

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021. DEPARTMENT OF MATHEMATICS SYLLABUS

15MMU505A

ELECTIVE-I DISCRETE MATHEMATICS

Semester – V L T P C 5 0 0 5

Course Objective: On successful completion of this course the learner gain a complete knowledge about the Formal languages, Automata Theory, Lattices & Boolean Algebra and Graph Theory which plays a crucial role in the field of computers.

Course Outcomes: To enable the students to learn about the interesting branches of Mathematics such as Mathematical logic , Formal languages and Automata, Lattices and Boolean algebra, Directed and undirected graphs etc .

UNIT-I

Mathematical logic: Connections well formed formulas, Tautology, Equivalence of formulas, Tautological implications, Duality law, Normal forms, Predicates, Variables, Quantifiers, Free and bound Variables. Theory of inference for predicate calculus.

UNIT-II

Relations and functions: Composition of relations, Composition of functions, Inverse functions, oneto- one, onto, one-to-one & onto, onto functions, Hashing functions, Permutation function.

UNIT-III

Formal languages and Automata: Grammars: Phrase–structure grammar, context-sensitive grammar, context-free grammar, regular grammar. Finite state automata- Deterministic finite automata and Non deterministic finite automata-conversion of non deterministic finite automata to deterministic finite automata.

UNIT-IV

Lattices and Boolean algebra: Partial ordering, Poset, Lattices, Boolean algebra, Boolean functions, Theorems, Minimization of Boolean functions.

UNIT-V

Graph Theory: Directed and undirected graphs, Paths, Reachability, Connectedness, Matric representation, Eular paths, Hamiltonean paths, Trees, Binary trees simple theorems, and applications.

TEXT BOOK

1.Tremblay J.P., and R.P Manohar., 1975 . Discrete Mathematical Structures with applications to computer science, Tata Mc.Graw Hill, New Delhi .

REFERENCES

1.Sundaresan V., Ganapathy Subramanian K.S., and Ganesan K., 2002. Discrete Mathematics, A.R. Publications, Nagapatinam.

2. Veerarajan T.,2007. Discrete Mathematics with graph theory and combinatorics, Tata Mcgraw hill companies, New Delhi.

- 3. Sharma. J.K, 2005. Discrete Mathematics, Second Edition, Macmillan India Ltd, New Delhi.
- 4. Discrete mathematics by Neeru Sharma, Publisher: New Delhi, India : University Science Press (An imprint of Laxmi Publications Limited, Pvt. Ltd.), [2016] ©2011

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021 DEPARTMENT OF MATHEMATICS

Subject: Discrete Mathematics

Subject Code: 15MMU505A

Class: III-B.Sc.Mathematics

Semester: V

LESSON PLAN

UNIT I

S.NO	DURATION HOURS	TOPICS TO BE COVERED	SUPPORT MATERIAL
1	1	Connectives	T1: ch 1 Pg.No: 7 -13
2	1	Well formed formulas	T1: ch 1 Pg.No: 23-26
3	1	Tautology	T1: ch 1 Pg.No: 26-28
4	1	Equivalence formulas	T1: ch 1 Pg.No: 28-31
5	1	Tautology Implication	R1: ch 2 Pg.No: 2.5-2.6
6	1	Continuation of Tautology Implication	T1:ch 1 pg.No30-32
7	1	Duality Law	T1:ch 1 pg.No30-32
8	1	Normal forms	T1: ch 1 Pg.No: 50-53 R1:ch 2 pg No: 2.7 – 2.9
9	1	Definitions – Predicates, variables	R1:ch 2 pg.No:2.14
10	1	Quantifiers	R1:ch 2.14 pg.No:2.18
11	1	Free bounded variables	T1:ch 1 pg No:86-87
12	1	Theory of Inference for predicate calculus	R1:ch 2 :pg No:2.20-2.22
13	1	Recapitulation and discussion of possible questions	
Total	13 Hours		

TEXT BOOK

1.Trembly J.P., and R.p Mahohar., 1975.Discrete Mathematical structures with applications to computer science, Tata Mc.Graw Hill, New Delhi.

REFERENCES

1.Sundaresan V., Ganapathy Subramanian K.S., and Ganesan K., 2002.Discrete Mathematics Publications , Nagapattinam.

S.NO	DURATION	TOPICS TO BE COVERED	SUPPORT MATERIAL
	HOURS		
1	1	Relations	T1: ch 2 Pg.No: 149-151
2	1	Continuation of Relations	T1: ch 2 Pg.No: 151-153
3	1	Properties of binary relations in a set	T1: ch 2 Pg.No: 154 -155
4	1	Composition of Relations	T1: ch 2 Pg.No: 17 6-179
5	1	Continuation Composition of Relations	T1: ch 2 Pg.No: 17 9-182
6	1	Functions – Definition and introduction	T1: ch 2 Pg.No: 192 -194
7	1	Continuation of Functions theorems	T1: ch 2 Pg.No: 194 -197
8	1	Composition of Functions	T1: ch 2 Pg.No: 198-201
9	1	Inverse Function	T1: ch 2 Pg.No: 201-203
10	1	Continuation of Inverse Function	T1: ch 2 Pg.No: 203-206
11	1	Classification of Function	R2: ch 4 Pg.No: 184 – 186
12	1	Hashing Function	T1: ch 2 Pg.No: 212-215
13	1	Permutations R1: ch 3 Pg.No: 3	
14	1	Recapitulation and discussion of possible	
		questions.	
Total	14 Hours		

UNIT II

TEXT BOOK

1.Trembly J.P., and R.p Mahohar., 1975.Discrete Mathematical structures with applications to computer science, Tata Mc.Graw Hill, New Delhi.

REFERENCES

1.Sundaresan V., Ganapathy Subramanian K.S., and Ganesan K., 2002.Discrete Mathematics Publications , Nagapattinam.

2. Veerarajan T., 2007.Discrete mathematics with graph theory and combinatorics, Tata Mc.Graw Hill,New Delhi.

S.NO	DURATION HOURS	TOPICS TO BE COVERED	SUPPORT MATERIAL
1	1	Introduction to Formal Language and Automata	R1: ch 7 Pg.No: 7.1 – 7.2
2	1	Grammar : Phrase – structure grammar	R1: ch 7 Pg.No: 7.2 – 7.4
3	1	Types of grammar	R1: ch 7 Pg.No: 7.5 – 7.6
4	1	Context – free grammar	T1: ch 3 Pg.No: 302- 303
5	1	Context sensitive grammar	T1: ch 3 Pg.No: 303- 306
6	1	Regular grammar and Examples	R1: ch 7 Pg.No: 7.5 – 7.7
7	1	Finite State Automata – Definitions	R1: ch 7 Pg.No: 7.20
8	1	Deterministic Finite Automata(DFA)- definitions and Examples	R1: ch 7 Pg.No: 7.20 – 7.26
9	1	Non- Deterministic Finite Automata(NFA) : definitions and Examples	R1: ch 7 Pg.No: 7.1 – 7.2
10	1	Conversion of NFA to DFA- Procedure	R1: ch 7 Pg.No: 7.29 – 7.32
11	1	Theorems for Finite state Automata	R1: ch 7 Pg.No: 7.32 – 7.34
12	1	Recapitulation and discussion of possible Questions.	
Total	12 Hours		

UNIT III

TEXT BOOK

1.Trembly J.P., and R.p Mahohar., 1975.Discrete Mathematical structures with applications to computer science, Tata Mc.Graw Hill, New Delhi.

REFERENCES

1.Sundaresan V., Ganapathy Subramanian K.S., and Ganesan K., 2002.Discrete Mathematics Publications , Nagapattinam.

S.NO	DURATION HOURS	TOPICS TO BE COVERED	SUPPORT MATERIAL
1	1	Lattices as partially ordered sets	T1: ch 4 Pg.No 379 - 380
2	1	Posets – Definitions	R1: ch 6 Pg.No: 6.1 – 6.3
3	1	Least upper bound and Greatest lower bound	R1: ch 6 Pg.No: 6.3–6.5
4	1	Lattices and properties of Lattices	R1: ch 6 Pg.No: 6.6 – 6.8
5	1	Theorems for Lattices	R1: ch 6 Pg.No: 6.8 – 6.11
6	1	Continuation of Theorems for Lattices	R1: ch 6 Pg.No: 6.11–6.14
7	1	Boolean Algebra	R1: ch 6 Pg.No: 6.19 – 6.23
8	1	Continuation of Boolean Algebra	R1: ch 6 Pg.No: 6.24 – 6.26
9	1	Boolean Expression and Boolean Functions	R1: ch 6 Pg.No: 6.28 – 6.29
10	1	Examples –Boolean Functions	R1: ch 6 Pg.No: 6.29 – 6.33
11	1	Minimization of Boolean Functions	T1: ch 4 Pg.No 424- 426
12	1	Simplification of Boolean Functions by map method and examples	R1: ch 6 Pg.No: 6.36 – 6.39
13	1	Continuation the problems of Simplification Boolean Functions by map method	R1: ch 6 Pg.No: 6.40 – 6.42
14	1	Recapitulation and discussion of possible	
		Questions.	
Total	14 Hours		

UNIT IV

TEXT BOOK

1.Trembly J.P., and R.p Mahohar., 1975.Discrete Mathematical structures with applications to computer science, Tata Mc.Graw Hill, New Delhi.

REFERENCES

1.Sundaresan V., Ganapathy Subramanian K.S., and Ganesan K., 2002.Discrete Mathematics Publications , Nagapattinam.

S.NO	DURATION HOURS	TOPICS TO BE COVERED	SUPPORT MATERIAL		
1	1	Basic concepts and Basic definitions of Graph Theory	T1: ch 4 Pg.No 469 – 470		
2	1	Directed graphs	R3: ch 4 Pg.No: 243 – 248		
3	1	Undirected graphs	R3: ch 4 Pg.No: 259 – 262		
4		Continuation of Undirected graphs	R3: ch 4 Pg.No: 263 – 265		
5	1	Walks, Paths and circuits	R1: ch 5 Pg.No: 5.5 – 5.7		
6	1	Continuation of Walks, Paths and circuits	R3: ch 9 Pg.No: 263-266		
7	1	Basic theorems	R1: ch 5 Pg.No: 5.7 – 5.8		
8	1	Reachability	R1: ch 5 Pg.No: 5.40 – 5.41		
9	1	Connectedness	T1: ch 4 Pg.No 480 – 482		
10	1	Matrix representation of graphs Undirected graphs and their Matrices	R1: ch 5 Pg.No: 5.70 – 5.74		
11	1	Continuation of Matrix representation of graphs Undirected graphs and their Matrices	R1: ch 5 Pg.No: 5.74 – 5.77		
12	1	Directed graphs and their Matrices	R1: ch 5 Pg.No: 5.77 – 5.82		
13	1	Continuation of Directed graphs and their Matrices	R1: ch 5 Pg.No: 5.82 – 5.86		
14	1	Euler path	R1: ch 5 Pg.No: 5.10 – 5.11		
15	1	Hamiltonian path	R3: ch 9 Pg.No: 292-295		
16	1	Trees	R1: ch 5 Pg.No: 5.43 – 5.45		
17	1	Continuation of the topic of Trees	R1: ch 5 Pg.No: 5.45 – 5.48		
18	1	Binary trees	R1: ch 5 Pg.No: 5.56 – 5.58		
19	1	Recapitulation and discussion of possible Questions.			
20	1	Discussion of previous year ESE question papers			
21	1	Discussion of previous year ESE question papers			
22	1	Discussion of previous year ESE question papers			
Total	22 Hours				

UNIT V

TEXT BOOK

1.Trembly J.P., and R.p Mahohar., 1975.Discrete Mathematical structures with applications to computer science, Tata Mc.Graw Hill, New Delhi.

REFERENCES

1.Sundaresan V., Ganapathy Subramanian K.S., and Ganesan K., 2002.Discrete Mathematics Publications , Nagapattinam.

3.Sharma .J.K,2005.Discrete Mathematics ,Second Edition, Macmillan India Ltd,New Delhi.

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021 DEPARTMENT OF MATHEMATICS

Subject: Discrete Mathematics	Semester :V	LTPC
Subject Code: 15MMU505A	Class : III- B.Sc Mathematics	5 0 0 5

UNIT-I

Mathematical logic: Connections well formed formulas, Tautology, Equivalence of formulas, Tautological implications, Duality law, Normal forms, Predicates, Variables, Quantifiers, Free and bound Variables. Theory of inference for predicate calculus.

Text Book

1.Trembly J.P., and R.p Mahohar., 1975.Discrete Mathematical structures with applications to computer science, Tata Mc.Graw Hill, New Delhi.

References

1.Sundaresan V., Ganapathy Subramanian K.S., and Ganesan K., 2002.Discrete Mathematics Publications , Nagapattinam.

2. Veerarajan T., 2007.Discrete mathematics with graph theory and combinatorics, Tata Mc.Graw Hill,New Delhi.

3.Sharma .J.K,2005.Discrete Mathematics ,Second Edition, Macmillan India Ltd,New Delhi.

4. Discrete mathematics by Neeru Sharma, Publisher: New Delhi, India : University Science Press (An imprint of Laxmi Publications Limited, Pvt. Ltd.), [2016] ©2011

UNIT – I

Mathematical Logic

Prepositional Logic – Definition

A proposition is a collection of declarative statements that has either a truth value "true" or a truth value "false". A propositional consists of propositional variables and connectives. We denote the propositional variables by capital letters (A, B, etc). The connectives connect the propositional variables.

Some examples of Propositions are given below:

- "Man is Mortal", it returns truth value "TRUE"
- "12 + 9 = 3 2", it returns truth value "FALSE"

Connectives

In propositional logic generally we use five connectives which are:

- OR (V)
- AND (Λ)
- Negation/ NOT (¬)
- Implication / if-then (\rightarrow)
- If and only if (\Leftrightarrow) .

OR (V): The OR operation of two propositions A and B (written as A V B) is true if at least any of the propositional variable A or B is true.

The truth table is as follows:

Α	В	AVB
True	True	True
True	False	True
False	True	True
False	False	False

AND (Λ): The AND operation of two propositions A and B (written as A \land B) is true if both the propositional variable A and B is true.

The truth table is as follows:

Α	В	A ∧ B
True	True	True
True	False	False
False	True	False
False	False	False

Negation (\neg): The negation of a proposition A (written as \neg A) is false when A is true and is true when A is false.

The truth table is as follows:

Α	٦A
True	False
False	True

Implication / if-then (\rightarrow **):** An implication A \rightarrow B is the proposition "if A, then B". It is false if A is true and B is false. The rest cases are true.

The truth table is as follows:

Α	В	$\mathbf{A} \rightarrow \mathbf{B}$
True	True	True
True	False	False
False	True	True
False	False	True

If and only if (\Leftrightarrow): A \Leftrightarrow B is bi-conditional logical connective which is true when p and q are same, i.e. both are false or both are true.

Α	В	A ⇔ B
True	True	True
True	False	False
False	True	False
False	False	True

Tautologies

A Tautology is a formula which is always true for every value of its propositional variables.

Example: Prove $[(A \rightarrow B) \land A] \rightarrow B$ is a tautology

The truth table is as follows:

Α	В	$\mathbf{A} \rightarrow \mathbf{B}$	$(A \rightarrow B) \land A$	$[(A \to B) \land A] \to B$
True	True	True	True	True
True	False	False	False	True
False	True	True	False	True
False	False	True	False	True

As we can see every value of $[(A \rightarrow B) \land A] \rightarrow B$ is "True", it is a tautology.

Contradictions

A Contradiction is a formula which is always false for every value of its propositional variables.

Example: Prove (A V B) \land [(¬A) \land (¬B)] is a contradiction

The truth table is as follows:

A	В	AVB	٦A	¬В	(¬A) ∧ (¬B)	(A V B) ∧ [(¬A) ∧ (¬B)]
True	True	True	False	False	False	False
True	False	True	False	True	False	False
False	True	True	True	False	False	False
False	False	False	True	True	True	False

As we can see every value of (A V B) \land [(¬A) \land (¬B)] is "False", it is a contradiction.

Contingency

A Contingency is a formula which has both some true and some false values for every value of its propositional variables.

Example: Prove (A V B) Λ (¬A) a contingency

The truth table is as follows:

Α	В	AVB	٦A	(A V B) ∧ (¬A)
True	True	True	False	False
True	False	True	False	False
False	True	True	True	True
False	False	False	True	False

As we can see every value of (A V B) Λ (¬A) has both "True" and "False", it is a contingency.

Propositional Equivalences

Two statements X and Y are logically equivalent if any of the following two conditions hold:

- The truth tables of each statement have the same truth values.
- The bi-conditional statement $X \Leftrightarrow Y$ is a tautology.

Example: Prove \neg (A V B) and [(\neg A) \land (\neg B)] are equivalent

Α	В	AVB	⊐ (A V B)	٦A	⊐В	[(¬A) Λ (¬B)]
True	True	True	False	False	False	False
True	False	True	False	False	True	False
False	True	True	False	True	False	False
False	False	False	True	True	True	True

Testing by 1st method (Matching truth table):

Here, we can see the truth values of \neg (A V B) and [(\neg A) A (\neg B)] are same, hence the statements are equivalent.

Testing by 2nd method (Bi-conditionality):

Α	В	¬ (A V B)	[(¬A) ∧ (¬B)]	[¬ (A V B)] ⇔[(¬A) Λ (¬B)]
True	True	False	False	True
True	False	False	False	True
False	True	False	False	True
False	False	True	True	True

As $[\neg (A \lor B)] \Leftrightarrow [(\neg A) \land (\neg B)]$ is a tautology, the statements are equivalent.

Inverse, Converse, and Contra-positive

Implication / if-then (\rightarrow) is also called a conditional statement. It has two parts-

- Hypothesis , p
- Conclusion, q

As mentioned earlier, it is denoted as $p \rightarrow q$.

Inverse: An inverse of the conditional statement is the negation of both the hypothesis and the conclusion. If the statement is "If p, then q", the inverse will be "If not p, then not q". Thus the inverse of $p \rightarrow q$ is $\neg p \rightarrow \neg q$.

Example : The inverse of "If you do your homework, you will not be punished" is "If you do not do your homework, you will be punished."

Converse: The converse of the conditional statement is computed by interchanging the hypothesis and the conclusion. If the statement is "If p, then q", the converse will be "If q, then p". The converse of $p \rightarrow q$ is $q \rightarrow p$.

Example : The converse of "If you do your homework, you will not be punished" is "If you will not be punished, you do not do your homework".

Contra-positive: The contra-positive of the conditional is computed by interchanging the hypothesis and the conclusion of the inverse statement. If the statement is "If p, then q", the contra-positive will be "If not q, then not p". The contra-positive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$.

Example : The Contra-positive of " If you do your homework, you will not be punished" is "If you are not punished, then you do not do your homework".

Duality Principle

Duality principle states that for any true statement, the dual statement obtained by interchanging unions into intersections (and vice versa) and interchanging Universal set into Null set (and vice versa) is also true. If dual of any statement is the statement itself, it is said **self-dual** statement.

Example: The dual of $(A \cap B) \cup C$ is $(A \cup B) \cap C$

Normal Forms

We can convert any proposition in two normal forms:

Conjunctive normal form

Conjunctive Normal Form

A compound statement is in conjunctive normal form if it is obtained by operating AND among variables (negation of variables included) connected with ORs. In terms of set operations, it is a compound statement obtained by Intersection among variables connected with Unions.

Examples

- (A V B) ∧ (A V C) ∧ (B V C V D)
- (P ∪Q) ∩ (Q ∪ R)

Disjunctive Normal Form

A compound statement is in conjunctive normal form if it is obtained by operating OR among variables (negation of variables included) connected with ANDs. In terms of set operations, it is a compound statement obtained by Union among variables connected with Intersections.

Examples

- (A ∧ B) ∨ (A ∧ C) ∨ (B ∧ C ∧ D)
- (P ∩ Q) ∪ (Q ∩ R)

Predicate Logic – Definition

A predicate is an expression of one or more variables defined on some specific domain. A predicate with variables can be made a proposition by either assigning a value to the variable or by quantifying the variable.

The following are some examples of predicates:

- Let E(x, y) denote "x = y"
- Let X(a, b, c) denote "a + b + c = 0"
- Let M(x, y) denote "x is married to y"

Well Formed Formula

Well Formed Formula (wff) is a predicate holding any of the following -

- All propositional constants and propositional variables are wffs
- If x is a variable and Y is a wff, $\forall x \ Y$ and $\exists x \ Y$ are also wff
- Truth value and false values are wffs
- Each atomic formula is a wff
- All connectives connecting wffs are wffs

Quantifiers

The variable of predicates is quantified by quantifiers. There are two types of quantifier in predicate logic: Universal Quantifier and Existential Quantifier.

Universal Quantifier

Universal quantifier states that the statements within its scope are true for every value of the specific variable. It is denoted by the symbol \forall .

```
\forall x P(x) is read as for every value of x, P(x) is true.
```

Example: "Man is mortal" can be transformed into the propositional form $\forall x P(x)$ where P(x) is the predicate which denotes x is mortal and the universe of discourse is all men.

Existential Quantifier

Existential quantifier states that the statements within its scope are true for some values of the specific variable. It is denoted by the symbol \exists .

 $\exists x P(x) \text{ is read as for some values of } x, P(x) \text{ is true.}$

Example: "Some people are dishonest" can be transformed into the propositional form $\exists x P(x)$ where P(x) is the predicate which denotes x is dishonest and the universe of discourse is some people.

Nested Quantifiers

If we use a quantifier that appears within the scope of another quantifier, it is called nested quantifier.

Examples

- $\forall a \exists b P(x, y)$ where P(a, b) denotes a + b=0
- $\forall a \forall b \forall c P (a, b, c)$ where P (a, b) denotes a + (b+c) = (a+b) + c

Note: $\forall a \exists b P(x, y) \neq \exists a \forall b P(x, y)$

Inference

Table of Rules of Inference

Rule of Inference	Name	Rule of Inference	Name
P ∴ P V Q	Addition	P V Q ¬P 	Disjunctive Syllogism
P Q 	Conjunction	$P \to Q$ $Q \to R$ $ \cdots P \to R$	Hypothetical Syllogism
PΛQ 	Simplification	$(P \rightarrow Q) \land (R \rightarrow S)$ $P \lor R$ $$	Constructive Dilemma
P→Q P 	Modus ponens	$ \begin{array}{c} (P \to Q) \stackrel{\wedge}{\wedge} (R \to S) \\ \neg Q \stackrel{\vee}{\vee} \neg S \\ \hline & \cdots \\ & \neg P \stackrel{\vee}{\vee} \neg R \end{array} $	Destructive Dilemma

Part -B (5x8=40 Marks)

Possible Questions:

- 1. i) Verify that a proposition $P \lor (P \land Q)$ is a tautology. ii) Prove that $P \rightarrow (Q \lor R) \Leftrightarrow (P \rightarrow Q) \lor (P \rightarrow R)$
- 2. Show that the following premises are Inconsistent.
 i) If Jack misses many classes through illness, he fails in school.
 ii) If jack fails in school, then he is uneducated.
 iii) If jack reads a lot of books, then he is not uneducated.
 iv) Jack misses many classes through illness and reads a lot of books.
- 3. i) Prove that (Q∧P) ∧ Q is contradiction.
 ii) Show that the following implication without constructing truth table Q ∧ (P→Q) ⇒ P
- 4. Find the min term normal form of $(] ((P \lor Q) \land R)) \land (P \lor R)$
- 5. i) Construct the truth table for $(P \leftrightarrow R) \land (\neg Q \rightarrow S)$ ii) Obtain PDNF of $(\neg ((P \lor Q) \land R)) \land (P \lor R))$
- 6. Show that $R \lor S$ follows logically from the premises $C \lor D$, $(C \lor D) \rightarrow \exists H, \exists H \rightarrow (A \land \exists B)$ and $(A \land \exists B) \rightarrow (R \lor S)$.
- 7. Define disjunctive normal form and conjunctive normal form. Also obtain disjunctive normal form of $\neg (P \lor Q) \leftrightarrow (P \land Q)$
- 8. Prove that $(P \lor Q) \land (P \land (Q \lor R) \lor (P \land Q) \lor (P \land R))$ is a tautology.
- 9. Obtain PCNF and PDNF of $(P \land Q) \lor (\urcorner P \land Q \land R)$
- 10. i) Prove that R∨S follows logically from the premises
 C∨D, (C∨D) → ¬H, ¬H→(A∧¬B) and (A∧¬B) → (R∨S).
 ii) Show that (x) M(x) follows logically from the premises (x)(H(x) → M(x)) and (x)H(x).

UNIT I Part A (20x1=20 Marks)						
Question	Choice 1	Choice 2	Choice 3	Choice 4	Answer	
UNIT I						
Let p be "He is tall" and let q "He is handsome". Then the						
statement "It is false that he is short or handsome" is:	p^q	~(~pv q)	~pv q	p v q	~(~pv q)	
			Logically		Logically equivalent	
The proposition $p^{(p v q)}$ is	A tautulogy	a contradiction	equivalent to p ^q	-	to p ^ q	
Which of the following is/are tautology?	$a v b \rightarrow b^{\wedge} c$	$a \wedge b \rightarrow b \vee c$	$a v b \rightarrow (b \rightarrow c)$	$a v b \rightarrow b v c$	$a \wedge b \rightarrow b \vee c$	
Identify the valid conclusion from the premises $Pv Q, Q \rightarrow$						
$R, P \rightarrow M, M$	P ^ (R v R)	P ^ (P ^ R)	R ^ (P v Q)	Q ^ (P v R)	Q ^ (P v R)	
Let a, b, c, d be propositions. Assume that the equivalence a						
\leftrightarrow (b v lb) and b \leftrightarrow c hold. Then truth value of the formula (Same as the truth	Same as the truth		
$a \wedge b$) \rightarrow (($a \wedge c$) v d) is always	TRUE	FALSE	value of a	value of b	TRUE	
			Two may not be			
Which of the following is a declarative statement?	It's right	He says	an even integer	I love you	He says	
$P \rightarrow (Q \rightarrow R)$ is equivalent to	$(\mathbf{P} \land \mathbf{Q}) \to \mathbf{R}$	$(P \lor Q) \to R$	$(P v Q) \rightarrow \exists R$	$(P \lor Q) \to P$	$(\mathbf{P} \land \mathbf{Q}) \to \mathbf{R}$	
If F1, F2 and F3 are propositional formulae such that F1 ^ F2		The conjuction F1				
\rightarrow F3 and F1 ^ F2 \rightarrow F3 are both tautologies, then which of	Both F1 and F2	^ F2 is not	Neither is		Both F1 and F2 are	
the following is TRUE?	are tautologies	satisfiable	tautologies	F1v F2 is tautology	tautologies	
Consider two well-formed formulas in propositional logic	F1 is		F1 is			
$F1 : P \rightarrow PF2 : (P \rightarrow P) v (P \rightarrow), then$	satisfiable, F2	F1 is unsatisfiable,	unsatisfiable, F2	F1 & F2 are both	F1 is unsatisfiable,	
	is unsatisfiable	F2 is satisfiable	is valid	satisfiable	F2 is valid	
			If p is true and q	If p as true and q is		
			is false and r is	true and r is false,	If p is true and q is	
What can we correctly say about proposition P1 : (p v q) ^			false, the P1 is	then P1 is true	false and r is false,	
$(q \rightarrow r) v (r v p)$	P1 is tautology	P1 is satisfiable	true		the P1 is true	
$(P v Q)^{(P \rightarrow R)^{(Q \rightarrow S)}$ is equivalent to	S ^ R	$S \rightarrow R$	Sv R	S U R	Sv R	
In propositional logic, which of the following is equivalent						
to $p \rightarrow q$?	$\sim p \rightarrow q$	~p v q	~p v~ q	$p \rightarrow q$	~p v q	
$l(P \rightarrow Q)$ is equivalent to	P ^ 1Q	P ^ Q	lP v Q	1P ^ Q	P ^ 1Q	
$(P \lor Q) \land (P \rightarrow R) \land (Q \rightarrow R)$ is equivalent to	Р	Q	R	True=T	R	
How many rows would be in the truth table for the following						
compound proposition: (p q)						
\neg (q t) (r \rightarrow s)	32	34	27	25	32	
	2 is even and	.		A 11		
Which of the following statement is the negation of the	-3 is not	2 is odd and -3 is	2 is even or -3 is		2 is odd or -3 is not	
statement, "2 is even and -3 is negative"?	negative.	not negative.	not negative.	not negative.	negative.	
$p \rightarrow q$ is logically equivalent to	$\sim q \rightarrow p$	$\sim p \rightarrow q$	~ p ^ q	~ p v q	$\sim p v q$	
	"for all y	for all $x_{1,x_{2,x_{3}}}$ {			for all $x_{1,x_{2,x_{3}}}$ { x_{1}	
	"tor oll v	$- \mathbf{n} = - \mathbf{n} + (\mathbf{n} + \mathbf{n}) - \mathbf{n} + \mathbf$			- x + 0 x + - x + 0 x + - x + 0 x + - x + 0 x + - x + 0 x + - x + 0 x + - x + 0 x + - x	

S

· · · · · · · · · · · · · · · · · · ·	TRUE	FALSE	not true	false	TRUE
If P : It is hot & Q : It is humid, then what does P ^ (~ Q):mean? An or statement is false if, and only if, both components are	It is not hot and it is not humid	It is hot and it is humid	It is hot and it is not humid	It is not hot and it is not humid neither true nor	It is hot and it is not humid
	TRUE	FALSE	not true	false	FALSE
Two statement forms are logically equivalent if, and only if they always have	not same truth values	the same truth values	the different truth values	the same false values neither true nor	the same truth values
A tautology is a statement that is always A contradiction is a statement that is always	TRUE	FALSE	not true	false neither true nor	TRUE
	FALSE	TRUE	not true	false	FALSE
The statement $(p^q) P p$ is a In propositional logic which one of the following is	Satisfiable	Unsatisfiable	Tautology	Invalid	Tautology
equivalent to $p \rightarrow q$?	p→q	p→q	p v q	p v-q	p v q
Which of the following proposition is a tautology?	(p v q)→p	p v (q→p)	p v(p→q)	(p v q)→q	p v(p→q)
Which one is the contrapositive of $q \rightarrow p$?	$\sim p \rightarrow \sim q$	$p \longrightarrow \sim q$	$\sim p \rightarrow q$	$p \rightarrow q$	$\sim p \rightarrow \sim q$
The statement form pv(~p) is a	Satisfiable	Unsatisfiable	Tautology	Invalid	Tautology

 $x1 = x2 \land x2 = x3 P$

Unsatisfiable

"for all x

Satisfiable

 $[P(x) \rightarrow f(x)^{\wedge} x] x1 = x3\}$

Which of the following is not a well formed formula?

An and statement is true if, and only if, both components are

 $[\sim q \land (p \rightarrow q)] \rightarrow \sim p \text{ is,}$

[T v P(a,

 $\sim (p \rightarrow q) \rightarrow q$

Tautology

b)] \rightarrow zQ(z)

neither true nor

Invalid

 $= x2 ^ x2 = x3 P x1$

= x3}

Tautology

Let p and q be statements given by " $p \rightarrow q$ ". Then q is called The statement form $p^{(\sim p)}$ is a	hypothesis contradiction	conclusion Unsatisfiable	TRUE Tautology	FALSE Invalid	conclusion contradiction
If p and q are statement variables, the conditional of q by p is given by Let p and q be statements given by " $p \rightarrow q$ ". Then p is	$\sim p \rightarrow \sim q$	$p \rightarrow \sim q$	$\sim p \rightarrow q$	$p \rightarrow q$	$p \rightarrow q$
called	hypothesis	conclusion	TRUE	FALSE	hypothesis
The statement $(p \rightarrow r)$ $(q \rightarrow r)$ is equivalent to The Negation of a Conditional Statement $p \rightarrow q$ is given by	$p q \rightarrow \sim r$	$p q \rightarrow r$	$p \sim q \rightarrow r$	$\sim p q \rightarrow r$	$p q \rightarrow r$
Given statement variables p and q, the biconditional of p and	p q	~p q	pV q	p q	p q
q is given by	p«~q	p→q	~p«q	p«q	p«q
The inverse of "if p then q" is"R is a condition for S" means "if R	if p then q	if p then q	if p then q	if p then q	if p then q
then S."	valid	inevitable	sufficient	necessary	sufficient
A conditional statement and its contrapositive are	A tautulogy	a contradiction	Logically equivalent	an assumption	Logically equivalent
A rule of inference is a form of argument that is	valid	a contradiction	an assumption	A tautulogy	valid

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021 DEPARTMENT OF MATHEMATICS

Subject:	Discrete	Mathematics

Subject Code: 15MMU505A

Semester :VL T P CClass : III- B.Sc Mathematics5 0 0

UNIT-II

Relations and functions: Composition of relations, Composition of functions, Inverse functions, one-to- one, onto, one-to-one & onto, onto functions, Hashing functions, Permutation function.

Text Book

1. Trembly J.P., and R.p Mahohar., 1975. Discrete Mathematical structures with applications to computer science, Tata Mc.Graw Hill, New Delhi.

References

1.Sundaresan V., Ganapathy Subramanian K.S., and Ganesan K., 2002.Discrete Mathematics Publications , Nagapattinam.

2. Veerarajan T., 2007.Discrete mathematics with graph theory and combinatorics, Tata Mc.Graw Hill,New Delhi.

3.Sharma .J.K,2005.Discrete Mathematics ,Second Edition, Macmillan India Ltd,New Delhi.

4. Discrete mathematics by Neeru Sharma, Publisher: New Delhi, India : University Science Press (An imprint of Laxmi Publications Limited, Pvt. Ltd.), [2016] ©2011

UNIT II

RELATIONS AND FUNCTIONS

Definition and Properties

A binary relation R from set x to y (written as xRy or R(x,y)) is a subset of the Cartesian product $x \times y$. If the ordered pair of G is reversed, the relation also changes.

Domain and Range

If there are two sets A and B, and relation R have order pair (x, y), then:

- The **domain** of R, Dom(R), is the set $\{x \mid (x, y) \in R \text{ for some } y \text{ in } B \}$
- The **range** of R, Ran(R), is the set $\{ y \mid (x, y) \in R \text{ for some } x \text{ in } A \}$

Examples

Let, $A = \{1, 2, 9\}$ and $B = \{1, 3, 7\}$

• Case 1: If relation R is 'equal to' then R = {(1, 1), (3, 3)}

 $Dom(R) = \{ 1, 3 \}, Ran(R) = \{ 1, 3 \}$

- Case 2: If relation R is 'less than' then R = {(1, 3), (1, 7), (2, 3), (2, 7)} Dom(R) = { 1, 2}, Ran(R) = { 3, 7}
- Case 3: If relation R is 'greater than' then R = {(2, 1), (9, 1), (9, 3), (9, 7)} Dom(R) = { 2, 9}, Ran(R) = { 1, 3, 7}

Types of Relations

- 1. The **Empty Relation** between sets X and Y, or on E, is the empty set \emptyset
- 2. The **Full Relation** between sets X and Y is the set $X \times Y$
- 3. The **Identity Relation** on set X is the set $\{(x,x) \mid x \in X\}$
- 4. The Inverse Relation R' of a relation R is defined as: R'= {(b,a) | (a,b) ∈R}
 Example: If R = {(1, 2), (2,3)} then R' will be {(2,1), (3,2)}
- 5. A relation R on set A is called **Reflexive** if $\forall a \in A$ is related to a (aRa holds). **Example:**_The relation R = {(a,a), (b,b)} on set X={a,b} is reflexive
- A relation R on set A is called **Irreflexive** if no a∈A is related to a (aRa does not hold).

Example: The relation $R = \{(a,b), (b,a)\}$ on set $X = \{a,b\}$ is irreflexive

7. A relation R on set A is called **Symmetric** if xRy implies yRx, $\forall x \in A$ and $\forall y \in A$.

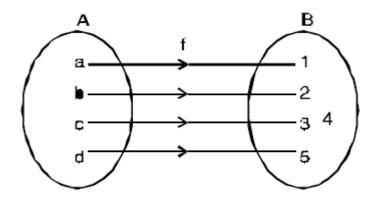
Example: The relation R = $\{(1, 2), (2, 1), (3, 2), (2, 3)\}$ on set A= $\{1, 2, 3\}$ is symmetric.

8. A relation R on set A is called **Anti-Symmetric** if xRy and yRx implies

 $x=y \quad \forall x \in A \text{ and } \forall y \in A.$

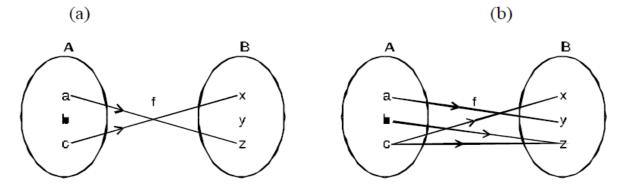
Example: The relation $R = \{ (x,y) \in N \mid x \le y \}$ is anti-symmetric since $x \le y$ and $y \le x$ implies x = y.

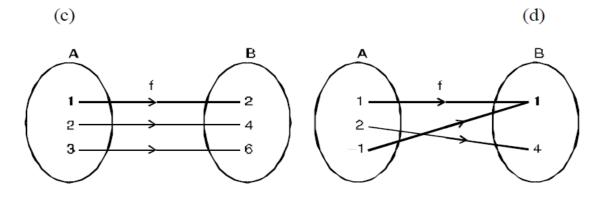
- 9. A relation R on set A is called **Transitive** if xRy and yRz implies xRz, $\forall x,y,z \in A$. **Example:** The relation R = {(1, 2), (2, 3), (1, 3)} on set A= {1, 2, 3} is transitive.
- 10. A relation is an **Equivalence Relation** if it is reflexive, symmetric, and transitive.


Example: The relation $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)\}$ on set $A = \{1, 2, 3\}$ is an equivalence relation since it is reflexive, symmetric, and transitive.

Function – Definition

A function or mapping (Defined as f: $X \rightarrow Y$) is a relationship from elements of one set X to elements of another set Y (X and Y are non-empty sets). X is called Domain and Y is called Codomain of function 'f'.


Function 'f' is a relation on X and Y such that for each $x \in X$, there exists a unique $y \in Y$ such that $(x,y) \in R$. 'x' is called pre-image and 'y' is called image of function f.


A function can be one to one or many to one but not one to many.

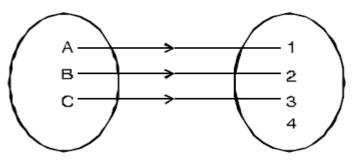
Example

State whether each of the following relations represent a function or not.

Solution :

- (a) f is not a function because the element b of A does not have an image in B.
- (b) f is not a function because the element c of A does not have a unique image in B.
- (c) f is a function because every element of A has a unique image in B.
- (d) f is a function because every element in A has a unique image in B.

Injective / One-to-one function

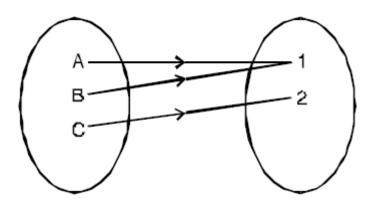

A function f: $A \rightarrow B$ is injective or one-to-one function if for every $b \in B$, there exists at most one $a \in A$ such that f(s) = t.

This means a function **f** is injective if $a_1 \neq a_2$ implies $f(a_1) \neq f(a_2)$.

Example

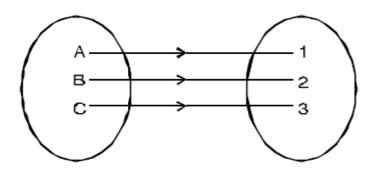
- 1. f: $N \rightarrow N$, f(x) = 5x is injective.
- 2. f: $N \rightarrow N$, f(x) = x² is injective.
- 3. f: $R \rightarrow R$, f(x) = x² is not injective as $(-x)^2 = x^2$

One-to-one function


The domain is { A, B, C} The co-domain is { 1, 2, 3, 4} The range is { 1, 2, 3}

Surjective / Onto function

A function f: $A \rightarrow B$ is surjective (onto) if the image of f equals its range. Equivalently, for every $b \in B$, there exists some $a \in A$ such that f(a) = b. This means that for any y in B, there exists some x in A such that y = f(x).


Example

- 1. $f: N \rightarrow N$, f(x) = x + 2 is surjective.
- f: R→R, f(x) = x² is not surjective since we cannot find a real number whose square is negative.

Bijective / One-to-one Correspondent

A function f: A \rightarrow B is bijective or one-to-one correspondent if and only if **f** is both injective and surjective.

Problem:

Prove that a function f: $R \rightarrow R$ defined by f(x) = 2x - 3 is a bijective function.

Explanation: We have to prove this function is both injective and surjective.

If $f(x_1) = f(x_2)$, then $2x_1 - 3 = 2x_2 - 3$ and it implies that $x_1 = x_2$.

Hence, f is injective.

Here, 2x - 3 = y

So, x = (y+5)/3 which belongs to R and f(x) = y.

Hence, f is surjective.

Since **f** is both **surjective** and **injective**, we can say **f** is **bijective**.

Inverse of a Function

The **inverse** of a one-to-one corresponding function $f : A \rightarrow B$, is the function $g : B \rightarrow A$, holding the following property:

 $f(x) = y \Leftrightarrow g(y) = x$

The function f is called invertible, if its inverse function g exists.

Example:

- A function f : Z → Z, f(x) = x + 5, is invertible since it has the inverse function g : Z → Z, g(x) = x - 5
- A function f : Z→Z, f(x) = x² is not invertible since this is not one-to-one as (-x)² = x².

Composition of Functions

Two functions f: $A \rightarrow B$ and g: $B \rightarrow C$ can be composed to give a composition g o f. This is a function from A to C defined by (gof)(x) = g(f(x))

Example

Let f(x) = x + 2 and g(x) = 2x + 1, find (fog)(x) and (gof)(x)

Solution

 $(f \circ g)(x) = f(g(x)) = f(2x + 1) = 2x + 1 + 2 = 2x + 3$ $(g \circ f)(x) = g(f(x)) = g(x + 2) = 2(x+2) + 1 = 2x + 5$ Hence, $(f \circ g)(x) \neq (g \circ f)(x)$

Some Facts about Composition

- If f and g are one-to-one then the function (g o f) is also one-to-one.
- If f and g are onto then the function (g o f) is also onto.

Monotonic Function

Let $F : A \rightarrow B$ be a function then F is said to be monotonic on an interval (a,b) if it is either increasing or decreasing on that interval.

For function to be increasing on an interval (a,b)

$$x_1 < x_2 \implies F(x_1) < F(x_2) \quad \forall x_1 x_2 \quad (a, b)$$

and for function to be decreasing on (a,b)

$$x_1 < x_2 \implies F(x_1) > F(x_2) \quad \forall x_1 x_2 \in a, b)$$

A function may not be monotonic on the whole domain but it can be on different intervals of the domain.

Consider the function $F : R \to R$ defined by $f(x) = x^2$.

Now $\forall x_1, x_2 \notin 0, \forall$ $x_1 < x_2 \implies F(x_1) < F(x_2)$ F is a *Monotonic Function* on $[0, \infty]$.

 \Rightarrow

(:: It is only increasing function on this interval)

But

 $\forall x_1, x_2 \in (-\infty, 0)$

 $\mathbf{x}_{1} < \mathbf{x}_{2} \implies F(\mathbf{x}_{1}) > F(\mathbf{x}_{2})$

 $\Rightarrow \quad \text{F is a Monotonic Function on } [-\infty, 0]$

 $(\cdot \cdot \cdot$ It is only a decreasing function on this interval)

Therefore if we talk of the whole domain given function is not monotonic on R but it is monotonic on $(-\infty, 0)$ and $(0, \infty)$.

Again consider the function $F: R \rightarrow R$ defined by $f(x) = x^3$.

Clearly $\forall x_1 x_2 \in \text{domain}$

 $x_1 < x_2 \implies F(x_1) < F(x_2)$

: Given function is *monotonic* on R i.e. on the whole domain.

EVEN FUNCTION

A function is said to be an even function if for each x of domain

$$\mathbf{F}(-\mathbf{x}) = \mathbf{F}(\mathbf{x})$$

For example, each of the following is an *even function*.

(i) If
$$F(x) = x^2$$
 then $F(-x) = (-x)^2 = x^2 = F(x)$

ODD FUNCTION

A function is said to be an odd function if for each x

f(-x) = -f(x)

For example,

(i) If

If
$$f(x) = x^3$$

then $f(-x) = (-x)^3 = -x^3 = -f(x)$

Polynomial Function

Any function defined in the form of a polynomial is called a polynomial function. For example,

- (i) $f(x) = 3x^2 4x 2$
- (ii) $f(x) = x^3 5x^2 x + 5$

Rational Function

Function of the type $f(x) = \frac{g(x)}{h(x)}$, where $h(x) \neq 0$ and g(x) and h(x) are polynomial

functions are called rational functions.

For example, $f(x) = \frac{x^2 - 4}{x + 1}, x \neq -1$

is a rational function.

Reciprocal Function

Functions of the type $y = \frac{1}{x}$, $x \neq 0$ is called a reciprocal function.

Exponential Functions

A swiss mathematician Leonhard Euler introduced a number e in the form of an infinite series. In fact

$$e = 1 + \frac{1}{\underline{1}} + \frac{1}{\underline{1$$

It is well known that the sum of its infinite series tends to a finite limit (i.e., this series is convergent) and hence it is a positive real number denoted by e. This number e is a transcendental irrational number and its value lies between 2 an 3.

Consider now the infinite series

$$1 + \frac{x}{\underline{1}} + \frac{x^2}{\underline{1}^2} + \frac{x^3}{\underline{1}^3} + \dots + \frac{x^n}{\underline{1}^n} \dots + \dots$$

It can be shown that the sum of its infinite series also tends to a finite limit, which we denote by e^x . Thus,

This is called the **Exponential Theorem** and the infinite series is called the **exponential series**.

We easily see that we would get (1) by putting x = 1 in (2).

The function $f(x) = e^x$, where x is any real number is called an **Exponential Function**. The graph of the exponential function

$$y = e^x$$

Logarithmic Functions

Consider now the function

 $y = e^{x}$ We write it equivalently as $x = \log_{e} y$ Thus, $y = \log_{e} x$ is the inverse function of $y = e^{x}$ The base of the logarithm is not written if it is e and so $\log_e x$ is usually written as $\log x$. As $y = e^x$ and $y = \log x$ are inverse functions, their graphs are also symmetric w.r.t. the line y = xThe graph of the function $y = \log x$ can be obtained from that of $y = e^x$ by reflecting it in the line y = x.

Part -B (5x8=40 Marks)

Possible Questions:

- 1. Explain about types of relation with examples.
- 2. Let A={1,2,3} and f,g,h and s be functions from A to A given by f ={ (1,2), (2,3),(3,1) }; g = { (1,2), (2,1), (3,3) }; h = { (1,1), (2,2), (3,1) } and s = { (1,1), (2,2), (3,3) }. Find fog, g of, f o h og, gos, s o s, f o s.
- 3. Write about the types of function with example.
- 4. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are one one function then prove that $g_0 f: A \rightarrow C$ is also 1-1.
- 5. Let R denotes a relation on the set of all ordered pairs of positive integers by (x, y) R (u, v) iff xv=yu. Show that R is a equivalence relations.
- 6. Let S={1,2,3,4,5} and T={1,2,3,8,9} and define the functions f: S→ T and g: S → S by f={(1,8), (3,9),(4,3),(2,1),(5,2)} and g={(1,2),(3,1),(2,2),(4,3),(5,2)}, then find the values of the following f ∘ g, g ∘ f, f ∘ f, g ∘ g.
- 7. For integers a,b define aRb if and only if a b is divisible by m. Show that R defines an equivalence relationon Z.
- 8. Let A be the set A={x \in R \ x>0} and define f,g, h:A \to R by $f(x) = \frac{x}{x+1}, g(x) = \frac{1}{x}, h(x) = x+1 \text{ find } g \circ f, f \circ g, h \circ g \circ f \text{ and } f \circ g \circ h.$
- 9. If R and S are equivalence relations defined on a set S,Prove that R∩S is an equivalence relation.

10.Show that the following functions are 1-1

i) $f: R \rightarrow R$ given by $f(x)=5x^2 - 1$ ii) $f: Z \rightarrow$ Egiven by $f(n)=3x^3 - x$

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021.

DEPARTMENT OF MATHEMATICS

Subject: Discrete Mathematics Class : III-B.Sc Mathematics Subject Code: 15MMU505A Semester : V

UNIT II							
Part A (20x	1=20 Marks)						
		le Questions					
Question If $R = \{(1,2),(3,4),(2,2)\}$ and $S = \{(4,2),(2,5),(3,1),(1,3)\}$ are	Choice 1 {(4,2),(3,2),(1,4	Choice 2	Choice 3	Choice 4	Answer		
relations then $RoS =$)}	{(1,5),(3,2),(2,5)}	{(1,2),(2,2)}	{(4,5),(3,3),(1,1)}	{(1,5),(3,2),(2,5)}		
If $f(x) = x+2$ and $g(x) = x^2 - 1$ then $(gof)(x) =$	$x^{2} + 4x + 4$	x^{2} +4x-3	$x^{2} - 4x + 4$	$x^{2}+4x+3$	$x^{2}+4x+3$		
A relation R in a set X is if for every $x \in X, (x,x) \notin R$	transitive	symmetric	irreflexive	reflexive	irreflexive		
Suppose in RxR, the ordered pairs (x-2, $2y+1$) and (y-1, x+2)	0.0	2.2	0.0	2.0	2.2		
) are equal. The values of x and y are	2,3	3,2	2,-3 Reflexive,Symmetri	3,-2	3,2		
A relation R on a set is said to be an equivalence relation if it			С,		Reflexive,Symmetric,		
is Let $f: R \rightarrow R$ where R is a set of real numbers. Then $f(x) = -$	Reflexive	Symmetric	Transitive	Transitive	Transitive		
2x is a	One-to-one	Onto	into	bijection	bijection		
A mapping $f: x \rightarrow y$ is called if distinct elements of x are							
mapped into distinct elements	one-to-one	Onto	into	many to one	one-to-one		
If the relation R and S are both reflexive then $R \vee S$ is	-	reflexive	transitive	not reflexive	reflexive		
A One – to –one function is also known as A On to function is also known as	injective injective	surjective surjective	bijective bijective	objective objective	injective surjective		
A on to function is also known as	mjeeuve	surjeenve	bijeetive	objective	surjeenve		
A One – to –one and onto function is also known as	injective	surjective	bijective	objective	bijective		
Let $f : x \rightarrow y$, $g : y \rightarrow x$ be the functions then g is equal to f^{-1}	-	-	-	-	-		
only if	fog = Iy	$gof = I_x$	$gof=I_y$	$fog=I_x$	$gof = I_x$		
In N, define aRb if $a+b = 7$. This is symmetric when	b+a =7	a+a =7	b+c=7	a + c = 7	b+a =7		
If the relation is relation if $aRb, bRa \rightarrow a = b$	symmetric	reflexive	Antisymmetric	not reflexive	Antisymmetric		
f : $R \rightarrow R$, g : $R \rightarrow R$ defined by $f(x) = 4x-1$ and $g(x) = \cos x$	59111100110		1		1 111113 9 111110 1110		
xThe value of fog is	$4\cos -1$	4cosx	$4\cos x + 1$	1/4cosx	$4\cos x - 1$		
Let $f : N \rightarrow N$ be a function such that $f(x) = 5$, $x \in N$ then the							
f(x) is calledfunction	identity	inverse	equal	constant	constant		
A binary relation R in a set X is said to be symmetric if	aRa	aRb⇒bRa	aRb,bRc⇒aRc	aRb,bRa⇒a=b	aRb⇒bRa		
A binary relation R in a set X is said to be reflexive if	aRa	aRb⇒bRa	aRb,bRc⇒aRc	aRb,bRa⇒a=b	aRa		
A binary relation R in a set X is said to be antisymmetric if							
	aRa	aRb⇒bRa	aRb,bRc⇒aRc	aRb,bRa⇒a=b	aRb,bRa⇒a=b		
A binary relation R in a set X is said to be transitive if If $P_{abs} = ((1, 2), (2, 4), (2, 2))$ and $S_{abs} = ((4, 2), (2, 5), (2, 1), (1, 2))$ are	aRa	aRb⇒bRa	aRb,bRc⇒aRc	aRb,bRa⇒a=b	aRb,bRc⇒aRc		
If $R = \{(1,2),(3,4),(2,2)\}$ and $S = \{(4,2),(2,5),(3,1),(1,3)\}$ are relations then SoS =	{(4,2),(3,2),(1,4)}	$\{(1,5),(3,2),(2,5)\}$	{(1,2),(2,2)}	{(4,5),(3,3),(1,1)}	$\{(4,5),(3,3),(1,1)\}$		
Let $x = \{1,2,3,4\}, R = \{(2,3),(4,1)\}$ then the domain of $R =$		$\{(1,3),(3,2),(2,3)\}$	[(1,2),(2,2)]	((+, 3), (3, 3), (1, 1))	((+,)),(5,5),(1,1))		
	{1,3}	{2,3}	{2,4}	{1,4}	{2,4}		
Let $x = \{1,2,3,4\}, R = \{(2,3),(4,1)\}$ then the range of $R =$							
	{1,3}	{3,1}	{2,4}	{1,4}	{3,1}		
In a relation matrix all the diagonal elements are one then it satisfies	armana atria	ontigummatria	transitiva	roflaviva	reflexive		
In a relation matrix A=(aij) $a_{ij} = a_{ji}$ then it satisfies	symmetric	antisymmetric	transitive	reflexive	Tenexive		
relation matrix $A_{-}(aij) a_{ij} - a_{ji}$ then it satisfies	symmetric	reflexive	transitive	antisymmetric	symmetric		
An ordered arrangement of r - element of a set containning n -	•	r - combination of n		n combination of r	r permutation of n		
distinct element is called an	of n elements	elements	r elements	elements	elements		
The r - permutation of n elements is denoted by	P (r, n)	P(n,r)	c(r, n)	c(n, r)	P(n,r)		
The r - permutation of n elements is denoted by $P(n, r)$							
where An unordered pair of r elements of a set containing n distinct	$r \le n$ r permutation	r = n r - combination of n	$r \ge n$	r > n n combination of r	r ≤ n r - combination of n		
elements is called an	of n elements	elements	r elements	elements	elements		
The number of different permutations of the word BANANA	01 11 010110						
is	720	60	120	360	60		
The number of way a person roundtrip by bus from A to C	10	10	1.4.4	2.51	1.4.4		
by way of B will be	12	48	144	264	144		
How many 10 digits numbers can be written by using the digits 1 and 2 ?	C (10, 9) + C (9, 2)	1024	C(10, 2)	10!	1024		
The number of ways to arrange th a letters of the word	(>, 4)	1021	~(10, 2)	10.			
CHEESE are	120	240	720	6	120		

r - combination of n elements is denoted by	P (r, n)	P(n,r)	C(r, n)	C(n, r)	C(n, r)
The value of C(n,n) is	0	1	n	n-1	1
C(n, n-r) =	C(n, r)	C(n-1, r)	C(n-1, r-1)	C(n, r-1)	C(n, r)
C(n, r) + C(n, r-1) =	C(n, r)	C (n+1, r-1)	C (n+1, r)	C(n, r+1)	C (n+1, r)
The number of arranging different crcular arrangement of n					
objects =	n!	(n+1)!	(n -1)!	0!	(n -1)!
The number of ways of arranging n beads in the form of a					
necklace =	(n-1)!	(n-1)!/2	n!	n!/2	(n-1)!/2
The value of $C(10, 6) + C(9, 5) + C(8, 4) + C(8, 3)$ is	-				
	C(10, 7)	C(9,7)	C(8,5)	C(11, 5)	C(11, 5)
The value of $C(10, 8) + C(10,7)$ is	990	165	45	120	165
The number of different words can be formed out of the					
letters of the word VARANASI, is	64	120	40320	720	720
The number of ways can a party of 7 persons arrange					
themselves around a circular table	6!	7!	5!	7	6!
The sum of entries in the fourth row of Pascal's triangle is	-				
	8	4	10	16	8
The number of wors can be formed out of the letters of the					
word PECULIAR beginning with P and ending with R is	- 100	120	720	150	720
The value of $P(n,n) =$	1	0	n	n-1	n
The value of P(10, 3) is	120	720	60	45	720
If P $(10, r)$ is 720, then the value of r is	2	3	4	5	3
In how many ways 5 children out of a class of 20 line for a					
picture?	P (20, 4)	P(20, 5)	P (5, 20)	P(5, 5)	P(20, 5)
			an integer or a	a rational number	
The value of $C(n, r)$ is	an integer	a fraction	fraction	less than 1	an integer
The value of $P(n, r) / r!$ is	r	C(n, r)	n /r	nr	c(n,r)

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021 DEPARTMENT OF MATHEMATICS

Subject: Discrete Mathematics	Semester :V	LTPC
Subject Code: 15MMU505A	Class : III- B.Sc Mathematics	5 0 0 5

UNIT-III

Formal languages and Automata: Grammars: Phrase–structure grammar, contextsensitive grammar, context-free grammar, regular grammar. Finite state automata-Deterministic finite automata and Non deterministic finite automata-conversion of non deterministic finite automata to deterministic finite automata.

Text Book

1.Trembly J.P., and R.p Mahohar., 1975.Discrete Mathematical structures with applications to computer science, Tata Mc.Graw Hill, New Delhi.

References

1.Sundaresan V., Ganapathy Subramanian K.S., and Ganesan K., 2002.Discrete Mathematics Publications , Nagapattinam.

2. Veerarajan T., 2007.Discrete mathematics with graph theory and combinatorics, Tata Mc.Graw Hill,New Delhi.

3.Sharma .J.K,2005.Discrete Mathematics ,Second Edition, Macmillan India Ltd,New Delhi.

4. Discrete mathematics by Neeru Sharma, Publisher: New Delhi, India : University Science Press (An imprint of Laxmi Publications Limited, Pvt. Ltd.), [2016] ©2011

UNIT – III

Formal Language and and Automata:

Finite Automata

Definition: A finite state automaton (.F S A) or simply an automaton M or finite state acceptor consists of

(1) a finite set I, called the input alphabet of input symbols

(2) a finite set S of states

(3) a subset A of S of accepting states

(4) an initial state s₀ in S

(5) a next state function f from $S \times I \rightarrow S$.

Such an automaton is denoted by $M = (I, S, A, s_0, f)$. Thus, finite automaton does not have an output alphabet, instead it has a set of acceptance state. The plural of automaton is **automata**.

Example: 1. Let us take

$$I = \{a, b\}$$

$$S = \{s_0, s_1, s_2\}$$

$$O = \{x, y, z\}$$

Initial State is s₀

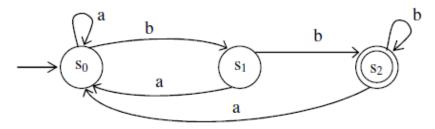
Next state function $f: S \times I \rightarrow S$ defined by

 $f(s_0, a) = s_1, f(s_1, a) = s_2, f(s_2, a) = s_0$

 $f(s_0, b) = s_2$, $f(s_1, b) = s_1$, $f(s_2, b) = s_1$

Output function $g: S \times I \rightarrow O$ defined by

$g(s_0, a) = x,$	$g(s_1, a) = x,$	$g(s_2, a) = z$
$g(s_0, b) = y,$	$\mathbf{g}(\mathbf{s}_1, \mathbf{b}) = \mathbf{z},$	$g(s_2, b) = y/$


Then $M = M(I, S, O, s_0, f, g)$ in a finite state machine.

Example : Let

 $I = \{a, b\}, S = \{s_0, s_1, s_2\}, A = \{s_2\}, s_0 \in S$, the initial state and f is given by the table

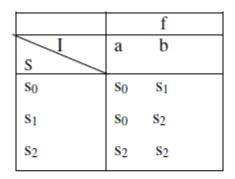
	f
\nearrow	a b
s	
S 0	$S_0 s_1$
s ₁	$s_0 s_2$
s ₂	$s_0 s_2$

The transition diagram of a finite – state automation is usually drawn with accepting states in double circles. Thus transition diagram for the example in question is

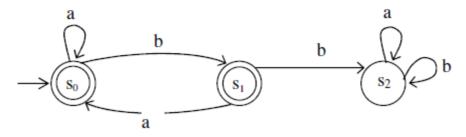
Example: Let

 $I = \{a, b\}, input symbols$

 $S = \{s_0, s_1, s_2\}$, internal states


 $A = \{s_0, s_1\}$, yes states (accepting states)

so, initial state


Next state function $f: S \times I \rightarrow S$ defined by

 $f(s_0, a) = s_0, f(s_1, a) = s_0, f(s_2, a) = s_2$ $f(s_0, b) = s_1, f(s_1, b) = s_2, f(s_2, b) = s_2$

Then $M = (I, S, A, s_0, f)$ is a finite state automaton. Its transition table is

and the transition diagram is

If a string is input to a finite state automaton, we will end at either an accepting or a non-accepting state. The status of this final state determines whether the string is accepted by the finite state automaton.

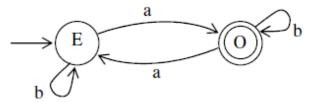
Definition: Let $M = (I, S, A, f, s_0)$ be a finite state automaton. Let $x_1...x_n$ be a string over I. If there exist states $s_0, s_1,...,s_n$ such that

$$f(s_{i-1}, x_i) = s_i$$
 for $i = 1, 2, ..., n$

and

$$s_i \in A$$
,

then we say that the string x_1 x_n is accepted by A.


We call the directed path P $(s_0, ..., s_n)$ the path representing $x_1, ..., x_n$ in M. Thus M accepts $x_1 \dots x_n$ if and only if path P ends at an accepting state. **Example:** Design a finite - state - automaton that accepts precisely those strings over {a, b} that contains an odd number of a's.

Solution: There shall be two states:

E : An even number of a's was found

O: An odd number of a's was found

The initial state is E and the accepting state is O.

If f is next - state function, then we have

$$f(E, a) = O$$

$$f(E, b) = E$$

$$f(O, a) = E$$

$$f(O, b) = O$$

Example : Let $M = \{I, S, A, s_0, f\}$ be a finite state automaton with

$$I = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

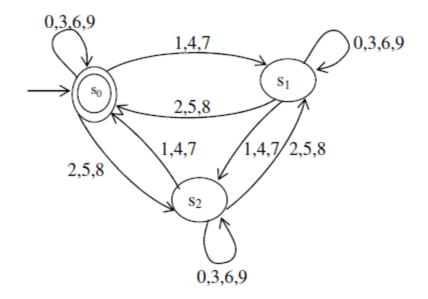
$$S = \{s_0, s_1, s_2\}$$

$$A = \{s_0\}$$

$$a \in \{0, 3, 6, 9\}, b \in \{1, 4, 7\}, c \in \{2, 5, 8\}$$

Next – state function f defined by

$$\begin{split} f(s_0, a) &= s_0, \quad f(s_0, b) = s_1, \quad f(s_0, c) = s_2 \\ f(s_1, a) &= s_1, \quad f(s_1, b) = s_2, \quad f(s_1, c) = s_0 \\ f(s_2, a) &= s_2, \quad f(s_2, b) = s_0, \quad f(s_2, c) = s_1 \end{split}$$


Draw transition table and transition diagram for this F.S.A. Does this automaton accept 258 and 142?

Solution: The transition table for F.S.A. is

	f			
s	a	b	с	
s ₀	s ₀	\mathbf{s}_1	s_2	
s ₁	\mathbf{s}_1	s_2	s ₀	
s ₂	s ₂	s ₀	s ₁	

The transition diagram for this F.S.A. is

Unit III

Here $A = \{s_0\}$ is the initial stage and also is an acceptor. Further, we note that

$$\begin{aligned} f(s_0, 258) &= f(f(s_0, 25), 8) \\ &= f(f(s_0, 2), 5), 8) \\ &= f(f(s_2, 5), 8) \\ &= f(s_1, 8) = s_0 \in A \end{aligned}$$

Thus, the string 258 determines the path

$$s_0 \xrightarrow{2} s_2 \xrightarrow{5} s_1 \xrightarrow{8} s_0 \in A$$

Hence 258 is accepted by the given Finite State Automation. On the other hand, $f(s_0, 142) = f(f(s_0, 14), 2)$ = f(f(s_0, 1), 4), 2) = f(f(s_1, 4), 2) = f(s_2, 2) = s_1 \notin A $s_0 \rightarrow s_1 \rightarrow s_2 \xrightarrow{2} s_1 \notin A.$

Hence 142 is not accepted by the given Finite State Automaton.

Non – Deterministic Finite State Automaton

Definition: A non - deterministic finite - state automaton is a 5 - tuple M =

- (I, S, A, s₀, f) consisting of
- (1) A finite set I of input symbols

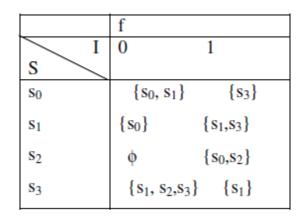
(2) A finite set S of states

(3) A subset A of S of accepting states

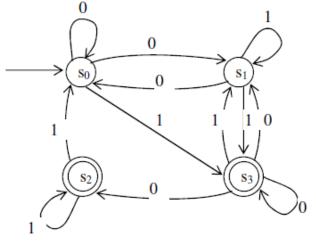
(4) An initial state function $s_0 \in S$

(5) A next state function f from $S \times I$ into P(S)

Thus, in a non – deterministic finite state automaton, the next state function leads us to a set of states, whereas in a finite state automaton, the next state function takes us to a uniquely defined state.


Example: Find the transition diagram for N D F S A

 $M = (I, S, A, s_0, f),$


where

 $I = \{0, 1\}, S = \{s_0, s_1, s_2, s_3\}, A = \{s_2, s_3\}$

and the next state function f is given by

Solution: Here the initial state is s_0 and the accepting states are s_2 and s_3 . The transitional diagram of this N D F S A is

Definition: Let $M = (I, S, A, s_0, f)$ be a non – deterministic finite state automaton. The null string is accepted by M if and only if $s_0 \in A$. If $w = a_1 a_2....a_n$ is a non – null string over I and there exists states $s_0, s_1, ..., s_n$ such that

(1) s₀ is the initial state

(2) $s_i = f(s_{i-1}, a_i)$

 $(3) s_n \in A ,$

then we say that w is accepted by M.

We denote by AC(M), the set of strings accepted by M and say that M accept AC(M).

Definition: Two non - deterministic finite state automata M and M' are said to be equivalent if

$$AC(M) = AC(M')$$
.

Example: Let

$$M = (I, S, A, s_0, f)$$

be a N D F S A with

```
I = \{0, 1\}, S = \{s_0, s_1, s_2, s_3, s_4\}, A = \{s_2, s_4\},\
```

so as the initial state and the next state function defined by the transition table given below:

	f	
\searrow	0	1
s		
s ₀	$\{s_0, s_3\}$	$\{s_{0,s_1}\}$
s ₁	φ	$\{s_2\}$
s ₂	$\{s_2\}$	$\{s_2\}$
S 3	$\{s_4\}$	φ
s ₄	{ s ₄ }	$\{s_4\}$

Determine whether M accept the words (i) w = 010 and (ii) w = 01001.

Solution: (i) The word w = 010 determines the path $s_0 \xrightarrow{0} \{s_0, s_3\}$ $f(s_0,$ $1) \cup f(s_3, 1) = \{s_0, s_1\}$ $\cup \varphi = \{s_0, s_1\} \xrightarrow{0} f(s_0, 0) \cup f(s_1, 0) = \{s_0, s_3\} \cup \varphi = \{s_0, s_3\}$

But $A \cap \{s_0, s_3\} = \{s_2, s_4\} \cap \{s_0, s_3\} = \phi$. Hence the word w = 010 is not acceptable to the given non – deterministic finite state automaton.

(ii) We have seen above that

$$s_0 \xrightarrow{0} \{s_0, s_3\} \xrightarrow{1} \{s_0, s_1\} \xrightarrow{0} \{s_0, s_3\}$$

Therefore the word w = 01001 determines the path

$$s_{0} \xrightarrow{0} \{s_{0}, s_{3}\} \xrightarrow{1} \{s_{0}, s_{1}\} \xrightarrow{0} \{s_{0}, s_{3}\} \xrightarrow{0} f(s_{0}, 0) \cup f(s_{3}, 0)$$

$$= \{s_{0}, s_{3}\} \cup \{s_{n}\}$$

$$= \{s_{0}, s_{3}, s_{4}\} \xrightarrow{1} \xrightarrow{1} f(s_{0}, 1) \cup f(s_{3}, 1\} \cup f(s_{4}, 1\}$$

$$= \{s_{0}, s_{1}\} \cup \phi \cup \{s_{4}\}$$

$$= \{s_{0}, s_{1}, s_{4}\}$$

so that

But $A \cap \{s_0, s_3\} = \{s_2, s_4\} \cap \{s_0, s_3\} = \phi$. Hence the word w = 010 is not acceptable to the given non – deterministic finite state automaton.

(ii) We have seen above that

$$s_0 \xrightarrow{0} \{s_0, s_3\} \xrightarrow{1} \{s_0, s_1\} \xrightarrow{0} \{s_0, s_3\}$$

Therefore the word w = 01001 determines the path

$$s_{0} \xrightarrow{0} \{s_{0}, s_{3}\} \xrightarrow{1} \{s_{0}, s_{1}\} \xrightarrow{0} \{s_{0}, s_{3}\} \xrightarrow{0} f(s_{0}, 0) \cup f(s_{3}, 0)$$

$$= \{s_{0}, s_{3}\} \cup \{s_{n}\}$$

$$= \{s_{0}, s_{3}, s_{4}\} \xrightarrow{1} \rightarrow f(s_{0}, 1) \cup f(s_{3}, 1\} \cup f(s_{4}, 1\}$$

$$= \{s_{0}, s_{1}\} \cup \phi \cup \{s_{4}\}$$

$$= \{s_{0}, s_{1}, s_{4}\}$$

so that

$$A \cap \{s_0, s_1, s_4\} = \{s_2, s_4\} \cap \{s_0, s_1, s_4\} = \{s_4\} \neq \varphi.$$

Hence the string 01001 is acceptable to the given N D F S A.

REGULAR GRAMMARS

Regular Expansions

One way of describing regular languages is via the notation of regular expressions. This notation involves a combination of strings of symbols from some alphabet Σ , parentheses, and the operators +, ., and *. The simplest case is the language {a}, which will be denoted by the regular expression a Slightly more complicated is the language {a, b, c}, for which, using the + to denote union, we have the regular expression a+b+c. We use \cdot for concatenation and * for star-closure in a similar way. The expression (a + (b·c))* stands for the star-closure of {a} U; {b}, that is, the language { λ , a, bc, aa, abc, bca, bcbc, aaa, aabc,...}.

Definition:

Let Σ be a given alphabet. Then

- 1. \emptyset, λ and $a \in \Sigma$ are all regular expressions. These are called **primitive regular expressions**.
- 2 If r_1 and r_2 are regular expressions, so are $r_1 + r_2, r_1, r_2, r_1^*$, and (r_1) .
- 3. A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in (2).

Definition:

The language L(r) denoted by any regular expression r is defined by the following rules.

- 1. Ø is a regular expression denoting the empty set,
- 2. λ is a regular expression denoting $\{\lambda\}$.
- 3. For every $a \in \Sigma$, a is a regular expression denoting $\{a\}$.
- If r_1 and r_2 are regular expressions, then
- 4. $L(r_1 + r_2) = L(r_1) \cup L(r_2),$

$$5.L (r_1 \cdot r_2) = L (r_1) \cup L (r_2);$$

$$6 L ((r_1)) = L (r_1),$$

$$7.L(r_1^*) = (L(r_1))^*.$$

Example:

For $\Sigma = \{0, 1\}$, give a regular expression r such that

 $L(r) = \{w \in \Sigma^*: w \text{ has at least one pair of consecutive zeros}\}.$

One can arrive at an answer by reasoning something like this: Every string in L(r) must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^*$. Putting these observations together, we arrive at the solution

r=(0+1)*00(0+1)*.

Definition:

A grammar G = (V, T, S, P) is said to be **right-linear** if all productions are of the form

```
A \rightarrow xB,
A \rightarrow x,
```

where $A, B \in V$, and $x \in T^*$. A grammar is said to be left-linear if all productions are of the form

$$A \rightarrow Bx$$
,

 $A \rightarrow x$.

or

Example:

The grammar $G_1 = (\{S\}, \{a,b\}, S, P_1)$, with P_1 given as

 $S \rightarrow abS | a$

is right-linear. The grammar $G_2 = (\{S, S_1, S_2\}, \{a, b\}, S, P_2)$, with productions

 $S \rightarrow S_1 a b,$ $S_1 \rightarrow S_1 a b | S_2,$ $S_2 \rightarrow a,$

is left-linear. Both G1 and G2 are regular grammars.

The sequence

S implus abS implus ababS implus ababa

Example:

The grammar $G = (\{S, A, B\}, \{a, b\}, S, P)$ with productions

$$\begin{vmatrix} S \to A \\ A \to aB \end{vmatrix} \lambda,$$
$$B \to Ab,$$

is not regular. Although every production is either in right-linear or left-linear form, the grammar itself is neither right-linear nor left-linear, and therefore is not regular. The grammar is an example of a **linear grammar**.

Context Free Grammar:

A grammar G = (V, T, S, P) is said to be **context-free** if all productions in P have the form

 $A \to x$,

where $A \in V$ and $x \in (V \cup T)^*$.

A language L is said to be context-free if and only if there is a context-free grammar G such that L = L(G).

Example:

The grammar $G = (\{S\}, \{a, b\}, S, P)$, with productions

$$S \rightarrow aSa,$$

 $S \rightarrow bSb,$
 $S \rightarrow \lambda,$

is context-free. A typical derivation in this grammar is

$$S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aabSbaa \Rightarrow aabbaa.$$

This, and similar derivations, make it clear that

$$L(G) = \{ww^{R} : w \in \{a, b\}^{*}\}.$$

Example:

The language

$$L = \{a^n b^m : n \neq m\}$$

is context-free.

To show this, we need to produce a context-free grammar for the language. The case of n = m is solved in Example 1.11 and we can build on that solution. Take the case n > m. We first generate a string with an equal number of a's and b's, then add extra a's on the left. This is done with

$$S \rightarrow AS_1,$$

 $S_1 \rightarrow aS_1b|\lambda,$
 $A \rightarrow aA|a.$

We can use similar reasoning for the case n < m, and we get the answer

$$S \rightarrow AS_1|S_1B,$$

 $S_1 \rightarrow aS_1b|\lambda,$
 $A \rightarrow aA|a,$
 $B \rightarrow bB|b.$

The resulting grammar is context-free, hence L is a context-free language. However, the grammar is not linear.

Example: Construct deterministic finite state automaton equivalent to the following non – deterministic finite state automaton :

 $\mathbf{M} = (\{0, 1\}, \{s_0, s_1\}, s_0, \{s_1\}, f),\$

where f is given by the table

	f	
	0	1
s		
S 0	$\{s_0, s_1\}$	$\{s_1\}$
s ₁	φ	$\{s_0, s_1\}$

Solution: Let

 $M' = \{\{0, 1\}, \{\phi, \{s_0\}, \{s_1\}, \{s_0, s_1\}, s_0' = \{s_0\}, A', f'\}$ be the D F S A, where $A' = \{s \in \{\phi, (s_0, \{s_1\}, \{s_0, s_1\} : s \cap \{s_1\} \neq \phi$ and $= \{s_1\} \text{ and } \{s_0, s_1\} \text{ (Accepting states)}$ $f'(s, a) = \bigcup_{\sigma \in s} f(\sigma, a) \text{ for } s \in \{\phi, \{s_0\}, \{s_1\}, \{s_0, s_1\}\}$

We have

 $\{s_0\}$ as the initial state

The finite set of states is $\{\phi, \{s_0\}, \{s_1\}, \{s_0, s_1\}\}\)$ The finite set of inputs is $\{0, 1\}\)$ The accepting states are $[s_1]$ and $[s_0, s_1]$. Now

```
f'(\phi, 0) = \phi \text{ and } f'(\phi, 1) = \phi

f'([s_0], 0) = f(s_0, 0) = [s_0, s_1]

f'([s_0], 1) = f(s_0, 1) = [s_1]

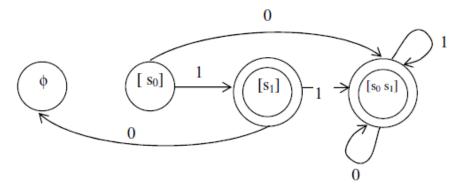
f'([s_1], 0) = f(s_1, 0) = \phi

f'([s_1], 1) = f(s_1, 1) = [s_0, s_1]

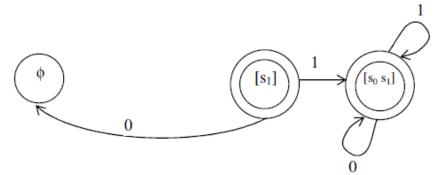
f'([s_0, s_1], 0) = f(s_0, 0) \cup f\{s_1, 0\}

= \{s_0, s_1\} \cup \{s_1\}

= [s_0, s_1]


f'(\{s_0, s_1\}, 1) = f(s_0, 1) \cup f(s_1, 1)

= \{s_1\} \cup \{s_0, s_1\}


= [s_0, s_1]
```

	f′	
	0	1
s	*	
φ	φ	φ
[s ₀]	$[s_0, s_1]$	[s ₁]
[s ₁]	¢	$[s_0, s_1]$
[s ₀ , s ₁]	$[s_0, s_1]$	[s ₀ , s ₁]

Hence the next state function and the transition diagram for D F S A are as given below :

It may be mentioned here that a state which is never entered may be deleted from the transition diagram. In view of this, the above transition diagram becomes

Thus, we note that if N D F S A has n states, then D F S A will have 2^n states.

Part -B (5x8=40 Marks)

Possible Questions:

- 1. Explain the types of grammars with examples.
- 2. i) Obtain the Context sensitive grammar for the language (a^{m2} / m ≥ 1)
 ii) Let G = { (S,B),(a),S, φ} Define production function φ as
 (i) S→ aS ,(ii) S→ aB (iii) B→ aS (iv) S→ a
 - iii) Define transition diagram. Draw a transition diagram which will accept those words from A, which have an even number of a's.
- 3. i) Prove that $L(G) = \{ a^n b^n c^n / n \ge 1 \}$ where $G = (\{S,B,c\}, \{a,b,c\}, S, \phi)$ and $Q = \{ S \rightarrow aSBc, S \rightarrow aBc, cB \rightarrow Bc, aB \rightarrow ab, bC \rightarrow bc, cC \rightarrow cc \}$
 - ii) Explain with an example for conversion of non-deterministic finite automata to finite state automata .
- 4. Show that the language $L(G_5) = \{a^n bc^m / m, n \ge 1\}$ is generated by the following grammar: $G_5 = (\{S, A, B, C\}, \{a, b\}, S, \phi)$, where the set ϕ consists of production is $S \rightarrow aS, S \rightarrow aB, B \rightarrow bC, C \rightarrow ac, C \rightarrow a$.
- 5. Show that the language $L(G_4) = \{a^n ba^n / n \ge 1\}$ is generated by the following grammar: $G_4 = (\{S,C\}, \{a,b\}, S, \phi)$, where ϕ consists of productions $\{S \rightarrow aCa, C \rightarrow aCa, C \rightarrow b\}$.
- 6. i)Consider the grammar G = ({ S,A,B,C} , {a,b},S,φ) where φ is the set of productions S→ aAab , A→ aAa , A→ bB , Ba→ aB, Bb→ Cbb ,aC→ Ca, A→ b. Find L(G).
 ii). Construct the grammar for the language L(G) = { aⁿ b²ⁿ / n ≥ 1 }
- 7. Construct the equivalent DFSA for the following NDFSA

$M = (\{0,1\}, \{q_{0},q_{1}\}, \delta, q_{0}, \{q_{1}\})$ nere δ is given by				
δ	0	1		
q_0	$\{q_{0,}q_{1}\}$	$\{q_1\}$		
q_1	φ	$\{q_{0,q_{1}}\}$		

M=($\{0,1\},\{q_0,q_1\},\delta,q_0,\{q_1\}$) here δ is given by

8. i)Construct the grammar for the language $L(G) = \{a^n b^{2n}/n \ge 1\}$. ii) Construct the grammar for the language $L(G) = \{a^n b a^m/n, m \ge 1\}$.

- 9. Let $M = (\{a,b\}, \{q_0,q_1,q_2\},q_0,\delta,\{q_2\})$ be a non-deterministic finite –state automata. where δ is given as follows: $\delta(q_0, a) = \{ q_0, q_1 \}, \delta(q_1, a) = \{ q_1 \}, \delta(q_2, a) = \{ q_0 \}, \delta(q_0, b)$ = { q_2 }, $\delta(q_1, b)$ = { q_0 }, $\delta(q_2, b)$ = { q_1, q_2 }. Construct an equivalent deterministic finite-state automata.
- 10. Prove that every regular set is accepted by a finite state state automata.

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021.

DEPARTMENT OF MATHEMATICS

Subject: Discrete Mathematics Class : III-B.Sc Mathematics (A) Subject Code: 15MMU505A Semester : V

UNIT III						
Part A (20x1=20 Marks) Possible Questions						
0	4		Choice 2	Choice 3	Choice 4	Answer
Ques A finite non- empty set E of syn		Choice 1		Choice 3 letters	alphabet	alphabet
The of the word is the n	-	string	word		•	•
A over E is sequence of sy		degree	weight	length	height	length
repetitions	moors of E with possible	alphabet	letters	word	length	word
The specification of profer constru	uction of santances is called the	aiphabet	letters	word	length	word
of the language	letton of sentences is called the	alphabet	monoid	syntax	semantics	syntax
00 000 000 000						~ j
A is any derivative of the	ne unique non-terminal symbol S.	sentential form	language	type 0 grammer	type -1 grammer	sentential form
A grammar G is said to be	· ·		0 0			
L(G) has atleast two derivation the	rees	un ambiguous	ambiguous	language	syntex	ambiguous
a derivation in which the right mos	t non terminal symbol is replaced					
at each step is said to be		word	sentential form	left most derivation	right most derivation	rightmost derivation
The pictorial method of specifying	the finite state machine is called					
		state diagram	sequential diagram	digrapgh	right most derivation	state diagram
Every regular language is		ambiguous	unambiguous	inherently	language	unambiguous
Any subset L of A* is called a		language	letters	alphabet	sensitive	language
The specification of the meaning	of sentences is called the					
of the language		syntax	semantics	E*	empty set	semantics
A pharse structure grammer with	no restrictions is called a	T 0	m 1			
	· · · · · · · · · · · · · · · · · · ·		Type - 1 grammer	type- 2 grammer	type-3 grammer	Type -0 grammer
A grammer G is said to be	if every production is of the	context -	contourt fuce		tring 1 grouping	contant fuce
form $A \rightarrow \alpha$.	if a voru production is of the	sensitive	context-free	regular	type -1 grammer	context- free
A grammer G is said to be form $A \rightarrow a$, $A \rightarrow aB$	If every production is of the	context - sensitive	context-free	type-1 grammer	regular	regular
A language for which there exists	a recongnition algorithm is said	sensitive	context-nee	type-1 grammer	regular	regulai
to be	a recongination argonalin is said	recursive	relation	syntax	semantics	recursive
				Sjitteri	Semanties	
A language generated by type -0 g	rammer is called a	Type -0 grammer	Type - 1 grammer	type 2 grammar	type-3 grammer	Type-0 language
		context -				context -sensitive
grammar of type - 1 are often calle	d	sensitive	context-free	regular	syntex	grammar
		Type -0				
A language generated by type - 1 g	grammer is called a	language	Type - 1 language	type -2 language	type -3 language	type -1 language
The length of a word W is the	in W	number of letters	number of alphabets	number of words	number of strings	number of letters
		context -				
DFA and NFA represent the	language .	sensitive	context-free	regular	type-4	regular
D						
Every grammar generating a conte	ext - free language is	ambiguous	unambiguous	string	word	ambiguous
Every finite state machine has a -	associated with it	monoid	unambiguous	regular	semantics	monoid
If L accepted by a NFA, then there			unamorguous	regular	semanues	monoiu
If L accepted by a NFA, then there	e exists a DFA, that accepts	L	Е	E*	М	L
If a language L is accepted by a mu	ultitane TM it is accepted by a	L	L	L	141	L
single tape	anape ini, it is accepted by a	ТМ	МТ	E*	L	TM
single upo		1 1 T I	1711	-	L	1 1 V 1

Every regular language is accepted by a -----.

If L is N(M) for some PDA M, then L is a language.
Push - down automata is denoted by
If the syntex is correct then it produces code

finite state

automata	infinte state automata	Regular automata	Irregular automata	finite state automata
context - sensitive	context-free	regular	empty set	context - free
PDA	PAD	DAP	DAA	PAD
Verb	sentence	sentence	object	object

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021 DEPARTMENT OF MATHEMATICS

Subject: Discrete Mathematics	Semester :V	LTPC
Subject Code: 15MMU505A	Class : III- B.Sc Mathematics	5 0 0 5

UNIT-IV

Lattices and Boolean algebra: Partial ordering, Poset, Lattices, Boolean algebra, Boolean functions, Theorems, Minimization of Boolean functions.

Text Book

1.Trembly J.P., and R.p Mahohar., 1975.Discrete Mathematical structures with applications to computer science, Tata Mc.Graw Hill, New Delhi.

References

1.Sundaresan V., Ganapathy Subramanian K.S., and Ganesan K., 2002.Discrete Mathematics Publications , Nagapattinam.

2. Veerarajan T., 2007.Discrete mathematics with graph theory and combinatorics, Tata Mc.Graw Hill,New Delhi.

3.Sharma .J.K,2005.Discrete Mathematics ,Second Edition, Macmillan India Ltd,New Delhi.

4. Discrete mathematics by Neeru Sharma, Publisher: New Delhi, India : University Science Press (An imprint of Laxmi Publications Limited, Pvt. Ltd.), [2016] ©2011

UNIT -IV

LATTICES

Definitions and Examples

Definition: A **lattice** is a partially ordered set (L, \leq) in which every subset $\{a, b\}$ consisting of **two element** has a **least upper bound** and a **greatest lower bound**.

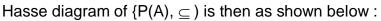
We denote $lub(\{a, b\})$ by $a \lor b$ and call it join or sum of a and b.

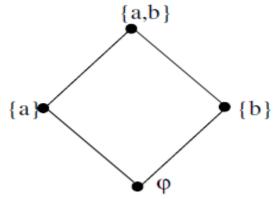
Similarly,

we denote $GLB(\{a, b\})$ by $a \land b$ and call it **meet** or **product of a and b.** Other symbol used are:

 $LUB: \oplus, +, \cup$ $GLB: *, ., \cap$

Thus Lattice is a mathematical structure with two binary operations, join and meet. Lattice structures often appear in computing and mathematical applications.

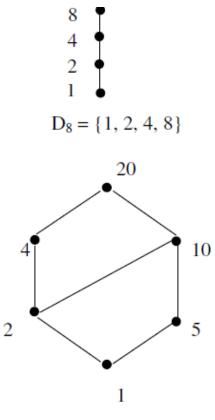

A totally ordered set is obviously a lattice but not all partially ordered sets are lattices.


Example 1. Let A be any set and P(A) be its power set. The partially ordered set (P(A), \subseteq) is a lattice in which the meet and join are the same as the operations \cap and \cup respectively. If A has single element, say a, then P(A) = { ϕ , {a}} and LUB({ ϕ , {a}) = {a} GLB({ ϕ , {a}) = ϕ

The Hasse diagram of (P(A), \subseteq) is a chain containing two elements φ and {a} as shown below:

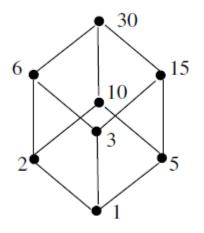
• {a} • φ

If A has two elements, say a and b. Then $P(A) = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. The


We note that

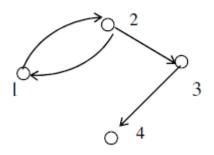
- 1. LUB exists for every two subsets and is $\mathsf{L} \cup \mathsf{M}$
- 2. GLB exists for every two subsets and is in $L \cap M$ for L, $M \in P(A)$.

Hence P(A) in a lattice.


Example 2. Consider the poset (\mathbf{N} , \leq), where \leq is relation of divisibility. Then \mathbf{N} is a lattice in which join of a and $\mathbf{b} = \mathbf{a} \lor \mathbf{b} = \mathbf{L} \mathbf{C} \mathbf{M}(\mathbf{a}, \mathbf{b})$ meet of a and $\mathbf{b} = \mathbf{a} \land \mathbf{b} = \mathbf{G} \mathbf{C} \mathbf{D}$ (\mathbf{a} , \mathbf{b}) for \mathbf{a} , $\mathbf{b} \in \mathbf{N}$.

Example 3. Let n be a positive integer and let D_n be the set of all positive divisors of n. Then D_n is a lattice under the relation of divisibility. The Hasse diagram of the lattices D_8 , D_{20} and D_{30} are respectively.

 $D_{20} = \{1, 2, 4, 5, 10, 20\}$


and

 $D_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}.$

The TransiDefinition: The **Transitive closure** of a relation R is the smallest transitive relation containing R. It is denoted by R_{∞} .

Example: Let $A = \{1, 2, 3, 4\}$ and R = [(1, 2), (2, 3), (3, 4), (2, 1)] Find the transitive closure of R. **Solution:** The digraph of R is

We note that from vertex 1, we have paths to the vertices 2, 3, 4 and 1. Note that path from 1 to 1proceeds from 1 to 2 to 1. Thus we see that the ordered pairs (1, 1), (1, 2), (1, 3) and (1, 4) are in R_{∞} . Starting from vertex 2, we have paths to vertices 2, 1, 3 and 4 so the ordered pairs (2, 1), (2, 2), (2, 3) and (2, 4)

are in \mathbb{R}_{∞} . The only other path is from vertex 3 to 4, so we have $\mathbb{R}_{\infty} = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4)\}$

Example: Let R be the set of all equivalence relations on a set A. As such R consists of subsets of A × A and so R is a partially ordered set under the partial order of set inclusion. If R and S are equivalence relations on A, the same property may be expressed in relational notations as follows: R \subseteq S if and only if x R y _ x S y for all x y \in A.

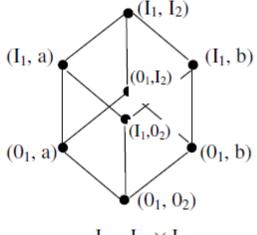
Then (R, \subseteq) is a poset. R is a lattice, where the meet of the equivalence relations R and S is their intersection R \cap S and their join is (R \cup S) $_{\infty}$, the transitive closure of their union.

Definition: Let (L, \leq) be a poset and let (L, \geq) be the dual poset. If (L, \leq) is a lattice, we can show that (L, \geq) is also a lattice. In fact, for any a and b in L, the

L U B of a and b in (L, \leq) is equal to the GLB of a and b in (L, \geq) . Similarly, the GLB of a and b in (L, \leq) is equal to L U B in (L, \geq) . The operation \lor and \land are called **dual of each other**.

Example: Let S be a set and L = P(S). Then (L, \subseteq) is a lattice and its **dual lattice** is (L, \supseteq) , where \supseteq represents "contains". We note that in the poset (L, \supseteq) , the join A \lor B is the set A \cap B and the meet A \land B is the set A \cup B.

Cartesian Product of Lattices


Theorem: If (L_1, \leq) and (L_2, \leq) are lattices, then (L, \leq) is a lattice, where $L = L_1 \times L_2$ and the partial order \leq of L is the product partial order.

Proof: We denote the join and meet in L₁ by \lor_1 , and \land_1 and the join and meet in L₂ by \lor_2 and \land_2 respectively.

We know that Cartesian product of two posets is a poset.

Therefore L = L1 × L2 is a poset. Thus all we need to show is that if (a1, b1) and (a2, b2) \in L, Then (a1, b1) \lor (a2, b2)and (a1, b1) \land (a2, b2) exist in L. Further, we know that (a1, b1) \lor (a2, b2) = (a1 \lor a2, b1 \lor b2) and and (a1, b1) \land (a2, b2) = (a1 \land a2, b1 \land b2) Since L1 is lattice, a1 \lor 1 a2 and a1 \land 1 a2 exist. Similarly, since L2 is a lattice, b1 \lor b2 and b1 \land b2 exist. Hence (a1, b1) \lor (a2, b2) and (a1, b1) \land (a2, b2) both exist and therefore (L, \leq) is a lattice, called **the direct product of**

(L₁, \leq) and (L₂, \leq).

 $\mathbf{L} = \mathbf{L}_1 \times \mathbf{L}_2$

Properties of Lattices:

Let (L, \leq) be a lattice and let a, b , c \in L. Then, from the definition of \vee (join) and \wedge (meet)

we have

(i) $a \le a \lor b$ and $b \le a \lor b$; $a \lor b$ is an upper bound of a and b.

- (ii) if $a \le c$ and $b \le c$, then $a \lor b \le c$; $a \lor b$ is the least bound of a and b.
- (iii) $a \land b \le a$ and $a \land b \le b$; $a \land b$ is a lower bound of a and b.
- (iv) if $c \leq a$ and $c \leq b,$ then $c \leq a \land b; a \land b$ is the greatest lower bound of a and b

Theorem:

Let L be a lattice. Then for every a and b in L, (i) $a \lor b = b$ if and only if $a \le b$ (ii) $a \land b = a$ if and only if $a \le b$ (iii) $a \land b = a$ if and only if $a \lor b = b$ **Proof:** (i) Let $a \lor b = b$. Since $a \le a \lor b$, we have $a \le b$.

Conversely, if $a \le b$, then since $b \le b$, it follows that b is an upper bound of a and b. Therefore, by the definition of least upper bound, $a \lor b \le b$. Also $a \lor b$ being an upper bound, $b \le a \lor b$. Hence $a \lor b = b$.

(ii) Let $a \land b = a$. Since $a \land b \le b$, we have $a \le b$. Conversely, if $a \le b$ and since $a \le a$, a is a lower bound of a and b and so, by the definition of greatest lower bound, we have

```
a \le a \land b
Since a \land b is lower bound,
a \land b \le a
```

Hence

 $a \wedge b = a$.

(iii) From (ii)

From (i)

 $a \le b \Leftrightarrow a \lor b = b$(v)

 $a \wedge b = a \Leftrightarrow a \leq b$(iv)

Hence, combining (iv) and (v),

we have

 $a \wedge b = a \Leftrightarrow a \vee b = b.$

Example: Let L be a linearly (total) ordered set. Therefore a, $b \in L$ imply either $a \le b$ or $b \le a$. Therefore, the above theorem implies that $a \lor b = a$

$a \wedge b = a$

Thus for every pair of elements a, b in L, $a \lor b$ and $a \land b$ exist. Hence a linearly ordered set is a lattice.

Theorem :

Let (L, \leq) be a lattice and let a, b, c \in L. Then we have

L1: Idempotent property

(i) $a \lor a = a$ (ii) $a \land a = a$

L2: Commutative property

(i) $a \lor b = b \lor a$ (ii) $a \land b = b \land a$

L3: Associative property

(i) $a \lor (b \lor c) = (a \lor b) \lor c$ (ii) $a \land (b \land c) = (a \land b) \land c$

L4: Absorption property

(i) $a \lor (a \land b) = a$ (ii) $a \land (a \lor b) = a$

Proof: L1 : The idempotent property follows from the definition of LUB and GLB.

L₂: Commutativity follows from the symmetry of a and b in the definition of LUB and GLB.

L₃: (i) From the definition of LUB, we have

$$b \lor c \le a \lor (b \lor c) \dots (2)$$

Also $b \leq b \lor c$ and $c \leq b \lor c$ and so transitivity implies

 $b \le a \lor (b \lor c)$(3)

and

 $c \le a \lor (b \lor c)$ (4)

Now, (1) and (3) imply that a \lor (b \lor c) is an upper bound of a and b and hence by the definition of least upper bound, we have

$$a \lor b \le a \lor (b \lor c)$$
(5)

Also by (4) and (5), a \vee (b \vee c) is an upper bound of c and a \vee b . Therefore

 $(a \lor b) \lor c \le a \lor (b \lor c) \dots (6)$

Similarly

 $a \lor (b \lor c) \le (a \lor b) \lor c$(7)

Hence, by antisymmetry of the relation \leq , (6) and (7) yield

 $a \lor (b \lor c) = (a \lor b) \lor c$

The proof of (ii) is analogous to the proof of part (i).

L4 : (i) Since $a \land b \le a$ and $a \le a$, it follows that a is an upper bound of $a \land b$ and a. Therefore, by the definition of least upper bound

 $a \lor (a \land b) \le a$ (8)

On the other hand, by the definition of LUB, we have

 $a \le a \lor (a \land b)$ (9) The expression (8) and (9) yields

$$a \lor (a \land b) = a.$$

(ii) Since $a \le a \lor b$ and $a \le a$, it follows that a is a lower bound of $a \lor b$ and a.

Therefore, by the definition of GLB,

 $\mathsf{a} \leq \mathsf{a} \land (\mathsf{a} \lor \mathsf{b})$ (10)

Also, by the definition of GLB, we have

 $a \land (a \lor b) \le a$ (11)

Then (10) and (11) imply

 $a \wedge (a \vee b) = a$

and the proof is completed.

In view of L₃, we can write a \lor (b \lor c) and (a \lor b) \lor c as a \lor b \lor c. Thus, we can express

LUB ({a1, a2,....an) as a1 \lor a2 \lor \lor an GLB ({a1, a2,....an) as a1 \land a2 \land \land an

Remark:

Using commutativity and absorption property, part (ii) of previous Theorem can be proved as follows :

Let $a \wedge b = a$.

We note that

 $b \lor (a \land b) = b \lor a$

 $= a \lor b$ (Commutativity)

But

 $b \lor (a \land b) = b$ (Absorption property)

Hence

 $a \lor b = b$

and so by part (i), $a \le b$. Hence $a \land b = a$ if and only if $a \le b$.

Theorem: Let (L, \leq) be a lattice. Then for any a, b, $c \in L$, the following properties hold :

1. (**Isotonicity**) : If $a \le b$, then

(i) $a \lor c \le b \lor c$ (ii) $a \land c \le b \land c$ This property is called "Isotonicity".

2. a \leq c and b \leq c if and only if a \vee b \leq c

3. $c \le a$ and $c \le b$ if and only if $c \le a \land b$

4. If $a \le b$ and $c \le d$, then (i) $a \lor c \le b \lor d$ (ii) $a \land c \le b \land d$.

Proof : 1 (i). We know that $a \lor b = b$ if and only if $a \le b$.

Therefore, to show that a \lor c \leq b \lor c, we shall show that

 $(a \lor c) \lor (b \lor c) = b \lor c.$

We note that

$$(a \lor c) \lor (b \lor c) = [(a \lor c) \lor b] \lor c = a \lor (c \lor b) \lor c$$
$$= a \lor (b \lor c) \lor c$$
$$= (a \lor b) \lor (b \lor c)$$
$$= b \lor c (\Theta a \lor b = b \text{ and } c \lor c = c)$$
1 (ii) can be proved similarly

The part 1 (ii) can be proved similarly.

2. If a \leq c, then 1(i) implies

$$a \lor b \le c \lor b$$

But

$$b \le c \Leftrightarrow b \lor c = c$$

 $\Leftrightarrow c \lor b = c$ (commutativity)

Hence $a \le c$ and $b \le c$ if and only if $a \lor b \le c$

3. If $c \le a$, then 1(ii) implies $c \land b \le a \land b$

But

$$\mathsf{c} \leq \mathsf{b} \Leftrightarrow \mathsf{c} \land \mathsf{b} = \mathsf{c}$$

Hence

```
c \le a and c \le b if and only if c \le a \land b.
```

4 (i) We note that 1(i) implies that if $a \le b$, then $a \lor c \le b \lor c = c \lor b$

if $c \leq d$, then $c \lor b \leq d \lor b = b \lor d$

Hence, by transitivity

 $a \lor c \le b \lor d$

(ii) We note that 1(ii) implies that if $a \le b$, then $a \land c \le b \land c = c \land b$ if $c \le d$, then $c \land b \le d \land b = b \land d$. Therefore transitivity implies $a \land c \le b \land d$.

Theorem:

Let (L, \leq) be a lattice. If a, b, c \in L, then (1) a \vee (b \wedge c) \leq (a \vee b) \wedge (a \vee c) (2) a \wedge (b \vee c) \geq (a \wedge b) \vee (a \wedge c)

These inequalities are called "Distributive Inequalities".

Proof: We have

 $a \le a \lor b$ and $a \le a \lor c$ (i)

Also, by the above theorem, if $x \le y$ and $x \le z$ in a lattice, then $x \le y \land z$. Therefore (i) yields

 $a \leq (a \lor b) \land (a \lor c)$ (ii)

Also

 $b \land c \le b \le a \lor b$

and

$$\mathsf{b} \land \mathsf{c} \leq \mathsf{c} \leq \mathsf{a} \lor \mathsf{c}$$
,

that is, $b \land c \leq a \lor b$ and $b \land c \leq a \lor c$ and so, by the above argument, we have

 $b \land c \le (a \lor b) \land (a \lor c)$ (iii)

Also, again by the above theorem if $x \le z$ and $y \le z$ in a lattice, then

 $\begin{array}{l} x \lor y \leq z \\ \text{Hence, (ii) and (iii) yield} \\ a c (b \land c) \leq (a \lor b) \land (a \lor c) \\ \text{This proves (1).} \\ \text{The second distributive inequality follows by using the principle of duality.} \end{array}$

Theorem: (Modular Inequality) : Let (L, \leq) be a lattice. If a, b, c \in L, then $a \leq c$ if and only if $a \lor (b \land c) \leq (a \lor b) \land c$

Proof: We know that $a \le c \Leftrightarrow a \lor c = c$ (1)

Also, by distributive inequality,

$$\begin{split} a \lor (b \land c) &\leq (a \lor b) \land (a \lor c) \\ \text{Therefore using (1) } a &\leq c \text{ if and only if} \\ a \lor (b \land c) &\leq (a \lor c) \land c, \\ \text{which proves the result.} \end{split}$$

The modular inequalities can be expressed in the following way also:

 $(a \land b) \lor (a \land c) \le a \land [b \lor (a \land c)]$ $(a \lor b) \land (a \lor c) \ge a \lor [b \land (a \lor c)]$

Example: Let (L, \leq) be a lattice and a, b, $c \in L$. If $a \leq b \leq c$, then (i) $a \lor b = b \land c$, (ii) $(a \land b) \lor (b \land c) = (a \lor b) \land (a \lor c)$

```
Solution: (i) We know that

a \le b \Leftrightarrow a \lor b = b

and

b \le c \Leftrightarrow b \land c = b

Hence a \le b \le c implies a \lor b = b \land c.

(ii) Since a \le b and b \le c, we have

a \land b = a and b \land c = b

Thus

(a \land b) \lor (b \land c) = a \lor b

= b.
```

since $a \le b \Leftrightarrow a \lor b = b$. Also, $a \le b \le c_a \le c$ by transitivity. Then $a \le b$ and $a \le c_a \lor b = b$, $a \lor c = c$ and so $(a \lor b) \land (a \lor c) = b \land c$ = b since $b \le c \Leftrightarrow b \land c = b$. Hence $(a \land b) \lor (b \land c) = b = (a \lor b) \land (a \lor c)$, which proves (ii).

1.21. Lattices as Algebraic System

Definition. A **Lattice** is an algebraic system (L, \lor , \land) with two binary operations \lor and \land , called **join** and **meet** respectively, on a non-empty set L

which satisfy the following axioms for a, b, $c \in L$:

1. Commutative Law :

 $a \lor b = b \lor a$ and $a \land b = b \land a$. 2. Associative Law :

 $(a \lor b) \lor c = a \lor (b \lor c)$ and $(a \land b) \land c = a \land (b \land c)$

3. Absorption Law :

(i) $a \lor (a \land b) = a$ (ii) $a \land (a \lor b) = a$ We note that Idempotent Law follows from axiom 3 above. In fact, $a \lor a = a \lor [a \land (a \lor b)]$ using3(ii) = a using3(i) The proof of $a \land a = a$ follows by principle of duality.

1.22 Partial Order Relations on a Lattice

A partial order relation on a lattice (L) follows as a consequence of the axioms for the binary operations \lor and \land . We define a relation \leq on L such that for a, b \in L, $a \le b \Leftrightarrow a \lor b = b$ or analogously, $a \leq b \Leftrightarrow a \land b = a$. We note that (i) For any $a \in L$ $a \lor a = a$ (idempotent law), therefore $a \le a$ showing that \le is **reflexive**. (ii) Let $a \le b$ and $b \le a$. Therefore $a \lor b = b$ $b \vee a = a$ But $a \lor b = b \lor a$ (Commutative Law in lattice) Hence a = b, showing that \leq is **antisymmetric**. (iii) Suppose that $a \le b$ and $b \le c$. Therefore $a \lor b = b$ and $b \lor c = c$. Then $a \lor c = a \lor (b \lor c)$ $= (a \lor b) \lor c$ (Associativity in lattice) $= b \lor c$ = C , showing that $a \le c$ and hence \le is transitive.

This shows that a lattice is a partially ordered set

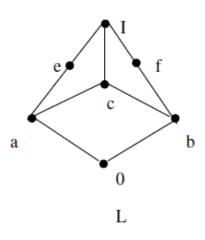
1.23 Least Upper Bounds and Latest Lower Bounds in a Lattice

Let (L, \lor, \land) be a lattice and let $a, b \in L$. We now show that LUB of $\{a, b\} \subseteq L$ with respect to the partial order introduced above is $a \lor b$ and GLB of $\{a, b\}$ is $a \land b$.

From absorption law $a \land (a \lor b) = a$ $b \land (a \lor b) = b$

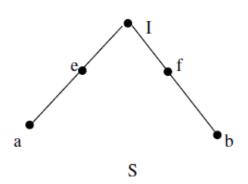
Therefore $a \le a \lor b$ and $b \le a \lor b$, showing that $a \lor b$ is upper bound for $\{a,b\}$. Suppose that there exists $c \in L$ such that $a \le c$, $b \le c$. Thus we have $a \lor c = c$ and $b \lor c = c$

and then

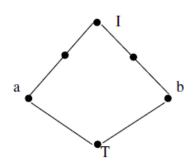

$$(a \lor b) \lor c = a \lor (b \lor c) = a \lor c = c$$

implying that $a \lor b \le c$. Hence $a \lor b$ is the least upper bound of a and b. Similarly, we can show that $a \land b$ is GLB of a and b. **The above discussion shows that the two definitions of lattice** given so far are equivalent.

Sublattices


Definition: Let (L, \leq) be a lattice. A non-empty subset S of L is called a **sublattice** of L if $a \lor b \in S$ and $a \land b \in S$ whenever $a \in S, b \in S$. (Or) Let (L, \lor, \land) be a lattice and let $S \subseteq L$ be a subset of L. Then (S, \lor, \land) is called a sublattice of (L, \lor, \land) if and only if S is closed under both operations of join (\lor) and meet (\land) .

From the definition it is clear that **sublattice itself is a lattice**. However, **any subset of L which is a lattice need not be a sublattice**. For example, consider the lattice shown in the diagram:



We note that

(i) the subset S shown by the diagram below is not a sublattice of L, since $a \land b \notin S$ and $a \lor b \notin S$.



(ii) the set T shown below is not a sublattice of L since $a \lor b \notin T$.

However, T is a lattice when considered as a poset by itself.

(iii) the subset \cup of L shown below is a sublattice of L:

Example: Let A be any set and P(A) its power set. Then (P(A), \lor , \land) is a

lattice in which join and meet are union of sets and intersection of sets respectively.

A family _ of subsets of A such that $S \cup T$ and $S \cap T$ are in _ for S,

 $T\in _$ is a sublattice of (P(A), \lor , \land). Such a family $_$ is called a ring of

subsets of A and is denoted by $(R(A), \lor, \land)$ (This is not a ring in the sense of algebra). Some author call it lattice of subsets.

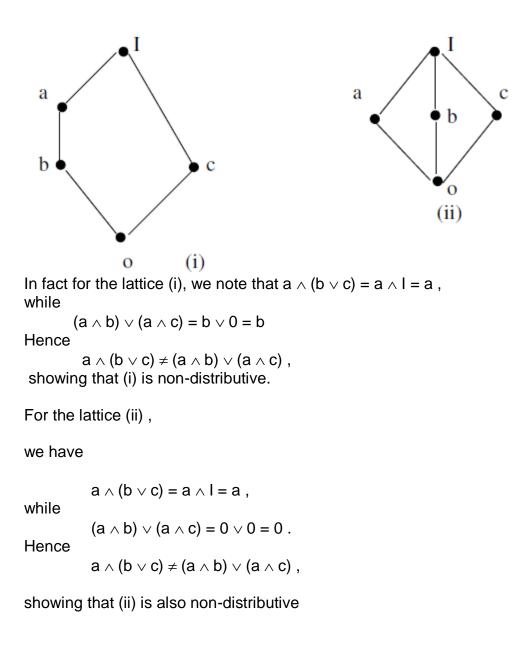
Definition:

A lattice (L, \lor, \land) is called a **distributive lattice** if for any elements a, b and c in L, (1) $a \land (b \lor c) = (a \land b) \lor (a \land c)$ (2) $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ Properties (1) and (2) are called **distributive properties.**

Thus, in a distributive lattice, the operations \wedge and \vee are distributive over each other.

We further note that, by the principle of duality, the condition (1) holds if and only if (2) holds. Therefore it is sufficient to verify any one of these two equalities for all possible combinations of the elements of a lattice. If a lattice L is not distributive, we say that L is **non-distributive**.

Example: For a set S, the lattice $(P(S), \subseteq)$ is distributive. The meet and join operation in P(S) are \cap and \cup respectively. Also we know, by set


theory, that for A, B, $C \in P(S)$,

 $\mathsf{A} \cap (\mathsf{B} \cup \mathsf{C}) = (\mathsf{A} \cap \mathsf{B}) \cup (\mathsf{A} \cap \mathsf{C})$

 $\mathsf{A} \cup (\mathsf{B} \cap \mathsf{C}) = (\mathsf{A} \cup \mathsf{B}) \cap (\mathsf{A} \cup \mathsf{C}).$

Example:

The five elements lattices given in the following diagrams are non distributive.

Boolean Algebra

Definitions and Examples

Definition: A non-empty set B with two binary operations \lor and \land , a unary operation ', and two distinct elements 0 and I is called a **Boolean Algebra** if the following axioms holds for any elements a, b, c \in B: [B₁]: Commutative Laws:

 $a \lor b = b \lor a$ and $a \land b = b \land a$

[B₂]: Distributive Law:

 $a \land (b \lor c) = (a \land b) \lor (a \land c) and a \lor (b \land c) = (a \lor b) \land (a \lor c)$

[B₃]: Identity Laws:

 $a \lor 0 = a$ and $a \land I = a$

[B₄]: Complement Laws:

 $\mathbf{a} \lor \mathbf{a}' = \mathbf{I}$ and $\mathbf{a} \land \mathbf{a}' = \mathbf{0}$

We shall call 0 as zero element, 1 as unit element and a' the complement of a.

We denote a Boolean Algebra by $(B, \lor, \land, \sim, 0, I)$.

Example 1. Let A be a non-empty set and P(A) be its power set. Then the set algebra (P(A), \cup , \cap , -, ϕ , A) is a Boolean algebra.

Example 2 : Let $B = \{0, 1\}$ be the set of bits (binary digits) with the binary operations \lor and \land and the unary operation ' defined by the following tables:

\vee	1	0		\wedge	1	0	 1	1	0
1	1	1	,	1	1	0		0	<u>0</u> 1
0	1	0 1 0		0	0	0 0 0		1	

Here the operations \lor and \land are logical operations and complement of 1 is 0 whereas complement of 0 is 1. Then (B, \lor , \land , ', 0, 1) is a Boolean Algebra. It is the simplest example of a two-element algebra.

Further, a two element Boolean algebra is the only Boolean algebra whose diagram is a chain.

Example 3 : Let B_n be the set of n tuples whose members are either 0 or 1. Let $a = (a_1, a_2,...,a_n)$ and $b = (b_1, b_2,...,b_n)$ be any two members of B_n . Then we define

$$a \vee_1 b = (a_1 \vee b_1, a_2 \vee b_2, \dots, a_n \vee b_n)$$

$$a \wedge_1 b = (a_1 \wedge b_1, a_2 \wedge b_2, \dots, a_n \wedge b_n)$$
,

where \lor and \land are logical operations on $\{0, 1\}$, and

$$a' = (\sim a_1, \sim a_2, \dots, \sim a_n)$$
,

where $\sim 0 = 1$ and $\sim 1 = 0$.

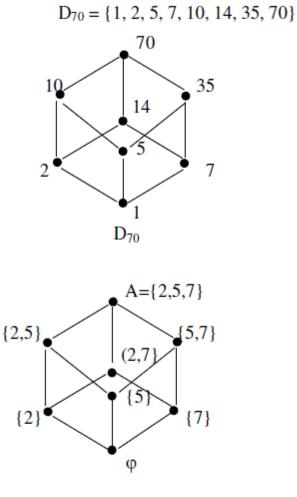
If 0_n represents (0, 0,...,0) and $1_n = (1, 1, ..., 1)$, then $(B_n, \vee_1, \wedge_1, ', 0_n, 1_n)$ is a Boolean algebra.

This algebra is known as Switching Algebra and represents a switching network with n inputs and one output.

Example 4. The poset $D_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}$ has eight element. Define \lor , \land and ' on D_{30} by

 $a \lor b = lcm(a, b)$, $a \land b = gcd(a, b)$ and $a' = \frac{30}{a}$.

Then D_{30} is a Boolean Algebra with 1 as the zero element and 30 as the unit element.


Example 5: Let S be the set of statement formulas involving n statement variables. The algebraic system $(S, \land, \lor, \sim, F, T)$ is a Boolean algebra in which \land,\lor, \sim denotes the operations of conjunction, disjunction and negation respectively. The element F and T denotes the formulas which are contradictions and Tautologies respectively. The partial ordering corresponding to \land,\lor is implication \Rightarrow .

We have seen that B_n is a Boolean algebra. Using this fact, we can also define Boolean algebra as follows:

Definition: A finite lattice is called a **Boolean Algebra** if it is isomorphic with B_n for some non-negative integer n.

Definition: Let $(B, \lor, \land, ', 0, 1)$ be a Boolean algebra and $S \subseteq B$. If S contains the elements 0 and 1 and is closed under the operation \lor, \land and 1, then $(S, \land, \lor, ', 0, 1)$ is called **Sub-Boolean Algebra**.

Example: Consider the Boolean algebra

We note that the diagram for D_{70} and P(A) are structurally the same.

Then the set of atoms of D70 is

 $A = \{2, 5, 7\}$

The unique representation of each non-atom by atoms is

$$10 = 2 \lor 5$$

$$14 = 2 \lor 7$$

$$35 = 5 \lor 7$$

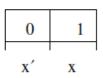
$$70 = 2 \lor 5 \lor 7$$

The diagram of the Boolean algebra of the power set e(A) of the set A of atoms is given below :

Boolean Function

Definition: Let (B, ..., +, ', 0, 1) be a Boolean algebra. A function $f : B_n \to B$ which is associated with a Boolean expression (polynomial) is n variables is called a **Boolean function**.

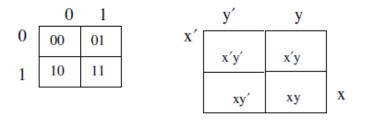
Thus a Boolean function is completely determined by the Boolean expression α (x₁, x₂,...,x_n) because it is nothing but the evaluation function of the expression. It may be mentioned here that every function g : B_n \rightarrow B needs not be a Boolean function.


If we assume that the Boolean algebra B is of order 2^m for $m \ge 1$, then the number of function from B_n to B is greater than 2^{2n} showing that there are functions from B_n to B which are not Boolean functions. On the other hand, for m = 1, that is, for a two element Boolean algebra, the number of function from B_n to B is 2^{2n} which is same as the number of distinct Boolean expressions in n variable. Hence every function from B_n to B in this case is a Boolean function.

Representation of Boolean Functions using Karnaugh Map

Karnaugh Map is a graphical procedure to represent Boolean function as an "or" combination of minterms where minterms are represented by squares. This procedure is easy to use with functions f: $B_n \rightarrow B$, if n is not greater than 6. We shall discuss this procedure for n = 2, 3, and 4.

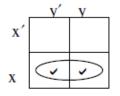
A Karnaugh map structure is an area which is subdivided into 2^n cells, one for each possible input combination for a Boolean function of n variables. Half of the cells are associated with an input value of 1 for one of the variables and the other half are associated with an input value of 0 for the same variable. This association of cell is done for each variable, with the splitting of the 2^n cells yielding a different pair of halves for each distinct variable.


Case of 1 variable: In this case, the Karnaugh map consists of $2^1 = 2$ squares.

The variable x is represented by the right square and its complement x' by the left square.

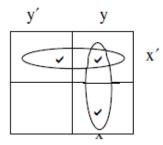
Case of 2 variables: For n = 2, the Boolean function is of two variable, say x and y. We have $2^2 = 4$ squares, that is, a 2×2 matrix of squares. Each squares contains one possible input from B₂.

The variable x appears in the first row of the matrix as x' whereas x appears in the second row as x. Similarly y appears in the first column as y' and as y in the second column.


(2 variable Karnaugh Map)

Example : Find the prime implicants and a minimal sum-of-products form from each of the following complete sum-of-products Boolean expression:

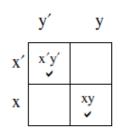
(a)
$$E_1 = x y + x y'$$
 (b) $E_2 = x y + x' y + x' y'$


(c) $E_3 = x y + x' y'$.

Solution: (a) The Karnaugh map for E_1 is

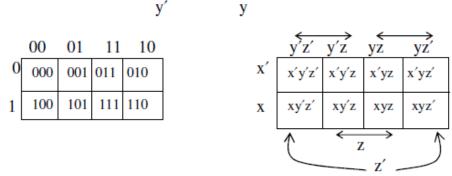
Check the squares corresponding to x y and x y'. We note that E_1 consists of one prime implicant, the two adjacent square designated by the loop. The pair of adjacent square represents the variable x. So x is the only prime implicant of E_1 . Consequently $E_1 = x$ is its minimal sum.

(b) The Karnaugh map for E₂ is



Check the squares corresponding to x y, x' y, x' y'. The expression E_2 contains two pairs of adjacent squares (designated by two loops) which include all the squares of E_2 . The vertical pair represents y and the horizontal pair x'. Hence y and x' are the prime implicants of E_2 . Thus

$$E_2(x, y) = x' + y$$


is minimal sum.

(c) The Karnaugh map for E₃ is

Check (tick) the squares corresponding to x y and x' y'. The expression E_3 consists of two isolated squares which represent x y and x' y'. Hence and x y and x' y' are the prime implicants of E_3 and so $E_3 = x y + x' y'$ is its minimal sum.

Case of 3 variables: We now turn to the case of a function f: $B_3 \rightarrow B$ which is function of x, y and z. The Karnaugh map corresponding to Boolean expression E(x, y, z) is shown in the diagram below:

Here x, y, z are respectively represented by lower half, right half and middle two quarters of the map.

Similarly, x', y', z' are respectively represented by upper half, left half and left and right quarter of the map.

Part -B (5x8=40 Marks)

Possible Questions:

- 1. Let (L,\leq) be a lattice. For any $a, b \in L, a \leq b \Leftrightarrow a \land b = a \Leftrightarrow a \lor b = b$.
- 2. State and prove Demorgan's Law.
- 3. Prove that algebraically $a\overline{b} + b\overline{c} + c\overline{a} = \overline{a}b + \overline{b}c + \overline{c}a$.
- 4. Simplify the following Boolean functions to a minimum number of literals (i) $x \lor (x' \land y)$ (ii) $(x' \land y' \land z) \lor (x' \land y \land z) \lor (x \land y')$
- 5. Express the Boolean function $F=A \lor (B' \land C)$ in a sum of min terms.
- 6. Simplify the Boolean function $F(x, y, z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14,)$.
- 7. Explain the basic laws of Boolean Algebra.
- 8. Show that a lattice is distributive iff $(a \land b) \lor (b \land c) \lor (c \land a) = (a \lor b) \land (b \lor c) \land (c \lor a).$
- 9. a)Let D24={1,2,3,4,6,8,12,24} and let the relation / be a partial ordering on D24.
 i) draw the Hasse diagram for D24 with /.
 ii) Find all the lower bounds of 8 and 12.
 iii) Find the GLB of 8 and 12.
 iv)Find all the upper bounds of 8 and 12
 v) Find the LUB of 8 and 12.
- 10. Express the Boolean function $F=(x \land y) \lor (x' \land z)$ in a product of max term form.

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021.

DEPARTMENT OF MATHEMATICS

Subject: Discrete Mathematics Class : III-B.Sc Mathematics

a graph, then the graph is called....

Subject Code: 15MMU505A Semester : V

1

	UN	NIT IV			
Part A (20x1=20 Marks)					
Question	Possib Choice 1	le Questions Choice 2	Choice 3	Choice 4	Answer
Question	partially	Choice 2	Choice 5	Choice 4	Answer
A setL on which apartial ordering \leq is called aset	ordered	maximum ordered	quarterly ordered	ordered	partially ordered
The least member or Greatest member, if it exists,	ordered	maximum ordered	quarterry ordered	ordered	partially ordered
is	finite	infinite	unique	zero	unique
Distinct minimal members are	comparable	incomparable	finite	in - finite	incomparable
By Idempotent Law $(a \land a) = \dots$	(-		2a	a
Every pair of elements has LUB and GLB, the given poset is					u
a	Lattice	duality	supremum	infimum	Lattice
In any Boolean algebra, the immediate successors of the O-		Guardy	sapromani		200000
element are called	join	meet	atoms	dual	atoms
EveryBoolean algebra is atomic	finite	infinite	unique	lesser	finite
Orered set (or) poset denoted by	(L,>)	(L,≥)	(L,<)	(L,≤)	(L,≤)
The LUB $\{d,b\}$ =	b	d	b,d	b,d	(_,_) b
Finite Boolean Algebra as n - tuples of	0's and 1's	1's only	0's only	n< 0,n<1	0's and 1's
Every finite Boolean algebra has	1 ⁿ elements	o elements	2 ⁿ elements	n elements	2 ⁿ elements
Every finite boolean algebra of order 2 ⁿ elements are	Endomorphic	Homomorphic	Atomic	Isomorphic	Isomorphic
The GLB $\{a,b\} =$	b,a	b	a,b	a	b
By Commutative Law $(a\Lambda b) = \dots$	b≥a	bΛa	b=a	bva	bЛa
In Boolean Algebra the value of $(a+b)(a'+c)=$	ac+a'b+bc	ab+a'b+bc	ac+a'b'+bc	ac+ab'+b'c'	ac+a'b+bc
A Is a variable or the complement of a variable.	complementary	literal	biliteral	unilateral	literal
If x y z \rightarrow 0 0 0 the min terms =	x'Λy'Λz'	x'Λy'vz'	$x \Lambda y' \Lambda z'$	xΛyΛz	x'Λy'Λz'
Boolean Function expressed as a product of maxterms is said	•	5	2	2	2
to be	canonical form	maxi terms	mini terms	maxi mini terms	canonical form
For n variables, we will havedifferent minterms and					
maxterms.	2^n	2/n	2n	(n+1)	2^n
Every finite Boolean algebra haselements for some					
positive integer n.	2^n+1	2^n-2	2^n-1	2^n	2^n
A Lineral is a variable or theof a variable.	complement	commutative	distributive	associative	complement
Boolean function expressed as aof mix terms.	sum	difference	product	equal	sum
Boolean function expressed as aof max terms.	difference	sum	product	equal	product
	commutative	associative	distributive	identity	Isomorphic
In the complement axioms $a\Lambda a'=$	C)	1 -1	La	•
Aboolean algebra is alattice which contains a least element	commutative	associative and	complemented		complemented and
and a greatest element and which is both.	and distributive	commutative	and associative		distributive
A walk with no repeated vertices is called as	cycle	path	circuit	trail	trail
The complemente og any function is same as the complement	•	-			
of each literal in the of that function	lattice	boolean	dual	canonical	dual
	length of the				
The number of edges in a path is called	path	size of the path	degree of the path	order of path	length of the path
If some edges are directed and some edges are undirected in		-	- •	-	- *
	1. 1				

An elementary cycle is a cycle if its path is	simple path	elementary path	simple trail	elementary trail	trail
The dual of an $(bLC) = \dots$	a	b	с		0 a

weighted graph

isomorphic

mixed

mixed

digraph

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021 DEPARTMENT OF MATHEMATICS

Subject: Discrete Mathematics	Semester :V	LTPC
Subject Code: 15MMU505A	Class : III- B.Sc Mathematics	5005

UNIT-V

Graph Theory: Directed and undirected graphs, Paths, Reachability, Connectedness, Matric representation, Eular paths, Hamiltonean paths, Trees, Binary trees simple theorems, and applications.

Text Book

1.Trembly J.P., and R.p Mahohar., 1975.Discrete Mathematical structures with applications to computer science, Tata Mc.Graw Hill, New Delhi.

References

1.Sundaresan V., Ganapathy Subramanian K.S., and Ganesan K., 2002.Discrete Mathematics Publications , Nagapattinam.

2. Veerarajan T., 2007.Discrete mathematics with graph theory and combinatorics, Tata Mc.Graw Hill,New Delhi.

3.Sharma .J.K,2005.Discrete Mathematics ,Second Edition, Macmillan India Ltd,New Delhi.

4. Discrete mathematics by Neeru Sharma, Publisher: New Delhi, India : University Science Press (An imprint of Laxmi Publications Limited, Pvt. Ltd.), [2016] ©2011

UNIT -V

GRAPH THEORY

What is a Graph?

Definition: A graph (denoted as G = (V, E)) consists of a non-empty set of vertices or nodes V and a set of edges E.

Example: Let us consider, a Graph is G = (V, E) where V = {a, b, c, d} and E = {{a, b}, {a, c}, {b, c}, {c, d}}

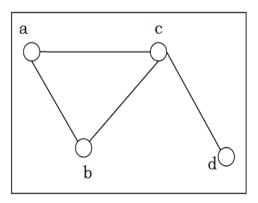
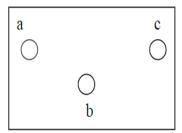


Figure: A graph with four vertices and four edges

Degree of a Vertex: The degree of a vertex V of a graph G (denoted by deg (V)) is the number of edges incident with the vertex V.

Vertex	Degree	Even / Odd
a	2	even
b	2	even
С	3	odd
d	1	odd

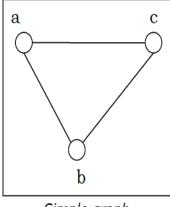
Even and Odd Vertex: If the degree of a vertex is even, the vertex is called an even vertex and if the degree of a vertex is odd, the vertex is called an odd vertex.


Degree of a Graph: The degree of a graph is the largest vertex degree of that graph. For the above graph the degree of the graph is 3.

Types of Graphs

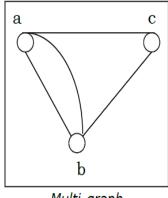
There are different types of graphs, which we will learn in the following section.

Null Graph


A null graph has no edges. The null graph of n vertices is denoted by N_n

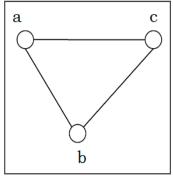
Null graph of 3 vertices

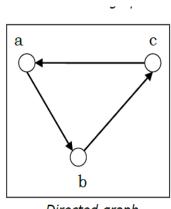
Simple Graph


A graph is called simple graph/strict graph if the graph is undirected and does not contain any loops or multiple edges.

Simple graph

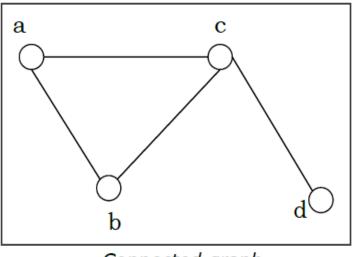
Multi-Graph

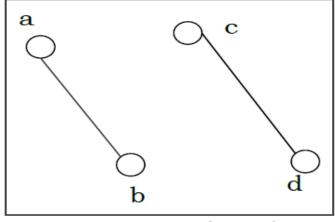

If in a graph multiple edges between the same set of vertices are allowed, it is called Multigraph. In other words, it is a graph having at least one loop or multiple edges.


Multi-graph

Directed and Undirected Graph

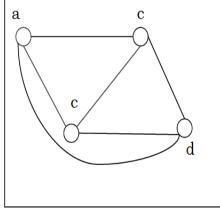
A graph G = (V, E) is called a directed graph if the edge set is made of ordered vertex pair and a graph is called undirected if the edge set is made of unordered vertex pair.


Undirected graph


Directed graph

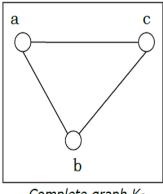
Connected and Disconnected Graph

A graph is connected if any two vertices of the graph are connected by a path; while a graph is disconnected if at least two vertices of the graph are not connected by a path. If a graph G is disconnected, then every maximal connected subgraph of G is called a connected component of the graph G.


Connected graph

Unconnected graph

Regular Graph

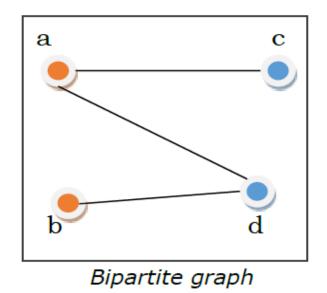

A graph is regular if all the vertices of the graph have the same degree. In a regular graph G of degree r, the degree of each vertex of G is r.

Regular graph of degree 3

Complete Graph


A graph is called complete graph if every two vertices pair are joined by exactly one edge. The complete graph with n vertices is denoted by K_n

Complete graph K₃


Cycle Graph

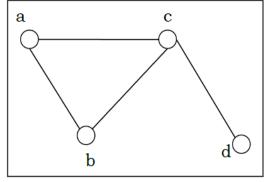
If a graph consists of a single cycle, it is called cycle graph. The cycle graph with n vertices is denoted by C_n

Bipartite Graph

If the vertex-set of a graph G can be split into two disjoint sets, V_1 and V_2 , in such a way that each edge in the graph joins a vertex in V_1 to a vertex in V_2 , and there are no edges in G that connect two vertices in V_1 or two vertices in V_2 , then the graph G is called a bipartite graph.

Representation of Graphs

There are mainly two ways to represent a graph:

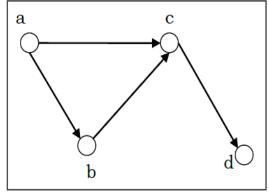

- Adjacency Matrix
- Adjacency List

Adjacency Matrix

An Adjacency Matrix A[V][V] is a 2D array of size V×V where V is the number of vertices in a undirected graph. If there is an edge between V_x to V_y then the value of $A[V_x][V_y]=1$ and $A[V_y][V_x]=1$, otherwise the value will be zero. And for a directed graph, if there is an edge between V_x to V_y, then the value of $A[V_x][V_y]=1$, otherwise the value will be zero.

Adjacency Matrix of an Undirected Graph

Let us consider the following undirected graph and construct the adjacency matrix:


An undirected graph

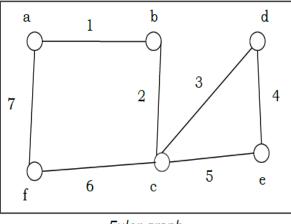
Adjacency matrix of the above undirected graph will be:

	a	b	C	d
a	0	1	1	0
b	1	0	1	0
С	1	1	0	1
d	0	0	1	0

Adjacency Matrix of a Directed Graph

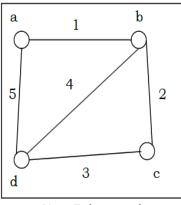
Let us consider the following directed graph and construct its adjacency matrix:

A directed graph


Adjacency matrix of the above directed graph will be:

	а	b	С	d
а	0	1	1	0
b	0	0	1	0
С	0	0	0	1
d	0	0	0	0

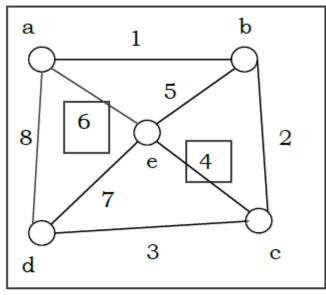
Euler Graphs


A connected graph G is called an Euler graph, if there is a closed trail which includes every edge of the graph G. An Euler path is a path that uses every edge of a graph exactly once. An Euler path starts and ends at different vertices.

An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler circuit always starts and ends at the same vertex. A connected graph G is an Euler graph if and only if all vertices of G are of even degree, and a connected graph G is Eulerian if and only if its edge set can be decomposed into cycles.

Euler graph

The above graph is an Euler graph as "a 1 b 2 c 3 d 4 e 5 c 6 f 7 g" covers all the edges of the graph.


Non-Euler graph

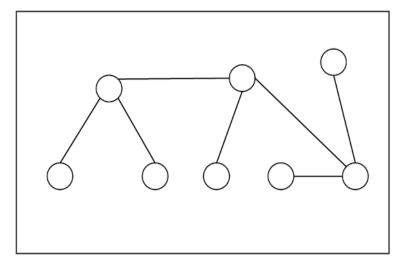
Hamiltonian Graphs

A connected graph G is called Hamiltonian graph if there is a cycle which includes every vertex of G and the cycle is called Hamiltonian cycle. Hamiltonian walk in graph G is a walk that passes through each vertex exactly once.

If G is a simple graph with n vertices, where $n \ge 3$ If deg(v) $\ge n/2$ for each vertex v, then the graph G is Hamiltonian graph. This is called **Dirac's Theorem**.

If G is a simple graph with n vertices, where $n \ge 2$ if deg(x) + deg(y) \ge n for each pair of non-adjacent vertices x and y, then the graph G is Hamiltonian graph. This is called **Ore's theorem**.

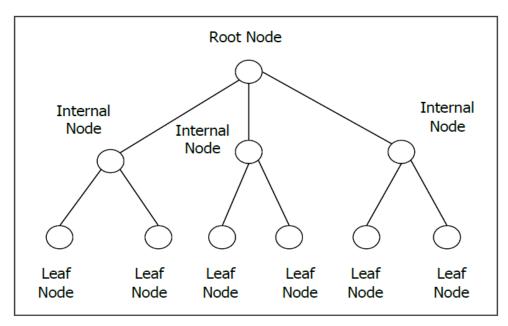
Hamiltonian graph


Tree

Tree is a discrete structure that represents hierarchical relationships between individual elements or nodes. A tree in which a parent has no more than two children is called a binary tree.

Tree and its Properties

Definition: A Tree is a connected acyclic undirected graph. There is a unique path between every pair of vertices in G. A tree with N number of vertices contains (N-1) number of edges. The vertex which is of 0 degree is called root of the tree. The vertex which is of 1 degree is called leaf node of the tree and the degree of an internal node is at least 2.

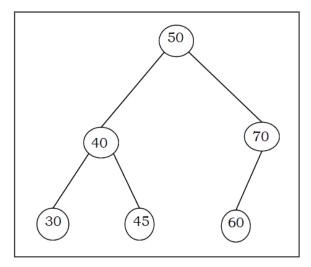

Example: The following is an example of a tree:

A tree

Rooted Tree

A rooted tree G is a connected acyclic graph with a special node that is called the root of the tree and every edge directly or indirectly originates from the root. An ordered rooted tree is a rooted tree where the children of each internal vertex are ordered. If every internal vertex of a rooted tree has not more than m children, it is called an m-ary tree. If every internal vertex of a rooted tree has exactly m children, it is called a full m-ary tree. If m = 2, the rooted tree is called a binary tree.

A Rooted Tree


Binary Search Tree

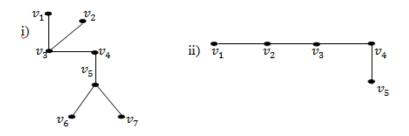
Binary Search tree is a binary tree which satisfies the following property:

- X in left sub-tree of vertex V, Value(X) ≤ Value (V)
- Y in right sub-tree of vertex V, Value(Y) ≥ Value (V)

So, the value of all the vertices of the left sub-tree of an internal node V are less than or equal to V and the value of all the vertices of the right sub-tree of the internal node V are greater than or equal to V. The number of links from the root node to the deepest node is the height of the Binary Search Tree.

Example

A Binary Search Tree


Part -B (5x8=40 Marks)

Possible Questions:

1. Define the following terms by giving with examples:

i)Adjacency matrix ii)Incidence matrix iii)Path matrix iv)Circuit matrix

- 2. Define a tree and path length of a vertex with example.
- 3. State and prove handshaking lemma
- 4. Show that if a fully binary tree has i internal vertices then it has i+1 terminal vertices and (2i+1)total vertices.
- 5. Describe about konigsberg bridge problem.
- 6. Find the eccentricity of all vertices, center, radius and diameter of the following graph.

- 7. Prove that the number of vertices of odd degree in a graph is always even.
- 8. Prove that the number of pendent vertices of a tree is equal to $\frac{n+1}{2}$
- 9. Define graph. Explain the various types of graph with an example.
- 10. State and prove polyhedron formula.

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021.

DEPARTMENT OF MATHEMATICS

Subject: Discrete Mathematics Class : III-B.Sc Mathematics

is a graph whose components are all trees.

Α_

Subject Code: 15MMU505A Semester : V

Class : III-D.Sc Wathematics				Bennes		
	U	NIT V				
Part A (20x	1=20 Marks)					
	Possil	ble Questions				
Question	Choice 1	Choice 2	Choice 3	Choice 4	Answer	
A graph is said to beif there exists atleast one path						
between every pair of vetices in G.	connected	disconnected	complete	regular	connected	
A tree withvertices has atleast two vertices of1	n-1, degree	n-2, order	n, degree	n-1, size	n, degree	
The chromatic number of the chess board is		2	5 64	4 60)	2
A tree with n vertices hasedges.	n-2	n-3	n-1	n	n-1	
	shortest	longest spanning		diameter spanning	shortest spanning	
kruskal's algorithm is used to find in a graph G	spanning tree	tree	binary tree	tree	tree	
The number of internal vertices in a binary tree with n						
vertices is	n-1/2	n-2/2	n/2	n/3	n-2/2	
A tree has atleastpendant vertices	three	two	four	ten	two	
An acyclic graph is called as	forest	cycle	tree	trail	tree	
Any vertex having degree one is called vertex	pendant	loop	parallel	isolated	pendant	
Any vertex having degree zero is calledvertex	pendant	loop	parallel	isolated	isolated	
Any graph with edge set is empty is called as	complete	connected	disconnected	null	null	
vertices with which a walk begins or ends are called its	terminal					
	vertices	terminal edges	pendant vertices	pendant edges	terminal vertices	
A walk with no repeated vertices is called as	cycle	path	circuit	trail	trail	
	length of the					
The number of edges in a path is called	path	size of the path	degree of the path	order of the path	length of the path	
If some edges are directed and some edges are undirected in						
a graph, then the graph is called	digraph	weighted graph	isomorphic	mixed	mixed	
An elementary cycle is cycle if its path is	simple path	elementary path	simple trail	elementary trail	elementary path	
A tree can have more than centre.	one	two	three	four	one	
Every edge of a weekly connected digraph ties exactly in one						
component.	weak	weakly connected	strong	strongly connected	weakly connected	
A graph $G=(V,E)$ in which every edge is directed is called						
as	digraph	undirected	connected	disconnected	digraph	
A tree is a Graph without any cycle.	connected	disconnected	directed	undirected	connected	
Two edges are said to be if they are incident on a						
common vertex.	adjacent	incident	pendant	isolated	adjacent	
A graph has neither loops nor parallel edges is called a						
	digraph	simple	undirected	shell	digraph	
A graph in which every vertex has the same degree is					-	
called	digraph	undirected	simple	regular	regular	
A walk is also called	chain	trail	cycle	path	chain	
	hamiltonian					
A graph having a Hamiltonian circuit is called	graph	digraph	euler graph	regular graph	hamiltonian graph	
A graph in which weights are assigned to each edge is called						
agraph	weighted	isomorphic	directed	undirected	weighted	
Atree is rooted tree in which every vertex has either			-			
or no children	binary tree	ordered tree	rooted tree	rooted binary tree	binary tree	
A ' 1 1 ' 11.		1	C .	11	C	

. A consists of set of vertices and edges					
such that each edge is incident with vertices.	graph	path	forest	walk	graph
A vertex having no edge incident on it is					
called	end vertex	pendant vertex	isolated vertex	null graph	isolated vertex
A graph is said to be if there exists at least one					
path between every pair of vertices in G.	connected	disconnected	null graph	hamiltanion	connected
A tree with n vertices has edges	n	n-1	n-2	n+1	n-1
A graph in which all nodes are of equal degrees is known					
as	regular graph	complete graph	simple graph	null graph	regular graph
A is connected graph without circuit	graph	directed graph	undirected graph	tree	tree
The sum of the degrees of all vertices of a graph is equal to					
the number of edges.	twice	thrice	same	any	twice
A node with no children is called	siblings	node	leaf	tree	leaf
A graph is if it has no parallel edges or self-					
loops	simple	directed	adjacent	self-loop	simple
A graph in which some edges are directed and some are					
undirected is called	mixed graph	regular graph	complete graph	simple graph	mixed graph

graph

tree

forest

walk

forest

	Row and				
A graph is a collection of?	columns	Vertices and edges	Equations	lines	Vertices and edges
	Exactly one				
In a tree between every pair of vertices there is ?	path	A self loop	Two circuits	<i>n</i> number of paths	Exactly one path

			0 /IMU505A)
KARPAGA	AM ACADEMY		
		m University	
		ATORE-21	
DE	PARTMENT O	김 동물에 전 왕은 이 가지 않는 것이다.	TICS
	· · · · · · · · · · · · · · · · · · ·	Semester	
	I INTERNAL 1		
Data 07 17 ()	DISCRETE MA		
Date: . 07.17 ()		Time:2 ho	
Class: IIIB.Sc(Mathe	ematics)	Maximum	: 50 Marks
······································	DADE A		
ANSWER ALL		(20x 1 =20 Ma	rks)
ALLOWER ALL	THE QUESTIC	SIND	•
$1 (P \vee 0) =$			
$1.] (P \lor Q) =a)] P \land] C$		olbalo	d) P_∧O
	$(b) P \land Q$		d) P_∧Q
a) P ∧ Q 2. P∨ P is equival a)P	$b) P \land Q$ lent to b) P		d) P ∧Q d)F
a) $P \land Q$ 2. $P \lor P$ is equival a) P 3. $Q \to Q$ \Leftrightarrow	$\begin{array}{c} b \\ ent to \\ b \\ P \\ \end{array}$	C)T	d)F
a) $P \land Q$ 2. $P \lor P$ is equival a) P 3. $Q \to Q$ a) $Q \to P$	$b) P \land Q$ lent to b) P b) Q \rightarrow P	c)T c)]Q∧P	d)F
a) $P \land Q$ 2. $P \lor P$ is equival a) P 3. $Q \to Q$ a) $Q \to P$ 4. $A \Leftrightarrow B$ states the	(2 b)]P∧Q lent to b)]P b)]Q→P at is a ta	c)T c)]Q∧P utology	d)F
a) $P \land Q$ 2. $P \lor P$ is equival a)P 3. $(P \rightarrow Q) \Leftrightarrow$ a) $Q \rightarrow P$ 4. $A \Leftrightarrow B$ states the a) $A \leftrightarrow B$	$b) P \land Q$ lent to b) P b) Q \rightarrow P at is a ta b) A \rightarrow B	c)T c)]Q∧P utology c)A√B	d)F d)]Q∧]₽ d)A←B
a) $P \land Q$ 2. $P \lor P$ is equival a) P 3. $Q \to Q$ a) $Q \to P$ 4. $A \Leftrightarrow B$ states that a) $A \leftrightarrow B$ 5. P has truth values	$b) P \land Q$ lent to b) P b) Q \rightarrow P at is a ta b) A \rightarrow B	c)T c)]Q∧P utology c)A√B	d)F d)]Q∧]₽ d)A←B
a) $P \land Q$ 2. $P \lor P$ is equival a) P 3. $Q \to Q$ 4. $A \Leftrightarrow B$ states the a) $A \leftrightarrow B$ 5. P has truth value	$b) P \land Q$ lent to b) P b) Q \rightarrow P at is a ta b) A \rightarrow B ue T, Q has truth	c)T c)]Q∧P utology c)A↓B value F then]	d)F d)] Q∧]P d)A←B P →Q has tr
a) $P \land Q$ 2. $P \lor P$ is equival a) P 3. $(P \rightarrow Q) \Leftrightarrow$ a) $Q \rightarrow P$ 4. $A \Leftrightarrow B$ states the a) $A \leftrightarrow B$ 5. P has truth val value a) T	$b) P \land Q$ lent to b) P b) Q \rightarrow P at is a ta b)A \rightarrow B ue T, Q has truth b)F	c)T c)]Q∧P utology c)A↓B value F then 1 c)P	d)F d)]Q∧]₽ d)A←B
a) $P \land Q$ 2. $P \lor P$ is equival a) P 3. $(P \rightarrow Q) \Leftrightarrow$ a) $Q \rightarrow P$ 4. $A \Leftrightarrow B$ states that a) $A \leftrightarrow B$ 5. P has truth value a) T 6. From (x) $A(x) < Q$	$b) P \land Q$ lent to b) P b) Q \rightarrow P at is a ta b)A \rightarrow B ue T, Q has truth b)F one can conclude	c)T c) $Q \land P$ utology c)A $\lor B$ value F then \Box c)P c A(y)	d)F d)] Q∧]P d)A←B P →Q has tr d)Q
a) $P \land Q$ 2. $P \lor P$ is equival a) P 3. $(P \rightarrow Q) \Leftrightarrow$ a) $Q \rightarrow P$ 4. $A \Leftrightarrow B$ states that a) $A \leftrightarrow B$ 5. P has truth value a) T 6. From (x) $A(x) < Q$	b) $P \land Q$ lent to b) P b) $Q \rightarrow P$ at is a ta b) $A \rightarrow B$ ue T, Q has truth b) F one can conclude b) Rule ES	c)T c) $Q \land P$ utology c)A $\lor B$ value F then \Box c)P c A(y)	d)] Q∧]P d)A←B P →Q has tr d)Q

8. A formula which is equivalent to a given formula and which consists of product of elementary sums is called a ---a)PCNF b)DNF c)CNF d)PDNF 9. A statement that is always false is called ----a)Contradiction b)Tautology c)Tautology implications d)none of these 10. $P \land P$ is called <u>faw</u>: (d) a) Idem potent **b)**Associative d)distributive c)Commutative 100002 11. The dual of (PAQ) T is the loon of the store is the store is (if a)($P \land Q$) $\land F$ b) (PVQ) $\land F$ c) (PVQ) $\land T$ d)($P \land Q$) VF 12. (P →O)⇔---a) $0 \rightarrow P$ b)]Q→P c) Q^P d) Q^P 13. From (x) A(x) one can conclude A(y)b)Rule ES ((c)Rule EG) d)Rule UG a)Rule US 14. For three variables P,Q and R there are ----- maxterms (A)2 (a)2 (b)4 (c)6 d)8 15. If P then Q is called a ------ statement.a) Conjunctionb) Disjunction c) Conditional d)Biconditional 16. If $R = \{(1,2), (3,4), (2,2)\}$ and $S = \{(4,2), (2,5), (3,1), (1,3)\}$ are relations then $SoS = \dots$ ((...)) a) {(4,2),(3,2),(1,4)}. (b){(1,5),(3,2),(2,5)}. $c){(1,2),(2,2)}$ d){(4,5),(3,3),(1,1)} 17. If f(x) = x+2 and $g(x) = x^2 - 2$ for $x \in \mathbb{R}$ then fog is a) x^{2} -2 $b)x^{2}+2$ $c)x^{2}$ d)x[∠] −1 18. A One-to-one function is also known as --b)surjective c)bijective a)injective d)disjunctive 19. If f(x) = x+2 and $g(x) = x^2 - 1$ then (gof)(x) = ----a) x^{2} +4x+4 b) x^{2} +4x-3 c) x^{2} -4x+4 d) x^{2} +4x+3 20. A binary relation R in a set X is said to be reflexive if a)aRa b)aRb⇒bRa c)aRb,bRc⇒aRc d)aRb,bRa \Rightarrow a=b

PART-B (3x 10 = 30 Marks) ALL THE QUESTIONS CARRY EQUAL MARKS manus frances of the State 21.(a) Prove that $(\mathbb{P} \vee \mathbb{Q}) \land \mathbb{Q} \vee \mathbb{R}) \lor (\mathbb{P} \land \mathbb{Q}) \lor (\mathbb{P} \land \mathbb{R})$ (新教主教)教育的主义。 AGRADIES MEDIERO POESSA MARASSA is a tautology. ystrae is it managements (**O**R) (b) Show that the following premises are Inconsistent. IN REPUBLICATION i) If Jack misses many classes through illness, he fails in STREPARTED AN TO FREE MEASURE school. THE STREET ii) If jack fails in school, then he is uneducated. is land there ladered the iii)If jack reads a lot of books, then he is not uneducated. 20 MARSHOAN LEVER DAG iv) Jack misses many classes through illness and reads a lot of A TING WEEK varia Costa schahf die obseiden (enhanomathios. III van books. 22.(a) Find the PDNF and PCNF of the formula 化油油和油 建合金 建合成 化不定态学 Pv(]P→(Qv(]Q→R))) nerres configuration and the follow (2.4 (OR) new consistent follow ANSWERS ALL THE OBESTERIO (b) Construct the truth table for $] [P \lor (Q \land R)] \leftrightarrow [(P \lor Q) \land (Q \lor R)]$ ale prate static 23.(a) Explain the properties of relations with examples. 2. Pro P is equivalent t (OR) (b) Let $\{1,2,3\}$, f, g, h and s be functions from X to X given by a na a stance a la stance a s $f=\{(1,2), (2,3), (3,1)\}, g=\{(1,2), (2,1), (3,3)\}, h=\{(1,1), (3,3)\}$ 44-1997 - A.C. (A. 名, 1949年 - 11 (2409年) - 11 (2409年) (2,2),(3,1) and s={(1,1), (2,2),(3,3)} find fog, gof, hog, gos, rale lattice a 21-million Asis coststa & CA J. sos, fos, fohog. . S. A(a Reads <u>8 - - 1 (b</u> e na gele nordet Rije za velet See Trans (maje bres Server en 1917). M. P. Construction of the transmission of the transmission of the Characteric Construction of the transmission of the ----- se president i stand haar oo- aside 💰 1.05 a suddeleta ar isa kita ar isabari. Ka suda suda S. Prom (x) Mill and an and date (b). . . - And Shand - The Art Content of Mark alkala di saka see the constant of the second se 20 is observe which and its is and if is not the set 的复数 化水磷合合 1.1813 Franzelan (Mala - Bannan Art. 1864)

Keg no-	
	15MMU505A)
KARPAGAM ACADEMY OF HIGHER	EDUCATION
Karpagam University	
Coimbatore-21	동법, 이상, 전 법소, 그는 것은 말고 방법이 있었다. 기업은 이번 것을 다니는 것은 것은 것이 있는 것이 없다.
DEPARTMENT OF MATHEMA	TICS
Fifth Semester	성업 방법 전통한 특별 이 가지 이 가지 않는지 않는 것 것. 성업 전자 성공은 것을 가지 않는 것은 것을 것 수 있는 것 수 있었다.
II Internal Test - AUG'2017	
Elective-1 Discrete Mathemat	
	ime: 2 Hours
	mum Marks:50
PART-A (20X1=20 Marks)	
Answer all the Questions:	
1. If $f(x) = x+2$ and $g(x) = x2-1$ then $(gof)(x) = $	계계 전 1월 19 년 19 월 19 년 19
a) x^{2} +4x+4 b) x^{2} +4x-3 c) x^{2} -4x+4 d) x^{2} +4x+	
2. If the relation R and S are both reflexive then R Ú S is _	전문 그는 것이 있는 것이 있는 것이 있는 것이 있다. 같은 것이 것을 것 없이 있는 것이 있는 것 같은 것이 없는 것이 없다.
a) Symmetric b) reflexive c) transitive d) not refle	XINA
3. Let $f: x \rightarrow y$, $g: y \rightarrow x$ be the functions then g is equal t	
a) fog = I_y b) gof = I_x c) gof= I_y d) fog= I_x	
4. A binary relation R in a set X is said to be transitive if	
a) aRa b) $aRb \rightarrow bRa$ c) $aRb h = bRa$	<u>건물 문</u> 속 가능성 전에 있는 것이 되었는지 않는다. 성물 사건은 대통령 사업에서 가지 것이 것을 수 있는다.
a) aRa b) aRb \Rightarrow bRa c) aRb, bRc \Rightarrow aRc d) aRb	,0Ka⇒a=b
5. The function fog is called thefunction.	실패로 전쟁 전체를 가지 않는 것이 가지 않는 것이다. 같은 이 사람들은 것은 것이 가지 않는 것을 가 많이야?
a) Inverse b) identity c) composition d) bije	ctive
6. A One - to -one and onto function is also known as	<u> 이는 방법을 하는 것 같은 것 같아</u> ?
a)injective b) surjective c)bijective d)objective	tive
7. In N, define aRb if $a+b = 7$. This is symmetric when	선수님, 영상 문제를 통하는 것은 것을 하는 것을 수가 없다. 이렇게 말 하는 것을 하는 것을 수가 있는 것을 수가 있다. 이렇게 말 하는 것을 수가 있는 것을 수가 있다. 이렇게 말 하는 것을 수가 있는 것을 수가 있다. 이렇게 말 수가 있는 것을 수가 있다. 이렇게 말 하는 것을 수가 있는 것을 수가 있다. 이렇게 말 수가 있는 것을 수가 있다. 이 가 있는 것을 수가 있다. 이 가 있는 것을 수가 있다. 이 가 있는 것을 수가 있는 것을 수가 있는 것을 수가 있는 것을 수가 있었다. 이 가 있는 것을 수가 있는 것을 수가 않는 것을 수가 있는 것을 수가 않는 것을 수가 있는 것을 수가 않는 것을 수가 않는 것을 수가 않는 것을 수가 않는 것을 수가 있는 것을 수가 않는 것을 것을 수가 있는 것을 수가 않았다. 이 하는 것을 수가 있는 것을 수가 있는 것을 수가 않았다. 것을 수가 않았다. 아니 것을 수가 있는 것을 수가 있는 것을 수가 않았다. 것을 수가 않았다. 것을 것 같이 것 같이 않았다. 것을 것 같이 것 같이 않았다. 것 것 같이 것 같이 않았다. 것 것 같이 않았다. 것 않았다. 것 것 같이 않았다. 것 같이 않았다. 아니 것 않았다. 않았다. 것 것 같이 않았다. 것 같이 않았다. 않았다. 아니 것 않았다. 않았는 것 않았는 것 않았다. 않았다. 아니 것 않았다. 않았다. 아니 않았다. 아니 않았다. 않았다. 아니 않았다. 아니 않았다. 아니 않았다. 아니 않았다. 아니 않았다. 아니 않았다. 않았다. 아니 것 않았다. 아니 않이 않 않았다. 아니 않았다. 아니 않 않았다. 아니 않았다. 아니 않 않았다. 아니 않았다. 아
a) $a+a=7$ b) $b+a=7$ c) $b+c=7$ d) $a+c$	=7 -
8. Suppose in RxR, the ordered pairs (x-2, 2y+1) and (y-1, x	(+2) are equal, then values
or x and y are	
a) 2,3 b) 3,2 c) 2,-3 d)3,-2	2017년 1월 1918년 1월 28일 - 2월 28일
9. A mapping $f: X \rightarrow Y$ is called if distinct elements	ents of x are manned into
distinct elements.	
a) one-to-one b) Onto c) into d) many to a	
	2. 비가 김 양병을 만들고 가지 않는 것 같아.

10. Let $f: N \rightarrow N$ be a function such that $f(x) = 5$, $x \in N$ then the $f(x)$ is called function.	
called function. a) identity b) inverse c) equal d) constant	
11. Let $x = \{1, 2, 3, 4\}, R = \{(2, 3), (4, 1)\}$ then the range of $R = $	ar in Lefter
a) $\{1, 2, 3, 4\}$ b) $\{3, 1\}$ c) $\{2, 4\}$ d) $\{1, 4\}$	
2. From the below, the identity function is brain (a)	
a) $F(x) = 2x$ b) $F(x) = x^2$ c) $f(x) = x$ d) $F(x) = G(x)$	
3. A string containing no symbol the	
a) Empty word b) two word c) single word d)Simple sentence	
4. The elements of a vocabulary are called _ (C) _ site vor (()	
a) Letter b) Number c) Numeric d) Verb	
5. The syntax of a small subset of the English language can be described by using	
a) Symbol (b) Numeric c) Number (d) small letters 6. The sentence has two subdivision	
a)Article and Verb phrase b) Subject and verb phrase	się. S
c) Verb and subject d) Nounced used	
c) Verb and subject d) Noun and verb 7. A system or language which describe another language is called	
a) Meta language b) Beta language a) such as a language b)	
a) Meta language b) Beta language c) verb d) Beta verb 8. If the syntax is correct then it produces code	D
a) Verb b) sentence c) language d)object	
9. The another name of phrase structure is	11
a) Sentence b) Noun c) n-tuples d) grammar	
0. A context-sensitive grammar contains only productions of the form	-
$\alpha \rightarrow \beta$ where	
a) $ \alpha \leq \beta $ b) $ \alpha \neq \beta $ c) $ \alpha \geq \beta $ d) $ \alpha = \beta $	
PART-B(3X10=30 Marks)	
nswer all the Questions:	•
21. (a) Define equivalence relation. Let $X = \{1, 2, 37\}$ and $R = \{(x, y) \in X\}$	y)
$ x - y $ is divisible by 3}. Show that R is an equivalence relation. (OR)	
(b) Explain the types of grammars with examples.	
그는 사람들이 수, 이번에 가에 많은 바람들이 가는 것을 가지 않는 것을 수 있는 것을 하는 것을 하는 것을 수 있었다. 물건 가는 것을 가지 않는 것을 하는 것을 하는 것을 했다. 것을 하는 것을	

an a	
10. Let $1 \to 1^{\infty}$ be a function such that $f(x) = 1$, $x \in \mathbb{N}$ then the $f(x)$ is	
22. (a) i) Let the functions f and g on the real numbers be defined by	ANERAGIN & SADEMI OF BIGHER EVICATION
$f(x) = x^2 + 2x - 3$, $g(x) = 3x - 4$. Find the formulas which define the	
	EDITAMENTAR ROTKENER
ii) Find $f \circ g$ and $g \circ f$ when f: $R \rightarrow R$ and g: $R \rightarrow R$ defined by $f(x) = $	
$2x-1, g(x) = x^2-2.$	THE DEAR HAT MELTING U
consines signic(b) brow signa (c) brow over (c) brow signa (c)	Disconstitution Disconstitution
(b) Prove that $L(G) = \{a^n b^n c^n / n \ge 1\}$ where $G = (\{S,B,c\},\{a,b,c\},\{a,$	and incompany of the second
$\varphi) \text{ and } Q = \{ S \rightarrow aSBc, S \rightarrow aBc, cB \rightarrow Bc, aB \rightarrow ab, bC \rightarrow bc, cC \rightarrow bc, $	
 The syntax of a subset of the English Imgaage can be (so thed by 	(condition=X01 A-TALI monoral contracts)
	$=(1)\log(\log t) + (1+\log \log C)$
23. (a) Explain the properties of relations with examples.	1
	I di anticiati a melle vireller non ens 2 sus Rimphaler en H
Seeric Just Verbauer (IN Scheenend verbauer Seerie	
(b)Show that the language $L(G_4) = \{a^n b a^n / n \ge 1\}$ is generated by the	e line (-) consistent and an anti-statistic of the constant of
following grammar:	
$G_4 = ({S,C}, {a,b}, S, \phi)$, where ϕ consists of productions	Territorian of or bise et Store is on Statement A in
$\{S \rightarrow aCa, C \rightarrow aCa, C \rightarrow b\}$.	ت ۵۶۵ می مجلوب کرد در مجلوب مجلوب کرد دی مجلوب کرد دی مجلوب کرد دی محلوب کرد دی محلوب کرد دی محلوب کرد دی محلوب
19. The auchter chase stracture is	5 The function flore is called the
tempines (b) reignin (c) nuclei (c)	a' arrente b) demini c) composition b) bij-settile
20. A context-care tive granmar contains carly productions of the form	6. A Cine – to – and and onto historium is also anown as
ALL	alimentaria (b) entractive albitective (d)objective
는 사람, 방법, 사람, 방법, 방법, 방법, 방법, 방법, 방법, 방법, 방법, 방법, 방법	To be defined and the is symmetry when
	teotop sendo seato
가 있는 것은 것을 가지 않는 것은 것은 것은 것은 것은 것은 것은 것은 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 가지 않는 것은 것 같은 것은	enlay need (pipe ent) Storie (1-2) and (1-2) and the second of St. 2 are equiped as
AL-MO-TANE TRAS	or and press to be a set of the s
Annual states provide the second states of the second states of the second states of the second states of the s	방문 것 같은 것 같은 것 같은 것 같은 것 같은 것 같아요
$(\tau, \eta) = \beta \frac{1}{2} \cos \left(\tau - \xi \right) + (\tau - \chi) \sin \left(\tau - \eta \right) \cos \left(\tau - \eta \right) + (\tau - \chi) \sin \left(\tau - \eta \right) \cos \left(\tau - \eta \right) + (\tau - \chi) \sin \left(\tau - \eta \right) + (\tau - \chi$	the state of the second se
1 is divisible by 31, Show time R is an orally included a line in the second states in the	
	one of grant (b) and (c) for a first state of a second state of a
	가는 것을 통하게 설립하게 된 10% 것을 못했다. 것은 가장에서 가장에 가장에 가장되는 것이 것이다. 사람은 것은 것과 설립 것은 것은 것이 같은 친구가 것을 알았는 것은 것이 가장에 가장되는 것이다. 것이 같은 것이다.
esignerite ditto correlating 10.255,0101011180,021,02	1999년 1월 28일 1월 28일 1월 19일 1월 19일 1999년 1월 19일 1월 19일 1999년 1월 19일
	1월 28일 전 19일 - 19일 전 19일 전 1월 28일 전 19일 - 19일 전 1
전 사람이 많은 것 것 같은 것이 많은 것도 모양을 가지? 동안에서 말했다. 승규가 한	알았다. 한국가 가장 같은 것을 가지 않는 것을 많은 것이 가지? 않는 것은 것이 하는 것

1	≤ a Ved'us = (.C). (psuscui solituai vrond (s. Reg.No	- wa
	RegNo	
	(15MMTI505A)	
-endlaktigere bei	KARPAGAM UNIVERSITY	
TZamm	agom Academy of Higher Education	
Karj	Coimbatore - 21	
Service of L	PARTMENT OF MATHEMATICS	
DE	Eifth Somester	
े हाराज्यता ह	Fifth Semester odel Examination – September 2017	
- 00.20	Discrete Mathematics 17() Mathematics Maximum :60 Ma PART – A (20X1=20 Marks)	ours
Date : .09.20	Maximum :60 Ma	irks
Class: III B.SC	PART - A (20X1=20 Marks)	
	I the avertions	
	Answer all the questions	ut.
1. A	Answer an the questions is a sentence that is true or false b	i far etal
not both.	1947 (646 2 749) 9	· .
a) proposition	b) logic	
c)sentence	d) empty	is not
2. Given a stater	b) logic d) empty nent p, the sentence "~ p" is read "not p" or "It i	
the case that p"	and 1S	
called the	·····	
a) negation of p	b) conjunction of p and q	
c)sentence	d) logic $r < 3$ "	and
3. Suppose x is	a real number. Let q, and r symbolize " $x < 3$,"	- California
" $x = 3$," respect	ively, then $x \leq 3$ is given by	
a)~qvr	b) q ^ r	
c)qvr	d)~rvq	vif
4. Two stateme	d) ~r v q nt forms are calledif and only), \f
they have ident	ical truth values for each possible substituted	"
statements for t	heir statement variables.	
a)logically in e	quivalent b) isomorphic	
a) immolid	d logically equivalent	
5. The	of a function as the image of its domain	1 - H2 -
a) domain	b) range	
	d) 1mage	-
6. In one-one r	nappings an element in B has only	pre
image in A	이는 여자는 바람이는 물건이 있는 것을 받았다.	
a) zero	b)two	
c) one	d) three	1.1

· · · · · · · · · · · · · · · · · · ·	Les en la construction de la constru	
7 If $f: A \rightarrow B$ in this	set B is called the	of the function I.
a) domain	D) CO GOIIIani	ي المحمد الم
c) set	d) element	oust net tot A At
8. The element a m	ay be referred to as the	
	h) nre_1mage	그는 것이 같아. 그는 그 투성질법을 얻었다.
	d) co domain	nin see yarf di .
CFL may require s	toring an unbounded amount	OI IIIIOIIIIddioin
N. Castan	h) infinite and h	그는 것 같은 것 같은 것을 많은 것을 것 같아요.
c) hounded	d) unbounded	and purch states and shine
10. A PDA provid	lesMemory.	
a)finite	b) infinite and a	dçsişti i.
c) unlimited	d)un bounded	being into the
11. A pushdown a	utomaton is said to be	with two conditions.
a) Deterministic	h) Non deterministic	
	d) unknown	Start and the Towner.
10 TET is a Conte	ext free language, then there e	XISTS a
accepts L.		수 현 것은 그는 것이 많이
a) FSA b)CFL	e de sectoritados en la
്നവം പ	N TTA 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	lottic
10 In Inviolution	low if a lattice be complement	nted,
a) commutative	b) associative	en e
A structure of the second seco		المراجعة فتقصف والمراقع أرواج والمراجع
14. In the comple	ement axioms ana'=	1999 - 1997 -
a) ()	しょうもうえる 内部 おうえんせい ひげか ほししゅ ぷら	사이라게 너 되어서는 나는 것이라서 가지 않는다.
c) -1, about 100 s	d) a construction	ing offenst element and
15 A Dooleon al	rebra is a lattice which could	112 a least cicilione and
- montant alamet	at and which is DOID	그는 것은 아이들은 가장에서 가지 않는 것이 가지?
a) commutative	and distributive	. 그 상업으로 가 있었는
b) associative an	d commutative	Contraction 14
c) complemente	d and distributive	
1	d and accorditive	것 모양은 영국 가장 방법에 가지 않는 것이다.
1 C The complet	ment of any function is same	as the complement of
each literal in th	e of that function	
a) lattice	b) boolean	
c) dual	d) canonical	

17. A tree is a	Graph without any cycle		00
a) connected	b) disconnected	金田 在一点子好了了。	23. a) Sho
c) directed	d) undirected	sisters (s	th
18. A tree can have	more than centre.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	e
a) one	b) two of beating of years		4
c) three	d) four State of C	100000000000	
19. Every edge of a	weekly connected digraph ties	exactly in one	b) Sho
compone	ant woman to save as	Ind Syst BAT 2	by
a) weak	b) weakly connected		G5 =
c) strong	d) strongly connected	in a start for a st	рго
20. A graph G=(V,)	E) in which every edge is directe	belles si h	3782 A.T. 14
as			24. a) Pro
a) digraph	b) undirected	a states	and a stand of the second s
c) connected	d) disconnected	The second frequency of the	b) Star
, coordaaco das das			
PAR	T-B(5X8=40 Marke)	the allow the main and the second	25. a) Pro
Answer all the quest	ions:	Constraint Production	alw
21. a) Prove that:	ino quada canta a georgenzal e este esce	alo se recent	
(P∨Q) ∧](]₽.	$(\sqrt{P}) (\sqrt{P}) (\sqrt{P}) (\sqrt{P})$	∧ ^T B))ico	b) Pro
tautology.		Λμογ τι α	<u>n+1</u>
	(OR)	4.55 1.5	2
b) Show that the	following premises are Inconsis	tent out a state	
i) If Jack mi	isses many classes through illnes	s he fails in	
school.	gitusti (B		
ii) If jack fa	ils in school, then he is uneducat	edice and all all a	
111) If jack re	eads a lot of books, then he is not	tuneducated	
IV) Jack mis	ses many classes through illness	and reade a	
IOL OI DOC	SKS: MOO GOMVebeering also speens	: '소영소등소전'에 소재 '문화', 가지 []	
22. a) For integers a	b define aRb iff a – b is divisibl	e hv m. Chow	
that R defines	an equivalence relation on Z.	w oy mr onow	「自己」の特権
	(OD)	an a superior to a superior superior super-	
그는 것 같아요. 그는 것이 가지 않는 것이 같아요.	- A A A A A A A A A A A A A A A A A A A	방법을 통하는 것 같은 것이 없는 것이 가지 않는 것이 없어야 하는 것이 없는 것이 없다. 것이 같이 많이 많이 많이 많이 많이 많이 많이 많이 없다. 것이 없어야 하는 것이 않아야 하는 것이 없어야 하는 것이 없어야 하는 것이 않아야 하는 것이 없어야 하는 것이 없어야 하는 것이 않아야 하는 것이 않아 하는 것이 않아야 하는 것이 않이 않아야 하는 것이 않아야 하는	
b) Let $S = \{1, 2, 3\}$	(OR) (OR) (00) (00) (00) (00) (00) (00) (00) (0		
b) Let $S = \{1, 2, 3, f: S \rightarrow T \text{ and } \}$	$4,5$ and T={1,2,3,8,9} and def	ine the functions	
$1.5 \rightarrow 1$ and	4,5} and T={1,2,3,8,9} and define $S \rightarrow S$ by f={(1,8), (3,9), (4, 1, 2, 3, 1, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	ine the functions	
and $g=\{(1,2),(1,$	4,5} and T= $\{1,2,3,8,9\}$ and define g: S \rightarrow S by f= $\{(1,8), (3,9), (4, (3,1), (2,2), (4,3), (5,2)\}$ then find	ine the functions 3),(2,1),(5,2)} the values of	
and $g=\{(1,2),(1,$	4,5} and T={1,2,3,8,9} and define $S \rightarrow S$ by f={(1,8), (3,9), (4, 1, 2, 3, 1, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	ine the functions 3),(2,1),(5,2)} the values of	

how that the language $L(G_4) = \{a^n ba^n / n \ge 1\}$ is generated by he following grammar: $G_4 = ({S,C}, {a,b}, S, \phi)$, where ϕ consists of productions $\{S \rightarrow aCa, C \rightarrow aCa, C \rightarrow b\}$: (OR) ow that the language $L(G_5) = \{a^n b c^m / m, n \ge 1\}$ is generated the following grammar: = ({S,A,B,C}, {a,b}, S, φ), where the set φ consists of oduction is $S \rightarrow aS, S \rightarrow aB, B \rightarrow bC, C \rightarrow ac, C \rightarrow a.$ ove that algebraically $a\overline{b} + b\overline{c} + c\overline{a} = \overline{a}b + \overline{b}c + \overline{c}a$. (OR) ate and prove Demorgan's Law. anonation the hereign ove that the number of vertices of odd degree in a graph is vays even. a) probaitioal (OR) ove that the number of pendent vertices of a tree is equal to <u>a</u> (d. 19 The cash disc with and a state of the a kong lo notoriujnico (d. - bito notipiaso de 28 M 62 20193112-1 D and other is a real minister i of a and symbol in 1 V 32- (\$ o vandb. Y V MAG a the statement for is an still it. (i...) hulterius statzeni ringe tet souliev dura itertikiski ovad vodi solds hav represente that and the solds were sidenmesi (d maistrice m vilseige /s testavitates (dates) bilking is standy by the same and a same same of the vieweld alemot is spara (d. osistin (b) o acteoblos (o 6. 10 Blocker medaline an eladio it in 12 Bas analytication in the Antesant 0165. (S eonth (b esto i o