
 J2EE 2016- 2018 Batch

Department of CS, CA & IT, KAHE 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE

SUBJECT : J2EE

SEMESTER : III L T P C

SUBJECT CODE: 16CSP301 CLASS : II M.Sc.CS 4 0 0 4

Course Objective:

1. To Understand J2EE as an architecture and platform for building and deploying web-

based n-tier transactional component-based enterprise applications.

2. To Understand the EJB architecture and have a good grasp on when to use and how to

use various EJB bean types and acquire relevant Java programming experience.

3. To learn the concepts of servlets and its purpose.

4. To become familiar with the web development environment.

5. To understand about java server pages and to develop dynamic web pages.

Course Outcome:

After the completion of this course, a successful student will be able to do the following:

1. Thoroughly understand the JEEE architecture.

2. Gain an in-depth understanding of database programming using JDBC.

3. Develop Java Server Pages (JSPs).

4. Implement simple JSPs that use Java code in declarations, expressions and scriptlets.

5. Understand the design and development of web applications using Servlets and JSPs.

UNIT-I

J2EE Overview: Beginning of Java – Java Byte code – Advantages of Java –J2EE and J2SE.

J2EE Multi Tier Architecture – Distributive Systems – The Tier – Multi Tier Architecture –

Client Tier - Web Tier - Enterprise Java Beans Tier - Enterprise Information Systems Tier

Implementation.

 J2EE 2016- 2018 Batch

Department of CS, CA & IT, KAHE 2

UNIT-II

J2EE Database Concepts: Data – Database – Database Schema. JDBC Objects: Driver Types

– Packages – JDBC Process – Database Connection – Statement Objects – Result Set – Meta

Data.

UNIT-III

Java Servlets: Benefits – Anatomy – Reading Data from Client –Reading HTTP Request

Headers – Sending Data to client – Working with Cookies.

UNIT-IV

Enterprise Java Beans: Deployment Descriptors – Session Java Bean –Entity Java Bean

Message Driven Bean.

UNIT-V

JSP: What is Java Server Pages? - Evolution of Dynamic Content Technologies – JSP & Java 2

Enterprise edition. JSP Fundamentals: Writing your first JSP- Tag conversions- Running JSP.

Programming JSP Scripts: Scripting Languages – JSP tags- JSP directives – Scripting elements

– Flow of Control – comments. Java Remote Method Invocation.

SUGGESTED READINGS

TEXT BOOKS

1. Jim Keogh. (2010). The Complete Reference J2EE, Tata McGraw Hill: New Delhi. 1st

Edition.

2. Duane, K. Fields., & Mark, A. Kolb. (2002). Web Development with Java Server Pages,

Manning Publications, Pune, 2nd Edition.

REFERENCES

1. David R. Heffelfinger (2011), Java EE 6 Development with NetBeans 7,Packt Publishers,1st

Edition.

2. Joel Murach, Michael Urban, (2014), Murach's Java Servlets and JSP, (Murach: Training &

Reference). 3rd Edition

3. Joseph, J. Bambara et al. (2007). J2EE Unleashed , New Delhi:Tech Media, 1st Edition.

4. Paul, J. Perrone., Venkata, S. R. Chaganti., Venkata S. R. Krishna., & Tom Schwenk, (2003),

J2EE Developer's Handbook Sams Publications, New Delhi, 1st Edition.

5. Rod Johnson. (2004). J2EE Development without EJB , New Delhi:Wiley Dream Tech, 1st

Edition

6. Rod Johnson., & Rod Johnson, P.H. (2004). Expert One-On-One J2ee Design and

Development. New Delhi: John Wiley & Sons, 2nd Edition.

7. Budi Kurniawan (2012), Servlet & JSP: A Tutorial, Brainy Software Publisher, 1st Edition.

https://www.amazon.com/Joel-Murach/e/B001JP7JQI/ref=dp_byline_cont_book_1
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Michael+Urban&search-alias=books&text=Michael+Urban&sort=relevancerank

 J2EE 2016- 2018 Batch

Department of CS, CA & IT, KAHE 3

8. Mahesh P. Matha (2013), JSP and SERVLETS: A Comprehensive Study PHI Learning, 1st

Edition.

9. John Brock, Arun Gupta, Geertjan Wielenga (2014), Java EE and HTML5 Enterprise

Application Development ,Oracle Press.

 WEB SITES

1. www.java.sun.com/javaee/

2. www.java.sun.com/j2ee/1.4/docs/tutorial/doc/

3. www.j2eebrain.com/

4. www.javaworld.com/

5. www.corej2eepatterns.com/

6. www.jsptut.com

https://www.amazon.in/s/ref=dp_byline_sr_ebooks_1?ie=UTF8&text=Mahesh+P.+Matha&search-alias=digital-text&field-author=Mahesh+P.+Matha&sort=relevancerank
https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=John+Brock&search-alias=stripbooks
https://www.amazon.in/Arun-Gupta/e/B00DWBZ3NI/ref=dp_byline_cont_book_2
https://www.amazon.in/Geertjan-Wielenga/e/B00S8PV3TQ/ref=dp_byline_cont_book_3
http://www.j2eebrain.com/
http://www.javaworld.com/
http://www.corej2eepatterns.com/

 Lecturer Plan 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE

Faculty Name Dr.S.Manju Priya

Subject J2EE Subject Code 16CSP301

Class II M.Sc Computer Science Semester III

Batch 2016-2018

 LECTURER PLAN

SI.NO

Lecture

Duration

(Hrs)

Topics to be Covered
Support

Materials

1 2 Beginning of Java, Java Byte code Advantages of Java T1: 8-15

2 1 J2EE and J2SE T1: 16-20

3 2 J2EE Multi Tier Architecture , Distributive Systems T1: 24-27

4 1 The Tire, Multi tier architecture T1: 27-32

5 1 Client Tier T1: 32-33

6 1 Web Tier T1: 33-34

7 2 Enterprise Java Beans Tier Enterprise T1: 35-36

8 1 Information Systems Tier Implementation. T1: 36-37

9 1 Recapitulation and Discussion of Important Questions

Total Hrs Planned for Unit I 12

 Lecturer Plan 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE

UNIT II

SI.NO

Lecture

Duration

(Hrs)

Topics to be Covered
Support

Materials

1 2 J2EE Database Concepts: Data – Database T1:98-99

2 2 Database schema T1:100-115

3 2 JDBC Objects: Driver Types ,Packages T1:124-126

4 2 JDBC Process ,Database Connection T1:127-133

5 2 Statement Objects ,Result Set T1:135-148

6 2 Meta Data T1:157-160

7 1 Recapitulation and Discussion of Important Questions

Total Hrs Planned for Unit II 13

UNIT III

SI.NO

Lecture

Duration

(Hrs)

Topics to be Covered
Support

Materials

1 1 Java Servlets:Benefits T1:350

2 3 Anatomy T1:352-354

3 1 Reading Data from Client T1:354

4 1 Reading HTTP Request Headers T1:355

5 2 Sending Data to client T1:359

6 1 Working with Cookies T1:361-364

7 1 Recapitulation and Discussion of Important Questions

Total Hrs Planned for Unit III 10

 Lecturer Plan 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE

UNIT IV

SI.NO

Lecture

Duration

(Hrs)

Topics to be Covered
Support

Materials

1 1 Enterprise Java Beans: Deployment Descriptors T1:409-424

2 2 Contd.. Deployment Descriptors T1:409-424

3 2 Session Java Bean T1:431-433

4 1 Entity Java Bean T1:434-439

5 2 Message Driven Bean T1:440-443

6 1 Recapitulation and Discussion of Important Questions

Total Hrs Planned for Unit IV 9

UNIT V

SI.NO

Lecture

Duration

(Hrs)

Topics to be Covered
Support

Materials

1 2

JSP: What is Java Server Pages? - Evolution of Dynamic

Content Technologies T1:379-381

2 1 JSP & Java 2 Enterprise T2:2-15

3 2

JSP Fundamentals: Writing your first JSP- Tag

conversions,Running JSP

T1: 381-389

R1: 44-87

4 2 Programming JSP Scripts: Scripting Languages T2:46-64

5 2 JSP tags- JSP directives T1: 381-388

6 1 Scripting elements , Flow of Control ,comments T2:65-82

7 2 Java Remote Method Invocation T1: 486-489

 Lecturer Plan 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE

8 1 Recapitulation and Discussion of Important Questions

9 1 Discussion of Previous ESE Question Papers

10 1 Discussion of Previous ESE Question Papers

11 1 Discussion of Previous ESE Question Papers

Total Hrs Planned for Unit V 16

Total Hrs 60

Text Book

T1 Jim Keogh. (2010). The Complete Reference J2EE, Tata McGraw Hill: New Delhi. 1st Edition.

T1
Duane K. Fields & Mark A.Kolb.(2002) Web Development with Java Server

Pages, 1st Edition, Manning Publications, Pune.

References

R1

David R. Heffelfinger (2011), Java EE 6 Development with NetBeans 7,Packt Publishers,1st

Edition.

R2

Joel Murach, Michael Urban, (2014), Murach's Java Servlets and JSP, (Murach: Training &

Reference). 3rd Edition

R3
 Joseph, J. Bambara et al. (2007). J2EE Unleashed , New Delhi:Tech Media, 1st Edition

R4

 Paul, J. Perrone., Venkata, S. R. Chaganti., Venkata S. R. Krishna., & Tom Schwenk, (2003),

J2EE Developer's Handbook, Sams Publications, New Delhi, 1st Edition

R5

Rod Johnson. (2004). J2EE Development without EJB , New Delhi:Wiley Dream Tech, 1st

Edition.

R6

Rod Johnson., & Rod Johnson, P.H. (2004). Expert One-On-One J2ee Design and Development.

New Delhi: John Wiley & Sons, 2nd Edition.

R7 Budi Kurniawan (2012), Servlet & JSP: A Tutorial, Brainy Software Publisher,1st Edition.

R8

 Mahesh P. Matha (2013), JSP and SERVLETS: A Comprehensive Study PHI Learning,

1st Edition.

R9

 John Brock, Arun Gupta, Geertjan Wielenga (2014), Java EE and HTML5 Enterprise Application

Development ,Oracle Press.

 Lecturer Plan 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE

Web Sites

W1 java.sun.com/javaee/

W2 java.sun.com/j2ee/1.4/docs/tutorial/doc

W3 www.j2eebrain.com/

W4 www.javaworld.com/

W5 www.corej2eepatterns.com/

W6 www.jsptut.com

http://www.javaworld.com/
http://www.corej2eepatterns.com/
http://www.jsptut.com/

 J2EE Overview 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 1/15

UNIT I

J2EE Overview: Beginning of Java – Java Byte code – Advantages of Java –J2EE and J2SE.

J2EE Multi Tier Architecture – Distributive Systems – The Tier – Multi Tier Architecture –

Client Tier - Web Tier - Enterprise Java Beans Tier - Enterprise Information Systems Tier

Implementation.

TEXT BOOKS

1. Jim Keogh. (2010). The Complete Reference J2EE, Tata McGraw Hill: New Delhi. 1st

Edition.

REFERENCES

1. David R. Heffelfinger (2011), Java EE 6 Development with NetBeans 7,Packt Publishers,1st

Edition.

2. Paul, J. Perrone., Venkata, S. R. Chaganti., Venkata S. R. Krishna., & Tom Schwenk, (2003),

J2EE Developer's Handbook Sams Publications, New Delhi, 1st Edition.

3. Rod Johnson. (2004). J2EE Development without EJB , New Delhi:Wiley Dream Tech, 1st

Edition

4. Rod Johnson., & Rod Johnson, P.H. (2004). Expert One-On-One J2ee Design and

Development. New Delhi: John Wiley & Sons, 2nd Edition.

 WEB SITES

1. www.java.sun.com/javaee/

2. www.java.sun.com/j2ee/1.4/docs/tutorial/doc/

3. www.j2eebrain.com/

4. www.javaworld.com/

5. www.corej2eepatterns.com/

http://www.j2eebrain.com/
http://www.javaworld.com/
http://www.corej2eepatterns.com/

 J2EE Overview 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 2/15

J2EE OVERVIEW

J2EE is Java, optimized for enterprise computing. Officially J2EE stands for Java 2 Platform,

Enterprise Edition. J2EE is an open, standard-based, development and deployment platform for

building n-tier, web-based and server-centric and component-based enterprise applications. As

an enterprise platform, the J2EE environment extends basic Java with tools that "provide a

complete, stable, secure, and fast Java platform to the enterprise level." One goal of using J2EE

is reducing the cost and complexity of creating large-scale solutions. Because Java is a strongly

typed language, use of the language is often inherently more secure in Web applications than

Web applications built with less strong typing

1.1 BEGINNING OF JAVA

Java was created in 1991. It was developed by James Gosling et al. of Sun Microsystems.

Initially called Oak, in honor of the tree outside Gosling's window, its name was changed to Java

because there was already a language called Oak. The original motivation for Java is the need for

platform independent language that could be embedded in various consumer electronic products

like toasters and refrigerators. As a programming language, Java can create all kinds of

applications that you could create using any conventional programming language

1.2 JAVA BYTE CODE

Java bytecode is the form of instructions that the Java virtual machine executes. Each bytecode

opcode is one byte in length, although some require parameters, resulting in some multi-byte

instructions. Not all of the possible 256 opcodes are used. Java bytecode is designed to be executed

in a Java virtual machine. There are several virtual machines available today, both free and commercial

products. Fig.1.1 shows the process of converting a source code to byte code.

Fig. 1.1 Converting Source code to bytecode

Java Source Code Interpreter Java Byte Code

http://en.wikipedia.org/wiki/Java_virtual_machine
http://en.wikipedia.org/wiki/Bytecode
http://en.wikipedia.org/wiki/Opcode
http://en.wikipedia.org/wiki/Java_virtual_machine

 J2EE Overview 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 3/15

1.3 ADVANTAGES OF JAVA

JAVA offers a number of advantages to developers.

 Java is simple: Java was designed to be easy to use and is therefore easy to write,

compile, debug, and learn than other programming languages. The reason that why Java is

much simpler than C++ is because Java uses automatic memory allocation and garbage

collection where else C++ requires the programmer to allocate memory and to collect

garbage.

 Java is object-oriented: Java is object-oriented because programming in Java is centered

on creating objects, manipulating objects, and making objects work together. This allows

you to create modular programs and reusable code.

 Java is platform-independent: One of the most significant advantages of Java is its

ability to move easily from one computer system to another. The ability to run the same

program on many different systems is crucial to World Wide Web software, and Java

succeeds at this by being platform-independent at both the source and binary levels.

 Java is distributed: Distributed computing involves several computers on a network

working together. Java is designed to make distributed computing easy with the

networking capability that is inherently integrated into it. Writing network programs in

Java is like sending and receiving data to and from a file. For example, the diagram below

shows three programs running on three different systems, communicating with each other

to perform a joint task.

 Java is interpreted: An interpreter is needed in order to run Java programs. The programs

are compiled into Java Virtual Machine code called bytecode. The bytecode is machine

independent and is able to run on any machine that has a Java interpreter. With Java, the

program need only be compiled once, and the bytecode generated by the Java compiler

can run on any platform.

 Java is secure: Java is one of the first programming languages to consider security as part

of its design. The Java language, compiler, interpreter, and runtime environment were each

developed with security in mind.

 J2EE Overview 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 4/15

 Java is robust: Robust means reliable and no programming language can really assure

reliability. Java puts a lot of emphasis on early checking for possible errors, as Java

compilers are able to detect many problems that would first show up during execution time

in other languages.

 Java is multithreaded: Multithreaded is the capability for a program to perform several

tasks simultaneously within a program. In Java, multithreaded programming has been

smoothly integrated into it, while in other languages, operating system-specific procedures

have to be called in order to enable multithreading. Multithreading is a necessity in visual

and network programming

1.4 J2EE AND J2SE

J2SE is considered the foundation edition of the Java platform and programming environment in

which all other editions are based. J2EE is the edition of the Java 2 platform targeted at

developing multi-tier enterprise applications.J2EE consists of a set of specifications, APIs and

technologies defining enterprise application development. J2EE technology providers expose

tools, frameworks and platforms that handle a good deal of the details of enterprise application

infrastructure and behavior. J2EE implementations enjoy all of the features of the Java 2

Standard Edition (J2SE) platform with additional frameworks and libraries added to support

distributed/Web development

1.5 J2EE MULTI TIER ARCHITECTURE

The J2EE platform uses a multitiered distributed application model. Application logic is divided

into components according to function, and the various application components that make up a

J2EE application are installed on different machines depending on the tier in the multitiered

J2EE environment to which the application component belongs. Figure 1.2 shows two

multitiered J2EE applications divided into the tiers described in the following list.

 Client-tier components run on the client machine.

 Web-tier components run on the J2EE server

 Enterprise JavaBean tier components run on the J2EE server.

 J2EE Overview 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 5/15

 Enterprise information system (EIS)-tier software runs on the EIS server.

Although a J2EE application can consist of the three or four tiers shown in Figure 1.2, J2EE

multitiered applications are generally considered to be three tiered applications because they are

distributed over three different locations: client machines, the J2EE server machine, and the

database or legacy machines at the back end. Three-tiered applications that run in this way

extend the standard two-tiered client and server model by placing a multithreaded application

server between the client application and back-end storage.

Figure1.2 J2EE Multitiered Applications

1.6 DISTRIBUTIVE SYSTEMS

The concept of multi-tier architecture has evolved over decades, following a similar evolutionary

course as programming languages. The key objective of multi-tier architecture is to share

resources amongst clients, which are the fundamental design philosophy used to develop

programs. In earlier days programmers originally used assembly language to create programs.

These programs employed the concept of software services that were shared with the program

running on the machine. Software services consist of subroutines written in assembly language

that communicate with each other using machine registers, which are memory spaces within the

CPU of a machine. Whenever a programmer required functionality provided by a software

 J2EE Overview 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 6/15

service, the programmer called the appropriate assembly language subroutine from within the

program.

 Although the technique of using software services made creating programs efficient by

reusing code, there was a drawback. Assembly language subroutines were machine specific and

couldn’t be easily replicated on different machines. This meant that subroutines had to be

rewritten for each machine. The introduction of FORTRAN and COBOL brought the next

evolution of programming languages and with it the next evolution of software services.

Programs written in FORTRAN could share functionality by using functions instead of assembly

language subroutines. The same was true of programs written in COBOL. A function is

conceptually similar to a Java method, which is a group of statements that perform a specific

functionality. The group is named, and is callable from within a program. Although both

assembly language subroutines and functions are executed in a single memory space, functions

had a critical advantage over assembly language subroutines.

 A function could run on different machines by recompiling the function. However, software

services were restricted to a machine. This meant programs and functions that comprise software

services had to reside on the same machine. A program couldn’t call a software service that was

contained on a different machine. Programs and software services were saddled with the same

limitations that affected data exchange at that time. Magnetic tapes were used to transfer data,

programs, and software services to another machine. There wasn’t a real-time transmission

system.

1.7 THE TIER

 A tier is an abstract concept that defines a group of technologies that provide one or more

services to its clients. A good way to understand a tier structure’s organization is to draw a

parallel to a typical large corporation (see Figure 1.3).

 J2EE Overview 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 7/15

Figure 1.3 Resources of a large organization are typically organized into a tier structure that operates similarly to

the tier structure used in distributed systems.

 At the lowest level of a corporation are facilities services that consist of resources necessary

to maintain the office building. Facilities services encompass a wide variety of resources that

typically include electricity, ventilation, elevator services, computer network services, and

telephone services. The next tier in the organization contains support resources such as

accounting, supplies, computer programming, and other resources that support the main activity

of the company. Above the support tier is the production tier. The production tier has the

resources necessary to produce products and services sold by the company. The highest tier is the

marketing tier, which consists of resources used to determine the products and services to sell to

customers.

 Any resource is considered a client when a resource sends a request for service to a service

provider (also referred to as a service). A service is any resource that receives and fulfills a

request from a client, and that resource itself might have to make requests to other resources to

fulfill a client’s request. For Example a product manager working at the marketing tier decides

the company could make a profit by selling customers a widget. The product manager requests

an accountant to conduct a formal cost analysis of manufacturing a widget.

The accountant is on the support tier of the organization. The product manager is the client and

the accountant is the service. However, the accountant requires information from the

manufacturing manager to fulfill the product manager’s request. The manufacturing manager

works on the production tier of the organization. The accountant is the client to the

 J2EE Overview 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 8/15

manufacturing manager who is the service to the accountant. In multi-tier architecture, each tier

contains services that include software objects, database management systems (DBMS), or

connectivity to legacy systems.

 Information technology departments of corporations employ multi-tier architecture because

it’s a cost-efficient way to build an application that is flexible, scalable, and responsive to the

expectations of clients. This is because the functionality of the application is divided into logical

components that are associated with a tier. Each component is a service that is built and

maintained independently of other services. Services are bound together by a communication

protocol that enables a service to receive and send information from and to other services.

 A client is concerned about sending a request for service and receiving results from a service.

A client isn’t concerned about how a service provides the results. This means that a programmer

can quickly develop a system by creating a client program that formulates requests for services

that already exist in the multi-tier architecture. These services already have the functionality built

into them to fulfill the request made by the client program.

 Services can be modified as changes occur in the functionality without affecting the client

program. For example, a client might request the tax owed on a specific order. The request is

sent to a service that has the functionality to determine the tax. The business logic for calculating

the tax resides within the service. A programmer can modify the business logic in the service to

reflect the latest changes in the tax code without having to modify the client program. These

changes are hidden from the client program.

1.8 J2EE MULTI-TIER ARCHITECTURE

J2EE is four-tier architecture (see Figure1.4). These consist of the Client Tier (sometimes

referred to as the Presentation Tier or Application Tier), Web Tier, Enterprise JavaBeans Tier

(sometimes referred to as the Business Tier), and the Enterprise Information Systems Tier. Each

tier is focused on providing a specific type of functionality to an application.It’s important to

delineate between physical location and functionality. Two or more tiers can physically reside on

the same Java Virtual Machine (JVM) although each tier provides a different type of

functionality to a J2EE application. And since the J2EE multi-tier architecture is functionally

centric, a J2EE application accesses only tiers whose functionality is required by the J2EE

 J2EE Overview 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 9/15

application. It’s also important to disassociate a J2EE API with a particular tier. That is, some

APIs (i.e., XML API) and J2EE components can be used on more than one tier, while other APIs

(i.e., Enterprise JavaBeans API) are associated with a particular tier. The Client Tier consists of

programs that interact with the user. These programs prompt the user for input and then convert

the user’s response into requests that are forwarded to software on a component that processes

the request and returns results to the client program. The component can operate on any tier,

although most requests from clients are processed by components on the Web Tier. The client

program also translates the server’s response into text and screens that are presented to the user.

Figure1.4 J2EE consists of four tiers, each of which focuses on providing specific functionality to an

application.

 The Web Tier provides Internet functionality to a J2EE application. Components that operate

on the Web Tier use HTTP to receive requests from and send responses to clients that could

reside on any tier. A client is any component that initiates a request, as explained previously in

this chapter. For example (see Figure 1.5), a client’s request for data that is received by a

component working on the Web Tier is passed by the component to the Enterprise JavaBeans

Tier where an Enterprise Java Bean working on the Enterprise JavaBeans

 J2EE Overview 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 10/15

Figure 1.5 J2EE consists of four tiers, each of which focuses on providing specific functionality to an

application

A request is typically passed from one tier to another before the Tier interacts with DBMS to

fulfill the request. Requests are made to the Enterprise JavaBeans by using the Java Remote

Method Invocation (RMI) API. The requested data is then returned by the Enterprise JavaBeans

where the data is then forwarded to the Web Tier and then relayed to the Client Tier where the

data is presented to the user. The Enterprise JavaBeans Tier contains the business logic for J2EE

applications.

. Access is made using an Access Control List (ACL) that controls communication between

tiers. The ACL is a critical design element in the J2EE multi-tier architecture because ACL

bridges tiers that are typically located on different virtual local area networks and because ACL

adds a security level to web applications. Hackers typically focus their attack on the Web Tier to

try to directly access DBMS. ACL prevents direct access to DBMS and similar resources. The

EIS links a J2EE application to resources and legacy systems that are available on the corporate

backbone network. It’s on the EIS where a J2EE application directly or indirectly interfaces with

a variety of technologies, including DBMS and mainframes that are part of the mission-critical

systems that keep the corporation operational. Components that work on the EIS communicate to

resources using CORBA or Java connectors, referred to as J2EE Connector Extensions.

 J2EE Overview 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 11/15

1.9 CLIENT TIER IMPLEMENTATION

There are two components on the Client Tier that are described in the J2EE specification. These

are applet clients and application clients. An applet client is a component used by a web client

that operates within the applet container, which is a Java-enabled browser. An applet uses the

browser as a user interface.

An application client is a Java application that operates within the application client

container, which is the Java 2 Runtime Environment, Standard Edition (JRE). An application has

its own user interface and is capable of accessing all the tiers in the multi-tier architecture

depending how the ACLs are configured, although typically an application has access to only the

web layer. A rich client is a third type of client, but a rich client is not considered a component of

the Client Tier because a rich client can be written in a language other than Java and therefore

J2EE doesn’t define a rich client container.

A rich client is similar to an application client in that both are applications that contain their own

user interface. And as with an application client, a rich client can access any tier in the

environment, depending on the ACLs configuration, using HTTP, SOAP, ebXML, or an

appropriate protocol.

1.10 WEB TIER IMPLEMENTATION

The Web Tier has several responsibilities in the J2EE multi-tier architecture, all of which is

provided to the Client Tier using HTTP. These responsibilities are to act as an intermediary

between components working on the Web Tier and other tiers and the Client Tier.

Intermediary activities include:

 Accepting requests from other software that was sent using POST, GET, and PUT

operations, which are part of HTTP transmissions

 Transmit data such as images and dynamic content

There are two types of components that work on the Web Tier. These are servlets and

Java Server Pages (JSP), although many times they are proxied to the Application or EJB Tier. A

servlet is a Java class that resides on the Web Tier and is called by a request from a browser

 J2EE Overview 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 12/15

client that operates on the Client Tier. A servlet is associated with a URL that is mapped by the

servlet container.

A request for a servlet contains the servlet’s URL and is transmitted from the Client Tier to the

Web Tier using HTTP. The request generates an instance of the servlet or reuses an existing

instance, which receives any input parameters from the Web Tier that are necessary for the

servlet to perform the service. Input parameters are sent as part of the request from the client.

 An instance of a servlet fulfills the request by accessing components/resources on the Web

Tier or on other tiers as is necessary based on the business logic that is encoded into the servlet.

The servlet typically generates an HTML output stream that is returned to the web server. The

web server then transmits the data to the client. This output stream is a dynamic web page.

 JSP is similar to a servlet in that a JSP is associated with a URL and is callable from a client.

However, JSP is different than a servlet in several ways, depending on the container that is used.

Some containers translate the JSP into a servlet the first time the client calls the JSP, which is

then compiled and the compiled servlet loaded into memory. The servlet remains in memory.

Subsequent calls by the client to the JSP cause the web server to recall the servlet without

translating the JSP and compiling the resulting code. Other containers precompile a JSP into a

.java file that looks like a servlet file, which is then compiled into a Java class.

 Business logic used by JSP and servlet’s is contained in one or more Enterprise JavaBeans that

are callable from within the JSP and servlet. The code is the same for both JSP and servlet,

although the format of the code differs. JSP uses custom tags to access an Enterprise JavaBeans

while servlet’s are able to directly access Enterprise JavaBeans.

1.11 ENTERPRISE JAVABEANS TIER IMPLEMENTATION

J2EE uses distributive object technology to enable Java developers to build portable,

scalable, and efficient applications that meet the 24-7 durability expected from an enterprise

system. The Enterprise JavaBeans Tier contains the Enterprise JavaBeans server, which is the

 J2EE Overview 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 13/15

object server that stores and manages Enterprise JavaBeans. The Enterprise JavaBeans Tier is a

vital element in the J2EE multi-tier architecture because this tier provides concurrency,

scalability, lifecycle management, and fault tolerance. The Enterprise JavaBeans Tier

automatically handles concurrency issues that assure multiple clients have simultaneous access

to the same object. The Enterprise JavaBeans Tier is the tier where some vendors include

features that enable scalability of an application, because the tier is designed to work in a

clustered environment. This assumes that vendor components that are used support clustering. If

not, a Local Director is typically used for horizontal load balancing

The Enterprise JavaBeans Tier manages instances of components. This means component

containers working on the Enterprise JavaBeans Tier create and destroy instances of components

and also move components in and out of memory. Fault-tolerance is an important consideration

in mission-critical applications. The Enterprise JavaBeans Tier is the tier where some vendors

include features that provide fault-tolerant operation by making it possible to have multiple

Enterprise JavaBeans servers available through the tier. This means backup Enterprise JavaBeans

servers can be contacted immediately upon the failure of the primary Enterprise JavaBeans

server. The Enterprise JavaBeans server has an Enterprise JavaBeans container within which is a

collection of Enterprise JavaBeans. As discussed in previous sections of this chapter, an

Enterprise Java Bean is a class that contains business logic and is callable from a servlet or JSP.

Collectively the Enterprise JavaBeans server and Enterprise JavaBeans container are responsible

for low-level system services that are required to implement business logic of an Enterprise Java

Bean.

 These system services are

■ Resource pooling

■ Distributed object protocols

■ Thread management

■ State management

■ Process management

■ Object persistence

 J2EE Overview 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 14/15

■ Security

■ Deploy-time configuration

A key benefit of using the Enterprise JavaBeans server and Enterprise JavaBeans

container technology is that this technology makes proper use of a programmer’s expertise. That

is, a programmer who specializes in coding business logic isn’t concerned about coding system

services. Likewise, a programmer whose specialty is system services can focus on developing

system services and not be concerned with coding business logic.

 Any component, regardless of the tier where the component is located, can use Enterprise

JavaBeans. This means that an Enterprise Java Bean client can reside outside the Client Tier. The

protocol used to communicate between the Enterprise JavaBeans Tier and other tiers is

dependent on the protocol used by the other tier. Components on the Client Tier and the Web

Tier communicate with the Enterprise JavaBeans Tier using the Java RMI API and either IIOP or

JRMP. Sometimes software on other tiers, usually the middle tier, uses JMS to communicate

with the Enterprise JavaBeans Tier.

 This communication isn’t exclusively used to send and receive messages between machines.

JMS is also used for other communication, such as decoupling tiers using the queue mechanism.

However, the Enterprise Java Bean that is used must be a message-driven bean (MDB). MDBs

are commonly used to process messages on a queue that may or may not reside on the local

machine.

1.12 ENTERPRISE INFORMATION SYSTEMS TIER IMPLEMENTATION

The Enterprise Information Systems (EIS) Tier is the J2EE architecture’s connectivity to

resources that are not part of J2EE. These include a variety of resources such as legacy systems,

DBMS, and systems provided by third parties that are accessible to components in the J2EE

infrastructure. This tier provides flexibility to developers of J2EE applications because

developers can leverage existing systems and resources currently available to the corporation and

do not need to replicate them in J2EE. Likewise, developers can utilize off-the-shelf software

that is commercially available in the marketplace because the EIS Tier provides the connectivity

 J2EE Overview 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 15/15

between a J2EE application and non-J2EE software. This connectivity is made possible through

the use of CORBA and Java Connectors or through proprietary protocols. Java Connector

technology enables software developers to create a Java Connector for legacy systems and for

third-party software. The connector defines all the elements that are needed to communicate

between the J2EE application and the non-J2EE software. This includes rules for connecting to

each other and rules for conducting secured transactions.

KEY TERMS

 Java bytecode: It is the form of instructions that the Java virtual machine executes

 Java 2 Platform, Standard Edition (J2SE): It is used primarily for writing applets and

other Java-based applications. One of the primary uses of J2SE is the development of Java

applications for individual computers.

 Multi-Tier Architecture: It is a client-server architecture in which the presentation, the

application processing, and the data management are logically separate processes

 Client Tier: In the client tier, Web components, such as Servlets and Java Server Pages

(JSPs), or standalone Java applications provide a dynamic interface to the middle tier.

 Middle Tier: In the server tier, or middle tier, enterprise beans and Web Services

encapsulate reusable, distributable business logic for the application. These server-tier

components are contained on a J2EE Application Server, which provides the platform for

these components to perform actions and store data.

 Enterprise Data Tier: In the data tier, the enterprise's data is stored and persisted,

typically in a relational database.

 Application client: A first-tier J2EE client component that executes in its own Java virtual

machine. Application clients have access to some J2EE platform APIs.

http://en.wikipedia.org/wiki/Java_virtual_machine
http://en.wikipedia.org/wiki/Client-server_architecture

 J2EE Overview 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 16/15

QUESTIONS

One Mark Questions (Multiple choice based)

1. A __________ is a process that can work independently from other processes and permit

multiple access to the same program simultaneously.

a. macro b. procedure c. function d. thread

2. The URL consists of _________ parts.

 a.2 b.3 c.4 d.5

3. A __ is a unique type of client because it is also a service that works on the web tier.

a.web client b.EJB client c.EIS client d. web service peer

4. ____________ are conceptually similar to a web service peer.

a. web client b. EJB client c. EIS client d. multitier client

5. _________ occurs when data depends on other data such as when nonkey data is

dependent on a primary key.

a. redundancy b. normalization

 c. functional dependency d.transitive dependency

6. Small amount of data stored on the client is called ____________.

a.cookie b. servlet c.images d. applet

7. A ___________ bean retains data accumulated during a session with a client.

a. session servlet b. stateful session c. stateless session d. JMS container

8. The _________ method returns a Boolean true if the row contains data.

a. getString() b. next() c. execute() d.close()

 9 . Java is a ___________ programming language.

 a.Multiuser b. multitasking c. multithreaded d. procedure oriented

 10. The _________ tier contains the business logic for J2EE applications.

 a. client b. web c.EJB tier d. EIS

2 Mark Questions:

1. Differentiate JS2E and J2EE

2. Define Java ByteCode. List the advantages of Java

3. What is Distributive Systems?

4. What is J2EE Components? List the Components

 J2EE Overview 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 17/15

5. What is a Tier architecture?

6. Define Clients , Resources and Components in Multi-tier architecture.

8 Mark Questions:

1. What is Java? Describe the advantages of Java

2. Describe in detail about various J2EE Tier Architecture

3. Explain Enterprise Java Beans and Enterprise Information Systems Tier Implementation

in detail.

4. Give a detailed note on JVM.

5. Discuss about J2EE and J2SE.

SUBJECT : J2EE SEMESTER : III CLASS : II M.Sc.CS
UNIT I

Questions opt1 opt2 opt3 opt4 Answer
The expansion of BCPL is ___________. Basic

Combined
Programming
Language

Beginners
Combined
Programming
Language

Basic Control
Programming
Language

Beginners
Control
Programming
Language

Basic Combined
Programming Language

Programmers divide a program into functionality and
create code segments called ____________.

programs subprograms macros functions functions

In the year ___________ the American National
Standard Institute formally adopted a standard for the C
Programming language.

1970 1980 1990 2000 1990

Java is ____________ programming language that uses
classes to create instances of objects.

 object based object
oriented

 procedure
oriented

 knowledge
based

 object oriented

___________ is a routine that recovers spent memory
without the programmer having to write code to free
previously reserved memory.

 Memory
release

 Garbage
collection

 Memory
management

 Garbage
compaction

 Garbage collection

Java ___________converts java source code into byte
code that is executed by the Java Virtual machine.

 interpreter compiler assembler preprocessor compiler

KARPAGAM ACADEMY OF HIGHER EDUCATION
 (Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.
(For the candidates admitted from 2016 onwards)
DEPARTMENT OF COMPUTER SCIENCE

SUBJECT CODE: 16CSP301

Java compiler generates ____________. binary code octal code byte code hexadecimal
code

 byte code

Small amount of data stored on the client is called
____________.

 cookie servlet images applet cookie

An ___________ is a small program that can be
efficiently downloaded over the internet and is executed
by a java compatible browser.

 cookie servlet images applet applet

Request and execution occur on the user’s computer
called ___________.

 server client client and
server

 JVM client

Embedded in the web page might be a reference to run a
small java program called an _____________.

 cookie applet image servlet applet

The ___________ reads the reference to the applet, then
requests that the web server download the applet.

 cookie browser servlet applet browser

Once the applet is received, the browser requests the
________ to execute the applet automatically without
any additional interaction by the user.

 server client client and
server

 JVM JVM

___________ could not offer the dynamics demanded
by internet users and corporations.

 Static web
pages

 Dynamic
web pages

 Browsers Applets Static web pages

Java was developed by ____________. IBM Microsoft Sun
Microsystems

 Oracle
Corporation

 Sun Microsystems

Features found in ____________ were adopted in Java
by the Java development team.

 C only C++ only C and C++ Visual C++ C and C++

Java is a ___________ programming language. multiuser multitasking multithreaded procedure
oriented

 multithreaded

A __________ is a process that can work independently
from other processes and permit multiple access to the
same program simultaneously.

 macro procedure function thread thread

The original edition of Java is called ____________. J2ME J2SE J2EE Core Java J2SE

A ___________ program is automatically translated into
a java servlet.

 Java EJB JSP d) HTML JSP

___________ interfaces between commercial DBMS
products and Java.

 API EJB JSP XML API

____________ contains the API used to create wireless
java applications.

 J2ME J2SE J2EE EJB J2ME

During the evolutionary process, the java development
team included more interfaces and libraries as
programmers demanded new APIs. These new features
to the JDK were called ___________.

 SDK Java Bean BDK Extensions Extensions

___________ consists of specifications and API for
developing reusable server-side business components
designed to run on applications servers.

 Java EJB JSP Servlets EJB

___________ is a program that resides on the server . Servlet Cookie Applet JSP . Servlet

___________ consists of specifications and APIs for
developing reusable server-side business components
designed to run on applications servers.

 EJB JSP Servlets Java EJB

A ___________ bean retains data accumulated during a
session with a client.

 session servlet stateful
session

 stateless
session

 JMS container stateful session

A ____________ bean does not maintain any state
between method calls.

 session servlet stateless
session

 stateful
session

 JMS container stateless session

A message-driven bean is called by the _____________. sessionservlet JMS
container

 message-
oriented
middleware

 API JMS container

The core components of J2EE are _____________. Java Beans Java servlets
and Java
beans

 Java servlets
and JSPs

 Java beans,
Java servlets and
JSPs

 Java beans, Java
servlets and JSPs

The expansion of CORBA is ___________. Combined
Object
Request Basic
Architecture

Common
Object
Request
Broker

Combined
Object
Request
Broker

Common Object
Request Basic
Architecture

Common Object
Request Broker
Architecture

The expansion of XDR is ____________. Exchange
Data
Representation

 External
Data
Representatio
n

 External
Digital
Representation

Experimental
Data
Representation

 External Data
Representation

__________ are the internal software services. servlets functions RPCs JSPs functions

__________ are the external software services. servlets functions RPCs JSPs RPCs

In multi-tier architecture, each tier contains __________
that include software objects, DBMS or connectivity to
legacy systems.

 services java
programs

 servlets requests services

____________ is a part of a tier that consists of a
collection of classes or a program that performs a
function to provide the services.

 container component resource service component

A __________ is anything a component needs to
provide a service.

 container component resource service resource

A ___________ is a software that manages a component
and provides a component with system services.

 container component resource service container

J2EE is a __________ tier architecture. 2 3 4 5 4

__________ tiers can physically reside on the same
JVM although each tier provides a different type of
functionality to a J2EE application.

1 2 3 4 3

The __________ tier consists of programs that interact
with the user.

 client web EJB tier EIS client

The _________ provides internet functionality to a
J2EE application.

 client web EJB tier EIS web

The _________ tier contains the business logic for J2EE
applications.

 client web EJB tier EIS EJB tier

The ________ tier links a J2EE application to resources
and legacy systems that are available on the corporate
backbone network.

 client web EJB tier EIS EIS

The __________ tier is the keystone to every J2EE
application.

 client web EJB tier EIS EJB tier

___________ are contained on the EJB server which is
a distributed object server that works on the EJB tier.

 servlets EJB JSP client programs EJB

It is on the ___________ where a J2EE application
directly or indirectly interfaces with a variety of
technologies including DBMS and mainframes.

 servlets EJB JSP client programs client programs

There are ____________ components on the client tier. 2 3 4 5 2

A _______ is a component used by a web client that
operates within the applet container, which is a java-
enabled browser.

 application
client

 applet client servlet JSP applet client

A _________ is a java application that operates within
the application client container, which is the Java 2
Runtime Environment Standard Edition.

 application
client

 applet client servlet JSP application client

A _________ has its own interface and is capable of
accessing all the tiers in the multi-tier architecture.

 application
client

 applet client application servlet application

A ___________ is not considered as the component of
the client tier.

 application
client

 applet client rich client server rich client

A ___________ can access any tier in the environment
depending on the ACLs configuration using HTTP,
SOAP, etc.

 application
client

 applet client rich client servlet rich client

Clients are classified into ____________ types. 2 3 4 5 4

A ___________ consists of software usually a browser
that accesses resources located on the web tier.

 web client EJB client EIS client multitier client web client

_____________ only accesses one or more EJB that are
located on the EJBs tier rather than resources on the
web tier.

 web client EJB client EIS client multitier client EJB client

___________ are the interface between users and
resources located on the EIS tier.

 web client EJB client EIS client multitier client EIS client

A ___________ is a unique type of client because it is
also a service that works on the web tier.

 web client EJB client EIS client web service
peer

 web service peer

____________ are conceptually similar to a web service
peer.

 web client EJB client EIS client multitier client multitier client

____________ are similar to web clients. web client EJB client EIS client multitier client 2

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 1/24

UNIT II

J2EE Database Concepts: Data – Database – Database Schema. JDBC Objects: Driver Types

– Packages – JDBC Process – Database Connection – Statement Objects – Result Set – Meta

Data.

TEXT BOOKS

1. Jim Keogh. (2010). The Complete Reference J2EE, Tata McGraw Hill: New Delhi. 1st

Edition.

REFERENCES

1. David R. Heffelfinger (2011), Java EE 6 Development with NetBeans 7,Packt Publishers,1st

Edition.

2. Joel Murach, Michael Urban, (2014), Murach's Java Servlets and JSP, (Murach: Training &

Reference). 3rd Edition

3. Joseph, J. Bambara et al. (2007). J2EE Unleashed , New Delhi:Tech Media, 1st Edition.

4. Paul, J. Perrone., Venkata, S. R. Chaganti., Venkata S. R. Krishna., & Tom Schwenk, (2003),

J2EE Developer's Handbook Sams Publications, New Delhi, 1st Edition.

5. Rod Johnson. (2004). J2EE Development without EJB , New Delhi:Wiley Dream Tech, 1st

Edition

6. Rod Johnson., & Rod Johnson, P.H. (2004). Expert One-On-One J2ee Design and

Development. New Delhi: John Wiley & Sons, 2nd Edition.

7. John Brock, Arun Gupta, Geertjan Wielenga (2014), Java EE and HTML5 Enterprise

Application Development ,Oracle Press.

 WEB SITES

1. www.java.sun.com/javaee/

2. www.java.sun.com/j2ee/1.4/docs/tutorial/doc/

3. www.j2eebrain.com/

4. www.javaworld.com/

5. www.corej2eepatterns.com/

https://www.amazon.com/Joel-Murach/e/B001JP7JQI/ref=dp_byline_cont_book_1
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Michael+Urban&search-alias=books&text=Michael+Urban&sort=relevancerank
https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=John+Brock&search-alias=stripbooks
https://www.amazon.in/Arun-Gupta/e/B00DWBZ3NI/ref=dp_byline_cont_book_2
https://www.amazon.in/Geertjan-Wielenga/e/B00S8PV3TQ/ref=dp_byline_cont_book_3
http://www.j2eebrain.com/
http://www.javaworld.com/
http://www.corej2eepatterns.com/

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 2/24

J2EE DATABASE CONCEPTS

2.1 DATA

The term data means groups of information that represent the qualitative or quantitative

attributes of a variable or set of variables. Data (plural of "datum") are typically the results of

measurements and can be the basis of graphs, images, or observations of a set of variables. Data

are often viewed as the lowest level of abstraction from which information and knowledge are

derived. In computer science, data is anything in a form suitable for use with a computer. Data is

often distinguished from programs. Data is a collection of facts, figures and statistics related to

an object. Data can be processed to create useful information. Data is a valuable asset for an

organization. Data can be used by the managers to perform effective and successful operations of

management. It provides a view of past activities related to the rise and fall of an organization. It

also enables the user to make better decision for future. Data is very useful for generating

reports, graphs and statistics.

Example:

Students fill an admission form when they get admission in college. The form consists of raw

facts about the students. These raw facts are student's name, father name, address etc. The

purpose of collecting this data is to maintain the records of the students during their study period

in the college.

2.2 DATABASE

A database is an integrated collection of logically related records or files consolidated into a

common pool that provides data for one or more multiple uses. One way of classifying databases

involves the type of content, for example: bibliographic, full-text, numeric, and image. Software

organizes the data in a database according to a database model. A number of database

architectures exist. Many databases use a combination of strategies. Databases consist of

software-based "containers" that are structured to collect and store information so users can

retrieve, add, update or remove such information in an automatic fashion. Database programs are

designed for users so that they can add or delete any information needed. The structure of a

database is the table, which consists of rows and columns of information.

http://en.wikipedia.org/wiki/Variable
http://en.wikipedia.org/wiki/Datum_(disambiguation)
http://en.wikipedia.org/wiki/Measurement
http://en.wikipedia.org/wiki/Graph_(data_structure)
http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Abstraction
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Knowledge
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Computer_program
http://www.blurtit.com/q779557.html
http://www.blurtit.com/q779557.html
http://www.blurtit.com/q779557.html
http://en.wikipedia.org/wiki/Database_model

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 3/24

2.3 DATABASE SCHEMA

The schema of a database system is its structure described in a formal language supported by the

database management system (DBMS). In a relational database, the schema defines the tables,

the fields, relationships, views, indexes, packages, procedures, functions, queues, triggers, types,

sequences, materialized views, synonyms, database links, directories, Java, XML schemas, and

other elements. Schemas are generally stored in a data dictionary. Although a schema is defined

in text database language, the term is often used to refer to a graphical depiction of the database

structure.

Levels of database schema

 Conceptual schema, a map of concepts and their relationships.

 Logical schema, a map of entities and their attributes and relations

 Physical schema, a particular implementation of a logical schema

 Schema object, Oracle database object

2.3.1 Conceptual schema

A conceptual schema or conceptual data model is a map of concepts and their relationships. This

describes the semantics of an organization and represents a series of assertions about its nature.

Specifically, it describes the things of significance to an organization (entity classes), about

which it is inclined to collect information, and characteristics of (attributes) and associations

between pairs of those things of significance (relationships).

2.3.2 Logical schema

A Logical Schema is a data model of a specific problem domain expressed in terms of a

particular data management technology. Without being specific to a particular database

management product, it is in terms of relational tables and columns, object-oriented classes, or

XML tags. This is as opposed to a conceptual data model, which describes the semantics of an

organization without reference to technology, or a physical data model, which describe the

particular physical mechanisms used to capture data in a storage medium. The next step in

creating a database, after the logical schema is produced, is to create the physical schema.

2.3.3 Physical Schema

http://en.wikipedia.org/wiki/Database_system
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Table_(database)
http://en.wikipedia.org/wiki/Field_(computer_science)
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/View_(database)
http://en.wikipedia.org/wiki/Index_(database)
http://en.wikipedia.org/wiki/Software_package_(installation)
http://en.wikipedia.org/wiki/Stored_procedure
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Queue_(data_structure)
http://en.wikipedia.org/wiki/Database_trigger
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Materialized_view
http://en.wikipedia.org/wiki/Synonym
http://en.wikipedia.org/w/index.php?title=Database_link&action=edit&redlink=1
http://en.wikipedia.org/wiki/Directory_(file_systems)
http://en.wikipedia.org/wiki/Java
http://en.wikipedia.org/wiki/XML_schema
http://en.wikipedia.org/wiki/Data_dictionary
http://en.wikipedia.org/wiki/Conceptual_schema
http://en.wikipedia.org/wiki/Logical_schema
http://en.wikipedia.org/wiki/Physical_schema
http://en.wikipedia.org/wiki/Schema_object
http://en.wikipedia.org/wiki/Data_model
http://en.wikipedia.org/wiki/Concept
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/Semantics
http://en.wikipedia.org/wiki/Logical_assertion
http://en.wikipedia.org/wiki/Organization
http://en.wikipedia.org/wiki/Attribute
http://en.wikipedia.org/wiki/Data_model
http://en.wikipedia.org/wiki/Conceptual_data_model
http://en.wikipedia.org/wiki/Physical_data_model
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Physical_schema

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 4/24

Physical Schema is a term used in relation to data management. In the ANSI four-schema

architecture, the internal schema was the view of data that involved data management

technology. This was as opposed to the external schema that reflected the view of each person in

the organization, or the conceptual schema that was the integration of a set of external schemas.

2.3.4 Schema Object

A schema object is a logical data storage structure. Schema objects do not have a one-to-one

correspondence to physical files on disk that store their information. However, Oracle stores a

schema object logically within a table space of the database. The data of each object is physically

contained in one or more of the table space's data files. For some objects such as tables, indexes,

and clusters, you can specify how much disk space Oracle allocates for the object within the

table space's data files.

There is no relationship between schemas and table spaces: a table space can contain objects

from different schemas, and the objects for a schema can be contained in different table spaces.

Associated with each database user is a schema. A schema is a collection of schema objects.

Examples of schema objects include tables, views, sequences, synonyms, indexes, clusters,

database links, snapshots, procedures, functions, and packages.

2.4 INTRODUCTION TO JDBC

An application programming Interface (API) is a set of classes, methods and resources that

programs can use to do their work. APIs exist for windowing systems, file systems, database

systems, networking systems, and others. JDBC is a Java API for database connectivity that is

part of the Java API developed by Sun Microsystems. JDBC provides Java developers with an

industry standard API for database-independent connectivity between java applications and a

wide range of relational database management systems such as oracle. Informix, Microsoft SQL

Server and Sybase.

The API provides a call level interface to the database.

http://en.wikipedia.org/wiki/American_National_Standards_Institute
http://en.wikipedia.org/wiki/Conceptual_schema
http://en.wikipedia.org/wiki/Tablespace

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 5/24

 Connect to a database

 Execute SQL statements to query your database

 Generate query results

 Perform updates, inserts and deletions

 Execute stored procedures

The following figure 2.1 shows the components of the JDBC model. In its simplest form, JDBC

makes it possible to do these basic things: The Java application calls JDBC classes and interfaces

to submit SQL statements and retrieve results.

Figure 2.1 Components of the JDBC Model

The JDBC API is implemented through the JDBC driver. The JDBC Driver is a set of classes

that implement the JDBC interfaces to process JDBC calls and return result sets to a Java

application. The database (or data store) stores the data retrieved by the application using the

JDBC Driver.

JDBC OBJECTS

The main objects of the JDBC API include:

 A Data Source object is used to establish connections. Although the Driver Manager can

also be used to establish a connection, connecting through a Data Source object is the

preferred method.

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 6/24

 A Connection object controls the connection to the database. An application can alter the

behavior of a connection by invoking the methods associated with this object. An

application uses the connection object to create statements.

 Statement, Prepared Statement, and Callable Statement objects are used for executing

SQL statements. A Prepared Statement object is used when an application plans to reuse

a statement multiple times. The application prepares the SQL it plans to use. Once

prepared, the application can specify values for parameters in the prepared SQL

statement. The statement can be executed multiple times with different parameter values

specified for each execution. A Callable Statement is used to call stored procedures that

return values. The Callable Statement has methods for retrieving the return values of the

stored procedure

A ResultSet object contains the results of a query. A ResultSet is returned to an application when

a SQL query is executed by a statement object. The ResultSet object provides methods for

iterating through the results of the query

BENEFITS OF JDBC

The benefits of using JDBC include the following:

 A developer only needs to know one API to access any relational database

 There is no need to rewrite code for different databases.

 There is no need to know the database vendor’s specific APIs

 It provides a standard API and is vendor independent

 Almost every database vendor has some sort of JDBC driver

 JDBC is part of the standard Java 2 platform

2.5 DRIVER TYPES

JDBC technology-based drivers generally fit into one of four categories. In Figure 2.2 shows

various driver implementation possibilities

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 7/24

Figure 2.2 Various driver implementation possibilities

JDBC technology-based drivers generally fit into one of four categories. In Figure 2.2 shows

various driver implementation possibilities

JDBC Drivers Types

Sun has defined four JDBC driver types. These are:

Type 1: JDBC-ODBC Bridge Driver

The first type of JDBC driver is JDBC-ODBC Bridge which provides JDBC access to any

ODBC complaint databases through ODBC drivers. Sun's JDBC-ODBC bridge is example of

type 1 driver.

Type 2: Native -API Partly - Java Driver

Type 2 drivers are developed using native code libraries, which were originally designed for

accessing the database through C/C++. Here a thin code of Java wrap around the native code and

converts JDBC commands to DBMS-specific native calls.

Type 3: JDBC-Net Pure Java Driver

Type 3 drivers are three-tier solutions. This type of driver communicates to a middleware

component which in turn connects to database and provide database connectivity.

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 8/24

Type 4: Native-Protocol Pure Java Driver

Type 4 drivers are entirely written in Java that communicates directly with vendor's database

through socket connection. Here no translation or middleware layer, are required which improves

performance tremendously

JDBC-ODBC Bridge driver (Type 1 JDBC Driver)

The Type 1 driver translates all JDBC calls into ODBC calls and sends them to the ODBC

driver. ODBC is a generic API. The JDBC-ODBC Bridge driver is recommended only for

experimental use or when no other alternative is available. In figure 2.3 Type 1 JDBC – ODBC

Bridge.

Advantage

The JDBC-ODBC Bridge allows access to almost any database, since the database's ODBC

drivers are already available.

Disadvantages

1. Since the Bridge driver is not written fully in Java, Type1 drivers are not portable

2. A performance issue is seen as a JDBC call goes through the bridge to the ODBC driver,

then to the database, and this applies even in the reverse process. They are the slowest of

all driver types.

The client system requires the ODBC Installation to use the driver and Not good for the Web.

Figure 2.3 Type 1: JDBC-ODBC Bridge

http://www.roseindia.net/sourcecode/searchengine/002.shtml
http://www.roseindia.net/sourcecode/searchengine/002.shtml

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 9/24

Native-API/partly Java driver (Type 2 JDBC Driver)

The distinctive characteristic of type 2 jdbc drivers is that Type 2 drivers convert JDBC calls into

database-specific calls i.e. this driver is specific to a particular database (shown in figure 2.4).

Some distinctive characteristic of type 2 jdbc drivers are shown below. Example: Oracle will

have oracle native api.

Figure 2.4 Type 2: Native API/ Partly Java Driver

Advantage

The distinctive characteristic of type 2 jdbc drivers are that they are typically offer better

performance than the JDBC-ODBC Bridge as the layers of communication (tiers) are less than

that of Type 1 and also it uses Native api which is Database specific.

 Disadvantage

1. Native API must be installed in the Client System and hence type 2 drivers cannot be

used for the Internet.

2. Like Type 1 drivers, it’s not written in Java Language which forms a portability issue.

3. If we change the Database we have to change the native api as it is specific to a

database

4. Mostly obsolete now

5. Usually not thread safe.

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 10/24

All Java/Net-protocol driver (Type 3 JDBC Driver)

Type 3 database requests are passed through the network to the middle-tier server. The middle-

tier then translates the request to the database (shown in fig 2.5). If the middle-tier server can in

turn use Type1, Type 2 or Type 4 drivers.

Figure 2.5 Type 3: All Java/ Net-Protocol Driver

Advantage

1. This driver is server-based, so there is no need for any vendor database library to be

present on client machines.

2. This driver is fully written in Java and hence Portable. It is suitable for the web

There are many opportunities to optimize portability, performance, and scalability.

3. The net protocol can be designed to make the client JDBC driver very small and fast to

load.

4. The type 3 driver typically provides support for features such as caching (connections,

query results, and so on), load balancing, and advanced system administration such as

logging and auditing.

5. This driver is very flexible allows access to multiple databases using one driver

6. They are the most efficient amongst all driver types.

Disadvantage

It requires another server application to install and maintain. Traversing the recordset may take

longer, since the data comes through the backend server

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 11/24

Native-protocol/all-Java driver (Type 4 JDBC Driver)

The Type 4 uses java networking libraries to communicate directly with the database server

(shown in fig 2.6)

Figure 2.6 Type 4: Native-protocol/all-Java driver

Advantage

1. The major benefit of using a type 4 jdbc drivers are that they are completely written in

Java to achieve platform independence and eliminate deployment administration issues. It

is most suitable for the web.

2. Number of translation layers is very less i.e. type 4 JDBC drivers don't have to translate

database requests to ODBC or a native connectivity interface or to pass the request on to

another server, performance is typically quite good

3. You don’t need to install special software on the client or server. Further, these drivers

can be downloaded dynamically.

Disadvantage

With type 4 drivers, the user needs a different driver for each database.

2.6 JDBC PACKAGE

The purpose of the JDBC package is to provide vendor-neutral access to relational databases.

The implementation differences of the various databases used are abstracted from the user

through the use of the JDBC API. Though the specification does not indicate that the API is to be

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 12/24

used solely for relational databases, historically it has been used primarily for relational database

access.

The developers of the JDBC API specification have tried to keep the API as simple as possible

so that it can be a foundation upon which other APIs are built. For instance, the connector API

can be implemented on top of an existing JDBC API using appropriate resource adapters. JDBC

is composed of a number of interfaces. These interfaces are implemented by driver developers.

The API is implemented by either a vendor or a third party to create a JDBC driver.

The Type 4 JDBC driver is considered the best driver to use for two reasons. One reason is that

since the driver has been written completely in Java, it is extremely portable. Another reason is

that the driver is not required to map JDBC calls to corresponding native CLI calls. This avoids

the overhead of mapping logic required by the Type 1 or Type 2 driver, or the overhead of

communicating with middleware required by the Type 3 driver.

Such improvements in efficiency should allow the driver to execute faster than the other types of

JDBC drivers.

2.6.1 JDBC 2.0 API

The JDBC 2.0 API includes the complete JDBC API, which includes both core and Optional

Package API, and provides industrial-strength database computing capabilities. It is not,

however, limited to SQL databases; the JDBC 2.0 API makes it possible to access data from

virtually any data source with a tabular format.

The JDBC 2.0 API includes two packages:

 java.sql package--the JDBC 2.0 core API

o JDBC API included in the JDKTM 1.1 release (previously called JDBC 1.2). This

API is compatible with any driver that uses JDBC technology.

o JDBC API included in the Java 2 SDK, Standard Edition, version 1.2 (called the

JDBC 2.0 core API). This API includes the JDBC 1.2 API and adds many new

features.

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 13/24

 javax.sql package--the JDBC 2.0 Optional Package API. This package extends the

functionality of the JDBC API from a client-side API to a server-side API, and it is an

essential part of Java2 SDK, Enterprise Edition technology.

Being an Optional Package, it is not included in the Java 2 Platform SDK, Standard

Edition, version 1.2, but it is readily available from various sources.

o Information about the JDBC 2.0 Optional Package API is available from the

JDBC web page. The javax.sql package may also be downloaded from this web

site.

o Driver vendors may include the javax.sql package with their products.

o The Java 2 SDK, Enterprise Edition, includes many Optional Package APIs,

including the JDBC 2.0 Optional Package.

2.6.2 The java.sql Package

 The java.sql package contains the entire JDBC API that sends SQL (Structured Query

Language) statements to relational databases and retrieves the results of executing those SQL

statements.

 The Driver interface represents a specific JDBC implementation for a particular database

system. Connection represents a connection to a database. The Statement, PreparedStatement,

and CallableStatement interfaces support the execution of various kinds of SQL statements.

ResultSet is a set of results returned by the database in response to a SQL query. The

ResultSetMetaData interface provides metadata about a result set, while DatabaseMetaData

provides metadata about the database as a whole.

The java.sql package contains API for the following:

 Making a connection with a data source

o DriverManager class

o Driver interface

o DriverPropertyInfo class

o Connection interface

http://java.sun.com/products/jdbc

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 14/24

 Custom mapping an SQL user-defined type to a class in the Java programming language

o SQLData interface

o SQLInput interface

o SQLOutput interface

 Providing information about the database and the columns of a ResultSet object

o DatabaseMetaData interface

o ResultSetMetaData interface

 Throwing exceptions

o SQLException thrown by most methods when there is a problem accessing data

and by some methods for other reasons

o SQLWarning thrown to indicate a warning

o DataTruncation thrown to indicate that data may have been truncated

o BatchUpdateException thrown to indicate that not all commands in a batch update

executed successfully

 Providing security

o SQLPermission interface

2.7 JDBC PROCESS

Steps involved in JDBC Process:

1. Load the driver

2. Define the Connection URL

3. Establish the Connection

4. Create a Statement object

5. Execute a query

6. Process the results

7. Close the connection

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 15/24

1. Load the driver

try

{

Class.forName("connect.microsoft.MicrosoftDriver");

Class.forName("oracle.jdbc.driver.OracleDriver");

}

catch { ClassNotFoundException cnfe)

{

System.out.println("Error loading driver: " cnfe);

}

2. Define the Connection URL

String host = "dbhost.yourcompany.com";

String dbName = "someName";

int port = 1234;

String oracleURL = "jdbc:oracle:thin:@" + host + ":" + port + ":" +_

dbName;

String sybaseURL = "jdbc:sybase:Tds:" + host +

":" + port + ":" +

"?SERVICENAME=" + dbName;

3. Establish the Connection

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 16/24

String username = "jay_debesee";

String password = "secret";

Connection connection =_

DriverManager.getConnection(oracleURL,username, password);

• Optionally, look up information about the database

DatabaseMetaData dbMetaData = connection.getMetaData();

String productName = dbMetaData.getDatabaseProductName();

System.out.println("Database: " + productName);

String productVersion = dbMetaData.getDatabaseProductVersion();

System.out.println("Version: " + productVersion);

4. Create a Statement

Statement statement = connection.createStatement();

5. Execute a Query

String query = "SELECT col1, col2, col3 FROM sometable";

ResultSet resultSet = statement.executeQuery(query);

– To modify the database, use executeUpdate, supplying a string that uses UPDATE, INSERT,

or DELETE

– Use setQueryTimeout to specify a maximum delay to wait for results

6. Process the Result

while(resultSet.next()) {

System.out.println(resultSet.getString(1) + " " +

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 17/24

resultSet.getString(2) + " " +

resultSet.getString(3));

}

First column has index 1, not 0

– ResultSet provides various getXxx methods that

take a colu index or column name and returns the data

– You can also access result meta data (column names, etc.)

7. Close the Connection

connection.close();

– Since opening a connection is expensive, postpone this step if additional database operations

are expected

2.8 STATEMENT OBJECTS

Through the Statement object, SQL statements are sent to the database.Three types of statement

objects are available:

• Statement

– For executing a simple SQL statement

• PreparedStatement

– For executing a precompiled SQL statement passing in parameters

• CallableStatement

– For executing a database stored procedure

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 18/24

Statement Methods

 executeQuery

 – Executes the SQL query and returns the data in a table (ResultSet)

 – The resulting table may be empty but never null

ResultSet results =

 statement.executeQuery("SELECT a, b FROM_ table");

• executeUpdate

 – Used to execute for INSERT, UPDATE, or DELETE, SQL statements

 – The return is the number of rows that were affected in the

 database

 – Supports Data Definition Language (DDL) statements

CREATE TABLE, DROP TABLE and ALTER TABLE

int rows = statement.executeUpdate("DELETE FROM EMPLOYEES" + _ "WHERE

STATUS=0");

 execute

– Generic method for executing stored procedures and prepared statements

– Rarely used (for multiple return result sets)

– The statement execution may or may not return a ResultSet (use tatement.getResultSet). If the

return value is true, two or more result sets were produced

• getMaxRows/setMaxRows

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 19/24

– Determines the maximum number of rows a ResultSet may contain

– Unless explicitly set, the number of rows is unlimited (return value of 0)

• getQueryTimeout/setQueryTimeout

– Specifies the amount of a time a driver will wait for a statement to complete before

throwing a SQLException.

2.13 RESULTSET

ResultSet and Cursors

The rows that satisfy a particular query are called the result set. The number of rows returned in

a result set can be zero or more. A user can access the data in a result set using a cursor one row

at a time from top to bottom. A cursor can be thought of as a pointer to the rows of the result set

that has the ability to keep track of which row is currently being accessed. The JDBC API

supports a cursor to move both forward and backward and also allowing it to move to a specified

row or to a row whose position is relative to another row.

Types of Result Sets

The ResultSet interface provides methods for retrieving and manipulating the results of executed

queries, and ResultSet objects can have different functionality and characteristics. These

characteristics are result set type, result set concurrency, and cursor hold ability.

The type of a ResultSet object determines the level of its functionality in two areas: the ways in

which the cursor can be manipulated, and how concurrent changes made to the underlying data

source are reflected by the ResultSet object.

The sensitivity of the ResultSet object is determined by one of three different ResultSet types:

TYPE_FORWARD_ONLY — the result set is not scrollable i.e. the cursor moves only

forward, from before the first row to after the last row.

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 20/24

TYPE_SCROLL_INSENSITIVE — the result set is scrollable; its cursor can move both

forward and backward relative to the current position,

and it can move to an absolute position.

TYPE_SCROLL_SENSITIVE — the result set is scrollable; its cursor can move both forward

and backward relative to the current position, and it can move to an absolute position.

Before you can take advantage of these features, however, you need to create a scrollable

ResultSet object. The following line of code illustrates one way to create a scrollable ResultSet

object:

Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_READ_ONLY);

ResultSet srs = stmt.executeQuery(".....");

The first argument is one of three constants added to the ResultSet API to indicate the type of a

ResultSet object: TYPE_FORWARD_ONLY, TYPE_SCROLL_INSENSITIVE, and

TYPE_SCROLL_SENSITIVE. The second argument is one of two ResultSet constants for

specifying whether a result set is read-only or updatable: CONCUR_READ_ONLY and

CONCUR__UPDATABLE. If you do not specify any constants for the type and updatability of a

ResultSet object, you will automatically get one that is TYPE_FORWARD_ONLY and

CONCUR_READ_ONLY.

Result Set Methods

When a ResultSet object is first created, the cursor is positioned before the first row. To move

the cursor, you can use the following methods:

 next() - moves the cursor forward one row. Returns true if the cursor is now positioned

on a row and false if the cursor is positioned after the last row.

 previous() - moves the cursor backwards one row. Returns true if the cursor is now

positioned on a row and false if the cursor is positioned before the first row.

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 21/24

 first() - moves the cursor to the first row in the ResultSet object. Returns true if the cursor

is now positioned on the first row and false if the ResultSet object does not contain any

rows.

 last() - moves the cursor to the last row in the ResultSet object. Returns true if the cursor

is now positioned on the last row and false if the ResultSet object does not contain any

rows.

 beforeFirst() - positions the cursor at the start of the ResultSet object, before the first row.

If the ResultSet object does not contain any rows, this method has

no effect.

 afterLast() - positions the cursor at the end of the ResultSet object, after the last row. If

the ResultSet object does not contain any rows, this method has no effect.

 relative(int rows) - moves the cursor relative to its current position.

 absolute(int n) - positions the cursor on the n-th row of the ResultSet object

2.14 METADATA

RowSetMetaData: This interface, derived from the ResultSetMetaData interface, provides

information about the columns in a RowSet object. An application can use RowSetMetaData

methods to find out how many columns the rowset contains and what kind of data each column

can contain. The RowSetMetaData interface provides methods for setting the information about

columns, but an application would not normally use these methods. When an application calls

the RowSet method execute, the RowSet object will contain a new set of rows, and its

RowSetMetaData object will have been internally updated to contain information about the new

columns.

The Reader/Writer Facility

A RowSet object that implements the RowSetInternal interface can call on the RowSetReader

object associated with it to populate itself with data. It can also call on the RowSetWriter object

associated with it to write any changes to its rows back to the data source from which it

originally got the rows. A rowset that remains connected to its data source does not need to use a

reader and writer because it can simply operate on the data source directly.

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 22/24

RowSetInternal: By implementing the RowSetInternal interface, a RowSet object gets access to

its internal state and is able to call on its reader and writer. A rowset keeps track of the values in

its current rows and of the values that immediately preceded the current ones, referred to as the

original values. A rowset also keeps track of (1) the parameters that have been set for its

command and (2) the connection that was passed to it, if any. A rowset uses the RowSetInternal

methods behind the scenes to get access to this information. An application does not normally

invoke these methods directly.

RowSetReader: A disconnected RowSet object that has implemented the RowSetInternal

interface can call on its reader (the RowSetReader object associated with it) to populate it with

data. When an application calls the RowSet.execute method, that method calls on the rowset's

reader to do much of the work. Implementations can vary widely, but generally a reader makes a

connection to the data source, reads data from the data source and populates the rowset with it,

and closes the connection. A reader may also update the RowSetMetaData object for its rowset.

The rowset's internal state is also updated, either by the reader or directly by the method

RowSet.execute.

RowSetWriter: A disconnected RowSet object that has implemented the RowSetInternal

interface can call on its writer (the RowSetWriter object associated with it) to write changes back

to the underlying data source.

Implementations may vary widely, but generally, a writer will do the following:

 Make a connection to the data source

 Check to see whether there is a conflict, that is, whether a value that has been changed

in the rowset has also been changed in the data source

 Write the new values to the data source if there is no conflict

 Close the connection

The RowSet interface may be implemented in any number of ways, and anyone may write an

implementation. Developers are encouraged to use their imaginations in coming up with new

ways to use rowsets

SUMMARY

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 23/24

The JDBC API is a natural Java interface to the basic SQL abstractions and concepts. It builds on

ODBC rather than starting from scratch, so programmers familiar with ODBC will find it very

easy to learn JDBC. An API for database-independent connectivity between the J2EE platform

and a wide range of data sources. The JDBC API supports both models for database access: two-

tier (direct database access) and three-tier (communication with the database over a "middle-tier"

on the database server or a separate machine). The purpose of the JDBC package is to provide

vendor-neutral access to relational databases.

KEY TERMS

 JDBC API: support application to JDBC manager communications

 JDBC driver manager: support JDBC manager to driver implementation

 JDBC-ODBC bridge: provides JDBC access using ODBC as the communications pipe.

 Native API, partly Java Driver: converts JDBC calls directly into calls on the client to the

native database API. This requires binary code on the client machine.

 JDBC Net Driver: translates JDBC into DBMS independent protocol. This independent

protocol is translated by a server into native DBMS calls. Generally deployed using a

middleware server.

 Native Protocol - Pure Java: converts JDBC into DBMS native network calls.

QUESTIONS

1 Mark Questions (Multiple choice based)

1. A __________ is a collection of data.

 a. field b. record c. database d. DBMS

2. A ___________ is a document that defines all components of a database.

 a.SQL b. database scheme c.table d. file

3. The JDBC process is divided into __________ routines.

 a.2 b.3 c.4 d.5

4. The ___________ method is used to load the JDBC driver.

 a.Class.forName() b. Results.next()

 J2EE Database Concepts 2016- 2018 Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 24/24

 c.System.out.println() d. DB.createStatement()

5. A __________ is a server side program.

a.servlet b. JSP c. EJB d. Java

6. The ______ uniquely identifies the attribute from other attributes of the same entity.

 a.attribute name b. attribute size c.attribute format d.attribute type

7. ____________ data stores numbers only.

a. Character b. Alpha c. Alphanumeric d. Numeric

8. There are ________ methods of the ResultSet object that are used to position the virtual

cursor.

a.3 b.4 c.5 d.6

9. The __________ method returns the URL of the database.

a. getDatabaseProductName() b.getUserName()

 c.getURL() d. getschemas()

10. The ___________ is the maximum number of characters required to represent values of the data.
 a.data name b. data type c. data size d. attribute

2 Mark Questions

1. Define Data, Database and Database Schema.

2. Give a brief notes on different levels of Database Schema.

3. What is JDBC API?

4. Write short notes on Statement objects.

5. List two different packages used in JDBC API .

6. List various Resultsets methods.

8 Mark Questions

1. Explain the six steps to create a database schema with suitable examples.

2. Write a brief note on Normalizing Data with suitable example.

3. Explain the architecture of JDBC

4. Describe in Detail four different Types of JDBC Driver.

5. Explain about Resultsets in Detail.

6. Write a database connectivity program in j2EE for maintaining students detail.

SUBJECT : J2EE SEMESTER : III SUBJECT CODE: 16CSP301 CLASS : II M.Sc.CS

UNIT II
Questions opt1 opt2 opt3 opt4 Answer

A __________ is a collection of data. field record database DBMS database

A database is managed by ____________. SQL DBMS JAVA J2EE DBMS

____________ refers to an atomic unit. field data record DBMS data

A ____________ is a component of a database that contains data
in the form of rows and columns.

 tuple table record attribute table

KARPAGAM ACADEMY OF HIGHER EDUCATION
 (Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE

A ___________ is a document that defines all components of a
database.

 SQL database schema table file database schema

The best way to identify attributes of an entity is by analyzing
__________ of the entity.

 instances fields data records instances

The ___________ describes the number of characters used to
store values of the attribute.

 attribute range attribute size attribute format attribute
type

 attribute size

The __________ uniquely identifies the attribute from other
attributes of the same entity.

 attribute name attribute size attribute format attribute
type

 attribute name

A ___________ is nearly identical to the data type of a column in
a table.

 attribute name attribute size attribute format attribute
type

 attribute type

The ___________ is minimum and maximum values that can be
assigned to an attribute.

 attribute name attribute size attribute format attribute
range

 attribute range

The ___________ is the value that is automatically assigned to
the attribute.

 attribute name attribute size attribute
definition value

 attribute
type

 attribute
definition value

The __________ consists of the way in which an attribute
appears in the existing system.

 attribute format attribute size attribute
definition value

 attribute
type

 attribute format

The ___________ identifies the origin of the attribute value. attribute format attribute source attribute
definition value

 attribute
type

 attribute source

A ___________ is free form text that is used to describe an
attribute.

 acceptable
values

 required values comments attribute
values

 comments

____________ must be reduced to data elements. values attributes comments
information

 attributes

The unique name given to the data element is called
___________.

 data name data type data size attribute data name

A ____________ describes the kind of values that are associated
with the data.

 data name data type data size attribute data type

The ___________ is the maximum number of characters required
to represent values of the data.

 data name data type data size attribute data size

The nature of the data provide a hint to the ___________. data name data type data size attribute data name

____________ should have as few characters as possible to
identify the data.

 data name data type data size attribute data name

A ____________ can be abbreviated using components of the
name.

 data name data type data size attribute data name

A ____________ describes the characteristics of data associated
with a data element.

 data name data type data size attribute data type

____________ data stores alphabetical characters and
punctuations.

 Character Alpha Alphanumeric Numeric Character

___________ data stores only alphabetical characters. Character Alpha Alphanumeric Numeric Alpha

____________ data stores alphabetical characters, punctuations,
and numbers.

 Character Alpha Alphanumeric Numeric Alphanumeric

____________ data stores numbers only. Character Alpha Alphanumeric Numeric Numeric

__________ data stores date and time values. Character Alpha Date/Time Numeric Date/Time

____________ data stores one of two values – yes or no. Character Alpha Alphanumeric Logical Logical

____________ data stores large text fields, images, and other
binary data.

 Character Alpha Alphanumeric Large
Object

 Alphanumeric

__________ is the process of organizing data elements into
related groups to minimize redundant data and to assure data
integrity.

 Transaction Normalization Grouping Creation Normalization

There are ___________ normal forms. 2 3 4 5 5

A common way to organize data elements into _________ is to
first assemble a list of all data elements.

 groups text objects None of
the above

 groups

A _________ requires the information to be atomic. 1 NF 2 NF 3 NF 4 NF 1 NF

The __________ requires the data to be in the first normal form. 1 NF 2 NF 3 NF 4 NF 2 NF

The __________ requires that data elements to be in second
normal form.

 1 NF 2 NF 3 NF 4 NF 3 NF

A __________ is a data element that uniquely identifies a row of
data elements within a group.

 primary key secondary key tertiary key foreign
key

 primary key

A _________ occurs when data depends on other data such as
when nonkey data is dependent on a primary key.

 redundancy normalization functional
dependency

 transitive
dependenc
y

 functional
dependency

A ________ is a functional dependency between two or more
nonkey data elements.

 redundancy normalization functional
dependency

 transitive
dependenc
y

 transitive
dependency

A __________ is a primary key of another group used to draw a
relationship between two groups of data elements.

primary key secondary key tertiary key foreign
key

 foreign key

The relationship between primary keys and foreign keys of data
groups is called __________.

 functional
dependency

 referential
integrity

 transitive
dependency

 None of
the above

 referential
integrity

There are _________ types of JDBC drivers. 2 3 4 5 4

 The JDBC process is divided into __________ routines. 2 3 4 5 5

The ___________ method is used to load the JDBC driver.
Class.forName()

 Results.next()
System.out.println
()

DB.createS
tatement()

 Class.forName()

The _________ method returns a connection interface that is
used throughout the process to reference the database.

Class.forName()

 Results.next()
DriverManager.ge
tConnection()

DB.createS
tatement()

DriverManager.ge
tConnection()

The _________ method is used to create a statement object.
Class.forName()

 Results.next()
DriverManager.ge
tConnection()

Connect.cr
eateStatem
ent()

Connect.createSta
tement()

The _________ method is called to terminate the
statement.arameter.

Class.forName() Results.next() Db.close() Connect.cr
eateStatem
ent()

 Db.close()

The _________ method of the ResultSet object is used to copy
the value of a specified column in the current row of the
ResultSet to a string object.

Class.forName()

 Results.next() Db.close()
getString()

 getString()

The URL consists of _________ parts. 2 3 4 5 3

The statement object contains the method, which is passed the
query as an argument.

 Results.next() Class.forName() executeQuery()
Db.createSt
atement()

 executeQuery()

The __________ method of the statement object is used when
there may be multiple results returned.

 Results.next() Class.forName() executeQuery() execute() execute()

The __________ method of the connection object is called to
return a statement object.

createStatement()

 Class.forName() executeQuery() execute()
createStatement()

The __________ method of the connection object is called to
return the PreparedStatement object

createStatement()

 Class.forName() executeQuery()
preparedSt
atement()

preparedStatement
()

The _________ object is used to call a stored procedure from
within a J2EE object.

 statement preparedstatement
callableStatement

 ResultSet
callableStatement

The CallableStatement object used __________ types of
parameter when calling a stored procedure.

2 3 4 5 3

The _________ parameter contains any data that needs to be
passed to the stored procedure.processed by the CPU?

 IN OUT INOUT None of
the above

 IN

The ___________ object is used whenever a J2EE component
needs to immediately execute a query without first having the
query compiled.

 statement preparedstatement
callableStatement

 ResultSet statement

A SQL query can be preempted and executed using the
___________ object.

 statement preparedstatement
callableStatement

 ResultSet
preparedstatement

The _________ object contains methods that are used to copy
data from the ResultSet into a java collection object or variable
for further processing.

 statement preparedstatement
callableStatement

 ResultSet ResultSet

The ___________ parameter is a single parameter that is used to
both pass information to the stored procedure and retrieve
information from a stored procedure.

 IN OUT INOUT None of
the above

 INOUT

The __________ parameter contains a value returned by the
stored procedures. The future generation of
computers?

 IN OUT INOUT None of
the above

 OUT

The _________ mthod returns a Boolean true if the row contains
data.

 getString() next() execute() d) close() next()

There are ________ methods of the ResultSet object that are
used to position the virtual cursor.

3 4 5 6 6

The __________ method moves the virtual cursor specified to
the first row in the ResultSet.

 first() next() relative() absolute() first()

The __________ method moves the virtual cursor the specified
number of rows contained in the parameter.

 first() next() relative() absolute() relative()

A value in a column of the ResultSet can be replaced with a
NULL value by using the __________ method.

 updataeNull() updateRow() updateString()
deleteRow(
)

 updataeNull()

The _________ method is used to change the value of the
column of the ResultSet.

 updataeNull() updateRow() updateString()
deleteRow(
)

 updateString()

The __________ method is used to remove a row from a
ResultSet.

 updataeNull() updateRow() updateString()
deleteRow(
)

 deleteRow()

The ________ method returns the product name of the database.
getDatabaseProd
uctName()

 getUserName() getURL()
getschemas
()

getDatabaseProdu
ctName()

 The _________ method returns the username.
getDatabaseProd
uctName()

 getUserName() getURL()
getschemas
()

 getUserName()

The __________ method returns the URL of the database.
getDatabaseProd
uctName()

 getUserName() getURL()
getschemas
()

 getURL()

The __________ method returns all the schema names available
in the database.

getDatabaseProd
uctName()

 getUserName() getURL()
getschemas
()

 getschemas()

 The ___________ method returns primary keys.
getPrimaryKeys(
)

 getProcedures() getTables()
getColumn
Count()

getPrimaryKeys()

The _________ method returns stored procedure names.
getPrimaryKeys(
)

 getProcedures() getTables()
getColumn
Count()

 getProcedures()

The __________ method returns names of table in the database.
getPrimaryKeys(
)

 getProcedures() getTables()
getColumn
Count()

 getTables()

The ___________ method returns the number of columns
contained in the ResultSet.

getPrimaryKeys(
)

 getProcedures() getTables()
getColumn
Count()

getColumnCount(
)

CLASS : II M.Sc.CS

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 1/41

UNIT-III

Java Servlets: Benefits – Anatomy – Reading Data from Client –Reading HTTP Request

Headers – Sending Data to client – Working with Cookies.

TEXT BOOKS

1. Jim Keogh. (2010). The Complete Reference J2EE, Tata McGraw Hill: New Delhi. 1st

Edition.

REFERENCES

1. David R. Heffelfinger (2011), Java EE 6 Development with NetBeans 7,Packt Publishers,1st

Edition.

2. Joel Murach, Michael Urban, (2014), Murach's Java Servlets and JSP, (Murach: Training &

Reference). 3rd Edition

3. Joseph, J. Bambara et al. (2007). J2EE Unleashed , New Delhi:Tech Media, 1st Edition.

4. Paul, J. Perrone., Venkata, S. R. Chaganti., Venkata S. R. Krishna., & Tom Schwenk, (2003),

J2EE Developer's Handbook Sams Publications, New Delhi, 1st Edition.

5. Rod Johnson. (2004). J2EE Development without EJB , New Delhi:Wiley Dream Tech, 1st

Edition

6. Budi Kurniawan (2012), Servlet & JSP: A Tutorial, Brainy Software Publisher, 1st Edition.

7. Mahesh P. Matha (2013), JSP and SERVLETS: A Comprehensive Study PHI Learning, 1st

Edition.

 WEB SITES

1. www.java.sun.com/javaee/

2. www.java.sun.com/j2ee/1.4/docs/tutorial/doc/

3. www.j2eebrain.com/

4. www.javaworld.com/

5. www.corej2eepatterns.com/

https://www.amazon.com/Joel-Murach/e/B001JP7JQI/ref=dp_byline_cont_book_1
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Michael+Urban&search-alias=books&text=Michael+Urban&sort=relevancerank
https://www.amazon.in/s/ref=dp_byline_sr_ebooks_1?ie=UTF8&text=Mahesh+P.+Matha&search-alias=digital-text&field-author=Mahesh+P.+Matha&sort=relevancerank
http://www.j2eebrain.com/
http://www.javaworld.com/
http://www.corej2eepatterns.com/

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 2/41

JAVA SERVLETS

OVERVIEW OF SERVLET

Servlets are Java programming language objects that dynamically process requests

and construct responses. The Java Servlet API allows a software developer to add

dynamic content to a Web server using the Java platform. The generated content is

commonly HTML, but may be other data such as XML. Servlets are the Java counterpart

to non-Java dynamic Web content technologies such as PHP, CGI and ASP.NET, and as

such some find it easier to think of them as 'Java scripts'. Servlets can maintain state

across many server transactions by using HTTP cookies, session variables or URL

rewriting.

The servlet API, contained in the Java package hierarchy javax.servlet, defines the

expected interactions of a Web container and a servlet. A Web container is essentially the

component of a Web server that interacts with the servlets. The Web container is

responsible for managing the lifecycle of servlets, mapping a URL to a particular servlet

and ensuring that the URL requester has the correct access rights.

A Servlet is an object that receives a request and generates a response based on that

request. The basic servlet package defines Java objects to represent servlet requests and

responses, as well as objects to reflect the servlet's configuration parameters and

execution environment. The package javax.servlet.http defines HTTP-specific subclasses

of the generic servlet elements, including session management objects that track multiple

requests and responses between the Web server and a client. Servlets may be packaged in

a WAR file as a Web application.

Servlets are server side components. These components can be run on any platform

or any server due to the core java technology which is used to implement them. Servlets

augment the functionality of a web application. They are dynamically loaded by the

server's Java runtime environment when needed. On receiving an incoming request from

the client, the web server/container initiates the required servlet. The servlet processes the

http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Web_server
http://en.wikipedia.org/wiki/Java_platform
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Active_Server_Pages
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/URL_rewriting
http://en.wikipedia.org/wiki/URL_rewriting
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Java_package
http://java.sun.com/javaee/5/docs/api/javax/servlet/package-summary.html
http://en.wikipedia.org/wiki/Web_container
http://java.sun.com/javaee/5/docs/api/javax/servlet/Servlet.html
http://en.wikipedia.org/wiki/Object_(computer_science)
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/package-summary.html
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/WAR_(Sun_file_format)
http://en.wikipedia.org/wiki/Web_application

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 3/41

client request and sends the response back to the server/container, which is routed to the

client.

Figure 3.1 HTTP request response model.

Web based Client/server interaction uses the HTTP (hypertext transfer protocol). HTTP

is a stateless protocol based on a request and response model with a small, finite

number of request methods like GET, POST, HEAD, OPTIONS, PUT, TRACE,

DELETE, CONNECT, etc. The response contains the status of the response and meta

information describing the response. Most of the servlet-based web applications are

built around the framework of the HTTP request/response model (Figure 3.1).

Servlet Request And Response

There are three different players in figure 3.2. They are browser, web server, and servlet

container. In many cases, a web server and a servlet container are running in a same

machine even in a single virtual machine. So they are not really distinguished in many

cases. The role of the web server is to receive HTTP request and then passes it to the web

container or servlet container which then creates Java objects that represent “HTTP

request” and a “session” and then dispatches the request to the servlet by invoking

service() method defined in the servlet

Prepared by Dr.S.Manju Priya, Assoc.Prof, Dept of CS,CA & IT

http://www.acm.org/crossroads/xrds8-2/servletsProgramming.html#Fig3#Fig3

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 4/41

J2EE (16CSP301)

Figure 3.2 Three different players

And once the servlet handles the request, it creates a HTTP response, which is then sent

to the client through the web server.

 HTTPServletRequest object

 Information about an HTTP request

 Headers

 Query String

 Session

 Cookies

 HTTPServletResponse object

 Used for formatting an HTTP response

 Headers

 Status codes

 Cookies

3.1 BENEFITS OF JAVA SERVLETS

When developing server-side software applications, its size becomes larger and

automatically complexity intrudes in. It is always helpful if such a large application gets

broken into discreet modules that are each responsible for a specific task. This divide and

conquer principle helps to maintain and understand easily. Java Servlets provide a way to

modularize user application.

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 5/41

Advantages of Servlets

1. No CGI limitations

2. Abundant third-party tools and Web servers supporting Servlet

3. Access to entire family of Java APIs

4. Reliable, better performance and scalability

5. Platform and server independent Secure

6. Most servers allow automatic reloading of Servlet's by administrative action.

3.2 JAVA SERVLET ANATOMY

The life cycle of a servlet is controlled by servlet-container in which the servlet has been

deployed. When a HTTP request is mapped to a servlet, the container performs the

following steps.

 If an instance of the servlet does not exist, the Web
container o Loads the servlet class

o Creates an instance of the servlet class

o Initializes the servlet instance by calling the init() method

 Invokes the service method, passing HttpServletRequest and HttpServletResponse
objects as parameters.

Figure 3.3 Methods used in Java Servlets

The init() method gets called once when a servlet instance is created for the first time.

And then service() method gets called every time there comes a new request. Now

service() method in turn calls doGet() or doPost() methods for incoming HTTP requests.

And finally when the servlet instance gets removed, the destroy() method gets called. So

init() and destroy() methods get called only once .

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 6/41

Figure 3.3 Httprequest and Httpresponse

Example for init():

public class CatalogServlet extends HttpServlet

{ private BookDB bookDB;

// Perform any one-time operation for the servlet,

// like getting database connection object.

// Note: In this example, database connection object is assumed

// to be created via other means (via life cycle event mechanism)

// and saved in ServletContext object. This is to share a same

// database connection object among multiple servlets.

public void init() throws ServletException {

bookDB = (BookDB)getServletContext().

getAttribute("bookDB");

if (bookDB == null) throw new

UnavailableException("Couldn't get database.");

}

...

}

Example: destroy()

public class CatalogServlet extends HttpServlet

{ private BookDB bookDB;

public void init() throws ServletException {

bookDB = (BookDB)getServletContext().

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 7/41

getAttribute("bookDB");

if (bookDB == null) throw new

UnavailableException("Couldn't get database.");

}

public void destroy() {

bookDB = null;

}

…

This is destroy example code again from CatalogServlet code. Here destroy() method

nulling the local variable that contains the reference to database connection.

service() methods take generic requests and responses:

– service(ServletRequest request, ServletResponse response)

– doGet() or doPost() take HTTP requests and responses:

 doGet(HttpServletRequest request, HttpServletResponse response)

 doPost(HttpServletRequest request, HttpServletResponse response)

The Figure 3.4 shows how service () method of a subclass of GenericServlet class

is invoked.

Figure 3.4 using service() method to invoke GenericServlet class

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 8/41

doGet() and doPost() Methods

Using doGet() and doPost() it is possible to do the following functions:

– Can able to extract client sent information such as user-entered parameter values

that were sent as query string.

– To set and get attributes to and from scope objects.

– Perform some business logic or access the database.

– Optionally include or forward your requests to other web components.

– Populate HTTP response message and then send it to client.

Example: Simple doGet()

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

Public class HelloServlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

// Just send back a simple HTTP response

response.setContentType("text/html"); PrintWriter out

= response.getWriter(); out.println("<title>First

Servlet</title>"); out.println("<big>Hello J2EE

Programmers! </big>");

}

}

This is a very simple example code of doGet() method. In this example, a simple

HTTP response message is created and then sent back to client(shown in fig.3.5).

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 9/41

Figure 3.5 HttpServlet subclass

3.3 READING DATA FROM A CLIENT

A Client uses either the GET or POST Method to pass information to a java

servlet. The doGet() or doPost() netgid us called in the Java Servlet depending on the

method used by the client.

Data sent by a client is read into java servlet by calling the getParameters()

method of the HttpservletRequest object that instantiated in the argument list of the

doGet() and dopost() methods. The getParameters() method requires one argument,

which is the name of the parameter that contains the data sent by the client. The

getParameters() method returns a String object. The String object contains the value of

the parameter, if the client assigns a value to the parameter. An empty string object is

returned if the client didn’t assign a value to the parameter. Also, a null is returned if the

parameter isn’t received from the client.

A HTML form can contain a set of check boxes or other form objects that have

the same data name but different values. This means that data received from a client

might have multiple occurrences of the same parameter name.

The user can read a set of parameters that have the same name by calling the

getParameterValues() method. The getParameterValues() method has one argument

which is the name of the parameter, and returns an array of string objects. Each element

of the array contains a value of the set of parameters. The getParameterValues() method

returns a null if data received from the client doesn’t contain the parameter named in the

argument.

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 10/41

User can retrieve all the parameters by calling the getParameterNames() method.

The getParameterNames() method does not require an argument and returns an

Enumeration. Parameter names appear in any order and can be cast to String object and

used with the getParameter() and getParameterValues() methods.

Figure conatins an HTML form that prompts a user to enter their name , when the

user selects the Submit button, the browser calls the URL /servlet/HelloServlet Java

Servlet and sends the username as data. Figure illustrates the HelloServlet.class Java

Servlet that reads data sent by this form. In this example the getParameter() method

returns a string that is assigned to the email String object called email. The value of the

email String object is then returned to the browser in the form of an HTML page.

<HTML>

<HEAD><TITLE>Greetings

Form</TITLE></HEAD> <BODY>

<FORM METHOD=GET

ACTION="/servlet/HelloServlet"> What is your name?

<INPUT TYPE=TEXT NAME=username SIZE=20>

<INPUT TYPE=SUBMIT VALUE="Introduce Yourself">

</FORM>

</BODY>

</HTML>

This form submits a form variable named username to the URL /servlet/HelloServlet.

The HelloServlet itself does little more than create an output stream, read the

username form variable, and print a nice greeting for the user.

Here’s the code:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class HelloServlet extends HttpServlet {

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 11/41

public void doGet(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {

String name;

name= req.getParameter("username");

resp.setContentType("text/html");

PrintWriter out = resp.getWriter();

out.println("<HTML>");

out.println("<HEAD><TITLE>Finally, interaction!</TITLE></HEAD>");

out.println("<BODY><H1>Hello, " + name+"!</H1>");

out.println("</BODY></HTML>");

}

}

Result:

3.4 READING HTTP REQUEST HEADERS

When an HTTP client (e.g. a browser) sends a request, it is required to supply a request

line (usually GET or POST). If it wants to, it can also send a number of headers, all of

which are optional except for Content-Length, which is required only for POST requests.

Here are the most common headers:

 Accept The MIME types the browser prefers.

 Accept-Charset The character set the browser expects.

 Accept-Encoding The types of data encodings (such as gzip) the browser knows

how to decode. Servlets can explicitly check for gzip support and return gzipped

HTML pages to browsers that support them, setting the Content-Encoding

response header to indicate that they are gzipped. In many cases, this can reduce

page download times by a factor of five or ten.

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 12/41

 Accept-Language The language the browser is expecting, in case the server has

versions in more than one language.

 Authorization Authorization info, usually in response to a WWW-Authenticate

header from the server

 Connection Use persistent connection? If a servlet gets a Keep-Alive value here,

or gets a request line indicating HTTP 1.1 (where persistent connections are the

default), it may be able to take advantage of persistent connections, saving

significant time for Web pages that include several small pieces (images or applet

classes). To do this, it needs to send a Content-Length header in the response,

which is most easily accomplished by writing into a ByteArrayOutputStream,

then looking up the size just before writing it out.

 Content-Length (for POST messages, how much data is attached)

 Cookie (one of the most important headers; see separate section in this tutorial on

handling cookies)

 From (email address of requester; only used by Web spiders and other custom

clients, not by browsers)

 Host (host and port as listed in the original URL)

 If-Modified-Since (only return documents newer than this, otherwise send a 304

Not Modified" response)

 Pragma (the no-cache value indicates that the server should return a fresh

document, even if it is a proxy with a local copy)

 Referer (the URL of the page containing the link the user followed to get to

current page)

 User-Agent (type of browser, useful if servlet is returning browser-specific

content)

3.5 SENDING DATA TO A CLIENT

A java Servlet responds to a client request by reading client data and the HTTP request

headers, then processing information based on the nature of the request. For example, a

client request for information about merchandise in an online product catalog requires the

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 13/41

Java Servlet to search the product database to retrieve product information and then

format the product information into a web page which is returned to the client.

There are two ways in which a java Servlet replied to a client request. These are by

sending information to the response stream and by sending information in the HTTP

response header.

The HTTP response header is similar to the HTTP request header except the contents of

the HTTP response header are generated by the web server that responds to the client’s

request. Information is sent to the response stream by creating an instance of the

PrintWriter object and then using the println() method to transmit the information to the

client.

An Http response header contains a status line, response headers, and a blank line,

followed by the document. There are three components to the status line these are the

HTTP version number, a status code and a brief message associated with the status code.

example :

HTTP/1.1 200 OK

Content-type : text/plain

My response

In the above example The HTTP Version number is 1.1 and the status code is 200,

indicating that everything is fine with the request that was received from the client. OK is

the message that is associated with the status code. This example contains HTTP

response Header, which is Content-Type that identifies the document Mime type as plain

text. The document contains the expression My response.

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 14/41

3.6 WORKING WITH COOKIES

A cookie (called an Internet or Web cookie) is the term given to describe a type of message

that is given to a Web browser by a Web server. The mainpurpose of a cookie is to identify

users and possibly prepare customized Web pages or to save site login information for you.

Cookies in Servlet

A cookie is a small piece of information that is persisted between the multiple client

requests. A cookie has a name, a single value, and optional attributes such as a comment,

path and domain qualifiers, a maximum age, and a version number.

How Cookie works

By default, each request is considered as a new request. In cookies technique, we add

cookie with response from the servlet. So cookie is stored in the cache of the browser.

After that if request is sent by the user, cookie is added with request by default. Thus, we

recognize the user as the old user.

Types of Cookie

There are 2 types of cookies in servlets.

1. Non-persistent cookie

2. Persistent cookie

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 15/41

Non-persistent cookie

It is valid for single session only. It is removed each time when user closes the browser.

Persistent cookie

It is valid for multiple session . It is not removed each time when user closes the

browser. It is removed only if user logout or signout.

Advantage of Cookies

1. Simplest technique of maintaining the state.

2. Cookies are maintained at client side.

Disadvantage of Cookies

1. It will not work if cookie is disabled from the browser.

2. Only textual information can be set in Cookie object.

Cookie class

javax.servlet.http.Cookie class provides the functionality of using cookies. It provides a

lot of useful methods for cookies.

Constructor of Cookie class

Constructor

Description

 Cookie() constructs a cookie.

 Cookie(String name, String value) constructs a cookie with a specified name and value.

Useful Methods of Cookie class

There are given some commonly used methods of the Cookie class.

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 16/41

Description

 Method

 public void setMaxAge(int Sets the maximum age of the cookie in seconds.

 expiry)

public String getName()

Returns the name of the cookie. The name cannot be

 changed after creation.

 public String getValue() Returns the value of the cookie.

 public void setName(String changes the name of the cookie.

 name)

 public void setValue(String changes the value of the cookie.

 value)

Other methods required for using Cookies

For adding cookie or getting the value from the cookie, we need some methods

provided by other interfaces. They are:

1. public void addCookie(Cookie ck):method of HttpServletResponse interface

is used to add cookie in response object.

2. public Cookie[] getCookies():method of HttpServletRequest interface is used

to return all the cookies from the browser.

How to create Cookie?

Let's see the simple code to create cookie.

1. Cookie ck=new Cookie("user","sonoo jaiswal");//creating cookie object

2. response.addCookie(ck);//adding cookie in the response

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 17/41

How to delete Cookie?

Let's see the simple code to delete cookie. It is mainly used to logout or signout the user.

Cookie ck=new Cookie("user","");//deleting value of cookie

ck.setMaxAge(0);//changing the maximum age to 0 seconds

response.addCookie(ck);//adding cookie in the response

How to get Cookies?

Let's see the simple code to get all the cookies.

Cookie ck[]=request.getCookies(); for(int

i=0;i<ck.length;i++){

out.print("
"+ck[i].getName()+" "+ck[i].getValue());

//printing name and value of cookie

}

Simple example of Servlet Cookies

In this example, we are storing the name of the user in the cookie object and accessing it

in another servlet. As we know well that session corresponds to the particular user. So if

you access it from too many browsers with different values, you will get the different

value.

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 18/41

index.html

1. <form action="servlet1" method="post">

2. Name:<input type="text" name="userName"/>

3. <input type="submit" value="go"/>

4. </form>

FirstServlet.java

1. import java.io.*;

2. import javax.servlet.*;

3. import javax.servlet.http.*;

4.

5.

6. public class FirstServlet extends HttpServlet {

7.

8. public void doPost(HttpServletRequest request, HttpServletResponse response)

{

9. try{

10.

11. response.setContentType("text/html");

12. PrintWriter out = response.getWriter();

13.

14. String n=request.getParameter("userName");

15. out.print("Welcome "+n);

16.

17. Cookie ck=new Cookie("uname",n);//creating cookie object

18. response.addCookie(ck);//adding cookie in the response

19.

20. //creating submit button

21. out.print("<form action='servlet2'>");

22. out.print("<input type='submit' value='go'>");

23. out.print("</form>");

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 19/41

24.

25. out.close();

26.

27. }catch(Exception e){System.out.println(e);}

28. }

29. }

SecondServlet.java

1. import java.io.*;

2. import javax.servlet.*;

3. import javax.servlet.http.*;

4.

5. public class SecondServlet extends HttpServlet {

6.

7. public void doPost(HttpServletRequest request, HttpServletResponse response){

8. try{

9.

10. response.setContentType("text/html");

11. PrintWriter out = response.getWriter();

12.

13. Cookie ck[]=request.getCookies();

14. out.print("Hello "+ck[0].getValue());

15.

16. out.close();

17.

18. }catch(Exception e){System.out.println(e);}

19. }

20.

21.

22. }

web.xml

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 20/41

1. <web-app>

2.

3. <servlet>

4. <servlet-name>s1</servlet-name>

5. <servlet-class>FirstServlet</servlet-class>

6. </servlet>

7.

8. <servlet-mapping>

9. <servlet-name>s1</servlet-name>

10. <url-pattern>/servlet1</url-pattern>

11. </servlet-mapping>

12.

13. <servlet>

14. <servlet-name>s2</servlet-name>

15. <servlet-class>SecondServlet</servlet-class>

16. </servlet>

17.

18. <servlet-mapping>

19. <servlet-name>s2</servlet-name>

20. <url-pattern>/servlet2</url-pattern>

21. </servlet-mapping>

22.

23. </web-app>

SUMMARY

After going through this unit you will understand the role of Servlet in big picture

of J2EE. AS soon as the Web began to be used for delivering services, service providers

recognized the need for dynamic content. Applets, one of the earliest attempts toward this

goal, focused on using the client platform to deliver dynamic user experiences. At the

same time, developers also investigated using the server platform for this purpose.

Initially, Common Gateway Interface (CGI) scripts were the main technology used to

generate dynamic content. Though widely used, CGI scripting technology has a number

of shortcomings, including platform dependence and lack of scalability. To address these

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 21/41

limitations, Java Servlet technology was created as a portable way to provide dynamic,

user-oriented content.

Servlet request & response model. Servlet life cycle. Servlet scope objects. Servlet

request and response: Status, Header, Body and Error Handling. Servlet from the

standpoint of J2EE architecture, that is, what role Servlet plays in a multi-tier web-based

application. Servlet is basically a web technology in which HTTP request is being

received and handled and then proper HTTP response is being created and then returned

to the client

KEY TERMS

 Java Servlets : Servlets are the Java platform technology of choice for

extending and enhancing web servers

 ServletRequest: Defines an object to provide client request information to a

servlet.

 ServletResponse: Defines an object to assist a servlet in sending a response to

the client

 init() – Invoked once when the servlet is first instantiated

 service () - This method gets called every time there comes a new request.

 destroy() – Invoked before servlet instance is removed

 Http response header: It contains a status line, response headers, and a

blank line, followed by the document

 Cookie : It is a bit of information sent by a web server to a browser that can

later be read back from that browser

QUESTIONS

1 Mark Questions (Multiple choice based)

1. A __________ is a server side program.

a.servlet b. JSP c. EJB d. Java

2. The HTTP Request Header __________ is used by a browser to identify the client to the

java servlet whenever a protected web page is being processed.

a.Accept b. Accept_Charset c. Accept_Language d.Authorization

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 22/41

3. The HTTP Request Header _______ identifies the browser that made the request.

a. If-Modified-Since b. If-Unmodified-Since c. Referer d. User-Agent

4. The HTTP Response Header _________ is a parameter for the connection header.

a. close b. Content-Encoding c. Content-Language d. Content-Length

5. Java servlet remains alive after the request is fulfilled. This is called

 a.persistence b. reliability c. Integrity d. robustness

6. The _______ method is called automatically when the java servlet is created.

a. init() b. setContentType() c. doGet() d. doPost()

7. The HTTP Response Header ___________ indicates page encoding .

a. close b. Content-Encoding c. Content-Language d. Content-Length

 8. HTTP _________ version uses the Keep-Alive message to keep a connection open.

 a.1. 1 b. 1.2. c.1.3 d.1.4

 9. A cookie is composed of __________ pieces.

 a.2 b.3 c.4 d.5

 10. ________ is HTTP information that is generated by the client rather than the user.

a. Explicit data b. Implicit data c. CGI d. Browser

2 Mark Questions:

1. Define Java Servlet.

2. Differentiate CGI and Java Servlet.

3. List the advantage of Java Servlet.

4. Write a simple program using Java Servlet to display "Hello" message.

5. Define any three HTTP1.1 Status Codes.

6. Define Cookies.

7. What is Tracking Session?

Java Servlets 2016-
2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 23/41

8 Mark Questions

1. Explain the anatomy of Java Servlet in detail.

2. Describe in about Servlet request and response with suitable example.

3. Explain about Servlet Classes and Interfaces.

4. Write a java Servlet program to reading data from a client.

5. Write program using java Servlet to send data to a client.

Prepared by Dr.S.Manju Priya, Assoc.Prof, Dept of CS,CA & IT

SUBJECT : J2EE SEMESTER : III CLASS : II M.Sc.CS

UNIT III

Questions opt1 opt2 opt3 opt4 Answer
The result of processing a request is returned to the client as
___________.

 Explicit data Implicit data CGI Browser Explicit data

A __________ is a server side program. servlet JSP EJB Java servlet

Java servlet remains alive after the request is fulfilled. This is
called __________.

 persistence reliability Integrity robustness persistence

 A __________ is a java class that reads requests sent from a
client and responds by the sending information to the client.

 servlet JSP EJB EIS servlet

KARPAGAM ACADEMY OF HIGHER EDUCATION
 (Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE

SUBJECT CODE: 16CSP301

The doGet() method requires _________ arguments. 2 3 4 5 2

The doPost() method requires __________ arguments. 2 3 4 5 2

Incoming data includes __________ data. implicit explicit implicity
and explicit

 None of the
above

 implicity and
explicit

 The _________ method is used in conjunction with a
PrintWriter to send outgoing explicit data such as text that
appears on a webpage.

 println() setContentType() doGet() d) doPost() println()

 The __________ method is used to set the value for the
ContentType HTTP header information.

 println() setContentType() doGet() d) doPost() setContentType()

The _________ method is called automatically when the java
servlet is created.

 init() setContentType() doGet() doPost() init()

The __________ method is called whenever a request for the
java servlet is made to the web server.

 init() service() doGet() doPost() service()

The _________ method is called when an instance of a java
servlet is removed from memory.

 init() service() destroy()
doPost()

 destroy()

The __________ method is not called when an abnormal
occurrence such as a system malfunction causes the java servlet
to abruptly terminate.

 init() service() destroy()
doPost()

 destroy()

The web-app element should contain a servlet element with
__________ subelements.

2 3 4 5 3

The ____________ contains the name used to access the java
servlet.

 servlet-name servlet-class init-param None of the
above

 servlet-name

 A client uses the __________ method to pass information to a
java servlet.

 GET only POST only either
GET or
POST

 None of the
above

 either GET or
POST

 Data sent by a client is read into a java servlet by calling the
__________ method.

 getParameter() doGet() doPost()
getParameterV
alues()

 getParameter()

 The _________ method returns a null if data received from the
client doesnot contain the parameter named in the argument.

 getParameter() doGet() doPost()
getParameterV
alues()

getParameterValue
s()

The _________ method does not require an argument and
returns an enumeration.

 getParameter()
getParameterName
s()

 doPost()
getParameterV
alues()

getParameterName
s()

A request from a client contains __________ components. 2 3 4 5 2

The HTTP Request Header ________ identifies the MIME type
of data that can be handled by the browser that made the
request.

 Accept Accept_Charset
Accept_La
nguage

 Authorization Accept

 The HTTP Request Header __________ identifies the
character sets that can be used by the browser that made the
request.

 Accept Accept_Charset
Accept_La
nguage

 Authorization Accept_Charset

The HTTP Request Header __________ specifies the preferred
languages that are used by the browser.

 Accept Accept_Charset
Accept_La
nguage

 Authorization
Accept_Language

The HTTP Request Header __________ is used by a browser to
identify the client to the java servlet whenever a protected web
page is being processed.

 Accept Accept_Charset
Accept_La
nguage

 Authorization Authorization

 The HTTP Request Header __________ identifies whether a
browser can retrieve multiple files using the same socket, which
is referred to as persistence.

 Connection Content-length Cookie Host Connection

The HTTP Request Header __________ contains the size of the
data in bytes that are transmitted using the POST method.

 Connection Content-length Cookie Host Content-length

 The HTTP Request Header __________ contains the host and
port of the original URL

 Connection Content-length Cookie Host Host

The HTTP Request Header ________ signifies that the
browser’s requests should be fulfilled only if the data has
changed since a specified date.

If-Modified-
Since

 If-Unmodified-
Since

 Referer User-Agent If-Modified-Since

The HTTP Request Header __________ signifies that the
browser’s requests should be fulfilled only if the data is older
than a specified date.

If-Modified-
Since

 If-Unmodified-
Since

 Referer User-Agent If-Unmodified-
Since

The HTTP Request Header ___________ contains the URL of
the web page that is currently displayed in the browser.

 If-Modified-
Since

 If-Unmodified-
Since

 Referer User-Agent Referer

The HTTP Request Header _________ identifies the browser
that made the request.

 If-Modified-
Since

 If-Unmodified-
Since

 Referer User-Agent User-Agent

HTTP _________ version uses the Keep-Alive message to keep
a connection open.

1.1 1.2. 1.3 1.4 1.1

There are __________ ways in which a java servlet replies to a
client request.

2 3 4 5 2

A java servlet can write to the HTTP response header by calling
the __________ method of the HttpServlet Response object.

 setStatus() sendError()
sendRedire
ct()

 None of the
above

 setStatus()

 The __________ method is used to notify the client that an
error has occurred.

 setStatus() sendError()
sendRedire
ct()

 None of the
above

 sendError()

The ___________ method transmits a location header to the
browser.

 setStatus() sendError()
sendRedire
ct()

 None of the
above

 sendRedirect()

The HTTP Response Header ___________ is a parameter for
the connection header.

 close Content-Encoding Content-
Language

 Content-
Length

 close

The HTTP Response Header ___________ indicates page
encoding .

 close Content-Encoding Content-
Language

 Content-
Length

 Content-
Encoding

The HTTP Response Header __________ indicates the
language of the document.

 close Content-Encoding Content-
Language

 Content-
Length

 Content-Language

The HTTP Response Header ____________ indicates the
number of bytes in the message before any character encoding
is applied.

 close Content-Encoding Content-
Language

 Content-
Length

 Content-Length

The HTTP Response Header ___________ indicates the MIME
type of the response document.

 Content-Type Expires Last-
Modified

 Location Content-Type

 The HTTP Response Header ___________ specifies the time
in milliseconds when document is out of date.use

 Content-Type Expires Last-
Modified

 Location Expires

The HTTP Response Header ___________ indicates the last
time the document was changed.

 Content-Type Expires Last-
Modified

 Location Last-Modified

The HTTP Response Header ___________ indicates the
location of the document.

 Content-Type Expires Last-
Modified

 Location Location

183. The HTTP Response Header ___________ indicates the
number of seconds to wait before asking for a page update.

 Refresh Retry-After Set-
Cookie

 WWW-
Authenticate

 Refresh

The HTTP Response Header ___________ indicates the
number of seconds to wait before requesting service, if the
service is unavailable.

 Refresh Retry-After Set-
Cookie

 WWW-
Authenticate

 Retry-After

The HTTP Response Header __________ identifies the cookie
for the page.

 Refresh Retry-After Set-
Cookie

 WWW-
Authenticate

 Set-Cookie

 The HTTP Response Header __________ indicates the
authorization type.

 Refresh Retry-After Set-
Cookie

 WWW-
Authenticate

 Retry-After

A cookie is composed of __________ pieces. 2 3 4 5 2

The __________ is used to identify a particular cookie from
among other cookies stored at the client.

 cookie name cookie value cookie
API

Cookie
parameter

 cookie name

The __________ is associated with the cookies. cookie name cookie value cookie
API

Cookie
parameter

 cookie value

 A java servlet writes a cookie by passing the construction of
the cookie object _________ arguments.

2 3 4 5 2

The _________ method returns an array of cookie objects. getCookie() addCookie() setValue() SetCookie() getCookie()

A java servlet can modify the value of an existing cookies by
using the __________ method of the cookie object.

 getCookie() addCookie() setValue() SetCookie() setValue()

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 1/22

UNIT-IV

Enterprise Java Beans: Deployment Descriptors – Session Java Bean –Entity Java Bean

Message Driven Bean.

TEXT BOOKS

1. Jim Keogh. (2010). The Complete Reference J2EE, Tata McGraw Hill: New Delhi.

1st Edition.

REFERENCES

1. David R. Heffelfinger (2011), Java EE 6 Development with NetBeans 7,Packt

Publishers,1st Edition.

2. Joel Murach, Michael Urban, (2014), Murach's Java Servlets and JSP, (Murach:

Training & Reference). 3rd Edition

3. Joseph, J. Bambara et al. (2007). J2EE Unleashed , New Delhi:Tech Media, 1st

Edition.

4. Paul, J. Perrone., Venkata, S. R. Chaganti., Venkata S. R. Krishna., & Tom Schwenk,

(2003), J2EE Developer's Handbook Sams Publications, New Delhi, 1st Edition.

5. Rod Johnson. (2004). J2EE Development without EJB , New Delhi:Wiley Dream

Tech, 1st Edition

6. Rod Johnson., & Rod Johnson, P.H. (2004). Expert One-On-One J2ee Design and

Development. New Delhi: John Wiley & Sons, 2nd Edition.

7. John Brock, Arun Gupta, Geertjan Wielenga (2014), Java EE and HTML5 Enterprise

Application Development ,Oracle Press.

 WEB SITES

1. www.java.sun.com/javaee/

2. www.java.sun.com/j2ee/1.4/docs/tutorial/doc/

3. www.j2eebrain.com/

4. www.javaworld.com/

5. www.corej2eepatterns.com/

https://www.amazon.com/Joel-Murach/e/B001JP7JQI/ref=dp_byline_cont_book_1
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Michael+Urban&search-alias=books&text=Michael+Urban&sort=relevancerank
https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=John+Brock&search-alias=stripbooks
https://www.amazon.in/Arun-Gupta/e/B00DWBZ3NI/ref=dp_byline_cont_book_2
https://www.amazon.in/Geertjan-Wielenga/e/B00S8PV3TQ/ref=dp_byline_cont_book_3
http://www.j2eebrain.com/
http://www.javaworld.com/
http://www.corej2eepatterns.com/

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 2/22

ENTERPRISE JAVABEAN

OVERVIEW OF EJB

Enterprise beans are Java EE components that implement Enterprise JavaBeans (EJB)

technology. Enterprise beans run in the EJB container, a runtime environment within the

Application Server. Although transparent to the application developer, the EJB container

provides system-level services such as transactions and security to its enterprise beans.

These services enable you to quickly build and deploy enterprise beans, which form the

core of transactional Java EE applications. Written in the Java programming language, an

enterprise bean is a server-side component that encapsulates the business logic of an

application. The business logic is the code that fulfills the purpose of the application. In

an inventory control application, for example, the enterprise beans might implement the

business logic in methods called checkInventoryLevel and orderProduct. By

invoking these methods, clients can access the inventory services provided by the

application.

BENEFITS OF ENTERPRISE BEANS

For several reasons, enterprise beans simplify the development of large, distributed

applications. First, because the EJB container provides system-level services to enterprise

beans, the bean developer can concentrate on solving business problems. The EJB

container, rather than the bean developer, is responsible for system-level services such as

transaction management and security authorization.

Second, because the beans rather than the clients contain the application’s business logic,

the client developer can focus on the presentation of the client. The client developer does

not have to code the routines that implement business rules or access databases. As a

result, the clients are thinner, a benefit that is particularly important for clients that run on

small devices.

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 3/22

Third, because enterprise beans are portable components, the application assembler can

build new applications from existing beans. These applications can run on any compliant

Java EE server provided that they use the standard APIs.

 4.1 EJB DEPLOYMENT DESCRIPTOR

Deployment descriptor is the file which tells the EJB server that which classes make up

the bean implementation, the home interface and the remote interface. it also indicates

the behavior of one EJB with other. The deployment descriptor is generally called as

ejb-jar.xml and is in the directory META-INF of the client application. In the example

given below our application consists of single EJB node

<?xml version ="1.0" encoding="UTF-8"?>

<application-client version="5" xmlns="http://java

.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/application-client_5.xsd">

<description>Accessing Database Application</description>

<display-name>Secure-app-client</display-name><enterprise-beans>

<session>

<ejb-name>secure</ejb-name>

<home>org.glassfish.docs.secure.secureHome</home>

<remote>org.glassfish.docs.secure.secure</remote>

<ejb-class>org.glassfish.docs.secure.secureBean</ejb-class>

<session-type>Stateless</session-type>

</session>

</enterprise-beans>

</application-client>

<ejb-name>secure</ejb-name>:-This is the node that assigns the name to the EJB.

<description>Accessing Database Application</description>:-This node gives the

brief description about the Ejb module created.

http://www.roseindia.net/ejb/ejb-deployment-descriptor.shtml
http://www.roseindia.net/ejb/ejb-deployment-descriptor.shtml
http://www.roseindia.net/ejb/ejb-deployment-descriptor.shtml

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 4/22

<session-type>Stateless</session-type>:-This node assigns the Session bean as

stateless or stateful. Here stateless means to say accessing Remote interface.

DEPLOYING EJB TECHNOLOGY

The container handles persistence, transactions, concurrency, and access control

automatically for the enterprise beans. The EJB specification describes a declarative

mechanism for how these things will be handled, through the use of an XML

deployment descriptor. When a bean is deployed into a container, the container reads

the deployment descriptor to find out how transaction, persistence (entity beans), and

access control should be handled. The person deploying the bean will use this

information and specify additional information to hook the bean up to these facilities at

run time. A deployment descriptor has a predefined format that all EJB-compliant

beans must use and all EJB-compliant servers must know how to read. This format is

specified in an XML Document Type Definition, or DTD. The deployment descriptor

describes the type of bean (session or entity) and the classes used for the remote, home,

and bean class. It also specifies the transactional attributes of every method in the bean,

which security roles can access each method (access control), and whether persistence

in the entity beans is handled automatically or is performed by the bean. Below is an

example of a XML deployment descriptor used to describe the Customer bean:

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar>

<enterprise-beans>

<entity>

<description>

This bean represents a customer

</description>

<ejb-name>CustomerBean</ejb-name>

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 5/22

<home>CustomerHome</home>

<remote>Customer</remote>

<ejb-class>CustomerBean</ejb-class>

<persistence-type>Container</persistence-type>

<prim-key-class>Integer</prim-key-class>

<reentrant>False</reentrant>

<cmp-field><field-name>myAddress</field-name></cmp-field>

<cmp-field><field-name>myName</field-name></cmp-field>

<cmp-field><field-name>myCreditCard</field-name></cmp-field>

</entity>

</enterprise-beans>

<assembly-descriptor>

<security-role>

<description>

This role represents everyone who is allowed full access to the Customer bean.

</description>

<role-name>everyone</role-name>

</security-role>

<method-permission>

<role-name>everyone</role-name>

<method>

<ejb-name>CustomerBean</ejb-name>

<method-name>*</method-name>

</method>

</method-permission>

<container-transaction>

<description>

All methods require a transaction

</description>

<method>

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 6/22

<ejb-name>CustomerBean</ejb-name>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

4.2 SESSION BEAN

A session bean represents a single client inside the Application Server. To access an

application that is deployed on the server, the client invokes the session bean’s methods.

The session bean performs work for its client, shielding the client from complexity by

executing business tasks inside the server.

As its name suggests, a session bean is similar to an interactive session. A session bean is

not shared; it can have only one client, in the same way that an interactive session can

have only one user. Like an interactive session, a session bean is not persistent. (That is,

its data is not saved to a database.) When the client terminates, its session bean appears to

terminate and is no longer associated with the client.

STATE MANAGEMENT MODES

There are two types of session beans: stateful and stateless.

4.2.1 Stateful Session Beans

The state of an object consists of the values of its instance variables. In a stateful session

bean, the instance variables represent the state of a unique client-bean session. Because

the client interacts (“talks”) with its bean, this state is often called the conversational

state. The state is retained for the duration of the client-bean session. If the client removes

the bean or terminates, the session ends and the state disappears. This transient nature of

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 7/22

the state is not a problem, however, because when the conversation between the client

and the bean ends there is no need to retain the state.

As an example, the HotelClerk bean can be modified to be a stateful bean which can

maintain conversational state between method invocations. This would be useful, for

example, if you want the HotelClerk bean to be able to take many reservations, but then

process them together under one credit card. This occurs frequently, when families need

to reserve two or more rooms or when corporations reserve a block of rooms for some

event.

Below the HotelClerkBean is modified to be a stateful bean:

import javax.ejb.SessionBean;

import javax.naming.InitialContext;

public class HotelClerkBean implements SessionBean {

InitialContext jndiContext;

//conversational-state

Customer cust;

Vector resVector = new Vector();

public void ejbCreate(Customer customer) {}

cust = customer;

}

public void addReservation(Name name, RoomInfo ri,

Date from, Date to) {

ReservationInfo resInfo =

new ReservationInfo(name,ri,from,to);

resVector.addElement(resInfo);

}

public void reserveRooms() {

CreditCard card = cust.getCreditCard();

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 8/22

Enumeration resEnum = resVector.elements();

while (resEnum.hasMoreElements()) {

ReservationInfo resInfo =

(ReservationInfo) resEnum.nextElement();

RoomHome roomHome = (RoomHome)

getHome("java:comp/env/ejb/RoomEJB", RoomHome.class);

Room room =

roomHome.findByPrimaryKey(resInfo.roomInfo.getID());

double amount = room.getPrice(resInfo.from,restInfo.to);

CreditServiceHome creditHome = (CreditServiceHome)

getHome("java:comp/env/ejb/CreditServiceEJB",

CreditServiceHome.class);

CreditService creditAgent = creditHome.create();

creditAgent.verify(card, amount);

ReservationHome resHome = (ReservationHome)

getHome("java:comp/env/ejb/ReservationEJB",

ReservationHome.class);

Reservation reservation =

resHome.create(resInfo.getName(),

resInfo.roomInfo,resInfo.from,resInfo.to);

}

public RoomInfo[] availableRooms(Location loc,

Date from, Date to) {

// Make an SQL call to find available rooms

}

private Object getHome(String path, Class type) {

Object ref = jndiContext.lookup(path);

return PortableRemoteObject.narrow(ref,type);

}}

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 9/22

In the stateful version of the HotelClerkBean class, the conversational state is the

Customer reference, which is obtained when the bean is created, and the Vector of

ReservationInfo objects.

By maintaining the conversational state in the bean, the client is absolved of the

responsibility of keeping track of this session state. The bean keeps track of the

reservations and processes them in a batch when the serverRooms() method is invoked.

To conserve resources, stateful session beans may be passivated when they are not

in use by the client. Passivation in stateful session beans is different than for entity beans.

In stateful beans, passivation means the bean conversational-state is written to a

secondary storage (often disk) and the instance is evicted from memory. The client's

reference to the bean is not affected by passivation; it remains alive and usable while the

bean is passivated.

When the client invokes a method on a bean that is passivated, the container will

activate the bean by instantiating a new instance and populating its conversational state

with the state written to secondary storage. This passivation/activation process is often

accomplished using simple Java serialization but it can be implemented in other

proprietary ways as long as the mechanism behaves the same as normal serialization.

(One exception to this is that transient fields do not need to be set to their default initial

values when a bean is activated.) Stateful session beans, unlike stateless beans, do use the

ejbActivate() and ejbPassivate() methods. The container will invoke these methods to

notify the bean when it's about to be passivated (ejbPassivate()) and immediately

following activation ejbActivate()). Bean developers should use these methods to close

open resources and to do other clean-up before the instance's state is written to secondary

storage and evicted from memory.

The ejbRemove() method is invoked on the stateful instance when the client

invokes the remove() method on the home or remote interface. The bean should use the

ejbRemove() method to do the same kind of clean-up performed in the ejbPassivate()

method.

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 10/22

4.2.1 Stateless Session Beans

A stateless session bean does not maintain a conversational state with the client. When a

client invokes the methods of a stateless bean, the bean’s instance variables may contain

a state specific to that client, but only for the duration of the invocation. When the

method is finished, the client-specific state should not be retained. Clients may, however,

change the state of instance variables in pooled stateless beans, and this state is held over

to the next invocation of the pooled stateless bean. Except during method invocation, all

instances of a stateless bean are equivalent, allowing the EJB container to assign an

instance to any client. That is, the state of a stateless session bean should apply accross all

clients.Because stateless session beans can support multiple clients, they can offer better

scalability for applications that require large numbers of clients. Typically, an application

requires fewer stateless session beans than stateful session beans to support the same

number of clients. A stateless session bean can implement a web service, but other types

of enterprise beans cannot.

An example of a stateless session bean is a CreditService bean, representing a credit

service that can validate and process credit card charges. A hotel chain might develop a

CreditService bean to encapsulate the process of verifying a credit card number, making a

charge, and recording the charge in the database for accounting purposes. Below are the

remote and home interfaces for the CreditService bean:

// remote interface

public interface CreditService extends javax.ejb.EJBObject {

public void verify(CreditCard card, double amount)

throws RemoteException, CreditServiceException;

public void charge(CreditCard card, double amount)

throws RemoteException, CreditServiceException;

}

// home interface

public interface CreditServiceHome extends java.ejb.EJBHome {

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 11/22

public CreditService create()

throws RemoteException, CreateException;

}

The remote interface, CreditService, defines two methods, verify() and charge(), which

are used by the hotel to verify and charge credit cards. The hotel might use the verify()

method to make a reservation, but not charge the customer. The charge() method would

be used to charge a customer for a room. The home interface, CreditServiceHome

provides one create() method with no arguments. All home interfaces for stateless session

beans will define just one method, a no-argument create() method, because session beans

do not have find methods and they cannot be initiated with any arguments when they are

created. Stateless session beans do not have find methods, because stateless beans are all

equivalent and are not persistent. In other words, there is no unique stateless session

beans that can be located in the database. Because stateless session beans are not

persisted, they are transient services. Every client that uses the same type of session bean

gets the same service.

Below is the bean class definition for the CreditService bean. This bean encapsulates

access to the Acme Credit Card processing services. Specifically, this bean accesses the

Acme secure Web server and posts requests to validate or charge the customer's credit

card.

import javax.ejb.SessionBean;

public class CreditServiceBean implements SessionBean {

URL acmeURL;

HttpURLConnection acmeCon;

public void ejbCreate() {

try {

InitialContext jndiContext = new InitialContext();

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 12/22

URL acmeURL = (URL)

jndiContext.lookup("java:comp/ejb/env/url/acme");

acmeCon = acmeURL.openConnection();

}

catch (Exception e) {

throws new EJBException(e);

} }

public void verify(CreditCard card, double amount) {

String response = post("verify:" + card.postString() +

":" + amount);

if (response.substring("approved")== -1)

throw new CreditServiceException("denied");

}

public void charge(CreditCard card, double amount)

throws CreditCardException {

String response = post("charge:" + card.postString() +

":" + amount);

if (response.substring("approved")== -1)

throw new CreditServiceException("denied");

}

private String post(String request) {

try {

acmeCon.connect();

acmeCon.setRequestMethod("POST "+request);

String response = acmeCon.getResponseMessage();

}

catch (IOException ioe) {

throw new EJBException(ioe);

}

}

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 13/22

public void ejbRemove() {

acmeCon.disconnect();

}

public void setSessionContext(SessionContext cntx) {}

public void ejbActivate() {}

public void ejbPassivate() {}

}

When to use session beans

In general, you should use a session bean if the following circumstances hold:

 At any given time, only one client has access to the bean instance.

 The state of the bean is not persistent, existing only for a short period (perhaps a

few hours).

 The bean implements a web service.

Stateful session beans are appropriate if any of the following conditions are true:

 The bean’s state represents the interaction between the bean and a specific client.

 The bean needs to hold information about the client across method invocations.

The bean mediates between the client and the other components of the application,

presenting a simplified view to the client.

To improve performance, choose a stateless session bean if it has any of these traits:

 The bean’s state has no data for a specific client.

 In a single method invocation, the bean performs a generic task for all clients.

For example, use a stateless session bean to send an email that confirms an online

order

4.3 ENTITY BEANS

The entity bean is one of three primary bean types: entity, session and Message

Driven. The entity Bean is used to represent data in the database. It provides an object-

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 14/22

oriented interface to data that would normally be accessed by the JDBC or some other

back-end API. More than that, entity beans provide a component model that allows bean

developers to focus their attention on the business logic of the bean, while the container

takes care of managing persistence, transactions, and access control.

There are two basic kinds of entity beans: container-managed persistence (CMP)

and bean-managed persistence (BMP). With CMP, the container manages the

persistence of the entity bean. With BMP, the entity bean contains database access code

(usually JDBC) and is responsible for reading and writing its own state to the database.

4.3.1 CONTAINER-MANAGED PERSISTENCE

Container-managed persistence beans are the simplest for the bean developer to

create and the most difficult for the EJB server to support. This is because all the logic

for synchronizing the bean's state with the database is handled automatically by the

container. This means that the bean developer doesn't need to write any data access

logic, while the EJB server is supposed to take care of all the persistence needs

automatically -- a tall order for any vendor. Most EJB vendors support automatic

persistence to a relational database, but the level of support varies. Some provide very

sophisticated object-to-relational mapping, while others are very limited.In this panel,

you will expand the CustomerBean developed earlier to a complete definition of a

Container-managed persistence bean. In the panel on bean-managed persistence, you

will modify the CustomerBean to manage its own persistence.

4.3.2 BEAN CLASS

An enterprise bean is a complete component that is made up of at least two

interfaces and a bean implementation class. All these types will be presented and their

meaning and application explained, starting with the bean class, which is defined below:

import javax.ejb.EntityBean;

public class CustomerBean implements EntityBean {

int customerID;

Address myAddress;

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 15/22

Name myName;

CreditCard myCreditCard;

// CREATION METHODS

public Integer ejbCreate(Integer id) {

customerID = id.intValue();

return null;

}

public void ejbPostCreate(Integer id) {

}

public Customer ejbCreate(Integer id, Name name) {

myName = name;

return ejbCreate(id);

}

public void ejbPostCreate(Integer id, Name name) {

}

// BUSINESS METHODS

public Name getName() {

return myName;

}

public void setName(Name name) {

myName = name;

}

public Address getAddress() {

return myAddress;

}

public void setAddress(Address address) {

myAddress = address;

}

public CreditCard getCreditCard() {

return myCreditCard;

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 16/22

}

public void setCreditCard(CreditCard card) {

myCreditCard = card;

}

// CALLBACK METHODS

public void setEntityContext(EntityContext cntx) {

}

public void unsetEntityContext() {

}

public void ejbLoad() {

}

public void ejbStore() {

}

public void ejbActivate() {

}

public void ejbPassivate() {

}

public void ejbRemove() {

}

}

Notice that there is no database access logic in the bean. This is because the EJB vendor

provides tools for mapping the fields in the CustomerBean to the database. The

CustomerBean class, for example, could be mapped to any database providing it contains

data that is similar to the fields in the bean. In this case, the bean's instance fields are

composed of a primitive int and simple dependent objects (Name, Address,and

CreditCard) with their own attributes Below are the definitions for these dependent

objects:

// The Name class

public class Name implements Serializable {

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 17/22

public String lastName, firstName, middleName;

public Name(String lastName, String firstName,

String middleName) {

this.lastName = lastName;

this.firstName = firstName;

this.middleName = middleName;

}

public Name() {}

}

// The Address class

public class Address implements Serializable {

public String street, city, state, zip;

public Address(String street, String city,

String state, String zip) {

this.street = street;

this.city = city;

this.state = state;

this.zip = zip;

}

public Address() {}

}

// The CreditCard class

public class CreditCard implements Serializable {

public String number, type, name;

public Date expDate; public CreditCard(String number, String type, String name, Date

expDate) {

this.number = number;

this.type = type;

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 18/22

this.name = name;

this.expDate = expDate;

}

public CreditCard() {}

}

These fields are called container-managed fields because the container is responsible for

synchronizing their state with the database; the container manages the fields. Container-

managed fields can be any primitive data types or serializable type. This case uses both a

primitive int (customerID) and serializable objects (Address, Name, CreditCard). To map

the dependent objects to the database, a fairly sophisticated mapping tool would be

needed. Not all fields in a bean are automatically container-managed fields; some may be

just plain instance fields for the bean's transient use. A bean developer distinguishes

container-managed fields from plain instance fields by indicating which fields are

container-managed in the deployment descriptor. The container-managed fields must

have corresponding types (columns in RDBMS) in the database either directly or through

object-relational mapping. The CustomerBean might, for example, map to a

CUSTOMER table in the database that has the following definition:

CREATE TABLE CUSTOMER

{

id INTEGER PRIMARY KEY,

last_name CHAR(30),

first_name CHAR(20),

middle_name CHAR(20),

street CHAR(50),

city CHAR(20),

state CHAR(2),

zip CHAR(9),

credit_number CHAR(20),

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 19/22

credit_date DATE,

credit_name CHAR(20),

credit_type CHAR(10)

}

With container-managed persistence, the vendor must have some kind of proprietary tool

that can map the bean's container-managed fields to their corresponding columns in a

specific table, CUSTOMER in this case.

Once the bean's fields are mapped to the database, and the Customer bean is deployed,

the container will manage creating records, loading records, updating records, and

deleting records in the CUSTOMER table in response to methods invoked on the

Customer bean's remote and home interfaces.

A subset (one or more) of the container-managed fields will also be identified as the

bean's primary key. The primary key is the index or pointer to a unique record(s) in the

database that makes up the state of the bean. In the case of the CustomerBean, the id field

is the primary key field and will be used to locate the bean's data in the database.

Primitive single field primary keys are represented as their corresponding object

wrappers. The primary key of the Customer bean for example is a primitive int in the

bean class, but to a bean's clients it will manifest itself as the java.lang.Integer type.

Primary keys that are made up of several fields, called compound primary keys, will be

represented by a special class defined by the bean developer. Primary keys are similar in

concept to primary keys in a relational database -- actually when a relational database is

used for persistence, they are often the same thing.

).

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 20/22

4.4 MESSAGE-DRIVEN BEAN

A message-driven bean is an enterprise bean that allows Java EE applications to process

messages asynchronously. It normally acts as a JMS message listener, which is similar to

an event listener except that it receives JMS messages instead of events.

The messages can be sent by any Java EE component (an application client, another

enterprise bean, or a web component) or by a JMS application or system that does not use

Java EE technology. Message-driven beans can process JMS messages or other kinds of

messages.

4.4.1 What Makes Message-Driven Beans Different from Session Beans?

The most visible difference between message-driven beans and session beans is that

clients do not access message-driven beans through interfaces. In several respects, a

message-driven bean resembles a stateless session bean.A message-driven bean’s

instances retain no data or conversational state for a specific client. All instances of a

message-driven bean are equivalent, allowing the EJB container to assign a message to

any message-driven bean instance. The container can pool these instances to allow

streams of messages to be processed concurrently.

A single message-driven bean can process messages from multiple clients.The instance

variables of the message-driven bean instance can contain some state across the handling

of client messages (for example, a JMS API connection, an open database connection, or

an object reference to an enterprise bean object).Client components do not locate

message-driven beans and invoke methods directly on them. Instead, a client accesses a

message-driven bean through, for example, JMS by sending messages to the message

destination for which the message-driven bean class is the MessageListener. You assign

a message-driven bean’s destination during deployment by using Application Server

resources.

Message-driven beans have the following characteristics:

 They execute upon receipt of a single client message.

 They are invoked asynchronously.

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 21/22

 They are relatively short-lived.

 They do not represent directly shared data in the database, but they can access

and update this data.

 They can be transaction-aware.

 They are stateless.

When a message arrives, the container calls the message-driven bean’s onMessage

method to process the message. The onMessage method normally casts the message to

one of the five JMS message types and handles it in accordance with the application’s

business logic. The onMessage method can call helper methods, or it can invoke a session

bean to process the information in the message or to store it in a database.

A message can be delivered to a message-driven bean within a transaction context, so all

operations within the onMessage method are part of a single transaction. If message

processing is rolled back, the message will be redelivered

4.4.2 when to use message-driven beans

Session beans allow you to send JMS messages and to receive them synchronously, but

not asynchronously. To avoid tying up server resources, do not to use blocking

synchronous receives in a server-side component, and in general JMS messages hould

not be sent or received synchronously. To receive messages asynchronously, use a

message-driven bean.

Example For Message Driven Bean

Example Application Overview

This application has the following components:

 SimpleMessageClient: A J2EE application client that sends several

messages to a queue.

 SimpleMessageEJB: A message-driven bean that asynchronously receives

and processes the messages that are sent to the queue.

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 22/22

Figure 4.1 illustrates the structure of this application. The application client sends

messages to the queue, which was created administratively using the j2eeadmin

command. The JMS provider (in this, case the J2EE server) delivers the messages to the

instances of the message-driven bean, which then processes the messages.

Figure 4..1 The SimpleMessageApp Application

KEY TERMS

 Enterprise JavaBeans: Enterprise bean implements a business task, or a

business entity.

 EJB Server and Container: An EJB bean is said to reside within an EJB

Container that in turn resides within an EJB Server.

 Deployment descriptors: The additional information required to install an EJB

within its server is provided in the deployment descriptors for that bean

 The EJBObject: An instance of a generated class that implements the remote

interface defined by the bean developer

 The EJBLocalObject: An instance of a generated class that implements the local

interface defined by the bean developer

QUESTIONS

1 Mark Questions (Multiple Choice Based)

1. The _____________ method is a method that contains business logic that is

customized to the service provided by the EJB.

a. ejbActivate() b. ejbPassivate() c. ejbRemove() d. myMethod()

2. There are __________ methods defined in a BMP bean.

a.2 b.3 c.4 d.5

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/MDB2.html#80720

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 23/22

3. In BMP bean, _______ method must contain code that reads data from a database.

a.ejbLoad() b. ejbstore() c. ejbCreate() d. ejbRemove()

4. The ___________ element contains subelements that describe the entity EJB.

a. <enterprise-beans> b. <home> c. <local> d.<entity>

5. The _____________ subelement specifies the name of the method.

 a. <query> b. <method-param> c. <ejb-ql> d. <method-name>

6. The ______ method is called just before the bean is available for garbage

collection.

a. ejbActivate() b. ejbPassivate() c. ejbRemove() d. ejbCreate()

 7. A __________ bean is used to model a business process.

 a. entity b. session c. message-driven d.function

 8. The subelement _____specifies the version of container-managed persistence.

 a. <reentrant > b. <cmp-version> c <cmp-field> d. <env-entry>

 9. The __________ subelement itself has two subelements.

 a. <query> b. <method-param> c. <ejb-ql> d. <query-method>

 10. A container invokes the __________ method to instruct the instance to

 synchronize its state by loading its state from the underlying database.

 a. setEntityContext() b. unsetEntityContext()

 c. ejbLoad() d. ejbActivate()

2 Mark Questions:

1. Differentiate Java Bean and EJB

2. List the three different Types of EJB Classes

3. Define Callback Method

4. What is jar file?

5. Define Session bean.

6. Give an example for message driven bean.

8 Mark Questions:

1. Explain the Entity bean with example.

2. Describe in Detail about Session bean.

3. Illustrate Message Drive bean with suitable example

Enterprise Java Beans 2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 24/22

4. Write about EJB deployment in detail.

5. Discuss about query element and relationship element.

6. What are Enterprise Java Beans? Describe EJB interfaces

7. Write a program to build a JAVA Bean for opening an applet from JAR file

SUBJECT : J2EE SEMESTER : III SUBJECT CODE: 16CSP301 CLASS : II M.Sc.CS

UNIT IV

Questions opt1 opt2 opt3 opt4 Answer
A __________ bean is used to model a business process. entity session message-

driven
 none of the
above

 session

A __________ bean is used to receive messages from a JMS
resource.

 entity session message-
driven

 none of the
above

 message-driven

The _________ handles communication between the EJB and
other components in the EJB environment using the Home
interface and the Remote interface.

 EJB container EJB classes EJB
interfaces

 deployment
descriptors

 EJB container

A _________ describes how EJBs are managed at runtime and
enables the customization of EJB behavior without modification
to the EJB code.

 EJB container EJB classes EJB
interfaces

 deployment
descriptors

 deployment descriptors

A _____________ is written in a file using XML syntax. EJB container EJB classes EJB
interfaces

 deployment
descriptors

 deployment descriptors

KARPAGAM ACADEMY OF HIGHER EDUCATION
 (Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE

The expansion of IDE is _____________. Integral
Development
Environment

Integrated
Developmen
t
Environment

Integrity
Development
Environment

Industrial
development
environment

Integrated Development
Environment

The _____________ file is packages in the Java Archive file
along with the other files that are required to deploy the EJB.

 EJB container EJB classes EJB
interfaces

 deployment
descriptors

 deployment descriptors

The _________ element is the root element of the deployment
descriptor.

 <ejb-jar> <ejb-
name>

 <ejb-class> <entity> <ejb-jar>

There are __________ elements that are contained within the
<enterprise-beans> element.

2 3 4 5 3

The first element within the <ejb-jar> element is the
__________ element.

 <enterprise-
beans>

 <home> <local> <ejb-class> <enterprise-beans>

The _____________ element contains subelements that describe
the entity EJB.

 <enterprise-
beans>

 <home> <local> <entity> <entity>

The _________ element describes the fully qualified class name
of the Remote interface, which defines the entity EJB’s business
mthods to remote clients.

 <remote > <local-
home>

 <reentrant> <persistence-
type>

 <remote >

The __________ element defines how the entity EJB manages
persistence.

 <remote > <local-
home>

 <reentrant> <persistence-
type>

 <persistence-type>

The _________ element declares whether or not an entity EJB
can be looped back without throwing an exception.

 <remote> <reentrant> <ejb-class> <remote> <reentrant>

The subelement ____________ describes the deployment
descriptor.

 <description> <display-
name>

 <small-icon> <large-icon> <description>

The subelement _________ describes the JAR file and
individual EJB components.

 <description> <display-
name>

 <small-icon> <large-icon> <display-name>

The subelement __________ describes one or more enterprise
beans contained in the JAR file.

 <enterprise-
beans>

 <ejb-client-
jar>

 <assembly-
descriptor>

 <description> <enterprise-beans>

The subelement ____________ describes the path of the client
JAR and is used by the client to access EJBs described in the
deployment descriptor.

 <enterprise-
beans>

 <ejb-client-
jar>

 <assembly-
descriptor>

 <description> <ejb-client-jar>

The subelement ____________ describes how EJBs are used in
the J2EE application.

 <enterprise-
beans>

 <ejb-client-
jar>

 <assembly-
descriptor>

 <description> <assembly-descriptor>

The subelement _________ describes a small icon within the jar
file that is used to represent the JAR file.

 <description> <small-
icon>

 <display-
name>

 <large-icon> <small-icon>

There subelement __________ describes the fully qualified class
name of the session or entity EJB remote interface.

 <remote> <local-
home>

 <local > <ejb-class > <remote>

The subelement ___________ describes the primary key filed
for entity beans that use container-managed persistence.

 <primary-
field>

 <prim-key-
class>

 <persistence-
type>

 <local> <primary-field>

The subelement _____________ specifies the version of
container-managed persistence.

 <reentrant > <cmp-
version>

 <cmp-field> <env-entry> <cmp-version>

The _________ element is used to specify an EJB’s security role. <security-
role-ref>

 <role-
name>

 <role-link> <description> <security-role-ref>

A ___________ is used in a deployment descriptor to specify a
query method and a QL statement that is used as the criteria for
selecting data from a relational database.

 <query> <method-
param>

 <ejb-ql> <query-
method>

 <query-method>

The __________ subelement itself has two subelements. <query> <method-
param>

 <ejb-ql> <query-
method>

 <query-method>

The _____________ subelement specifies the name of the
method.

 <query> <method-
param>

 <ejb-ql> <method-
name>

 <method-name>

The _________ subelement of the <query> element contains a
SQL statement that is used to retrieve information from the
database.

 <ejb-ql> <query> <query-
method>

 <method-
param>

 <ejb-ql>

There are __________ types of cardinality relationships. 2 3 4 5 4

The cardinality relationships has one of __________ directions. 2 3 4 5 2

 A _____________ is to execute a unit of work that may involve
multiple tasks.

 transaction method assembly attribute transaction

The _________ method is called whenever the session bean is
removed from the pool and is referenced by a client.

 ejbActivate()
ejbPassivate
()

 ejbRemove() ejbCreate() ejbActivate()

The __________ method is called before the instance enters the
“passive” state when the session bean is returned to the object
pool and should contain routines that release resources.

 ejbActivate()
ejbPassivate
()

 ejbRemove() ejbCreate() ejbPassivate()

The __________ method is called just before the bean is
available for garbage collection.

 ejbActivate()
ejbPassivate
()

 ejbRemove() ejbCreate() ejbRemove()

The _____________ method is a method that contains business
logic that is customized to the service provided by the EJB.

 ejbActivate() ejbPassivate
()

 ejbRemove() myMethod() myMethod()

A _________ is considered the powerhouse of a J2EE
application.

 entity java
bean

 session
java bean

 message-
driven bean

 none of the
above

 entity java bean

Data collected and managed by an entity bean is called
____________.

 data persistent
data

 information none of the
above

 persistent data

There are ___________ groups of methods that are typically
contained in an entity bean.

2 3 4 5 3

There are _______ commonly used callback methods. 4 5 64 7 7

The _________ method is called immediately following the
creation of the instance and sets the content that is associated
with the entity.

setEntityConte
xt()

unsetEntity
Context()

 ejbLoad() ejbStore() setEntityContext()

The __________ method is called whenever the instance of the
entity bean is activated from its “passive” state.

setEntityConte
xt()

unsetEntity
Context()

 ejbLoad() ejbActivate() ejbActivate()

A container invokes the __________ method to instruct the
instance to synchronize its state by loading its state from the
underlying database.

setEntityConte
xt()

unsetEntity
Context()

 ejbLoad() ejbActivate() ejbLoad()

The _____________ method is invoked by a container to
instruct the instance to synchronize its state by storing it to the
underlying database.

setEntityConte
xt()

unsetEntity
Context()

 ejbLoad() ejbStore() ejbStore()

The _________ method is called before the instance enters the
“passive” state and should contain routines that release
resources.

 ejbPassivate()
ejbActivate(
)

 ejbRemove() ejbLoad() ejbPassivate()

Thee __________ method is called immediately before the
entity terminates by either the client or by the EJB container.

 ejbPassivate() ejbActivate(
)

 ejbRemove() ejbLoad() ejbRemove()

There are __________ methods defined in a BMP bean. 2 3 4 5 5

In BMP bean, ___________ method must contain code that
reads data from a database.

 ejbLoad() ejbstore() ejbCreate() ejbRemove() ejbLoad()

In BMP bean, the ___________ method must have code that
inserts a new record in a database.

 ejbLoad() ejbstore() ejbCreate() ejbRemove() ejbCreate()

In BMP bean, the ___________ method writes data to a
database.

 ejbLoad() ejbstore() ejbCreate() ejbRemove() ejbstore()

The __________ method is where the MBD processes messages
received indirectly from a client.

 onMessage() getText() ejbRemove()
setMessageDri
venContext()

 onMessage()

CLASS : II M.Sc.CS

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 1/34

UNIT-V

JSP: What is Java Server Pages? - Evolution of Dynamic Content Technologies – JSP &

Java 2 Enterprise edition. JSP Fundamentals: Writing your first JSP- Tag conversions-

Running JSP. Programming JSP Scripts: Scripting Languages – JSP tags- JSP

directives – Scripting elements – Flow of Control – comments. Java Remote Method

Invocation.

TEXT BOOKS

1. Jim Keogh. (2010). The Complete Reference J2EE, Tata McGraw Hill: New Delhi.

1st Edition.

2. Duane, K. Fields., & Mark, A. Kolb. (2002). Web Development with Java Server

Pages, Manning Publications, Pune, 2nd Edition.

REFERENCES

1. Joel Murach, Michael Urban, (2014), Murach's Java Servlets and JSP, (Murach:

Training & Reference). 3rd Edition

2. Budi Kurniawan (2012), Servlet & JSP: A Tutorial, Brainy Software Publisher, 1st

Edition.

3. Mahesh P. Matha (2013), JSP and SERVLETS: A Comprehensive Study PHI

Learning, 1st Edition.

 WEB SITES

1. www.java.sun.com/javaee/

2. www.java.sun.com/j2ee/1.4/docs/tutorial/doc/

3. www.j2eebrain.com/

4. www.javaworld.com/

5. www.corej2eepatterns.com/

6. www.jsptut.com

https://www.amazon.com/Joel-Murach/e/B001JP7JQI/ref=dp_byline_cont_book_1
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Michael+Urban&search-alias=books&text=Michael+Urban&sort=relevancerank
https://www.amazon.in/s/ref=dp_byline_sr_ebooks_1?ie=UTF8&text=Mahesh+P.+Matha&search-alias=digital-text&field-author=Mahesh+P.+Matha&sort=relevancerank
http://www.j2eebrain.com/
http://www.javaworld.com/
http://www.corej2eepatterns.com/

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 2/34

5.1 WHAT IS JAVASERVER PAGES?

JavaServer Pages (JSP) is a technology for developing Webpages that supports dynamic

content. This helps developers insert java code in HTML pages by making use of special

JSP tags, most of which start with <% and end with %>.

A JavaServer Pages component is a type of Java servlet that is designed to fulfill the role

of a user interface for a Java web application. Web developers write JSPs as text files

that combine HTML or XHTML code, XML elements, and embedded JSP actions and

commands.

Using JSP, you can collect input from users through Webpage forms, present records

from a database or another source, and create Webpages dynamically.

JSP tags can be used for a variety of purposes, such as retrieving information from a

database or registering user preferences, accessing JavaBeans components, passing

control between pages, and sharing information between requests, pages etc.

Why Use JSP?

JavaServer Pages often serve the same purpose as programs implemented using

the Common Gateway Interface (CGI). But JSP offers several advantages in

comparison with the CGI.

 Performance is significantly better because JSP allows embedding Dynamic

Elements in HTML Pages itself instead of having separate CGI files.

 JSP are always compiled before they are processed by the server unlike CGI/Perl

which requires the server to load an interpreter and the target script each time the

page is requested.

 JavaServer Pages are built on top of the Java Servlets API, so like Servlets, JSP

also has access to all the powerful Enterprise Java APIs, including JDBC, JNDI,

EJB, JAXP, etc.

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 3/34

 JSP pages can be used in combination with servlets that handle the business

logic, the model supported by Java servlet template engines.

Finally, JSP is an integral part of Java EE, a complete platform for enterprise class

applications. This means that JSP can play a part in the simplest applications to the most

complex and demanding.

Benefits of JSP

One of the main reasons why the Java Server Pages technology has evolved into what it

is today and it is still evolving is the overwhelming technical need to simplify application

design by separating dynamic content from static template display data. Another benefit

of utilizing JSP is that it allows to more cleanly separating the roles of web

application/HTML designer from a software developer. The JSP technology is blessed

with a number of exciting benefits, which are chronicled as follows:

1. The JSP technology is platform independent, in its dynamic web pages, its web

servers, and its underlying server components. That is, JSP pages perform perfectly

without any hassle on any platform, run on any web server, and web-enabled application

server. The JSP pages can be accessed from any web server.

2. The JSP technology emphasizes the use of reusable components. These components

can be combined or manipulated towards developing more purposeful components and

page design. This definitely reduces development time apart from the At development

time, JSPs are very different from Servlets, however, they are precompiled into Servlets

at run time and executed by a JSP engine which is installed on a Web-enabled application

server such as BEA WebLogic and IBM WebSphere.

5.2 EVOLUTION OF DYNAMIC CONTENT TECHNOLOGIES

Server-side scripting refers to the dynamic generation of Web pages served up by the

Web server, as opposed to "static" web pages in the server storage that are served up to

the Web browser. In other words, some part of the content sent in response to a HTTP

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 4/34

request is determined on-the-fly by a program that executes on the server after the HTTP

request has been received and generates content as a result of the execution.

Detailed purpose and major uses of server-side scripting

1. Insertion of continuously changing content into a web page, for example - weather or

stock quotes. Also, any arbitrary logic can be used to determine certain content will be

shown or not. This purpose and (10) below are the primary purposes of server-side

scripting.

2. Authentication, authorization and session tracking - although rudimentary authentication

and authorization is supported by most Web servers, anything more than the "BASIC"

http authentication and ACLs (access control lists) over static resources requires server-

side programs. Similarly, handling cookies and keeping information about the session

and/or the user is best handled by server-side scripting.

3. Template-driven page generation. Including repeated content like header/footers and

navigation menus around the "content area" of a web page.

4. Personalization and customization of content based on authentication and authorization

defined above in (2). This also includes the serving of content based on the content of the

page (e.g. ads) or the browsing behavior of the user.

5. Dynamic image generation, e.g. page counters, human-readable characters for security,

maps, overlays etc.

6. Dynamic generation of CSS and Javascript.

7. Generating and reading HTTP headers. Although web servers provide rudimentary

abilities, server-side scripting can best generate cache control and other complex headers.

8. Handling POST form input - accepting the input of a form and writing it to storage (file

system, database, session etc.). This also includes business transaction commitment

control (ALL or NONE) and input error handling.

9. Device mapping - generating different types of content (HTML, XML, WML) based on

the user agent that sent the HTTP request.

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 5/34

10. Retrieval of data in response to query string parameters and insertion into a web page.

This is perhaps the most common purpose of utilizing scripting in generating content as

part of a GET request. e.g. sports statistics, staff list, downloadable files list etc. The data

can be retrieved from a database, file system or other forms of storage.

11. Communication with other programs, libraries and APIs - e.g. sending out e-mail,

handling message queues, LDAP etc.

12. Re-use of persistent business objects. HTTP is stateless, but the setup and tear-down of

business objects has a very high overhead in terms of time and server resources. Server-

side scripting allows us to interact with such re-usable business objects e.g. application

servers, EJBs, .NET services and Web services.

Popular server-side scripting languages - and examples

Before we look at popular server-side scripting languages, we will divide them into three

groups based on how the scripting programs:

1. Older, standards-based scripting languages - these include SSI (server-side includes) and

CGI (common gateway interface) and were defined in the original NCSA standards for

web servers.

2. In-process scripting languages like PHP, ASP and Perl (sometimes).

3. Out-of-process scripting languages like JSP and servlets (Java) and XSLT.

Another classification is based on whether it is page-centric or script-centric. A page-

centric language is an HTML page with embedded special tags (SSI and all the *SP

languages) while script-centric are Perl and servlets. Scripts in script-centric languages

can produced multiple "pages" and have to output the entire HTML using program

functions.

Page-centric scripts are embedded into an HTML page only where dynamic content is

required; but they can also be used to generate the entire content, e.g. images, XML,

headers etc. These usually run in-process and use the filesystem namespace of the web

server.

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 6/34

SSI (Server Side Includes)

These are extended comment tags inserted into a static HTML page to include other

pages (templates), variables, and also execute external programs and include them in the

input. Any static HTML file defined with a special extension (commonly “.shtml”) forces

a properly configured Web server to parse the file before sending and replace the special

tags with the appropriate content. This is perhaps the simplest model of server-side

scripting but surprisingly, it is the essential mechanism of server-side scripting.

CGI (Common Gateway Interface)

This is a mechanism that instructs a properly configured Web server to execute a specific

file and send the output of the execution instead of sending it "as-is" to the client. Any

program (shell scripts, DOS batch files, C programs, Perl) can be executed through this

mechanism. Information about the request, the query string and any form parameters are

sent as environment variables to the executed program. Any output by the executed

program is sent directly back to the browser. It should be noted that the program is

responsible for generating all headers. The most commonly used language for CGI was

Perl, due to its powerful text-handling capabilities.

Perl

This is an interpreted language characterised by its intuitive text handling, loose type-

checking, associative arrays, handy loop constructs and simple file and environment

handling. It was the most popular server-side scripting language for many years and it

supports a modular expansion system 4. A Perl script can be executed through the Perl

Interpreter from the CGI interface (see above) or through a Web server extension that

embeds the Perl Interpreter in the Web Server processes (in-process). For example, see

CGI above. Its main drawback is that it pre-dates the Web and it is difficult to lay out

HTML in the code.

PHP (Hypertext Preprocessor)

This language was developed specifically for Web server-side scripting and its utility has

made it one of the most popular server-side scripting languages. As opposed to Perl, it is

http://www.akber.com/overview-of-server-side-technologies/#references

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 7/34

embedded into a fully laid out HTML page and gives complete control over HTTP

request, response, cookie and session. It contains more robust type-checking (if required)

and can be programmed in an object-oriented way. It is most commonly executed in-

process and its biggest drawback is the lack of memory persistence of business objects.

Pages identified by certain extensions (commonly .phtml, .php, .php3) are parsed by the

Web server and passed on to the PHP plugins that passes the content back to the Web

server. It follows the same directory structure as HTML static pages and images and is

thus very easy to program and maintain. It has an extensive library and API system and

some third-party vendors (Zend etc.) offer accelerators for PHP that show considerable

performance improvement for complex applications.

ASP (Active Server Pages)

This is the Microsoft page-centric solution. It only runs on the IIS (Internet Information

Server) although third party implementations on other platforms are available, making it

less proprietary than Cold Fusion below. Like other page-centric languages, it embeds

dynamic constructs into HTML pages:

Cold Fusion

This is a Macromedia page-centric solution. However, instead of having ONE special tag

to embed dynamic content, it defines a number of tags that are parsed by a Web server

plugin in-process. These special tags (in red below) make it very powerful and combined

with Macromedia Web Authoring tools, make it the choice of many corporations.

However, it is proprietary:

JSP/Servlets

This is standards-based, popular, hybrid and out-of-process -- based on Java and J2EE

standards9 . Although JSPs are page-centric at author-time, they are not parsed by a web

server-plugin. They are compiled into servlets and deployed in a separate Web Container.

The Web server communicates with the web container using sockets. Most web

containers implement a simple web server built into them which are usually not as robust

and scalable as the leading Web servers but are good for testing and debugging.

http://www.akber.com/overview-of-server-side-technologies/#references

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 8/34

Servlets are script-centric and are regular Java programs. The compilation of JSPs into

servlets gives us the best of both worlds (author-time page-centric and compiled out-of-

process) and both of these have access to the full suite of Java libraries and APIs. The

web container also defines sophisticated authorisation, authentication and URL mapping

techniques that make this an enterprise-level Web development platform. Due to its being

out of process, session objects and business objects can be cached and re-used by

multiple HTTP requests.

5.3 JSP & JAVA 2 ENTERPRISE EDITION

Java Server Pages (JSPs) are Web pages coded with an extended HTML that makes it

possible to embed Java code in a Web page. JSPs can call custom Java classes,

called taglibs, using HTML-like tags. The WebLogic appc compiler weblogic.appc

generates JSPs and validates descriptors. You can also precompile JSPs into the WEB-

INF/classes/ directory or as a JAR file under WEB-INF/lib/ and package the servlet

class in the Web archive to avoid compiling in the server. Servlets and JSPs may

require additional helper classes to be deployed with the Web application.

JSPs are a Sun Microsystems specification for combining Java with HTML to provide

dynamic content for Web pages. When you create dynamic content, JSPs are more

convenient to write than HTTP servlets because they allow you to embed Java code

directly into your HTML pages, in contrast with HTTP servlets, in which you embed

HTML inside Java code. JSP is part of the Java 2 Enterprise Edition (J2EE).

JSPs enable you to separate the dynamic content of a Web page from its presentation.

It caters to two different types of developers: HTML developers, who are responsible

for the graphical design of the page, and Java developers, who handle the development

of software to create the dynamic content.

Because JSPs are part of the J2EE standard, you can deploy JSPs on a variety of

platforms, including WebLogic Server. In addition, third-party vendors and application

developers can provide JavaBean components and define custom JSP tags that can be

referenced from a JSP page to provide dynamic content.

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 9/34

What You Can Do with JSPs

 Combine Java with HTML to provide dynamic content for Web pages.

 Call custom Java classes, called taglibs, using HTML-like tags.

 Embed Java code directly into your HTML pages, in contrast with HTTP servlets,

in which you embed HTML inside Java code.

 Separate the dynamic content of a Web page from its presentation.

Overview of How JSP Requests Are Handled

WebLogic Server handles JSP requests in the following sequence:

1. A browser requests a page with a .jsp file extension from WebLogic Server.

2. WebLogic Server reads the request.

3. Using the JSP compiler, WebLogic Server converts the JSP into a servlet class

that implements the javax.servlet.jsp.JspPage interface. The JSP file is compiled

only when the page is first requested, or when the JSP file has been changed.

Otherwise, the previously compiled JSP servlet class is re-used, making subsequent

responses much quicker.

It is also possible to invoke the JSP compiler directly without making a request from

a browser. Because the JSP compiler creates a Java servlet as its first step, you can

look at the Java files it produces, or even register the generated JspPage servlet class

as an HTTP servlet.

5.4 JSP FUNDAMENTALS: WRITING YOUR FIRST JSP

JSPs were originally designed around the model of embedded server-side scripting tools

such as Microsoft Corporation's ASP technology; however, JSPs have evolved to focus

on XML elements, including custom-designed elements, or custom tags, as the principal

method of generating dynamic web content.

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 10/34

JSP files typically have a .jsp extension, as in mypage.jsp. When a client requests the JSP

page for the first time, or if the developer precompiles the JSP, the web container

translates the textual document into a servlet.

A JSP compiler (such as Tomcat's Jasper component) automatically converts the text-

based document into a servlet. The web container creates an instance of the servlet and

makes the servlet available to handle requests. These tasks are transparent to the

developer, who never has to handle the translated servlet source code (although they can

examine the code to find out what's happening behind the scenes, which is always

instructive).

The sample JSP program below, shows a JSP that displays the current date and time. The

example JSP shows how to import and use a custom tag library,. The code also uses

thejsp:useBean standard action, a built-in XML element that you can use to create a new

Java object for use in the JSP page. Here are the basic steps for writing a JSP:

1. Open up a text editor, or a programmer's editor that offers JSP syntax

highlighting.

2. If you are developing a JSP for handling HTTP requests, then input the HTML

code just as you would for an HTML file.

3. Include any necessary JSP directives, such as the taglib directive in example

below , at the top of the file. A directive begins with the <%@s.

4. Type in the standard actions or custom tags wherever they are needed.

5. Save the file with a .jsp extension in the directory you have designated for JSPs.

A typical location is the top-level directory of a web application that you are

developing in your filesystem.

Example: A JSP file that displays the date

<%-- use the 'taglib' directive to make the JSTL 1.0 core tags available; use the uri

"http://java.sun.com/jsp/jstl/core" for JSTL 1.1 --%>

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 11/34

<%@taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<%-- use the 'jsp:useBean' standard action to create the Date object; the object is set

as an attribute in page scope

--%>

<jsp:useBean id="date" class="java.util.Date" />

<html>

<head><title>First JSP</title></head>

<body>

<h2>Here is today's date</h2>

<c:out value="${date}" />

</body>

</html>

5.5 Tag Convensions

The JSP tags fall into two basic categories: scripting-oriented tags inspired by ASP, and a

full set of tags based on the Extensible Markup Language, (XML).

Scripting-oriented tags

The ASP-derived tags are easily recognized by their delimiters. They all start with the

characters . An additional character may appear after the initial Note that all these tags

are self-contained. All of the information relevant to the tag, and all of the data it will act

on, is contained within the individual tags themselves. In contrast, many HTML tags

appear in pairs. For example, the and tags have the effect of italicizing any text they

contain. The contained text is referred to as the body of its containing tags. None of these

scripting-oriented JSP tags have bodies.

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 12/34

XML-based tags

The second type of JSP tag follows XML syntax and conventions. XML syntax is very

similar to HTML, but adds a few rules which remove some of the vagueness of its sister

language. For example, XML tags are case sensitive. XML requires that all attribute

values appearing within a tag must be quoted, using either single or double quotes. (In

HTML, quotes around attribute values are optional, unless the attribute value contains

white-space characters.) XML also makes a distinction between tags within the document

that contain a body, and those that do not. Specifically, a tag which does not contain a

body uses < as its opening delimiter, and /> as its closing delimiter. For example,

<jsp:directive.include file="standac.jsp"/>

5.6 Running JSP

Although the JSP specification does not mandate any one specific approach for

implementing JavaServer Pages, it is currently the case that all major JSP

implementations are based on servlets. As a first step in understanding how JSPs work,

then, it is helpful to understand how servlets work.

As already mentioned, servlets are a Java-based analog to CGI programs, implemented

by means of a servlet container associated with an HTTP server. A set of URLs and/or

URL patterns is specified as being handled by the servlet container, so that whenever a

request for a URL matching this set is received by the HTTP server, that request is

forwarded to the servlet container for processing. For example, the URL

http://server/account/login might be mapped to the servlet class

com.taglib.wdjsp.fundamentals.LoginServlet. When the HTTP server receives a request

for this URL, the server forwards this request to the servlet container, which in turn

forwards it to an instance of the LoginServlet class.

The forwarding of requests is accomplished by packaging all of the request data-URL,

origin of the request, parameters and parameter values, and so forth into a Java object. A

similar Java object is constructed representing the response. This response object has

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 13/34

methods for setting the status code of the response, and for accessing the output stream

which will hold the results of processing the request. The servlet classes are responsible

for defining service methods to handle the various types of HTTP requests, including

a doGet() method for handling HTTP GET requests and a doPost() method for

handling HTTP POST requests. The objects constructed by the servlet container to

represent a single request and its corresponding response are passed as arguments to these

methods, which are then called by the servlet container on a per-request basis.

Given a request object and a response object, the service method accesses the properties

of the request and performs the appropriate computations on this data in order to

construct its reply. The HTML that comprises that reply is written to the output stream

associated with the response object. After the service method has finished running, the

servlet container sends the contents of the response object back to the HTTP server,

which in turn sends the response back to the Web browser which submitted the request in

the first place. Multiple simultaneous requests for a servlet are handled by running each

call to the servlet's service methods in a separate thread.

JavaServer Pages

From this description, you can begin to imagine how this approach might be extended to

support JavaServer Pages. After all, JSP execution starts with a request for a JSP page,

processing is done on the JSP tags present on the page in order to generate content

dynamically, and the output of that processing, combined with the page's static HTML,

must be returned to the Web browser. By adding a few extra steps to the basic servlet

process, however, performance can be improved considerably.

The primary component of a servlet-based implementation of JavaServer Pages is a

special servlet often referred to as the page compiler. The container is configured to call

this servlet for all requests with URLs that match the JSP file extension, and it is the

presence of this servlet and its associated Java classes that turns a servlet container into a

JSP container. As its name suggests, the task of this servlet is not just finding JSP pages

in response to such requests, but actually compiling them: each JSP page is compiled into

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 14/34

a page-specific servlet whose purpose is to generate the dynamic content specified by the

original JSP document.

Thus, whenever the HTTP server receives a request for a URL corresponding to a JSP,

that request is sent to the JSP container, which invokes the page compiler servlet to

handle the request. If this is the first time a request has been received for a particular JSP

file, this servlet compiles the JSP file into a servlet.

To compile a page, the JSP page compiler parses through its contents, looking for JSP

tags. As it parses the file, it translates its contents into the equivalent Java source code

which, when executed, will generate the output indicated by the contents of the original

file. Static HTML is translated into Java strings, which will be written unmodified and in

their original sequence into an output stream. JSP tags are translated into Java code for

generating dynamic content: Bean tags are translated into the corresponding object and

property calls, while scripting elements are transferred as is. This code will be mixed in

with the output of the original static HTML, so that the dynamic content is inserted into

the output in the correct location. This source code is then used to write the service

methods for a servlet, such that running it for a request has the effect of producing the

content specified by the original JSP file. Once all the servlet code has been constructed,

the page compiler servlet calls the Java compiler to compile this source code and add the

resulting Java class file to the appropriate directory in the JSP container's class path.

Once the compiled JSP page servlet is in place, the page compiler servlet then invokes

this new servlet to generate the response for the original request. Of course, this parsing,

code generation, and compiling incurs quite a bit of overhead. Fortunately, these steps are

required only the first time a request for a given JSP page is received. All subsequent

requests can be passed directly to the already-compiled page servlet for immediate

processing.

As long as the contents of the original JSP page remain unchanged, there is no need to

generate a new servlet, since the Java code corresponding to those contents remains the

same. For this reason, the very first step taken by the JSP page compiler when it receives

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 15/34

a request for a JSP is to check the time stamp for the JSP file corresponding to the

requested URL, to determine when that file was modified or created. The page compiler

will also check the time stamp on the compiled servlet for this JSP page. If no compiled

servlet is found, or if the time stamp on the JSP file is more recent than the one on the

compiled page servlet, then a new servlet must be generated. This means that the (new or

modified) JSP file must be parsed and translated into source code, and this new source

code must be compiled. If the compiled servlet is newer than the JSP file, however, no

new compilation is required and control can be transferred directly to the servlet to finish

processing the request, saving considerable time. So while the first request for a new or

recently modified JSP page will be slow, all later requests go straight to the compiled

servlet for response generation.

This process is summarized in flowchart form in Figure 1, where Web browser requests

are received by the HTTP server, and JavaServer Pages requests are routed to the page

compiler servlet running in the JSP container. The JSP container then checks whether or

not the servlet for the requested JSP page is up-to-date: Does a compiled servlet exist for

this page, and, if so, is it newer than the current contents of the JSP page? If not, the JSP

container must go through the process of parsing the page, generating the source code,

and compiling it. The newly compiled servlet is then loaded into the servlet container. If

the JSP page servlet is current, then the JSP container needs to make sure that the servlet

is currently loaded, since it may have been unloaded after its original creation due to lack

of use. In either case, control may then be transferred from the page compiler servlet to

the JSP page servlet, which then handles the request. The response is generated by the

JSP page servlet and routed back to the HTTP server, for return to the Web browser.

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 16/34

Figure 5: Server process for creating and

running JSP servlets

This unique page compilation feature lends additional performance benefits to JavaServer

Pages, in comparison to other dynamic content systems. As discussed, most dynamic

content systems rely on special tags, interpreted scripting languages, or a combination.

For most of these systems, the file containing these tags and/or scripts must be parsed

each time the document is requested. This parsing incurs overhead that is avoided with

JavaServer Pages, since JSP files are parsed only the first time they are requested. JSP

will be slower than other approaches for this first request, because of the compilation

step, but will be faster than the other approaches for all subsequent requests.

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 17/34

In addition, because of the way the JVM that is running inside the JSP container operates,

the code associated with a JSP servlet class tends to remain resident in the system

memory of the Web server. As long as new requests for that JSP are being received on a

regular basis, the servlet code remains loaded into the memory allocated to the JVM.

Access to data and code stored in a computer's physical memory is much quicker than

access to data and code stored on a computer's hard disk. Because JSP requests are

handled by loading the corresponding servlets into memory and running them, rather than

reading the JSP file from the local file system, JSP again enjoys a performance boost over

content generation systems that rely on repeatedly reading files from disk.

5.7 PROGRAMMING JSP SCRIPTS: SCRIPTING LANGUAGES

The JSP specification, however, allows JSP implementers to support alternative scripting

languages as well. To be acceptable for use with JSP, a scripting language must meet

three requirements:

■ It must support the manipulation Java objects. This includes creating objects and, in the

case of JavaBeans, accessing and modifying their properties.

■ It must be able to invoke methods on Java objects.

 ■ It must include the ability to catch Java exceptions, and specify exception handlers

If a scripting language is able to interact with Java objects, or can be extended to interact

with Java objects, then it is a good candidate for integration with a JSP container. Caucho

Technology, for example, has developed a JSP container called Resin, which is integrated

with the company’s Java-based implementation of the JavaScript scripting language. As a

result, Resin supports both Java and JavaScript as its scripting languages. Support for

alternative scripting languages makes JSP accessible to a larger development community

by giving developers who are uncomfortable with Java syntax the option to use a

different programming language in their JSP pages. Unfortunately, while alternative

languages for JSP scripting are supported by the JSP specification, portable mechanisms

for integrating scripting languages with JSP containers are not

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 18/34

5.8 JSP TAGS

A JSP program consists of a combination of HTML tags and JSP tags. JSP tags define

java code that is to be executed before the output of the jsp program is sent to the

browser.

A JSP tag begins with a <%, which is followed by Java code and ends with %>. There is

also and Extendable Markup Language (XML) version of JSP tags, which are formatted

as <jsp:TagID></JSP:TagID>.

In JSP tags can be divided into 5 different types. These are:

1. Comment Tag: A comment tag opens with <%-- and closes with --%>, and is

followed by a comment that usually describes the functionality of statements that

follow the comment tag.

2. Directives tag: In the directives we can import packages, define error handling pages

or the session information of the JSP page.

3. Declarations tag:This tag is used for defining the functions and variables to be used

in the JSP.

4. Scriplets: In this tag we can insert any amount of valid java code and these codes are

placed in _jspService method by the JSP engine.

5. Expressions: An expression tag opens with <%= and is used for an expression

statement whose result replaces the expression statement whose result replaces the

expression tag when the JSP virtual engine resolves JSP tags. An expression tags

close with %>

5.9 JSP Directives

Syntax of JSP directives is:

<%! //java codes %>

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 19/34

JSP Declaratives begins with <%! and ends %> with .We can embed any amount of java

code in the JSP Declaratives. Variables and functions defined in the declaratives are class

level and can be used anywhere in the JSP page

<%@directive attribute="value" %>

Where directive may be:

 page: page is used to provide the information about it.

Example: <%@page language="java" %>

 include: include is used to include a file in the JSP page.

Example:<%@ include file="/header.jsp" %>

 taglib: taglib is used to use the custom tags in the JSP pages (custom tags allows

us to defined our own tags)

 Example: <%@ taglib uri="tlds/taglib.tld" prefix="mytag" %>

and attribute may be:

 language="java"

This tells the server that the page is using the java language. Current JSP

specification supports only java language.

Example: <%@page language="java" %>

 extends="mypackage.myclass"

This attribute is used when we want to extend any class. We can use comma(,) to

import more than one packages.

Example:

<%@page language="java"import="java.sql.*,mypackage.myclass" %>

 session="true"

When this value is true session data is available to the JSP page otherwise not. By

default this value is true.

Example: <%@page language="java" session="true" %>

http://www.roseindia.net/jsp/jsptags.shtml
http://www.roseindia.net/jsp/jsptags.shtml

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 20/34

 errorPage="error.jsp"

errorPage is used to handle the un-handled exceptions in the page.

Example: <%@page language="java" session="true" errorPage="error.jsp"%>

 contentType="text/html;charset=ISO-8859-1"

Use this attribute to set the MIME type and character set of the JSP.

Example:<%@page language="java" session="true" contentType="text/html;

charset=ISO-8859-1" %>

 errorPage="error.jsp"

errorPage is used to handle the un-handled exceptions in the page.

Example: <%@page language="java" session="true" errorPage="error.jsp"%>

 contentType="text/html;charset=ISO-8859-1"

Use this attribute to set the MIME type and character set of the JSP.

Example:<%@page language="java" session="true" contentType="text/html;

charset=ISO-8859-1" %>

Example:

<%@page contentType="text/html" %>

<html>

<body><%!

int cnt=0;

private int getCount(){

//increment cnt and return the value

cnt++;

return cnt;

}

%>

<p>Values of Cnt are:</p>

<p><%=getCount()%></p>

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 21/34

<p><%=getCount()%></p>

<p><%=getCount()%></p>

<p><%=getCount()%></p>

<p><%=getCount()%></p>

<p><%=getCount()%></p>

</body>

</html>

5.10 SCRIPTING ELEMENTS

JSP scripting element are enclosed within <% %>, similar to other server-side

scripts such as ASP and PHP. To print "<%", use escape sequence "<\%".

JSP Comment <%-- comments --%>

JSP comments <%-- JSP comments --%> are ignored by the JSP engine. For example,

<% -- anything but a closing tag here will be ignored

Note that HTML comment is <!-- html comments -->.

JSP Expression <%= JavaExpression %>

A JSP expression is used to insert the resultant value of a single Java expression into the

response message. The Java expression will be placed inside aout.print(...) method.

Hence, the expression will be evaluated and resultant value printed out as part of the

response message. Any valid Java expression can be used. There is no semi-colon at the

end of the expression.

For examples:

<%=Math.sqrt(5)%>

JSP Scriptlet <% Java Statements %>

JSP scriptlets allow you to implement more complex programming logic. You can use

scriptlets to insert any valid Java statements into the _jspService() method of the

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 22/34

translated servlet. The Java codes must be syntactically correct, with Java statements

terminated by a semi-colon.

5.11 FLOW OF CONTROL

One of the most powerful features available in JSP is the ability to change the flow of the

program to truly create dynamic content for a web page based on conditions received

form the browsers.

5.11.1 If Statement

There are two control statements used to change the flow of a JSP program. These are the

if statement and the switch statement, both of which are also used to direct the flow of a

java program. The if statement evaluates a condition statement to determine if one or

more lines of code are to be executed or skipped.

The if statement requires three JSP tags. The first contains the beginning of the if

statement, including the conditional expression. The second contains the else statement,

and the third has the closed French brace used to terminate the else block.

Example of if-else condition

ifelse.jsp

 <%@ page language="java" import="java.sql.*" %>

<html>

<head>

<title>while loop in JSP</title>

</head>

<body>

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 23/34

<%

String sName="joe";

String sSecondName="noe";

 if(sName.equals("joe")){

 out.print("if condition check satisfied JSP count :"+sName+"
");

 }

 if(sName.equals("joe") && sSecondName.equals("joe"))

{

 out.print("if condition check if Block
");

 }

 else

 {

 out.print("if condition check else Block
");

 }

%>

</body>

</html>

Using an if-else Ladder

<HTML>

 <HEAD>

 <TITLE>Using an if-else Ladder</TITLE>

 </HEAD>

 <BODY>

 <H1>Using an if-else Ladder</H1>

 <%

 String day = "Friday";

 if(day == "Monday")

 out.println("It\'s Monday.");

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 24/34

 else if (day == "Tuesday")

 out.println("It\'s Tuesday.");

 else if (day == "Wednesday")

 out.println("It\'s Wednesday.");

 else if (day == "Thurssday")

 out.println("It\'s Thursday.");

 else if (day == "Friday")

 out.println("It\'s Friday.");

 else if (day == "Saturday")

 out.println("It\'s Saturday.");

 else if (day == "Sunday")

 out.println("It\'s Sunday.");

 %>

 </BODY>

</HTML>

5.11.2 Switch Statement

A switch statement compares a value with one or more other values associated with a

case statement. The code segment that is associated wit the matching case statement is

executed. Code segments associated with other case statements are ignored.

<HTML>

 <HEAD>

 <TITLE>Using the switch Statement</TITLE>

 </HEAD>

 <BODY>

 <H1>Using the switch Statement</H1>

 <%

 int day = 3;

 switch(day) {

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 25/34

 case 0:

 out.println("It\'s Sunday.");

 break;

 case 1:

 out.println("It\'s Monday.");

 break;

 case 2:

 out.println("It\'s Tuesday.");

 break;

 case 3:

 out.println("It\'s Wednesday.");

 break;

 case 4:

 out.println("It\'s Thursday.");

 break;

 case 5:

 out.println("It\'s Friday.");

 break;

 default:

 out.println("It must be Saturday.");

 }

 %>

 </BODY>

</HTML>

5.11.3 Loops

There are three kinds of loops commonly used in a JSP program. These are the for loop,

while loop, and the do…while loop.

For Loop:

The for loop repeats usually a specified number of times

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 26/34

Example of for loop in JSP

for.jsp

<%@ page language="java" import="java.sql.*" %>

<html>

<head>

<title>For loop in JSP</title>

</head>

<body>

<%

for(int i=0;i<=10;i++)

{

 out.print("Loop through JSP count :"+i+"
");

}

%>

</body>

</html>

While Loop:

The while loop executes continually as long as a specified condition remains true. However, the

while loop may not execute because the condition may never be true. In contrast the do…while

loop executes at least once; then, the conditional expression in the do… while loop is evaluated to

determine if the loop should be executed another time.

Example of while loop in JSP

while.jsp

 <%@ page language="java" import="java.sql.*" %>

<html>

<head>

<title>while loop in JSP</title>

</head>

<body>

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 27/34

<%

int i=0;

while(i<=10)

{

 out.print("While Loop through JSP count :"+i+"
");

 i++;

}

%>

</body>

</html>

Example of do-while loop in JSP

doWhile.jsp

 <%@ page language="java" import="java.sql.*" %>

<html>

<head>

<title>do-while loop in JSP</title>

</head>

<body>

<%

int i=0;

do{

 out.print("While Loop through JSP count :"+i+"
");

 i++;

}

while(i<=10);

%>

</body></html>

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 28/34

5.12 RMI (Remote Method Invocation)

The RMI (Remote Method Invocation) is an API that provides a mechanism to create

distributed application in java. The RMI allows an object to invoke methods on an object

running in another JVM.

The RMI provides remote communication between the applications using two

objects stub and skeleton.

Understanding stub and skeleton

RMI uses stub and skeleton object for communication with the remote object.

A remote object is an object whose method can be invoked from another JVM. Let's

understand the stub and skeleton objects:

stub

The stub is an object, acts as a gateway for the client side. All the outgoing requests are

routed through it. It resides at the client side and represents the remote object. When the

caller invokes method on the stub object, it does the following tasks:

1. It initiates a connection with remote Virtual Machine (JVM),

2. It writes and transmits (marshals) the parameters to the remote Virtual Machine

(JVM),

3. It waits for the result

4. It reads (unmarshals) the return value or exception, and

5. It finally, returns the value to the caller.

skeleton

The skeleton is an object, acts as a gateway for the server side object. All the incoming

requests are routed through it. When the skeleton receives the incoming request, it does

the following tasks:

1. It reads the parameter for the remote method

2. It invokes the method on the actual remote object, and

3. It writes and transmits (marshals) the result to the caller.

In the Java 2 SDK, an stub protocol was introduced that eliminates the need for skeletons.

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 29/34

Understanding requirements for the distributed applications

If any application performs these tasks, it can be distributed application.

.

1. The application need to locate the remote method

2. It need to provide the communication with the remote objects, and

3. The application need to load the class definitions for the objects.

The RMI application have all these features, so it is called the distributed application.

Java RMI Example

The is given the 6 steps to write the RMI program.

1. Create the remote interface

2. Provide the implementation of the remote interface

3. Compile the implementation class and create the stub and skeleton objects using

the rmic tool

4. Start the registry service by rmiregistry tool

5. Create and start the remote application

6. Create and start the client application

RMI Example

In this example, we have followed all the 6 steps to create and run the rmi application.

The client application need only two files, remote interface and client application. In the

rmi application, both client and server interacts with the remote interface. The client

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 30/34

application invokes methods on the proxy object, RMI sends the request to the remote

JVM. The return value is sent back to the proxy object and then to the client application.

1) create the remote interface

For creating the remote interface, extend the Remote interface and declare the

RemoteException with all the methods of the remote interface. Here, we are creating a

remote interface that extends the Remote interface. There is only one method named

add() and it declares RemoteException.

1. import java.rmi.*;

2. public interface Adder extends Remote{

3. public int add(int x,int y)throws RemoteException;

4. }

2) Provide the implementation of the remote interface

Now provide the implementation of the remote interface. For providing the

implementation of the Remote interface, we need to

o Either extend the UnicastRemoteObject class,

o or use the exportObject() method of the UnicastRemoteObject class

In case, you extend the UnicastRemoteObject class, you must define a constructor that

declares RemoteException.

1. import java.rmi.*;

2. import java.rmi.server.*;

3. public class AdderRemote extends UnicastRemoteObject implements Adder{

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 31/34

4. AdderRemote()throws RemoteException{

5. super();

6. }

7. public int add(int x,int y){return x+y;}

8. }

3) create the stub and skeleton objects using the rmic tool.

Next step is to create stub and skeleton objects using the rmi compiler. The rmic tool

invokes the RMI compiler and creates stub and skeleton objects.

1. rmic AdderRemote

4) Start the registry service by the rmiregistry tool

Now start the registry service by using the rmiregistry tool. If you don't specify the port

number, it uses a default port number. In this example, we are using the port number

5000.

1. rmiregistry 5000

5) Create and run the server application

Now rmi services need to be hosted in a server process. The Naming class provides

methods to get and store the remote object. The Naming class provides 5 methods.

public static java.rmi.Remote lookup(java.lang.String)

throws java.rmi.NotBoundException,

java.net.MalformedURLException,

java.rmi.RemoteException;

It returns the reference of the

remote object.

public static void bind(java.lang.String, java.rmi.Remote)

throws java.rmi.AlreadyBoundException,

java.net.MalformedURLException,

java.rmi.RemoteException;

It binds the remote object with

the given name.

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 32/34

public static void unbind(java.lang.String) throws

java.rmi.RemoteException, java.rmi.NotBoundException,

java.net.MalformedURLException;

It destroys the remote object

which is bound with the given

name.

public static void rebind(java.lang.String,

java.rmi.Remote) throws java.rmi.RemoteException,

java.net.MalformedURLException;

It binds the remote object to the

new name.

public static java.lang.String[] list(java.lang.String) throws

java.rmi.RemoteException,

java.net.MalformedURLException;

It returns an array of the names

of the remote objects bound in

the registry.

In this example, we are binding the remote object by the name sonoo.

1. import java.rmi.*;

2. import java.rmi.registry.*;

3. public class MyServer{

4. public static void main(String args[]){

5. try{

6. Adder stub=new AdderRemote();

7. Naming.rebind("rmi://localhost:5000/sonoo",stub);

8. }catch(Exception e){System.out.println(e);}

9. }

10. }

6) Create and run the client application

At the client we are getting the stub object by the lookup() method of the Naming class

and invoking the method on this object. In this example, we are running the server and

client applications, in the same machine so we are using localhost. If you want to access

the remote object from another machine, change the localhost to the host name (or IP

address) where the remote object is located.

1. import java.rmi.*;

2. public class MyClient{

3. public static void main(String args[]){

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 33/34

4. try{

5. Adder stub=(Adder)Naming.lookup("rmi://localhost:5000/sonoo");

6. System.out.println(stub.add(34,4));

7. }catch(Exception e){}

8. }

9. }

For running this rmi example,

 1) compile all the java files

 javac *.java

 2)create stub and skeleton object by rmic tool

 rmic AdderRemote

3)start rmi registry in one command prompt

rmiregistry 5000

4)start the server in another command prompt

java MyServer

5)start the client application in another command prompt

java MyClient

KEY TERMS

 Java Server Pages (JSP): JSP is a java based technology used for delivering

dynamic content to web clients in a portable, secure and well-defined way

 JSP tags: define java code that is to be executed before the output of the JSP

program is sent to the browser.

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 34/34

 Comment Tag: It is a tag opens with <%-- and closes with -- %>

 Directives tag: In the directives we can import packages, define error handling

pages or the session information of the JSP page.

 Declarations tag: This tag is used for defining the functions and variables to be

used in the JSP.

QUESTIONS

1 Mark Questions

1. There are ___________ methods that are automatically called when a JSP is requested

and when the JSP terminates normally.

a.2 b.3 c.4 d.5

2. A __________ tag opens with <%.

a. comment b. declaration statement c.directive d. scriptlet

3. A JSP tag ends with a ___________.

a. /> b. *> c. %> d. !>

4. The __________ calls the getMessage() method to retrieve the error message that is

associated with the exception

a. myMethod() b. lookup() c. getMessage() d. catch()

5. The __________ is at the center of every remote object because the remote interface

defines how the client views the object.

a. API b. remote interface c. server program d. client program

 6. A ____________ tag opens with <%-- and closes with --%>.

a.comment b. declaration statement c. directive d. expression

 7. There are __________ kinds of loops commonly used in a JSP program.

 a.2 b.3 c.4 d.5

8. A JSP tag begins with a __________.

a. </ b. <* c. <% d. <!

9. There are _______ predefined implicit objects that are in every JSP program.

a.2 b.3 c.4 d.5

10. There are ___________ methods that are automatically called when a JSP is

requested and when the JSP terminates normally.

a.2 b.3 c.4 d.5

Java Server Pages
2016- 2018
Batch

Prepared by Dr.S.Manju Priya, Department of CS, CA & IT, KAHE Page 35/34

8 Mark Questions

1. Describe about JSP tags with suitable example

2. Illustrate Control structures in JSP with suitable example

3. Explain in detail about the Remote Method Invocation.

4. Write a program to insert an applet into JSP page.

5. What are JSP directives? Explain its types with example.

6. What is Java Server Pages? Elaborate the evolution of Dynamic Content

 Technologies.

2 Mark Questions

1. List the benefits of JSP

2. Define the various methods used in JSP

3. What is JSP Directives and Expressions

4. What are the processes that participate in supporting remote method invocation?

5. Give a short notes on Variables and Objects in JSP

6. Define RMI.

7. Give an example for JSP tags.

SUBJECT : J2EE SEMESTER : III CLASS : II M.Sc.CS

UNIT V

Questions opt1 opt2 opt3 opt4 Answer
The _____________ method is automatically called and retrieves a
connection to HTTP.

 jspInt() jspDestroy
service()

 none of the
above

 service()

There are ___________ factors that we must address when
installing a JSP.

2 3 4 5 3

__________ tags define java code that is to be executed before the
output of the JSP program is sent to the browser.

 JSP HTML XML None of the
above

 JSP

A JSP tag begins with a __________. </ <* <% <! <%

A JSP tag ends with a ___________. /> *> %> !> %>

KARPAGAM ACADEMY OF HIGHER EDUCATION
 (Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE

SUBJECT CODE: 16CSP301

There are ___________ types of JSP tags. 2 3 4 5 5

A ____________ tag opens with <%-- and closes with --%>. comment declaration
statement

directive expression comment

A __________ tag opens with <%!. comment declaration
statement

directive expression declaration
statement

A __________ tag opens with <%@. comment declaration
statement

directive expression directive

A __________ tag opens with <%=. comment declaration
statement

directive expression expression

A __________ tag opens with <%. comment declaration
statement

directive scriptlet scriptlet

There are __________ kinds of loops commonly used in a JSP
program.

2 3 4 5 3

The _____________ loop repeats usually a specified number of
times.

for while do...whil
e

 none of the
above

for

The _________ loop executes continuously as long as a specified
condition remains true.

 for while
do...whil
e

 none of the
above

 while

The __________ loop executes atleast once. for while
do...whil
e

 none of the
above

 do...while

The __________ is the method used to parse a value of a specific
field.

getParameter(
)

 getParameter
Values()

 jspInit() jspService() getParameter(
)

There are _____________ predefined implicit objects that are in
every JSP program.

2 3 4 5 4

There are __________ commonly used methods to track a session. 2 3 4 5 3

A JSP database system is able to share information among JSP
programs within a ___________ by using a session object.

 servlet session EJB none of the
above

 session

There are __________ steps necessary to make an object available
to remote clients.

2 3 4 5 3

Method invoked by the client is called ______________. server
method

 client method RMI
method

 None of the
above

 client
method

In addition to the methods that can be invoked by remote clients,
the developer must also define other methods that support the
processing of client-invoked methods. They are referred as
____________.

 server
method

 client method RMI
method

 None of the
above

 server
method

In RMI, port number ___________ is the default port. 1099 1199 1299 1399 1099

The __________ method is used to locate the remote object. myMethod() lookup() catch() getMessage() lookup()

The _____________ method returns a String object that is passed
to the println() method.

 myMethod() lookup() catch() getMessage() myMethod()

Any exceptions that are thrown while the client-side program runs
are trapped by the ___________ block.

 myMethod() lookup() catch() getMessage() catch()

The __________ calls the getMessage() method to retrieve the
error message that is associated with the exception

 myMethod() lookup() getMessa
ge()

 catch() catch()

The __________ is at the center of every remote object because
the remote interface defines how the client views the object.

 API remote interface server
program

client program remote
interface

RMI handles transmission of requests and provides the facility to
load the object’s bytecode, which is referred to as ___________.

 static code
loading

 dynamic code
loading

 object
code
loading

 none of the
above

 dynamic
code loading

The _________ method registers the remote object with the RMI
remote object registry or with another naming service.

 rebind() bind
unbind()

 none of the
above

 rebind()

A __________ serves as a firewall and grants or rejects
downloaded code access to the local file system and similar
privileged operations.

 server
program

 client program security
manager

 none of the
above

 server
program

Reference to a remote object can be __________. bound unbound rebound bound,
unbound, and
rebound

bound,
unbound, and
 rebound

A JSP is called by a ____________. server client web
service

EJB client

Once a _________ is created, it must be placed in the same
directory as HTML pages. the root element of the deployment
descriptor.

 servlet JSP c)EJB EIS JSP

Once a __________ is created, it must be placed in a particular
directory that is included in the CLASSPATH

 servlet JSP EJB none of the
above

 servlet

There are ____________factors one must address when installing a
JSP.

2 3 4 5 3

A JSP program consists of a combination of ____________. servlets and
HTML tags

 servlets and EJB
tags

HTML
tags and
JSP tags

 servlets and
JSP tags

HTML tags
and JSP tags

288. A powerful feature available in __________ is the ability to
change the flow of the program to truly create dynamic content for
a web page based on conditions received from the browser.

servlet JSP EJB EIS JSP

The __________ statement in JSP is divided into several JSP tags.-
beans> element.

 IF WHILE
DO…W
HILE

 SWITCH SWITCH

A pair of HTML table data cell tags _________ are placed inside
the FOR loop along with a JSP tag that contains an element of the
array.

 <TB> <TD> <TR> <TC> <TD>

JSP virtual machine runs on a _____________ . web browser web server
windows

 DOS web server

TOMCAT is one of the most popular JSP ____________. webbrowser client program virtual
machine

 none of the
above

 virtual
machine

Java Beans works on __________. JDK BDK SDK FDK BDK

The request string sent to the JSP by the browser is divided into
_____________ general components that are separated by the
question mark.

2 3 4 5 2

The secured version of HTTP is __________. SHTTP SVHTTP HTTPS HTTPSV HTTPS

The __________ enables JSP programs to track multiple sessions
simultaneously while maintaining data integrity of each session.

 unique
password

 unique ID unique
usernam
e

different
username

 unique ID

__________ attributes can be retrieved and modified each time the
JSP program runs.

 Servlet JSP Session EJB Session

A session object stores ____________. implicit data explicit data
attributes

 hidden fields attributes

One of the _________ syntax given below removes a page scope
from the stack.

abstract Map
peekPageSco
pe()

abstract Map
popPageScope()

abstract
Map
pushPag
eScope()

map push() abstract Map
peekPageScop
e()

CLASS : II M.Sc.CS

Scanned by CamScanner

Scanned by CamScanner

	1.pdf (p.1-3)
	2.pdf (p.4-8)
	3.pdf (p.9-25)
	4.pdf (p.26-32)
	Sheet1

	5.pdf (p.33-56)
	JDBC-ODBC Bridge driver (Type 1 JDBC Driver)
	Native-API/partly Java driver (Type 2 JDBC Driver)
	2.6.1 JDBC 2.0 API
	2.6.2 The java.sql Package
	ResultSet and Cursors
	Types of Result Sets
	Result Set Methods

	6.pdf (p.57-66)
	Sheet1

	7.pdf (p.67-89)
	8.pdf (p.90-96)
	Sheet1

	9.pdf (p.97-120)
	4.2.1 Stateful Session Beans
	4.2.1 Stateless Session Beans
	Example Application Overview

	10.pdf (p.121-127)
	Sheet1

	11.pdf (p.128-162)
	5.1 WHAT IS JAVASERVER PAGES?
	Why Use JSP?
	Detailed purpose and major uses of server-side scripting
	Popular server-side scripting languages - and examples
	SSI (Server Side Includes)
	CGI (Common Gateway Interface)
	Perl
	PHP (Hypertext Preprocessor)
	ASP (Active Server Pages)
	Cold Fusion
	JSP/Servlets
	What You Can Do with JSPs
	Overview of How JSP Requests Are Handled
	Example: A JSP file that displays the date

	JavaServer Pages
	JSP Comment <%-- comments --%>
	JSP Expression <%= JavaExpression %>
	JSP Scriptlet <% Java Statements %>

	One of the most powerful features available in JSP is the ability to change the flow of the program to truly create dynamic content for a web page based on conditions received form the browsers.
	5.11.1 If Statement
	There are two control statements used to change the flow of a JSP program. These are the if statement and the switch statement, both of which are also used to direct the flow of a java program. The if statement evaluates a condition statement to deter...
	The if statement requires three JSP tags. The first contains the beginning of the if statement, including the conditional expression. The second contains the else statement, and the third has the closed French brace used to terminate the else block.
	Example of if-else condition

	A switch statement compares a value with one or more other values associated with a case statement. The code segment that is associated wit the matching case statement is executed. Code segments associated with other case statements are ignored.
	5.11.3 Loops
	Example of for loop in JSP
	While Loop:
	The while loop executes continually as long as a specified condition remains true. However, the while loop may not execute because the condition may never be true. In contrast the do…while loop executes at least once; then, the conditional expression ...
	Example of while loop in JSP
	Example of do-while loop in JSP
	Understanding stub and skeleton
	stub
	skeleton

	Understanding requirements for the distributed applications
	Java RMI Example
	RMI Example
	1) create the remote interface
	2) Provide the implementation of the remote interface
	3) create the stub and skeleton objects using the rmic tool.
	4) Start the registry service by the rmiregistry tool
	5) Create and run the server application
	6) Create and run the client application

	12.pdf (p.163-169)
	Sheet1

	13.pdf (p.170)
	14.pdf (p.171)

