	ASP Content Linking Component's Methods
	ASP Content Rotator Component (1)
	Syntax

	Example (3)
	ASP Content Rotator Component's Methods (1)

	10.pdf (p.222-229)
	11.pdf (p.230-259)
	Creating a Web Service
	Web Services Framework
	XML Data

	Features of WSDL
	WSDL Usage
	Features of WSDL (1)
	Points to Note
	SOAP Message Structure
	UDDI Registry

	ACTIVEX DATA OBJECTS:
	What is ADO?
	Accessing a Database from an ASP Page
	ADO Database Connection
	Create a DSN-less Database Connection
	Create an ODBC Database Connection
	An ODBC Connection to an MS Access Database
	The ADO Connection Object

	ADO Recordset
	Create an ADO Table Recordset
	Create an ADO SQL Recordset
	Extract Data from the Recordset
	The ADO Recordset Object

	ADO Queries
	Display Selected Data
	Example

	ADO Sort
	Sort the Data
	Example

	ADO Add Records
	Add a Record to a Table in a Database
	Important
	What about Fields With no Data?

	ADO Update Records
	Update a Record in a Table

	ADO Delete Records
	Delete a Record in a Table

	ADO Command Object
	Command Object
	ProgID
	Properties
	Methods
	Collections

	ADO Connection Object
	Connection Object
	ProgID
	Properties
	Methods
	Events
	Collections

	12.pdf (p.260-269)
	13.pdf (p.270-314)
	events, and argument list) in a drop-down list.
	Variables
	Example
	Passing Parameters by Reference
	Param Arrays
	Decision Statements
	Loop Statements
	Decision Statements (1)
	Flow Diagram:
	Loop Statements (1)

	Nested Control Structures
	The Exit Statement
	Example
	Print and Display Constants in VB.Net
	Creating Arrays in VB.Net
	Array Limits
	Dynamic Arrays
	Multi-Dimensional Arrays
	Defining a Function
	Example (1)
	Function Returning a Value
	The Startup Form
	Controlling One Form from within Another
	Basic Properties of the TextBox Control
	TextAlign
	MultiLine
	MaxLength
	ScrollBars
	WordWrap
	AcceptsReturn, AcceptsTab
	CharacterCasing
	PasswordChar
	ReadOnly, Locked

	Text
	Lines
	READONLY, LOCKED
	PASSWORDCHAR
	SelectedText
	SelectionStart, SelectionLength
	ScrollBars
	WordWrap
	AcceptsReturn, AcceptsTab
	CharacterCasing
	PasswordChar
	ReadOnly, Locked

	Text (1)
	Using the Common Dialog Controls
	AllowFullOpen
	AnyColor
	Color
	CustomColors
	SolidColorOnly
	AllowScriptChange
	AllowVerticalFonts
	Color, ShowColor
	FixedPitchOnly
	Font
	FontMustExist
	MaxSize, MinSize
	ShowApply
	ShowEffects
	AddExtension
	CheckFileExists
	CheckPathExists
	DefaultExt
	DereferenceLinks
	FileName
	Filter
	FilterIndex
	InitialDirectory
	RestoreDirectory
	FileNames
	MultiSelect
	ReadOnlyChecked, ShowReadOnly
	The OpenFile and SaveFile Methods
	OpenDialog and SaveDialog controls example: Multiple File Selection

	14.pdf (p.315-358)
	Adding New Nodes
	The RTF Language
	SelectedText
	SelectionStart, SelectionLength
	SelectionAlignment
	SelectionIndent, SelectionRightIndent, SelectionHangingIndent
	SelectionBullet, BulletIndent
	SelectionTabs
	Methods Of the RichTextBox control
	SaveFile
	Select, SelectAll
	Properties
	Methods
	Date Conversion Methods
	Dates as Numeric Values

	The TimeSpan Class
	Properties
	Methods

	Defining Colors
	Alpha Blending

	Processing Bitmaps
	Refreshing the Image

	Drawing with GDI+
	The Basic Drawing Objects
	The Graphics Object
	The Point Class
	The Rectangle Class

	Accessing Files
	Using Streams

	The FileStream Class
	Properties
	Length
	Position
	Methods

	Lock
	Seek

	The StreamWriter Class
	NewLine Property
	Methods
	AutoFlush
	Close
	Flush
	WriteLine(data)

	The StreamReader Class
	Methods
	Close
	Peek
	Read
	ReadBlock
	ReadLine
	ReadToEnd

	The BinaryWriter Class
	Methods
	Close
	Flush
	Seek
	Write
	WriteString

	The BinaryReader Class
	Methods
	Close
	PeekChar

	Properties
	Methods (1)
	GetNumericValue
	GetUnicodeCategory
	IsLetter, IsDigit, IsLetterOrDigit
	IsLower, IsUpper
	IsNumber
	IsPunctuation, IsSymbol, IsControl
	IsSeparator
	IsWhiteSpace
	ToLower, ToUpper
	ToString

	Properties (1)
	Length
	Chars

	Methods (2)
	Compare
	CompareOrdinal
	Concat
	Copy
	EndsWith, StartsWith
	IndexOfAny
	Insert
	Join
	Split
	Remove
	Replace
	PadLeft, PadRight

	Properties (2)
	Methods (3)
	Append
	AppendFormat
	Insert
	Remove
	Replace
	ToString

