
 DESIGN AND ANALYSIS OF ALGORITHMS 2016-2019
Batch

Department of Computer Science, KAHE Page 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Coimbatore-641 021

 (For the candidates admitted from 2016 onwards)

 DEPARTMENT OF COMPUTER SCIENCE, CA & IT

 SUBJECT NAME: DESIGN AND ANALYSIS OF ALGORITHMS SEMESTER : IV

 SUBJECT CODE: 16CSU401 CLASS: II- B. Sc (CS)

COURSE OBJECTIVE:

Data structures and algorithms are the building blocks in computer programming. This course will

give students a comprehensive introduction of common data structures, and algorithm design and

analysis. This course also intends to teach data structures and algorithms for solving real problems

that arise frequently in computer applications, and to teach principles and techniques of

computational complexity.

COURSE OUTCOME:

 Possess intermediate level problem solving and algorithm development skills on the computer

 Be able to analyze algorithms using big-Oh notation

 Understand the fundamental data structures such as lists, trees, and graphs

 Understand the fundamental algorithms such as searching, and sorting

UNIT-I

Introduction: Basic Design and Analysis techniques of Algorithms, Correctness of Algorithm.

Algorithm Design Techniques: Iterative techniques, Divide and Conquer, Dynamic

Programming, Greedy Algorithms.

UNIT-II

Sorting and Searching Techniques: Elementary sorting techniques–Bubble Sort, Insertion Sort,

Merge Sort, Advanced Sorting techniques - Heap Sort, Quick Sort, Sorting in Linear Time -

Bucket Sort, Radix Sort and Count Sort, Searching Techniques, Medians & Order Statistics,

complexity analysis;

UNIT-III

Lower Bounding Techniques: Decision Trees Balanced Trees: Red-Black Trees

UNIT-IV

Advanced Analysis Technique: Amortized analysis Graphs: Graph Algorithms–Breadth First

Search, Depth First Search and its Applications, Minimum Spanning Trees.

 DESIGN AND ANALYSIS OF ALGORITHMS 2016-2019
Batch

Department of Computer Science, KAHE Page 2

UNIT-V

String Processing: String Matching, KMP Technique.

Suggested Readings

1. Cormen, T.H., Charles, E. Leiserson., Ronald, L. Rivest. (2009). Clifford Stein Introduction to

Algorithms(3rd ed.). New Delhi: PHI.

2. Sarabasse., Gelder, A.V. (1999). Computer Algorithm – Introduction to Design and Analysis

(3rd ed.). New Delhi: Pearson

ESE MARKS ALLOCATION

1.

Section A

20 X1 = 20

(Online Examination)

20

2.

Section C

5X8 = 40

(Either ‘A’ or ‘B’ Choice)

40

3. Total 60

LECTURE PLAN 2016-2019
Batch

Prepared by Dr. T. GENISH, Department of CS, CA & IT, KAHE Page 1/6

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

 COIMBATORE – 641 021.

 LECTURE PLAN

 DEPARTMENT OF COMPUTER SCIENCE

STAFF NAME: Dr. T. GENISH

SUBJECT NAME: DESIGN AND ANALYSIS OF ALGORITHMS SUB.CODE : 16CSU401

SEMESTER: IV CLASS : II B.SC CS

Sl.No

Lecture

Duration

(Periods)

Topics to be covered

Support

 Materials

UNIT- I

1 1
Introduction

2 1
Basic Design and Analysis techniques of Algorithms W1

3 1
Contd..Analysis Techniques W1

4 1
Correctness of Algorithm. T1:2

5 1
Algorithm Design Techniques: Iterative techniques W2

6 1
Contd.. Iterative techniques W2

7 1
Divide and Conquer T1: 12-14

8 1
Dynamic Programming T1: 301-307

9 1
Contd.. Dynamic Programming T1: 308-320

10 1
Contd.. Dynamic Programming T1: 320-328

11 1 Greedy Algorithms
T1: 329-332

12 1 Contd.. Greedy Algorithms
T1: 333-340

LECTURE PLAN 2016-2019
Batch

Prepared by Dr. T. GENISH, Department of CS, CA & IT, KAHE Page 2/6

13 1 Contd.. Greedy Algorithms
T1: 340-355

14 1
Recapitulation and Possible Questions Discussion

15 1
Recapitulation and Possible Questions Discussion

Total No. Of Hours Planned for unit I 15

TEXT BOOK:
T1:Cormen, T.H., Charles, E.

Leiserson., Ronald, L. Rivest.

(2009). Clifford Stein

Introduction to Algorithms(3rd

ed.). New Delhi: PHI.

WEB SITES

 W1:

https://www.tutorialspoint.com/design_and_a

nalysis_of_algorithm

W2:

https://en.wikipedia.org/wiki/Iterative_meth

od

Sl.No

Lecture

Duration

(Periods)

Topics to be covered

Support

 Materials

UNIT- II

1 1 Sorting and Searching Techniques: Elementary

sorting techniques- Bubble Sort
W3

2 1 Bubble Sort W3

3 1 Contd.. Bubble Sort W3

4 1 Insertion Sort T1: 2-5

5 1 Merge Sort T1: 12-15

6 1 Advanced Sorting techniques – Heap Sort T1: 140-145

7 1 Contd.. Heap Sort T1: 145-152

8 1 Quick Sort T1: 153-159

9 1 Contd.. Quick Sort T1: 159-163

10 1 Sorting in Linear Time – Bucket Sort T1: 180-183

https://www.tutorialspoint.com/design_and_analysis_of_algorithm
https://www.tutorialspoint.com/design_and_analysis_of_algorithm

LECTURE PLAN 2016-2019
Batch

Prepared by Dr. T. GENISH, Department of CS, CA & IT, KAHE Page 3/6

11 1 Radix Sort T1: 178-180

12 1 Count Sort T1: 175-178

13 1 Searching Techniques- Medians & Order Statistics W4

14 1 Medians & Order Statistics W4

15 1 complexity analysis W5

16 1 Recapitulation and Possible Questions Discussion

17 1 Recapitulation and Possible Questions Discussion

18 1 Recapitulation and Possible Questions Discussion

 Total No. Of Hours Planned for unit II: 18

TEXT BOOK:
T1:Cormen, T.H., Charles, E. Leiserson.,

Ronald, L. Rivest. (2009). Clifford Stein

Introduction to Algorithms(3rd ed.). New

Delhi: PHI.

WEB SITES

W3:

https://www.tutorialspoint.com/data_structu

res_algorithms/bubble_sort_algorithm.htm

W4:

https://www.w3schools.in/data-structures-

tutorial/searching-techniques/

W5:

https://www.hackerearth.com/practice/basic-

programming/complexity-analysis/time-and-

space-complexity/tutorial/

Sl.No

Lecture

Duration

(Periods)

Topics to be covered

Support

 Materials

UNIT- III

1 1 Lower Bounding Techniques: Decision Trees W6

2 1 Contd.. Decision Trees W6

3 1 Contd.. Decision Trees W6

4 1 Balanced Trees: Red-Black Trees T1: 263-265

https://www.tutorialspoint.com/data_structures_algorithms/bubble_sort_algorithm.htm
https://www.tutorialspoint.com/data_structures_algorithms/bubble_sort_algorithm.htm
https://www.w3schools.in/data-structures-tutorial/searching-techniques/
https://www.w3schools.in/data-structures-tutorial/searching-techniques/

LECTURE PLAN 2016-2019
Batch

Prepared by Dr. T. GENISH, Department of CS, CA & IT, KAHE Page 4/6

5 1 Contd.. Red-Black Trees T1: 265-270

6 1 Contd.. Red-Black Trees T1: 270-272

7 1 Recapitulation and Possible Questions Discussion

8 1 Recapitulation and Possible Questions Discussion

Total No. Of Hours Planned for unit III: 08

TEXT BOOK:
T1:Cormen, T.H., Charles, E. Leiserson.,

Ronald, L. Rivest. (2009). Clifford Stein

Introduction to Algorithms(3rd ed.). New

Delhi: PHI.

WEB SITES

W6:

https://en.wikipedia.org/wiki/Decision_tree

Sl.No

Lecture

Duration

(Periods)

Topics to be covered

Support

Materials

UNIT- IV

1 1 Advanced Analysis Technique: Amortized analysis T1: 356-360

2 1 Contd.. Amortized analysis T1: 360-367

3 1 Graphs: Graph Algorithms–Breadth First Search T1: 465-467

4 1 Contd.. Breadth First Search T1: 468-470

5 1 Contd.. Breadth First Search T1: 470-477

6 1 Depth First Search T1: 477-480

7 1 Contd.. Depth First Search T1: 480-482

8 1 Contd.. Applications of Depth First Search T1: 482-485

9 1 Minimum Spanning Trees T1: 498-505

11 1 Contd.. Minimum Spanning Trees T1: 505-512

12 1 Recapitulation and Possible Questions Discussion

LECTURE PLAN 2016-2019
Batch

Prepared by Dr. T. GENISH, Department of CS, CA & IT, KAHE Page 5/6

13 1 Recapitulation and Possible Questions Discussion

Total No. Of Hours Planned for unit III:

13

TEXT BOOKS:
T1:Cormen, T.H., Charles, E. Leiserson.,

Ronald, L. Rivest. (2009). Clifford Stein

Introduction to Algorithms(3rd ed.). New

Delhi: PHI.

Sl.No

Lecture

Duration

(Periods)

Topics to be covered

Support

 Materials

UNIT- V

1
1 String Processing: String Matching

T1: 853-856

2
1 Contd.. String Matching

T1: 856-860

3
1 KMP Technique

T1: 861-875

4
1 Contd.. KMP Technique

T1: 875-883

5
1 Recapitulation and Possible Questions Discussion

6
1 Recapitulation and Possible Questions Discussion

 Total No. Of Hours Planned for unit V: 6

TEXT BOOKS:

T1:Cormen, T.H., Charles, E. Leiserson.,

Ronald, L. Rivest. (2009). Clifford Stein

Introduction to Algorithms(3rd ed.). New

Delhi: PHI.

TEXT BOOK

1. Cormen, T.H., Charles, E. Leiserson., Ronald, L. Rivest. (2009). Clifford Stein Introduction to

Algorithms(3rd ed.). New Delhi: PHI.

2. Sarabasse., Gelder, A.V. (1999). Computer Algorithm – Introduction to Design and Analysis

(3rd ed.). New Delhi: Pearson.

LECTURE PLAN 2016-2019
Batch

Prepared by Dr. T. GENISH, Department of CS, CA & IT, KAHE Page 6/6

WEBSITES

1. https://www.tutorialspoint.com/design_and_analysis_of_algorithm

2. https://en.wikipedia.org/wiki/Iterative_method

3. https://www.tutorialspoint.com/data_structures_algorithms/bubble_sort_algorithm.htm

4. https://www.w3schools.in/data-structures-tutorial/searching-techniques/

5. https://www.w3schools.in/data-structures-tutorial/searching-techniques/

6. https://en.wikipedia.org/wiki/Decision_tree

https://www.tutorialspoint.com/design_and_analysis_of_algorithm
https://en.wikipedia.org/wiki/Iterative_method
https://www.tutorialspoint.com/data_structures_algorithms/bubble_sort_algorithm.htm
https://www.w3schools.in/data-structures-tutorial/searching-techniques/
https://www.w3schools.in/data-structures-tutorial/searching-techniques/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT I: INTRODUCTION BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 1/14

UNIT I

SYLLABUS

Introduction: Basic Design and Analysis techniques of Algorithms, Correctness of Algorithm.

Algorithm Design Techniques: Iterative techniques, Divide and Conquer, Dynamic

Programming, Greedy Algorithms.

Introduction: Basic Design and Analysis Techniques of Algorithms

An algorithm is a set of steps of operations to solve a problem performing calculation, data

processing, and automated reasoning tasks. An algorithm is an efficient method that can be

expressed within finite amount of time and space.

An algorithm is the best way to represent the solution of a particular problem in a very simple

and efficient way. If we have an algorithm for a specific problem, then we can implement it in

any programming language, meaning that the algorithm is independent from any programming

languages.

Algorithm Design

The important aspects of algorithm design include creating an efficient algorithm to solve a

problem in an efficient way using minimum time and space.

To solve a problem, different approaches can be followed. Some of them can be efficient with

respect to time consumption, whereas other approaches may be memory efficient. However, one

has to keep in mind that both time consumption and memory usage cannot be optimized

simultaneously. If we require an algorithm to run in lesser time, we have to invest in more

memory and if we require an algorithm to run with lesser memory, we need to have more time.

Problem Development Steps

The following steps are involved in solving computational problems.

 Problem definition

 Development of a model

 Specification of an Algorithm

 Designing an Algorithm

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT I: INTRODUCTION BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 2/14

 Checking the correctness of an Algorithm

 Analysis of an Algorithm

 Implementation of an Algorithm

 Program testing

 Documentation

Characteristics of Algorithms

The main characteristics of algorithms are as follows:

 Algorithms must have a unique name

 Algorithms should have explicitly defined set of inputs and outputs

 Algorithms are well-ordered with unambiguous operations

 Algorithms halt in a finite amount of time. Algorithms

should not run for infinity, i.e., an algorithm must end at

some point

Pseudocode

Pseudocode gives a high-level description of an algorithm without the ambiguity associated with

plain text but also without the need to know the syntax of a particular programming language.

The running time can be estimated in a more general manner by using Pseudocode to represent

the algorithm as a set of fundamental operations which can then be counted.

Difference between Algorithm and Pseudocode

An algorithm is a formal definition with some specific characteristics that

describes a process, which could be executed by a Turing-complete computer

machine to perform a specific task. Generally, the word "algorithm" can be used

to describe any high level task in computer science.

On the other hand, pseudocode is an informal and (often rudimentary) human

readable description of an algorithm leaving many granular details of it. Writing a

pseudocode has no restriction of styles and its only objective is to describe the high

level steps of algorithm in a much realistic manner in natural language.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT I: INTRODUCTION BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 3/14

For example, following is an algorithm for Insertion Sort.

Algorithm: Insertion-Sort

Input: A list L of integers of length n

Output: A sorted list L1 containing those integers present in L

Step 1: Keep a sorted list L1 which starts off empty

Step 2: Perform Step 3 for each element in the original list L

 Step 3: Insert it into the correct position in the sorted list L1.

Step 4: Return the sorted list

Step 5: Stop

Here is a pseudocode which describes how the high level abstract process mentioned above

in the algorithm Insertion-Sort could be described in a more realistic way.

for i ← 1 to length(A) x ←

A[i]

j ← i

while j > 0 and A[j-1] > x A[j]

← A[j-1]

j ← j - 1 A[j]

← x

In this tutorial, algorithms will be presented in the form of pseudocode, that is similar in

many respects to C, C++, Java, Python, and other programming languages.

Analysis of algorithms

In theoretical analysis of algorithms, it is common to estimate their complexity in the asymptotic

sense, i.e., to estimate the complexity function for arbitrarily large input. The term "analysis of

algorithms" was coined by Donald Knuth.

Algorithm analysis is an important part of computational complexity theory, which provides

theoretical estimation for the required resources of an algorithm to solve a specific

computational problem. Most algorithms are designed to work with inputs of arbitrary length.

Analysis of algorithms is the determination of the amount of time and space resources required

to execute it.

Usually, the efficiency or running time of an algorithm is stated as a function relating the input

https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Algorithm

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT I: INTRODUCTION BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 4/14

length to the number of steps, known as time complexity, or volume of memory, known as space

complexity.

The Need for Analysis

In this chapter, we will discuss the need for analysis of algorithms and how to choose a better

algorithm for a particular problem as one computational problem can be solved by different

algorithms.

By considering an algorithm for a specific problem, we can begin to develop pattern recognition

so that similar types of problems can be solved by the help of this algorithm.

Algorithms are often quite different from one another, though the objectives of these algorithms

are the same. For example, we know that a set of numbers can be sorted using different algorithms.

Number of comparisons performed by one algorithm may vary with others for the same input.

Hence, time complexity of those algorithms may differ. At the same time, we need to calculate

the memory space required by each algorithm.

Analysis of algorithm is the process of analyzing the problem-solving capability of the algorithm

in terms of the time and size required (the size of memory for storage while implementation).

However, the main concern of analysis of algorithms is the required time or performance.

Generally, we perform the following types of analysis:

 Worst-case: The maximum number of steps taken on any instance of size a.

 Best-case: The minimum number of steps taken on any instance of size a.

 Average case: An average number of steps taken on any instance of size a.

 Amortized: A sequence of operations applied to the input of size a

averaged over time.

To solve a problem, we need to consider time as well as space complexity as the program may run

on a system where memory is limited but adequate space is available or may be vice-versa. In this

context, if we compare bubble sort and merge sort. Bubble sort does not require additional

memory, but merge sort requires additional space. Though time complexity of bubble sort is

higher compared to merge sort, we may need to apply bubble sort if the program needs to run in

an environment, where memory is very limited.

https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Space_complexity
https://en.wikipedia.org/wiki/Space_complexity

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT I: INTRODUCTION BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 5/14

•

Correctness of Algorithm

When an algorithm is designed it should be analyzed at least from the following points of view:

Correctness. This means to verify if the algorithm leads to the solution of the problem (hopefully

after a finite number of processing steps).

Efficiency. This means to establish the amount of resources (memory space and processing time)

needed to execute the algorithm on a machine (a formal one or a physical one).

Basic steps in algorithms correctness verification

To verify if an algorithms really solves the problem for which it is designed we can use one of

the following strategies:

Experimental analysis (testing). We test the algorithm for different instances of the problem

(for different input data). The main advantage of this approach is its simplicity while the main

disadvantage is the fact that testing cannot cover always all possible instances of input data (it is

difficult to know how much testing is enough). However the experimental analysis allows

sometimes to identify situations when the algorithm doesn’t work.

Formal analysis (proving). The aim of the formal analysis is to prove that the algorithm works

for any instance of data input. The main advantage of this approach is that if it is rigourously

applied it guarantee the correctness of the algorithm. The main disadvantage is the difficulty of

finding a proof, mainly for complex algorithms. In this case the algorithm is decomposed in

subalgorithms and the analysis is focused on these (simpler) subalgorithms. On the other hand

the formal approach could lead to a better understanding of the algorithms. This approach is called

formal due to the use of formal rules of logic to show that an algorithm meets its specification.

The main steps in the formal analysis of the correctness of an algorithm are:

Identification of the properties of input data (the so-called problem’s preconditions).

Identification of the properties which must be satisfied by the output data (the so called

problem’s postconditions).

Proving that starting from the preconditions and executing the actions specified in the algo-

rithms one obtains the postconditions.

When we analyze the correctness of an algorithm a useful concept is that of state.

The algorithm’s state is the set of the values corresponding to all variables used in the

algorithm.

•

•

•

•

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT I: INTRODUCTION BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 6/14

The state of the algorithm changes (usually by variables assignments) from one processing step

to another processing step. The basic idea of correctness verification is to establish which

should be the state corresponding to each processing step such that at the end of the algorithm

the postconditions are satisfied. Once we established these intermediate states is sufficient to

verify that each processing step ensures the transformation of the current state into the next

state.

When the processing structure is a sequential one (for example a sequence of assignments) then

the verification process is a simple one (we must only analyze the effect of each assignment on

the algorithm’s state).

Difficulties may arise in analyzing loops because there are many sources of errors: the initializa-

tions may be wrong, the processing steps inside the loop may be wrong or the stopping

condition may be wrong. A formal method to prove that a loop statement works correctly is the

mathematical induction method.

Algorithm Design Techniques: Iterative Techniques

Divide and Conquer

In divide and conquer approach, the problem in hand, is divided into smaller sub-problems and

then each problem is solved independently. When we keep on dividing the subproblems into

even smaller sub-problems, we may eventually reach a stage where no more division is

possible. Those "atomic" smallest possible sub-problem (fractions) are solved. The solution of

all sub-problems is finally merged in order to obtain the solution of an original problem.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT I: INTRODUCTION BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 7/14

Broadly, we can understand divide-and-conquer approach in a three-step process.

Divide/Break

This step involves breaking the problem into smaller sub-problems. Sub-problems should

represent a part of the original problem. This step generally takes a recursive approach to divide

the problem until no sub-problem is further divisible. At this stage, sub-problems become

atomic in nature but still represent some part of the actual problem.

Conquer/Solve

This step receives a lot of smaller sub-problems to be solved. Generally, at this level, the

problems are considered 'solved' on their own.

Merge/Combine

When the smaller sub-problems are solved, this stage recursively combines them until they

formulate a solution of the original problem. This algorithmic approach works recursively and

conquer & merge steps works so close that they appear as one.

For example,

The following computer algorithms are based on divide-and-conquer programming approach −

 Merge Sort

 Quick Sort

 Binary Search

 Strassen's Matrix Multiplication

 Closest pair (points)

Example for Divide and Conquer

• Idea 1: Divide array into two halves, recursively sort left and right

halves, then merge two halves known as Mergesort

• Idea 2 : Partition array into small items and large items, then recursively

sort the two sets known as Quicksort

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT I: INTRODUCTION BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 8/14

Merge Sort Example

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT I: INTRODUCTION BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 9/14

Dynamic Programming

Dynamic programming (also known as dynamic optimization) is a method for solving a complex

problem by breaking it down into a collection of simpler subproblems, solving each of those

subproblems just once, and storing their solutions. The next time the same subproblem occurs,

instead of recomputing its solution, one simply looks up the previously computed solution,

thereby saving computation time at the expense of a (hopefully) modest expenditure in storage

space.

The following computer problems can be solved using dynamic programming approach −

 Fibonacci number series

 Knapsack problem

 Tower of Hanoi

 All pair shortest path by Floyd-Warshall

 Shortest path by Dijkstra

 Project scheduling

Dynamic programming can be used in both top-down and bottom-up manner. And of course,

most of the times, referring to the previous solution output is cheaper than recomputing in terms

of CPU cycles.

The intuition behind dynamic programming is that we trade space for time, i.e. to say that instead

of calculating all the states taking a lot of time but no space, we take up space to store the results

of all the sub-problems to save time later.

Let's try to understand this by taking an example of Fibonacci numbers.

Fibonacci (n) = 1; if n = 0

Fibonacci (n) = 1; if n = 1

Fibonacci (n) = Fibonacci(n-1) + Fibonacci(n-2)

So, the first few numbers in this series will be: 1, 1, 2, 3, 5, 8, 13, 21... and so on!

A code for it using pure recursion:

 int fib (int n) {

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT I: INTRODUCTION BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 10/14

 if (n < 2)

 return 1;

 return fib(n-1) + fib(n-2);

 }

Using Dynamic Programming approach with memoization:

 void fib () {

 fibresult[0] = 1;

 fibresult[1] = 1;

 for (int i = 2; i<n; i++)

 fibresult[i] = fibresult[i-1] + fibresult[i-2];

 }

Greedy Algorithms

Some optimization problems can be solved using a greedy algorithm. A greedy algorithm builds

a solution iteratively. At each iteration the algorithm uses a greedy rule to make its choice.

Once a choice is made the algorithm never changes its mind or looks back to consider a different

perhaps better solution; the reason the algorithm is called greedy.

A greedy algorithm is a simple, intuitive algorithm that is used in optimization problems. The

algorithm makes the optimal choice at each step as it attempts to find the overall optimal way to

solve the entire problem. Greedy algorithms are quite successful in some problems, such

as Huffman encoding which is used to compress data, or Dijkstra's Algorithm, which is used to

find the shortest path through a graph.

However, in many problems, a greedy strategy does not produce an optimal solution. For

example, in the animation below, the greedy algorithm seeks to find the path with the largest

sum. It does this by selecting the largest available number at each step. The greedy algorithm

fails to find the largest sum, however, because it makes decisions based only on the information

it has at any one step, and without regard to the overall problem.

https://brilliant.org/wiki/huffman-encoding/
https://brilliant.org/wiki/dijkstras-short-path-finder/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT I: INTRODUCTION BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 11/14

Limitations of Greedy Algorithms

Sometimes greedy algorithms fail to find the globally optimal solution because they do not

consider all the data. The choice made by a greedy algorithm may depend on choices it has made

so far, but it is not aware of future choices it could make.

Example : 1

In the graph below, a greedy algorithm is trying to find the longest path through the graph

(the number inside each node contributes to a total length). To do this, it selects the largest

number at each step of the algorithm. With a quick visual inspection of the graph, it is

clear that this algorithm will not arrive at the correct solution.

Solution:

The correct solution for the longest path through the graph is 7, 3, 1, 99. This is clear to us

because we can see that no other combination of nodes will come close to a sum of 99, so

Actual Largest Path Greedy Method

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT I: INTRODUCTION BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 12/14

whatever path we choose, we know it should have 99 in the path. There is only one option that

includes 99 is 7, 3, 1, 99.

The greedy algorithm fails to solve this problem because it makes decisions purely based on

what the best answer at the time is: at each step it did choose the largest number. However, since

there could be some huge number that the algorithm hasn't seen yet, it could end up selecting a

path that does not include the huge number. The solutions to the subproblems for finding the

largest sum or longest path do not necessarily appear in the solution to the total problem. The

optimal substructure and greedy choice properties don't hold in this type of problem.

Example : 2 – Knapsack Problem

Here, we will look at one form of the knapsack problem. The knapsack problem involves

deciding which subset of items you should take from a set of items if you want to optimize some

value: perhaps the worth of the items, the size of the items, or the ratio of worth to size.

In this problem, we will assume that we can either take an item or leave it (we cannot take a

fractional part of an item). In this problem we will assume that there is only one of each item.

Our knapsack has a fixed size, and we want to optimize the worth of the items we take, so we

must choose the items we take with care.

Our knapsack can hold at most 25 units of space.

Here is the list of items and their worth.

Item Size Price

Laptop 22 12

Playstation 10 9

Textbook 9 9

Basketball 7 6

https://brilliant.org/wiki/backpack-problem/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT I: INTRODUCTION BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 13/14

Which items do we choose to optimize for price?

Solution:

There are two greedy algorithms we could propose to solve this. One has a rule that selects the

item with the largest price at each step, and the other has a rule that selects the smallest sized

item at each step.

Largest Price Algorithm: At the first step, we take the laptop. We gain 12 units of worth, but can

now only carry 25 – 22 = 3 units of additional space in the knapsack. Since no items that remain

will fit into the bag, we can only take the laptop and have a total of 12 units of worth.

Smallest Sized Item Algorithm: At the first step, we will take the smallest sized item: the

basketball. This gives us 6 units of worth, and leaves us with 25-7=18 units of space in our bag.

Next, we select the next smallest item, the textbook. This gives us a total of 6+9=15 units of

worth, and leaves us with 18-9=9 units of space. Since no remaining items are 9 units of space

or less, we can take no more items.

The greedy algorithms yield solutions that give us 12 units of worth and 15 units of worth. But

neither of these are the optimal solution. Inspect the table yourself and see if you can determine a

better selection of items.

Taking the textbook and the playstation yields 9+9=18 units of worth and takes

up 10+9=19 units of space. This is the optimal answer, and we can see that a greedy algorithm

will not solve the knapsack problem since the greedy choice and optimal substructure properties

do not hold.

In problems where greedy algorithms fail, dynamic programming might be a better approach.

Drawback of Greedy

A greedy algorithm works by choosing the best possible answer in each step and then moving on

to the next step until it reaches the end, without regard for the overall solution. It only hopes that

the path it takes is the globally optimum one, but as proven time and again, this method does not

often come up with a globally optimum solution. In fact, it is entirely possible that the most

optimal short-term solutions lead to the worst possible global outcome.

https://brilliant.org/wiki/problem-solving-dynamic-programming/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT I: INTRODUCTION BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 14/14

POSSIBLE QUESTIONS

UNIT-I

2 Mark Questions:

1. Define an Algorithm.

2. What is meant by Time Complexity?

3. Define Analysis of an Algorithm.

4. What do you mean by Correctness of an algorithm?

5. State Divide and Conquer approach.

6. What is known as Efficiency of an algorithm?

7. Define the concept of Dynamic Programming.

8. What is the limitation of Greedy algorithm?

9. Define Knapsack problem.

10. List out the types of Algorithm analysis.

6 Mark Questions:

1. Discuss the Basic Design and Analysis Techniques of algorithms.

2. Explain about Correctness of algorithms.

3. Explain Divide and Conquer with example.

4. Explain the concept of Dynamic Programming.

5. Describe in detail about Iterative techniques.

6. Differentiate Pseudocode and Algorithm with example.

7. Explain about Algorithm Design.

8. Discuss in detail about Dynamic Programming.

9. Explain the correctness of an algorithm.

10. Elaborate Greedy technique.

S.NO QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4
1 ________ is a sequence of

instructions to accomplish a
particular task

Data
Strucuture Algorithm Ordered List Queue

2 _______ criteria of an
algorithm ensures that the
algorithm terminate after a
particular number of steps.

effectiveness finiteness definiteness All the
above

3 An algorithm must produce
__________ output(s) many only one atleast one zero or

more

4 _______ criteria of an
algorithm ensures that the
algorithm must be feasible.

effectiveness finiteness definiteness All the
above

5 _______ criteria of an
algorithm ensures that each
step of the algorithm must be
clear and unambiguous.

effectiveness finiteness definiteness All the
above

6 The logical or mathematical
model of a particular data
organization is called
as_____________

Data
Structure

Software
Engineering Data Mining Data Ware

Housing

7 An algorithms
_____________ is measured
in terms of computing time
ad space consumed by it.

performance effectiveness finiteness definiteness

8 __________ is a set of steps
of operations to solve a
problem.

Sub-Problem Sub-Task Algorithm Process

9
Algorithm is _________
from any programming
languages.

independent
dependent Concept Based

II B.Sc(CS) (BATCH 2016-2019)
Design and Analysis of Algorithms

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS
ONLINE EXAMINATIONS ONE MARK QUESTIONS

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)
Coimbatore-641021

Department of Computer Science

10 Pseudocode is a ______
description of an algorithm. Low-level Middle-level High-level Bottom-

level
11 An algorithm is a _______

definition with some specific
characteristics.

Informal Formal Descriptive Customized

12
Bubble sort does not require
additional ________ when
compared to merge sort.

Complexity
Memory Time Time and

Memory

13 Identification of the
properties of input data is
called as _______.

 Problem’s
precondition

Problem’s
postconditio
n

 Problem’s
in buttons

 Problem’s
outconditio
n

14
______ involves breaking the
problem into sub-problems

Divide Break Both a & b combine

15 Divide and Conquer is a
______ step process. 5 4 3 2

16 Tree represents the nodes
connected by ________. Edges Arrows Tables Squares

17 Binary Tree is a special
________ used for data
storage purposes.

Element data
structure Object

Representati
on

18 In a binary tree each node
can have a maximum of
________.

three nodes Two Pairs two children Both a & b.

19 ________ refers to the
sequence of nodes along the
edges of a tree.

Edge Root Path
Traversal

20
 _____ number is the
minimum number of colors
required to color a graph.

Vertex Node Chromatic non-
Chromatic

21
A ______ is an equation that
describes a function in terms
of its value.

Binary search Recurrence Tree Graph

22 Interconnected objects in a
graph are called _____. Trees

Graphs Entities Vertices

23
Recurrences are generally
used in _______ paradigm.

Interface Graph
theory

Divide-and-
conquer Both a & b

24 The naive string-matching
procedure can be interpreted
graphically as sliding a _____

template Granules Recursive Interface

25
String-matching algorithms
are used for______

Graphics Characters Pattern
searching

Aggregation

26 Which of the following
technique performs pre-
processing?

Naive Rabin KMP Morris

27 The zero-length string is
denoted as _______.

Null string Empty
string Void string Exit

28 When the maximum entries
of (m*n) matrix are zeros
then it is called as _______.

Transpose
matrix

Sparse
Matrix

Inverse
Matrix

None of the
above.

29 A matrix of the form (row,
col, n) is otherwise known as
 _______.

Transpose
matrix

Inverse
Matrix

Sparse
Matrix

None of the
above.

30 Which of the following is a
valid linear data structure. Stacks Records Trees Graphs

31 Which of the following is a
valid non - linear data
structure.

Stacks Trees Queues Linked list.

32 A list of finite number of
homogeneous data elements
are called as _________

Stacks Records Arrays Linked list.

33 No of elements in an array is
called the _________ of an
array.

Structure Height Width Length.

34 _________ is the art of
creating sample data upon
which to run the program

Testing Designing Analysis Debugging

35 If a program fail to respond
corectly then _________ is
needed to determine what is
wrong and how to correct it.

Testing Designing Analysis Debugging

36 A _________ is a linear list
in which elements can be
inserted and deleted at both
ends but not at the Middle

Queue DeQueue Enqueue Priority
Queue

37 A _________ is a collection
of elements such that each
element has been assigned a
priority.

Priority
Queue De Queue Circular

Queue En Queue

38 A _________ is made up of
Operators and Operands. Stack Expression Linked list Queue

39 A _____________ is a
procedure or function which
calls itself.

Stack Recursion Queue Tree

40 An example for application
of stack is __________.

Time sharing
computer
system

Waiting
Audience

Processing
of
subroutines

None of the
above

41 An example for application
of queue is __________.

Stack of coins Stack of
bills

Processing
of
subroutines

Job
Scheduling
in
TimeShari
ng
computers

42 Combining elements of two
similar data structure into
one is called __________

Merging Insertion Searching Sorting

43 Adding a new element into a
data structure called

Merging Insertion Searching Sorting

44 The Process of finding the
location of the element with
the given value or a record
with the given key is
__________.

Merging Insertion Searching Sorting

45 Arranging the elements of a
data structure in some type of
order is called __________.

Merging Insertion Searching Sorting

46 The size or length of an array
= __________. UB – LB + 1 LB + 1 UB - LB UB – 1

47 The _______________
model of a particular data
organization is called as Data
Structure.

software
Engineering

logical or
mathematic
al

Data Mining Data Ware
Housing

48 Combining elements of two
_______ data structure into
one is called Merging

Similar Dissimilar Even Un Even

49 Searching is the Process of
finding the ________ of the
element with the given value
or a record with the given
key.

Place Location Value Operand

50 Length of an array is defined
as ___________ of elements
in it.

Structure Height Size Number

51 In _______ search method
the search begins by
examining the record in the
middle of the file.

sequential fibonacci binary non-
sequential

52 ________ is a internal
sorting method. sorting with

disks quick sort balanced
merge sort

sorting with
tapes

53 Quick sort reads _______
space to implement the
recursion.

 stack queue circular
stacks

 circular
queue

54 The most popular method for
sorting on external storage
devices is _____.

quick sort radix sort merge sort heap sort

55 The 2-way merge algorithm
is almost identical to the
___________procedure.

quick merge heap radix

56 A ________ merge on m
runs requires at most [log
km] passes over the data.

 n-way m-way k-way q-way

57 Associating an element of an
ordered list Ai with an index
i is called __________
mapping.

linear sequential ordered indexed

58 ________ is a set of pairs,
index and value. stack queue Arrays Set

58 The design approach where
the main tast is decomposed
into subtasks and each
subtask is further
decomposed into simpler
solutions is called ________

top down
approach

bottom up
approach

hierarchical
approach

merging
approach

60 Solving different parts of a
program directly and
combining these pieces into a
complete program is called

top down
approach

bottom up
approach

hierarchical
approach

merging
approach

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 1/48

UNIT II

SYLLABUS

Sorting and Searching Techniques: Elementary sorting techniques–Bubble Sort, Insertion Sort,

Merge Sort, Advanced Sorting techniques - Heap Sort, Quick Sort, Sorting in Linear Time -

Bucket Sort, Radix Sort and Count Sort, Searching Techniques, Medians & Order Statistics,

complexity analysis;

Sorting and Searching Techniques: Elementary sorting techniques

Bubble Sort

Bubble sort is a simple sorting algorithm. This sorting algorithm is comparison-based algorithm

in which each pair of adjacent elements is compared and the elements are swapped if they are

not in order. This algorithm is not suitable for large data sets as its average and worst-case

complexity are of Ο(n2) where n is the number of items.

How Bubble Sort Works?

We take an unsorted array for our example. Bubble sort takes Ο(n2) time so we're keeping it

short and precise.

Bubble sort starts with very first two elements, comparing them to check which one is greater.

In this case, value 33 is greater than 14, so it is already in sorted locations. Next, we compare 33

with 27.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 2/48

We find that 27 is smaller than 33 and these two values must be swapped.

The new array should look like this −

Next we compare 33 and 35. We find that both are in already sorted positions.

Then we move to the next two values, 35 and 10.

We know then that 10 is smaller 35. Hence they are not sorted.

We swap these values. We find that we have reached the end of the array. After one iteration,

the array should look like this −

To be precise, we are now showing how an array should look like after each iteration. After the

second iteration, it should look like this −

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 3/48

Notice that after each iteration, at least one value moves at the end.

And when there's no swap required, bubble sorts learns that an array is completely sorted.

Now we should look into some practical aspects of bubble sort.

Algorithm

We assume list is an array of n elements. We further assume that swapfunction swaps the

values of the given array elements.

beginBubbleSort(list)

for all elements of list

if list[i]> list[i+1]

 swap(list[i], list[i+1])

endif

endfor

return list

endBubbleSort

Program-Bubble Sort

/* C++ Program - Bubble Sort */

#include<iostream.h>

#include<conio.h>

void main()

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 4/48

{

 clrscr();

 int n, i, arr[50], j, temp;

 cout<<"Enter total number of elements :";

 cin>>n;

 cout<<"Enter "<<n<<" numbers :";

 for(i=0; i<n; i++)

 {

 cin>>arr[i];

 }

 cout<<"Sorting array using bubble sort technique...\n";

 for(i=0; i<(n-1); i++)

 {

 for(j=0; j<(n-i-1); j++)

 {

 if(arr[j]>arr[j+1])

 {

 temp=arr[j];

 arr[j]=arr[j+1];

 arr[j+1]=temp;

 }

 }

 }

 cout<<"Elements sorted successfully..!!\n";

 cout<<"Sorted list in ascending order :\n";

 for(i=0; i<n; i++)

 {

 cout<<arr[i]<<" ";

 }

 getch();

}

When the above C++ program is compile and executed, it will produce the following result:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 5/48

Insertion Sort

This is an in-place comparison-based sorting algorithm. Here, a sub-list is maintained which is

always sorted. For example, the lower part of an array is maintained to be sorted. An element

which is to be 'insert'ed in this sorted sub-list, has to find its appropriate place and then it has to

be inserted there. Hence the name, insertion sort.

The array is searched sequentially and unsorted items are moved and inserted into the sorted

sub-list (in the same array). This algorithm is not suitable for large data sets as its average and

worst case complexity are of Ο(n2), where n is the number of items.

How Insertion Sort Works?

We take an unsorted array for our example.

Insertion sort compares the first two elements.

It finds that both 14 and 33 are already in ascending order. For now, 14 is in sorted sub-list.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 6/48

Insertion sort moves ahead and compares 33 with 27.

And finds that 33 is not in the correct position.

It swaps 33 with 27. It also checks with all the elements of sorted sub-list. Here we see that the

sorted sub-list has only one element 14, and 27 is greater than 14. Hence, the sorted sub-list

remains sorted after swapping.

By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 with 10.

These values are not in a sorted order.

So we swap them.

However, swapping makes 27 and 10 unsorted.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 7/48

Hence, we swap them too.

Again we find 14 and 10 in an unsorted order.

We swap them again. By the end of third iteration, we have a sorted sub-list of 4 items.

This process goes on until all the unsorted values are covered in a sorted sub-list.

 Program for Insertion Sort

Following C++ program ask to the user to enter array size and array element to sort the array

using insertion sort technique, then display the sorted array on the screen:

/* C++ Program - Insertion Sort */

#include<iostream.h>

#include<conio.h>

void main()

{

 clrscr();

 int size, arr[50], i, j, temp;

 cout<<"Enter Array Size : ";

 cin>>size;

 cout<<"Enter Array Elements : ";

 for(i=0; i<size; i++)

 {

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 8/48

 cin>>arr[i];

 }

 cout<<"Sorting array using selection sort ... \n";

 for(i=1; i<size; i++)

 {

 temp=arr[i];

 j=i-1;

 while((temp<arr[j]) && (j>=0))

 {

 arr[j+1]=arr[j];

 j=j-1;

 }

 arr[j+1]=temp;

 }

 cout<<"Array after sorting : \n";

 for(i=0; i<size; i++)

 {

 cout<<arr[i]<<" ";

 }

 getch();

}

When the above C++ program is compile and executed, it will produce the following result:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 9/48

Merge Sort

Like QuickSort, Merge Sort is a Divide and Conquer algorithm. It divides input array in two

halves, calls itself for the two halves and then merges the two sorted halves.

Problem Description

1. Merge-sort is based on an algorithmic design pattern called divide-and-conquer.

2. It forms tree structure.

3. The height of the tree will be log(n).

4. we merge n element at every level of the tree.

5. The time complexity of this algorithm is O(n*log(n)).

Problem Solution

1. Split the data into two equal half until we get at most one element in both half.

2. Merge Both into one making sure the resulting sequence is sorted.

3. Recursively split them and merge on the basis of constraint given in step 1.

4. Display the result.

5. Exit.

Implementation using c++

MergeSort(arr[], l, r)

If r > l

1. Find the middle point to divide the array into two halves:

 middle m = (l+r)/2

 2. Call mergeSort for first half:

 Call mergeSort(arr, l, m)

3. Call mergeSort for second half:

 Call mergeSort(arr, m+1, r)

4. Merge the two halves sorted in step 2 and 3:

http://quiz.geeksforgeeks.org/quick-sort/
https://www.geeksforgeeks.org/divide-and-conquer-set-1-find-closest-pair-of-points/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 10/48

 Call merge(arr, l, m, r)

The merge() function is used for merging two halves. The merge(arr, l, m, r) is key process that

assumes that arr[l..m] and arr[m+1..r] are sorted and merges the two sorted sub-arrays into one.

The following diagram shows the complete merge sort process for an example array {38, 27, 43,

3, 9, 82, 10}. If we take a closer look at the diagram, we can see that the array is recursively

divided in two halves till the size becomes 1. Once the size becomes 1, the merge processes

comes into action and starts merging arrays back till the complete array is merged.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 11/48

Program for Merge Sort:

#include <iostream>

using namespace std;

#include <conio.h>

int comp=0;

void merge(int *,int, int , int);

void mergesort(int *a, int low, int high)

{

 int mid;

 if (low < high)

 {

 mid=(low+high)/2;

 mergesort(a,low,mid);

 mergesort(a,mid+1,high);

 merge(a,low,high,mid);

 }

 return;

}

void merge(int *a, int low, int high, int mid)

{

 inti, j, k, c[50];

 i = low;

 k = low;

 j = mid + 1;

 while (i<= mid && j <= high)

 {

 if(a[i] < a[j])

 {

 c[k] = a[i];

 k++;

 i++;

 comp++;

 }

 else

 {

 c[k] = a[j];

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 12/48

 k++;

 j++;

 comp++;

 }

 }

 while (i<= mid)

 {

 c[k] = a[i];

 k++;

 i++;

 }

 while (j <= high)

 {

 c[k] = a[j];

 k++;

 j++;

 }

 for (i = low; i< k; i++)

 {

 a[i] = c[i];

 }

}

int main()

{

 int a[20], i, b[20];

 cout<<"enter the elements\n";

 for (i = 0; i< 5; i++)

 {

 cin>>a[i];

 }

 mergesort(a, 0, 4);

 cout<<"sorted array\n";

 for (i = 0; i< 5; i++)

 {

 cout<<a[i]<<"\n";

 }

 cout<<"the no. of comparisons:\n"<<comp<<endl;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 13/48

 getch();

}

Output:

Heap Sort

Heap Sort is one of the best sorting methods being in-place and with no quadratic worst-case

scenarios. The heapsort algorithm has O(n log n) time complexity. Heap sort algorithm is divided

into two basic parts :

 Creating a Heap of the unsorted list.

 Then a sorted array is created by repeatedly removing the largest/smallest element from the

heap, and inserting it into the array. The heap is reconstructed after each removal.

Heap is a special tree-based data structure that satisfies the following special heap properties:

http://2.bp.blogspot.com/-T6Jx2VpiSHs/VMfLnKIrT2I/AAAAAAAABmI/hSQKiVd4cyw/s1600/01.JPG

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 14/48

1. Shape Property : Heap data structure is always a Complete Binary Tree, which means all

levels of the tree are fully filled.

2. Heap Property : All nodes are either [greater than or equal to] or [less than or equal

to] each of its children. If the parent nodes are greater than their child nodes, heap is called

a Max-Heap, and if the parent nodes are smaller than their child nodes, heap is called Min-

Heap.

For Input → 35 33 42 10 14 19 27 44 26 31

Min-Heap − Where the value of the root node is less than or equal to either of its children.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 15/48

Max-Heap − Where the value of the root node is greater than or equal to either of its children.

An Example of Heapsort:

Given an array of 6 elements: 15, 19, 10, 7, 17, 16, sort it in ascending order using heap sort.

Steps:

1. Consider the values of the elements as priorities and build the heap tree.

2. Start deleteMin operations, storing each deleted element at the end of the heap array.

After performing step 2, the order of the elements will be opposite to the order in the heap tree.

Hence, if we want the elements to be sorted in ascending order, we need to build the heap tree

in descending order - the greatest element will have the highest priority.

Note that we use only one array , treating its parts differently:

a. when building the heap tree, part of the array will be considered as the heap,

and the rest part - the original array.

b. when sorting, part of the array will be the heap, and the rest part - the sorted array.

This will be indicated by colors: white for the original array, blue for the heap and red for the sorted array

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 16/48

Here is the array: 15, 19, 10, 7, 17, 6

A. Building the heap tree

The array represented as a tree, complete but not ordered:

Start with the rightmost node at height 1 - the node at position 3 = Size/2.

It has one greater child and has to be percolated down:

After processing array[3] the situation is:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 17/48

Next comes array[2]. Its children are smaller, so no percolation is needed.

The last node to be processed is array[1]. Its left child is the greater of the children.

The item at array[1] has to be percolated down to the left, swapped with array[2].

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 18/48

As a result the situation is:

The children of array[2] are greater, and item 15 has to be moved down further, swapped with

array[5].

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 19/48

Now the tree is ordered, and the binary heap is built.

Program for Heap Sort

#include <iostream>

using namespace std;

void max_heapify(int *a, inti, int n)

{

 int j, temp;

 temp = a[i];

 j = 2*i;

 while (j <= n)

 {

 if (j < n && a[j+1] > a[j])

 j = j+1;

 if (temp > a[j])

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 20/48

 break;

 else if (temp <= a[j])

 {

 a[j/2] = a[j];

 j = 2*j;

 }

 }

 a[j/2] = temp;

 return;

}

void heapsort(int *a, int n)

{

 inti, temp;

 for (i = n; i>= 2; i--)

 {

 temp = a[i];

 a[i] = a[1];

 a[1] = temp;

 max_heapify(a, 1, i - 1);

 }

}

void build_maxheap(int *a, int n)

{

 inti;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 21/48

 for(i = n/2; i>= 1; i--)

 {

 max_heapify(a, i, n);

 }

}

int main()

{

 int n, i, x;

 cout<<"Enter no of elements of array\n";

 cin>>n;

 int a[20];

 for (i = 1; i<= n; i++)

 {

 cout<<"Enter element"<<(i)<<endl;

 cin>>a[i];

 }

 build_maxheap(a,n);

 heapsort(a, n);

 cout<<"\n\nSorted Array\n";

 for (i = 1; i<= n; i++)

 {

 cout<<a[i]<<endl;

 }

 return 0;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 22/48

}

Output:

Enter no of elements of array

5

Enter element1

3

Enter element2

8

Enter element3

9

Enter element4

3

Enter element5

2

Sorted Array

2

3

3

8

9

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 23/48

QuickSort

Like Merge Sort, QuickSort is a Divide and Conquer algorithm. It picks an element as pivot and

partitions the given array around the picked pivot. There are many different versions of

quickSort that pick pivot in different ways.

1. Always pick first element as pivot.

2. Always pick last element as pivot (implemented below)

3. Pick a random element as pivot.

4. Pick median as pivot.

A quick sort first selects a value, which is called the pivot value. Although there are many

different ways to choose the pivot value, we will simply use the first item in the list. The role of

the pivot value is to assist with splitting the list. The actual position where the pivot value

belongs in the final sorted list, commonly called the split point, will be used to divide the list for

subsequent calls to the quick sort.

Figure 12 shows that 54 will serve as our first pivot value. Since we have looked at this example

a few times already, we know that 54 will eventually end up in the position currently holding 31.

The partitionprocess will happen next. It will find the split point and at the same time move

other items to the appropriate side of the list, either less than or greater than the pivot value.

Partitioning begins by locating two position markers—let’s call them leftmark and rightmark—at

the beginning and end of the remaining items in the list (positions 1 and 8 in Figure 13). The goal

of the partition process is to move items that are on the wrong side with respect to the pivot value

while also converging on the split point. Figure 13 shows this process as we locate the position

of 54.

http://quiz.geeksforgeeks.org/merge-sort/
http://interactivepython.org/runestone/static/pythonds/SortSearch/TheQuickSort.html#fig-splitvalue
http://interactivepython.org/runestone/static/pythonds/SortSearch/TheQuickSort.html#fig-partitiona
http://interactivepython.org/runestone/static/pythonds/SortSearch/TheQuickSort.html#fig-partitiona

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 24/48

We begin by incrementing leftmark until we locate a value that is greater than the pivot value.

We then decrement rightmark until we find a value that is less than the pivot value. At this point

we have discovered two items that are out of place with respect to the eventual split point. For

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 25/48

our example, this occurs at 93 and 20. Now we can exchange these two items and then repeat the

process again.

At the point where rightmark becomes less than leftmark, we stop. The position of rightmark is

now the split point. The pivot value can be exchanged with the contents of the split point and the

pivot value is now in place (Figure 14). In addition, all the items to the left of the split point are

less than the pivot value, and all the items to the right of the split point are greater than the pivot

value. The list can now be divided at the split point and the quick sort can be invoked recursively

on the two halves.

Algorithm:

/* low --> Starting index, high --> Ending index */

quickSort(arr[], low, high)

{

 if (low < high)

 {

 /* pi is partitioning index, arr[p] is now

 at right place */

 pi = partition(arr, low, high);

quickSort(arr, low, pi - 1); // Before pi

quickSort(arr, pi + 1, high); // After pi

http://interactivepython.org/runestone/static/pythonds/SortSearch/TheQuickSort.html#fig-partitionb

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 26/48

 }

}

Program:

#include<iostream>

usingnamespace std;

voidQUICKSORT(int [],int ,int);

intPARTITION(int [],int,int);

intmain()

{

int n;

cout<<"Enter the size of the array"<<endl;

cin>>n;

int a[n];

cout<<"Enter the elements in the array"<<endl;

for(inti=1;i<=n;i++)

 {

cin>>a[i];

 }

cout<<"sorting using quick sort"<<endl;

int p=1,r=n;

 QUICKSORT(a,p,r);

cout<<"sorted form"<<endl;

for(inti=1;i<=n;i++)

 {

cout<<"a["<<i<<"]="<<a[i]<<endl;

 }

return0;

}

voidQUICKSORT(int a[],intp,int r)

 {

int q;

if(p<r)

 {

 q=PARTITION(a,p,r);

 QUICKSORT(a,p,q-1);

 QUICKSORT(a,q+1,r);

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 27/48

 }

 }

intPARTITION(int a[],intp,int r)

 {

inttemp,temp1;

int x=a[r];

inti=p-1;

for(int j=p;j<=r-1;j++)

 {

if(a[j]<=x)

 {

i=i+1;

 temp=a[i];

 a[i]=a[j];

 a[j]=temp;

 }

 }

 temp1=a[i+1];

 a[i+1]=a[r];

 a[r]=temp1;

return i+1;

 }

Output:

Bucket Sort

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 28/48

Bucket sort is a sorting algorithm that works by partitioning an array into a number of buckets.

In bucket sort algorithm the array elements are distributed into a number of buckets. Then. each

bucket is then sorted individually, either using a different sorting algorithm, or by recursively

applying the bucket sorting algorithm. The computational complexity estimates involve the

number of buckets.

Bucket sort works as follows:

1. Set up an array of initially empty buckets.

2. Go over the original array, putting each object in its bucket.

3. Sort each non-empty bucket.

4. Visit the buckets in order and put all elements back into the original array.

Example-1

Algorithm

bucketSort(arr[], n)

1) Create n empty buckets (Or lists).

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 29/48

2) Do following for every array element arr[i].

.......a) Insert arr[i] into bucket[n*array[i]]

3) Sort individual buckets using insertion sort.

4) Concatenate all sorted buckets.

Bucket sort is mainly useful when input is uniformly distributed over a range. For example, Sort

a large set of floating point numbers which are in range from 0.0 to 1.0 and are uniformly

distributed across the range.

Example-2

Following diagram demonstrates working of bucket sort.

// C++ program to sort an array using bucket sort

#include <iostream>

#include <algorithm>

#include <vector>

usingnamespacestd;

// Function to sort arr[] of size n using bucket sort

https://www.geeksforgeeks.org/wp-content/uploads/BucketSort.png

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 30/48

voidbucketSort(floatarr[], intn)

{

 // 1) Create n empty buckets

 vector<float> b[n];

 // 2) Put array elements in different buckets

 for(inti=0; i<n; i++)

 {

 intbi = n*arr[i]; // Index in bucket

 b[bi].push_back(arr[i]);

 }

 // 3) Sort individual buckets

 for(inti=0; i<n; i++)

 sort(b[i].begin(), b[i].end());

 // 4) Concatenate all buckets into arr[]

 intindex = 0;

 for(inti = 0; i< n; i++)

 for(intj = 0; j < b[i].size(); j++)

 arr[index++] = b[i][j];

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 31/48

 intmain()

{

 floatarr[] = {0.897, 0.565, 0.656, 0.1234, 0.665, 0.3434};

 intn = sizeof(arr)/sizeof(arr[0]);

 bucketSort(arr, n);

 cout<< "Sorted array is \n";

 for(inti=0; i<n; i++)

 cout<<arr[i] << " ";

 return0;

}

Output:

Sorted array is

0.1234 0.3434 0.565 0.656 0.665 0.897

Radix Sort

Radix Sort puts the elements in order by comparing the digits of the numbers. Radix sort works

by sorting on the least significant digits first. On the first pass, all the numbers are sorted on the

least significant digit and combined in an array. Then on the second pass, the entire numbers are

sorted again on the second least significant digits and combined in an array and so on.

Algorithm: Radix-Sort (list, n)

shift = 1

for loop = 1 to keysize do

 for entry = 1 to n do

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 32/48

bucketnumber = (list[entry].key / shift) mod 10

 append (bucket[bucketnumber], list[entry])

 list = combinebuckets()

 shift = shift * 10

Consider the following 9 numbers:

493 812 715 710 195 437 582 340 385

We should start sorting by comparing and ordering the one's digits:

Digit Sublist

0 340 710

1

2 812 582

3 493

4

5 715 195 385

6

7 437

8

9

Notice that the numbers were added onto the list in the order that they were found, which is why

the numbers appear to be unsorted in each of the sublists above. Now, we gather the sublists (in

order from the 0 sublist to the 9 sublist) into the main list again:

340 710 812 582 493 715 195 385 437

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 33/48

Note: The order in which we divide and reassemble the list is extremely important, as this is

one of the foundations of this algorithm.

Now, the sublists are created again, this time based on the ten's digit:

Digit Sublist

0

1 710 812 715

2

3 437

4 340

5

6

7

8 582 385

9 493 195

Now the sublists are gathered in order from 0 to 9:

710 812 715 437 340 582 385 493 195

Finally, the sublists are created according to the hundred's digit:

Digit Sublist

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 34/48

0

1 195

2

3 340 385

4 437 493

5 582

6

7 710 715

8 812

9

At last, the list is gathered up again:

195 340 385 437 493 582 710 715 812

And now we have a fully sorted array! Radix Sort is very simple, and a computer can do it fast.

When it is programmed properly, Radix Sort is in fact one of the fastest sorting algorithms for

numbers or strings of letters.

Disadvantages

The speed of Radix Sort largely depends on the inner basic operations, and if the operations are

not efficient enough, Radix Sort can be slower than some other algorithms such as Quick Sort

and Merge Sort. These operations include the insert and delete functions of the sublists and the

process of isolating the digit you want.

In the example above, the numbers were all of equal length, but many times, this is not the case.

If the numbers are not of the same length, then a test is needed to check for additional digits that

need sorting. This can be one of the slowest parts of Radix Sort, and it is one of the hardest to

make efficient.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 35/48

Radix Sort can also take up more space than other sorting algorithms, since in addition to the

array that will be sorted, you need to have a sublist for each of the possible digits or letters.

Example-2

Following example shows how Radix sort operates on seven 3-digits number.

Input 1st Pass 2nd Pass 3rd Pass

329 720 720 329

457 355 329 355

657 436 436 436

839 457 839 457

436 657 355 657

720 329 457 720

355 839 657 839

In the above example, the first column is the input. The remaining columns show the list after

successive sorts on increasingly significant digits position. The code for Radix sort assumes that

each element in an array A of nelements has d digits, where digit 1 is the lowest-order digit

and d is the highest-order digit.

Program for Radix sort

#include <iostream>

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 36/48

usingnamespacestd;

// Get maximum value from array.

intgetMax(intarr[], int n)

{

 int max =arr[0];

 for(inti=1;i< n;i++)

 if(arr[i]> max)

 max =arr[i];

 return max;

}

// Count sort of arr[].

voidcountSort(intarr[], int n, intexp)

{

 // Count[i] array will be counting the number of array values having that 'i' digit at their

(exp)th place.

 int output[n], i, count[10]={0};

 // Count the number of times each digit occurred at (exp)th place in every input.

 for(i=0;i< n;i++)

 count[(arr[i]/exp)%10]++;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 37/48

 // Calculating their cumulative count.

 for(i=1;i<10;i++)

 count[i]+= count[i-1];

 // Inserting values according to the digit '(arr[i] / exp) % 10' fetched into count[(arr[i] /

exp) % 10].

 for(i= n -1;i>=0;i--)

 {

 output[count[(arr[i]/exp)%10]-1]=arr[i];

 count[(arr[i]/exp)%10]--;

 }

 // Assigning the result to the arr pointer of main().

 for(i=0;i< n;i++)

 arr[i]= output[i];

}

// Sort arr[] of size n using Radix Sort.

voidradixsort(intarr[], int n)

{

 intexp, m;

 m =getMax(arr, n);

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 38/48

 // Calling countSort() for digit at (exp)th place in every input.

 for(exp=1; m/exp>0;exp*=10)

 countSort(arr, n, exp);

}

intmain()

{

 int n, i;

 cout<<"\nEnter the number of data element to be sorted: ";

 cin>>n;

 intarr[n];

 for(i=0;i< n;i++)

 {

 cout<<"Enter element "<<i+1<<": ";

 cin>>arr[i];

 }

 radixsort(arr, n);

 // Printing the sorted data.

 cout<<"\nSorted Data ";

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 39/48

 for(i=0;i< n;i++)

 cout<<"->"<<arr[i];

 return0;

}

Output:

Enter the number of data element to be sorted: 5

Enter element

25

14

26

78

10

Sorted Data

10 ->14 ->25-> 26 ->78

Searching Techniques

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 40/48

Searching is an operation or a technique that helps finds the place of a given element or value in

the list. Any search is said to be successful or unsuccessful depending upon whether the element

that is being searched is found or not. Some of the standard searching technique that is being

followed in data structure is listed below:

 Linear Search or Sequential Search

 Binary Search

Linear search is a very simple search algorithm. In this type of search, a sequential search is

made over all items one by one. Every item is checked and if a match is found then that

particular item is returned, otherwise the search continues till the end of the data collection.

Algorithm

Linear Search (Array A, Value x)

Step 1: Set i to 1

Step 2: if i > n then go to step 7

Step 3: if A[i] = x then goes to step 6

Step 4: Set i to i + 1

Step 5: Go to Step 2

Step 6: Print Element x Found at index i and go to step 8

Step 7: Print element not found

Step 8: Exit

Pseudocode

procedure linear_search (list, value)

 for each item in the list

 if match item == value

 return the item's location

 end if

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 41/48

 end for

end procedure

Binary Search

Binary search is a fast search algorithm with run-time complexity of Ο(log n). This search

algorithm works on the principle of divide and conquer. For this algorithm to work properly, the

data collection should be in the sorted form.

Binary search looks for a particular item by comparing the middle most item of the collection. If

a match occurs, then the index of item is returned. If the middle item is greater than the item,

then the item is searched in the sub-array to the left of the middle item. Otherwise, the item is

searched for in the sub-array to the right of the middle item. This process continues on the sub-

array as well until the size of the subarray reduces to zero.

How Binary Search Works?

For a binary search to work, it is mandatory for the target array to be sorted. We shall learn the

process of binary search with a pictorial example. The following is our sorted array and let us

assume that we need to search the location of value 31 using binary search.

First, we shall determine half of the array by using this formula −

mid = low + (high - low) / 2

Here it is, 0 + (9 - 0) / 2 = 4 (integer value of 4.5). So, 4 is the mid of the array.

Now we compare the value stored at location 4, with the value being searched, i.e. 31. We

find that the value at location 4 is 27, which is not a match. As the value is greater than 27 and

we have a sorted array, so we also know that the target value must be in the upper portion of the

array.

We change our low to mid + 1 and find the new mid value again.

low = mid + 1

mid = low + (high - low) / 2

Our new mid is 7 now. We compare the value stored at location 7 with our target value 31.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 42/48

The value stored at location 7 is not a match, rather it is more than what we are looking for. So,

the value must be in the lower part from this location.

Hence, we calculate the mid again. This time it is 5.

We compare the value stored at location 5 with our target value. We find that it is a match.

We conclude that the target value 31 is stored at location 5.

Binary search halves the searchable items and thus reduces the count of comparisons to be made

to very less numbers.

Pseudocode

The pseudocode of binary search algorithms should look like this −

Procedure binary_search

 A ← sorted array

 n ← size of array

 x ← value to be searched

 Set lowerBound = 1

 Set upperBound = n

 while x not found

 if upperBound < lowerBound

 EXIT: x does not exists.

 set midPoint = lowerBound + (upperBound - lowerBound) / 2

 if A[midPoint] < x

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 43/48

 set lowerBound = midPoint + 1

 if A[midPoint] > x

 set upperBound = midPoint - 1

 if A[midPoint] = x

 EXIT: x found at location midPoint

 end while

 end procedure

Medians & Order Statistics

 The ith order statistic of a set of n elements is the ith smallest element.

 The minimum is the first order statistic (i =1).

 The maximum is the nth order statistic (i = n).

 A median is the “halfway point” of the set.

 When n is odd, the median is unique, at i = (n + 1)/2.

 When n is even, there are two medians

The selection problem

 How can we find the ith order statistic of a set and what is the running time?

 Input: A set A of n (distinct) number and a number i, with 1 ≤ i ≤ n.

 Output: The element x ∈ A that is larger than exactly i–1 other elements of A.

 The selection problem can be solved in O (n log n) time.

Finding minimum

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 44/48

We can easily obtain an upper bound of n−1 comparisons for finding the minimum of a set of

n elements.

 Examine each element in turn and keep track of the smallest one.

 The algorithm is optimal, because each element, except the minimum,

must be compared to a smaller element at least once.

MINIMUM(A)

1. min ← A[1]

2. for i ← 2 to length[A]

3. do if min > A[i]

4. then min ← A[i]

 5. return min

Selection in expected linear time

 In fact, selection of the ith smallest element of the array A can be done in Θ(n) time.

 We first present a randomized version in this section and then present a deterministic version in

the next section.

 The function RANDOMIZED ‐ SELECT: ` is a divide ‐and ‐conquer algorithm, ` uses

RANDOMIZED ‐ PARTITION from the quicksort algorithm.

RANDOMIZED‐SELECT procedure

1. RANDOMIZED‐SELECT(A, p, r, i)

2. if p = r

3. then return A[p]

4. q ← RANDOMIZED‐PARTITION(A, p, r)

5. k ← q − p + 1

6. if i = k /* the pivot value is the answer */

7. then return A[q]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 45/48

8. elseif i < k

9. then return RANDOMIZED‐SELECT(A, p, q − 1, i)

10. else return RANDOMIZED‐SELECT(A, q, r, i − k)

Time Complexity of Algorithms

Time complexity of an algorithm signifies the total time required by the program to run till its

completion.

The time complexity of algorithms is most commonly expressed using the big O notation. It's an

asymptotic notation to represent the time complexity.

Time Complexity is most commonly estimated by counting the number of elementary steps

performed by any algorithm to finish execution. Like in the example above, for the first code the

loop will run n number of times, so the time complexity will be n atleast and as the value

of n will increase the time taken will also increase. While for the second code, time complexity is

constant, because it will never be dependent on the value of n, it will always give the result in 1

step.

And since the algorithm's performance may vary with different types of input data, hence for an

algorithm we usually use the worst-case Time complexity of an algorithm because that is the

maximum time taken for any input size.

Calculating Time Complexity

Now lets tap onto the next big topic related to Time complexity, which is How to Calculate Time

Complexity. It becomes very confusing some times, but we will try to explain it in the simplest

way.

Now the most common metric for calculating time complexity is Big O notation. This removes

all constant factors so that the running time can be estimated in relation to N, as N approaches

infinity. In general you can think of it like this :

statement;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 46/48

Above we have a single statement. Its Time Complexity will be Constant. The running time of

the statement will not change in relation to N.

for(i=0; i < N; i++)

{

 statement;

}

The time complexity for the above algorithm will be Linear. The running time of the loop is

directly proportional to N. When N doubles, so does the running time.

for(i=0; i < N; i++)

{

 for(j=0; j < N;j++)

 {

 statement;

 }

}

This time, the time complexity for the above code will be Quadratic. The running time of the

two loops is proportional to the square of N. When N doubles, the running time increases by N *

N.

while(low <= high)

{

 mid = (low + high) / 2;

 if (target < list[mid])

 high = mid - 1;

 else if (target > list[mid])

 low = mid + 1;

 else break;

}

This is an algorithm to break a set of numbers into halves, to search a particular field(we will

study this in detail later). Now, this algorithm will have a Logarithmic Time Complexity. The

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 47/48

running time of the algorithm is proportional to the number of times N can be divided by 2(N is

high-low here). This is because the algorithm divides the working area in half with each

iteration.

void quicksort(int list[], int left, int right)

{

 int pivot = partition(list, left, right);

 quicksort(list, left, pivot - 1);

 quicksort(list, pivot + 1, right);

}

Taking the previous algorithm forward, above we have a small logic of Quick Sort(we will study

this in detail later). Now in Quick Sort, we divide the list into halves every time, but we repeat

the iteration N times(where N is the size of list). Hence time complexity will be N*log(N). The

running time consists of N loops (iterative or recursive) that are logarithmic, thus the algorithm is

a combination of linear and logarithmic.

Notations of Time Complexity

O(expression) is the set of functions that grow slower than or at the same rate as expression. It

indicates the maximum required by an algorithm for all input values. It represents the worst case

of an algorithm's time complexity.

Omega(expression) is the set of functions that grow faster than or at the same rate as expression.

It indicates the minimum time required by an algorithm for all input values. It represents the best

case of an algorithm's time complexity.

Theta(expression) consist of all the functions that lie in both O(expression) and

Omega(expression). It indicates the average bound of an algorithm. It represents the average case

of an algorithm's time complexity.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT II: SORTING AND SEARCHING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 48/48

POSSIBLE QUESTIONS

 UNIT II

2 Mark Questions:

1. Define Bubble Sort.

2. What is meant by insertion sort?

3. What is Divide-and-Conquer method?

4. Define Heap sort.

5. Define Radix sort.

6. What is known as Merge sort?

7. Define Complexity analysis.

8. Define Median.

6 Mark Questions:

1. Explain Bubble sort with example program.

2. Explain Insertion sort with example.

3. Explain Merge sort with suitable example.

4. Elaborate Heap sort technique with example.

5. Describe in detail about Quick sort.

6. Explain about Bucket sort.

7. Explain in detail about Radix sort.

8. Elaborate Count sort technique with example.

9. Explain about medians and other statistics.

10.Explain about Complexity analysis.

S.NO QUESTIONS OPTION
1

OPTION
2

OPTION
3

OPTION 4

1 Algorithms must have _____ name. Common Unique Different Multiple

2 The term ‘Analysis of Algorithms’
was coined by ___

Prism Donald
David

 Donald
Ruth

Donald
Knuth

3 Analysis of Algorithms is the
determination of the ________
resources.

Time
and
Space

Time Time and
Analysis

All of these

4 There are _______ types of
analysis performed in an algorithm.

5 4 2 3

5 Bubble sort is a _______ algorithm. Sorting Matching Processing Conquering

6 Quick sort is an example for
________ technique.

Divide
and
Conquer

Knapsack

Tower of
Hanoi

Greedy

7 Dijkstra’s algorithm is an example
for ________

Greedy Dynamic Dynamic
Program
ming

All of these

8 Sub-list is maintained in _______ Insertion Bubble heap None of
these

9 The node at the top of the tree is
called _____.

Edge
Child

 Element Root

10 Any node except the root node has
one edge upward to a node called
______.

Parent Child Element Both a
& b

11 The node below a given node
connected by its edge downward is
called ______.

Element Identity Child Root

12 The node which does not have any
child node is called the _____
node.

Parent Child Root Leaf

II B.Sc(CS) (BATCH 2016-2019)
Design and Analysis of Algorithms

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS
ONLINE EXAMINATIONS ONE MARK QUESTIONS

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)
Coimbatore-641021

Department of Computer Science

13 _______ technique is used to find
the complexity of a recurrence
relation.

Greedy Knapsack Master’s
Theorem

 Analysis

14 ______ algorithm traverses a graph
in a breadth ward motion.

Breadth
First
Search

 Greedy Aggregate Amortized

15 ______ provides a bound on the
actual cost of the entire sequence.

Tree Graph Amortized
 analysis

Aggregatio
n

16 Vertices are also known as _____ Queue Edges Nodes Stack
17 In_____, each character is scanned

atmost once.
Naive Rabin Karp finite

automata
18 _______ method is applied for two-

dimensional pattern matching.
Greedy Kruskal Prims Rabin

and Karp
19 The average-case running time of

Rabin and Karp is _______.
Worse high Average All of these

20 Knuth-Morris-Pratt algorithm is a
______ time string-matching
algorithm.

Linear non-linear Directive non-
directive

21 Finding a free block whose size is
as close as possible to the size of
the program (N), but not less than
N is called _____ allocation
strategy.

Near fit First fit Best fit Next Fit

22 ________ strategy distributes the
small nodes evenly and searching
for a new node starts from the
node where the previous allocation
was made.

Best Fit First Fit Worst Fit Next Fit

23 Problem in _________ allocation
stratery is all small nodes collect in
the front of the av-list.

Best Fit First Fit Worst Fit Next Fit

24 ________ is the storage allocation
method that fits the program into
the largest block available.

Best Fit First Fit Worst Fit Next Fit

25 The back pointer for each node
will be referred as _________.

Blink Break Back Clear

26 Forward pointer for each node will
be referred as _________.

Forward Flink Front Data

27 A___________is a linked list in
which last node of the list points to
the first node in the list.

Linked list Singly
linked
circular
list

Circular
list

Insertion
node

28 A________in which each node has
two pointers, a forward link and a
Backward link.

Doubly
linked
circular
list

Circular
list

Singly
linked
circular list

Linked list

29 In sparse matrices each nonzero
term was represented by a node
with ______ fields.

Five Six Three Four

30 We want to represent n stacks
with 1 ≤ i ≤ n then T(i)_______

Top of
the ith

stack

Top of the
(i + 1)th

stack

Top of the
(i – 1) th

stack

Top of the
(i -2)th stack

31 We want to represent m queues
with 1 ≤ i ≤ m then F(i)_______

Front of
the (i +
1)th

Queue

Front of
the ith
Queue

Front of
the (i – 1)
th Queue

Front of
the (i -2)th

Queue

32 We want to represent m queues
with 1 ≤ i ≤ m then R(i)_______

Rear of
the (i +
1)th

Queue

Rear of
the ith
Queue

Rear of
the (i – 1)
th Queue

Rear of the
(i -2)th

Queue

33 In Linked representation of Sparse
Matrix, DOWN field used to link
to the next nonzero element in the
same _________

Row List Column Diagonal

34 In Linked representation of Sparse
Matrix, RIGHT field used to link
to the next nonzero element in the
same _________

Row Matrix Column Diagonal

35 The time complexity of the
MREAD algorithm that reads a
sparse matrix of n rows, n columns
and r nonzero terms is ____

O(max
{n, m, r})

O(m * n *
r)

O(m + n
+ r)

O(max {n,
m})

36 In Available Space list combining
the adjacent free blocks is called

Defragme
nting

Coalescin
g

Joining Merging

37 In Available Space list, the first
and last word of each block are
reserved for ___________

Data Allocation

Informati
on

Link Value

38 In Storage management, in the
Available Space List, the first
word of each free block has
________fields.

4 3 2 1

39 In Available Space list, the last
word of each free block has
________fields.

4 3 2 1

40 The first and last nodes of each
block have tag fields, this system
of allocation and freeing is called
the _________.

Tag
Method

Boundary
Method

Free
Method

Boundary
Tag
Method

41 In Available Space list ,Tag field
has the value one when the block
is _________

Allocated Coalesced Free Merge

42 Available Space list ,Tag field has
the value Zero when the block is

Allocated Coalesced Free Merged

43 The ______field of each storage
block indicates if the block is free
are in-use.

rlink tag size uplink

44 In storage management the
________ field of the free block
points to the start of the block

rlink llink uplink top

45 __________ is the process of
collecting all unused nodes and
returning them to the available
space.

Compacti
on

Coalescing Garbage
collection

Deallocatio
n

46 Moving all free nodes aside to
form a single contiguous block of
memeory is called __________

Compacti
on

Coalescing Garbage
collection

Deallocatio
n

47 __________ of disk space reduces
the average retrieval time of
allocation.

Compacti
on

Coalescing Garbage
collection

Deallocatio
n

48 ___________ is done in two
phases 1) marking used nodes and
2) returning all unmarked nodes to
available space list.

Compacti
on

Coalescing Garbage
collection

Deallocatio
n

49 Which of these sorting algorithm
uses the Divide and Conquere
technique for sorting

selection
sort

insertion
sort

merge sort heap sort

50 Which of these searching
algorithm uses the Divide and
Conquere technique for sorting

Linear
search

Binary
search

fibonacci
search

None of
the above

51 The disadvantage of _____ sort is
that is need a temporary array to
sort.

Quick Merge Heap Insertion

52 A __________ is a set of
characters is called a string.

Array String Heap List

53 The straight forward find operation
for pattern matching,pat of size m
in string of size n needs
_________ time.

O(mn) O(n2) O(m2) O(m+n)

54 Knuth,Morris and Pratt's method
of pattern matching in strings takes
________ time, if pat is of sixe m
and string is size n.

O(mn) O(n2) O(m2) O(m+n)

55 _________ representation always
need extensive data movement.

Linked sequential tree graph

56 Which of these representations are
used for strings.

sequential
representa
tion

Linked
representat
ion with
fixed
sized
blocks

Linked
representat
ion with
variable
sized
blocks

All the
above

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 1/26

UNIT III

SYLLABUS

Lower Bounding Techniques: Decision Trees Balanced Trees: Red-Black Trees

Decision Tree

 Decision tree is the most powerful and popular tool for classification and prediction. A Decision

tree is a flowchart like tree structure, where each internal node denotes a test on an attribute, each

branch represents an outcome of the test, and each leaf node (terminal node) holds a class label.

A decision tree for the concept PlayTennis.

Construction of Decision Tree :

A tree can be “learned” by splitting the source set into subsets based on an attribute value test.

This process is repeated on each derived subset in a recursive manner called recursive

partitioning. The recursion is completed when the subset at a node all has the same value of the

target variable, or when splitting no longer adds value to the predictions. The construction of

decision tree classifier does not require any domain knowledge or parameter setting, and

therefore is appropriate for exploratory knowledge discovery. Decision trees can handle high

dimensional data. In general decision tree classifier has good accuracy. Decision tree induction is

a typical inductive approach to learn knowledge on classification.

Decision Tree Representation :

Decision trees classify instances by sorting them down the tree from the root to some leaf node,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 2/26

which provides the classification of the instance. An instance is classified by starting at the root

node of the tree,testing the attribute specified by this node,then moving down the tree branch

corresponding to the value of the attribute as shown in the above figure.This process is then

repeated for the subtree rooted at the new node.

The decision tree in above figure classifies a particular morning according to whether it is

suitable for playing tennis and returning the classification associated with the particular leaf.(in

this case Yes or No).

For example,the instance

(Outlook = Rain, Temperature = Hot, Humidity = High, Wind = Strong)

would be sorted down the leftmost branch of this decision tree and would therefore be classified

as a negative instance.

In other words we can say that decision tree represent a disjunction of conjunctions of constraints

on the attribute values of instances.

(Outlook = Sunny ^ Humidity = Normal) v (Outllok = Overcast) v (Outlook = Rain ^ Wind =

Weak)

Strengths and Weakness of Decision Tree approach

The strengths of decision tree methods are:

 Decision trees are able to generate understandable rules.

 Decision trees perform classification without requiring much computation.

 Decision trees are able to handle both continuous and categorical variables.

 Decision trees provide a clear indication of which fields are most important for prediction

or classification.

The weaknesses of decision tree methods :

 Decision trees are less appropriate for estimation tasks where the goal is to predict the

value of a continuous attribute.

 Decision trees are prone to errors in classification problems with many class and

relatively small number of training examples.

 Decision tree can be computationally expensive to train. The process of growing a

decision tree is computationally expensive. At each node, each candidate splitt ing field

must be sorted before its best split can be found. In some algorithms, combinations of fields

are used and a search must be made for optimal combining weights. Pruning algorithms can

also be expensive since many candidate sub-trees must be formed and compared.

A decision tree consists of three types of nodes:[1]

1. Decision nodes – typically represented by squares

2. Chance nodes – typically represented by circles

https://en.wikipedia.org/wiki/Decision_tree#cite_note-1

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 3/26

3. End nodes – typically represented by triangles

Decision trees are commonly used in operations research and operations management. If, in

practice, decisions have to be taken online with no recall under incomplete knowledge, a

decision tree should be paralleled by a probability model as a best choice model or online

selection model algorithm. Another use of decision trees is as a descriptive means for

calculating conditional probabilities.

Decision rules

The decision tree can be linearized into decision rules, where the outcome is the contents of the

leaf node, and the conditions along the path form a conjunction in the if clause. In general, the

rules have the form:

if condition1 and condition2 and condition3 then outcome.

Decision rules can be generated by constructing association rules with the target variable on

the right. They can also denote temporal or causal relations.

Decision tree using flowchart symbols[edit]

Commonly a decision tree is drawn using flowchart symbols as it is easier for many to read

and understand.

https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Operations_management
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Conditional_probability
https://en.wikipedia.org/wiki/Linearization
https://en.wikipedia.org/wiki/Association_rule_learning
https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/Causal
https://en.wikipedia.org/w/index.php?title=Decision_tree&action=edit§ion=5
https://en.wikipedia.org/wiki/Flowchart

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 4/26

Decision tree learning

Decision tree learning uses a decision tree (as a predictive model) to go from observations

about an item (represented in the branches) to conclusions about the item's target value

(represented in the leaves). It is one of the predictive modelling approaches used

in statistics, data mining and machine learning. Tree models where the target variable can take a

discrete set of values are called classification trees; in these tree structures, leaves represent

class labels and branches represent conjunctions of features that lead to those class labels.

Decision trees where the target variable can take continuous values (typically real numbers) are

called regression trees.

In decision analysis, a decision tree can be used to visually and explicitly represent decisions

and decision making. In data mining, a decision tree describes data (but the resulting

https://en.wikipedia.org/wiki/File:DecisionCalcs.jpg
https://en.wikipedia.org/wiki/Decision_tree
https://en.wikipedia.org/wiki/Predictive_modelling
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Leaf_node
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Real_numbers
https://en.wikipedia.org/wiki/Decision_making
https://en.wikipedia.org/wiki/Data_mining

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 5/26

classification tree can be an input for decision making). This page deals with decision trees

in data mining.

Decision tree learning is a method commonly used in data mining. The goal is to create a model

that predicts the value of a target variable based on several input variables. An example is shown

in the diagram at right. Each interior node corresponds to one of the input variables; there are

edges to children for each of the possible values of that input variable. Each leaf represents a

value of the target variable given the values of the input variables represented by the path from

the root to the leaf.

A decision tree is a simple representation for classifying examples. For this section, assume that

all of the input features have finite discrete domains, and there is a single target feature called the

"classification". Each element of the domain of the classification is called a class. A decision tree

or a classification tree is a tree in which each internal (non-leaf) node is labeled with an input

feature. The arcs coming from a node labeled with an input feature are labeled with each of the

possible values of the target or output feature or the arc leads to a subordinate decision node on a

different input feature. Each leaf of the tree is labeled with a class or a probability distribution

over the classes.

Left: A partitioned two-dimensional feature space. These partitions could not have resulted from

recursive binary splitting. Middle: A partitioned two-dimensional feature space with partitions

that did result from recursive binary splitting. Right: A tree corresponding to the partitioned

feature space in the middle. Notice the convention that when the expression at the split is true,

the tree follows the left branch. When the expression is false, the right branch is followed.

A tree can be "learned" by splitting the source set into subsets based on an attribute value test.

This process is repeated on each derived subset in a recursive manner called recursive

partitioning. See the examples illustrated in the figure for spaces that have and have not been

partitioned using recursive partitioning, or recursive binary splitting. The recursion is completed

when the subset at a node has all the same value of the target variable, or when splitting no

longer adds value to the predictions. This process of top-down induction of decision

trees (TDIDT) is an example of a greedy algorithm, and it is by far the most common strategy

for learning decision trees from data.

In data mining, decision trees can be described also as the combination of mathematical and

computational techniques to aid the description, categorization and generalization of a given set

of data.

Decision tree types

 Classification tree analysis is when the predicted outcome is the class to which the data

belongs.

 Regression tree analysis is when the predicted outcome can be considered a real number

(e.g. the price of a house, or a patient's length of stay in a hospital).

https://en.wikipedia.org/wiki/Decision_making
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Interior_node
https://en.wikipedia.org/wiki/Feature_(machine_learning)
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/w/index.php?title=Attribute_value_test&action=edit&redlink=1
https://en.wikipedia.org/wiki/Recursive_partitioning
https://en.wikipedia.org/wiki/Recursive_partitioning
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Classification_tree

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 6/26

The term Classification And Regression Tree (CART) analysis is an umbrella term used to

refer to both of the above procedures, first introduced by Breiman et al. Trees used for regression

and trees used for classification have some similarities - but also some differences, such as the

procedure used to determine where to split.

Some techniques, often called ensemble methods, construct more than one decision tree:

 Boosted trees Incrementally building an ensemble by training each new instance to

emphasize the training instances previously mis-modeled. A typical example is AdaBoost.

These can be used for regression-type and classification-type problems.

 Bootstrap aggregated (or bagged) decision trees, an early ensemble method, builds multiple

decision trees by repeatedly resampling training data with replacement, and voting the trees

for a consensus prediction.

 A random forest classifier is a specific type of bootstrap aggregating

 Rotation forest - in which every decision tree is trained by first applying principal

component analysis (PCA) on a random subset of the input features.

A special case of a decision tree is a decision list, which is a one-sided decision tree, so that

every internal node has exactly 1 leaf node and exactly 1 internal node as a child (except for the

bottommost node, whose only child is a single leaf node). While less expressive, decision lists

are arguably easier to understand than general decision trees due to their added sparsity, permit

non-greedy learning methods and monotonic constraints to be imposed.

Decision tree learning is the construction of a decision tree from class-labeled training tuples. A

decision tree is a flow-chart-like structure, where each internal (non-leaf) node denotes a test on

an attribute, each branch represents the outcome of a test, and each leaf (or terminal) node holds

a class label. The topmost node in a tree is the root node.

There are many specific decision-tree algorithms. Notable ones include:

 ID3 (Iterative Dichotomiser 3)

 C4.5 (successor of ID3)

 CART (Classification And Regression Tree)

 CHAID (CHi-squared Automatic Interaction Detector). Performs multi-level splits when

computing classification trees.

 MARS: extends decision trees to handle numerical data better.

 Conditional Inference Trees. Statistics-based approach that uses non-parametric tests as

splitting criteria, corrected for multiple testing to avoid overfitting. This approach results in

unbiased predictor selection and does not require pruning.

https://en.wikipedia.org/wiki/Umbrella_term
https://en.wikipedia.org/wiki/Leo_Breiman
https://en.wikipedia.org/wiki/Gradient_boosted_trees
https://en.wikipedia.org/wiki/AdaBoost
https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://en.wikipedia.org/w/index.php?title=Rotation_forest&action=edit&redlink=1
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Decision_list
https://en.wikipedia.org/wiki/ID3_algorithm
https://en.wikipedia.org/wiki/C4.5_algorithm
https://en.wikipedia.org/wiki/Predictive_analytics#Classification_and_regression_trees_.28CART.29
https://en.wikipedia.org/wiki/CHAID
https://en.wikipedia.org/wiki/Multivariate_adaptive_regression_splines
https://en.wikipedia.org/w/index.php?title=Conditional_Inference_Trees&action=edit&redlink=1

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 7/26

Red-Black Tree

Red-Black Tree is a self-balancing Binary Search Tree (BST) where every node follows

following rules.

1) Every node has a color either red or black.

2) Root of tree is always black.

3) There are no two adjacent red nodes (A red node cannot have a red parent or red child).

4) Every path from root to a NULL node has same number of black nodes.

Why Red-Black Trees?

Most of the BST operations (e.g., search, max, min, insert, delete.. etc) take O(h) time where h is

the height of the BST. The cost of these operations may become O(n) for a skewed Binary tree.

If we make sure that height of the tree remains O(Logn) after every insertion and deletion, then

we can guarantee an upper bound of O(Logn) for all these operations. The height of a Red Black

tree is always O(Logn) where n is the number of nodes in the tree.

Comparison with AVL Tree

The AVL trees are more balanced compared to Red Black Trees, but they may cause more

rotations during insertion and deletion. So if your application involves many frequent insertions

and deletions, then Red Black trees should be preferred. And if the insertions and deletions are

less frequent and search is more frequent operation, then AVL tree should be preferred over Red

Black Tree.

https://www.geeksforgeeks.org/wp-content/uploads/RedBlackTree.png
https://www.geeksforgeeks.org/avl-tree-set-1-insertion/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 8/26

How does a Red-Black Tree ensure balance?

A simple example to understand balancing is, a chain of 3 nodes is not possible in red black tree.

We can try any combination of colors and see all of them violate Red-Black tree property.

A chain of 3 nodes is nodes is not possible in Red-Black Trees.

Following are NOT Red-Black Trees

 30 30 30
 / \ / \ / \

 20 NIL 20 NIL 20 NIL

 / \ / \ / \

 10 NIL 10 NIL 10 NIL

Violates Violates Violates

Property 4. Property 4 Property 3

Following are different possible Red-Black Trees with above 3 keys

 20 20

 / \ / \

 10 30 10 30

 / \ / \ / \ / \

 NIL NIL NIL NIL NIL NIL NIL NIL

From the above examples, we get some idea how Red-Black trees ensure balance. Following is

an important fact about balancing in Red-Black Trees.

Black Height of a Red-Black Tree :
Black height is number of black nodes on a path from a node to a leaf. Leaf nodes are also

counted black nodes. From above properties 3 and 4, we can derive, a node of height h has

black-height >= h/2.

Every Red Black Tree with n nodes has height <= 2Log2(n+1)

This can be proved using following facts:

1) For a general Binary Tree, let k be the minimum number of nodes on all root to NULL paths,

then n >= 2k – 1 (Ex. If k is 3, then n is atleast 7). This expression can also be written as k <=

2Log2(n+1)

2) From property 4 of Red-Black trees and above claim, we can say in a Red-Black Tree with n

nodes, there is a root to leaf path with at-most Log2(n+1) black nodes.

3) From property 3 of Red-Black trees, we can claim that the number black nodes in a Red-Black

tree is at least ⌊ n/2 ⌋ where n is total number of nodes.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 9/26

From above 2 points, we can conclude the fact that Red Black Tree with n nodes has height <=

2Log2(n+1)

Insertion

In AVL tree insertion, we used rotation as a tool to do balancing after insertion caused

imbalance. In Red-Black tree, we use two tools to do balancing.

1) Recoloring

2) Rotation

We try recoloring first, if recoloring doesn’t work, then we go for rotation. Following is detailed

algorithm. The algorithms has mainly two cases depending upon the color of uncle. If uncle is

red, we do recoloring. If uncle is black, we do rotations and/or recoloring.

Color of a NULL node is considered as BLACK.

Let x be the newly inserted node.

1) Perform standard BST insertion and make the color of newly inserted nodes as RED.

2) If x is root, change color of x as BLACK (Black height of complete tree increases by 1).

3) Do following if color of x’s parent is not BLACK or x is not root.

….a) If x’s uncle is RED (Grand parent must have been black from property 4)

……..(i) Change color of parent and uncle as BLACK.

……..(ii) color of grand parent as RED.

……..(iii) Change x = x’s grandparent, repeat steps 2 and 3 for new x.

….b) If x’s uncle is BLACK, then there can be four configurations for x, x’s parent (p) and x’s

grandparent (g) (This is similar to AVL Tree)

……..i) Left Left Case (p is left child of g and x is left child of p)

……..ii) Left Right Case (p is left child of g and x is right child of p)

https://www.geeksforgeeks.org/avl-tree-set-1-insertion/
http://en.wikipedia.org/wiki/Tree_rotation
http://geeksquiz.com/binary-search-tree-set-1-search-and-insertion/
https://www.geeksforgeeks.org/red-black-tree-set-1-introduction-2/
https://www.geeksforgeeks.org/wp-content/uploads/redBlackCase2.png
https://www.geeksforgeeks.org/avl-tree-set-1-insertion/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 10/26

……..iii) Right Right Case (Mirror of case a)

……..iv) Right Left Case (Mirror of case c)

Deletion

Like Insertion, recoloring and rotations are used to maintain the Red-Black properties.

In insert operation, we check color of uncle to decide the appropriate case. In delete

operation, we check color of sibling to decide the appropriate case.

The main property that violates after insertion is two consecutive reds. In delete, the main

violated property is, change of black height in subtrees as deletion of a black node may cause

reduced black height in one root to leaf path.

Deletion is fairly complex process. To understand deletion, notion of double black is used.

When a black node is deleted and replaced by a black child, the child is marked as double black.

The main task now becomes to convert this double black to single black.

Deletion Steps

Following are detailed steps for deletion.

1) Perform standard BST delete. When we perform standard delete operation in BST, we always

end up deleting a node which is either leaf or has only one child (For an internal node, we copy

the successor and then recursively call delete for successor, successor is always a leaf node or a

node with one child). So we only need to handle cases where a node is leaf or has one child. Let

v be the node to be deleted and u be the child that replaces v (Note that u is NULL when v is a

leaf and color of NULL is considered as Black).

2) Simple Case: If either u or v is red, we mark the replaced child as black (No change in black

height). Note that both u and v cannot be red as v is parent of u and two consecutive reds are not

allowed in red-black tree.

3) If Both u and v are Black.

3.1) Color u as double black. Now our task reduces to convert this double black to single black.

Note that If v is leaf, then u is NULL and color of NULL is considered as black. So the deletion

of a black leaf also causes a double black.

http://geeksquiz.com/binary-search-tree-set-2-delete/
https://www.geeksforgeeks.org/wp-content/uploads/rbdelete11.png

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 11/26

3.2) Do following while the current node u is double black and it is not root. Let sibling of node

be s.

….(a): If sibling s is black and at least one of sibling’s children is red, perform rotation(s).

Let the red child of s be r. This case can be divided in four subcases depending upon positions of

s and r.

…………..(i) Left Left Case (s is left child of its parent and r is left child of s or both children of

s are red). This is mirror of right right case shown in below diagram.

…………..(ii) Left Right Case (s is left child of its parent and r is right child). This is mirror of

right left case shown in below diagram.

…………..(iii) Right Right Case (s is right child of its parent and r is right child of s or both

children of s are red)

https://www.geeksforgeeks.org/wp-content/uploads/rbdelete12_new.png
https://www.geeksforgeeks.org/wp-content/uploads/rbdelete13New.png

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 12/26

…………..(iv) Right Left Case (s is right child of its parent and r is left child of s)

…..(b): If sibling is black and its both children are black, perform recoloring, and recur for

the parent if parent is black.

In this case, if parent was red, then we didn’t need to recur for prent, we can simply make it

black (red + double black = single black)

…..(c): If sibling is red, perform a rotation to move old sibling up, recolor the old sibling and

parent. The new sibling is always black (See the below diagram). This mainly converts the tree

to black sibling case (by rotation) and leads to case (a) or (b). This case can be divided in two

subcases.

…………..(i) Left Case (s is left child of its parent). This is mirror of right right case shown in

below diagram. We right rotate the parent p.

…………..(iii) Right Case (s is right child of its parent). We left rotate the parent p.

https://www.geeksforgeeks.org/wp-content/uploads/rbdelete14.png
https://www.geeksforgeeks.org/wp-content/uploads/rbdelete15.png

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 13/26

Program for Red Black Trees

#include<iostream>

using namespace std;

struct node

{

 int key;

 node *parent;

 char color;

 node *left;

 node *right;

};

class RBtree

{

 node *root;

 node *q;

https://www.geeksforgeeks.org/wp-content/uploads/rbdelete161.png

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 14/26

 public :

 RBtree()

 {

 q=NULL;

 root=NULL;

 }

 void insert();

 void insertfix(node *);

 void leftrotate(node *);

 void rightrotate(node *);

 void del();

 node* successor(node *);

 void delfix(node *);

 void disp();

 void display(node *);

 void search();

};

void RBtree::insert()

{

 int z,i=0;

 cout<<"\nEnter key of the node to be inserted: ";

 cin>>z;

 node *p,*q;

 node *t=new node;

 t->key=z;

 t->left=NULL;

 t->right=NULL;

 t->color='r';

 p=root;

 q=NULL;

 if(root==NULL)

 {

 root=t;

 t->parent=NULL;

 }

 else

 {

 while(p!=NULL)

 {

 q=p;

 if(p->key<t->key)

 p=p->right;

 else

 p=p->left;

 }

 t->parent=q;

 if(q->key<t->key)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 15/26

 q->right=t;

 else

 q->left=t;

 }

 insertfix(t);

}

void RBtree::insertfix(node *t)

{

 node *u;

 if(root==t)

 {

 t->color='b';

 return;

 }

 while(t->parent!=NULL&&t->parent->color=='r')

 {

 node *g=t->parent->parent;

 if(g->left==t->parent)

 {

 if(g->right!=NULL)

 {

 u=g->right;

 if(u->color=='r')

 {

 t->parent->color='b';

 u->color='b';

 g->color='r';

 t=g;

 }

 }

 else

 {

 if(t->parent->right==t)

 {

 t=t->parent;

 leftrotate(t);

 }

 t->parent->color='b';

 g->color='r';

 rightrotate(g);

 }

 }

 else

 {

 if(g->left!=NULL)

 {

 u=g->left;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 16/26

 if(u->color=='r')

 {

 t->parent->color='b';

 u->color='b';

 g->color='r';

 t=g;

 }

 }

 else

 {

 if(t->parent->left==t)

 {

 t=t->parent;

 rightrotate(t);

 }

 t->parent->color='b';

 g->color='r';

 leftrotate(g);

 }

 }

 root->color='b';

 }

}

void RBtree::del()

{

 if(root==NULL)

 {

 cout<<"\nEmpty Tree." ;

 return ;

 }

 int x;

 cout<<"\nEnter the key of the node to be deleted: ";

 cin>>x;

 node *p;

 p=root;

 node *y=NULL;

 node *q=NULL;

 int found=0;

 while(p!=NULL&&found==0)

 {

 if(p->key==x)

 found=1;

 if(found==0)

 {

 if(p->key<x)

 p=p->right;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 17/26

 else

 p=p->left;

 }

 }

 if(found==0)

 {

 cout<<"\nElement Not Found.";

 return ;

 }

 else

 {

 cout<<"\nDeleted Element: "<<p->key;

 cout<<"\nColour: ";

 if(p->color=='b')

 cout<<"Black\n";

 else

 cout<<"Red\n";

 if(p->parent!=NULL)

 cout<<"\nParent: "<<p->parent->key;

 else

 cout<<"\nThere is no parent of the node. ";

 if(p->right!=NULL)

 cout<<"\nRight Child: "<<p->right->key;

 else

 cout<<"\nThere is no right child of the node. ";

 if(p->left!=NULL)

 cout<<"\nLeft Child: "<<p->left->key;

 else

 cout<<"\nThere is no left child of the node. ";

 cout<<"\nNode Deleted.";

 if(p->left==NULL||p->right==NULL)

 y=p;

 else

 y=successor(p);

 if(y->left!=NULL)

 q=y->left;

 else

 {

 if(y->right!=NULL)

 q=y->right;

 else

 q=NULL;

 }

 if(q!=NULL)

 q->parent=y->parent;

 if(y->parent==NULL)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 18/26

 root=q;

 else

 {

 if(y==y->parent->left)

 y->parent->left=q;

 else

 y->parent->right=q;

 }

 if(y!=p)

 {

 p->color=y->color;

 p->key=y->key;

 }

 if(y->color=='b')

 delfix(q);

 }

}

void RBtree::delfix(node *p)

{

 node *s;

 while(p!=root&&p->color=='b')

 {

 if(p->parent->left==p)

 {

 s=p->parent->right;

 if(s->color=='r')

 {

 s->color='b';

 p->parent->color='r';

 leftrotate(p->parent);

 s=p->parent->right;

 }

 if(s->right->color=='b'&&s->left->color=='b')

 {

 s->color='r';

 p=p->parent;

 }

 else

 {

 if(s->right->color=='b')

 {

 s->left->color=='b';

 s->color='r';

 rightrotate(s);

 s=p->parent->right;

 }

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 19/26

 s->color=p->parent->color;

 p->parent->color='b';

 s->right->color='b';

 leftrotate(p->parent);

 p=root;

 }

 }

 else

 {

 s=p->parent->left;

 if(s->color=='r')

 {

 s->color='b';

 p->parent->color='r';

 rightrotate(p->parent);

 s=p->parent->left;

 }

 if(s->left->color=='b'&&s->right->color=='b')

 {

 s->color='r';

 p=p->parent;

 }

 else

 {

 if(s->left->color=='b')

 {

 s->right->color='b';

 s->color='r';

 leftrotate(s);

 s=p->parent->left;

 }

 s->color=p->parent->color;

 p->parent->color='b';

 s->left->color='b';

 rightrotate(p->parent);

 p=root;

 }

 }

 p->color='b';

 root->color='b';

 }

}

void RBtree::leftrotate(node *p)

{

 if(p->right==NULL)

 return ;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 20/26

 else

 {

 node *y=p->right;

 if(y->left!=NULL)

 {

 p->right=y->left;

 y->left->parent=p;

 }

 else

 p->right=NULL;

 if(p->parent!=NULL)

 y->parent=p->parent;

 if(p->parent==NULL)

 root=y;

 else

 {

 if(p==p->parent->left)

 p->parent->left=y;

 else

 p->parent->right=y;

 }

 y->left=p;

 p->parent=y;

 }

}

void RBtree::rightrotate(node *p)

{

 if(p->left==NULL)

 return ;

 else

 {

 node *y=p->left;

 if(y->right!=NULL)

 {

 p->left=y->right;

 y->right->parent=p;

 }

 else

 p->left=NULL;

 if(p->parent!=NULL)

 y->parent=p->parent;

 if(p->parent==NULL)

 root=y;

 else

 {

 if(p==p->parent->left)

 p->parent->left=y;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 21/26

 else

 p->parent->right=y;

 }

 y->right=p;

 p->parent=y;

 }

}

node* RBtree::successor(node *p)

{

 node *y=NULL;

 if(p->left!=NULL)

 {

 y=p->left;

 while(y->right!=NULL)

 y=y->right;

 }

 else

 {

 y=p->right;

 while(y->left!=NULL)

 y=y->left;

 }

 return y;

}

void RBtree::disp()

{

 display(root);

}

void RBtree::display(node *p)

{

 if(root==NULL)

 {

 cout<<"\nEmpty Tree.";

 return ;

 }

 if(p!=NULL)

 {

 cout<<"\n\t NODE: ";

 cout<<"\n Key: "<<p->key;

 cout<<"\n Colour: ";

 if(p->color=='b')

 cout<<"Black";

 else

 cout<<"Red";

 if(p->parent!=NULL)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 22/26

 cout<<"\n Parent: "<<p->parent->key;

 else

 cout<<"\n There is no parent of the node. ";

 if(p->right!=NULL)

 cout<<"\n Right Child: "<<p->right->key;

 else

 cout<<"\n There is no right child of the node. ";

 if(p->left!=NULL)

 cout<<"\n Left Child: "<<p->left->key;

 else

 cout<<"\n There is no left child of the node. ";

 cout<<endl;

 if(p->left)

 {

 cout<<"\n\nLeft:\n";

 display(p->left);

 }

 /*else

 cout<<"\nNo Left Child.\n";*/

 if(p->right)

 {

 cout<<"\n\nRight:\n";

 display(p->right);

 }

 /*else

 cout<<"\nNo Right Child.\n"*/

 }

}

void RBtree::search()

{

 if(root==NULL)

 {

 cout<<"\nEmpty Tree\n" ;

 return ;

 }

 int x;

 cout<<"\n Enter key of the node to be searched: ";

 cin>>x;

 node *p=root;

 int found=0;

 while(p!=NULL&& found==0)

 {

 if(p->key==x)

 found=1;

 if(found==0)

 {

 if(p->key<x)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 23/26

 p=p->right;

 else

 p=p->left;

 }

 }

 if(found==0)

 cout<<"\nElement Not Found.";

 else

 {

 cout<<"\n\t FOUND NODE: ";

 cout<<"\n Key: "<<p->key;

 cout<<"\n Colour: ";

 if(p->color=='b')

 cout<<"Black";

 else

 cout<<"Red";

 if(p->parent!=NULL)

 cout<<"\n Parent: "<<p->parent->key;

 else

 cout<<"\n There is no parent of the node. ";

 if(p->right!=NULL)

 cout<<"\n Right Child: "<<p->right->key;

 else

 cout<<"\n There is no right child of the node. ";

 if(p->left!=NULL)

 cout<<"\n Left Child: "<<p->left->key;

 else

 cout<<"\n There is no left child of the node. ";

 cout<<endl;

 }

}

int main()

{

 int ch,y=0;

 RBtree obj;

 do

 {

 cout<<"\n\t RED BLACK TREE " ;

 cout<<"\n 1. Insert in the tree ";

 cout<<"\n 2. Delete a node from the tree";

 cout<<"\n 3. Search for an element in the tree";

 cout<<"\n 4. Display the tree ";

 cout<<"\n 5. Exit " ;

 cout<<"\nEnter Your Choice: ";

 cin>>ch;

 switch(ch)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 24/26

 {

 case 1 : obj.insert();

 cout<<"\nNode Inserted.\n";

 break;

 case 2 : obj.del();

 break;

 case 3 : obj.search();

 break;

 case 4 : obj.disp();

 break;

 case 5 : y=1;

 break;

 default : cout<<"\nEnter a Valid Choice.";

 }

 cout<<endl;

 }while(y!=1);

 return 1;

}

// Output of the above program.

Red Black Tree Using C++

http://2.bp.blogspot.com/-deocnCu6_5g/VZI3qvJ4moI/AAAAAAAAEcc/4xnlI0bOmeo/s1600/RB-tree.png

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 25/26

http://3.bp.blogspot.com/-qi8tl7NCT_o/VZI3qjlDa8I/AAAAAAAAEcg/jzJtWZx2CvI/s1600/RB%2Btree.png

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT III: LOWER BOUNDING TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 26/26

POSSIBLE QUESTIONS

 UNIT III

2 Mark Questions:

1. What is a Decision tree?

2. Define Construction of Decision Tree.

3. How to represent a Decision tree?

4. Define Red-black tree.

5. What are the properties of red-black tree?

6 Mark Questions:

1. Explain about Decision Tree with example.

2. How to build a Decision Tree. Explain with example.

3. Explain about Representation of Decision Tree.

4. Describe about strengths and weakness of decision tree approach.

5. Explain about Decision Tree Rules.

6. Explain about Red-Black tree with example.

7. Explain about implementation of inserting a node using Red-black tree.

8. Explain about implementation of deleting a node using Red-black tree.

9. Describe the Red-black tree rules with example.

10. Explain in detail about the properties of Red-black tree.

S.NO QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4

1

Algorithms should have
explicitly defined set of
_______ Inputs Outputs

 Inputs and
Outputs Instructions

2
 _______ means to establish
the amount of resources. Efficiency Module Program Process

3

_______ is to verify if the
algorithm leads to the solution
of the problem. Efficiency Flexibility Durability Correctness

4
_______ stage recursively
combines the sub problems. Merge Divide Break Solve

5
_______ sort is a comparison
based algorithm. Bubble Insertion a & b None of these

6

The minimum number of steps
taken on any instance is called
as _____. Best-case Worst-case Average-case a & b

7

The algorithm’s ______ is the
set of values corresponding to
all the variables. Process State Definition d. Technique

8
Bubble sort is not suitable for

larger
data set

Smaller
data set

Medium data
set Both b & c

9
______ means passing through
nodes in a specific order.

Interchangi
ng Traversing Dividing Splitting

10
Level of a node represents the
_______ of a node. Priority Object Generation Both a & b

11
______ represents a value of a
node. Key Instance Type Variable

12
Red-Black tree is one of the
_______ binary search tree. Balanced Unbalanced Different Similar

13
The method gives a global view
of a problem. Manual Analysis aggregate Recurrence

14

In _____ method different
charges are assigned to
different operations. Accounting Recurrence Aggregation All of these

15
The spanning tree cannot be
_____. Union Intersection Disconnected Updated

Design and Analysis of Algorithms
PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS ONE MARK QUESTIONS

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)
Coimbatore-641021

Department of Computer Science
II B.Sc(CS) (BATCH 2016-2019)

16

 _______ method represents the
prepaid work as potential
energy.

Graph
theory Potential Aggregation Accounting

17

The ______ string-matching
procedure can be interpreted
graphically. naive Pattern KMP Automative

18

Rabin and Karp method is
applied for _______ pattern
matching. 3D 1D 2D 4D

19
_______ algorithm is a Linear
time string-matching algorithm. Greedy b. Dynamic Descriptive KMP

20
The _____ case running time of
Rabin and Karp is high. Average Minimum Maximum Worst

21
X is a root then X is the ______
of its children.

sub tree Parent Sibilings subordinate

22

The children of the same parent
are called
__________________.

sibiling leaf child subtree

23

___________of a node are all
the nodes along the path form
the root to that node.

Degree sub tree Ancestors parent

24

The ______________of a tree
is defined to be a maximum
level of any node in the tree.

weight length breath height

25
A___________ is a set of n ≥ 0
disjoint trees

Group forest Branch sub tree

26

A tree with any node having at
most two branches is called a
_____________.

branched
tree

sub tree binary tree forest

27

A ___________of depth k is a
binary tree of depth k having
2K-1 nodes.

full binary
tree

half binary
tree

sub tree n branch tree

28

Data structure represents the
hierarchical relationships
between individual data item is
known as __________.

Root Node Tree Address

29
Node at the highest level of the
tree is known as _______.

Child Root Sibiling Parent

30

The root of the tree is the
_______of all nodes in the tree.

Child Parent Ancestor Head

31
 _____is a subset of a tree that
is itself a tree.

Branch Root Leaf Subtree

32
A node with no children is
called _________.

Root Node Branch Leaf Node Null tree

33

In a tree structure a link
between parent and child is
called _______

Branch Root Leaf Subtree

34

Height – balanced trees are also
referred as as
___________trees.

AVL trees Binary
Trees

Subtree Branch Tree

35

Visiting each node in a tree
exactly once is called

searching travering walk through path

36

In________traversal ,the
current node is visited before
the subtrees.

PreOrder PostOrder Inorder End Order

37

In________traversal ,the node
is visited between the subtrees.

PreOrder PostOrder Inorder End Order

38

In________traversal ,the node
is visited after the subtrees.

PreOrder PostOrder Inorder End Order

39
Inorder traversal is also
sometimes called______

Symmetric
Order

End Order PreOrder PostOrder

40
Postorder traversal is also
sometimes called______

Symmetric
Order

End Order PreOrder PostOrder

41
Nodes of any level are
numbered from _________

Left to
right

Right to
Left

Top to Bottom Bottom to
Top

42
________ search involves only
addition and subtraction.

binary fibonacci sequential non
sequential

43

A________ is defined to be a
complete binary tree with the
property that the value of root
node is at least as large as the
value of its children node.

quick radix merge heap

44
Binary trees are used in ______
sorting.

quick sort merge sort heap sort lrsort

45
The ____ of the heap has the
largest key in the tree.

Node Root Leaf Branch

46

In Threaded Binary Tree
,LCHILD(P) is a normal
pointer When LBIT(P) = ____

1 2 3 0

47

In Threaded Binary Tree
,LCHILD(P) is a Thread When
LBIT(P) = ____

1 2 3 0

48

In Threaded Binary Tree
,RCHILD(P) is a normal
pointer When RBIT(P) = ____

2 1 3 0

49

In Threaded Binary Tree
,RCHILD(P) is a Thread When
LBIT(P) = ____

1 2 0 4

50

Which of these searching
algorithm uses the Divide and
Conquere technique for sorting

Linear
search

Binary
search

fibonacci
search

None of the
above

51
______ algorithm can be used
only with sorted lists.

Linear
search

Binary
search

insertion sort merge sort

52

________ search involves
comparision of the element to
be found with every elements
in a list.

Linear
search

Binary
search

fibonacci
search

None of the
above

53

Binary search algorithm in a
list of n elements takes only
_______ time.

O(log2n) O(n) O(n3) O(n2)

54
_____ is used for decision
making in eight coin problem.

trees graphs linked lists array

55

The Linear search algorithm in
a list of n element takes
________ time to compare in
worst case.

constant linear quadratic exponential

56

Which of these is an
application of trees.

Finding
minimum
cost
spanning
tree

Decision
tree

Storage
management

Job
sequencing

57
________ is an operation
performed on sets

union sort rename traverse

58
In sets _______ is used to find
the set containing the element i

subset(i) Disjoin(i) Union(i) Find(i)

59 Sets are represented as _____ arrays linked lists graphs trees

60

_________ is an example of
application of trees in decision
making.

Binay
search

Optimal
merge
pattern

Eight Coins
problem

Huffman's
Message
coding

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT IV: ADVANCED ANALYSIS TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 1/16

UNIT IV

SYLLABUS

Advanced Analysis Technique: Amortized analysis Graphs: Graph Algorithms–

Breadth First Search, Depth First Search and its Applications, Minimum Spanning Trees.

Amortized Analysis

In an amortized analysis, the time required to perform a sequence of data-structure operations is

averaged over all the operations performed. Amortized analysis can be used to show that the

average cost of an operation is small, if one averages over a sequence of operations, even though

a single operation might be expensive. Amortized analysis differs from average-case analysis in

that probability is not involved; an amortized analysis guarantees the average performance of

each operation in the worst case.

The first three sections of this chapter cover the three most common techniques used in

amortized analysis. Section 18.1 starts with the aggregate method, in which we determine an

upper bound T(n) on the total cost of a sequence of n operations. The amortized cost per

operation is then T(n)/n.

When there is more than one type of operation, each type of operation may have a different

amortized cost. The accounting method overcharges some operations early in the sequence,

storing the overcharge as "prepaid credit" on specific objects in the data structure. The credit is

used later in the sequence to pay for operations that are charged less than they actually cost.

We shall use two examples to examine these three models. One is a stack with the additional

operation MULTIPOP, which pops several objects at once. The other is a binary counter that

counts up from 0 by means of the single operation INCREMENT.

While reading this chapter, bear in mind that the charges assigned during an amortized analysis

are for analysis purposes only. They should not appear in the code. If, for example, a credit is

assigned to an object x when using the accounting method, there is no need to assign an

appropriate amount to some attribute credit[x] in the code.

The aggregate method

In the aggregate method of amortized analysis, we show that for all n, a sequence of n operations

takes worst-case time T(n) in total. In the worst case, the average cost, or amortized cost, per

operation is therefore T(n) / n. Note that this amortized cost applies to each operation, even when

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT IV: ADVANCED ANALYSIS TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 2/16

there are several types of operations in the sequence. The other two methods we shall study in

this chapter, the accounting method and the potential method, may assign different amortized

costs to different types of operations.

Stack operations

In our first example of the aggregate method, we analyze stacks that have been augmented with a

new operation. Section 11.1 presented the two fundamental stack operations, each of which

takes O(1) time:

PUSH(S, x) pushes object x onto stack S.

POP(S) pops the top of stack S and returns the popped object.

Since each of these operations runs in O(1) time, let us consider the cost of each to be 1. The

total cost of a sequence of n PUSH and POP operations is therefore n, and the actual running

time for n operations is therefore (n).

The situation becomes more interesting if we add the stack operation MULTIPOP(S, k), which

removes the k top objects of stack S, or pops the entire stack if it contains less than k objects. In

the following pseudocode, the operation STACK-EMPTY returns TRUE if there are no objects

currently on the stack, and FALSE otherwise.

MULTIPOP(S,k)

1 while not STACK-EMPTY(S) and k 0

2 do POP(S)

3 k k - 1

The accounting method

In the accounting method of amortized analysis, we assign differing charges to different

operations, with some operations charged more or less than they actually cost. The amount we

charge an operation is called its amortized cost. When an operation's amortized cost exceeds its

actual cost, the difference is assigned to specific objects in the data structure as credit. Credit can

be used later on to help pay for operations whose amortized cost is less than their actual cost.

Thus, one can view the amortized cost of an operation as being split between its actual cost and

credit that is either deposited or used up. This is very different from the aggregate method, in

which all operations have the same amortized cost.

One must choose the amortized costs of operations carefully. If we want analysis with amortized

costs to show that in the worst case the average cost per operation is small, the total amortized

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT IV: ADVANCED ANALYSIS TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 3/16

cost of a sequence of operations must be an upper bound on the total actual cost of the sequence.

Moreover, as in the aggregate method, this relationship must hold for all sequences of

operations. Thus, the total credit associated with the data structure must be nonnegative at all

times, since it represents the amount by which the total amortized costs incurred exceed the total

actual costs incurred. If the total credit were ever allowed to become negative (the result of

undercharging early operations with the promise of repaying the account later on), then the total

amortized costs incurred at that time would be below the total actual costs incurred; for the

sequence of operations up to that time, the total amortized cost would not be an upper bound on

the total actual cost. Thus, we must take care that the total credit in the data structure never

becomes negative.

Stack operations

To illustrate the accounting method of amortized analysis, let us return to the stack example.

Recall that the actual costs of the operations were

PUSH 1 ,

POP 1 ,

MULTIPOP min(k,s) ,

where k is the argument supplied to MULTIPOP and s is the stack size when it is called. Let us

assign the following amortized costs:

PUSH 2 ,

POP 0 ,

MULTIPOP 0 .

The potential method

Instead of representing prepaid work as credit stored with specific objects in the data structure,

the potential method of amortized analysis represents the prepaid work as "potential energy,"or

just "potential," that can be released to pay for future operations. The potential is associated with

the data structure as a whole rather than with specific objects within the data structure.

The potential method works as follows. We start with an initial data structure D0 on

which n operations are performed. For each i = 1, 2, . . . , n, we let ci be the actual cost of the ith

operation and Di be the data structure that results after applying the ith operation to data

structure Di - l. A potential function maps each data structure Di to a real number (Di), which

is the potential associated with data structure Di.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT IV: ADVANCED ANALYSIS TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 4/16

Breadth First Search

Graph traversals

Graph traversal means visiting every vertex and edge exactly once in a well-defined order. While

using certain graph algorithms, you must ensure that each vertex of the graph is visited exactly

once. The order in which the vertices are visited are important and may depend upon the

algorithm or question that you are solving.

During a traversal, it is important that you track which vertices have been visited. The most

common way of tracking vertices is to mark them.

Breadth First Search (BFS)

There are many ways to traverse graphs. BFS is the most commonly used approach.

BFS is a traversing algorithm where you should start traversing from a selected node (source or

starting node) and traverse the graph layerwise thus exploring the neighbour nodes (nodes which

are directly connected to source node). You must then move towards the next-level neighbour

nodes.

As the name BFS suggests, you are required to traverse the graph breadthwise as follows:

1. First move horizontally and visit all the nodes of the current layer

2. Move to the next layer

Consider the following diagram.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT IV: ADVANCED ANALYSIS TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 5/16

Consider the following

diagram.

The distance between the nodes in layer 1 is comparitively lesser than the distance between the

nodes in layer 2. Therefore, in BFS, you must traverse all the nodes in layer 1 before you move

to the nodes in layer 2.

Traversing child nodes

A graph can contain cycles, which may bring you to the same node again while traversing the

graph. To avoid processing of same node again, use a boolean array which marks the node after

it is processed. While visiting the nodes in the layer of a graph, store them in a manner such that

you can traverse the corresponding child nodes in a similar order.

In the earlier diagram, start traversing from 0 and visit its child nodes 1, 2, and 3. Store them in

the order in which they are visited. This will allow you to visit the child nodes of 1 first (i.e. 4

and 5), then of 2 (i.e. 6 and 7), and then of 3 (i.e. 7) etc.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT IV: ADVANCED ANALYSIS TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 6/16

To make this process easy, use a queue to store the node and mark it as 'visited' until all its

neighbours (vertices that are directly connected to it) are marked. The queue follows the First In

First Out (FIFO) queuing method, and therefore, the neigbors of the node will be visited in the

order in which they were inserted in the node i.e. the node that was inserted first will be visited

first, and so on.

Pseudocode

BFS (G, s) //Where G is the graph and s is the source node

 let Q be queue.

 Q.enqueue(s) //Inserting s in queue until all its neighbour vertices are marked.

 mark s as visited.

 while (Q is not empty)

 //Removing that vertex from queue,whose neighbour will be visited now

 v = Q.dequeue()

 //processing all the neighbours of v

 for all neighbours w of v in Graph G

 if w is not visited

 Q.enqueue(w) //Stores w in Q to further visit its neighbour

 mark w as visited.

// Program to print BFS traversal from a given

// source vertex. BFS(int s) traverses vertices

// reachable from s.

#include<iostream>

#include <list>

using namespace std;

// This class represents a directed graph using

// adjacency list representation

class Graph

{

 int V; // No. of vertices

 // Pointer to an array containing adjacency

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT IV: ADVANCED ANALYSIS TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 7/16

 // lists

 list<int> *adj;

public:

 Graph(int V); // Constructor

 // function to add an edge to graph

 void addEdge(int v, int w);

 // prints BFS traversal from a given source s

 void BFS(int s);

};

Graph::Graph(int V)

{

 this->V = V;

 adj = new list<int>[V];

}

void Graph::addEdge(int v, int w)

{

 adj[v].push_back(w); // Add w to v’s list.

}

void Graph::BFS(int s)

{

 // Mark all the vertices as not visited

 bool *visited = new bool[V];

 for(int i = 0; i < V; i++)

 visited[i] = false;

 // Create a queue for BFS

 list<int> queue;

 // Mark the current node as visited and enqueue it

 visited[s] = true;

 queue.push_back(s);

 // 'i' will be used to get all adjacent

 // vertices of a vertex

 list<int>::iterator i;

 while(!queue.empty())

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT IV: ADVANCED ANALYSIS TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 8/16

 {

 // Dequeue a vertex from queue and print it

 s = queue.front();

 cout << s << " ";

 queue.pop_front();

 // Get all adjacent vertices of the dequeued

 // vertex s. If a adjacent has not been visited,

 // then mark it visited and enqueue it

 for (i = adj[s].begin(); i != adj[s].end(); ++i)

 {

 if (!visited[*i])

 {

 visited[*i] = true;

 queue.push_back(*i);

 }

 }

 }

}

// Driver program to test methods of graph class

int main()

{

 // Create a graph given in the above diagram

 Graph g(4);

 g.addEdge(0, 1);

 g.addEdge(0, 2);

 g.addEdge(1, 2);

 g.addEdge(2, 0);

 g.addEdge(2, 3);

 g.addEdge(3, 3);

 cout << "Following is Breadth First Traversal "

 << "(starting from vertex 2) \n";

 g.BFS(2);

 return 0;

}

Output:

Following is Breadth First Traversal (starting from vertex 2)

2 0 3 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT IV: ADVANCED ANALYSIS TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 9/16

Depth First Search

Depth First Search (DFS)

The DFS algorithm is a recursive algorithm that uses the idea of backtracking. It involves

exhaustive searches of all the nodes by going ahead, if possible, else by backtracking.

Here, the word backtrack means that when you are moving forward and there are no more nodes

along the current path, you move backwards on the same path to find nodes to traverse. All the

nodes will be visited on the current path till all the unvisited nodes have been traversed after

which the next path will be selected.

This recursive nature of DFS can be implemented using stacks. The basic idea is as follows:

Pick a starting node and push all its adjacent nodes into a stack.

Pop a node from stack to select the next node to visit and push all its adjacent nodes into a stack.

Repeat this process until the stack is empty. However, ensure that the nodes that are visited are

marked. This will prevent you from visiting the same node more than once. If you do not mark

the nodes that are visited and you visit the same node more than once, you may end up in an

infinite loop.

Pseudocode

 DFS-iterative (G, s): //Where G is graph and s is source vertex

 let S be stack

 S.push(s) //Inserting s in stack

 mark s as visited.

 while (S is not empty):

 //Pop a vertex from stack to visit next

 v = S.top()

 S.pop()

 //Push all the neighbours of v in stack that are not visited

 for all neighbours w of v in Graph G:

 if w is not visited :

 S.push(w)

 mark w as visited

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT IV: ADVANCED ANALYSIS TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 10/16

 DFS-recursive(G, s):

 mark s as visited

 for all neighbours w of s in Graph G:

 if w is not visited:

 DFS-recursive(G, w)

Program for Depth first search

// C++ program to print DFS traversal from

// a given vertex in a given graph

#include<iostream>

#include<list>

using namespace std;

// Graph class represents a directed graph

// using adjacency list representation

class Graph

{

 int V; // No. of vertices

 // Pointer to an array containing

 // adjacency lists

 list<int> *adj;

 // A recursive function used by DFS

 void DFSUtil(int v, bool visited[]);

public:

 Graph(int V); // Constructor

 // function to add an edge to graph

 void addEdge(int v, int w);

 // DFS traversal of the vertices

 // reachable from v

 void DFS(int v);

};

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT IV: ADVANCED ANALYSIS TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 11/16

Graph::Graph(int V)

{

 this->V = V;

 adj = new list<int>[V];

}

void Graph::addEdge(int v, int w)

{

 adj[v].push_back(w); // Add w to v’s list.

}

void Graph::DFSUtil(int v, bool visited[])

{

 // Mark the current node as visited and

 // print it

 visited[v] = true;

 cout << v << " ";

 // Recur for all the vertices adjacent

 // to this vertex

 list<int>::iterator i;

 for (i = adj[v].begin(); i != adj[v].end(); ++i)

 if (!visited[*i])

 DFSUtil(*i, visited);

}

// DFS traversal of the vertices reachable from v.

// It uses recursive DFSUtil()

void Graph::DFS(int v)

{

 // Mark all the vertices as not visited

 bool *visited = new bool[V];

 for (int i = 0; i < V; i++)

 visited[i] = false;

 // Call the recursive helper function

 // to print DFS traversal

 DFSUtil(v, visited);

}

int main()

{

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT IV: ADVANCED ANALYSIS TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 12/16

 // Create a graph given in the above diagram

 Graph g(4);

 g.addEdge(0, 1);

 g.addEdge(0, 2);

 g.addEdge(1, 2);

 g.addEdge(2, 0);

 g.addEdge(2, 3);

 g.addEdge(3, 3);

 cout << "Following is Depth First Traversal"

 " (starting from vertex 2) \n";

 g.DFS(2);

 return 0;

}

Output:

Following is Depth First Traversal (starting from vertex 2)

2 0 1 3

Applications of Breadth First Traversal

1) Shortest Path and Minimum Spanning Tree for unweighted graph In unweighted graph,

the shortest path is the path with least number of edges. With Breadth First, we always reach a

vertex from given source using minimum number of edges. Also, in case of unweighted graphs,

any spanning tree is Minimum Spanning Tree and we can use either Depth or Breadth first

traversal for finding a spanning tree.

2) Peer to Peer Networks. In Peer to Peer Networks like BitTorrent, Breadth First Search is

used to find all neighbor nodes.

3) Crawlers in Search Engines: Crawlers build index using Breadth First. The idea is to start

from source page and follow all links from source and keep doing same. Depth First Traversal

can also be used for crawlers, but the advantage with Breadth First Traversal is, depth or levels

of built tree can be limited.

4) Social Networking Websites: In social networks, we can find people within a given distance

‘k’ from a person using Breadth First Search till ‘k’ levels.

5) GPS Navigation systems: Breadth First Search is used to find all neighboring locations.

6) Broadcasting in Network: In networks, a broadcasted packet follows Breadth First Search to

reach all nodes.

7) In Garbage Collection: Breadth First Search is used in copying garbage collection

using Cheney’s algorithm. Refer this and for details. Breadth First Search is preferred over Depth

First Search because of better locality of reference:

https://www.geeksforgeeks.org/how-bittorrent-works/
http://en.wikipedia.org/wiki/Cheney%27s_algorithm
https://lambda.uta.edu/cse5317/notes/node48.html

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT IV: ADVANCED ANALYSIS TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 13/16

Applications of Depth First Search

Depth-first search (DFS) is an algorithm (or technique) for traversing a graph.

Following are the problems that use DFS as a bulding block.

1) For an unweighted graph, DFS traversal of the graph produces the minimum spanning tree and

all pair shortest path tree.

2) Detecting cycle in a graph
A graph has cycle if and only if we see a back edge during DFS. So we can run DFS for the

graph and check for back edges.

3) Path Finding

We can specialize the DFS algorithm to find a path between two given vertices u and z.

i) Call DFS(G, u) with u as the start vertex.

ii) Use a stack S to keep track of the path between the start vertex and the current vertex.

iii) As soon as destination vertex z is encountered, return the path as the

contents of the stack

4) Topological Sorting

Topological Sorting is mainly used for scheduling jobs from the given dependencies among jobs.

In computer science, applications of this type arise in instruction scheduling, ordering of formula

cell evaluation when recomputing formula values in spreadsheets, logic synthesis, determining

the order of compilation tasks to perform in makefiles, data serialization, and resolving symbol

dependencies in linkers.

5) To test if a graph is bipartite

We can augment either BFS or DFS when we first discover a new vertex, color it opposited its

parents, and for each other edge, check it doesn’t link two vertices of the same color. The first

vertex in any connected component can be red or black! See this for details.

6) Finding Strongly Connected Components of a graph A directed graph is called strongly

connected if there is a path from each vertex in the graph to every other vertex.

7) Solving puzzles with only one solution, such as mazes. (DFS can be adapted to find all

solutions to a maze by only including nodes on the current path in the visited set.)

Minimum Spanning Trees

A spanning tree is a subset of an undirected Graph that has all the vertices connected by

minimum number of edges.

If all the vertices are connected in a graph, then there exists at least one spanning tree. In a

graph, there may exist more than one spanning tree.

Properties

 A spanning tree does not have any cycle.

https://www.geeksforgeeks.org/topological-sorting/
http://en.wikipedia.org/wiki/Bipartite_graph
http://www8.cs.umu.se/kurser/TDBAfl/VT06/algorithms/LEC/LECTUR16/NODE16.HTM
http://en.wikipedia.org/wiki/Strongly_connected_component

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT IV: ADVANCED ANALYSIS TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 14/16

 Any vertex can be reached from any other vertex.

Example

In the following graph, the highlighted edges form a spanning tree.

Minimum Spanning Tree

A Minimum Spanning Tree (MST) is a subset of edges of a connected weighted undirected

graph that connects all the vertices together with the minimum possible total edge weight. To

derive an MST, Prim’s algorithm or Kruskal’s algorithm can be used. Hence, we will discuss

Prim’s algorithm in this chapter.

As we have discussed, one graph may have more than one spanning tree. If there are n number

of vertices, the spanning tree should have n - 1 number of edges. In this context, if each edge of

the graph is associated with a weight and there exists more than one spanning tree, we need to

find the minimum spanning tree of the graph.

Moreover, if there exist any duplicate weighted edges, the graph may have multiple minimum

spanning tree.

 In the above graph, we have shown a spanning tree though it’s not the minimum spanning tree.

The cost of this spanning tree is (5 + 7 + 3 + 3 + 5 + 8 + 3 + 4) = 38.

We will use Prim’s algorithm to find the minimum spanning tree.

Prim’s Algorithm

Prim’s algorithm is a greedy approach to find the minimum spanning tree. In this algorithm, to

form a MST we can start from an arbitrary vertex.

Algorithm: MST-Prim’s (G, w, r)

for each u є G.V

 u.key = ∞

 u.∏ = NIL

r.key = 0

Q = G.V

while Q ≠ Ф

 u = Extract-Min (Q)

 for each v є G.adj[u]

 if each v є Q and w(u, v) < v.key

 v.∏ = u

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT IV: ADVANCED ANALYSIS TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 15/16

 v.key = w(u, v)

The function Extract-Min returns the vertex with minimum edge cost. This function works on

min-heap.

Example

Using Prim’s algorithm, we can start from any vertex, let us start from vertex 1.

Vertex 3 is connected to vertex 1 with minimum edge cost, hence edge (1, 2) is added to the

spanning tree.

Next, edge (2, 3) is considered as this is the minimum among edges {(1, 2), (2, 3), (3, 4), (3, 7)}.

In the next step, we get edge (3, 4) and (2, 4) with minimum cost. Edge (3, 4) is selected at

random.

In a similar way, edges (4, 5), (5, 7), (7, 8), (6, 8) and (6, 9) are selected. As all the vertices are

visited, now the algorithm stops.

The cost of the spanning tree is (2 + 2 + 3 + 2 + 5 + 2 + 3 + 4) = 23. There is no more spanning

tree in this graph with cost less than 23.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT IV: ADVANCED ANALYSIS TECHNIQUES

 BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 16/16

POSSIBLE QUESTIONS

 UNIT IV

2 Mark Questions:

1. What is the use of Amortized analysis?

2. Define aggregate method.

3. What is a Breadth-First search approach?

4. What is a Depth-First search approach?

5. Write a short note on Spanning tree.

6 Mark Questions:

1. Explain the concepts of Amortized analysis.

2. Explain about Aggregate method with example.

3. Explain about Potential method with example.

4. Explain about accounting method with example.

5. Elaborate Breadth-First search approach with example.

6. Elaborate Depth-First search approach with example.

7. Explain in detail about Minimum spanning tree.

S.NO QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4

1
Experimental analysis is
otherwise called as________. Testing Implementing Proving Scheduling

2
Algorithms are well ordered
with _____ operations. Efficient Multiple Unambiguous Infinite

3 An algorithm is a _______ Formal Informal Basic Complete

4
_______ involves the solution
of sub-problems. Merge Combine Divide Conquer

5
Swapping is used to _______
the values. Remove b. Add interchange c. Integrate

6
A sub-list is maintained in
_______ sort. Bubble Insertion Heap Both a & c

7
Example for Divide and
conquer is _______ Merge sort Quick sort Bubble sort All of these

8
Heap data structure is always a
_______ Radix

complete
binary tree Heap sort Both a & b

9
Red-Black tree is one of the
_______ binary search tree. Balanced Unbalanced Different Similar

10
In Red-Black tree every node is
either _______.

Black or
blue

 Black or
orange red or black Both b & c

11
In Red-Black tree the root is
_______. Red Black Blue Purple

12

In Red-Black tree if a node is
_______, then both its children
are black. Black Blue Yellow Red

13

All paths from the node have
the ______ black height in Red-
Black tree. Same Different Null Variable

14
______ algorithm traverses a
graph in a depthward motion.

Depth First
Search Greedy Analysis Both a & c

15

A ______ is a notation used to
represent the connection
between pairs of objects. Graph Tree Binary Tree Stack

16
Edges are the links that connect
the vertices. Nodes Edges Trees Both a & c

17
In a directed graph, edges have
______. Scalar Vector Direction Time

Design and Analysis of Algorithms
PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS ONE MARK QUESTIONS

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)
Coimbatore-641021

Department of Computer Science
II B.Sc(CS) (BATCH 2016-2019)

18
The ______ string is denoted as
empty string. zero-length Nil Empty max-length

19
Naive technique performs
_______. Union Intersect

 Post-
processing

 Pre-
processing

20
The average-case running time
of ______ is high.

Rabin and
Karp Prims Naïve Kruskal

21

_______________ are
genealogical charts which are
used to present the data

Graphs Pedigree and
lineal chart

Line , bar chart pie chart

22

A __ is a finite set of one or
more nodes, with one root node
and remaining form the disjoint
sets forming the subtrees.

tree graph list set

23
A _________ is a graph without
any cycle.

tree path set list

24

In binary trees there is no node
with a degree greater than

zero one two three

25

Which of this is true for a
binary tree.

It may be
empty

The degree of
all nodes
must be <=2

It contains a
root node

All the above

26
The Number of subtrees of a
node is called its _______.

leaf terminal children degree

27
Nodes that have degree zero are
called ________.

end node leaf nodes subtree root node

28

A binary tree with all its left
branches supressed is called a

balanced
tree

left sub tree full binary tree right skewed
tree

29
All node except the leaf nodes
are called________.

terminal
node

percent node non terminal children node

30
The roots of the subtrees of a
node X, are the _______ of X.

Parent Children Sibling sub tree

31
X is a root then X is the ______
of its children.

sub tree Parent Sibilings subordinate

32

The children of the same parent
are called
__________________.

sibiling leaf child subtree

33

___________of a node are all
the nodes along the path form
the root to that node.

Degree sub tree Ancestors parent

34

The ______________of a tree is
defined to be a maximum level
of any node in the tree.

weight length breath height

35
A___________ is a set of n ≥ 0
disjoint trees

Group forest Branch sub tree

36

A tree with any node having at
most two branches is called a
_____________.

branched
tree

sub tree binary tree forest

37

A ___________of depth k is a
binary tree of depth k having 2K-
1 nodes.

full binary
tree

half binary
tree

sub tree n branch tree

38

Data structure represents the
hierarchical relationships
between individual data item is
known as __________.

Root Node Tree Address

39
Node at the highest level of the
tree is known as _______.

Child Root Sibiling Parent

40

The root of the tree is the
_______of all nodes in the tree.

Child Parent Ancestor Head

41
 _____is a subset of a tree that
is itself a tree.

Branch Root Leaf Subtree

42
A node with no children is
called _________.

Root Node Branch Leaf Node Null tree

43

In a tree structure a link
between parent and child is
called _______

Branch Root Leaf Subtree

44

Height – balanced trees are also
referred as as
___________trees.

AVL trees Binary Trees Subtree Branch Tree

45

Visiting each node in a tree
exactly once is called

searching travering walk through path

46

In________traversal ,the
current node is visited before
the subtrees.

PreOrder PostOrder Inorder End Order

47
In________traversal ,the node
is visited between the subtrees.

PreOrder PostOrder Inorder End Order

48
In________traversal ,the node
is visited after the subtrees.

PreOrder PostOrder Inorder End Order

49
Inorder traversal is also
sometimes called______

Symmetric
Order

End Order PreOrder PostOrder

50
Postorder traversal is also
sometimes called______

Symmetric
Order

End Order PreOrder PostOrder

51
Nodes of any level are
numbered from _________

Left to
right

Right to Left Top to Bottom Bottom to
Top

52
________ search involves only
addition and subtraction.

binary fibonacci sequential non sequential

53

A________ is defined to be a
complete binary tree with the
property that the value of root
node is at least as large as the
value of its children node.

quick radix merge heap

54
Binary trees are used in ______
sorting.

quick sort merge sort heap sort lrsort

55
The ____ of the heap has the
largest key in the tree.

Node Root Leaf Branch

56

Which of these searching
algorithm uses the Divide and
Conquere technique for sorting

Linear
search

Binary
search

fibonacci
search

None of the
above

57
______ algorithm can be used
only with sorted lists.

Linear
search

Binary
search

insertion sort merge sort

58

________ search involves
comparision of the element to
be found with every elements in
a list.

Linear
search

Binary search fibonacci
search

None of the
above

59

Binary search algorithm in a list
of n elements takes only
_______ time.

O(log2n) O(n) O(n3) O(n2)

60
_____ is used for decision
making in eight coin problem.

trees graphs linked lists array

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT V: STRING PROCESSING

BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 1/14

UNIT V

SYLLABUS

String Processing: String Matching, KMP Technique.

String Matching

Finding all occurrences of a pattern in a text is a problem that arises frequently in text-editing

programs. Typically, the text is a document being edited, and the pattern searched for is a particular

word supplied by the user. Efficient algorithms for this problem can greatly aid the responsiveness of

the text-editing program.

String-matching algorithms are also used, for example, to search for particular patterns in DNA

sequences.

We formalize the string-matching problem as follows. We assume that the text is an array

T [1 . . n] of length n and that the pattern is an array P[1 . .m] of length m ≤ n. We further assume

that the elements of P and T are characters drawn from a finite alphabet _. For example, we may

have _ = {0,1} or _ = {a, b, . . . , z}. The character arrays P and T are often called strings of

characters.

We say that pattern P occurs with shift s in text T (or, equivalently, that pattern P occurs beginning

at position s + 1 in text T) if 0 ≤ s ≤ n − m and T [s + 1 . . s + m] = P[1 . .m] (that is, if T [s + j] = P[

j], for 1 ≤ j ≤ m).

If P occurs with shift s in T , then we call s a valid shift; otherwise, we call s an invalid shift. The

string-matching problem is the problem of finding all valid shifts with which a given pattern P

occurs in a given text T .

Except for the naive brute-force algorithm, each string-matching algorithm in this chapter erforms

some preprocessing based on the pattern and then finds all valid shifts; we will call this latter phase

“matching.”

The total running time of each algorithm is the sum of the preprocessing and matching times.

Although the _((n − m + 1)m) worst-case running time of this algorithm is no better than that of the

naive method, it works much better on average and in practice. It also generalizes nicely to other

pattern-matching problems.

A string-matching algorithm that begins by constructing a finite automaton specifically designed to

search for occurrences of the given pattern P in a text.

The naive string-matching algorithm

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT V: STRING PROCESSING

BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 2/14

The naive algorithm finds all valid shifts using a loop that checks the condition P[1 . .m]

= T [s + 1 . . s + m] for each of the n − m + 1 possible values of s.

NAIVE-STRING-MATCHER(T, P)

1 n ← length[T]

2 m ← length[P]

3 for s ← 0 to n − m

4 do if P[1 . .m] = T [s + 1 . . s + m]

5 then print “Pattern occurs with shift” s

The naive string-matching procedure can be interpreted graphically as sliding a “template”

containing the pattern over the text, noting for which shifts all of the characters on the

template equal the corresponding characters in the text. The for loop beginning on line 3

considers each possible shift explicitly. The test on line 4 determines whether the current

shift is valid or not; this test involves an implicit loop to check corresponding character

positions until all positions match successfully or a mismatch is found. Line 5 prints out each

valid shift s.

Procedure NAIVE-STRING-MATCHER takes time O((n − m + 1)m), and this bound is tight

in the worst case. For example, consider the text string an (a string of n a’s) and the pattern

am. For each of the n−m+1 possible values of the shift s, the implicit loop on line 4 to

compare corresponding characters must execute m times to validate the shift. The worst-case

running time is thus _((n − m + 1)m), which is _(n2) if m = _n/2_. The running time of

NAIVE-STRING-MATCHER is equal to its matching time, since there is no preprocessing.

As we shall see, NAIVE-STRING-MATCHER is not an optimal procedure for this problem.

Indeed, in this chapter we shall show an algorithm with a worst-case preprocessing time of

_(m) and a worst-case matching time of _(n). The naïve string-matcher is inefficient because

information gained about the text for one value of s is entirely ignored in considering other

values of s. Such information can be very valuable, however. For example, if P = aaab and

we find that s = 0 is valid, then none of the shifts 1, 2, or 3 are valid, since T [4] = b.

The Rabin-Karp algorithm

Rabin and Karp have proposed a string-matching algorithm that performs well in practice and

that also generalizes to other algorithms for related problems, such as two-dimensional pattern

matching. The Rabin-Karp algorithm uses _(m) preprocessing time, and its worst-case running

time is _((n−m+1)m). Based on certain assumptions, however, its average-case running time is

better.

This algorithm makes use of elementary number-theoretic notions such as the equivalence of

two numbers modulo a third number.

For expository purposes, let us assume that _ = {0, 1, 2, . . . , 9}, so that each character is a

decimal digit. (In the general case, we can assume that each character is a digit in radix-d

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT V: STRING PROCESSING

BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 3/14

notation, where d = |_|.) We can then view a string of k consecutive characters as representing a

length-k decimal number. The character string 31415 thus corresponds to the decimal number

31,415. Given the dual interpretation of the input characters as both graphical symbols and

digits, we find it convenient in this section to denote them as we would digits, in our standard

text font.

Given a pattern P[1 . .m], we let p denote its corresponding decimal value. In a similar manner,

given a text T [1 . . n], we let ts denote the decimal value of the length-m substring T [s + 1 . . s

+ m], for s = 0, 1, . . . , n − m. Certainly, ts = p if and only if T [s + 1 . . s + m] = P[1 . .m]; thus,

s is a valid shift if and only if ts = p. If we could compute p in time _(m) and all the ts values in

a total of _(n − m + 1) time,1 then we could determine all valid shifts s in time _(m) + _(n − m

+ 1) = _(n) by comparing p with each of the ts ’s. (For the moment, let’s not worry about the

possibility that p and the ts ’s might be very large numbers.)

RABIN-KARP-MATCHER(T, P, d, q)

1 n ← length[T]

2 m ← length[P]

3 h ← dm−1 mod q

4 p ← 0

5 t0 ← 0

6 for i ← 1 to m ✄ Preprocessing.

7 do p ← (dp + P[i]) mod q

8 t0 ← (dt0 + T [i]) mod q

9 for s ← 0 to n − m ✄ Matching.

10 do if p = ts

11 then if P[1 . .m] = T [s + 1 . . s + m]

12 then print “Pattern occurs with shift” s

13 if s < n − m

14 then ts+1 ← (d(ts − T [s + 1]h) + T [s + m + 1]) mod q

The procedure RABIN-KARP-MATCHER works as follows. All characters are interpreted as

radix-d digits. The subscripts on t are provided only for clarity; the program works correctly if

all the subscripts are dropped. Line 3 initializes h to the value of the high-order digit position

of an m-digit window. Lines 4–8 compute p as the value of P[1 . .m] mod q and t0 as the value

of T [1 . .m] mod q. The for loop of lines 9–14 iterates through all possible shifts s, maintaining

the following invariant:

Whenever line 10 is executed, ts = T [s + 1 . . s + m] mod q. If p = ts in line 10 (a “hit”), then

we check to see if P[1 . . m] = T [s +1 . . s +m] in line 11 to rule out the possibility of a

spurious hit.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT V: STRING PROCESSING

BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 4/14

Any valid shifts found are printed out on line 12. If s < n − m (checked in line 13), then the for

loop is to be executed at least one more time, and so line 14 is first executed to ensure that the

loop invariant holds when line 10 is again reached. Line 14 computes the value of ts+1 mod q

from the value of ts mod q in constant time directly.

RABIN-KARP-MATCHER takes _(m) preprocessing time, and its matching time is _((n − m +

1)m) in the worst case, since (like the naive string-matching algorithm) the Rabin-Karp

algorithm explicitly verifies every valid shift.

String matching with finite automata

Many string-matching algorithms build a finite automaton that scans the text string T for all

occurrences of the pattern P. This section presents a method for building such an automaton.

These string-matching automata are very efficient: they examine each text character exactly

once, taking constant time per text character.

 The matching time used—after preprocessing the pattern to build the automaton—is therefore

_(n). The time to build the automaton, however, can be large if _ is large. We begin this section

with the definition of a finite automaton.

We then examine a special string-matching automaton and show how it can be used to find

occurrences of a pattern in a text. This discussion includes details on how to simulate the

behavior of a string-matching automaton on a given text. Finally, we shall show how to

construct the string-matching automaton for a given input pattern.

Finite automata

A finite automaton M is a 5-tuple (Q, q0, A,_, δ), where

• Q is a finite set of states,

• q0 Q is the start state,

• A Q is a distinguished set of accepting states,

• _ is a finite input alphabet,

• δ is a function from Q ?_ into Q, called the transition function of M. The finite automaton

begins in state q0 and reads the characters of its input string one at a time. If the automaton is

in state q and reads input character a, it moves (“makes a transition”) from state q to state δ(q,

a). Whenever its current state q is a member of A, the machine M is said to have accepted the

string read so far.

FINITE-AUTOMATON-MATCHER(T, δ,m)

1 n ← length[T]

2 q ← 0

3 for i ← 1 to n

4 do q ← δ(q, T [i])

5 if q = m

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT V: STRING PROCESSING

BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 5/14

6 then print “Pattern occurs with shift” i − m

The simple loop structure of FINITE-AUTOMATON-MATCHER implies that its matching

time on a text string of length n is _(n). This matching time, however, does not include the

preprocessing time required to compute the transition function δ. We address this problem

later, after proving that the procedure FINITEAUTOMATON-MATCHER operates correctly.

KMP (Knuth-Morris-Pratt) algorithm

We now present a linear-time string-matching algorithm due to Knuth, Morris, and Pratt. Their

algorithm avoids the computation of the transition function δ altogether, and its matching time

is _(n) using just an auxiliary function π[1 . .m] precomputed from the pattern in time _(m).

The array π allows the transition function δ to be computed efficiently (in an amortized sense)

“on the fly” as needed.

Roughly speaking, for any state q = 0, 1, . . . ,m and any character a, the value π[q] contains the

information that is independent of a and is needed to compute δ(q, a). (This remark will be

clarified shortly.) Since the array π has only m entries, whereas δ has _(m |_|) entries, we save a

factor of |_| in the preprocessing time by computing π rather than δ.

The prefix function for a pattern

The prefix function π for a pattern encapsulates knowledge about how the pattern matches

against shifts of itself. This information can be used to avoid testing useless shifts in the naive

pattern-matching algorithm or to avoid the precomputation of δ for a string-matching

automaton.

Consider the operation of the naive string matcher. For this example, q = 5 of the characters

have matched successfully, but the 6th pattern character fails to match the corresponding text

character. The information that q characters have matched successfully determines the

corresponding text characters. Knowing these q text characters allows us to determine

immediately that certain shifts are invalid. In the example of the figure, the shift s + 1 is

necessarily invalid, since the first pattern character (a) would be aligned with a text character

that is known to match with the second pattern character (b). The shift s_ = s + 2 shown in part

(b) of the figure, however, aligns the first three pattern characters with three text characters that

must necessarily match.

The Knuth-Morris-Pratt matching algorithm is given in pseudocode below as the procedure

KMP-MATCHER. It is mostly modeled after FINITE- AUTOMATONMATCHER,

as we shall see. KMP-MATCHER calls the auxiliary procedure COMPUTE-PREFIX-

FUNCTION to compute π.

KMP-MATCHER(T, P)

1 n ← length[T]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT V: STRING PROCESSING

BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 6/14

2 m ← length[P]

3 π ← COMPUTE-PREFIX-FUNCTION(P)

4 q ← 0 ✄ Number of characters matched.

5 for i ← 1 to n ✄ Scan the text from left to right.

6 do while q > 0 and P[q + 1] _= T [i]

7 do q ← π[q] ✄ Next character does not match.

8 if P[q + 1] = T [i]

9 then q ← q + 1 ✄ Next character matches.

10 if q = m ✄ Is all of P matched?

11 then print “Pattern occurs with shift” i − m

12 q ← π[q] ✄ Look for the next match.

COMPUTE-PREFIX-FUNCTION(P)

1 m ← length[P]

2 π[1] ← 0

3 k ← 0

4 for q ← 2 to m

5 do while k > 0 and P[k + 1] _= P[q]

6 do k ← π[k]

7 if P[k + 1] = P[q]

8 then k ← k + 1

9 π[q] ← k

10 return π

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: 16CSU401 UNIT V: STRING PROCESSING

BATCH: 2016-2019

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 7/14

POSSIBLE QUESTIONS

 UNIT V

2 Mark Questions:

1. Define String matching.

2. What is Naive string matching method?

3. Define Rabin-Karp approach.

4. Define Fine-automaton method.

5. Define KMP technique.

6 Mark Questions:

1. Explain the Concept of String matching technique.

2. Explain about naive string-matching algorithm.

3. Discuss the Rabin-Karp algorithm.

4. Explain in detail about the prefix function for a pattern.

5. Discuss about Running-time analysis.

6. Elaborate KMP technique.

7. Explain about Correctness of the KMP algorithm.

S.NO QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4

1
Writing a Pseudocode has
_______ of styles. Restriction Protocols Condition

 No
restriction

2
Analysis of algorithms is the
determination of _______.

Time and
Space Time Space Distance

3

The algorithm’s state is the
set of values corresponding to
all _______. Instances Factors Variables Objects

4
_______ involves division of
problems into sub problems. Combine Merge Conquer Break

5
Heap data structure is always
a _______ Radix

 complete
binary tree Heap sort Both a & b

6

Bucket sort is a sorting
algorithm that works by
_______ an array.

Partitionin
g Adding Updating Combining

7
value, which is called the
_______. Constant Variable Pivot value None of these

8

The speed of Radix Sort
largely depends on the
_______ basic operations. Outer Input Output Inner

9

A _______ is an operation
that preserves in-order
traversal key ordering. Alteration Reversal Resolution Rotation

10

The ______ of the tree is the
maximum depth of any node
in the tree. Row Column Height Width

11

The number of children
emanating from a given node
is referred to as its ______ Depth Degree Height Width

12

In binary search trees,
traversing from ______ is
known as inorder-tree
traversal.

Right to
Left Top to Bottom Left to right Both a & b

13
Edges are the links that
connect the vertices. Nodes Edges Trees Both a & c

14
In a directed graph, edges
have ______. Scalar Vector Direction Time

15
The spanning tree does not
have ____. Loops Graph Aggregation Recursion

ONLINE EXAMINATIONS ONE MARK QUESTIONS

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)
Coimbatore-641021

Department of Computer Science
II B.Sc(CS) (BATCH 2016-2019)

Design and Analysis of Algorithms
PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

16
In an _____ graph, edges
have no direction. Undirected Tree Recurrence Modules

17

The running time of naïve
string matcher is _____ to its
matching time. Not-equal Equal Minimum Maximum

18

_____algorithm makes use of
elementary number-theoretic
notions.

Rabin-
Karp Naive KMP Both a & c

19

To specify the string-
matching automaton, we first
define a ______ function. Suffix Prefix Theoretical String

20

______algorithm avoids the
computation of the transition
function. KMP Naive Rabin Karp

21

The _____node are not a part
of original tree and are
represented as square nodes.

internal
node

external node intermediate
node

terminal node

22

The external nodes are in a
binary search treeare also
known as ________ nodes

internal search failure round

23

A binary tree with external
nodes added is an ---------------
binary tree

extended expanded internal external

24
______ is a set of name-value
pairs.

Symbol
table

Graph Node Record

25
Each name in the symbol
tales is associated with an___

name value
pairs

element attribute entries

26

This is not an operation
perform on the symbol table.

insert a new
name and
its value.

retrieve the
attribute of a
name.

search if a
name is
already present

Add or
subtract two
values

27

If the identifiers are known in
advance and no
deletion/insertions are
allowed then this symbol
table is _______

static empty dynamic automatic

28

The cost of decoding a code
word is -------------------- to
the number of bits in the code

equal not equal proportional inversely
proportional

29

The solution of finding a
binary tree with minimum
weighted external path length
has been given by

Huffman Kruskal Euler Hamilton

30

_____ symbol table allows
insertion and deletion of
names.

Hashed Sorted Static Dynamic

31

________ is an application of
Binary trees with minimal
weighted external path
lengths.

Finding
optimal
merge
patterns

Storage
compaction

Recursive
Procedure calls

Job
Scheduling

32

If hl and hr are the heights of
the left and right subtrees of a
tree respectively and if |hl-
hr|<=1 then this tree is called

extended
binary tree

binary search
tree

skewed tree height
balanced tree

33

If hl and hr are the heights of
the left and right subtrees of a
tree respectively then |hl-hr| is
called its _____

Average
height

minimal depth Maximum
levels

Balance
factor

34
For an AVL Tree the balance
factor is =____

0 -1 1 Any of the
above

35

If the names are ________ in
the symbol table, searching is
easy.

sorted short bold upper case

36

_________ allocation is not
desirable for dynamic tables,
where insertions and
deletions are allowed.

Linear Sequential Dynamic None

37

A search in a hash table with
n identifiers may take ------
time

O(n) O(1) O(2) O(2n)

38

_________ data structure is
used to implement symbol
tables

directed
graphs

binary
search trees

circular queue None

39

Every binary search tree wth
n nodes has ______ sqare
node (external nodes).

n/2 n+1 n-1 2n

40

In a Hash table the address of
the identifier x is obtained by
applying

sequence of
comparision
s

binary
searching

arithmetic
function

collision

41
The partitions of the hash
table are called ________

Nodes Buckets Roots Fields

42
The arithmetic functions used
for Hashing is called ______

Logical
operations

Rehashing Mapping
function

Hashing
function

43
Each bucket of Hash table is
said to have several ______

slots nodes fields links

44

A_______ occurs when two
non_identical identifiers are
hashed in the same bucket.

collision contraction expansion Extraction

45

A hashing function f
transforms an identifier x into
a __________ in the hash
table

symbol
name

bucket
address

link field slot number

46

When a new identifier I is
mapped or hashed by the
function f into a full bucket
then ______occurs

underflow overflow collision rehashing

47

If f(I) and F(J) are equal then
Identifiers I and J are
called________

synonyms antonyms hash functions buckets

48

A ---tree is a binary tree in
which external nodes
represent messages

decode uncode extended none

49

The identifier x is divided by
some number m and the
remainder is used as the hash
address for x .Then f(x) is

m mod x x mod m m mod f none of these

50

The identifier is folded at the
part boundaries and digits
falling into the same position
are added together to obtain
f(x).this method adding is
called

folding at
the
boundaries

shift method folding method Tag method

51

In hash table, if the identifier
x has an equal chance of
hashing into any of the
buckets, this function is
called as

Equal hash
function

uniform hash
function

Linear
hashing
function

unequal
Hashing
function

52

Each head node is smaller
than the other nodes because
it has to retain

 only a link only a link
and a record

only two link only the
record

53
Each chain in the hash tables
will have a

tail node link node head node null node

54

Folding of identifiers fron end
to end to obtain a hashing
function is called ____

Shift folding boundary
folding

expanded
folding

end to end
folding

55

Average number of probes
needed for searching can be
obtained by --------------------
probing

quadratic linear rehashing Sequential

56

Rehashing is ______ series of
hash
function

linear probing quadratic
functions

Rebuild
function

57

_________ is a method of
overflows handling.

linear open
addressing

Adjacency lsit sequential
representation

Indexed
address

58

The number of _________
over the data can be reduced
by using a higer order merge
(k-way merge with k>2)

records passes tapes merges

59

A __________ is a binary tree
where each node represents
the smaller of its two children

search tree decision tree extended tree selection tree

60

In External sorting data are
stored in _________

RAM
memory

Cache
memory

secondary
storage
devices

Buffers

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021.

DEPARTMENT OF COMPUTER SCIENCE

ANSWER KEY INTERNAL-1

SUBJECT: DESIGN AND ANALYSIS OF ALGORITHMS SUB.CODE : 16CSU401

2 marks

21. Algorithm

Algorithm is a set of steps of operations to solve a problem performing calculation, data processing,

and automated reasoning tasks. An algorithm is an efficient method that can be expressed within

finite amount of time and space.

22. Dynamic Programming

Dynamic programming (also known as dynamic optimization) is a method for solving a complex

problem by breaking it down into a collection of simpler subproblems, solving each of those

subproblems just once, and storing their solutions.

23. Bubble Sort

Bubble sort is a simple sorting algorithm. This sorting algorithm is comparison-based algorithm

in which each pair of adjacent elements is compared and the elements are swapped if they are not

in order. This algorithm is not suitable for large data sets as its average and worst-case complexity

are of Ο(n2) where n is the number of items.

8 Marks

24. a. Basic Design and Analysis techniques of Algorithm

An algorithm is a set of steps of operations to solve a problem performing calculation, data

processing, and automated reasoning tasks. An algorithm is an efficient method that can be

expressed within finite amount of time and space.

An algorithm is the best way to represent the solution of a particular problem in a very simple and

efficient way. If we have an algorithm for a specific problem, then we can implement it in any

programming language, meaning that the algorithm is independent from any programming

languages.

Algorithm Design

The important aspects of algorithm design include creating an efficient algorithm to solve a problem

in an efficient way using minimum time and space.

To solve a problem, different approaches can be followed. Some of them can be efficient with

respect to time consumption, whereas other approaches may be memory efficient. However, one

has to keep in mind that both time consumption and memory usage cannot be optimized

simultaneously. If we require an algorithm to run in lesser time, we have to invest in more memory

and if we require an algorithm to run with lesser memory, we need to have more time.

Problem Development Steps

The following steps are involved in solving computational problems.

 Problem definition

 Development of a model

 Specification of an Algorithm

 Designing an Algorithm

 Checking the correctness of an Algorithm

 Analysis of an Algorithm

 Implementation of an Algorithm

 Program testing

 Documentation

Characteristics of Algorithms

The main characteristics of algorithms are as follows:

 Algorithms must have a unique name

 Algorithms should have explicitly defined set of inputs and outputs

 Algorithms are well-ordered with unambiguous operations

 Algorithms halt in a finite amount of time. Algorithms

should not run for infinity, i.e., an algorithm must end at

some point

Pseudocode

Pseudocode gives a high-level description of an algorithm without the ambiguity associated with

plain text but also without the need to know the syntax of a particular programming language.

The running time can be estimated in a more general manner by using Pseudocode to represent the

algorithm as a set of fundamental operations which can then be counted.

Difference between Algorithm and Pseudocode

An algorithm is a formal definition with some specific characteristics that describes

a process, which could be executed by a Turing-complete computer machine to

perform a specific task. Generally, the word "algorithm" can be used to describe any

high level task in computer science.

On the other hand, pseudocode is an informal and (often rudimentary) human

readable description of an algorithm leaving many granular details of it. Writing a

pseudocode has no restriction of styles and its only objective is to describe the high

level steps of algorithm in a much realistic manner in natural language.

24.b. Correctness of Algorithm

When an algorithm is designed it should be analyzed at least from the following points of view:

Correctness. This means to verify if the algorithm leads to the solution of the problem (hopefully

after a finite number of processing steps).

Efficiency. This means to establish the amount of resources (memory space and processing time)

needed to execute the algorithm on a machine (a formal one or a physical one).

Basic steps in algorithms correctness verification

To verify if an algorithms really solves the problem for which it is designed we can use one of

the following strategies:

Experimental analysis (testing). We test the algorithm for different instances of the problem (for

different input data). The main advantage of this approach is its simplicity while the main

disadvantage is the fact that testing cannot cover always all possible instances of input data (it is

difficult to know how much testing is enough). However the experimental analysis allows

sometimes to identify situations when the algorithm doesn’t work.

Formal analysis (proving). The aim of the formal analysis is to prove that the algorithm works

for any instance of data input. The main advantage of this approach is that if it is rigourously

applied it guarantee the correctness of the algorithm. The main disadvantage is the difficulty of

finding a proof, mainly for complex algorithms. In this case the algorithm is decomposed in

•

•

•

•

•

subalgorithms and the analysis is focused on these (simpler) subalgorithms. On the other hand the

formal approach could lead to a better understanding of the algorithms. This approach is called

formal due to the use of formal rules of logic to show that an algorithm meets its specification.

The main steps in the formal analysis of the correctness of an algorithm are:

Identification of the properties of input data (the so-called problem’s preconditions).

Identification of the properties which must be satisfied by the output data (the so called

problem’s postconditions).

Proving that starting from the preconditions and executing the actions specified in the algo- rithms

one obtains the postconditions.

When we analyze the correctness of an algorithm a useful concept is that of state.

The algorithm’s state is the set of the values corresponding to all variables used in the

algorithm.

The state of the algorithm changes (usually by variables assignments) from one processing step

to another processing step. The basic idea of correctness verification is to establish which should

be the state corresponding to each processing step such that at the end of the algorithm the

postconditions are satisfied. Once we established these intermediate states is sufficient to verify

that each processing step ensures the transformation of the current state into the next state.

When the processing structure is a sequential one (for example a sequence of assignments) then the

verification process is a simple one (we must only analyze the effect of each assignment on the

algorithm’s state).

Difficulties may arise in analyzing loops because there are many sources of errors: the initializa-

tions may be wrong, the processing steps inside the loop may be wrong or the stopping condition

may be wrong. A formal method to prove that a loop statement works correctly is the mathematical

induction method.

Algorithm Design Techniques: Iterative Techniques

Divide and Conquer

In divide and conquer approach, the problem in hand, is divided into smaller sub-problems and

then each problem is solved independently. When we keep on dividing the subproblems into even

smaller sub-problems, we may eventually reach a stage where no more division is possible. Those

"atomic" smallest possible sub-problem (fractions) are solved. The solution of all sub-problems is

finally merged in order to obtain the solution of an original problem.

Broadly, we can understand divide-and-conquer approach in a three-step process.

Divide/Break

This step involves breaking the problem into smaller sub-problems. Sub-problems should

represent a part of the original problem. This step generally takes a recursive approach to divide

the problem until no sub-problem is further divisible. At this stage, sub-problems become atomic

in nature but still represent some part of the actual problem.

Conquer/Solve

This step receives a lot of smaller sub-problems to be solved. Generally, at this level, the problems

are considered 'solved' on their own.

Merge/Combine

When the smaller sub-problems are solved, this stage recursively combines them until they

formulate a solution of the original problem. This algorithmic approach works recursively and

conquer & merge steps works so close that they appear as one.

For example,

The following computer algorithms are based on divide-and-conquer programming approach −

 Merge Sort

 Quick Sort

 Binary Search

 Strassen's Matrix Multiplication

 Closest pair (points)

Example for Divide and Conquer

• Idea 1: Divide array into two halves, recursively sort left and right halves,

then merge two halves known as Mergesort

• Idea 2 : Partition array into small items and large items, then recursively

sort the two sets known as Quicksort

Merge Sort Example

25. a. Dynamic Programming

Dynamic programming (also known as dynamic optimization) is a method for solving a complex

problem by breaking it down into a collection of simpler subproblems, solving each of those

subproblems just once, and storing their solutions. The next time the same subproblem occurs,

instead of recomputing its solution, one simply looks up the previously computed solution, thereby

saving computation time at the expense of a (hopefully) modest expenditure in storage space.

The following computer problems can be solved using dynamic programming approach −

 Fibonacci number series

 Knapsack problem

 Tower of Hanoi

 All pair shortest path by Floyd-Warshall

 Shortest path by Dijkstra

 Project scheduling

Dynamic programming can be used in both top-down and bottom-up manner. And of course, most

of the times, referring to the previous solution output is cheaper than recomputing in terms of CPU

cycles.

The intuition behind dynamic programming is that we trade space for time, i.e. to say that instead

of calculating all the states taking a lot of time but no space, we take up space to store the results of

all the sub-problems to save time later.

Let's try to understand this by taking an example of Fibonacci numbers.

Fibonacci (n) = 1; if n = 0

Fibonacci (n) = 1; if n = 1

Fibonacci (n) = Fibonacci(n-1) + Fibonacci(n-2)

So, the first few numbers in this series will be: 1, 1, 2, 3, 5, 8, 13, 21... and so on!

A code for it using pure recursion:

 int fib (int n) {

 if (n < 2)

 return 1;

 return fib(n-1) + fib(n-2);

 }

Using Dynamic Programming approach with memoization:

 void fib () {

 fibresult[0] = 1;

 fibresult[1] = 1;

 for (int i = 2; i<n; i++)

 fibresult[i] = fibresult[i-1] + fibresult[i-2];

 }

25. b. Greedy Technique

Some optimization problems can be solved using a greedy algorithm. A greedy algorithm builds

a solution iteratively. At each iteration the algorithm uses a greedy rule to make its choice. Once

a choice is made the algorithm never changes its mind or looks back to consider a different perhaps

better solution; the reason the algorithm is called greedy.

A greedy algorithm is a simple, intuitive algorithm that is used in optimization problems. The

algorithm makes the optimal choice at each step as it attempts to find the overall optimal way to

solve the entire problem. Greedy algorithms are quite successful in some problems, such

as Huffman encoding which is used to compress data, or Dijkstra's Algorithm, which is used to find

the shortest path through a graph.

However, in many problems, a greedy strategy does not produce an optimal solution. For example,

in the animation below, the greedy algorithm seeks to find the path with the largest sum. It does

this by selecting the largest available number at each step. The greedy algorithm fails to find the

largest sum, however, because it makes decisions based only on the information it has at any one

step, and without regard to the overall problem.

Limitations of Greedy Algorithms

Sometimes greedy algorithms fail to find the globally optimal solution because they do not consider

all the data. The choice made by a greedy algorithm may depend on choices it has made so far, but

it is not aware of future choices it could make.

Actual Largest Path
Greedy Method

https://brilliant.org/wiki/huffman-encoding/
https://brilliant.org/wiki/dijkstras-short-path-finder/

Example : 1

In the graph below, a greedy algorithm is trying to find the longest path through the graph (the

number inside each node contributes to a total length). To do this, it selects the largest number at

each step of the algorithm. With a quick visual inspection of the graph, it is clear that this algorithm

will not arrive at the correct solution.

Solution:

The correct solution for the longest path through the graph is 7, 3, 1, 99. This is clear to us because

we can see that no other combination of nodes will come close to a sum of 99, so whatever path we

choose, we know it should have 99 in the path. There is only one option that includes 99 is 7, 3, 1,

99.

The greedy algorithm fails to solve this problem because it makes decisions purely based on what

the best answer at the time is: at each step it did choose the largest number. However, since there

could be some huge number that the algorithm hasn't seen yet, it could end up selecting a path that

does not include the huge number. The solutions to the subproblems for finding the largest sum or

longest path do not necessarily appear in the solution to the total problem. The optimal substructure

and greedy choice properties don't hold in this type of problem.

Example : 2 – Knapsack Problem

Here, we will look at one form of the knapsack problem. The knapsack problem involves deciding

which subset of items you should take from a set of items if you want to optimize some value:

perhaps the worth of the items, the size of the items, or the ratio of worth to size.

https://brilliant.org/wiki/backpack-problem/

In this problem, we will assume that we can either take an item or leave it (we cannot take a

fractional part of an item). In this problem we will assume that there is only one of each item. Our

knapsack has a fixed size, and we want to optimize the worth of the items we take, so we must

choose the items we take with care.

Our knapsack can hold at most 25 units of space.

Here is the list of items and their worth.

Item Size Price

Laptop 22 12

Playstation 10 9

Textbook 9 9

Basketball 7 6

Which items do we choose to optimize for price?

Solution:

There are two greedy algorithms we could propose to solve this. One has a rule that selects the item

with the largest price at each step, and the other has a rule that selects the smallest sized item at

each step.

Largest Price Algorithm: At the first step, we take the laptop. We gain 12 units of worth, but can

now only carry 25 – 22 = 3 units of additional space in the knapsack. Since no items that remain

will fit into the bag, we can only take the laptop and have a total of 12 units of worth.

Smallest Sized Item Algorithm: At the first step, we will take the smallest sized item: the basketball.

This gives us 6 units of worth, and leaves us with 25-7=18 units of space in our bag. Next, we select

the next smallest item, the textbook. This gives us a total of 6+9=15 units of worth, and leaves us

with 18-9=9 units of space. Since no remaining items are 9 units of space or less, we can take no

more items.

The greedy algorithms yield solutions that give us 12 units of worth and 15 units of worth. But

neither of these are the optimal solution. Inspect the table yourself and see if you can determine a

better selection of items.

Taking the textbook and the playstation yields 9+9=18 units of worth and takes up 10+9=19 units

of space. This is the optimal answer, and we can see that a greedy algorithm will not solve the

knapsack problem since the greedy choice and optimal substructure properties do not hold.

In problems where greedy algorithms fail, dynamic programming might be a better approach.

Drawback of Greedy

A greedy algorithm works by choosing the best possible answer in each step and then moving on

to the next step until it reaches the end, without regard for the overall solution. It only hopes that

the path it takes is the globally optimum one, but as proven time and again, this method does not

often come up with a globally optimum solution. In fact, it is entirely possible that the most optimal

short-term solutions lead to the worst possible global outcome.

26. a. Insertion Sort

This is an in-place comparison-based sorting algorithm. Here, a sub-list is maintained which is

always sorted. For example, the lower part of an array is maintained to be sorted. An element

which is to be 'insert'ed in this sorted sub-list, has to find its appropriate place and then it has to be

inserted there. Hence the name, insertion sort.

The array is searched sequentially and unsorted items are moved and inserted into the sorted sub-

list (in the same array). This algorithm is not suitable for large data sets as its average and worst

case complexity are of Ο(n2), where n is the number of items.

How Insertion Sort Works?

We take an unsorted array for our example.

Insertion sort compares the first two elements.

It finds that both 14 and 33 are already in ascending order. For now, 14 is in sorted sub-list.

https://brilliant.org/wiki/problem-solving-dynamic-programming/

Insertion sort moves ahead and compares 33 with 27.

And finds that 33 is not in the correct position.

It swaps 33 with 27. It also checks with all the elements of sorted sub-list. Here we see that the

sorted sub-list has only one element 14, and 27 is greater than 14. Hence, the sorted sub-list

remains sorted after swapping.

By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 with 10.

These values are not in a sorted order.

So we swap them.

However, swapping makes 27 and 10 unsorted.

Hence, we swap them too.

Again we find 14 and 10 in an unsorted order.

We swap them again. By the end of third iteration, we have a sorted sub-list of 4 items.

This process goes on until all the unsorted values are covered in a sorted sub-list.

 Program for Insertion Sort

Following C++ program ask to the user to enter array size and array element to sort the array

using insertion sort technique, then display the sorted array on the screen:

/* C++ Program - Insertion Sort */

#include<iostream.h>

#include<conio.h>

void main()

{

 clrscr();

 int size, arr[50], i, j, temp;

 cout<<"Enter Array Size : ";

 cin>>size;

 cout<<"Enter Array Elements : ";

 for(i=0; i<size; i++)

 {

 cin>>arr[i];

 }

 cout<<"Sorting array using selection sort ... \n";

 for(i=1; i<size; i++)

 {

 temp=arr[i];

 j=i-1;

 while((temp<arr[j]) && (j>=0))

 {

 arr[j+1]=arr[j];

 j=j-1;

 }

 arr[j+1]=temp;

 }

 cout<<"Array after sorting : \n";

 for(i=0; i<size; i++)

 {

 cout<<arr[i]<<" ";

 }

 getch();

}

When the above C++ program is compile and executed, it will produce the following result:

26. b. Heap Sort

Heap Sort is one of the best sorting methods being in-place and with no quadratic worst-case

scenarios. The heapsort algorithm has O(n log n) time complexity. Heap sort algorithm is divided

into two basic parts :

 Creating a Heap of the unsorted list.

 Then a sorted array is created by repeatedly removing the largest/smallest element from the

heap, and inserting it into the array. The heap is reconstructed after each removal.

Heap is a special tree-based data structure that satisfies the following special heap properties:

1. Shape Property : Heap data structure is always a Complete Binary Tree, which means all

levels of the tree are fully filled.

2. Heap Property : All nodes are either [greater than or equal to] or [less than or equal

to] each of its children. If the parent nodes are greater than their child nodes, heap is called

a Max-Heap, and if the parent nodes are smaller than their child nodes, heap is called Min-

Heap.

For Input → 35 33 42 10 14 19 27 44 26 31

Min-Heap − Where the value of the root node is less than or equal to either of its children.

Max-Heap − Where the value of the root node is greater than or equal to either of its children.

An Example of Heapsort:

Given an array of 6 elements: 15, 19, 10, 7, 17, 16, sort it in ascending order using heap sort.

Steps:

1. Consider the values of the elements as priorities and build the heap tree.

2. Start deleteMin operations, storing each deleted element at the end of the heap array.

After performing step 2, the order of the elements will be opposite to the order in the heap tree.

Hence, if we want the elements to be sorted in ascending order, we need to build the heap tree

in descending order - the greatest element will have the highest priority.

Note that we use only one array , treating its parts differently:

a. when building the heap tree, part of the array will be considered as the heap,

and the rest part - the original array.

b. when sorting, part of the array will be the heap, and the rest part - the sorted array.

This will be indicated by colors: white for the original array, blue for the heap and red for the sorted array

Here is the array: 15, 19, 10, 7, 17, 6

A. Building the heap tree

The array represented as a tree, complete but not ordered:

Start with the rightmost node at height 1 - the node at position 3 = Size/2.

It has one greater child and has to be percolated down:

After processing array[3] the situation is:

Next comes array[2]. Its children are smaller, so no percolation is needed.

The last node to be processed is array[1]. Its left child is the greater of the children.

The item at array[1] has to be percolated down to the left, swapped with array[2].

As a result the situation is:

The children of array[2] are greater, and item 15 has to be moved down further, swapped with

array[5].

Now the tree is ordered, and the binary heap is built.

Program for Heap Sort

#include <iostream>

using namespace std;

void max_heapify(int *a, inti, int n)

{

 int j, temp;

 temp = a[i];

 j = 2*i;

 while (j <= n)

 {

 if (j < n && a[j+1] > a[j])

 j = j+1;

 if (temp > a[j])

 break;

 else if (temp <= a[j])

 {

 a[j/2] = a[j];

 j = 2*j;

 }

 }

 a[j/2] = temp;

 return;

}

void heapsort(int *a, int n)

{

 inti, temp;

 for (i = n; i>= 2; i--)

 {

 temp = a[i];

 a[i] = a[1];

 a[1] = temp;

 max_heapify(a, 1, i - 1);

 }

}

void build_maxheap(int *a, int n)

{

 inti;

 for(i = n/2; i>= 1; i--)

 {

 max_heapify(a, i, n);

 }

}

int main()

{

 int n, i, x;

 cout<<"Enter no of elements of array\n";

 cin>>n;

 int a[20];

 for (i = 1; i<= n; i++)

 {

 cout<<"Enter element"<<(i)<<endl;

 cin>>a[i];

 }

 build_maxheap(a,n);

 heapsort(a, n);

 cout<<"\n\nSorted Array\n";

 for (i = 1; i<= n; i++)

 {

 cout<<a[i]<<endl;

 }

 return 0;

}

Output:

Enter no of elements of array

5

Enter element1

3

Enter element2

8

Enter element3

9

Enter element4

3

Enter element5

2

Sorted Array

2

3

3

8

9

	1.pdf (p.1-2)
	KARPAGAM ACADEMY OF HIGHER EDUCATION
	COURSE OUTCOME:
	ESE MARKS ALLOCATION

	2.pdf (p.3-8)
	3.pdf (p.9-22)
	Algorithm Design
	Problem Development Steps
	Characteristics of Algorithms
	Pseudocode
	Difference between Algorithm and Pseudocode
	The Need for Analysis
	Basic steps in algorithms correctness verification
	Divide/Break
	Conquer/Solve
	Merge/Combine
	For example,
	The following computer algorithms are based on divide-and-conquer programming approach −

	4.pdf (p.23-27)
	5.pdf (p.28-75)
	How Bubble Sort Works?
	Algorithm
	Insertion Sort
	How Insertion Sort Works?
	Program for Insertion Sort
	Program for Merge Sort:
	#include <iostream> using namespace std; #include <conio.h> int comp=0; void merge(int *,int, int , int); void mergesort(int *a, int low, int high) { int mid; if (low < high) { mid=(low+high)/2; mergesort(a,low,mid); ...
	Output:

	QuickSort
	Radix Sort
	Disadvantages
	Pseudocode
	How Binary Search Works?
	Pseudocode (1)

	Time Complexity of Algorithms
	Calculating Time Complexity
	Notations of Time Complexity

	6.pdf (p.76-80)
	7.pdf (p.81-106)
	Decision rules
	Decision tree using flowchart symbols[edit]
	Decision tree learning
	Decision tree types

	Red-Black Tree
	Insertion
	Deletion

	8.pdf (p.107-110)
	Sheet1

	9.pdf (p.111-126)
	Amortized Analysis
	The aggregate method
	Stack operations

	The accounting method
	Stack operations

	The potential method
	Breadth First Search
	Depth First Search
	Applications of Breadth First Traversal
	Applications of Depth First Search
	Properties
	Example
	Minimum Spanning Tree
	Prim’s Algorithm
	Example

	10.pdf (p.127-131)
	Sheet1

	11.pdf (p.132-138)
	12.pdf (p.139-144)
	Sheet1

	13.pdf (p.145-147)
	14.pdf (p.148-169)
	Algorithm Design
	Problem Development Steps
	Characteristics of Algorithms
	Pseudocode
	Difference between Algorithm and Pseudocode
	Basic steps in algorithms correctness verification
	Divide/Break
	Conquer/Solve
	Merge/Combine
	For example,
	The following computer algorithms are based on divide-and-conquer programming approach −

	How Insertion Sort Works?
	Program for Insertion Sort

