

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Coimbatore - 641 021, India

FACULTY OF ARTS, SCIENCE AND HUMANITIES (FASH)

Department of CS,CA & IT

II B.Sc CS IV SEMESTER BATCH: 2016 - 2019

16CSU403 DATA BASE MANAGEMENT SYSTEMS 4H – 4C

Instruction Hours / week: L: 4 T: 0 P: 0 Marks: Int: 40 Ext: 60 Total: 100

SCOPE

The Objective of Database Management System includes learning of relational data model, database design and Transaction model.

OBJECTIVES

- Understand the role and nature of relational database management systems in today's IT environment.
- Translate written business requirements into conceptual entity-relationship data models.
- Manipulate a database using SQL.
- Assess the quality and ease of use of data modeling and diagramming tools.

LEARNING OUTCOMES

At the end of the course, students will be able to,

- > To learn the basic concepts of DBMS
- To Know the concepts of SQL
- To understand PL/SQL, Triggers and cursors
- > To know the concept of Normalization

UNIT-I

Introduction: Characteristics of database approach, data models, database system architecture and data independence. **Entity Relationship(ER) Modeling:** Entity types, relationships, constraints.

UNIT-II

Relation data model: Relational model concepts, relational constraints, relational algebra.

UNIT-III

Relation data model: SQL queries **Database design:** Mapping ER/EER model to relational database, functional dependencies, Lossless decomposition.

UNIT-IV

Database design: Normal forms (upto BCNF).**Transaction Processing:** ACID properties, concurrency control

UNIT-V

File Structure and Indexing (8 Lectures) Operations on files, File of Unordered and ordered records, overview of File organizations, Indexing structures for files(Primary index, secondary index, clustering index), Multilevel indexing using B and B+ trees.

References:

- 1. Elmasri, R., & Navathe, S.B. (2011). Fundamentals of Database Systems (6th ed.). New Delhi: Pearson Education,.
- 2. Ramakrishanan, R., & Gehrke, J. (2002). Database Management Systems (3rd ed.). New Delhi: McGraw-Hill.
- 3. Silberschatz, A., Korth, H.F., & Sudarshan, S. (2010). Database System Concepts (6th ed.). New Delhi: McGraw-Hill
- 4. Elmasri, R., & Navathe, S.B. (2013). Database Systems Models, Languages, Design and application Programming (6th ed.). New Delhi: Pearson Education.

WEB SITES

- 1. http://en.wikipedia.org/wiki/RDBMS
- 2. http://aspalliance.com/1211_Relational_Database_Management_Systems__Concepts and Terminologies
- 3. www.compinfo-center.com/apps/rdbms.html

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)
Coimbatore – 641 021.

LECTURE PLAN DEPARTMENT OF COMPUTER SCIENCE

STAFF NAME: A.JEEVARATHINAM

SUBJECT NAME : DATABASE MANAGEMENT SYSTEM SUB.CODE : 16CSU403

SEMESTER : IV CLASS : II B.Sc (CS)

UNIT I

S.NO	Lecture Duration (Hours)	Topics To Be Covered	Support Materials/ Pg.No	
		Introduction		
1	1	Characteristics of database approach	T1:9	
2	1	Data models	T1:30	
3	1	Database system architecture	T1:33	
4	1	Data independence	T1:35	
		Entity Relationship(ER) Modeling		
5	1	Entity types	T2 : 262	
6	1	Relationships	T2 : 274	
7	1	ER Diagram	T2 : 274	
8	1	Constraints	T2 : 269	
9	1	Examples	W1	
10	1	Recapitulation and Discussuin of Important Questions		
		Total No of Hours Planned for Unit I	10	

UNIT II

S.NO	Lecture Duration (Hours)	Topics To Be Covered	Support Materials/ Pg.No
		RELATIONAL DATA MODEL	
1	1	Relational model concepts	T1:60
		Relational constraints	
2	1	Key Constraints	T2.C2.C0
3	1	Foreign Key Constraints	T3:63-68
4	1	General Constraints	
		Relational Algebra	
5	1	Selection and Projection	
6	1	Set Operations	T2:402 440 W2
7	1	Renaming	T3:102-110 ,W2
8	1	Joins	
9	1	Division	
10	1	Recapitulation and Discussuin of Important Questions	
		Total No of Hours Planned for Unit II	10

UNIT III

S.NO	Lecture Duration (Hours)	Topics To Be Covered	Support Materials/ Pg.No
		RELATIONAL DATA MODEL	
		SQL Queries	
		Basic SQL	T1:89
1	1	INSERT, DELETE	T1:107
2	1	UPDATE Statements in SQL	
		More SQL	
3	1	Complex Queries	T1:115
4	1	TriggerS	T1:131,W3
5	1	Views	T1:133
6	1	Schema Modification	T1:137
		Database design	
7	1	ER model	T1:221
		EER Model	
8	1	Subclasses, Superclasses and Inheritance	T1:246
9	1	Constraints and Characteristics of Specialization T1:251 and Generalization Hierarchies	
10	1	Modeling of UNION Types Using Categories T1:258	
11	1	Mapping ER/EER model to relational database	
12	1	functional dependencies T1:513	
13	1	Lossless decomposition T3:619	
14	1	Recapitulation and Discussion of Important Questions	
		Total No of Hours Planned for Unit III	14

UNIT IV

S.NO	Lecture Duration (Hours)	Topics To Be Covered	Support Materials/ Pg.No	
		DATA BASE DESING		
		Normal Forms		
1	1	Normal Forms Based on Primary Keys		
2	1	General Definitions of Second and Third Normal Forms		
3	1	Boyce-Codd Normal Form	T1:516-534,W3	
4	1	Multivalued Dependency and Fourth Normal Form		
5	1	Join Dependencies and Fifth Normal Form		
		Transaction Processing		
6	1	Transaction Concept	T2 . C27 . C20	
7	1	A Simple Transaction Model	T2 : 627 - 629	
8	1	ACID properties	T3:520	
		Concurrency control		
9	1	Lock-Based Protocols		
10	1	Deadlock Handling	T2 664 606	
11	1	Multiple Granularity	T2 : 661-686	
12	1	Timestamp-Based Protocols		
13	1	Validation-Based Protocols		
14	1	Recapitulation and Discussuin of Important Questions		
		Total No of Hours Planned for Unit IV	14	

UNIT V

S.NO	Lecture Duration (Hours)	Topics To Be Covered	Support Materials/ Pg.No
		FILE STRUCTURE AND INDEXING	
		File Structure	
1	1	Operations on files	T1 : 599
2	1	File of Unordered records	T1 : 601
3	1	File of ordered records	T1 : 603
4	1	overview of File organizations	T2 : 451
		Indexing structures for files	
5	1	Primary index	
6	1	secondary index	T1 : 632 - 643
7	1	clustering index	
8	1	Multilevel indexing using B and B+ trees T1: 646	
9	1	Recapitulation and Discussuin of Important Questions	
10	1	Discussion of previous ESE question papers	
11	1	Discussion of previous ESE question papers	
12	1	Discussion of previous ESE question papers	
		Total No of Hours Planned for Unit V	12

S.NO	TEXT BOOKS		
T1	Elmasri, R., & Navathe, S.B. (2011). Fundamentals of Database Systems (6th ed.). New Delhi: Pearson Education		
T2	Silberschatz, A., Korth, H.F., & Sudarshan, S. (2011). Database System Concepts (6th ed.). New Delhi: McGraw-Hill		
Т3	Ramakrishanan, R., & Gehrke, J. (2002). Database Management Systems (3rd ed.). New Delhi: McGraw-Hill		

S.NO	WEB SITES	
W1	https://www.tutorialspoint.com	
W2	www.studytonight.com	
W3	https://www.w3schools.com	

CLASS : II.B.Sc CS BATCH : 2016 - 2019

COURSE NAME : DTATBASE MANAGEMENT SYSTEM

COURSE CODE: 16CSU403

UNIT I

SYLLABUS

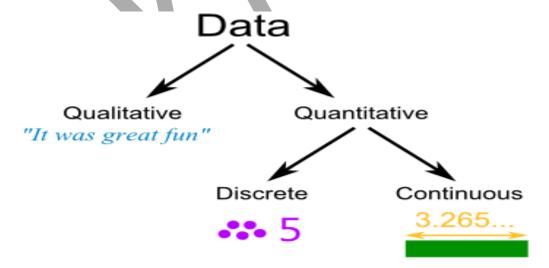
Introduction: Characteristics of database approach, data models, database system architecture and data independence. **Entity Relationship(ER)**

Modeling: Entity types, relationships, constraints.

INTRODUCTION

UNDERSTANDING DATABASE FUNDAMENTALS

DATA


Data is a collection of facts, such as values or measurements.

It can be numbers, words, measurements, observations or even just descriptions of things.

Qualitative vs Quantitative

Data can be qualitative or quantitative.

- Qualitative data is descriptive information (it describes something)
- Quantitative data, is numerical information (numbers).

CLASS : II.B.Sc CS BATCH : 2016 - 2019

COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

And Quantitative data can also be Discrete or Continuous:

• **Discrete data** can only take certain values (like whole numbers)

• Continuous data can take any value (within a range)

Put simply: **Discrete data** is counted, **Continuous data** is measured

INFORMATION

Information is valuable because it can affect <u>behavior</u>, a <u>decision</u>, or an outcome.

For example, if a manager is told his/her company's net profit decreased in the past

month, he/she may use this information as a reason to cut financial spending for the

next month. A piece of information is considered valueless if, after <u>receiving</u> it, things

remain unchanged. For a technical definition of information see information theory.

Information is defined as the knowledge of something; particularly, an event, situation,

or knowledge derived based on research or experience.

Data is any information related to an organization that should be stored for any purpose

according to the requirements of an organization.

DBMS

A database management system (DBMS) is the software that allows a computer

to perform database functions of storing, retrieving, adding, deleting and modifying

data. Relational database management systems (RDBMS) implement the relational

model of tables and relationships.

Examples:

CLASS : II.B.Sc CS BATCH : 2016 - 2019

COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

Microsoft Access, MySQL, Microsoft SQL Server, Oracle and FileMaker Pro are all

examples of database management systems.

The following are examples of database applications:

computerized library systems

automated teller machines

flight reservation systems

computerized parts inventory systems

RDBMS

Short for relational database management system and pronounced as separate

letters, a type of database management system (DBMS) that stores data in the form of

related <u>tables</u>. Relational databases are powerful because they require few assumptions

about how data is related or how it will be extracted from the database. As a result, the

same database can be viewed in many different ways.

An important feature of relational systems is that a single database can be spread across

several tables. This differs from flat-file databases, in which each database is self-

contained in a single table.

SQL

SQL is Structured Query Language, which is a computer language for storing,

manipulating and retrieving data stored in relational database. SQL is the standard

language for Relation Database System. All relational database management systems

like MySQL, MS Access, Oracle, Sybase, Informix, postgres and SQL Server use SQL as

standard database language.

Also, they are using different dialects, such as:

3/33

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

MS SQL Server using T-SQL,

Oracle using PL/SQL,

History:

• **1970** -- Dr. E. F. "Ted" of IBM is known as the father of relational databases. He described a relational model for databases.

• 1974 -- Structured Query Language appeared,

• **1978** -- IBM worked to develop Codd's ideas and released a product named System/R.

 1986 -- IBM developed the first prototype of relational database and standardized by ANSI. The first relational database was released by Relational Software and its later becoming Oracle.

SQL is pronounced as "S-Q-L" or "see-quill".

SQL uses -- character sequence as a single line comment identifier.

SQL commands are not case sensitive and the following SQL queries are equivalent:

SELECT * FROM Users

select * from Users

Characteristics of Database Approach

1. Represent Some Aspects of real world applications

A database represents some features of real world applications. Any change in the real world is reflected in the database. If we have some changes in our real applications like railway reservation system then it will be reflected in database too.

CLASS : II.B.Sc CS BATCH : 2016 - 2019

COURSE NAME: DTATBASE MANAGEMENT SYSTEM COURSE CODE: 16CSU403

UNIT I

For example, let us take railway reservation system; we have in our mind some certain

applications of maintaining records of attendance, waiting list, train arrival and

departure time, certain day etc. related to each train.

2. Manages Information

A database always takes care of its information because information is always helpful

for whatever work we do. It manages all the information that is required to us. By

managing information using a database, we become more deliberated user of our data.

Also See: What is Database?

3. Easy Operation implementation

All the operations like insert, delete, update, search etc. are carried out in a flexible and

easy way. Database makes it very simple to implement these operations. A user with

little knowledge can perform these operations. This characteristic of database makes it

more powerful.

4. Multiple views of database

Basically, a view is a subset of the database. A view is defined and devoted for a

particular user of the system. Different users of the system may have different views of

the same system.

Every view contains only the data of interest to a user or a group of users. It is the

responsibility of users to be aware of how and where the data of their interest is stored.

5. Data for specific purpose

A database is designed for data of specific purpose. For example, a database of student

management system is designed to maintain the record of student's marks, fees and

attendance etc. This data has a specific purpose of maintaining student record.

5/33

CLASS : II.B.Sc CS BATCH : 2016 - 2019

COURSE NAME: DTATBASE MANAGEMENT SYSTEM COURSE CODE: 16CSU403

UNIT I

Also See: Advantages Of Database Management System

6. It has Users of Specific interest

A database always has some indented group of users and applications in which these

user groups are interested.

For example, in a library system, there are three users, official administration of the

college, the librarian, and the students.

7. Self Describing nature

A database is of self describing nature; it always describes and narrates itself. It contains

the description of the whole data structure, the constraints and the variables.

It makes it different from traditional file management system in which definition was

not the part of application program. These definitions are used by the users and DBMS

software when needed.

8. Logical relationship between records and data

A database gives a logical relationship between its records and data. So a user can

access various records depending upon the logical conditions by a single query from the

database.

Data Model

A database model shows the logical structure of a database, including the relationships

and constraints that determine how data can be stored and accessed. Individual database models are designed based on the rules and concepts of whichever broader

data model the designers adopt. Most data models can be represented by an accompanying database diagram.

Types of database models

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

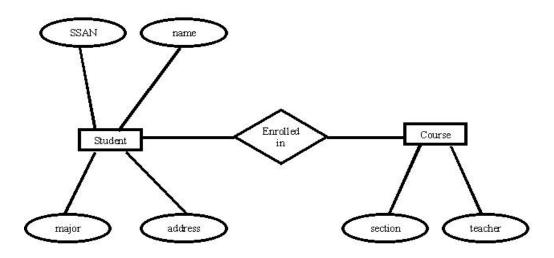
There are many kinds of data models. Some of the most common ones include:

- Hierarchical database model
- Relational model
- Network model
- Object-oriented database model
- Entity-relationship model
- Document model
- Entity-attribute-value model
- Star schema
- The object-relational model, which combines the two that make up its name

Flat Data Model

Flat data model is the first and foremost introduced model and in this all the data used is kept in the same plane. Since it was used earlier this model was not so scientific.

Roll No	Name	Course	
5482	Mark	Web Designing	
5486	Steve	Java	
5496	Smith	Oracle	

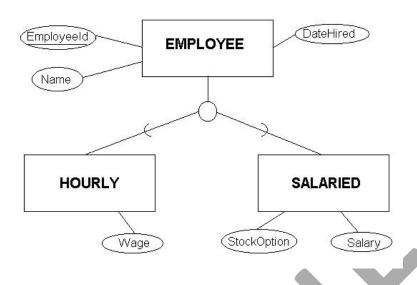

Entity Relationship Data Model

Entity relationship model is based on the notion of the real world entities and their relationships. While formulating the real world scenario in to the database model an entity set is created and this model is dependent on two vital things and they are:

- Entity and their attributes
- Relationships among entities

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I


An entity has a real world property called attribute and attribute define by a set of values called domain. For example, in a university a student is an entity, university is the database, name and age and sex are the attributes. The relationships among entities define the logical association between entities.

Relational Data Model

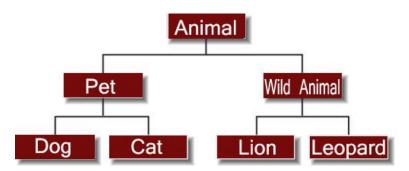
Relational model is the most popular model and the most extensively used model. In this model the data can be stored in the tables and this storing is called as relation, the relations can be normalized and the normalized relation values are called atomic values. Each row in a relation contains unique value and it is called as tuple, each column contains value from same domain and it is called as attribute.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

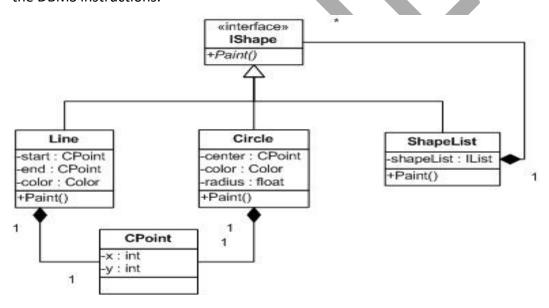
Network Data Model

Network model has the entities which are organized in a graphical representation and some entities in the graph can be accessed through several paths.



Hierarchical Data Model

Hierarchical model has one parent entity with several children entity but at the top we should have only one entity called root. For example, department is the parent entity called root and it has several children entities like students, professors and many more.


CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

Object oriented Data Model

Object oriented data model is one of the developed data model and this can hold the audio, video and graphic files. These consist of data piece and the methods which are the DBMS instructions.

Record base Data Model

Record base model is used to specify the overall structure of the database and in this there are many record types. Each record type has fixed no. of fields having the fixed length.

CLASS : II.B.Sc CS BATCH : 2016 - 2019

COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

Object relation Data Model

Object relation model is a very powerful model but coming to it's design it is quiet complex. This complexity is not problem because it gives efficient results and widespread with huge applications. It has a feature which allows working with other models like working with the very known relation model.

Semi structured Data Model

Semi structured data model is a self describing data model, in this the information that is normally associated with a scheme is contained within the data and this property is called as the self describing property.

Associative Data Model

Associative model has a division property, this divides the real world things about which data is to be recorded in two sorts i.e. between entities and associations. Thus, this model does the division for dividing the real world data to the entities and associations.

Database Architecture

Three Level Architecture of DBMS

Following are the three levels of database architecture,

- 1. Physical Level
- 2. Conceptual Level
- 3. External Level

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

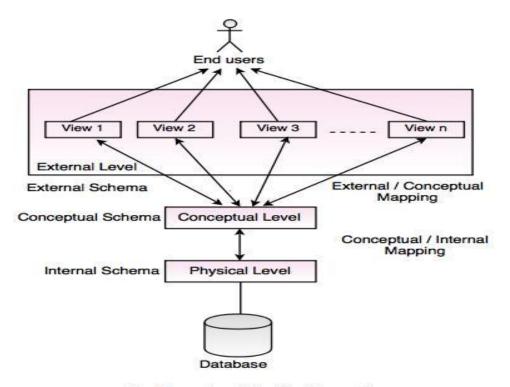


Fig. Three Level Architechture of DBMS

In the above diagram,

- It shows the architecture of DBMS.
- Mapping is the process of transforming request response between various database levels of architecture.
 - Mapping is not good for small database, because it takes more time.
- In External / Conceptual mapping, DBMS transforms a request on an external schema against the conceptual schema.
- In Conceptual / Internal mapping, it is necessary to transform the request from the conceptual to internal levels.

1. Physical Level

- Physical level describes the physical storage structure of data in database.
- It is also known as Internal Level.
- This level is very close to physical storage of data.

CLASS: II.B.Sc CS

COURSE NAME: DTATBASE MANAGEMENT SYSTEM

UNIT I

BATCH: 2016 - 2019

COURSE CODE: 16CSU403

• At lowest level, it is stored in the form of bits with the physical addresses on the secondary storage device.

- At highest level, it can be viewed in the form of files.
- The internal schema defines the various stored data types. It uses a physical data model.

2. Conceptual Level

- Conceptual level describes the structure of the whole database for a group of users.
 - It is also called as the data model.
 - Conceptual schema is a representation of the entire content of the database.
 - These schema contains all the information to build relevant external records.
 - It hides the internal details of physical storage.

3. External Level

- External level is related to the data which is viewed by individual end users.
- This level includes a no. of user views or external schemas.
- This level is closest to the user.
- External view describes the segment of the database that is required for a particular user group and hides the rest of the database from that user group.

Data Abstraction and Data Independence

Database systems comprise of complex data-structures. In order to make the system efficient in terms of retrieval of data, and reduce complexity in terms of usability of users, developers use abstraction i.e. hide irrelevant details from the users. This approach simplifies database design.

There are mainly **3** levels of data abstraction:

Physical: This is the lowest level of data abstraction. It tells us how the data is actually stored in memory. The access methods like sequential or random access and file organisation methods like B+ trees, hashing used for the same. Usability, size of

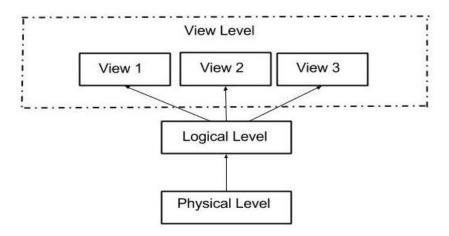
CLASS: II.B.Sc CS

BATCH: 2016 - 2019

COURSE NAME: DTATBASE MANAGEMENT SYSTEM

UNIT I

COURSE CODE: 16CSU403


memory, and the number of times the records are factors which we need to know while designing the database.

Suppose we need to store the details of an employee. Blocks of storage and the amount of memory used for these purposes is kept hidden from the user.

Logical: This level comprises of the information that is actually stored in the database in the form of tables. It also stores the relationship among the data entities in relatively simple structures. At this level, the information available to the user at the view level is unknown.

We can store the various attributes of an employee and relationships, e.g. with the manager can also be stored.

View: This is the highest level of abstraction. Only a part of the actual database is viewed by the users. This level exists to ease the accessibility of the database by an individual user. Users view data in the form of rows and columns. Tables and relations are used to store data. Multiple views of the same database may exist. Users can just view the data and interact with the database, storage and implementation details are hidden from them.

The main purpose of data abstraction is achieving data independence in order to save time and cost required when the database is modified or altered. We have namely two levels of data independence arising from these levels of abstraction:

CLASS : II.B.Sc CS BATCH : 2016 - 2019

COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

Physical level data independence:

It refers to the characteristic of being able to modify the physical schema without any alterations to the conceptual or logical schema, done for optimisation purposes, e.g., Conceptual structure of the database would not be affected by any change in storage size of the database system server. Changing from sequential to random access files is one such example. These alterations or modifications to the physical structure may include:

- Utilising new storage devices.
- Modifying data structures used for storage.
- Altering indexes or using alternative file organisation techniques etc.

Logical level data independence:

It refers characteristic of being able to modify the logical schema without affecting the external schema or application program. The user view of the data would not be affected by any changes to the conceptual view of the data. These changes may include insertion or deletion of attributes, altering table structures entities or relationships to the logical schema etc.

ENTITY RELATIONSHIP (ER) MODELING

Introduction to ER Model

ER Model is a high-level data model, developed by Chen in 1976. This model defines the data elements and relationships for a specified system. It is useful in developing a conceptual design for the database & is very simple and easy to design logical view of data.

Importance of ER Model

- ER Model is plain and simple for designing the structure.
- It saves time.
- Without ER diagrams you cannot make a database structure & write production code.

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

• It displays the clear picture of the database structure.

ER Diagrams

- ERD stands for Entity Relationship diagram.
- It is a graphical representation of an information system.
- ER diagram shows the relationship between objects, places, people, events etc. within that system.
 - It is a data modeling technique which helps in defining the business process.
 - It used for solving the design problems.

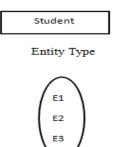
Following are the components of ER Diagram,

Notations	Representation	Description
	Rectangle	It represents the Entity.
	Ellipse	It represents the Attribute.
	Diamond	It represents the Relationship.
	Line	It represents the link between attribute and entity set to relationship set.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

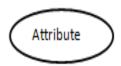
	Double Rectangle	It represents the weak entity.
27	Composite Attribute	It represents composite attribute which can be divided into subparts. For eg. Name can be divided into First Name and Last Name
	Multi valued Attribute	It represents multi valued attribute which can have many values for a particular entity. For eg. Mobile Number.
	Derived Attribute	It represents the derived attribute which can be derived from the value of related attribute.
	Key Attribute	It represents key attribute of an entity which have a unique value in a table. For eg. Employee → Empld (Employee Id is Unique).


Entity, Entity Type, Entity Set

An Entity may be an object with a physical existence – a particular person, car, house, or employee – or it may be an object with a conceptual existence – a company, a job, or a university course.

An Entity is an object of Entity Type and set of all entities is called as entity set. e.g.; E1 is an entity having Entity Type Student and set of all students is called Entity Set. In ER diagram, Entity Type is represented as:

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403


UNIT I

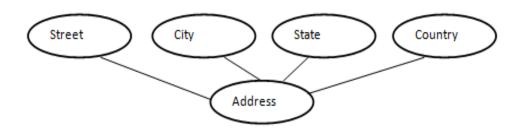
Entity Set

Attribute

Attributes are the **properties which define the entity type**. For example, Roll_No, Name, DOB, Age, Address, Mobile_No are the attributes which defines entity type Student. In ER diagram, attribute is represented by an oval.

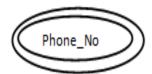
Key Attribute

The attribute which **uniquely identifies each entity** in the entity set is called key attribute. For example, Roll_No will be unique for each student. In ER diagram, key attribute is represented by an oval with underlying lines.



Composite Attribute

An attribute **composed of many other attribute** is called as composite attribute. For example, Address attribute of student Entity type consists of Street, City, State, and Country. In ER diagram, composite attribute is represented by an oval comprising of ovals.

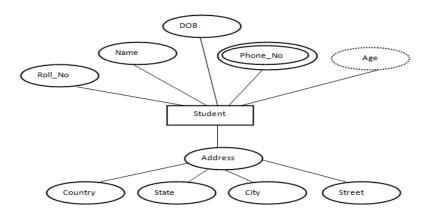

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

Multivalued Attribute

An attribute consisting **more than one value** for a given entity. For example, Phone_No (can be more than one for a given student). In ER diagram, multivalued attribute is represented by double oval.

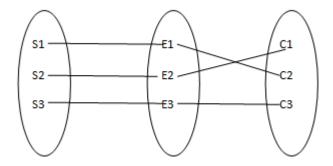
Derived Attribute


An attribute which can be **derived from other attributes** of the entity type is known as derived attribute. e.g.; Age (can be derived from DOB). In ER diagram, derived attribute is represented by dashed oval.

The complete entity type **Student** with its attributes can be represented as:

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

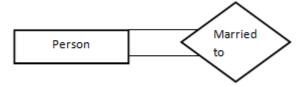


Relationship Type and Relationship Set

A relationship type represents the **association between entity types**. For example, 'Enrolled in' is a relationship type that exists between entity type Student and Course. In ER diagram, relationship type is represented by a diamond and connecting the entities with lines.

A set of relationships of same type is known as relationship set. The following relationship set depicts S1 is enrolled in C2, S2 is enrolled in C1 and S3 is enrolled in C3.

Degree of a relationship set


The number of different entity sets **participating in a relationship** set is called as degree of a relationship set.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

Unary Relationship

When there is **only ONE entity set participating in a relation**, the relationship is called as unary relationship. For example, one person is married to only one person.

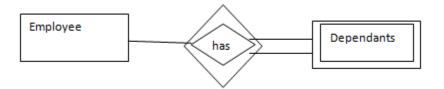
Binary Relationship

When there are **TWO entities set participating in a relation**, the relationship is called as binary relationship. For example, Student is enrolled in Course.

n-ary Relationship

When there are n entities set participating in a relation, the relationship is called as nary relationship.

Weak Entity Type and Identifying Relationship


As discussed before, an entity type has a key attribute which uniquely identifies each entity in the entity set. But there exists some entity type for which key attribute can't be defined. These are called Weak Entity type.

For example, A company may store the information of dependants (Parents, Children, Spouse) of an Employee. But the dependents don't have existence without the employee. So Dependent will be weak entity type and Employee will be Identifying Entity type for Dependant.

A weak entity type is represented by a double rectangle. The participation of weak entity type is always total. The relationship between weak entity type and its identifying strong entity type is called identifying relationship and it is represented by double diamond.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

Relationship Mapping in ER Diagram of Databases

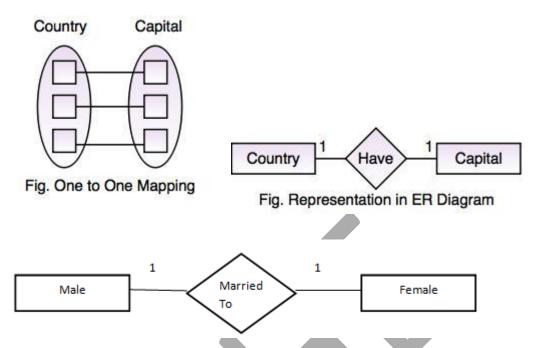
Cardinality

The **number of times an entity of an entity set participates in a relationship** set is known as cardinality.

Cardinality can be of different types:

Following are the types of Relationship Mapping,

- 1. One to One Relationship
- 2. One to Many Relationship
- 3. Many to One Relationship
- 4. Many to Many Relationship


1. One - to - One Relationship

- In One to One Relationship, one entity is related with only one other entity.
- One row in a table is linked with only one row in another table and vice versa.

For example: A Country can have only one Capital City.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

2. One - to - Many Relationship

- In One to Many Relationship, one entity is related to many other entities.
- One row in a table A is linked to many rows in a table B, but one row in a table B

is

linked to only one row in table A.

For example: One Department has many Employees.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

Department Employee

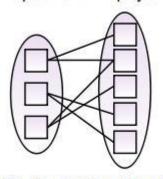


Fig. One to Many Mapping

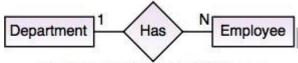
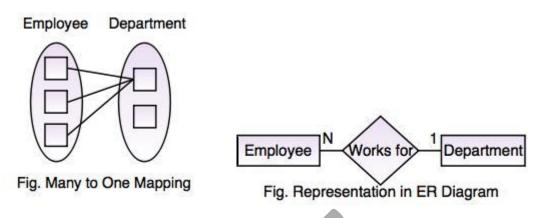


Fig. Representation in ER Diagram

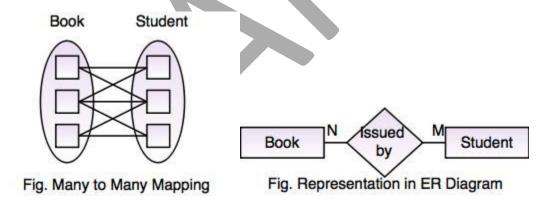
3. Many - to - One Relationship


 In Many - to - One Relationship, many entities can be related with only one other

For example: No. of Employee works for Department.

• Multiple rows in Employee table is related with only one row in Department table.

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

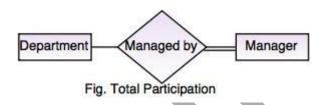

UNIT I

4. Many - to - Many Relationship

- In Many to Many Relationship, many entities are related with the multiple other entities.
- This relationship is a type of cardinality which refers the relation between two entities.

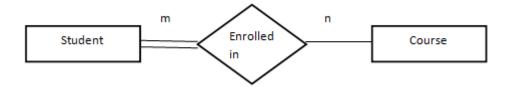
For example: Various Books in a Library are issued by many Students.

Participation Constraint


Participation Constraint is applied on the entity participating in the relationship set.

Total Participation:

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403 UNIT I


- Each entity in the entity set **must participate** in the relationship. If each student must enroll in a course.
- ➤ In Total Participation, every entity in the set is involved in some association of the relationship.
- It is indicated by a double line () between entity and relationship.

For example: Every Department must have a Manager.

Partial Participation:

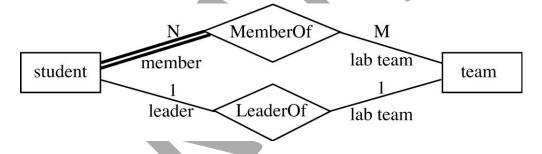
- The entity in the entity set may or may NOT participate in the relationship.
- ➤ If some courses are not enrolled by any of the student, the participation of course will be partial.
- The diagram depicts the 'Enrolled in' relationship set with Student Entity set having total participation and Course Entity set having partial participation.

- In Partial Participation, not all entities in the set are involved in association of the relationship.
- > It is indicated by a single line (______) between entity and relationship.

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

Fig. Partial Participation

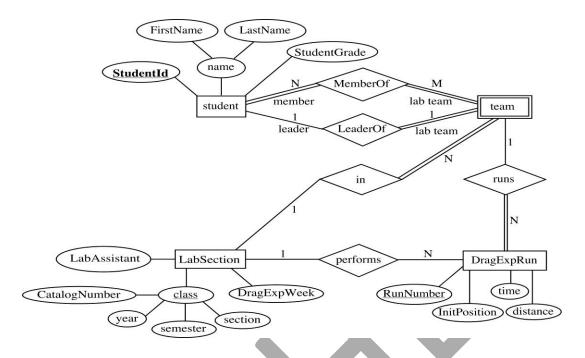

Example : Participation Constraints

Every student must be a member of a team, or, in other words, a student entity is of interest only if it participates in a *MemberOf* relationship. Thus, we can include in an ER diagram a **participation constraint** in which participation

of *student* in *MemberOf* is **total**. A double line indicates the total participation constraint in an ER model

of student in LeaderOfin is partial, because a student might be a team leader.

Figure 17. ER diagram notation for total participation constraint



Using the above components,

Figure 18. ER diagram notation for total participation constraint

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

Entity Relationship (ER) Diagram - Relationship

Example

1) When there is One to Many cardinality in ER diagram. For example, a student can be enrolled only in one course, but a course can be enrolled by many students

CLASS: II.B.Sc CS

COURSE NAME: DTATBASE MANAGEMENT SYSTEM

UNIT I

BATCH: 2016 - 2019

COURSE CODE: 16CSU403

UNIT I

SID Name CID C_name

Student Enroll Course

Many To One

For Student(SID, Name), SID is the primary key. For Course (CID, C_name), CID is the primary key

Student (SID Name)	Course (CID C_name)
1 A 2 B 3 C 4 D Enroll (SID CID) 1 C1 2 C1 3 c3 4 C2	c1 Z c2 Y c3 X
- CZ	

Now the question is, what should be the primary key for Enroll SID or CID or combined. We can't have CID as primary key as you can see in enroll for the same CID we have multiples SID. (SID, CID) can distinguish table uniquely, but it is not minimum. So SID is the primary key for the relation enroll.

For above ER diagram, we considered three tables in database

Student			
Enroll			

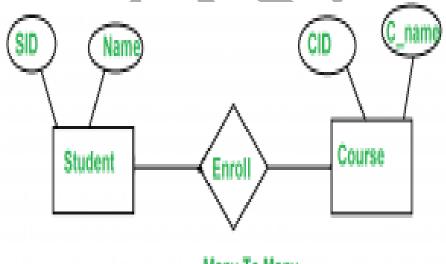
CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

Course

But we can combine Student and Enroll table renamed as Student_enroll.

```
Student_Enroll
(SID Name CID)
------


1 A c1
2 B c1
3 C c3
4 D c2
```

Student and enroll tables are merged now.

So require minimum two DBMS tables for Student_enroll and Course.

Note: In One to Many relationship we can have minimum two tables.

2. When there is Many to Many cardinality in ER Diagram. Let us consider above example with the change that now student can also enroll more than 1 course.

Many To Many

Student (SID Name)

Course

(CID C_name)

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

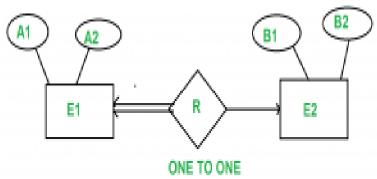
1 Α c1 Z 2 В c2 Y С c3 X 3 D Enroll (SID CID) 1 C1 1 C2 2 C1 2 C2 3 с3 C2

Now, same question what is the primary key of Enroll relation, if we carefully analyse the Enroll primary key for Enroll table is (SID , CID).

But in this case we can't merge Enroll table with any one of Student and Course. If we try to merge Enroll with any one of the Student and Course it will create redundant data.

Note: Minimum three tables are required in Many to Many relationship.

3. One to One Relationship

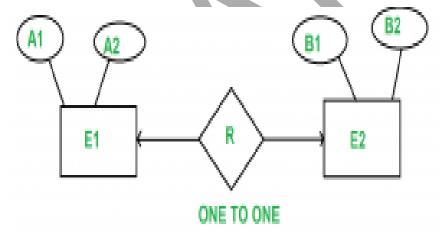

There are two possibilities

A) If we have One to One relationship and we have total participation at at-least one end.

For example, consider the below ER diagram.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I


A1 and B1 are primary keys of E1 and E2 respectively.

In the above Diagram we have total participation at £1 end.

Only the primary key of E1, which is in total participation should be allowed as the primary key of the reduced table, since if the primary key of E2 is used, it might have null values for many of its entries, since its participation is only partial and may not have corresponding entries for all its values.

Note – Only one table required.

B) One to One relationship with no total participation.

A1 and B1 are primary keys of E1 and E2 respectively.

Primary key of R can be A1 or B1, but we can't still combine all the three table into one. if we do, so some entries in combined table may have NULL entries. So idea of merging all three table into one is not good.

But we can merge R into E1 or E2. So minimum 2 tables are required.

CLASS : II.B.Sc CS BATCH : 2016 - 2019

COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT I

POSSIBLE QUESTIONS

2 MARK QUESTIONS

- 1. List the types of database models.
- 2. List the data types used in DBMS.
- 3. What is the difference between char and varchar2?
- 4. Mention the three levels of database schema.
- 5. Define primary key with example.

8 MARK QUESTIONS

- 1. Define database and explain various database models with neat diagram.
- 2. Draw and explain data base architecture.
- 3. What are the typical ERD symbols and draw a neat ERD for an employee table.
 - b) Explain i) Entity types
- ii) Relationships

- 4. Discuss
- i) Data Independence
- ii) Constraints
- 5. What are the different data models present and explain briefly?

Department of Computer Science

II B.Sc(CS) (BATCH 2016-2019)

IV SEMESTER

DATABASE MANAGEMENT SYSTEMS (16CSU403)

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

UNIT I

S.NO	QUESTIONS	OPT 1	OPT 2	OPT 3	OPT 4	ANSWER
1	was adopted by the ANSI and ISO.	PSQL	SQL	R-SQL	Sequel	SQL
2	is a collection of high-level data description constructs that hide many low-level storage details	Data Model	ER Model	Network Model	none	Data Model
3	Database management System based on	Network model	Hierarchical model	Relational model	Object-based model	Relational model
4	A widely used Semantic model called	Network model	ER Model	Object-based model	Hierarchical model	ER Model
5	is a more abstract	ER model	Semantic data model	Conceptual data Model	Physical data model	Semantic data model
6	model is used to pictorially denote entities & relationships	Physical data model	ER model	network model	structure chart	ER model
. ,	A description Of data in terms of a data model is called	Schema	relation	record	entities	Schema
	Field is otherwise known as	Column	Entity	Relationship	Relation	Column
9	Column is otherwise known as	Entity	Relationship	Relation	attribute	attribute

10	is a software designed to assist in maintaining and utilizing large collections of data.	Database	DBMS	Entities	attributes.	DBMS
11	model used Object store & versant.	Network Model	Hierarchical Model	Object Oriented Model	Record based Model	Object Oriented Model
12	is used to define the external and conceptual model	DDL	DML	DCL	TCL	DDL
13	Conceptual model otherwise called as	Physical Schema	Internal Schema	Logical Schema	relations	Logical Schema
14	Physical model specifiesdetails	Information	data	Storage	relationships	Storage
15	The enviroment involves dumb terminals	mainframe	client/server	internet computing	LAN	mainframe
16	A host computer in internet computing eniroment is called _	server	data server	PC	web server	web server
17	is the primary unit of storage in a database	table	column	row	number	table
18	database design involves conversion of to stuctured database model.	business process	business model	entity	relationships	business model
19	The architecture of a hierarchical database is based onthe concept of relationships.	set structure	tree/node	parent/child	server/client	parent/child
20	The relationship between tables in the network model is called a	parent/child	set structure	client/server	tree/node	set structure
21	Set structures can represent a relationship between tables	one-to-one	one-to-many	many-to-many	many-to-one	one-to-many
22	SQL has been developed and used for model	relational	Hierarchical	network	flat file	relational

23	A class is the equivalent of a in a relational database	row	column	table	primary key	table
24	SQL3 is also referred to as	SQL97	SQL98	SQL99	SQL100	SQL99
25	is the process of creating an interface for the end user through which the database can be accessed	dabase design	business model	interface design	Application design	Application design
26	The process of reducing data redundancy in a relational database is called	data security	data accuracy	data protection	normalization	normalization
27	Static, or data is seldom or never modified once stored in the database.	dynamic	historic	information	transactional	historic
28	or transactional data, is data that is frequently modified once stored in the database.	dynamic	historic	information	transactional	dynamic
29	BPR is	Business product re- engineering	Business product repair	Business process re- engineering	Business procedure re-engineering	Business process re-engineering
30	is the process of ensuring that data is consistent between related tables	primary key	database security	performance	Referential integrity	Referential integrity
31	Foreign keys are defined in tables	parent	child	one	database	child
32	is an object in the real world	Entity	Attribute	Relationship	Property	Entity
33	in database model the data is stored in objects	hierarchical	network	relational	object_oriented	object_oriented
34	In relational model the data is stored in	table	files	objects	sets	table

35	Infromation about the conceptual,external and physical schemas is stored in	Directory	System Catalogs	IMS	Information System	System Catalogs
36	Conceptual schema otherwise called as	Physical Schema	Internal Schema	Logical Schema	relations	Logical Schema
37	Physical Schema specifiesdetails	Information	data	Storage	relationships	Storage
38	is used to speed up data retrieval operations.	DML Operations	Select Operation	Indexes	select operation with where condition	Indexes
39	A Structure of database using the given data model is called a	Database	Relation	Schema	design	Schema
40	SQL was developed as an integral part of	A hierarchical database	A relational database	A OO database	A network database	A relational database
41	Which of the following is CORRECT about database management system's languages?	Data definition languages are used to specify the conceptual schema only.	Data manipulation languages are used to create the databases.	Data manipulation languages are used for retrieval, insertion, deletion and modification of data.	Data definition languages are only used to update data in the DBMS	Data manipulation languages are used for retrieval, insertion, deletion and modification of data.
42	An E-R modelling for given application leads to	conceptual data model	logical data model	external data model	internal data model	conceptual data model
43	A conceptual data model is converted using a Relational Data Base Management System to a	logical data model	external data model	internal data model	an entity-relation data model	logical data model
44	A subset of logical data model accessed by programmers is called a	conceptual data model	external data model	internal data model	an entity-relation data model	external data model

45	When a logical model is mapped into a physical storage such as a disk store the resultant data model is known as	conceptual data model	external data model	internal data model	disk data model	internal data model
46	By data integrity we mean	maintaining consistent data values	integrated data values	banning improper access to data	not leaking data values	maintaining consistent data values
47	Data integrity is ensured by	good data editing	propagating data changes to all data items	preventing unauthorized access	preventing data duplication	propagating data changes to all data items
48	By data security in DBMS we mean	preventing access to data	allowing access to data only to authorized users	preventing changing data	introducing integrity constraints	allowing access to data only to authorized users
49	By redundancy in a file based system we mean that	unnecessary data is stored	same data is duplicated in many files	data is unavailable	files have redundant data	same data is duplicated in many files
50	Data integrity in a file based system may be lost because	the same variable may have different values in different files	files are duplicated	unnecessary data is stored in files	redundant data is stored in files	the same variable may have different values in different files
51	Data availability is often difficult in file based system	as files are duplicated	as unnecessary data are stored in files	as one has to search different files and these files may be in different	redundant data are stored in files	as one has to search different files and these files may be in
52	An entity is	an inanimate object in an application	a collection of items in an application	a data structure	a distinct real world item in an application	a distinct real world item in an application

53	A relationship is	an item in an application	a meaningful dependency between entities	a collection of related entities	related data	a meaningful dependency between entities
54	Pick the relationship from the following:	a classroom	teacher	attends	cost per dozen	attends
55	Pick the meaningful relationship between entities	vendor supplies goods	vendor talks with customers	vendor complains to vendor	vendor asks prices	vendor supplies goods
56	The entity set is a	set of entities	collection of different entities	collection of related entities	collection of similar entities	collection of similar entities
57	Pick entity set from the following	all vendors supplying to an organization	vendors and organizations they supply	vendors and transporters	a vendor supplying to many organizations	all vendors supplying to an organization
58	The expansion of E-R diagram is	Entity-Relationship diagram	Entity-Relative diagram	Entity-Relation diagram	Entity-Rationalized diagram	Entity- Relationship diagram
59	In an E-R diagram entities are represented by	circles	rectangles	diamond shaped box	ellipse	rectangles
60	In an E-R diagram relationship is represented by	circles	rectangles	diamond shaped box	ellipse	diamond shaped box

CLASS : II.B.Sc CS BATCH : 2016 - 2019

COURSE NAME: DTATBASE MANAGEMENT SYSTEM COURSE CODE: 16CSU403

UNIT II

SYLLABUS

Relation data model: Relational model concepts, relational constraints,

relational algebra

Relation Data Model

Relational data model is the primary data model, which is used widely around the world for data storage and processing. This model is simple and it has all the properties and capabilities required to process data with storage efficiency.

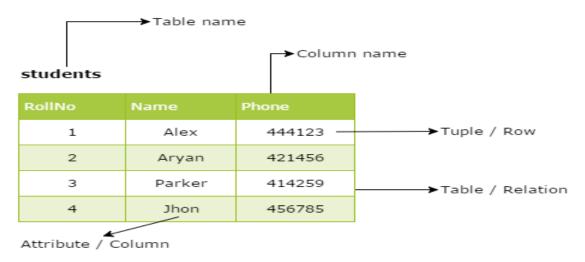
Concepts

Tables – In relational data model, relations are saved in the format of Tables. This format stores the relation among entities. A table has rows and columns, where rows represents records and columns represent the attributes.

Tuple – A single row of a table, which contains a single record for that relation is called a tuple.

Relation instance – A finite set of tuples in the relational database system represents relation instance. Relation instances do not have duplicate tuples.

Relation schema – A relation schema describes the relation name (table name), attributes, and their names.


Relation key – Each row has one or more attributes, known as relation key, which can identify the row in the relation (table) uniquely.

Attribute domain – Every attribute has some pre-defined value scope, known as attribute domain.

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

Some Common Relational Model Terms

Relational Model Terms

- Relation: A relation is a table with columns and rows.
- Attribute: An attribute is a named column of a relation.
- Domain: A domain is the set of allowable values for one or more attributes.
- Tuple: A tuple is a row of a relation.

Relational Constraints

What are Database Constraints in DBMS ??

Database constraints are restrictions on the contents of the database or on database operations. It is a condition specified on a database schema that restricts the data to be inserted in an instance of the database.

Every relation has some conditions that must hold for it to be a valid relation. These conditions are called **Relational Integrity Constraints**.

Need of Constraints:

Constraints in the database provide a way to guarantee that:

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

• the values of individual columns are valid.

in a table, rows have a valid primary key or unique key values.

• in a dependent table, rows have valid foreign key values that reference rows in a parent table.

Types of constraints in DBMS:

- Domain Constraints
- Tuple Uniqueness Constraints
- Key Constraints
- Single Value Constraints
- Integrity Rule 1 (Entity Integrity Rule or Constraint)
- Integrity Rule 2 (Referential Integrity Rule or Constraint)
- General Constraints

Domain Constraints -

Domain Constraints specifies that what set of values an attribute can take. Value of each attribute X must be an atomic value from the domain of X. The data type associated with domains include integer, character, string, date, time, currency etc. An attribute value must be available in the corresponding domain. Consider the example below —

Ankit	7000		
AHKIL	1 st	19	
Srishti	1 st	18	
Somvir	4 th	22	
Sourabh	6 th	Α -	Not Allowed. Because Age
5	omvir	omvir 4 th	omvir 4 th 22

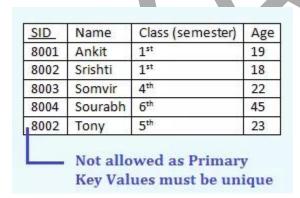
Tuple Uniqueness Constraints -

A relation is defined as a set of tuples. All tuples or all rows in a relation must be unique or distinct. Suppose if in a relation, tuple uniqueness constraint is applied, then all the rows of that table must be unique i.e. it does not contain the duplicate values. For example,

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

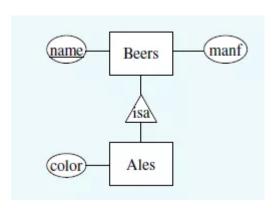
	Class (semester)	Age	
Ankit	1 st	19	
Srishti	2 nd	18	
Somvir	4 th	22	
Sourabh	6 th	19	Not Allowed. Because all
5	Srishti Somvir	Srishti 2 nd Somvir 4 th	Grishti 2 nd 18 Gomvir 4 th 22


Key Constraints –

Keys are attributes or sets of attributes that uniquely identify an entity within its entity set. An Entity set E can have multiple keys out of which one key will be designated as the primary key. Primary Key must have unique and not null values in the relational table. In an subclass hierarchy, only the root entity set has a key or primary key and that primary key must serve as the key for all entities in the hierarchy.

Types of keys in DBMS

1. <u>Primary Key</u> – A primary is a column or set of columns in a table that uniquely identifies tuples (rows) in that table.


Example of Key Constraints in a simple relational table -

Example of Key Constraints in an subclass hierarchy –

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

2. <u>Super Key</u> – A super key is a set of one of more columns (attributes) to uniquely identify rows in a table. Often people get confused between super key and candidate key, so we will also discuss a little about candidate key here.

How candidate key is different from super key?

Answer is simple – Candidate keys are selected from the set of super keys, the only thing we take care while selecting candidate key is: It should not have any redundant attribute. That's the reason they are also termed as minimal super key.

Let's take an example to understand this: **Employee table**

Emp_SSN	Emp_Number	Emp_Name
123456789	226	Steve
999999321	227	Ajeet
888997212	228	Chaitanya
777778888	229	Robert

Super keys:

{Emp_SSN}

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

{Emp Number}

- {Emp_SSN, Emp_Number}
- {Emp_SSN, Emp_Name}
- {Emp SSN, Emp Number, Emp Name}
- {Emp_Number, Emp_Name}

All of the above sets are able to uniquely identify rows of the employee table.

3. **Candidate Key** – A super key with no redundant attribute is known as candidate key

A candidate key is a column, or set of columns, in a table that can uniquely identify any database record without referring to any other data. Each table may have one or more candidate keys, but one candidate key is unique, and it is called the primary key. This is usually the best among the candidate keys to use for identification.

When a key is composed of more than one column, it is known as a composite key.

A super key with no redundant attribute is known as candidate key. Candidate keys are selected from the set of super keys, the only thing we take care while selecting candidate key is: It should not have any redundant attributes. That's the reason they are also termed as minimal super key.

For example:

Emp Id	Emp_Number	Emp_Name
E01	2264	Steve
E22	2278	Ajeet
E23	2288	Chaitanya
E45	2290	Robert

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

There are two candidate keys in above table:

{Emp Id}

{Emp_Number}

Note: A primary key is being selected from the group of candidate keys. That means we can either have Emp_Id or Emp_Number as primary key.

4. Alternate Key – Out of all candidate keys, only one gets selected as primary key, remaining keys are known as alternate or secondary keys.

For example: Consider the below table

Emp Id	Emp_Number	Emp_Name
E01	2264	Steve
E22	2278	Ajeet
E23	2288	Chaitanya
E45	2290	Robert

There are two candidate keys in above table:

{Emp_Id}

{Emp Number}

Since we have selected Emp_Id as primary key, the remaining key Emp_Number would be called alternative or secondary key.

5. <u>Composite Key</u> – A key that consists of more than one attribute to uniquely identify rows (also known as records & tuples) in a table is called composite key.

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

Example: Table – Sales

cust_Id	order_Id	product_code	product_count
C01	0001	P007	23
C02	O123	P007	19
C02	O123	P230	82
C01	0001	P890	42

Key in above table: {cust_id, order_id}

This is a composite key as it consists of more than one attribute.

6. <u>Foreign Key</u> – Foreign keys are the columns of a table that points to the primary key of another table. They act as a cross-reference between tables.

Single Value Constraints -

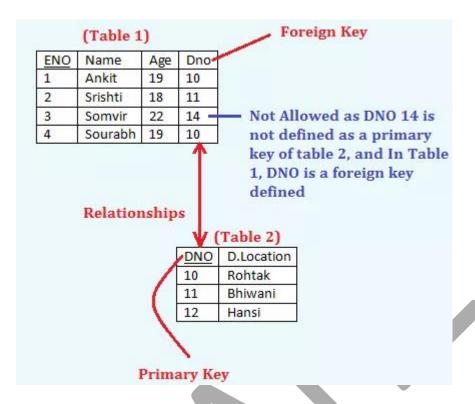
Single value constraints refers that each attribute of an entity set has a single value. If the value of an attribute is missing in a tuple, then we cal fill it with a "null" value. The null value for a attribute will specify that either the value is not known or the value is not applicable. Consider the below example-

SID	Name	Class (semester)	Age	Driving License Number	
8001	Ankit	1 st	19	DL-45698	
8002	Srishti	2 nd	18	DL-45871, DL-89740 -	Not allowed as a person
8003	Somvir	4 th	22	DL-95687	does not have two driving
8004	Sourabh	6 th	19	1	licenses.
				Allowed as a perso or may not have a license.	

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

Integrity Rule 1 (Entity Integrity Rule or Constraint) -


The Integrity Rule 1 is also called Entity Integrity Rule or Constraint. This rule states that no attribute of primary key will contain a null value. If a relation have a null value in the primary key attribute, then uniqueness property of the primary key cannot be maintained. Consider the example below-

Integrity Rule 2 (Referential Integrity Rule or Constraint) –

The integrity Rule 2 is also called the Referential Integrity Constraints. This rule states that if a foreign key in Table 1 refers to the Primary Key of Table 2, then every value of the Foreign Key in Table 1 must be null or be available in Table 2. For example,

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

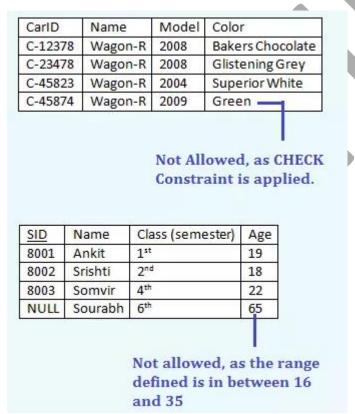
Some more Features of Foreign Key -

Let the table in which the foreign key is defined is Foreign Table or details table i.e. Table 1 in above example and the table that defines the primary key and is referenced by the foreign key is master table or primary table i.e. Table 2 in above example. Then the following properties must be hold:

- Records cannot be **inserted** into a Foreign table if corresponding records in the master table do not exist.
- Records of the **master table or Primary Table** cannot be **deleted** or **updated** if corresponding records in the detail table actually exist.

General Constraints –

General constraints are the arbitrary constraints that should hold in the database. Domain Constraints, Key Constraints, Tuple Uniqueness Constraints, Single Value Constraints, Integrity Rule 1 (Entity Integrity) and 2 (Referential Integrity Constraints) are considered to be a fundamental part of the relational data model.


CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

However, sometimes it is necessary to specify more general constraints like the CHECK Constraints or the Range Constraints etc.

Check constraints can ensure that only specific values are allowed in certain column. For example , if there is a need to allow only three values for the color like 'Bakers Chocolate', 'Glistening Grey' and 'Superior White', then we can apply the check constraint. All other values like 'GREEN' etc would yield an error. Range Constraints is implemented by BETWEEN and NOT BETWEEN. For example, if it is a requirement that student ages be within 16 to 35, then we can apply the range constraints for it.

The below example will explain Check Constraint and Range Constraint –

RELATIONAL ALGEBRA

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

Relational Algebra is procedural query language, which takes Relation as input and generate relation as output. Relational algebra mainly provides theoretical foundation for relational databases and SQL.

• *Domain:* set of relations

- Based on set theory
- Contains extensions to manipulate tables
- Functional language
- Procedural, i.e., order to operations, algorithm implicit in the functional evaluation

Relational Algebra Operations

Below are fundamental operations that are "complete". That is, this set of operations alone can define any retrieval.

- Select
- Project
- Rename
- Union
- Set Difference
- Cartesian Product

Convenient, natural additions to the set of operations makes

- Set Intersection
- Natural Join
- Division
- Assignment

Projection

- Produce a subset of attributes from a relation
- Unselected columns are eliminated
- Duplicate rows are eliminated
- Result is a relation

Syntax: $\pi_{\text{attribute-list}}(relation)$

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

Example: The table **E** (for **EMPLOYEE**)

nr	name	salary
1	John	100
5	Sarah	300
7	Tom	100

SQL		Res	sult	Relational algebra
	sala	ary		
select salary from E	100			PROJECT _{salary} (E)
nom E	300			
	nr	salary		
select nr, salary	1 1	.00		DDOJECT (E)
from E	5 3	300		PROJECT _{nr} , salary(E)
	7 1	.00		

Note that there are no duplicate rows in the result.

Selection

Choose a subset of tuples from a relation based on some criteria, results in another relation called a "result set"

Notation uses lower case sigma:

Synatx: $\sigma_{condition}$ (relation)

The same table E (for EMPLOYEE) as above.

SQL		Re	esult	Relational algebra
select *	nr	name	salary	
from E	1	John	100	SELECT _{salary} < 200(E)
where salary < 200	7	Tom	100	

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

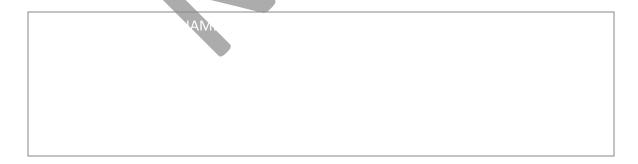
salary

100

select *
from E
where salary < 200
and nr >= 7

nr | name | 7 | Tom

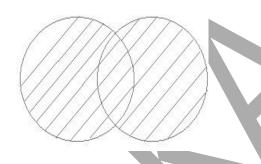
SELECT_{salary} < 200 and nr >= 7(E)


Set Operators

One of the characteristics of RDBMS is that it should support all the transaction on the records in the table by means relational operations. That means it should have strong query language which supports relational algebra. There are three main relational algebras on sets – UNION, SET DIFFERENCE and SET INTERSECT. The same is implemented in database query language using set operators.

There are 4 main set operators used in the query language.

1. UNION


It combines the similar columns from two tables into one resultant table. All columns that are participating in the UNION operation should be Union Compatible. This operator combines the records from both the tables into one. If there are duplicate values as a result, then it eliminates the duplicate. The resulting records will be from both table and distinct.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

EMP_TEST								
EMP_ID	EMP_NAME	EMP_ADDRESS	EMP_SSN					
100	James	Troy	232434					
104	Kathy	Holland	324343		UNION			
					EMP_ID	EMP_NAME	EMP_ADDRESS	EMP_SSN
	Union			1	100	James	Troy	232434
					102	Marry	Novi	343613
					103	Rose	Freser Town	6744545
					104	Kathy	Holland	324343
EMP_DESIG	SN				105	Laurry	Rochester Hills	97676
EMP_ID	ENAME	EMP_ADDRESS	SSN					
103	Rose	Freser Town	6744545					
102	Marry	Novi	343613					
105	Laurry	Rochester Hills	97676					
104	Kathy	Holland	324343					

We can notice that Result will have same column names as first query. Duplicate record – 104 from EMP_TEST and EMP_DESIGN are showed only once in the result set. Records are sorted in the result.

UNION ALL

This operation is also similar to UNION, but it does not eliminate the duplicate records. It shows all the records from both the tables. All other features are same as UNION. We can have conditions in the SELECT query. It need not be a simple SELECT query.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

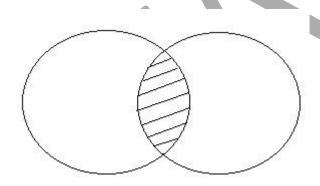
Look at the same example below with UNION ALL operation.

						4				
EMP_	TEST									
EMP_	_ID	EMP_NAME	EMP_ADDRESS	EMP_SSN						
	100	James	Troy	232434						
	104	Kathy	Holland	324343			UNION			
							EMP_ID	EMP_NAME	EMP_ADDRESS	EMP_SSN
		Union	ALL		_	1	100	James	Troy	232434
							102	Marry	Novi	343613
							103	Rose	Freser Town	6744545
							104	Kathy	Holland	324343
EMP_	DESIG	iN					104	Kathy	Holland	324343
EMP_	_ID	ENAME	EMP_ADDRESS	SSN			105	Laurry	Rochester Hills	97676
	103	Rose	Freser Town	6744545						
	102	Marry	Novi	343613						
	105	Laurry	Rochester Hills	97676						
	104	Kathy	Holland	324343						

Prepared By: A.Jeevarathinam, Dept of CS, CA & IT, KAHE

16/35

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403


UNIT II

2. INTERSECT

This operator is used to pick the records from both the tables which are common to them. In other words it picks only the duplicate records from the tables. Even though it selects duplicate records from the table, each duplicate record will be displayed only once in the result set. It should have UNION Compatible columns to run the query with this operator.

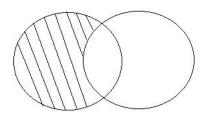
Same example above when used with INTERSECT operator, gives below result.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

EMP_TEST								
EMP_ID	EMP_NAME	EMP_ADDRESS	EMP_SSN					
100	James	Troy	232434					
104	Kathy	Holland	324343		UNION			
					EMP_ID	EMP_NAME	EMP_ADDRESS	EMP_SSN
	INTERS	ECT			104	Kathy	Holland	324343
EMP_DESIG	GN							
EMP_ID	ENAME	EMP_ADDRESS	SSN					
103	Rose	Freser Town	6744545					
102	Marry	Novi	343613					
105	Laurry	Rochester Hills	97676					
104	Kathy	Holland	324343					

3. MINUS


This operator is used to display the records that are present only in the first table or query, and doesn't present in second table / query. It basically subtracts the first query results from the second.

Let us see the same example with MINUS operator.

VAIX		

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

		L *						
EMP_TEST								
EMP_ID	EMP_NAME	EMP_ADDRESS	EMP_SSN					
100	James	Troy	232434					
104	Kathy	Holland	324343		UNION			
					EMP_ID	EMP_NAME	EMP_ADDRESS	EMP_SSN
	MINU	JS		1	100	James	Troy	232434
				$\sqrt{}$				
EMP_DESIG	iN .							
EMP_ID	ENAME	EMP_ADDRESS	SSN					
103	Rose	Freser Town	6744545					
102	Marry	Novi	343613					
105	Laurry	Rochester Hills	97676					
104	Kathy	Holland	324343					

We can notice in the above result that only the records that do not exists in EMP_DESIGN are displayed in the result. The record which appears in both the tables is eliminated. Similarly, the records that appear in second query but not in the first query are also eliminated.

4. Division Operator (÷):

Table 1

STUDENT SPORTS

ROLL_NO	SPORTS
1	Badminton
2	Cricket

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

2	Badminton
4	Badminton

Table 2

ALL_SPORTS

SPORTS
Badminton
Cricket

Division Operator (÷): Division operator A+B can be applied if and only if:

- Attributes of B is proper subset of Attributes of A.
- The relation returned by division operator will have attributes = (All attributes of A – All Attributes of B)
- The relation returned by division operator will return those tuples from relation A which are associated to every B's tuple.

STUDENT SPORTS: ALL SPORTS

- The operation is valid as attributes in ALL_SPORTS is a proper subset of attributes in STUDENT_SPORTS.
- The attributes in resulting relation will have attributes {ROLL_NO,SPORTS}-{SPORTS}=ROLL NO
- The tuples in resulting relation will have those ROLL_NO which are associated with all B's tuple {Badminton, Cricket}. ROLL_NO 1 and 4 are associated to Badminton only. ROLL_NO 2 is associated to all tuples of B. So the resulting relation will be:

ROLL_NO	
2	

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

Join in SQL

SQL Join is used to fetch data from two or more tables, which is joined to appear as single set of data. SQL Join is used for combining column from two or more tables by using values common to both tables. **Join** Keyword is used in SQL queries for joining two or more tables. Minimum required condition for joining table, is **(n-1)** where **n**, is number of tables. A table can also join to itself known as, **Self Join**.

Types of Join

The following are the types of JOIN that we can use in SQL.

- Inner
- Outer
- Left
- Right

Cross JOIN or Cartesian Product

This type of JOIN returns the cartesian product of rows from the tables in Join. It will return a table which consists of records which combines each row from the first table with each row of the second table.

Cross JOIN Syntax is,

SELECT column-name-ist

from table-name1

CROSS JOIN

table-name2;

Example of Cross JOIN

The class table,

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

ID	NAME
1	abhi
2	adam
4	alex

The class_info table,

ID	Address	
1	DELHI	
2	MUMBAI	
3	CHENNAI	

Cross JOIN query will be,

SELECT *

from class,

cross JOIN class_info;

The result table will look like,

ID	NAME	ID	Address
1	abhi	1	DELHI
2	adam	1	DELHI
4	alex	1	DELHI
1	abhi	2	MUMBAI
2	adam	2	MUMBAI

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

4	alex	2	MUMBAI
1	abhi	3	CHENNAI
2	adam	3	CHENNAI
4	alex	3	CHENNAI

INNER Join or EQUI Join

This is a simple JOIN in which the result is based on matched data as per the equality condition specified in the query.

Inner Join Syntax is,

SELECT column-name-list

from table-name1

INNER JOIN

table-name2

WHERE table-name 1. column-name = table-name 2. column-name;

Example of Inner JOIN

The **class** table,

ID	NAME
1	abhi
2	adam
3	alex
4	anu

The class_info table,

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

ID	Address
1	DELHI
2	MUMBAI
3	CHENNAI

Inner JOIN query will be,

SELECT * from class, class_info.id;

The result table will look like,

ID	NAME	ID	Address
1	abhi	1	DELHI
2	adam	2	MUMBAI
3	alex	3	CHENNAI

Natural JOIN

Natural Join is a type of Inner join which is based on column having same name and same datatype present in both the tables to be joined.

Natural Join Syntax is,

SELECT *

from table-name1

NATURAL JOIN

table-name2;

Example of Natural JOIN

The **class** table,

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

ID	NAME
1	abhi
2	adam
3	alex
4	anu

The class_info table,

ID	Address
1	DELHI
2	MUMBAI
3	CHENNAI

Natural join query will be,

SELECT * from class NATURAL JOIN class info;

The result table will look like,

ID	NAME	Address
1	abhi	DELHI
2	adam	MUMBAI
3	alex	CHENNAI

In the above example, both the tables being joined have ID column(same name and same datatype), hence the records for which value of ID matches in both the tables will be the result of Natural Join of these two tables.

Prepared By: A.Jeevarathinam, Dept of CS, CA & IT, KAHE

25/35

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

Outer JOIN

Outer Join is based on both matched and unmatched data. Outer Joins subdivide further into,

- Left Outer Join
- Right Outer Join
- Full Outer Join

Left Outer Join

The left outer join returns a result table with the **matched data** of two tables then remaining rows of the**left** table and null for the **right** table's column.

Left Outer Join syntax is,

SELECT column-name-list

from table-name1

LEFT OUTER JOIN

table-name2

on table-name1.column-name = table-name2.column-name;

Left outer Join Syntax for **Oracle** is,

select column-name-list

from table-name1.

table-name2

on table-name1.column-name = table-name2.column-name(+);

Example of Left Outer Join

The **class** table,

ID	NAME
----	------

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

1	abhi
2	adam
3	alex
4	anu
5	ashish

The class_info table,

ID	Address	
1	DELHI	
2	MUMBAI	
3	CHENNAI	
7	NOIDA	
8	PANIPAT	

Left Outer Join query will be,

SELECT * FROM class LEFT OUTER JOIN class info ON (class.id=class info.id);

The result table will look like,

ID	NAME	ID	Address
1	abhi	1	DELHI
2	adam	2	MUMBAI
3	alex	3	CHENNAI

Prepared By : A.Jeevarathinam, Dept of CS, CA & IT, KAHE

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

4	anu	null	null
5	ashish	null	null

Right Outer Join

The right outer join returns a result table with the **matched data** of two tables then remaining rows of the **right table** and null for the **left** table's columns.

Right Outer Join Syntax is,

select column-name-list

from table-name1

RIGHT OUTER JOIN

table-name2

on table-name1.column-name = table-name2.column-name;

Right outer Join Syntax for Oracle is,

select column-name-list

from table-name1.

table-name2

on table-name1.column-name(+) = table-name2.column-name;

Example of Right Outer Join

The class table,

ID	NAME
1	abhi
2	adam
3	alex

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

4	anu
5	ashish

The class_info table,

ID	Address	
1	DELHI	
2	MUMBAI	
3	CHENNAI	
7	NOIDA	
8	PANIPAT	

Right Outer Join query will be,

SELECT * FROM class RIGHT OUTER JOIN class_info on (class.id=class_info.id);

The result table will look like,

ID	NAME	ID	Address
1	abhi	1	DELHI
2	adam	2	MUMBAI
3	alex	3	CHENNAI
null	null	7	NOIDA
null	null	8	PANIPAT

Prepared By : A.Jeevarathinam, Dept of CS, CA & IT, KAHE

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

Full Outer Join

The full outer join returns a result table with the **matched data** of two table then remaining rows of both**left** table and then the **right** table.

Full Outer Join Syntax is,

select column-name-list

from table-name1

FULL OUTER JOIN

table-name2

on table-name1.column-name = table-name2.column-name;

Example of Full outer join is,

The class table,

ID	NAME
1	abhi
2	adam
3	alex
4	anu
5	ashish

The class_info table,

ID	Address
1	DELHI
2	MUMBAI

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

3	CHENNAI
7	NOIDA
8	PANIPAT

Full Outer Join query will be like,

SELECT * FROM class FULL OUTER JOIN class_info on (class.id=class_info.id);

The result table will look like,

ID	NAME	ID	Address
1	abhi	1	DELHI
2	adam	2	MUMBAI
3	alex	3	CHENNAI
4	anu	null	null
5	ashish	null	null
null	null	7	NOIDA
null	null	8	PANIPAT

Aggregate Functions in SQL

In database management an aggregate function is a function where the values of multiple rows are grouped together as input on certain criteria to form a single value of more significant meaning.

Various Aggregate Functions

1) Count()

2) Sum()

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

3) Avg()
4) Min()
5) Max()

Now let us understand each Aggregate function with a example: Table: E

Id	Nan	ne Salary	
1	 А	80	
2		40	
3	С	60	
4	D	70	
5	Ε	60	
6	F	Null	

1. COUNT()

Syntax:

SELECT COUNT(column_name)

FROM table_name

WHERE condition;

Example

SELECT COUNT(ID) FROM E;

Count(*): Returns total number of records .i.e 6.

Count(salary): Return number of Non Null values over the column salary. i.e 5.

Count(Distinct Salary): Return number of distinct Non Null values over the column salary .i.e 4

2. SUM()

BATCH

: 2016 - 2019

CLASS

: II.B.Sc CS

COURSE NAME: DTATBASE MANAGEMENT SYSTEM COURSE CODE: 16CSU403 UNIT II **Syntax SELECT SUM(***column name***)** FROM table_name WHERE condition; **Example** SELECT sum(ID) FROM E sum(salary): Sum all Non Null values of Column salary i.e., 310 sum(Distinct salary): Sum of all distinct Non-Null values i.e., 250. 3. AVG() **Syntax** SELECT AVG(column_name) FROM table_name WHERE condition; **Example** SELECT AVG(salary) FROM E; Avg(salary) = Sum(salary) / count(salary) = 310/5 Avg(Distinct salary) = sum(Distinct salary) / Count(Distinct Salary) = 250/4 4. MIN() **Syntax SELECT MIN**(*column name*) FROM table_name WHERE condition;

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

Example

SELECT MIN(salary) FROM E;

Min(salary): Minimum value in the salary column except NULL i.e., 40.

5. MAX()

Syntax

FROM table_name
WHERE condition;

Example

SELECT MAX(salary) FROM E;

Max(salary): Maximum value in the salary i.e., 80.

POSSIBLE QUESTIONS

2 MARK QUESTIONS

- 1. Draw an ER diagram for 1:M relationship.
- 2. Draw an ER diagram for M:M relationship
- 3. Write the syntax for DELETE FROM WHERE command in SQL.
- 4. What is an Entity type?
- 5. Define cardinalities.
- 6. Draw an ER model for M:M relationship.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT II

6 MARK QUESTIONS

1. Ilustrate with syntax and example of relational constraints.

2. Discuss relational algebra with proper example.

3. Explain the following: i) Key constraints ii) Integrity constraints.

- 4. Discuss in detail the operators SELECT, PROJECT and UNION with suitable examples.
- 4. Describe SET operators and Joins in DBMS with example
- 5. Explain in detail about various key constraints used in database system.

DEPARTMENT OF COMPUTER SCIENCE

II BSc CS BATCH(2016 - 2019)
PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

T	Т	NTI	7	г	1	

		UNIT-2				
SNO	Questions	opt1	opt2	opt3	opt4	Answer
	THE COLUMN TO SERVICE AND ADDRESS OF THE COLUMN	must be in	may be in any	in ascending	in descending	may be in any
1	The rows of a relation	specified order	order	order of key	order of key	order
					with largest	
2	The columns of a relation	must be in	may be in any	with key field in	width column	may be in any
_	The columns of a relation	specified order	order	first column	last	order
	A is a dependency of one non primary key	Functional	Transitive	Partial	Non primary	Partial
3	Ais a dependency of one non primary key attribute on another non primary key attribute.	dependency	dependency	dependency	key dependency	dependency
		1 2				
4	functional depency of the form $X \rightarrow Y$ where Y is a	Functional	Transitive	Partial	Trivial	Trivial
	subset of X are called	dependency	dependency	dependency	dependency	dependency
5	Group function is otherwise known as	Collection	Aggregate	function	Count	Aggregate
	-					
6	Pattern matching has done throughoperator.	Comparison	arithmetic	Logical	Aggregate	Aggregate
7	Which keyword is used to check if an element is in a	not	in	not exist	except	in
	given set?				1	
8	Any two tables that are Union-Compatible that is, have	Columns	rows	Columns and	null values	Columns
Ů	the same number of	Согания	10 11 5	rows	nun vurues	Согания
9	keyword is used to eliminates the duplicates	Union	Union all	Intersect all	Except all	Union
10	keyword is used to retain the duplicates	Union	Union all	Intersect	Except	Union all
1.1	technique is used to reduce the	CI.	D :::	NT P C	NT 11 X7 1	NT U. C
11	redundancy	Closure set	Decomposition	Normalization	Null Values	Normalization
	if and only if the right-hand side is not a subset of the					
12	left-hand side, then functional dependency is said to be	Non-trivial	Trivial	Transitive	Augmentation	Non-trivial
	as					
13	The Closure of F denoted as	Fc	F	FXX	F+	F+
14	All decomposition are used to eliminate	duplicates	null values		not null values	duplicates
14		aupiicaies	Functional	empty values	not nun values	Functional
15	is a kind of IC, that generalizes the	Decomposition		cursors	Triggers	
	concept of a key.	_	dependency			dependency
	Consists of replacing the relation		Functional			
16	schema by two relation schemas that each contain a	Decomposition	dependency	cursors	Triggers	Decomposition
	subsets of the attributes.					
17	X is a proper subset of some key K. Such a	dependency	Partial	transitive	Decompostion	Partial
1,	dependency is sometimes called	dependency	dependency	dependency	Becomposition	dependency
18	X is not a proper subset of some key K. Such a	dependency	Partial	transitive	Decompostion	transitive
10	dependency is sometimes called	dependency	dependency	dependency	Decomposition	dependency
10	Indicated by using arrow from entities to relationships in		TC1 : 1 1:	D # 11	CL L LL	
19	the ER diagram.	Arrow	Thick line	Dotted line	Shaded line	Arrow
•	Aggragation is indicated by in ER	~				
20	diagram	Solid line	Thick line	Thin line	Dotted line	Dotted line
21	ISA is indicated by symbol	Rectangle	Ellipse	Triangle	Diamond	Triangle
22	is a set of associated values	Entity	Attribute	Relationships	Domain	Domain
	consists of a relation schema and a	2		remaionsinps	Donam	D OHIMIN
23	relation instance.	relation	table	domain	entity	relation
-		. 1	, .		1 1 .	. 1
24	An instance of a relation is a set of	tuple	domain	attribute	relationships	tuple
25	Each tuple is a	Column	row	table	instance	row
26	is an object in the real world	Entity	Attribute	Relationship	Property	Entity
27	Collection Of Similar entities are	Attributes	Entity	Entity Set	Relationship	Entity Set
				•	•	
28	An Entity is described using a set Of	Entity	Entity Set	Attributes	Relationship	Attributes
20	is used to uniquely identify an entity in the	TZ	r 1	A 7	E di	17
29	set.	Key	Lock	Attributes	Entity	Key
	DBMS is a collection of that enables user to				Language	
30	create and maintain a database.	Keys	Translators	Program	Activity	Program
 	In a relational schema, each tuple is divided into fields	ncys	114115141015	1 10grain	LICHVILY	1 10810111
31		Palations	Domaina	Ouarias	All of the above	Domoins
 	called	Relations	Domains	Queries	All of the above	Domains
32	In an ER model, is described in the	E die		D. L.C. A.	NT 4 4	T. die
	database by storing its data.	Entity	Attribute	Relationship	Notation	Entity
33		Data Flow	Data File	Data Flow		Data Flow
	DFD stands for	Document	Diagram	Diagram	Non of the above	
34	A top-to-bottom relationship among the items in a	Hierarchical	Network	Relational		Hierarchical
J4	database is established by a	schema	schema	Schema	All of the above	schema
25	table store information about database or					
35	about the system.	SQL	Nested	System	None of these	System
2.	defines the structure of a relation which	`				•
36	consists of a fixed set of attribute-domain pairs.	Instance	Schema	Program	Super Key	Schema
37	applied to the result.	Select	Group-by	Having	Order by	Having
	applied to the result.	Sciect	Group-oy	11441115	order by	11411115

		1		1	ı	1
			is a standard			
			way of			is a standard
20			organizing			way of
38			information	Describes how		organizing
		is the entire	into accessible	data is actually		information into
	A logical schema	database	parts.	stored on disk.	All of the above	accessible parts.
	A logical schema		1		Server side	
39		Standard query	Sequential	Structured query		Structured query
	is a full form of SQL.	language	query language	language	query language	language
40	A relational database developer refers to a record as	a criteria	a relation	a tuple	an attribute	a tuple
41	keyword is used to find the number of values in					
	a column.	TOTAL	COUNT	ADD	SUM	COUNT
						data is
				data is integrated		integrated and
42			data	and can be		can be accessed
		data is dependent	redundancy	accessed by	none of the	by multiple
	An almost of Galla database management		-			
	An advantage of the database management approach is	on programs	increases	multiple programs	above	programs
43	The collection of information stored in a database at a		instance of the			instance of the
	particular moment is called as	schema	database	data domain	independence	database
44			application	data definition		
77	A is used to define overall design of the database	schema	program	language	code	schema
4.5					none of the	
45	Key to represent relationship between tables is called	primary key	secondary key	foreign key	above	foreign key
46	Grant and revoke are statements	DDL	TCL	DCL	DML	DCL
	State and revolte are item statements	Data	Centralized	BCL	Binib	BCL
47	DBMS helps achieve	independence	control of data	Neither A nor B	Both A and B	Both A and B
	•	maependence	control of data	Neither A hor B	Boul A allu B	Doui A and D
48	command can be used to modify a column in a					
- 10	table	alter	update	set	create	alter
49						
50	The candidate key is that you choose to identify each				None of the	
50	row uniquely is called	Alternate Key	Primary Key	Foreign Key	above	Primary Key
51	is used to determine whether of a table					
31	contains duplicate rows.	Unique predicate	Like Predicate	Null predicate	In predicate	Unique predicate
52	To eliminate duplicate rows is used	NODUPLICATE	ELIMINATE	DISTINCT	None of these	DISTINCT
	1	Data Control	Data Console	Data Console	Data Control	Data Control
53	DCL stands for	Language	Language	Level	Level	Language
	is the process of organizing data	Lunguage	Eunguage	Level	None of the	Lunguage
54		Namualization	Comonolization	Cassislimation		Mammalization
	into related tables.	Normalization	Generalization	Specialization	above	Normalization
	A Does not have a distinguishing					
55	attribute if its own and mostly are dependent entities,			Non attributes		
	which are part of some another entity.	Weak entity	Strong entity	entity	Dependent entity	Weak entity
56	is the complex search criteria in the where					
50	clause.	Sub string	Drop Table	Predict	Predicate	Predicate
	is preferred method for enforcing data		Stored			
57	integrity	Constraints	Procedure	Triggers	Cursors	Constraints
	The number of tuples in a relation is called its					
58	While the number of attributes in a relation is called it's	Degree,	Cardinality,			Cardinality,
50	withing the number of authorites in a relation is called it s	Cardinality		Rows, Columns	Columns, Rows	•
		Carumanty	Degree	Rows, Columns	Columns, Kows	Degree
			Non-			
59	The language that requires a user to specify the data to		Procedural		Non-Procedural	
	be retrieved without specifying exactly how to get it is	Procedural DML	DML	Procedural DDL	DDL	Procedural DML
				Data dictionary	Data dictionary	Data dictionary
60		Query languages	DML and	and transaction	and query	and transaction
	Which two files are used during operation of the DBMS?	and utilities	query language	log	language	log
1	DBMB:		11201 miguige	10	I	o

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

SYLLABUS

Relation data model: SQL queries **Database design:** Mapping ER/EER model to relational database, functional dependencies, Lossless decomposition.

What is SQL

- SQL stands for Structured Query Language.
- It is designed for managing data in a relational database management system (RDBMS).
- o It is pronounced as S-Q-L or sometime **See-Qwell**.
- SQL is a database language, it is used for database creation, deletion, fetching rows and modifying rows etc.
- SQL is based on relational algebra and tuple relational calculus.

All DBMS like MySQL, Oracle, MS Access, Sybase, Informix, Postgres and SQL Server use SQL as standard database language.

Why SQL is required

SQL is required:

- To create new databases, tables and views
- To insert records in a database
- To update records in a database
- To delete records from a database
- To retrieve data from a database

What SQL does

- With SQL, we can query our database in a numbers of ways, using English-like statements.
- With SQL, user can access data from relational database management system.
- It allows user to describe the data.

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403
UNIT III

It allows user to define the data in database and manipulate it when needed.

- o It allows user to create and drop database and table.
- o It allows user to create view, stored procedure, function in a database.
- o It allows user to set permission on tables, procedure and view.

SQL Table

Table is a collection of data, organized in terms of rows and columns. In DBMS term, table is known as relation and row as tuple.

Note: A table has a specified number of columns, but can have any number of rows.

Table is the simple form of data storage. A table is also considered as a convenient representation of relations.

Let's see an example of an employee table:

Employee				
EMP_NAME	ADDRESS	SALARY		
Ankit	Lucknow	15000		
Raman	Allahabad	18000		
Mike	New York	20000		

In the above table, "Employee" is the table name, "EMP_NAME", "ADDRESS" and "SALARY" are the column names. The combination of data of multiple columns forms a row e.g. "Ankit", "Lucknow" and 15000 are the data of one row.

SQL TABLE Variable

The **SQL Table variable** is used to create, modify, rename, copy and delete tables. Table variable was introduced by Microsoft.

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403
UNIT III

It was introduced with SQL server 2000 to be an alternative of temporary tables.

It is a variable where we temporary store records and results. This is same like temp table but in the case of temp table we need to explicitly drop it.

Table variables are used to store a set of records. So declaration syntax generally looks like CREATE TABLE syntax.

```
create table "tablename"
("column1" "data type",
"column2" "data type",
...
"columnN" "data type");
```

When a transaction rolled back the data associated with table variable is not rolled back.

A table variable generally uses lesser resources than a temporary variable.

Table variable cannot be used as an input or an output parameter.

SQL CREATE TABLE

SQL CREATE TABLE statement is used to create table in a database.

If you want to create a table, you should name the table and define its column and each column's data type.

Let's see the simple syntax to create the table.

```
create table "tablename"
("column1" "data type",
"column2" "data type",
"column3" "data type",
...
"columnN" "data type");
```

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

The data type of the columns may vary from one database to another. For example, NUMBER is supported in Oracle database for integer value whereas INT is supported in MySQL.

Let us take an example to create a STUDENTS table with ID as primary key and NOT NULL are the constraint showing that these fields cannot be NULL while creating records in the table.

```
SQL> CREATE TABLE STUDENTS (
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),
PRIMARY KEY (ID)
);
```

You can verify it, if you have created the table successfully by looking at the message displayed by the SQL Server, else you can use DESC command as follows:

SQL> DESC STUDENTS;

FIELD	ТҮРЕ	NULL	KEY	DEFAULT	EXTRA
ID	Int(11)	NO	PRI		
NAME	Varchar(20)	NO			
AGE	Int(11)	NO			
ADDRESS	Varchar(25)	YES		NULL	

4 rows in set (0.00 sec)

Now you have the STUDENTS table available in your database and you can use to store required information related to students.

SQL INSERT STATEMENT

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

SQL INSERT statement is a SQL query. It is used to insert a single or a multiple records in a table.

There are two ways to insert data in a table:

- 1. By SQL insert into statement
 - 1. By specifying column names
 - 2. Without specifying column names
- 2. By SQL insert into select statement

1) Inserting data directly into a table

You can insert a row in the table by using SQL INSERT INTO command. But there are 2 ways to do this.

You can specify or ignore the column names while using INSERT INTO statement.

To insert partial column values, you must have to specify the column names. But if you want to insert all the column values, you can specify or ignore the column names.

If you specify the column names, syntax of the insert into statement will be as follows:

```
INSERT INTO TABLE_NAME
[(col1, col2, col3,.... col N)]
```

VALUES (value1, value2, value 3, Value N);

Here col1, col2, col3, colN are the columns of the table in which you want to insert data.

But, If you ignore the column names, syntax of the insert into statement will be as follows:

INSERT INTO TABLE NAME

VALUES (value1, value2, value 3, Value N);

2) Inserting data through SELECT Statement

Prepared By: A.Jeevarathinam, Dept of CS, CA & IT, KAHE

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

SQL INSERT INTO SELECT Syntax

```
INSERT INTO table_name
[(column1, column2, .... column)]
SELECT column1, column2, .... Column N
FROM table_name [WHERE condition];
```

Note: when you add a new row, you should make sure that data type of the value and the column should be matched.

If any integrity constraints are defined for the table, you must follow them.

SQL INSERT INTO VALUE

There are two ways to insert values in a table.

In the first method there is no need to specify the column name where the data will be inserted, you need only their values.

```
INSERT INTO table_name
VALUES (value1, value2, value3....);
```

The second method specifies both the column name and values which you want to insert.

```
INSERT INTO table_name (column1, column2, column3....)
VALUES (value1, value2, value3.....);
```

Let's take an example of table which has five records within it.

```
INSERT INTO STUDENTS (ROLL_NO, NAME, AGE, CITY)
VALUES (1, ABHIRAM, 22, ALLAHABAD);
INSERT INTO STUDENTS (ROLL_NO, NAME, AGE, CITY)
VALUES (2, ALKA, 20, GHAZIABAD);
INSERT INTO STUDENTS (ROLL_NO, NAME, AGE, CITY)
VALUES (3, DISHA, 21, VARANASI);
INSERT INTO STUDENTS (ROLL_NO, NAME, AGE, CITY)
```

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

VALUES (4, ESHA, 21, DELHI);

INSERT INTO STUDENTS (ROLL_NO, NAME, AGE, CITY)

VALUES (5, MANMEET, 23, JALANDHAR);

It will show the following table as the final result.

ROLL_NO	NAME	AGE	СІТУ
1	ABHIRAM	22	ALLAHABAD
2	ALKA	20	GHAZIABAD
3	DISHA	21	VARANASI
4	ESHA	21	DELHI
5	MANMEET	23	JALANDHAR

You can create a record in CUSTOMERS table by using this syntax also.

INSERT INTO CUSTOMERS
VALUES (6, PRATIK, 24, KANPUR);

The following table will be as follow:

ROLL_NO	NAME	AGE	CITY
1	ABHIRAM	22	ALLAHABAD
2	ALKA	20	GHAZIABAD
3	DISHA	21	VARANASI
4	ESHA	21	DELHI
5	MANMEET	23	JALANDHAR
6	PRATIK	24	KANPUR

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

SQL SELECT

The most commonly used SQL command is **SELECT statement**. It is used to query the database and retrieve selected data that follow the conditions we want.

In simple words, we can say that the select statement used to query or retrieve data from a table in the database.

Let's see the syntax of select statement.

SELECT expressions

FROM tables

WHERE conditions;

Here expression is the column that we want to retrieve.

Tables indicate the tables, we want to retrieve records from.

Optional clauses in SELECT statement

There are some optional clauses in SELECT statement:

[WHERE Clause]: It specifies which rows to retrieve.

[GROUP BY Clause]: Groups rows that share a property so that the aggregate function can be applied to each group.

[HAVING Clause]: It selects among the groups defined by the GROUP BY clause.

[ORDER BY Clause]: It specifies an order in which to return the rows.

For example, let a database table: student_details;

ID	First_name	Last_name	Age	Subject	Hobby
1	Amar	Sharma	20	Maths	Cricket

Prepared By: A.Jeevarathinam, Dept of CS, CA & IT, KAHE

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

2	Akbar	Khan	22	Biology	Football
3	Anthony	Milton	25	Commerce	Gambling

From the above example, select the first name of all the students. To do so, query should be like this:

SELECT first_name **FROM** student_details;

Note: the SQL commands are not case sensitive. We can also write the above SELECT statement as:

select first name from student details;

Now, you will get following data:

Amar	
Akbar	
Anthony	

We can also retrieve data from more than one column. For example, to select first name and last name of all the students, you need to write

SELECT first_name, last_name **FROM** student_details;

Now, you will get following data:

Amar	Sharma
Akbar	Khan
Anthony	Milton

We can also use clauses like WHERE, GROUP BY, HAVING, ORDER BY with SELECT statement.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

Here a point is notable that only SELECT and FROM statements are necessary in SQL SELECT statements. Other clauses like WHERE, GROUP BY, ORDER BY, HAVING may be optional.

SQL SELECT DISTINCT

The **SQL DISTINCT command** is used with SELECT key word to retrieve only distinct or unique data.

In a table, there may be a chance to exist a duplicate value and sometimes we want to retrieve only unique values. In such scenarios, SQL SELECT DISTINCT statement is used.

Note: SQL SELECT UNIQUE and SQL SELECT DISTINCT statements are same.

Let's see the syntax of select distinct statement.

SELECT DISTINCT column_name ,column_name
FROM table_name;

Let's try to understand it by the table given below:

Student_Name	Gender	Mobile_Number	HOME_TOWN
Rahul Ojha	Male	7503896532	Lucknow
Disha Rai	Female	9270568893	Varanasi
Sonoo Jaiswal	Male	9990449935	Lucknow

10/49

Here is a table of students from where we want to retrieve distinct information For example: distinct home-town.

SELECT DISTINCT home_town **FROM** students

Now, it will return two rows.

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

HOME_TOWN

Lucknow

Varanasi

SQL SELECT COUNT

The **SQL COUNT()** function is used to return the number of rows in a query.

The COUNT() function is used with SQL SELECT statement and it is very useful to count the number of rows in a table having enormous data.

For example: If you have a record of the voters in selected area and want to count the number of voters then it is very difficult to do it manually but you can do it easily by using the SQL SELECT COUNT query.

Let's see the syntax of SQL COUNT statement.

SELECT COUNT (expression)

FROM tables

WHERE conditions:

Let's see the examples of sql select count function.

SQL SELECT COUNT(column_name)

SELECT COUNT(name) FROM employee table;

It will return the total number of names of employee_table. But null fields will not be counted.

SQL SELECT COUNT(*)

SELECT COUNT(*) FROM employee table;

The "select count(*) from table" is used to return the number of records in table.

Prepared By: A.Jeevarathinam, Dept of CS, CA & IT, KAHE

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

SQL SELECT COUNT(DISTINCT column_name)

SELECT COUNT(DISTINCT name) FROM employee table;

It will return the total distinct names of employee table.

SQL SELECT AS

SQL AS is used to assign temporarily a new name to a table column.

It makes easy presentation of query results and allows the developer to label results more accurately without permanently renaming table columns.

Let's see the example of select as:

SELECT day_of_order AS "Date"

Customer As "Client",

Product,

Quantity,

FROM orders;

Let us take a table named orders, it contains:

Day_of_order	Customer	Product	Quantity
11-09-2001	Ajeet	Mobile	2
13-12-2001	Mayank	Laptop	20
26-12-2004	Balaswamy	Water cannon	35

After applying this SQL AS example syntax

SELECT day_of_order **AS** "Date"

Customer As "Client",

Product,

Quantity,

Prepared By: A.Jeevarathinam, Dept of CS, CA & IT, KAHE

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

FROM orders;

Result will be shown as this table:

Date	Client	Product	Quantity
11-09-2001	Ajeet	Mobile	2
13-12-2001	Mayank	Laptop	20
26-12-2004	Balaswamy	Water cannon	35

Note: SQL AS is same as SQL ALIAS.

SQL SELECT IN

SQL IN is an operator used in a SQL query to help reduce the need to use multiple SQL "OR" conditions.

It is used in SELECT, INSERT, UPDATE or DELETE statement.

Advantage of SQL SELECT IN

It minimizes the use of SQL OR operator.

Let's see the syntax for SQL IN:

Expression IN (value 1, value 2 ... value n);

Take an example with character values.

SELECT *

FROM students

WHERE students_name IN (Amit , Raghav, Rajeev)

Let?s take another example with numeric values.

SELECT *

Prepared By: A.Jeevarathinam, Dept of CS, CA & IT, KAHE

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

FROM marks

WHERE roll_no IN (001, 023, 024);

SQL UPDATE

The SQL commands (*UPDATE* and *DELETE*) are used to modify the data that is already in the database. The SQL DELETE command uses a WHERE clause.

SQL UPDATE statement is used to change the data of the records held by tables. Which rows is to be update, it is decided by a condition. To specify condition, we use WHERE clause.

The UPDATE statement can be written in following form:

UPDATE table_name SET [column_name1= value1,... column_nameN = valueN] [WHERE
condition]

Let's see the Syntax:

UPDATE table_name
SET column_name = expression
WHERE conditions

Let's take an example: here we are going to update an entry in the source table.

SQL statement:

UPDATE students
SET User_Name = 'beinghuman'
WHERE Student_Id = '3'

Source Table:

Student_Id FirstName LastName User_Name

Prepared By: A.Jeevarathinam, Dept of CS, CA & IT, KAHE

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

1	Ada	Sharma	sharmili
2	Rahul	Maurya	sofamous
3	James	Walker	jonny

See the result after updating value:

Student_Id	FirstName	LastName	User_Name
1	Ada	Sharma	sharmili
2	Rahul	Maurya	sofamous
3	James	Walker	beinghuman

Updating Multiple Fields:

If you are going to update multiple fields, you should separate each field assignment with a comma.

SQL UPDATE statement for multiple fields:

UPDATE students
SET User_Name = 'beserious', First_Name = 'Johnny'
WHERE Student_Id = '3'

Result of the table is given below:

Student_Id	FirstName	LastName	User_Name
1	Ada	Sharma	sharmili
2	Rahul	Maurya	sofamous
3	Johnny	Walker	beserious

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

SQL DROP TABLE

A SQL DROP TABLE statement is used to delete a table definition and all data from a table.

This is very important to know that once a table is deleted all the information available in the table is lost forever, so we have to be very careful when using this command.

Let's see the syntax to drop the table from the database.

DROP TABLE "table_name";

Let us take an example:

First we verify STUDENTS table and then we would delete it from the database.

SQL> **DESC** STUDENTS;

FIELD	ТҮРЕ	NULL	KEY	DEFAULT	EXTRA
ID	Int(11)	NO	PRI		
NAME	Varchar(20)	NO			
AGE	Int(11)	NO			
ADDRESS	Varchar(25)	YES		NULL	

⁴ rows in set (0.00 sec)

This shows that STUDENTS table is available in the database, so we can drop it as follows:

SQL>DROP TABLE STUDENTS;

Now, use the following command to check whether table exists or not.

SQL> **DESC** STUDENTS;

Query OK, 0 rows affected (0.01 sec)

Prepared By: A.Jeevarathinam, Dept of CS, CA & IT, KAHE

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

As you can see, table is dropped so it doesn't display it.

SQL DELETE

The **SQL DELETE statement** is used to delete rows from a table. Generally DELETE statement removes one or more records from a table.

SQL DELETE Syntax

Let's see the Syntax for the SQL DELETE statement:

DELETE FROM table_name [WHERE condition];

Here table_name is the table which has to be deleted. The *WHERE clause* in SQL DELETE statement is optional here.

SQL DELETE Example

Let us take a table, named ?EMPLOYEE? table.

ID	EMP_NAME	СІТҮ	SALARY
101	Adarsh Singh	Obra	20000
102	Sanjay Singh	Meerut	21000
103	Priyanka Sharma	Raipur	25000
104	Esha Singhal	Delhi	26000

Example of delete with WHERE clause is given below:

DELETE FROM EMPLOYEE WHERE ID=101;

Resulting table after the query:

Prepared By: A.Jeevarathinam, Dept of CS, CA & IT, KAHE

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

ID	EMP_NAME	CITY	SALARY
102	Sanjay Singh	Meerut	21000
103	Priyanka Sharma	Raipur	25000
104	Esha Singhal	Delhi	26000

Another example of delete statement is given below

DELETE FROM EMPLOYEE;

Resulting table after the query:

ID	EMP_NAME	CITY	SALARY

It will delete all the records of EMPLOYEE table.

It will delete the all the records of EMPLOYEE table where ID is 101.

The WHERE clause in the SQL DELETE statement is optional and it identifies the rows in the column that gets deleted.

WHERE clause is used to prevent the deletion of all the rows in the table, If you don't use the WHERE clause you might loss all the rows.

SQL DELETE TABLE

The DELETE statement is used to delete rows from a table. If you want to remove a specific row from a table you should use WHERE condition.

DELETE FROM table_name [WHERE condition];

But if you do not specify the WHERE condition it will remove all the rows from the table.

Prepared By: A.Jeevarathinam, Dept of CS, CA & IT, KAHE

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

DELETE FROM table name;

There are some more terms similar to DELETE statement like as DROP statement and TRUNCATE statement but they are not exactly same there are some differences between them.

Difference between DELETE and TRUNCATE statements

There is a slight difference b/w delete and truncate statement. The **DELETE statement** only deletes the rows from the table based on the condition defined by WHERE clause or delete all the rows from the table when condition is not specified.

But it does not free the space containing by the table.

The **TRUNCATE statement**: it is used to delete all the rows from the table and free the containing space.

Let's see an "employee" table.

Emp_id	Name	Address	Salary
1	Aryan	Allahabad	22000
2	Shurabhi	Varanasi	13000
3	Pappu	Delhi	24000

Execute the following query to truncate the table:

TRUNCATE TABLE employee;

Difference b/w DROP and TRUNCATE statements

When you use the drop statement it deletes the table's row together with the table's definition so all the relationships of that table with other tables will no longer be valid.

When you drop a table:

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

o Table structure will be dropped

- o Relationship will be dropped
- o Integrity constraints will be dropped
- Access privileges will also be dropped

On the other hand when we **TRUNCATE** a table, the table structure remains the same, so you will not face any of the above problems.

SQL DELETE ROW

Let us take an example of student.

Original table:

ID	STUDENT_NAME	ADDRESS
001	AJEET MAURYA	GHAZIABAD
002	RAJA KHAN	LUCKNOW
003	RAVI MALIK	DELHI

If you want to delete a student with id 003 from the student_name table, then the SQL DELETE query should be like this:

DELETE FROM student_name WHERE id = 003;

Resulting table after SQL DELETE query:

ID	STUDENT_NAME	ADDRESS
001	AJEET MAURYA	GHAZIABAD
002	RAJA KHAN	LUCKNOW

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

SQL DELETE ALL ROWS

The statement SQL DELETE ALL ROWS is used to delete all rows from the table. If you want to delete all the rows from student table the query would be like,

DELETE FROM STUDENT_NAME;

Resulting table after using this query:

ID STUDENT_NAME ADDRE

SQL ALTER TABLE

The ALTER TABLE statement is used to add, modify or delete columns in an existing table. It is also used to rename a table.

You can also use SQL ALTER TABLE command to add and drop various constraints on an existing table.

SQL ALTER TABLE Add Column

If you want to add columns in SQL table, the SQL alter table syntax is given below:

ALTER TABLE table name ADD column name column-definition;

If you want to add multiple columns in table, the SQL table will be

SQL ALTER TABLE Modify Column

If you want to modify an existing column in SQL table, syntax is given below:

Prepared By: A.Jeevarathinam, Dept of CS, CA & IT, KAHE

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

ALTER TABLE table_name **MODIFY** column_name column_type;

If you want to modify multiple columns in table, the SQL table will be

More SQL

Complex Queries

The SQL AND & OR operators are used to combine multiple conditions to narrow data in an SQL statement. These two operators are called as the conjunctive operators.

These operators provide a means to make multiple comparisons with different operators in the same SQL statement.

The AND Operator

The AND operator allows the existence of multiple conditions in an SQL statement's WHERE clause.

Syntax

The basic syntax of the AND operator with a WHERE clause is as follows –

SELECT column1, column2, columnN

FROM table name

WHERE [condition1] AND [condition2]...AND [conditionN];

Prepared By: A.Jeevarathinam, Dept of CS, CA & IT, KAHE

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

You can combine N number of conditions using the AND operator. For an action to be taken by the SQL statement, whether it be a transaction or a query, all conditions separated by the AND must be TRUE.

Example

Consider the CUSTOMERS table having the following records -

Following is an example, which would fetch the ID, Name and Salary fields from the CUSTOMERS table, where the salary is greater than 2000 and the age is less than 25 years –

SQL> SELECT ID, NAME, SALARY FROM CUSTOMERS WHERE SALARY > 2000 AND age < 25;

This would produce the following result -

```
+----+
| ID | NAME | SALARY |
+----+
| 6 | Komal | 4500.00 |
| 7 | Muffy | 10000.00 |
+----+
```

The OR Operator

The OR operator is used to combine multiple conditions in an SQL statement's WHERE clause.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

Syntax

The basic syntax of the OR operator with a WHERE clause is as follows –

SELECT column1, column2, columnN

FROM table name

WHERE [condition1] OR [condition2]...OR [conditionN]

You can combine N number of conditions using the OR operator. For an action to be taken by the SQL statement, whether it be a transaction or query, the only any ONE of the conditions separated by the OR must be TRUE.

Example

Consider the CUSTOMERS table having the following records

```
+---+-----+----+-----+
| ID | NAME | AGE | ADDRESS | SALARY |
+---+------+
| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |
| 2 | Khilan | 25 | Delhi | 1500.00 |
| 3 | kaushik | 23 | Kota | 2000.00 |
| 4 | Chaitali | 25 | Mumbai | 6500.00 |
| 5 | Hardik | 27 | Bhopal | 8500.00 |
| 6 | Komal | 22 | MP | 4500.00 |
| 7 | Muffy | 24 | Indore | 10000.00 |
```

The following code block has query, which would fetch the ID, Name and Salary fields from the CUSTOMERS table, where the salary is greater than 2000 and the age is less than 25 years.

SQL> SELECT ID, NAME, SALARY FROM CUSTOMERS WHERE SALARY > 2000 OR age < 25;

This would produce the following result -

Prepared By: A.Jeevarathinam, Dept of CS, CA & IT, KAHE

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

+---+-----+
3	kaushik	2000.00
4	Chaitali	6500.00
5	Hardik	8500.00
6	Komal	4500.00
7	Muffy	10000.00

The NOT Operator

EX: SELECT Id, Name, salary FROM Customers WHERE NOT address = 'MP'

+---+----+
| ID | NAME | AGE | ADDRESS | SALARY |
+---+----+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
7	Muffy	24	Indore	10000.00

LIKE Clause

The SQL LIKE clause is used to compare a value to similar values using wildcard operators. There are two wildcards used in conjunction with the LIKE operator.

The percent sign (%)

The underscore ()

The percent sign represents zero, one or multiple characters. The underscore represents a single number or character. These symbols can be used in combinations.

Syntax

The basic syntax of % and is as follows –

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

SELECT FROM table name WHERE column LIKE 'XXXXX''

Or

SELECT FROM table name WHERE column LIKE 'XXXX'

Example

Following is an example, which would display all the records from the CUSTOMERS table, where the SALARY starts with 200.

SQL> SELECT * FROM CUSTOMERS WHERE SALARY LIKE '200%';

This would produce the following result -

TOP, LIMIT

Syntax

The basic syntax of the TOP clause with a SELECT statement would be as follows.

SELECT TOP number | percent column name(s)

FROM table_name

WHERE [condition]

The following query is an example on the SQL server, which would fetch the top 3 records from the CUSTOMERS table.

Prepared By: A.Jeevarathinam, Dept of CS, CA & IT, KAHE

26/49

CLASS : II.B.Sc CS : 2016 - 2019 BATCH **COURSE NAME: DTATBASE MANAGEMENT SYSTEM COURSE CODE: 16CSU403** UNIT III SQL> SELECT TOP 3 * FROM CUSTOMERS; This would produce the following result -+---+----+ | ID | NAME | AGE | ADDRESS | SALARY | +---+----+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | +---+----+ If you are using MySQL server, then here is an equivalent example -SQL> SELECT * FROM CUSTOMERS LIMIT 3; This would produce the following result -+---+----+ | ID | NAME | AGE | ADDRESS | SALARY | +----+-----| 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | +---+ If you are using an Oracle server, then the following code block has an equivalent example. SQL> SELECT * FROM CUSTOMERS WHERE ROWNUM <= 3; This would produce the following result -+---+ | ID | NAME | AGE | ADDRESS | SALARY | +---+----+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 |

Prepared By: A.Jeevarathinam, Dept of CS, CA & IT, KAHE

+---+

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

ORDER BY Clause

The SQL ORDER BY clause is used to sort the data in ascending or descending order, based on one or more columns. Some databases sort the query results in an ascending order by default.

Syntax

The basic syntax of the ORDER BY clause is as follows -

SELECT column-list

FROM table name

[WHERE condition]

[ORDER BY column1, column2, .. columnN] [ASC | DESC];

You can use more than one column in the ORDER BY clause. Make sure whatever column you are using to sort that column should be in the column-list.

Example

The following code block has an example, which would sort the result in an ascending order by the NAME and the SALARY –

SQL> SELECT * FROM CUSTOMERS ORDER BY NAME, SALARY;

This would produce the following result -

```
+---+----+
| ID | NAME | AGE | ADDRESS | SALARY |
+---+----+
| 4 | Chaitali | 25 | Mumbai | 6500.00 |
| 5 | Hardik | 27 | Bhopal | 8500.00 |
| 3 | kaushik | 23 | Kota | 2000.00 |
| 2 | Khilan | 25 | Delhi | 1500.00 |
| 6 | Komal | 22 | MP | 4500.00 |
```

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

The following code block has an example, which would sort the result in the descending order by NAME.

SQL> SELECT * FROM CUSTOMERS ORDER BY NAME DESC;

This would produce the following result -

Group By

The SQL GROUP BY clause is used in collaboration with the SELECT statement to arrange identical data into groups. This GROUP BY clause follows the WHERE clause in a SELECT statement and precedes the ORDER BY clause.

Syntax

The basic syntax of a GROUP BY clause is shown in the following code block. The GROUP BY clause must follow the conditions in the WHERE clause and must precede the ORDER BY clause if one is used.

SELECT column1, column2

FROM table name

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

WHERE [conditions]

GROUP BY column1, column2

ORDER BY column1, column2

Example

Now, let us look at a table where the CUSTOMERS table has the following records with duplicate names –

Now again, if you want to know the total amount of salary on each customer, then the GROUP BY query would be as follows –

SQL> SELECT NAME, SUM(SALARY) FROM CUSTOMERS GROUP BY NAME;

This would produce the following result -

```
+-----+
| NAME | SUM(SALARY) |
+-----+
| Hardik | 8500.00 |
| kaushik | 8500.00 |
| Komal | 4500.00 |
| Muffy | 10000.00 |
| Ramesh | 3500.00 |
```

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

SQL | Views

Views in SQL are kind of virtual tables. A view also has rows and columns as they are in a real table in the database. We can create a view by selecting fields from one or more tables present in the database. A View can either have all the rows of a table or specific rows based on certain condition.

Creating Views

Database views are created using the **CREATE VIEW** statement. Views can be created from a single table, multiple tables or another view.

To create a view, a user must have the appropriate system privilege according to the specific implementation.

The basic CREATE VIEW syntax is as follows -

```
CREATE VIEW view_name AS
SELECT column1, column2.....
FROM table_name
WHERE [condition];
```

You can include multiple tables in your SELECT statement in a similar way as you use them in a normal SQL SELECT query.

Example

Consider the CUSTOMERS table having the following records –

```
| The land | Lan
```

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

Following is an example to create a view from the CUSTOMERS table. This view would be used to have customer name and age from the CUSTOMERS table.

```
SQL > CREATE VIEW CUSTOMERS_VIEW AS

SELECT name, age

FROM CUSTOMERS;
```

Now, you can query CUSTOMERS_VIEW in a similar way as you query an actual table. Following is an example for the same.

```
SQL > SELECT * FROM CUSTOMERS_VIEW;
```

This would produce the following result.

```
+-----+
| name | age |
+-----+
| Ramesh | 32 |
| Khilan | 25 |
| kaushik | 23 |
| Chaitali | 25 |
| Hardik | 27 |
| Komal | 22 |
| Muffy | 24 |
+------+
```

Updating a View

Syntax:

UPDATE view-name

set value

WHERE condition;

SQL > UPDATE CUSTOMERS VIEW

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

```
SET AGE = 35

WHERE name = 'Ramesh';
```

This would ultimately update the base table CUSTOMERS and the same would reflect in the view itself. Now, try to query the base table and the SELECT statement would produce the following result.

Inserting Rows into a View

Rows of data can be inserted into a view. The same rules that apply to the UPDATE command also apply to the INSERT command.

Deleting Rows into a View

Rows of data can be deleted from a view. The same rules that apply to the UPDATE and INSERT commands apply to the DELETE command.

Following is an example to delete a record having AGE = 22.

```
SQL > DELETE FROM CUSTOMERS_VIEW

WHERE age = 22;
```

This would ultimately delete a row from the base table CUSTOMERS and the same would reflect in the view itself. Now, try to query the base table and the SELECT statement would produce the following result.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

Dropping Views

Obviously, where you have a view, you need a way to drop the view if it is no longer needed. The syntax is very simple and is given below –

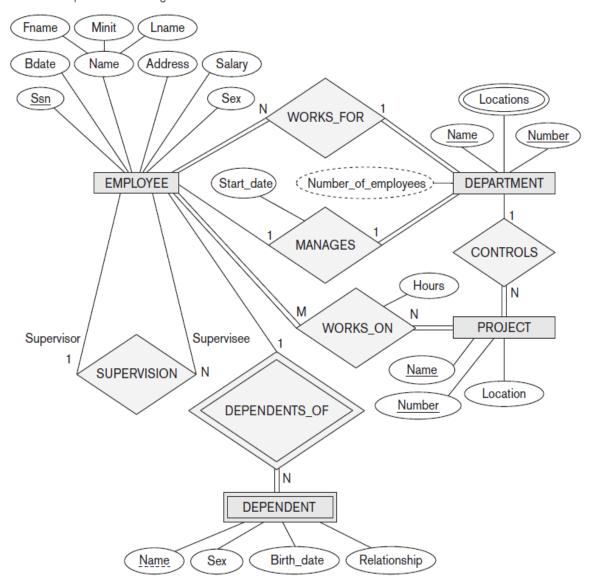
```
DROP VIEW view_name;
```

Following is an example to drop the CUSTOMERS_VIEW from the CUSTOMERS table.

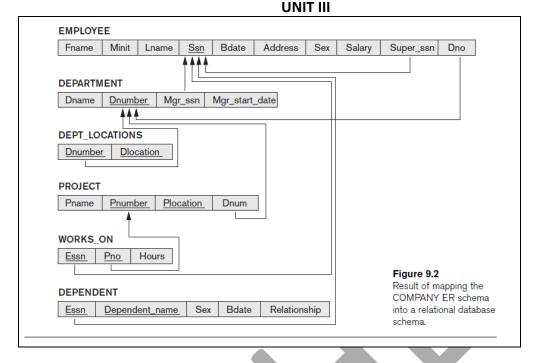
DROP VIEW CUSTOMERS_VIEW;

DATABASE DESIGN

Relational Database Design by ER- and EER-to Relational Mapping


Design a relational database schema Based on a conceptual schema design Seven-step algorithm to convert the basic ER model constructs into relations Additional steps for EER model

Mapping ER/EER model to relational database


CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

Figure 9.1
The ER conceptual schema diagram for the COMPANY database.

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

ER-to-Relational Mapping Algorithm

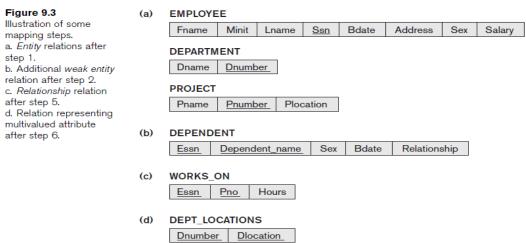
COMPANY database example

Assume that the mapping will create tables with simple single-valued attributes

Step 1: Mapping of Regular Entity Types

For each regular entity type, create a relation *R* that includes all the simple attributes of *E* Called **entity relations**

• Each tuple represents an entity instance


Step 2: Mapping of Weak Entity Types

For each weak entity type, create a relation *R* and include all simple attributes of the entity type as attributes of *R*

Include primary key attribute of owner as foreign key attributes of R

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

Step 3: Mapping of Binary 1:1 Relationship

Types

For each binary 1:1 relationship type Identify relations that correspond to entity types participating in R

Possible approaches:

- Foreign key approach
- Merged relationship approach
- Crossreference or relationship relation approach

Step 4: Mapping of Binary 1:N Relationship Types

For each regular binary 1:N relationship type

- Identify relation that represents participating entity type at *N*-side of relationship type
 - Include primary key of other entity type as foreign key in S
 - Include simple attributes of 1:N relationship type as attributes of S

Alternative approach

• Use the **relationship relation** (cross-reference) option as in the third option for binary 1:1 relationships

Step 5: Mapping of Binary M:N Relationship

Types

For each binary M:N relationship type

Create a new relation S

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

Include primary key of participating entity types as foreignkey attributes inS

• Include any simple attributes of M:N relationship type

Step 6: Mapping of Multivalued Attributes

For each multivalued attribute

- Create a new relation
- Primary key of R is the combination of A and K
- If the multivalued attribute is composite, include its simple components

Step 7: Mapping of *N*-ary Relationship Types

For each *n*-ary relationship type *R*

- Create a new relation S to represent R
- Include primary keys of participating entity types as foreign keys
- Include any simple attributes as attributes

Table 9.1 Correspondence between ER and Relational Models

ER MODEL	RELATIONAL MODEL
Entity type	Entity relation
1:1 or 1:N relationship type	Foreign key (or relationship relation)
M:N relationship type	Relationship relation and two foreign keys
<i>n</i> -ary relationship type	Relationship relation and n foreign keys
Simple attribute	Attribute
Composite attribute	Set of simple component attributes
Multivalued attribute	Relation and foreign key
Value set	Domain
Key attribute	Primary (or secondary) key

In a relational schema relationship, types are not represented explicitly Represented by having two attributes A and B: one a primary key and the other a foreign key

Mapping EER Model Constructs to Relations

Extending ER-to-relational mapping Algorithm

Mapping of Specialization or Generalization

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

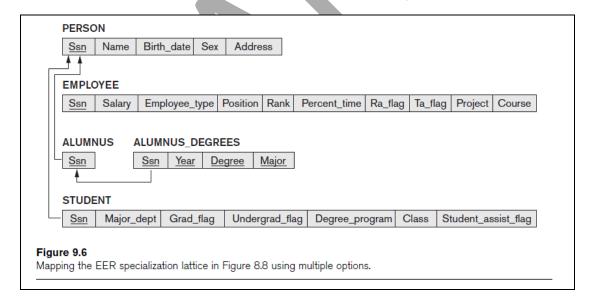
Step 8: Options for Mapping Specialization or Generalization

Option 8A: Multiple relations—superclass and subclasses

• For any specialization (total or partial, disjoint or overlapping)

Option 8B: Multiple relations—subclass relations only

- Subclasses are total
- Specialization has disjointedness constraint


Option 8C: Single relation with one type attribute

- Type or discriminating attribute indicates subclass of tuple
- Subclasses are disjoint
- Potential for generating many NULL values if many specific attributes exist in the subclasses

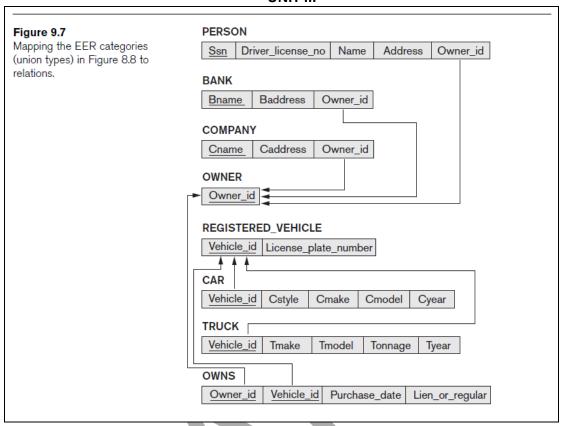
Option 8D: Single relation with multiple type attributes

- Subclasses are overlapping
- Will also work for a disjoint specialization

Apply any of the options discussed in step 8 to a shared subclass

Step 9: Mapping of Union Types (Categories)

Defining superclasses have different keys Specify a new key attribute


Surrogate key

CLASS: II.B.Sc CS

COURSE NAME: DTATBASE MANAGEMENT SYSTEM

UNIT III

COURSE CODE: 16CSU403

Summary

Map conceptual schema design in the ER model to a relational database schema Algorithm for ER-to-relational mapping

Illustrated by examples from the COMPANY database

Include additional steps in the algorithm for mapping constructs from EER model into relational model

What is functional dependency?

- **Functional Dependency** is a relationship that exists between multiple attributes of a relation.
- This concept is given by E. F. Codd.
- Functional dependency represents a formalism on the infrastructure of relation.
- It is a type of constraint existing between various attributes of a relation.
- It is used to define various normal forms.
- These dependencies are restrictions imposed on the data in database.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

 If P is a relation with A and B attributes, a functional dependency between these two attributes is represented as {A → B}. It specifies that,

А	It is a determinant set.
В	It is a dependent attribute.
,	A functionally determines B.
	B is a functionally dependent on A.

- Each value of A is associated precisely with one B value. A functional dependency is trivial if B is a subset of A.
- 'A' Functionality determines 'B' $\{A \rightarrow B\}$ (Left hand side attributes determine the values of Right hand side attributes).

For example: <Employee> Table

Empld	EmpName

- In the above <Employee> table, EmpName (employee name) is functionally dependent on EmpId (employee id) because the EmpId is unique for individual names.
- The Empld identifies the employee specifically, but EmpName cannot distinguish the Empld because more than one employee could have the same name.
- The functional dependency between attributes eliminates the repetition of information.
- It is related to a candidate key, which uniquely identifies a tuple and determines the value of all other attributes in the relation.

Advantages of Functional Dependency

- Functional Dependency avoids data redundancy where same data should not be repeated at multiple locations in same database.
- It maintains the quality of data in database.

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

- It allows clearly defined meanings and constraints of databases.
- It helps in identifying bad designs.
- It expresses the facts about the database design.

Introduction to Axioms Rules

- Armstrong's Axioms is a set of rules.
- It provides a simple technique for reasoning about functional dependencies.
- It was developed by William W. Armstrong in 1974.
- It is used to infer all the functional dependencies on a relational database.

Various Axioms Rules

A. Primary Rules

Rule 1	Reflexivity If A is a set of attributes and B is a subset of A, then A holds B. $\{A \rightarrow B\}$
Rule 2	Augmentation If A hold B and C is a set of attributes, then AC holds BC. $\{AC \rightarrow BC\}$ It means that attribute in dependencies does not change the basic dependencies.
Rule 3	Transitivity If A holds B and B holds C, then A holds C. If $\{A \to B\}$ and $\{B \to C\}$, then $\{A \to C\}$ A holds B $\{A \to B\}$ means that A functionally determines B.

B. Secondary Rules

Rule 1	Union If A holds B and A holds C, then A holds BC. If $\{A \rightarrow B\}$ and $\{A \rightarrow C\}$, then $\{A \rightarrow BC\}$
Rule 2	Decomposition If A holds BC and A holds B, then A holds C. If $\{A \rightarrow BC\}$ and $\{A \rightarrow B\}$, then $\{A \rightarrow C\}$

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

Rule 3	Pseudo Transitivity
	If A holds B and BC holds D, then AC holds D.
	If $\{A \rightarrow B\}$ and $\{BC \rightarrow D\}$, then $\{AC \rightarrow D\}$

Sometimes Functional Dependency Sets are not able to reduce if the set has following properties,

- 1. The Right-hand side set of functional dependency holds only one attribute.
- 2. The Left-hand side set of functional dependency cannot be reduced, it changes the entire content of the set.
- 3. Reducing any functional dependency may change the content of the set.

A set of functional dependencies with the above three properties are also called as **Canonical or Minimal.**

Trivial Functional Dependency

Trivial	If A holds B $\{A \rightarrow B\}$, where A is a subset of B, then it is called a Trivial Functional Dependency . Trivial always holds Functional Dependency.
Non-Trivial	If A holds B $\{A \rightarrow B\}$, where B is not a subset A, then it is called as a Non-Trivial Functional Dependency.
Completely Non- Trivial	If A holds B $\{A \rightarrow B\}$, where A intersect Y = Φ , it is called as a Completely Non-Trivial Functional Dependency.

Example:

Consider relation E = (P, Q, R, S, T, U) having set of Functional Dependencies (FD).

 $P \rightarrow Q$ $P \rightarrow R$ $QR \rightarrow S$ $Q \rightarrow T$ $QR \rightarrow U$ $PR \rightarrow U$

Calculate some members of Axioms are as follows,

1. $P \rightarrow T$

2. PR \rightarrow S

3. QR \rightarrow SU

4. PR \rightarrow SU

Solution:

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

1. P \rightarrow T

In the above FD set, $P \rightarrow Q$ and $Q \rightarrow T$

So, Using Transitive Rule: If $\{A \rightarrow B\}$ and $\{B \rightarrow C\}$, then $\{A \rightarrow C\}$

 \therefore If P \rightarrow Q and Q \rightarrow T, then P \rightarrow T.

 $P \rightarrow T$

2. PR \rightarrow S

In the above FD set, $P \rightarrow Q$

As, QR \rightarrow S

So, Using Pseudo Transitivity Rule: If $\{A \rightarrow B\}$ and $\{BC \rightarrow D\}$, then $\{AC \rightarrow D\}$

 \therefore If P \rightarrow Q and QR \rightarrow S, then PR \rightarrow S.

 $PR \rightarrow S$

3. QR → SU

In above FD set, QR \rightarrow S and QR \rightarrow U

So, Using Union Rule: If{A \rightarrow B} and {A \rightarrow C}, then {A \rightarrow BC}

 \therefore If QR \rightarrow S and QR \rightarrow U, then QR \rightarrow SU.

 $QR \rightarrow SU$

4. PR \rightarrow SU

So, Using Pseudo Transitivity Rule: If $\{A \rightarrow B\}$ and $\{BC \rightarrow D\}$, then $\{AC \rightarrow D\}$

 \therefore If PR \rightarrow S and PR \rightarrow U, then PR \rightarrow SU.

 $PR \rightarrow SU$

What is decomposition?

- Decomposition is the process of breaking down in parts or elements.
- It replaces a relation with a collection of smaller relations.
- It breaks the table into multiple tables in a database.
- It should always be lossless, because it confirms that the information in the original relation can be accurately reconstructed based on the decomposed relations.
- If there is no proper decomposition of the relation, then it may lead to problems like loss of information.

Properties of Decomposition

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

Following are the properties of Decomposition,

1. Lossless Decomposition

- 2. Dependency Preservation
- 3. Lack of Data Redundancy

1. Lossless Decomposition

- Decomposition must be lossless. It means that the information should not get lost from the relation that is decomposed.
- It gives a guarantee that the join will result in the same relation as it was decomposed.

Example:

Let's take 'E' is the Relational Schema, With instance 'e'; is decomposed into: E1, E2, E3, En; With instance: e1, e2, e3, en, If e1 \bowtie e2 \bowtie e3 \bowtie en, then it is called as 'Lossless Join Decomposition'.

• In the above example, it means that, if natural joins of all the decomposition give the original relation, then it is said to be lossless join decomposition.

Example: <Employee_Department> Table

Eid	Ename	Age	City	Salary	Deptid	DeptName
E001	ABC	29	Pune	20000	D001	Finance
E002	PQR	30	Pune	30000	D002	Production
E003	LMN	25	Mumbai	5000	D003	Sales
E004	XYZ	24	Mumbai	4000	D004	Marketing
E005	STU	32	Bangalore	25000	D005	Human Resource

- Decompose the above relation into two relations to check whether a decomposition is lossless or lossy.
- Now, we have decomposed the relation that is Employee and Department.

Eid	Ename	Age	City	Salary
E001	ABC	29	Pune	20000

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

E002	PQR	30	Pune	30000
E003	LMN	25	Mumbai	5000
E004	XYZ	24	Mumbai	4000
E005	STU	32	Bangalore	25000

Relation 1 : <Employee> Table

Employee Schema contains (Eid, Ename, Age, City, Salary).

Relation 2 : < Department > Table

Deptid	Eid	DeptName		
D001	E001	Finance		
D002	E002	Production		
D003	E003	Sales		
D004	E004	Marketing		
D005	E005	Human Resource		

- Department Schema contains (Deptid, Eid, DeptName).
- So, the above decomposition is a Lossless Join Decomposition, because the two relations contains one common field that is 'Eid' and therefore join is possible.
 - Now apply natural join on the decomposed relations.

Employee ⋈ **Department**

Eid	Ename	Age	City	Salary	Deptid	DeptName
E001	ABC	29	Pune	20000	D001	Finance
E002	PQR	30	Pune	30000	D002	Production
E003	LMN	25	Mumbai	5000	D003	Sales
E004	XYZ	24	Mumbai	4000	D004	Marketing

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

E005 STO 32 Bangaiore 25000 D005 Human Resour	E005	STU	32	Bangalore	25000	D005	Human Resource
---	------	-----	----	-----------	-------	------	----------------

Hence, the decomposition is Lossless Join Decomposition.

If the <Employee> table contains (Eid, Ename, Age, City, Salary) and
 <Department> table contains (Deptid and DeptName), then it is not possible to join the two tables or relations, because there is no common column between them. And it becomes Lossy Join Decomposition.

2. Dependency Preservation

- Dependency is an important constraint on the database.
- Every dependency must be satisfied by at least one decomposed table.
- If $\{A \rightarrow B\}$ holds, then two sets are functional dependent. And, it becomes more useful for checking the dependency easily if both sets in a same relation.
- This decomposition property can only be done by maintaining the functional dependency.
- In this property, it allows to check the updates without computing the natural join of the database structure.

3. Lack of Data Redundancy

- Lack of Data Redundancy is also known as a **Repetition of Information**.
- The proper decomposition should not suffer from any data redundancy.
- The careless decomposition may cause a problem with the data.
- The lack of data redundancy property may be achieved by Normalization process.

POSSIBLE QUESTIONS

2 MARK QUESTIONS

- 1. What is a view?
- 2. Define referential integrity.
- 3. Mention the difference between drop and truncate command in SQL.
- 4. Define Triggers.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

5. Define constraints

- 6. Write any seven attributes of student entity.
- 7. Define Concatenation operator.
- 8. Define functional dependencies.
- 9. Define candidate key with example.
- 10. Write syntax for any 2 set operators.
- 11. Define triggers with example.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT III

6 MARK QUESTIONS

- 1. What is Functional Dependency? Explain types and properties of FD's.
- 2. Explain the following with example
 - i. i) INSERT II) UPDATE
- III) DROP
- 3. Briefly explain about views of data with proper example.
- 4. Discuss Lossless decomposition with neat sketch
- 5. Explain with example.
- i) Complex Queries ii) Views
- 6. How to Map ER/EER model to relational database?
- 7. Explain the advantages of decomposition? Discuss the problems faced in decomposition.
- 8. Explain with example i) Aggregation functions. Ii) UPDATE Statements in SQL

KARPAGAM ACADEMY OF HIGHER EDUCATION DEPARTMENT OF COMPUTER SCIENCE II BSc CS BATCH(2016 - 2019) PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS UNIT-3

sno	Questions	opt1	opt2	opt3	opt4	Answer
1		Structured Query	Strong Question	Structured	Structure Query	Structured Query
1	What does SQL stand for?	Language	Language	Question Language		Language
2	Create.Alter,Drop commands are language commands	DML	TCL	DCL	DDL	DDL
3	Insert,Select,Update,delete commands are language commands	DML	TCL	DCL	DDL	DML
4	Selection Operation is used tofrom a relation	Select the columns	Select the rows	Select the table	none.	Select the rows
5	command is used to remove the table definition information	Delete	Remove	Destroy	Drop	Drop
6	is used to modify the structure of an existing table.	Modify	Alter	Change	Recreate	Alter
7	View can be dropped usingcommand	Delete View	Remove View	Replace View	Drop View	Drop View
8	columns are not allowed to contain null values	Primary Key	Candidate key	foreign Key	Unique Key	Primary Key
9	are valuable to give the security to our original table	Original table	Duplicate table	Views	Tables	Views
10	clause is used to modify a particular row.	Update	Modify	Alter	Where	Where
11	is a condition specified on a database schema & restricts the data that can be stored in an instance of the database. A set of fletus that uniquely identifies a tuple	integrity Constraint	restriction	key	check	integrity Constraint
12	according to a key constraint is called for the	primary key	Candidate key	foreign key	Super key	Candidate key
13	is used to refer the primary key in another entity	Candidate key	referential key	foreign key	Primary key	foreign key
14	value is unknown or not applicable	not null	zero	unknown	null	null
15	statement is used to define a new table.	Create	Produce	Insert	Add	Create
_	Rows are inserted using thecommand	Create	Insert	Add	Make	Insert
17	rows are deleted using the command	Delete	drop	remove	alter	Delete
18	Modify the column values in an existing row using command	Modify	Alter	Update	Change	Update
19	command is used to remove the table definition information	Delete	Remove	Destroy	Drop	Drop
20	is used to modify the structure of an existing table.	Modify	Alter	Change	Recreate	Alter
21	View can be dropped usingcommand	Delete View	Remove View	Replace View	Drop View	Drop View
22	Duplicates are eliminated by using keyword.	Remove	Distinct	RM	Redundant	Distinct
23	is a query that has another query embedded within it to calculate the number of values in the	Query	Subquery	QBE	QUEL	Subquery
24	Column.	Count	aggregate	Cal	Calculate	Count
25	_ is used to calculate the sum of all values in the column	Total	Sum	Count	Collection	Sum
26	is used to calculate the average of all values in the column	Total	Sum	Average	avg	avg
27	Which function is used to extract the maximum values in the relations?	max	maximum	excess	large	max
28	Which function is used to extract the maximum values in the relations?	Small	minimum	lower	min	min
29	Which clause is used, when we are using Group by clause, instead of where clause?	where	Having	Distinct	Group	Having
30	is used when the column value is either unknown or inapplicable.	zero	all	Empty	null	null
31	keyword specifies that the join condition is equality on all common attributes and the where clause is not required.	full outerjoin	left outer join	Natural	Right outerjoin	Natural
32	constraints for a single table.	Assertion	table constraints	default	union	table constraints
33	keyword is used to assign a default value with a domain.	Static	Default	Permanent	distinct	Default
34	Which constraint is used to check the ranges in the column values?	range	verify	check	condition	check
35	operator is another set comparison operator such as IN.	Exists	IN	avail	present	Exists
36	Which keyword is similar to NOT IN?	Exist	IN	Not EXIST	Except	Except
	Which keyword is similar to IN?	Exist	IN	Not EXIST	Except	Exist
		SELECT	SELECT	SELECT	SELECT	SELECT
38	With SQL, how can you return the number of records in the "Persons" table?	COLUMNS(*) FROM Persons	COUNT() FROM Persons	COUNT(*) FROM Persons	COLUMNS() FROM Persons	COUNT(*) FROM Persons

_					ı	ı
					MODIFY	UPDATE
		UPDATE Persons	MODIFY Persons	UPDATE Persons	Persons SET	Persons SET
39		SET	SET	SET		LastName='Nilsen
		LastName='Nilsen'	LastName='Hanse	LastName='Hansen		' WHERE
	How can you change "Hansen" into "Nilsen" in the	WHERE	n' INTO	' INTO		LastName='Hanse
	"LastName" column in the Persons table?	LastName='Hansen'	LastName='Nilsen	LastName='Nilsen'	n'	n'
4.0			SELECT * FROM		SELECT *	SELECT *
40	With SQL, how can you return all the records from a	SELECT * FROM	Persons ORDER	SELECT * FROM	FROM Persons	FROM Persons
	table named "Persons" sorted descending by	Persons SORT	BY FirstName	Persons ORDER	SORT BY	ORDER BY
	"FirstName"?	'FirstName' DESC	DESC	FirstName DESC		FirstName DESC
41	Which SQL keyword is used to sort the result-set?	ORDER	SORT	SORT BY	ORDER BY	ORDER BY
	With SQL, how do you select all the records from a	SELECT * FROM	SELECT * FROM	SELECT * FROM	SELECT *	SELECT *
	table named "Persons" where the value of the column	Persons WHERE	Persons WHERE	Persons WHERE	FROM Persons	FROM Persons
42	"FirstName" starts with an "a"?	FirstName LIKE '%a'	FirstName='a'	FirstName LIKE	WHERE	WHERE
				'a%'	FirstName='%a%'	FirstName LIKE
	X	CID (COLDIT	TOTAL I	LABOROT	'a%'
4.2	You need to calculate the total of all salaries in the	SUM	COUNT	TOTAL	LARGEST	SUM
43	accounting department. Which group function should					
	you use?	46 1 45	46 1 45 02	50 1 45 02	50 1 45 0	46 1 45 02
44	SELECT ROUND (45.953, -1), TRUNC (45.936, 2)	46 and 45	46 and 45.93	50 and 45.93	50 and 45.9	46 and 45.93
	FROM dual; which values are displayed?					
45						
	Select operator is not a unary operator	TRUE	FALSE	not opeator	operator	FALSE
46						
	Project operator chooses subset of attributes or	TDIE	EALCE		,	TDIE
	columns of a relation	TRUE	FALSE	not opeator	operator	TRUE
47	database is used as template for all databases created.	Master	Model	T 11-	None of the above	M - 1-1
	databases created.	Master	Model	Tempdb	None of the above	Model
48	One aspect that has to be dealt with by the integrity					
	subsystem is to ensure that only valid values can be	D . 0	ъ.	D . G . 1	D 1 T 1	D
	assigned to each data items. This is referred to as	Data Security	Domain access	Data Control	Domain Integrity	Domain Integrity
49	operator is basically a join followed	T .	G . I .	D 11 T .		G . T .
	by a project on the attributes of first relation.	Join	Semi-Join	Full Join	Inner Join	Semi-Join
50	Which of the following is not a binary operator in					
	relational algebra?	Join	Semi-Join	Assignment	Project	Project
	Centralizing the integrity checking directly under the					
51	DBMS duplication and ensures the	T	Cl-i	D	D - d	D - d
	consistency and validity of the database.	Increases	Skips	Does not reduce	Reduces	Reduces
	Which of the following is/are the DDL statements? In snapshot,	Create	Drop	Alter	All of the above	All of the above
53	ln snapshot,	Complete	Force	Nevt	Dafrach	Refresh
	defines rules regarding the values	Complete	Force	Next	Refresh	Kellesii
5.1	allowed in columns and is the standard mechanism for					
34		Column	Constraint	Index	Trigger	Constraint
-	enforcing database integrity. If B is a subset of A ,then A→B	Colulliii	Constraint	muex	1118861	Constraint
55	indicates A ,then A→B	Reflexivity	Augmentation	Transitivity	Decomposition	Reflexivity
56		Reflexivity	Augmentation	Transitivity	Decomposition	Augmentation
	If $A \rightarrow B$ and $B \rightarrow C$, then $A \rightarrow C$				•	
57	indicates	Reflexivity	Augmentation	Transitivity	Decomposition	Transitivity
50	If $A \rightarrow BC$, then $A \rightarrow B$ and $A \rightarrow C$	D - flii	A	Tidinid	D	D
58	indicates	Reflexivity	Augmentation	Transitivity	Decomposition	Decomposition
59	If $A \rightarrow B$ and $A \rightarrow C$, then $A \rightarrow BC$	Paflavivity	Augmentation	Trancitivity	Union	Union
39	indicates	Reflexivity	Augmentation	Transitivity	Union	Union
60	If $A \rightarrow B$ and $C \rightarrow D$, then $AC \rightarrow BD$	Composition	Augmentation	Transitivity	Union	Composition
00	indicates	Composition	2 raginemation	11 anomivity	Omon	Composition

CLASS : II.B.Sc CS BATCH : 2016 - 2019 **COURSE CODE: 16CSU403**

COURSE NAME: DTATBASE MANAGEMENT SYSTEM

UNIT IV

SYLLABUS

Database design: Normal forms (upto BCNF). Transaction Processing: ACID properties,

concurrency control

Normal forms (upto BCNF).

Introduction to Normalization

- **Normalization** is a process of organizing the data in the database.
- It is a systematic approach of decomposing tables to eliminate data redundancy.
- It was developed by E. F. Codd.
- Normalization is a multi-step process that puts the data into a tabular form by removing the duplicate data from the relation tables.
- It is a step by step decomposition of complex records into simple records.
- It is also called as Canonical Synthesis.
- It is the technique of building database structures to store data.

Definition of Normalization

"Normalization is a process of designing a consistent database by minimizing redundancy and ensuring data integrity through decomposition which is lossless."

Features of Normalization

- Normalization avoids the data redundancy.
- It is a formal process of developing data structures.
- It promotes the data integrity.
- It ensures data dependencies make sense that means data is logically stored.
- It eliminates the undesirable characteristics like Insertion, Updation and Deletion Anomalies.

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT IV

Types of Normalization

Following are the types of Normalization:

- 1. First Normal Form
- 2. Second Normal Form
- 3. Third Normal Form
- 4. Fourth Normal Form
- 5. Fifth Normal Form
- 6. BCNF (Boyce Codd Normal Form)
- 7. DKNF (Domain Key Normal Form)

1. First Normal Form (1NF)

- First Normal Form (1NF) is a simple form of Normalization.
- It simplifies each attribute in a relation.
- In 1NF, there should not be any repeating group of data.
- Each set of column must have a unique value.
- It contains atomic values because the table cannot hold multiple values.

Example: Employee Table

ECode	Employee_Name	Department_Name
1	ABC	Sales, Production
2	PQR	Human Resource
3	XYZ	Quality Assurance, Marketing

Employee Table using 1NF

ECode	Employee_Name	Department_Name
1	ABC	Sales

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT IV

1	ABC	Production
2	PQR	Human Resource
3	XYZ	Quality Assurance
3	XYZ	Marketing

2. Second Normal Form (2NF)

- In 2NF, the table is required in 1NF.
- The main rule of 2NF is, 'No non-prime attribute is dependent on the proper subset of any candidate key of the table.'
 - An attribute which is not part of candidate key is known as non-prime attribute.

Example: Employee Table using 1NF

ECode	Employee_Name	Employee_Age
1	ABC	38
1	ABC	38
2	PQR	38
3	XYZ	40
3	XYZ	40

Candidate Key: ECode, Employee_Name Non prime attribute: Employee_Age

• The above table is in 1NF. Each attribute has atomic values. However, it is not in 2NF because non prime attribute Employee_Age is dependent on ECode alone, which is a proper subset of candidate key. This violates the rule for 2NF as the rule says 'No non-prime attribute is dependent on the proper subset of any candidate key of the table'.

2NF (Second Normal Form): Employee1 Table

ECode	Employee_Age
-------	--------------

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT IV

1	38
2	38
3	40

Employee2 Table

ECode	Employee_Name
1	ABC
1	ABC
2	PQR
3	XYZ
3	XYZ

• Now, the above tables comply with the Second Normal Form (2NF).

3. Third Normal Form (3NF)

- Third Normal Form (3NF) is used to minimize the transitive redundancy.
- In 3NF, the table is required in 2NF.
- While using the 2NF table, there should not be any transitive partial dependency.
- 3NF reduces the duplication of data and also achieves the data integrity.

Example: <Employee> Table

Eld	Ename	DOB	City	State	Zip
001	ABC	10/05/1990	Pune	Maharashtra	411038
002	XYZ	11/05/1988	Mumbai	Maharashtra	400007

• In the above <Employee> table, Eld is a primary key but City, State depends upon Zip code.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT IV

• The dependency between Zip and other fields is called Transitive Dependency.

• Therefore we apply 3NF. So, we need to move the city and state to the new <Employee_Table2> table, with Zip as a Primary key.

<Employee_Table1> Table

Eld	Ename	DOB	Zip
001	ABC	10/05/1990	411038
002	XYZ	11/05/1988	400007

<Employee_Table2> Table

City	State	Zip
Pune	Maharashtra	411038
Mumbai	Maharashtra	400007

- The advantage of removing transitive dependency is, it reduces the amount of data dependencies and achieves the data integrity.
- In the above example, using with the 3NF, there is no redundancy of data while inserting the new records.
- The City, State and Zip code will be stored in the separate table. And therefore the updation becomes more easier because of no data redundancy.

4. BCNF (Boyce - Code Normal Form)

- BCNF which stands for Boyce Code Normal From is developed by Raymond F. Boyce and E. F. Codd in 1974.
 - BCNF is a higher version of 3NF.
 - It deals with the certain type of anomaly which is not handled by 3NF.
- A table complies with BCNF if it is in 3NF and any attribute is fully functionally dependent that is $A \rightarrow B$. (Attribute 'A' is determinant).

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT IV

• If every determinant is a candidate key, then it is said to be BCNF.

• Candidate key has the ability to become a primary key. It is a column in a table.

Example: < Employee Main > Table

Empid	Ename	DeptName	DepType
E001	ABC	Production	D001
E002	XYZ	Sales	D002

The functional dependencies are:

Empid → EmpName DeptName → DeptType

Candidate Key:

Empid

DeptName

- The above table is not in BCNF as neither Empid nor DeptName alone are keys.
- We can break the table in three tables to make it comply with BCNF.

<Employee> Table

	Empid	EmpName
E001		ABC
E002		XYZ

<Department> Table

DeptName	DeptType
Production	D001
Sales	D002

<Emp_Dept> Table

Empid	DeptName
-------	----------

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT IV

E001	Production
E002	Sales

Now, the functional dependencies are:

Empid → EmpName DeptName → DeptType

Candidate Key:

<Employee> Table : Empid
<Department> Table : DeptType
<Emp Dept> Table : Empid, DeptType

• So, now both the functional dependencies left side part is a key, so it is in the BCNF.

5. Fourth Normal Form (4NF)

- Fourth Normal Form (4NF) does not have non-trivial multivalued dependencies other than a candidate key.
 - 4NF builds on the first three normal forms (1NF, 2NF and 3NF) and the BCNF.
 - It does not contain more than one multivalued dependency.
 - This normal form is rarely used outside of academic circles.

For example : A table contains a list of three things that is 'Student', 'Teacher', 'Book'. Teacher is in charge of Student and recommended book for each student. These three elements (Student, Teacher and Book) are independent of one another. Changing the student's recommended book, for instance, has no effect on the student itself. This is an example of multivalued dependency, where an item depends on more than one value. In this example, the student depends on both teacher and book.

• Therefore, 4NF states that a table should not have more than one dependencies.

6. Fifth Normal Form (5NF)

• 5NF is also knows as Project-Join Normal Form (PJ/NF).

CLASS: II.B.Sc CS

COURSE NAME: DTATBASE MANAGEMENT SYSTEM

UNIT IV

BATCH: 2016 - 2019

COURSE CODE: 16CSU403

- It is designed for reducing the redundancy in relational databases.
- 5NF requires semantically related multiple relationships, which are rare.
- In 5NF, if an attribute is multivalued attribute, then it must be taken out as a separate entity.
 - While performing 5NF, the table must be in 4NF.

7. DKNF (Domain Key Normal Form)

- DKNF stands for Domain Key Normal Form requires the database that contains no constraints other than domain constraints and key constraints.
 - In DKNF, it is easy to build a database.
- It avoids general constraints in the database which are not clear domain or key constraints.
 - The 3NF, 4NF, 5NF and BCNF are special cases of the DKNF.
- It is achieved when every constraint on the relation is a logical consequence of the definition.

Transaction Processing

What is Transaction?

A set of logically related operations is known as transaction. The main operations of a transaction are:

Read(A): Read operations Read(A) or R(A) reads the value of A from the database and stores it in a buffer in main memory.

Write (A): Write operation Write(A) or W(A) writes the value back to the database from buffer.

Let us take a debit transaction from an account which consists of following operations:

R(A); A=A-1000; W(A);

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT IV

Assume A's value before starting of transaction is 5000.

The first operation reads the value of A from database and stores it in a buffer. Second operation will decrease its value by 1000. So buffer will contain 4000. Third operation will write the value from buffer to database. So A's final value will be 4000.

But it may also be possible that transaction may fail after executing some of its operations. The failure can be because of **hardware**, **software or power** etc. For example, if debit transaction discussed above fails after executing operation 2, the value of A will remain 5000 in the database which is not acceptable by the bank. To avoid this, Database has two important operations:

Commit: After all instructions of a transaction are successfully executed, the changes made by transaction are made permanent in the database.

Rollback: If a transaction is not able to execute all operations successfully, all the changes made by transaction are undone.

Properties of a transaction

Atomicity: As a transaction is set of logically related operations, either all of them should be executed or none. A debit transaction discussed above should either execute all three operations or none. If debit transaction fails after executing operation 1 and 2 then its new value 4000 will not be updated in the database which leads to inconsistency.

Consistency: If operations of debit and credit transactions on same account are executed concurrently, it may leave database in an inconsistent state.

For Example, T1 (debit of Rs. 1000 from A) and T2 (credit of 500 to A) executing concurrently, the database reaches inconsistent state.

Let us assume Account balance of A is Rs. 5000. T1 reads A(5000) and stores the value in its local buffer space. Then T2 reads A(5000) and also stores the value in its local buffer space.

T1 performs A=A-1000 (5000-1000=4000) and 4000 is stored in T1 buffer space. Then T2 performs A=A+500 (5000+500=5500) and 5500 is stored in T2 buffer space. T1 writes the value from its buffer back to database.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT IV

A's value is updated to 4000 in database and then T2 writes the value from its buffer back to database. A's value is updated to 5500 which shows that the effect of debit transaction is lost and database has become inconsistent.

To maintain consistency of database, we need **concurrency control protocols** which will be discussed in next article. The operations of T1 and T2 with their buffers and database have been shown in Table 1.

T1	T1's buffer space	Т2	T2's Buffer Space	Database
				A=5000
R(A);	A=5000			A=5000
	A=5000	R(A);	A=5000	A=5000
A=A- 1000;	A=4000		A=5000	A=5000
	A=4000	A=A+500;	A=5500	
W(A);			A=5500	A=4000
		W(A);		A=5500

Table 1

Isolation: Result of a transaction should not be visible to others before transaction is committed. For example, Let us assume that A's balance is Rs. 5000 and T1 debits Rs. 1000 from A. A's new balance will be 4000. If T2 credits Rs. 500 to A's new balance, A will become 4500 and after this T1 fails. Then we have to rollback T2 as well because it is using value produced by T1. So a transaction results are not made visible to other transactions before it commits.

Durable: Once database has committed a transaction, the changes made by the transaction should be permanent. e.g.; If a person has credited \$500000 to his account, bank can't say that the update has been lost. To avoid this problem, multiple copies of database are stored at different locations.

What is a Schedule?

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT IV

A schedule is series of operations from one or more transactions. A schedule can be of two types:

Serial Schedule: When one transaction completely executes before starting another transaction, the schedule is called serial schedule. A serial schedule is always consistent. e.g.; If a schedule S has debit transaction T1 and credit transaction T2, possible serial schedules are T1 followed by T2 (T1->T2) or T2 followed by T1 ((T1->T2). A serial schedule has low throughput and less resource utilization.

Concurrent Schedule: When operations of a transaction are interleaved with operations of other transactions of a schedule, the schedule is called Concurrent schedule. e.g.; Schedule of debit and credit transaction shown in Table 1 is concurrent in nature. But concurrency can lead to inconsistency in database. The above example of concurrent schedule is also inconsistent.

Question: Consider the following transaction involving two bank accounts x and y:

read(x); x := x - 50; write(x); read(y); y := y + 50; write(y);

The constraint that the sum of the accounts x and y should remain constant is that of?

Atomicity Consistency

Isolation

Durability

Solution: As discussed in properties of transactions, consistency properties says that sum of accounts x and y should remain constant before starting and after completion of transaction. So, the correct answer is B.

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT IV

ACID Properties in DBMS

A transaction is a single logical unit of work which accesses and possibly modifies the contents of a database. Transactions access data using read and write operations. In order to maintain consistency in a database, before and after transaction, certain properties are followed. These are called **ACID** properties.

Atomicity

By this, we mean that either the entire transaction takes place at once or doesn't happen at all. There is no midway i.e. transactions do not occur partially. Each transaction is considered as one unit and either runs to completion or is not executed at all. It involves following two operations.

- -Abort: If a transaction aborts, changes made to database are not visible.
- —**Commit**: If a transaction commits, changes made are visible.

Atomicity is also known as the 'All or nothing rule'.

Consider the following transaction **T** consisting of **T1** and **T2**: Transfer of 100 from account **X** to account **Y**.

Before: X: 500 Y: 200

Transaction T

T₁ T₂

Read(X) Read(Y)

X:=X-100 Y:=Y+100

Write(X) Write(Y)

After: X: 400 Y:300

If the transaction fails after completion of **T1** but before completion of **T2**.(say, after **write(X)** but before **write(Y)**), then amount has been deducted from **X** but not added to **Y**. This results in an inconsistent database state. Therefore, the transaction must be executed in entirety in order to ensure correctness of database state.

Consistency

This means that integrity constraints must be maintained so that the database is consistent before and after the transaction. It refers to correctness of a database. Referring to the example above,

CLASS : II.B.Sc CS BATCH : 2016 - 2019

COURSE NAME : DTATBASE MANAGEMENT SYSTEM

COURSE CODE: 16CSU403

UNIT IV

The total amount before and after the transaction must be maintained.

Total **before T** occurs = **500 + 200 = 700**. Total **after T occurs = 400 + 300 = 700**.

Therefore, database is **consistent**. Inconsistency occurs in case **T1**completes but **T2** fails. As a result T is incomplete.

Isolation

This property ensures that multiple transactions can occur concurrently without leading to inconsistency of database state. Transactions occur independently without interference. Changes occurring in a particular transaction will not be visible to any other transaction until that particular change in that transaction is written to memory or has been committed. This property ensures that the execution of transactions concurrently will result in a state that is equivalent to a state achieved these were executed serially in some order.

Let **X**= 500, **Y** = 500.

Consider two transactions T and T".

Т	T"
Read(X)	Read(X)
X:=X*100	Read(Y)
Write(X)	Z:=X + Y
Read(Y)	Write(Z)
Y:=Y-50	
Write(Y)	

Suppose **T** has been executed till **Read (Y)** and then **T"** starts. As a result, interleaving of operations takes place due to which **T"** reads correct value of **X** but incorrect value of **Y** and sum computed by

T'': (X+Y = 50, 000+500=50, 500)

is thus not consistent with the sum at end of transaction:

T: (X+Y = 50,000 + 450 = 50,450).

This results in database inconsistency, due to a loss of 50 units. Hence, transactions must take place in isolation and changes should be visible only after a they have been made to the main memory.

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

COURSE NAIVIE: DIAIDASE IVIANAGEIVIENT SYSTEIVI

UNIT IV

Durability:

This property ensures that once the transaction has completed execution, the updates and modifications to the database are stored in and written to disk and they persist even is system failure occurs. These updates now become permanent and are stored in a non-volatile memory. The effects of the transaction, thus, are never lost.

The **ACID** properties, in totality, provide a mechanism to ensure correctness and consistency of a database in a way such that each transaction is a group of operations that acts a single unit, produces consistent results, acts in isolation from other operations and updates that it makes are durably stored.

Concurrency Control

As we have seen above, when there are multiple transactions executing at the same time on same data, it may affect the result of the transaction. Hence it is necessary to maintain the order of execution of those transactions. In addition, it should not alter the ACID property of a transaction.

In order to maintain the concurrent access of transactions, two protocols are introduced.

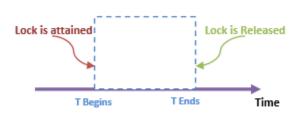
• Lock Based Protocol: - Lock is in other words called as access. In this type of protocol any transaction will not be processed until the transaction gets the lock on the record. That means any transaction will not retrieve or insert or update or delete the data unless it gets the access to that particular data.

These locks are broadly classified as Binary locks and shared / exclusive locks.

In **binary lock** data can either be locked or unlocked. It will have only these two states. It can be locked for retrieve or insert or update or delete the data or unlocked for not using the data.

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT IV


In **shared / exclusive lock** technique the data is said to be exclusively locked if for insert / update /delete. When it is exclusively locked no other transaction can read or write the data. When a data is read from the database, then its lock is shared i.e.; the data can be read by other transaction too but it cannot be changed while retrieving the data.

Lock based protocols are of 4 types

Simplistic Lock Protocol: -As the name suggests it is the simplest way of locking the data during the transaction. This protocol allows all the transaction to get the lock on the data before insert / update /delete on it. After completing the transaction, it will unlock the data.

Pre-claiming Protocol: - In this protocol, it evaluates the transaction to list all the data items on which transaction needs lock. It then requests DBMS for the lock on all those data items before the transaction begins. If DBMS gives the lock on all the data, then this protocol allows the transaction to begin. Once the transaction is complete, it releases all the locks. If all locks are given by DBMS, then it reverts the transactions and waits

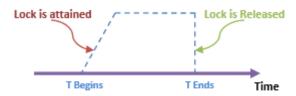
for the lock.

For example, if we have to calculate total marks of 3 subjects, then this protocol will evaluate the transaction and list the locks on subject1 marks, subject2 marks and then subject3 marks. Once it gets all the locks, it will start the transaction.

Two Phase Locking Protocol (2PL): -

In this type of protocol, as the transaction begins to execute, it starts requesting for the locks that it needs. It goes on requesting for the locks as and when it is needed. Hence it has a growing phase of locks. At one stage it will have all the locks. Once the transaction is complete it goes on releasing the locks. Hence it will have descending phase of locks. Thus this protocol has two phases – growing phase of locks and shrinking phase of locks.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403


UNIT IV

For example, if we have to calculate total marks of 3 subjects, then this protocol will go on asking for the locks on subject1 marks, subject2 marks and then subject3 marks. As and when it gets the locks on the subject marks it reads the marks. It does not wait till all the locks are received. Then it will have total calculation. Once it is complete it release the lock on subject3 marks, subject2 marks and subject1 marks.

In this protocol, if we need to have exclusive lock on any data for writing, then we have to first get the shared lock for reading. Then we have to request / modify the lock to exclusive lock.

Strict Two Phase Locking (Strict 2PL): - This protocol is similar to 2PL in the first phase. Once it receives the lock on the data, it completes the transaction. Here it does not release the locks as it is used and no more required. It waits till whole transaction to complete and commit, then it releases all the locks at a time. This protocol hence does not have shrinking phase of lock release.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT IV

In the example of calculating total marks of 3 subjects, locks are achieved at growing phase of the transaction and once it receives all the locks, it executes the transaction. Once the transaction is fully complete, it releases all the locks together.

• Time Stamp Based Protocol: - As we have seen above in lock based protocol, it acquires locks at the time of execution. But in this method, as soon as a transaction is created it assigns the order of the transaction. The order of the transaction is nothing but the ascending order of the transaction creation. The priority for older transaction is given to execute first. This protocol uses system time or logical counter to determine the time stamp of the transaction.

Suppose there are two transactions T1 and T2. Suppose T1 has entered the system at time 0005 and T2 has entered the system at 0008 clock time. Priority will be given to T1 to execute first as it is entered the system first.

In addition to the timestamp of a transaction, this protocol also maintains the timestamp of last 'read' and 'write' operation on a data. Based on the timestamp of transaction and the data which it is accessing a timestamp ordering protocol is defined.

According to this protocol:

IF TS (T) < W_TS(X) THEN

Reject T

ELSE If TS (T)>= W_TS(X) Then

Execute T

Update W_TS(X) and R_TS(X)

END

Here TS (T) → Timestamp of transaction T

W_TS (X) → Timestamp of write operation on data X

R TS (X) → Timestamp of read operation on data X

• If a transaction T is a read transaction on data X then

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT IV

This algorithm states that if there is an active write operation on data X when a transaction T is requesting for X, then reject the transaction T. If the transaction T is started as soon as write is complete or no going write operation on X, then execute T.

For example, if there is an update on marks1 on MARKS table and meanwhile there is a request to read marks1, then do not perform read marks1. This is because there is an update being happening on marks1. If there was an update on marks1 which is executed long back or it is complete just now and there is a request to read marks1, then system will allow reading marks1.

• If a transaction T is a write transaction on data X then

```
IF TS (T) < R_TS (X) THEN
Reject T
ELSE IF TS (T) < W_TS (X) THEN
Reject T
Rollback T
ELSE
Execute T
END
```

This algorithm describes about write operation. If there is an active read or write on data X, and at the same time if the transaction T is requesting for X, then the transaction is rejected. If there is no active read / write operation on X, then execute the transaction.

Suppose T1 is reading marks1 from MARKS table. Meanwhile transaction T2 begins and tries to update marks1 in MARKS. Then the transaction T2 is rejected and rolled back.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 **COURSE NAME: DTATBASE MANAGEMENT SYSTEM COURSE CODE: 16CSU403**

UNIT IV

POSSIBLE QUESTIONS

2 MARK QUESTIONS

- 1. List the Properties of a transaction in DBMS.
- 2. Define concurrency control.
- 3. List the ACID properties in DBMS.
- 4. What is Transaction?
- 5. Write the disadvantages of Normalization.
- 6. Define Boyce code.
- 7. Define First Normal Forms
- 8. State 4NF
- 9. How to convert a table from 1NF to 2NF?
- 10. How to convert a table from 3NF to 4NF?

6 MARK QUESTIONS

- 1. Illustrate with syntax and example of first THREE Normal forms
- 2. List and explain ACID properties with example
- 3. State BCNF. How does it differ from 3NF?
- 4. Explain the time stamp based protocol for concurrency control in a DBMS...
- 5. What is transaction? Mention the desirable properties of a transaction.
- 6. Discuss any three Normal Forms with proper example.

KARPAGAM ACADEMY OF HIGHER EDUCATION DEPARTMENT OF COMPUTER SCIENCE II BSc CS BATCH(2016 - 2019) PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

UNIT-4

sno	Questions	opt1	opt2	opt3	opt4	Answer
1	property enables us to recover any instance of the decomposed relation from corresponding instance of the smaller relations.	dependency preservation	lossless-join	normal forms	decomposition	lossless-join
2	BCNF stands for	Boyce Codd Normal Form	Boy Codd Normal Form	Basic Codd Normal Form	Basic Codd Normalization Form	Boyce-Codd Normal Form
3	Boye Codd Normal Form (BCNF) is needed when	two non-key attributes are dependent	there is more then one possible composite key	there are two or more possible composite overlapping keys and one attribute of a composite key is dependent on an attribute of another composite key	there are two possible keys and they are dependent on one another	there are two or more possible composite overlapping keys and one attribute of a composite key is dependent on an attribute of another composite key
4	A relation is said to be in BCNF when	it has overlapping composite keys	it has no composite keys	it has no multivalued dependencies	it has no overlapping composite keys which have related attributes	it has no overlapping composite keys which have related attributes
5	A 3 NF relation is converted to BCNF by	removing composite keys	removing multivalued dependencies	dependent attributes of overlapping composite keys are put in a separate relation	dependent non-key attributes are put in a separate table	dependent attributes of overlapping composite keys are put in a separate relation
6	BCNF is needed because	otherwise tuples may be duplicated	when a data is deleted tuples may be lost	updating is otherwise difficult	when there is dependent attributes in two possible composite keys one of the attributes is unnecessarily duplicated in the tuples	when there is dependent attributes in two possible composite keys one of the attributes is unnecessarily duplicated in the tuples
7		there are multivalued dependencies between attributes in composite key	there are more than one composite key	there are two or more overlapping composite keys	there are multivalued dependency between non- key attributes	there are multivalued dependencies between attributes in composite key
8	A 3 NF relation is split into 4 NF	by removing overlapping composite keys	by splitting into relations which do not have more than one independent multivalued dependency	removing multivalued dependency	by putting dependent non- key attribute in a separate table	by removing overlapping composite keys

9	A third Normal Form (3 NF) relation should	be in 2 NF	not have complete key	not be 1 NF	should not have non-key attributes depend on key attribute	be in 2 NF
10	The process of normalization	is automatic using a computer program	requires one to understand dependency between attributes	is manual and requires semantic information	is finding the key of a relation	requires one to understand dependency between attributes
11	A relation is said to be in 1NF if	there is no duplication of data	there are no composite attributes in the relation	there are only a few composite attributes	all attributes are of uniform type	there are no composite attributes in the relation
12	The number of normal forms which has been proposed and discussed in the book are	3	4	5	6	6
13	A relation which is in a higher normal form	implies that it also qualifies to be in lower normal form	does not necessarily satisfy the conditions of lower normal form	is included in the lower normal form	is independent of lower normal forms	implies that it also qualifies to be in lower normal form
14	Given an attribute x, another attribute y is dependent on it, if for a given x	there are many y values	there is only one value of y	there is one or more y values	there is none or one y value	there is only one value of y
15	Given the following relation vendor order (vendor no, order no, vendor name, qty supplied, price/unit) the second normal form relations are	vendor (vendor no, vendor name) qty (qty supplied, price/unit) order (order no, qty supplied)	vendor (vendor no, vendor name) order (order no, qty supplied, price/unit)	vendor (vendor no, vendor name) order (order no, qty supplied, price/unit) vendor order (vendor no, order no)	vendor (vendor no, vendor name, qty supplied, price/unit) vendor order (order no, vendor no)	vendor (vendor no, vendor name) order (order no, qty supplied, price/unit) vendor order (vendor no, order no)
16	technique is used to reduce the redundancy	Closure set	Decompositio n	Normalization	Null Values	Normalization
17	3NF is also referred to as	LCNF	BCNF	information- preserving	desirable form	BCNF
18	Projection-join normal form also known as	1NF	2NF	3NF	5NF	5NF
	if and only if the right-hand side is not a subset of the left-hand side, then functional dependency is said to be as	Non-trivial	Trivial	Transitive	Augmentation	Non-trivial
20	A relation is in if and only if the nonkey attributes are mutually independent	3NF	1NF	2NF	5NF	3NF
21	attribute does not participate in the primary key of the relation concerned	key attribute	Non-key attribute	Variable	none	Non-key attribute
22	A relation is in if and only if , in every legal value of that relation, every tuple contains exactly one value for each attribute.	2NF	3NF	1NF	4NF	1NF
23	redundancy	Null Values	Decompositio n	Normalizations	Concatenation	Normalizations
24	A relation is in if and only if it is in 1NF and every nonkey attribute is irreducibly dependent on the primary key.	1NF	2NF	3NF	4NF	2NF

_		ı	ı		ı	T.
25	A relation is in if and only if it is in 2NF and every nonkey attribute is non transitively dependent on the primary key.	1NF	2NF	3NF	4NF	3NF
26	A relation is if and only if the only determinants are candidate keys.	1NF	2NF	3NF	4NF	2NF
27	In the functional dependency, left- hand side indicates	determinants	Dependencies	trivial	non-trivial	determinants
28	In the functional dependency, right-	determinants	Dependencies	trivial	non-trivial	Dependencies
29	property anables us to enforce any constraint on the original relation by simply enforcing some constraints on each of the smaller relations.	dependency preservation	lossless-join	normal forms	decomposition	dependency preservation
30	package constructs are declared in the package specifiaction and defined in package body.	public	private	internal	external	public
31	package constructs are not declared in the package specifiaction but defined in package body.	public	private	internal	external	private
32	Global package item are declared in package for external users to use it.	defintion	specification	body	declaration	specification
33	Variables declared in package specification are intialised to by default	zero	space	null	one	null
34	which command is used to invoke a procedure in a package	call	execute	invoke	/	execute
35	is the process of taking a normalized database and modifying table structures to allow controlled redundancy for increased database performance.	Denormalizatio n	normalization	functional dependency	Decomposition	Denormalization
36	in select statement Duplicates are eliminated by using keyword.	Remove	Distinct	RM	Redundant	Distinct
37	Group function is otherwise known as	Collection	Aggregate	function	Count	Aggregate
38	string Pattern matching is done through operator.	Comparison	arithmetic	Logical	like	like
39	Which keyword is used to check if an element is in a given set?	not	in	not exist	except	in
40	Any two tables that are Union-Compatible if they have the same number of	Columns	rows	Columns and rows	null values	Columns
41	Which clause is used, when we are using Group by clause, instead of where clause?	where	Having	Distinct	Group	Having
42	clause is used to group the values under particular characteristics	Order By	Group by	Count	Sum	Order By
43	which of the following is not a set operator	union	minus	intersect	plus	plus
44	check constraint is level constraint	table	column	row	database	column
45	a view is updatable when it is based upon tables	two	one	three	any numberof	one
46	clause is used in to make a sequence repeat the series.	cycle	nocycle	cache	start with	cycle
			•			

47	what is the maximum value for a			null	10^27	
4/	descending sequence	-1	0	IIuII	10 27	-1
48	is used and maintained automatically by oracle server	view	table	index	sequence	index
49	priveledge	alter	delete	execute	select	execute
50		PL/SQL	SQL*Plus	SQL	Dynamic SQL	Dynamic SQL
51	The RDBMS terminology for a row is	tuple	relation	attribute	degree	tuple
52	To change column value in a table the command can be used	create	insert	alter	update	update
53	A set of possible data values is called		degree	tuple	domain	domain
54	is critical in formulating database design.	row column order	number of tables	functional dependency	normalizing	functional dependency
55	Arepresents the number of entities to which another entity can be associated	mapping cardinality	table	schema	information	mapping cardinality
56	Which two files are used during operation of the DBMS	Query languages and utilities	DML and query language	Data dictionary and transaction log	Data dictionary and query language	Data dictionary and transaction log
57	A is a set of column that identifies every row in a table	composite key	candidate key	foreign key	super key	super key
58	The relational model is based on the concept that data is organized and stored in two-dimensional tables called	Fields	Records	Relations	Keys	Relations
59				_		_
	type.	View	Rule	Index	Default	Index
60	insert into <table_name> values <list of="" values=""></list></table_name>	TRUE	FALSE	Table	None	TRUE

CLASS : II.B.Sc CS BATCH : 2016 - 2019 **COURSE CODE: 16CSU403**

COURSE NAME: DTATBASE MANAGEMENT SYSTEM

UNIT V

SYLLABUS

File Structure and Indexing (8 Lectures) Operations on files, File of Unordered and ordered records, overview of File organizations, Indexing structures for files (Primary index, secondary index, clustering index), Multilevel indexing using B and B+ trees.

File Structure and Indexing

overview of File organizations

A database consist of a huge amount of data. The data is grouped within a table in RDBMS, and each table have related records. A user can see that the data is stored in form of tables, but in acutal this huge amount of data is stored in physical memory in form of files.

File - A file is named collection of related information that is recorded on secondary storage such as magnetic disks, magnetic tables and optical disks.

What is File Organization?

File Organization refers to the logical relationships among various records that constitute the file, particularly with respect to the means of identification and access to any specific record. In simple terms, Storing the files in certain order is called file Organization. File Structure refers to the format of the label and data blocks and of any logical control record.

File organization: is a method of arranging the records in a file when the file is stored on disk. A relation is typically stored as a file of records

Types of File Organizations:

Various methods have been introduced to Organize files. These particular methods have advantages and disadvantages on the basis of access or selection. Thus it is all upon the programmer to decide the best suited file Organization method according to his requirements.

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

Heap File System

Sequential File System

DBMS File Organization

Clustered File System

Some types of File Organizations are:

- Sequential File Organization
- Heap File Organization
- Hash File Organization
- B+ Tree File Organization
- Clustered File Organization

Heap File Organization

When a file is created using Heap File Organization, the Operating System allocates memory area to that file without any further accounting details. File records can be placed anywhere in that memory area. It is the responsibility of the software to manage the records. Heap File does not support any ordering, sequencing, or indexing on its own.

Sequential File Organization

Every file record contains a data field (attribute) to uniquely identify that record. In sequential file organization, records are placed in the file in some sequential order based on the unique key field or search key. Practically, it is not possible to store all the records sequentially in physical form.

CLASS : II.B.Sc CS BATCH : 2016 - 2019

COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT V

Hash File Organization

Hash File Organization uses Hash function computation on some fields of the records. The output of the hash function determines the location of disk block where the records are to be placed.

Clustered File Organization

Clustered file organization is not considered good for large databases. In this mechanism, related records from one or more relations are kept in the same disk block, that is, the ordering of records is not based on primary key or search key.

File Operations

Operations on database files can be broadly classified into two categories -

- Update Operations
- Retrieval Operations

Update operations change the data values by insertion, deletion, or update. Retrieval operations, on the other hand, do not alter the data but retrieve them after optional conditional filtering. In both types of operations, selection plays a significant role. Other than creation and deletion of a file, there could be several operations, which can be done on files.

- Open A file can be opened in one of the two modes, read mode or write mode. In read mode, the operating system does not allow anyone to alter data. In other words, data is read only. Files opened in read mode can be shared among several entities. Write mode allows data modification. Files opened in write mode can be read but cannot be shared.
- Locate Every file has a file pointer, which tells the current position where the data is to be read or written. This pointer can be adjusted accordingly. Using find (seek) operation, it can be moved forward or backward.
- **Read** By default, when files are opened in read mode, the file pointer points to the beginning of the file. There are options where the user can tell the

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

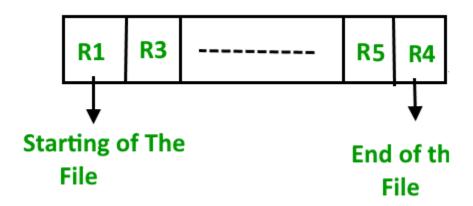
UNIT V

operating system where to locate the file pointer at the time of opening a file. The very next data to the file pointer is read.

- Write User can select to open a file in write mode, which enables them to edit its contents. It can be deletion, insertion, or modification. The file pointer can be located at the time of opening or can be dynamically changed if the operating system allows to do so.
- **Close** This is the most important operation from the operating system's point of view. When a request to close a file is generated, the operating system
 - o removes all the locks (if in shared mode),
 - o saves the data (if altered) to the secondary storage media, and
 - o releases all the buffers and file handlers associated with the file.

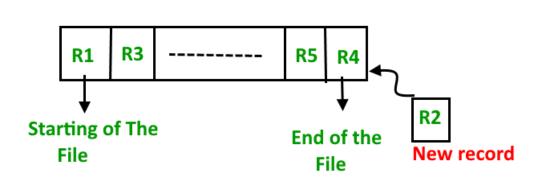
The organization of data inside a file plays a major role here. The process to locate the file pointer to a desired record inside a file various based on whether the records are arranged sequentially or clustered.

File of Unordered and ordered records

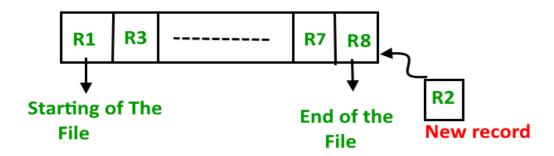

Sequential File Organization (Ordered File)

The easiest method for file Organization is Sequential method. In this method the the file are stored one after another in a sequential manner. There are two ways to implement this method:

 Pile File Method – This method is quite simple, in which we store the records in a sequence i.e one after other in the order in which they are inserted into the tables.


CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

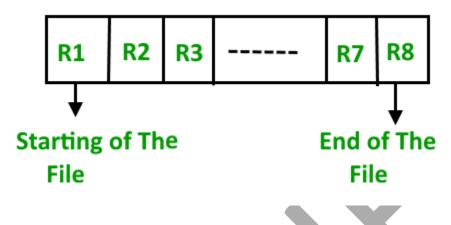
UNIT V



Insertion of new record

Let the R1, R3 and so on upto R5 and R4 be four records in the sequence. Here, records are nothing but a row in any table. Suppose a new record R2 has to be inserted in the sequence, then it is simply placed at the end of the file.

2. **Sorted File Method** –In this method, As the name itself suggest whenever a new record has to be inserted, it is always inserted in a sorted (ascending or descending) manner. Sorting of records may be based on any primary key or any other key.



CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT V

Insertion of new record -

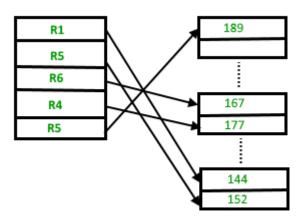
Let us assume that there is a preexisting sorted sequence of four records R1, R3, and so on upto R7 and R8. Suppose a new record R2 has to be inserted in the sequence, then it will be inserted at the end of the file and then it will sort the sequence .

Pros and Cons of Sequential File Organization -

Pros -

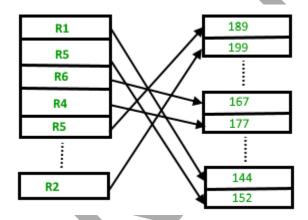
- Fast and efficient method for huge amount of data.
- Simple design.
- Files can be easily stored in magnetic tapes i.e cheaper storage mechanism.

Cons -


- Time wastage as we cannot jump on a particular record that is required, but we have to move in a sequential manner which takes our time.
- Sorted file method is inefficient as it takes time and space for sorting records.

Heap File Organization (Unordered File)

Heap File Organization works with data blocks. In this method records are inserted at the end of the file, into the data blocks. No Sorting or Ordering is required in this method. If a data block is full, the new record is stored in some other block, Here the other data block need not be the very next data block, but it can be any block in the memory. It is the responsibility of DBMS to store and manage the new records.


CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT V

Insertion of new record -

Suppose we have four records in the heap R1, R5, R6, R4 and R3 and suppose a new record R2 has to be inserted in the heap then, since the last data block i.e data block 3 is full it will be inserted in any of the database selected by the DBMS, lets say data block 1.

If we want to search, delete or update data in heap file Organization the we will traverse the data from the beginning of the file till we get the requested record. Thus if the database is very huge, searching, deleting or updating the record will take a lot of time.

Pros and Cons of Heap File Organization –

Pros -

- Fetching and retrieving records is faster than sequential record but only in case of small databases.
- When there is a huge number of data needs to be loaded into the database at a time, then this method of file Organization is best suited.

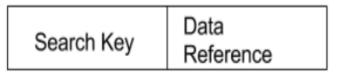
Cons -

- Problem of unused memory blocks.
- Inefficient for larger databases.

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT V

Indexing in Databases


Indexing is a way to optimize performance of a database by minimizing the number of disk accesses required when a query is processed.

An index or database index is a data structure which is used to quickly locate and access the data in a database table.

Indexes are created using some database columns.

- The first column is the Search key that contains a copy of the primary key or candidate key of the table. These values are stored in sorted order so that the corresponding data can be accessed quickly (Note that the data may or may not be stored in sorted order).
- The second column is the Data Reference which contains a set of pointers holding the address of the disk block where that particular key value can be found.

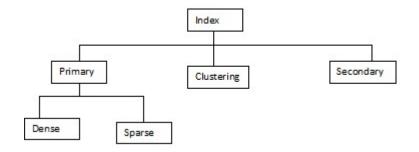
•

Structure of an index

There are two kinds of indices:

- 1. **Ordered indices:** Indices are based on a sorted ordering of the values.
- 2. **Hash indices:** Indices are based on the values being distributed uniformly across a range of buckets. The buckets to which a value is assigned is determined by function called a hash function.

There is no comparison between both the techniques, it depends on the database application on which it is being applied.


- Access Types: e.g. value based search, range access, etc.
- Access Time: Time to find particular data element or set of elements.
- **Insertion Time**: Time taken to find the appropriate space and insert a new data time.
- **Deletion Time**: Time taken to find an item and delete it as well as update the index structure.
- Space Overhead: Additional space required by the index.

CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT V

Indexing Methods

Types of Index

Ordered Indices

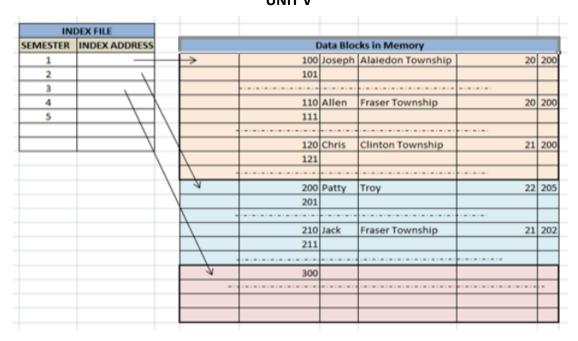
The indices are usually sorted so that the searching is faster. The indices which are sorted are known as ordered indices.

- If the search key of any index specifies same order as the sequential order of the file, it is known as primary index or clustering index.
 Note: The search key of a primary index is usually the primary key, but it is not necessarily so.
- If the search key of any index specifies an order different from the sequential order of the file, it is called the secondary index or non-clustering index.

Clustered Indexing

Clustering index is defined on an ordered data file. The data file is ordered on a non-key field. In some cases, the index is created on non-primary key columns which may not be unique for each record. In such cases, in order to identify the records faster, we will group two or more columns together to get the unique values and create index out of them. This method is known as clustering index. Basically, records with similar characteristics are grouped together and indexes are created for these groups.

For example, students studying in each semester are grouped together. i.e. 1st Semester students, 2nd semester students, 3rd semester students etc are grouped.


CLASS: II.B.Sc CS

BATCH: 2016 - 2019

COURSE NAME: DTATBASE MANAGEMENT SYSTEM

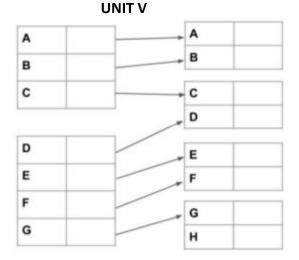
COURSE CODE: 16CSU403

UNIT V

Clustered index sorted according to first name (Search key)

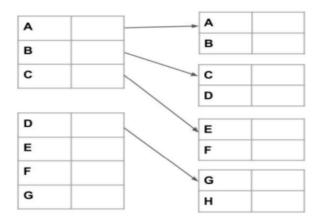
Primary Index

In this case, the data is sorted according to the search key. It induces sequential file organisation.


In this case, the primary key of the database table is used to create the index. As primary keys are unique and are stored in sorted manner, the performance of searching operation is quite efficient. The primary index is classified into two types **Dense Index** and **Sparse Index**.

(I) Dense Index:

- For every search key value in the data file, there is an index record.
- This record contains the search key and also a reference to the first data record with that search key value.

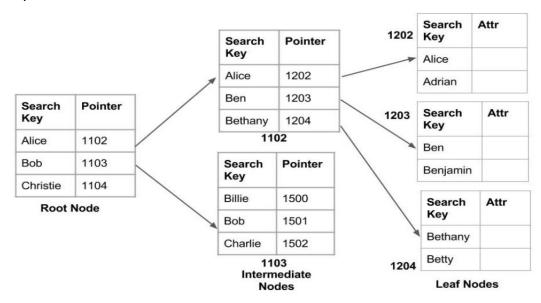

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

Dense Index

(II) Sparse Index:

- The index record appears only for a few items in the data file. Each item points to a block as shown.
- To locate a record, we find the index record with the largest search key value less than or equal to the search key value we are looking for.
- We start at that record pointed to by the index record, and proceed along the pointers in the file (that is, sequentially) until we find the desired record.

Sparse Index


CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

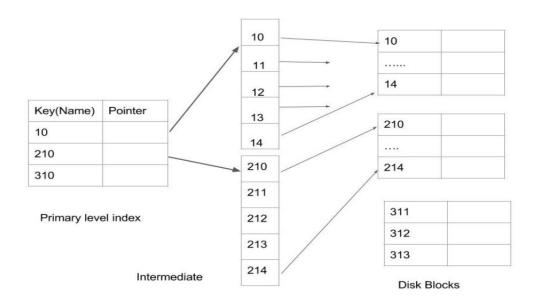
JNSE IVAIVIE . DTATBASE IVIAIVAGEIVIENT STSTEN

UNIT V

Non-Clustered Indexing

A non clustered index just tells us where the data lies, i.e. it gives us a list of virtual pointers or references to the location where the data is actually stored. Data is not physically stored in the order of the index. Instead, data is present in leaf nodes. For eg. the contents page of a book. Each entry gives us the page number or location of the information stored. The actual data here(information on each page of book) is not organised but we have an ordered reference(contents page) to where the data points actually lie.

Non clustered index


It requires more time as compared to clustered index because some amount of extra work is done in order to extract the data by further following the pointer. In case of clustered index, data is directly present in front of the index.

Secondary Index

It is used to optimize query processing and access records in a database with some information other than the usual search key (primary key). In this two levels of indexing are used in order to reduce the mapping size of the first level and in general. Initially, for the first level, a large range of numbers is selected so that the mapping size is small. Further, each range is divided into further sub ranges.

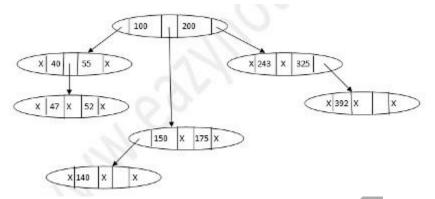
CLASS : II.B.Sc CS BATCH : 2016 - 2019
COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403
UNIT V

In order for quick memory access, first level is stored in the primary memory. Actual physical location of the data is determined by the second mapping level.

Secondary level Indexing

Index in a Tree like Structure

We can use tree-like structures as index as well. For example, a binary search tree can also be used as an index. If we want to find out a particular record from a binary search tree, we have the added advantage of binary search procedure, that makes searching be performed even faster. A binary tree can be considered as a **2-way Search Tree**, because it has two pointers in each of its nodes, thereby it can guide you to two distinct ways. Remember that for every node storing 2 pointers, the number of value to be stored in each node is one less than the number of pointers, i.e. each node would contain 1 value each.


M-Way Search Tree

The abovementioned concept can be further expanded with the notion of the m-Way Search Tree, where m represents the number of pointers in a particular node. If m = 3, then each node of the search tree contains 3 pointers, and each node would then contain 2 values.

A sample m-Way Search Tree with m = 3 is given in the following.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT V

B⁺ Tree

A B⁺ tree is a balanced binary search tree that follows a multi-level index format. The leaf nodes of a B⁺ tree denote actual data pointers. B⁺ tree ensures that all leaf nodes remain at the same height, thus balanced. Additionally, the leaf nodes are linked using a link list; therefore, a B⁺ tree can support random access as well as sequential access.

Structure of B⁺ Tree

Every leaf node is at equal distance from the root node. A B^+ tree is of the order n where n is fixed for every B^+ tree.

Internal nodes -

- Internal (non-leaf) nodes contain at least [n/2] pointers, except the root node.
- At most, an internal node can contain **n** pointers.

Leaf nodes -

- Leaf nodes contain at least $\lceil n/2 \rceil$ record pointers and $\lceil n/2 \rceil$ key values.
- At most, a leaf node can contain n record pointers and n key values.
- Every leaf node contains one block pointer P to point to next leaf node and forms a linked list.

B⁺ Tree Insertion

- B⁺ trees are filled from bottom and each entry is done at the leaf node.
- If a leaf node overflows –

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT V

- Split node into two parts.
- o Partition at $i = \lfloor (m+1)/2 \rfloor$.
- o First i entries are stored in one node.
- o Rest of the entries (i+1 onwards) are moved to a new node.
- o **i**th key is duplicated at the parent of the leaf.
- If a non-leaf node overflows
 - Split node into two parts.
 - o Partition the node at $i = \lceil (m+1)/2 \rceil$
 - o Entries up to i are kept in one node.
 - o Rest of the entries are moved to a new node.

B⁺ Tree Deletion

- B⁺ tree entries are deleted at the leaf nodes.
- The target entry is searched and deleted.
 - If it is an internal node, delete and replace with the entry from the left position.
- · After deletion, underflow is tested,
 - o If underflow occurs, distribute the entries from the nodes left to it.
- If distribution is not possible from left, then
 - o Distribute from the nodes right to it.
- If distribution is not possible from left or from right, then
 - Merge the node with left and right to it.

CLASS : II.B.Sc CS BATCH : 2016 - 2019 COURSE NAME : DTATBASE MANAGEMENT SYSTEM COURSE CODE : 16CSU403

UNIT V

POSSIBLE QUESTIONS

2 MARK QUESTIONS

- 1. Define Clustered Indexing with example
- 2. Define Clustered Indexing with example.
- 3. What is Primary Index. Give Example?
- 4. What is Secondary Index?
- 5. List the Properties of B-Tree.
- 6. List the Properties of B+-Tree.

6 MARK QUESTIONS

- 1. Discuss Indexing structures with neat sketch.
- 2. Mention various types of records. Describe how they are organized inside a file?
- 3. Explain with example i) Primary index ii) clustering index
- 4. Discuss File Structure in DBMS with example.
- 5. Discuss in detail about cluster and Multilevel indexes.
- 6. What is an index? Explain its role in improving database access.
- 7. Explain in detail about B+ trees.

Prepared By: A.Jeevarathinam, Dept of CS, CA & IT, KAHE

16/16

KARPAGAM ACADEMY OF HIGHER EDUCATION DEPARTMENT OF COMPUTER SCIENCE II BSc CS BATCH(2016 - 2019) PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS UNIT-5

_	lo :		1 .2		1 .4	1.
sno	Questions	opt1	opt2	opt3	opt4	Answer
1	Index which has an entry for some of key value is					
	classified as	linear index	dense index	non dense index	cluster index	non dense index
2	Primary indexes, secondary indexes and cluster indexes				relative search	
_	are all types of	ordered indexes	unordered indexes	linear indexes	indexes	ordered indexes
3	In multilevel indexes, primary index created for its first	zero level of	third level of	second level of	first level of	second level of
5	level is classified as	multilevel index	multilevel index	multilevel index	multilevel index	multilevel index
4	Indexes which specifies address of records on disk with a					
4	physical pointer are classified as	structural index	hashing index	physical index	logical index	physical index
5	Example of non dense index is	ternary index	secondary index	primary index	clustering index	clustering index
_	The method of access which uses key transformation is					
6	known as	direct	hash	random	sequential	hash
	The physical location of a record is determined by a					
7	mathematical formula that transforms	B-Tree File	Hashed File	Indexed File	Sequential file	Hashed File
		To enhance the				
8		query	To provide an	To perform fast	All of the	All of the
O	What is the numers of index in sal server	performance	index to a record	searches	mentioned	mentioned
9	What is the purpose of index in sql server	performance	index to a record	searches	mentioned 4	mentioned
9	How many types of indexes are there in sql server?	1	2	3	4	2
				It is used for		It is used for
10			L .	pointing data		pointing data
		It never points to	It points to a data	rows containing	None of the	rows containing
	How non clustered index point to the data?	anything	row	key values	mentioned	key values
			Clustered index	Clustered index is		is built by
1.1		Clustered index	is built by default	not built on		default on
11		is not associated	on unique key	unique key	None of the	unique key
	Which one is true about clustered index?	with table	columns	columns	mentioned	columns
			It makes harder	It doesn't make		It makes harder
		T 1 1				
		Indexes enhance	for sql server	harder for sql		for sql server
12		the performance	engines to work	server engines to		engines to work
		even if the table	to work on index	work to work on		to work on index
		is updated	which have large	index which have	None of the	which have large
	What is true about indexes?	frequently	keys	large keys	mentioned	keys
		It stores memory				
13		as and when	Yes, Indexes are	Indexes are never	Indexes take no	Yes, Indexes are
	Does index take space in the disk?	required	stored on disk	stored on disk	space	stored on disk
	•		A composite			A composite
		Are those which	index is a			index is a
14		are composed by	combination of	Composite index		combination of
		database for its	index on 2 or	can never be	None of the	index on 2 or
	W/I - 4	internal use				
	What are composite indexes?	internal use	more columns	created	mentioned	more columns
l	In index instead of storing all the					
15	columns for a record together, each column is stored					
	separately with all other rows in an index.	Clustered	Non clustered	Column store	Row store	Column store
	A index is the one which satisfies		1			
16	all the columns requested in the query without performing		1			
L	further lookup into the clustered index.	Clustered	Non Clustered	Covering	B-Tree	Covering
17	A(n) can be used to preserve the integrity of a		1	Encrypted	None of the	Encrypted
17	document or a message.	Message digest	Message summary	message	mentioned	message
18	A hash function must meet criteria.	Two	Three	Four	Five	Three
	Index which has an entry for some of key value is		İ			
19	classified as	linear index	dense index	non dense index	cluster index	non dense index
20	In data file, first record of any of block is called	anchor record	dense record	non dense record	none of above	anchor record
20		anchor record	delise record			anchor record
21	File which has secondary index for its every field is	C.11. i 1 C1	C.11. i. 1 1 C1	secondary	primary indexed	C.11
	classified as	fully inverted file	runy maexea me	indexed file	file	fully inverted file
22	First field in primary index having same data type as in		l. ,		l	
	ordering field is considered as	indexed key	ternary key	secondary key	primary key	primary key
23	In multilevel indexes, primary index created for its	second level of	first level of	zero level of	third level of	third level of
	second level is classified as	multilevel index	multilevel index	multilevel index	multilevel index	multilevel index
		Database	Database			
124			i contract of the contract of	I	1 11 0 1 1	All of the above.
24	The SQL database language includes statements for:	definition.	manipulation.	Database control.	All of the above.	All of the above.
	The SQL database language includes statements for:	definition. Delete table				
24 25		Delete table	Drop table table	Erase table table	Alter table table	Drop table table
	A command to remove a relation from an SQL database					
		Delete table	Drop table table	Erase table table	Alter table table	Drop table table

		1				
27	A type of query that is placed within a WHERE or	S	Cul-	Master men	M.16:	Cult
	HAVING clause of another query is called Aggregate functions are functions that take a	Super query Collection of	Sub query	Master query	Multi-query	Sub query Collection of
28	as input and return a single value.	values	Single value	Aggregate value	Both a & b	values
20	Which of the following should be used to find the mean			86 8		
29	of the salary ?	Mean(salary)	Avg(salary)	Sum(salary)	Count(salary)	Avg(salary)
30	All aggregate functions except ignore null values					
	in their input collection.	Count(attribute)	Count(*)	Avg	Sum	Count(*)
31	A Boolean data type that can take values true, false, and	1	0	Null	Unknown	Unknown
	If we do want to eliminate duplicates, we use the keyword	1	U	Ivuii	Clikilowii	Clikilowii
32	in the aggregate expression.	Distinct	Count	Avg	Primary key	Distinct
33	The connective tests for set membership, where the					
	set is a collection of values produced by a select clause. The connective tests for the absence of set	Or	Not in	In	and	In
34	membership.	Or	Not in	In	and	Not in
2.5	We can test for the nonexistence of tuples in a subquery	O1	1 tot III	111	una	1 tot III
35	by using the construct.	Not exist	Not exists	Exists	Exist	Not exists
36	Dates must be specified in the format	mm/dd/yy	yyyy/mm/dd	dd/mm/yy	yy/dd/mm	yyyy/mm/dd
37	Which of the following is used to store movie and image	Cl-1	D1-1	Dlab	Name of the st	D1-1
	files ?	Clob picking words	Blob	Dlob	None of the above picking words	Blob
38	Entities are identified from the word statement of a	which are	picking words	picking words	which are	picking words
L	problem by	adjectives	which are nouns	which are verbs	pronouns	which are nouns
	Relationships are identified from the word statement of a	picking words	picking words	picking words	picking words	picking words
39	problem by	which are	which are nouns	which are verbs	which are	which are
		adjectives			pronouns	pronouns
40	One entity may be	related to only one other entity	related to itself	related to only two other entities	related to many other entities	related to many other entities
		one other entity		two other entities		number of
		number of items	number of relationships in	number of items	number of related	related
41	By relation cardinality we mean	in a relationship	which an entity	in an entity	each of the two	occurrences for
		in a relationship	can appear	in an energ	entities	each of the two
		a 1:1	a 1:N	a N:1	a N:M	entities a 1:1
42	If an entity appears in only one relationship then it is	relationship	relationship	relationship	relationship	relationship
42	TO 10 10 10 10 10 10 10 10 10 10 10 10 10	a 1:1	a 1:N	a N:1	a N:M	a N:M
43	If an entity appears in N relationships then it is	relationship	relationship	relationship	relationship	relationship
	If an entity appears in not more than 5 relationships then	1:1 relationship	1:5 relationship	5:1 relationship	5:5 relationship	1:5 relationship
44	1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1
44	it is a					
	it is a	an entity	a relationshin	members of a	members of an	an entity
44	1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	an entity	a relationship	members of a relationship set	members of an entity set or a relationship set	an entity
	it is a	an entity tuples	a relationship		entity set or a	an entity tuples
45	it is a A relation is Rows of a relation are called The database schema is written in	,		relationship set	entity set or a relationship set	
45 46	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the	tuples HLL	a relation row DML	relationship set a data structure DDL	entity set or a relationship set an entity DCL	tuples DDL
45 46 47	it is a A relation is Rows of a relation are called The database schema is written in	tuples	a relation row DML relational model	relationship set a data structure	entity set or a relationship set an entity	tuples DDL sub schema
45 46 47	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the	tuples HLL	a relation row DML relational model is much more	relationship set a data structure DDL	entity set or a relationship set an entity DCL	tuples DDL sub schema is much more
45 46 47	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the	tuples HLL	a relation row DML relational model is much more data	relationship set a data structure DDL schema	entity set or a relationship set an entity DCL	tuples DDL sub schema
45 46 47 48	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the database that the application uses is a	tuples HLL module is no need for	a relation row DML relational model is much more data independence than some other	relationship set a data structure DDL schema are explicit relationships	entity set or a relationship set an entity DCL sub schema	tuples DDL sub schema is much more data independence than some other
45 46 47 48 49	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the database that the application uses is a The relational model feature is that there	tuples HLL module is no need for primary key data	a relation row DML relational model is much more data independence than some other database models	relationship set a data structure DDL schema are explicit relationships among records.	entity set or a relationship set an entity DCL sub schema are tables with many dimensions	tuples DDL sub schema is much more data independence than some other database models
45 46 47 48 49	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the database that the application uses is a The relational model feature is that there Which of the following are the properties of entities?	tuples HLL module is no need for primary key data Groups	a relation row DML relational model is much more data independence than some other database models Table	relationship set a data structure DDL schema are explicit relationships among records. Attributes	entity set or a relationship set an entity DCL sub schema are tables with many dimensions Switchboards	tuples DDL sub schema is much more data independence than some other database models Attributes
45 46 47 48 49 50 51	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the database that the application uses is a The relational model feature is that there Which of the following are the properties of entities? Which database level is closest to the users?	tuples HLL module is no need for primary key data Groups External	a relation row DML relational model is much more data independence than some other database models	relationship set a data structure DDL schema are explicit relationships among records. Attributes Physical	entity set or a relationship set an entity DCL sub schema are tables with many dimensions	tuples DDL sub schema is much more data independence than some other database models
45 46 47 48 49	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the database that the application uses is a The relational model feature is that there Which of the following are the properties of entities?	tuples HLL module is no need for primary key data Groups	a relation row DML relational model is much more data independence than some other database models Table	relationship set a data structure DDL schema are explicit relationships among records. Attributes	entity set or a relationship set an entity DCL sub schema are tables with many dimensions Switchboards Conceptual	tuples DDL sub schema is much more data independence than some other database models Attributes External
45 46 47 48 49 50 51	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the database that the application uses is a The relational model feature is that there Which of the following are the properties of entities? Which database level is closest to the users? Which are the two ways in which entities can participate in a relationship?	tuples HLL module is no need for primary key data Groups External Passive and active	a relation row DML relational model is much more data independence than some other database models Table Internal Total and partial	relationship set a data structure DDL schema are explicit relationships among records. Attributes Physical Simple and Complex	entity set or a relationship set an entity DCL sub schema are tables with many dimensions Switchboards Conceptual	tuples DDL sub schema is much more data independence than some other database models Attributes External Total and partial
45 46 47 48 49 50 51 52 53	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the database that the application uses is a The relational model feature is that there Which of the following are the properties of entities? Which database level is closest to the users? Which are the two ways in which entities can participate	tuples HLL module is no need for primary key data Groups External Passive and active RAW	a relation row DML relational model is much more data independence than some other database models Table Internal Total and partial CHAR	relationship set a data structure DDL schema are explicit relationships among records. Attributes Physical Simple and Complex NUMERIC	entity set or a relationship set an entity DCL sub schema are tables with many dimensions Switchboards Conceptual All of the above VARCHAR	tuples DDL sub schema is much more data independence than some other database models Attributes External Total and partial RAW
45 46 47 48 49 50 51 52	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the database that the application uses is a The relational model feature is that there Which of the following are the properties of entities? Which database level is closest to the users? Which are the two ways in which entities can participate in a relationship? data type can store unstructured data	tuples HLL module is no need for primary key data Groups External Passive and active	a relation row DML relational model is much more data independence than some other database models Table Internal Total and partial	relationship set a data structure DDL schema are explicit relationships among records. Attributes Physical Simple and Complex	entity set or a relationship set an entity DCL sub schema are tables with many dimensions Switchboards Conceptual	tuples DDL sub schema is much more data independence than some other database models Attributes External Total and partial
45 46 47 48 49 50 51 52 53 54	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the database that the application uses is a The relational model feature is that there Which of the following are the properties of entities? Which database level is closest to the users? Which are the two ways in which entities can participate in a relationship? data type can store unstructured data insert into <table_name> (column list) values list of values> first proposed the process of</table_name>	tuples HLL module is no need for primary key data Groups External Passive and active RAW TRUE	a relation row DML relational model is much more data independence than some other database models Table Internal Total and partial CHAR FALSE	relationship set a data structure DDL schema are explicit relationships among records. Attributes Physical Simple and Complex NUMERIC Table	entity set or a relationship set an entity DCL sub schema are tables with many dimensions Switchboards Conceptual All of the above VARCHAR None	tuples DDL sub schema is much more data independence than some other database models Attributes External Total and partial RAW TRUE
45 46 47 48 49 50 51 52 53 54 55	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the database that the application uses is a The relational model feature is that there Which of the following are the properties of entities? Which database level is closest to the users? Which are the two ways in which entities can participate in a relationship?	tuples HLL module is no need for primary key data Groups External Passive and active RAW TRUE	a relation row DML relational model is much more data independence than some other database models Table Internal Total and partial CHAR FALSE Edgar F. Codd	relationship set a data structure DDL schema are explicit relationships among records. Attributes Physical Simple and Complex NUMERIC Table Edward Stephen	entity set or a relationship set an entity DCL sub schema are tables with many dimensions Switchboards Conceptual All of the above VARCHAR	tuples DDL sub schema is much more data independence than some other database models Attributes External Total and partial RAW TRUE Edgar F. Codd
45 46 47 48 49 50 51 52 53 54	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the database that the application uses is a The relational model feature is that there Which of the following are the properties of entities? Which database level is closest to the users? Which are the two ways in which entities can participate in a relationship?	tuples HLL module is no need for primary key data Groups External Passive and active RAW TRUE	a relation row DML relational model is much more data independence than some other database models Table Internal Total and partial CHAR FALSE	relationship set a data structure DDL schema are explicit relationships among records. Attributes Physical Simple and Complex NUMERIC Table	entity set or a relationship set an entity DCL sub schema are tables with many dimensions Switchboards Conceptual All of the above VARCHAR None	tuples DDL sub schema is much more data independence than some other database models Attributes External Total and partial RAW TRUE
45 46 47 48 49 50 51 52 53 54 55	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the database that the application uses is a The relational model feature is that there Which of the following are the properties of entities? Which database level is closest to the users? Which are the two ways in which entities can participate in a relationship? data type can store unstructured data insert into <table_name> (column list) values list of values></table_name>	tuples HLL module is no need for primary key data Groups External Passive and active RAW TRUE Edgar. W	a relation row DML relational model is much more data independence than some other database models Table Internal Total and partial CHAR FALSE Edgar F. Codd <	relationship set a data structure DDL schema are explicit relationships among records. Attributes Physical Simple and Complex NUMERIC Table Edward Stephen =<	entity set or a relationship set an entity DCL sub schema are tables with many dimensions Switchboards Conceptual All of the above VARCHAR None Edward Codd >=	tuples DDL sub schema is much more data independence than some other database models Attributes External Total and partial RAW TRUE Edgar F. Codd =<
45 46 47 48 49 50 51 52 53 54 55 56 57	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the database that the application uses is a The relational model feature is that there Which of the following are the properties of entities? Which database level is closest to the users? Which are the two ways in which entities can participate in a relationship?	tuples HLL module is no need for primary key data Groups External Passive and active RAW TRUE	a relation row DML relational model is much more data independence than some other database models Table Internal Total and partial CHAR FALSE Edgar F. Codd	relationship set a data structure DDL schema are explicit relationships among records. Attributes Physical Simple and Complex NUMERIC Table Edward Stephen	entity set or a relationship set an entity DCL sub schema are tables with many dimensions Switchboards Conceptual All of the above VARCHAR None	tuples DDL sub schema is much more data independence than some other database models Attributes External Total and partial RAW TRUE Edgar F. Codd
45 46 47 48 49 50 51 52 53 54 55 56	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the database that the application uses is a The relational model feature is that there Which of the following are the properties of entities? Which database level is closest to the users? Which are the two ways in which entities can participate in a relationship?	tuples HLL module is no need for primary key data Groups External Passive and active RAW TRUE Edgar. W programming	a relation row DML relational model is much more data independence than some other database models Table Internal Total and partial CHAR FALSE Edgar F. Codd <	relationship set a data structure DDL schema are explicit relationships among records. Attributes Physical Simple and Complex NUMERIC Table Edward Stephen =<	entity set or a relationship set an entity DCL sub schema are tables with many dimensions Switchboards Conceptual All of the above VARCHAR None Edward Codd >=	tuples DDL sub schema is much more data independence than some other database models Attributes External Total and partial RAW TRUE Edgar F. Codd =<
45 46 47 48 49 50 51 52 53 54 55 56 57	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the database that the application uses is a The relational model feature is that there Which of the following are the properties of entities? Which database level is closest to the users? Which are the two ways in which entities can participate in a relationship?	tuples HLL module is no need for primary key data Groups External Passive and active RAW TRUE Edgar. W programming GROUP BY Clause	a relation row DML relational model is much more data independence than some other database models Table Internal Total and partial CHAR FALSE Edgar F. Codd < functioning HAVING Clause	relationship set a data structure DDL schema are explicit relationships among records. Attributes Physical Simple and Complex NUMERIC Table Edward Stephen =< navigation FROM Clause	entity set or a relationship set an entity DCL sub schema are tables with many dimensions Switchboards Conceptual All of the above VARCHAR None Edward Codd >= notification WHERE Clause	tuples DDL sub schema is much more data independence than some other database models Attributes External Total and partial RAW TRUE Edgar F. Codd =< notification HAVING Clause
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	it is a A relation is Rows of a relation are called The database schema is written in The way a particular application views the data from the database that the application uses is a The relational model feature is that there Which of the following are the properties of entities? Which database level is closest to the users? Which are the two ways in which entities can participate in a relationship?	tuples HLL module is no need for primary key data Groups External Passive and active RAW TRUE Edgar. W programming GROUP BY	a relation row DML relational model is much more data independence than some other database models Table Internal Total and partial CHAR FALSE Edgar F. Codd <	relationship set a data structure DDL schema are explicit relationships among records. Attributes Physical Simple and Complex NUMERIC Table Edward Stephen =< navigation	entity set or a relationship set an entity DCL sub schema are tables with many dimensions Switchboards Conceptual All of the above VARCHAR None Edward Codd >= notification	tuples DDL sub schema is much more data independence than some other database models Attributes External Total and partial RAW TRUE Edgar F. Codd =< notification

Reg .No	••••••
	[16CSU403]

d. Physical data model

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

COIMBATORE – 641 021

(For the candidates admitted from 2016 onwards)

B.Sc DEGREE EXAMINATION

Fourth Semester

First Internal Examination – January 2018

COMPUTER SCIENCE

DATA BASE MANAGEMENT SYSTEMS

c. Conceptual data Mode networks

Date :19 -01-1				: 2:00 Hrs
Class: II.B.Sc CS (A	N	laximu	u m : 50	
		ION A – (20*1 = 20 Marks) Answer All Questions		
	a collection of high-	level data description constru	ıcts tha	at hide many low-level
storage details a. Data Model	b. ER Model	c. Network Model	(d. Relational Model
2. Database mana	gement System base	d on		
a. Data Model	b. ER Model	c. Network Model	(d. Relational Model
3. A widely used Se	emantic model called	I		
		c. Hierarchical model	(d. Object-based model
4 a. ER model	is a more abstrac	t		o. Semantic data model
c. Conceptual data	a Mode networks			d. Physical data model
5model is	used to pictorially de	enote entities & relationships		
a. ER model			ŀ	o. Semantic data model

6. A description Of da	ata in terms of a data r	nodel is called	
a. Schema	b. Relation	c. record	d. entities
7 Field is athorwise k	rnown ac		
a. Column	known as b. Entity	– c. Relation	d. Relationship
a. Column	D. Litticy	c. Relation	u. Relationship
8. Column is otherwis	se known as		
a. Relation			d. Relationship
	ine the external and co	-	
a. DDL	b. DML	c. DCL	d. TCL
10 Physical model sn	ecifies	details	
a. Information		c. Storage	d. relationships
a. mormation	o. data	c. storage	a. relationships
11. The	ayer is responsible for	process to process delivery.	
	b. presentation		d. transport
12 is the prima	ry unit of storage in a	database	
a. table	b. column	c. row	d. number
12.6			
		onship between tables.	4 1
a. one-to-one	b. one-to-many	c. many-to-many	d. many-to-one
14 An F-R modeling t	for given application le	eads to	
a. conceptual data m	- : :		b. logical data model
c external data mode			d. internal data model
15. An entity is			
a. collection of differen	ent entities	b. coll	ection of related entities
c. related data		d. col l	ection of similar entities
16. What does SQL st			
a. Structured Query I		b. Strong Question La	
c. Structured Questio	n Language	d. Structure Query La	anguage
17 Croato Altor Dron	n commands aro	language command	
a. DDL		c. DCL	d. TCL
d. DDL	O. DIVIL	c. Dec	u. TCL
18. Create.Alter.Drop	commands are	language command	
a. DDL	b. DML	c. DCL	d. TCL
19. Selection Operation	on is used tofron	n a relation	
a. Select the Column	b. Sele	ect the row c. Select the tab	le d. Select DMBS

20	command is use	ed to remove	the table definition	information
a. Delete	b. R	emove	c. Destroy	d. Drop
		SECTION B	– (3*2 = 6 Marks)	
		Answer	All Questions	
21. List the Cl	haracteristics of Da	itabase Appr	oach	
22. Define en	tity and attributes			
23. Draw an E	ER diagram for M:M	relationship		
		SECTION C -	- (3*8 = 24 Marks)	
		Answer	the Questions	
24. a) Define	database and explain	n various data	abase models with n	eat diagram.
			[OR]	
b) Discuss	data base architectu	ure with neat	sketch.	
25. a) What a	re the typical ERD sy	mbols and dr	aw a neat ERD for a [OR]	n employee table.
b) Explain	i) Entity types	ii) Relatioi	nships	
26. a) Ilustrat	e with syntax and ex	cample of rela	tional constraints. [OR]	
b) Discuss	relational algebra w	ith proper ex	ample.	

Reg .No	••••••
	[16CSU403]

Time : 2:00 Hrs

d. Physical data model

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University

(Established Under Section 3 of UGC Act, 1956)

COIMBATORE – 641 021

(For the candidates admitted from 2016 onwards)

B.Sc DEGREE EXAMINATION

Fourth Semester

First Internal Examination – January 2018

COMPUTER SCIENCE

DATA BASE MANAGEMENT SYSTEMS

Date : 19 - 01 - 18

c. Conceptual data Mode networks

Class: II.B.Sc CS (A & B)		Ma	Maximum : 50	
		ION A – (20*1 = 20 Marks) Answer All Questions		
1is storage details	a collection of high-	level data description construc	ts that hide many low-level	
a. Data Model	b. ER Model	c. Network Model	d. Relational Model	
	gement System based			
a. Data Model	b. ER Model	c. Network Model	d. Relational Model	
3. A widely used Se	emantic model called	l		
a. Data Model	b. ER Model	c. Hierarchical model	d. Object-based model	
4	is a more abstrac	t		
a. ER model			b. Semantic data mode l	
c. Conceptual data	Mode networks		d. Physical data model	
5model is	used to pictorially de	enote entities & relationships		
a. ER model	•		b. Semantic data model	

6. A description Of (data in terms of a data	a model is called	
a. Schema	b. Relation	c. record	d. entities
7. Field is otherwise	known as		
a. Column	b. Entity	c. Relation	d. Relationship
8. Column is otherw	vise known as		
	b. Entity		d. Relationship
9is used to de	efine the external and	conceptual model.	
a. DDL	b. DML	c. DCL	d. TCL
10. Physical model s	specifies	details.	
a. Information	b. data	c. Storage	d. relationships
11. The	layer is responsible f	or process to process delivery	<i>'</i> .
	b. presentation		d. transport
12. is the prim	ary unit of storage in	a database	
a. table	b. column	c. row	d. number
13. Set structures ca	an represent a rela	tionship between tables.	
a. one-to-one	b. one-to-many	c. many-to-many	d. many-to-one
14. An E-R modeling	g for given application	leads to	
a. conceptual data	mode		b. logical data model
c external data mod	lel		d. internal data model
15. An entity is	·		
a. collection of diffe	erent entities	b. c	ollection of related entities
c. related data		d. c	ollection of similar entities
16. What does SQL	stand for?		
a. Structured Query	/ Language	b. Strong Question	n Language
c. Structured Quest	ion Language	d. Structure Query	Language
17 Create, Alter, Dr	op commands are	language command	
a. DDL	b. DML	c. DCL	d. TCL
18. Create.Alter,Dro	op commands are	language command	
a. DDL	b. DML	c. DCL	d. TCL
19. Selection Opera	tion is used tofr	om a relation	
a. Select the Colum	n b. S	elect the row c. Select the t	able d. Select DMBS

20. _____command is used to remove the table definition information
a. Delete b. Remove c. Destroy d. Drop

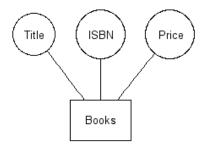
SECTION B – (3*2 = 6 Marks)

Answer All Questions

21. List the Characteristics of Database Approach

- Represent Some Aspects of real world applications
- Manages Information
- Easy Operation implementation
- Multiple views of database
- Data for specific purpose
- ➤ It has Users of Specific interest
- Self Describing nature
- Logical relationship between records and data

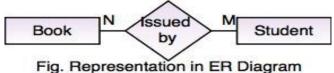
22. Define entity and attributes


Entity

An entity is a database object that represents a thing in the real world. Entities are expressed as nouns.

Attributes

An attribute is a characteristic of an entity. Every entity has at least one attribute


EX: The books entity set

23. Draw an ER diagram for M:M relationship

- In Many to Many Relationship, many entities are related with the multiple other entities.
- This relationship is a type of cardinality which refers the relation between two entities.

For example: Various Books in a Library are issued by many Students.

SECTION C – (3*8 = 24 Marks)

Answer the Questions

24. a) Define database and explain various database models with neat diagram.

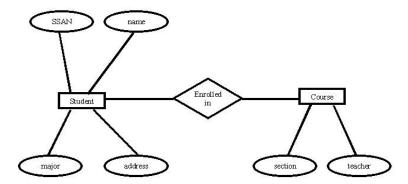
Database

A database is a collection of information that is organized so that it can be easily accessed, managed and updated.

Data Model

A database model shows the logical structure of a database, including the relationships and constraints that determine how data can be stored and accessed. Individual database models are designed based on the rules and concepts of whichever broader data model the designers adopt. Most data models can be represented by an accompanying database diagram.

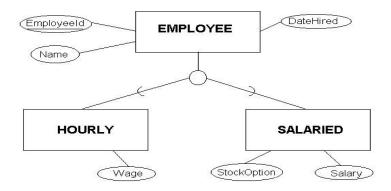
Flat Data Model


Flat data model is the first and foremost introduced model and in this all the data used is kept in the same plane. Since it was used earlier this model was not so scientific.

Roll No	Name	Course	
5482	Mark	Web Designing	
5486	Steve	Java	
5496	Smith	Oracle	

Entity Relationship Data Model

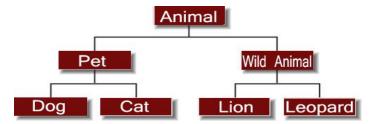
Entity relationship model is based on the notion of the real world entities and their relationships. While formulating the real world scenario in to the database model an entity set is created and this model is dependent on two vital things and they are:


- Entity and their attributes
- Relationships among entities

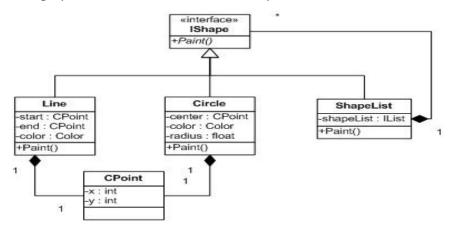
An entity has a real world property called attribute and attribute define by a set of values called domain. For example, in a university a student is an entity, university is the database, name and age and sex are the attributes. The relationships among entities define the logical association between entities.

Relational Data Model

Relational model is the most popular model and the most extensively used model. In this model the data can be stored in the tables and this storing is called as relation, the relations can be normalized and the normalized relation values are called atomic values. Each row in a relation contains unique value and it is called as tuple, each column contains value from same domain and it is called as attribute.


Network Data Model

Network model has the entities which are organized in a graphical representation and some entities in the graph can be accessed through several paths.


Hierarchical Data Model

Hierarchical model has one parent entity with several children entity but at the top we should have only one entity called root. For example, department is the parent entity called root and it has several children entities like students, professors and many more.

Object oriented Data Model

Object oriented data model is one of the developed data model and this can hold the audio, video and graphic files. These consist of data piece and the methods which are the DBMS instructions.

b) Discuss data base architecture with neat sketch.

Following are the three levels of database architecture,

- 1. Physical Level
- 2. Conceptual Level
- 3. External Level

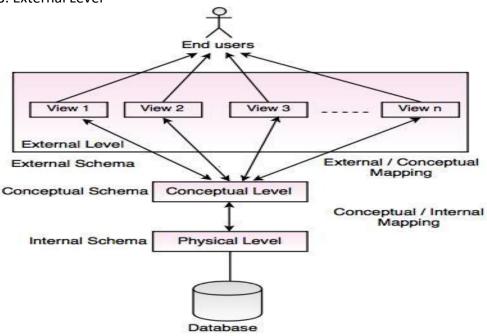


Fig. Three Level Architechture of DBMS

In the above diagram,

- It shows the architecture of DBMS.
- Mapping is the process of transforming request response between various database levels of architecture.
 - Mapping is not good for small database, because it takes more time.
- In External / Conceptual mapping, DBMS transforms a request on an external schema against the conceptual schema.
- In Conceptual / Internal mapping, it is necessary to transform the request from the conceptual to internal levels.

1. Physical Level

- Physical level describes the physical storage structure of data in database.
- It is also known as Internal Level.
- This level is very close to physical storage of data.

- At lowest level, it is stored in the form of bits with the physical addresses on the secondary storage device.
 - At highest level, it can be viewed in the form of files.
 - The internal schema defines the various stored data types. It uses a physical data model.

2. Conceptual Level

- Conceptual level describes the structure of the whole database for a group of users.
- It is also called as the data model.
- Conceptual schema is a representation of the entire content of the database.
- These schema contains all the information to build relevant external records.
- It hides the internal details of physical storage.

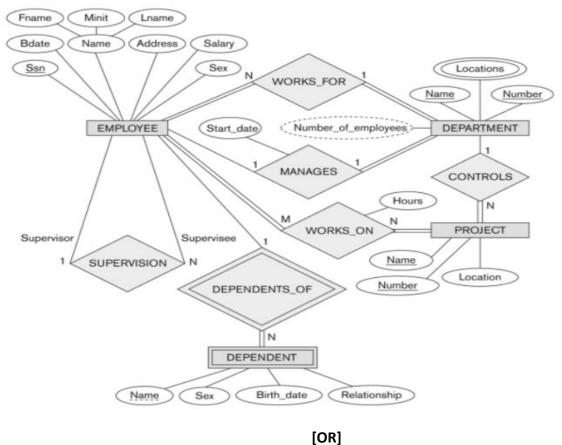
3. External Level

- External level is related to the data which is viewed by individual end users.
- This level includes a no. of user views or external schemas.
- This level is closest to the user.

External view describes the segment of the database that is required for a particular user group and hides the rest of the database from that user group.

25. a) What are the typical ERD symbols and draw a neat ERD for an employee table.

ER Diagrams

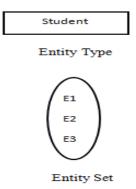

- ERD stands for Entity Relationship diagram.
- It is a graphical representation of an information system.
- ER diagram shows the relationship between objects, places, people, events etc.

Following are the components of ER Diagram

Notations	Representation	Description
	Rectangle	It represents the Entity.
	Ellipse	It represents the Attribute.

	Diamond	It represents the Relationship.
-	Line	It represents the link between attribute and entity set to relationship set.
	Double Rectangle	It represents the weak entity.
27	Composite Attribute	It represents composite attribute which can be divided into subparts. For eg. Name can be divided into First Name and Last Name
	Multi valued Attribute	It represents multi valued attribute which can have many values for a particular entity. For eg. Mobile Number.
	Derived Attribute	It represents the derived attribute which can be derived from the value of related attribute.
	Key Attribute	It represents key attribute of an entity which have a unique value in a table. For eg. Employee → Empld (Employee Id is Unique).

ERD for an employee table


b) Explain i) Entity types ii) Relationships

i) Entity types

Entity, Entity Type, Entity Set

An Entity may be an object with a physical existence – a particular person, car, house, or employee – or it may be an object with a conceptual existence – a company, a job, or a university course.

An Entity is an object of Entity Type and set of all entities is called as entity set. e.g.; E1 is an entity having Entity Type Student and set of all students is called Entity Set. In ER diagram, Entity Type is represented as:

ii) Relationships

1. One - to - One Relationship

- In One to One Relationship, one entity is related with only one other entity.
- One row in a table is linked with only one row in another table and vice versa.

For example: A Country can have only one Capital City.

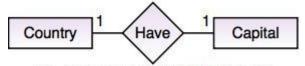


Fig. Representation in ER Diagram

2. One - to - Many Relationship

- In One to Many Relationship, one entity is related to many other entities.
- One row in a table A is linked to many rows in a table B, but one row in a table B is linked to only one row in table A.

For example: One Department has many Employees.

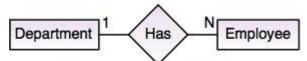


Fig. Representation in ER Diagram

3. Many - to - One Relationship

In Many - to - One Relationship, many entities can be related with only one other entity.

For example: No. of Employee works for Department.

• Multiple rows in Employee table is related with only one row in Department table.

Fig. Representation in ER Diagram

4. Many - to - Many Relationship

- In Many to Many Relationship, many entities are related with the multiple other entities.
- This relationship is a type of cardinality which refers the relation between two entities.

For example: Various Books in a Library are issued by many Students.

Fig. Representation in ER Diagram

26. a) Ilustrate with syntax and example of relational constraints.

What are Database Constraints in DBMS ??

Database constraints are restrictions on the contents of the database or on database operations. It is a condition specified on a database schema that restricts the data to be inserted in an instance of the database.

Every relation has some conditions that must hold for it to be a valid relation. These conditions are called **Relational Integrity Constraints**.

Domain Constraints -

Domain Constraints specifies that what set of values an attribute can take. Value of each attribute X must be an atomic value from the domain of X. The data type associated with domains include integer, character, string, date, time, currency etc. An attribute value must be available in the corresponding domain. Consider the example below —

Ankit	1 st	10	
	-	19	
Srishti	1 st	18	
Somvir	4 th	22	
Sourabh	6 th	Α -	Not Allowed. Because Age
S	omvir	omvir 4 th	omvir 4 th 22

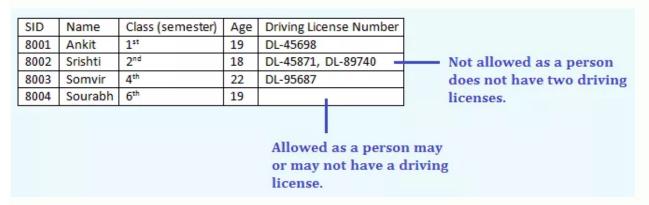
Tuple Uniqueness Constraints –

A relation is defined as a set of tuples. All tuples or all rows in a relation must be unique or distinct. Suppose if in a relation, tuple uniqueness constraint is applied, then all the rows of that table must be unique i.e. it does not contain the duplicate values. For example,

Key Constraints -

Keys are attributes or sets of attributes that uniquely identify an entity within its entity set. An Entity set E can have multiple keys out of which one key will be designated as the primary key. Primary Key must have unique and not null values in the relational table. In an subclass hierarchy, only the root entity set has a key or primary key and that primary key must serve as the key for all entities in the hierarchy.

Types of keys in DBMS

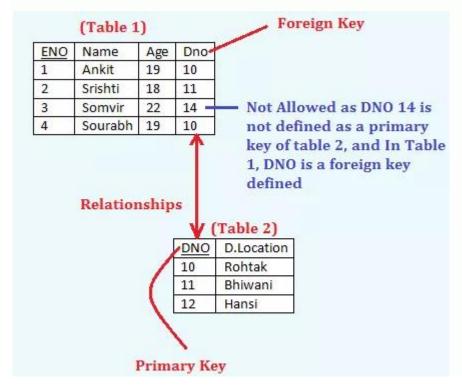

1. <u>Primary Key</u> – A primary is a column or set of columns in a table that uniquely identifies tuples (rows) in that table.

Example of Key Constraints in a simple relational table -

SID	Name	Class (semester)	Age
8001	Ankit	1 st	19
8002	Srishti	1 st	18
8003	Somvir	4 th	22
8004	Sourabh	6 th	45
8002	Tony	5 th	23

Single Value Constraints -

Single value constraints refers that each attribute of an entity set has a single value. If the value of an attribute is missing in a tuple, then we cal fill it with a "null" value. The null value for a attribute will specify that either the value is not known or the value is not applicable. Consider the below example-


Integrity Rule 1 (Entity Integrity Rule or Constraint) -

The Integrity Rule 1 is also called Entity Integrity Rule or Constraint. This rule states that no attribute of primary key will contain a null value. If a relation have a null value in the primary key attribute, then uniqueness property of the primary key cannot be maintained. Consider the example below-

SID	Name	Class (semester)	Age
8001	Ankit	1 st	19
8002	Srishti	2 nd	18
8003	3002 Srishti 2 nd	22	
125	Sourabh	6 th	19
	Sourabh	6 th	19
lot a	llowed as	primary	

Integrity Rule 2 (Referential Integrity Rule or Constraint) -

The integrity Rule 2 is also called the Referential Integrity Constraints. This rule states that if a foreign key in Table 1 refers to the Primary Key of Table 2, then every value of the Foreign Key in Table 1 must be null or be available in Table 2. For example,

[OR]

b) Discuss relational algebra with proper example.

RELATIONAL ALGEBRA

Relational Algebra is procedural query language, which takes Relation as input and generate relation as output. Relational algebra mainly provides theoretical foundation for relational databases and SQL.

• Domain: set of relations

- Based on set theory
- Contains extensions to manipulate tables
- Functional language
- Procedural, i.e., order to operations, algorithm implicit in the functional evaluation

Relational Algebra Operations

Below are fundamental operations that are "complete". That is, this set of operations alone can define any retrieval.

- Select
- Project
- Rename
- Union
- Set Difference
- Cartesian Product

Convenient, natural additions to the set of operations makes

- Set Intersection
- Natural Join
- Division
- Assignment

Projection

- Produce a subset of attributes from a relation
- Unselected columns are eliminated
- Duplicate rows are eliminated
- Result is a relation

Syntax: π_{attribute-list}(relation)

Example: The table E (for EMPLOYEE)

nr	name	salary
1	John	100
5	Sarah	300
7	Tom	100

SQL	Result	Relational algebra
select salary	salary	DROJECT (F)
from E	100	PROJECT _{salary} (E)

	300		
	nr	salary	
select nr, salary	1	100	DROJECT (E)
from E	5	30	PROJECT _{nr, salary} (E)
	7	100	

Note that there are no duplicate rows in the result.

Selection

Choose a subset of tuples from a relation based on some criteria, results in another relation called a "result set"

Notation uses lower case sigma:

Synatx: $\sigma_{condition}$ (relation)

The same table **E** (for **EMPLOYEE**) as above.

SQL		R	esult	Relational algebra	
select * from E where salary < 200	nr 1 7	John Tom	100 100	SELECT _{salary} < 200(E)	
select * from E where salary < 200 and nr >= 7	nr 7	name Tom	salary	SELECT _{salary} < 200 and nr >= 7(E)	

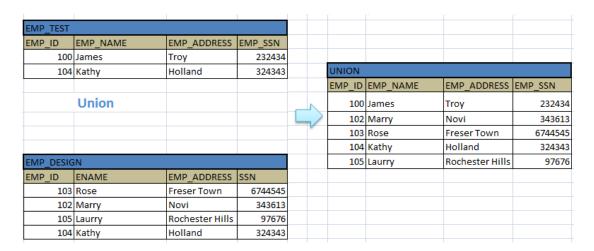
Set Operators

There are 4 main set operators used in the query language.

1. UNION

It combines the similar columns from two tables into one resultant table. All columns that are participating in the UNION operation should be Union Compatible.

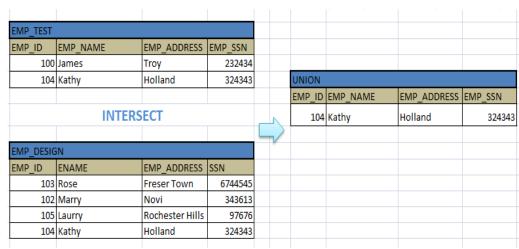
SELECT EMP_ID, EMP_NAME, EMP_ADDRESS, EMP_SSN


16

FROM EMP_TEST

UNION

SELECT EMP_ID, EMP_NAME, EMP_ADDRESS, EMP_SSN


FROM EMP_DESIGN;

2. INTERSECT

This operator is used to pick the records from both the tables which are common to them

SELECT EMP_ID, EMP_NAME, EMP_ADDRESS, EMP_SSN
FROM EMP_TEST
INTERSECT
SELECT EMP_ID, EMP_NAME, EMP_ADDRESS, EMP_SSN

SELECT EMP ID, EMP NAME, EMP ADDRESS, EMP SSN

FROM EMP_TEST MINUS SELECT EMP_ID, EMP_NAME, EMP_ADDRESS, EMP_SSN FROM EMP_DESIGN;

	1.1	1.1	1.1	1 1					
EMP_TES	Т								
EMP_ID	EMP_NAME	EMP_ADDRESS	EMP_SSN						
1	00 James	Troy	232434						
1	04 Kathy	Holland	324343			UNION			
						EMP_ID	EMP_NAME	EMP_ADDRESS	EMP_SSN
	MI	NUS			1	100	James	Troy	232434
				_					
EMP_DES	SIGN								
EMP_ID	ENAME	EMP_ADDRESS	SSN						
1	03 Rose	Freser Town	6744545						
1	02 Marry	Novi	343613						
1	05 Laurry	Rochester Hills	97676						
1	04 Kathy	Holland	324343						