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Course Objective: On successful completion of this course the learner gain a complete knowledge
about the Formal languages, Automata Theory, Lattices & Boolean Algebra and Graph Theory
which plays a crucial role in the field of computers.

Course Outcomes: To enable the students to learn about the interesting branches of Mathematics
such as Mathematical logic , Formal languages and Automata, Lattices and Boolean algebra,
Directed and undirected graphs etc .

UNIT-I

Mathematical logic: Connections well formed formulas, Tautology, Equivalence of formulas,
Tautological implications, Duality law, Normal forms, Predicates, Variables, Quantifiers, Free and
bound Variables. Theory of inference for predicate calculus.

UNIT-11
Relations and functions: Composition of relations, Composition of functions, Inverse functions, one-
to- one, onto, one-to-one & onto, onto functions, Hashing functions, Permutation function.

UNIT-I11

Formal languages and Automata: Grammars: Phrase—structure grammar, context-sensitive grammar,
context-free grammar, regular grammar. Finite state automata- Deterministic finite automata and
Non deterministic finite automata-conversion of non deterministic finite automata to deterministic
finite automata.

UNIT-1V
Lattices and Boolean algebra: Partial ordering, Poset, Lattices, Boolean algebra, Boolean functions,
Theorems, Minimization of Boolean functions.

UNIT-V

Graph Theory: Directed and undirected graphs, Paths, Reachability, Connectedness, Matric
representation, Eular paths, Hamiltonean paths, Trees, Binary trees simple theorems, and
applications.

TEXT BOOK
1.Tremblay J.P., and R.P Manohar., 1975 . Discrete Mathematical Structures with applications to
computer science, Tata Mc.Graw Hill, New Delhi .
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Subject: Discrete Mathematics Subject Code: 15MMUS505A
Class: 111-B.Sc.Mathematics Semester: V

LESSON PLAN

UNIT I
S.NO | DURATION TOPICS TO BE COVERED SUPPORT
HOURS MATERIAL
1 1 Connectives T1l:ch1l Pg.No:7-13
2 1 Well formed formulas T1:ch1l Pg.No: 23-26
3 1 Tautology T1:ch1 Pg.No: 26-28
4 1 Equivalence formulas T1:ch1 Pg.No: 28-31
5 1 Tautology Implication R1:ch 2 Pg.No: 2.5-2.6
6 1 Continuation of Tautology Implication T1:ch 1 pg.No30-32
7 1 Duality Law T1:ch 1 pg.No30-32
8 1 Normal forms T1:ch1l Pg.No: 50-53
R1:ch2 pg No: 2.7 - 2.9
9 1 Definitions — Predicates , variables R1:ch 2 pg.No:2.14
10 1 Quantifiers R1:ch 2.14 pg.No:2.18
11 1 Free bounded variables T1:ch 1 pg No:86-87
12 1 Theory of Inference for predicate calculus R1:ch 2 :pg N0:2.20-2.22
13 1 Recapitulation and discussion of possible
questions
Total | 13 Hours

TEXT BOOK

1.Trembly J.P., and R.p Mahohar., 1975.Discrete Mathematical structures with applications
to computer science, Tata Mc.Graw Hill,New Delhi.

REFERENCES

1.Sundaresan V., Ganapathy Subramanian K.S., and Ganesan K., 2002.Discrete Mathematics
Publications , Nagapattinam.
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UNIT I
S.NO | DURATION TOPICS TO BE COVERED SUPPORT MATERIAL
HOURS
1 1 Relations T1:ch 2 Pg.No: 149-151
2 1 Continuation of Relations T1:ch2 Pg.No: 151-153
3 1 Properties of binary relations in a set T1:ch 2 Pg.No: 154 -155
4 1 Composition of Relations T1:ch2 Pg.No: 17 6-179
5 1 Continuation Composition of Relations T1:ch2 Pg.No: 17 9-182
6 1 Functions — Definition and introduction T1:ch2 Pg.No: 192 -194
7 1 Continuation of Functions theorems T1:ch2 Pg.No: 194 -197
8 1 Composition of Functions T1:ch 2 Pg.No: 198-201
9 1 Inverse Function T1:ch2 Pg.No: 201-203
10 1 Continuation of Inverse Function T1:ch 2 Pg.No: 203-206
11 1 Classification of Function R2: ch 4 Pg.No: 184 —
186
12 Hashing Function T1:ch2 Pg.No: 212-215
13 Permutations R1: ch 3 Pg.No: 3.24-3.26
14 Recapitulation and discussion of possible
questions.
Total | 14 Hours
TEXT BOOK

1.Trembly J.P., and R.p Mahohar., 1975.Discrete Mathematical structures with applications
to computer science, Tata Mc.Graw Hill,New Delhi.

REFERENCES

1.Sundaresan V., Ganapathy Subramanian K.S., and Ganesan K., 2002.Discrete Mathematics
Publications , Nagapattinam.

2. Veerarajan T., 2007.Discrete mathematics with graph theory and combinatorics, Tata
Mc.Graw Hill,New Delhi.
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UNIT I
S.NO | DURATION TOPICS TO BE COVERED SUPPORT MATERIAL
HOURS
1 1 Introduction to Formal Language and R1:ch7 Pg.No:7.1-7.2
Automata
2 1 Grammar : Phrase — structure grammar R1l:ch7 Pg.No:7.2-7.4
3 Types of grammar R1:ch7 Pg.No: 7.5-7.6
4 Context — free grammar T1:ch 3 Pg.No: 302- 303
5 1 Context sensitive grammar T1: ch 3 Pg.No: 303- 306
6 1 Regular grammar and Examples R1l:ch7 Pg.No:7.5-7.7
7 Finite State Automata — Definitions R1:ch7 Pg.No: 7.20
8 Deterministic Finite Automata(DFA)- R1:ch 7 Pg.No: 7.20 —
definitions and Examples 7.26
9 1 Non- Deterministic Finite R1:ch7 Pg.No:7.1-7.2
Automata(NFA) : definitions and
Examples
10 1 Conversion of NFA to DFA- Procedure R1:ch7 Pg.No: 7.29 —
7.32
11 1 Theorems for Finite state Automata R1:ch7 Pg.No: 7.32 -
7.34
12 1 Recapitulation and discussion of possible
Questions.
Total | 12 Hours
TEXT BOOK

1.Trembly J.P., and R.p Mahohar., 1975.Discrete Mathematical structures with applications
to computer science, Tata Mc.Graw Hill,New Delhi.

REFERENCES

1.Sundaresan V., Ganapathy Subramanian K.S., and Ganesan K., 2002.Discrete Mathematics
Publications , Nagapattinam.
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UNIT IV
S.NO | DURATION TOPICS TO BE COVERED SUPPORT MATERIAL
HOURS
1 1 Lattices as partially ordered sets T1: ch 4 Pg.No 379 - 380
2 1 Posets — Definitions R1:ch6 Pg.No:6.1-6.3
3 1 Least upper bound and Greatest lower R1:ch6 Pg.No: 6.3—6.5
bound
4 1 Lattices and properties of Lattices R1:ch 6 Pg.No: 6.6 —6.8
5 1 Theorems for Lattices R1:ch 6 Pg.No:6.8—6.11
6 1 Continuation of Theorems for Lattices R1:ch 6 Pg.No:6.11-6.14
7 1 Boolean Algebra R1:ch 6 Pg.No:6.19 —6.23
8 1 Continuation of Boolean Algebra R1:ch 6 Pg.No: 6.24 —6.26
9 1 Boolean Expression and Boolean R1:ch 6 Pg.No: 6.28 — 6.29
Functions
10 1 Examples —Boolean Functions R1:ch 6 Pg.No: 6.29 — 6.33
11 1 Minimization of Boolean Functions T1: ch 4 Pg.No 424- 426
12 Simplification of Boolean Functions by | R1: ch 6 Pg.No: 6.36 — 6.39
map method and examples
13 1 Continuation the problems of R1:ch 6 Pg.No: 6.40 —6.42
Simplification Boolean Functions by
map method
14 1 Recapitulation and discussion of possible
Questions.
Total 14 Hours
TEXT BOOK

1.Trembly J.P., and R.p Mahohar., 1975.Discrete Mathematical structures with applications
to computer science, Tata Mc.Graw Hill,New Delhi.

REFERENCES

1.Sundaresan V., Ganapathy Subramanian K.S., and Ganesan K., 2002.Discrete Mathematics
Publications , Nagapattinam.
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UNIT V
S.NO | DURATION TOPICS TO BE COVERED SUPPORT MATERIAL
HOURS
1 1 Basic concepts and Basic definitions | T1: ch 4 Pg.No 469 — 470
of Graph Theory
2 1 Directed graphs R3: ch 4 Pg.No: 243 — 248
3 1 Undirected graphs R3: ch 4 Pg.No: 259 — 262
4 Continuation of Undirected graphs R3: ch 4 Pg.No: 263 — 265
5 Walks, Paths and circuits R1:ch5Pg.No: 5.5-5.7
6 Continuation of Walks, Paths and R3: ch 9 Pg.No: 263-266
circuits
7 1 Basic theorems R1:ch5Pg.No: 5.7 -5.8
8 1 Reachability R1: ch 5 Pg.No: 5.40 —5.41
9 1 Connectedness T1: ch 4 Pg.No 480 — 482
10 1 Matrix representation of graphs R1: ch 5 Pg.No: 5.70 —5.74
Undirected graphs and their Matrices
11 1 Continuation of Matrix representation | R1:ch5 Pg.No: 5.74 —5.77
of graphs Undirected graphs and their
Matrices
12 Directed graphs and their Matrices R1: ch 5 Pg.No: 5.77 —5.82
13 Continuation of Directed graphs and R1: ch 5 Pg.No: 5.82 —5.86
their Matrices
14 1 Euler path R1: ch5Pg.No: 5.10 —5.11
15 1 Hamiltonian path R3: ch 9 Pg.No: 292-295
16 1 Trees R1: ch5Pg.No: 5.43 —5.45
17 1 Continuation of the topic of Trees R1: ch 5 Pg.No: 5.45 —5.48
18 1 Binary trees R1: ch 5 Pg.No: 5.56 —5.58
19 1 Recapitulation and discussion of
possible Questions.
20 1 Discussion of previous year ESE
question papers
21 1 Discussion of previous year ESE
question papers
22 1 Discussion of previous year ESE
question papers
Total | 22 Hours
TEXT BOOK

1.Trembly J.P., and R.p Mahohar., 1975.Discrete Mathematical structures with applications
to computer science, Tata Mc.Graw Hill,New Delhi.
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REFERENCES

1.Sundaresan V., Ganapathy Subramanian K.S., and Ganesan K., 2002.Discrete Mathematics
Publications , Nagapattinam.
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UNIT-I

Mathematical logic: Connections well formed formulas, Tautology, Equivalence of
formulas, Tautological implications, Duality law, Normal forms, Predicates, Variables,
Quantifiers, Free and bound Variables. Theory of inference for predicate calculus.

Text Book

1.Trembly J.P., and R.p Mahohar., 1975.Discrete Mathematical structures with
applications to computer science, Tata Mc.Graw Hill,New Delhi.

References

1.Sundaresan V., Ganapathy Subramanian K.S., and Ganesan K., 2002.Discrete
Mathematics Publications , Nagapattinam.

2. Veerarajan T., 2007.Discrete mathematics with graph theory and combinatorics,
Tata Mc.Graw Hill,New Delhi.

3.Sharma .J.K,2005.Discrete Mathematics ,Second Edition, Macmillan India Ltd,New
Delhi.

4. Discrete mathematics by Neeru Sharma, Publisher: New Delhi, India : University
Science Press (An imprint of Laxmi Pubications Limited, Pvt. Ltd.), [2016] ©2011
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UNIT -1

Mathematical Logic

Prepositional Logic —Definition

A proposition is a collection of declarative statements that has either a truth value "true
or a truth value "false". A propositional consists of propositional variables and connectives.
We denote the propositional variables by capital letters (A, B, etc). The connectives
connect the propositional variables.

"

Some examples of Propositions are given below:

* "Man is Mortal", it returns truth value "TRUE"
v "1249=3-2" itreturns truth value "FALSE"

Connectives

In propositional logic generally we use five connectives which are:
= OR (V)
= AND (A)
=  Negation/ NOT (=)
= Implication / if-then (=)
= If and only if ().

OR (V): The OR operation of two propositions A and B (written as A V B) is true if at least
any of the propositional variable A or B is true.

The truth table is as follows:

A B AVB

True | True | True

True | False | True

False | True | True

False | False | False

Prepared By: K.Aarthiya, Department of Mathematics, KAHE Page 2/12
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AND (A): The AND operation of two propositions A and B (written as A A B) is true if both
the propositional variable A and B is true.

The truth table is as follows:

A B AANB

True | True | True

True | False | False

False | True | False

False | False | False

Negation (=): The negation of a proposition A (written as —=A) is false when A is true and
is true when A is false.

The truth table is as follows:

True | False

False | True

Implication / if-then (—): An implication A —B is the proposition “if A, then B”. It is
false if A is true and B is false. The rest cases are true.

The truth table is as follows:

A B A—-B

True | True | True

True | False | False

False | True | True

False | False | True
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If and only if (&): A ©B is bi-conditional logical connective which is true when p and g
are same, i.e. both are false or both are true.

Tautologies

A<=B

True

True

True

True

False

False

False

True

False

False

False

True

A Tautology is a formula which is always true for every value of its propositional variables.

Example: Prove [(A — B) A A] —B is a tautology

The truth table is as follows:

A B A—-B|(A—-B)AA|[(A—-B)AA]—B
True | True | True True True
True | False | False False True
False | True | True False True
False | False | True False True

As we can see every value of [(A — B) A A] =B is "True”, it is a tautology.

Contradictions

A Contradiction is a formula which is always false for every value of its propositional

variables.

Example: Prove (A V B) A [(=A) A (=B)] is a contradiction

The truth table is as follows:

Prepared By: K.Aarthiya, Department of Mathematics, KAHE
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(=A) A
A B AVB =A -B (AVB) A[(=A) A (1B)]
(-B)
True | True | True False False False False
True | False | True False True False False
False | True | True True False False False
False | False | False True True True False

As we can see every value of (A V B) A [(=A) A (=B)] is “False”, it is a contradiction.

Contingency

A Contingency is a formula which has both some true and some false values for every

value of its propositional variables.

Example: Prove (A V B) A (=A) a contingency

The truth table is as follows:

A B AVB|-A |(AVB)A(-A)
True | True | True | False False
True | False | True | False False
False | True | True | True True
False | False | False | True False

As we can see every value of (A V B) A (=A) has both "True” and “False”, it is a
contingency.

Propositional Equivalences

Two statements X and Y are logically equivalent if any of the following two conditions hold:

= The truth tables of each statement have the same truth values.

= The bi-conditional statement X & Y is a tautology.

Prepared By: K.Aarthiya, Department of Mathematics, KAHE Page 5/12
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Example: Prove = (A 'V B) and [(=A) A (—=B)] are equivalent

Testing by 15t method (Matching truth table):

A B [AVB | -(AVB)| -A -B [(=A) A (1B)]
True | True | True | False False | False False
True | False | True | False False | True False
False | True | True | False True | False False
False | False | False | True True | True True

Here, we can see the truth values of = (A V B) and [(=A) A (=B)] are same, hence the
statements are equivalent.

Testing by 2"Y method (Bi-conditionality):

A B 2 (AVB) | [(=A)A(=B)] | [~ (AVB)]«[(=A)A(=B)]
True | True False False True
True | False False False True
False | True False False True
False | False True True True

As [ (AV B)] © [(=A) A (=B)] is a tautology, the statements are equivalent.

Inverse, Converse, and Contra-positive

Implication / if-then (=) is also called a conditional statement. It has two parts-

¢ Hypothesis, p

¢ Conclusion, g

As mentioned earlier, it is denoted as p — q.

Prepared By: K.Aarthiya, Department of Mathematics, KAHE Page 6/12
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Inverse: An inverse of the conditional statement is the negation of both the hypothesis
and the conclusion. If the statement is “If p, then q”, the inverse will be “If not p, then
not g”. Thus the inverse of p—»q is =p—-q.

Example : The inverse of "If you do your homework, you will not be punished” is
"If you do not do your homework, you will be punished.”

Converse: The converse of the conditional statement is computed by interchanging the
hypothesis and the conclusion. If the statement is “If p, then q”, the converse will be “If
g, then p”. The converse of p—q is g—p.

Example : The converse of "If you do your homework, you will not be punished”
is "If you will not be punished, you do not do your homework”.

Contra-positive: The contra-positive of the conditional is computed by interchanging the
hypothesis and the conclusion of the inverse statement. If the statement is “If p, then q”,
the contra-positive will be “If not g, then not p”. The contra-positive of p—q is =g—>=p.

Example : The Contra-positive of " If you do your homework, you will not be
punished” is "If you are not punished, then you do not do your homework”.

Duality Principle

Duality principle states that for any true statement, the dual statement obtained by
interchanging unions into intersections (and vice versa) and interchanging Universal set
into Null set (and vice versa) is also true. If dual of any statement is the statement itself,
it is said self-dual statement.

Example: Thedualof (ANB)uCis(AuB)NC

Prepared By: K.Aarthiya, Department of Mathematics, KAHE Page 7/12
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Normal Forms

We can convert any proposition in two normal forms:

* Conjunctive normal form

Conjunctive Normal Form

A compound statement is in conjunctive normal form if it is obtained by operating AND
among variables (negation of variables included) connected with ORs. In terms of set
operations, it is a compound statement obtained by Intersection among variables
connected with Unions.

Examples
* (AVB)A(AVC)A(BVCVD)
* (PUQ)N(QUR)

Disjunctive Normal Form
A compound statement is in conjunctive normal form if it is obtained by operating OR
among variables (negation of variables included) connected with ANDs. In terms of set

operations, it is a compound statement obtained by Union among variables connected with
Intersections.

Examples
= (AAB)V(AANCOV (BACAD)
= (PNQ)u(QNR)
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Predicate Logic — Definition

A predicate is an expression of one or more variables defined on some specific domain. A
predicate with variables can be made a proposition by either assigning a value to the
variable or by quantifying the variable.

The following are some examples of predicates:

»  Let E(Xx, y) denote "x = y"
» |letX(a,b,c)denote'a+b+c=0"
»  Let M(X, y) denote "x is married to y"

Well Formed Formula

Well Formed Formula (wff) is a predicate holding any of the following -

» All propositional constants and propositional variables are wffs
» If xisavariable and Y is a wff, ¥x Y and 3Ix Y are also wff

»  Truth value and false values are wffs

* Each atomic formula is a wff

» All connectives connecting wffs are wffs
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Quantifiers

The variable of predicates is quantified by quantifiers. There are two types of quantifier in
predicate logic: Universal Quantifier and Existential Quantifier.

Universal Quantifier

Universal quantifier states that the statements within its scope are true for every value of
the specific variable. It is denoted by the symbol v.

vx P(x) is read as for every value of x, P(x) is true.

Example: "Man is mortal" can be transformed into the propositional form vx P(x) where
P(x) is the predicate which denotes x is mortal and the universe of discourse is all men.

Existential Quantifier

Existential quantifier states that the statements within its scope are true for some values
of the specific variable. It is denoted by the symbol 3.

Ix P(x) is read as for some values of x, P(x) is true.

Example: "Some people are dishonest" can be transformed into the propositional form 3x
P(x) where P(x) is the predicate which denotes x is dishonest and the universe of discourse
is some people.

Nested Quantifiers

If we use a quantifier that appears within the scope of another quantifier, it is called nested
quantifier.

Examples
* va 3bP(x,y)whereP (a, b) denotes a + b=0
* VYaVb VcP(a, b, c) whereP (a, b) denotes a + (b+c) = (a+b) +c

Note: va3b P (x,y) # 3avb P (X, y)
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Inference
Table of Rules of Inference
Rule of Inference Name S e Name
Inference
p PVQ
.......... Addition s Disjunctive
~PVQ . yres
~Q
P P—-Q
Q Conjunction Q—R Hypotl_'letlcal
-------------------- Syllogism
PAQ P—-R
(P—-Q)AN(R—=5S)
PAQ . . . PVR Constructive
—————————— Simplification -
=2 N I Dilemma
-~ QVS
P Modus ponens -QV =S Dgstructlve
———————————————————— Dilemma
Q -PV =R

Prepared By: K.Aarthiya, Department of Mathematics, KAHE Page 11/12



Unit | MATHEMATICAL LOGIC 2015 Batch

Part -B (5x8=40 Marks)

Possible Questions:

1. i) Verify that a proposition P v | (PAQ) is a tautology.
ii) Prove that P >(QVvR) < (P— Q) v (P - R)

2. Show that the following premises are Inconsistent.
i) If Jack misses many classes through illness, he fails in school.
ii) If jack fails in school, then he is uneducated.
iii) If jack reads a lot of books, then he is not uneducated.
iv) Jack misses many classes through illness and reads a lot of books.

3. i) Prove that (1 QAP) A Q is contradiction.
if) Show that the following implication without constructing truth table

1QA(P>Q)=1P
4. Find the min term normal form of (1((P v Q) AR)) A (P v R)

5. i) Construct the truth table for (P<>R) A (1Q—S)
ii) Obtain PDNF of (1((P vQ) AR)) A (P VR))

6. Show that RVS follows logically from the premises CVD, (CVD)—1H, TH — (AA 1B)
and (AN 1B) —(RVS).

7. Define disjunctive normal form and conjunctive normal form. Also obtain disjunctive
normal form of |(P v Q) < (PAQ)

8.Prove that PvQ) A PA(IQVIR)V( PAIQ) v (P AIR)) is atautology.
9. Obtain PCNF and PDNF of (PAQ) v ( | PAQAR)
10. i) Prove that RvS follows logically from the premises

CvD, (CvD)—>IH, IH>(AAIB) and (A AIB) = (RVS).

if) Show that (x) M(x) follows logically from the premises (x)(H(x) — M(x)) and
()H(X).
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Part A (20x1=20 Marks)
Possible Questions

Question
UNIT I
Let p be “He is tall” and let q “He is handsome”. Then the
statement “It is false that he is short or handsome” is:

The proposition p* (~ PV Q) iS.eeeeiirieiiinrianiannannnn.
Which of the following is/are tautology?

Identify the valid conclusion from the premises Pv Q, Q —
R,P—-M, ™M

Let a, b, c, d be propositions. Assume that the equivalence a
<> (b v 1b) and b <> ¢ hold. Then truth value of the formula (
ab) — ((@”™c)vd)isalways

Which of the following is a declarative statement?
P — (Q — R) is equivalent to

If F1, F2 and F3 are propositional formulae such that F1 * F2
— F3 and F1 * F2—F3 are both tautologies, then which of
the following is TRUE?

Consider two well-formed formulas in propositional logic
F1:P—TPF2: (P —1P) v ( 1P —), then

What can we correctly say about proposition P1: (p v 1q) »
(@—=r)v(rvp)

(PvQ)"*(P— R)(Q—S)is equivalent to

In propositional logic , which of the following is equivalent
top—q?

1(P — Q) is equivalent to

(Pv Q)" (P—-R)"(Q— R)isequivalent to

How,magy rows would be in the truth table for the following
compound proposition: (p Q9

@ H (@—s)

Which of the following statement is the negation of the
statement,”2 is even and —3 is negative”?
p—q is logically equivalent to

Which of the following is not a well formed formula?
[~qa" (p—q]—~pis,
An and statement is true if, and only if, both components are

IfP:Itishot & Q : Itis humid,then what does P " (~
Q):mean?

An or statement is false if, and only if, both components are
Two statement forms are logically equivalent if, and only if
they always have..........................

A tautology is a statement that is always ......................
A contradiction is a statement that is always

The statement (p*q) Ppisa..............o.eet.

In propositional logic which one of the following is
equivalent to p—q ?

Which of the following proposition is a tautology?

Which one is the contrapositive of ¢ — p ?

The statement form pv(~p)iSa.........cccevvenvennn...

Choice 1

p"q

A tautulogy

avb—b"c

PA(RVR)

TRUE

It's right

PrQ —R

Both F1 and F2
are tautologies

F1is

satisfiable, F2
is unsatisfiable

P1 is tautology

SAR S—R
~p—q ~pvq
P71Q PAQ
P Q
32 34
2 iseven and
-3 is not 2 1s odd and -3 1s
negative. not negative.
~q—p ~p—q

for all x1,x2,x3 {
"for all x Xx1=x2"x2=x3p
[P(x)—f (x)" x] X1 =x3}
Satisfiable Unsatisfiable
TRUE FALSE

It is not hot and

UNIT |

Choice 2

~(~pv )

a contradiction
a"b—obvec

PA(PAR)

FALSE

He says
PvQ)—R

The conjuction F1

N F2is not
satisfiable

F1 is unsatisfiable,

F2 is satisfiable

P1 is satisfiable

Itis hotand itis

it is not humid humid
TRUE FALSE
not same the same truth

truth values
TRUE

FALSE
Satisfiable

p—q
(pvq—p
~p—~q
Satisfiable

values
FALSE

TRUE
Unsatisfiable

p—q

pv(q—p)

p—~q
Unsatisfiable

Choice 3

~pvq

Logically
equivalentto p °q
avb—(b—¢)

RMPvVvQ)

Same as the truth
value of a

Two may not be
an even integer
(PvQ) — 1R

Neither is
tautologies
Flis
unsatisfiable, F2
is valid

If pistrue and q
is false and r is
false, the P1 is
true

SvR

~pv~q
1PvQ
R

27

2 1s even or —3 is
not negative.

~p"q

~(p —9)—q
Tautology

not true

Itishotanditis
not humid

not true
the different
truth values

not true

not true
Tautology

pvq

p v(p—q)
~p—q
Tautology

Choice 4

pvq

an assumption
avb—bve

Q*(PVR)

Same as the truth
value of b

I love you
PvQ) —P

Answer

~(~pv Q)
Logically equivalent
top”q

a"b—obvec

Q" (PVR)

TRUE

He says
P"Q —R

Both F1 and F2 are

Flv F2 is tautology tautologies

F1 & F2 are both
satisfiable

If p as true and q is
true and r is false,
then P1 is true

SUR

p—q
P"Q
True=T

25

2isodd or -3 is
not negative.

~pvq

[T vP(a,
b)]—2zQ(z)

Invalid
neither true nor
false

It is not hot and it
is not humid
neither true nor
false

the same false
values
neither true nor
false
neither true nor
false

Invalid

p V-4

(Pva—q

P—q
Invalid

F1 is unsatisfiable,
F2 is valid

If pistrue and g is
false and r is false,
the P1 is true
SvR

~pV g
PA1Q
R

32

2 is odd or —3 is not
negative.

~pvq

for all x1,x2,x3 { x1
=x2"x2=x3 b xl
=x3}

Tautology

TRUE

It is hot and it is not
humid

FALSE
the same truth values
TRUE

FALSE
Tautology

pvqQ

p v(p—9)
~p—~q
Tautology




Let p and q be statements given by “p —q". Then q is called  hypothesis conclusion TRUE FALSE conclusion

The statement form pA(~p) iS @......oevvvverininnnnnn. contradiction Unsatisfiable Tautology Invalid contradiction
If p and q are statement variables, the conditional of g by p is

givenby ............. ~p—~q p—~q ~p— q pP—q p— q

Let p and q be statements given by “p —q". Then p is

called.................. hypothesis conclusion TRUE FALSE hypothesis
The statement (p — 1) (q — r) is equivalent to............. p q—o~r p q—or p ~q—or ~p q—or p qg—or
The Negation of a Conditional Statement p —q is given by

.................... p q ~p q pV (¢ p g p q

Given statement variables p and g, the biconditional of p and

qisgivenby ............ p«~(Q pP—q ~p«(q p«q p«q

The inverse of “if pthen q” 1S ........cooviiiiiiiiininn.n.. if pthen g if pthen q if pthen q if pthen ¢ if pthen q
B A T PN condition for S” means “if R

then S .” valid inevitable sufficient necessary sufficient

A conditional statement and its contrapositive are Logically Logically equivalent
..................... A tautulogy a contradiction equivalent an assumption

A rule of inference is a form of argument thatis ................ valid a contradiction an assumption A tautulogy valid
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UNIT 11

RELATIONS AND FUNCTIONS

Definition and Properties

A binary relation R from set x to y (written as xRy or R(x,y)) is a subset of the Cartesian
product x x y. If the ordered pair of G is reversed, the relation also changes.

Domain and Range

If there are two sets A and B, and relation R have order pair (X, y), then:

* The domain of R, Dom(R), istheset { x | (x, y) e RforsomeyinB }
= The range of R, Ran(R), istheset { y | (X, y) € R for some xin A }

Examples
Let, A = {1,2,9} and B = {1,3,7}

e Case 1: If relation R is ‘equal to’ then R = {(1, 1), (3, 3)}
Dom(R) = {1, 3}, Ran(R) ={ 1, 3}

e Case 2: If relation R is ‘less than’ then R = {(1, 3), (1, 7), (2, 3), (2, 7)}
Dom(R) = {1, 2}, Ran(R) = { 3, 7}

e Case 3: If relation R is ‘greater than’ then R = {(2, 1), (9, 1), (9, 3), (9, 7)}
Dom(R) ={ 2,9}, Ran(R) ={ 1, 3, 7}
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Types of Relations

1. The Empty Relation between sets X and Y, or on E, is the empty set @

2. The Full Relation between sets X and Y is the set XxY

3. The Identity Relation on set X is the set {(x,x) | x e X}

4. The Inverse Relation R' of a relation R is defined as: R'= {(b,a) | (a,b) eR}
Example: If R = {(1, 2), (2,3)} then R" will be {(2,1), (3,2)}

5. A relation R on set A is called Reflexive if vacA is related to a (aRa holds).
Example:_The relation R = {(a,a), (b,b)} on set X={a,b} is reflexive

6. A relation R on set A is called Irreflexive if no acA is related to a (aRa does not
hold).
Example:_The relation R = {(a,b), (b,a)} on set X={a,b} is irreflexive

7. A relation R on set A is called Symmetric if xRy implies yRx, vXEA and vy€A.

Example:_The relation R = {(1, 2), (2, 1), (3, 2), (2, 3)} on set A={1, 2, 3} is
symmetric.

A relation R on set A is called Anti-Symmetric if xRy and yRx implies
X=y VX €eAandvyeA.

Example: The relation R = { (x,y) € N | x £ y } is anti-symmetric since x <y
and y £ x implies x = .

A relation R on set A is called Transitive if xRy and yRz implies xRz, vx,y,z € A.

Example: The relation R = {(1, 2), (2, 3), (1, 3)} on set A= {1, 2, 3} is transitive.

10. A relation is an Equivalence Relation if it is reflexive, symmetric, and

transitive.

Example:_The relation R = {(1, 1), (2, 2), (3, 3), (1, 2),(2,1), (2,3), (3,2), (1,3),

(3,1)} onset A= {1, 2, 3} is an equivalence relation since it is reflexive, symmetric,

and transitive.
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Function - Definition

A function or mapping (Defined as f: X—Y) is a relationship from elements of one set X to
elements of another set Y (X and Y are non-empty sets). X is called Domain and Y is called
Codomain of function 'f".

Function 'f' is a relation on X and Y such that for each x € X, there exists a unique y € Y
such that (x,y) € R. 'x" is called pre-image and 'y’ is called image of function f.

A function can be one to one or many to one but not one to many.

A

f
da Z»
] >
C =
d >

Example

State whether each of the following relations represent a function or not.

(a) (b)

A B
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(c) (d)
A B A B
f f
1 2 ! 2 1 > 1
2] > 4 2

Q
—

k
]

o)

e

.

Solution :

(a)  fisnot a function because the element b of 4 does not have an image i B.

(b)  f1s not a function because the element ¢ of 4 does not have a unique 1mage in B.
(¢) f1sa function because every element of 4 has a unique image m B.

(d) f1sa function because every element i .4 has a unique image m B.

Injective / One-to-one function

A function f: A—B is injective or one-to-one function if for every b € B, there exists at most
one a € A such that f(s) = t.

This means a function f is injective if a1 # a2 implies f(a1) # f(az).

Example

1. f: N =N, f(x) = 5x is injective.
2. f: N—N, f(x) = x? is injective.
3. f: R—=R, f(x) = x? is not injective as (-x)? = x?

One-fo-one function

A > 1
B > 2
C > 3

4
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The domainis { A.B.C}

The co-domain is {1,2.3 .4}

The range is {1.2.3}

Surjective / Onto function

A function f: A —B is surjective (onto) if the image of f equals its range. Equivalently, for
every b €B, there exists some a € A such that f(a) = b. This means that for any v in B,
there exists some x in A such that y = f(x).

Example

1. fiN=N, f(x) = x + 2 is surjective.
2. f:R—=R, f(x) = x* is not surjective since we cannot find a real number whose square

is negative.

A > 1
B 2
c

Bijective / One-to-one Correspondent

A function f: A —B is bijective or one-to-one correspondent if and only if f is both injective
and surjective.

A > 1
B > pod
C > 3
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Problem:

Prove that a function f: R—R defined by f(x) = 2x - 3 is a bijective function.

Explanation: We have to prove this function is both injective and surjective.
If f(x1) = f(x2), then 2x1 - 3 = 2x2 = 3 and it implies that x1 = xa.
Hence, f is injective.

Here, 2x - 3=y

So, X = (y+5)/3 which belongs to R and f(x) =y.

Hence, f is surjective.

Since f is both surjective and injective, we can say f is bijective.

Inverse of a Function

The inverse of a one-to-one corresponding function f : A — B, is the function g : B — A,
holding the following property:

flx)=y=gly) =x
The function f is called invertible, if its inverse function g exists.

Example:

o« Afunctionf: Z -2, f(x) =x+5, isinvertible since it has the inverse function g :
Z+2Z,9(%x)=x-5

» A function f : ZoZ, f(x) = x* is not invertible since this is not one-to-one as (-x)*
=%,

Compeosition of Functions
Two functions f: A—B and g: B—C can be composed to give a composition g o f. This is a
function from A to C defined by (gof)(x) = g{f(x))
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Example
Letf(x) =x+2andg(x) =2x+ 1, find (fo g)(x) and ( g o f)(x)

Solution

(fog)(x) =f(g(x)) =f(2x+1)=2x+1+2=2x+3
(gof)(x) =g (f(x)) =g(x+2)=2(x+2)+1=2x+5
Hence, (fo g)(x) # (g o f)(x)

Some Facts about Composition
» Iffand g are one-to-one then the function (g o f) is also one-to-one.

*» Iffand g are onto then the function (g o f) is also onto.

Monotonic Function

Let F: A — B be a function then F 1s said to be monotonic on an mterval (a.b) if it 1s either
increasing or decreasing on that mterval.

For function to be increasing on an mterval (a.b)

X <X, =F(x)<F(x) VX% (D))
and for function to be decreasing on (a.b)

X <X, =2F(x)>F(x,) Y% %, f,b)

A function may not be monotonic on the whole domain but it can be on different intervals of the
domain.

Consider the function F : R — R defined by f(x) = x2.
Now VY x.x, 40, 4
X <X, = F(x)<F(x5)

= F 1s a Monotonic Function on [0, v:] .
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(- It1s only mcreasing function on this mterval)
But VX, X5 €(-%,0)

X <X, = F(x7)>F(x,)
=  FisaMonotonic Function on [ -, 0]

(- It1s only a decreasing function on this mterval)

Therefore if we talk of the whole domain given function 1s not monotonic on R but it is monotonic
on (—»,0) and (0,).

Agamn consider the function F: R — R definedby f(x) = X3
Clearly '/ x; x, ¢domain

X <X, =F(x;) <F(x,)
. Given function 1s monotonic on R 1.e. on the whole domam.

EVEN FUNCTION

A function 1s said to be an even function if for each x of domam
F(—x) =F(x)
For example, each of the following is an even function.
(i) IfF(x)=x2 thenlr(_x):({)z =x2 F(x)
ODD FUNCTION

A function is said to be an odd fuimetion if for each x
f(—x)=—F(x)
For example,

(1) Iff(x)=x3

l;‘tlenf{—}-;}:{—x)3 = —x3 =—1(x)
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Polynomial Function

Any function defined m the form of a polynomual is called a polynonual function.

For example,

(1) f(x)=3x2-4x -2

(11) f(x)=x3-5x2-x+5

Rational Function

Function of the type f (x ) = £ (( - ; .whereh (x ) # 0 and g(x) and h (x ) are polynomual
1(x
functions are called rational functions.
. x2 -4
For example, f(X)= X # -1
x+1

1s a rational function.

Reciprocal Function

Functions of the type y = 1 .x =0 1s called a reciprocal function.
X
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Exponential Functions

A swiss mathematician Leonhard Euler introduced a number e in the form of an infinite series. In
fact

e—1+1 4i ! + —01— &

Il 12 E i ]1_1 .......... ( 1)
It 1s well known that the sum of 1ts infinite series tends to a finite limut (1.e., this series 1s convergent)
and hence it is a positive real number denoted by e. This number e is a transcendental irrational
number and its value lies between 2 an 3.

Consider now the mfinite series

I+~ +X2 +—X3 + 3(01 +
It can be shown that the sum of its infinite series also tends to a finite lit, which we denote by
ex . Thus,
ox ox2 X3 X1
eX=1l4+—= - += . - . 2)

RN

Thus 1s called the Exponential Theorem and the infinite series 1s called the exponential series.

We easily see that we would get (1) by putting x = 1 mn (2).
The function f (yx ) = ex. where X 1s any real number 1s called an Exponential Function.

The graph of the exponential function
y =eX

Logarithmic Functions

Consider now the function
y = ex

We write it equuvalently as
x = log. ¥

-

Thus, y = log. x

1s the mverse function of v = ex
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The base of the logarithim 1s not written if it 1s e
and so log_. x 1s usually written as log x.
Asy = eX and v = log x are imnverse functions.

their graphs are also symmetric w.r.t. the line
y =X

The graph of the function v = log x can be
obtamed from that of yv = e* by reflecting it m

the line v = x.
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Part -B (5x8=40 Marks)

Possible Questions:

1.

2.

Explain about types of relation with examples.

Let A={1,2,3} and f,g,h and s be functions from A to A given by

f={(12), (23,381 }; 9={(12),(21),@3) };
h={(1,1), (2,2), (3,1) }and s = { (1,1), (2,2), (3,3) }.
Find f.g, gof, fohog, 05,508, ToS.

Write about the types of function with example.

Iff: A—>B and g : B—C are one — one function then prove that
gof: A—Cisalso 1-1.

Let R denotes a relation on the set of all ordered pairs of positive integers
by (X, y) R (u, v) iff xv=yu. Show that R is a equivalence relations.

Let S={1,2,3,4,5} and T={1,2,3,8,9} and define the functions f: S— T
and g: S — S by £={(1,8), (3,9),(4,3),(2,1),(5,2)} and
9={(1,2),(3,1),(2,2),(4,3),(5,2)} ,then find the values of the following
feg, gof, fof, geog.

For integers a,b define aRb if and only if a — b is divisible by m. Show
that R defines an equivalence relationon Z.

Let A be the set A={xeR \ x>0} and define f,g, h :A— R by
f(X)=——0g(x)== h(X)=x+1find g o f ,f o g,hogof and fogoh.

If Rand S are equivalence relations defined on a set S,Prove that RNS is
an equivalence relation.

10.Show that the following functions are 1-1

i) f: R — R given by f(x)=5x%- 1
ii) f: Z — Egiven by f(n)=3x3 - x
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Possible Questions
Choice 1 Choice 2 Choice 3 Choice 4 Answer
If R={(1,2),(3,4),(2,2)} and S ={(4,2),(2,5),(3,1),(1,3)}are  {(4,2),(3,2),(1,4
relations then RoS = ------ )} {(1,5),(3,2),(2,5)} {(1,2),2,2)} {(4,5),(3,3),(1,1)} {(1,5),(3,2),(2,5)}
If f(x) = x+2 and g(x) = x> —1 then(gof)(x) = ---—-- X2 +4x+4 X2 +4x-3 X2 -4x+4 X2 +4x+3 X2 +4x+3
A relation R in a set X is if for every xeX,(x,x)¢R transitive symmetric irreflexive reflexive irreflexive
Suppose in RxR, the ordered pairs (x-2, 2y+1) and (y-1, x+2
) are equal. The values of x andy are 2,3 3,2 2,-3 3,-2 3,2
Reflexive,Symmetri

A relation R on a set is said to be an equivalence relation if it c, Reflexive,Symmetric,
IS ------ Reflexive Symmetric Transitive Transitive Transitive
Let f: R—>R where R is a set of real numbers.Then f(x) = -
2X is a ----- One-to-one Onto into bijection bijection
A mapping f : x—vy is called if distinct elements of x are
mapped into distinct elements one-to-one Onto into many to one one-to-one
If the relation R and S are both reflexive thenR v S is --------- symmetric reflexive transitive not reflexive reflexive
A One — to —one function is also known as --------- injective surjective bijective objective injective
A Onto function is also known as injective surjective bijective objective surjective
A One — to —one and onto function is also known as --------- injective surjective bijective objective bijective
Let f: x>y, g : y—>x be the functions then g is equal to f '
only if -------- fog=1ly gof =1, gof=I, fog=I, gof =1,
In N, define aRb if a+b = 7. This is symmetric when -------- b+a =7 ata =7 b+c =7 atc=7 b+a =7
If the relation is ---------- relation if aRb,bRa —»a =b ------- symmetric reflexive Antisymmetric ~ not reflexive Antisymmetric
f:R—>R, g: R—>R defined by f(x) = 4x-1 and g(x) = cos
X..The value of fog is 4cosx —1 4cosx 4cosx +1 1/4cosx 4cosx —1
Let f: N—N be a function such that f(x) = 5 ,xeN then the
f(x) is called--------- identity inverse equal constant constant
A binary relation R in a set X is said to be symmetric if ------ aRa aRb=bRa aRb,bRc=aRc  aRb,bRa=a=b aRb=bRa
A binary relation R in a set X is said to be reflexive if ------ aRa aRb=bRa aRb,bRc=aRc aRb,bRa=a=b aRa
A binary relation R in a set X is said to be antisymmetric if --
aRa aRb=bRa aRb,bRc=aRc  aRb,bRa=a=b aRb,bRa=a=b
A binary relation R in a set X is said to be transitive if ---- aRa aRb=bRa aRb,bRc=aRc  aRb,bRa=a=b aRb,bRc=aRc
If R={(1,2),(3,4),(2,2)} and S = {(4,2),(2,5),(3,1),(1,3)} are  {(4,2),(3,2),(1,4
relations then SoS = ------ )} {(1,5),(3,2),(2,5} {(1,2),2,2)} {(4,5),(3,3),(1,1)} {(4,5),(3,3),(1,1)}
Let x ={1,2,3,4}, R = {(2,3),(4,1)} then the domain of R = ---
------ {13} {2.3} {24} {1.4} {24}
Let x ={1,2,3,4}, R ={(2,3),(4,1)} then the range of R = -----
{13} {3.1} {24} {1.4} {3.1}
In a relation matrix all the diagonal elements are one then it
satisfies ------- symmetric antisymmetric transitive reflexive reflexive
In a relation matrix A=(aij) a;; =a;; then it satisfies -------
relation symmetric reflexive transitive antisymmetric symmetric
An ordered arrangement of r - element of a set containning n - r permutation  r - combination of n n permutation of n combination of r r permutation of n
distinct element is called an of nelements  elements r elements elements elements
The r - permutation of n elements is denoted by ----------- P(r,n) P(n,r) c(r, n) c(n, ) P(n,r)
The r - permutation of n elements is denoted by P (n, r)
where ------- r<n r=n r=n r>n r<n
An unordered pair of r elements of a set containing n distinct r permutation  r - combination of n n permutation of n combination of r r - combination of n
elements is called an of nelements  elements r elements elements elements
The number of different permutations of the word BANANA
IS ----m-- 720 60 120 360 60
The number of way a person roundtrip by bus from Ato C
by way of B will be 12 48 144 264 144
How many 10 digits numbers can be written by using the C (10,9 +C
digits 1 and 2 ? 9, 2) 1024 C(10, 2) 10! 1024
The number of ways to arrange th a letters of the word
CHEESE are ------ 120 240 720 6 120




r - combination of n elements is denoted by ------

The value of C(n,n) is ----------

C (n, n-r) = ------

C(n+C(n,r1)=--—-

The number of arranging different crcular arrangement of n
objects = ----------

The number of ways of arranging n beads in the form of a
necklace = ----------

The value of C(10, 6) + C( 9, 5) + C(8, 4) + C( 8, 3) is -------

The value of C(10, 8) + C( 10,7) is -------------

The number of different words can be formed out of the
letters of the word VARANASI, is---------

The number of ways can a party of 7 persons arrange
themselves around a circular table-----

The sum of entries in the fourth row of Pascal’s triangle is ----

The number of wors can be formed out of the letters of the

word PECULIAR beginning with P and ending with R is -----

The value of P(n,n) = -------------
The value of P(10, 3) is -----------

If P (10, r) is 720, then the value of r is --------

In how many ways 5 children out of a class of 20 line for a
picture?

The value of C(n, r) is ----------
The value of P(n, r) / r!is ---------

P(r,n)

C(n,r)
C(n,r)

n!
(n-1)!

C(10, 7)
990

64

6!

100
1
120
2

P (20, 4)

an integer
r

P(n,r)

1

C(n-1,1)

C (n+1,r-1)
(n+1)!
(n-1)Y/2

C(9,7)
165

120
7!
4
120
0
720
3

P(20, 5)

a fraction
C(n,r)

C(r, n)

C(n-1,r-1)
C(n+l,r)

(n-1)!
n!

C(8, 5)
45

40320

10

720
n
60
4

P (5, 20)

an integer or a

fraction
n/r

C(n,r)
n-1

C(n, r-1)
C(n, r+l)
0!

n!/2

C(11, 5)
120

720

16

150
n-1
45
5

P(5,5)

a rational number

less than 1
nr

C(n,r)

1

C(n, 1)
C(n+l,r)
(n-1)!
(n-1)1/2

C(11, 5)
165

720

6!

720
n
720
3

P(20, 5)

an integer
c(n,r)
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UNIT = I
Formal Language and and Automata:

Finite Automata

Definition: A finite state automaton (.F S A) or simply an automaton M or
finite state acceptor consists of

(1) a finite set [, called the input alphabet of input symbols

(2) a finite set S of states

(3) a subset A of S of accepting states

(4) an initial state spin S

(5) a next state function f fromSx 1 — §.

Such an automaton is denoted by M = (I, S, A, sp, f) . Thus, finite automaton

does not have an output alphabet, instead it has a set of acceptance state. The
plural of automaton is automata.

Example: 1. Let us take

[={a b)
S = {so. 81, 52)
O={x,y.z}

Initial State 1s s
Next state functionf: S x I — S defined by
f(sg,a)=s;, f(s,a)=s, f(sya)l=s
f(sp.b)=s7 fi(si.b)=s; f(s..b)=5
Output function g : S x I — O defined by
o(sp,a)=x, g(s,a)=x, g(s,a)=z

g(so.b)=y, glsi,b)=2z, glsy, b)=y/

Then M = M(I, S, O, s, f, g) in a finite state machine.
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Example : Let

[=1{a, b}, S={s0 s1.s2}, A= {s2}, so e S, the initial state and f is given by the

table

f
a b
S
S0 So s
51 S0 82
82 Sp 82

The transition diagram of a finite — state automation is usually drawn with
accepting states in double circles. Thus transition diagram for the example in

question is

Example: Let
[ = {a, b}, input symbols

S = {sp. 51, 82}, internal states

A = {sg, 81}, yes states (accepting states)

5p, initial state

Next state function f: S x I — S defined by
f(sp, a) = sg, f(sy, @) = 8y, f(s2.a) = s,
f(so, b) = 51, f(s1, b) = 82, f(s2,b) = 82

Then M = (I, S. A, sy, ) 15 a finite state automaton. Its transition table is
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f
| a b

S
S0 S0 51
51 S0 57
87 57 5

If a string is input to a finite state automaton, we will end at either an accepting
or a non-accepting state. The status of this final state determines whether the
string is accepted by the finite state automaton.

Definition: Let M = (I, S, A, {, sg) be a finite state automaton. Let x;...x, be a
string over L If there exist states sy, sq,.......s; such that

fsi, xs)=sfori=1,2, ....n

and
sie A,
then we say that the string x,.....X, 1s accepted by A.
We call the directed path P (sq,..., sa) the path representing x1,...., Xn in M.
Thus M accepts x; .... X, if and only if path P ends at an accepting state.
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Example: Design a finite — state — automaton that accepts precisely those
strings over {a, b} that contains an odd number of a’s.

Solution: There shall be two states:

E : Aneven number of a’s was found
O : An odd number of a’s was found

The initial state is E and the accepting state is O.

SEC e

a
b
If f is next — state function, then we have
f(E,a)=0
f(E.b)=E
flO,a)=E

f(O,b)=0
Example : Let M = {1, S, A, sp, ) be a finite state automaton with

[=1{0.1.2.3.4.5.6.7.8.9)

S = {so, 81,82}

A = {so}

ae {0,3,6.9}.be {1.4,7}.ce {2.5. 8}].

Next — state function f defined by
f(so, a) =80, f(so,b)=s8;, f(so,c)=%2
f(s1,a)=s1, f(s;,b)=s2, f(s;,c)=s0
f(s2, a)=s2, f(s2, b)=s0, f(s2, ¢) =5

Draw transition table and transition diagram for this E.S.A. Does this
automaton accept 258 and 142 7

Solution: The transition table for F.S.A. is
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f
a b ¢
S
S0 S0 51 52
51 51 52 S0
82 52 50 51

The transition diagram for this F.S.A. is

0,3.6.9

2,58

2,5.8

0,3,6,9

Here A = {sy} is the initial stage and also is an acceptor. Further, we note that

f(sg, 258) = ( f (sg, 25), 8)
= f(f(f(s0,2),5),8)
=1 (f (2,5), 8)
=1(s1,8)=s0c A
Thus, the string 258 determines the path
suz—:- 2 5—:-5;.3‘-5;.35 A
Hence 258 is accepted by the given Finite State Automation.
On the other hand,
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[(sp, 142) =1 ( 1 (sq, 14), 2)
=1 (f(f(so, 1),4).2)
=f(f(s1, 4).2)
=1(s2,2)
=512 A

2
Sp—=S =S5 e A.

Hence 142 is not accepted by the given Finite State Automaton.

Non - Deterministic Finite State Automaton

Definition: A non - deterministic finite — state automaton is a 5 — tuple M =
(L, S, A, s, f) consisting of

(1) A finite set I of input symbols

(2) A finite set S of states

(3) A subset A of S of accepting states

(4) An initial state function sy £ S
(5) A next state function f from S x I into P(S)

Thus, in a non - deterministic finite state automaton, the next state
function leads us to a set of states, whereas in a finite state automaton, the
next state function takes us to a uniquely defined state.

Example: Find the transition diagram for NDFS A

M= (LS, A, sp, 1),
where
I: {U., 1}1 S: {S.D., 51, 82, 53]5-"5‘-: {511 "’?}

and the next state function f is given by
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f
[0 |
S
sp [s0. 81} {s3}
81 {so0} {s1,83}
82 O {s0,52}
83 {81, 8283} {54}

Solution: Here the initial state is sp and the accepting states are s> and s3. The
transitional diagram of this NDFS A is

1

O

y
o

[a—

0

Definition: Let M = (I, S. A, s5, f) be a non — deterministic finite state
automaton. The null string is accepted by M if and only if 55 € A. If w = a,
A2.....8p i @ non — null string over I and there exists states Sp, Siy +veues Sn
such that

(1) sp is the initial state
(2) s; = fisi_1, a;)
(J)spe A,

then we say that w 1s accepted by M.

We denote by AC(M), the set of strings accepted by M and say that M accept
AC(M).
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Definition: Two non — deterministic finite state automata M and M” are said to
be equivalent if

ACM)=ACM") .
Example: Let

M=(LS,A, s f)

beaNDFS A with
[=1{0,1},S = {sp, 81, 82, 83, 8¢}, A = {85, Sa}.

s0 as the initial state and the next state function defined by the transition
table given below:

f
S
Sg {80, 83} {sp81]
81 (0 {82}
82 {s2} {s2}
S3 {54} O
54 {84} {s4)

Determine whether M accept the words (i) w =010 and (i1) w = 01001.

0 1
Solution: (i) The word w = 010 determines the path sp—  {sg, ss+—=  {(s.

D w f(ss, 1) = {so, 51}

0
@ = {sg, s1}—=> f(sp, 0) L (s, 0) = {s0, 83} W 0= {sp, 83}
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But A m {sg, s3} = {s2, s4} ™ {s0, s2} = 0. Hence the word w = 010 1s not
acceptable to the given non — deterministic finite state automaton.

(i1)) We have seen above that
SGL {50, 53}% {0, SI]L“ {0, s3]

Therefore the word w = 01001 determines the path
S L {0, 53] ]—i* {80, 81 L, {0, Sz]L‘ f(so, 0) W (s3, 0)

= {80, 83} U {84}

= {sq, 83, 54]—] — f(sg, 1) f(ss, 1} (s, 1)

= {sp. s1} W QU {54}

= {s0, s1, s4}

50 that

But A m {sg, s3} = {s2, s4} ™ {s0, s2} = & . Hence the word w = 010 is not
acceptable to the given non — deterministic finite state automaton.

(i1) We have seen above that
s{:h {50, 53}% {0, SI]L“ {80, 53]

Therefore the word w = 01001 determines the path
So L {50, 53] ]—i* {0, 51} L, {0, Sz]L‘ f(sq, 0) L f(s3, 0)

= {s0. 83} L {s;}

= {sq, 83, 54]—] — f(sg, 1) f(ss, 1} (s, 1)

= {sp. s1} W QU {54}

= {s0. 51, 84}

50 that

A {s0, 81, S84} = {82, 84} M {80, 81, 84} = {84} = .

Hence the string 01001 is acceptable to the given N D F S A.
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REGULAR GRAMMARS

Regular Expansions

One way of describing regular languages 1s via the notation of regular expressions. This notation
mvolves a combination of strings of symbols from some alphabet £, parentheses, and the operators +,
., and *, The simplest case 1s the language {a}, which will be denoted by the regular expression a
Shghtly more complicated 1s the language {a, b, ¢}, for which, using the + to denote union, we have
the regular expression a+btc. We use * for concatenation and * for star-closure in a similar way. The
expression (a + (bec))* stands for the star-closure of {a} U: {b}, that s, the language {2, a, be, aa.
abe, bea, bebe, aaa, aabe.,...}.

Definition:
Let £ be a given alphabet. Then
I. 0, and a € L are all regular expressions. These are called primitive regular expressions.
21f r, and 1, are regular expressions, so are ry+ ryy.ra 1, and ().

3. A string 15 a regular expression if and only 1if it can be derived from the primutive regular
expressions by a fimte number of applications of the rules in (2).
Definition:
The language L(r) denoted by any regular expression r is defined by the following rules.

1. @ is a regular expression denoting the empty set,

[V

. .. 1s a regular expression denoting {4} .
3. For everya € X, a 1s a regular expression denoting {a}.
If | and r,are regular expressions, then

4. L(ry+r)=LrPUL (),
SL(ry-ry)=Lr)UL(,):
6 L ((r)) =L (ry,

7.L ("D = (L (r))*.
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Example:
For L = {0, 1}, give a regular expression r such that
L(r) = {we L* w has at least one pair of consecutive zeros}.
One can arrive at an answer by reasomng something like this: Every string in L ( r) must contain 00

somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on
{01} can be denoted by (0+1)*, Putting these observations together, we arrive at the solution

1= (0+ 1)*00(0 + 1)*
Definition:

A grammar G=(I", T, 5, P) 1s said to be right-linear 1f all productions are of the form
A—xB,
A=,

where 4, Be I and x € T*. A grammar is said to be left-linear if all productions are of the form
A— Bx,

or

A=
Example:
The grammar G| = ({5}, {a.b}.5.P)). with P gaven as

S — abSla

1s right-linear. The grammar G, = ({5, 5. S5}. {a. b}. 5. P,). with productions

S . Syab.
Sl — Slﬂbls_-{,
Sz —

15 lefi-linear. Both GG/ and G2 are regular granmmars.
The sequence

S implus abS implus ababS implus ababa
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Example:
The grammar G =({S, 4. B}, {a, b}, S, P) with productions

-4
A—aBj,
B — Ab,

1s not regular. Although every production is either in right-linear or left-linear form. the grammar
1tself 1s neither right-linear nor lefi-linear, and therefore is not regular. The grammar 1s an example of
a linear grammar.

Context Free Grammar:
A grammar G= (I, T, §, P) 15 smid 10 be context-free 1f all productions in P have the form

A-z,

where 4 Vandx e (VU T}'.
A language L 15 said to be context-free 1f and only 1f there 15 a context-free grammar ( such that L

=L(G).

Example:

The grammar G = ({S}. {a, b}, S. P). with productions
S — aSa,
S — bSh.
S — \

is context-free. A typical derivation in this grammar 1s
S = aSa = aaSaa = aabSbaa = aabbaa.
This, and similar derivations, make 1t clear that

L(G)= {H'II'R twE {u.b}'}.
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Example:
I'he language

L= {u"hm ' nF my

is context-free.

To show this. we need to produce a context-free grammar for the language. The case of n = m 1s
solved m Example 1.11 and we can build on that solution. Take the case n > m. We first generate a
string with an equal number of @'s and b's, then add extra a's on the left. This is done with

S — AS).
.S', — ”‘\-1”"\-
A — aAla.

We can use similar reasoning for the case n < m, and we get the answer

S — AS,|5: B,
Sy — aSpb|A,
A — aAla,

B — bB|b.

The resulting grammar is context-free, hence L 1s a context-free language. However, the grammar 1s

not linear.

Example: Construct deterministic finite state automaton equivalent to the
following non — deterministic finite state automaton :

M= ({0, 1}, {80, 81}, 8o, {81}, 1),

where f is given by the table

f
0 |
S
80 {so,s1}  {s1}
81 (0] {s0, s1}
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Solution: Let

M’ = {{ﬂ, 1}1 {"'I]1 {Sﬂl}& {51}1 {Sﬂh 51}‘! Sl:l": {51]}5 A’,F}
be the DF S A, where

A'={sefQ, (s, {s1}, {so, 81} s {si} =0
and = {s;} and {sp. 81} (Accepting states)

f'(s,a)= Y f(o, a) for s {o, {so}, {s1}. {s0, s1}}

We have
{sg} as the initial state

The finite set of states 1s {®, {sp}, {1}, {50, 511}
The finite set of inputs is {0, 1}

The accepting states are [s;] and [sg, s;].

Now

fp.0)=0andf'(p. 1) =0
f"([sol, 0) = f(so, 0) = [s0, s1]
£([s0]. 1) =f(so. 1) = [s1]
f([s1], 0)=1(s1,0)=0
f([s1], 1) =f(s1, 1) = [s0, s1]
£°([s0. 811, 0) = f(sp. 0) L f{s, 0}
= {sp, 81} U {54}
= [s0, 81]
£'({sg. s}, 1) =1(sp, 1) W f(sy, 1)
={s1} v {s0. 81}

= [s0, s1]
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Hence the next state function and the transition diagram for D F § A are as
given below :

-
0 1

S

P Q Q

[s0] [s0, s1] [s1]

[$4] 0 [so, s1]

[0, 1] [so. 811 [so, 1]

It may be mentioned here that a state which is never entered may be deleted

from the transition diagram. In view of this, the above transition diagram
becomes

Thus, we note that if N D F S A has n states, then D F S A will have 2"
states.
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Part -B (5x8=40 Marks)

Possible Questions:

1. Explain the types of grammars with examples.

2. i) Obtain the Context sensitive grammar for the language (a™/ m > 1)
ii) Let G = {(S,B),(a),S, ¢} Define production function ¢ as
(i) S— aS ,(ii) S—» aB (iii) B—aS (iv) S—»a
iii) Define transition diagram. Draw a transition diagram which will accept those
words from A, which have an even number of a’s.

3. i) Prove that L(G) ={a"b"c"/n=> 1} where G = ({S,B,c},{ab,c},S, ¢) and
Q ={S— aSBc, S— aBc, cB— Bc, aB— ab, bC— bc, cC— cc}
if) Explain with an example for conversion of non-deterministic finite automata
to finite state automata .

4. Show that the language L(Gs) = {a"bc™/ m,n > 1} is generated by the following
grammar: Gs = ({S,A,B,C}, {a,b}, S, @), where the set ¢ consists of production is
S—>aS,S—-aB,B—>hC,C—>ac,C—a

5. Show that the language L(G4) = {a"ba"/ n > 1} is generated by the following
grammar: Gs = ({S,C}, {a,b}, S, @), where ¢ consists of productions
{S - aCa, C —» aCa, C — b}.

6. i)Consider the grammar G = ( { S,A,B,C}, {a,b},S,¢ ) where ¢ is the set of
productions S— aAab , A~ aAa, A— bB, Ba— aB, Bb— Cbb ,aC— Ca, A— b.
Find L(G).
ii). Construct the grammar for the language L(G) ={a"b*"/n> 1}

7. Construct the equivalent DFSA for the following NDFSA

M=({0,1},{00.91},5,9 0,{q1}) here & is given by

) 0 1
do {qo,01} {1}
Qe o {90,01}

8. i)Construct the grammar for the language L(G)={a"b*"/n>1}.
ii) Construct the grammar for the language L(G) = {a"ba"™/ n, m > 1}.
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9. LetM=({ab}{d0,091,92 },o0,5,{q2} ) be a non-deterministic finite —state automata.
where & is given as follows: 5(qo ,a ) = { do,01}, 8(q1 ,a) = {a1}, 8(g2,8)={ qo}, 8(qo ,b)
={ 092}, 8(qz ,b) = { qo}, 8(92 ,b ) = { 91,02} Construct an equivalent deterministic
finite-state automata.

10. Prove that every regular set is accepted by a finite state state automata.
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UNIT I
Part A (20x1=20 Marks)
Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

A finite non- empty set E of sympols called ---------- string word letters alphabet alphabet

The ------------ of the word is the number of letters in it. degree weight length height length

A--mmemee- over E is sequence of symbols of E with possible

repetitions alphabet letters word length word

The specification of profer construction of sentences is called the --

—————————— of the language alphabet monoid syntax semantics syntax

A e is any derivative of the unique non-terminal symbol S. sentential form  language type 0 grammer type -1 grammer sentential form

A grammar G is said to be -------------- if there is some word in

L(G) has atleast two derivation trees un ambiguous ambiguous language syntex ambiguous

a derivation in which the right most non terminal symbol is replaced

at each step is said to be ----------- word sentential form left most derivation right most derivation rightmost derivation

The pictorial method of specifying the finite state machine is called

-------------- state diagram sequential diagram digrapgh right most derivation state diagram

Every regular language is ----------------- ambiguous unambiguous inherently language unambiguous

Any subset L of A* is called a ------------- over A language letters alphabet sensitive language

The specification of the meaning of sentences is called the ----------

--of the language syntax semantics E* empty set semantics

A pharse structure grammer with no restrictions is called a ---------

------ Type -0 grammer Type - 1 grammer type- 2 grammer type-3 grammer Type -0 grammer

A grammer G is said to be --------- if every production is of the context -

form A—a. sensitive context-free regular type -1 grammer context- free

A grammer G is said to be --------- if every production is of the context -

form A—a, A—aB sensitive context-free type-1 grammer regular regular

A language for which there exists a recongnition algorithm is said

to be ------------ recursive relation syntax semantics recursive

A language generated by type -0 grammer is called a -------------- Type -0 grammer Type - 1 grammer type 2 grammar type-3 grammer Type-0 language
context - context -sensitive

grammar of type - 1 are often called -------- sensitive context-free regular syntex grammar
Type -0

A language generated by type - 1 grammer is called a -------------- language Type - 1 language type -2 language  type -3 language type -1 language

The length of a word W is the ------------- inW number of letters number of alphabets  number of words ~ number of strings number of letters
context -

DFA and NFA represent the -------------- language . sensitive context-free regular type-4 regular

Every grammar generating a context - free language is ------------ ambiguous unambiguous string word ambiguous

Every finite state machine has a -------------- associated with it. monoid unambiguous regular semantics monoid

If L accepted by a NFA, then there exists a DFA , that accepts ------

---------- . L E E* M L

If a language L is accepted by a multitape TM , it is accepted by a

single tape ------------ . ™ MT E* L ™
finite state

Every regular language is accepted by a --------------- : automata infinte state automata Regular automata  Irregular automata  finite state automata
context -

If L is N(M) for some PDA M, then L is a -------------- language. sensitive context-free regular empty set context - free

Push - down automata is denoted by ----------- PDA PAD DAP DAA PAD

If the syntex is correct then it produces............ code Verb sentence sentence object object
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UNIT -1V
LATTICES

Definitions and Examples

Definition: A lattice is a partially ordered set (L, <) in which every subset
{a, b} consisting of two element has a least upper bound and a greatest
lower bound.

We denote lub({a, b}) by a v b and call it join or sum of a and b.
Similarly,

we denote GLB({a, b}) by a A b and call it meet or product of a and b.
Other symbol used are:

LUB: @, +, U

GLB:+.,N

Thus Lattice is a mathematical structure with two binary operations, join
and meet. Lattice structures often appear in computing and mathematical
applications.

A totally ordered set is obviously a lattice but not all partially ordered sets are
lattices.

Example 1. Let A be any set and P(A) be its power set. The partially ordered
set (P(A), ©) is a lattice in which the meet and join are the same as the
operations N and U respectively. If A has single element, say a, then P(A) =
{9, {a}} and

LUB({ ¢, {a}) = {a}

GLB({p, {a}) = ¢

The Hasse diagram of (P(A), ) is a chain containing two elements ¢ and {a}
as shown below:
I lal
l.|"

If A has two elements, say a and b. Then P(A) = {o, {a}, {b}, {a, b}}. The
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Hasse diagram of {P(A), <) is then as shown below :

{a.b)

We note that

1. LUB exists for every two subsets andis L U M

2. GLB exists for every two subsets and isinL "M for L, M € P(A).
Hence P(A) in a lattice.

Example 2. Consider the poset (N, <), where < is relation of divisibility. Then
N is a lattice in which

joinofaandb=avb=LC M(a, b)
meetofaandb=aAb=GCD (a, b)fora, b eN.

Example 3. Let n be a positive integer and let Dn be the set of all positive
divisors of n. Then Dnis a lattice under the relation of divisibility. The Hasse
diagram of the lattices Ds, D20 and Da3o are respectively.
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g J= oo

Dg={1,2. 4,8

20

4 10

and

Dy =[1.2,3,5,6, 10, 15, 30).

The TransiDefinition: The Transitive closure of a relation R is the
smallest transitive relation containing R. It is denoted by R.
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Example: LetA={1, 2, 3,4} and R =[(1, 2), (2, 3), (3, 4), (2, 1)] Find the
transitive closure of R.
Solution: The digraph of R is

0 2

O 4

We note that from vertex 1, we have paths to the vertices 2, 3, 4 and 1. Note
that path from 1 to 1proceeds from 1 to 2 to 1. Thus we see that the ordered

pairs (1, 1), (1, 2), (1, 3) and (1, 4) are in R«. Starting from vertex 2, we have
paths to vertices 2, 1, 3 and 4 so the ordered pairs (2, 1), (2, 2), (2, 3) and (2,
4)

are in Rw. The only other path is from vertex 3 to 4, so we have

R-={(1,1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2. 4), (3.4)}

Example: Let R be the set of all equivalence relations on a set A. As such R

consists of subsets of A x A and so R is a partially ordered set under the
partial order of set inclusion. If R and S are equivalence relations on A, the
same property may be expressed in relational notations as follows:

RcSifandonlyifxRy xSyforallxy e A.

Then (R, ©) is a poset. R is a lattice, where the meet of the equivalence

relations R and S is their intersection R N S and their join is (R U S)«, the
transitive closure of their union.

Definition: Let (L, <) be a poset and let (L, =) be the dual poset. If (L, <) is a

lattice, we can show that (L, >) is also a lattice. In fact, foranyaand b in L,
the

LUBofaandbin (L, <)is equal to the GLB of a and b in (L, >). Similarly,
the GLBofaandbin (L, <)isequalto L UB in (L, ).
The operation v and A are called dual of each other.

Example: Let S be asetand L = P(S). Then (L, <) is a lattice and its dual
lattice is (L, D), where D represents “contains”. We note that in the poset
(L, ), the join A v B is the set A m B and the meet A A B is the set A U B.
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Cartesian Product of Lattices

Theorem: If (L1, <) and (L2, <) are lattices, then (L, <) is a lattice, where
L = L1 x L2and the partial order < of L is the product partial order.

Proof: We denote the join and meet in L1 by v1, and A1 and the join and meet
in L2 by v2 and A2 respectively.

We know that Cartesian product of two posets is a poset.

Therefore L = L1 x L2is a poset. Thus all we need to show is that if

(a1, b1) and (a2, b2) € L,

Then (a1, b1) v (a2, b2)and (a1, b1) A (a2, b2) existin L.

Further, we know that

(a1, b1) v (a2, b2) = (a1 v az, bi1v b2) and

and

(a1, b1) A (a2, b2) = (a1 A az, b1 A b2)

Since Liis lattice, a1 v 1a2and a1 A 1 a2 exist. Similarly, since L2is a lattice,
biv bzand b1 A bzexist. Hence (a1, b1) v (a2, b2) and (a1, b1) A (a2, b2)
both exist and therefore (L, <) is a lattice, called the direct product of

(L1, <) and (L2, <).

”1‘ id)

(04, 0n)
L= L1 X ]_,_1

Properties of Lattices:
Let (L, <) be alattice and let a, b, ¢c € L. Then, from the definition of v (join)
and A (meet)

we have

(la<avbandb<avb;avbisanupperbound of aandb.
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(ifa<candb<c,thenavb<c;avbisthe least bound of a and b.
(iManb<aandaAb<b;anabisalower bound of a and b.

(iv)ifc<aand c <b,thenc<a A b;anbis the greatest lower bound of a
and b

Theorem:
Let L be a lattice. Then for every aand b in L,

(avb=Dbifandonlyifa<hb

(ilanb=aifandonlyifa<b

(iianb=aifandonlyifavb=>b

Proof:

() Letavb=Db. Sincea<avb,wehave a<h.

Conversely, if a < b, then since b < b, it follows that b is an upper bound of a
and b. Therefore, by the definition of least upper bound, a v b <b. Alsoavb
being an upper bound, b <a v b. Hencea v b =bh.

(i) Leta A b =a. Since a A b < b, we have a < b. Conversely, if a < b and

since a< a, ais a lower bound of a and b and so, by the definition of greatest
lower bound, we have

aanab
Since a A b is lower bound,
anb<a
Hence
anb=a.
(i) From (ii )
anb=a<aghb...... (iv)
From (i)
a<b<savb=b.......... (V)

Hence, combining (iv) and (v),

we have
anb=za<avb=h.

Example: Let L be a linearly (total) ordered set. Therefore a, b € L imply
either a < b or b < a. Therefore, the above theorem implies that
avb=a
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anb=a
Thus for every pair of elements a, b inL, a v b and a A b exist. Hence a
linearly ordered set is a lattice.

Theorem :
Let (L, <) be a lattice and let a, b, ¢ € L. Then we have

L1: Idempotent property
(hava=a
(ilana=a

L2: Commutative property
(lavb=bva
(Danb=bAaa

L3: Associative property
av((pvec)=(@avb)vece
(ian(bac)=(anb)ac

L4: Absorption property
(hav(aanb)=a
(lan(avb)=a

Proof: L1: The idempotent property follows from the definition of LUB and
GLB.

L2 : Commutativity follows from the symmetry of a and b in the definition of
LUB and GLB.

L3: (i) From the definition of LUB, we have

a<av(bbve) ... (1)
bvc<av(bvco)........ (2)
Alsob <b v candc<b v cand so transitivity implies
b<avBvVve).... (3)
and
c<av(bve)a...... (4)

Now, (1) and (3) imply that a v (b v ¢) is an upper bound of a and b and hence
by the definition of least upper bound, we have

avb<av(bve) ... (5)

Also by (4) and (5), a v (b v ¢) is an upper bound of c and a v b . Therefore
(avb)vc<av(bve) ... (6)

Similarly
av(pvc)<(avb)vec..... (7)
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Hence, by antisymmetry of the relation <, (6) and (7) yield
av(bvc)=(avb)vec
The proof of (ii) is analogous to the proof of part (i).

L4: (i) Since a A b <aand a < a, it follows that a is an upper bound of a A b
and a. Therefore, by the definition of least upper bound

av@ab)<a .. (8)

On the other hand, by the definition of LUB, we have

a<av@Aab) . (9)
The expression (8) and (9) yields

av(@anb)=a.
(i) Sincea<av banda<a, it follows that a is a lower bound of a v b

and a.
Therefore, by the definition of GLB,

a<an(@vb) .. (10)
Also, by the definition of GLB, we have
an(favb)<a ..., (11)

Then (10) and (11) imply
an(avb)=a
and the proof is completed.

In view of L3, we can writeav (bvc)and (avb)vcasavbvec.
Thus, we can express

LUB ({a1, a2,....an) as a1 v a2 v...... V an
GLB ({a1, az,....an) as a1 A az A...... A an

Remark:
Using commutativity and absorption property, part (ii) of previous
Theorem can be proved as follows :
LetaAb=a.
We note that
bv(aanb)=bva
= a v b (Commutativity)
But
b v (a A b)=b (Absorption property)
Hence
avb=b
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and so by part (i),a<b. HenceaAb=aifand onlyifa<b.

Theorem: Let (L, <) be a lattice. Then for any a, b, ¢ € L, the following
properties hold :

1. (Isotonicity) : If a < Db, then
(avc<bvec
(lanc<bac

This property is called “Isotonicity”.

2.a<candb<cifandonlyifavb<c
3.c<aandc<bifandonlyifc<anab

4. Ifa<bandc<d,then
(havc<bvd
(ilanc<bnad.

Proof : 1 (i). We know that
avb=bifandonlyifa<hb.

Therefore, to show that a v ¢ < b Vv ¢, we shall show that
(avec)v(ibvcec)=bve.
We note that
(avev(bve=[avec)vblvec=av(cvbvece
zav(bvcve
=(avb)v(bvc

=bvc(@avb=bandcvc=c)
The part 1 (ii) can be proved similarly.

2. Ifa<c, then 1(i) implies

avb<cvb
But

b<c< bve=c
< ¢ Vv b = ¢ (commutativity)
Hencea<candb<cifandonlyifavb<c

3. Ifc < a,then 1(ii)impliescAb<aAb

But
c<b&ecAab=c
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Hence
c<aandc<bifandonlyifc<aAb.

4 (i) We note that 1(i) implies thatifa<b,thenavc<bwvc=cvb

fc<d, thencvb<dvb=bvd

Hence, by transitivity
avc<bvd

(i) We note that 1(ii) implies that
fas<b, thenanc<bAc=cAb

ifc<d,thencAb<dAb=bAad.
Therefore transitivity implies

anc<bnad.

Theorem:

Let (L, <) be a lattice. If a, b, ¢ € L, then
(Davbac)<(avb)a(avc)
(2)an(bvc)z(@anb)v(anac

These inequalities are called “Distributive Inequalities”.

Proof: We have

a<avbanda<avc()
Also, by the above theorem, if x <y and x < z in a lattice, then x <y A z.
Therefore (i) yields

a<(avb)a(@Vvo)........ (i)
Also

bac<b<avb
and

banc<c<Lavc,

thatis, bAc<avbandb A c<avcandso, by the above argument,
we have

bAc<(avb)a(avc) (i)
Also, again by the above theorem if x <z and y < z in a lattice, then
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XVvy<z
Hence, (ii) and (iii) yield
acbac)<(avb)a(avc
This proves (1).
The second distributive inequality follows by using the principle of
duality.

Theorem: (Modular Inequality) : Let (L, <) be a lattice. If a, b, c € L,
then

a<cifandonlyifav(bac)<(avb)ac
Proof: We knowthat a<c<avce=cC....... (1)

Also, by distributive inequality,

avbacZ<(avb)A(ave)
Therefore using (1) a < cif and only if
av(bac)<(avc)ac,

which proves the result.

The modular inequalities can be expressed in the following way
also:

(@nb)v(aanc)<an[bv(anac)
(avb)a(avc)zavbAa(avo)

Example: Let (L, <) be alattice and a, b,c € L. fa< b < c, then
avb=bac,(i)(anb)v(bAac)=(avb)a(avrc)

Solution: (i) We know that
a<bsavb=Db
and

b<c<bac=b
Hencea<b<cimplies avb=DbAc.
(i) Since a< b and b < c, we have

anb=aandbAac=Db
Thus

(@Anb)v(bAac)=avhb
:b’
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sinceas<b<avb=h
Also, a < b < c _a< c by transitivity. Then
a<banda<c _awvb=b,avc=c
and so
(avb)aA(avec=bAac

=bsinceb<c< bAac=h.
Hence
(@Anb)vbac)=b=(avb)A(avc),
which proves (ii).

1.21. Lattices as Algebraic System
Definition. A Lattice is an algebraic system (L, v , A ) with two binary

operations v and A , called join and meet respectively, on a non-empty
set L

which satisfy the following axioms for a, b,c € L:

1. Commutative Law :

avb=bvaandaanb=bAaa.
2. Associative Law :

(avb)vc=av(bvc
and
(@aAnbAac=aAn(bAac)

3. Absorption Law :

(Jav(anb)=a

(lan(@avb=a

We note that Idempotent Law follows from axiom 3 above. In fact,

ava=avaan(avb)using............... 3(ii)
=ausing .....cccc.ee..... 3(i)

The proof of a A a = a follows by principle of duality.
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1.22 Partial Order Relations on a Lattice

A partial order relation on a lattice (L) follows as a consequence of the
axioms for the binary operations v and A .
We define a relation < on L such that fora, b € L,

a<b<savb=b
or analogously,

) as<b&sanb=a.
We note that

() Foranya e L
a Vv a = a (idempotent law),
therefore a < a showing that < is reflexive.

(i) Let a < b and b < a. Therefore

avb=b

bva=a
But

a Vv b=Db v a(Commutative Law in lattice)
Hence

a=b,
showing that < is antisymmetric.

(ili) Suppose thata<band b <c. Thereforeavb=bandbvc=c.
Then

avc=av((bvco
= (a v b) v ¢ (Associativity in lattice)
=bwvc
=cC,
showing that a < ¢ and hence < is transitive.

This shows that a lattice is a partially ordered set
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1.23 Least Upper Bounds and Latest Lower Bounds in a
Lattice

Let (L, v, A) be alattice and let a, b € L. We now show that LUB of

{a, b} < L with respect to the partial order introduced above is a v b and
GLB of {a, b} isa A b.

From absorption law
an(avb)=a
bAa(avb)=hb

Therefore a<a v band b <av b, showing that a v b is upper bound for
{a,b}. Suppose that there exists ¢ € L such thata<c, b <c. Thus we
have avc=candbvc=c

and then
(avb)vc=av(bvc=avc=c

implying that a v b < c.
Hence a v b is the least upper bound of a and b.

Similarly, we can show that a A b is GLB of a and b.
The above discussion shows that the two definitions of lattice
given so far are equivalent.

Sublattices

Definition: Let (L, <) be a lattice. A non-empty subset S of L is called a
sublatticeof Lifavb e SandaAnb e Swheneverae S,b e S.

(Or)
Let (L, v, A) be alattice and let S — L be a subsetof L. Then (S, v, A)
IS
called a sublattice of (L, v, A) if and only if S is closed under both

operations of join(Vv ) and meet( A ).
From the definition it is clear that sublattice itself is a lattice.

However, any subset of L which is a lattice need not be a sublattice.
For example, consider the lattice shown in the diagram:
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L
We note that
(1) the subset S shown by the diagram below is not a sublattice of L, since
a~beS§Sand avbesS.
|
f
a b
S

(i1) the set T shown below is not a sublattice of L since a v be T.
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VN
S

However, T is a lattice when considered as a poset by itself.

(ii1) the subset w of L shown below is a sublattice of L:
C
a /\ b
\. O/
U
Example: Let A be any set and P(A) its power set. Then (P(A), v, A ) is
a

lattice in which join and meet are union of sets and intersection of sets
respectively.

A family _ of subsets of A suchthat S\ U Tand S T arein _for S,

T € _is a sublattice of (P(A), v, A). Such a family _is called aring
of

subsets of A and is denoted by (R(A), v, A) (This is not a ring in the
sense of algebra). Some author call it lattice of subsets.

Definition:

A lattice (L, v, A) is called a distributive lattice if for any elements a, band cin L,
(Daan(bvec)=(@aanb)v(anc)

() av(bac)=(avb)a(avec)

Properties (1) and (2) are called distributive properties.

Thus, in a distributive lattice, the operations A and v are distributive over
each other.

We further note that, by the principle of duality, the condition (1) holds if and
only if (2) holds. Therefore it is sufficient to verify any one of these two
equalities for all possible combinations of the elements of a lattice.

If a lattice L is not distributive, we say that L is non-distributive.
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Example: For a set S, the lattice (P(S), <) is distributive. The meet and join
operation in P(S) are n and U respectively. Also we know, by set

theory, that for A, B, C € P(S),
An(BuC)=(AnB)U(AnC)
AuUBNC)=(AuB)n(AuC).
Example:

The five elements lattices given in the following diagrams are non
distributive.

ol I
d d C
®h
b C
0
(11)
0 (1)
In fact for the lattice (i), we notethatan(bvc)=anl=a,

while
(@nrb)v(@aanc)=bv0=b
Hence
an(bvec)#(aanb)v(anc),
showing that (i) is non-distributive.

For the lattice (ii) ,

we have

an(bvc)=anl=a,
while

(@nrb)v(@aanc)=0v0=0.
Hence

an(bvc)z(aanb)v(anac),

showing that (ii) is also non-distributive
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Boolean Algebra
Definitions and Examples

Definition: A non-empty set B with two binary operations v and ~, a unary
operation ', and two distinct elements 0 and I is called a Boolean Algebra if
the following axioms holds for any elements a, b, ¢ € B:

[B1]: Commutative Laws:

avb=bwva and arnb=bana
[B:]: Distributive Law:

arlbwve)=(arb)wv (aanclandav (b~ c)=(a v b) A (av c)
[B:]: Identity Laws:
avl=a and a ~l=a
[Bs]: Complement Laws:

ava=I and an~na=0
We shall call 0 as zero element, 1 as unit element and a’ the complement of a.

We denote a Boolean Algebra by (B, v, A, ~,0,1).

Example 1. Let A be a non-empty set and P(A) be its power set. Then the set
algebra (P(A), ., m, —, 0, A) is a Boolean algebra.

Example 2 : Let B = {0, 1} be the set of bits (binary digits) with the binary

operations v and ~ and the unary operation * defined by the following
tables:
Al 1l 0 110
(1 1 , 111 0 0 1
o1 0 00 0

Here the operations v and ~ are logical operations and complement of 11s 0
whereas complement of Ois 1. Then (B, v, ~, ", 0, 1) is a Boolean Algebra.
It is the simplest example of a two-element algebra.

Further, a two element Boolean algebra is the only Boolean algebra whose
diagram is a chain.
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Example 3 : Let B, be the set of n tuples whose members are either 0 or 1. Let
a=(a, az,....,a;) and b = (by, ba,....,by) be any two members of B,. Then we
define

av;b=(a; v bj,a; v bs......a, v by)
arib=(a; ~ bj,ax A ba.......a, ~ by) .
where v and ~ are logical operations on {0, 1}, and
a=(~a,~ay...,~ a) ,
where ~0=1and~1=0.

If O, represents (0, 0,......0) and 1, = (1, 1,...... 1), then (B, v i, A, ", O, 1)
is a Boolean algebra.

This algebra is known as Switching Algebra and represents a switching
network with n inputs and one output.

Example 4. The poset Dy = {1, 2, 3, 5, 6, 10, 15, 30} has eight element.
Define v, ~ and " on Dsp by

av b=Ilcm(a,b) , a ~ b=gcd(a,b) and a=—.

Then Dsp is a Boolean Algebra with 1 as the zero element and 30 as the unit
element.

Example 5: Let S be the set of statement formulas involving n statement
variables. The algebraic system (S, ~, v. ~, F, T) is a Boolean algebra in
which ~,v, ~ denotes the operations of conjunction, disjunction and negation
respectively. The element F and T denotes the formulas which are
contradictions and Tautologies respectively. The partial ordering

corresponding to ~ , v is implication = .

We have seen that B, 1s a Boolean algebra. Using this fact, we can also define
Boolean algebra as follows:

Definition: A finite lattice is called a Boolean Algebra if it is isomorphic with
B, for some non-negative integer n.
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Definition: Let (B, v, ~, ", 0, 1) be a Boolean algebra and S = B. If §
contains the elements 0 and 1 and is closed under the operation v, ~ and 1,
then (S, ~, v,", 0, 1) 1s called Sub-Boolean Algebra.

Example: Consider the Boolean algebra

Dro=1{1.2,5,7,10, 14, 35, 70}

P(A)

We note that the diagram for Dy and P(A) are structurally the same.
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Then the set of atoms of Dyg is

A=1{2,5T7}
The unique representation of each non-atom by atoms is
10=2 v 35
14=2 v 7
3I5=5v17
T0=2v 5v T

The diagram of the Boolean algebra of the power set e(A) of the set A of atoms
1s given below :

Boolean Function

Definition: Let (B, . , +, ", 0, 1) be a Boolean algebra. A function f: B, — B
which is associated with a Boolean expression (polynomial) is n variables is
called a Boolean function.

Thus a Boolean function is completely determined by the Boolean expression
¢ (X1, X2......Xn) because it is nothing but the evaluation function of the

expression. It may be mentioned here that every function g : B, — B needs not
be a Boolean function.

If we assume that the Boolean algebra B is of order 2™ for m = I, then the
number of function from B, to B is greater than 2% showing that there are
functions from B, to B which are not Boolean functions. On the other hand,
for m = 1, that is, for a two element Boolean algebra, the number of function
from B, to B is 2™ which is same as the number of distinct Boolean
expressions in n variable. Hence every function from B, to B in this case is a
Boolean function.

Prepared By: K.Aarthiya, Department of Mathematics, KAHE Page 22/26



Unit IV LATTICES AND BOOLEAN ALGEBRA 2015 Batch

Representation of Boolean Functions using Karnaugh
Map

Karnaugh Map is a graphical procedure to represent Boolean function as an
“or” combination of minterms where minterms are represented by squares.
This procedure is easy to use with functions f: B, — B, if n is not greater than
6. We shall discuss this procedure forn =2, 3, and 4.

A Karnaugh map structure is an area which is subdivided into 2" cells, one for
each possible input combination for a Boolean function of n variables. Half of
the cells are associated with an input value of 1 for one of the variables and the
other half are associated with an input value of 0 for the same variable. This
association of cell is done for each variable, with the splitting of the 2" cells
yielding a different pair of halves for each distinct variable.

Case of 1 variable: In this case, the Karnaugh map consists of 2'=2 squares.

0 1

X X

The variable x is represented by the right square and its complement x” by the
left square.

Case of 2 variables: For n = 2, the Boolean function is of two variable, say x
and y. We have 2 =4 squares, that is, a 2 x 2 matrix of squares. Each squares
contains one possible input from Bs.

The variable x appears in the first row of the matrix as x” whereas x appears in
the second row as x. Similarly y appears in the first column as y" and as y in
the second column.

0 1 y’ y
0100 | o1 X
Xy X'y
1 10 11
xy’ xy X

(2 variable Karnaugh Map)
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Example : Find the prime implicants and a minimal sum-of-products form
from each of the following complete sum-of-products Boolean expression:

(@A Ei=xy+xy b Ex=xy+x y+x'y

(c)Ea=xy+x'y.
Solution: (a) The Karnaugh map for E, is
vy

x’

x [

Check the squares corresponding to x y and x y". We note that E; consists of
one prime implicant, the two adjacent square designated by the loop. The pair
of adjacent square represents the variable x. So x is the only prime implicant of
Ei. Consequently E; = x is its minimal sum.

(b) The Karnaugh map for E; is

y y
Q;@E X
Y

X

Check the squares corresponding to x y, X" y, X" y". The expression E; contains
two pairs of adjacent squares (designated by two loops) which include all the
squares of E;. The vertical pair represents y and the horizontal pair x". Hence y

and x" are the prime implicants of E,. Thus
By (x,y)=x"+y
s minimal sum.

(¢) The Karnaugh map for E; is
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y y
x| XY
w
X xy

Check (tick) the squares corresponding to x y and x" y’. The expression E;
consists of two isolated squares which represent x y and x” y". Hence and x y
and x” y’" are the prime implicants of E; and so E; = x y + x" y" is its minimal
sum.

Case of 3 variables: We now turn to the case of a function f: B; — B which is
function of x, y and z. The Karnaugh map corresponding to Boolean
expression E(x, y, z) is shown in the diagram below:

y y
00 01 11 10 vz yzi yz vy
0 ooo| oot o1t |o10 X’ Xy | xXyvz | x'vz [x've
1 100] 101] 111{110 X | e | xv'z | xvze | xve’

Here x, y, z are respectively represented by lower half, right half and middle
two quarters of the map.

Similarly, x", y", z" are respectively represented by upper half, left half and left
and right quarter of the map.
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Part -B (5x8=40 Marks)

Possible Questions:

1. Let (L,<) be a lattice. Foranya,belL,a<b& aAb =a < aVb = b.

N

State and prove Demorgan’s Law.

3. Prove that algebraically ab + b¢ + ca = ab + bc + ca.

4. Simplify the following Boolean functions to a minimum number of literals
DHxvix'Ay) (i)xAYyAZIVE'AyAZ)V(xAY)

5. Express the Boolean function F=A v (B’ A C) inasum of min terms.

6. Simplify the Boolean function F(x,y, z) = >.(0,1,2,4,5,6,8,9,12,13,14,).

~

Explain the basic laws of Boolean Algebra.

8. Show that a lattice is distributive iff
(anb)v(ibac)V(cAha)=(aVvb)A(bVc)A(cVa).

9. a)Let D24={1,2,3,4,6,8,12,24}and let the relation / be a partial ordering on D24.
i) draw the Hasse diagram for D24 with /.
ii) Find all the lower bounds of 8 and 12.
iii) Find the GLB of 8 and 12.
iv)Find all the upper bounds of 8 and 12
v) Find the LUB of 8 and 12.

10. Express the Boolean function F=(x A y) V (x’A z) in a product of max term
form.
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Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
partially
A setL on which apartial ordering < is called a............. set ordered maximum ordered  quarterly ordered ordered partially ordered
The least member or Greatest member,if it exists,
IS, finite infinite unique zero unique
Distinct minimal members are.................. comparable incomparable finite in - finite incomparable
By Idempotent Law (aAa) =......... 0 1 12a a
Every pair of elements has LUB and GLB,the given poset is
Qe Lattice duality supremum infimum Lattice
In any Boolean algebra , the immediate successors of the O-
element are called...... join meet atoms dual atoms
Every .......coooiii, Boolean algebra is atomic finite infinite unique lesser finite
Orered set (or) poset denoted by ....... (L,>) (L>) (L) (L=< (LS
The LUB {d,b}=........ b d b,d b,d b
Finite Boolean Algebra as n - tuples of ....... O'sand 1's 1's only 0's only n<o,n<1 O'sand 1's
Every finite Boolean algebra has ........ 17n elements o elements 2”n elements n elements 2"n elements
Every finite boolean algebra of order 2 n elements are ....... Endomorphic  Homomorphic Atomic Isomorphic Isomorphic
The GLB {a,b} = ....... b,a b a,b a b
By Commutative Law (aAb) =............... b>a bAa b=a bva bAa
In Boolean Algebra the value of (a+b)(a+c)=......... ac+a'b+bc ab+a’b+bc ac+a'b'+bc ac+ab'+b'c’ act+ab+bc
A....... Is a variable or the complement of a variable. complementary literal biliteral unilateral literal
If Xy z - 000 the min terms =............ x'Ay'AZ' x'Ay'vz' xAy'AZ' xAyAz x'Ay'AZ'
Boolean Function expressed as a product of maxterms is said
tobe........ canonical form maxi terms mini terms maxi mini terms  canonical form
For n variables , we will have ........ different minterms and
maxterms. 2"n 2/n 2n (n+1) 2"n
Every finite Boolean algebra has ----elements for some
positive integer n. 2"\n+1 2"\n-2 2"\n-1 2"\n 2"\n
A Lineral is a variable or the ------------ of a variable. complement commutative distributive associative complement
Boolean function expressed as a ........... of mix terms. sum difference product equal sum
Boolean function expressed as a ........... of max terms. difference sum product equal product
In involution law , if a lattice be a complemented ........ lattice commutative  associative distributive identity Isomorphic
In the complement axioms aAa'=........... 0 1 -la
Aboolean algebra is alattice which contains a least element ~ commutative  associative and complemented complemented and
and a greatest element and which is both.. and distributive commutative and associative distributive
A walk with no repeated vertices is called as ........... cycle path circuit trail trail
The complemente og any function is same as the complement
of each literal in the ...of that function lattice boolean dual canonical dual
length of the

The number of edges in a path is called ..... path size of the path degree of the path order of path length of the path
If some edges are directed and some edges are undirected in
a graph,then the graph is called.... digraph weighted graph isomorphic mixed mixed
An elementary cycle is a cycle if its path is ..... simple path elementary path simple trail elementary trail trail

The dual of an (bLC) = .... a b c 0a
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UNIT -V
GRAPH THEORY

What is a Graph?

Definition: A graph (denoted as G = (V, E)) consists of a non-empty set of vertices or
nodes V and a set of edges E.

Example: Let us consider, a Graph is G = (V, E) whereV = {a, b, ¢, d} and E = {{a, b},
{a, c}, {b, c},{c, d}}

b d

Figure: A graph with four vertices and four edges

Degree of a Vertex: The degree of a vertex V of a graph G (denoted by deg (V)) is the
number of edges incident with the vertex V.

Vertex Degree Even / Odd

a 2 even
b 2 even
C 3 odd
d 1 odd

Even and Odd Vertex: If the degree of a vertex is even, the vertex is called an even
vertex and if the degree of a vertex is odd, the vertex is called an odd vertex.

Degree of a Graph: The degree of a graph is the largest vertex degree of that graph. For
the above graph the degree of the graph is 3.
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Types of Graphs

There are different types of graphs, which we will learn in the following section.

Null Graph

A null graph has no edges. The null graph of n vertices is denoted by Nn

d C

O O
O

b

Null graph of 3 vertices

Simple Graph

A graph is called simple graph/strict graph if the graph is undirected and does not contain
any loops or multiple edges.

b
Simple graph
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Multi-Graph

If in a graph multiple edges between the same set of vertices are allowed, it is called Multi-
graph. In other words, it is a graph having at least one loop or multiple edges.

a C

b
Multi-graph

Directed and Undirected Graph

A graph G = (V, E) is called a directed graph if the edge set is made of ordered vertex pair
and a graph is called undirected if the edge set is made of unordered vertex pair.

a C

b
Undirected graph
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b
Directed graph

Connected and Disconnected Graph

A graph is connected if any two vertices of the graph are connected by a path; while a
graph is disconnected if at least two vertices of the graph are not connected by a path. If
a graph G is disconnected, then every maximal connected subgraph of G is called a
connected component of the graph G.

b
Connected graph
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d

b

Unconnected graph
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Regular Graph

A graph is regular if all the vertices of the graph have the same degree. In a regular graph
G of degree r, the degree of each vertex of Gisr.

a C

Regular graph of degree 3

Complete Graph

A graph is called complete graph if every two vertices pair are joined by exactly
one edge. The complete graph with n vertices is denoted by K,

o
o

b
Complete graph K3

Cycle Graph

If a graph consists of a single cycle, it is called cycle graph. The cycle graph with n vertices
is denoted by Cs
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rF 9

b
Cyclic graph Cs

Bipartite Graph

If the vertex-set of a graph G can be split into two disjoint sets, V, and V,, in such a way
that each edge in the graph joins a vertex in V, to a vertex in V,, and there are no edges
in G that connect two vertices in ¥, or two vertices in V,, then the graph G is called a
bipartite graph.

Bipartite graph
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Representation of Graphs

There are mainly two ways to represent a graph:

»  Adjacency Matrix
» Adjacency List

Adjacency Matrix

An Adjacency Matrix A[V][V] is a 2D array of size VxV where V is the number of vertices
in a undirected graph. If there is an edge between Vy to Vy then the value of A[Vx][ Vy]=1
and A[Vy][ Vx]=1, otherwise the value will be zero. And for a directed graph, if there is an
edge between Vx to Vy, then the value of A[V«][ Vy]=1, otherwise the value will be zero.

Adjacency Matrix of an Undirected Graph

Let us consider the following undirected graph and construct the adjacency matrix:

a Cc

b
An undirected graph

Adjacency matrix of the above undirected graph will be:

a (b |[c |d
a (0 [1 |1 |0
b |1 |0 [1 |0

0

—
—_
o
p—

=N
o
o
p—
=
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Adjacency Matrix of a Directed Graph

Let us consider the following directed graph and construct its adjacency matrix:

a C

b
A directed graph

Adjacency matrix of the above directed graph will be:

a b C d
a 0 1 1 0
b 0 0 1 0
C 0 0 0 1
0 0 0O |0
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Euler Graphs

A connected graph G is called an Euler graph, if there is a closed trail which includes every

edge of the graph G. An Euler path is a path that uses every edge of a graph exactly once.
An Euler path starts and ends at different vertices.

An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler circuit
always starts and ends at the same vertex. A connected graph G is an Euler graph if and
only if all vertices of G are of even degree, and a connected graph G is Eulerian if and only
if its edge set can be decomposed into cycles.

Euler graph

The above graph is an Eulergraphas™a1b2c3d4e5c6f7g"”covers all the edges
of the graph.

a 1 b
5 4 2
d 3 c

Non-Euler graph
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Hamiltonian Graphs

A connected graph G is called Hamiltonian graph if there is a cycle which includes every
vertex of G and the cycle is called Hamiltonian cycle. Hamiltonian walk in graph G is a
walk that passes through each vertex exactly once.

If G is a simple graph with n vertices, where n 2 3 If deg(v) 2 n/2 for each vertex v, then
the graph G is Hamiltonian graph. This is called Dirac's Theorem.

If G is a simple graph with n vertices, where n 2 2 if deg(x) + deg(y) 2 n for each pair of
non-adjacent vertices x and y, then the graph G is Hamiltonian graph. This is called Ore's
theorem.

Hamiltonian graph
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Tree
Tree is a discrete structure that represents hierarchical relationships between individual

elements or nodes. A tree in which a parent has no more than two children is called a
binary tree.

Tree and its Properties

Definition: A Tree is a connected acyclic undirected graph. There is a unique path between
every pair of vertices in G. A tree with N number of vertices contains (N-1) number of
edges. The vertex which is of 0 degree is called root of the tree. The vertex which is of 1
degree is called leaf node of the tree and the degree of an internal node is at least 2.

Example: The following is an example of a tree:

A tree
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Rooted Tree

A rooted tree G is a connected acyclic graph with a special node that is called the root of
the tree and every edge directly or indirectly originates from the root. An ordered rooted
tree is a rooted tree where the children of each internal vertex are ordered. If every
internal vertex of a rooted tree has not more than m children, it is called an m-ary tree.
If every internal vertex of a rooted tree has exactly m children, it is called a full m-ary

tree. If m = 2, the rooted tree is called a binary tree.

Root Node

Internal
Node

Leaf Leaf Leaf Leaf Leaf
Node Node Node Node Node

A Rooted Tree
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Binary Search Tree

Binary Search tree is a binary tree which satisfies the following property:

v Xin left sub-tree of vertex V, Valug(X) < Value (V)
* Yin right sub-tree of vertex V, Value(Y) = Value (V)

So, the value of all the vertices of the left sub-tree of an internal node V are less than or
equal to V and the value of all the vertices of the right sub-tree of the internal node V are
greater than or equal to V. The number of links from the root node to the deepest node is

the height of the Binary Search Tree.

Example

A Binary Search Tree
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Part -B (5x8=40 Marks)

Possible Questions:

1. Define the following terms by giving with examples:
i)Adjacency matrix
if)Incidence matrix
iii)Path matrix
iv)Circuit matrix
2. Define a tree and path length of a vertex with example.
3. State and prove handshaking lemma

4. Show that if a fully binary tree has i internal vertices then it has i+1 terminal
vertices and (2i+1)total vertices.

5. Describe about konigsberg bridge problem.

6. Find the eccentricity of all vertices, center, radius and diameter of the following
graph.

7. Prove that the number of vertices of odd degree in a graph is always even.
8. Prove that the number of pendent vertices of a tree is equal to %

9. Define graph. Explain the various types of graph with an example.

10. State and prove polyhedron formula.
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Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
A graphis said tobe ...... if there exists atleast one path
between every pair of veticesin G. connected disconnected complete regular connected
A tree with ...... vertices has atleast two vertices of ...... 1 n-1, degree n-2 , order n, degree n-1, size n, degree
The chromatic number of the chess board is ....... 2 5 64 60
A tree with n vertices has ........ edges. n-2 n-3 n-1 n n-1
shortest longest spanning diameter spanning  shortest spanning
kruskal's algorithm isused to find ............... in a graph G spanning tree  tree binary tree tree tree
The number of internal vertices in a binary tree with n
vertices is n-1/2 n-2/2 n/2 n/3 n-2/2
A tree has atleast .............. pendant vertices three two four ten two
An acyclic graphiscalled as .......... forest cycle tree trail tree
Any vertex having degree one is called ............ vertex pendant loop parallel isolated pendant
Any vertex having degree zero is called ............... vertex  pendant loop parallel isolated isolated
Any graph with edge set is empty is called as ............ complete connected disconnected null null
vertices with which a walk begins or ends are called its terminal
................ vertices terminal edges pendant vertices pendant edges terminal vertices
A walk with no repeated vertices is called as......... cycle path circuit trail trail
length of the
The number of edges in a path is called .......... path size of the path degree of the path order of the path  length of the path
If some edges are directed and some edges are undirected in
a graph , then the graph is called.......... digraph weighted graph isomorphic mixed mixed
An elementary cycle is cycle if its pathis ................. simple path elementary path simple trail elementary trail elementary path
A tree can have more than ......... centre. one two three four one
Every edge of a weekly connected digraph ties exactly in one
............. component. weak weakly connected  strong strongly connected weakly connected
A graph G=(V,E) in which every edge is directed is called
aS.....c..u. digraph undirected connected disconnected digraph
Atreeisa.............. Graph without any cycle. connected disconnected directed undirected connected
Two edges are said to be ------------ if they are incident on a
common vertex. adjacent incident pendant isolated adjacent
A graph has neither loops nor parallel edges is called a ---------
------- digraph simple undirected shell digraph
A graph in which every vertex has the same degree is
called -------------- digraph undirected simple regular regular
A walk is also called ---------------- chain trail cycle path chain
hamiltonian
A graph having a Hamiltonian circuit is called------------ graph digraph euler graph regular graph hamiltonian graph
A graph in which weights are assigned to each edge is called
Q —--m-mmmeee- graph weighted isomorphic directed undirected weighted
A e tree is rooted tree in which every vertex has either
or no children binary tree ordered tree rooted tree rooted binary tree  binary tree
A IS a graph whose components are all trees. tree graph forest walk forest
A consists of set of vertices and edges
such that each edge is incident with vertices. graph path forest walk graph
A vertex having no edge incident on it is
called end vertex pendant vertex isolated vertex null graph isolated vertex
A graph is said to be if there exists at least one
path between every pair of vertices in G. connected disconnected null graph hamiltanion connected
A tree with n vertices has edges n n-1 n-2 n+1 n-1
A graph in which all nodes are of equal degrees is known
T regular graph  complete graph simple graph null graph regular graph
A is connected graph without circuit graph directed graph undirected graph tree tree
The sum of the degrees of all vertices of a graph is equal to
the number of edges. twice thrice same any twice
A node with no children is called . siblings node leaf tree leaf
A graph is if it has no parallel edges or self-
loops simple directed adjacent self-loop simple
A graph in which some edges are directed and some are
undirected is called mixed graph regular graph complete graph  simple graph mixed graph




Row and

A graph is a collection of.... ? columns Vertices and edges Equations lines Vertices and edges
Exactly one

In a tree between every pair of vertices there is ? path A self loop Two circuits n number of paths Exactly one path
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KARP AG AM ACADEMY OF HIGHER EDUC ATION 9 A statement that i is always faise is called -- . ,
a)Contradlctlon , b)Tautology c)’I‘autology
Karpagam Unwersxty . P
COIMBATORE-ZI ‘ vl .
DEPARTMENT OF MATHEMATICS s '~b)‘Assoc1,a,ﬁV'ei~~3§j i
' Fifth Semester | d)distributive
I INTERNAL ’I‘EST- JUL 947 AR R RS S e
| DISCRETE MATHEMATICS Y AT d)(P AQ)VE
Date: .07.17() : Time:2 hours PR TR T e
Class: HIB.Sc(Mathematics) Maximum: 50 Marks , | b)] QP c) ] QP d)] Q,qp
' _ L 13; From: (x) A(x) ong'can conclude A(y) e
, PART-A (20x 1 =20 Marks) - _ - a)RuleUS © b)RuleES ¢/c)Rule) EG d)Rule UG
ANSWER ALL THE QUESTIONS ‘ o " 14. For three vanables P.Q and R there are ---—-—- maxtenns ,
-1 -](Pv [0) L — , o - ‘ R LR T ) o A SR d)8 et
~ 3lPAlQ BIPAQ  glPVIQ T 9P AQ 2
2.Pv P is equivalent to —ameemmmm . | SE S g;]? ::sgugcitlonl
- ‘ : - d)Biconditiona. :
3. %p 332),& ...... ol i i = {42,261, 3)} are

90->P  Hlor  oloe  alodk S GDEDAD . DASHEEIL.

A iate;that _w;.. ; l;,a taumloﬁ DA (12,22} D{@EGI), 1}
" o N 17. I f(x) =x+2 and g(x) x* -2 for xeR then fog is -z
5. P has truth value T ,Q has truth value Fthen P ->Q hastmth - D3 b2 o or 1
value----awraun
a)T "BF c)P | d)Q- o 18.'A One — to —on¢ function is also known as ---——-

. . a)injective ' b)suq:gtlve c)bl_]ectlve ' d)dls_lunctxve
\ , SR ‘ 19. If f(x) = x+2 and g(x) = x° —1 then(gof)(x) = --—---
a)Rule US * b)Rule ES | “c)Rule EG;\' 'd)gule UG . A +Hix+4 gg)x 2 +4x.3. c()%czf?grx?M d)x? +4x+3
7.PdQis eqUIValentto e A - 20. Abmaryrelatloana setXIS said to be reflexive if
PvQ - BIEvQ  c)PATQ QP a)aRa b)aRb=bRa =
L ? S ‘cJaRb, bRc:aRc - d)aRb,bRa=>a=b

- 6. From (x) A(x) one can conclude A(Y)



- PART-B (3x10=30 Marks)

ALL THE QUESTIONS ‘CARRY EQUAL MARKS
21.(8) Provethat(PvQ)M(TPA(WQ\/‘[R)V(WP/JQ)VOPATR))
is a tautology
| (OR)
(b) Show that the followmg premlses are Incon51stent
i) If Jack misses many classes through 111ness, he falls in
school. e
ii) If jack fails in school then he is uneducated «
. AiIf jack reads a lot of books then he is not uneducated
iv)J ack misses many classes through 111ness and reads a lot of
- . rbooks. . . .
: '22 (a) Fmd the PDNF and PCNF of the formula
Pv(lP—)(Qv(lQ—)R))) .
(OR)
(b) Construct the truth table for 1 [Pv QAR)] > {(on) A (QUR)]
23 (@ Explam the properues of rélations thh examples )
< ©R)
.. (b) Let {1 2‘13}“ ‘ f g, h and s be functions from X to. X given by
f‘“{(l 2), 233D}, g={(1,2), 2.3 3} A,
(2, 2),(3 1)} and’ s—{(l 1) (2,2),(3; 3)} ﬁnd fo g, gof, hog, gos,
sos, fos, thog ] e




e MiUseay o etbi NN beafunction such that fx) =5 x e N then the f(x) 1
(15MMU505A) et AN PN i S E0s
'KARPAGAM ACADEMY OF m « mn EDUC ATION

i R et a.} +
g.a){l 23 4}

DEPARTMENT OF MA HLEMATI(;‘S

- _ Fifth Semester - o
I Internal Test - AUG'2017 ey

o ‘ Elective-1 Dlscrete Mathematxcs L

Date: 11-08-2017 L - . Time: 2 Hours

Clas's; X B.Sc'Mathematlcs . ' Maxxmum Marks 50

PART-A (20X1—20 Marks)
Answer all'the Questions:
L If f(x) x+2 and g(x) x2 -1 then(got)(x) = :
_ - 2)X* +ax+4- b) X2 +4x-3 o) x? Ax+4 AP +4x+3
2. If the relation R and S are both reflexive. thex; S

' a)y Symmetrxe b) reflexive c)transitive d) not reﬂexxve , ~
3.Letf:x—>y,g:y-—>xbe the functions: then gis equal to f— 1 only it

a)fog=1, b)gof=I c)got=l, dj fog,—rx | 3
4. Abinary relation R ina set X is said to be transitive i

a)yaRa b)aRb=>bRa. ~ c)aRb bRc:)aRc d) aRb bRa:;» aﬂ-b

‘5. The function fog is called the ' _fonetion.
a). Inverse ' b)identity  ¢) composmon d) bijeCtlve [ o ~' f - g
6. A One — to —one and onto function s also knownas EIC0 o S NRULIES SR ‘_20 Acontext-sens:twe grammar contams only productlons of thdform
a)injective  b) surjective c)bijective - d)ob_]ectlve IS eS o @ —>ﬁ Whefe_,.-.,_._; o ' .
7.InN, define aRb if a+b = 7. This is symmetric wh i i a)]a[ ]ﬁ] b)[a[ |ﬁl c)|a| ',B] |“ =/}

ayata=7 - b)b+a—7 i c)b+c—7 :

8 Suppose I RxR, the ordered palrs (x—2 2y+1) andg(y ‘1 x+2 ) are equal then values P ART—B (3X1 0_30 Marks) |
of x and y are i ,

a) 23 . 32 c)2 3 d)3 “2 _ A Answ‘erfall,the Questlons.
o 9 A mappmg f: X5Yi is called . if dlstxnct elements of x are mapped mto i
dlstmct elements o ' SR S
. a) one—to-one b) Onto . c) mto d) many to one_ L 1 ‘

(b) Explam the types of grammars w1th exam;)les ) .t







Karpagam Academy of ngher Educatlon :
s o] Conmbatore—zl. s
* DEPARTMENT OF 1

MorlelE’ ‘ (m“ atlon ' Sep mbe

DlscreteMathematlcs
Date s .09.2017( ) et el Tlme 3Hours
Class: 11 B.Se M“athematlcs T Ma:mnum 460 Marks
' PART-A(20X1-20 Marks) ..o
Answer all the questions
LA esnreserssessanternsses oz IS a sentence that is, .fals‘e,but,‘w
not both. S
a) proposition b)logic .
‘c)sentence e d) empty

2.Givena statement o) the sentence e p” is read “not p
the case that p” and is

called the.....‘...' .....
a) negation of p  'b) conjunction of p and q
¢)sentence d) logic

3. Suppose x is a real number. Letq,andr symbohze “x <3, and ‘
=37 respectwely, then x < 3is given by......-

a)y~qVvr bygir
cqvr dy~rvq ‘
4. Two statement forms are called .......oooveee .....if and only if,

they have identical truth values for each possxblc substitution of
statements for their statement variables.
a)loglcally in‘equivalent - b) isomorphic

c) invalid d)logically equlvalent

5. ThE ceveernnneen of a function as the image of its domam

a) domain b) range

¢) co domain d) image P

6. In one-one mappings an element in B has only. eevesensisesarass pre
imageinA - 5

a)zero bitwo

c) one “d) three

a) commutative . ~b) -associative: -
¢) distributive ~d)identity -
14 lnthe complement axioms ana‘-”-,..:.;-.::v..::.‘.:;;,
a)y0. - - bt Bl ke
c)-L.u

) commutative angd distributive -~

.¢) complemented.and: distributive |

7,16 £-A—B in this set Blscalledthe P

.....of the function £

a) domain b)-co domam

c) set . d).element s S

8. The element a may be referred to asthe

a) f-image b) pre-image ;.  \»

¢) domain. . d).co domain. . R .
 9.FAS have only .......... amount of memory and recognmon of a

CFL may require storing, jon. . -

a) finite

¢) bounded., -

10. APDA’ prov1des

a)finite .

¢) unlimited i
11. A pushdown automaton is said to be ..

a) Deterministic b) Non detenmmsnc

¢) well known d) unknown ;
12, fLisa Context free language then there exlsts :

accepts:L: - 5 S TR B "*
a) FSA b)CFL
c) PDA D o

13. In Involution.: law Jfalattice be complemented, Saneelattic

thh two condmons:y

. .-that E

15. A Boolean algebra isa lattlce whxch contams |

"‘l“ee‘.“st.,;.elen'lent and
a greatest@lement .and;which is° both S

b) associative and commutative

d) complemented: and: assocative ¢ 1 T T L
16: The(complement of any function is’same: as the complement of

-each literal in the ....oeiivesiuss .of that funcnon R

a) lattice b boolean
cydual d) canonical




17 A tree'i 1sa

Graph without any cycle -
-a)conriected b) disconnected” ~ 7 v L
. ¢)directed - d) undirée o o

, 18 Atree can have more than

 d) strongly connected -

| 20 A graph G—-(V,E) in whlch e\}ery edgeﬁs dlrec'ced is called

o) digraph.
c) connected

_PART —B (sxs"

Answer:all the questlons
21:a) Prove thatz:

(PvQ)A)(TPA(TQv'R)v(TPAb)v(TP

/\—IR) ) isa
tautology

(OR) LA
) Show that the followmg ‘premises: amrlnconswtent. S
i) If Jack misses many: classes’thr ‘ gh 111ness heafax e e
-schook ;
‘i) If jack failsin. school then heis. uneducated

:111) Ifjack reads:a lot of books then heis not uneducated.?"- 5

(OR:
b)LetS*{12345} and T={1,2,3,8;
f:S—T and g:S— Shy:
cand g={(1,2),(3;1)/2.2
- the followmg froug;

23. a) Show that the. language L(G4) {a“ "/ n =>1}is generaxed by
: “the: followm

) where X0) onsxsts of productlons

b) State and pro

25: ‘a) Prove that ﬂw number of vertices of odd degree‘ ina graphls

always even
b) Prove that the number of pendent vemces ofa tree_
s SR

T2
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