
Distributed Operating System 2016-2018
Batch

Department of CS, CA & IT, KAHE Page 1/3

KARPAGAM ACADEMY OF HIGHER EDUCATION
 Coimbatore-641 021

(For the candidates admitted from 2016 onwards)
DEPARTMENT OF COMPUTER SCIENCE, CA & IT

SUBJECT NAME : DISTRIBUTED OPERATING SYSTEM
SEMESTER : III
SUBJECT CODE: 16CSP305A CLASS: II M.SC CS

COURSE OBJECTIVE:

This course focuses on software issues in the design and implementation of modern computer
systems particularly the operating systems and distributed algorithms.

COURSE OUTCOME:
The objectives is to learn the fundamentals of

Distributed processes (synchronization communication and scheduling)
Concurrent processes and programming
Process interaction and Process scheduling
Distributed file systems and Distributed shared memory
Security issues in network and distributed environments

UNIT-I
Fundamentals – message passing – Remote procedure calls : Introduction – the RPC model –
transparency of RPC – Implementing RPC mechanism –stub generation – RPC messages –
marshaling arguments and results – server management – parameter passing semantics – call
semantics.

UNIT- II

Distributed shared memory : Introduction – general architecture of DSM systems – design and
implementation of DSM – granularity – structure of shared memory space – replacement strategy –
heterogeneous DSM – advantages of DSM.

UNIT- III
Synchronization: Introduction – clock synchronization – event ordering – mutual exclusion.
Resource management: Introduction – desirable features of a good global scheduling algorithm –
task management approach – load balancing approach – load sharing approach.

Distributed Operating System 2016-2018
Batch

Department of CS, CA & IT, KAHE Page 2/3

UNIT- IV

Distributed file system: Introduction – desirable features of a good distributed file system – file
models – file accessing models.

Naming: Introduction – desirable features of a good naming system – fundamental terminologies
and concepts.

UNIT- V
Security: Introduction – potential attacks to computer system – cryptography.

SUGGESTED READINGS

TEXT BOOK
Pradeep, K. Sinha.(1997). Distributed Operating Systems Concepts and Design (1 st ed.). New 1.
Delhi: Prentice Hall of India.

REFERENCES
Paul, J. Fortier. (1998). Design of Distributed Operating System concepts and Technology 1.
(1st ed.). New Delhi: Tata McGraw Hill.
Andrew, S. Tanenbaum. (1995). Distributed Operating System. New Delhi: Pearson 2.
Education.

WEB SITES

http://staff.um.edu.mt/csta1//courses/lectures/csm202/os17.html1.
http://www.inf.uni-konstanz.de/dbis/teaching/ss06/os/ch14-wrongNumber.pdf2.
https://www.cs.columbia.edu/~smb/classes/s06-4118/l26.pdf3.

Distributed Operating System 2016-2018
Batch

Department of CS, CA & IT, KAHE Page 3/3

ESE MARKS ALLOCATION

S.No Category Marks

1. Section A

 20 X1 = 20

 (Online Examination)

20

 2. Section B

 5 X 6 = 30

 (Either ‘A’ or ‘B’ Choice)

30

 3. Section C

1 X 10= 10

(Compulsory Question)

10

 4. Total 60

LECTURE PLAN 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 1/5

KARPAGAM ACADEMY OF HIGHER EDUCATION
 Coimbatore-641 021

(For the candidates admitted from 2016 onwards)
DEPARTMENT OF COMPUTER SCIENCE, CA & IT

STAFF NAME: D.MANJULA

SUBJECT NAME: DISTRIBUTED OPERATING SYSTEM SUB.CODE: 16CSP305A

SEMESTER : III CLASS : II M.SC CS

LECTURE PLAN

Sl.No
Lecture

Duration
(Periods)

Topics to be covered
Support

 Materials
Unit- I

1 1 Introduction to Distributed Operating System T1: 1-4,W1
2 1 Message Passing T1: 114-138
3 1 Remote Procedure Call –Introduction T1: 167-

168,W1

4 1 Remote Procedure Call-Cont.. T1: 167-
168,W1

5 1 The RPC Model T1: 168

6 The RPC Model- Cont.. T1: 168

7 1 Transparency of RPC T1: 169-170

8 1 Implementing RPC Mechanism T1: 171-173

9 1 Stub Generation T1: 174

10 Stub Generation-Cont.. T1: 174

 11 1 RPC Message T1: 175-176
12 1 Marshalling Arguments & Results T1: 177-180
13 1 Server Management T1: 181-182
14 Server Management-Cont.. T1: 181-182
15 1 Parameter Passing And Call Semantics T1:183-186
16 1 Recapitulation & Important Questions Discussion

LECTURE PLAN 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 2/5

Total No. Of Hours Planned 16

TEXT BOOK T1: Pradeep K. Sinha.1997. Distributed Operating
Systems Concepts and Design, 1st Edition, Prentice Hall
of India, New Delhi.

WEBSITE W1:
http://en.m.wikipedia.org/wiki/Distributedoperatingsyste
m

Sl.No
Lecture

Duration
(Periods)

Topics to be covered
Support

 Materials
Unit- II

1 1 Distributed Shared Memory Introduction T1: 231-232
2 1 Distributed Shared Memory- Cont.. T1: 231-232
3 1 General Architecture Of DSM Systems T1: 233
4 1 General Architecture Of DSM Systems-Cont.. T1: 233
5 1 Design and Implement of DSM T1: 234
6 1 Design and Implement of DSM-Cont.. T1: 234
7 1 Granularity T1: 235
8 1 Granularity-Cont.. T1: 235
9 1 Structure of Shared Memory Space T1: 237 W2
10 1 Replacement strategy T1: 262-263
11 Replacement strategy-Cont.. T1: 262-263
12 1 Heterogeneous DSM T1: 267-270

13 1 Heterogeneous DSM-Cont.. T1: 267-270

14 1 Advantages of DSM T1: 271
15 1 Recapitulation & Important Questions Discussion

Total No. Of Hours Planned 15
TEXT BOOK T1: Pradeep K. Sinha.1997. Distributed Operating

Systems Concepts and Design, 1st Edition, Prentice
Hall of India, New Delhi.

Sl.No
Lecture

Duration
(Periods)

Topics to be covered
Support

 Materials
Unit- III

1 1 Synchronization Introduction T1: 282
2 1 Clock synchronization T1: 283-290
3 1 Event ordering T1: 291-294
4 1 Event ordering-Cont.. T1: 295-298
5 1 Mutual exclusion T1: 299-304

LECTURE PLAN 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 3/5

6 1 Resource management Introduction T1: 347-348

7 1 Desirable features of a good global scheduling
algorithms

T1: 349-350

8 1 Task management approach T1: 351-352 W3
9 1 Task management approach Cont.. T1: 353-354 W3
10 1 Load balancing approach T1: 355-362
11 1 Load sharing approach T1: 363-370
12 1 Recapitulation & Important Questions Discussion

Total No. Of Hours Planned

12

TEXT BOOK

 WEBSITE

T1: Pradeep K. Sinha.1997. Distributed Operating
Systems Concepts and Design, 1st Edition, Prentice
Hall of India, New Delhi.

W3:http://staff.um.edu.mt/csta1//courses/lectures/csm20
2/os17.html

Sl.No
Lecture

Duration
(Periods)

Topics to be covered
Support

Materials
Unit- IV

1 1 Distributed file system Introduction T1: 421-422
2 1 Desirable features of a good distributed file system T1: 423-425
3 1 File models T1: 426-427
4 1 File accessing models W4
5 1 Accessing Remote files T1: 428
6 1 Unit of Data Transfer T1: 429-430
7 1 Naming: Introduction, T1: 496-497
8 1 Desirable features of a good naming system T1: 498
9 1 Recapitulation & Important Questions Discussion

Total No. Of Hours Planned 9

TEXT BOOK T1: Pradeep K. Sinha.1997. Distributed Operating
Systems Concepts and Design, 1st Edition, Prentice
Hall of India, New Delhi.

LECTURE PLAN 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 4/5

WEBSITE W4: http://www.inf.uni-
konstanz.de/dbis/teaching/ss06/os/ch14-
wrongNumber.pdf

Sl.No
Lecture

Duration
(Periods)

Topics to be covered
Support

 Materials

Unit- V
1 1 Security

T1:565-5662 1 Introduction
3 1 Goals of Computer Security
4 1 Potential Attacks To Computer System T1:567-574
5 1 Passive Attacks
6 1 Active Attacks
7 1 Cryptography T1:575-585
8 1 Basic concepts And terminology
9 1 Key Distribution Problem

10 1 Recapitulation & Important Questions Discussion -

11 1 Discussion on Previous ESE Questions -
12 1 Discussion on Previous ESE Questions -
13 1 Discussion on Previous ESE Questions

Total No. Of Hours Planned 13

TEXT BOOK T1: Pradeep K. Sinha.1997. Distributed Operating
Systems Concepts and Design, 1st Edition, Prentice
Hall of India, New Delhi.

Over all Total
(All Units) 65

SUPPORT MATERIALS:

TEXT BOOK:

T1 Pradeep K. Sinha.1997. Distributed Operating Systems Concepts and Design, 1st Edition,
Prentice Hall of India, New Delhi.

LECTURE PLAN 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 5/5

WEBSITES:

W1 http://en.m.wikipedia.org/wiki/Distributedoperatingsystem

W2 https://www.cs.columbia.edu/~smb/classes/s06-4118/l26.pdf
W3 http://staff.um.edu.mt/csta1//courses/lectures/csm202/os17.html
W4 http://www.inf.uni-konstanz.de/dbis/teaching/ss06/os/ch14-wrongNumber.pdf

FUNDAMENTALS 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 1/12

UNIT I

SYLLABUS

UNIT-I
Fundamentals – message passing – Remote procedure calls : Introduction – the RPC model –
transparency of RPC – Implementing RPC mechanism –stub generation – RPC messages –
marshaling arguments and results – server management – parameter passing semantics – call
semantics.

INTRODUCTION

FUNDAMENTALS:

A distributed operating system is a software over a collection of independent,

networked, communicating, and physically separate computational nodes. Each individual node

holds a specific software subset of the global aggregate operating system. Each subset is a

composite of two distinct service provisionary.

 Parallel processing is the processing of program instructions by dividing them among

multiple processors with the objective of running a program in less time. In the earliest computers,

only one program ran at a time. A computation-intensive program that took one hour to run and a

tape copying program that took one hour to run would take a total of two hours to run. An early

form of parallel processing allowed the interleaved execution of both programs together. The

computer would start an I/O operation, and while it was waiting for the operation to complete, it

would execute the processor-intensive program.

 The total execution time for the two jobs would be a little over on e hour. Parallel

processing is also called parallel computing. In the quest of cheaper computing alternatives parallel

processing provides a viable option. The idle time of processor cycles across network can be used

effectively by sophisticated distributed computing software. The term parallel processing is used to

represent a large class of techniques which are used to provide simultaneous data processing tasks for

the purpose of increasing the computational speed of a computer system. Advantages:- Faster

execution time., so higher throughput. Disadvantages:- More hardware required, also more power

requirements. Not good for low power and mobile devices.

http://searchcio-midmarket.techtarget.com/definition/processor
http://searchsoftwarequality.techtarget.com/definition/program

FUNDAMENTALS 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 2/12

MESSAGE PASSING - DISTRIBUTED PROCESSING:

 Distributed processing is a phrase used to refer to a variety of computer systems that use

more than one computer (or processor) to run an application. This includes parallel processing in

which a single computer uses more than one CPU to execute programs. More often, however,

distributed processing refers to local-area networks (LANs) designed so that a single program can

run simultaneously at various sites. Most distributed processing systems contain sophisticated

software that detects idle CPUs on the network and parcels out programs to utilize them. Another

form of distributed processing involves distributed databases. This is databases in which the data is

stored across two or more computer systems. The database system keeps track of where the data is so

that the distributed nature of the database is not apparent to users.

ADVANTAGES
REMOTE PROCEDURE CALL - DISTRIBUTED PROCESSING:

• Quicker response time: By locating processing power close to user, response time is typically

improved. This means that the system responds rapidly to commands entered by users

• Lower costs: Long-distance communication costs are declining at a slower rate than the cost of

computer power. Distributed processing can reduce the volume of data that must be transmitted

over long-distances and thereby reduce long-distance costs.

• Improved data integrity: High degrees of accuracy and correctness may be achieved by giving

users control over data entry and storage.

http://www.webopedia.com/TERM/U/user.html
http://www.webopedia.com/TERM/D/database_management_system_DBMS.html
http://www.webopedia.com/TERM/S/store.html
http://www.webopedia.com/TERM/D/data.html
http://www.webopedia.com/TERM/D/database.html
http://www.webopedia.com/TERM/D/distributed_database.html
http://www.webopedia.com/TERM/D/distributed_database.html
http://www.webopedia.com/TERM/N/network.html
http://www.webopedia.com/TERM/C/CPU.html
http://www.webopedia.com/TERM/S/software.html
http://www.webopedia.com/TERM/S/system.html
http://www.webopedia.com/TERM/L/local_area_network_LAN.html
http://www.webopedia.com/TERM/E/execute.html
http://www.webopedia.com/TERM/C/CPU.html
http://www.webopedia.com/TERM/P/parallel_processing.html
http://www.webopedia.com/TERM/A/application.html
http://www.webopedia.com/TERM/R/run.html
http://www.webopedia.com/TERM/P/processor.html
http://www.webopedia.com/TERM/C/computer.html
http://www.webopedia.com/TERM/C/computer_system.html
http://www.google.co.in/imgres%3fq%3dimages+for+parallel+processing%26um%3d1%26hl%3den%26sa%3dN%26biw%3d800%26bih%3d419%26tbm%3disch%26tbnid%3d5U1PjxicOPWLqM:%26imgrefurl%3dhttp://www.innovative-cfd.com/parallel-processing.html%26docid%3dyGWhCMLsUPD6cM%26imgurl%3dhttp://www.innovative-cfd.com/images/Parallel-processing-small.jpg%26w%3d500%26h%3d332%26ei%3d7FlgT93rDKLSmAW58NDvBw%26zoom%3d1

FUNDAMENTALS 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 3/12

• Reduced host processor costs: The productive life of a costly mainframe can be extended by off-

loading some its processing tasks to other, less expensive machines (whose total costs usually a

fraction of the cost needed to up-grade the central processor).

• Resource sharing: One of the main advantages of developing microcomputer networks is

because they make it possible to share expensive resources such as high-speed, color laser printers,

fast data storage devices, and high-priced software packages

RPC MODEL -

Each segment performs partial processing dictated by the way the task is partitioned The result

obtained from the computation in each segment is transferred to the next segment in the pipeline

The final result is obtained after the data have passed through all segments Can imagine that each

segment consists of an input register followed by an combinati onal circuit A clock is applied to all

registers after enough time has elapsed to perform all segment activity The information flows

through the pipeline one step at a time .

TRANSPARENCY OF RPC

Vector processors provide high-level operations that work on vectors -- linear arrays of numbers.

FUNDAMENTALS 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 4/12

The computation of each result (in vector processor) is independent of the computation of o
previous results.

A single vector instruction specifies a great deal of work - it is equivalent to executing an o
entire loop.

Vector instructions that access memory have a known access pattern. If the vector's elements o
are all adjacent, then fetching the vector from a set of heavily interleaved memory banks

works very well.

 MAJOR TECHNIQUES

Multiple pipelined functional units that operate concurrently

Asynchronous banks of interleaved memory

Independent instruction and data caches

Multiple buses to transfer data, addresses, and control signals

IMPLEMENTING RPC MECHANISM

 In the matrix addition example, the inner loop (the J loop) can be vectorized and the outer loop

can be pipelined. Basic vector architecture: most of today's vector machines are vector-register

machine. All vector operations are among vector registers, except load and store.

Client-server model vs. RPC „

Client-server: ‰building everything around I/O ‰all communication built in send/receive

‰distributed computing look like centralized computing „RPC allow to call procedures located on

other machines.

RPC principle

When a process on machine A calls a procedure on machine B, ‰the calling process on A is

suspended, and execution of the called procedure takes place on B.

Information can be transported from the caller to the callee in the parameters and can come

back in the procedure result.

No message passing or I/O at all is visible to the programmer.

With RPC:

When the message arrives at the server, the kernel passes it up to a server stub that is bound

with the actual server. The server stub will have called receive and be blocked waiting for

FUNDAMENTALS 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 5/12

incoming messages.

The server stub unpacks the parameters from the message and then calls the server

procedure in the usual way.

From the server's point of view, it is as though it is being called directly by the client-the

parameters and return address are all on the stack where they belong and nothing seems unusual.

The server performs its work and then returns the result to the caller in the usual way. Our

case: the server will fill the buffer, with the data. This buffer will be internal to the server stub.

Basic RPC operation – steps

1. The client procedure calls the client stub in the normal way.

2. The client stub builds a message and traps to the kernel.

3. The kernel sends the message to the remote kernel.

4. The remote kernel gives the message to the server stub.

5. The server stub unpacks the parameters and calls the server.

6. The server does the work and returns the result to the stub.

7. The server stub packs it in a message and traps to the kernel.

8. The remote kernel sends the message to the client's kernel.

9. The client's kernel gives the message to the client stub.

10. The stub unpacks the result and returns to the client.

SUB GENERATION -

Start-up time: it comes from pipelining latency. Initiation rate: the time per result once a vector

instruction is running

Vector length control: although multiple function units and vector registers are available, the

actual length of the vector under operation is a variable. Usually a vector length register (VLR)

is used to keep track of the length of a vect or. The register can also specify a maximum vector

length (MVL). If the vector is longer than the MVL, compiler will be responsible to break it

up and process them separately. This is called strip mining.

FUNDAMENTALS 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 6/12

STUB GENERATION - MULTI COMPUTER AND COMPUTER NETWORKS

A computer made up of several computers. The term generally refers to an architecture in

which each processor has its own memory rather than multiple processors with a shared.

Characteristics of Multiprocessors

 Multiprocessors System = MIMD (Multiple Instruction Multiple Data)

An interconnection of two or more CPUs with memory and I/O equipment a single CPU and one

or more IOPs is usually not included in a multiprocessor system. Unless the IOP has

computational facilities comparable to a CPU. Computation can proceed in parallel in one of two

ways,

RPC MESSAGE - SYNCHRONIZATION

 A system can be both multiprocessing and multiprogramming, only one of the two,

or neither of the two of them, synchronization refers to one of two distinct but related concepts:

synchronization of processes, and synchronization of data. Process synchronization refers to the

idea that multiple processes are to join up or handshake at a certain point, so as to reach an

agreement or commit to a certain sequence of action. Data synchronization refers to the idea of

keeping multiple copies of a dataset in coherence with one another, or to maintain data integrity.

Process synchronization primitives are commonly used to implement data.

MARSHALING ARGUMENTS AND RESULT - INTERPROCESS

COMMUNICATION (IPC).

Inter-process communication (IPC) is a set of methods for the exchange of data among multiple

threads in one or more processes. Processes may be running on one or more computers connected

by a network. IPC methods are divided into methods for message passing, synchronization, shared

memory, and remote procedure calls (RPC). The method of IPC used may v ary based on the

bandwidth and latency of communication between the threads, and the type of data being

communicated. There are several reasons for providing an environment that allows process

cooperation:

Information sharing

Computational Speedup

FUNDAMENTALS 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 7/12

Modularity

Convenience

Privilege separation

SERVER MECHANISM - IPC may also be referred to as inter-thread communication and inter-

application communication. The combination of IPC with the address space concept is the

foundation for address space independence/isolation.

Inter process communication (IPC).

 Cooperating processes need to exchange informat ion, as well as synchronize with each other,

to perform their collective task. The primitives discussed earlier can be used to synchronize the

operation of cooperating processes, but they do not convey information between processes.

Methods for effective sharing of information among cooperating processes are collectively known

as inter process communication (IPC).

There has to be some underlying physical interconnection system to support the communication

among the processors. Some basic interconnection schemes that have been used are:

1) Timeshared or common buses

2) Crossbar switch

3) Multiport memory systems

4) Multistage networks

FUNDAMENTALS 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 8/12

1) PARAMETER PASSING SEMANTICS - Timeshared or common buses

In this arrangement a single cable with enough lines to co nvey data and control bits acts as

a passive channel to which all of the processors, I/O devices and memory modules are connected.

The interface hardware between the bus and the functional units controls the data transmission

across the bus. With this single bus system only one unit can use the medium at a time.

Time-shared or common bus multiprocessor arrangement

A multi bus, multiprocessor arrangement

2) Crossbar switch

The number of buses may be increased to permit a separate path to each memory module as

in the below figure. This arrangement is called a crossbar switch.

FUNDAMENTALS 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 9/12

3) Multiport memory system

Another multiple bus arrangement can be employed to allow processor access to the

memory modules at a specific entry point called a port.

4) Multistage networks

The multistage network links multiple switches as nodes in a tree like arrangement. The

cost of those multistage networks which connects n processors to n memory modules grows as n

log n. This differs somewhat considerably from that of the crossbar switch whose cost grows as

n2.

A multistage network connecting eight processors to eight memory modules.

CALL SEMANTICS - MASSIVELY PARALLEL ARCHITECTURE
ASSOCIATIVE PROCESSOR

 Associative memory encompasses a wide variety of phenomena related to human memory

performance that it is closely related to the semantic representation of knowledge in relational

structures . He describes two types of associative memory. First, direct association, the most

common usage of the term, refers to the recall of one pattern by the input of a cue pattern. Direct

association provide single input-to-output mapping based on similarity of content, physical,

temporal, or logical relations, and typically deals with ordered sets of attributes. Second, indir ect

association involves inference via multiple intermediate associative mappings. In indirect

FUNDAMENTALS 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 10/12

association, structural relationships are an important part of the patterns. In addition to mappings

and inference, pattern completion from a partial or erroneous input is an important feature of

associative memory. More importantly, most associative memory models include learning the cue-

to-recall mappings. Content-addressable memory (CAM) is a physical embodiment of basic

associative memory in which data is accessed by its content rather than by an address as in

conventional computer memory.

In RPC the caller and callee processes can be situated on different nodes. The normal
functioning of an RPC may get disrupted due to one or more reasons mentioned below:

i. Call message is lost or response message is lost

ii. The callee node crashes and is restarted

iii. The caller node crashes and is restarted.

In RPC system the call semantics determines how often the remote procedure may be
executed under fault conditions. The different types of RPC call semantics are as follows:

a. May-Be Call Semantics

This is the weakest semantics in which a timeout mechanism is used that prevents the caller
from waiting indefinitely for a response from the callee.
This means that the caller waits until a pre-determined timeout period and then continues to
execute.
Hence this semantics does not guarantee the receipt of call message nor the execution. This
semantics is applicable where the response message is less important and applications that
operate within a local network with successful transmission of messages.

b. Last-Once Call Semantics

This call semantics uses the idea of retransmitting the call message based on timeouts until
the caller receives a response.
The call, execution and result of will keep repeating until the result of procedure execution
is received by the caller.
The results of the last executed call are used by the caller, hence it known as last-one
semantics.
Last one semantics can be easily achieved only when two nodes are involved in the RPC,
but it is tricky to implement it for nested RPCs and cases by orphan calls.

c. Last-of-Many Call Semantics

This semantics neglects orphan calls unlike last-once call semantics. Orphan call is one
whose caller has expired due to node crash.
To identify each call, unique call identifiers are used which to neglect orphan calls.

FUNDAMENTALS 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 11/12

When a call is repeated, it is assigned to a new call identifier and each response message
has a corresponding call identifier.
A response is accepted only if the call identifier associated with it matches the identifier of
the most recent call else it is ignored.

d. At-Least-Once Call Semantics

This semantics guarantees that the call is executed one or more times but does not specify
which results are returned to the caller.
It can be implemented using timeout based retransmission without considering the orphan
calls.

e. Exactly-Once Call Semantics

This is the strongest and the most desirable call semantics. It eliminates the possibility of a
procedure being executed more than once irrespective of the number of retransmitted call.
The implementation of exactly-once call semantics is based on the use of timeouts,
retransmission, call identifiers with the same identifier for repeated calls and a reply cache
associated with the callee.

FUNDAMENTALS 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 12/12

PART-B(6 MARKS)

POSSIBLE QUESTIONS

Explain in detail about the Call Semantics1.

Explain Fundamentals of DOS explain with an example.2.

Describe about message passing in detail.3.

Explain Implementation of RPC mechanism.4.

Describe about RPC Models with an neat diagram.5.

Explain about RPC Message and Stub generations.6.

PART-C(10 MARKS)

POSSIBLE QUESTIONS

Explain in detail about RPC with an Real Time Example.1.

Explain in detail about Server management with example.2.

Describe about marshaling arguments and results.3.

DISTRIBUTED SHARED MEMORY 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 1/13

UNIT II

SYLLABUS

Distributed shared memory : Introduction – general architecture of DSM systems – design and
implementation of DSM – granularity – structure of shared memory space – replacement strategy –
heterogeneous DSM – advantages of DSM.

DISTRIBUTED SHARED MEMORY INTRODUCTION :

 The concepts of interconnecting computers and sharing information through them were

introduced; advancements have been made in almost every aspect of human life. These

advancements came merely due to extensive study and exploration of fundamentals related to

operations and functions of computers and network systems. This study of networking and

computers has always remained at the heart of communication sciences and is still taught widely all

around the world. The theory of network systems and computers only involves some fundamentals

to be understood; based on these fundamentals, the entire global communication scenario is

functioning and operating.

Fig: The entire global communication scenario is functioning and operating.

DISTRIBUTED SHARED MEMORY 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 2/13

GENERAL ARCHITECTURE OF DSM SYSTEMS ::

Modulation techniques are employed to allow the digital signal to be carried on the analog

channel. A device is needed to convert the signal from digital to analog at the sending end and to

convert from analog to digital at the receiving end. This device is called modem

(modulator/demodulator). Three common modulation technique used are

Frequency shift keying (FSK)1)

Phase Modulation2)

Amplitude Modulation3)

Demodulation involves the opposite operation. For the binary signal only two frequency values are

needed. One constraint is that, in order to detect the frequency, at least half a cycle must be

transmitted. Therefore the time interval, I s, between the changes in the value the signal must be

greater than or equal to the time to complete half of the cycle, i.e. half the period, T, of the wave.

Since the lowest frequency used has the longest period, then

1 ≥ (1/2)T

Where T is the period of the lowest frequency, f, That is output by the modulator. Since the number

of signal changes per second gives the baud rate, b, then

B=1/I

i.e. 1/b ≥ (1/2)(1/f) therefore

f ≥ (1/2) b

hence the lowest frequency used be greater than or equal to half of the baud rate of the data signal.

Phase Modulation (PM)

In PM the signal is coded in phase changes. In a phase change the wave retains its shape

but there is a shift in its position. Therefore the same frequency is used but, by dedicating distinct

phase changes to particular digital values, the signal can be transmitted.

Large phase changes are used to facilitate detection. At the start of the signaling interval

there is a test to determine the extent of change relative to the state in the previous interval.

Differential phase modulation allows four possible phase changes: 0 0,900,1800and 2700. With four

DISTRIBUTED SHARED MEMORY 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 3/13

changes, four distinct values can be coded. Therefore 2 bits of information are transmitted in each

phase change.

Amplitude modulation (AM)

Amplitude modulation (AM) is a modulation technique used in electronic

communication, most commonly for transmitting information via a radio carrier wave. AM works

by varying the strength (amplitude) of the transmitted signal i n relation to the information being

sent. For example, changes in signal strength may be used to specify the sounds to be reproduced

by a loudspeaker, or the light intensity of television pixels. This contrasts with frequency

modulation, in which the frequency of the carrier signal is varied, and phase modulation, in which

the phase is varied, by the modulating signal.

DESIGN AND IMPLEMENTATION OF DSM :

Produces fewer errors

Easier to detect and correct errors, since transmitted data is binary (1s and 0s, only o

two distinct values))

Permits higher maximum transmission rates

e.g., Optical fiber designed for digital transmissiono

More efficient

Possible to send more digital data through a given circuito

More secure

Easier to encrypto

Simpler to integrate voice, video and data

Easier to combine them on the same circuit, since signals made up of digital datao

Issues•

How to keep track of the location of remote data -

How to minimize communication overhead when accessing remote data-

How to access concurrently remote data at several nodes -

DISTRIBUTED SHARED MEMORY 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 4/13

-

1. The Central Server Algorithm

Central server maintains all shared data-

Read request: returns data item•

Write request: updates data and returns acknowledgement message•

Implementation-

A timeout is used to resend a request if acknowledgment fails•

Associated sequence numbers can be used to detect duplicate write requests•

If an application’s request to access shared data fails repeatedly, a failure •

condition is sent to the application

Issues: performance and reliability-

Possible solutions-

Partition shared data between several servers•

Use a mapping function to distribute/locate data•

2. The Migration Algorithm

Operation-

Ship (migrate) entire data object (page, block) containing data item to •

requesting location

Allow only one node to access a shared data at a time•

Advantages-

Takes advantage of the locality of reference•

 DSM can be integrated with VM at each node•

Make DSM page multiple of VM page size-

A locally held shared memory can be mapped into the VM page -

address space

If page not local, fault-handler migrates page and removes it from -

address space at remote node

To locate a remote data object:-

Use a location server•

Maintain hints at each node•

DISTRIBUTED SHARED MEMORY 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 5/13

Broadcast query•

Issues-

Only one node can access a data object at a time•

Thrashing can occur: to minimize it, set minimum time data object resides at •

a node.

3. The Read-Replication Algorithm

Replicates data objects to multiple nodes–

DSM keeps track of location of data objects–

Multiple nodes can have read access or one node write access (multiple reade rs-one –

writer protocol)

After a write, all copies are invalidated or updated–

DSM has to keep track of locations of all copies of data objects. Examples of –

implementations:

IVY: owner node of data object knows all nodes that have copies•

PLUS: distributed linked-list tracks all nodes that have copies •

Advantage–

The read-replication can lead to substantial performance improvements if the •

ratio of reads to writes is large

4. The Full–Replication Algorithm

Extension of read-replication algorithm: multiple nodes can read and -

multiple nodes can write (multiple-readers, multiple-writers protocol)

Issue: consistency of data for multiple writers-

Solution: use of gap-free sequencer-

All writes sent to sequencer•

Sequencer assigns sequence number and sends write request t o all •

sites that have copies

Each node performs writes according to sequence numbers•

A gap in sequence numbers indicates a missing write request: node •

asks for retransmission of missing write requests

DISTRIBUTED SHARED MEMORY 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 6/13

GRANULARITY

An analog-to-digital converter (abbreviated ADC, A/D or A to D) is a device that

converts a continuous physical quantity (usually voltage) to a digital number that represents the

quantity's amplitude.

The conversion involves quantization of the input, so it necessarily introduces a small

amount of error. Instead of doing a single conversion, an ADC often performs the conversions

("samples" the input) periodically. The result is a sequence of digital values that have converted a

continuous-time and continuous-amplitude analog signal to a discrete and discrete-amplitude digital

signal.

STRUCTURE OF SHARED MENORY SPACE :

It is a method used to digitally represent sampled analog signals. It is the standard form

of audio in computers, Compact Discs, digital telephony and other digital audio applications. In a

PCM stream, the amplitude of the analog signal is sampled regularly at uniform intervals, and each

sample is quantized to the nearest value within a range of digital steps.

PCM streams have two basic properties that determine their fidelity to the original analog signal:

the sampling rate, the number of times per second that samples are taken; and the bit depth, which

determines the number of possible digital values that each sample can take.

Structure defines the abstract view of the shared memory space.

The structure and granularity of a DSM system are closely related three approaches:

 No structuring
 Structuring by data type
 Structuring as a database

1. NO SRTUCTURING:-

Ø The shared memory space is simply a linear array of words.

http://en.wikipedia.org/wiki/Audio_bit_depth
http://en.wikipedia.org/wiki/Sampling_rate
http://en.wikipedia.org/wiki/Quantization_(signal_processing)
http://en.wikipedia.org/wiki/Amplitude
http://en.wikipedia.org/wiki/Digital_telephony
http://en.wikipedia.org/wiki/Analog_signal
http://en.wikipedia.org/wiki/Digital_signal
http://en.wikipedia.org/wiki/Analog_signal
http://en.wikipedia.org/wiki/Sampling_(signal_processing)
http://en.wikipedia.org/wiki/Quantization_(signal_processing)

DISTRIBUTED SHARED MEMORY 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 7/13

ADVANTAGE:-

Ø Choose any suitable page size as the unit of sharing and a fixed grain size may be used
for all application.
Ø Simple and easy to design such a DSM system.

2. STRUCTURING BY DATA TYPE:-

Ø The shared memory space is structured either as a collection of variables in the source
language.
Ø The granularity in such DSM system is an object or a variable.

Ø DSM system use variable grain size to match the size of the object/variable being
accessed by the application.

3. STRUCTURING AS A DATABASE:-

Ø Structure the shared memory like a database.

Ø Shared memory space is ordered as an associative memory called tuple space.

Ø To perform update old data item in the DSM are replaced by new data item.

Ø Processes select tuples by specifying the number of their fields and their values or type.

Ø Access to shared data is non transparent. Most system they are transparent.

REPLACEMENT STRATEGY :

COPPER WIRES

 Conventional computer networks use copper wire because it is inexpensive, easy to

install, and has low resistance to electrical current. Unfortunately, copper wire is prone to

interference in the form electromagnetic energy emitted by neighbouring wires, especially those

running in parallel. To minimise interference, twisted pair wiring, as used in telephone systems, can

be used as illustrated in Figure.

DISTRIBUTED SHARED MEMORY 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 8/13

 Twisted pair wiring

 A plastic coating on each wire prevents the copper in one wire from touching the

copper in another. The twist helps reduce interference by preventing electrical signals on the wire

radiating energy (causing interference) and by preventing signals on other wires interfering with

the pair.

 A second type of copper wire is coaxial cable, similar to that used for TV aerials. The

coaxial cable provides better protection from interference by providing a metal shield as illustrated

in Figure.

 Cross-section of a coaxial cable

The metal shield forms a flexible cylinder around the inner wire providing a barrier to

electromagnetic radiation, both incoming and outgoing. The cable can run parallel to othe r cables

and can be bent round corners.

HETEROGENEOUS DSM :

DISTRIBUTED SHARED MEMORY 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 9/13

Optical fibres use light to transmit data. A thin glass fibre is encased in a plastic jacket which

allows the fibre to bend without breaking. A transmitter at one end uses a light emitting diode

(LED) or laser to send pulses of light down the fibre which are detected at the other end by a light

sensitive transistor. Figure illustrates a single fibre (a) and a sheath of three fibres (b). Other

configurations are possible.

Optical fibres have four main advantages over copper wires.

They use light which neither causes electrical interference nor are they susceptible to

electrical interference

They are manufactured to reflect the light inwards, so a fibre can carry a pulse of light

further than a copper wire can carry a signal

Light can encode more information that electrical signals, so they carry more information

than a wire

Light can carry a signal over a single fibre, unlike electricity which requires a pair of wires

 Cable television and POTS

Figure illustrates the hybrid nature of neighbourhood wiring. Optical fibres carry cable TV to each

street with the houses fed by coaxial cable (a). Optical fibres also carry the Plain Old Telephone

Service (POTS) to the nearest exchange, with the local loop to the house consisting of twisted pairs

(b).

The design, implementation, and performance of heterogeneous distributed shared memory

(HDSM) are studied. A prototype HDSM system that integrates very different types of hosts has

DISTRIBUTED SHARED MEMORY 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 10/13

been developed, and a number of applications of this system are reported. Experience shows that

despite a number of difficulties in data conversion, HDSM is implementable with minimal loss in

functional and performance transparency when compared to homogeneous DSM systems

ADVANTAGES OF DSM

RADIO

A network that uses electromagnetic radio waves operates at radio frequency and its transmissions

are called RF transmissions. Each host on the network attaches to an antenna, which ca n both send

and receive RF.

SATELLITES

Radio transmissions do not bend round the surface of the earth, but RF technology combined with

satellites can provide long-distance connections. Figure illustrates a satellite link across an ocean.

 Satellite and ground stations

DISTRIBUTED SHARED MEMORY 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 11/13

The satellite contains a transponder consisting of a radio receiver and transmitter. A ground station

on one side of the ocean sends a signal to the satellite, which amplifies it and transmits the

amplified signal at a different angle than it arrived at to another ground station on the other side of

the ocean. A single satellite contains multiple transponders (usually six to twelve) each using a

different radio frequency, making it possible for multiple communications to proceed

simultaneously. These satellites are often geostationary, i.e. they appear stationary in the sky. To

achieve this, their orbit must be 22,236 miles (35,785 kilometres) high.

MICROWAVE

Electromagnetic radiation beyond the frequency range of radio and television can be used to

transport information. Microwave transmission is usually point-to-point using directional antennae

with a clear path between transmitter and receiver.

INFRARED

Infrared transmission is usually limited to a small area, e.g. one room, with the transmitter pointed

towards the receiver. The hardware is inexpensive and does not require an antenna.

Network architecture is the design of a communications network. It is a framework for the

specification of a network's physical components and their functional organization and

configuration, its operational principles and procedures, as well as data formats used in its

operation. In telecommunication, the specification of a network architecture may also include a

detailed description of products and services delivered via a communications network, as well as

detailed rate and billing structures under which services are compensated. The network architecture

of the Internet is predominantly expressed by its use of the Internet Protocol Suite, rather than a

specific model for interconnecting networks or nodes in the network, or the usage of specific types

of hardware links.

DISTRIBUTED SHARED MEMORY 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 12/13

DISTRIBUTED SHARED MEMORY 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 13/13

PART-B(6 MARKS)
POSSIBLE QUESTIONS

What is Thrashing? And explain detail about Thrashing concepts.1.
Explain in detail about Structure of Shared Memory Space.2.
Briefly describe about Design and Implementation Issue in DSM3.
What is DSM? And explain in detail about Advantages of DSM.4.
Explain about Heterogeneous DSM in detail.5.
What is Message Passing System? Explain factors influencing block size selection6.
Explain about the Memory Coherence and about page size as block size in granularity.7.
Explain Block Size Selection and other approaches to DSM.8.

PART-C(10 MARKS)
POSSIBLE QUESTIONS

Compare Memory and Distributed Shared Memory with an live example.1.
Explain about the general architecture of DSM System with neat sketch.2.
What do you mean by Replacement Strategy? And explain in detail about following issues 3.
in Replacement Strategy.

SYNCHRONIZATION 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT,KAHE Page 1/16

UNIT III

SYLLABUS

Synchronization: Introduction – clock synchronization – event ordering – mutual exclusion.
Resource management: Introduction – desirable features of a good global scheduling algorithm –
task management approach – load balancing approach – load sharing approach.

SYNCHRONIZATION :
 A network operating system (NOS) is a software program that controls other software
and hardware that runs on a network. It also allows multiple computers, also known as network
computers, to communicate with one main computer and each other, so as to share resources, run
applications, and send messages, among other things. A computer network can consist of a
wireless network, local area network (LAN), a wide area network (WAN), or even two or three
computer networks. The heart of any of these networks, however, is the network operating system.
There are different types of operating systems. Most individual computer users run client operating
systems, like Windows XP, which run on a single computer. Personal computers that individuals
use at home have a client operating system which manages the interactions and processes between
the computer and its peripherals such as the keyboard, mouse, external monitor, and printer. In a
sense, this is also a network, though it is different in scale than a network operating system which
manages the interactions of many computers.

 Schematic clients-server interaction.

The client/server characteristic describes the relationship of cooperating programs in an application.
The server component provides a function or service to one or many clients, which initiate requests
for such services.

 INTRODUCTION
 Functions such as email exchange, web access and database access, are built on the client/server
model. Users accessing banking services from their computer use a web browser client to send a
request to a web server at a bank. That program may in turn forward the request to its own

http://en.wikipedia.org/wiki/File:Client-server-model.svg

SYNCHRONIZATION 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT,KAHE Page 2/16

database client program that sends a request to a database server at another bank computer to
retrieve the account information. The balance is returned to the bank database client, which in turn
serves it back to the web browser client displaying the results to the user. The client–server model
has become one of the central ideas of network computing. Many business applications being
written today use the client–server model. So do the Internet's main application protocols, such as
HTTP, SMTP, Telnet, and DNS.
 The interaction between client and server is often described using sequence diagrams. The
Unified Modeling Language has support for sequence diagrams. Specific types of clients include
web browsers, email clients, and online chat clients. Specific types of servers include web servers,
ftp servers, application servers, database servers, name servers, mail servers, file servers, print
servers, and terminal servers. Most web services are also types of servers.
 A network architecture in which each computer or process on the network is either
a client or a server. Servers are powerful computers or processes dedicated to managing disk drives
(file servers), printers (print servers), or network traffic (network servers). Clients are PCs or
workstations on which users run applications. Clients rely on servers for resources, such as files,
devices, and even processing power.
CLOCK SYCHRONIZATION
 A distributed operating system is the logical aggregation of operating system
software over a collection of independent, networked, communicating, and physically separate
computational nodes. Individual nodes each hold a specific software subset of the global aggregate
operating system. Each subset is a composite of two distinct services provisionary. The first is a
ubiquitous minimal kernel, or microkernel, that directly controls that node ’s hardware. Second is a
higher-level collection of system management components that coordinate the node's individual and
collaborative activities. These components abstract microkernel functions and support user
applications. The microkernel and the management components collection work together. They
support the system’s goal of integrating multiple resources and processing functionality into an
efficient and stable system. This seamless integration of individual nodes into a global system is
referred to as transparency, or single system image; describing the illusion provided to users of the
global system’s appearance as a single computational entity.
As in non-distributed systems, the knowledge of when events occur is necessary. However, clock
synchronization is often more difficult in distributed systems because there is no ideal time source,
and because distributed algorithms must sometimes be used.

Physical Clocks „The time difference between two computers is known as drift. Clock drift over
time is known as skew. Computer clock manufacturers specify a maximum skew rate in their
products. „Computer clocks are among the least accurate modern timepieces. „Inside every
computer is a chip surrounding a quartz crystal oscillator to record time. These crystals cost 25
seconds to produce. „Average loss of accuracy: 0.86 seconds per day „This skew is unacceptable
for distributed systems.
Physical Clocks - UTC Coordinated Universal Time (UTC) is the international time standard. UTC
is the current term for what was commonly referred to as Greenwich Mean Time (GMT). Zero
hours UTC is midnight in Greenwich, England, which lies on the zero longitudinal meridian. UTC
is based on a 24-hour clock. „

http://www.webopedia.com/TERM/N/network.html
http://www.webopedia.com/TERM/S/server.html
http://www.webopedia.com/TERM/S/server.html
http://www.webopedia.com/TERM/S/server.html
http://www.webopedia.com/TERM/C/client.html
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Terminal_server
http://en.wikipedia.org/wiki/Print_server
http://en.wikipedia.org/wiki/Print_server
http://en.wikipedia.org/wiki/Print_server
http://en.wikipedia.org/wiki/File_server
http://en.wikipedia.org/wiki/Mail_server
http://en.wikipedia.org/wiki/Name_server
http://en.wikipedia.org/wiki/Database_server
http://en.wikipedia.org/wiki/Application_server
http://en.wikipedia.org/wiki/Ftp_server
http://en.wikipedia.org/wiki/Web_server
http://en.wikipedia.org/wiki/Online_chat
http://en.wikipedia.org/wiki/Online_chat
http://en.wikipedia.org/wiki/Email_client
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Sequence_diagram
http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/Telnet
http://en.wikipedia.org/wiki/SMTP
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/Network_computing

SYNCHRONIZATION 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT,KAHE Page 3/16

Physical Clocks – Berkeley Algorithm „
One daemon without UTC: „Periodically, the daemon polls all machines on the distributed system
for their times. „The machines answer. „The daemon computes an average time and broadcasts it to
the machines so they can adjust.
Physical Clocks – Decentralized Averaging Algorithm „
Each machine on the distributed system has a daemon without UTC. „Periodically, at an agreed-
upon fixed time, each machine broadcasts its local time. „Each machine calculates the correct time
by averaging all results.
Physical Clocks – Network Time Protocol (NTP) „
Enables clients across the Internet to be synchronized accurately to UTC. „Overcomes large and
variable message delays „
Employs statistical techniques for filtering, based on past quality of servers and several other
measures „
Can survive lengthy losses of connectivity:
„Redundant servers „
Redundant paths to servers „
Provides protection against malicious interference through authentication techniques.
Uses a hierarchy of servers located across the Internet.
 Primary servers are directly connected to a UTC time source. NTP has three modes:
„Multicast Mode: „Suitable for user workstations on a LAN „One or more servers periodically
multicasts the time to other machines on the network. „
Procedure Call Mode: „Similar to Christian’s Algorithm „Provides higher accuracy than Multicast
Mode because delays are compensated.
Symmetric Mode: „Pairs of servers exchange pairs of timing messages that contain time stamps of
recent message events. „The most accurate, but also the most expensive mode.
Logical Clocks
„Often, it is not necessary for a computer to know the exact time, only relative time. This is known
as “logical time”.
„Logical time is not based on timing but on the ordering of events.
„Logical clocks can only advance forward, not in reverse.
„Non-interacting processes cannot share a logical clock.
„Computers generally obtain logical time using interrupts to update a software clock. The more
interrupts (the more frequently time is updated), the higher the overhead.
„Scattering of information. Local, rather than global, decision-making
EVENT ORDERING

SYNCHRONIZATION 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT,KAHE Page 4/16

Generalized organization of nodes in a centralized model.

Generalized organization of nodes in a networked model.

MUTUAL EXCLUSION
Problems Unique to Distributed Systems

Distributed Operating Systems:

Generation: Third Generation Operating System.•
Characteristics: Global view of file system, name space, time, security, •
computational power.
Goal: Single computer view of multiple computer system (transparency)•

Distributed Operating System Goals:

Efficiency•
Consistency•
Robustness•

Every node in the system keeps a request queue sorted by logical time stamp.
Logical clocks are used to impose total global order on all events.
Ordered message delivery between every pair of communicating sites is assumed.

Messages sent from Site arrive at Site in the same order.1.

http://en.wikipedia.org/wiki/File:Node_Organization-Distributed_Model.PNG
http://en.wikipedia.org/wiki/File:Node_Organization-Network_Model.PNG
http://en.wikipedia.org/wiki/File:Node_Organization-Centralized_Model.PNG

SYNCHRONIZATION 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT,KAHE Page 5/16

Site Si sends a request and places the request in the local request queue.
 2. When Site Sj receives the request, it sends a time-stamped reply to Site Si and places the
request in its local request queue.

Site Si gains the critical section of the requested data when it has received a message from 3.
all other sites with a timestamp larger than the request.

Centralized Algorithm4.

The most simple and straightforward way to achieve mutual exclusion in a5.

distributed system is to simulate how it is done in a one-processor system:6.

One process is elected as the coordinator.7.

When any process wants to enter a critical section, it sends a request message to8.

The coordinator stating which critical section it wants to access.9.

If no other process is currently in that critical section, the coordinator sends back10.

A reply granting permission. When the reply arrives, the requesting process enters11.

The critical section. If another process requests access to the same critical section,12.

It is ignored or blocked until the first process exits the critical section and sends a13.

message to the coordinator stating that it has exited.14.

It is often unacceptable to have a single point of failure.
When a process wants to enter a critical section, it builds a message containing the name of the
critical section, its process number, and the current time. It then sends the message to all other
processes, as well as to itself.
Token-Based Algorithms
Another approach is to create a logical or physical ring.
Each process knows the identity of the process succeeding it.
When the ring is initialized, Process 0 is given a token. The token circulates around the ring in
order, from Process k to Process k + 1.
When a process receives the token from its neighbor, it checks to see if it is attempting to enter a
critical section. If so, the process enters the critical section and does its work, k eeping the token the
whole time.
After the process exits the critical section, it passes the token to the next process in the ring. It is
not permitted to enter a second critical section using the same token. „If a process is handed a token
an is not interested in entering a critical section, it passes the token to the next process.
RESOURCE MANAGEMENT - INTRODUCTION

Objects models and identification.

Distributed Coordination.

Intercrosses Communication

SYNCHRONIZATION 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT,KAHE Page 6/16

Distributed Resources.

Fault Tolerance and Security.

DESIRABLE FEATURES OF A GOOD GLOBAL SCHEDULING ALGORITHM :
The term Inter-Process Communication (IPC) refers to a predefined library or set of

interfaces that allow processes to communicate with each other. IPC gives the appearance of
programs that run concurrently in an operating system’s background and allows computer users to
conduct multiple tasks at once on a computer. IPCs can share memory, run in synchrony with other
processes, pass messages, and conduct remote procedure calls. The specific IPC method varies
based on the Operating System (OS), latency of communication between program threads, and the
type of information being exchanged between the processes.

Inter-Process Communication Methods
There are several ways to support Inter-Process Communications on an OS. These include:
Message queuing – one or more message queues sends messages between running processes and
the OS kernel manages them. Pipes – information can only be sent in one direction and is buffered
until received

.
Named pipes – a pipe has a certain name and can be used among processes that do not share a
common origin. Shared memory – permits information exchange through a predefined area of
memory and has to be allocated before data can gain access to the memory location.

Semaphores – solves problems when synchronization or race conditions arise between processes.
Socket – processes use these to communicate over a network via a client/server relationship.
TASK MANAGEMENT APPROACH
 A common Inter-Process Communications problem is that when one or more resources
cannot be shared, they are mutually exclusive and may result in a waste of system resources or
processor time. Basic inter-processes that help prevent this from blocking Inter-Process
Communication include: 1) sleep and wake up conditions that require a caller to wake a process up
when it has enough resources to work or is asleep otherwise, 2) the producer-consumer issue that
may result if a process attempts to remove resources from a buffer before another produces them,
3) an events counter that counts the amount of resources that a process produces that are placed
into a buffer and the number that is removed, and 4) an inter-process monitor that is a collection of
data structures, variables, and procedures that work together to prevent mutual exclusion by using
“WAIT” and “SIGNAL” instructions based on when a calling process has sufficient resources to
work.

SYNCHRONIZATION 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT,KAHE Page 7/16

Each process is viewed as a collection of tasks. These tasks are scheduled to suitable processor to
improve performance. This is not a widely used approach because:
· It requires characteristics of all the processes to be known in advance.
· This approach does not take into consideration the dynamically changing state of the system.
In this approach, a process is considered to be composed of multiple tasks and the goal is to find an
optimal assignment policy for the tasks of an individual process. The following are typical
assumptions for the task assignment approach:
· Minimize IPC cost (this problem can be modeled using network flow model)
· Efficient resource utilization
· Quick turnaround time
· A high degree of parallelism

 LOAD BALANCING APPROACH
There are many Inter-Process Communication implementations that are bo th platform

dependent and independent. Some of the platform independent implementations include: COBRA
(Common Object Request Broker Architecture), Distributed Computing Environment (DCE),
Message Bus (MBUS), ONC RPC, Lightweight Communications and Marshalling (LCM), Unix
domain sockets, and XML RPC. Some platform specific implementations include: the Java Remote
Method Invocation (RMI), Apple Computer’s Apple Events, KDE’s Desktop Communications
Protocol (DCOP), Libt2n for C++ on Linux, Microsoft ActiveX, DCOM, and COM, and Solaris
Doors.
There are several reasons for providing an environment that allows process cooperation:

Information sharing

Speedup

Modularity

Convenience

Privilege separation

In this, the processes are distributed among nodes to equalize the load among all nodes. The
scheduling algorithms that use this approach are known as Load Balancing or Load Leveling
Algorithms. These algorithms are based on the intuition that for better resource utilization, it is
desirable for the load in a distributed system to be balanced evenly. This a load balancing algorithm
tries to balance the total system load by transparently transferring the workload from heavily loaded
nodes to lightly loaded nodes in an attempt to ensure good overall performance relative to some
specific metric of system performance.
We can have the following categories of load balancing algorithms:

http://en.wikipedia.org/wiki/Privilege_separation

SYNCHRONIZATION 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT,KAHE Page 8/16

· Static: Ignore the current state of the system. E.g. if a node is heavily loaded, it picks up a
task randomly and transfers it to a random node. These algorithms are simpler to implement but
performance may not be good.
· Dynamic: Use the current state information for load balancing. There is an overhead involved
in collecting state information periodically; they perform better than static algorithms.
· Deterministic: Algorithms in this class use the processor and process characteristics to
allocate processes to nodes.
· Probabilistic: Algorithms in this class use information regarding static attributes of the
system such as number of nodes, processing capability, etc.
· Centralized: System state information is collected by a single node. This node makes all
scheduling decisions.
· Distributed: Most desired approach. Each node is equally responsible for making scheduling
decisions based on the local state and the state information received from other sites.
· Cooperative: A distributed dynamic scheduling algorithm. In these algorithms, the distributed
entities cooperate with each other to make scheduling decisions. Therefore they are more complex
and involve larger overhead than non-cooperative ones. But the stability of a cooperative algorithm
is better than of a non-cooperative one.
· Non-Cooperative: A distributed dynamic scheduling algorithm. In these algorithms,
individual entities act as autonomous entities and make scheduling decisions independently of the
action of other entities.
Static versus Dynamic
Static algorithms use only information about the average behavior of the system
Static algorithms ignore the current state or load of the nodes in the system
Dynamic algorithms collect state information and react to system state if it changed
Static algorithms are much more simpler
Dynamic algorithms are able to give significantly better performance.
Deterministic versus Probabilistic
Deterministic algorithms use the information about the properties of the nodes and the characteristic
of processes to be scheduled
Probabilistic algorithms use information of static attributes of the system (e.g. number of nodes,
processing capability, topology) to formulate simple process placement rules
Deterministic approach is difficult to optimize
Probabilistic approach has poor performance
Centralized versus Distributed
Centralized approach collects information to server node and makes assignment decision
Distributed approach contains entities to make decisions on a predefined set of nodes
Centralized algorithms can make efficient decisions, have lower fault-tolerance

SYNCHRONIZATION 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT,KAHE Page 9/16

Distributed algorithms avoid the bottleneck of collecting state information and react faster
Issues in designing Load-balancing algorithms
Load estimation policy
determines how to estimate the workload of a node
Process transfer policy
determines whether to execute a process locally or remote
State information exchange policy
determines how to exchange load information among nodes
Location policy
determines to which node the transferable process should be sent
Priority assignment policy
determines the priority of execution of local and remote processes
Migration limiting policy
determines the total number of times a process can migrate
In some cases the true load could vary widely depending on the remaining service time, which can
be measured in several way:
Memoryless method assumes that all processes have the same expected remaining service time,
independent of the time used so far
Pastrepeats assumes that the remaining service time is equal to the time used so far
Distribution method states that if the distribution service times is known, the associated process’s
remaining service time is the expected remaining time conditioned by the time already used
None of the previous methods can be used in modern systems because of periodically running
processes and daemons
An acceptable method for use as the load estimation policy in these systems would be to measure
the CPU utilization of the nodes
Central Processing Unit utilization is defined as the number of CPU cycles actually executed per
unit of real time
It can be measured by setting up a timer to periodically check the CPU state (idle/busy)

LOAD SHARING APPROACH

Resource sharing is one of the major advantages obtained from dist ributed systems. Fair
and reliable resource sharing is an active area of research in this field. In this paper we propose a
framework for reliable and fair resource sharing in distributed systems. The goal of fairness is
achieved by using concept of bank accounts, salaries and resource rates.
Several researchers believe that load balancing, with its implication of attempting to equalize
workload on all the nodes of the system, is not an appropriate objective. This is because the

SYNCHRONIZATION 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT,KAHE Page 10/16

overhead involved in gathering the state information to achieve this objective is normally very
large, especially in distributed systems having a large number of nodes. In fact, for the proper
utilization of resources of a distributed system, it is not required to balance the load on all the
nodes. It is necessary and sufficient to prevent the nodes from being idle while some other nodes
have more than two processes. This rectification is called the Dynamic Load Sharing instead of
Dynamic Load Balancing.
The design of a load sharing algorithms require that proper decisions be made regarding load
estimation policy, process transfer policy, state information exchange policy, priority assignment
policy, and migration limiting policy. It is simpler to decide about most of these policies i n case of
load sharing, because load sharing algorithms do not attempt to balance the average workload of all
the nodes of the system. Rather, they only attempt to ensure that no node is idle when a node is
heavily loaded. The priority assignments policies and the migration limiting policies for load-
sharing algorithms are the same as that of load-balancing algorithms.

FRAMEWORK FOR RESOURCE SHARING IN DISTRIBUTED ENVIRONMENT

We propose a framework for fair and reliable resource sharing among the systems. By
“fair” we mean that we should not allow a system to just use resources from other systems but
rather it should also provide its own resources to other systems in a proportional scale. Thus a
system should not only be a service user but also a service provider in the distributed environment.
We use the concept of bank account and salary as in to model the goal of fairness. Thus there is a
monetary agent unit in the environment which will be act as a bank for the systems in the network.
This monetary agent unit will be responsible for maintaining the bank balances for each system in
the network, to deposit regular salaries to each system at regular times, and to adjust the balance
between systems whenever one of them takes service (consumes resource) from the other system.

By “reliable” we mean that the consumer of the resource (CPU time, Storage etc...) should
get good service from other systems and that he was not “cheated”. Moreover any particular
system should not be overloaded by offering a lot of services to other system. This will again be
achieved by the concept of variable rates Thus our framework not only promotes fair sharing of
resources among the systems but also reliable resource sharing. Resource implies any service
offered by a system in the network like storage, computation. There can be one or more than one
resources available in the network for sharing.
OPERATING SYSTEM FORPARALLEL PROCESSING

Parallel computing involves the design of a computing system that uses more than one
processor to solve a single problem. For example, if two arrays with ten elements each must be
added, two processors can be used to compute the results. One processor computes the sum of the
first five elements and the second processor computes the sum of the second five elements. After
the computation, the results from one processor must be communicated to the other processor.
Before starting the computation, both processors agree to work on independent sub-problems.
Each processor works on a sub-problem and communicates when the solution is available.
Theoretically, a two-processor computer should add the array of numbers twice as fast as a single-

SYNCHRONIZATION 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT,KAHE Page 11/16

processor computer. In practice, there is overhead and the benefits of using more processors
decrease for larger processor configurations.

Obtaining a Unix workstation for the cost of a PC has been one of the benefits of using
Linux. This idea has been carried a step further by linking together a number of Linux PCs. Several
research projects are underway to link PCs using high performance networks. High speed
networking is a hot topic and there are a number of projects using Linux to develop a low latency
and high bandwidth parallel machine. (One URL is http://yara.ecn.purdue.edu/~pplinux.)Currently,
there is not much high level support for shared memory programming under SMP Linux. The
basic Linux mechanisms for sharing memory across processors are available. They include the
System V Inter-Processor Communication system calls and a thread library. But, it will be some
time before a parallel C or C++ compiler will be available for Linux. Parallel programming can still
be done on an SMP Linux machine or on a cluster of Linux PCs using message passing.

Parallel computing is advantageous in that it makes it possible to obtain the solution to a
problem faster. Scientific applications are already using parallel computation as a method for
solving problems. Parallel computers are routinely used in computationally intensive applications
such as climate modeling, finite element anal ysis and digital signal processing. New commercial
applications which process large amounts of data in sophisticated ways are driving the
development of faster computers. These applications include video conferencing, data mining and
advanced graphics. The integration of parallel computation, multimedia technology and high
performance networking has led to the development of video servers. A video server must be
capable of rapidly encoding and decoding megabytes of data while simultaneously handling
hundreds of requests. While commercial parallel applications are gaining popularity, scientific
applications will remain important users of parallel computers. Both application types are merging
as scientific and engineering applications use large amounts of data and commercial applications
perform more sophisticated operations. Parallel computing is a broad topic and this article will
focus on how Linux can be used to implement a parallel application. We will look at two models of
parallel programming: message passing and shared memory constructs.
Message Passing

Conceptually, the idea behind message passing is simple—multiple processors of a parallel
computer run the same or different programs, each with private data. Data is exchanged between
processors when needed. A message is transmitted by a sender processor to a receiver processor.
One processor can be either a sender or a receiver processor at any time. The sender processor can
either wait for an acknowledgement after sending or it can continue execution. The receiver
processor checks a message buffer to retrieve a message. If no message is present, the processor
can continue execution and try again later or wait until a message is received. Multiple sends and
receives can occur simultaneously in a parallel computer.

SYNCHRONIZATION 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT,KAHE Page 12/16

All processors can exchange data with all other processors. The routing of messages is handled by
the operating system. The message-passing model can be used on a network of workstations or
within a tightly coupled group of processors with a distributed memory.

The number of hops between processors can vary depending on the type of inter-
connection network.

Message passing between processors is achieved by using a communication protocol.
Depending on the communication protocol used, the send routine usually accepts a destination
processor ID, a message type, the start address for the message buffer and the number of bytes to
be transmitted. The receive routine can receive a message from any processor or from a particular
processor. The message can be of any particular type. Most communication protocols maintain the
order in which messages are sent between a pair of processors. For example, if processor 0, sends
a message of type a followed by a message of type b to processor 1, then when processor 1 issues
a receive from processor 0 for a generic message type, the message of type a will be received first.
However, in a multi-processor system, if a processor issues a receive from any processor, there is
no guarantee of the order of messages received from the sending processors. The order in which
messages are transported depends on the router and the traffic on the network. To maintain the
order of messages sent, the safest way is to use the source processor number and message type.

Message passing has been used successfully to implement many parallel applications. But a
disadvantage of message-passing is the added programming required. Adding message-passing
code to a large program requires considerable time. A domain decomposition technique must be
chosen. Data for the program must be divided such that there is minimal overlap between
processors, the load across all processors is balanced and each processor can independently solve a
sub-problem. For regular data structures, the domain decomposition is fairly straightforward, but
for irregular grids, dividing the problem so that the load is balanced across all processors is not
trivial. Another disadvantage of message passing is the possibility of deadlock. It is very easy to
hang a parallel computer by misplacing a call to the send or receive routines. So, while message
passing is conceptually simple, it has not been adopted fully by the scientific or commercial
communities.
SHARED MEMORY CONSTRUCTS

Another approach to parallel programming is the use of shared memory parallel language
constructs. The idea behind this scheme is to identify the parallel and sequential regions of a
program (Figure). The sequential region of a program is run on a single processor while the
parallel region is executed on multiple processors. A parallel region consists of multiple threads
which can run concurrently.

SYNCHRONIZATION 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT,KAHE Page 13/16

For some programs, identifying parallel and sequential regions may be a trivial task, but for
other programs it may involve modifying the sequential program to create parallel regions. The
easiest approach is to rely on the compiler to determine parallel regions. This is the automatic
parallelization approach which usually gives poor results. Most compilers are conservative when
introducing parallelism and will not parallelize code if there is any ambiguity. For example, if
elements of an array x are accessed through an index array, e.g., x(index(i)), in a loop.

SYNCHRONIZATION 2016-2018
Batch

Prepared By Manjula.D, Department of CS, CA & IT,KAHE Page 14/16

PART-B(6 MARKS)
POSSIBLE QUESTIONS

What is Synchronization? Explain in detail about Clock Synchronization. 1.
Discuss in detail about Event Ordering with an example2.
Discuss about the Mutual Exclusion.3.
Explain desirable features of a Good Global Scheduling Algorithms.4.
Explain Load Balancing Algorithms and their approach.5.
What is Dynamic Load Balancing? And explain in detail about Load Sharing Approach.6.

PART-C(10 MARKS)
POSSIBLE QUESTIONS

What is Deadlock? And explain in detail about Deadlock Modeling.1.
What is Resource Manager? Explain in detail about Task Assignment Approach.2.
Illustrate with an example explain in detail Synchronization.3.

DISTRIBUTED FILE SYSTEM 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 1/12

UNIT-IV

SYLLABUS

Distributed file system: Introduction – desirable features of a good distributed file system – file
models – file accessing models.
Naming: Introduction – desirable features of a good naming system – fundamental terminologies
and concepts.

DISTRIBUTED FILE SYSTEM

In the client/server network model a computer plays a centralized role and is known as a
server all other computers in the network are known as clients. All client computers access the
server simultaneously for files, databa se, docs, spreadsheets, web pages and resources like hard
diver, printer, fax modem, CD/DVD ROM and others. In other words, all the client computes
depends on the server and if server fails to respond or crash then networking/communication
between the server and the client computes stops.
 The Client – Server Model
 Blocking Vs Non Blocking Primitives
 Buffered Versus Un buffered Primitives
 Implementation of Client – Server Model.

INTRODUCTION

Client/server model is a concept for describing communications between computing
processes that are classified as service consumers (clients) and service providers (servers). Figure
(a) presents a simple C/S model. The basic features of a C/S model are:

 1. Clients and servers are functional modules with well defined interfaces (i.e., they hide
internal information). The functions performed by a client and a server can be implemented by a set
of software modules, hardware components, or a combination thereof.

2. Each client/server relationship is established between two functional modules when one
module (client) initiates a service request and the other (server) chooses to respond to the service
request. For a given service request, clients and servers do not reverse roles (i.e., a client stays a
client and a server stays a server). However, a server for SR R1 may become a client for SR R2
when it issues requests to another server (see Figure). For example, a client may issue an SR that
may generate other SRs.
 3. Information exchange between clients and servers is strictly through messages (i.e., no
information is exchanged through global variables). The service request and additional information
is placed into a message that is sent to the server. The server's response is similarly another
message that is sent back to the client. This is an extremely crucial feature of C/S model A
computer that has access to services over a computer network. The computer providing the services
is a server.

DISTRIBUTED FILE SYSTEM 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 2/12

Client-Server Architecture: An information-passing scheme that works as follows: a client
program, such as Mosaic, sends a request to a server. The server takes the request, disconnects
from the client and processes the request. When the request is processed, the server reconnects to
the client program and the information is transferred to the client. This architecture differs from
traditional Internet databases where the client connects to the server and runs the program from the
remote site.

4. Messages exchanged are typically interactive. In other words C/S model does notsupport
an off-line process. There are a few exceptions. For example, message queuing systems allow
clients to store messages on a queue to be picked up asynchronously by the servers at a later stage.

5. Clients and servers typically reside on separate machines connected through a network.
Conceptually, clients and servers may run on the same machine or on separate machines. The
implication of the last two features is that C/S service requests are real-time messages that are
exchanged through network services. This feature increases the appeal of the C/S model (i.e.,
flexibility, scalability) but introduces several technical issues such as portability, interoperability,
security, and performance.

Conceptual Client/Server Model
CHARACTERISTICS

Characteristics of a Client

Request sender is known as client
 Initiates requests
 Waits for and receives replies.
 Usually connects to a small number of servers at one time
 Typically interacts directly with end-users using a graphical user interface

CHARACTERISTICS OF A SERVER

Receiver of request which is send by client is known as server
 Passive (slave)
 Waits for requests from clients
 Upon receipt of requests, processes them and then serves replies
 Usually accepts connections from a large number of clients
 Typically does not interact directly with end-users

DISTRIBUTED FILE SYSTEM 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 3/12

INTRODUCTION

Server Architecture comprises of various types of servers, such as File Server, Print
Server, and Email Servers. In this lesson, we will be discussing about these servers and various
protocols used in Mail Servers, we also see a comparative study of various mail servers.

ORGANIZATION
In a client-server environment, an organization's files, and sometimes

itsapplications,arestorednot on individual desktop computers but on centralized servers instead.
That "client-server" structure has benefits that range from tighter system security to easier file
backups.

DESIRABLE FEATURES OF A GOOD DISTRIBUTED FILE SYSTEM
In a client-server environment, companies use a centralized file and print server to store

individual user documents. Users store the files they create on a shared network drive, with each
user allocated a dedicated storage space on the server. The printer drivers reside on the server as
well, and users connect to the network printers through that server. Each individual desktop
computer is a node, or client, on that centralized file and print server.

APPLICATION SERVER
Some companies that use the client-server organization also use a centralized repository for

their programs and applications. Instead of having the programs loaded on each client machine,
those programs are loaded to a central application server. Clients connect to the network and access
the programs they need, using those programs to create documents, spre adsheets and databases,
just as they would if the programs were loaded on their individual client computers.

EASIER BACKUPS
Client-server organization provides multiple users working on a big project, such as a team

making a newspaper every day, with an easier and more effective way to back up their critical files.
When each user stores files locally on a PC, there is always a chance that the PC could suffer hard
drive failure that would destroy those files for good. But when users store their files on a
centralized file server, the network administrator can back up those files every night, and they can
be recovered in the case of an equipment failure or accidental deletion. Many modern file servers
also take file snapshots throughout the day, providing almost instantaneous recovery of damaged
or deleted files.

CENTRALIZED CONTROL
The client-server structure provides greater security and easier management than a network

of individual computers. When applications are stored on a central server, it is easier for network
administrators to keep track of licenses and available seats. Storing individual user files on the
server makes backup and recovery easier, while allowing users in multiple locations to access those
files any time they need to.

DISTRIBUTED FILE SYSTEM 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 4/12

FILE MODELS
A communications protocol defines the rules for sending blocks of data (each known as a

Protocol Data Unit (PDU)) from one node in a network to another node. Protocols are normally
defined in a layered manner and provide all or part of the services specified by a layer of the OSI
reference model. A protocol specification defines the operation of the protocol and may also
suggest how the protocol should be implemented. It consists of three parts:

Definition of Protocol Control Information (PCI) format which forms the PDU header 1.
Definition of procedures for transmitting and receiving PDUs 2.
Definition of services provided by the protocol layers 3.

A Protocol Data Unit
 The PDUs exchanged have two parts: a header (also known as the Protocol
Control Information (PCI)) and a payload (also known as a Service Data Unit (SDU)). The
protocol does not define or constrain the data carried in the payload part . It does specify the format
of the PCI, defining the fields which are present and the way in which the patterns of bits are to be
interpreted. A protocol also defines the procedures which determine how the PDU will be
processed at the transmit and receive nodes. The procedures specify the valid values for the PCI
fields, and the action be taken upon reception of each PCI value (usually based on stored control
information). Examples of procedures which are implemented in protocols include:

error recovery (e.g. the checkpoint procedure, the go-back-n procedure)
flow control
segmentation
service access point selection
connection management

 The documents which define a protocol procedures are usually large and are seldom
concrete (i.e. they may not be directly translated to executable programs). They typically define the
actions to be taken when a particular condition is detected, but not how the condition is to be
detected.

 It has been said that "Part of wh at makes a protocol mature is good implementation
guidelines and folklore". The success of the TCP/IP protocol suite is largely due to the "industrial
strength" code available in freely distributed reference implementations.

DISTRIBUTED FILE SYSTEM 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 5/12

A protocol implemented by several processes (represented by circles) communicating using queues
of PDUs, a shared information area (shown as a rectangle) and function calls between the
processes (represented by arrows)
 Protocols are usually implemented by writing a number of programs (processes) which
communicate with one another through queues and by function calls. One or more timers are also
usually required to ensure c orrect operation of the protocol. To start and stop timers, a protocol
normally uses an interface to the computer's operating system. This interface is also used to request
new (empty) buffers for received PDUs (or PDUs created by the layer) and to release buffers
which are no longer needed by the protocol.
 Protocols are generally described using a layered architecture known as the OSI
reference model. Which abstracts the details of the protocol and allows a simple description of the
service provided by the protocol to the protocol layer above and the service required by protocol
layer from the layer below? Examples of protocols include:

Link Layer - HDLC, MAC, ARP
Network Layer - IP, ICMP
Transport Layer - UDP, TCP

FILE ACCESSING MODEL

File servers generally offer some form of system security to limit access to files to specific
users or groups. In large organizations, this is a task usually delegated to what is known as
directory services such as Novell's directory or Microsoft's Active Directory. These servers work
within the hierarchical computing environment which treat users, directories, computers,
applications and files as distinct but related entities on the network and grant access based on user
or group credentials. In many cases, the directory service spans many file servers, potentially
hundreds for large organizations. In the past, and in smaller organizations, authentication can take
place directly to the server itself.

Integrity provides endpoint security and policy enforcement that protect enterprise networks
proactively from worms, spyware, and hacker attacks that evade other security technologies.
Quickly and easily deployed and administered, the integration of Integrity with InterSpect security
appliances enables comprehensive internal security with minimal cost of ownership.
NAMING : INTRODUCTION

In telecommunication, the term file server has the following meanings:

DISTRIBUTED FILE SYSTEM 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 6/12

In the client/server model, a file server is a computer responsible for the central storage and
management of data files so that other computers on the same network can access the files.
A file server allows users to share information over a network without having to physically
transfer files by floppy diskette or some other external storage device. Any computer can be
configured to be a host and act as a file server. In its simplest form, a file server may be an ordinary
PC that handles requests for files and sends them over the network. In a more sophisticated
network, a file server might be a dedicated network-attached storage (NAS) device that also serves
as a remote hard disk drive for other computers, allowing anyone on the network to store files on it
as if to their own hard drive.

The naming facility of a distributed operating system enables users and programs to assign
character-string names to objects and subsequently use these names to refer to those objects.

The locating facility, which is an integral part of the naming facility, maps an object's name
to the object's location in a distributed system.

 The naming and locating facilities jointly form a naming system that provides the users
with an abstraction of an object that hides the details of how and where an object is actually located
in the network.

 It provides a further level of abstraction when dealing with object replicas. Given an object
name, it returns a set of the locations of the object's replicas.

The naming system plays a very important role in achieving the goal of v location
transparency, facilitating transparent migration and replication of objects, object sharing.

DESIRABLE FEATURES OF A GOOD NAMING SYSTEM

A form of disk storage that hosts files within a network; file servers do not need to be high-
end but must have enough disk space to incorporate a large amount of data. Many people mistake
file servers for a high-end storage system, but in reality, file servers do not need to possess great
power or super fast computer specifications.

 A computer program that allows different programs, running on other computers, to access
the files of that computer

In common parlance, the term file server refers specifically to a computer on which a user
can map or mount a disk drive or directory so that the directory appears to be on the machine at
which the user is sitting. Additionally, on this type of file server, the user can read or write a file as
though it were part of the file system of the user's computer. Files and directories on the remote
computer are usually accessed using a particular protocol, such as WebDAV, SMB, CIFS, NFS,
Appletalk or their mutations.

Although files can be sent to and received from most other computers unless their primary
function is access by the above means, they are generally not considered file servers as such.

1. Location transparency. Location transparency means that the name of an object should
not reveal any hint as to the physical location of the object. That is, an object's name should be
independent of the physical connectivity or topology of the system, or the current location of the
object.

2. Location independency. For performance, reliability, availability, and security reasons,
distributed systems provide the facility of object migration that allows the movement and relocation
of objects dynamically among the various nodes of a system. Loca tion independency means that
the name of an object need not be changed when the object's location changes. Furthermore, a user

DISTRIBUTED FILE SYSTEM 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 7/12

should be able to access an object by its same name irrespective of the node from where he or she
accesses it (user migration). Therefore, the requirement of location independency calls for a global
naming facility with the following two features:

An object at any node can be accessed without the knowledge of its physical location
(location independency of request-receiving objects).

An object at any node can issue an access request without the knowledge of its own
physical location (location independency of request-issuing objects).

This property is also known as user mobility.
3. Scalability. Distributed systems vary in size ranging from one with a few nodes to one

with many nodes. Moreover, distributed systems are normally open systems, and their size
changes dynamically. Therefore, it is impossible to have an a priori idea about how large the set of
names to be dealt with is liable to get. Hence a naming system must be capable of adapting to the
dynamically changing scale of a distributed system that normally leads to a change in the size of the
name space. That is, a change in the system scale should not require any change in the naming or
locating mechanisms.

4. Uniform naming convention. In many existing systems, different ways of naming
objects, called naming conventions, are used for naming different types of objects. For example,
file names typically differ from user names and process names. Instead of using such non uniform
naming conventions, a good naming system should use the same naming convention for all types
of objects in the system.

5. Multiple user-defined names for the same object. For a shared object, it is desirable that
different users of the object can use their own convenient names for accessing it. Therefore, a
naming system must provide the flexibility to assign multiple user-defined names to the same
object. In this case, it should be possible for a user to ch ange or delete his or her name for the
object without affecting those of other users.

6. Group naming. A naming system should allow many different objects to be identified by
the same name. Such a facility is useful to support broadcast facility or to group objects for
conferencing or other applications.

7. Meaningful names. A name can be simply any character string identifying some object.
However, for users, meaningful names are preferred to lower level identifiers such as memory
pointers, disk block numbers, or network addresses. This is because meaningful names typically
indicate something about the contents or function of their referents, are easily transmitted between
users, and are easy to remember and use. Therefore, a good naming system should suppo rt at least
two level of object identifiers, one convenient for human users and one convenient for machines.

8. Performance. The most important performance measurement of a naming system is the
amount of time needed to map an object's name to its attributes, such as its location. In a distributed
environment, this performance is dominated by the number of messages exchanged during the
name-mapping operation. Therefore, a naming system should be efficient in the sense that the
number of messages exchanged in a name-mapping operation should be as small as possible.

9. Fault tolerance. A naming system should be capable of tolerating, to some extent, faults
that occur due to the failure of a node or a communication link in a distributed system network.
That is, the naming system should continue functioning, perhaps in a degraded form, in the event
of these failures. The degradation can be in performance. functionality, or both but should be
proportional, in some sense, to the failures causing it.

DISTRIBUTED FILE SYSTEM 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 8/12

10. Replication transparency. In a distributed system, replicas of an object are generally
created to improve performance and reliability. A naming system should support the use of
multiple copies of the same object in a user-transparent manner. That is, if not necessary, a user
should not be aware that multiple copies of an object are in use.

11. Locating the nearest replica. When a naming system supports the use of multiple copies
of the same object, it is important that the object-locating mechanism of the naming system should
always supply the location of the nearest replica of the desired object. This is because the efficiency
of the object accessing operation will be affected if the object-locating mechanism does not take this
point into consideration.

 FUNDAMENTAL TERMINOLOGIES AND CONCEPT

File and print

Traditionally, file and print services have been combined on the same computers due to
similar computing requirements for both functions. Usually, such computers are distinct from
application and database servers, which have different, usually more processorintensive, and
requirements. However, as computing power increases and file serving requirements remain
relatively constant, it is more common to see these functions combined on the same machine.

PRINT SERVER

A print server, or printer server, is a computer or device to which one or more printers are
connected, which can accept print jobs from external client computers connected to the print server
over a network. The print server then sends the data to the ap propriate printer that it manages. The
term print server can refer to:

1. A host computer running Windows OS with one or more shared printers. Client
computers connect using Microsoft Network Printing protocol.

2. A computer running some operating system other than Windows, but still implementing
the Microsoft Network Printing protocol (typically Samba running on a UNIX or Linux
computer).

3. A computer that implements the LPD service and thus can process print requests from
LPD clients.

4. A dedicated device that connects one or more printers to a LAN. It typically has a single
LAN connector, such as an RJ-45 socket, and one or more physical ports (e.g. serial, parallel or
USB (Universal Serial Bus)) to provide connections to printers. In essence this dedi cated device
provides printing protocol conversion from what was sent by client computers to what will be
accepted by the printer. Dedicated print server devices may support a variety of printing protocols
including LPD/LPR over TCP/IP, NetWare, NetBIOS/NetBEUI over NBF, TCP Port 9100 or
RAW printer protocol over TCP/IP, DLC or IPX/SPX. Dedicated server appliances do not provide
spooling or print queue services, since they typically have very little memory.

DISTRIBUTED FILE SYSTEM 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 9/12

5. A dedicated device similar to definition 4 above, that also implements Microsoft
Networking protocols to appear to Windows client computers as if it were a print server defined in
1 above. The term print server normally has the meaning defined in 1 or 2 above, while the term
print server device usually refers to definition 4.

ELECTRONIC MAIL SERVER

A mail transfer agent or MTA (also called a mail transport agent, message transfer agent,
mail server, SMTPD (short for SMTP daemon), or a mail exchanger(MX) in the context of the
Domain Name System) is a computer program or software agent that transfers electronic mail
messages from one computer to another. It receives messages from another MTA (relaying), a mail
submission agent (MSA) that itself got the mail from a mail user agent (MUA), or directly from an
MUA, thus acting as an MSA itself. The MTA works behind the scenes, while the user usually
interacts with the MUA.

The delivery of e-mail to a user's mailbox typically takes place via a mail delivery agent
(MDA); many MTAs have basic MDA functionality built in, but a dedicated MDA like procmail
can provide more sophistication. According to various surveys the most popular mail server
software are sendmail, Postfix, Microsoft Exchange Server, Exim, IMail (by Ipswitch, Inc.),
MDaemon by Alt-N Technologies, MailEnable, Merak Mail Server and mail. The Mail Channels
survey also found that many organizations use the services of e-mail security services such as
Postini, MXLogic or Concentric Hosting to receive e-mail. This is a list of mail servers: mail
transfer agents, mail delivery agents, and other computer software which provide e-mail services.
SMTP, POP/IMAP, Mail filtering

SMTP

Apache James, Atmail, AXIGEN, Citadel, CommuniGate Pro, Courier, Eudora Internet
Mail Server, Exim, Hexamail server, IBM Lotus Domino, IpBrick, Ipswitch IMail Server ,Kerio
MailServer, MailEnable Mail Server, Mailtraq, Merak Mail Server, MercuryMail Transport
System, MeTA1 (successor of the sendmail X project), Microsoft Exchange Server, MMDF,
Novell GroupWise, Novell NetMail, Open-Xchange, Post Cast Server, Postfix, PostPath Email
and Collaboration Server, qmail, Scalix, Sendmail, Smarter Mail, SparkEngine, Sun Java System,
WinGate, WorkgroupMail, Xmail, XMS Email Application Server, Zimbra, ZMailer

POP/IMAP

Apache James, Axigen, Binc IMAP - uses Maildir, Bluebottle, Citadel - uses a database-
driven mail store, CommuniGate Pro, Courier Mail Server - uses Maildir format, Cyrus IMAP
server, Dovecot, Eudora Internet Mail Server, Hexamail server, IpBrick, Ipswitch IMail Server,
Malware Communication Server (Free open source [multi-platform] mail server), Kerio
MailServer, Lotus Domino IMAP4 Server, MailEnable Mail Server, Mailtraq, Merak Mail Server,
MercuryMail Transport System, Microsoft Exchange Server, Microsoft Windows POP3 Service,
Novell GroupWise, Novell NetMail, Open-Xchange, Oryx Archiveopteryx, PostPath, Qpopper,
SmarterMail, UW IMAP - uses mbox format, WinGate, WorkgroupMail, Zimbra

DISTRIBUTED FILE SYSTEM 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 10/12

MAIL FILTERING

ASSP, Bayesian filters, Bogofilter, DSPAM, Hexamail Guard, maildrop, Mailtraq,
Procmail, PureMessage, SurfControl, SpamAssassin, WinGate, WorkgroupMail, Gattaca Serve,
Vipul's Razor

COMPARISON OF MAIL SERVERS

This is a comparison of mail servers : mail transfer agents, mail delivery agents, and other
computer software which provide e-mail services.

DISTRIBUTED DATA BASES SYSTEMS

INTRODUCTION

 A distributed database system consists of multiple independent databases that operate on
two or more computers that are connected and share data over a network. The databases are usually
in different physical locations. Each database is controlled by an independent DBMS, which is
responsible for maintaining the integrity of its own databases.
 In extreme situations that databases might be installed on different hardware, different
operating systems, and could even use DBMS software from different vendors. That last
contingency is the hardest to handle. Most current distributed databases function better if all of the
environments are running DBMS software from the same vendor.

NEED FOR DISTRIBUTED DATABASE

When an organization is geographically dispersed, it may choose to store its database on a
central computer or to distribute them to local computers (or a combinatory of both). The following
conditions encourage the need of distributed database in a business organization:

DISTRIBUTION AND AUTONOMY OF BUSINESS UNITS:

Divisions, departments, and facilitates in modern organizations are often geographically
(and possibly internationally) distributed. Often each unit has the authority to create its own
information systems, and often these units want local data over which they can have controls.
Data sharing: Even moderately complex business decisions require sharing data across business
units, so it must be convenient to consolidate data across local databases on demand.

DATA COMMUNICATIONS COSTS AND RELIABILITY:

The cost to ship large quantities of data cross a communications network or to handle a
large volume of transactions from remote sources can be high. It is often more economical to locate
data and applications close to where they are needed. Also, dependence on data communications

DISTRIBUTED FILE SYSTEM 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 11/12

can be risky, so keeping local copies or fragments of data can be reliable way to support the need
for rapid access to data across the organization.

DISTRIBUTED FILE SYSTEM 2016-2018
Batch

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 12/12

PART-B(6 MARKS)
POSSIBLE QUESTIONS

What is file? And explain main purpose of using and services of files.1.
Brief about the File Accessing Model.2.
Explain about the concept of accessing the remote files.3.
Discuss in detail about Unit of data transfer in files.4.
Discuss in detail about Name Space and Name Server.5.
What is Context? And explain in detail about Context.6.
Brief about the fundamental Name Resolution absolute and Relative Names. 7.

PART-C(10 MARKS)
POSSIBLE QUESTIONS

Describe about desirable features of Distributed File System1.
What is Naming? And explain in detail about desirable features of Good Naming System.2.
Explain about the fundamental terminologies and concept of Naming System.3.
Discuss in detail about File System With an Example.4.

SECURITY 2016-2018
Batch

Prepared by Manjula.D, Department of CS,CA & IT, KAHE Page 1/7

UNIT V

SYLLABUS

Security: Introduction – potential attacks to computer system – cryptography.

SECURITY
 The main emphasis in the design of NESL was to make parallel programming easy and
portable. Algorithms are typically significantly more concise in NESL than in most other parallel
programming languages. Furthermore the code closely resembles high-level pseudocode. Here is a
comparison of a parallel quick sort in NESL and MPI (10 lines of code vs. 1700). Of course this
comes at the cost of placing more responsibility on the compiler and runtime system for achieving
good efficiency. We have found NESL very useful for teaching parallel algorithms. It has allowed
us to do give out homework assignments with significantly more interesting problems than would
be possible with other languages. For example here is a homework assignment on the finite-
volume method for fluid flow. This involves setting up the problem using the Delaunay
triangulation of an unstructured mesh, and then solving it using the conjugate gradient technique on
an irregular sparse matrix.
 INTRODUCTION
 Assignments include finding all-closest-pairs in the plane and shortest paths in a graph. Here is a
course on parallel algorithms for which we use NESL. Algorithm Experimentation: We have used
NESL extensively for running experiments on algorithms. In particular it has allowed us to quickly
compare the work required by various algorithms and improve the algorithms. Here are some of
the algorithms we have experimented with using NESL:

Delaunay triangulation: We have run experiments on a variety of parallel algorithms for planar
Delaunay triangulation and have developed a practical variant of an algorithm of Edels brunner and
Shi. This work is described in the paper Developing a practical projection-based parallel Delaunay
algorithm which appears in the the Proceedings of the ACM Symposium on Computational
Geometry, May 1996.

The N-body problem: We have compared three algorithms for the N-body problem: the Barnes-
Hut, Greengard's algorithm and a hybrid. All three were code in NESL and the relative costs under
various assumptions were studied. This work is described in the paper A Practical Comparison of
N-Body Algorithms which appears in the proceedings of the Dimacs implementation challenge
workshop, October 1994.

Graph Connectivity We have compared several algorithms for graph connectivity and derived a
hybrid technique which appears very promising. This work is described in the paper A
Comparison of Data-Parallel Algorithms for Connected Components which appears in the
proceedings of the ACM Symposium on Parallel Algorithms and Architectures, June 1994.

Others: Other algorithms experiments that have used NESL include a comparison of graph
separators and the development of a support tree conjugate gradient technique.

http://www.cs.cmu.edu/%7escandal/alg/stcg.html
http://www.cs.cmu.edu/%7escandal/alg/separator.html
http://www.cs.cmu.edu/%7escandal/alg/separator.html
http://www.cs.cmu.edu/%7escandal/alg/separator.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/concomp-spaa94.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/concomp-spaa94.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/concomp-spaa94.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/dimacs-nbody.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/dimacs-nbody.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/dimacs-nbody.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/dimacs-nbody.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/dimacs-nbody.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/delaunay-cg96.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/delaunay-cg96.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/delaunay-cg96.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/delaunay-cg96.html
http://www.cs.cmu.edu/afs/andrew/scs/cs/15-499B/www/home.html
http://www.cs.cmu.edu/afs/andrew/scs/cs/15-499B/oldhandouts/homework4.ps
http://www.cs.cmu.edu/afs/andrew/scs/cs/15-499B/oldhandouts/homework5.ps
http://www.cs.cmu.edu/%7escandal/nesl/demos/airflow.html
http://www.cs.cmu.edu/%7escandal/nesl/demos/airflow.html
http://www.cs.cmu.edu/%7escandal/nesl/demos/airflow.html
http://www.cs.cmu.edu/%7escandal/nesl/demos/airflow.html
http://www.cs.cmu.edu/%7escandal/nesl/demos/airflow.html
http://www.cs.cmu.edu/%7escandal/nesl/info.html
http://www.cs.cmu.edu/%7escandal/nesl/info.html
http://www.cs.cmu.edu/%7escandal/nesl/info.html

SECURITY 2016-2018
Batch

Prepared by Manjula.D, Department of CS,CA & IT, KAHE Page 2/7

 Algorithm Animation: NESL is very well suited for developing animations of parallel
algorithms. All the animations on the algorithm animations page are fully written in NESL as is the
Pittsburgh Map server. NESL has a well developed library of window routines. Many were
specifically designed with animations in mind. Also, the execution image for the animations can be
quite small requiring little effort on the part of the host machine. Even though the full NESL image
is large, only the intermediate code (VCODE) along with the VCODE interpreter is r equired to run
NESL applications.

POTENTIAL ATTACK TO COMPUTER SYSTEM
 A von Neumann language is any of those programming languages that are high-level
abstract isomorphic copies of von Neumann architectures. As of 2009, most current programming
languages fit into this description, likely as a consequence of the extensive domination of the von
Neumann computer architecture during the past 50 years].
 The differences between Fortran, C, and even Java, although considerable, are ultimately
constrained by all three being based on the programming style of the von Neumann computer [citation

needed]. If, for example, Java objects were all executed in parallel with asynchronous message
passing and attribute-based declarative addressing, then Java would not be in the group.
The isomorphism between von Neumann programming languages and architectures is in the
following manner:

program variables ↔ computer storage cells

control statements ↔ computer test-and-jump instructions

assignment statements ↔ fetching, storing instructions

expressions ↔ memory reference and arithmetic instructions

A single lecture is devoted to describing how a computer works, or "what's under the hood". The
Von Neumann computer architecture model (see Figure) is introduced and examples are given for
all of the components of the model. The operation of memory and disk storage is described.
Having understood spreadsheets, students can make an analogy between memory addressing and
spreadsheet addresses. The concept of machine language, and assembly language as a human form
of machine language, is introduced. Students see how machine language is capable of on ly very
simple operations such as moving data words to and from memory and simple arithmetic
operations. The operation of an assembler follows from the discussion on machine and assembly
language.

http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Isomorphism
http://en.wikipedia.org/wiki/Programming_language
http://www.cs.cmu.edu/%7escandal/map.html
http://web.scandal.cs.cmu.edu/cgi-bin/demo

SECURITY 2016-2018
Batch

Prepared by Manjula.D, Department of CS,CA & IT, KAHE Page 3/7

The Von Neumann computer architecture model

The next step from assembly language is a high-level language. The development of high-level
languages as application specific languages to problem solving is introduced. Here again the idea of
choosing the right tool for the problem is made. it is shown that FORTRAN is intended for scientific
applications, COBOL for business applications, BASIC and Pascal for education, C for systems
programming, and Java originally for consumer appliance control applications. The operation of a
compiler is described and hands-on laboratory exercises are conducted to familiarize students with the
use of a compiler. However, before moving to programming in a high-level language, proper design
methods must be covered.

CRYPTOGRAPHY
Concurrent Pascal (also known as PASCAL-FC) was designed by Per Brinch Hansen for

writing concurrent computing programs such as operating systems and real-time monitoring
systems on shared memory computers.

A separate language, Sequential Pascal, is used as the language for applications programs
run by the operating systems written in Concurrent Pascal. Both languages are extensions of
Niklaus Wirth's Pascal, and share a common threaded code interpreter. The following describes
how Concurrent Pascal differs from Wirth's Pascal.
Several constructs in Pascal were removed from Concurrent Pascal for simplicity and security:
variant records

the go to statement (and labels)

procedures as parameters

packed arrays

pointer types

file types (and associated standard input/output procedures).

These omissions make it possible to guarantee, by a combination of compile-time checks and
minimal run-time checking in the threaded-code interpreter, that a program can not damage itself or
another program by addressing outside its allotted space.

Concurrent Pascal includes class, monitor, and process data types. Instances of these types
are declared as variables, and initialized in an init statement.

http://en.wikipedia.org/wiki/Init
http://en.wikipedia.org/wiki/Pointer_(computer_programming)
http://en.wikipedia.org/wiki/Packed_array
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Goto

SECURITY 2016-2018
Batch

Prepared by Manjula.D, Department of CS,CA & IT, KAHE Page 4/7

Classes and monitors are similar: both package private variables and procedures with public
procedures (called procedure entries). A class instance can be used by only one process, whereas a
monitor instance may be shared by processes. Monitors provide the only mechanism fo r
interprocess communication in a Concurrent Pascal program.

Only one process can execute within a given monitor instance at a time. A built in data type,
the queue, together with operations delay and continue, are used for scheduling within monitors.
Each variable of type queue can hold a single process; if many processes are to be delayed in a
monitor, multiple queue variables, usually organized as an array, must be provided. The single
process queue variable gives a monitor complete control over medium-term scheduling, but the
programmer is responsible for unblocking the correct process. A process, like a class or monitor,
has local variables, procedures, and an initial statement, but has no procedure entries. The initial
statement ordinarily executes forever, calling local procedures, class procedures, and monitor
procedures. Processes communicate through monitor procedures. Language rules prevent deadlock
by imposing a hierarchy on monitors. But nothing can prevent a monitor from erroneously
forgetting to unblock a delayed process (by not calling continue) so the system can still effectively
hang up through programming errors.

The configuration of processes, monitors, and classes in a Concurrent Pascal program is
normally established at the start of execu tion, and is not changed thereafter. The communication
paths between these components are established by variables passed in the init statements, since
class and monitor instance variables cannot be used as procedure parameters.

COMMUNICATING SEQUENTIAL PROCESSES
In computer science, Communicating Sequential Processes (CSP) is a formal language for

describing patterns of interaction in concurrent systems.[1] It is a member of the family of
mathematical theories of concurrency known as process algebras, or process calculi. CSP was
highly influential in the design of the Occam programming language, [1][2] and also influenced the
design of programming languages such as Limbo] and Go.

CSP was first described in a 1978 paper by C. A. R. Hoare but has since evolved
substantially. CSP has been practically applied in industry as a tool for specifying and verifying the
concurrent aspects of a variety of different systems, such as the T9000 Transputer, as well as a
secure ecommerce system. The theory of CSP itself is also still the subject of active research,
including work to increase its range of practical applicability (e.g., increasing the scale of the
systems that can be tractably analyzed)

APPLICATIONS
An early and important application of CSP was its use for specification and verification of

elements of the INMOS T9000 Transputer, a complex superscalar pipelined processor designed to
support large-scale multiprocessing. CSP was employed in verifying the correctness of bo th the
processor pipeline, and the Virtual Channel Processor which managed off-chip communications
for the processor.

Industrial application of CSP to software design has usually focused on dependable and
safety-critical systems. For example, the Bremen I nstitute for Safe Systems and Daimler-Benz
Aerospace modeled a fault management system and avionics interface (consisting of some 23,000
lines of code) intended for use on the International Space Station in CSP, and analyzed the model

http://en.wikipedia.org/wiki/Communicating_sequential_processes#cite_note-1
http://en.wikipedia.org/wiki/Communicating_sequential_processes#cite_note-roscoe-0
http://en.wikipedia.org/wiki/Communicating_sequential_processes#cite_note-roscoe-0
http://en.wikipedia.org/wiki/Communicating_sequential_processes#cite_note-roscoe-0

SECURITY 2016-2018
Batch

Prepared by Manjula.D, Department of CS,CA & IT, KAHE Page 5/7

to confirm that their design was free of deadlock and livelock.The modeling and analysis process
was able to uncover a number of errors that would have been difficult to detect using testing alone.
Similarly, Praxis High Integrity Systems applied CSP modeling and analysis during the
development of software (approximately 100,000 lines of code) for a secure smart-card
Certification Authority to verify that their design was secure and free of deadlock. Praxis claims
that the system has a much lower defect rate than comparable systems.

Since CSP is well-suited to modeling and analyzing systems that incorporate complex
message exchanges, it has also been applied to the verification of communications and security
protocols. A prominent example of this sort of application is Lowe’s use of CSP and the FDR
refinement-checker to discover a previously unknown attack on the Needham-Schroeder public-
key authentication protocol, and then to develop a corrected protocol able to defeat the attack.
TOOLS

Over the years, a number of tools for analyzing and understanding systems described using
CSP have been produced. Early tool implementations used a variety of machine-readable syntaxes
for CSP, making input files written for different tools incompatible. However, most CSP tools
have now standardized on the machine-readable dialect of CSP devised by Bryan Scattergood,
sometimes referred to as CSP M.[16] The CSP M dialect of CSP possesses a formally defined
operational semantics, which includes an embedded functional programming language.

The most well-known CSP tool is probably Failures/Divergence Refinement 2 (FDR2),
which is a commercial product developed by Formal Systems (Europe) Ltd. FDR2 is often
described as a model checker, but is technically a refinement checker, in that it converts two CSP
process expressions into Labelled Transition Systems (LTSs), and then determines whether one of
the processes is a refinement of the other within some specifie d semantic model (traces, failures, or
failures/divergence).[17] FDR2 applies various state-space compression algorithms to the process
LTSs in order to reduce the size of the state-space that must be explored during a refinement check.

The Adelaide Refinement Checker (ARC) [18] is a CSP refinement checker developed by the
Formal Modelling and Verification Group at The University of Adelaide. ARC differs from FDR2
in that it internally represents CSP processes as Ordered Binary Decision Diagrams (OBDDs),
which alleviates the state explosion problem of explicit LTS representations without requiring the
use of state-space compression algorithms such as those used in FDR2.The ProB project, [19] which
is hosted by the Institut Informatik, Heinrich-Heine-Universität Düsseldorf, was originally created
to support analysis of specifications constructed in the B method. However, it also includes
support for analysis of CSP processes both through refinement checking, and LTL model-
checking. ProB can also be used to verify properties of combined CSP and B specifications.

The Process Analysis Toolkit (PAT) is a CSP analysis tool developed in the School of
Computing at the National University of Singapore. PAT is able to perform refinement checking,
LTL model-checking, and simulation of CSP and Timed CSP processes. The PAT process
language extends CSP with support for mutable shared variables, asynchronous message passing,
and a variety of fairness and quantitative time related process constructs such as deadline and
waituntil. The underlying design principle of the PAT process language is to combine a high-level
specification language with procedural programs (e.g. an event in PAT may be a sequential
program or even an external C# library call) for greater expressiveness.

http://en.wikipedia.org/wiki/Communicating_sequential_processes#cite_note-18
http://en.wikipedia.org/wiki/Communicating_sequential_processes#cite_note-17
http://en.wikipedia.org/wiki/Communicating_sequential_processes#cite_note-16
http://en.wikipedia.org/wiki/Communicating_sequential_processes#cite_note-15

SECURITY 2016-2018
Batch

Prepared by Manjula.D, Department of CS,CA & IT, KAHE Page 6/7

Mutable shared variables and asynchronous channels provide a convenient syntactic sugar for well-
known process modelling patterns used in standard CSP. The PAT syntax is similar, but not
identical, to CSPM. The principal differences between the PAT syntax and standard CSPM are the
use of semicolons to terminate process expressions, the inclusion of syntactic sugar for variables
and assignments, and the use of slightly different syntax for internal choice and parallel
composition.

Occam is a concurrent programming language that builds on the Communicating Sequential
Processes (CSP) process algebra, and shares many of its features. It is named after William of
Ockham of Occam's Razor fame.

Occam is an imperative procedural language (such as Pascal). It was developed by David
May and others at INMOS, advised by Tony Hoare, as the native programming language for their
transputer microprocessors, but implementations for other platforms are available. The most widely
known version is Occam 2; its programming manual was written by Steven Ericsson-Zenith and
others at INMOS.

In the following examples indentation and formatting are critical for parsing the code:
expressions are terminated by the end of the line, lists of expressions need to be on the same level
of indentation. This feature, named the off-side rule, is also found in other languages such as
Haskell and Python.

PART-B(6 MARKS)
POSSIBLE QUESTIONS

Explain in detail about Security and its Types. 1.
Brief note on goals of computer security2.
Discuss in detail about passive attacks.3.
Discuss in detail about active attacks.4.
Explain the general architecture of cryptosystem with an example5.
What is authentication? And explain authentication Process.6.
Brief about the Key Distribution problem.7.

PART-C(10 MARKS)
POSSIBLE QUESTIONS

What is called as attacker? And explain in detail about potential attacks to computer system.1.
What is cryptography? And explain basic requirements of cryptography.2.
Discuss in detail about symmetric and asymmetric crypto systems with an key diagram.3.
Explain Potential Attack in a Computer System with an running Example.4.

http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Haskell_(programming_language)
http://en.wikipedia.org/wiki/Off-side_rule

S.NO QUESTIONS

1 ___________means that a semantics of a rpc are identical to those of a local procedural call.

2
_______in these systems,the processors do not share memory,and each processor has its
own local memory.

3 tightly coupled systems are referred to as ________.

4 loosely coupled systems are referred to as __________.
5 .A particular processor ,its own resources are_________
6 The other processor and their resources are _______.
7 A processor and its resources are usually referred to as a_______ or_____or______

8 ________with the use of control cards to define the beginning and end of a job.
9 _______allowing CPU utilization by allowing overlap of CPU and I/O operations.

10 ______improves CPU utilization by organizing jobs.
11 The_________model is a simple extension of the centralized time sharing system.

12 .The ___________model may be used when resource sharing with remote users desired.

13
The _______is an example of distributed computing system based on the minicomputer
model.B29

14 A distributed computing is based on the ___________model.

15
.The first approach is to _________the remote process share the resources of the
workstation.

16 .The second approach is to _________ the remote process
17 The third approach is to ________the remote process back to its workstation.
18 A workstation with its own local disk is usually called _______.
19 A workstation without a local disk is called _______.

20 A distributed compuing system based on________model.

21
The _____is an example of a distributed computing system that is based on the workstation
server model.

22

The _________is based on the observation that most of the time a user does not need any
computing power but once in a while he or she may need a vary large amount of computing
power for a short time.

23
A special server called_____ server manages and allocates the processors in a pool to
different users on a demand basis.

24
The ______model is based on the workstation server model but with the addition of a pool
of processors.

KARPAGAM ACADEMY OF HIGHER EDUCATION

ONLINE EXAMINATIONS ONE MARK QUESTIONS

Department of Computer Science
II M.Sc(CS) (BATCH 2016-2018)

Distributed Operating Systems
PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

25
The use of distributed computing system by a group of users to work comparatively is known
as _________.

26 expand CSCW

27
_____information is not the only thing that can be shared in a distributed computing
system.

28 _______refers to the degree of tolerance against errors and component failures in a sytem.

29
Distributed computing system that have the property of extensibility and incremental
growth are called _________.

30 ______is very attractive feature because for most existing and proposed application.

31
_________is also easier in a distributed computing system because of new resources in
existing sytem.

32 The collection of networked machine act as a________
33 _______commands for moving a file from one machine to other machine.
34 distributed computing syatem can be broadly classified into ______types.

35
The set of of system calls that an operating system supports are implemented by a set of
programs called the____.

36
The distributed computing system that uses a network operating system is a usually referred
to as______

37 Distributed operating system is usually referred to as a ____________-

38
The main goal of distributed operating syatem is to make the multiple computers_____and
provide a single syatem image to its user.

39 There are _____types of transparency.

40
________means that users should not need or able to recognize whether resources is
remote or local.

41
_______refers to the fact that the name of a resource should not reveal any hint to as a
physical location.

42
_________refers to the fact that no matter which machine a user logged onto he/she should
be able to access the resources with the same name.

43 _____________system should be simple and easy to use.
44 ______in which the communicating processes are on the same node.

45 _______in which the communicating processes are on the different node.

46
An IPC protocol of message passing system can be made of a_________by reducing the
number of a message.

47
A _______IPC protocol can cope with failure problems and guarentees the delivery of a
message.

48 lost messages usually involves _________and __________on the basis of timeouts.
49 ______message may be sent in the event of failures or because of timeouts.
50 The issues related to correctness are_____

51
______ensures that every message sent to a group of receivers will be delivered to either all
of them.

52
_____ensures that messages arrive at all receivers in an order to acceptable to the
application.

53 _____guarentees that messages will be delivered correctly.

54
A good message passing system must be also capable of providing a _______end -end
communication.

55 There are ________aspects of portability in a message passing system.
56 The message passing system should itself be______
57 _______uniquely identify the sending and receiving processes in the network
58 ____is the message identifier which is used to identify the lost messages.
59 The _______commonly known as client process.
60 The ____commonly known as server process.

61 _________means that a rpc should have exactly the same syntax as a local procedural call
62 The client is a user process that initiates a________

63
The _______handles transmission of messages across network between client and server
machines.

64
________that are sent by the client to the server for requesting execution of a particular
remote procedure.

65
________that are sent by the server to the client for returning the result of remote
procedure execution.

66
A _______server maintains cliuents state information from one remote procedure call to the
next.

67 ________operation is used to open a file identified by filename in a specified mode.
68 _____causes the server to delete from its file table state information
69 A______server does not maintain any client state information.

70
In __________method all parameters are copied into a message that is transmitted from the
client to the server through the intervening network.

71 In _______a parameter is passed by reference as in the method of call by object

opt1 opt2 opt3

syntax semantics syntactic

distributed computing parallel processing system tightly coupled systems

loosely coupled systems distributed computing parallel processing system

parallel processing system local memory shared memory
remote local node
node site remote
tcp memory machine

automatic job sequencing time sharing offline processing
offline processing multiprogramming automatic job sequencing
automatic job sequencing time sharing multiprogramming
minicomputer macrocomputer supercomputer

ARPANET supercomputer minicomputer

ARPAnet TELNET TCP
workstation workstation server processor pool

allow kill migrate
kill allow destroy
migrate kill allow
diskless servermodel diskful
clientmodel diskless servermodel

workstation server model workstation client minicomputer

print server database server V-system

processor model processor pool model workstation servermodel

file remote run

workstation workstation server model processor pool model

KARPAGAM ACADEMY OF HIGHER EDUCATION

ONLINE EXAMINATIONS ONE MARK QUESTIONS

Department of Computer Science
II M.Sc(CS) (BATCH 2016-2018)

Distributed Operating Systems
PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

CSCW remote sharing

computer supported
cooperative working

computer system
connection work

connection support coordinate
working

resource pooling sharing distributed user resource sharing

availability stability reliability

distributed computing distributed system open distributed system

incremental growth decremental growth increase

reliability availability scalability
uniprocessor virtual virtual uniprocessor
file transfer file move file navigation

1 2 3

boot kernel dos

network architecture network network system

false distributed system true distributed system distributed system

visible lactency transparency
6 7 8

access transparency location transparency replication transparency

user mobility replication transparency name transparency

failure transparency username name server
message passing IPC RPC
local communication remote communication global communication

global communication local communication local and remote

efficiency reliability correctness

reliability efficiency flexibility
acknowledgements and
retransmission ack and non ack ack and redundancy
duplicate replicate redundancy
atomicity ordered survival

flexible ordered delivery atom

atomicity ordered delivery survivability
survivability atomicity ordered delivery

security potability flexibility
1 2 3

portable reliable scalable
sequence number address structural information
structural information sequence number name space
caller callee sender
caller callee receiver

syntax syntactic semantic
IPC RPC client stub

RPC IPC IPSEC

replymessage callmessage requestmessage

replymessage callmessage requestmessage

stateless stateful connection oriented

filename,mode fid,n,buffer fid,buffer
close(fid) open open(fid)
stateful stateless call server

call by value call by reference caller
call by value call by reference call by move

opt4 opt5 opt6 ANSWER

systemetic semantics

loosely coupled systems
loosely coupled
systems

tightly coupled systems
parallel processing
system

distributed computing systems
distributed computing
systems

site local
local remote
syntax machine

multiprogramming
automatic job
sequencing

time sharing offline processing
offline processing multiprogramming
ARPANET minicomputer

macrocomputer minicomputer

UDP ARPAnet
hybrid workstation

destroy allow
migrate kill
destroy migrate
clientmodel diskful
diskful diskless

supercomputer
workstation server
model

file server V-system

server model processor pool model

client run

hybrid hybrid

run cscw

communication support
cooperative working

computer supported
cooperative working

distributed computing systems resource sharing

scalibility reliability

distributed growth
open distributed
system

increasibility incremental growth

extensibility extensibility
multiprocessor virtual uniprocessor
copy file file transfer

4 2

reboot kernel

internetwork network system

true/false distributed system true distributed system

decrease visble
9 8

failure transparency access transparency

access transparency name transparency

user mobility user mobility
RPC and IPC message passing
local and remote local communication

remote communication
remote
communication

flexibility efficiency

correctness reliability

ack and timeout
acknowledgements
and retransmission

correctness duplicate
flexible atomocity

orded ordered delivery

correctness ordered delivery
correctness survivability

reliability security
4 2

flexible portable
name space address
address sequence number
receiver caller
sender callee

systemetic syntactic
serverstub RPC

RPCRuntime RPCRuntime

callee message callmessage

callee message replymessage

connectionless stateful

file,position filename,mode
close close(fid)
stub server stateless

callee message call by value
call by object call by move

S.No QUESTIONS
1 Message-Passing systems supporting_________

2
Process use this adress space in the same way the use normal -------------
memory

3 MIMD Meaning -------------------------
4 A36

5 DSVM meanS -----

6
The DSM abstraction presents ------- shated-memory in space to the
processors of all nodes

7
Data caching is a well-known solution to -------------------- access
latency

8 data caching is used in DSM system to reduce ------------------ latency

9
The ------------ of individual nodes is used to cache pieces of the shared-
memory space

10 The basic unit of caching is a ------- block

11
DSM system allows replication and / or migration of ------------- data
blocks

12 What is the block of size in DSM system ----------
13 It -------- refers to the layout of the shared data in memory.

14
A data block of the ----------- memory must be replaced by the new data
block

15 Data blocks migrate between nodes on demand is _________
16 The DSM systems built for ------------ systems

17 several criteria for choosing this -------- parameter are described below.
18 The ---------- is the large block size was less the small block sizes

19
The same data block are being updated by multiple nodes at tge same
time ------- accur or design

20
Two different processes access two unrelated variable in same data
block it ------------ occuring

21 Memory coherence problems can be resolved in ------- handlers
22 Structure of shared-memory space is commonly using ------- types
23 DSM systens do not structure their ------ space

KARPAGAM ACADEMY OF HIGHER EDUCATION
Department of Computer Science
II M.Sc(CS) (BATCH 2016-2018)

Distributed Operating Systems

ONLINE EXAMINATIONS ONE MARK QUESTIONS
PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

24 The ---------- space is simply a linear array of words
25 LRU meaning ---------.
26 The --------- algorithms are not suitable for a DSM system
27 Both --------&--------- blocked have the replacement priority
28 A ------- is the no longer useful and future access to the block
29 The DSM systems must be designed to take care of -----------------
30 The shared memoty of DSM exists only ---------------

31 Most DSM system do not _________their shared memory.
32 The granularity in such DSM system is_____or a _________.

33 Another method is to structure the shared memeory like a__________

34
A set primitives that can be added to any base languages are _____
and____

35
A shared memory space is ordered as an associative memory
called_______.

36
A_______model is basically refers to the degree of consistency that has
to be maintained for the shared memory data.

37
The _______model is the strongest form of memory coherance havimg
the most stringent consistency requirement.

38 The _______model was proposed by Lamport.
39 The _______model was proposed by Hutto and Ahamad.

40
A________model is simple and easy to implement and also has good
performance

41 Expand PRAM_____

42
_________means that for any memory location all processes agree on
the same order of all write operation to that location.

43
All accesses to synchronization variable must obey sequential
consistency semantics.

44
All changes made to the memory by the process are propagated to other
nodes.

45 Nonreplicated, nonmigrating blocks________
46 Nonreplicated,migrating blocks___________
47 Replicated.migrating blocks
48 Replicated,nonmigrating blocks____________
49 There is a single copy of each block in the entire system_______

50
A______algorithm is used to centtralized server maintains a block table
that contains the location information.

51
The fixed_________scheme is a direct extension of the centralized
server scheme.

52
_________copies of a piece of data except one are invalidated before a
write can be performed on it.

53
A write operation is carried out by updating all copies of data on which
the write is performed.

54
If there is a local block containing the data and if it is valid,the request
is satisfied by accessing the local copy of the data.

55

If there is a local block containing the data and if it is valid and
writable,the request is immediately satisfied by accessing the local copy
of data.

56 Keeping track of the nodes that currently have a valid copy of the block.

57 Shared data variables annotated as _____only are immutable data items.

58
________shared variables that are accessed in phases,where each phase
corresponds to a series of accesses by a single process.

59 A free memory block that is not currently being used.
60 A block that has been invalidated.

opt1 opt2 opt3 opt4
RPCs DSVM Address memory Network

Main Virtual Local Shared

Multiple-Internet,Memory-
Data-Stream

Multiple-
instruction,Multiple-
Data-Stream

Multiple-
Intrupt,Multiple-Data-
Stream

MemoryIntruptMessageDa
taAccess

Local Memory Size Virtual
Distributed
SizeVariableMemory

DistributedSharedVirt
ualMemory

DataSharedVirtualMe
mory

DataStructureVirtualMem
ory

Large Medium Low high

SizeOfMemory AddressMemory SizeMemory VirtualMemory

Structure Network Thrashing Address

Memory Size Local Mainmemory
Virtual Memory Thrashing Granularity

Shared-Size Shared-Data Shared-memory Shared-Address
Granularity Thrashing Homogeneous Replacement strategy
Network Size Thrashing Structure

Virtual Local Address Structure
Homogeneous Structure Networking Thrashing
Thrashing Homogeneous Granularity Heterogeneity

Granularity Homogeneous Thrashing Heterogeneity
Paging oversize Paging overwrite Paging overhide Paging overhead

Homogeneous Heterogeneity Thrashing Granularity

Memory sharing Network sharing Virtual sharing False sharing
Page-fault page-size page-address Both a&b
Two One Three Five
Shared-Size Shared-Data Shared-address Shared-memory

KARPAGAM ACADEMY OF HIGHER EDUCATION
Department of Computer Science
II M.Sc(CS) (BATCH 2016-2018)

Distributed Operating Systems

ONLINE EXAMINATIONS ONE MARK QUESTIONS
PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

Shared-memory Shared-address Shared-Data Shared-size
Large recently used Least recently used Local recently used Local record used
Virtual-Space Virtual-System Variable-System Variable-Space
Unused & nil used & nil Unaccessd & nil Acessed & nil
Block Unblock Both a&b Nil block
Thrashing Heterogeneity Granularity Shared-memory
Virtually Manually Automatically configuiring

no structuring structuring
structuring by
datatype structuring by database

class or object object or method object or a variable variable or a method

objects database structure unstructure

unix and linux c and c++ c and FORTRAN java and c++

tables record objects tablespace

inconsistency consistency regular automatic

strict consistency weak consistency strong consistency no consistency

strict consistency sequential consistency weak consistency strong consistency
casual consistency weak consistency strong consistency no consistency

PRAM PROM RAM PREM
pipelined read only
memory

pipe read only
memory

potential random only
memory

pipelined random access
memory

memory space memory coherance shared memory shared coherance

weak consistency strong consistency PRAM processor

release consistency weak consistency strong consistency processor
NRNB NRNMB NRNRM RAMB
NRNMB NRMB RMB RNMB
RMB RMO RMS MRS
RMB RNMB RNB RENB
NRMB NRNMB RMB RMNB

server centralized server decentralized server client/server

centralized server distributed server client/server client machine

write validate write update read request write request

write validate write update read request write request

read request write request write validate write update

write request write update read request write request

RMB PRAM RAM PROM

write read migratory write shared

migratory write read request read
Unused nil read only readowned
unused nil read only write only

opt5 opt6 ANSWER
RPCs

Local
Multiple-
instruction,Multiple-
Data-Stream
Virtual
DistributedSharedVirt
ualMemory

 Large

AddressMemory

Network

Mainmemory
 Memory

 Shared-memory
 Granularity
 Structure

 Local
Thrashing
Homogeneous

Granularity
 Paging overhead

 Thrashing

False sharing
Page-fault
 Three
 Shared-memory

 Shared-memory
Least recently used
Variable-Space
unused & nil
 Nil block
Heterogeneity
Virtually

no structuring
object or a variable

database

c and FORTRAN

tablespace

consistency

strict consistency

sequential consistency
casual consistency

PRAM
pipelined random
access memory

memory coherance

weak consistency

release consistency
NRNMB
NRMB
RMB
RNMB
NRNMB

centralized server

distributed server

write validate

write update

read request

write request

RMB

read

migratory
Unused
nil

S.No
1
2
3
4
5

6
7
8
9

10

11

12
13
14
15

16
17

18
19
20
21

22

23
24
25

26

27

28
29
30

31

32

33

34

35

36
37

38
39

40

41

42

43

44

45

46
47

48
49

50

51

52
53

54
55

56
57
58
59
60

Questions
A distributive system consists of collection of _____________________ process
clock synchronization are of ____________________types
A computer clock usually consists of ________________________components
The value of register each intrrupt is called __________________________
clock synchronization algorithm may be broadly classified as ______________________
centralized clock synchronization algorithms suffer from __________________major
drawbacks
The happened before relation on a set of events satisfy _________________ conditions
Lamport provided a solution ______________________ year
The Logical clocks must satisfy _____________________ conditions
Each process Pi increments Ci between any two successive events
______________implementatio rules
The time stamps assigned to the events by the system of logical clocks must be satisfy following

If a and b are two events with in same process Pi and a occurs before b then ______________
A distributive system have been proposed ___________________ approach
The clock condition mentioned above is satisfy it ___________________ condition
The difference in time values of two clock is called __________________
Active server algorithm that overcomes the drawback of the above algorithm is

NTP means _____________________

DTS means _______________________
One DTS Server of each LAN is designed a _________________ server
The Distributive techniques broadly classified into ___________________ types
The relation on set of events denoted _________________symbols

UTC means ________________________
The value in the constant register is chosen so that _________________ clock ticks occur the
second
Synchronization of the clocks of different nodes of the system_______________________
Synchronization of the computer clocks with ___________________ clocks.
In centralized clock synchronization algorithms one node has a real time

API means ___________________________

KARPAGAM ACADEMY OF HIGHER EDUCATION
Department of Computer Science
II M.Sc(CS) (BATCH 2016-2018)

Distributed Operating Systems

ONLINE EXAMINATIONS ONE MARK QUESTIONS
PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

DCE means _______________________
DTS client node runs a demon process called a____________________
NTP can founded in ________________ year

IPC stands for _______________________

A Scheduling algorithm is said to be ________________ if it can enter a state
In which each process submitted by a user for processing is viewed as a collection of related
tasks_______

In which all the process submitted by the users are distributed among the nodes

In which simply attempts to conserve the ability of the system to perform work by assuring that
no node is idle_________________

A process split into pieces called _______________
Distributed dynamic scheduling cateroized into_____________ algorithm
Policy determines how to estimate the workload of a particular node of the
system_______________
policy determines to which node a process selecetd for transfer should be sent
The _____________ priority assignment rule yields the worst time performance of three
policies ________
The _________________ priority assignment rule achieves the best time performance of three
policies.
____________ deals with process of deciding which process should be assigned to which
processor
________________ deals with fine-grained parallelism for better utilization of the processing of
the system
_________________deals with the movement of a processor from its current location to the
processor

FIFO stands for___________________

A _______mutex variable is one that allows a thread to lock an already locked mutex variable
A _______mutex variable is one that neither allows a thread to block
In ____________mehod the first thread of the first non empty highest priority queue is selected
to run
In _______________method first nonempty highest priority queue is located
In ____________ method the threads on all proority queues are run after another using a Round
Robin algorithm

A __________ is a sub system of an operating system tha performs file mangement activities
A _____________________ distributed file system typically provides ____________ types of
services
___________provides a mapping between text names for files and references to files

Transparencies are of ______________ types
RFS stands for _______________________

__________property ensures that to the outside world all the operations of transaction appear
Serializability property is also known as _____________ property
Permanence property is also known as____________ property
DFS stands for _____________________
___________________ is the DFS local file system

opt1 opt2 opt3
Direct Dynamic Distinct

1 2 5
5 7 3

clock time deadlock clockcycle
centralized,distributed distributed,centralized distributed clock

5 7 6
1 3 2

1977 1999 1978
3 2 1

1R2 1R1 1R3

clock condition clock clock condition

ci(a)<ci(b) ci(b)<ci(a) ci<cj
5 3 4
3 2 1

clock skew clockskew

RSA Fuzzy Active
Network time procedure Network total protocol Network Time Protocol

Distributed Time Service Detail Time service Distributed Time Server
Local global Internal

8 7 5
 -----> <-----> <-----

Universal Time Coordinated Universal time Code Unit time

100 50 150
Mutual Mode Node
runtime clock real time

receiver clock client

Access Protocol Internet clock
Application Programming
Interface

KARPAGAM ACADEMY OF HIGHER EDUCATION
Department of Computer Science
II M.Sc(CS) (BATCH 2016-2018)

ONLINE EXAMINATIONS ONE MARK QUESTIONS
PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

Distributed Computing Event
Distributed Computing
Environment Denial Computer Event

DTS clock clock DTS client
1991 clock 1999

Inter Permannent
Communication clock Inter persistent Communication

stable clock both A and B

Task assignment approach clock Load-sharing approach

Task assignment approach clock Load-sharing approach

Task assignment approach clock Load-sharing approach

Processor clock Tasks
3 clock 4

process transfer clock Location
process transfer clock Location

Altruistic clock Selfish

Altruistic clock Selfish

Process migration clock Process allocation

Process migration clock Process allocation

Process migration clock Process allocation

First In First Out clock Find In Find Out

Fast clock Non-Recursive
Fast clock Non-Recursive

First In First Out clock Round Robin
First In First Out clock Round Robin

First In First Out clock Round Robin

Object clock Storage

4 clock 3
Storage Service clock Name Service

4 clock 2
Resource File System clock Remote file system

Serializability clock Performance
Isolation clock Durability
Isolation clock Durability
Direct File System clock Distributed File System
Token Manager clock Episode

opt4 opt5 opt6 Answer
Decode Distinct

7 2
4 3

clocktick clocktick
centralized clock centralized,distributed

2 2
4 3

1973 1978
4 3

1R0 1R1

clock direction clock condition

ci(a)=ci9b) ci(a)<ci(b)
2 3
3 3

nodes clockskew

Berkley Berkley
Network time pooling Network Time Protocol
Distributed Type
Service Distributed Time Service
External global

3 3
Equal to Equal to

Unique Coding type
Coordinated Universal
time

60 60
External Mutual
internal real time

server receiver
Application Provide
Interface

Application Programming
Interface

Denial Covering
Event

Distributed Computing
Environment

DTS clerk DTS clerk
1996 1991

Inter Process
communication

Inter Process
communication

unstable Unstable

task management Task assignment approach

Load-Balancing
approach Load-Balancing approach

load assignment Load-sharing approach

microprocessor Tasks
2 2

Load estimation Load estimation
Load estimation Location

asymmetric Selfish

all the above Altruistic

process memory Process allocation

Thread Thread

resource allocation Process migration

first in found out First In First Out

recursive recursive
recursive Non-Recursive

default First In First Out
synchronization Round Robin

Default Default

objecting Object

5 3
naming server Name Service

3 4
remote file sharing Remote file system

Atomicity Atomicity
atomicity Isolation
atomicity Durability
polarized Distributed File System
RFS Episode

S.No QUESTIONS

1 In a _______System ,a file is a object that comes into existence by explicit creation.
2 There are _____main purpose of using files.

3 The two main purposes of using files is _______

4 ______ is achieved by storing a file on a Secondary storage media.

5 ______Files provide a natural and easy means of information sharing

6 A ______System provider similar abstraction to the users of a distributed System.

7

 In addition to the advantages of permanent storage and sharing of information
provided by the file System of a _______ System.

8

 ________ distributed file system allows a file to be transparently accessed by
processes of any node of the System.

9
In a distributed System, ________ implies that a user should not be forced to work
on a Specific node.

10
A Distributed file system normally allows a user to work on ______ nodes at
different times.

11 Each copy is called a _______ of the file.

12
In a ideal design, both the existence of multiple copies and their locations are hidden
from the _____

13
 ______ are relatively expensive compared to the cost of most other parts in a
Workstation.

14 ______ is more economical, is less noisy, and generates less heat.
15 A distributed file System typically provides types of services.

16
Which one of the following includes the types of services in distributed file System.

KARPAGAM ACADEMY OF HIGHER EDUCATION
Department of Computer Science
II M.Sc(CS) (BATCH 2016-2018)

Distributed Operating Systems

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS ONE MARK QUESTIONS

17

__________ deals with the allocation and management of space on a secondary
storage device that is used for Storage of files in the file System.

18

 ________ provides a logical view of the storage system by providing operations for
storing and retrieving data.

19 Most systems use magnetic disks as the device for files_______
20 The storage service is also known as _______

21

 Several systems allocate disk space in units of fixed size blocks ,and hence the
storage service is also________ in these systems.

22

______is concerned with the operations on individual files such as operations for
accessing and modifying the data in files and for creating and deleting files.

23
_____Provides a mapping between text names for files and references to file, that is
file ID’s.

24 Transparency is of _____types.
25 A distributed file system normally uses file servers.

26 Both ______and_______ should be accessible in the same way.

27 _______ is not necessary, for Performance, Scalability and reliability reasons.

28
 The file system should automatically locate on _____and arrange for the transport
of data to the client’s side.

29
____name of a file should give no hint as to where the file is located.

30
 If a file is replicated on multiple nodes, both the existence of multiple copies and
their locations should be hidden from the clients.

31
 The _________of a file system is usually measured as the average amount of time
needed to satisfy client requests.

32 ________is inevitable that a distributed system will grow with time.
33 The commonly used criteria for file modeling is __________
34 A file appears to the file server as an ordered sequence of________
35 Modifiability criteria ,files are of ______types.

36 _________the processing of the client’s request is performed at the server’s node.

37 In the _______model, every remote file access request result in network traffic
38 LRU is ______.

39 . _______When operation requires file data to be transferred across the network.

40
 File data transfers across the network between a client and server take place in units
of file blocks.

41
 _______file data transfers across the network between a client and server take place
in units of bytes.

42

______model is suitable for use with those file models in which file contents are
structured in the form of records.

43 RSS is ____

44
_______means that the name of the object should not reveal any hint as to the
physical location of the object.

45
______means that the name of the object need not be changed when the objects
location changes.

46
A _________ system should allow many different objects to be identified by the
same name.

47 Name space are managed by _______

48 The name servers that store the information about an object are called _______
49 Name agents may be of ___________types
50 A ________can be thought of as the environment in which a name is valid.

OPT1 OPT2 OPT3 OPT4

computer memory sharing files
1 2 3 4

 Permanent storage of information and System Sharing of information and memory Permanent Storage of information and sharing informationSharing and resource allocation

Sharing of information Permanent Storage of information Both A and B Memory Storage
Permanent Storage
of information Information Sharing Sharing of informationmemory storage

distributed file shared file memory file files

Double –Processor Single processor Distributed file Processor

Remote information sharing Permanent Storage of information Sharing of informationDistributed Sharing

 Availability
Remote information
sharing User mobility workstation

same different block both
Replica replicant availability node

server sender receiver client

diskless diskless workstation diskdriver mobility

diskless workstation diskless both a and b workstation
1 3 4 6

storage device true file services name False file service

KARPAGAM ACADEMY OF HIGHER EDUCATION

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS ONE MARK QUESTIONS

storage services true file services name service allocate memory

True file Service shared memory Storage Service False file service
primary storage secondary storage both a and b name service
True file Service black service name service disk service

name service block service service name service

storage services true file services name service information service

storage services true file services name service information service
1 2 3 4
single double multiple triple

client and server receiver and sender remote and local files encryption and decryption
structure
transparency access transparency naming transparency transparency

accessed file remote file server file local file

transparency naming transparency replication transparencyaccess transparency

Access transparency naming transparency replication transparencystructure transparency

performance simplicity scalability ease of use
scalability availability simplicity mobility
structure Modifiability both a and b ease of use
pixels records bytes blocks
3 2 4 8

 Data –caching model Remote service modelFile sharing model data sharing

data sharing Remote service model Data caching model Information model
 Least Recently Used Least Research Used Light Research Uniform Least Recently Users

 Remote Service model Data –caching model File-level transfer modelBlock – level transfer model
 Remote Service
model Data –caching model

File-level transfer
model Block – level transfer model

 Remote service
model

Byte level transfer
model Record level transfer model Block – level transfer model

 Data caching model Block-level transfer model Byte level transfer model Record level transfer model

Research Storage System Researcher Storage System Recent Storage System Restoration storage system

 Location independency Location TransparencyNaming System
. Naming Location

Transparency
Location
Independency Model

 Multiple user name Performance Meaningful names Group naming
name servers meaningful name records naming

 Authoritative name serversPrimitive Name servers
 Several name
servers server name

2 3 4 5
name pair context structure resource

OPT5 OPT6 ANSWER

computer
2
Permanent Storage
of information and
sharing information
Permanent Storage
of information
Sharing of
information

distributed file

Single processor

Remote information
sharing

User mobility

different
Replica

client

diskdriver

diskless workstation
3

true file services

storage services

Storage Service
secondary storage
disk service

block service

true file services

name service
4
multiple
remote and local
files
structure
transparency

accessed file

naming transparency
replication
transparency

performance
scalability
both a and b
records
2
Remote service
model
Remote service
model
Least Recently Used
File-level transfer
model
Block – level
transfer model

Byte level transfer
model

 Record level
transfer model
Research Storage
System
Location
Transparency
Location
Independency

Group naming
name servers
Authoritative name
servers
2
context

S.No QUESTIONS

1
________is a means of protecting private information against unauthorized access in
those activities .

2
_______is the process of transforming an intelligible information into an
unintelligible form

3
Transforming the information back from ciphertext to the plaintext is called
________.

4
When cryptography is employed for protecting information transmitted through
communication channels,plaintext is also called as a ___________.

5
________is an intruder is able to intercept ciphertext and tries to derive kd from the
ciphertext.

6
_______attack,an intruder has cosiderable amount of both ciphertext and
corresponding plaintext and tries to derive kd from them.

7
______attack an intruder has access to ciphertext for any plaintext of his or her
choice.

8 Two broad classes of cryptosystem is _______ and __________.

9 symmetric cryptosytem is either both__________and__________.

10 symmetric cryptosystem are also known as _________.

11
_______are useful in those situations when both encryption and decryption of
information are performed by trusted subsytem.

12
______are comptationally expensive and hence are not suitable for bulk data
encryption.

13
A typical use of public key cryptosystem in distributed systems is for the exchange of
message using a ______.

14
________deals with how to securely supply the keys necessary to create logical
channels.

15 KDC_____

16
__________is a single centralized KDC is used that maintain a table of secret key for
each user.

17 ________is used by key distribution approach in asymmetric cryptosystem.
18 PKM____
19 ______maintains a directory of public key of all users in the system.

KARPAGAM ACADEMY OF HIGHER EDUCATION
Department of Computer Science
II M.Sc(CS) (BATCH 2016-2018)

Distributed Operating Systems

PART-A ONLINE EXAMINATIONS ONE MARK QUESTIONS
ONLINE EXAMINATIONS ONE MARK QUESTIONS

20 ____is generally trusted entity shared by all communicating users of the system.

21 Information within the system must be accessible only to authorized users _______.
22 _________ deals with security the com,puter system against external factors.

23 _________ that are used to connect the computers are normally exposed to attacker.

24
The term_______ is commonly used to refer to a person or program trying to obtain
unauthorized access

25 A ________ does not cause any harm to the system being threatened

26
__________mechanism are used to prevent unauthorized reading of stored files and
other processes

27 _________ is an intruder uses an accomplice who leaks the information to him/her

28
_________ is an intruder masquerades as an authorized user or program in order to
gain access to unauthorized data

29
________is an intruder tries to draw some inference by closely and analysing the
systems data.

30
30.program is a program that consists of clandestine code to do nasty things in
addition to its usual function but apperas to be begin.

31 ___________are more malicious than passive intruders

32
A________ is a piece of code attached to a legitimate program that,infects other
programs in the sysyem by replicating

33
_________ are programs that spread from one computer to another in a network of
computers.

34 A worms program may perform destructive activities after arrival at a________

35
A _______ is a program that lies dormant until some trigger condition causes it to
explode

36 Several message have time value _______

37
An intruder retransmits old messages that are accpted as new message by their
recepients _______

38 A _______is an information that is guaranteed to be fresh

39
_________ are those that utilize system storage such as shared variable or files to
leak information to other process

40
_________ deals with the encryption of sensitive data to prevent its comprehension
and is the only practical means for protecting information

OPT 1 OPT 2 OPT3 OPT4

spoofing cryptography morphing stegnography

encryption decryption encoding decoding

decoding encryption decryption encoding

call response message request

ciphertext attack
known plain text
attack chosen plain text plain text

ciphertext attack
known plain text
attack chosen plain text encryption

chosen plain text ciphertext attack encryption
known plain text
attack

symmetric and
asymmetric

decoding and
encoding

enciphering and
deciphering encrypt and decrypt

private key and public
key

secret key and private
key

public key and secret
key

encryption key and
decryption key

private key shared key
shared key or private
key public key

symmetric cryptosytem
asymmetric
cryptosytem

public key
cryptosystem

private key
cryptosytem

private key
cryptosytem

public key
cryptosystem symmetric cryptosytem

asymmetric
cryptosytem

private key
cryptosytem

public key
cryptosystem symmetric cryptosytem

asymmetric
cryptosytem

symmetric key
distribution

asymmetric key
distribution

key distribution
problem

private key
cryptosytem

key distribution center key disturb core key distributed centre key distributing center

centralized approach
fully distributed
approach

partially distributed
approach key distributing center

public key manager private key manager secret key manager stegnography
public key manager private key manager secret key manager stegnography
private key manager stegnography public key manager private key manager

KARPAGAM ACADEMY OF HIGHER EDUCATION

PART-A ONLINE EXAMINATIONS ONE MARK QUESTIONS
ONLINE EXAMINATIONS ONE MARK QUESTIONS

PKM KDC KDD KDM

privacy authenticity secrecy integrity
internal security external security access control user authentication
communication
channel

communication
entities integrity access control

intruder attacker integrity of message security
active attack passive attack delay attack attacker

active attack passive attack access control external security

leaking information masquarade intruder

leaking information masquarade intruder

leaking inferencing masquarade intruder

leaking trojan horse intruder masquarade
active intruders virus intruder trojan horse

computer virus active intruder passive intruder attacker

virus worms intruder hacker
network node intruder hacker attacker

logic bomb virus worms attacker
replay attack delay attack deniel attack passive attack

replay attack delay attack passive intruder access control
nonce active passive attacker

storage channel cover channel legitimate channel intruder attack

cryptography networksecurity attacker intruder

OPT5 OPT6 ANSWER

cryptography

encryption

decryption

message

ciphertext attack
known plain text
attack

chosen plain text
symmetric and
asymmetric
encryption key and
decryption key
shared key or private
key
symmetric
cryptosytem
public key
cryptosystem
symmetric
cryptosytem
key distribution
problem

key distribution center

centralized approach
public key manager
public key manager
public key manager

KDC

secrecy
external security
communication
channel

intruder
passive attack

access control

leaking

masquarade

inferencing

trojan horse
active intruders

computer virus

worms
network node

logic bomb
delay attack

replay attack
nonce

storage channel

cryptography

	1.pdf (p.1-3)
	2.pdf (p.4-8)
	3.pdf (p.9-20)
	4.pdf (p.21-33)
	5.pdf (p.34-47)
	6.pdf (p.48-59)
	7.pdf (p.60-65)
	UNIT I.pdf (p.66-74)
	UNIT II.pdf (p.75-83)
	unit III.pdf (p.84-95)
	UNIT IV.pdf (p.96-104)
	UNIT V.pdf (p.105-110)

