
Programming in Java Syllabus 2017-2020
Batch

Department of Computer Science, CA & IT,KAHE 1

 KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University)

 (Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2017 onwards)

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

SUBJECT : PROGRAMMING IN JAVA

SEMESTER : II L T P C

SUBJECT CODE: 17CSU201 CLASS : I B.Sc.CS 4 0 0 4

SCOPE

 This course offers an introduction to the Java programming language. This course covers the

basic topics considered are programs and program structure in general, and Java syntax, data

types, flow of control, classes, methods, objects, arrays, exception handling, recursion, and

graphical user interfaces (GUIs).

Course Objectives:

 know the java path setting and programming techniques

 Basic java programming and Applet programming

 Understand the fundamental of Packages and access modifiers and interface in java

 Understand the fundamental of Exception Handling and AWT component and AWT

classes

Course Learning Outcomes:

Activities in this module map directly to the following three outcomes proposed in our grant

proposal:

 Demonstrate in-depth understanding of the cyber security First Principles.

 Explore the use of various operating systems commands on different platforms.

 Have a better understanding of essential problem solving and programming concepts.

UNIT-I

 Introduction to Java : Java Architecture and Features, Understanding the semantic and syntax

differences between C++ and Java, Compiling and Executing a Java Program, Variables,

Constants, Keywords Data Types, Operators (Arithmetic, Logical and Bitwise) and Expressions,

Programming in Java Syllabus 2017-2020
Batch

Department of Computer Science, CA & IT,KAHE 2

Comments, Doing Basic Program Output, Decision Making Constructs (conditional statements

and loops) and Nesting, Java Methods (Defining, Scope, Passing and Returning Arguments,

Type Conversion and Type and Checking, Built-in Java Class Methods),

UNIT-II

Arrays, Strings and I/O Creating & Using Arrays (One Dimension and Multi-dimensional),

Referencing Arrays Dynamically, Java Strings: The Java String class, Creating & Using String

Objects, Manipulating Strings, String Immutability & Equality, Passing Strings To & From

Methods, String Buffer Classes. Simple I/O using System. out and the Scanner class, Byte and

Character streams, Reading/Writing from console and files. Object-Oriented Programming

Overview Principles of Object-Oriented Programming, Defining & Using Classes, Controlling

Access to Class Members, Class Constructors, Method Overloading, Class Variables & Methods,

Objects as parameters, final classes, Object class, Garbage Collection.

UNIT-III

Inheritance, Interfaces, Packages, Enumerations, Auto boxing and Metadata

Inheritance: (Single Level and Multilevel, Method Overriding, Dynamic Method Dispatch,

Abstract Classes), Interfaces and Packages, Extending interfaces and packages, Package and

Class Visibility, Using Standard Java Packages (util, lang, io, net), Wrapper Classes, Auto

boxing/Unboxing, Enumerations and Metadata.

UNIT-IV

Exception Handling, Threading, Networking and Database Connectivity Exception types,

uncaught exceptions, throw, built-in exceptions, Creating your own exceptions; Multi-threading:

The Thread class and Runnable interface, creating single and multiple threads, Thread

prioritization, synchronization and communication, suspending/resuming threads. Using java.net

package, Overview of TCP/IP and Datagram programming. Accessing and manipulating

databases using JDBC.

Programming in Java Syllabus 2017-2020
Batch

Department of Computer Science, CA & IT,KAHE 3

UNIT-V

Java Applets: Introduction to Applets, Writing Java Applets, Working with Graphics,

Incorporating Images & Sounds. Event Handling Mechanisms, Listener Interfaces, Adapter and

Inner Classes. The design and Implementation of GUIs using the AWT controls, Swing

components of Java Foundation Classes such as labels, buttons, text fields, layout managers,

menus, events and listeners; Graphic objects for drawing figures such as lines, rectangles, ovals,

using different fonts. Overview of servlets.

Suggested Readings:

1. Ken Arnold, James Gosling, David Homes, 2005,The Java Programming Language, 4th

 Edition.

2. James Gosling, Bill Joy, Guy L Steele Jr,Gilad Bracha, Alex Buckley, 2014, The Java

 Language Specification, Java SE 8th Edition (Java Series), Published by Addison Wesley.

3. Joshua Bloch, 2008, Effective Java, 2nd Edition,Publisher: Addison-Wesley.

4. Cay S. Horstmann, Gary Cornell, 2012, Core Java 2 Volume 1 ,9th Edition,Printice Hall.

5. Cay S. Horstmann, Gary Cornell, 2013,Core Java 2 Volume 2 - Advanced Features, 9th

 Edition,Printice Hall.

6. Bruce Eckel, 2002,Thinking in Java, 3rd Edition, PHI.

7. E. Balaguruswamy, 2009,Programming with Java, 4th Edition, McGraw Hill.

8. Paul Deitel, Harvey Deitel, 2011, Java: How to Program, 10th Edition, Prentice Hall.

9. David J. Eck, 2009,Introduction to Programming Using Java, Published by CreateSpace

 Independent Publishing Platform.

10. John R. Hubbard, 2004,Programming with JAVA, Schaum's Series, 2nd Edition.

WEBSITES

1. java.sun.com/docs/books/tutorial/

2. www.en.wikipedia.org/wiki/Java

3. www.java.net/

LECTURE PLAN 2017-2020

Batch

Department of Computer Science, CA & IT, KAHE 1/5

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2017 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

SUBJECT : PROGRAMMING IN JAVA

SEMESTER : II L T P C

SUBJECT CODE: 17CSU201 CLASS : I B.Sc.CS 4 0 0 4

LECTURE PLAN

STAFF NAME: Dr.P.TAMIL SELVAN, S.A. SATHYA PRABHA

S.No Lecture

Duration

(Hr)

Topics Support Materials

UNIT-I

1. 1 Introduction to Java:

 Java Architecture and Features

T2:13-15,

W1,W2,W3

2. 1 Understanding the semantic and

syntax differences between C++ and

Java

W4

3. 1 Compiling and Executing a Java

Program

T1:23-27, T2:16-17

4. 1 Variables, Constants R1:3-5, T2:22-24,

5. 1 Keyword, Data Types T1:35-40,T2:19-22

6. 1 Operators (Arithmetic, Logical and

Bitwise) and Expressions, Comments

T2:31-37,R1:6

7. 1 Doing Basic Program Output W5

8. 1 Decision Making Constructs

(conditional statements and loops)

and Nesting

T2:41-47

9. 1 Java Methods Defining T2:54-57

10. 1 Scope, Passing and Returning

Arguments

T2:57-61, R1:50-57

LECTURE PLAN 2017-2020

Batch

Department of Computer Science, CA & IT, KAHE 2/5

11. 1 Type Conversion and Type and

Checking

T2:24

12. 1 Built-in Java Class Methods W6

13. 1 Recapitulation and Discussion of

important questions

 Total No of Hours Planned For Unit – I 13

UNIT-II

1. 1 Arrays, Strings and I/O Creating &

Using Arrays

T2:25-27

2. 1 Referencing Arrays Dynamically W4

3. 1 Java Strings The Java String class,

Creating & Using String Objects

T2:177-181

4. 1 Manipulating Strings, String

Immutability & Equality

T2:182-188

5. 1 Passing Strings To & From Methods,

String Buffer Classes.

T2:188-189, R1:222-226

6. 1 Simple I/O using System. out and the

Scanner class

T1:563-572

7. 1 Byte and Character streams,

Reading/Writing from console and files.

R1:355-367

8. 1 Byte and Character streams,

Reading/Writing from console and files

[Cont…]

R1:355-367

9. 1 Object-Oriented Programming

Overview , Class Members, Class

Constructors, Method Overloading

T2:70-72,R1:35-37

10. 1 Class Variables & Methods, Objects as

parameters, final classes, Object class,

Garbage Collection.

T2:56-65,

R1:313-318

LECTURE PLAN 2017-2020

Batch

Department of Computer Science, CA & IT, KAHE 3/5

11. 1 Recapitulation and Discussion of

important questions

 Total No of Hours Planned For Unit – II 11

UNIT-III

1. 1 Inheritance,Interfaces,Packages,

Enumerations,Autoboxing and

Metadata

T1:161,187,196,270,259,275

2. 1 Inheritance: Single Level and

Multilevel

T1:161-173

3. 1 Method Overriding T2:100

4. 1 Dynamic Method Dispatch T1:178-180

5. 1 Abstract Classes T2:107

6. 1 Interfaces and Packages R1:105-110,329

7. 1 Extending interfaces and packages R1:110-112,329

8. 1 Package and Class Visibility W4

9. 1 Using Standard Java Packages W4

10. 1 Wrapper Classes T2:204

11. 1 Auto boxing/Unboxing,

Enumerations and Metadata.

T1:271-274,259-267,

275-286

12. 1 Recapitulation and Discussion of

important questions

 Total No of Hours Planned For Unit – III 12

UNIT-IV

1. 1 Exception types, uncaught exceptions T1:209, T2:122-123

2. 1 Throw, built-in exceptions, Creating

your own exceptions

T1:216-221

3. 1 Multi-threading: The Thread class and

Runnable interface

T1:230, T2:140-141

4. 1 Creating single and multiple threads T1:232-237

5. 1 Thread prioritization T1:229-240

LECTURE PLAN 2017-2020

Batch

Department of Computer Science, CA & IT, KAHE 4/5

6. 1 Synchronization and communication

suspending/resuming threads

T2:155-158

7. 1 Using java.net package R1:536-537

8. 1 Overview of TCP/IP and Datagram

programming.

W7

9. 1 Accessing and manipulating databases

using JDBC.

T2:441-449

10. 1 Recapitulation and Discussion of

important questions

 Total No of Hours Planned For Unit – IV 10

UNIT-V

1. 1 Java Applets: Introduction to Applets T2:292-293

2. 1 Writing Java Applets T1:688-689

3. 1 Working with Graphics T1:749-754, T2:300-301

4. 1 Incorporating Images & Sounds. T1:830-831,R1:548

5. 1 Event Handling Mechanisms T1:707-719

6. 1 Listener Interfaces T1:720-723

7. 1 Adapter and Inner Classes T1:729-731

8. 1 Swing components of Java

Foundation Classes

T1:965,969-975,967

9. 1 Graphic objects for drawing T1:749-754

10. 1 Overview of servlets T1:993-998,T2:477-484

11. 1 Recapitulation and Discussion of

important questions

12. 1 Discussion of previous ESE Question

papers

13. 1 Discussion of previous ESE Question

papers

14. 1 Discussion of previous ESE Question

papers

 Total No of Hours Planned For Unit – V 14

 Total No. of Hours Planned: 60

LECTURE PLAN 2017-2020

Batch

Department of Computer Science, CA & IT, KAHE 5/5

Text Book:

T1 Herbert Schildt, Java the Complete Reference, 8th Edition.

T2ISRD Group, Introduction to object oriented programming through Java.

Reference Book:

R1Ken Arnold, James Gosling, David Homes, 2005, The Java Programming Language, 4th

 Edition.

Suggested Readings:

1. James Gosling, Bill Joy, Guy L Steele Jr, Gilad Bracha, Alex Buckley, 2014, The Java

 Language Specification, Java SE 8th Edition (Java Series), Published by Addison Wesley.

2. Joshua Bloch, 2008, Effective Java, 2nd Edition, Publisher: Addison-Wesley.

3. Cay S. Horstmann, Gary Cornell, 2012, Core Java 2 Volume 1 ,9th Edition,Printice Hall.

4. Cay S. Horstmann, Gary Cornell, 2013,Core Java 2 Volume 2 - Advanced Features, 9th

 Edition,Printice Hall.

5. Bruce Eckel, 2002, Thinking in Java, 3rd Edition, PHI.

6. E. Balaguruswamy, 2009, Programming with Java, 4th Edition, McGraw Hill.

7. Paul Deitel, Harvey Deitel, 2011, Java: How to Program, 10th Edition, Prentice Hall.

8. David J. Eck, 2009, Introduction to Programming Using Java, Published by CreateSpace

 Independent Publishing Platform.

9. John R. Hubbard, 2004, Programming with JAVA, Schaum's Series, 2nd Edition.

WEBSITES

W1 https://www.javatpoint.com/features-of-java

W2http://www.careerbless.com/java/basics/JavaArchitecture.php

W3www./javainterviewpoint.com/java-virtual-machine-architecture-in-java

W4 https://www.javatpoint.com/cpp-vs-java

W5https://beginnersbook.com/java-tutorial-for-beginners-with-examples/

W6 https://www.quora.com/ predefined-classes-and-methods

W7 https://www.cs.auckland.ac.nz/~jmor159/364/ppt/AJavaNetworking.ppt

https://www.javatpoint.com/cpp-vs-java
https://www.quora.com/%20predefined-classes-and-methods

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 1/52

UNIT – I

SYLLABUS

Introduction to Java : Java Architecture and Features, Understanding the semantic and syntax

differences between C++ and Java, Compiling and Executing a Java Program, Variables,

Constants, Keywords Data Types, Operators (Arithmetic, Logical and Bitwise) and Expressions,

Comments, Doing Basic Program Output, Decision Making Constructs (conditional statements

and loops) and Nesting, Java Methods (Defining, Scope, Passing and Returning Arguments,

Type Conversion and Type and Checking, Built-in Java Class Methods),

Introduction to Java

Java Architecture:

1. Compilation and interpretation in Java

Java combines both the approaches of compilation and interpretation. First, java compiler

compiles the source code into byte code. At the run time, Java Virtual Machine (JVM) interprets

this byte code and generates machine code which will be directly executed by the machine in

which java program runs. So java is both compiled and interpreted language.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 2/52

Figure 1.1: Java Architecture

2. Java Virtual Machine (JVM)

JVM is a component which provides an environment for running Java programs. JVM interprets

the byte code into machine code which will be executed the machine in which the Java program

runs. Java was developed with the concept of WORA (Write Once Run Anywhere) which runs

on a VM. The compiler will be compiling the java file into a java .class file. The .class file is

input to JVM which Loads and executes the class file. Below goes the Architecture of JVM.

Java Environment

The Java Virtual Machine

At the heart of Java's network-orientation is the Java virtual machine, which supports all

three prongs of Java's network-oriented architecture: platform independence, security, and

network-mobility.

The Java virtual machine is an abstract computer. Its specification defines certain features

every Java virtual machine must have, but leaves many choices to the designers of each

implementation. For example, although all Java virtual machines must be able to execute Java

byte codes, they may use any technique to execute them. Also, the specification is flexible

enough to allow a Java virtual machine to be implemented either completely in software or to

varying degrees in hardware. The flexible nature of the Java virtual machine's specification

enables it to be implemented on a wide variety of computers and devices.

A Java virtual machine's main job is to load class files and execute the byte codes they

contain. As you can see in Figure 1-3, the Java virtual machine contains a class loader, which

loads class files from both the program and the Java API. Only those class files from the Java

API that are actually needed by a running program are loaded into the virtual machine. The byte

codes are executed in an execution engine.

https://www.javainterviewpoint.com/category/core-java/
http://www.javainterviewpoint.com/class-in-java-with-example/

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 3/52

Figure 1-2. A basic block diagram of the Java virtual machine.

The execution engine is one part of the virtual machine that can vary in different

implementations. On a Java virtual machine implemented in software, the simplest kind of

execution engine just interprets the byte codes one at a time. Another kind of execution engine,

one that is faster but requires more memory, is a just-in-time compiler. In this scheme, the byte

codes of a method are compiled to native machine code the first time the method is invoked.

Java architecture

Java's architecture arises out of four distinct but interrelated technologies:

 the Java programming language

 the Java class file format

 the Java Application Programming Interface

 the Java virtual machine

When you write and run a Java program, you are tapping the power of these four technologies.

You express the program in source files written in the Java programming language, compile the

source to Java class files, and run the class files on a Java virtual machine. When you write your

program, you access system resources (such as I/O, for example) by calling methods in the

classes that implement the Java Application Programming Interface, or Java API. As your

program runs, it fulfills your program's Java API calls by invoking methods in class files that

implement the Java API. You can see the relationship between these four parts in Figure 1-1.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 4/52

Figure 1-3. The Java programming environment.

Together, the Java virtual machine and Java API form a "platform" for which all Java programs

are compiled. In addition to being called the Java runtime system, the combination of the Java

virtual machine and Java API is called the Java Platform (or, starting with version 1.2, the Java

2 Platform). Java programs can run on many different kinds of computers because the Java

Platform can itself be implemented in software. As you can see in Figure 1- 2, a Java program

can run anywhere the Java Platform is present.

Figure 1-4. Java programs run on top of the Java Platform.

1.3.4 Java development kit

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 5/52

The Java Development Kit (JDK) is a Sun Microsystemsproduct aimed at Java developers. Since the

introduction of Java, it has been by far the most widely used Java SDK. On 17 November 2006, Sun

announced that it would be released under the GNU General Public License (GPL), thus making it free

software. This happened in large part on 8 May 2007[3]; Sun contributed the source code to the OpenJDK.

The JDK has as its primary components a collection of programming tools, including:

 java – the loader for Java applications. This tool is an interpreter and can interpret the class files

generated by the javac compiler. Now a single launcher is used for both development and

deployment. The old deployment launcher, jre, no longer comes with Sun JDK.

 javac – the compiler, which converts source code into Java byte code

 applet viewer – this tool can be used to run and debug Java applets without a web browser

Features of Java

There is given many features of java. They are also known as java buzzwords. The Java Features

given below are simple and easy to understand.

1. Simple

http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Software_development_kit
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/Java_Development_Kit#cite_note-2#cite_note-2
http://en.wikipedia.org/wiki/OpenJDK
http://en.wikipedia.org/wiki/Loader_(computing)
http://en.wikipedia.org/wiki/Javac
http://en.wikipedia.org/wiki/Javac
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Java_bytecode
http://en.wikipedia.org/wiki/AppletViewer

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 6/52

2. Object-Oriented

3. Portable

4. Platform independent

5. Secured

6. Robust

7. Architecture neutral

8. Dynamic

9. Interpreted

10. High Performance

11. Multithreaded

12. Distributed

1. Simple

 According to Sun, Java language is simple because:

 Syntax is based on C++ (so easier for programmers to learn it after C++).

 Removed many confusing and/or rarely-used features e.g., explicit pointers, operator

overloading etc.

 No need to remove unreferenced objects because there is Automatic Garbage

Collection in java.

2. Object-oriented

 Object-oriented means we organize our software as a combination of different types of

objects that incorporates both data and behavior.

 Object-oriented programming (OOPs) is methodologies that simplify software

development and maintenance by providing some rules.

Basic concepts of OOPs are:

1. Object

2. Class

3. Inheritance

4. Polymorphism

5. Abstraction

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 7/52

6. Encapsulation

3. Platform Independent

A platform is the hardware or software environment in which a program runs.

There are two types of platforms software-based and hardware-based. Java provides software-

based platform.

The Java platform differs from most other platforms in the sense that it is a software-based

platform that runs on the top of other hardware-based platforms. It has two components:

1. Runtime Environment

2. API(Application Programming Interface)

Java code can be run on multiple platforms e.g. Windows, Linux, Sun Solaris, Mac / OS etc.

Java code is compiled by the compiler and converted into byte code. This byte code is a

platform-independent code because it can be run on multiple platforms i.e. Write Once and Run

Anywhere (WORA).

4. Secured

Java is secured because:

o No explicit pointer

o Java Programs run inside virtual machine sandbox

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 8/52

o Classloader: adds security by separating the package for the classes of the local file

system from those that are imported from network sources.

o Bytecode Verifier: checks the code fragments for illegal code that can violate access

right to objects.

o Security Manager: determines what resources a class can access such as reading and

writing to the local disk.

These securities are provided by java language. Some security can also be provided by

application developer through SSL, JAAS, and Cryptography etc.

5. Robust

Robust simply means strong. Java uses strong memory management. There are lack of pointers

that avoids security problem. There is automatic garbage collection in java. There is exception

handling and type checking mechanism in java. All these points makes java robust.

6. Architecture-neutral

There are no implementation dependent features e.g. size of primitive types is fixed.

In C programming, int data type occupies 2 bytes of memory for 32-bit architecture and 4 bytes

of memory for 64-bit architecture. But in java, it occupies 4 bytes of memory for both 32 and 64

bit architectures.

7. Portable

We may carry the java bytecode to any platform.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 9/52

8. High-performance

Java is faster than traditional interpretation since byte code is "close" to native code still

somewhat slower than a compiled language (e.g., C++)

9. Distributed

We can create distributed applications in java. RMI and EJB are used for creating distributed

applications. We may access files by calling the methods from any machine on the internet.

10. Multi-threaded

A thread is like a separate program, executing concurrently. We can write Java programs that

deal with many tasks at once by defining multiple threads. The main advantage of multi-

threading is that it doesn't occupy memory for each thread. It shares a common memory area.

Threads are important for multi-media, Web applications etc.

Introduction to OOP

 Object Oriented Programming or OOP is the technique to create programs based on the

real world. Unlike procedural programming, here in the OOP programming model programs are

organized around objects and data rather than actions and logic. Objects represent some concepts

or things and like any other objects in the real Objects in programming language have certain

behavior, properties, type, and identity. In OOP based language the principal aim is to find out

the objects to manipulate and their relation between each other.

Class - It is the central point of OOP and that contains data and codes with behavior. In Java

everything happens within class and it describes a set of objects with common behavior. The

class definition describes all the properties, behavior, and identity of objects present within that

class. As far as types of classes are concerned, there are predefined classes in languages like C++

and Pascal. But in Java one can define his/her own types with data and code.

Object - Objects are the basic unit of object orientation with behavior, identity. As we

mentioned above, these are part of a class but are not the same. An object is expressed by the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 10/52

variable and methods within the objects. Again these variables and methods are distinguished

from each other as instant variables, instant methods and class variable and class methods.

Methods - We know that a class can define both attributes and behaviors. Again attributes are

defined by variables and behaviors are represented by methods. In other words, methods define

the abilities of an object.

Inheritance - This is the mechanism of organizing and structuring software program. Though

objects are distinguished from each other by some additional features but there are objects that

share certain things common. In object oriented programming classes can inherit some common

behavior and state from others. Inheritance in OOP allows to define a general class and later to

organize some other classes simply adding some details with the old class definition. This saves

work as the special class inherits all the properties of the old general class and as a programmer

you only require the new features. This helps in a better data analysis, accurate coding and

reduces development time.

Abstraction - The process of abstraction in Java is used to hide certain details and only show the

essential features of the object. In other words, it deals with the outside view of an object

(interface).

Encapsulation - This is an important programming concept that assists in separating an object's

state from its behavior. This helps in hiding an object's data describing its state from any further

modification by external component. In Java there are four different terms used for hiding data

constructs and these are public, private, protected and package. As we know an object can

associated with data with predefined classes and in any application an object can know about the

data it needs to know about. So any unnecessary data are not required by an object can be hidden

by this process. It can also be termed as information hiding that prohibits outsiders in seeing the

inside of an object in which abstraction is implemented.

Polymorphism - It describes the ability of the object in belonging to different types with specific

behavior of each type. So by using this, one object can be treated like another and in this way it

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 11/52

can create and define multiple level of interface. Here the programmers need not have to know

the exact type of object in advance and this is being implemented at runtime.

C++ vs. Java

There are many differences and similarities between C++ programming language and Java. A list

of top differences between C++ and Java are given below:

S.NO Comparison Index C++ Java

1 Platform-independent C++ is platform-

dependent.

Java is platform-independent.

2 Mainly used for C++ is mainly used

for system

programming.

Java is mainly used for application

programming. It is widely used in

window, web-based, enterprise and

mobile applications.

3 Goto C++ supports goto

statement.

Java doesn't support goto

statement.

4 Multiple inheritance C++ supports

multiple

inheritance.

Java doesn't support multiple

inheritance through class. It can be

achieved by interfaces in java.

5 Operator Overloading C++ supports

operator

overloading.

Java doesn't support operator

overloading.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 12/52

6 Pointers C++ supports

pointers. You can

write pointer

program in C++.

Java supports pointer internally.

But you can't write the pointer

program in java. It means java has

restricted pointer support in java.

7 Compiler and

Interpreter

C++ uses compiler

only.

Java uses compiler and interpreter

both.

8 Call by Value and Call

by reference

C++ supports both

call by value and

call by reference.

Java supports call by value only.

There is no call by reference in

java.

9 Structure and Union C++ supports

structures and

unions.

Java doesn't support structures and

unions.

10 Thread Support C++ doesn't have

built-in support for

threads. It relies on

third-party libraries

for thread support.

Java has built-in thread support.

11 Documentation

comment

C++ doesn't

support

documentation

comment.

Java supports documentation

comment (/** ... */) to create

documentation for java source

code.

12 Virtual Keyword C++ supports

virtual keyword so

that we can decide

whether or not

override a

Java has no virtual keyword. We

can override all non-static methods

by default. In other words, non-

static methods are virtual by

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 13/52

function. default.

13 unsigned right shift

>>>

C++ doesn't

support >>>

operator.

Java supports unsigned right shift

>>> operator that fills zero at the

top for the negative numbers. For

positive numbers, it works same

like >> operator.

14 Inheritance Tree C++ creates a new

inheritance tree

always.

Java uses single inheritance tree

always because all classes are the

child of Object class in java.

Object class is the root of

inheritance tree in java.

Compiling and Executing a Java Program

1. Write source code

The following Java program is developed under Microsoft Windows. The process on other

operating system should be similar but will not be covered here. Select a directory which should

contain your code. I will use the directory c:\temp\java which will be called "javadir".

Open a text editor which supports plain text, e.g. notepad under Windows and write the

following source code. You can start notepad via Start->Run-> notepad and pressing enter.

// The smallest Java program possible

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello”); }}

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 14/52

Save the source code in your directory "javadir" under the name "HelloWorld.java".The name of

a Java source file must always equals the class name (within the source code) and end with .java.

In our case the filename must be HelloWorld.java because the class is called HelloWorld.

2. Compile the code

Switch to the command line, e.g. under Windows Start-> Run -> cmd. Switch to the

"javadir" directory with the command cd javadir, for example in my case cd c:\temp\java. Use

the command dir to see that the source file is in the directory.

Type javac Hello.java.

Check the content of the directory with the command "dir". The directory contains now a file

"HelloWorld.class". If you see this file you have successfully compiled your first Java source

code into byte-code.

3. Run the code

Switch again to the command line, e.g. under Windows Start-> Run -> cmd. Switch to the

directory jardir.

Type java Hello.

The system should write "Hello World" on the command line.

4. Using the classpath

You can use the classpath to run the program from another place in your directory.

Switch to the command line, e.g. under Windows Start-> Run -> cmd. Switch to any directory

you want.

Typejava Hello.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 15/52

If you are not in the directory in which the compiled class is stored then the system should result

an error message Exception in thread "main" java.lang.NoClassDefFoundError:

test/TestClass

Type java -classpath "mydirectory" HelloWorld . Replace "mydirectory" with the directory

which contains the test directory. You should again see the "HelloWorld" output.

Variable declaration

A variable is a container that stores a meaningful value that can be used throughout a

program. For example, in a program that calculates tax on items you can have a few variables -

one variable that stores the regular price of an item and another variable that stores the total price

of an item after the tax is calculated on it. Variables store this information in a computer's

memory and the value of a variable can change all throughout a program.

One variable in your program can store numeric data while another variable can store text

data. Java has special keywords to signify what type of data each variable store. Use these

keywords when declaring your variables to set the data type of the variable.

Ja va da t a t yp es

Keyword Type of data the variable will store Size in memory

boolean true/false value 1 bit

byte byte size integer 8 bits

char a single character 16 bits

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 16/52

double double precision floating point decimal number 64 bits

float single precision floating point decimal number 32 bits

int a whole number 32 bits

long a whole number (used for long numbers) 64 bits

short a whole number (used for short numbers) 16 bits

Variable Declaration:

To declare a variable, you must specify the data type & give the variable a unique name.

Examples of other Valid Declarations are,

int a,b,c;

float pi;

double d;

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 17/52

char a;

2) Variable Initialization:

To initialize a variable you must assign it a valid value.

Example of other Valid Initializations are

pi =3.14f;

do =20.22d;

a=’v’;

You can combine variable declaration and initialization.

Example:

int a=2,b=4,c=6;

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 18/52

float pi=3.14f;

double do=20.22d;

char a=’v’;

Data types

Java programming language is a language in which all the variables must be declared

first and then to be used. That means to specify the name and the type of the variable. This

specifies that Java is a strongly-typed programming language. Like

int pedal = 1;

This shows that there exists a field named 'pedal' that holds a data as a numerical value '1'. The

values contained by the variables determines its data type and to perform the operations on it.

There are seven more primitive data types which are supported by Java language

programming in addition to int.

A primitive data type is a data type which is predefined in Java. Following are the eight

primitive data types:

int

It is a 32-bit signed two's complement integer data type. It ranges from -2,147,483,648 to

2,147,483,647. This data type is used for integer values. However for wider range of values

use

byte

The byte data type is an 8-bit signed two's complement integer. It ranges from -128 to127

(inclusive). We can save memory in large arrays using byte. We can also use byte instead of

int to increase the limit of the code.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 19/52

short

The short data type is a 16-bit signed two's complement integer. It ranges from -32,768 to

32,767. short is used to save memory in large arrays.

long

The long data type is a 64-bit signed two's complement integer. It ranges from -

9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. Use this data type with larger range

of values.

float

The float data type is a single-precision 32-bit IEEE 754 floating point. It ranges from

1.40129846432481707e-45 to 3.40282346638528860e+38 (positive or negative). Use a float

(instead of double) to save memory in large arrays. We do not use this data type for the exact

values such as currency. For that we have to use java.math.BigDecimal class.

double

This data type is a double-precision 64-bit IEEE 754 floating point. It ranges from

4.94065645841246544e-324d to 1.79769313486231570e+308d (positive or negative). This

data type is generally the default choice for decimal values.

boolean

The boolean data type is 1-bit and has only two values: true and false. We use this data type

for conditional statements. true and false are not the same as True and False. They are defined

constants of the language.

char

The char data type is a single 16-bit, unsigned Unicode character. It ranges from 0 to 65,535.

They are not same as ints, shorts etc.

The following table shows the default values for the data types:

 Keyword Description Size/Format

 byte Byte-length 8-bit two's

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 20/52

integer complement

 short Short integer
 16-bit two's

complement

 int Integer
 32-bit two's

complement

 long Long integer
 64-bit two's

complement

 float
 Single-precision

floating point
 32-bit IEEE

 double
 Double-precision

floating point
 64-bit IEEE

 char
 A single

character

 16-bit Unicode

character

 boolean
 A boolean value

(true or false)
 true or false

Java Tokens

In a Java program, all characters are grouped into symbols called tokens. Larger

language features are built from the first five categories of tokens (the sixth kind of token is

recognized, but is then discarded by the Java compiler from further processing). We must learn

how to identify all six kinds of tokens that can appear in Java programs. In EBNF we write one

simple rule that captures this structure:

token = identifier | keyword | separator | operator | literal | comment

The different types of Tokens are:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 21/52

1. Identifiers: names the programmer chooses

2. Keywords: names already in the programming language

3. Separators (also known as punctuators): punctuation characters and paired-delimiters

4. Operators: symbols that operate on arguments and produce results

5. Literals (specified by their type)

o Numeric: int and double

o Logical: boolean

o Textual: char and String

o Reference: null

6. Comments

o Line

Operators in Java

Java provides many types of operators which can be used according to the need. They are

classified based on the functionality they provide. Some of the types are-

1. Arithmetic Operators

2. Logical Operators

3. Bitwise Operators

Let’s take a look at them in detail.

Arithmetic Operators: They are used to perform simple arithmetic operations on primitive data

types.

1. : Multiplication

2. / : Division

3. % : Modulo

4. + : Addition

5. : Subtraction

// Java program to illustrate

// arithmetic operators

publicclassoperators

{

 publicstaticvoidmain(String[] args)

 {

http://www.geeksforgeeks.org/operators-in-java/#Arithmetic Operators
http://www.geeksforgeeks.org/operators-in-java/#Logical Operators
http://www.geeksforgeeks.org/operators-in-java/#Bitwise Operators

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 22/52

 inta = 20, b = 10, c = 0, d = 20, e = 40, f = 30;

 String x = "Thank", y = "You";

 // + and - operator

 System.out.println("a + b = "+(a + b));

 System.out.println("a - b = "+(a - b));

 // + operator if used with strings

 // concatenates the given strings.

 System.out.println("x + y = "+x + y);

 // * and / operator

 System.out.println("a * b = "+(a * b));

 System.out.println("a / b = "+(a / b));

 // modulo operator gives remainder

 // on dividing first operand with second

 System.out.println("a % b = "+(a % b));

 // if denominator is 0 in division

 // then Arithmetic exception is thrown.

 // uncommenting below line would throw

 // an exception

 // System.out.println(a/c);

 }

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 23/52

}

Output:

a+b = 30

a-b = 10

x+y = ThankYou

a*b = 200

a/b = 2

a%b = 0

Decision-making statements

A Java decision-making statement allows you to make decision, based upon the result of a

condition.

All the programs in Java have set of statements, which are executed sequentially in the order in

which they appear. This happens when jumping of statements or repetition of certain calculations

is not necessary. However there may arise some situations where programmers have to change

the order of execution of statements based on certain conditions which involves kind of decision-

making statements. In this chapter you will learn about how the control flow statements works.

The flowchart of Decision making technique in Java can be expressed as:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 24/52

Java has such decision making capabilities within its program by the use of following decision

making statements:

Decision Making Statements in Java

 if Statement

o if statement

o if-else statement

o else-if statement

 Conditional Operator

 switch statement

Java if Statements

If a statement in Java is used to control the program flow based on some condition, it’s

used to execute some statement code block if expression is evaluated to true, otherwise it will get

skipped. This is an simplest way to modify the control flow of the program.

The basic format of if statement is:

Syntax:

https://www.w3schools.in/java-tutorial/decision-making/if/
https://www.w3schools.in/java-tutorial/decision-making/if-else/
https://www.w3schools.in/java-tutorial/decision-making/else-if/
https://www.w3schools.in/java-tutorial/decision-making/switch/

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 25/52

if(test_expression)

{

 statement 1;

 statement 2;

 ...

}

‘Statement n’ can be a statement or a set of statements and if the test expression is evaluated

to true, the statement block will get executed or it will get skipped.

Figure – Flowchart of if Statement:

Example of a Java Program to Demonstrate If statements

 Example:

public class Sample{

 public static void main(String args[]){

 int a=20, b=30;

 if(b>a)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 26/52

 System.out.println("b is greater");

 }}

Program Output:

Java if-else Statement

If else a statement in Java is also used to control the program flow based on some

condition, only the difference is: it’s used to execute some statement code block if expression is

evaluated to true, otherwise executes else statement code block.

The basic format of if else statement is:

Syntax:

if(test_expression)

{

 //execute your code

}

else

{

 //execute your code

}

Figure – Flowchart of if else Statement:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 27/52

Example of a Java Program to Demonstrate If else statements

 Example:

public class Sample {

 public static void main(String args[]) {

 int a = 80, b = 30;

 if (b & gt; a) {

 System.out.println("b is greater");

 } else {

 System.out.println("a is greater");

 } }}

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 28/52

Program Output:

Java else-if Statements

else if statements in Java is like another if condition, it’s used in program when if

statement having multiple decisions.

The basic format of else if statement is:

Syntax:

if(test_expression)

{

 //execute your code

}

else if(test_expression n)

{

 //execute your code

}

else

{

 //execute your code

}

Example of a Java Program to Demonstrate else If statements

Example:

public class Sample {

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 29/52

 public static void main(String args[]) {

 int a = 30, b = 30;

 if (b > a) {

 System.out.println("b is greater");

 }

 else if(a > b){

 System.out.println("a is greater");

 }

 else {

 System.out.println("Both are equal");

 } }}

Program Output:

Java switch Statements

Java switch statement is used when you have multiple possibilities for the if statement.

The basic format of switch statement is:

Syntax:

switch(variable)

{

case 1:

 //execute your code

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 30/52

break;

case n:

 //execute your code

break;

default:

 //execute your code

break;

}

After the end of each block it is necessary to insert a break statement because if the programmers

do not use the break statement, all consecutive blocks of codes will get executed from each and

every case onwards after matching the case block.

Example of a Java Program to Demonstrate Switch Statement

Example:

public class Sample {

 public static void main(String args[]) {

 int a = 5;

 switch (a) {

 case 1:

 System.out.println("You chose One");

 break;

 case 2:

 System.out.println("You chose Two");

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 31/52

 break;

 case 3:

 System.out.println("You chose Three");

 break;

 case 4:

 System.out.println("You chose Four");

 break;

 case 5:

 System.out.println("You chose Five");

 break;

 default:

 System.out.println("Invalid Choice. Enter a no between 1 and 5");

 break;

 } }}

Program Output:

When none of the case is evaluated to true, then default case will be executed, and break

statement is not required for default statement.

Java Loops

Sometimes it is necessary in the program to execute the statement several times, and Java loops

execute a block of commands a specified number of times, until a condition is met. In this

chapter you will learn about all the looping statements of Java along with their use.

What is Loop?

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 32/52

A computer is the most suitable machine to perform repetitive tasks and can tirelessly do a task

tens of thousands of times. Every programming language has the feature to instruct to do such

repetitive tasks with the help of certain form of statements. The process of repeatedly executing a

collection of statement is called looping. The statements gets executed many number of times

based on the condition. But if the condition is given in such a logic that the repetition continues

any number of times with no fixed condition to stop looping those statements, then this type of

looping is called infinite looping.

Java supports many looping features which enable programmers to develop concise Java

programs with repetitive processes.

Java supports following types of loops:

 while loops

 do while loops

 for loops

All are slightly different and provides loops for different situations.

Figure – Flowchart of Looping:

Java Loop Control Statements

https://www.w3schools.in/java/loops/while/
https://www.w3schools.in/java/loops/do-while/
https://www.w3schools.in/java/loops/for/

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 33/52

A Loop control statement is used to change normal sequence of execution of loop.

Statement Syntax Description

break

statement

break; Is used to terminate loop or switch

statements.

continue

statement

continue; Is used to suspend the execution of current

loop iteration and transfer control to the loop

for the next iteration.

goto

statement

goto labelName;labelName: statement; It’s transfer current program execution

sequence to some other part of the program.

Java while loops

Java while loops statement allows to repeatedly running the same block of code, until a condition

is met.

While loop is most basic loop in Java. It has one control condition, and executes as long the

condition is true. The condition of the loop is tested before the body of the loop is executed,

hence it is called an entry-controlled loop.

The basic format of while loop statement is:

Syntax:

While (condition)

{

 statement(s);

incrementation;

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 34/52

}

Figure – Flowchart of while loop:

Example of a Java Program to Demonstrate while loop

 Example:

public class Sample {

 public static void main(String args[]) {

 /* local variable Initialization */

 int n = 1, times = 5;

 /* while loops execution */

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 35/52

 while (n <= times) {

 System.out.println("Java while loops:" + n);

 n++;

 } }}

Program Output:

Java do while loops

Java do while a loop is very similar to the while loops, but it always executes the code block at

least once and further more as long as the condition remains true. This is exit-controlled loop.

The basic format of do while loop statement is:

Syntax:

do

{ statement(s);

}while(condition);

Figure – Flowchart of do while loop:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 36/52

Example of a Java Program to Demonstrate do while loop

Example:

public class Sample {

 public static void main(String args[]) {

 /* local variable Initialization */

 int n = 1, times = 0;

 /* do-while loops execution */

 do {

 System.out.println("Java do while loops:" + n);

 n++;

 } while (n <= times); }}

Program Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 37/52

Java for loops

Java for loops is very similar to Java while loops in that it continues to process a block of

code until a statement becomes false, and everything is defined in a single line.

The basic format of for loop statement is:

Syntax:

for (init; condition; increment)

{

 statement(s);

}

Figure – Flowchart of for loop:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 38/52

Example of a Java Program to Demonstrate for loop

 Example:

public class Sample {

 public static void main(String args[]) {

 /* local variable Initialization */

 int n = 1, times = 5;

 /* for loops execution */

 for (n = 1; n <= times; n = n + 1) {

 System.out.println("Java for loops:" + n); } }}

Program Output:

What is a Method in Java?

In Java programming language, a method is a section of the program that contains a set of

instructions or code. In a Java program, similar to a cake recipe, a method has a set of

instructions. When the method is called, the set of instructions within the method is executed.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 39/52

Here, the name of the method is addNumbers. When the method addNumbers is called, the code

within the method is executed, and the variable z is printed.

Parameters of a Method

When following the method to make cake, the ingredients like sugar and butter are combined and

processed to make the final product. Similarly, Java methods have parameters (like ingredients)

or data that are inputted or passed into the method. The method uses these parameter values to do

the necessary data manipulation and processing. The method then usually returns the final value

after all the necessary data processing is successfully performed.

Example:

In this example, m and n are parameters. The Java method subtractNumbers finds the difference

between m and n and saves the result in a new variable p. The values of the parameters m and n

are used to generate the new variable p that is printed out on the computer screen.

The parameters of a method are declared within parentheses following the method name. If there

is more than one parameter, they are separated by commas. Both the data type and the variable

name (int m, int n) are specified for the parameters.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 40/52

Returning a value from a Java method

When the method to make cake is completed using the necessary ingredients, the final result is a

new product that is the cake. By using the parameters that are passed into the method, the

method generates a new product or result. The result returned by the method is also available for

use by the java program to which this method belongs.

Example:

In this example, the variable p is returned by the method. The return statement is a java keyword

return followed by the variable name.

When the method is declared, the return type of the variable is listed just before the name of the

method. Here, the name of the method is subtractNumbers, and the data type of the variable

being returned, p, is int, so the method declaration states:

Where int is the return type of the method subtractNumbers.

Java Variable Type Conversion & Type Casting

A variable of one type can receive the value of another type. Here there are 2 cases -

case 1) Variable of smaller capacity is be assigned to another variable of bigger capacity.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 41/52

This process is Automatic, and non-explicit is known as Conversion

case 2) Variable of larger capacity is be assigned to another variable of smaller capacity

In such cases you have to explicitly specify the type cast operator. This process is known

as Type Casting.

In case, you do not specify a type cast operator, the compiler gives an error. Since this rule is

enforced by the compiler, it makes the programmer aware that the conversion he is about to do

may cause some loss in data and prevents accidental losses.

Example: To Understand Type Casting

class Demo{

public static void main(String args[]){

byte x;

int a=270;

double b =128.128;

System.out.println("int converted to byte");

x=(byte) a;

System.out.println("a and x "+ a +" "+x);

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 42/52

System.out.println("double converted to int");

a=(int) b;

System.out.println("b and a "+ b +" "+a);

System.out.println("\n double converted to byte");

x= b;

System.out.println("b and x "+b +" "+x);

} }

Built-in Java Class Methods

i) String Methods

ii) Number Methods

iii) Character methods

iv) Array methods Etc...

i) String Methods

1) compareTo() Method

The java string compareTo() method compares the given string with current string lexicographically. It

returns positive number, negative number or 0.

It compares strings on the basis of Unicode value of each character in the strings.

If first string is lexicographically greater than second string, it returns positive number (difference of

character value). If first string is less than second string lexicographically, it returns negative number and

if first string is lexicographically equal to second string, it returns 0.

1. if s1 > s2, it returns positive number

2. if s1 < s2, it returns negative number

3. if s1 == s2, it returns 0

Signature

1. public int compareTo(String anotherString)

Parameters

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 43/52

anotherString: represents string that is to be compared with current string

Returns an integer value

Java String compareTo() method example

public class CompareToExample{

public static void main(String args[]){

String s1="hello";

String s2="hello";

String s3="meklo";

String s4="hemlo";

String s5="flag";

System.out.println(s1.compareTo(s2));//0 because both are equal

System.out.println(s1.compareTo(s3));//-5 because "h" is 5 times lower than "m"

System.out.println(s1.compareTo(s4));//-1 because "l" is 1 times lower than "m"

System.out.println(s1.compareTo(s5));//2 because "h" is 2 times greater than "f"

}}

Output:

0

-5

-1

2

2) equals() Method

The java string equals() method compares the two given strings based on the content of the string. If any

character is not matched, it returns false. If all characters are matched, it returns true.

The String equals() method overrides the equals() method of Object class.

Signature

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 44/52

1. public boolean equals(Object anotherObject)

Parameter

anotherObject : another object i.e. compared with this string.

Returns

true if characters of both strings are equal otherwise false.

Overrides

equals() method of java Object class.

Java String equals() method example

public class EqualsExample{

public static void main(String args[]){

String s1="javatpoint";

String s2="javatpoint";

String s3="JAVATPOINT";

String s4="python";

System.out.println(s1.equals(s2));//true because content and case is same

System.out.println(s1.equals(s3));//false because case is not same

System.out.println(s1.equals(s4));//false because content is not same

}}

Output:

true

false

false

3) Concat() Method

The java string concat() method combines specified string at the end of this string. It returns

combined string. It is like appending another string.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 45/52

Signature

The signature of string concat() method is given below:

public String concat(String anotherString)

Parameter

anotherString : another string i.e. to be combined at the end of this string.

Returns combined string

Java String concat() method example

public class ConcatExample{

public static void main(String args[]){

String s1="java string";

s1.concat("is immutable");

System.out.println(s1);

s1=s1.concat(" is immutable so assign it explicitly");

System.out.println(s1);

}}

Output:

java string

java string is immutable so assign it explicitly

4) charAt() Method

Returns a character value by index...

Example:

String str1 = "Selenium";

System.out.println(str1.charAt(1));//e

System.out.println(str1.charAt(7));//m

5) equalsIgnoreCase()

It compares two strings and ignores letters (Upper case or Lower case...) Example:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 46/52

String str1 = "Selenium";

String str2 = "SELENIUM";

String str3 = "UFT";

System.out.println(str1.equalsIgnoreCase(str2));//true

System.out.println(str2.equalsIgnoreCase(str3));//False

6) toUpperCase() Method

It Converts values to Upper case...

Example:

String str1 = "Selenium";

String str2 = "SELENIUM";

String str3 = "SELEnium";

String str4 = "selenium123";

System.out.println(str1.toUpperCase());//SELENIUM

System.out.println(str2.toUpperCase());//SELENIUM

System.out.println(str3.toUpperCase());//SELENIUM

System.out.println(str4.toUpperCase());//SELENIUM123 }

7) toLowerCase() Method

It converts values to Lower Case...

Example: String str1 = "selenium";

String str2 = "SELENIUM";

String str3 = "SELEnium";

String str4 = "selenium123";

System.out.println(str1.toLowerCase());//selenium System.out.println(str2.toLowerCase());//slenium

System.out.println(str3.toLowerCase());//selenium System.out.println(str4.toLowerCase());//selenium123

8) trim() Method

Removes spaces from both sides of a String...

Example:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 47/52

String str1 = " Selenium ";

System.out.println(str1);

System.out.println(str1.trim());

9) subString() Method

Returns part of the string based on index position/s

Example:

String str1 = "Welcome to Selenium Testing"; System.out.println(str1.substring(11));//Selenium Testing

System.out.println(str1.substring(20));//Testing System.out.println(str1.substring(11, 19));//Selenium

System.out.println(str1.substring(8, 10));//to

10) endsWith() Method

It checks if the string Ends with specified suffix or not? And supports 2-way comparison (True/False)

String str1 = "Welcome to Selenium Testing"; System.out.println(str1.endsWith("Selenium Testing"));

//True System.out.println(str1.endsWith("Testing")); //True

System.out.println(str1.endsWith("Selenium")); //False

11) length property

Returns length of a String

String str1 = "Selenium Testing";

String str2 = "Testing";

System.out.println(str1.length());//16

System.out.println(str2.length());//7

ii) Number methods

1) compareTo() methods

// Integer Class wraps a value of primitive Data Type int is an Object

//An Object of Integer contains a single field whose type is int...

Assignment to Sirisha - Compare two numbers - Numbers with decimal places... Number1 = Number2

then 0

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 48/52

Number1 > Number2 then 1

Number1 < Number2 then -1

Example:

int x = 5;

Integer a = x;

System.out.println(a.compareTo(5));//0

System.out.println(a.compareTo(4));//1

System.out.println(a.compareTo(7));//-1

2) equals() Method

It compares two numbers and it supports 2-way comparison

int a =10;

Integer b = a;

System.out.println(b.equals(10));//True

System.out.println(b.equals(7));//False

System.out.println(b.equals(14));//False

3) abs() Method

Returns absolute value....

double a = 10.234;

double b = 10.789;

double c =-20.345;

System.out.println(Math.abs(a));//10.234 System.out.println(Math.abs(b));//10.789

System.out.println(Math.abs(c));//20.345

4) round() Method

It Rounds the value to nearest Integer...

double a = 10.234;

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 49/52

double b = 10.789;

double c =-20.345;

System.out.println(Math.round(a));//10

System.out.println(Math.round(b));//11

System.out.println(Math.round(c));//-20

5) min() Method

It returns minimum value between two numbers...

Example:

int a = 5;

int b = 7;

double c = 10.234;

double d = 10.794;

System.out.println(Math.min(a, b));//5

System.out.println(Math.min(c, d));//10.234

System.out.println(Math.min(10, 17));//10

System.out.println(Math.min(1.34, 2.3));//1.34

6) max() Method

It returns maximum vale between two numbers...

Example:

int a = 5;

int b = 7;

double c = 10.234;

double d = 10.794;

System.out.println(Math.max(a, b));//7

System.out.println(Math.max(c, d));//10.794

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 50/52

System.out.println(Math.max(10, 17));//17

System.out.println(Math.max(1.34, 2.3));//2.3

7) random() Method

It generates a random Number...

Example:

System.out.println(Math.random());

iii) Character Methods

1) isLetter() method

Checks if the value is Alpha byte or not? And it returns Boolean Result / Logical Result (True/False)

Example: char a = 'Z';

char b = '1';

System.out.println(Character.isLetter(a));//True System.out.println(Character.isLetter(b));//False

System.out.println(Character.isLetter('A'));//True System.out.println(Character.isLetter('7'));//False

System.out.println(Character.isLetter('*'));//False

2) isDigit() Method

Checks if the value is Number or not? and it reruns Boolean / Logical Result

char a = 'Z';

char b = '1';

System.out.println(Character.isDigit(a));//False System.out.println(Character.isDigit(b));//True

System.out.println(Character.isDigit('A'));//False System.out.println(Character.isDigit('1'));//True

System.out.println(Character.isDigit('&'));//False

3) isLowerCase() Method

4) isUpperCase()

iv) Array Methods

1) length()

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 51/52

2) toString() etc...

POSSIBLE QUESTIONS

 Part A- Online Questions

 Part –B 2 MARKS

1. Give any 4 differences between C++ and Java.

2. Write a Java code for Basic Program Output.

3. How to Compile and Execute a Java Program.

4. What is the result of the following program?

public class test

{

public static void main (string args[])

{

int i = -1;

i = i>>1 ;

System.out. println(i) ;

}

}

5. What gives java it’s “write once and run anywhere” nature?

6. What is random() method?

7. What is Java Development Kit (JDK) ?

8. What is Data types?

9. What is Tokens?

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: I(Introduction to Java) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 52/52

10. Mention the Operators in Java?

11. What is Loop?

12. Define Type Conversion with example.

 Part –C 6 MARKS

1. List and explain the features of java and say why it is important?

2. Explain type conversions in java with suitable example program

3. Discuss operators in java with example.

4. Explain the following with suitable program. I) Nested if II)Switch

5. Define Methods. Illustrate Call by value and call by reference

6. Discuss Loops in java with example.

7. Discuss Java Methods with example program.

8. Illustrate the working of control statements in JAVA with appropriate examples.

9. Explain in detail about the features and architecture of JAVA.

10. Explain the following with example. i) Variable declaration ii) Expressions

11. Mention the Features of Java.

12. Explain in detail about Built-in Java Class Methods with examples

S.

no
Questions opt1 opt2 opt3 opt4 Answer

1
_______ is the automatic
memory management
routine in java.

 Memory
release

 Garbage
collection

 Memory
management

 Garbage
compaction

 Garbage
collection

2
Java ______converts java
source code into byte code
that is executed by the

interpreter compiler assembler preprocessor compiler

3
_________ mechanism is
java help to locate errors
in code and handle them

Multithreading
Platform
independent

Exception
Handling

Runtime
Binding

Exception
Handling

4
The compiled code of
Java program is called

 binary code octal code byte code
 hexadecimal
code

 byte code

5
Java was developed by

 IBM Microsoft
 Sun
Microsystems

 Oracle
Corporation

 Sun
Microsystems

6
Java is a ___________
language

structured
programming

object oriented
procedural
oriented

machine object oriented

7
OOPS
follows______________
approach in program

bottom_up top_down middle top bottom_up

8
Objects take up
______________in the
memory

 Space Address Memory bytes Space

9
 _________________is a
collection of objects of
similar type

Objects methods classes messages classes

10
Attributes are sometimes
called______________

data members methods messages functions data members

11
The functions operate on
the datas are
called______________

Methods data members messages classes Methods

12
The process of making an
operator to exhibit
different behaviors in

function
overloading

operator
overloading

method
overloading

message
overloading

operator
overloading

13
.Variables are declared
in_________________

 only in main()
 anywhere in
the scope

before the
main() only

only at the
beginning

 anywhere in
the scope

14
.____________________r
efers to permit
initialization of the

Dynamic
initialization

 Dynamic
binding

Data binding
Dynamic
message

Dynamic
initialization

15
Keyword _________
indicates that method do
not return any value.

Static Final void null void

16
_________ is used to
define the objects

class functions methods none class

SUBJECT CODE: 17CSU201

UNIT I

KARPAGAM ACADEMY OF HIGHER EDUCATION
COIMBATORE - 21

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 CLASS : I B.Sc COMPUTER SCIENCE

BATCH : 2017-2020

 Part -A Online Examinations (1 mark questions)
SUBJECT: Programming in Java

17
An _________ is a single
instance of a class that
retains the structure and

 class member object instances none object

18
A _________ is a message
to take some action on an
object

member variable method class method

19
Java does not have
_________ statement

goto if do do while goto

20
_________ is used to
separate package names
from sub_packages and

 : , . ! .

21
The ________ is the basic
unit of storage in a Java
program

 identifier variable class object variable

22
byte belongs to
_________ type.

 character Boolean floating integer integer

23 In Java an int is _____ bits 16 64 52 32 32

24
byte is a signed ______
type

16 bit 8 bit 32 bit 64 bit 16 bit

25
The ________ statement
is often used in switch
statement

 break end do none break

26
The keywords private and
public are known as
_________ labels

 Static Dynamic Visibility const Visibility

27
The class members that
have been declared as
________ can be accessed

 Private Public Static protected Private

28
The class members that
have been declared as
________ can be accessed

 Private Public Static protected Public

29
The class variables are
known as ________

 Functions members objects
 none of the
above

 objects

30
The ____________
command from J2SDK
compiles a Java program.

Java Appletviewer Javac javad Javac

31
File produced by the java
compiler contains

ASCII Class Pnemonics ByteCodes ByteCodes

32
The file produced by java
compiler ends with
_______ file extension

Java html class applet class

33
Objects are instantiated
from__________

Java methods groups class class

34
Which of the following
lines is not a Java
comment?

 /**
comments */

 // comments – comments
 /* comments
*/

– comments

35
Which of the following
statements is correct?

system.out.pri
ntln('Welcome
 to Java');

System.out.print
ln("Welcome to
Java");

System.println(
'Welcome to
Java');

System.out.pri
nt('Welcome
to Java');

System.out.prin
tln("Welcome
to Java");

36
A block is enclosed inside
__________.

Parentheses Braces Brackets Quotes Braces

37
Wich of the following is a
correct signature for the
main method?

static void
main(String[]
args[])

public static
void
main(String[]

public void
main(String[]
args)

public static
void
main(Strings[]

public static
void
main(String[]

38
 Which of the following
lines is not a Java
comment?

 /**
comments */

 // comments . – comments
 /* comments
*/

 – comments

39
 __________ translates
the Java sourcecode to
bytecode files that the

 javac java javap jdk javac

40
 In java the functions are
called as _________

 fields method variables none method

41
 _________ an object is
also called as instantiating
an objects

 deleting creating destroy none creating

42
Keyword _________
indicates that method do
not return any value.

Static Final void null void

43 Java interpreter is JVM Javac Compiler JAR JVM

44
The __________ method
terminates the program.

System.termin
ate(0);

System.halt(0); System.exit(0);
System.stop(0)
;

System.exit(0);

45
 Java has no ______
function.

malloc free both a & b none both a & b

46
 Java supports
__________ inheritance

 single multiple both a & b none single

47
Java does not have

sturct header files union all the above all the above

48
 __________ is a access
specifier

 static void main public none public

49 Which is invalid? int a; float x,y,z; INT abc; double a; INT abc;

50
Which of these data type
requires the most amount
of memory?

long Int Short byte long

51
The equal comparison
operator in Java is
__________.

 <> != == ^= ==

52
To add number to sum,
you write (Note: Java is
case_sensitive).

 number +=
sum;

 number = sum
+ number;

 sum =
Number + sum;

 sum +=
number;

 sum +=
number;

53
A___________ variable is
known only in the method
that declares the variable.

 Local Global Static Auto Local

54
The
___________________is
an exit_controlled loop

While do_while for switch do_while

55
The ________________is
an entry_entrolled loop

While do_while for switch do_while

56
______refers to the use of
same thing for different
purposes

Overloading
 Dynamic
binding

message
loading

none Overloading

57

__is a decision making
statement

For jump break if if

58
The bool type data
occupies
___________byte in

Two one three four one

59
The label must start
with___________

Character __ Number alphanumeric Character

60

________________statem
ent is frequently used to

Jump goto continue break break

61

______________statement
 does not require any

For if goto while goto

62
 ____________statement
is used to transfer the
control t pass on t the

Break jump goto continue continue

63
___________statement is
a multiway branch
statement

For switch if while switch

64
Test is performed at the
____________of the for
loop.

Top middle end
 program
terminates

Top

65
Condition is checked at
the ____________of the
loop in the do_while

Beginning end middle
program
terminates

end

66
Every relational
expression always
return____________

0 or 1 1 or 2 _1 or 0 none 0 or 1

67
Which of the following
loop statement uses 2
keyword?

do_while loop for loop if loop while loop do_while loop

68
. Which of these operators
is used to allocate memory
to array variable in Java?

malloc calloc new new malloc new

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

1/54

UNIT-II

SYLLABUS

Arrays, Strings and I/O Creating & Using Arrays (One Dimensional and Multi-dimensional),

Referencing Arrays Dynamically, Java Strings: The Java String class, Creating & Using String

Objects, Manipulating Strings, String Immutability & Equality, Passing Strings To & From

Methods, String Buffer Classes. Simple I/O using System. out and the Scanner class, Byte and

Character streams, Reading/Writing from console and files. Object-Oriented Programming

Overview Principles of Object-Oriented Programming, Defining & Using Classes, Controlling

Access to Class Members, Class Constructors, Method Overloading, Class Variables & Methods,

Objects as parameters, final classes, Object class, Garbage Collection.

Java Arrays

Normally, array is a collection of similar type of elements that have contiguous memory location.

Java array is an object the contains elements of similar data type. It is a data structure where we

store similar elements. We can store only fixed set of elements in a java array.

Array in java is index based; first element of the array is stored at 0 index.

Example:

int age[5]={22,25,30,32,35};

Initializing each element separately in loop.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

2/54

A Pictorial Representation of Array

Advantage of Java Array

Code Optimization: It makes the code optimized; we can retrieve or sort the data easily.

Random access: We can get any data located at any index position.

Disadvantage of Java Array

Size Limit: We can store only fixed size of elements in the array. It doesn't grow its size at

runtime. To solve this problem, collection framework is used in java.

Types of Array in java

There are two types of array.

1. Single Dimensional Array

2. Multidimensional Array

Single Dimensional Array in java

Syntax to Declare an Array in java

dataType[] arr; (or)

dataType []arr; (or)

dataType arr[];

Instantiation of an Array in java

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

3/54

arrayRefVar=new datatype[size];

Example of single dimensional java array

Let's see the simple example of java array, where we are going to declare instantiate, initialize

and traverse an array.

class Testarray{

public static void main(String args[]){

 int a[]=new int[5];//declaration and instantiation

a[0]=10;//initialization

a[1]=20;

a[2]=70;

a[3]=40;

a[4]=50;

 //printing array

for(int i=0;i<a.length;i++)//length is the property of array

System.out.println(a[i]); }}

Example:

Output:

10

20

70

40

50

Multidimensional array in java

In such case, data is stored in row and column based index (also known as matrix form).

Syntax to Declare Multidimensional Array in java

dataType[][] arrayRefVar; (or)

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

4/54

dataType [][]arrayRefVar; (or)

dataType arrayRefVar[][]; (or)

dataType []arrayRefVar[];

Example to instantiate Multidimensional Array in java

int[][] arr=new int[3][3];//3 row and 3 column

Example to initialize Multidimensional Array in java

arr[0][0]=1;

arr[0][1]=2;

arr[0][2]=3;

arr[1][0]=4;

arr[1][1]=5;

arr[1][2]=6;

arr[2][0]=7;

arr[2][1]=8;

arr[2][2]=9;

Example of Multidimensional java array

Let's see the simple example to declare instantiate, initialize and print the 2Dimensional array.

class Testarray3{

public static void main(String args[]){

 //declaring and initializing 2D array

int arr[][]={{1,2,3},{2,4,5},{4,4,5}};

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

5/54

 //printing 2D array

for(int i=0;i<3;i++){

 for(int j=0;j<3;j++){

 System.out.print(arr[i][j]+" "); }

 System.out.println(); } }}

Example:

Output:

 1 2 3

 2 4 5

 4 4 5

Design a Class for Dynamic Arrays

In Java, the size of an array is fixed when it is created. Elements are not allowed to be inserted or

removed. However, it is possible to implement a dynamic array by allocating a new array and

copying the contents from the old array to the new one.

A dynamic array has variable size and allows elements to be added or removed. For this, we can

allocate a fixed-size array and divide it into two parts:

 the first part stores the elements of the dynamic array and

 The second part is reserved, but not used.

Then we can add or remove elements at the end of the array by using the reserved space, until

this space is completely consumed. After that, we create a bigger array and copy the contents of

the old array to the new one.

 Logical size (size): the number of elements in the dynamic array

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

6/54

 Capacity: the physical size of the internal array (the maximum possible size without

relocating storage)

We now design a class DynamicArray represents dynamic arrays of integers. It has two

attributes:

 int[] data: an integer array, and

 int size: the logical size, the number of elements used

The capacity of this dynamic array is simply data. Length.

An important method we need is to add elements to the end of the dynamic array. This method

should provide automatic extension if the capacity is not large enough to hold the added element.

In summary, we wish to design the class DynamicArray with the following members:

Attributes / Constructors / Methods:

 int[] data: the array storing the elements

 int size: the number of elements

 DynamicArray(): initialize this dynamic array with size 0

 DynamicArray(int capacity): initialize this dynamic array with the capacity

 int get(int index): get the element at the specified index

 int set(int index, int element): set the value of the element at the specified index

 boolean add(int element): add the element to the end of the array

 void ensureCapacity(int minCapacity): increase the capacity

 int size(): return the size of the dynamic array

 boolean isEmpty(): check whether the array is empty

 void clear(): clean up the elements

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

7/54

Java String Class

String is a sequence of characters, for e.g. “Hello” is a string of 5 characters. In java,

string is an immutable object which means it is constant and can cannot be changed once it has

been created. In this tutorial we will learn about String class and String methods in detail along

with many other Java String tutorials.

Creating a String

There are two ways to create a String in Java

1. String literal

2. Using new keyword

String literal

In java, Strings can be created like this: Assigning a String literal to a String instance:

String str1 = "Welcome";

String str2 = "Welcome";

Using New Keyword

As we saw above that when we tried to assign the same string object to two different

literals, compiler only created one object and made both of the literals to point the same object.

To overcome that approach we can create strings like this:

String str1 = new String("Welcome");

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

8/54

String str2 = new String("Welcome");

In this case compiler would create two different objects in memory having the same string.

A Simple Java String Example

public class Example{

 public static void main(String args[]){

 //creating a string by java string literal

 String str = "Beginnersbook";

 char arrch[]={'h','e','l','l','o'};

 //converting char array arrch[] to string str2

 String str2 = new String(arrch);

 //creating another java string str3 by using new keyword

 String str3 = new String("Java String Example");

 //Displaying all the three strings

 System.out.println(str);

 System.out.println(str2);

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

9/54

 System.out.println(str3); }}

Output:

Beginnersbook

hello

Creating and using String Objects

String class

It is a predefined class in java.lang package can be used to handle the String. String

class is immutable that means whose content cannot be changed at the time of execution of

program.

String class object is immutable that means when we create an object of String class it never

changes in the existing object.

Example:

classStringHandling{ Output:

publicstaticvoid main(String arg[]){ java

String s=newString("java");

s.concat("software");

System.out.println(s);}}

Explanation: Here we cannot change the object of String class so output is only java not java

software.

Manipulating String

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

10/54

1. length()

length(): This method is used to get the number of character of any string.

Example

classStringHandling { Output

publicstaticvoid main(String arg[]) { Length: 4

int l;

String s=newString("Java");

l=s.length();

System.out.println("Length: "+l);}}

2. charAt(index)

charAt(): This method is used to get the character at a given index value.

Example

classStringHandling{ Output

publicstaticvoid main(String arg[]){ Character: v

char c;

String s=newString("Java");

c=s.charAt(2);

System.out.println("Character: "+c);}}

3. toUpperCase()

toUpperCase(): This method is use to convert lower case string into upper case.

Example Output

classStringHandling{ String: JAVA

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

11/54

publicstaticvoid main(String arg[]){

String s="Java";

System.out.println("String: "+s.toUpperCase());}}

4. toLowerCase()

toLowerCase(): This method is used to convert lower case string into upper case.

Example Output

classStringHandling{ String: java

publicstaticvoid main(String arg[]){

String s="JAVA";

System.out.println("String: "+s.toLowerCase());}}

5. concat()

concat(): This method is used to combined two string.

Example Output

classStringHandling{ Combined String: HiteshRaddy

publicstaticvoid main(String arg[]){

String s1="Hitesh";

String s2="Raddy";

System.out.println("Combined String: "+s1.concat(s2));}}

6. equals()

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

12/54

equals(): This method is used to compare two strings, It return true if strings are same

otherwise return false. It is case sensitive method.

Example Output

classStringHandling{ Compare String: false

publicstaticvoid main(String arg[]){ Compare String: true

String s1="Hitesh";

String s2="Raddy";

String s3="Hitesh";

System.out.println("Compare String: "+s1.equals(s2));

System.out.println("Compare String: "+s1.equals(s3));}}

7. equalsIgnoreCase()

equalsIgnoreCase(): This method is case insensitive method, It return true if the contents of

both strings are same otherwise false.

Example Output

classStringHandling{ Compare String: true

publicstaticvoid main(String arg[]){ Compare String: false

String s1="Hitesh";

String s2="HITESH";

String s3="Raddy";

System.out.println("Compare String: "+s1.equalsIgnoreCase(s2));

System.out.println("Compare String: "+s1.equalsIgnoreCase(s3));}}

8. compareTo()

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

13/54

compareTo(): This method is used to compare two strings by taking unicode values, It return

0 if the string are same otherwise return +ve or -ve integer values.

Example Output

classStringHandling{ Strings are not same

publicstaticvoid main(String arg[]){

String s1="Hitesh";

String s2="Raddy";

int i;

i=s1.compareTo(s2);

if(i==0){

System.out.println("Strings are same");}

else{

System.out.println("Strings are not same");}}}

9.startsWith()

startsWith(): This method return true if string is start with given another string, otherwise it

returns false.

Example Output

classStringHandling{ true

publicstaticvoid main(String arg[]){

String s="Java is programming language";

System.out.println(s.startsWith("Java"));}}

10. endsWith()

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

14/54

endsWith(): This method return true if string is end with given another string, otherwise it

returns false.

Example Output

classStringHandling{ true

publicstaticvoid main(String arg[]){

String s="Java is programming language";

System.out.println(s.endsWith("language"));}}

11. subString()

subString(): This method is used to get the part of given string.

Example:1 Output

classStringHandling{ programming language

publicstaticvoid main(String arg[]){

String s="Java is programming language";

System.out.println(s.substring(8));// 8 is starting index}}

Example:2 Output

classStringHandling{ prog

publicstaticvoid main(String arg[]){

String s="Java is programming language";

System.out.println(s.substring(8,12));}}

12. trim()

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

15/54

trim(): This method remove space which are available before starting of string and after

ending of string.

Example Output

classStringHandling{ Java is programming language

publicstaticvoid main(String arg[]){

String s=" Java is programming language ";

System.out.println(s.trim());}}

13. split()

split(): This method is used to divide the given string into number of parts based on delimiter

(special symbols like @ space ,).

Example Output

classStringHandling{ contact

publicstaticvoid main(String arg[]){ @tutorial4us.com

String s="contact@tutorial4us.com";

String[] s1=s.split("@");// divide string based on @

for(String c:s1)// foreach loop {

System.out.println(c);}}}

14. replace()

replace(): This method is used to return a duplicate string by replacing old character with new

character.

Note: In this method data of original string will never be modify.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

16/54

Example Output

classStringHandling{ kava

publicstaticvoid main(String arg[]){

String s1="java";

String s2=s1.replace('j','k');

System.out.println(s2);}}

Immutable String in Java

In java, string objects are immutable. Immutable simply means unmodifiable or unchangeable.

Once string object is created its data or state can't be changed but a new string object is created.

Let's try to understand the immutability concept by the example given below:

class Testimmutablestring{

 public static void main(String args[]){

 String s="Sachin";

 s.concat(" Tendulkar");//concat() method appends the string at the end

 System.out.println(s);//will print Sachin because strings are immutable objects } }

Example:

Output:Sachin

Now it can be understood by the diagram given below. Here Sachin is not changed but a new

object is created with sachintendulkar. That is why string is known as immutable.

http://www.javatpoint.com/opr/test.jsp?filename=Testimmutablestring

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

17/54

As you can see in the above figure that two objects are created but s reference variable still refers

to "Sachin" not to "Sachin Tendulkar".

But if we explicitely assign it to the reference variable, it will refer to "Sachin Tendulkar"

object.For example:

class Testimmutablestring1{

 public static void main(String args[]){

 String s="Sachin";

 s=s.concat(" Tendulkar");

 System.out.println(s); } }

Example:

http://www.javatpoint.com/opr/test.jsp?filename=Testimmutablestring1

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

18/54

Output:Sachin Tendulkar

In such case, s points to the "Sachin Tendulkar". Please notice that still sachin object is not

modified.

Passing Strings To & From Methods

Java StringBuffer class

Java StringBuffer class is used to create mutable (modifiable) string. The StringBuffer class in

java is same as String class except it is mutable i.e. it can be changed.

Important Constructors of StringBuffer class

Constructor Description

StringBuffer() Creates an empty string buffer with the initial capacity of 16.

StringBuffer(String str) Creates a string buffer with the specified string.

StringBuffer(int

capacity)

Creates an empty string buffer with the specified capacity as

length.

Important methods of StringBuffer class

What is mutable string?

A string that can be modified or changed is known as mutable string. StringBuffer and

StringBuilder classes are used for creating mutable string.

1) StringBuffer append() method

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

19/54

The append() method concatenates the given argument with this string.

Example:

class StringBufferExample{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello ");

sb.append("Java");//now original string is changed

System.out.println(sb);//prints Hello Java } }

2) StringBuffer insert() method

The insert() method inserts the given string with this string at the given position.

Example:

class StringBufferExample2{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello ");

sb.insert(1,"Java");//now original string is changed

System.out.println(sb);//prints HJavaello } }

3) StringBuffer replace() method

The replace() method replaces the given string from the specified beginIndex and endIndex.

Example:

class StringBufferExample3{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello");

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

20/54

sb.replace(1,3,"Java");

System.out.println(sb);//prints HJavalo } }

4) StringBuffer delete() method

The delete() method of StringBuffer class deletes the string from the specified beginIndex to

endIndex.

Example:

class StringBufferExample4{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello"); sb.delete(1,3);

System.out.println(sb);//prints Hllo } }

5) StringBuffer reverse() method

The reverse() method of StringBuilder class reverses the current string.

Example:

class StringBufferExample5{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello");

sb.reverse();

System.out.println(sb);//prints olleH } }

6) StringBuffer capacity() method

The capacity() method of StringBuffer class returns the current capacity of the buffer. The

default capacity of the buffer is 16. If the number of character increases from its current capacity,

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

21/54

it increases the capacity by (oldcapacity*2)+2. For example if your current capacity is 16, it will

be (16*2)+2=34.

Example:

class StringBufferExample6{

public static void main(String args[]){

StringBuffer sb=new StringBuffer();

System.out.println(sb.capacity());//default 16

sb.append("Hello");

System.out.println(sb.capacity());//now 16

sb.append("java is my favourite language");

System.out.println(sb.capacity());//now (16*2)+2=34 i.e (oldcapacity*2)+2 } }

Java Scanner class

There are various ways to read input from the keyboard; the java.util.Scanner class is one of

them.

The Java Scanner class breaks the input into tokens using a delimiter that is whitespace by

default. It provides many methods to read and parse various primitive values.

Java Scanner class is widely used to parse text for string and primitive types using regular

expression.

Java Scanner class extends Object class and implements Iterator and Closeable interfaces.

Commonly used methods of Scanner class

There is a list of commonly used Scanner class methods:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

22/54

Method Description

public String next() it returns the next token from the scanner.

public String nextLine() it moves the scanner position to the next line and returns the

value as a string.

public byte nextByte() it scans the next token as a byte.

public short nextShort() it scans the next token as a short value.

public int nextInt() it scans the next token as an int value.

public long nextLong() it scans the next token as a long value.

public float nextFloat() it scans the next token as a float value.

public double nextDouble() it scans the next token as a double value.

Java Scanner Example to get input from console

Let's see the simple example of the Java Scanner class which reads the int, string and double

value as an input:

import java.util.Scanner;

class ScannerTest{

 public static void main(String args[]){

 Scanner sc=new Scanner(System.in);

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page

23/54

 System.out.println("Enter your rollno");

 int rollno=sc.nextInt();

 System.out.println("Enter your name");

 String name=sc.next();

 System.out.println("Enter your fee");

 double fee=sc.nextDouble();

 System.out.println("Rollno:"+rollno+" nam

e:"+name+" fee:"+fee);

 sc.close(); } }

Output:

Enter your rollno

 111

 Enter your name

 Ratan

 Enter

 450000

 Rollno:111 name:Ratan fee:450000

Java Scanner Example with delimiter

Let's see the example of Scanner class with delimiter. The \s represents whitespace.

import java.util.*;

public class ScannerTest2{

public static void main(String args[]){

String input = "10 tea 20 coffee 30 tea buisc

uits";

Scanner s = new Scanner(input).useDelimite

r("\\s");

 System.out.println(s.nextInt());

 System.out.println(s.next());

System.out.println(s.nextInt());

System.out.println(s.next()); s.close(); }}

Output:

10

tea

20

coffee

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 24/54

Simple I/O using System. out

Java I/O (Input and Output) is used to process the input and produce the output.

Java uses the concept of stream to make I/O operation fast. The java.io package contains all the classes

required for input and output operations.

We can perform file handling in java by Java I/O API.

Stream

A stream is a sequence of data. In Java a stream is composed of bytes. It's called a stream because it is like a

stream of water that continues to flow.

In java, 3 streams are created for us automatically. All these streams are attached with console.

1) System.out: standard output stream

2) System.in: standard input stream

3) System.err: standard error stream

Let's see the code to print output and error message to the console.

System.out.println("simple message");

System.err.println("error message");

Let's see the code to get input from console.

int i=System.in.read();//returns ASCII code of 1st character

System.out.println((char)i);//will print the character

OutputStream vs InputStream

The explanation of OutputStream and InputStream classes are given below:

OutputStream

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 25/54

Java application uses an output stream to write data to a destination, it may be a file, an array, peripheral

device or socket.

InputStream

Java application uses an input stream to read data from a source, it may be a file, an array, peripheral device

or socket.

Let's understand working of Java OutputStream and InputStream by the figure given below.

OutputStream class

OutputStream class is an abstract class. It is the super class of all classes representing an output stream of

bytes. An output stream accepts output bytes and sends them to some sink.

Useful methods of OutputStream

Method Description

1) public void write(int)throws IOException is used to write a byte to the current output stream.

2) public void write(byte[])throws IOException is used to write an array of byte to the current

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 26/54

output stream.

3) public void flush()throws IOException flushes the current output stream.

4) public void close()throws IOException is used to close the current output stream.

OutputStream Hierarchy

InputStream class

InputStream class is an abstract class. It is the super class of all classes representing an input stream of bytes.

Useful methods of InputStream

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 27/54

Method Description

1) public abstract int read()throws

IOException

reads the next byte of data from the input stream. It

returns -1 at the end of file.

2) public int available()throws

IOException

returns an estimate of the number of bytes that can be

read from the current input stream.

3) public void close()throws

IOException

is used to close the current input stream.

InputStream Hierarchy

Java FileOutputStream class

https://www.javatpoint.com/java-fileoutputstream-class

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 28/54

Character Stream Vs Byte Stream in Java

I/O Stream
A stream is a method to sequentially access a file. I/O Stream means an input source or output destination

representing different types of sources e.g. disk files.The java.io package provides classes that allow you to

convert between Unicode character streams and byte streams of non-Unicode text.

Stream – A sequence of data.

Input Stream: reads data from source.

Output Stream: writes data to destination.

Character Stream
In Java, characters are stored using Unicode conventions (Refer this for details). Character stream

automatically allows us to read/write data character by character. For example FileReader and FileWriter are

character streams used to read from source and write to destination.

// Java Program illustrating that we can read a file in

// a human readable format using FileReader

importjava.io.*; // Accessing FileReader, FileWriter, IOException

publicclassGfG{

 publicstaticvoidmain(String[] args) throwsIOException {

https://docs.oracle.com/javase/tutorial/java/data/characters.html

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 29/54

 FileReader sourceStream = null;

 try

 {

 sourceStream = newFileReader("test.txt");

 // Reading sourcefile and writing content to

 // target file character by character.

 inttemp;

 while((temp = sourceStream.read()) != -1)

 System.out.println((char)temp); }

 finally {

 // Closing stream as no longer in use

 if(sourceStream != null)

 sourceStream.close(); } }}

Output:

Shows contents of file test.txt

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 30/54

Byte Stream

Byte streams process data byte by byte (8 bits). For example FileInputStream is used to read from source and

FileOutputStream to write to the destination.

// Java Program illustrating the Byte Stream to copy

// contents of one file to another file.

importjava.io.*;

publicclassBStream{

 publicstaticvoidmain(String[] args) throwsIOException {

 FileInputStream sourceStream = null;

 FileOutputStream targetStream = null;

 try {

 sourceStream = newFileInputStream("sorcefile.txt");

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 31/54

 targetStream = newFileOutputStream ("targetfile.txt");

 // Reading source file and writing content to target

 // file byte by byte

 inttemp;

 while((temp = sourceStream.read()) != -1)

 targetStream.write((byte)temp); }

 finally {

 if(sourceStream != null)

 sourceStream.close();

 if(targetStream != null)

 targetStream.close(); } }}

When to use Character Stream over Byte Stream?

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 32/54

 In Java, characters are stored using Unicode conventions. Character stream is useful when we want to

process text files. These text files can be processed character by character. A character size is typically

16 bits.

When to use Byte Stream over Character Stream?

 Byte oriented reads byte by byte. A byte stream is suitable for processing raw data like binary files.

Notes:

 Names of character streams typically end with Reader/Writer and names of byte streams end with

InputStream/OutputStream

 The streams used in example codes are unbuffered streams and less efficient. We typically use them

with buffered readers/writers for efficiency. We will soon be discussing use

BufferedReader/BufferedWriter (for character stream) and

BufferedInputStream/BufferedOutputStream (for byte stream) classes.

 It is always recommended to close the stream if it is no longer in use. This ensures that the streams

won’t be affected if any error occurs.

 The above codes may not run in online compilers as files may not exist.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 33/54

File I/O

In Java, we can read data from files and also write data in files.

We do these using streams. Java has many input and output streams that are used to read and write data.

Same as a continuous flow of water is called water stream, in the same way input and output flow of data is

called stream.

Stream

Java provides many input and output stream classes which are used to read and write.

Streams are of two types.

 Byte Stream

 Character Stream

Let's look at the two streams one by one.

Byte Stream

It is used in the input and output of byte.

We do this with the help of different Byte stream classes. Two most commonly used Byte stream classes

are FileInputStream and FileOutputStream. Some of the Byte stream classes are listed below.

Byte Stream class Description

BufferedInputStream handles buffered input stream

BufferedOutputStream handles buffered output stream

FileInputStream used to read from a file

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 34/54

FileOutputStream used to write to a file

InputStream Abstract class that describe input stream

OutputStream Abstract class that describe output stream

Character Stream

It is used in the input and output of characters.

For input and output of characters, we have Character stream classes. Two most commonly used Character

stream classes are FileReader and FileWriter. Below is the list of some Character Stream classes.

Character Stream class Description

BufferedReader handles buffered input stream

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 35/54

Java OOPs Concepts

Object Oriented Programming is a paradigm that provides many concepts such as inheritance, data

binding, polymorphism etc.

Simula is considered as the first object-oriented programming language. The programming paradigm where

everything is represented as an object, is known as truly object-oriented programming language.

Smalltalk is considered as the first truly object-oriented programming language.

BufferedWriter handles buffered output stream

FileReader used to read from a file

FileWriter used to write to a file

InputStreamReader translate input from byte to character

OutputStreamReader translate character to byte output

Reader Abstract class that describe input stream

Writer Abstract class that describe output stream

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 36/54

OOPs (Object Oriented Programming System)

Object means a real word entity such as pen, chair, table etc. Object-Oriented Programming is a

methodology or paradigm to design a program using classes and objects. It simplifies the software

development and maintenance by providing some concepts:

o Object

o Class

o Inheritance

o Polymorphism

o Abstraction

o Encapsulation

Object

Any entity that has state and behavior is known as an object. For example: chair, pen, table, keyboard, bike

etc. It can be physical and logical.

Class

Collection of objects is called class. It is a logical entity.

Inheritance

When one object acquires all the properties and behaviors of parent object i.e. known as inheritance. It

provides code reusability. It is used to achieve runtime polymorphism.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 37/54

Polymorphism

When one task is performed by different ways i.e. known as polymorphism. For example: to convince the

customer differently, to draw something e.g. shape or rectangle etc.

In java, we use method overloading and method overriding to achieve polymorphism.

Another example can be to speak something e.g. cat speaks meaw, dog barks woof etc.

Abstraction

Hiding internal details and showing functionality is known as abstraction. For example: phone call, we

don't know the internal processing.

In java, we use abstract class and interface to achieve abstraction.

Encapsulation

Binding (or wrapping) code and data together into a single unit is known as encapsulation. For

example: capsule, it is wrapped with different medicines.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 38/54

A java class is the example of encapsulation. Java bean is the fully encapsulated class because all the data

members are private here.

Defining & Using Classes

Declaration of Class:

A class is declared by use of the class keyword. The class body is enclosed between curly braces {and}. The

data or variables, defined within a class are called instance variables. The code is contained within methods.

Collectively, the methods and variables defined within a class are called members of the class.

Declaration of Instance Variables:

Variables defined within a class are called instance variables because each instance of the class (that is, each

object of the class) contains its own copy of these variables. Thus, the data for one object is separate and

unique from the data for another. An instance variable can be declared public or private or default (no

modifier). When we do not want our variable’s value to be changed out-side our class we should declare

them private. public variables can be accessed and changed from outside of the class. We will have more

information in OOP concept tutorial. The syntax is shown below.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 39/54

Access Modifiers in java

There are two types of modifiers in java: access modifiers and non-access modifiers.

The access modifier in java specifies accessibility (scope) of a data member, method, constructor or class.

There are 4 types of java access modifiers:

1. private

2. default

3. protected

4. public

There are many non-access modifiers such as static, abstract, synchronized, native, volatile, transient etc.

Here, we will learn access modifiers.

Constructor in Java

Constructor in java is a special type of method that is used to initialize the object.

Java constructor is invoked at the time of object creation. It constructs the values i.e. provides data for the

object that is why it is known as constructor.

Rules for creating java constructor

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 40/54

There are basically two rules defined for the constructor.

1. Constructor name must be same as its class name

2. Constructor must have no explicit return type

Types of java constructors

There are two types of constructors:

1. Default constructor (no-arg constructor)

2. Parameterized constructor

Java Default Constructor

A constructor that has no parameter is known as default constructor.

Syntax of default constructor:

1. <class_name>(){}

Example of default constructor

In this example, we are creating the no-arg constructor in the Bike class. It will be invoked at the time of

object creation.

class Bike1{

Bike1(){System.out.println("Bike is created");}

public static void main(String args[]){

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 41/54

Bike1 b=new Bike1(); } }

Output:

Bike is created

Rule: If there is no constructor in a class, compiler automatically creates a default constructor.

What is the purpose of default constructor?

Default constructor provides the default values to the object like 0, null etc. depending on the type.

Example of default constructor that displays the default values

class Student3{

int id;

String name;

void display(){System.out.println(id+" "+name);}

public static void main(String args[]){

Student3 s1=new Student3();

Student3 s2=new Student3();

s1.display();

s2.display(); }

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 42/54

0 null

0 null

Explanation: In the above class, you are not creating any constructor so compiler provides you a default

constructor. Here 0 and null values are provided by default constructor.

Java parameterized constructor

A constructor that has parameters is known as parameterized constructor.

Why use parameterized constructor?

Parameterized constructor is used to provide different values to the distinct objects.

Example of parameterized constructor

In this example, we have created the constructor of Student class that has two parameters. We can have any

number of parameters in the constructor.

class Student4{

 int id;

 String name;

 Student4(int i,String n){

 id = i;

 name = n; }

 void display(){System.out.println(id+" "+name);}

 public static void main(String args[]){

 Student4 s1 = new Student4(111,"Karan");

 Student4 s2 = new Student4(222,"Aryan");

 s1.display();

 s2.display(); } }

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 43/54

Output:

111 Karan

222 Aryan

Declaration of Methods:

A method is a program module that contains a series of statements that carry out a task. To execute a method,

you invoke or call it from another method; the calling method makes a method call, which invokes the called

method. Any class can contain an unlimited number of methods, and each method can be called an unlimited

number of times. The syntax to declare method is given below.

Method Overloading in Java

If a class has multiple methods having same name but different in parameters, it is known as Method

Overloading.

If we have to perform only one operation, having same name of the methods increases the readability of the

program.

Suppose you have to perform addition of the given numbers but there can be any number of arguments, if

you write the method such as a(int,int) for two parameters, and b(int,int,int) for three parameters then it may

be difficult for you as well as other programmers to understand the behavior of the method because its name

differs.

So, we perform method overloading to figure out the program quickly.

Advantage of method overloading

Method overloading increases the readability of the program.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 44/54

Different ways to overload the method

There are two ways to overload the method in java

1. By changing number of arguments

2. By changing the data type

In java, Method Overloading is not possible by changing the return type of the method only.

1) Method Overloading: changing no. of arguments

In this example, we have created two methods, first add () methods perform addition of two numbers and

second add method performs addition of three numbers.

In this example, we are creating static methods so that we don't need to create instance for calling methods.

 class Adder{

static int add(int a,int b){return a+b;}

 static int add(int a,int b,int c){return a+b+c;}

 }

 class TestOverloading1{

 public static void main(String[] args){

 System.out.println(Adder.add(11,11));

 System.out.println(Adder.add(11,11,11)); }}

Output:

22

33

2) Method Overloading: changing data type of arguments

In this example, we have created two methods that differ in data type. The first add method receives two

integer arguments and second add method receives two double arguments.

 class Adder{

 static int add(int a, int b){return a+b;}

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 45/54

 static double add(double a, double b){return a+b;}

 }

 class TestOverloading2{

 public static void main(String[] args){

 System.out.println(Adder.add(11,11));

 System.out.println(Adder.add(12.3,12.6)); }}

Output:

22

24.9

Java passing object as parameter

Passing Object as Parameter:

package com.pritesh.programs;

class Rectangle {

 int length;

 int width;

Rectangle(int l, int b) {

 length = l;

 width = b; }

 void area(Rectangle r1) {

 int areaOfRectangle = r1.length * r1.width;

System.out.println("Area of Rectangle : " + areaOfRectangle); }}

class RectangleDemo {

publicstatic void main(String args[]) {

Rectangle r1 = newRectangle(10, 20);

 r1.area(r1); }}

Output of the program:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 46/54

Area of Rectangle: 200

Explanation:

We can pass Object of any class as parameter to a method in java.

1. We can access the instance variables of the object passed inside the called method.

area = r1.length * r1.width

3. It is good practice to initialize instance variables of an object before passing object as parameter to

method otherwise it will take default initial values.

Different Ways of Passing Object as Parameter:

Way 1 : By directly passing Object Name

void area(Rectangle r1) {

int areaOfRectangle = r1.length * r1.width;

 System.out.println("Area of Rectangle : " + areaOfRectangle); }

class RectangleDemo {

 public staticvoid main(String args[]) {

Rectangle r1 = new Rectangle(10, 20);

 r1.area(r1); }

Way 2 : By passing Instance Variables one by one

package com.pritesh.programs;

class Rectangle {

int length;

int width;

void area(int length, int width) {

int areaOfRectangle = length * width;

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 47/54

 System.out.println("Area of Rectangle : " + areaOfRectangle); }}

class RectangleDemo {

 public staticvoid main(String args[]) {

 Rectangle r1 = new Rectangle();

 Rectangle r2 = new Rectangle();

 r1.length = 20;

 r1.width = 10;

 r2.area(r1.length, r1.width); }}

Actually this is not a way to pass the object to method. but this program will explain you how to pass

instance variables of particular object to calling method.

Way 3 : We can pass only public data of object to the Method.

Suppose we made width variable of a class private then we cannot update value in a main method since it

does not have permission to access it.

private int width;

after making width private –

class RectangleDemo {

 public staticvoid main(String args[]) {

 Rectangle r1 = new Rectangle();

 Rectangle r2 = new Rectangle();

 r1.length = 20;

 r1.width = 10;

 r2.area(r1.length, r1.width); }}

Final Keyword in Java

The final keyword in java is used to restrict the user. The java final keyword can be used in many context.

Final can be:

1. variable

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 48/54

2. method

3. class

The final keyword can be applied with the variables, a final variable that have no value it is called blank final

variable or un initialized final variable. It can be initialized in the constructor only. The blank final variable

can be static also which will be initialized in the static block only. We will have detailed learning of these.

Let's first learn the basics of final keyword.

Java final class

If you make any class as final, you cannot extend it.

Example of final class

final class Bike{}

 class Honda1 extends Bike{

 void run(){System.out.println("running safely with 100kmph");}

 public static void main(String args[]){

 Honda1 honda= new Honda1();

 honda.run(); } }

Output: Compile Time Error

Object class in Java:

The Object class is the parent class of all the classes in java by default. In other words, it is the topmost class

of java.

The Object class is beneficial if you want to refer any object whose type you don't know. Notice that parent

class reference variable can refer the child class object, know as upcasting.

Let's take an example, there is getObject() method that returns an object but it can be of any type like

Employee,Student etc, we can use Object class reference to refer that object.

For example:

Object obj=getObject();//we don't know what object will be returned from this method

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 49/54

The Object class provides some common behaviors to all the objects such as object can be compared, object

can be cloned, object can be notified etc.

Methods of Object class:

The Object class provides many methods. They are as follows:

Method Description

public final Class getClass() Returns the Class class object of this

object. The Class class can further be

used to get the metadata of this class.

public int hashCode() returns the hashcode number for this

object.

public boolean equals(Object obj) compares the given object to this

object.

protected Object clone() throws creates and returns the exact copy

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 50/54

CloneNotSupportedException (clone) of this object.

public String toString() returns the string representation of this

object.

public final void notify() wakes up single thread, waiting on this

object's monitor.

public final void notifyAll() wakes up all the threads, waiting on

this object's monitor.

public final void wait(long

timeout)throws InterruptedException

causes the current thread to wait for

the specified milliseconds, until

another thread notifies (invokes

notify() or notifyAll() method).

public final void wait(long

timeout,int nanos)throws

InterruptedException

causes the current thread to wait for

the specified milliseconds and

nanoseconds, until another thread

notifies (invokes notify() or notifyAll()

method).

public final void wait()throws

InterruptedException

causes the current thread to wait, until

another thread notifies (invokes

notify() or notifyAll() method).

protected void finalize()throws

Throwable

is invoked by the garbage collector

before object is being garbage

collected.

Java Garbage Collection:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 51/54

In java, garbage means unreferenced objects.

Garbage Collection is process of reclaiming the runtime unused memory automatically. In other words, it is a

way to destroy the unused objects.

To do so, we were using free() function in C language and delete() in C++. But, in java it is performed

automatically. So, java provides better memory management.

Advantage of Garbage Collection

o It makes java memory efficient because garbage collector removes the unreferenced objects from

heap memory.

o It is automatically done by the garbage collector(a part of JVM) so we don't need to make extra

efforts.

How can an object be unreferenced?

There are many ways:

 By nulling the reference

 By assigning a reference to another

 By annonymous object etc.

1) By nulling a reference:

Employee e=new Employee();

e=null;

2) By assigning a reference to another:

Employee e1=new Employee();

Employee e2=new Employee();

e1=e2;//now the first object referred by e1 is available for garbage collection

3) By annonymous object:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 52/54

new Employee();

finalize() method

The finalize() method is invoked each time before the object is garbage collected. This method can be

used to perform cleanup processing. This method is defined in Object class

as:https://www.javatpoint.com/Garbage-Collectionhttps://www.javatpoint.com/Garbage-

Collectionhttps://www.javatpoint.com/Garbage-Collection

protected void finalize(){}

Note: The Garbage collector of JVM collects only those objects that are created by new keyword. So if you

have created any object without new, you can use finalize method to perform cleanup processing (destroying

remaining objects).

gc() method

The gc() method is used to invoke the garbage collector to perform cleanup processing. The gc() is found in

System and Runtime classes.https://www.javatpoint.com/Garbage-

Collectionhttps://www.javatpoint.com/Garbage-Collectionhttps://www.javatpoint.com/Garbage-Collection

public static void gc(){}

Note: Garbage collection is performed by a daemon thread called Garbage Collector (GC). This thread calls

the finalize() method before object is garbage collected.

Simple Example of garbage collection in java

public class TestGarbage1{

 public void finalize(){System.out.println("object is garbage collected");} Output:

 public static void main(String args[]){ object is garbage collected

 TestGarbage1 s1=new TestGarbage1(); object is garbage collected

 TestGarbage1 s2=new TestGarbage1();

 s1=null;

 s2=null;

https://www.javatpoint.com/Garbage-Collection
https://www.javatpoint.com/Garbage-Collection
https://www.javatpoint.com/Garbage-Collection
https://www.javatpoint.com/Garbage-Collection
https://www.javatpoint.com/Garbage-Collection
https://www.javatpoint.com/Garbage-Collection
https://www.javatpoint.com/Garbage-Collection
https://www.javatpoint.com/Garbage-Collection

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 53/54

 System.gc(); } }

Note: Neither finalization nor garbage collection are guaranteed.

POSSIBLE QUESTIONS

 Part A- Online Questions

 Part –B 2 MARKS

1. What is Java Array and its types?

2. What are the Advantage of Java Array?

3. Mention the Disadvantage of Java Array?

4. What is Dynamic Arrays?

5. Define Java String Class?

6. What is Immutable String in Java give example.

7. What is mutable string?

8. What is Stream?

9. What is OutputStream?

10. What is InputStream?

11. Define I/O Stream?

12. Define Character Stream and Byte Stream?

13. What are the Access Modifiers in java?

14. Mention the Types of java constructors.

15. What is the purpose of default constructor

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: II(Arrays & Strings) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 54/54

 Part –C 6 MARKS

1. Differentiate between String and String Buffer classes. Also write a program to append a given string.

2. Describe Class Constructors with example.

3. Illustrate Method Overloading with suitable program.

4. Explain 1-dimensional and multi-dimensional arrays in detail.

5. Explain the following with suitable program i) Garbage Collection ii) final classes

6. Write any five methods available in StringBuffer and write a program to reverse a string using

StringBuffer class.

7. Enlighten about the String Immutability & Equality with appropriate examples.

8. Explain the types of Array in a JAVA with examples.

9. Elaborate creation and operation on Strings with examples.

10. Explain OOPs (Object Oriented Programming System) in Java with example.

S.N

o
Questions opt1 opt2 opt3 opt4 Answer

1
A __________never returns a
value

class function method constructor constructor

2
 ___________can be used to
initialize the fields in the
object

 instance
variables

constructors methods none constructors

3
______refers to the use of
same thing for different
purposes

Overloading
 Dynamic
binding

message
loading

none Overloading

4
Single function name can be
used to handle different types
of tasks is known as

function
overloading

operator
overloading

polymorphism

encapsulatio
n

function
overloading

5
It is used to initialize the
member variables when we
create an object

Constructors destructors Overloading Overriding Constructors

6 It takes no parameters
Default
Constructors

Copy
Constructors

Parameter
Constructor

Function
Default
Constructors

7
It is required when objects are
required to perform a similar
task

Method
Overriding

Polymorphis
m

Static Binding
Method
Overloading

Method
Overloading

8
________ is an object that
contains elements of same
data type.

 Array Structure Class Object Array

9
What is the representation of
the third element in an array
called a?

 a[2] a(2) a[3] a(3) a[2]

10
Which of the following is

correct?

 int[] a = new

int[2];

 int a[] =

new int[2];

 int[] a = new

int(2);

 int a() =

new int[2];

 int[] a = new

int[2];

11
Which of the following

statements is valid?

 int i = new

int(30);

 double d[] =
new
double[30];

 char[] c =
new
char[4]{'a', 'b',
'c', 'd'};

 char[] c =

new char();

 double d[] =

new double[30];

12
the length of a string by
calling the ____ method

strlen() len() length() none length()

13
the character at a specified
index within a string by
calling ____

charAt() chatat() char() character() charAt()

14
To extract a single character
from a string , the
___________ method is used.

 charAt Stringto charone None charAt

15
To get the substring from a
string ___________ method is
used.

 getchars substr extract substring getchars

SUBJECT CODE: 17CSU201

UNIT II

KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE - 21
DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 CLASS : I B.Sc COMPUTER SCIENCE

BATCH : 2017-2020

 Part -A Online Examinations (1 mark questions)

SUBJECT: Programming in Java

16
 The ___________ method
compares the characters inside
the string.

 = = equivalent equals None equals

17
The ___________ operator
compares two objects
references to see if they refer

 = = equivalent equals None = =

18
The String method
___________ can be used to
determine ordering.

 StringTo CompareTo Compare CompareOf CompareTo

19
If the integer result of
CompareTo is negative, then
the string is ___________

 Equal Less Greater None Less

20
If the integer result of
CompareTo is positive, then
the string is ___________

 Equal Less Greater None Greater

21
The search for a certain
character or substring is done
using ___________ &

 index &
indexof

 index &
lastindex

 indexof &
lastindexof

 None
 indexof &
lastindexof

22
The replace method takes
___________ characters as
parameters.

1 2 3 4 2

23
___________ represents fixed
length immutable character
sequences.

 String Characters Variable Identifier String

24
When you extends a class, you
can change the behavior of a
method in the parent class.

 method
overriding.

 object
refernce

method
overloading

polymorphis
m

 method
overriding.

25
To add a finalizer to a class,
you simply define the ______
method

finalize() stop() exit() none finalize()

26
the new operator dynamically
________memory for an
object.

free allocates delete none allocates

27
________ dispatch is the
mechanism by which a call to
an overridden method is

Static method
Dynamic
method

overload none
Dynamic
method

28
 __________ is the one, which
creates more than one
methods with the same name

method
overriding

method
overloading

 function call inheritance
method
overloading

29
 static methods will not refer
the __________

this dot new public this

30
._________ is used to allocate
memory in the constructor

 Delete Binding Free new new

31
 Java supports a concept
called _______ which is just
opposite to initialization.

free finalization delete new finalization

32
 A class that cannot be
subclassed is called as
_________ class.

abstract final static methods final

33
.__________ enables an
object to initialize itself when
it is created

 Destructor constructor overloading none constructor

34
Subclass constructors can call
superclass constructors via the
________ keyword

 final protected inherit super super

35
.The __________ is special
because its name is the same
as the class name.

 Destructor static constructor
 none of the
above

 constructor

36
.A constructor that accepts no
parameters is called the
__________ constructor

 Copy default multiple
 none of the
above

 default

37
.Constructors are invoked
automatically when the
________ are created

 Datas classes objects
 none of the
above

 objects

38
.Constructors cannot be

 Inherited destroyed both a & b
 none of the
above

 Inherited

39
The constructors that can take
arguments are called
_________ constructors

 Copy multiple parameterized
 none of the
above

 parameterized

40
The concept of reading and
writing data as
______________ of either

stream file java.io reader stream

41
Java also uses the ______
class to manipulate files

stream File String Array File

42
To support input and output
package ________is used

java.util java.awt java.lang java.io java.io

43
 ______________ support
8_bit input and output
operations

ByteStreams InputStream OutputStream Writer ByteStreams

44
 ______________ support
16_bit Unicode character
input and output

ByteStreams InputStream OutputStream
Character
streams

Character
streams

45
Streams can be chained with
______________ to provide
enhanced functionality

DataInput DataOutput filters serializable filters

46
 ________ class in java does
not specify how information is
retrieved from or stored in files

stream File String Array File

47
The ________ class also
defines platform_dependent
constants that can be used to

stream File java.io reader File

48
 _____________ class defines
Java's model of streaming byte
input

ByteStreams InputStream OutputStream
Character
streams

InputStream

49
InputStream suports certain
methods, all of which throw
an IOException on error

ByteStreams InputStream OutputStream
Character
streams

InputStream

50
The ________ class define
byte input streams that are
connected to files

InputStream
OutputStrea
m

FileInputStrea
m

FileOutputSt
ream

FileInputStream

51
The ________ class define
byte output streams that are
connected to files

InputStream
OutputStrea
m

FileInputStrea
m

FileOutputSt
ream

FileOutputStrea
m

52
The FileInputStream class
provides an implementation
for the _________ methods

read() write() update() replace() read()

53
The FileOutputStream class
provides an implementation
for the _________ methods

read() write() update() replace() write()

54
The method provided by the
Reader class is

skip() write() flush() writeX() skip()

55
The method provided by the
Writer class is

read() flush() reset() skip() flush()

56
 The ________ operator is
used to access the instance
variables and method within

new dot this super dot

57
 Methods are called on an
instance of a class using the
_________ operator

new dot this super dot

58
 _________ is used inside of
any method to refer to the
current object.

 new dot this super this

59

The __________ method

terminates the program.

System.termin

ate(0);

System.halt(

0);
System.exit(0);

System.stop(

0);
System.exit(0);

60
The file produced by java
compiler ends with _______
file extension

Java html class applet class

SUBJECT:
Programming in Java

SUBJECT CODE: 17CSU201

KARPAGAM ACADEMY OF HIGHER EDUCATION
COIMBATORE - 21

DEPARTMENT OF COMPUTER SCIENCE,CA & IT
 CLASS : II B.Sc COMPUTER SCIENCE

BATCH : 2017-2020
 Part -A Online Examinations (1 mark questions)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 1/28

UNIT-III

SYLLABUS

Inheritance, Interfaces, Packages, Enumerations, Auto boxing and Metadata

Inheritance: (Single Level and Multilevel, Method Overriding, Dynamic Method Dispatch,

Abstract Classes), Interfaces and Packages, Extending interfaces and packages, Package and

Class Visibility, Using Standard Java Packages (util, lang, io, net), Wrapper Classes, Auto

boxing/Unboxing, Enumerations and Metadata.

Inheritance in Java

Inheritance in java is a mechanism in which one object acquires all the properties and

behaviors of parent object.

The idea behind inheritance in java is that you can create new classes that are built upon

existing classes. When you inherit from an existing class, you can reuse methods and fields of

parent class, and you can add new methods and fields also.

Inheritance represents the IS-A relationship, also known as parent-child relationship.

Why use inheritance in java

o For Method Overriding (so runtime polymorphism can be achieved).

o For Code Reusability.

Syntax of Java Inheritance

class Subclass-name extends Superclass-name

{

 //methods and fields

}

The extends keyword indicates that you are making a new class that derives from an existing

class. The meaning of "extends" is to increase the functionality.

In the terminology of Java, a class which is inherited is called parent or super class and the new

class is called child or subclass.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 2/28

Java Inheritance Example

As displayed in the above figure, Programmer is the subclass and Employee is the super class.

Relationship between two classes is Programmer IS-A Employee. It means that Programmer is

a type of Employee.

 class Employee{

 float salary=40000;

}

class Programmer extends Employee{

 int bonus=10000;

 public static void main(String args[]){

 Programmer p=new Programmer();

 System.out.println("Programmer salary is:"+p.salary);

 System.out.println("Bonus of Programmer is:"+p.bonus); } }

Example:

Programmer salary is:40000.0

Bonus of programmer is:10000

In the above example, Programmer object can access the field of own class as well as of

Employee class i.e. code reusability.

Types of inheritance in java

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 3/28

On the basis of class, there can be three types of inheritance in java: single, multilevel

and hierarchical.

In java programming, multiple and hybrid inheritance is supported through interface only.

Note: Multiple inheritances are not supported in java through class.

When a class extends multiple classes i.e. known as multiple inheritance.

For Example:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 4/28

Single Inheritance Example

File: TestInheritance.java

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class TestInheritance{

public static void main(String args[]){

Dog d=new Dog();

d.bark();

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 5/28

d.eat(); }}

Output:

barking...

eating...

Multilevel Inheritance Example

File: TestInheritance2.java

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class BabyDog extends Dog{

void weep(){System.out.println("weeping...");}

}

class TestInheritance2{

public static void main(String args[]){

BabyDog d=new BabyDog();

d.weep();

d.bark();

d.eat(); }}

Output:

weeping...

barking...

eating...

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 6/28

Method Overriding in Java

If subclass (child class) has the same method as declared in the parent class, it is known

as method overriding in java.

In other words, if subclass provides the specific implementation of the method that has been

provided by one of its parent class, it is known as method overriding.

Usage of Java Method Overriding

o Method overriding is used to provide specific implementation of a method that is already

provided by its super class.

o Method overriding is used for runtime polymorphism

Rules for Java Method Overriding

1. method must have same name as in the parent class

2. Method must have same parameter as in the parent class.

3. Must be IS-A relationship (inheritance).

Understanding the problem without method overriding

Let's understand the problem that we may face in the program if we don't use method

overriding.

class Vehicle{

 void run(){System.out.println("Vehicle is running");}

}

class Bike extends Vehicle{

 public static void main(String args[]){

 Bike obj = new Bike();

 obj.run(); } }

Output: Vehicle is running

Problem is that I have to provide a specific implementation of run() method in subclass that is

why we use method overriding.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 7/28

Example of method overriding

In this example, we have defined the run method in the subclass as defined in the parent class

but it has some specific implementation. The name and parameter of the method is same and

there is IS-A relationship between the classes, so there is method overriding.

class Vehicle{

void run(){System.out.println("Vehicle is running");}

}

class Bike2 extends Vehicle{

void run(){System.out.println("Bike is running safely");}

public static void main(String args[]){

Bike2 obj = new Bike2();

obj.run();

}

Output: Bike is running safely

Real example of Java Method Overriding

Consider a scenario, Bank is a class that provides functionality to get rate of interest. But,

rate of interest varies according to banks. For example, SBI, ICICI and AXIS banks could

provide 8%, 7% and 9% rate of interest.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 8/28

class Bank{

int getRateOfInterest(){return 0;}

}

 class SBI extends Bank{

int getRateOfInterest(){return 8;}

}

 class ICICI extends Bank{

int getRateOfInterest(){return 7;}

}

class AXIS extends Bank{

int getRateOfInterest(){return 9;}

}

 class Test2{

public static void main(String args[]){

SBI s=new SBI();

ICICI i=new ICICI();

AXIS a=new AXIS();

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 9/28

System.out.println("SBI Rate of Interest: "+s.getRateOfInterest());

System.out.println("ICICI Rate of Interest: "+i.getRateOfInterest());

System.out.println("AXIS Rate of Interest: "+a.getRateOfInterest()); } }

Output:

SBI Rate of Interest: 8

ICICI Rate of Interest: 7

AXIS Rate of Interest: 9

Can we override static method?

No, static method cannot be overridden. It can be proved by runtime polymorphism, so we will

learn it later.

Why we cannot override static method?

Because static method is bound with class whereas instance method is bound with object.

Static belongs to class area and instance belongs to heap area.

Can we override java main method?

No, because main is a static method.

Difference between method Overloading and Method Overriding in java

There are many differences between method overloading and method overriding in java. A list of

differences between method overloading and method overriding are given below:

No. Method Overloading Method Overriding

1) Method overloading is used to increase the

readability of the program.

Method overriding is used to

provide the specific

implementation of the method

that is already provided by its

super class.

2) Method overloading is performed within

class.

Method overriding occurs in

two classes that have IS-A

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 10/28

(inheritance) relationship.

3) In case of method overloading, parameter

must be different.

In case of method overriding,

parameter must be same.

4) Method overloading is the example

of compile time polymorphism.

Method overriding is the

example of run time

polymorphism.

5) In java, method overloading can't be

performed by changing return type of the

method only. Return type can be same or

different in method overloading. But you

must have to change the parameter.

Return type must be same or

covariant in method

overriding.

Java Method overloading example

class OverloadingExample{

static int add(int a,int b){return a+b;}

static int add(int a,int b,int c){return a+b+c;} }

Java Method Overriding example

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void eat(){System.out.println("eating bread...");}

}

Polymorphism in Java

Polymorphism in java is a concept by which we can perform a single action by different

ways. Polymorphism is derived from 2 greek words: poly and morphs. The word "poly" means

many and "morphs" means forms. So polymorphism means many forms.

There are two types of polymorphism in java:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 11/28

1. Compile time polymorphism

2. Runtime polymorphism.

We can perform polymorphism in java by method overloading and method overriding.

If you overload static method in java, it is the example of compile time polymorphism. Here, we

will focus on runtime polymorphism in java.

Runtime Polymorphism in Java

Runtime polymorphism or Dynamic Method Dispatch is a process in which a call to

an overridden method is resolved at runtime rather than compile-time.

In this process, an overridden method is called through the reference variable of a superclass.

The determination of the method to be called is based on the object being referred to by the

reference variable.

Let's first understand the upcasting before Runtime Polymorphism.

Upcasting

When reference variable of Parent class refers to the object of Child class, it is known as

upcasting.

For example:

class A{}

class B extends A{}

A a=new B();//upcasting

Java Runtime Polymorphism Example: Shape

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 12/28

class Shape{

void draw(){System.out.println("drawing...");}

}

class Rectangle extends Shape{

void draw(){System.out.println("drawing rectangle...");}

}

class Circle extends Shape{

void draw(){System.out.println("drawing circle...");}

}

class Triangle extends Shape{

void draw(){System.out.println("drawing triangle...");}

}

class TestPolymorphism2{

public static void main(String args[]){

Shape s;

s=new Rectangle();

s.draw();

s=new Circle();

s.draw();

s=new Triangle();

s.draw();

}

}

Output:

drawing rectangle...

drawing circle...

drawing triangle...

Abstract class in Java

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 13/28

A class that is declared with abstract keyword is known as abstract class in java. It can

have abstract and non-abstract methods (method with body).

Abstraction in Java

Abstraction is a process of hiding the implementation details and showing only

functionality to the user.

Another way, it shows only important things to the user and hides the internal details for

example sending sms, you just type the text and send the message. You don't know the internal

processing about the message delivery.

Abstraction lets you focus on what the object does instead of how it does it.

Ways to achieve Abstraction

There are two ways to achieve abstraction in java

1. Abstract class (0 to 100%)

2. Interface (100%)

Abstract class in Java

A class that is declared as abstract is known as abstract class. It needs to be extended

and its method implemented. It cannot be instantiated.

Example abstract class

abstract class A{ }

Abstract method

A method that is declared as abstract and does not have implementation is known as

abstract method.

Example abstract method

abstract void printStatus();//no body and abstract

Example of abstract class that has abstract method

In this example, Bike the abstract class that contains only one abstract method run. It

implementation is provided by the Honda class.

abstract class Bike{

 abstract void run();

}

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 14/28

class Honda4 extends Bike{

void run(){System.out.println("running safely..");}

public static void main(String args[]){

 Bike obj = new Honda4();

 obj.run(); } }

Output: running safely.

Another example of abstract class in java

File: TestBank.java

abstract class Bank{

abstract int getRateOfInterest();

}

class SBI extends Bank{

int getRateOfInterest(){return 7;}

}

class PNB extends Bank{

int getRateOfInterest(){return 8;}

}

 class TestBank{

public static void main(String args[]){

Bank b;

b=new SBI();

System.out.println("Rate of Interest is: "+b.getRateOfInterest()+" %");

b=new PNB();

System.out.println("Rate of Interest is: "+b.getRateOfInterest()+" %"); }}

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 15/28

Rate of Interest is: 7 %

Rate of Interest is: 8 %

Abstract class having constructor, data member, methods etc.

An abstract class can have data member, abstract method, method body, constructor and

even main() method.

File: TestAbstraction2.java

//example of abstract class that have method body

 abstract class Bike{

 Bike(){System.out.println("bike is created");}

 abstract void run();

 void changeGear(){System.out.println("gear changed");}

 }

 class Honda extends Bike{

 void run(){System.out.println("running safely..");}

 }

 class TestAbstraction2{

 public static void main(String args[]){

 Bike obj = new Honda();

 obj.run();

 obj.changeGear();

 }

}

Output:

 bike is created

 running safely..

 gear changed

Rule: If there is any abstract method in a class, that class must be abstract.

class Bike12{

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 16/28

abstract void run();

}

Output: compile time error

Rule: If you are extending any abstract class that has abstract method, you must either

provide the implementation of the method or make this class abstract.

Java Package

A java package is a group of similar types of classes, interfaces and sub-packages.

Package in java can be categorized in two form, built-in package and user-defined package.

There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql etc.

Here, we will have the detailed learning of creating and using user-defined packages.

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be easily

maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 17/28

Simple example of java package

The package keyword is used to create a package in java.

//save as Simple.java

package mypack;

public class Simple{

 public static void main(String args[]){

 System.out.println("Welcome to package"); } }

How to compile java package

If you are not using any IDE, you need to follow the syntax given below:

javac -d directory javafilename

For example

javac -d . Simple.java

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 18/28

The -d switch specifies the destination where to put the generated class file. You can use any

directory name like /home (in case of Linux), d:/abc (in case of windows) etc. If you want to

keep the package within the same directory, you can use . (dot).

How to run java package program

You need to use fully qualified name e.g. mypack. Simple etc to run the class.

To Compile: javac -d . Simple.java

To Run: java mypack.Simple

Output: Welcome to package

The -d is a switch that tells the compiler where to put the class file i.e. it represents destination.

The . represents the current folder.

How to access package from another package?

There are three ways to access the package from outside the package.

1. import package.*;

2. import package.classname;

3. fully qualified name.

1) Using packagename.*

If you use package.* then all the classes and interfaces of this package will be accessible

but not subpackages.

The import keyword is used to make the classes and interface of another package accessible to

the current package.

Example of package that import the packagename.*

//save by A.java

package pack;

public class A{

 public void msg(){System.out.println("Hello");}

}

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 19/28

//save by B.java

package mypack;

import pack.*;

 class B{

 public static void main(String args[]){

 A obj = new A();

 obj.msg(); } }

Output: Hello

2) Using packagename.classname

If you import package.classname then only declared class of this package will be

accessible.

Example of package by import package.classname

//save by A.java

package pack;

public class A{

public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.A;

class B{

public static void main(String args[]){

A obj = new A();

 obj.msg(); } }

Output: Hello

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 20/28

3) Using fully qualified name

If you use fully qualified name then only declared class of this package will be

accessible. Now there is no need to import. But you need to use fully qualified name every time

when you are accessing the class or interface.

It is generally used when two packages have same class name e.g. java.util and java.sql packages

contain Date class.

Example of package by import fully qualified name

//save by A.java

package pack;

public class A{

 public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

class B{

public static void main(String args[]){

pack.A obj = new pack.A();//using fully qualified name

obj.msg(); } }

Output: Hello

Note: If you import a package, subpackages will not be imported.

If you import a package, all the classes and interface of that package will be imported excluding

the classes and interfaces of the subpackages. Hence, you need to import the subpackage as well.

Note: Sequence of the program must be package then import then class.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 21/28

Subpackage in java

Package inside the package is called the subpackage. It should be created to categorize

the package further.

Let's take an example; Sun Microsystem has definded a package named java that contains many

classes like System, String, Reader, Writer, Socket etc. These classes represent a particular group

e.g. Reader and Writer classes are for Input/Output operation, Socket and ServerSocket classes

are for networking etc and so on. So, Sun has subcategorized the java package into subpackages

such as lang, net, io etc. and put the Input/Output related classes in io package, Server and

ServerSocket classes in net packages and so on.

The standard of defining package is domain.company.package e.g. com.javatpoint.bean or

org.sssit.dao.

Example of Subpackage

package com.javatpoint.core;

class Simple{

 public static void main(String args[]){

 System.out.println("Hello subpackage"); } }

To Compile: javac -d . Simple.java

To Run: java com.javatpoint.core.Simple

Output: Hello subpackage

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 22/28

How to send the class file to another directory or drive?

There is a scenario; I want to put the class file of A.java source file in classes’ folder of c: drive.

For example:

//save as Simple.java

package mypack;

public class Simple{

 public static void main(String args[]){

 System.out.println("Welcome to package"); } }

To Compile:

e:\sources> javac -d c:\classes Simple.java

To Run:

To run this program from e:\source directory, you need to set classpath of the directory where the

class file resides.

e:\sources> set classpath=c:\classes;.;

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 23/28

e:\sources> java mypack.Simple

Another way to run this program by -classpath switch of java:

The -classpath switch can be used with javac and java tool.

To run this program from e:\source directory, you can use -classpath switch of java that tells

where to look for class file. For example:

e:\sources> java -classpath c:\classes mypack.Simple

Output: Welcome to package

Ways to load the class files or jar files

There are two ways to load the class files temporary and permanent.

o Temporary

o By setting the classpath in the command prompt

o By -classpath switch

o Permanent

o By setting the classpath in the environment variables

o By creating the jar file, that contains all the class files, and copying the jar file in

the jre/lib/ext folder.

Interface in Java

1. An interface in java is a blueprint of a class. It has static constants and abstract methods.

2. The interface in java is a mechanism to achieve abstraction. There can be only abstract

methods in the java interface not method body. It is used to achieve abstraction and

multiple inheritance in Java.

3. Java Interface also represents IS-A relationship.

4. It cannot be instantiated just like abstract class.

Why use Java interface?

There are mainly three reasons to use interface. They are given below.

o It is used to achieve abstraction.

o By interface, we can support the functionality of multiple inheritance.

o It can be used to achieve loose coupling.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 24/28

In other words, Interface fields are public, static and final by default, and methods are public and

abstract.

Wrapper class in Java

Wrapper class in java provides the mechanism to convert primitive into object and

object into primitive.

Since J2SE 5.0, autoboxing and unboxing feature converts primitive into object and object into

primitive automatically. The automatic conversion of primitive into object is known as

autoboxing and vice-versa unboxing.

The eight classes of java.lang package are known as wrapper classes in java.

The list of eight wrapper classes is given below:

Primitive Type Wrapper class

boolean Boolean

char Character

byte Byte

short Short

int Integer

long Long

float Float

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 25/28

double Double

Wrapper class Example: Primitive to Wrapper

public class WrapperExample1{

public static void main(String args[]){

//Converting int into Integer

int a=20;

Integer i=Integer.valueOf(a);//converting int into Integer

Integer j=a;//autoboxing, now compiler will write Integer.valueOf(a) internally

System.out.println(a+" "+i+" "+j);

}}

Output:

20 20 20

Wrapper class Example: Wrapper to Primitive

public class WrapperExample2{

public static void main(String args[]){

//Converting Integer to int

Integer a=new Integer(3);

int i=a.intValue();//converting Integer to int

int j=a;//unboxing, now compiler will write a.intValue() internally

System.out.println(a+" "+i+" "+j);

}}

Output:

3 3 3

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 26/28

Autoboxing and Unboxing:

The automatic conversion of primitive data types into its equivalent Wrapper type is

known as boxing and opposite operation is known as unboxing. This is the new feature of Java5.

So java programmer doesn't need to write the conversion code.

Advantage of Autoboxing and Unboxing:

No need of conversion between primitives and Wrappers manually so less coding is required.

Simple Example of Autoboxing in java:

class BoxingExample1{

 public static void main(String args[]){

 int a=50;

 Integer a2=new Integer(a);//Boxing

 Integer a3=5;//Boxing

 System.out.println(a2+" "+a3);

 }

}

1.

Output: 50 5

Simple Example of Unboxing in java:

The automatic conversion of wrapper class type into corresponding primitive type, is known

as Unboxing.

Example of unboxing:

 class UnboxingExample1{

 public static void main(String args[]){

 Integer i=new Integer(50);

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 27/28

 int a=i;

 System.out.println(a);

 }

}

Output: 50

Java Enumeration (enum)

Enum in java is a data type that contains fixed set of constants.

It can be used for days of the week (SUNDAY, MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, FRIDAY and SATURDAY) , directions (NORTH, SOUTH, EAST and WEST)

etc. The java enum constants are static and final implicitly. It is available from JDK 1.5.

Java Enums can be thought of as classes that have fixed set of constants.

Points to remember for Java Enum

o enum improves type safety

o enum can be easily used in switch

o enum can be traversed

o enum can have fields, constructors and methods

o enum may implement many interfaces but cannot extend any class because it internally

extends Enum class

Simple example of java enum

class EnumExample1{

public enum Season { WINTER, SPRING, SUMMER, FALL }

public static void main(String[] args) {

for (Season s : Season.values())

System.out.println(s);

 }}

Output:

 WINTER

 SPRING

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

 COURSE CODE: 17CSU201 UNIT: III(Inheritance) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 28/28

 SUMMER

 FALL

Metadata:

The metadata means data about data i.e. we can get further information from the data.

POSSIBLE QUESTIONS

 Part A- Online Questions

 Part –B 2 MARKS

1. What is Inheritance?

2. Define Interfaces?

3. What is Packages?

4. Define Enumerations?

5. Write about Auto boxing and Metadata.

6. What is Method Overriding?

7. Define Dynamic Method Dispatch?

8. What is Java Enumeration?

9. Write about Abstract classes.

 Part –C 6 MARKS

1. Explain Multilevel Inheritance with example program.

2. Explain the following: i)Auto boxing/Unboxing ii) Wrapper Classes

3. What is Inheritance? Briefly explain importance of abstract Classes in Java.

4. Describe interfaces & how to implement it with a Java Program?

5. What is a package? What are the benefits of using package? Write down the steps in creating a

package and using it in a java program with an example.

6. List and Explain Inheritance with example.

7. Explain Multilevel Inheritance with an example Program

8. How will you declare a package and import it, Explain.

9. Discuss in detail about the core interfaces and collections in JAVA utility package.

10. Write a JAVA program to create and using inheritance

S.N
o

Questions opt1 opt2 opt3 opt4

1
___________ is an explicit specification of a
set of methods

 Interface package Statement None

2
___________ are containers for classes that
are used to keep the class namespace
compartmenterised.

 Interface package Statement None

3
All of the Java “built-in” classes included in
the java distribution are stored in a package
called ___________.

 Header Java Package Files

4
___________ are the means of encapsulation
and containing the namespace and scope of
variables and methods.

 Class Package
 Classes
and Package

 None

5
___________ act as containers for classes
and other packages.

 Container Classes Java Packages

6
_________ is used to extend a class by
creating a new class

constructors
 method
overloading

 inheritance none

7
When you extends a class, you can change
the behavior of a method in the parent class.
This is called __________

 method
overriding.

 object
refernce

method
overloading

polymorphi
sm

8
The ________ operator creates a single
instances of a named class and returns a
reference to that object

 dot new super this

9
 The ________ operator is used to access the
instance variables and method within an
object

new dot this super

10
 Methods are called on an instance of a class
using the _________ operator

new dot this super

11
 _________ is used inside of any method to
refer to the current object.

 new dot this super

12
The data, or variables, defined within a class
are called ____.

instance
variables

reference
variables

methods classes

13 __________ initializes an object overloading constructors overriding none

14
To add a finalizer to a class, you simply
define the ______ method

finalize() stop() exit() none

15
the new operator dynamically
________memory for an object.

free allocates delete none

UNIT 3

SUBJECT: Programming in Java SUBJECT CODE: 17CSU201

KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE - 21

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 CLASS : I B.Sc COMPUTER SCIENCE

BATCH : 2017-2020

 Part -A Online Examinations (1 mark questions)

16
________control to transfer back to the caller
of the method

continue return jump goto

17
a ______ statement causes control to be
transferred directly to the conditional
expression that controls the loop

continue return jump goto

18
a method in a subclass has the same name
and type signature as a method in its
superclass, then the method in the subclass is

 override overload function none

19
________ dispatch is the mechanism by
which a call to an overridden method is
resolved at run time, rather than compile time.

Static method
Dynamic
method

overload none

20
 __________ is the one, which creates more
than one methods with the same name but
different parameter list

method
overriding

method
overloading

 function
call

 inheritance

21 static methods will not refer the __________ this dot new public

22
_________ is used to allocate memory in the
constructor

 Delete Binding Free new

23
 Java supports a concept called _______
which is just opposite to initialization.

free finalization delete new

24
 A class that cannot be subclassed is called as
_________ class.

abstract final static methods

25
__________ enables an object to initialize
itself when it is created

 Destructor constructor overloading none

26
Subclass constructors can call superclass
constructors via the ________ keyword

 final protected inherit super

27
The __________ is special because its name
is the same as the class name.

 Destructor static constructor
 none of
the above

28
A constructor that accepts no parameters is
called the __________ constructor

 Copy default multiple
 none of
the above

29
Constructors are invoked automatically when
the ________ are created

 Datas classes objects
 none of
the above

30 Constructors cannot be _________ Inherited destroyed both a & b
 none of
the above

31
The constructors that can take arguments are
called _________ constructors

 Copy multiple

parameterize
d

 none of
the above

32 Code Reusability is characterized by baseclass Subclass
Derived
class

Inheritance

33
Which of these keyword must be used to
inherit a class?

super this extent extends

34
Which of these keywords is used to refer to
member of base class from a sub class?

upper super this None

35
A class member declared protected
becomes member of subclass of which
type?

public
member

private
member

protected
member

static
member

36
Which of these is correct way of
inheriting class A by class B?

class B +
class A {}

class B
inherits
class A {}

class B
extends A
{}

class B
extends
class A {}

37
"X extends Y" is correct if X and Y are
either

 both classes
 both
interfaces

X is class
Both A
and B

38 An interface can extend many interfaces TRUE FALSE
Only Class
can

None

39
Which of these keywords is used to define
interfaces in Java?

interface Interface intf Intf

40
Which of these can be used to fully abstract a
class from its implementation?

Objects Packages Interfaces
None of
the
Mentioned.

41
Which of these access specifiers can be used
for an interface?

Public Protected private
All of the
mentioned

42
Which of these keywords is used by a class to
use an interface defined previously?

import Import implements Implements

43
Which of the following is correct way of
implementing an interface salary by class
manager?

class manager
extends
salary {}

class
manager
implements

class
manager
imports

None of
the
mentioned.

44
Which of the following is incorrect statement
about packages?

Interfaces
specifies
what class

Interfaces
are specified
public

interface
are
implicitly

All
variables
are static

45
Which of the following package stores all the
standard java classes?

lang java util
java.packag
es

46
Which of these packages contain classes and
interfaces used for input & output operations
of a program?

java.util ava.lang java.io
All of the
mentioned

47
Which of these class is not a member class of
java.io package?

String StringReader Writer File

48
Which of these interface is not a member of
java.io package?

DataInput ObjectInput ObjectFilter FileFilter

49
Which of these class is not related to input
and output stream in terms of functioning?

File Writer InputStream Reader

50 Which of these is specified by a File object? a file in disk
directory
path

directory in
disk

None of
the above

51
Which of these is method for testing whether
the specified element is a file or a directory?

IsFile() isFile() Isfile() isfile()

52
Which of these classes is used for input and
output operation when working with bytes?

InputStream Reader Writer
All of the
mentioned

53
Which of these standard collection classes
implements a dynamic array?

AbstractList LinkedList ArrayList AbstractSet

54
Which of these method is used to reduce the
capacity of an ArrayList object?

trim() trimSize() trimTosize()
trimToSize
()

55
Which of these standard collection classes
implements a linked list data structure?

AbstractList LinkedList HashSet AbstractSet

56
Which of these classes implements Set
interface?

ArrayList HashSet LinkedList
DynamicLi
st

57
Which of these classes is not included in
java.lang?

Byte Integer Array Class

58
Which of these is a process of converting a
simple data type into a class?

type wrapping
type
conversion

type casting
None of
the
Mentioned

59
Which of these is a super class of wrappers
Double & Integer?

Long Digits Float Number

60
Which of these is wrapper for simple data
type float?

float double Float Double

answer

Interface

Package

Package

Class and
Package

Packages

 inheritance

 method
overriding.

new

dot

 dot

this

instance
variables

constructors

finalize()

allocates

return

continue

 override

Dynamic
method
method
overloading

this

 new

finalization

 final

constructor

super

 constructor

 default

 objects

 Inherited

parameterize
d
Inheritance

extends

super

private
member
class B
extends A
{}

Both A and
B

TRUE

interface

Interfaces

Public

implements

class
manager
implements All
variables
are static
java

java.io

String

ObjectFilter

File

directory in
disk

isFile()

InputStream

ArrayList

trimToSize()

LinkedList

HashSet

Array

type
conversion

Number

Float

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 1/46

UNIT-IV

SYLLABUS

Exception Handling, Threading, Networking and Database Connectivity Exception types,

uncaught exceptions, throw, built-in exceptions, Creating your own exceptions; Multi-threading:

The Thread class and Runnable interface, creating single and multiple threads, Thread

prioritization, synchronization and communication, suspending/resuming threads. Using java.net

package, Overview of TCP/IP and Datagram programming. Accessing and manipulating

databases using JDBC.

Exception Handling

Exception Handling in Java

Java - Exceptions. An exception (or exceptional event) is a problem that arises during the

execution of a program. When an Exception occurs the normal flow of the program is disrupted

and the program/Application terminates abnormally, which is not recommended, therefore,

these exceptions are to be handled.

The exception handling in java is one of the powerfulmechanisms to handle the runtime

errors so that normal flow of the application can be maintained.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 2/46

What is exception?

Dictionary Meaning: Exception is an abnormal condition.

In java, exception is an event that disrupts the normal flow of the program. It is an object which

is thrown at runtime.

What is exception handling?

Exception Handling is a mechanism to handle runtime errors such as ClassNotFound, IO, SQL,

Remote etc.

Advantage of Exception Handling

The core advantage of exception handling is to maintain the normal flow of the application.

Exception normally disrupts the normal flow of the application that is why we use exception

handling. Let's take a scenario:

statement 1;

statement 2;

statement 3;

statement 4;

statement 5;//exception occurs

statement 6;

statement 7;

statement 8;

statement 9;

statement 10;

Suppose there is 10 statements in your program and there occurs an exception at statement5, rest

of the code will not be executed i.e. statement 6 to 10 will not run. If we perform exception

handling, rest of the statement will be executed. That is why we use exception handling in java.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 3/46

Hierarchy of Java Exception classes

Types of Exception

There are mainly two types of exceptions: checked and unchecked where error is considered as

unchecked exception. The sun microsystem says there are three types of exceptions:

1. Checked Exception

2. Unchecked Exception

3. Error

Difference between checked and unchecked exceptions

1) Checked Exception

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 4/46

The classes that extend Throwable class except RuntimeException and Error are known as

checked exceptions e.g.IOException, SQLException etc. Checked exceptions are checked at

compile-time.

2) Unchecked Exception

The classes that extend RuntimeException are known as unchecked exceptions e.g.

ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException etc. Unchecked

exceptions are not checked at compile-time rather they are checked at runtime.

3) Error

Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError, AssertionError etc.

Common scenarios where exceptions may occur

There are given some scenarios where unchecked exceptions can occur. They are as follows:

1) Scenario where ArithmeticException occurs

If we divide any number by zero, there occurs an ArithmeticException.

int a=50/0;//ArithmeticException

2) Scenario where NullPointerException occurs

If we have null value in any variable, performing any operation by the variable occurs an

NullPointerException.

String s=null;

System.out.println(s.length());//NullPointerException

3) Scenario where NumberFormatException occurs

The wrong formatting of any value, may occur NumberFormatException. Suppose I have a

string variable that have characters, converting this variable into digit will occur

NumberFormatException.

String s="abc";

int i=Integer.parseInt(s);//NumberFormatException

4) Scenario where ArrayIndexOutOfBoundsException occurs

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 5/46

If you are inserting any value in the wrong index, it would result

ArrayIndexOutOfBoundsException as shown below:

1. int a[]=new int[5];

2. a[10]=50; //ArrayIndexOutOfBoundsException

Java Exception Handling Keywords

There are 5 keywords used in java exception handling.

1. try

2. catch

3. finally

4. throw

5. throws

Java try block

Java try block is used to enclose the code that might throw an exception. It must be used within

the method.

Java try block must be followed by either catch or finally block.

Syntax of java try-catch

try{

//code that may throw exception

}catch(Exception_class_Name ref){}

Syntax of try-finally block

try{

//code that may throw exception

}finally{}

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 6/46

Java catch block

Java catch block is used to handle the Exception. It must be used after the try block only.

You can use multiple catch block with a single try.

Problem without exception handling

Let's try to understand the problem if we don't use try-catch block.

public class Testtrycatch1{

 public static void main(String args[]){

 int data=50/0;//may throw exception

 System.out.println("rest of the code..."); } }

Output:

Exception in thread main java.lang.ArithmeticException:/ by zero

As displayed in the above example, rest of the code is not executed (in such case, rest of the

code... statement is not printed).

There can be 100 lines of code after exception. So all the code after exception will not be

executed.

Solution by exception handling

Let's see the solution of above problem by java try-catch block.

public class Testtrycatch2{

 public static void main(String args[]){

 try{

 int data=50/0;

 }catch(ArithmeticException e){System.out.println(e);}

 System.out.println("rest of the code..."); } }

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 7/46

Exception in thread main java.lang.ArithmeticException:/ by zero

rest of the code...

Now, as displayed in the above example, rest of the code is executed i.e. rest of the code...

statement is printed.

Internal working of java try-catch block

The JVM firstly checks whether the exception is handled or not. If exception is not handled,

JVM provides a default exception handler that performs the following tasks:

 Prints out exception description.

 Prints the stack trace (Hierarchy of methods where the exception occurred).

 Causes the program to terminate.

But if exception is handled by the application programmer, normal flow of the application is

maintained i.e. rest of the code is executed.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 8/46

Java throw keyword

The Java throw keyword is used to explicitly throw an exception.

We can throw either checked or unchecked exception in java by throw keyword. The throw

keyword is mainly used to throw custom exception. We will see custom exceptions later.

The syntax of java throw keyword is given below.

throw exception;

Let's see the example of throw IOException.

throw new IOException("sorry device error);

Java throw keyword example

In this example, we have created the validate method that takes integer value as a parameter. If

the age is less than 18, we are throwing the ArithmeticException otherwise print a message

welcome to vote.

public class TestThrow1{

 static void validate(int age){

 if(age<18)

 throw new ArithmeticException("not valid");

 else

 System.out.println("welcome to vote"); }

 public static void main(String args[]){

 validate(13);

 System.out.println("rest of the code..."); } }

Output:

Exception in thread main java.lang.ArithmeticException:not valid

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 9/46

Java throws keyword

The Java throws keyword is used to declare an exception. It gives information to the programmer

that there may occur an exception so it is better for the programmer to provide the exception

handling code so that normal flow can be maintained.

Exception Handling is mainly used to handle the checked exceptions. If there occurs any

unchecked exception such as NullPointerException, it is programmers fault that he is not

performing check up before the code being used.

Syntax of java throws

return_type method_name() throws exception_class_name{

//method code

}

Which exception should be declared

Ans) checked exception only, because:

o unchecked Exception: under your control so correct your code.

o error: beyond your control e.g. you are unable to do anything if there occurs

VirtualMachineError or StackOverflowError.

Advantage of Java throws keyword

Now Checked Exception can be propagated (forwarded in call stack).

It provides information to the caller of the method about the exception.

Java throws example

Let's see the example of java throws clause which describes that checked exceptions can be

propagated by throws keyword.

import java.io.IOException;

class Testthrows1{

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 10/46

 void m()throws IOException{

 throw new IOException("device error");//checked exception }

 void n()throws IOException{

 m(); }

 void p(){

 try{

 n(); }catch(Exception e){System.out.println("exception handled");} }

 public static void main(String args[]){

 Testthrows1 obj=new Testthrows1();

 obj.p();

 System.out.println("normal flow..."); } }

Output:

exception handled

normal flow...

Rule: If you are calling a method that declares an exception, you must either caught or declare

the exception.

There are two cases:

Case1: You caught the exception i.e. handle the exception using try/catch.

Case2: You declare the exception i.e. specifying throws with the method.

Case1: You handle the exception

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 11/46

In case you handle the exception, the code will be executed fine whether exception occurs during

the program or not.

import java.io.*;

class M{

 void method()throws IOException{

 throw new IOException("device error"); } }

public class Testthrows2{

 public static void main(String args[]){

 try{

 M m=new M();

 m.method();

 }catch(Exception e){System.out.println("exception handled");}

 System.out.println("normal flow..."); } }

Output:

exception handled

 normal flow...

Case2: You declare the exception

A) In case you declare the exception, if exception does not occur, the code will be executed fine.

B) In case you declare the exception if exception occurs, an exception will be thrown at runtime

because throws does not handle the exception.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 12/46

A) Program if exception does not occur

import java.io.*;

class M{

 void method()throws IOException{

 System.out.println("device operation performed"); } }

class Testthrows3{

 public static void main(String args[])throws IOException{//declare exception

 M m=new M();

 m.method();

 System.out.println("normal flow..."); } }

Output: device operation performed

 normal flow...

B) Program if exception occurs

import java.io.*;

class M{

 void method()throws IOException{

 throw new IOException("device error"); } }

class Testthrows4{

 public static void main(String args[])throws IOException{//declare exception

 M m=new M();

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 13/46

 m.method();

 System.out.println("normal flow..."); } }

Output: Runtime Exception

Difference between throw and throws in Java

There are many differences between throw and throws keywords. A list of differences between

throw and throws are given below:

No. throw throws

1) Java throw keyword is used to

explicitly throw an exception.

Java throws keyword is used to declare an

exception.

2) Checked exception cannot be

propagated using throw only.

Checked exception can be propagated with

throws.

3) Throw is followed by an instance. Throws is followed by class.

4) Throw is used within the method. Throws is used with the method signature.

5) You cannot throw multiple

exceptions.

You can declare multiple exceptions e.g.

public void method()throws

IOException,SQLException.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 14/46

Types of Exception in Java with Examples

Java defines several types of exceptions that relate to its various class libraries. Java also

allows users to define their own exceptions.

Built-in Exceptions
Built-in exceptions are the exceptions which are available in Java libraries. These exceptions

are suitable to explain certain error situations. Below is the list of important built-in exceptions in

Java.

1.Arithmetic Exception
It is thrown when an exceptional condition has occurred in an arithmetic operation.

2.ArrayIndexOutOfBoundException

It is thrown to indicate that an array has been accessed with an illegal index. The index is either

negative or greater than or equal to the size of the array.

3.ClassNotFoundException

This Exception is raised when we try to access a class whose definition is not found

4.FileNotFoundException

This Exception is raised when a file is not accessible or does not open.

5.IOException

It is thrown when an input-output operation failed or interrupted

6.InterruptedException

It is thrown when a thread is waiting, sleeping, or doing some processing, and it is interrupted.

7.NoSuchFieldException

It is thrown when a class does not contain the field (or variable) specified

8.NoSuchMethodException

It is thrown when accessing a method which is not found.

9.NullPointerException

This exception is raised when referring to the members of a null object. Null represents nothing

10. NumberFormatException

This exception is raised when a method could not convert a string into a numeric format.

11. RuntimeException

This represents any exception which occurs during runtime.

https://www.geeksforgeeks.org/built-exceptions-java-examples/

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 15/46

12. StringIndexOutOfBoundsException

It is thrown by String class methods to indicate that an index is either negative than the size of

the string

Examples of Built-in Exception:

Arithmetic exception

// Java program to demonstrate ArithmeticException

classArithmeticException_Demo{

 publicstaticvoidmain(String args[]) {

 try{

 inta = 30, b = 0;

 intc = a/b; // cannot divide by zero

 System.out.println ("Result = "+ c); }

 catch(ArithmeticException e) {

 System.out.println ("Can't divide a number by 0"); } }}

Output:

Can't divide a number by 0

NullPointer Exception
//Java program to demonstrate NullPointerException

classNullPointer_Demo{

 publicstaticvoidmain(String args[])

 {

 try{

 String a = null; //null value

 System.out.println(a.charAt(0));

 } catch(NullPointerException e) {

 System.out.println("NullPointerException.."); } }}

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 16/46

NullPointerException..

StringIndexOutOfBound Exception
// Java program to demonstrate StringIndexOutOfBoundsException

classStringIndexOutOfBound_Demo{

 publicstaticvoidmain(String args[])

 {

 try{

 String a = "This is like chipping "; // length is 22

 charc = a.charAt(24); // accessing 25th element

 System.out.println(c); }

 catch(StringIndexOutOfBoundsException e) {

 System.out.println("StringIndexOutOfBoundsException"); } }}

Output:

StringIndexOutOfBoundsException

FileNotFound Exception
//Java program to demonstrate FileNotFoundException

importjava.io.File;

importjava.io.FileNotFoundException;

importjava.io.FileReader;

 classFile_notFound_Demo {

 publicstaticvoidmain(String args[]) {

 try{

 // Following file does not exist

 File file = newFile("E://file.txt");

 FileReader fr = newFileReader(file);

file:///E:/file.txt

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 17/46

 } catch(FileNotFoundException e) {

 System.out.println("File does not exist"); } }}

Output:

File does not exist

NumberFormat Exception
// Java program to demonstrate NumberFormatException

class NumberFormat_Demo

{

 publicstaticvoidmain(String args[]) {

 try{

 // "akki" is not a number

 intnum = Integer.parseInt ("akki") ;

 System.out.println(num);

 } catch(NumberFormatException e) {

 System.out.println("Number format exception"); } }}

Output:

Number format exception

ArrayIndexOutOfBounds Exception
// Java program to demonstrate ArrayIndexOutOfBoundException

classArrayIndexOutOfBound_Demo

{

 publicstaticvoidmain(String args[]) {

 try{

 inta[] = newint[5];

 a[6] = 9; // accessing 7th element in an array of

 // size 5 }

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 18/46

 catch(ArrayIndexOutOfBoundsException e){

 System.out.println ("Array Index is Out Of Bounds"); } }}

Output:

Array Index is Out Of Bounds

Java Custom Exception

If you are creating your own Exception that is known as custom exception or user-

defined exception. Java custom exceptions are used to customize the exception according to user

need.

By the help of custom exception, you can have your own exception and message.

Let's see a simple example of java custom exception.

class InvalidAgeException extends Exception{

 InvalidAgeException(String s){

 super(s); } }

class TestCustomException1{

 static void validate(int age)throws InvalidAgeException{

 if(age<18)

 throw new InvalidAgeException("not valid");

 else

 System.out.println("welcome to vote"); }

 public static void main(String args[]){

 try{

 validate(13);

 }catch(Exception m){System.out.println("Exception occured: "+m);}

 System.out.println("rest of the code..."); } }

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 19/46

Output:

Exception occured: InvalidAgeException:not valid

 rest of the code...

Multithreading

Itis a process of executing multiple threads simultaneously.

Thread is basically a lightweight sub-process, a smallest unit of processing. Multiprocessing and

multithreading, both are used to achieve multitasking.

But we use multithreading than multiprocessing because threads share a common memory area.

They don't allocate separate memory area so saves memory, and context-switching between the

threads takes less time than process.

Java Multithreading is mostly used in games, animation etc.

Advantages of Java Multithreading

1) It doesn't block the user because threads are independent and you can perform multiple

operations at same time.

2) You can perform many operations together so it saves time.

3) Threads are independent so it doesn't affect other threads if exception occur in a single

thread.

How to create thread?

There are two ways to create a thread:

1. By extending Thread class

2. By implementing Runnable interface.

Thread class:

Thread class provide constructors and methods to create and perform operations on a

thread.Thread class extends Object class and implements Runnable interface.

Commonly used Constructors of Thread class:

o Thread()

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 20/46

o Thread(String name)

o Thread(Runnable r)

o Thread(Runnable r,String name)

Commonly used methods of Thread class:

1. public void run(): is used to perform action for a thread.

2. public void start(): starts the execution of the thread.JVM calls the run() method on the

thread.

3. public void sleep(long miliseconds): Causes the currently executing thread to sleep

(temporarily cease execution) for the specified number of milliseconds.

4. public void join(): waits for a thread to die.

5. public void join(long miliseconds): waits for a thread to die for the specified

miliseconds.

6. public int getPriority(): returns the priority of the thread.

7. public int setPriority(int priority): changes the priority of the thread.

8. public String getName(): returns the name of the thread.

9. public void setName(String name): changes the name of the thread.

10. public Thread currentThread(): returns the reference of currently executing thread.

11. public int getId(): returns the id of the thread.

12. public Thread.State getState(): returns the state of the thread.

13. public boolean isAlive(): tests if the thread is alive.

14. public void yield(): causes the currently executing thread object to temporarily pause and

allow other threads to execute.

15. public void suspend(): is used to suspend the thread(depricated).

16. public void resume(): is used to resume the suspended thread(depricated).

17. public void stop(): is used to stop the thread(depricated).

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 21/46

18. public boolean isDaemon(): tests if the thread is a daemon thread.

19. public void setDaemon(boolean b): marks the thread as daemon or user thread.

20. public void interrupt(): interrupts the thread.

21. public boolean isInterrupted(): tests if the thread has been interrupted.

22. public static boolean interrupted(): tests if the current thread has been interrupted.

Runnable interface:

The Runnable interface should be implemented by any class whose instances are intended to be

executed by a thread. Runnable interface have only one method named run().

1. public void run(): is used to perform action for a thread.

Starting a thread:

start() method of Thread class is used to start a newly created thread. It performs following

tasks:

o A new thread starts(with new callstack).

o The thread moves from New state to the Runnable state.

o When the thread gets a chance to execute, its target run() method will run.

1) Java Thread Example by extending Thread class

class Multi extends Thread{

public void run(){

System.out.println("thread is running..."); }

public static void main(String args[]){

Multi t1=new Multi();

t1.start(); } }

Output:

thread is running...

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 22/46

2) Java Thread Example by implementing Runnable interface

class Multi3 implements Runnable{

public void run(){

System.out.println("thread is running..."); }

public static void main(String args[]){

Multi3 m1=new Multi3();

Thread t1 =new Thread(m1);

t1.start(); } }

Output:

thread is running...

If you are not extending the Thread class,your class object would not be treated as a thread

object.So you need to explicitly create Thread class object.We are passing the object of your

class that implements Runnable so that your class run() method may execute.

Priority of a Thread (Thread Priority):

Each thread have a priority. Priorities are represented by a number between 1 and 10. In most

cases, thread schedular schedules the threads according to their priority (known as preemptive

scheduling). But it is not guaranteed because it depends on JVM specification that which

scheduling it chooses.

3 constants defined in Thread class:

public static int MIN_PRIORITY

public static int NORM_PRIORITY

public static int MAX_PRIORITY

Default priority of a thread is 5 (NORM_PRIORITY). The value of MIN_PRIORITY is 1 and

the value of MAX_PRIORITY is 10.

Example of priority of a Thread:

class TestMultiPriority1 extends Thread{

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 23/46

 public void run(){

 System.out.println("running thread name is:"+Thread.currentThread().getName());

 System.out.println("running thread priority is:"+Thread.currentThread().getPriority()); }

 public static void main(String args[]){

 TestMultiPriority1 m1=new TestMultiPriority1();

 TestMultiPriority1 m2=new TestMultiPriority1();

 m1.setPriority(Thread.MIN_PRIORITY);

 m2.setPriority(Thread.MAX_PRIORITY);

 m1.start();

 m2.start(); } }

Output:

running thread name is:Thread-0

 running thread priority is:10

 running thread name is:Thread-1

 running thread priority is:1

Synchronization

Synchronization in java is the capability to control the access of multiple threads to any shared

resource.

Java Synchronization is better option where we want to allow only one thread to access the

shared resource.

Why use Synchronization?

The synchronization is mainly used to

1. To prevent thread interference.

2. To prevent consistency problem.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 24/46

Types of Synchronization

There are two types of synchronization

1. Process Synchronization

2. Thread Synchronization

Here, we will discuss only thread synchronization.

Thread Synchronization

There are two types of thread synchronization mutual exclusive and inter-thread communication.

1. Mutual Exclusive

1. Synchronized method.

2. Synchronized block.

3. static synchronization.

2. Cooperation (Inter-thread communication in java)

Mutual Exclusive

Mutual Exclusive helps keep threads from interfering with one another while sharing data. This

can be done by three ways in java:

1. by synchronized method

2. by synchronized block

3. by static synchronization

Concept of Lock in Java

Synchronization is built around an internal entity known as the lock or monitor. Every object has

an lock associated with it. By convention, a thread that needs consistent access to an object's

fields has to acquire the object's lock before accessing them, and then release the lock when it's

done with them.

From Java 5 the package java.util.concurrent.locks contains several lock implementations.

Understanding the problem without Synchronization

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 25/46

In this example, there is no synchronization, so output is inconsistent. Let's see the example:

class Table{

void printTable(int n){//method not synchronized

 for(int i=1;i<=5;i++){

 System.out.println(n*i);

 try{

 Thread.sleep(400);

 }catch(Exception e){System.out.println(e);} } } }

 class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t; }

public void run(){

t.printTable(5); } }

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t; }

public void run(){

t.printTable(100); } }

class TestSynchronization1{

public static void main(String args[]){

Table obj = new Table();//only one object

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 26/46

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start(); } }

Output:

5

 100

 10

 200

 15

 300

 20

 400

 25

 500

Java synchronized method

If you declare any method as synchronized, it is known as synchronized method.

Synchronized method is used to lock an object for any shared resource.

When a thread invokes a synchronized method, it automatically acquires the lock for that object

and releases it when the thread completes its task.

//example of java synchronized method

class Table{

synchronized void printTable(int n){//synchronized method

for(int i=1;i<=5;i++){

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 27/46

System.out.println(n*i);

try{

Thread.sleep(400);

}catch(Exception e){System.out.println(e);} } } }

class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t; }

public void run(){

t.printTable(5); } }

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t; }

public void run(){

t.printTable(100); } }

public class TestSynchronization2{

public static void main(String args[]){

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start(); } }

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 28/46

Output:

5

 10

 15

 20

 25

 100

 200

 300

 400

 500

Inter-thread communication in Java

Inter-thread communication or Co-operation is all about allowing synchronized threads to

communicate with each other.

Cooperation (Inter-thread communication) is a mechanism in which a thread is paused running in

its critical section and another thread is allowed to enter (or lock) in the same critical section to

be executed.It is implemented by following methods of Object class:

o wait()

o notify()

o notifyAll()

1) wait() method

Causes current thread to release the lock and wait until either another thread invokes the notify()

method or the notifyAll() method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor, so it must be called from the synchronized

method only otherwise it will throw exception.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 29/46

Method

Description

public final void wait()throws InterruptedException

waits until object is notified.

public final void wait(long timeout)throws InterruptedException

waits for the specified amount of time.

2) notify() method

Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on

this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the

discretion of the implementation. Syntax:

public final void notify()

3) notifyAll() method

Wakes up all threads that are waiting on this object's monitor. Syntax:

public final void notifyAll()

Understanding the process of inter-thread communication

The point to point explanation of the above diagram is as follows:

1. Threads enter to acquire lock.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 30/46

2. Lock is acquired by on thread.

3. Now thread goes to waiting state if you call wait() method on the object. Otherwise it

releases the lock and exits.

4. If you call notify() or notifyAll() method, thread moves to the notified state (runnable

state).

5. Now thread is available to acquire lock.

6. After completion of the task, thread releases the lock and exits the monitor state of the

object.

Why wait(), notify() and notifyAll() methods are defined in Object class not Thread class?

It is because they are related to lock and object has a lock.

Difference between wait and sleep?

Let's see the important differences between wait and sleep methods.

wait() sleep()

wait() method releases the lock sleep() method doesn't release the

lock.

is the method of Object class is the method of Thread class

is the non-static method is the static method

is the non-static method is the static method

should be notified by notify() or

notifyAll() methods

after the specified amount of time,

sleep is completed.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 31/46

Example of inter thread communication in java

class Customer{

int amount=10000;

synchronized void withdraw(int amount){

System.out.println("going to withdraw...");

 if(this.amount<amount){

System.out.println("Less balance; waiting for deposit...");

try{wait();}catch(Exception e){}

}

this.amount-=amount;

System.out.println("withdraw completed..."); }

 synchronized void deposit(int amount){

System.out.println("going to deposit...");

this.amount+=amount;

System.out.println("deposit completed... ");

notify(); } }

class Test{

public static void main(String args[]){

final Customer c=new Customer();

new Thread(){

public void run(){c.withdraw(15000);}

}.start();

new Thread(){

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 32/46

public void run(){c.deposit(10000);}

}.start(); }}

Output:

going to withdraw...

 Less balance; waiting for deposit...

 going to deposit...

 deposit completed...

 withdraw completed

Suspending/resuming threads:

Suspending

The suspend() method of theThread class was deprecated by Java 2 several years ago. This was

done because suspend() can sometimes cause serious system failures. Assume that a

thread has obtained locks on critical data structures. If that thread is suspended atthat point, those

locks are not relinquished. Other threads that may be waiting for those resources can be

deadlocked.

Resuming

The resume() method is also deprecated. It does not cause problems, but cannot be used without

the suspend() method as its counterpart.

Stopping

The stop() method of theThread class, too, was deprecated by Java 2. This was done because

this method can sometimes cause serious system failures. Assume that a thread is writing to a

critically important data structure and has completed only part of its changes.If that thread is

stopped at that point, that data structure might be left in a corrupted state.

Because you can’t now use the suspend(),resume(), or stop() methods to control a thread, you

might be thinking that no way exists to pause, restart, or terminate a thread.But, fortunately, this

is not true. Instead, a thread must be designed so that the run() method periodically checks to

determine whether that thread should suspend, resume, or stop its own execution. Typically, this

is accomplished by establishing a flag variable that indicates the execution state of the thread. As

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 33/46

long as this flag is set to “running,” the run() method must continue to let the thread execute. If

this variable is set to “suspend,” the thread must pause. If it is set to “stop,” the thread must

terminate.

Example:Suspending, resuming, and stopping a thread.

// Suspending, resuming, and stopping a thread.

 using System;

using System.Threading;

class MyThread

{

public Thread thrd;

 public MyThread(string name)

 {

thrd = new Thread(new ThreadStart(this.run));

thrd.Name = name;

thrd.Start();

}

// This is the entry point for thread.

 void run() {

Console.WriteLine(thrd.Name + " starting.");

for(int i = 1; i <= 1000; i++){

Console.Write(i + " ");

if((i%10)==0) {

Console.WriteLine();

Thread.Sleep(250); } }

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 34/46

Console.WriteLine(thrd.Name + " exiting."); } }

public class SuspendResumeStop {

public static void Main() {

MyThread mt1 = new MyThread("My Thread");

Thread.Sleep(1000); // let child thread start executing

mt1.thrd.Suspend();

Console.WriteLine("Suspending thread.");

Thread.Sleep(1000);

mt1.thrd.Resume();

Console.WriteLine("Resuming thread.");

Thread.Sleep(1000);

mt1.thrd.Suspend();

Console.WriteLine("Suspending thread.");

Thread.Sleep(1000);

mt1.thrd.Resume();

Console.WriteLine("Resuming thread.");

Thread.Sleep(1000);

Console.WriteLine("Stopping thread.");

mt1.thrd.Abort();

mt1.thrd.Join(); // wait for thread to terminate

Console.WriteLine("Main thread terminating."); } }

When you run this program,you will see the output shown here:

 My Thread starting.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 35/46

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

 21 22 23 24 25 26 27 28 29 30

 31 32 33 34 35 36 37 38 39 40

Supending thread.

Resuming Thread.

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 64 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

The java.net Package

Java Networking is a concept of connecting two or more computing devices together so that we

can share resources.

Java socket programming provides facility to share data between different computing devices.

Advantage of Java Networking

1. sharing resources

2. centralize software management

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 36/46

Figure 1. The classes of the java.net package

Figure 2. The exceptions of the java.net package

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 37/46

Java Networking Terminology

The widely used java networking terminologies are given below:

1. IP Address

2. Protocol

3. Port Number

4. MAC Address

5. Connection-oriented and connection-less protocol

6. Socket

1) IP Address

IP address is a unique number assigned to a node of a network e.g. 192.168.0.1 . It is composed

of octets that range from 0 to 255.

It is a logical address that can be changed.

2) Protocol

A protocol is a set of rules basically that is followed for communication. For example:

o TCP

o FTP

o Telnet

o SMTP

o POP etc.

3) Port Number

The port number is used to uniquely identify different applications. It acts as a communication

endpoint between applications.

The port number is associated with the IP address for communication between two applications.

4) MAC Address

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 38/46

MAC (Media Access Control) Address is a unique identifier of NIC (Network Interface

Controller). A network node can have multiple NIC but each with unique MAC.

5) Connection-oriented and connection-less protocol

In connection-oriented protocol, acknowledgement is sent by the receiver. So it is reliable but

slow. The example of connection-oriented protocol is TCP.

But, in connection-less protocol, acknowledgement is not sent by the receiver. So it is not

reliable but fast. The example of connection-less protocol is UDP.

6) Socket

A socket is an endpoint between two way communications.

Java Socket Programming

Java Socket programming is used for communication between the applications running on

different JRE.

Java Socket programming can be connection-oriented or connection-less.

Socket and ServerSocket classes are used for connection-oriented socket programming and

DatagramSocket and DatagramPacket classes are used for connection-less socket programming.

The client in socket programming must know two information:

1. IP Address of Server, and

2. Port number.

Socket class

A socket is simply an endpoint for communications between the machines. The Socket class can

be used to create a socket.

Important methods

Method Description

1) public InputStream

getInputStream()

returns the InputStream attached with

this socket.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 39/46

2) public OutputStream

getOutputStream()

returns the OutputStream attached with

this socket.

3) public synchronized void close() closes this socket

ServerSocket class

The ServerSocket class can be used to create a server socket. This object is used to establish

communication with the clients.

Important methods

Method Description

1) public Socket accept() returns the socket and establish a connection

between server and client.

2) public synchronized

void close()

closes the server socket.

Example of Java Socket Programming

File: MyServer.java

import java.io.*;

import java.net.*;

public class MyServer {

public static void main(String[] args){

try{

ServerSocket ss=new ServerSocket(6666);

Socket s=ss.accept();//establishes connection

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 40/46

DataInputStream dis=new DataInputStream(s.getInputStream());

String str=(String)dis.readUTF();

System.out.println("message= "+str);

ss.close();

}catch(Exception e){System.out.println(e);} } }

File: MyClient.java

import java.io.*;

import java.net.*;

public class MyClient {

public static void main(String[] args) {

try{

Socket s=new Socket("localhost",6666);

DataOutputStream dout=new DataOutputStream(s.getOutputStream());

dout.writeUTF("Hello Server");

dout.flush();

dout.close();

s.close(); }catch(Exception e){System.out.println(e);} } }

Java URL

The Java URL class represents an URL. URL is an acronym for Uniform Resource Locator.

It points to a resource on the World Wide Web. For example:

http://www.javatpoint.com/java-tutorial

A URL contains much information:

1. Protocol: In this case, http is the protocol.

2. Server name or IP Address: In this case, www.javatpoint.com is the server name.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 41/46

3. Port Number: It is an optional attribute. If we write

http//ww.javatpoint.com:80/sonoojaiswal/ , 80 is the port number. If port number is not

mentioned in the URL, it returns -1.

4. File Name or directory name: In this case, index.jsp is the file name.

Commonly used methods of Java URL class

The java.net.URL class provides many methods. The important methods of URL class are

given below.

Method Description

public String getProtocol() it returns the protocol of the URL.

public String getHost() it returns the host name of the URL.

public String getPort() it returns the Port Number of the URL.

public String getFile() it returns the file name of the URL.

public URLConnection

openConnection()

it returns the instance of

URLConnection i.e. associated with this

URL.

Example of Java URL class

//URLDemo.java

import java.io.*;

import java.net.*;

public class URLDemo{

public static void main(String[] args){

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 42/46

try{

URL url=new URL("http://www.javatpoint.com/java-tutorial");

 System.out.println("Protocol: "+url.getProtocol());

System.out.println("Host Name: "+url.getHost());

System.out.println("Port Number: "+url.getPort());

System.out.println("File Name: "+url.getFile());

 }catch(Exception e){System.out.println(e);} } }

Output:

 Protocol: http

 Host Name: www.javatpoint.com

 Port Number: -1

 File Name: /java-tutorial

Java URLConnection class

The Java URLConnection class represents a communication link between the URL and the

application. This class can be used to read and write data to the specified resource referred by

the URL.

How to get the object of URLConnection class

The openConnection() method of URL class returns the object of URLConnection class.

Syntax:

public URLConnection openConnection()throws IOException{}

Displaying source code of a webpage by URLConnecton class

The URLConnection class provides many methods, we can display all the data of a webpage

by using the getInputStream() method. The getInputStream() method returns all the data of

the specified URL in the stream that can be read and displayed.

Example of Java URLConnection class

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 43/46

import java.io.*;

import java.net.*;

public class URLConnectionExample {

public static void main(String[] args){

try{

URL url=new URL("http://www.javatpoint.com/java-tutorial");

URLConnection urlcon=url.openConnection();

InputStream stream=urlcon.getInputStream();

int i;

while((i=stream.read())!=-1){

System.out.print((char)i); }

}catch(Exception e){System.out.println(e);} }}

Java HttpURLConnection class

The Java HttpURLConnection class is http specific URLConnection. It works for HTTP

protocol only.

By the help of HttpURLConnection class, you can information of any HTTP URL such as header

information, status code, response code etc.

The java.net.HttpURLConnection is subclass of URLConnection class.

How to get the object of HttpURLConnection class

The openConnection() method of URL class returns the object of URLConnection class. Syntax:

public URLConnection openConnection()throws IOException{}

You can typecast it to HttpURLConnection type as given below.

URL url=new URL("http://www.javatpoint.com/java-tutorial");

HttpURLConnection huc=(HttpURLConnection)url.openConnection();

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 44/46

Java InetAddress class

Java InetAddress class represents an IP address. The java.net.InetAddress class provides

methods to get the IP of any host name for example www.javatpoint.com, www.google.com,

www.facebook.com etc.

Commonly used methods of InetAddress class

Method Description

public static InetAddress

getByName(String host) throws

UnknownHostException

it returns the instance of

InetAddress containing

LocalHost IP and name.

public static InetAddress getLocalHost()

throws UnknownHostException

it returns the instance of

InetAdddress containing local

host name and address.

public String getHostName() it returns the host name of the IP

address.

public String getHostAddress() it returns the IP address in string

format.

Java DatagramSocket and DatagramPacket

Java DatagramSocket and DatagramPacket classes are used for connection-less socket

programming.

Java DatagramSocket class

Java DatagramSocket class represents a connection-less socket for sending and receiving

datagram packets.

A datagram is basically an information but there is no guarantee of its content, arrival or arrival

time.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 45/46

Commonly used Constructors of DatagramSocket class

o DatagramSocket() throws SocketEeption: it creates a datagram socket and binds it

with the available Port Number on the localhost machine.

o DatagramSocket(int port) throws SocketEeption: it creates a datagram socket and

binds it with the given Port Number.

o DatagramSocket(int port, InetAddress address) throws SocketEeption: it creates a

datagram socket and binds it with the specified port number and host address.

Java DatagramPacket class

Java DatagramPacket is a message that can be sent or received. If you send multiple packet, it

may arrive in any order. Additionally, packet delivery is not guaranteed.

Commonly used Constructors of DatagramPacket class

o DatagramPacket(byte[] barr, int length): it creates a datagram packet. This constructor

is used to receive the packets.

o DatagramPacket(byte[] barr, int length, InetAddress address, int port): it creates a

datagram packet. This constructor is used to send the packets.

POSSIBLE QUESTIONS

 Part A- Online Questions

 Part –B 2 MARKS

1. What is an Exception?

2. Distinguish between init () and start () methods.

3. What is the difference between exception and error?

4. Differentiate wait and sleep methods in java?

5. Define Exception Handling.

6. What is Thread prioritization?

7. Difference between throw and throws in Java

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I B.Sc CS COURSE NAME:JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Exception Handling) BATCH-2017-2020

Prepared by Dr.P.TamilSelvan, Mrs.S.A.SathyaPrabha, Dept of CS, CA & IT, KAHE Page 46/46

8. Types of Exception in Java with Examples

9. Mention the Java Exception Handling Keywords.

10. What is Synchronization?

11. What are the Advantage of Java Networking?

 Part –C 6 MARKS

1. Explain the use of thread methods yield(), stop() and sleep().

2. Discuss built-in exceptions with suitable example program.

3. What is an Exception? Explain how to throw, catch and handle Exceptions

4. Explain creating a thread, extending the thread class and an example of using the thread class.

5. Explain following keywords used in Exception Handling. (i) try (ii) catch(iii) throw

6. Discuss in detail about java.net package with example

7. What is a package? What are the benefits of using package? Write down the steps in creating a

 package and using it in a java program with an example.

8. List and Explain Inheritance with example.

9. Clarify in detail about the basics of exception with its types and an example program

10. Define threads. Explain multiplication table using multithreading with suitable program.

11. Clarify in detail about the types of exception with an example program to handle rray out of

 bounds exception.

12. Describe creating multiple Threads with example program.

13. Explain Inter-thread communication in Java

S.N
o

Questions opt1 opt2 opt3 opt4 answer

1
An _________ is a condition that is
caused by a runtime error in the
program

throw exception handle catch exception

2
Exception can be generated by the
___________ or manually by the code

Throwable
 class

Java
runtime
system

object catch
Java
runtime
system

3
All exception types are subclasses of
the built_in class ____________

Throwable
RuntimeExc
eption

StackTree
LocalizedM
essage

Throwable

4
All exception classes are divided into
________ groups

3 4 2 6 2

5
The _______ defines the exceptions
which are not expected to be caught

java.lang.
Error

java.lang.M
ath

java.lang.T
hrowable

java.lang.IO
Exception

java.lang.Er
ror

6
When an exception occurs within a
java method, the method creates an
exception object and hands it over to

catching
the
exception

throwing an
exception

handle the
exception

get the
exception

throwing
an
exception

7
When java method throws an exception
the java runtime system searches all the
methods in the call stack to find one

catching
the
exception

throwing an
exception

handle the
exception

get the
exception

catching
the
exception

8
Exception performs ______________
tasks

3 4 5 2 4

9
Unchecked exceptions are extensions
of __________

throws catch
RuntimeEx
ception

Error
RuntimeEx
ception

10
Checked exceptions are extensions of

throws catch Exception Error Exception

11
Each of Exception's predefined class
provide ______________ constructors

3 4 5 2 2

12
The errors are printed by

Stack
Trace

StackTree Message Error Stack Trace

13
AWT includes a very simple plain
text,multiline editor called

Label TextField TextArea Option. TextArea

14
 __________ class is a button that is
used to toggle the state of a check mark.

 Label Option CheckBox Button CheckBox

SUBJECT: Programming in Java SUBJECT CODE: 17CSU201

 Unit-4

KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE - 21

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 CLASS : I B.Sc COMPUTER SCIENCE

BATCH : 2017-2020

 Part -A Online Examinations (1 mark questions)

15
 ______________ class is at the top of
the exception class hierarchy.

Exception Error Throws Throwable Throwable

16
 __________subclass of throwable
defines exceptions that are not
expected to be caught under normal

Exception Error Throws Throwable Error

17
 The _________ class is used for
exceptional conditions that the user
programs should catch.

Exception Error Throws Throwable Exception

18
The two subclass of throwable class
are __________

Exception
and Error

Exception
and handler

throw and
throwable

try and
catch

Exception
and Error

19
The ______________ Keyword is used
to specify a block of code that should
be guarded against all exceptions.

Catch try exception
block of
code

try

20
 ______________ specifies the type of
 exception to be caught.

Catch try exception
block of
code

Catch

21
 _____________ keyword is used to
identify the list of possible exceptions
that a method might throw.

throw try catch none throw

22
Certain block of code necessarily has
to be run no matter of what exceptions
occurs. Those codes are identified

throw final finally none finally

23
There are ___________ ways of
creating Throwable object

3 4 5 2 2

24
 ____________ is an important
subclass of exception

RuntimeE
xception

Aarithmetic
Exception

NullExcep
tion

Subclasses
of
Throwable

RuntimeEx
ception

25
What is the name of the method used to
start a thread execution?

init(); start(); run(); resume(); start();

26
Which two are valid constructors for
Thread?

Thread(Ru
nnable r,
String

Thread()
Thread(int
priority)

Both A and
B

Both A and
B

27
Which three are methods of the Object
class?

notify(); notifyAll();
wait(long
msecs);

All the
Above

All the
Above

28
Which cannot directly cause a thread to
stop executing?

SetPriority
() method

wait()
method

notify()
method

read()
method

notify()
method

29
Which two of the following methods
are defined in class Thread?

start() run() wait()
Both A and
B

Both A and
B

30
Which guarantee that a thread will
leave the running state?

wait() sleep(1000)
aLiveThre
ad.join()

All the
Above

All the
Above

31
Which of the following will directly
stop the execution of a Thread?

wait() notify() notifyall()
exits
synchronize
d code

wait()

32
Which method must be defined by a
class implementing the
java.lang.Runnable interface?

void run()
public void
run()

public
void start()

void
run(int
priority)

public void
run()

33
Which will contain the body of the
thread?

run(); start(); stop(); main(); run();

34
Which method registers a thread in a
thread scheduler?

run(); construct(); start(); register(); start();

35
called from a thread A on an object B:
wait(2000);

after two
seconds

after thread
A is
notified.

after lock
B is
released

None of
thes

after two
seconds

36
Which class or interface defines the
wait(), notify(),and notifyAll()
methods?

Object Thread Runnable Class Object

37
public class MyRunnable implements
Runnable -which of these will create
and start this thread?

new
Runnable(
MyRunna

new
Thread(My
Runnable).r

new
Thread(ne
w

new
MyRunnabl
e().start();

new
Thread(new

38 What is true about threads?
Threads
consumes
CPU

enables
multi
processing

reduces
idle time

All All

39
A thread can acquire a lock by using
which reserved keyword?

volatile
synchronize
d

locked none
synchronize
d

40
How many threads can a process
contain?

1 2 multiple none multiple

41
What is sometimes also called a
lightweight process?

Thread Process JVM All Thread

42
What is name of thread which calls
main method

mainThrea
d

Thread Thread-0 main main

43 Significance of synchronized variable
doesn't
exist

used in
multi
threading

Prevents
concurrent
access

None
doesn't
exist

44
What is pre-emptive scheduling in
threads

highest
priority
thread

low priority
thread

medium
priority
thread

Anyone
may happen

highest
priority
thread

45
What will happen if two threads try to
read same resource without
synchronization in java

not
allowed in
java

doesn't
create any
race

create
race
condition

None
doesn't
create any
race

46
What are valid statements for daemon
threads?

created as
daemon
threads

only
daemon
threads exist

 low
priority
threads

All of these All of these

47
Which tools could be used to analyse
thread dumps

VisualVM jstack All none All

48
Which method can make Thread to go
from running to waiting state

wait() resume() notify() alive() wait()

49 The JDBC-ODBC bridge is
Multithrea
ded

Singlethread
ed

Both of
the above

none of the
above

Multithread
ed

50 Which statements about JDBC are true?
JDBC is
an API

Java
DataBase
Connectivit

access
relational
databases,

XML data
sources

Java
DataBase
Connectivit

51
Which type of driver provides JDBC
access via one or more ODBC drivers?

Type 1
driver

Type 2
driver

Type 3
driver

Type 4
driver

Type 1
driver

52 JDBC stands for:
Java
Database
Connectivi

Java
Database
Components

Java
Database
Control

None of
the above

Java
Database
Connectivit

53 Where is metadata stored in MySQL?
MySQL
database
metadata

MySQL
database
metasql

MySQL
database
mysql

None of
the above

MySQL
database
mysql

54
Which of the following methods are
needed for loading a database driver in
JDBC?

registerDri
ver()
method

Class.forNa
me()

Both A
and B

getConnecti
on()

Both A and
B

55
Which of the following statements is
false as far as different type of
statements is concern in JDBC?

Regular
Statement

Prepared
Statement

Callable
Statement

Interim
Statement

Interim
Statement

56
Which of the following allows non
repeatable read in JDBC Connection?

TRANSA
CTION_R
EAD_UN

TRANSAC
TION_REA
D_COMMI

TRANSA
CTION_S
ERIALIZA

TRANSAC
TION_REP
EATABLE

TRANSAC
TION_REP
EATABLE

57
The JDBC-ODBC Bridge supports
______per connection?

multiple
concurrent
 open

Single
concurrent
open

multiple
concurrent
close

Single
concurrent
close

multiple
concurrent
open

58
Which type of Statement can execute
parameterized queries?

PreparedSt
atement

Parameteriz
edStatement

CallableSt
atement

All kinds
of
Statements

PreparedSta
tement

59
Which type of Statement can execute
parameterized queries?

PreparedSt
atement

Parameteriz
edStatement

CallableSt
atement

All kinds
of
Statements

PreparedSta
tement

60
How can you execute a stored
procedure in the database?

execute()
on a
CallableSt

executeProc
edure() on a
Statement

execute()
on a
StoredProc

run() on a
ProcedureC
ommand

execute()
on a
CallableSta

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 1/59

UNIT-V

SYLLABUS

 Java Applets: Introduction to Applets, Writing Java Applets, Working with Graphics,

Incorporating Images & Sounds. Event Handling Mechanisms, Listener Interfaces, Adapter and

Inner Classes. The design and Implementation of GUIs using the AWT controls, Swing

components of Java Foundation Classes such as labels, buttons, text fields, layout managers,

menus, events and listeners; Graphic objects for drawing figures such as lines, rectangles, ovals,

using different fonts. Overview of servlets.

INTRODUCTION TO APPLETS

Java Applet

Applet is a special type of program that is embedded in the webpage to generate the dynamic

content. It runs inside the browser and works at client side.

Advantage of Applet

There are many advantages of applet. They are as follows:

 It works at client side so less response time.

 Secured

 It can be executed by browsers running under many plateforms, including Linux,

Windows, Mac Os etc.

Drawback of Applet

 Plugin is required at client browser to execute applet.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 2/59

Hierarchy of Applet

As displayed in the above diagram, Applet class extends Panel. Panel class extends Container

which is the subclass of Component.

Lifecycle of Java Applet

1. Applet is initialized.

2. Applet is started.

3. Applet is painted.

4. Applet is stopped.

5. Applet is destroyed.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 3/59

Lifecycle methods for Applet:

The java.applet.Applet class 4 life cycle methods and java.awt.Component class provides 1 life

cycle methods for an applet.

java.applet.Applet class

For creating any applet java.applet.Applet class must be inherited. It provides 4 life cycle

methods of applet.

1. public void init(): is used to initialized the Applet. It is invoked only once.

2. public void start(): is invoked after the init() method or browser is maximized. It is used

to start the Applet.

3. public void stop(): is used to stop the Applet. It is invoked when Applet is stop or

browser is minimized.

4. public void destroy(): is used to destroy the Applet. It is invoked only once.

java.awt.Component class

The Component class provides 1 life cycle method of applet.

1. public void paint(Graphics g): is used to paint the Applet. It provides Graphics class

object that can be used for drawing oval, rectangle, arc etc.

Who is responsible to manage the life cycle of an applet?

Java Plug-in software.

How to run an Applet?

There are two ways to run an applet

1. By html file.

2. By appletViewer tool (for testing purpose).

Simple example of Applet by html file:

To execute the applet by html file, create an applet and compile it. After that create an html file

and place the applet code in html file. Now click the html file.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 4/59

//First.java

import java.applet.Applet;

import java.awt.Graphics;

public class First extends Applet

{

public void paint(Graphics g){

g.drawString("welcome",150,150);

}

 }

Note: class must be public because its object is created by Java Plugin software that resides

on the browser.

myapplet.html

<html>

<body>

<applet code="First.class" width="300" height="300">

</applet>

</body>

</html>

Simple example of Applet by appletviewer tool:

To execute the applet by appletviewer tool, create an applet that contains applet tag in comment

and compile it. After that run it by: appletviewer First.java. Now Html file is not required but it

is for testing purpose only.

//First.java

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 5/59

import java.applet.Applet;

import java.awt.Graphics;

public class First extends Applet

{

public void paint(Graphics g){

g.drawString("welcome to applet",150,150); } }

/*

<applet code="First.class" width="300" height="300">

</applet>

*/

To execute the applet by appletviewer tool, write in command prompt:

c:\>javac First.java

c:\>appletviewer First.java

Java AWT

Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based

applications in java.

Java AWT components are platform-dependent i.e. components are displayed according to the

view of operating system. AWT is heavyweight i.e. its components are using the resources of

OS.

The java.awt package provides classes for AWT api such as TextField, Label, TextArea,

RadioButton, CheckBox, Choice, List etc.

Java AWT Hierarchy

The hierarchies of Java AWT classes are given below.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 6/59

Container

The Container is a component in AWT that can contain another components like buttons,

textfields, labels etc. The class that extends Container class are known as container such as

Frame, Dialog and Panel.

Window

The window is the containers that have no borders and menu bars. You must use frame, dialog or

another window for creating a window.

Panel

The Panel is the container that doesn't contain title bar and menu bars. It can have other

components like button, textfield etc.

Frame

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 7/59

The Frame is the container that contain title bar and can have menu bars. It can have other

components like button, textfield etc.

Useful Methods of Component class

Method Description

public void add(Component c) Inserts a component on this component.

public void setSize(int width,int

height)

Sets the size (width and height) of the

component.

public void

setLayout(LayoutManager m)

Defines the layout manager for the

component.

public void setVisible(boolean

status)

Changes the visibility of the component,

by default false.

Java AWT Example

To create simple awt example, you need a frame. There are two ways to create a frame in AWT.

o By extending Frame class (inheritance)

o By creating the object of Frame class (association)

AWT Example by Inheritance

Let's see a simple example of AWT where we are inheriting Frame class. Here, we are showing

Button component on the Frame.

import java.awt.*;

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 8/59

class First extends Frame{

First(){

Button b=new Button("click me");

b.setBounds(30,100,80,30);// setting button position

add(b);//adding button into frame

setSize(300,300);//frame size 300 width and 300 height

setLayout(null);//no layout manager

setVisible(true);//now frame will be visible, by default not visible

}

public static void main(String args[]){

First f=new First();

}}

The setBounds(int xaxis, int yaxis, int width, int height) method is used in the above example

that sets the position of the awt button.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 9/59

AWT Example by Association

Let's see a simple example of AWT where we are creating instance of Frame class. Here, we are

showing Button component on the Frame.

import java.awt.*;

class First2{

First2(){

Frame f=new Frame();

Button b=new Button("click me");

b.setBounds(30,50,80,30);

f.add(b);

f.setSize(300,300);

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 10/59

f.setLayout(null);

f.setVisible(true); }

public static void main(String args[]){

First2 f=new First2();

}}

Working with Graphics

 The AWT supports a rich assortment of graphics method.All graphics are drawn reative

to window. This can be a main window of an applet,a child window of an applet,or stand alone

application of window.The origin of each window is at the top-left corner and is 0,0. Coordinates

are specified in pixels. All output to a window takes place through a graphics context.

A graphics context is encapsulated by the Graphics class and is obtained in two ways:

• It is passed to a method, such as paint() or update(), as an argument.

• It is returned by the getGraphics() method of Component.

The Graphics class defines a number of drawing functions.Each shape can be drawn edge only or

filled.Several drawing methods are:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 11/59

1. Drawing Lines

 Lines are drawn by means of the drawLine() method,shown here:

 void drawLine(int startX,int startY,int endX,int endY)

Simple applet program to drawn a line

import java.applet.*;

import java.awt.*;

public class DrawingLines extends Applet

 {

 int width, height;

 public void init()

 {

 width = getSize().width;

 height = getSize().height;

 setBackground(Color.black);

 }

 public void paint(Graphics g)

{

 g.setColor(Color.green);

 for (int i = 0; i < 10; ++i)

{

 g.drawLine(width, height, i * width / 10, 0); } }}

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 12/59

Sample output from this program is shown here:

2. Drawing Rectangles

 The drawRect() and fillRect() methods display an outlined and filled rectangle, respectively.

 Syntax:

 void drawRect(int top,int left,int width,int height)

 void fillRect(int top,int left,int width,int height)

 The upper left corner of the rectangle is at top,left.The dimensions of the rectangle are specified

by the width,height.To draw rounded rectangle,use drawRoundRect()or fillRoundRect().

Syntax:

 void drawRoundRect(int top,int left,int width,int height,int xDiam,int yDiam)

 void fillRoundRect(int top,int left,int width,int height,int xDiam,int yDiam)

A rounded rectangle has rounded corners. The upper-left corner of the rectangle is at top,left.

The dimensions of the rectangle are specified by width and height.The diameter of the rounding

arc along the X axis is specified by Diam. The diameter of the rounding arc along the Y axis is

specified by Diam.

applet program to draws several rectangles:

http://2.bp.blogspot.com/-Ei1yWeKzwKo/Uw22ZagNppI/AAAAAAAABoc/M8UPnTNnltY/s1600/line.jpg

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 13/59

// Draw rectangles

import java.awt.*;

import java.applet.*;

/*

<applet code="Rectangles" width=300 height=200>

</applet>

*/

public class Rectangles extends Applet

{

public void paint(Graphics g)

 {

g.drawRect(10, 10, 60, 50);

g.fillRect(100, 10, 60, 50);

g.drawRoundRect(190, 10, 60, 50, 15, 15);

g.fillRoundRect(70, 90, 140, 100, 30, 40);

}

}

Sample output from this program is shown here:

3. Drawing Ellipses and Circles

 To draw an ellipse, use drawOval(). To fill an ellipse, use fillOval().

Syntax:

http://4.bp.blogspot.com/-5cdQkD-VrC4/Uw23ygLhAcI/AAAAAAAABok/kz7ndTy6-5M/s1600/recta.jpg

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 14/59

 void drawOval(int top, int left, int width, int height)

 void fillOval(int top, int left, int width, int height)

The ellipse is drawn within a bounding rectangle whose upper-left corner is specified by top,left

and whose width and height are specified by width and height. To draw a circle, specify a square

as the bounding rectangle.

The following program draws several ellipses:

// Draw Ellipses

import java.awt.*;

import java.applet.*;

/*

<applet code="Ellipses" width=300 height=200>

</applet>

*/

public class Ellipses extends Applet {

public void paint(Graphics g) {

g.drawOval(10, 10, 50, 50);

g.fillOval(100, 10, 75, 50);

g.drawOval(190, 10, 90, 30);

g.fillOval(70, 90, 140, 100);

}

}

Sample output from this program is shown here:

http://3.bp.blogspot.com/-VwxEUg4v-HY/Uw732JfU-6I/AAAAAAAABpQ/6i_R1VXpnU0/s1600/circle.jpg

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 15/59

4. Drawing Arcs

 Arcs can be drawn with drawArc() and fillArc(), shown here:

Syntax:

 void drawArc(int top, int left, int width, int height, intstartAngle,intsweepAngle)

 void fillArc(int top, int left, int width, int height, intstartAngle,intsweepAngle)

The arc is bounded by the rectangle whose upper-left corner is specified by top,left and whose

width and height are specified by width and height. The arc is drawn from startAnglethrough the

angular distance specified by sweepAngle. Angles are specified in degrees. Zero degrees are on

the horizontal, at the three o’clock position. The arc is drawn counterclockwise ifsweepAngleis

positive,and clockwise ifsweepAngleis negative. Therefore, to draw an arc from twelve o’clock

to six o’clock, the start angle would be 90 and the sweep angle 180.

The following applet draws several arcs:

// Draw Arcs

import java.awt.*;

import java.applet.*;

/*

<applet code="Arcs" width=300 height=200>

</applet>

*/

public class Arcs extends Applet

{

public void paint(Graphics g)

 {

g.drawArc(10, 40, 70, 70, 0, 75);

g.fillArc(100, 40, 70, 70, 0, 75);

g.drawArc(10, 100, 70, 80, 0, 175);

g.fillArc(100, 100, 70, 90, 0, 270);

g.drawArc(200, 80, 80, 80, 0, 180);

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 16/59

}

Sample output from this program is shown here:

5. Drawing Polygons

It is possible to draw arbitrarily shaped figures using drawPolygon() and fillPolygon(),

shown here:

Syntax:

 void drawPolygon(int x[], int y[], int numPoints)

 void fillPolygon(int x[], int y[], int numPoints)

The polygon’s endpoints are specified by the coordinate pairs contained within the x and y

arrays. The number of points defined by x and y is specified by numPoints. There are alternative

forms of these methods in which the polygon is specified by a Polygon object.

The following applet draws an polygon

// Draw Polygon

import java.awt.*;

import java.applet.*;

/*

<applet code="HourGlass" width=230 height=210>

</applet>

*/

http://2.bp.blogspot.com/-czfRqe-1wqk/Uw71QOzynaI/AAAAAAAABo8/nm7OSYagTvw/s1600/arcs.jpg

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 17/59

public class HourGlass extends Applet

{

public void paint(Graphics g)

 {

int xpoints[] = {30, 200, 30, 200, 30};

int ypoints[] = {30, 30, 200, 200, 30};

int num = 5;

g.drawPolygon(xpoints, ypoints, num);

}

}

Sample output from this program is shown here:

Incorporating Images & Sounds:

Displaying Image in Applet

Applet is mostly used in games and animation. For this purpose image is required to be

displayed. The java.awt.Graphics class provide a method drawImage() to display the image.

Syntax of drawImage() method:

public abstract boolean drawImage(Image img, int x, int y, ImageObserver observer)

is used draw the specified image.

How to get the object of Image?

http://3.bp.blogspot.com/-h37Jzj7Qfvo/Uw710DdWrRI/AAAAAAAABpE/SyjFJmBUl-c/s1600/polygon.jpg

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 18/59

The java.applet.Applet class provides getImage() method that returns the object of Image.

Syntax:

public Image getImage(URL u, String image){}

Other required methods of Applet class to display image:

public URL getDocumentBase(): is used to return the URL of the document in which applet

is embedded.

public URL getCodeBase(): is used to return the base URL.

Example of displaying image in applet:

import java.awt.*;

import java.applet.*;

public class DisplayImage extends Applet {

Image picture;

public void init() {

 picture = getImage(getDocumentBase(),"sonoo.jpg"); }

 public void paint(Graphics g) {

 g.drawImage(picture, 30,30, this); }

 }

In the above example, drawImage() method of Graphics class is used to display the image. The

4th argument of drawImage() method of is ImageObserver object. The Component class

implements ImageObserver interface. So current class object would also be treated as

ImageObserver because Applet class indirectly extends the Component class.

myapplet.html

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 19/59

<html>

<body>

<applet code="DisplayImage.class" width="300" height="300">

</applet>

</body>

</html>

How to play sound using Applet?

Following example demonstrates how to play a sound using an applet image using

getAudioClip(), play() & stop() methods of AudioClip() class.

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class PlaySoundApplet extends Applet implements ActionListener {

 Button play,stop;

 AudioClip audioClip;

 public void init() {

 play = new Button(" Play in Loop ");

 add(play);

 play.addActionListener(this);

 stop = new Button(" Stop ");

 add(stop);

 stop.addActionListener(this);

 audioClip = getAudioClip(getCodeBase(), "Sound.wav");

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 20/59

 }

 public void actionPerformed(ActionEvent ae) {

 Button source = (Button)ae.getSource();

 if (source.getLabel() == " Play in Loop ") {

 audioClip.play();

 } else if(source.getLabel() == " Stop "){

 audioClip.stop(); } }}

Result

The above code sample will produce the following result in a java enabled web browser.

View in Browser.

EventHandling Mechanisms:

As we perform event handling in AWT or Swing, we can perform it in applet also. Let's see the

simple example of event handling in applet that prints a message by click on the button.

Example of EventHandling in applet:

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class EventApplet extends Applet implements ActionListener{

Button b;

TextField tf;

public void init(){

tf=new TextField();

tf.setBounds(30,40,150,20);

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 21/59

b=new Button("Click");

b.setBounds(80,150,60,50);

 add(b);add(tf);

b.addActionListener(this);

setLayout(null);

}

 public void actionPerformed(ActionEvent e){

 tf.setText("Welcome"); } }

In the above example, we have created all the controls in init() method because it is invoked only

once.

myapplet.html

<html>

<body>

<applet code="EventApplet.class" width="300" height="300">

</applet>

</body> </html>

Listener Interfaces:

Java AWT Listeners are a group of interfaces from java.awt.event package. Listeners

are capable to handle the events generated by the components like button, choice, frame etc.

These listeners are implemented to the class which requires handling of events.

public class ButtonDemo1 extends Frame implements ActionListener

The class ButtonDemo1 implements ActionListener as ButtonDemo1 includes some

buttons which require event handling. The button events (known as action events) are handled

byActionListener.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 22/59

Even though, some listeners handle the events of a few components, generally every

component event is handled by a separate listener. For example, the ActionListener handles the

events of Button, TextField, List and Menu. But these types are very rare.

Table giving list of few Java AWT Listeners and components whose events the listeners can

handle.

LISTENER

INTERFACE COMPONENT

WindowListener Frame

ActionListener

Button, TextField, List,

Menu

ItemListener Checkbox, Choice, List

AdjustmentListener Scrollbar

MouseListener Mouse (stable)

MouseMotionListener Mouse (moving)

KeyListener Keyboard

Adapter and Inner Classes:

Java Adapter Classes:

Java adapter classes provide the default implementation of listener interfaces. If you

inherit the adapter class, you will not be forced to provide the implementation of all the methods

of listener interfaces. So, it saves code.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 23/59

The adapter classes are found

in java.awt.event, java.awt.dnd and javax.swing.event packages. The Adapter classes with

their corresponding listener interfaces are given below.

java.awt.event Adapter classes

Adapter class Listener interface

WindowAdapter WindowListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

FocusAdapter FocusListener

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

HierarchyBoundsAdapter HierarchyBoundsListener

java.awt.dnd Adapter classes

Adapter class Listener interface

DragSourceAdapter DragSourceListener

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 24/59

DragTargetAdapter DragTargetListener

javax.swing.event Adapter classes

Adapter class Listener interface

MouseInputAdapter MouseInputListener

InternalFrameAdapter InternalFrameListener

Java WindowAdapter Example

import java.awt.*;

import java.awt.event.*;

public class AdapterExample{

 Frame f;

 AdapterExample(){

 f=new Frame("Window Adapter");

 f.addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e) {

 f.dispose(); } }

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true); }

public static void main(String[] args) {

 new AdapterExample(); } }

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 25/59

Java MouseAdapter Example

import java.awt.*;

import java.awt.event.*;

public class MouseAdapterExample extends MouseAdapter{

 Frame f;

 MouseAdapterExample(){

 f=new Frame("Mouse Adapter");

 f.addMouseListener(this);

 f.setSize(300,300);

 f.setLayout(null);

 f.setVisible(true);

 }

 public void mouseClicked(MouseEvent e) {

 Graphics g=f.getGraphics();

 g.setColor(Color.BLUE);

 g.fillOval(e.getX(),e.getY(),30,30);

 }

 public static void main(String[] args) {

 new MouseAdapterExample(); } }

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 26/59

Java MouseMotionAdapter Example

import java.awt.*;

import java.awt.event.*;

public class MouseMotionAdapterExample extends MouseMotionAdapter{

 Frame f;

 MouseMotionAdapterExample(){

 f=new Frame("Mouse Motion Adapter");

 f.addMouseMotionListener(this);

 f.setSize(300,300);

 f.setLayout(null);

 f.setVisible(true);

 }

public void mouseDragged(MouseEvent e) {

 Graphics g=f.getGraphics();

 g.setColor(Color.ORANGE);

 g.fillOval(e.getX(),e.getY(),20,20);

}

public static void main(String[] args) {

 new MouseMotionAdapterExample();

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 27/59

}

}

Output:

Java KeyAdapter Example

import java.awt.*;

import java.awt.event.*;

public class KeyAdapterExample extends KeyAdapter{

 Label l;

 TextArea area;

 Frame f;

 KeyAdapterExample(){

 f=new Frame("Key Adapter");

 l=new Label();

 l.setBounds(20,50,200,20);

 area=new TextArea();

 area.setBounds(20,80,300, 300);

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 28/59

 area.addKeyListener(this);

 f.add(l);f.add(area);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

 }

 public void keyReleased(KeyEvent e) {

 String text=area.getText();

 String words[]=text.split("\\s");

 l.setText("Words: "+words.length+" Characters:"+text.length());

 }

 public static void main(String[] args) {

 new KeyAdapterExample();

 }

}

Output:

Java Inner Classes

Java inner class or nested class is a class which is declared inside the class or interface.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 29/59

We use inner classes to logically group classes and interfaces in one place so that it can be more

readable and maintainable.

Additionally, it can access all the members of outer class including private data members and

methods.

Syntax of Inner class

class Java_Outer_class{

 //code

 class Java_Inner_class{

 //code

 }

}

Advantage of java inner classes

There are basically three advantages of inner classes in java. They are as follows:

1) Nested classes represent a special type of relationship that is it can access all the

members (data members and methods) of outer class including private.

2) Nested classes are used to develop more readable and maintainable code because it

logically group classes and interfaces in one place only.

3) Code Optimization: It requires less code to write.

Difference between nested class and inner class in Java

Inner class is a part of nested class. Non-static nested classes are known as inner classes.

Types of Nested classes

There are two types of nested classes non-static and static nested classes.The non-static nested

classes are also known as inner classes.

o Non-static nested class (inner class)

1. Member inner class

2. Anonymous inner class

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 30/59

3. Local inner class

o Static nested class

Type Description

Member Inner Class A class created within class and outside method.

Anonymous Inner

Class

A class created for implementing interface or

extending class. Its name is decided by the java

compiler.

Local Inner Class A class created within method.

Static Nested Class A static class created within class.

Nested Interface An interface created within class or interface.

Java Swing

Java Swing is a part of Java Foundation Classes (JFC) that is used to create window-

based applications. It is built on the top of AWT (Abstract Windowing Toolkit) API and entirely

written in java.

Unlike AWT, Java Swing provides platform-independent and lightweight components.

The javax.swing package provides classes for java swing API such as JButton, JTextField,

JTextArea, JRadioButton, JCheckbox, JMenu, JColorChooser etc.

Difference between AWT and Swing

There are many differences between java awt and swing that are given below.

https://www.javatpoint.com/member-inner-class
https://www.javatpoint.com/anonymous-inner-class
https://www.javatpoint.com/anonymous-inner-class
https://www.javatpoint.com/local-inner-class
https://www.javatpoint.com/static-nested-class
https://www.javatpoint.com/nested-interface

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 31/59

No. Java AWT Java Swing

1) AWT components are platform-

dependent.

Java swing components are platform-

independent.

2) AWTcomponents are heavyweight. Swing components are lightweight.

3) AWT doesn't support pluggable look

and feel.

Swing supports pluggable look and

feel.

4) AWT provides less components than

Swing.

Swing provides more powerful

componentssuch as tables, lists,

scrollpanes, colorchooser, tabbedpane

etc.

5) AWT doesn't follows MVC(Model

View Controller) where model

represents data, view represents

presentation and controller acts as an

interface between model and view.

Swing follows MVC.

What is JFC

The Java Foundation Classes (JFC) are a set of GUI components which simplify the

development of desktop applications.

Hierarchy of Java Swing classes

The hierarchy of java swing API is given below.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 32/59

Commonly used Methods of Component class

The methods of Component class are widely used in java swing that are given below.

Method Description

public void add(Component c) add a component on another component.

public void setSize(int width,int

height)

sets size of the component.

public void setLayout(LayoutManager

m)

sets the layout manager for the component.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 33/59

public void setVisible(boolean b) sets the visibility of the component. It is by

default false.

Java Swing Examples

There are two ways to create a frame:

o By creating the object of Frame class (association)

o By extending Frame class (inheritance)

We can write the code of swing inside the main(), constructor or any other method.

Simple Java Swing Example

Let's see a simple swing example where we are creating one button and adding it on the JFrame

object inside the main() method.

File: FirstSwingExample.java

import javax.swing.*;

public class FirstSwingExample {

public static void main(String[] args) {

JFrame f=new JFrame();//creating instance of JFrame

JButton b=new JButton("click");//creating instance of JButton

b.setBounds(130,100,100, 40);//x axis, y axis, width, height

f.add(b);//adding button in JFrame

f.setSize(400,500);//400 width and 500 height

f.setLayout(null);//using no layout managers

f.setVisible(true);//making the frame visible

}

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 34/59

Example of Swing by Association inside constructor

We can also write all the codes of creating JFrame, JButton and method call inside the java

constructor.

File: Simple.java

import javax.swing.*;

public class Simple {

JFrame f;

Simple(){

f=new JFrame();//creating instance of JFrame

JButton b=new JButton("click");//creating instance of JButton

b.setBounds(130,100,100, 40);

f.add(b);//adding button in JFrame

f.setSize(400,500);//400 width and 500 height

f.setLayout(null);//using no layout managers

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 35/59

f.setVisible(true);//making the frame visible

}

public static void main(String[] args) {

new Simple();

}

}

The setBounds(int xaxis, int yaxis, int width, int height)is used in the above example that sets the

position of the button.

Simple example of Swing by inheritance

We can also inherit the JFrame class, so there is no need to create the instance of JFrame class

explicitly.

File: Simple2.java

import javax.swing.*;

public class Simple2 extends JFrame{//inheriting JFrame

JFrame f;

Simple2(){

JButton b=new JButton("click");//create button

b.setBounds(130,100,100, 40);

add(b);//adding button on frame

setSize(400,500);

setLayout(null);

setVisible(true);

}

public static void main(String[] args) {

new Simple2();

}}

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 36/59

Java JButton

The JButton class is used to create a labeled button that has platform independent

implementation. The application result in some action when the button is pushed. It inherits

AbstractButton class.

JButton class declaration

Let's see the declaration for javax.swing.JButton class.

public class JButton extends AbstractButton implements Accessible

Commonly used Constructors:

Constructor Description

JButton() It creates a button with no text and icon.

JButton(String s) It creates a button with the specified text.

JButton(Icon i) It creates a button with the specified icon object.

Commonly used Methods of AbstractButton class:

Methods Description

void setText(String s) It is used to set specified text on

button

String getText() It is used to return the text of

the button.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 37/59

void setEnabled(boolean b) It is used to enable or disable

the button.

void setIcon(Icon b) It is used to set the specified

Icon on the button.

Icon getIcon() It is used to get the Icon of the

button.

void setMnemonic(int a) It is used to set the mnemonic

on the button.

void

addActionListener(ActionListener a)

It is used to add the action

listener to this object.

Java JButton Example

import javax.swing.*;

public class ButtonExample {

public static void main(String[] args) {

 JFrame f=new JFrame("Button Example");

 JButton b=new JButton("Click Here");

 b.setBounds(50,100,95,30);

 f.add(b);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

}

}

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 38/59

Java JButton Example with ActionListener

import java.awt.event.*;

import javax.swing.*;

public class ButtonExample {

public static void main(String[] args) {

 JFrame f=new JFrame("Button Example");

 final JTextField tf=new JTextField();

 tf.setBounds(50,50, 150,20);

 JButton b=new JButton("Click Here");

 b.setBounds(50,100,95,30);

 b.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e){

 tf.setText("Welcome to Javatpoint.");

 }

 });

 f.add(b);f.add(tf);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

}

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 39/59

Output:

Java JLabel

The object of JLabel class is a component for placing text in a container. It is used to display a

single line of read only text. The text can be changed by an application but a user cannot edit it

directly. It inherits JComponent class.

JLabel class declaration

Let's see the declaration for javax.swing.JLabel class.

public class JLabel extends JComponent implements SwingConstants, Accessible

Commonly used Constructors:

Constructor Description

JLabel() Creates a JLabel instance with no

image and with an empty string for the

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 40/59

title.

JLabel(String s) Creates a JLabel instance with the

specified text.

JLabel(Icon i) Creates a JLabel instance with the

specified image.

JLabel(String s, Icon i, int

horizontalAlignment)

Creates a JLabel instance with the

specified text, image, and horizontal

alignment.

Commonly used Methods:

Methods Description

String getText() t returns the text string that a label

displays.

void setText(String text) It defines the single line of text this

component will display.

void setHorizontalAlignment(int

alignment)

It sets the alignment of the label's

contents along the X axis.

Icon getIcon() It returns the graphic image that the

label displays.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 41/59

int getHorizontalAlignment() It returns the alignment of the

label's contents along the X axis.

Java JLabel Example

import javax.swing.*;

class LabelExample

{

public static void main(String args[])

 {

 JFrame f= new JFrame("Label Example");

 JLabel l1,l2;

 l1=new JLabel("First Label.");

 l1.setBounds(50,50, 100,30);

 l2=new JLabel("Second Label.");

 l2.setBounds(50,100, 100,30);

 f.add(l1); f.add(l2);

 f.setSize(300,300);

 f.setLayout(null);

 f.setVisible(true);

 }

 }

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 42/59

Java JLabel Example with ActionListener

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class LabelExample extends Frame implements ActionListener{

 JTextField tf; JLabel l; JButton b;

 LabelExample(){

 tf=new JTextField();

 tf.setBounds(50,50, 150,20);

 l=new JLabel();

 l.setBounds(50,100, 250,20);

 b=new JButton("Find IP");

 b.setBounds(50,150,95,30);

 b.addActionListener(this);

 add(b);add(tf);add(l);

 setSize(400,400);

 setLayout(null);

 setVisible(true);

 }

 public void actionPerformed(ActionEvent e) {

 try{

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 43/59

 String host=tf.getText();

 String ip=java.net.InetAddress.getByName(host).getHostAddress();

 l.setText("IP of "+host+" is: "+ip);

 }catch(Exception ex){System.out.println(ex);}

 }

 public static void main(String[] args) {

 new LabelExample();

 } }

Output:

Java JTextField

The object of a JTextField class is a text component that allows the editing of a single line text. It

inherits JTextComponent class.

JTextField class declaration

Let's see the declaration for javax.swing.JTextField class.

public class JTextField extends JTextComponent implements SwingConstants

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 44/59

Commonly used Constructors:

Constructor Description

JTextField() Creates a new TextField

JTextField(String text) Creates a new TextField initialized with

the specified text.

JTextField(String text, int

columns)

Creates a new TextField initialized with

the specified text and columns.

JTextField(int columns) Creates a new empty TextField with the

specified number of columns.

Commonly used Methods:

Methods Description

void addActionListener(ActionListener

l)

It is used to add the specified

action listener to receive action

events from this textfield.

Action getAction() It returns the currently set

Action for this ActionEvent

source, or null if no Action is

set.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 45/59

void setFont(Font f) It is used to set the current

font.

void

removeActionListener(ActionListener

l)

It is used to remove the

specified action listener so that

it no longer receives action

events from this textfield.

Java JTextField Example

import javax.swing.*;

class TextFieldExample

{

public static void main(String args[])

 {

 JFrame f= new JFrame("TextField Example");

 JTextField t1,t2;

 t1=new JTextField("Welcome to Javatpoint.");

 t1.setBounds(50,100, 200,30);

 t2=new JTextField("AWT Tutorial");

 t2.setBounds(50,150, 200,30);

 f.add(t1); f.add(t2);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

 }

 }

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 46/59

Java JTextField Example with ActionListener

import javax.swing.*;

import java.awt.event.*;

public class TextFieldExample implements ActionListener{

 JTextField tf1,tf2,tf3;

 JButton b1,b2;

 TextFieldExample(){

 JFrame f= new JFrame();

 tf1=new JTextField();

 tf1.setBounds(50,50,150,20);

 tf2=new JTextField();

 tf2.setBounds(50,100,150,20);

 tf3=new JTextField();

 tf3.setBounds(50,150,150,20);

 tf3.setEditable(false);

 b1=new JButton("+");

 b1.setBounds(50,200,50,50);

 b2=new JButton("-");

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 47/59

 b2.setBounds(120,200,50,50);

 b1.addActionListener(this);

 b2.addActionListener(this);

 f.add(tf1);f.add(tf2);f.add(tf3);f.add(b1);f.add(b2);

 f.setSize(300,300);

 f.setLayout(null);

 f.setVisible(true);

 }

 public void actionPerformed(ActionEvent e) {

 String s1=tf1.getText();

 String s2=tf2.getText();

 int a=Integer.parseInt(s1);

 int b=Integer.parseInt(s2);

 int c=0;

 if(e.getSource()==b1){

 c=a+b;

 }else if(e.getSource()==b2){

 c=a-b;

 }

 String result=String.valueOf(c);

 tf3.setText(result);

 }

public static void main(String[] args) {

 new TextFieldExample();

} }

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 48/59

Java JMenuBar, JMenu and JMenuItem

The JMenuBar class is used to display menubar on the window or frame. It may have several

menus.

The object of JMenu class is a pull down menu component which is displayed from the menu

bar. It inherits the JMenuItem class.

The object of JMenuItem class adds a simple labeled menu item. The items used in a menu must

belong to the JMenuItem or any of its subclass.

JMenuBar class declaration

public class JMenuBar extends JComponent implements MenuElement, Accessible

JMenu class declaration

public class JMenu extends JMenuItem implements MenuElement, Accessible

JMenuItem class declaration

public class JMenuItem extends AbstractButton implements Accessible, MenuElement

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 49/59

Java JMenuItem and JMenu Example

import javax.swing.*;

class MenuExample

{

 JMenu menu, submenu;

 JMenuItem i1, i2, i3, i4, i5;

 MenuExample(){

 JFrame f= new JFrame("Menu and

MenuItem Example");

 JMenuBar mb=new JMenuBar();

 menu=new JMenu("Menu");

 submenu=new JMenu("Sub Menu");

 i1=new JMenuItem("Item 1");

 i2=new JMenuItem("Item 2");

 i3=new JMenuItem("Item 3");

 i4=new JMenuItem("Item 4");

 i5=new JMenuItem("Item 5");

 menu.add(i1); menu.add(i2); menu.a

dd(i3);

 submenu.add(i4); submenu.add(i5);

 menu.add(submenu);

 mb.add(menu);

 f.setJMenuBar(mb);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

}

public static void main(String args[])

{

new MenuExample();

}}

Output:

Example of creating Edit menu for Notepad:

import javax.swing.*;

import java.awt.event.*;

public class MenuExample implements A

ctionListener{

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 50/59

JFrame f;

JMenuBar mb;

JMenu file,edit,help;

JMenuItem cut,copy,paste,selectAll;

JTextArea ta;

MenuExample(){

f=new JFrame();

cut=new JMenuItem("cut");

copy=new JMenuItem("copy");

paste=new JMenuItem("paste");

selectAll=new JMenuItem("selectAll");

cut.addActionListener(this);

copy.addActionListener(this);

paste.addActionListener(this);

selectAll.addActionListener(this);

mb=new JMenuBar();

file=new JMenu("File");

edit=new JMenu("Edit");

help=new JMenu("Help");

edit.add(cut);edit.add(copy);

edit.add(paste);

edit.add(selectAll);

mb.add(file);mb.add(edit);mb.add(help);

ta=new JTextArea();

ta.setBounds(5,5,360,320);

f.add(mb);f.add(ta);

f.setJMenuBar(mb);

f.setLayout(null);

f.setSize(400,400);

f.setVisible(true);

}

public void actionPerformed(ActionEvent

e) {

if(e.getSource()==cut)

ta.cut();

if(e.getSource()==paste)

ta.paste();

if(e.getSource()==copy)

ta.copy();

if(e.getSource()==selectAll)

ta.selectAll();

}

public static void main(String[] args) {

 new MenuExample(); } }

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 51/59

BorderLayout (LayoutManagers)

Java LayoutManagers

The LayoutManagers are used to arrange components in a particular manner. LayoutManager is an

interface that is implemented by all the classes of layout managers. There are following classes that

represents the layout managers:

1. java.awt.BorderLayout

2. java.awt.FlowLayout

3. java.awt.GridLayout

4. java.awt.CardLayout

5. java.awt.GridBagLayout

6. javax.swing.BoxLayout

7. javax.swing.GroupLayout

8. javax.swing.ScrollPaneLayout

9. javax.swing.SpringLayout etc.

Java BorderLayout

The BorderLayout is used to arrange the components in five regions: north, south, east, west and

center. Each region (area) may contain one component only. It is the default layout of frame or

window. The BorderLayout provides five constants for each region:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 52/59

1. public static final int NORTH

2. public static final int SOUTH

3. public static final int EAST

4. public static final int WEST

5. public static final int CENTER

Constructors of BorderLayout class:

o BorderLayout(): creates a border layout but with no gaps between the components.

o JBorderLayout(int hgap, int vgap): creates a border layout with the given horizontal and

vertical gaps between the components.

Example of BorderLayout class:

import java.awt.*;

import javax.swing.*;

public class Border {

JFrame f;

Border(){

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 53/59

 f=new JFrame();

 JButton b1=new JButton("NORTH");;

 JButton b2=new JButton("SOUTH");;

 JButton b3=new JButton("EAST");;

 JButton b4=new JButton("WEST");;

 JButton b5=new JButton("CENTER");;

 f.add(b1,BorderLayout.NORTH);

 f.add(b2,BorderLayout.SOUTH);

 f.add(b3,BorderLayout.EAST);

 f.add(b4,BorderLayout.WEST);

 f.add(b5,BorderLayout.CENTER);

 f.setSize(300,300);

 f.setVisible(true);

}

public static void main(String[] args) {

 new Border();

}

}

An Overview of Servlet

Servlet technology is used to create web application (resides at server side and generates dynamic

web page).

Servlet technology is robust and scalable because of java language. Before Servlet, CGI (Common

Gateway Interface) scripting language was popular as a server-side programming language. But

there was many disadvantages of this technology. We have discussed these disadvantages below.

There are many interfaces and classes in the servlet API such as Servlet, GenericServlet,

HttpServlet, ServletRequest, ServletResponse etc.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 54/59

What is a Servlet?

Servlet can be described in many ways, depending on the context.

o Servlet is a technology i.e. used to create web application.

o Servlet is an API that provides many interfaces and classes including documentations.

o Servlet is an interface that must be implemented for creating any servlet.

o Servlet is a class that extend the capabilities of the servers and respond to the incoming

request. It can respond to any type of requests.

o Servlet is a web component that is deployed on the server to create dynamic web page.

What is web application?

A web application is an application accessible from the web. A web application is composed of web

components like Servlet, JSP, Filter etc. and other components such as HTML. The web components

typically execute in Web Server and respond to HTTP request.

CGI(Commmon Gateway Interface)

CGI technology enables the web server to call an external program and pass HTTP request

information to the external program to process the request. For each request, it starts a new process.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 55/59

Disadvantages of CGI

There are many problems in CGI technology:

1. If number of clients increases, it takes more time for sending response.

2. For each request, it starts a process and Web server is limited to start processes.

3. It uses platform dependent language e.g. C, C++, perl.

Advantage of Servlet

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 56/59

There are many advantages of servlet over CGI. The web container creates threads for handling the

multiple requests to the servlet. Threads have a lot of benefits over the Processes such as they share a

common memory area, lightweight, cost of communication between the threads are low. The basic

benefits of servlet are as follows:

1. better performance: because it creates a thread for each request not process.

2. Portability: because it uses java language.

3. Robust: Servlets are managed by JVM so we don't need to worry about memory leak,

garbage collection etc.

4. Secure: because it uses java language.

Event and Listener in Servlet

Events are basically occurrence of something. Changing the state of an object is known as an

event.

We can perform some important tasks at the occurrence of these exceptions, such as counting total

and current logged-in users, creating tables of the database at time of deploying the project, creating

database connection object etc.

There are many Event classes and Listener interfaces in the javax.servlet and javax.servlet.http

packages.

Event classes

The event classes are as follows:

1. ServletRequestEvent

2. ServletContextEvent

3. ServletRequestAttributeEvent

4. ServletContextAttributeEvent

5. HttpSessionEvent

6. HttpSessionBindingEvent

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 57/59

Event interfaces

The event interfaces are as follows:

1. ServletRequestListener

2. ServletRequestAttributeListener

3. ServletContextListener

4. ServletContextAttributeListener

5. HttpSessionListener

6. HttpSessionAttributeListener

7. HttpSessionBindingListener

8. HttpSessionActivationListener

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 58/59

POSSIBLE QUESTION

 Part -A Online Questions

 Part –B 2 MARKS

1. What are packages and how it is used?

2. Define and give the syntax for interface.

3. Write the difference between an applet and an application.

4. Draw the life cycle of Java Applets.

5. What are Java Packages?

6. What is Thread prioritization?

7. Write any two AWT Controls.

8. What is servelets?

9. What is web application?

10. Define CGI(Commmon Gateway Interface).

11. Mention the Disadvantages of CGI.

12. What are the Advantages of Servlet?

13. What is Java Swing?

14. Difference between AWT and Swing.

15. What is JFC?

16. Draw the Hierarchy of Java Swing classes.

17. What are the Advantage of Applet?

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I B.Sc CS COURSE NAME: JAVA PROGRAMMING

COURSE CODE: 17CSU201 UNIT: IV(Java Applets) BATCH-2017-2020

Prepared by Dr.P.Tamilselvan, Mrs.S.A.SathyaPrabha, Asst.Professor, Dept of CS, CA & IT, KAHE Page 59/59

18. List the Drawback of Applet.

19. Draw the Hierarchy of Applet.

20. How to run an Applet?

 Part –C 6 MARKS

1. What are the different types of AWT components? How are these components added to

 the container?

2. Write an applet that draws circle, a line, and a polygon inside the applet’s visible area.

3. What do you mean by an event? Explain different components of an event.

4. Define applet. Write an applet that draws circle, a line, and a polygon inside the applet’s visible

 area

5. Explain the lifecycle of applet and Write an applet that draws circle, a line, and a polygon inside

 the applet’s visible area

6. Discuss Graphic objects and methods with example.

7. Explain Event Handling Mechanism with an example.

8. Explain Graphic Object for drawing figures with example program.

9. Elucidate about Applets and its Life Cycle and Methods with appropriate examples.

10. Display various shapes in a window using menu as options for those shapes.

11. Explain in detail about working with graphics with example.

12. Discuss in detail about Adapter and inner classes.

13. Enlighten incorporating images and sounds with example.

S.

No
Questions opt1 opt2 opt3 opt4 answer

1 AWT stands for _________
Abstract
Window
Toolkit

Absolute
Window
Toolkit

Absolute
Windowin
g Toolkit

Abstract
Windowin
g Toolkit

Abstract
Window
Toolkit

2

The __________ class is an abstract
class which includes large number of
methods for positioning and sizing
components, repainting, etc.

Container Component Swing Beans

Compone

nt

3

The __________ class creates a push

button that generates an event when it

is pressed

Label TextField Button Checkbox Button

4
In which class is the method

setVisible() first defined
Component Container Window Frame

Compone

nt

5
While creating a window using Frame
constructor, we can specify

Title Size
Visibility

attribute
All Title

6
Color class also defines _________

common colors as constants
Canvas Frame Dialog Panel Dialog

7
The most basic menu in an
application consists of
_____________ main elements

2 4 3 5 3

8
The ________ class implements a

scrollable list of text items
Choice Checkbox List Scrollbar List

9
A TextField is a subclass of the

_______________ class

TextCompon

ent
Button Label TextArea

TextComp

onent

10 Checkbox consists of _______ states 2 4 3 5 2

11 Checkbox can of __________ types 4 3 5 2 2

12
A ____________ list appears like a

menu
TextArea choice

Componen

t
Container choice

SUBJECT: Programming in Java SUBJECT CODE: 17CSU201

UNIT 5

KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE - 21

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 CLASS : I B.Sc COMPUTER SCIENCE

BATCH : 2017-2020

 Part -A Online Examinations (1 mark questions)

13

 __________ are used to select

continuous values bewtween a

specified minimum and maximum.

List Scrollbar TextField TextArea Scrollbar

14
 _____________ is an abstract
subclass of the abstract class
component

Component Container Window Frame Container

15
Applet is a subclass of

_______________ class
List Scrollbar Panel Frame Panel

16

 _____ provides a basic file

Open/Save dialog box that enables

accessibility to the file system

Dialog Frame FileDialog Container FileDialog

17
The frame must be closed explicitly
by adding ______________ object to
the frame

WindowList

ener
FileDialog Dialog Applet

WindowL

istener

18
 ____________ class provides a
compact multiple choice scrolling
selection list.

 Scroll bar List menu bar
 Combo

Box
 List

19
Which of these functions is called to

display the output of an applet?
display() print()

displayAp

plet()

PrintApple

t()
print()

20
____ parameters are passed to

drawArc method
4 5 6 3 3

21
____ is the default color for drawing

graphics color
white black red green black

22
how many colors does a GIF image

can have?
180 256 3600 4800 256

23
when a portion of a applet window is

to be redrawn ____ method is used
paint() start() update() repaint() update()

24
______ method is used set the

background color

setbackGrou

nd()
Setcolor()

setBackGr

ound()

setBackgro

und()

setBackgr

ound()

25
_______is the distance from the base

line to the top of the character
font size ascent descent baseline ascent

26
_____________is the distance from
the base line to the bottom of the
character

font size ascent descent baseline descent

27
______is an abstract class which
encapsulates all the attributes of the
visual component

component container applet
both b and

c

componen

t

28
To get the URL of the applet, you use

__________.

getCodeBase
()

getDocumen
tBase()

returnCode
Base()

returnDocu
mentBase()

getCodeB
ase()

29
To get the image file at a specified

URL, you use __________.

getImage(url
)

createImage(
url)

url.getIma
ge()

url.createI
mage()

getImage(
url)

30
The ________ method of class
Graphics draw a line between two
points.

Line Putline drawline getline drawline

31
What is the data type for the

parameter of the sleep() method?
long int byte double long

32
What is the mechanisam defind by
java for the Resources to be used by
only one Thread at a time?

priority parameters arguments
Synchronis

ation

Synchroni

sation

33
Garbage collector thread belongs to

which priority?
high-priority low-priority

middle-

priority

highest-

priority

low-

priority

34
When a Java program starts up, ____

thread begins running immediately
program main function input main

35
The ____ method causes the thread
from which it is called to suspend
execution for the specified period of

wait() notify() sleep() run() sleep()

36
To implement Runnable, a class need
only implement a single method
called ____

wait() notify() sleep() run() run()

37
A ____ is an object that is used as a
mutually exclusive lock to achieve
synchronization

monitor thread process applet monitor

38
 __________ are small
applicationsthat are accessed on an
internet server

utilities networks applets bean applets

39
The compiled applet is tested using

word dos notepad

applet

viewer

applet

viewer

40
The __________ tag is used to start
an applet from both HTML and JDK
applet viewer

Html JDK applet title applet

41
 ____________ method gets called

first
paint start init update init

42
Applet basically is a Java class

defined in the _____ package of JDK
java.awt java.lang java.applet java.util

java.apple

t

43
The Applet class which is in the
java.applet package inherits the
properties of the _______ class which
is in the java.awt package

Container Componenet Panel List Panel

44
The Panel class inherits the properties
of the _________ class in the java.awt
package

Container Componenet Panel List Container

45
The container class inherits the
properties of the ______________
class

Container Componenet Panel List
Compone

net

46
An _______ is a window based event

driven program
Html JDK applet title applet

47
The _______ and _______ method

executes only once

stop() and

destroy()

start() and

stop()

init() and

paint()

init() and

destroy()

init() and

destroy()

48
Immediately after calling init()
methodthe browser calls the
__________________ method

stop() start() init() destroy() start()

49
The ________ method also called
when the user returns to an HTML
page that contains the applet

paint() init() destroy() start() start()

50
The ________ methodis called each

time your applet's output is redrawn
stop() start() init() paint() paint()

51
The ________ method acalled when
the user moves from the HTML page
that contains an applet

paint() init() stop() destroy() stop()

52
The _______ method that is used to

release additional resource
paint() init() destroy() start() destroy()

53
There are ______ main methods

defined in java.awt.Component
2 4 5 3 3

54
The _____ method is defined by the
AWT and is usually called by the
applet for screen updating

paint() init() stop() repaint() repaint()

55
 ________ class cannot be created

directly by using constructors
Panel Container

Componen

et
Graphics Grapahics

56
In java color is encapsulated by the

________ class
Container Componenet Graphics Color Color

57
Color class also defines _________

common colors as constants
10 13 12 14 13

58
Methods of ________ class can also
be used in the Graphiocs class
methods to set and get the background
and foreground colors

Container Componenet Panel List
Compone

net

59
There are ___________ common
terms that are used when describing
fonts

2 4 5 3 5

60
The java.applet package defines

_______ inetrfaces
2 4 5 3 3

61
The user cannot have their HTML
document,applet code,data and web
browser at _____________ different

2 4 5 3 4

62
The loop() method plays the audio
clip automatically while __________
plays it only once

paint() play() init() start() play()

63
The audio clip can be stopped by

calling the ______ method
paint() init() stop() repaint() stop()

64
The _________ interface provides the
inter_communication between an
applet and the parent container

AppletConte

xt
AppletStub getApplet

showDocu

ment

AppletStu

b

65
The _________ inetface gives the
information about the applet's
execution environment

AppletStub getApplet
AppletCon

text

showDocu

ment

AppletCo

ntext

66
The setBackground() is the part of the

class ______
Graphics AppletStub

Componen

t
Container

Compone

nt

67
If you want to assign a vlaue 99 to a
variable called number, which of the
following lines you will use within an
applet tag?

number=99
param =
number
value=99

param
name =
number
value=99

param
number
=99

param
name =
number
value=99

	1.pdf (p.1-3)
	2.pdf (p.4-8)
	3.pdf (p.9-60)
	The Java Virtual Machine
	Java architecture
	Features of Java
	1. Simple
	2. Object-oriented
	3. Platform Independent
	4. Secured
	5. Robust
	6. Architecture-neutral
	7. Portable
	8. High-performance
	9. Distributed
	10. Multi-threaded

	C++ vs. Java
	Compiling and Executing a Java Program
	1. Write source code
	2. Compile the code
	3. Run the code
	4. Using the classpath
	A variable is a container that stores a meaningful value that can be used throughout a program. For example, in a program that calculates tax on items you can have a few variables - one variable that stores the regular price of an item and another var...
	Variable Declaration:
	2) Variable Initialization:

	Operators in Java
	Signature
	Parameter
	Returns combined string
	Java String concat() method example

	10. Mention the Operators in Java?
	11. Mention the Features of Java.

	4.pdf (p.61-64)
	Sheet1

	5.pdf (p.65-118)
	Advantage of Java Array
	Disadvantage of Java Array
	Types of Array in java
	Single Dimensional Array in java
	Syntax to Declare an Array in java
	Instantiation of an Array in java
	Example of single dimensional java array
	Java String Class
	String is a sequence of characters, for e.g. “Hello” is a string of 5 characters. In java, string is an immutable object which means it is constant and can cannot be changed once it has been created. In this tutorial we will learn about String class a...
	Creating a String
	There are two ways to create a String in Java
	1. String literal
	2. Using new keyword
	String literal
	In java, Strings can be created like this: Assigning a String literal to a String instance:
	String str1 = "Welcome";
	String str2 = "Welcome";
	Using New Keyword
	As we saw above that when we tried to assign the same string object to two different literals, compiler only created one object and made both of the literals to point the same object. To overcome that approach we can create strings like this:
	String str1 = new String("Welcome");
	String str2 = new String("Welcome");
	In this case compiler would create two different objects in memory having the same string.
	A Simple Java String Example
	public class Example{
	public static void main(String args[]){
	//creating a string by java string literal
	String str = "Beginnersbook";
	char arrch[]={'h','e','l','l','o'};
	//converting char array arrch[] to string str2
	String str2 = new String(arrch);
	//creating another java string str3 by using new keyword
	String str3 = new String("Java String Example");
	//Displaying all the three strings
	System.out.println(str);
	System.out.println(str2);
	System.out.println(str3); }}
	Output:
	Beginnersbook
	hello
	Creating and using String Objects
	String class
	Manipulating String
	1. length()

	Example
	classStringHandling { Output
	2. charAt(index)

	Example (1)
	classStringHandling{ Output
	3. toUpperCase()

	Example Output
	4. toLowerCase()

	Example Output (1)
	5. concat()

	Example Output (2)
	6. equals()

	Example Output (3)
	7. equalsIgnoreCase()

	Example Output (4)
	8. compareTo()

	Example Output
	9.startsWith()

	Example Output (1)
	10. endsWith()

	Example Output (5)
	11. subString()

	Example:1 Output
	Example:2 Output
	12. trim()

	Example Output
	13. split()
	14. replace()

	Example Output (2)
	Stream
	OutputStream vs InputStream
	OutputStream
	InputStream

	OutputStream class
	Useful methods of OutputStream
	OutputStream Hierarchy

	InputStream class
	Useful methods of InputStream
	InputStream Hierarchy

	Character Stream Vs Byte Stream in Java
	File I/O
	Stream
	Byte Stream
	Character Stream

	Java OOPs Concepts
	OOPs (Object Oriented Programming System)
	Object
	Class
	Inheritance
	Polymorphism
	Abstraction
	Encapsulation

	Access Modifiers in java
	Method Overloading in Java
	Advantage of method overloading
	Different ways to overload the method
	In java, Method Overloading is not possible by changing the return type of the method only.

	1) Method Overloading: changing no. of arguments
	2) Method Overloading: changing data type of arguments

	Java passing object as parameter
	Passing Object as Parameter:
	Explanation:
	We can pass Object of any class as parameter to a method in java.
	Different Ways of Passing Object as Parameter:
	Way 1 : By directly passing Object Name
	Way 2 : By passing Instance Variables one by one
	Way 3 : We can pass only public data of object to the Method.

	Final Keyword in Java
	Java final class
	Example of final class
	2. What are the Advantage of Java Array?
	3. Mention the Disadvantage of Java Array?

	5. Define Java String Class?
	8. What is Stream?
	9. What is OutputStream?
	10. What is InputStream?

	13. What are the Access Modifiers in java?
	10. Explain OOPs (Object Oriented Programming System) in Java with example.

	6.pdf (p.119-123)
	Sheet1
	Sheet2

	7.pdf (p.124-151)
	8.pdf (p.152-159)
	9.pdf (p.160-205)
	Internal working of java try-catch block
	Which exception should be declared
	Advantage of Java throws keyword

	Difference between throw and throws in Java
	Types of Exception in Java with Examples
	Java Custom Exception
	7. Difference between throw and throws in Java
	8. Types of Exception in Java with Examples

	10.pdf (p.206-209)
	11.pdf (p.210-268)
	Table giving list of few Java AWT Listeners and components whose events the listeners can handle.
	Java Adapter Classes:
	java.awt.event Adapter classes
	java.awt.dnd Adapter classes
	javax.swing.event Adapter classes
	Java WindowAdapter Example
	Java MouseAdapter Example
	Java MouseMotionAdapter Example
	Java KeyAdapter Example

	Java Inner Classes
	Syntax of Inner class
	Advantage of java inner classes
	Difference between nested class and inner class in Java
	Types of Nested classes

	Java Swing
	Difference between AWT and Swing
	What is JFC
	Hierarchy of Java Swing classes
	Commonly used Methods of Component class
	Java Swing Examples
	Simple Java Swing Example
	Example of Swing by Association inside constructor
	Simple example of Swing by inheritance

	Java JButton
	JButton class declaration
	Commonly used Constructors:
	Commonly used Methods of AbstractButton class:

	Java JButton Example
	Java JButton Example with ActionListener

	Java JLabel
	JLabel class declaration
	Commonly used Constructors:
	Commonly used Methods:

	Java JLabel Example
	Java JLabel Example with ActionListener

	Java JTextField
	JTextField class declaration
	Commonly used Constructors:
	Commonly used Methods:

	Java JTextField Example
	Java JTextField Example with ActionListener

	Java JMenuBar, JMenu and JMenuItem
	JMenuBar class declaration
	JMenu class declaration
	JMenuItem class declaration
	Java JMenuItem and JMenu Example
	Example of creating Edit menu for Notepad:

	BorderLayout (LayoutManagers)
	Java LayoutManagers
	Java BorderLayout
	Constructors of BorderLayout class:
	Example of BorderLayout class:

	An Overview of Servlet
	What is a Servlet?
	CGI(Commmon Gateway Interface)
	Disadvantages of CGI
	Advantage of Servlet

	Event and Listener in Servlet
	Event classes
	Event interfaces
	10. Define CGI(Commmon Gateway Interface).
	11. Mention the Disadvantages of CGI.
	12. What are the Advantages of Servlet?

	13. What is Java Swing?
	14. Difference between AWT and Swing.
	15. What is JFC?
	16. Draw the Hierarchy of Java Swing classes.

	12.pdf (p.269-273)
	13.pdf (p.274-276)
	14.pdf (p.277-278)

