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KARPAGAM ACADEMY OF HIGHER EDUCATION
= .7~ (Deemed to be University Established Under Section 3 of UGC Act 1956)

KARPAGAM Coimbatore — 641 021,
l(s'ih\ishfii::f;cu::sw?;t'e?;tg‘-‘--::. 1956 ) SY L LAB U S
Semester — 11
17CSU202 DISCRETE STRUCTURES 4H - 4C

Instruction Hours /week: L: 4 T: 0P: 0  Marks: Int : 40 Ext : 60 Total: 100

Scope: It exposes the students to study entities such as sets, relations, graphs, and trees. These
entities act as very fundamental representations useful in a broad spectrum of applications across
the length and breadth of computer science.

Objective: This course provides a deep knowledge to the learners to develop and analyze
algorithms as well as enable them to think about and solve problems in new ways. By the
completion of the course students should be able to express ideas using mathematical notation
and solve problems using the tools of mathematical analysis.

UNIT |

Sets: Introduction, Sets , finite and infinite sets, uncountably infinite sets, functions, relations,
properties of binary relations, closure, partial ordering relations, counting , Pigeonhole principle,
Permutation and Combination, Mathematical Induction, Principle of inclusion and Exclusion.

UNIT 11

Growth of Functions: Asymptotic Notations, Summation formulas and properties,Bounding
Summations, approximation bylntegrals

UNIT 111

Recurrences: Recurrence relations, generating functions, linear recurrence relations with
constant coefficients and their solution, Substitution Method, recurrence trees, Master theorem.

UNIT IV

Graph Theory : Basic terminology, models and types, multigraphs and weighted graphs, graph
representation, graph isomorphism, connectivity, Euler and Hamiltonian Paths and circuits,
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Planar graphs, graph coloring, trees, basic terminology and properties of trees, introduction to
Spanning trees

UNIT V

Prepositional Logic: Logical Connectives, Well-formed Formulas, Tautologies, Equivalences,
Inference Theory.

SUGGESTED READINGS
TEXT BOOK

Kenneth Rosen. (2006). Discrete Mathematics and Its Applications (6th ed.). New Delhi:
McGraw Hill.

REFERENCES

1. Tremblay , J .P., & Manohar, R. (1997). Discrete Mathematical Structures with Applications
to Computer Science. New Delhi: McGraw-Hill Book Company.

2. Coremen, T.H., Leiserson, C.E., & R. L. Rivest. (2009). Introduction to algorithms, (3rd
ed.). New Delhi: Prentice Hall on India.

3. Albertson, M. O.,& Hutchinson, J. P. (1988). Discrete Mathematics with Algorithms . New
Delhi: John wiley Publication.

4. Hein, J. L. (2009). Discrete Structures, Logic, and Computability( 3rd ed.). New Delhi: Jones
and Bartlett Publishers.

5. Hunter, D.J. (2008). Essentials of Discrete Mathematics. New Delhi: Jones and Bartlett
Publishers.
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\éa; KARPAGAM ACADEMY OF HIGHER EDUCATION

KA RPAGA \| (Deemed to be University Established Under Section 3 of UGC Act 1956)
ACADEMY OF HIGHER EDUCATION COImbatore _ 641 021

(Deemed to he University]
(Established Under Section 3 of UGC Act, 1956 )

LECTURE PLAN
DEPARTMENT OF MATHEMATICS

STAFF NAME:A.NEERAJAH

SUBJECT NAME: DISCRETE STRUCTURES SUB.CODE:17CSU202
SEMESTER: Il CLASS: 1 B.ScCS-A
S.No Lecture Topics to be Covered Support Material/Page
Duration Nos
Period
UNIT-I
1 1 Introduction to sets T2:chapter-
2,Pg.N0:104-114
2 1 Relations and properties of T2:chapter-
binary relations 2,Pg.N0:148-155
3 1 Partial ordering- theorems T2:chapter-
2,Pg.N0:183-191
4 1 Functions-Definition and basic T2:chapter-
concepts 2,Pg.N0:192-197
5 1 Counting- Definition and basic | T1: chapter -4
concepts Pg.No:301-311
6 1 Pigeonhole principle T1: chapter -4
Pg.N0:313-318
7 1 Permutation and Combination- T1: chapter -4
Problems Pg.No0:320-326
8 1 Mathematical induction R1: chapter -5 Pg.No:-
172-181
9 1 Principle of inclusion and R1: chapter -5 Pg.No:-
exclusion 182-186
10 1 Recapitulation and Discussion T2:chapter-
of possible questions 2,Pg.N0:104-114
Total No of Hours Planned For Unit 1=10
UNIT-1I
1 1 Introduction to growth of T3: chapter -3
functions Pg.No:44-51
2 1 Big theta and Little oh-Problems | T5: chapter -5
Pg.N0:296-304
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Big oh and Big Omega-

T4: chapter -2

Problems Pg.N0:102-109
Summation- Definition and basic | W1:Staff.ust.edu.cn/ch3
concepts

Properties of Summation- Wi:Staff.ust.edu.cn/ch3
problems

Bounding Summation with
Examples

W;1:Staff.ust.edu.cn/ch3

Approximation by integrals-
Problems

W;1:Staff.ust.edu.cn/ch3

Recapitulation and Discussion
of possible questions

Total No of Hours Planned For Unit 11=8

UNIT-I11

Recurrence relations-Definition
and basic concepts

R1: chapter -6
Pg.N0:193-199

Linear recurrence relation with
constant coefficient

T1: chapter -6
Pg.N0:413-418

Solution of Linear recurrence
relations with constant
coefficient

T1: chapter -6
Pg.N0:419-422

Generation functions-Problems

T1: chapter -6
Pg.N0:435-439

Substitution method- Problems

T3: chapter -4 Pg.No:
88-92

Recurrence tree-Problems

T3: chapter -4 Pg.No:
88-92

Master Method-Problems

T3: chapter -4 Pg.No:
93-96

Master theorem

T3: chapter -4 Pg.No:
96-99

Recapitulation and Discussion of
possible questions

Total No of Hours Planned For Unit 111=9

UNIT-1V

Introduction to Graph theory

T1: chapter -8
Pg.N0:545-556

Representation and isomorphism
of graphs

T1: chapter -8
Pg.N0:557-566

Connectivity- Definition and
theorems

T1: chapter -8
Pg.N0:567-575
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4 1 Euler’s and Hamiltonian paths T1: chapter -8
Pg.No0:577-592
5 1 Planner graph-theorem T1: chapter -8
Pg.N0:603-612
6 1 Graph coloring-Definition and T1: chapter -8
theorems Pg.N0:613-620
7 1 Tree and its Properties T1: chapter -9
Pg.N0:631-640
8 1 Spanning Tree T1: chapter -9
Pg.No0:674-680
9 1 Recapitulation and Discussion
of possible questions
Total No of Hours Planned For Unit IV=9
UNIT-V
1 1 Introduction to Statement and T2: chapter -1 Pg.No:2-
Notation Logical Connectives 6
T6: chapter-1 Pg. No: 2-
6
2 1 Well formed formulae T5: chapter -7
Pg.No0:356-358
3 1 Tautologies-Problems T2: chapter -1
Pg.No:24-25
4 1 Equivalence of formulae- T5: chapter -7
Problems Pg.N0:368-373
5 1 Continuation of Problems T5: chapter -7
Pg.N0:368-373
6 1 Normal forms-Problems T2: chapter -1
Pg.No:50-60
7 1 Theory of Inference T2: chapter -1
Pg.No0:65-67
8 1 Rules of inference T2: chapter -1
Pg.No:68-78
9 1 Recapitulation and Discussion
of possible questions
10 1 Discuss on Previous ESE
Question Papers
11 1 Discuss on Previous ESE
Question Papers
12 1 Discuss on Previous ESE
Question Papers
Total No of Hours Planned for unit V=12
Total 48
Planned
Hours
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TEXT BOOK

1.

Balakrishnan R., and Ramabadran. M., Second Edition, 1994. Modern Algebra ,
Vikas Publishing House Pvt.Ltd, New Delhi. (For Unit 1&I1).

2. Herste{?).l.N, 2010. Topic in Algebra ,John Wiley &Sons , New Yark.(For Unit
LIV,
3. Vasishtha.A.R.,2005 . Modern Algebra, Krishna Prakasam Mandir , Meerut.
REFERENCES
1. aurjeet Singh and Qazi Zameeruddin., 1992. Modern Algebra, Vikash Publishing
ouse.
2. %eymol_lf_r"Lipschutz and Marc Lipson ,2001 . Linear Algebra, 3" Edition , Mc
raw Hill.
3. Kanti Bhushan Datta., 2009 . Marix and Linear Algebra Aided with MATLAB,
Prentice- Hall of india Private Ltd, New Delhi. o
4. Dipak Chatterjee., 2005. Abstract Algebra, Prentice- Hall of India Private Ltd,
New Delhi.
WEBSITES

W1: Staff.ust.edu.cn/ch3

Prepared by ANEERAJAH ,Department of Mathematics ,KAHE 4/4



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IB.Sc Computer science-A COURSE NAME:DISCRETE STRUCTURES
RSE CODE: 17 202 UNIT: I(SETS) BATCH-2017-2020
UNIT-I
SYLLABUS

Introduction, Sets , finite and infinite sets, uncountably infinite sets, functions, relations,
properties of binary relations, closure, partial ordering relations, counting , Pigeonhole principle,
Permutation and Combination, Mathematical Induction, Principle of inclusion and Exclusion.

UNIT — |
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CLASS: IB.Sc Computer science-A COURSE NAME:DISCRETE STRUCTURES
RSE CODE: 17 202 UNIT: I(SETS) BATCH-2017-2020

1. Introduction

Set: any collection of objects (individuals)
Naming sets: A, B, C.....

Members of a set: the objects in the set
Naming objects: a. b, c. ....

Notation: Let A be a set of 3 letters a. b. c.
We write A = {a. b. ¢}
aisamemberof A.aisin A wewritea € A
d 1s not a member of A, we write d € A

Important: 1. {a}#a
{a} - a set consisting of one element a.

a - the element itself

2. A set can be a member of another set:

B={1.2. {1}. {2}. {1.2}}

Finite sets: finite number of elements
Infinite sets: infinite number of elements
Cardinality of a finite set A: the number of elements in A: £A. or A

Describing sets:
a. by enumerating the elements of A:
for finite sets: {red. blue. yellow}, {1.2.3.4.5.6.7.8.9.0}
for infinite sets we write: {1.2.3.4.5.....}

b. by property. using predicate logic notation
Let P(x) 15 a property. D - umiverse of discourse

The set of all objects in D. for which P(x) 1s true, 1s :

A= {x|P()
we read: A consists of all objects x in D such that P(x) 1s true

. ¢. by recursive definition. e.g. sequences '
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Examples:

1. The set of the days of the week:
{Sunday. Monday, Tuesday, Wednesday, Thursday. Friday. Saturday}
2. The set of all even numbers :

{ x| even(x) }

{24.68.....}
3. The set of all even numbers. greater than 100:

{ x| even(x) A x > 100}
{102, 104. 106, 108.....}

4. The set of integers defined as follows:
ay =1, ag =a, +2 (the odd natural numbers)

Universal set: U - the set of all objects under consideration

Empty set: @ set without elements,

2. Relations between sets

2.1. Equality

Let A and B be two sets.

We say that A 1s equal to B. A = B if and only if they have the same members.
Example:

A={246)}.B={246} A=B

A={a.b.c}.B={c.a.b} A=B

A={123}.B={135). A<B
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CLASS: IB.Sc Computer science-A COURSE NAME:DISCRETE STRUCTURES
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Written 1n predicate notation:

A=Bifandonlyif Vx,x€ A«<>x€ B
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CLASS: IB.Sc Computer science-A COURSE NAME:DISCRETE STRUCTURES
RSE CODE: 17 202 UNIT: I(SETS) BATCH-2017-2020

2.2, Subsets

The set of all numbers contains the set of all positive numbers. We say that the set of all
positive numbers 15 a subset of the set of all numbers.

Definition: A is a subset of B 1f all elements of A are in B. However B may contain
elements that are not n A

Notation: A= B
Formal definition:

Ac Bifandonlyif Vx,x€A->x€ B

Example: A = {2,4,6), B={1,2,3,45,6),A cB
Definition: if A 1s a subset of B, B is called a superset of A,

Other definitions and properties:

alfA cBandBc AthenA=B

If A 1s a subset of B. and B 1s a subset of A, A and B are equal.

b. Proper subsets: A is a proper subset of B, A c B, if and only if A 15 a subset of B and
there 1s at least one element in B that 1s not mn A.

AcB iff Vx,x€ A>x€ B A3Jx, x€ BA xgA
The above expression reads:

A 15 a proper subset of B if and only if all x in A are also in B and there 1s an
element x in B that 1s not mn A.

itf means 1f and only if

The empty set O 1s a subset of all sets.
All sets are subsets of the universal set U.
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2.3. Disjoint sets
Definition: Two sets A and B are disjoint if and only if they have no common elements

A and B are disjoint if and onlyif ~3x, (x€ A)A(x€ B)
ieVx, xgAVxeB

If two sets are not disjoint they have common elements.

Picturing sets: Venn diagrams - used to represent relations between sets

B
@ A 15 a (proper) subset of B

All elements in the set A are
also elements in the set B

Digjoint sets

O ®

\A_ .° Not disjoint sets
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3. Operations on sets
3.1. Intersections

The set of all students at Simpson and the set of all majors in CS have some elements in
common - the set of all students in Simpson that are majoring in CS. This set 1s formed as
the intersection of all students in CS and all students at Simpson.

Definition: Let A and B are two sets. The set of all elements common to A and B 1s
called the intersection of A and B

Notation: A ~ B
Formal defimition:

AnB={x|(x€ A)A(xe B)!

Venn diagram:

Example: A ={2.,4,6}. B={1,2,5.6}, A~ B={2,6}
Other properties:
AnBc AL A~ BcB
The intersection of two sets A and B is a subset of A, and a subset of B

A m@ =0 The mntersection of any set A with the empty set 1s the empty set
A mn U =A The intersection of any set A with the universal set 1s the set A itself.

Intersection corresponds to conjunction in logic.

LetA={x|P(x)}.B= {x|Q(x)}
An B={x| P(x) A Q(x)}
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3. 2. Unions

The set of all rational numbers and the set of all irrational numbers taken together form
the set of all real numbers - as a union of the rational and irrational numbers.

All classes at Simpson consist of students. If we take the elements of all classes, we will
get all students - as the union of all classes.

Definition: The union of two sets A and B consists of all elements that are in A
combined with all elements that are in B.
(note that an element may belong both to A and B)
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Notation: A B
Formal definition:

AUB-={x|(xe A)V(xe B)}

Venn diagram:

-

Example: A ={2,4,6,8,10}, B={1,2,3,4,5,6}, AU B ={1,2,3.4,5,6,8,10}

A U B contains all elements in A and B without repetitions.

Other properties of unions:

Ac AuUB Bc AuB

A 1s a subset of the union of A and B.
B 1s a subset of the union of A and B

A v © = A The union of any set A with the empty set1s A
A v U =U The union of any set A with the universal set E is the universal set.

Union corresponds to disjunction in logic.
Let A= {x|P(x)}.B={x|Q(x)}
A v B ={x|Px)VQ(x)}

3.3. Differences
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Definition: Let A and B be two sets. The set A - B. called the difference between A and
B. 1s the set of all elements that are in A and are not in B.

Notation: A— B or A'B
Formal definition:

A-B={x|(x€e A)A(xe B)}
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Venn diagram:

Example: A={246}.B={1,56}, A- B={24}

A—-0 =A The difference between A and the empty set 1s A
A-TU =0 The difference between A and the universal set is the empty set.

3.4. Complements

Definition: Let A be a set. The set of all objects within the universal set that are not in A.
1s called the complement of A.

Notation: ~A
Formal definition:

"';"51 = EK | X f ‘;51 }

Venn diagram:

SETS IDENTITIES
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Using the operation unions, intersection and complement we can build expressions over
sets.

Example:
A - set of all black objects

B - set of all cats
A ~ B -set of all black cats

The set identities are used to manipulate set expressions

Prepared by A. NEERAJAH, Asst Prof, Department of Mathematics, KAHE Page 13/7




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IB.Sc Computer science-A COURSE NAME:DISCRETE STRUCTURES
RSE DE: 17 202 UNIT: I(SETS) BATCH-2017-2020
A U~A=U Complementation Law
A n~A=0 Exclusion Law
A ~nU=A Identity Laws
A v D=A
A o U=U Domuination Laws
A nmnO=0
A UA=A Idempotent Laws
A A=A
~(~A)=A Double Complementation Law
AuB=BuUA Commutative Laws
AnB=BnmnA
(AuBuwC=Au (Bwu( Associative Laws

(AnBnC=An(BnnC

A v BnmnO=AuBnAul Distributive Laws
An BulO=AnBuAnO

~(A ~n B) =~Au-~B De Morgan's Laws
( :
~(A u B)=~A~~B

A-B

=A~~B

Alternate representation for set difference
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Proof problems for sets
A. Element Proofs

Definitions used in the proofs

Def : AuB={x|xeA V x e B}
Def2: AmnB={x|xeA A x € B}
Def3:A-B={x|xeA A x ¢ B}
Defd:~A ={x|xeA }
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Inference rules often used:

PAQ|=P.Q
P.Q [P AQ
2 =P VQ

How to prove that two sets are equal:

A=B

1) show that A < B. 1.e. choose an arbitrary element in A and show that it 15 in B
2) show that B < A. i.e. choose an arbitrary element in B and show that it1s1in A

The element was chosen arbitrary, hence any element that is a member of the left set, is
also a member of the right set. and vice versa.

Example:
Provethat A-B=A ~-B

1. Show that A-Bc A~ ~B

Let xeA-B
By Def 3:

xeA AxeB (1)
Byv(l) xe A (2)
By(l) x £ B (3)
By (3)and Def4: x € ~B (4)
By (2). (4)

xeA Axe~B (5)

By (5) and Def 2:
xeAn~B

x was an arbitrary element mm A — B. therefore A-Bc A~ ~B (6)

2. Show that A~~-B < A-B
et xe A ~B

By Def 2:

xeA Axe-~-B (7)
By(7) xe A (8)
Byv(7) x € ~B (9)
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By (9)and Def4: x ¢ B (10)
By (8). (10)

xeA A xeB (11)
By (11) and Def 3:

x€A-B

x was an arbitrary element in A ~ ~B. therefore A~ ~B c A-B (12)
by (6) and (12):
A-BcA~~-B
Q.E.D.
B. Using set identities

Provethat An(~AUB)=AnB

Method: Apply the set identities to the expression on the left, until the expression on the
right 1s obtained.

By Distribution Laws: An(~AuB)=(An~A) w(ANnB)
By the Exclusion Law A n~A=0

Hence Arn(~AuB)=0 v (AnB)

By the Identity Law: O (AnB)=AnB

Hence An(~AuB)=AnB

1. Set partitions
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Two sets are disjoint if they have no elements in common. 1.¢. their intersection is the
empty set.

A and B are disjoint sets iff AnB=O

Definition: Consider a set A. and sets Ay, Ay, ... A, such that:
a. AjuwuAyo oo A=A

b. Aj Aj. ... Ap are mutually disjoint. 1.¢. foralliandj. A; mA; =@

The set {Aq. Az, ... Ay} 1s called a partition of A
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Example:
l.LA={a b.ecd e f g}
1= d}

o

! ! b
= S &
I ] ]

Il
i, gy, e, D
o [l
i [=}
ot

s

The set {{a. c, d}. {b. f}. {e. g} } 15 a partition of A,

2. Cartesian product

Consider the identification numbers on license plates: x1x:x3 Y1Y2Y3
where x1x2%3 15 a 3-digit number and Y1Y2Y3 15 a combination of 3 letters

How do we make sure that each license plate would have a different identification
number?

The program that assigns numbers uses Cartesian product of sets,

Definition: Let A and B be two sets. The Cartesian product of A and B 1s defined as the
set

AxB={xy)|x€A A ye B}
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Example 1:
A=1{0.1.2.3)
B={a.b}

A x B = {(0.a). (0.b). (1.a). (1.b). (2.a). (2.b). (3.a). (3.b)}

Example 2:

A=1{0.1.2,3.4.5.6.7.8.9}
A x A= {(0.0),(0.1), (0.2), .... (0.9).
(1.0).(1.1), (1.2), .......(1.9).

(9.0).(9.1). (9.2), .... (9.9)}

We can consider the result to be the set of all 2-digit numbers.
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3. Power sets

Definition: The set of all subsets of a given set A is called power set of A.
Notation 2* | or LP(A)

Example:

A-{ab.ed}

P(a) = {@, {a}.{b}.{c}.{d}
{a.b}.{a.c}.{a.d}.{b.c}.{b.d}.{c.d}
{a.b.c}.{a.b.d}.{a.c.d}. {b.c. d}
{a.b.c.d}}

Number of elements in 'fPL'Aj is 2N where N = number of elements in A
N
Why 277

Bit notation: For a set A with n elements. each subset of A can be represented by a string
of length n over {0.1}. 1.e. a string consisting of Os and 1s.

For example:

fabl=1100
fac}=1010
{bed}=0111

The 1-th element in the string 1s 1 if the element a; 1s in the subset. otherwise it 1s 0.
Thus the subset {a.b.d} of the set {a.b.c.d} can be represented by the string '1101"

There are 2" different strings with length n over {0.1}(why?). hence the number of the
subsets is 2" .
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Set Relations
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2. Definition

Let A and B be two sets. A relation R from A to B 1s any set of pairs (x.v).
x € A. v e B. 1.e. any subset of A x B.

If x and y are in relation R, we write xRy, or (x.y) € R..
R 1s a set defined as

R={(xy)|xe A. vy B.xRb.}

3. Relations and Cartesian products

Relations between two sets A and B are sets of pairs of elements of A and B.
The Cartesian product A x B consists of all pairs of elements of A and B.

Thus relations between two sets are subsets of the Cartesian product of the sets.

Example:

Il
bd =

L

;

Let A 304
B 7.8

}

The relation R1 :"less than" from set A to set B is defined by the following set:

{
{

R1={(1.2).(1. 7). (1.8). (3. 7). (3.8). (4. 7). (4. 8). (5. 7). (5. 8)}
This set is a subset of the Cartesian product of A and B:

A x B = {(1.2).(1,7),(1.8),
(3.2). (3,7), (3.8),
(4.2). (4,7), (4.8).
(5.2):(8,7)4(5,8)}

(the members of R1 are in boldface)

The relation R2: "greater than" from set A to set B 1s defined by the set:
R2 = {(3, 2). (4, 2). (5. 2)}

It 1s also a subset of A x B.

The relation R3 "equal to" from A to B 1s the empty set, since no element in A 1s equal to
an element in B.
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7. Domains and ranges

Let R be a relation from X to Y,

the domain of R 1s the set of all elements in X that ocecur in at least one pair of the
relation,

the range of R is the set of all elements in Y that occur in at least one pair of the relation.

In the above example, the domain of R: choose(x,y) 1s the set of students {Ann, Tom ,
Paul}. and the range is the set of food items: {spaghetti, fish. pie. cake}.

The domain and the range are easily found using the matrix or the graph representations
of the relation.

1. Definition
Let A and B be two sets. A relation R from A to B 1s any set of pairs (x.y).
x € A yeB.1e any subset of A x B.
The empty set 1s a subset of the Cartesian product — the empty relation

2. How to write relations

a. as set of pairs

2.3}, {B=4.5.6)

A=1{1
R = {{1.4). (1.5). (1.6). (2.4). (2.6). (3.6)}

b. using predicates
A= {123}, {B=4.5.6}
R={(xy)|x € A.y € B. yv1is a multiple of x}

3. Graph and matrix representation
A={1.23}, {B=4,5.6}
R={{1.4). (1.5). (1.6). (2.4). (2.6). (3.6)}
1. Set operations and relations

Relations are sets. All set operations are applicable to relations
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Examples:

Let A= {3.5.6. 7}
B={4.5.9}

Consider two relations R and S from A to B:
R={Xy)xeA yveB x<vy}
If (x.y) € R we write xRy
R is a finite set and we can write down explicitly its elements:
= {(3.4).(3.5).(3.9).(5.9), (6.9).(7.9)}
S={xy)x €A yeB. [x-y=2}
If (x.y) € S we write XSy

S 1s a finite set and we can write down explicitly its elements:
S = {(3.5). (6.4). (7.5). (7.9)}

For R and S the universal set 1s A x B:
1(3.4).(3.5).(3.9),
(5.4).(5.5).(5,9).
(6,4). (6, 5).(6,9),
(7.4).(7.5).(7.9)}

a) intersection of R and S:

R S={(x.y) | xRy A xSy} RN S={(3.5.7.9)}

b) union of R and S:
RuS={xy)| xRy V xSy} =
RuS={(3.4).(3.5).(3.9).(5.9). (6.9).(7.9). (6.4). (7.5) }
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¢) complementation:
~(xRy)}

~R=U-R
The universal set for R is the Cartesian product A x B
A={3.56.7}
B= {459}

U=AxB={(3.4). (3.5). (3.9). (5.4). (5.5). (5.9).
(6.4). (6.5). (6.9). (7.4). (7.5). (7.9)}

R={(3.4). (3.5).(3.9).(5.9). (6.9). (7.9)}
U-R={(5.4).(5.5).(6.4). 7.4. (7.5)}
Note that for any two sets Aand B,A-B=A "~ B

d) difference R-S,S-R:
R-S={(xy)| xRy A~(xSy)}

R-S={(3.4).(3.9).(5.9). (6.9)}

2. Inverse relation

Let R: A—B be arelation from A to B. The inverse relation R :B—A
is defined as in the following way:

R':B—A {(yX)| (xy) e R}

Thus xRy = yR " x

Examples:
a. LetA={123}.B={149}

Let R B—A be the set {(1.1). (1.4). (2.2). (2.4). (3.3)}
R': B—A is the relation {(1.1). (4.1). (2.2). (4.2). (3.3)}

b. Let A= {1.2.3}. R: A—>A De the relation {(1.2). (1.3). (2.3)}

R is the relation: {(2.1). (3.1). (3.2)}
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3. Composition of relations
Let X. Y and Z be three sets, R be a relation from X to Y. S be a relation from Y to Z.
A composition of R and S is a relation from X to Z :
S°R={(x.z2)|x € X. z e Z. dye Y. such that xRy, and ySz}
Note that the operation is right-associative, i.e. we first apply R and then S
Example 1:
Let X. Y, and Z be the sets:
X: {1.3.5}
Y: {2.4.8)
Z:{2.3.6}

[etR: X —>Y.and S : Y — Z. be the relation "less than":

R = {(1.2).(1.4).(1.8).(3.4).(3.8).(5.8)}
S = {(2.3).(2.6).(4.6)}

S°R :{(1.3). (1.6). (3.6)}

The element (1.3) is formed by combining (1,2) from R and (2,3) from S
The element (1.6) is formed by combining (1.2) from R and (2.6) from S

Note. that (1,6) can also be obtained by combining (1,4) from R and (4,6) from S.
The element (3.6) is formed by combining (3.4) from R and (4.6) from S

4. Identity relation
Identity relation on a set A is defined in the following way:
[={xX)x €A}
Example:

Let A= {a. b.cl.I={(a.a). (b.b). (c.c)}
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5. Problems:

LetA={1.2.3}.B={a.b}.C={x.v.z}
a. Let R = {(1l.a). (2.b). (3.a)} and S = {(a.y).(a.z).(b.x).(b.2)}

Find S° R

b. Let R = {(1l.a). (2.b). (3.a)} and S = {(a.y).(a.z)}

Find S° R

a. LetR = {(l.a). (2.b)} and S = {(a.y). (b. v). (b.2)}
Find S°R

b. Let R = {(l.a), L'll.b). (3.a)} and S = {(a.v).(a.z).(b.x).(b.2)}
Find R . $" and R =57
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Solutions

LetA={1.2.3}.B={a.b}.C={x.v. 2}

a. Let R = {(L.a). (2.b). (3.a)} and S = {(a.y).(a.2).(b.x).(b.2)}
Find S°R
Solution: {(1.y). (1. z). (2.x).(2.2). (3.¥). (3. z)}

b. Let B.= {(l.a). (2.b). (3.a)} and S = {(a.v).(a.z)}

Find S °r Solution: {(1.v). (1. z). (3.v). (3. z)}
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c. LetR= {(1.a). (2.b)} and S = {(a.y). (b, y). (b.z)}
FindS°R

Solution: {(1.v). (2.v). (2. z)}

d. LetR={(l.a). (2.b), (3.a)} and S = {(a.y).(a.z).(b.x).(b.z)}
FindR' . StandR1°s?

Solution:
R': = {(a.1). (b.2). (a.3)}
ST = {(v.a)(z.a).(x.b).(z.b)}
R1est= {(v.1). (v.3). (x.2). (z.1). (z.3). (z.2)}

Definitions:
Let R be a binary relation on a set A.

1. R isreflexive, iff forallx € A. (x.x) e R. 1.e. xRx 1s true.

[ ]

R 1s symmetric. iff forallx, y € A.1if (x. v) € R.then(y.x) e R

1e xRy — vRx is true

3. Rois transitive iff forallx. v,z e A if (x.y) e Rand (v.z) e R .then(x.z) e R

1.e. (xRy A vRz) — xRz 1s true
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A. Reflexive relations

Let R be a binary relation on a set A.

R 1s reflexive, iff for all x € A. (x.x) € R, 1.e. xRx 15 true.

1. Examples:

1. Equality 15 a reflexive relation
for any object x: X =X 15 true.

2. "less then" (defined on the set of real numbers) is not a reflexive relation.
for any number x: X < X 15 not true

3. "less then or equal to" (defined on the set of real numbers) is a reflexive relation
for any number x X < X 15 true
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4, Reflexive and irreflexive relations

Compare the three examples below:
1. A={123.4},R1={(11), (1.2). (2.2). (2.3), (3.3). (3.4). (4.4)}

{1.2.3.4}. R2 = {(1.2). (2.3). (3.4). (4.1)}
3. A={1.234}. R3={(1.1). (1.2), (3.4). (4.4)}

B1 is a reflexive relation. R2 7R3 ?

Definition: Let R be a binary relation on a set A.
R 1s irreflexive iff forallx e A. (xx) e R
Definition: Let B be a binary relation on a set A.
E is neither reflexive. nor irreflexive iff

there 1s x € A. such that (x. x) € R. and there 1s vy € A such that (y.y) ¢ R

Thus R2 1s wreflexive. B3 1s neither reflexive nor irreflexive.

reflexive: for all x: xRx
ureflexive:  forno x: xRx
neither: for some x: xRx 1s true. for some y: yRy 1s false
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B. Symmetric relations

R is symmetric, iff forallx. vy € A, if (x. v) e R, then (v. x) e R
1.e xRy — vRx is true

This means: if two elements x and v are i relation R. then vy and x are also in R. 1.¢. 1if
xRy 1s true, yRx 1s also true.

1. Examples:

equality 15 a symmetric relation: ifa=bthenb=a

"less than" 15 not a symmetric relation : 1f a < b 1s true then b < a 1s false
3. "sister" on the set of females 1s symmetric

4. "sister" on the set of all human beings 1s not symmetric

b =

4. Symmetric and anti-symmetric relations

Compare the relations:

1. A={1.234}. R1={(1.1). (1.2). (2.1).(2.3). (3.2). (4.4)}
2. A={1.234}, R2={(1.1).(1.2). (2.3). (4.4)}

3. A={1234),R3={(L1), (1.2). (2.1). (2.3). (4.4)}

Definition: Let R be a binary relation on a set A.
R 1s anti-symmetric if forallx. y e A, x#vy.if (x,v) € R, then (v.x) ¢ R.

Definition: R is neither symmetric nor anti-symmetric iff it 1s not symmetric and not
anti-symmetric.

symmetric: xRy = yRx forallx and y
anti-symmetric: xRyand yRx 2 x =y
neither: for some x and y: xRy, and yRx

for others xRy 1s true. yRx is not true
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C. Transitive relations

Let R be a binary relation on a set A.
R 1is transitive iff forallx. v.z e A 1if (x.yv) e Rand (v.z) e R.then(x.z) e R

1e. (xRy A yRz) = xRz is true

1. Examples:

1. Equality 1s a transitive relationa=b.b=c. hence a=c¢

2. "less than" 1s a transitive relationa <b, b < ¢, hencea < ¢

3. mother of(x.y) is not a transitive relation

4. sister(x.y) 1s a transitive relation

5. brother (x.v) 1s a transitive relation.

6. A={1.234} R={(1.1).(1.2).(1.3). (2.3). (4.3)} - transitive

7. A={1.234} R={(1.1).(1.2). (1.3). (2.3). (3.4)} - not transitive

Equivalence Relations. Partial Orders
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1. Equivalence relations

Definition: A relation R is an equivalence relation if and only if it 1s reflexive,
symmetrie, and transitive.

Examples:
Let m and n be integers and let d be a positive integer. The notation
m =n (mod d)

is read "m 1s congruent to n modulo d".

The meaning 1s: the integer division of d into m gives the same remainder as the integer
division of d into n.

Consider the relation
R={(x.y)| x mod 3 =y mod 3}

4mod3i=1.7Tmod3=1, hence (4.7) e R

The relation is reflexive: x mod 3 = x mod 3
symmetric:  if x mod 3 =y mod 3. then y mod 3 = x mod 3
transitive: if x mod 3 =y mod 3. and y mod 3 = z mod 3.
then x mod 3 =z mod 3

Consider the sets [x] = {y | yRx}

[0] = {0.3.6.9.12.....}
[1]={1.4.7.10.13.....}
[2] = {2.5.8.11.14....}

From the definition of [x] it follows that
[0]=[3]=T6] ...
[1]=[4]=...
[2]1=[5]=...

Thus the relation R produces three different sets [0], [1] and [2].
Each number is exactly in one of these sets. Thus {[0]. [1]. [2]} 15 a partition of the set
of non-negative integers.
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2. Partial Orders

Definition: Let R be a binary relation defined on a set A. R 1s a partial order relation iff R
1s transitive and anti-symmetric

Examples:

1. Let A be aset, and P(A) be the power set of A. The relation 'subset of on P (A)1s a

partial order relation
It 1s reflexive. anti-symmetric, and transitive

2. Let N be the set of positive integers. and R be a relation defined as follows:
(x.v) € R iff v 1s a multiple of x
eg (3.12) e R.while (3.4) ¢ R

R 1s a partial order relation. It 1s reflexive, anti-symmetric, and transitive

Functions

1. Definition: A function f from a set X to a set Y 1s a subset of the Cartesian product

XxY.fc XxY.such that
v x € X dye Y.suchthat (x.y) € f. and

xyH)ef Axy2)ef »yl=y2
1e.if (x.,yl) € fand (x,y2) € f. then yl =y2

Thus all elements in X can be found in exactly one pair of f.
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Notation: Let f be a function from A to B. We write

f:A—B
a€ A fla)=b. beB

Examples:
A={1.23},B={a.b}

R = {(1.a).(2.a).(3.b)} 1s a function

Other definitions:
Let f be a function from A to B.

1. Domain of f: the set A
2. Range of f: {b: b € B and thereisana € A. f{a) =b}
3. Image of a under f: f(a)
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Example:

A={123}.B={ab}
f={(1.2).(2.2).(3.b)}
domain: {1.2.3}.

range: {a.b}
ais image of 1 under f: f(1)=a. f(2)=..... f3)=......

2. Functions with more arguments

Let A=Al X A2 . and f be a function from A to B

We write: f(al.a2) =D

[fA=A1xXA2x...xAn wewrite f(al.a2,...an)=D

al. a2, ..an: arguments of f
b: value of f

3. Functions of special interest

a. one-to-one
distinct elements have distinct images
ifal # a2, then f(al) # f(a2)

i

Example:
A={1.23}.B={a.b.c.d}

one-to-one function f= {(1.a), (2.c), (3.b)}
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b. onto

Every element in B 1s an image of some element in A
Example:
A={1.23}.B={ab}

onto function f= {(1.a). (2.b). (3.b)}

c. bijection

f 1s bijection iff f is a one-to-one function and f 1s a onto function
Example:
A={1.23}.B={ab.c}

bijection f= {(1.a). (2.c). (3.b)}
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4. Inverse function
If fis a bijection, ' is a function. also a bijection.
' ={yx)|xye f}

Example:
A={123}.B={abc}

5. Composition of functions

Letf: A— B, g: B — C be two functions.
The composition h = g ° f 1s a function from A to C such that h(a) = g(f(a)).

Example: Let f (x) =x +1. g(x) =x".
The composition h(x) =f (x) ° g(x) = flgx)) = (x" )+ 1
The composition p(x) = g(x) ° f(x) = g(f(x))= (x+1)*

When f is a bijection and f” exists, we have:
fl(f(a))=a. f(f' (b))=b.ae A.beB.

Counting Principles

The Multiplication Principle
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The Multiplication Principle

Let m € M. For a procedure of m successive distinct and independent steps with n,
outcomes possible for the first step, n> outcomes possible for the second step, ..., and
ny outcomes possible for the mth step, the total number of possible outcomes 1s

nysng-- Ny

Addition Principle

The Addition Principle

For a collection of m disjoint sets with n; elements in the first, n2 elements in the
second, ..., and n,, elements in the mth, the number of ways to choose one element
from the collection is

np+npt---4ny

Using the Pigeon-Hole Principle
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The Pigeon-Hole Principle (see Section 4.6 ) states that if m objects are to be put in n
locations, where m = n = (), then at least one location must receive at least two objects.
Thus, to prove that a set of objects has at least two elements with the same property, first
count the number of distinct properties of objects in the set, and then count the number of
distinct elements. If the total number of elements is larger than the number of distinct prop-
erties of objects, then the Pigeon-Hole Principle implies that at least two of the elements
have the same property. The next example 15 an illustration of this type of argument.

Example 9. A local bank requires customers to choose a four-digit code to use with an
ATM card. The code must consist of two letters in the first two positions and two digits in
the other two positions. The bank has 75,000 customers. Show that at least two customers
choose the same four-digit code.

Solution.  First, use the Multiplication Principle to calculate the number of distinct codes
possible:
(# Four-symbol codes) = (# Choices of letter 1) - (# Choices for letter 2)
+ (# Choices for digit 1) - (# Choices for digit 2)
=26-26-10-10
= 67,600
Now, apply the Pigeon-Hole Principle. Since there are 75,000 customers and only 67,600

codes, the Pigeon-Hole Principle implies that at least two of the customers choose the same
cade. n

Example 10. Suppose a group of vacationers is split into 159 teams. How many leagues
must be formed if a league should contain at most 8 teams? 10 teams? 12 teams?

Solution. The Generalized Pigeon-Hole Principle tells us that the answers are

2] =m0 [12] 16 [12) 1

It remains for the organizers to determine which size of a league is most manageable. W

Prepared by A. NEERAJAH, Asst Prof, Department of Mathematics, KAHE Page 43/7




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IB.Sc Computer science-A COURSE NAME:DISCRETE STRUCTURES
RSE CODE: 17 202 UNIT: I(SETS) BATCH-2017-2020

Permutations and Combinations

Definition 1. Let n, r € M. A permutation of an rn-element set is a linear ordering of
the n elements of the set. For n = r = 0 an r-permutation of an n-element set is a linear
ordering of r elements of the set.

Example 1. List all permutation of the elements a, b, and ¢.
Solution. The permutations are abe, ach, bac, bea, cab, and cbha. .

Let P(n, r) denote the number of r-permutations of an n-element set. We define
Pln,0)=1foralln e M,

Example 2.

(a) How many ways can eight different books be arranged on a shelf”

(b) How many ways can four of eight different books be arranged on a shelf?

(¢) How many ways can eight different books be arranged on two shelves so that each
shelf contains four books?

Solution.

{a) The answer is the number of ordered ways of arranging the books on the shelf.
That is,

P(8, 8) = 8! = 40,320
(b) The number of ways to arrange four of the eight books is
P(8,4) = 1680
(c) The answer is the product of the number of ways to put four books on one shelf and

the number of ways to put the remaining books on the second shelf. The number of
ways to arrange four books on the first shelf is P(8, 4), and the four remaining books
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can be arranged in P(4,4) ways on the second shelf. Therefore, the total number of
arrangements will be
(# Arrangements of books on two shelves) = (# Arrangements on first shelf)
« (# Arrangements on second shelf)
= P{8§,4)- P14, 4)
= (8!/41) - (41/01)
= §!
= 40,320

Combinations

Definition 2. Let n,r € ™ such that n = r = (0. An unordered selection of r elements
from an n element set 1s called a combination.

Example 4. List all the combinations of the set {a, b, c}.

Solution. The combinations will be of sizes 0, 1, 2, and 3. All combinations are ¥,
{a}. (b}, (e}, {a, b}, {a, ¢}, {b, ¢}, and {a, b, ¢}. [

Example 5. How many different poker hands are there?

Selution. This answer is just the number of ways of choosing five cards from the 52-card
deck:

52!
471 51

C(52,5) = = 2,598,960 |

Example 8. An examination consists of 20 questions, of which the student must answer
any 12.

{a) How many ditferent ways can a student choose questions to answer?

(b) The 20-question exam is split into three parts. There are 6 questions in the first part,
10 in the second part, and 4 in the third part. A student must choose three from the first
part, eight from the second part, and one from the third part. How many ways can a
student choose questions to answer?
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Solution.

{a) The answer is just the number of different 12-element subsets of a 20-element set, or
C(20, 12) = 125,970.

(b) By the Multiplication Principle, the answer will be the product of the number of ways
to make choices in each category:

(# Possible choices) = (# Choices for part 1) » (# Choices for part 2)
- (# Choices for part 3)
=C(6,3)-C(10,8)-Ci4, 1)
= 3600

Method of Proof by Mathematical Induction

Consider a statement of the form, “For all integers n > a. a property P(n) is true.”
To prove such a statement, perform the following two steps:
Step | (basis step): Show that P(a) is true.
Step 2 (inductive step): Show that for all integers k = a, if P(k) is true then
Pk + 1) is true. To perform this step,

suppose that P(k) is true, where k is any

particular but arbitrarily chosen integer with & = a.

[ This supposition is called the inductive hypothesis. |
Then

show that P(k 4+ 1) is true.
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Sum ol the First n Integers
Use mathematical induction to prove that

nin+ 1 ) .
1 4+24---4n ZTJ for all integersn = 1.

Solution  To construct a proof by induction, you must first identify the property P(n). In
this case, P(n) is the equation

nim+1)
L4244 n= OB, = the property (Pin)

{To see that Pin) is a sentence, note that ity subject is “the sum of the integers from |
fo n" and its verb is “equals.”]

In the basis step of the proof, you must show that the property is true for n = 1, or,
in other words that P(1) is true. Now P(1) is obtained by substituting | in place of n in
P(n). The left-hand side of P(1) is the sum of all the successive integers starting at | and
ending at 1. This is just 1. Thus P(l) is

GRS

2

Of course, this equation is true because the right-hand side is

1+ 1.2

) )

=5

which equals the lefi-hand side.

In the inductive step, you assume that P (k) is true, for a particular but arbitrarily cho-
sen integer k with k = 1. [This assumption is the inductive hypothesis. | You must then show
that P{k + 1) is true. What are P(k) and Pk 4+ 1)7 Pik) is obtained by substituting &
for every m in P(n). Thus P(k) is

_k1k+]z«

5

| 24wk

inductive hypothesis (Pig))
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Similarly, P(k + 1) is obtained by subslituting the quantity (k + 1) for every n that
appears in Pin). Thus P(k + 1) is

(k+ Dk + 1)+ 1)

= ;
or, equivalently,
k+ 1k +2
1 +24---4+(k+ 1) = 5 } «— to show (P ik + 1))
Theorem 5.2.2 Sum of the First n Integers
For all integers n = 1,
nin+1)
|+2+"‘+” =T
'roof (by mathematical induction):
Let the property P(n) be the equation
nin+ 1)
1 +2+3+"'+"=[T'
Show that P(1) is frue:
To establish P{1), we must show thal
{1+ 1)

l=f ) '

But the lefi-hand side of this equation is | and the nght-hand side is

=3 |

1{(1 + 1) 2
B

also. Hence P(1) is true.
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Show that for all infegers k = 1. if P(k) is true then P(k + 1) is also frue:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k = 1.
That is: ] Suppose Lhat & is any integer with £ > 1 such that

kik+ 1) P
= 3 nductive hypothes
[We must show that Pk + 1) is true. That is: ] We must show that
k+ Dltk+ 1)+ 1]

-

Vi FE Sk

| +2434--F+(k+1)=

or, equivalently, that
(k + 1)k 42)
5 ;

[We will show that the lefi-hand side and the right-hand side of P{k 4 1) are egual to
the same quantity and thus are equal to each other. |

The left-hand side of Pk + 1) is

E 42434+ k41)=

I 42434+ Kk+1)

l A1+ A33 - '.‘I-+1k'!']'

— —I{.I:I ), 4 (k + 1:' by =ubstiluion rom the

mnonciree by podl

by making t
term explic

kk+1) | 20k + 1)
—_ - = 3

4k 2642

E & 2
k2 43k 41 :

— f by algebra
And the righi-hand side of P(k + 1) is

1.1:—5—]Hﬁ:+£iu_k3+3k+]

7 2

Thus the two sides of P(k + 1) are equal to the same guantity and so they are equal
to each other. Therefore the equation P(k + 1) is true [as was to be shown].
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Possible Questions

PART-B (5 x 2 =10 Marks)
Answer all the questions

Define disjoint sets with example.
Define Union of sets with example.
IfA={1,23 4,5} B={3 7 9}then find A U B, AB.
Define Equivalence relation.
IfA={a, b,c}and B ={1, 2} then find A x Band B x A.
Define Injective with example.
Define Composition of Function with example.
Define Inverse Function with example.
Define Permutation.
. Define Combination.
. Find the number of three letter words using the given 6 letters without repeating any
letters in a given word?
12. State pigeonhole Principle.
13. State Principle of Mathematical Induction.

14. What is Function?
15. Define symmetric and Non symmetric with example.
16. Define Combination with example.
PART-C (5 x 6 =30 Marks)
Answer all the questions

1. Explain about types of relation with examples.
2. Let R denotes a relation on the set of all ordered pairs of positive integers by
(X, Y) R (u, v) iff xv=yu. Show that R is a equivalence relations.

©ooN O wNE

N
= o

3. Write about the types of function with example.

4. In Z, we define aRb iff a-b is a multiple of m. Is R is an equivalence relation?
5. Let A={1,2,3} and f,g,h and s be functions from A to A given by
f={(1.2), (23,31 }; 9={(12),(21),(33) };
h={(,1), (2,2),(3,1) yands={(1,1), (2,2), (3,3) }. Find fog, gof, fohog, gos,
sos, fos.
6. Iff: A—>Band g : B—C br the one — one function the prove that g o f : A—C is also 1-1.
7. Prove that 12+22+32+.... +n?= n(n+1)(2n+1)/6 by Principle of Mathematical induction.
8. State and prove Pigeonhole Principle.
9. From the 7 men and 4 women a committee of 6 to be formed can this be done when the

committee contains i) Exactly 2 women
ii) At least 2 women
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10. How many permutations of the letters A B C D E F G contain (i) the string BCD, (ii)
the string CFGA, (iii) the String BA and GF (iv) the string ABC and DE (V) the string
ABC and CDE.

11. i) Assuming that repetitions are not permitted, how many four — digit numbers can be
formed from the six digits 1, 2, 3, 5, 7, 8?

(if) How many of these numbers are less than 4000?

(iif) How many of the numbers in part (i) are even?
(iv) How many of the numbers in part (i) are multiples of 5?

12. Prove that sum of first n odd integers is n? by induction method.
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Sets

Unit I

Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)

Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
If R= {(1,2).(3,4).(2.2)} and S =
{(4.2),(2,5).3,),(1,3)} are relations then Rof ((4.2).3.2).0.4)} [(15).(3.2).2.5)} [{(1.2.2.2)} {(4.5.6.3).(L.D} ((1.5).3.2).2.5)}
If f{x) = x+2 and g(x) = x 1 then(gof)(x) X +4x+4 X° +4x-3 x> 4x+4 x* +4x+3 x* +4x+3
A relation R in a set X is ———— if for every
xeX,(xx)#R mmetri irreflexive reflexive irreflexive
Suppose in RxR, the ordered pairs (x-2, 2y+1) and (y-1,
x+2 ) are equal. The values of x and y are 23 32 2.3 3.2 3.2
A relation R on a set is said to be an equivalence Reflexive, Symmetric, Reflexive, Symmetric,
relation if it s ------ Reflexive Symmetric Transitive Transitive Transitive
Let T: ROR where R is a set of real numbers. Then {(x)
= 2xisa One-to-one Onto into bijection bijection
A mapping [ : x>y is called —— If distinct elements of
x are mapped into distinct elements one-to-one Onto into many to one one-to-one
If the relation R and S are both reflexive then R v S is
rrrrr symmetric reflexive transitive not reflexive reflexive
A One — to —one function is also known a: injective surjective bijective objective injective
A On to_function is also known as injective surjective bijective objective surjective
A One — (o —one and onto function is also known as —
injective surjective bijective objective bijective
Lot I: x>y, g : y—x be the functions then g is equal 0
£ only if --—mmr fog = Iy gof = I, gof=1, fog=1, gof = I,
In N, define aRD if a+b = 7. This is symmetric when -—
b+a =7 ata=7 b+e =7 a+c=7 b+a =7
If the relation is - relation if aRb,bRa —a = b -—
- symmetric reflexive ic not reflexive ic
T ROR, g : ROR defined by f(x) = 4x-1 and g(x) = cos
x..The value of fog is - deosx -1 4cosx 4deosx +1 1/4cosx deosx -1
Lot £ NN be a function such that f(x) = 5 .xeN then
the f(x) is called-—--——function identity inverse equal constant constant
‘A binary relation R in a_set X is said (o be symmetric if|
o aRa aRb=>bRa aRb,bRc=>aRe aRb,bRa=>a=b aRb=bRa
‘A binary relation R in a_set X is said (o be reflexive if -
aRa aRb=>bRa aRb,bRc=>aRe aRb,bRa=>a=b aRa
‘A binary relation R ina_set X is said (0 be
i T aRa aRb=>bRa aRb,bRc=>aR aRb,bRa=>a=b aRb,bRa=>a=b
‘A binary relation R in a_set X is said (o b transitive if -
- aRa aRb=>bRa aRb,bRc=>aR aRb,bRa=>a=b aRb,bRc=>aR
If R= {(1,2).(3,4).(2.2)} and S =
{(4.2).(2,5).(3.1).(1.3)} are relations then SoS ((4.2).3.2).0.4)} [{(15).(3.2).2.5)} [{(1.2.2.2)} {(4.5.6.3).(L.D} {(4.5.6.3).(L.D}
Letx = {1.2,3,4}, R= {(2.3).(4.1)} then the doma
= {13} 2.3} 24} {14} 24}
Letx = {1,2,3.4), R= {(2.3).(4.1)} then the range of R
= - {13} [ERY; 24} {14} (3.1}
In a relation matrix all the diagonal elements are one
then it satisfies - symmetric ic reflexive reflexive
In a relation matrix A=(aij) a; =a; then it satisfies —
relation symmetric reflexive ic symmetric

An ordered arrangement of T - clement of a set
inning n - distinct clement is called an

¢ permutation of n
clements

r - combination of n
elements

n permutation of ©
clements

n combination of r
elements

¢ permutation of n
clements

Ther- ion of n elements is denoted by — P (1, n) P(n,1) <(r, n) c(n, 1) P(n,r)
The r - permutation of n elements is denoted by P (n, )
where —— r<n r=n r2n r>n r<n

"An unordered pair of T clements of a set containing n
distinct elements is called an-—-——

r permutation of n
clements

r - combination of n
elements

n permutation of ©
clements

n combination of r
elements

- combination of n
elements

The number of different permutations of the

word BANANA is ---—--- 720 60 120 360 60

The number of way a person roundtrip by bus from A to

C by way of B will be --—-- 12 48 144 264 144

Fow many 10 digits numbers can be written by using _|C (10, 9) + C (9,

the digits 1 and 2 ? 2) 1024 C(10,2) 10! 1024

The number of ways to arrange th a letters of the word

CHEESE are 120 240 720 6 120

B ination of n clements is denoted by P (r,n) P(n,r) C(r, n) C(n, 1) C(n, 1)

The value of C(n,n) is — 0 1 n n-1 T

C (n, n1) - C(n, 1) C(n-1,1) C(n-1,1-1) Cn, r-1) C(n, 1)

C(n.0+C(nr)=—r C(n. 1) C(n+1,r-1) C(nil,n C(n, 1) C(nil,n

The number of arranging difTerent creular arrangement

of n objects = - n! (nt1)! (n-1)! 0! (n-1)!

The number of ways of arranging n beads in the form of

a necklace = - - (n-1)! (n-1)12 n! n!/2 (n-1)1/2

The value of C(10, 6) + C( 9, 5) + C( 8, 4) + C( 8, 3) is

J— C(10,7) Cc9.7) C(8.5) C(11,5) C(11,5)

The value of C(10, 8) + C( 10,7) is — 990 165 45 120 165

The number of different words can be formed out of the

letters of the word VARANASI, is- 64 120 40320 720 720

The number of ways can a party of 7 persons arrange

themselves around a circular table----- 6! 7! 5! 7 6!

The sum of entries in the fourth row of Pascal's triangle

is — 4 10 16 8

The number of wors can be formed out of the letters of

the word PECULIAR beginning with P and ending with

R is — 100 120 720 150 720

The value of P(n.n) 1 0 n n-1 n

The value of P(10, 3) is 120 720 60 45 720

1P (10, r) is 720, then the value of r is - B 3 4 5 3

n how many ways 5 children out of a class of 20 line

for a picture? P (20, 4) P(20, 5) P (5,20) P(5. 5) P(20, 5)
a rational number less

The value of C(n, 1) is an integer a fraction an integer or a fraction [than | an integer

The value of P(n, 1) / 1! is B C(n, 1) nr nr c(nr)
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UNIT-II
SYLLABUS

Asymptotic Notations, Summation formulas and properties,Bounding Summations,
approximation by Integrals

Growth of Functions

e We will use something called big-O notation (and some siblings described later) to
describe how a function grows.
o What we're trying to capture here is how the function grows.
o ... without capturing so many details that our analysis would depend on processor
speed, etc.
o ... without worrying about what happens for small inputs: they should always be
fast.

« For functions f(X) and g(X), we will say that “f(X) is O(g(X))” [pronounced “f(X) is
big-oh of §(X)”] if there are positive constants C and K such that

[f(x)|<C|g(x)| for all x>k.

o The big-O notation will give us a order-of-magnitude kind of way to describe a
function's growth (as we will see in the next examples).

o Roughly speaking, the K lets us only worry about big values (or input sizes when

we apply to algorithms), and C lets us ignore a factor difference (one, two, or ten
steps in a loop).

o 1 might also say “f(X) is in O(g(X))”, then thinking of O(g(X)) as the set of all
functions with that property.
« Example: The function f(X)=2x3+10x is O(X3).

Proof: To satisfy the definition of big-O, we just have to find values for C and K that
meet the condition.

Let C=12 and k=2. Then for X>K,
|2x3+10x|=2x3+10x<2x3+10x3=|12x3|.1

« Note: there's nothing that says we have to find the best C and K. Any will do.
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o Also notice that the absolute value doesn't usually do much: since we're worried
about running times, negative values don't usually come up. We can just demand

that X is big enough that the function is definitely positive and then remove the

o Now it sounds too easy to put a function in a big-O class. But...
« Example: The function f(X)=2x3+10X is not in O(X2).

Proof: Now we must show that no C and K exist to meet the condition from the
definition.

For any candidate C and K, we can take X>K and X>0 and we would have to satisfy
|2x3+10x|2x3+10x2x3X<C|x2|<Cx2<Cx2<C/2
So no such C and K can exist to let the inequality hold for large X.m
« Example: The function f(X)=2x3+10x is O(X4).

Proof idea: For large X, we know that X4>X3. We could easily repeat the O(X3) proof
above, applying that inequality in a final step.

« Example: The function f(X)=5Xx2—10000x+7 is O(x2).

Proof: We have to be a little more careful about negative values here because of the
“—10000X” term, but as long as we take K>2000, we won't have any negative values
since the 5X2 term is larger there.

Let C=12 and k=2000. Then for X>K,
|5x2—10000X+7|=5x2—10000x+7<5x2+7x2=|12x2|.1
e It probably wouldn't take many more proofs to convince you that Xn is always in O(Xn)

but never in O(Xn-1).
o We can actually do better than that...

o The big-O operates kind of like a < for growth rates.

Big-O Results
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« Theorem: Any degree-N polynomial, f(X)=anXn+an-1Xn-1+---+aix+ao is in O(xn).
Proof: As before, we can assume that X>1 and then,

[f(X)|=|anxn+an-1xn-1+---+aix+ao|<[an|Xn+|an-1|Xn-1+---+|a1|x+|ao|=xn(|an
|+|an—1]/x+---+|a1|/xn-1+|ao|/xn)<xn(|an|+|an-1|+---+|a1|+|aol).

Now, if we let C=)|ai| and k=1, we have satisfied the definition for O(Xn).m

« Theorem: If we have two functions f1(X) and f2(X) both O(g(X)), then f1(X)+f2(X) is
also O(g(x)).

Proof: From the definition of big-O, we know that there are C1 and K1 that make
[f1(X)[<C|h(X)| for x>K1, and similar C2 and k2 for f2(X).

Let C=C1+C2 and k=max(k1,k2). Then for x>k,
[f1()+T2(x)|<[f2(x) | +[f2(x)[<C1|g(x)|+C2|g(x)|=Clg (x)!.
Thus, f1(X)+f2(X) is O(g(X)).m

e The combination of functions under big-O is generally pretty sensible...

o Theorem: If for large enough X, we have f(X)<g(X), then f(X) is O(g(x)).
= Sometimes the big-O proof is even easier.

o Theorem: If we have two functions f1(X) which is O(g1(X)) and f2(X) which is
O(g2(x)). then f(x)+g(x) is O(max(|gz(x)|,|g2(x)[)).
= When adding, the bigger one wins.
o Theorem: If we have three functions f,g,h where f(X) is O(g(X)) and g(X) is
O(h(x)), then f(x) is O(h(x)).
= Approximately: if N is bigger than § and  is bigger than f, then h is
bigger than f.
o Corollary: Given f1(X) which is O(g1(x)) and f2(X) which is O(g2(x)) and
g1(x) is O(g2(x)) then f1(x)+f2(x) is O(g2(x)).
= That is, if we have two functions we know a big-O bound for, and we add
them together, we can ignore the smaller one in the big-O.

o Theorem: If we have two functions f1(X) which is O(g1(X)) and f2(X) which is
O(g2(x)), then f(X)g(x) is O(g1(x)g2(x)).

Multiplication happens in the obvious way.
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o Theorem: Any constant value is is O(1).
= Aside: You will often hear a constant running time algorithm described as
oO(1).
o Corollary: Given f(X) which is O(g(X)) and a constant &, we know that af(X)
is O(g(x)).
= That is, if we have a function multiplied by a constant, we can ignore the
constant in the big-O.

o All of that means that it's usually pretty easy to guess a good big-O category for a
function.

o f(X)=2x+x2is in O(max(|2x[,[x2|))=0(2x), since 2x is larger than X2 for
large X.
o f(X)=1100X12+100x11—87 is in O(X12).

= Directly from the theorem about polynomials.

»  For small X, the 100X11 is the largest, but as X grows, the 1100X12 term
takes over.

o f(X)=14x2x+x is in O(X2x).
« What is a good big-O bound for 17x4—12x2+l0g2x?
o We can start with the obvious:

17x4—12x2+logzx is in O(17x4—12x2+l0g2x).
o From the above, we know we can ignore smaller-order terms:
17x4—12x2+logzx is in O(17xa).
o And we can ignore leading constants:
17x4—12x2+logzx is in O(x4).

e The “ignore smaller-order terms and leading constants” trick is very useful and comes up
a lot.

Big-Q

o As mentioned earlier, big-O feels like < for growth rates.
o ... then there must be = and = versions.
« We will say that a function f(X) is €(g(X)) (“big-omega of §(X)™) if there are positive
constants C and K such that when X>K,
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[FOO=Clg(x)].

o This is the same as the big-O definition, but with a > instead of a <.
« Example: The function 3x2+19X is Q(X2).

Proof: If we let C=3 and k=1 then for x>k,
|3x2+19x|>3x2+19x>3|x2|.

From the definition, we have that 3X2+19X is 2(X2).m

e Asyou can guess, the proofs of big-Q are going to look just about like the big-O ones.
o We have to be more careful with negative values: in the big-O proofs, we could
just say that the absolute value was bigger and ignore it. Now we need smaller
values, so can't be so quick.
o But the basic ideas are all the same.

. Theorem: f(x) is O(g(x)) iff g(x) is Q(f(X)).

Proof: First assume we have f(X) in O(g(X)). Then there are positive C and K so that
when X>K, we know [f(X)|<C|g(X)|. Then for X>K, we have |g(X)[>1c|f(X)| and we
can use K and 1C as constants for the definition of big-Q.

Similarly, if we assume that gJ(X) is Q(f(X)), we have positive C and K so that when
x>k, we have |g(X)[>C|f(X)|. As above we then have for X>K, [f(X)|<1c|g(X)|.m

Big-0O

« We will say that a function f(X) is @(g(X)) (“big-theta of g(X)”) if f(X) is both

O(g(x)) and (g(x)).
o For afunction that is @(g(X)), we will say that that function “is order §(X).”

« Example: The function 2x+X2 is order 2x.
Proof: To show that 2x+X2 is O(2x), we can take C=2 and k=4. Then for X>K,
|2x+X2|=2x+X2<2 - 2x.

To show that 2x+X2 is €2(2x), we can use C=1 and k=1. For x>k,
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|2x+X2|=2x+X2>2x.
Thus, 2x+X2 is @(2x).m

The above theorem gives another way to show big-@: if we can show that f(X) is
O(g(x)) and g(x) is O(f(x)), then f(X) is O(g(X)).
Theorem: Any degree-N polynomial with anZ0, f(X)=anXn+an-1xn-1+---+aix+ao
with an>0 is in ®(Xn).
A few results on big-®...
o Theorem: If we have two functions f1(X) which is @(g1(X)) and f2(X) which is
O(g2(x)), and g2(X) is O(g1(X)), then f1(X)+f2(x) is @(g1(x))).
» That is, when adding two functions together, the bigger one “wins”.
o Theorem: If we have two functions f1(X) which is @(g(X)) and f2(X) which is
O(g(x)). then f(x)+g(x) is O(g(x))).
o Theorem: for a positive constant a, a function af(x) is @(g(X)) iff f(x) is
©(9(x))-
= That is, leading constants don't matter.
o Corollary: Any degree-N polynomial, f(X)=anXn+an-1Xn-1+---+aix+ao
with an>0 is in @(Xn).
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o What functions have a “higher” big-® than others is usually fairly obvious from a graph,
but “I looked at a graph” isn't very much of a proof.

AY

T 2000

Source: Wikipedia Exponential.svg

e The big-O notation sets up a hierarchy of function growth rates. Here are some of the
important “categories’:

n!2nnanznlognnn—~y=n12logn1

Each function here is big-O of ones above it, but not below.

o e.g.nlognis O(n2), but N2 is not O(nlogn).
o S0 in some important way, N2 grows faster than nlogn.

Where we are headed: we will be able to look at an algorithm and say that one
that takes O(nlogn) steps is faster than one that takes O(N2) steps (for large

input).
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Asymptotic Notation
9.7.1 Little Oh

Definition 9.7.1. For functions f.g : B — R, with g nonnegative, we say f is
asymptotically smaller than g, in symbols,

fx) = o(g(x)),
iff
lim fix)/g(x)=0.
X—=00
For example, 1000x * = o(x?), because 1000x™%/x? = 1000/x"! and since

x9%-1 goes to infinity with x and 1000 is constant, we have limy_s o 1000x'7/x? =
0. This argument generalizes directly to yield

9.7.2 Big Oh

Big Oh is the most frequently used asymptotic notation. It is used to give an upper
bound on the growth of a function, such as the running time of an algorithm.

Definition 9.7.5. Given nonnegative functions f. g : R — K. we say that
f=0(g)
iff
limsup f(x)/g(x) < oco.

X—+OQ

This definition' makes it clear that
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Definition 9.7.12. Given functions f, g : B — K, we say that
f=1Q(g)

iff there exists a constant ¢ > 0 and an xg such that for all x = x3, we have
fx) = clg(x)].

In other words, f(x) = €(g(x)) means that f(x) is greater than or equal
to g(x), except that we are willing to ignore a constant factor and to allow ex-
ceptions for small x.

If all this sounds a lot like big-Oh, only in reverse, that’s because big-Omega is
the opposite of big-Oh. More precisely,

Little Omega

There is also a symbol called little-omega, analogous to little-oh, to denote that one
function grows strictly faster than another function.

Definition 9.7.14. For functions f, g : £ — R with f nonnegative, we say that
fix) = w(g(x))
iff

In other words,

flx) = w(g(x))
iff

g(x) = o( f(x)).

Definition 9.7.15.

f=0@) iff f=0(andg= 0(f).

The statement f = ©(g) can be paraphrased intuitively as “ f and g are equal
to within a constant factor.” Indeed, by Theorem 9.7.13, we know that

f=0(g) iff f=0(gandf=.0Q(g)
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Example: n° +n = O(n?)

Proof:

Here. we have f(n) = n® + n. and g(n) = n*

1

Notice thatif n > 1. n << n” 15 clear.

. . - 3 3 -
Also. notice that if n = 1. n° < n” is clear.

Side Nate: In general. if a < b. then n® < n b
whenever n = 1. This fact 1s used often 1n these

types of proofs.
Therefore,

_'|. L, F, -
n" +n< ﬂ‘; -+ ﬂ‘; = :31"!'!;
We have just shown that

n® + n < 2n” for all n > 1

Thus. we have shown that n® + n = O(n®)
(by definition of Big-O). with ng = 1. and ¢ = 2.)
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Example: n® + 4n? = ()(n?)

Proof:
¢ Here we have f(n) = n” + 4An”. and g (n) = n?
e [t 15 not too hard to see that if n > (),
n® < ns + 4n?
¢ We have already seen that if n = 1.
Hj < Tt:;
o Thus whenn = 1.
n’ < n < T . + An’
¢ Therefore,
In? < n®+4n? foralln > 1

¢ Thus. we have shown that n? + 4n? = (Q(n?)

(by defimition of Big-{). withng = l.and ¢ = 1.)
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Example: n’ + 5n + 7 = O(n?)

Proof:
® Whenn = 1.

. — - ¥ - ¥ - A - [ o
n“+om+7<n"+owm+Tn° < 1In-
e When n = (.
2 . 2. . -
n =mn +an-+.i
e Thus whenn = 1
3 - _.:' - Lar S e -—}
In® <n“4+5n+7 < 13n

Thus. we have shown that n® + 5n + 7 = ©(n?)
(by defimtion of Big-©. with ng = 1. ¢y = 1. and
eo = 13.)
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Show that 2n* + 3n = O(n?)

Proof:

e MNotice thatifn = 1

Ly ] £ -J_ l'-:| . l'-:| ‘-
—n" +3In < -n°+3In° = —n”
2 2

e Thus.
1 . L
Er;!"} + 3n = O(n?)

ity

o Also. whenn = 0

=

] l 3 ‘
—- = =—n"+3dn
2 - 2 T

I. 'y e r
En-’" + 3n = Q(n?)

=

e Since %n"}+ In = O(n”) and %n"} +3n = Q(n?).

L. 5
E?'.!":I + 3n = B(n~)
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Show that (nlogn —2n + 13) = Q(nlogn)
Proof: We need to show that there exist positive
constants ¢ and ng such that

D<enlogn <nlogn —2n+ 13 forall n = ny.
Since nlogn —2n <nlogn —2n+ 13,
we will instead show that

cnnlogn < nlogn — 2n,

which 1s equavalent to

2

c< 1 . whenn = 1.

- log n

If n = 8 then 2/(logn) < 2/3. and picking ¢ = 1/3
suffices. Thus if ¢ = 1/3 and np = 8, then for all

n = ng, we have

OD<enlogn <nlogn—2n<nlogn —2n+ 13.

Thus (nlogn — 2n +13) = (Q(nlogn).
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Show that %ﬂz — 3n = O(n?)

Proof:

¢ We need to find positive constants ;. co. and ng
such that

. 2 . 2 . 2 -
D <eon® < EH_ —3dn < con” for all n = ng

¢ Dividing by n°. we get

1 3
I:} {H- 2 {'\-\. _— — "':-.F_ e
== 2 n =
LI % — %hﬂldﬁ- forn = 10and ¢y = 1/5

— ]—t < 2 holds forn = 10 and c2 = 1.

L]
(]

e Thus.if ey = 1/5, e2 = 1. and ng = 10. then for
all n = ng.

1 5

> i - _,:'
0<en® < En‘ —3n < econ” forall n = ny.

Thus we have shown that 2n? — 3n = O(n?).
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Summary of the Notation

e f(n)=0(g(n))=f=g

e fin)=0Q(g(n))=f=g

o f(n)=0(g(n))= f=g

e [t 1s important to remember that a Big-O bound is
only an upper bound. So an algorithm that 1s

()(n?) might not ever take that much time. It may
actually run 1n O(n) time.

e Conversely, an {! bound 1s only a Jower bound. So
an algorithm that 1s £2(n log n) might actually be
B(27).

e Unlike the other bounds, a ©-bound 1s precise. So.
if an algorithm is ©(n?). it runs in quadratic time.

POSSIBLE QUESTIONS

PART-B (5 x 2 =10 Marks)
Answer all the questions

1. Define Big oh.
2. Define Big omega.
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3. Define little oh.

4. Define big theta.

5. Prove that the function f(x)=2x3+10x is O(x®).
6. Prove that the function 3x?+19x is Q(x?).

7. Prove that n?+5n+7 = @ (n?).

8. Define Arithmetic series.

9. Define Geometric series.

10. Define Harmonic series.

11. Evaluate Y3 _,(5k + 8)

2
12. Evaluate the limit n tends to infinity lim (2n+1)

n—oo 5n2+2n+1

PART-C (5 x 6 =30 Marks)
Answer all the questions

1. Showthat (nlogn-2n+ 13) = Q (n logn).

2. Show that if we have two functions fi(x) and f2(x) both O(g(x)), then fi(X)+f2(x) is also
O(9(x)).

3. Prove that f(x) is O(g(x)) iff g(x) is Q(f(x)).

4. Show that inz -3n=0 (n).

5. Prove that the function f(x)=5x?>—10000x+7 is O(x?).

6. Provethat X"*'(ax; + by;) =aX™, x; + bX™. v

7. Prove that X2, Q(F(K) = (T, f(K)).

8. i) prove that the arithmetic series }.z_, k evaluates to% n(n+1).

ii) prove that the geometric series Y,7_, 3% is O(3").
9. i) Evaluate the sum »:8_,(5k? + 8k + 1)
ii) Evaluate the sum Y12 (k + 1)
4 _ 4n(n+1)(2n+1)(3n?+3n-1)
10. If YR k* =

A
k+9

11. Evaluate the limit n tends to infinity lim % k=1
n—-oo

then find A?

2
12. Evaluate the limit n tends to infinity lim% Dh=1 (k %)
n—->00

2
13. The integral fos x2dx is computed as the limit of the sum 2’,321% ( k%‘) . What value of
A must appear in the sum ?
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UNIT-111
SYLLABUS

Recurrence relations, generating functions, linear recurrence relations with constant coefficients
and their solution, Substitution Method, recurrence trees, Master theorem.

Solving the Recurrence

Claim 10.1.1. T,, = 2" — 1 satisfies the recurrence:
=1
Th =2Th—1 + 1 (forn = 2).

Proof. The proof is by induction on n. The induction hypothesis is that 7,, =
2" — 1. This is true forn = 1 because T; = 1 = 2! — 1. Now assume that

Th—1 =2""! — 1 in order to prove that T, = 2" — 1, where n = 2:
Tn - 2TM—I + 1
=22""'—1)+1
=2"—1.

Linear Recurrences

In general, a homogeneous linear recurrence has the form

fimy=a1fin—N)+azfin=-2)+...4+ag fin—d)
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where ay,as>,...,ay and d are constants. The order of the recurrence is d. Com-

monly, the value of the function f is also specified at a few points; these are called
boundary conditions. For example, the Fibonacci recurrence has order d = 2 with
coefficients a; = a> = 1 and g(n) = 0. The boundary conditions are f(0) = 1
and f(1) = 1. The word “homogeneous™ sounds scary, but effectively means “the
simpler kind”. We’ll consider linear recurrences with a more complicated form
later.

Theorem 10.3.1. If f(n) and g(n) are both solutions to a homogeneous linear
recurrence, then h(n) = sf(n) + tg(n) is also a solution for all .1 € R.

Proof.

hiny=sf(n)+tg(n)

=slayfin—1)+...+aygfin—d)+ilaygln—-1)+...+aygin—4d))
=msfin—D+rgn—10+...+aglsfin—d)+r1gn—d))
=ahin—-1)+...+aghin—d)

Solving First-Order Recurrences Using Back Substitution
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Theorem 2. (Solution of First-Order Recurrence Relations) The solution of

cTin—1)+ f(n) forn=k

T =1 r ) forn =k

where ¢ is a constant and f is a nonzero function of n forn = k is

Tn)=Y " fl)
=k

Motivation for the Proof. First, use back substitution to decide what the general form
of the solution might be, and then prove by induction that this is the solution:

T'in)=cTin—1)+ fin)
=c(eT(n=2)+ fin—1)) + f(n)
=T —2)+cftn— 1)+ fn)
=T =3+ fin=2)+cf(n = 1)+ f(n)
=Tn=3N+2fn—=2)+cfin—1)+ f(n)

Using back substitution one more time gives

T(n) = cTm—4)+fn=3+ Y "f)
=2

=T -+ fn=3)+ Y D)
l=r=2

=c'Tn—-4)+ Y "7'f)

l=n—3

If back substitution is continued until the argument of T is k—that is, for n — k steps—then
the expression for T'(n) becomes

n

Tn)=c"*Tn—m—k)+ > 7'fW)
I=n=k+41

=" T+ Y O

{=n—k+1
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Since T (k) = f(k), replace the reference to T on the right-hand side of the equation,
getting

Ty =c"*fky+ Y 7'
I=n—k+1
"

= ) I

I=m—k
Proof. By induction, show that

Ty =Y " f)

1=k
Letng =k . LetT = {n € M :n > k and T (n) is a solution}.
(Base step) First, show that

]

oW

{ek
is a solution forn =k sothatk € 7.
k
Sk = A = f =Tk
i=k

(Inductive step) Now, assume that T'(n) is given by this expression for n = ng, that is,
Tiny=31_, c”_ff[f}. Now prove that T(n + 1) is also given by this expression: In this
case, prove that T'(n + 1) = Y[ e £ ().

Tin+1)=cTn)+ f(n+1) (Defimtion of recurrence relation)

= GE M Fi 4+ fin+ 1) (Inductive hypothesis)
I=k
n
=Y "D+ f+ )
I=k
n+l

= Z('Iu-'_l_lr_f“}
1=k

This provesn + 1 & 7T,
By the Principle of Mathematical Induction, T = [n € M : n = k}. [
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Example 1. Solve

[Tt =14+nr* forn =1
Tm) = l:} forn =0

Solution. In the general formula, f(n) =n®forn > 0,c = 1,and k = 0. Since T(0) =
f0), by Corollary 1 the solution is

n
1
Tiny=Y > = —-(2n+1)-n- 1
{’H)g 5{1:1]!1{::—{-]
See Theorem 2(b) in Section 7.10 for a derivation of this formula. |

Example 2. Solve

_|3T(m—-1)+4 forn =1
T{”)‘{d forn =0

Solution. In the general formula, f(n) =4 forn = 0,¢ =3, and k = (. By Corollary 2,
the solution is

3n+|_l ]
Ty =4 5—— =2.3"" -1 .
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Rules for Solving Second-Order Recurrence Relations

Solving Second-Order Homogeneous Recurrence Relations
with Constant Coefficients Using the Complementary Equation
with Distinct Real Roots
Him+AHn— 1)+ BH(n-2)=10,

H(nqy) = D, and H(ns) = E.

STEP 1: Assume f{n) = ¢" is a solution, and substitute for H (n), yvielding the char-
acteristic equation
C+Ac+B=0

STEP 2: Find the roots of the characteristic equation: ¢; and ¢». Use the guadratic
formula if the equation does not factor. If ¢| # ¢2, then the general solution is

Sin) = Ac] + Bcj
STEP 3: Use the initial conditions to form the system of equations
Hnp=D= AET' '+ ﬂi‘;z
Hin)=E = ACT] + Ec'zrl

STEP 4: Solve the system of equations found in step 3, getting Ap and By as the two
solutions. Form the particular solution

Hin) = Apc1" + Bpez”

Example 1. Solve the recurrence relation a, — 6a,_1 — Ta,—> =0 for n = 5 where
a3y = 344 and as = 2400,
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Solution. Form the characteristic equation and then factor it:
l'."':E —bBe—T=10
e =7, -1
Form the general solution of the recurrence relation a, = A7" + B(—1)", and solve

the system of equations determined by the boundary values a; = 344 and a4 = 2400 to get
the particular solution:

a3 = AT’ + B(—1)’
as = AT + B(—1)*
Now, substituting 344 and 2400 for a; and as gives

344 = 3434 - B
2400 = 2401A+ B

Adding the two equations gives

2744 = 27444
1=A
It follows that B = —1. Therefore, a, = 7" + (—1)**! for n > 3 is the particular
solution. [ ]
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Substitution Method

¢ Guess the form of solution and use induction to find constants

o Determine upper bound on the recurrence

T, = :?TL +n

Guess the solution as: T, = O(nlgn)

Now, prove that T}, < enlgn for some ¢ = ()
Assume that the bound holds for | %]
Substituting into the recurrence

n n
T, < 2e [EJ I [EJ ) +n
n
< enlg (H) +n
= cnlgn—cnlg2+n
= cnlgn—cn+n
< enlgn Ye>1

Boundary condition: Let the only bound be T, =1
Ao | Ty <ellgl =0
Problem overcome by the fact that asymptotic notation requires us to prove
T, <cnlgn forn > ny

Include 15 and T3 as boundary conditions for the proof

Choose ¢ such that T; < 21g2 and T3 < c31g3
True for any ¢ > 2
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~ If a recurrence is similar to a known recurrence, it is reasonable to guess a similar solution

I

i

:QT,} +1

If 1 is large, difference between T_,}_ and T[%_H; s relatively small

~ Prove upper and lower bounds on a recurrence and reduce the range of uncertainty.
Start with a lower bound of T, = (n) and an initial upper bound of T, = O(n?). Gradually lower the upper
bound and raise the lower bound to get asymptotically tight solution of Ty, = B(nlgn)

e Recursion trees
— Recurrence

Assume n to be an exact power of 2.

T, = n’4+2Tx

. m¢ n? p
= ntg gt
— n?.f1_|_l_|_l_|_1_...'|

' 2 4 B ‘
= B(n?)

The values above decrease geometrically by a constant factor.
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— Recurrence

TI, =T%+T%E - Ti

2 2\ 2 1
n_'(ﬁ)n_'(ﬁ) L — ==
2

[Ejk n =1 when k =logg n, k£ being the height of the tree

Upper bound to the solution to the recurrence — n logz n, or O(nlogn)

Longest path from root to a leaf

The Master Method
s Suitable for recurrences of the form
I, =aT3 + f(n)

where @ > 1 and b > 1 are constants, and

f(mn) is an asymptotically positive function

o For mergesort, a=2, b=2, and f(n) =B(n)

¢ Master Theorem

Theorem 2 Leta > 1 and b > 1 be constants, let f(n) be a function, and let T, be defined on the nonnegative

integers by the recurrence
Tn=alz +f(n)

where we interpret 3 to mean either [’—h'j or [%] Then Ty, can be bounded asymptaotically as follows

1. If f(n) = t’}{ﬂl"g”"') for some constant € = 0, then T, = (—){nl"gb“]
2. If f(n) = B(n'*% ), then T, = B(nl"&:21g n)

3 1If f(n) = ﬂ{n]‘}gb"'f‘) for some constant € > 0, and if af [%} < cf(n) for some constant ¢ < 1 and all
sufficiently large n, then T, = 6(f(n))
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— In all three cases, compare f(n) with n'° 2
— Solution determined by the larger of the two
h E
+ Case 1: n'sea > f(n)
Solution T, = ©(n'o%: 1)
+ Case 2: n'®%% = f(n)

Multiply by a logarithmic factor
Solution T, = ©(n'°=:*1gn) = B(f(n)lgn)

+ Case 3: ff?i'.:l ) ”|i:g5-z
Solution T,, = ©(f(n))

— In case 1, f(n) must be asymptotically smaller than n!®%2 by a factor of n® for some constant ¢ > 0

— Incase 3, f, must be polynomially larger than n'°%:® and satisfy the “regularity” condition that af(§) < cf(n)
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e lUsing the master method

— Recurrence
T, = QT;} +n
a=9b=23, fin)=mn
nlegya — ploga 9 — {_—:h: n‘ﬂ:l
f(n) = O(n'*®a%=*) where ¢ = 1
Apply case 1 of master theorem and conclude T}, = 8(n?)
— Recurrence
T, = Tgun_ +1

ﬂ=l,h=%, fin) =1

n]ugb a_ o l”ﬁ% | _ Hlﬁ] —1

f(n) =0O(n'"Es) = a1}

Apply case 2 of master theorem and conclude T, = 9(lgn)

— Recurrence
1, = HT% +nlgn

a=3 b=4, f(n)=nlgn
n]“‘gb T — 5 logg 3 — {}I: n 0793 :I
f(n) = Q(n'°243+%) where € ~ 0.2
Apply case 3, if regularity condition holds for f{n)

Ty T f TE A cmy — el I |
For large n, af(%) = 37lg() = gnlgn=cf(n) forc=3
Therefore, T,, = B(nlgn)
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POSSIBLE QUESTIONS

PART-B (5 x 2 =10 Marks)
Answer all the questions

Define recurrence relation.
Define non homogeneous recurrence relation.
Define characteristics equation
Solve a,, — 4a,_, =0forn =2 with qy =1,a;, = 1.
If the sequence a,, = 3.2™,n > 1 then find the corresponding recurrence relation.
State Master theorem.
Define Strassen’s algorithm.
Define recurrence tree.
Write the methods for solving recurrence
. Define divide-and-conquer algorithms.

PART-C (5 x 6 =30 Marks)
Answer all the questions

1. Solve the Fibonacci recurrence a,, = a,,_; + a,_, with the initial condition ay = a, =
1.

2. Solve the recurrence relation defined by S, = 100 and Sy = (1.08)S,_; for k > 1.

3. Solve the recurrence relation a,, — 7a,_, + 10a,_, = 0 forn > 2 given that a, = 10,
a, = 41, ... using generating function.

©CooN kWD E

[N
o

4. Solve the recurrence relation a,, — 6a,_; — 7a,,_, = 0 forn > 5 where a; = 344 and
a, = 2400.

SolveT(n) = 2T (%) + n using substitution method.
Solve T(n) =8T (g) + n? (T(1) = 1) by recurrence tree method

Solve T(n) = 7T (2) + 0 (n?) by iterative method

State and prove Master Theorem.

Solve T(n) =2T(Vn) + logn

10. 1f T(n) = aT (%) 4+ na>1,b>1,c >0 then prove that T(n) =
@(n'°efa)  a>be

O(n‘logyn) a = b°

0(n°) a<b©

© oo N o a
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Class _: I - B.Sc. Computer Science Semester  : 1T
Unit 11T
Recurrences
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
The procedure for finding the terms of a sequence in a
recursive manner is called ... reflexive relation relation relation linear relation recurrence relation

An equation or inequality that describes a function in
terms of its value on smaller inputs known as

non linear relation

linear relation

symmetric relation

recurrence relation

recurrence relation

Recurrence can be solved to derive the ...

time running starting running
In recurrence tree, T, = 2Tn/2 - n2 2Tn/2 * n2 2Tn/2 + n2 3Tn/2 + n2 2Tn/2 + n2
non
A . . recurrence has the form f |homogeneous homogeneous
(n)=alf(n— 1)+ a2f (n—2)+......+adf(n —d) linear non linear linear linear __|linear
1f f (n) and g(n) are both solutions to a
. .. recurrence, then h(n)= sf{n) + homogeneous
te(n) is also a solution for all s, t € R. non linear linear linear |non linear|linear
Generating functions can be used to find a solution to |homogeneous non homogeneous
. recurrence linear recurrence __|linear recurrence non_linearrecurrence _|linear recurrence
The generating function for choosing elements from a
union of disjoint sets is the . . of the
ing functions for choosing from each set. product equal sum product
Recurrence relation is a formula that relates two or
more successive terms in a
values series sequence variables sequence

Any recurrence relation is accompanied by
.. which specifies the first

term of the sequence.

zero condition

initial condition

boundary condition

final condition

initial condition

The purpose of solving a recurrence relation is to find
a formula for the general term of the sequence given

by that ....oooeeiiiiiiiiiiiiiiieieieee symmetric rel relation _|recurrence relation reflexive relation recurrence relation
Solving .. - is used in computer
science to assess the running time of recursive
algorithms. relation relations |reflexive relation symmetric relation recurrence relations
Linear homogeneous recurrence relations
with. e ients and their non zero constant varied zero constant
‘A recurrence relation is homogeneous if

h(n) = 1 h(n) =0 h(n) = x h(n) = x+y h(n) = 0

both Substitution both Substitution
Methods for solving recurrences is/are method and method and
- Iteration method _|direct method Iteration method method Iteration method
Recursion-tree method and Master method are

method constant Iteration direct Iteration
recurrences can be reduced to simpler ones
by changing . variables values series constants variables
A.. . Generating
used to visualize the iteration re. fibonacci series i power series recurrence tree recurrence tree
The classical Tower of Hanoi problem gives us the
recurrence T(n) = 2T(n — 1)+ 1 with base case
e . T(1)=0 T(0) =1 T(0) =0 T(1)=1 T(0) =0
A common class of recurrences arises in the context of [non
recursive backtracking algorithms and counting homogeneous homogeneous
problems is called .. - recurrence linear recurrences _|non linear recurrences |recurrence linear recurrences
A recurrence T(n) = f(n)T(n — 1) + g(n) is called a
linear recurrence. higher order third order first order second order first order

A recurrence in which T(n) is expressed in terms of a
sum of constant multiples of T(k) for certain values k
<n is called a
R ..coefficient
recurrence. varied constant different zero constant
The idea of a Recursion Tree is to expand T ( n) to a
tree with the . ...total cost. _|zero same unit different same
Recurrences can be used to represent the runtime of ~ |Generating homogeneous

functions recursive functions |functions linear functions recursive functions.

The pattern in recurrence tree method is typically

constant series

fibonacci series

a arithmetic or
geometric series.

taylor series

a arithmetic or
geometric series

In linear recurrence each term of a sequence is
a... . of earlier terms in the

linear function

non linear functi

functions

G ing functions

linear function

G i ions where
cach term of a sequence is expressed as a coefficient
of a variable x in a formal

fibonacci series

power series

taylor series

constant series

power series

. ... can be used for solving a variety |Generating Generating
of counting problems. functions non linear functions |linear functions functions |functions
Generating functions can be used for solving homogeneous

functions recurrence relations |non linear functions _|linear functions recurrence relations

o can be used for proving homogeneous Generating
some of the i ial identities linear functions i Generating functions _[non linear functions functions
Generating functions can be used for finding
asymptotic formulae for terms of

relations functions seires

I the recurrence equations is Fn = Fn-1 + Fn-2 with
initial values al = a2 = 1 then it is

Pell number

Fibonacci number

Padovan sequence

Lucas number

Fibonacci number

If the recurrence equations is Fn = Fn-1 + Fn-2 with
initial values al = 1, a2 =3 then it is

Fibonacci number

Padovan sequence

Lucas number

Pell number

Lucas number

If the recurrence equations is Fn = Fn-2 + Fn-3 with
initial values al =a2 = a3 = 1 then it is

Padovan sequence

Pell number

Fibonacci number

Lucas number

Padovan sequence

If the recurrence equations is Fn = 2Fn-1 + Fn-2 with
initial values al = 0, a2 = 1 then it is

Lucas number

Padovan sequence

Fibonacci number

Pell number

Pell number

The recurrence for Fibonacci numbers Fn = Fn-1 + Fn-
2 is a linear homogeneous recurrence relation of
degree ..

three

four

two
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UNIT-IV
SYLLABUS

Basic terminology, models and types, multigraphs and weighted graphs, graph representation,
graph isomorphism, connectivity, Euler and Hamiltonian Paths and circuits, Planar graphs, graph
coloring, trees, basic terminology and properties of trees, introduction to Spanning trees

UNIT — IV
Graphs

Basic Concepts
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Definition 8.1.1. [Pseudograph, Vertex set and Edge set] A pseudograph or a general

graph & is a pair (V,E) where V is a nonempty set and E is a multiset of unordered pairs of

points of V. The set V' is ecalled the vertex set and its elements are called vertices. The set

E is ecalled the edge set and its elements are called edges.
Example 8.1.2. G = (1' {{1,1},{1,2},{2,2},{3.4}. {3, -l}}) is a pseudograph.

Discussion 8.1.3. A pseudograph can be represented in picture in the following way.

1. Put different points on the paper for vertices and labhel them.

]

. If {u,v} appears in E some k times, draw F distinet lines joining the points u and v.

3. A loop at u is drawn if {u,u} € E.
Example 8.1.4. A picture for the psendograph in Example 8.1.2 is given in Figure 8.1.
Definition 8.1.5. [Loop, End vertex and Incident vertex/edge]

1. An edge {u,v} is sometimes denoted uv. An edge uu is called a loop. The vertices u and
v are called the end vertices of the edge uv. Let £ be an edge. We say ‘e is incident on

' to mean that *u is an end vertex of €.

Figure 8.1: A pseudograph

2. [Multigraph and simple graph] A multigraph is a psendograph without loops. A

multigraph is a simple graph if no edge appears twice.!

3. Henceforth, all graphs in this book are simple with a finite vertex set, unless stated oth-

erwise.
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4. We use V(&) (or simply V') and E(G) (or simply E) to denote the vertex set and the
edge set of &, respectively. The number |V (G)| is the order of the graph . Sometimes
it is denoted |G|. By ||G|| we denote the number-of edges of G. A graph with n vertices

and m edges is called a (n,m) graph. The (1,0) graph is the trivial graph.

[k |

[Neighbor and independent set] If uv is an edge in G, then we say ‘u and v are adjacent
in &' or ‘u is a neighbor of v'. We write & ~ v to denote that ‘u is adjacent to v'. Two
edges ) and g9 are adjacent if they have a common end vertex. A set of vertices or edges
is independent if no two of them are adjacent.

6. [Isolated and pendant vertex] If v € V(G), by N(v) or Ng(v), we denote the set of
neighbors of v in & and |N(v)| is called the degree of v. It is usually denoted by dg(v) or
d(v). A vertex of degree 0 is called isolated. A vertex of degree one is called a pendant

vertex.

Example 8.1.7. Consider the graph G in Figure 8.2. The vertex 12 is an isolated vertex. We
have N(1)=1{2,4,7}, d(1) = 3. The set {9,10,11,2, 4,7} is an independent vertex set. The set
{{ 1,2}, {8, 10}, {4. 5}} is an independent edge set, The vertices 1 and 6 are not adjacent.

Definition 8.1.8. [Complete graph, path graph, cycle graph and bipartite graph] Let G =
(V, E) be a graph on n vertices, say V = {vy,...,v,}. Then, G is said to be a
1. complete graph, denoted Ky, if each pair of vertices in G are adjacent.

2. path graph, denoted P, if = {vu; 1 |1 €i<n—1}

1
* 13
g 6 3
10 s 12
; ‘ .. 2
T
11 9 1

Prepared by A. NEERAJAH, Asst Prof, Department of Mathematics, KAHE Page 3/29




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IB.Sc Computer science-A COURSE NAME:DISCRETE STRUCTURES
RSE CODE: 17 202 IT: IV(Graph Th BATCH-2017-202

3. cycle graph, denoted C,, f E ={vv;1q |1 <i<n-1}U{vu}

4. complete bipartite graph, denoted K, ; and E = {vju; [ 1< i <rr+1 < j < n} with

r—s=1.

Lemma 8.1.10. [Hand shaking lemma] In any graph G, )  d(v) = 2|E|. Thus, the number
veV
of vertices of odd degree is even.

Proof. Each edge contributes 2 to the sum ) d(v). Hence, > d(v) = 2|E|. Note that

eV vel’
AE| =) div)= Y du)+ Y  d)
veV div) is odd d(v) is even
is even. So, Y. d(v) is even. Hence, the number of vertices of odd degree is even. n

div) is odd

Proposition 8.1.12. In a graph G with n = |G| > 2, there are two vertices of equal deqree.
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Proof. If G has two or more isolated vertices, we are done. So, suppose & has exactly one
isolated vertex. Then, the remaining n — 1 vertices have degree between 1 and n — 2 and hence
by PHP, the result follows. If G has no isolated vertex then G has n vertices whose degree lie

between 1 and n — 1. Now, again apply PHP to get the required result. [ |

Example 8.1.13. The graph in Figure 8.5 is called the Petersen graph. We shall use it as

an example in many places.

b2

Figure 8.5: Petersen graphs

Definition 8.1.15. [Regular graph, cubic graph] The minimum degree of a vertex in G is
denoted 4(G) and the maximum degree of a vertex in & is denoted A(G). A graph & is called

k-regular if d(v) = k for all v € V({7). A 3regular graph is called cubic.

Definition 8.1.18. [Subgraph, induced subgraph, spanning subgraph and k-factor] A graph
H is a subgraph of G if V(H) C V(G) and E(H) € E(G). It U C V(G), then the subgraph
induced by U is denoted by (U) = (U, E), where the edge set E = {uv € E(G) |u,v € U}. A
subgraph H of G is a spanning subgraph if V(&) =V (H). A k-regular spanning subgraph is

called a k-factor.
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Example 8.1.22. Consider the graph & in Figure 8.2. Let Hs be the graph with V(Ha) =
(6,7,8,9,10,12} and E(Hs) = {{6,7},{8,10}}. Consider the edge e = {8,0}. Then, Ha + ¢ is
:he induced subgraph ({6,7,8,9,10,12}) and Hs — 8 = {{6.7.9, 10, 12}).

Definition 8.1.23. [Complement graph] The complement G of a graph G is defined as
V(G),E), where E = {uv |u# v,uv ¢ E(G)}.

Example 8.1.24. 1. See the graphs in Figure 2.6.

(g |
=

Cy Ci Cs C:=C

Figure 8.6;: Complement graphs

2. The complement of K3 contains 3 isolated points.
3. For any graph G, |G| + ||G|| = C(|G], 2).
4. In any graph G of order n, dg(v) + dz(v) = i = 1. Thus, A(G) + AG)=>n—1.

Definition 8.1.26. [Intersection, union and disjoint union] The intersection of two graphs
(+ and H, denoted G N H, is defined as (V(G)NV (H ), E(G)NE(H)). The union of two graphs
' and H, denoted GUH , is defined as (V(GYUV(H), E(G)UE(H)). A disjoint union of twq

graphs is the union while treating the vertex sets as disjoint sets.

Example 8.1.27. Two graphs G and H are shown below. The graphs G U H and G N H are

also shown below.
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2 2 2 2
A 4 7 | 7J /
1 3 1 1 3 1
G H GUH GnH
2 b a 2
2 2
_1.!'
A ; Kq C Ky
l 3 l.f 3.!‘
| a 1 b
G Ka+ K4 Ky +Ks

Ficure 2.7; Disjoint union and join of sraphs

Definition 8.1.28. [Join of two graphs] If V(&) NV (G') = 0, then the join G + G is defined
as GUG + {vv' :v e V, v € V'}. The first *+' means the join of two graphs and the second

‘+" means adding a set of edges to a given graph.

Connectedness

Definition 8.2.1. [Walk, trail, path, cycle, circuit, length and internal vertex] An u-v
walk in & is a finite sequence of vertices [u = vy, v9,--- , 1 = v] such that v;v; ., € E, for all
i=1,--+,k—1. The length of a walk is the number of edges on it. A walk is called a trail if
edges on the walk are not repeated. A v-u walk is a called a path if the vertices involved are all

distinet, except that v and u may be the same. A path can have length 0. A walk (trail, path)
is called closed if u = v. A closed path is ealled a cycle/circuit. Thus, in a simple graph a

cycle has length at least 3. A cycle (walk, path) of length £ is also written as a k-cycle (k-walk,
k-path). If P is an u-v path with u # v, then we sometimes call u and v as the end vertices

of P and the remaining vertices on P as the internal vertices.
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Proposition 8.2.3 (Technique). Let G be a graph endu,v € V(G), u # v. Let W = [u =

Uty ... U = v| be a walk. Then, W contains an u-v-path.

Proof. If no vertex on W repeats, then W is itself a path. So, let u; = u; for some i < j. Now,
consider the walk Wy = [uy,..., 11,4, 4j41,...ug]. This is also an u-v walk but of shorter

length. Thus, using induction on the length of the walk, the desired result follows. m

Proposition 8.2.10. Every graph G containing a cycle satisfies g(G) < 2diam(G) + 1.

Proof. Let C = [vy,va,...,U,v1] be the shortest cycle and diam(G) = r. If k = 2r + 2, then
consider the path P = [v1,v9,...,vp40]. Since the length of P is r + 1 and diam(G) = r, there
is a vr4o-1; path R of length at most r. Note that P and R are different vi-v,4+0 paths. By
Proposition 8.2.9, the closed walk P U R of length at most 2r + 1 contains a cycle. Hence, the

length of this cycle is at most 2r+ 1, a contradiction to C' having the smallest length & > 2r+2m

Definition 8.2.11. [Chord, chordal and acyclic graphs] Let C' = [vy, ..., v = vy] be a eycle.
An edge v;v; is called a chord of C' if it is not an edge of C'. A graph is called chordal if each

cycle of length at least 4 has a chord. A graph is acyclic if it has no cveles.

Definition 8.2.14. 1. [Maximal and minimal graph] A graph & is said to be maximal
with respect to a property P if G has property P and no proper supergraph of & has the

property P. We similarly define the term minimal.
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Proposition 8.2.17. If §(G) = 2, then G has a path of length 6(G) and a cyele of length at
least 8{G) + 1.

Proaf. Let [vy,-- ,vg] be a longest path in G. As d(vg) = 2, vy is adjacent to some vertex
v # vp_y. If v is not on the path, then we have a path that is longer than [vy,--+ , ;] path. A

contradiction. Let i be the smallest positive integer such that v; is adjacent to vy.. Thus,

3(G) < d(ve) < {vi, Vigrse-e 1}
Henee, the cycle C = [v;, 319, , Uk, v;] has length at least 4(G) + 1 and the length of the path
P = [v;,v541,--- ,vg] is at least (). N
Definition 8.2.18. [Edge density] The edge density, denoted £(G'), is defined to be the

EG) _ : : A
mimber J|1¢LTL Ohserve that () is also a graph invariant.

Isomorphism in Graphs

Definition 8.3.1. [Isomorphic graphs] Two graphs & = (V, E) and &' = (V', E') are said tq
be isomorphic if there is a bijection f: V' — V' such that u ~ v is G if and only if f(u) ~ f(v]
in &/, for each u.v € V. In other words, an isomorphism is a bijection between the vertex sets

which preserves adjacency. We write G = ' to mean that & is isomorphic to G".
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Example 8.3.2. Consider the graphs in Figure 8.9. Then. note that

4
3 f 2 4
5 T -
2 5
6 2
1 4 1 3
1
F o H

Figure 8.9: F is isomorphic to & but F is not isomorphic to H

1. the graph F is not isomorphic to H as the independence number, denoted a(F), of F
(the maximum size of an independent vertex set) is 3 whereas «a(H) = 2. Alternately, H
has a 3-cycle, whereas I does not.

2. the graph F is isomorphic to G as the map f : V(F) — V(&) defined by f(1) = 1,
f(2)=25, f(3) =3, f(4) =4, f(5) =2 and f(6) = 6 gives an isomorphism.

Definition 8.3.5. [Self-complementary] A graph G is called self-complementary if G = .
Example 8.3.6. 1. Note that the cycle C; = [0,1,2,3,4,0] is self complimentary. An iso-

morphism from G to G is deseribed by f(i) = 2i (mod 5).

2. If |G| =n and G = G then ||G|| = n(n — 1)/4. Thus, n = 4k or n = 4k + 1.

Definition 8.3.8. A graph invariant is a function which assigns the same value (output) tq

isomorphic graphs.

Example 8.3.9. Observe that some of the graph invariants are: |G|, ||G]|, A(G), §(G), the
multiset {d(v):v € V(G)}, w(G) and oG).

Prepared by A. NEERAJAH, Asst Prof, Department of Mathematics, KAHE Page 10/29




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IB.Sc Computer science-A COURSE NAME:DISCRETE STRUCTURES
RSE CODE: 17 202 IT: IV(Graph Th BATCH-2017-202

Definition 8.3.12. An isomorphism of &G to & is called an automorphism.
Example 8.3.13. 1. Identity map is always an automorphism on any graph.
2. Any permutation in S, is an automorphism of K.

3. There are only two automorphisms of a path Fx.

Trees

Definition 8.4.1. [Tree and forest] A connected acyclic graph is called a tree. A forest is a

graph whose components are trees.
Proposition 8.4.2. Let T be a tree and u,v € V(T'). Then, there is a unigue u-v-path in T.

Proof. On the contrary, assume that there are two u-v-paths in T'. Then, by Proposition 8.2.9,

T has a cyecle, a contradiction. ]

Proposition 8.4.3. Let & be a graph with the property that ‘between each pair of vertices there
is o unigue path’., Then, G is a tree,

Proof. Clearly, G is connected. If G has a cycle [v1,v9,--+ ,vp = v1], then [v1,vae,...,v3_4] and

[v1,vk—1] are two vi-vg_y paths. A contradiction. m

Definition 8.4.4. [Cut vertex] Let G be a connected graph. A vertex v of & is called a cut

vertex if ¢ — v is disconnected. Thus, G — v is connected if and only if v is not a cut vertex.
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Proposition 8.4.5. Let G be a connected graph with |G| = 2. If v € V(&) with d(v) = 1, then

G — v is connected. That is, a verter of degree 1 is never a cuf verter.

Proof. Let w,w € V(G —v), u # w. As (7 is connected, there is an v-w path P in 7. The vertex
v cannot be an internal vertex of P, as each internal vertex has decree at least 2. Hence, the
path P is available in G —v. 50, (¢ — v is connected. ]

Proposition 8.4.6 (Technique). Let G be a connected graph with |G| > 2 and let v € V(G). If
(+ — v is connected, then either d(v) =1 or v is on a eyele.

Proof. Assume that G — v is connected. If d(v) = 1, then there is nothing to show. So, assume
that d(v) = 2. We need to show that v is on a cycle in .
Let u and w be two distinct neighbors of v in G. As ¢ — v is connected there is a path, say

[# =wu1,....,up =w], in G —v. Then, [u=wuy,...,u =w, v, u| is a cycle in G containing v. m

Definition 8.4.8. [Cut edge] Let G be a graph. An edge e in G is called a cut edge or a
bridge if (¢ — ¢ has more connected components than that of G,
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Proposition 8.4.9 (Technique). Let G be connected and e = [u,v] be a cut edge. Then, G — e
has two components, one containing u and the other containing v.

Proof. If G — e is not disconnected. then by definition, e cannot be a cut edge. S0, G — ¢ has
at least two components, Let Gy (respectively, () be the component containing the vertex u
(respectively, v). We claim that these are the only components.

Let w & V(). Then, G is a connected graph and hence there is a path, say P, from w to
ut. Moreover, either P contains v as its internal vertex or P doesn’t contain v. In the first case,
w € V(G,) and in the latter case, w € V(G,,). Thus, every vertex of & is either in V(G,) or in

V(G ) and hence the required result follows. =

Proposition 8.4.10 (Technique). Let G be a graph and e be an edge. Then, € is a cut edge if

and only if e is not on a eyele.

Proaf. Suppose that ¢ = [u,v] is a cut edge of G. Let F be the component of G that contains
e. Then, by Proposition 8.4.9, F — e has two components, namely, F}, that contains u and F,
that contains v.

Let if possible, C = [u.v = vq,..., v = u| be a eyele containing ¢ = [u,v]. Then, [v =
Ul,...,U = u] is an u-v path in F — e, Hence, F — e is still connected. A contradiction. Hence,
£ cannot be on any cyele.

Conversely, let e = [u,v] be an edge which is not on any eycle. Now, suppose that F is the
component of (¢ that contains e. We need to show that F — e is disconnected.

Let if possible, there is an u-v-path, say [u = wy,....uy = v], in F —e. Then, [v.u =
Uq,...,u; = v] is a cycle containing e. A contradiction to e not lying on any cycle.

Hence, e is a cut edge of I'. Consequently, e is a cut edge of G. [ |

Theorem 8.4.12. Let G be a graph with V(G) = [n]. Then, the following are equivalent.
1. G is a tree.
2. G is a minimal connected graph on n vertices.
3. G is a maximal acyclic graph on n vertices.
Proof. (a)=-(b). Suppose that G is a tree. If it is net a minimal connected graph on n vertices,

then there is an edge [u, v] such that G — [u, v] is connected. But then, by Theorem 8.4.10, [u, v]

is on a cycle in (. A contradiction.
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(b)=-(e). Suppose (¢ is a minimal connected graph on n vertices. If ¢ has a cycle, say I', then
select an edge € € I'. Thus, by Theorem 8.4.10, G — e is still connected graph on n vertices, a
contradiction to the fact that & is a minimal connected graph on n vertices. Hence, & is acyelic.

Since ¢ is connected, for any new edge e, the graph & + e contains a cycle and hence, G is
maximal acyclic graph.

(c)=(a). Suppose G is maximal acyclic graph on n vertices. If G is not connected, let &; and
('3 be two components of G. Select vy € G and vy € G5 and note that G + [vy, vs] is acyclie
oraph on n vertices. This contradicts that G is a maximal acyclic graph on n vertices. Thus, G

is connected and acyelic and hence is a tree. [

Proposition 8.4.15. Let T be a tree on n vertices. Then, T has n — 1 edges.

Proof. We proceed by induction. Take a tree on n > 2 vertices and delete an edge . Then, we get
two subtrees T7,T5 of order ny, na, respectively, where ny +ns = n. So, E(T) = E(T)UE(Ty)U
{e}. By induction hypothesis |T|| = [|[T1]|+ |72 +1=nm—1+ne—1+1=n1+ne—1=n—1m

Proposition 8.4.16. Let G be a connected graph with n vertices and n — 1 edges. Then, G is
acyclic.

Proof. On the contrary, assume that G has a cycle, say I'. Now, select an edge € € I' and note
that ¢ — e is connected. We go on selecting edges from & that lie on cyeles and keep removing
them, until we get an acvelic graph H. Since the edges that are being removed lie on some
cycle, the praph H is still connected. So, by definition, H is a tree on n vertices. Thus, by
Proposition 8.4.15, |E(H)| = n — 1. But, in the ahove argument, we have deleted at least one

edge and hence, |E(G)| = n. This gives a contradietion to |E(G)| =n — 1. =

Proposition 8.4.17. Let G be an acyclic graph with n vertices and n — 1 edges. Then, G is
connected.

Proof. Let if possible, G be disconnected with components Gy,....Gi. &k = 2. As G is acyclic,
by definition, each Gj; is a tree on, say n; > 1 vertices, with 3 i = 1*n; = n. Thus, Gl =
;'..
Y mi—1l)=n—k<n—1= |G|, as k > 2. A contradiction. =
i=1
Connectivity
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Proposition 8.5.1. Let G be a connected graph on vertex set [n]. Then, its vertices can be

labeled in such a way that the induced subgraph on the set [i] is connected for 1 <i < n.

Proof. If n = 1, there is nothing to prove. Assume that the statement is true if n < k and let &G
be a connected graph on the vertex set [k]. If G is a tree, pick any pendant vertex and label it
k. If G has a cycle, pick a vertex on a cycle and label it k. In both the case G — k is connected.

Now, use the induction hypothesis to get the required result. [ |

Definition 8.5.2. [Separating set] Let G be a graph. Then, a set X C V(&) U E(G) is called

a separating set if ¢ — X has more connected components than that of .

Definition 8.5.4. [Vertex connectivity] A graph ( is said to be k-connected if |G| = k and
(- is connected even after deletion of any & — 1 vertices. The vertex connectivity x(G) of a

non trivial graph & is the largest k such that & is k-connected. Convention: k(K{) = 0.
Example 8.5.5. 1. Each connected graph of order more than one is 1-connected.

2. A 2 connected graph is also a 1-connected graph.

3. For a disconnected graph, K(G)=0and forn > 1, k(K,,)=n— 1.

4. The graph G in Figure 8.11 is 2-connected but not 3-connected. Thus, 8(G) = 2.

XX

Figure 8.11: graph with vertex connectivity 2

5. The Petersen graph is 3-connected.
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Definition 8.5.6. [Edge connectivity] A graph & is called l-edge connected if |G| > 1 and
& — F is connected for every F C E(G) with |F| < [. The greatest integer [ such that & is

[-edge connected is the edge connectivity of G, denoted A(G). Convention: A(K;) = 0.

Example 8.5.7. 1. Note that M P,) =1, A(C,,) =2 and A(K,,) = n — 1, whenever n > 1.
2. Let T be a tree on n vertices. Then, A(T) = 1.
3. For the graph & in Figure 8.11, MG) = 3.
4. For the Petersen graph G. A(G) = 3.

Theorem 8.5.9. [H. Whitney, 1932] For any graph G, &(G) < MG) < 4(G).

Proof. If G is disconnected or |G| = 1, then we have nothing to prove. So, let G be connected
graph and |G| = 2. Then, there is a vertex v with d(v) = 4(G). If we delete all edges incident
on v, then the graph is disconnected. Thus, 4(G) = A(G).

Suppose that A(G) = 1 and G — uv is disconnected with components C, and C,. If |C}| =
|Cy| = 1, then G = Ky and &(G) = 1. If |C,| > 1, then we delete u to see that k(G) = 1.

If AM(G) = k = 2, then there is a set of edges, say gq.....¢e, whose removal disconnects G.
Notice that G — {e1,...,€x_1} is a connected graph with a bridge, say e; = uv. For each of
£1....,6._1 select an end vertex other than u or v. Deletion of these vertices from G results

in a graph H with uv as a bridge of a connected component. Note that x(H) < 1. Hence,

K(G) < NG). -
Eulerian Graphs
Definition 8.6.1. [Eulerian graph] An Eulerian tour ina graph G is a closed walk [vg, v4.... , vg. 1)

such that each edge of the graph appears exactly onee in the walk, The graph G is said to be

Eulerian if it has an Eulerian tour,
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Theorem 8.6.2. [Euler, 1736] A connected graph G is Eulerian if and only if d{v) is even, for
each v € V(G).

Proof. Let G have an Eulerian tour, say [vg,vq,...,V vg]. Then, d(v) = 2r, if v # vy and v
appears r times in the tour. Also, d(vy) = 2(r — 1), if vp appears r times in the tour. Hence,

d({v) is always even.

Figure 8.12: Konigsherg bridge problem

Conversely, let ¢ be a connected graph with each vertex having even degree. Let W =
vpty - -+ v be a longest walk in G without repeating any edge in it. As v, has an even degree
it follows that v = vy, otherwise W can be extended. If W is not an Eulerian tour then there
exists an edge, say € = v;w, with w # v;_1,v;,1. In this case, wv; --- vp(= vg)vy ---v;_11; is a
longer walk, a contradiction. Thus, there is no edge lying outside W and hence W is an Eulerian

tour. ]

Proposition 8.6.3. Let G be a connected graph with exactly two vertices of odd degree. Then,

there is an Eulerian walk starting at one of those vertices and ending af the other.

Proof. Let x and y be the two vertices of odd degree and let v be a symbol such that v ¢ V(G).
Then, the graph H with V(H) = V(G) U {v} and E(H) = E(G) U {zv,yv} has each vertex of
even degree and hence by Theorem 8.6.2, H is Eulerian. Let ' = [,y = z,..., 1 =y, v] be an

Eulerian tour. Then, I' — v is an Eulerian walk with the required properties. m
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Definition 8.6.8. [bipartite graph] A graph G = (V, E) is said to be bipartite if V =V, UV},
such that |Vi|,|Va| = 1, VinVa = 0 and [|(V1}]| = 0 = ||(Va)||. The complete bipartite graph

Kn.n is shown below. Notice that Kpmpn = Km + K n.

possible edges

Hamiltonian Graphs
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Definition 8.7.1. [Hamiltonian] A cyecle in G is said to be Hamiltonian if it contains all
vertices of . If G has a Hamiltonian cyele, then & is called a Hamiltonian graph. Finding a
nice characterization of a Hamiltonian graph is an unsolved problem.

Example 8.7.2. 1. For each positive integer n > 3, the cycle €, is Hamiltonian.

The dodecahedron graph The Petersen graph

Figure 8.13: A Hamiltonian and a non-Hamiltonian graph

2. The praphs corresponding to all platonic solids are Hamiltonian.
3. The Petersen graph is a non-Hamiltonian Graph (the proof appears below).
Proposition 8.7.3. The Petersen graph is not Hamiltonian.

Proof. Suppose that the Petersen graph, say ., is Hamiltonian. Also, each vertex of G has
degree 3 and hence, G = Cyg + M, where M is a set of 5 chords in which each vertex appears

as an endpoint. We assume that Cyg = [1,2,...,10,1]. Now, consider the vertices 1, 2 and 3.
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Since, g(G') = 5, the vertex 1 can only be adjacent to one of the vertices 5,6 or 7. Hence,
if 1 is adjacent to 5, then the third vertex that is adjacent to 10 creates cycles of length 3
or 4. Similarly, if 1 is adjacent to 7. then there is no choice for the third vertex that can be
adjacent to 2. So, let 1 be adjacent to 6. Then, 2 must be adjacent to 8. In this case, note that
there is no choice for the third vertex that can be adjacent to 3. Thus, the Petersen graph is

non-Hamiltonian. m

Theorem 8.7.4. Let G be a Hamiltonian graph. Then, for S C V(G) with S # 0, the graph

G — S has at most |5| components.

Proof. Note that by removing k vertices from a cyecle, one can create at most k connected

components. Henee, the required result follows. ]

Theorem 8.7.5. [Dirac, 1952] Let G be a graph with |G| = n = 3 and d(v) = n/2, for each
v e V(G). Then, G is Hamiltonian.

Proof. Let is possible, G be diseonnected. Then, & has a component, say H, with [V(H)| =k <
n/2. Hence, d(v) < k—1 < n/2, for each v € V(H). A contradiction to d{v) = n/2, for each
v e V(G). Now, let P = [vy,v9,--- ,vg] be a longest path in G. Since P is the longest path, all

neighbors of vy and v are in P.

We claim that there exists an i such that v ~ »; and v;_1 ~ vg. Otherwise, for each v; ~ vy,
we must have v;_1 » vg. Then, |N(vi)| < k—1—=|N(v1)|. Hence, |[N{v1)|+|N(vx)| < k—1 < n,

a contradiction to d(v) = n/2, for each v € V(G). So, the claim is valid and hence, we have a

cvele P = viwiveq - Upli_q + -~ vy of length k.

We now prove that P gives a Hamiltonian cycle. Suppose not. Then, there exists v € V(&)

such that v is outside P and v is adjacent to some v;. Note that in this case, P cannot be the

path of longest length, a contradiction. Thus, the required result follows.
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Definition 8.7.8. [closure of a graph] The closure of a graph &, denoted (), is obtained
by repeatedly choosing pairs of nonadjacent vertices w, v such that d(u) + d{v) = n and adding

edpes between them.

Proposition 8.7.9. The closure of G is unique.

Proaf. Let K be a closure obtained by adding edges e = ujvy, ..., e = upvy sequentially and F
be a closure obtained by adding edges f; = ay11.. ..., fr = &4, sequentially. Let e; be the first
edge in the e-sequence which does not appear in the f-sequence. Put H =G 4+ 61 +--- +6;_1.

Then, e; = u;v; implies that e; ¢ E(H) and dy(u;)+dy(v;) = n. Also, H is a subgraph of F' and
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hence, dp(u;) + dp(vi) = n. Moreover, e; = w;v; ¢ F as e; does not appear in the f-sequence.

Thus, F cannot be a closure and therefore the required result follows. =

EXERCISE 8.7.10. Let G be a graph on n = 3 vertices.
1. If G has a cut vertezx, then prove that C(G) # K,,.

2. Then, prove a generalization of Dirac’s theorem: If the closure C(G) = K, then G is

Hamiltonian.

Theorem 8.7.11. Let dy < --- < d,, be the vertex degrees of G. Suppose that, for ench k < n/2
with dy, < k, the condition d,,_; = n— k holds. Then, prove that G is Hamiltonian.

Proof. We show that under the above condition H = C'() =2 K,,. On the contrary, assume
that there exist a pair of vertices u, v € V(G) such that uv ¢ E(G) and dy(u) +dg(v) <n—1.
Among the above pairs, choose a pair u.v € V() such that ur ¢ E(H) and dy(u) + dy(v) is
maximum. Assume that dy(v) = dy(u) = k (say). Clearly, & < n/2.

Now, let S, ={ze€V(H) |zv¢ E(H),z#v}and S, ={we V(H) | wu ¢ E(H),w # u}.
Therefore, the assumption that dy(u) +dg(v) is the maximum among each pair of vertices u. v
with uv € E(H) and dp(u) + du(v) < n — 1 implies that |S;| =n —1—dy(v) = du(u) =k
and for each x € Sy, dy(x) < dyg(u) = k. So, there are-at least k vertices in H (elements of Sy)
with degrees at most k.

Also, for any w € Sy, note that the choice of the pair u, v implies that dy(w) < dp(v) <
n—1—dy(u) =n—-1—-k < n—k Moreover, |Su| = n—1— k. Further, the condition
dy(u) +du(v) <n—1,dy(v) =z dg(u) = k and u ¢ Sy implies that dy(u) <n—1—-dg(v) <
n—1—k<n—k So, there are n — k vertices in H with degrees less than n— k.

Therefore, if d) < --- < d, are the vertex degrees of H, then we observe that there exists a
k<mn/2for whichd, <kandd, ,<n—k Ask<n/2andd; <d}, we get a contradiction. m

Bipartite Graphs
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Definition 8.8.1. [2-colorable graphs] A graph is 2-colorable if it's vertices can be colored with

two colors in a way that adjacent vertices get different colors.

Lemma B.8.2. Let P and Q be two v-w-paths in G such that length of P is odd and length of
(2 is even. Then, (G contains an odd cycle.
Proof. Suppose P, () have an inner vertex r (a vertex other than v, w) in common. Then, one
of P(v,z), P(x,w) has odd length and the other is even, say, P(v,r) is odd. If the lengths of
Q(v,r) and Q(x. w) are both odd then we consider the r-w-paths P(x, w) and J(z, w), otherwise
we consider the paths Pv, z) and Q(v, x).

In view of the above argument, we may assume that P, ) have no inner vertex in common. In

that case it is clear that P U @ is an odd cycle. =

Theorem 8.8.3. Let G be a connected graph with at least two vertices. Then, the following

statements are equivalent.
1. G is 2 colorable.
2. (G is bipartite.

3. G does not have an odd eycle.

Proof. Part 1 = Part 2. Let G be 2-colorable. Let Vi be the set of red vertices and V5 be the
set of blue vertices. Clearly, & is bipartite with partition Vi, Va.

Part 2 = Part 1. Color the vertices in V7 with red color and that of Vo with blue color to get
the required 2 colorahility of G,

Part 2 = Part 3. Let G be bipartite with partition V1. Vs. Let vg € Vi and suppose I' =
vt --- vk = tp is a cycle. It follows that vy, vs, vs--- € Va. Since, v € Vi, we see that k is
even. Thus, I has an even length.

Part 3 = Part 2. Suppose that G does not have an odd eycle. Pick any vertex v. Define
Vi = {w | there is a path of even length from v to w} and V5 = {w | there is a path of odd length
from v to w}. Clearly, v € Vj. Also, G does not have an odd cycle implies that Vi nVa = 0. As
G is connected each w is either in Vj or in Vs,

Let x € V4. Then, there is an even path P(v,z) from v to . If xy € E(G), then we have
a v-y-walk of odd length. Deleting all cycles from this walk, we have an odd v-y-path. Thus,

y € Vo, Similarly, if x € V5 and zy € E, then y € V. Thus, G is bipartite with parts V|, V5. =
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Planar Graphs

Definition 8.12.1. [Embedding, Planar graph] A graph is said to be embedded on a surface
S when it is drawn on S so that no two edges intersect. A graph is said to be planar if it can

be embedded on the plane. A plane graph is a graph which is embedded on the plane.

K5-Non-planar K4 3-Non-planar Ky K, - Planar embedding

Figure 8.15; Planar and non-planar graphs

Example 8.12.2. 1. A tree is embed-able on a plane and when it is embedded we have only

one face, the exterior face.

[

Any eyele Cf, n = 3 is planar and any plane representation of (', has two faces.
3. The planar embedding of K; is given in Figure 8.15.
4. Draw a planar embedding of Ky 4.
5. Draw a planar embedding of the three dimnensional cube.
Definition 8.12.3. [Face of a planar embedding] Consider a planar embedding of a graph

. The regions on the plane defined by this embedding are called faces/regions of G. The

unbounded face/region is called the exterior face (see Figure 8.16).
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Planar Graph X, Planar Graph X,

Figure 8.16: Planar graphs with labeled faces to understand the Euler’s theorem

Theorem 8.12.4. [Euler formula] Let G be a connected plane graph with f as the number of
farces. Then,
G| - 1G]l + = 2. (8.3)

Proof. We use induction on f. Let f = 1. Then, ¢ cannot have a subgraph isomorphic to a
cycle. For if, G has a subgraph isomorphic to a cvele then in any planar embedding of G, f = 2.
Therefore, G is'a tree and hence |G| — ||G||+ f=rn—-(n—-1)+1=2.

So, assume that Equation (8.3) is true for all plane connected graphs having 2 < f < n. Now,
let G be a connected planar graph with f = n. Now, choose an edge that is not a cut-edge, say
£. Then, ¢ — e is still a connected graph. Also, the edge e is incident with two separate faces

and hence it’s removal will combine the two faces and thus & — e has only n — 1 faces. Thus,
Gl = IGll+ F=|C—€—(IG—¢€|| +1)+n=|G—¢|—||G—¢|| +(n—-1)=2

using the induction hypothesis. Hence, the required result follows. =

Lemma 8.12.5. Let G be a plane bridgeless graph with ||G|| = 2. Then, 2||G|| = 3f. Further
if G has no cycle of length 3 then, 2||G| = 4f.

Prepared by A. NEERAJAH, Asst Prof, Department of Mathematics, KAHE Page 26/29




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IB.Sc Computer science-A COURSE NAME:DISCRETE STRUCTURES
RSE CODE: 17 202 IT: IV(Graph Th BATCH-2017-202

Proof. For each edge put two dots on either side of the edge. The total number of dots is 2||G|.
If & has a cycle then each face has at least three edges. So, the total number of dots is at least
3f. Further, if G does not have a eyele of length 3, then 2||G| = 4f. =

Theorem 8.12.6. The complete graph Ky and the complete bipartite graph K54 are not planar.

-

Proof. If K= is planar, then consider a plane representation of it. By Equation (8.3), f = T.
But, by Lemma 8.12.5, one has 20 = 2||7|| > 3f = 21, a contradiction.

If K54 is planar, then consider a plane representation of it. Note that it does not have a Cfj,.
Also, by Euler’s formula, f = 5. Hence, by Lemma 8.12.5, one has 18 = 2||G|| = 4f = 20, a

contradiction. =

Definition 8.12.7. [Subdivision, homeomorphic] Let G be a graph. Then, a subdivision of
an edge uv in & is obtained by replacing the edge by two edges uw and wv, where w is a new
vertex. Two graphs are said to be homeomorphic if they ean be obtained from the same graph

by a sequence of subdivisions.

Definition 8.12.12. [Maximal planar] A graph is called maximal planar if it is planar and
addition of any more edges results in a non-planar graph. A maximal plane graph is necessarily

connected.

Proposition 8.12.13. If G is a marimal planar graph with m edges and n = 3 vertices, then

every face is a triangle and m = 3n — 6.

Proof. Suppose there is a face, say f, described by the eycle [uyg, ..., up, u1], &k = 4. Then, we
can take a curve joining the vertices 1y and us lying totally inside the region f, so that G +ujus
iz planar. This contradicts the fact that ¢ is maximal planar. Thus, each face is a triangle. It
follows that 2m =3f. Asn—m+ f=2, wehave 2m=3f=3(2—n+m)orm=3n—6. =

Vertex Coloring
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Definition 8.13.1. [k-colorable] A graph &' is said to be k-colorable if the vertices can be
assigned k colors in such a way that adjacent vertices get different colors. The chromatic

number of &, denoted x (&), is the minimum & such that &' is k-colorable.

Theorem 8.13.2. For every graph (&, x(G) < A(G) + 1.

Proof. If |G| = 1, the statement is trivial. Assume that the result is true for |G| = n and let G
be a graph on n + 1 vertices. Let H =G — 1. As H is (A(G) + 1)-colorable and d(1) < A(G),

the vertex 1 can be given a color other than its neighbors. =

Theorem 8.13.4. [5-color Theorem] FEvery Planar graph is 5-eolorable.

Proof. Let G be a minimal planar graph on n = 6 vertices and m edges, such that G is not
S-colorable. Then, by Proposition 812.13, m < 3n — 6. 5o, nd(G) < 2m < 6n — 12 and hence,
MG) < 2m/n < 5. Let v be a vertex of degree 5. Note that by the minimality of G, G — v is
S-colorable. If neighbors of v use at most 4 colors, then v can be colored with the 5-th color
to pet a S-coloring of G. Else, take a planar embedding in which the neighbors vy, ..., ve of v
appear in clockwise order.

Let H = G[V; U V]| be the graph spanned by the vertices colored i or j. If v; and v; are in
different connected components of H, then we can swap colors i and j in a component that
contains vy, so that the vertices vy....,vs use only 4 colors. Thus, as above, in this case the
oraph & is 5-colorable. Otherwise, there is a 1, 3-colored path between vy and vz and similarly,
a 2, 4-colored path between vo and vy. But this is not possible as the graph & is planar. Hence,

every planar graph is 5-colorable. =
POSSIBLE QUESTIONS

PART-B (5 x 2 =10 Marks)
Answer all the questions

Define graph

Define simple graph

Define directed graph.

How many vertices does a regular graph of degree 4 with 10 edges have?
Define regular graph.

ok wbdPE
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6. Define euler’s graph

7. Define Hamiltonian path
8. Define tree.

9. Define spanning tree.

10. Define planar graph

11. Define isomorphic graph.
12. Define chromatic number
13. Define coloring.

PART-C (5 x 6 =30 Marks)
Answer all the questions

State and prove handshaking lemma.

Define graph. Explain the various types of graph with an example.

Prove that the number of vertices of odd degree in a graph is always even.

Describe about konigsberg bridge problem.

If G is connected simple planar graph with n(= 3) vertices and e edges the e < 3n — 6.
Define i) Proper coloring graph ii) Chromatic Number iii) Independent set

State and prove polyhedron formula.

Find the eccentricity of all vertices, center, radius and diameter of the following graph.

N O~ WNPE

9. Prove that the number of pendent vertices of a tree is equal to %

10. Show that if a fully binary tree has i internal vertices then it has i+1 terminal vertices and
(2i+1) total vertices.
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Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
If X and Y be the sets. Then the set ( X - Y) union (Y-
X) union (X intersection Y ) is equal to? XUY X‘U Y* X NY X‘ny* XUY
If G is an undirected planar graph on n vertices with e
edges then ? esn e<2n e<3n e>n e<2n
The number of circuits that can be created by adding
an edge between any two vertices in a tree is ? Two Exactly one More than one At least two Exactly one
In a tree between every pair of vertices there is ? Exactly one path | A self loop Two circuits n_number of paths Exactly one path
A graph is a collection of.... ? Row and columns |Vertices and edges |Equations lines Vertices and edges
The number of Number of vertex The number of
edges incident . Number of vertices Number of edges ina  |edges incident with
The degree of any vertex of graph is .... ? with vertex ina graph adjacent to that vertex |graph vertex
If for some positive integer k, degree of vertex d(v)=k
for every vertex v of the graph G, then G is called... ? |K graph K-regular graph Empty graph Trivial graph K-regular graph
A graph with no edges is known as empty graph.
Empty graph is also known as... ? Trivial graph Regular graph Bipartite graph cycle graph Trivial graph
The number of Total number of
vertices in walk | The number of edges in a graph Total number of The number of
Length of the walk of a graphis .... ? w edges in walk W vertices_in a graph edges in walk W
If the origin and terminus of a walk are same, the walk
is known as... ? open closed path neither open nor closed [closed
A graph G is called a ..... if it is a connected acyclic
graph ? Cyclic graph Regular graph Tree path Tree
The complete graph K, has... different spanning trees? | n"? n*n n’ n n"?
A continuous non - intersecting curve in the plane
whose origin and terminus coincide ? Planar Jordan Hamiltanion unique Jordan
A path in graph G, which contains every vertex of G
once and only once ? Eular tour Hamiltanion Path | Eular trail Hamiltanion Tour Hamiltanion Path
A tree having a main node, which has no predecessor
is.... 7 Spanning Tree  |Rooted Tree Weighted Tree forest Rooted Tree
both max (e(v) : v both max (e(v) : v
Diameter of a graph is denoted by diam(G) is defined | max (e(v): v belongs to V) and belongs to V) and
by.... ? belongs to V) max( d(u,v)) max( d(u,v) ) min_(d(u,v)) max( d(u,v) )
A vertex of a graph is called even or odd depending
upon ? number of edges |number of vertices |degree eccentricit; degree
An edge having the same vertex as both its end
vertices is called . graph tree self-loop node self-loop
The maximum number of edges in a simple graph with
n vertices is . n (n-2)/2 (n-1)/2 n+l (n-1)/2
A vertex of degree zero is called an ----------------------
- null vertex isolated vertex null graph pendant vertex null vertex
Vertices with which a walk begins or ends are called
its . isolated vertex null vertex pendant vertex terminal vertices terminal vertices
A graph with no vertices is a . null graph trivial Empty graph parallel null graph
A is connected graph without circuit graph directed graph undirected graph tree tree
The sum of the degrees of all vertices of a graph is
equal to the number of edges. twice thrice same any twice
A node with no children is called . siblings node leaf tree leaf
A graph is if it has no parallel edges or
self-loops simple directed adjacent self-loop simple
A graph in which some edges are directed and some
are undirected is called . mixed graph regular graph complete graph simple graph mixed graph
Every graph is its own . mixed graph sub graph simple graph complete graph sub graph
is also called cycle. circuit walk path closed walk circuit
If no vertex appears more than once in an open walk
then it is called a . closed walk circuit walk path path
The number of edges in a path is called the
of the path. length walk same circuit length
A simple graph G with n vertices is said to be
a if the degree of every vertex is n-1.  |regular graph complete graph simple graph null graph complete graph
A walk is also called . chain edge vertex |graph chain
LA is a closed , non intersecting walk. |closed walk circuit walk path circuit
The total number of degrees of an isolated node is
. 0 2 1 3 0
A tree is an graph. cyclic directed acyclic disconnected acyclic
A is a graph whose components are all
trees. tree |graph forest walk forest
LA consists of set of vertices and
edges such that each edge is incident with vertices. graph path forest walk |graph
A vertex having no edge incident on it is
called . end vertex pendant vertex isolated vertex null graph isolated vertex
A graph is said to be if there exists at
least one path between every pair of vertices in G. connected disconnected null graph hamil connected
A tree with n vertices has edges n n-1 n-2 ntl n-1
A graph in which all nodes are of equal degrees is
known as. .. regular graph complete graph simple graph null graph regular graph
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Statements (Propositions ): Sentences that claim certain things, either true or false

Notation: A.B. ...P.Q.R. ...., P. q. 1, efc.

Examples of statements: Today 1s Monday. This book 1s expensive
If a number 1s smaller than 0 then it 1s positive.

Examples of sentences that are not statements: Close the door! What 1s the time?

Propositional variables: A, B, C, ....P., Q. R, ... Stand for statements. May have true or
false value.
Propositional constants:
T —true
F - false
Basic logical connectives: NOT, AND, OR
Other logical connectives can be represented by means of the basic connectives

Logical connectives | pronounced Symbol in Logic
Negation NOT =~
Conjunction AND A

Disjunction OR V

Conditional if then —

Biconditional if and only if PR

Exclusive or Exclusive or &

Truth tables - Define formally the meaning of the logical operators.
The abbreviation iff means if and only if

a. Negation (NOT,~, ¢

~P 15 true 1f and only 1f P 1s false
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P Q PAQ

T T

IS

F F
T F
E F

P A Q 1s true 1ff both P and Q are true. In all other
cases P A Q 1s false

c. Disjunction / Inclusive OR (OR, V, ||)

P Q PVQ

IS
o

T
F
T
F

P VQ istrue iff P 1s true or Q 1s true or both are
true.

P WV Q is false iff both P and Q are false

d. Conditional , known also as implication (—)

The implication P— Q 1s false iff P is true however
Q is false.

T T T
T E IF In all other cases the implication 1s true
F T T
F F T
e. Biconditional (<)
P Q P&Q P« Q 15 true iff P and Q have same values - both are
T T true or both are false.
T T T
- - - If P and Q have different values, the biconditional 1s
F T F false.
F F T
f. Exclusive OR (@)
P Q P@Q P Q 1s true iff P and Q have different values
u E : We say: “P or Q but not both™
T F T
F T T
= F IE
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Precedence of the logical connectives:

Connectives within parentheses, innermost parentheses first

- negation

A conjunction

Vv disjunction

— conditional

—, D biconditional, exclusive OR

Compound Statements: Logical expressions that consist of propositional variables and logical
connectives. They may contain also propositional constants.

Evaluating compound statements : by building their truth tables

Example: ~PV Q

PVQA-(PAQ

P Q PVQ PAQ —-(PAQ (PVQA-(PAQ)
A B - B AA-B (the letters A and B
are used as shortcuts)
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1. Tautologies and Contradictions

A propositional expression 1s a tautology if and only if for all possible assignments of truth
values to its variables its truth value is T

Example: PV — P is a tautology

P —-P PV-P

A propositional expression 1s a contradiction if and only if for all possible assignments of
truth values to its variables its truth value is F

Example: P A — P is a contradiction

P —-P PA-P

Usage of tautologies and contradictions - in proving the validity of arguments; for rewriting
expressions using only the basic connectives.

Definition: Two propositional expressions P and Q are logically equivalent.
if and only if P <> Q 1s a tautology. Wewrite P=Q or P & Q.

Note that the symbols = and <> are not logical connectives
Exercise:
a) Show that P — Q <>~ PV Q isatautology.1.e. P—Q =—PVQ

P Q -P -PVQ P—Q P—Q&-PVQ

T T F T T T
T F F F F T
F T T T T T
F F T T T T
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2. Logical equivalences

Similarly to standard algebra, there are laws to manipulate logical expressions, given as
logical equivalences.

1. Commutative laws PVQ=QVP
PAQ= QAP

| ]

. Associative laws PVQVR=PV(QVR)
(PAQAR= PA(Q AR)

3. Distributive laws: PVQAP VR=PV(Q A R)
PAQV(PAR=PA(Q V R)

4. Identity PV F=P
PA T=P

5. Complement properties PV-P=T (excluded middle)
P A-P=F (contradiction)

6. Double negation - (—P)=P

7. Idempotency (consumption) PV P=P
PAP=P

8. De Morgan's Laws “PVQ=—P A —Q

~(PAQ=-P V —Q

9. Universal bound laws (Domination) P V T=T

P AF=F

10. Absorption Laws PV((PAQ=P
PA(VQZ=P

11. Negation of T and F: —T =F
—F =T
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1. Truth table of the conditional statement

P Q P—Q
T T T
T F F
F T T
F F T

P is called antecedent
Q is called consequent
Meaning of the conditional statement: The truth of P implies (leads to) the truth of Q

Note that when P is false the conditional statement is true no matter what the value of Q is. We say that in this
case the conditional statement is true by default or vacuously true.

2. Representing the implication by means of disjunction

P—Q=~"PVQ
P Q P P—=Q ~PVQ
T T F T T
T F F F F
F T T T T
F F T T T
Same truth tables
Usage:
1. To rewrite "OR" statements as conditional statements and vice versa (for better
understanding)

2. To find the negation of a conditional statement using De Morgan's Laws
3. Rephrasing "or" sentences as "if-then'" sentences and vice versa

Consider the sentence:
(1) "The book can be found in the library or in the bookstore".

Let
A = The book can be found in the library
B = The book can be found in the bookstore

Logical form of (1): AVB

FI Cpaicu vy A. NLLNAJATL, ADDL MNUI, vcpdal Uliciit Ul Ivialliciiiauld, NAric

ragc 1v/co
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Rewrite AV B as a conditional statement

In order to do this we need to use the commutative laws, the equivalence — (— P) =P, and the
equivalence P— Q = PV Q

Thus we have:
AVB=—-(—A)VB=—-A—B
The last expression — A — B is translated into English as
"If the book cannot be found in the library,
it can be found in the bookstore".

Here the statement "The book cannot be found in the library" 1s represented by — A

There is still one more conditional statement to consider.
AV B =BV A (commutative laws)

Then, following the same pattern we have:
BVA=—-("B)VA=—-B —A

The English sentence is: "If the book cannot be found in the bookstore, it can be found in the
library.

We have shown that:

AVB= ~(—~A)VB=—A—B
AVB=BVA=-(-B)VA=-B—A

Thus the sentence "The book can be found in the library or in the bookstore"

can be rephrased as:
"If the book cannot be found in the library, it can be found in the bookstore".
"If the book cannot be found in the bookstore, it can be found in the library.

4. Negation of conditional statements

Positive: The sun shines
Negative: The sun does not shine

Positive: " If the temperature is 250°F then the compound is boiling "
Negative: ?
In order to find the negation, we use De Morgan's Laws.

Let

P = the temperature 1s 250°F
0O = the componnd 1€ bailine
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Positive: P— Q = PV Q
Negative: = (P— Q) = ~(—PVQ)=—(—P)A—Q= PA—Q
Negative: The temperature is 250°F however the compound is not boiling

IMPORTANT TO KNOW:

The negation of a disjunction is a conjunction.
The negation of a conjunction is a disjunction

The negation of a conditional statement is a conjunction, not another if-then statement

Question: Which logical connective when negated will result in a conditional statement?

5. Necessary and sufficient conditions

Definition:
"P 1s a sufficient condition for Q" means : if Pthen Q, P— Q
"P 1s a necessary condition for Q" means: if not P then not Q, ~P — ~Q
The statement ~P — ~Q is equivalent to Q — P

Hence given the statement P — Q,
P is a sufficient condition for QQ, and Q) is a necessary condition for P.

Examples:

If » 1s divisible by 6 then » is divisible by 2.
The sufficient condition to be divisible by 2 is to be divisible by 6.
The necessary condition to be divisible by 6 1s to be divisible by 2

If n 1s odd then n is an integer.
The sufficient condition to be an integer to be odd.
The necessary condition to be odd 1s to be an integer.

If and only if - the biconditional

P Q P&Q

i
M
H o

P s O 1z tme whenever P and O have came values Otherwize 1t 12 falee
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This means that both P — Q and Q — P have to be true

P Q P—Q Q—P PsQ

T T T T T

T F F T F

F T T F F

F F T T T
Contrapositive

Definition: The expression ~Q — ~P is called contrapositive of P — Q

The conditional statement P — Q and its contrapositive ~Q — ~P are equivalent.
The proof is done by comparing the truth tables

The truth table for P— Qand ~Q — — P 1s:

T T F F T T
T F F T F F
F T T F T T
F F T T T T

We can also prove the equivalence by using the disjunctive representation:
P—Q= -PVQ=QV—-P=—(-Q)V-P=-Q— P

Converse and inverse

Definition: The converse of P — Q is the expression Q — P

Definition: The inverse of P — Q 1s the expression ~P — ~Q
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Neither the converse nor the inverse are equivalent to the original implication.
Compare the truth tables and you will see the difference.

T T F F T T T
T F F T F T T
F T T F T F F
F F T T T T T

Valid and Invalid Arguments.

Definition: An argument is a sequence of statements. ending in a conclusion. All the statements
but the final one (the conclusion) are called premises(or assumptions. hypotheses)

Verbal form of an argument:
(1) If Socrates is a human being then Socrates 1s mortal.
(2) Socrates is a human being

Therefore (3) Socrates 1s mortal

Another way to write the above argument:
P—Q
P
S Q

Prepared by A. NEERAJAH, Asst Prof, Department of Mathematics, KAHE Page 15/23




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I1B.Sc Computer science-A COURSE NAME:DISCRETE STRUCTURES
RSE DE:17 202 IT: V(Pr itional Logic) BATCH-2017-202

2. Testing an argument for its validity

Three ways to test an argument for validity:

A. Critical rows

1. Identify the assumptions and the conclusion and assign variables to them.

2. Construct a truth table showing all possible truth values of the assumptions and the
conclusion.
3. Find the critical rows - rows in which all assumptions are true

4. For each critical row determine whether the conclusion is also true.
a. If the conclusion 1s true in all critical rows, then the argument is valid
b. If'there is at least one row where the assumptions are true, but the conclusion is

false. then the arcument is invalid
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B. Using tautologies
The argument is true if the conclusion is true whenever the assumptions are true.
This means: If all assumptions are true. then the conclusion is true.
"All assumptions" means the conjunction of all the assumptions.
Thus. let A1. A2. ... An be the assumptions, and B - the conclusion.
For the argument to be valid. the statement
If (A1 A A2 A... A An) then B must be a tautology - true for all assignments of values to
its variables. 1.e. its column in the truth table must contain only T
Le.
(ATAAZA. .. AAn)—B=T
C. Using contradictions
If the argument 1s valid. then we have (A1 AA2A... AAn)—B=T
This means that the negation of (A1 A A2 A... A An) — B should be a contradiction -

containing only F in its truth table

In order to find the negation we have first to represent the conditional statement as a
disjunction and then to apply the laws of De Morgan

(ATAA2A. .. AAn)—B=~(AlAA2A... AAn)VB=

~AlV~A2V ... V~AnVB.

The negation 1s:

~((ATAA2A...AAn)—B)=~(-Al V~A2V ... V~An V B)
=ATAAZA...AAnA-B

The argument 1s valid if ALAA2A ... AAnA~-B=F

There are two ways to show that a logical form 1s a tautology or a contradiction:

a. by constructing the truth table
b. by logical transformations applying the logical equivalences (logical identities)
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Examples:

1. Consider the argument:

P—Q
P
S Q

Testing 1ts validity:

a. by examining the truth table:

P Q P—Q
T T T
T F F
F T T
F F T
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b. By showing that the statement 'If all premises then the conclusion" is a tautology:
The premuses are P and P— Q. The statement to be considered 1s:

PAP—-Q)—Q

We shall show that it is a tautology by using the following identity laws:
(DP—Q=~PVQ
2Q)(PVQ VR =PV (QVR) commutative laws
(PAQ)AR =PA(QAR)
B)YPAQ)VR=(PVR)A(QVR) distributive law
(HPA~P=F
S)PV~-P=T
(6)PVF =P
(HPVT =T
(BYPAT=P
(9HYPAF=F
(10) (PAQ)=~PV ~Q De Morgan's Laws

PAP=Q)—Q
byd) | = |[(PAP=Q)VQ
by(10) | = [(-PV~(P=Q))VQ
by(l) | = |[(-PV~(-PVQ)VQ
by(10) | = |[-PVEPA-Q)VQ
by3) | = |(-PVP)A(-PV~-Q)VQ
by(5) | = |[(TAGPV-Q)VQ
by@® | = |:PV-QVQ
by2 | = |-PV(QVQ
by(5) | = |~-PVT
by(7) = |T
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2. Consider the argument

P—Q
Q
;P

We shall show that this argument is invalid by examining the truth tables of the assumptions and
the conclusion. The critical rows are in boldface.

P Q P—Q

T T T

T F F

F T T here the assumptions are true, however the
conclusion is false

F F T
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Exercise:

Show the validity of the argument:

1. PVQ
2. ~Q
Therefore P

(premise)
(premise)

(conclusion)

a. by using critical rows
b. by contradiction using logical identities

Solution:

a. by critical rows

conclusion Premises

P Q PVQ ~Q

T T T F

T F T T Critical row
F T T F

F F F T

b. By contradiction using idenftities

(PVQA~Q)A ~P=
(PA~Q)V(QA-Q) A ~P=
(PA-Q)V F)A ~P=
(PA-Q)A ~P=

PA~P A ~Q=FA ~Q=F
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POSSIBLE QUESTIONS

PART-B (5 x 2 =10 Marks)
Answer all the questions

Define conjunction.
Define disjunction.
Construct the truth table for 1(PAQ).
Construct the truth table for 1(P) v 1(Q).
Define tautology
Define contradiction.
Prove that without using truth table ( 1Q A (P —Q))— 1P is a tautology.
Define disjunctive normal form.
Define conjunctive normal form.
. Define PCNF and PDNF.
. Find PDNF for 1P v Q.
. Prove that P—(QVR) & (P—Q) V (P—R).
. Demonstrate that R is a valid inference from the premises P—Q, Q—R and P.
PART-C (5 x 6 =30 Marks)

© o N R WNRE

el ol
W N RO

Answer all the questions
1. i) Construct the truth table for (P<R) A (1Q—S)
if) Obtain PDNF of (1((P vQ) AR)) A (P vR))

2. Obtain PCNF and PDNF of (PAQ) v (1PAQAR)
3. i) Prove that (1 QAP) A Q is contradiction.
i1) Show that the following implication without constructing truth table.

1QA(P-Q) = 1P

4. i) Verify that a proposition P v | (PAQ) is a tautology. ii) Prove that P ~(Q vR) < (P — Q) v
(P—R)

5. Define disjunctive normal form and conjunctive normal form. Also obtain disjunctive
normal form of (P v Q) <> (PAQ)

6. i) Prove that RvS follows logically from the premises C v D, (Cv D) —»|H, TH—(A Al
B) and (A A1B) — (RVS).
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i) Show that (x) M(x) follows logically from the premises (x)(H(x) — M(x)) and
()H(X).

7. Find the minterm normal form of (1((P v Q) AR)) A (P v R)

8. Show that RVS follows logically from the premises CVD, (CVD)—1H, TH — (AA 1B)
and (AA 1B) —(RVS).

9. Provethat PVQ)A (P A(TIQVIR)V(TPATIQ) v (TP ATR))is atautology.

10. Show that the following premises are Inconsistent.
1) If Jack misses many classes through illness, he fails in school.

i) If jack fails in school, then he is uneducated.
iii) If jack reads a lot of books, then he is not uneducated.

iv) Jack misses many classes through illness and reads a lot of books.
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Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
Let p be “He is tall” and let q “He is handsome™.
Then the statement “It is false that he is short or
handsome? is: | ~(~pv q) ~pvq pvg ~(~pv q)
Logically equivalent Logically
The proposition p* (~p v q) is. -|A tautulogy a contradiction ltop~q an equivalenttop” g

Which of the following is/are tautolo;

avb—b” ¢

a’b—bve

avb—(b—o)

avb—obve

a’b—obve

Identify the valid conclusion from the premises Pv Q,

Q—-R,P—->MTM P"(RVR) P~ (P R) R™M(PvQ) Q" (PVR) Q" (PVvR)
Let a, b, c, d be propositions. Assume that the
equivalence a < (b v Tb) and b < ¢ hold. Then truth Same as the truth Same as the truth value
value of the formula (2 b) — ((a” ¢) v d) is always |TRUE FALSE value of a ofb TRUE

Two may not be an
‘Which of the following is a declarative ? It's right He says even integer 1 love you He says
P — (Q — R) is equivalent to (P"Q)—>R (PvQ)—R (PvQ)— 1R PvQ)—P (P "Q)—R
IfF1, F2 and F3 are propositional formulae such that The conjuction F1
F1 ~F2 — F3 and F1 * F2—F3 are both tautologies, |Both F1 and F2 |* F2 is not Both F1 and F2
then which of the following is TRUE? are tautologies satisfiable Neither is tautologies |[F1v F2 is tautology are tautologies

Consider two well-formed formulas in propositional
logic
F1:P—TPF2: (P —1P)v (1P —), then

F1 is satisfiable,
F2 is unsatisfiable

F1 is unsatisfiable,
F2 is satisfiable

F1 is unsatisfiable, F2
is valid

F1 & F2 are both
satisfiable

F1 is unsatisfiable,
F2 is valid

What can we correctly say about proposition P1 : (p v

Ifp is true and q is
false and r is false,

If p as true and q is true
and r is false, then P1 is

If pis true and q is
false and r is false,

I9) " (g—=r) v(rvp) P1 is tautology  |P1 is satisfiable the P1 is true true the P1 is true
(PvQ)" (P— R)"(Q—S) is equivalent to S*"R S—>R SvR SUR SvR
In propositional logic , which of the following is
equivalent to p — q? ~p—q ~pvq ~pv~q p—q ~pvq
1(P — Q) is equivalent to P~ 1Q P~ Q PvQ P Q P~ 1Q
(Pv Q)" (P>R)* (Q — R) is equivalent to P Q R True=T R
How many rows would be in the truth table for the
following compound proposition:
PVPA(QAYV (I —s) 32 34 27 25 32
Which of the following statement is the negation of the |2 is evenand -3 |2 isoddand-3is |2 isevenor—3isnot |2 is odd or -3 is not 2isoddor -3 is
2 is even and -3 is negative™? is not negative. _|not negative. negative. negative. not negative.
p—q is logically equivalent to ~q—p ~p—q ~p~q ~pvq ~pvq
for all x1,x2,x3 { for all x1,x2,x3 {
"for all x x1=x2"x2=x3 x1=x2"x2=x3
Which of the following is not a well formed formula? |[P(x)—f(x)*x] [P x1 =x3} ~(p—9)—q [T v P(a, b)]—>zQ(2) b x1=x3}
[~ g (p—q)—=~pis, Satisfiable Unsatisfiable Tautology Invalid Tautology
An and statement is true if, and only if, both
p are .. ..ccooooieinin. TRUE FALSE not true neither true nor false TRUE
IfP: Itis hot & Q : It is humid,then what does P~  |Itis not hot and it It is hot and it is Itis hot and itis not  |It is not hot and it is not [It is hot and it is
(~ Q):mean? is not humid humid humid humid not humid
An or statement is false if, and only if, both
p are .............. TRUE FALSE not true neither true nor false FALSE
Two statement forms are logically equivalent if, and not same truth | the same truth the different truth the same truth
only if they always have.. values values values the same false values  |values
A tautology is a statement that is always
- TRUE FALSE not true neither true nor false TRUE
FALSE TRUE not true neither true nor false  |FALSE
The (PP Ppisa..ccoeeiinniinnnns Satisfiable Unsatisfiable Tautology Invalid Tautology
In propositional logic which one of the following is
equivalent to p—q ? p—q p—q pvq pv-g pvq
Which of the following proposition is a tautology? (pvq)—p pVv(g—p) p v(p—9q) (pvq—q p v( p—q)
Which one is the contrapositive of g — p ? ~p—~q p—~q ~p— q p— q ~p—~q
The formpv(~p)isa.........ccooeeeiin. Satisfiable Unsatisfiable Tautology Invalid Tautology
Let p and q be statements given by “p —q". Then q is
called hypothesis lusion TRUE FALSE 1
The form p*(~p) is a. contradiction Unsatisfiable Tautology Invalid contradiction
If p and q are statement variables, the conditional of q
bypisgivenby ................. ~p—~q p—~q ~p— q p— q p— q
Let p and q be statements given by “p —q". Then p is
called......oooovuunnen. hypothesis conclusion TRUE FALSE hypothesis
The statement ( p — 1) A (q — 1) is equivalent
L pvg—~r pvg—or pV~q—or ~pVq—or pvgq—or
The Negation of a Conditional Statement p —q is
givenby ...oooeiiiinii pPA~q ~pA~q pV~q pPAq pA~q
Given statement variables p and q, the biconditional of
p and q is given by .. .. pe~q p—q ~p«q peq. p«q
The inverse of “if p then g is
.............................. if ~p then ~q if ~p then ~q if ~p then ~q if ~p then ~q if ~p then ~q
“Risa.........cooviiiiiiiinn, condition for S” means
“if R then S .” valid inevitable sufficient necessar sufficient
A ditional and its itive are Logically equivalent Logically
..................... A tautulogy a contradiction an equivalent
A rule of inference is a form of argument that is
................ valid a contradiction an assumption A tautulogy valid
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PART-A(20X1=20 Marks)

Answer all the Questions:

1.

2.

Let x ={1,2,3,4}, R = {(2,3),(4,1)} then the range of R =
(a) {1.3} (b){1,5} (c){2.4} (d){1.4}

A One — to —one and onto function is also known as

(@) injective  (b) surjective  (c) bijective  d) objective

Let f: R->R where R is a set of real numbers. Then f(x) = -2x is
a

(@) One-to-one (b) Onto (d) bijection

A binary relation R in a set X is said to be reflexive if

(@) aRa (b) aRb->bRa

(c) aRb,bRc>aRc (d) aRb,bRa—>a=b

A mapping f : x—Yy is called if distinct elements of
X are mapped into distinct elements

(a) one-one (b) onto (c) into

The r - permutation of n elements is denoted by

@P(@n (P(nr) (©c(rn) (dcnhr)

If R={(1,2),(3,4),(2,2)} and S ={(4,2),(2,5),(3,1),(1,3)} are
relations then RoS =

(@) {(4,.2),(3,2),(1,4)} (b) {(1,5),3,2),(2,5)}

(c) {(1.2),(2,2)} (d) {(4.5),(3,3),(1.1)}

If the relation R and S are both reflexive then R U S is

(a) transitive (b) not reflexive

(c) reflexive (d) symmetric

(c) into

(d) many-one

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Let f: x—y, g : y— x be the functions then g is equal to
f-1ifand only if

(@) fog =1y (b)gof =1y (c)fog=1Ix (d)gof=Ix

The number of ways can a party of 7 persons arrange
themselves around a circular table

(a) 6! (b) 7! (0 (d) 3!
The value of C(n,n) is
(@0 (b) -1 (©2 @1

Let f: N—N be a function such that f(x) = 5 ,for every x in N
then the f(x) is called function.
(@) constant (b) identity (c) unit  (d) zero

In N, define aRb if a+b = 7. This is symmetric when

(@) b+a=7 (b) a=b (c) ab=7 (d) a+a=7
The number of different permutations of the

word BANANA is

(@) 720 (b) 60 (c)120 (d) 360

The value of C(10, 8) + C(10,7) is

(@) 990 (b) 165 (c) 45 (d) 120

The sum of entries in the fourth row of Pascal's triangle is

(@) 10 (b) 4 (c)10 (d) 16

The growth of is directly related to the complexity

of algorithms.
(@) Functions  (b) relations (c) parameters (d) polynomials
How many 10 digits humbers can be written by using the
digits 1 and 2 ?

(@ C(10,9)+C(9,2) (b)1024

(©)C(10,2)  (d) 10!

A binary relation R in a set X is said to be antisymmetric if
(@) aRa (b) aRb—>bRa
(c) aRb,bRc>aRc (d) aRb,bRa—>a=b

If logn=1log.n thenitis

(a) Binary logarithm
(c)exponentiation

(b) composition
(d) relation



PART-B (3X2=6 Marks)

Answer all the Questions:

21.
22.
23.

Prove that Commutative property under intersection.
Define symmetric and Non symmetric withexample.
Define Big oh.

PART-C (3X8=24 Marks)

Answer all the Questions:

24,

25.

26.

(a) Prove that the associative property under union.

(OR)
(b) Prove that 12+22+32+. ... +n?= n(n+1)(2n+1)/6 by
Principle of Mathematical induction.
(@) In Z, we define aRb iff a-b is a multiple of m. IsR is an
equivalence relation?

(OR)
(b) Explain about properties of relation.

(a) Let A={1,2,3} and f,g,h and s be functions from A to A
given by
f={(1.2),(23).381)}; 9={(12),(21),(33) };
h={(11), (2,2), (3,1) }and s ={ (1,1), (2,2), (3,3) }. Find
fog, gof, fohog, gos,sos, fos.

(OR)
(b) Show that if we have two functions fi(x) and f(x) both
0O(g(x)), then f1(x)+f2(x) is also O(g(x)).
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