
SOFTWARE ENGINEERING 2016-2019 Batch

 Department Of CS, CA & IT KAHE 1/3

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

 (Established Under Section 3 of UGC Act 1956)
 Coimbatore - 641021.

(For the candidates admitted from 2016 onwards)

 DEPARTMENT OF COMPUTER SCIENCE, CA & IT

SUBJECT NAME: SOFTWARE ENGINEERING SUB.CODE: 16CSU402

SEMESTER: IV CLASS: II B.Sc (CS)

COURSE OBJECTIVE:

The graduates of the software engineering program shall be able to apply proper theoretical,

technical, and practical knowledge of software requirements, analysis, design, implementation,

verification and validation, and documentation. This course enables the students to resolve

conflicting project objectives considering viable tradeoffs within limitations of cost, time,

knowledge, existing systems, and organizations.

COURSE OUTCOME:

 Apply their knowledge of mathematics, sciences, and computer science to the modeling,

analysis, and measurement of software artifacts.

 Work effectively as leader/member of a development team to deliver quality software

artifacts.

 Analyze, specify and document software requirements for a software system.

 Implement a given software design using sound development practices.

 Verify, validate, assess and assure the quality of software artifacts.

 Design, select and apply the most appropriate software engineering process for a given

project, plan for a software project, identify its scope and risks, and estimate its cost and

time.

 Express and understand the importance of negotiation, effective work habits, leadership,

and good communication with stakeholders, in written and oral forms, in a typical

software development environment.

UNIT-I

Introduction: The Evolving Role of Software, Software Characteristics, Changing Nature of

Software, Software Engineering as a Layered Technology, Software Process Framework,

Framework and Umbrella Activities, Process Models, Capability Maturity Model Integration

(CMMI).

UNIT-II:

SOFTWARE ENGINEERING 2016-2019 Batch

 Department Of CS, CA & IT KAHE 2/3

8

Requirement Analysis; Initiating Requirement Engineering Process- Requirement Analysis and

Modeling Techniques- Flow Oriented Modeling- Need for SRS- Characteristics and

Components of SRS- Software Project Management: Estimation in Project Planning Process,

Project Scheduling.

UNIT-III:

Risk Management: Software Risks, Risk Identification Risk Projection and Risk Refinement,

RMMM plan, Quality Management- Quality Concepts, Software Quality Assurance, Software

Reviews, Metrics for Process and Projects

UNIT-IV:

Design Engineering-Design Concepts, Architectural Design Elements, Software

Architecture, Data Design at the Architectural Level and Component Level, Mapping of

Data Flow into Software Architecture, Modeling Component Level Design

UNIT-V

Testing Strategies & Tactics: Software Testing Fundamentals, Strategic Approach to

Software Testing, Test Strategies for Conventional Software, Validation Testing, System

testing Black-Box Testing, White-Box Testing and their type, Basis Path Testing

Suggested Readings

1. Pressman, R.S. (2009). Software Engineering: A Practitioner‘s Approach (7th ed.).

New Delhi: McGraw-Hill.

2. Jalote, P. An Integrated Approach to Software Engineering (2nd ed.). New Delhi: New

Age International Publishers.

3. Aggarwal, K.K., & Singh, Y. (2008). Software Engineering (2nd ed.). New Delhi:

New Age International Publishers.

4. Sommerville, I. (2006). Software Engineering (8th ed.). New Delhi: Addison Wesley.

5. Bell, D. (2005). Software Engineering for Students (4th ed.) New Delhi: Addison-

Wesley.

6. Mall, R. (2004). Fundamentals of Software Engineering (2nd ed.). New Delhi:

Prentice-Hall of India.

WEB SITES

1. http://en.wikipedia.org/wiki/Software_engineering

2. http://www.onesmartclick.com/engineering/software-engineering.html

3. http://www.CSU.gatech.edu/classes/AY2000/cs3802_fall/

SOFTWARE ENGINEERING 2016-2019 Batch

 Department Of CS, CA & IT KAHE 3/3

ESE MARK ALLOCATION

1 Section –A

20 * 1 = 20

20

2 Section – B

5*2 = 10

10

3 Section – C

5*6 = 30

30

 Total 60

Lecture Plan 2016-2019 Batch

Prepared by D.SampathKumar, S.Joyce CS,CA&IT 1/3

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2016 onwards)

 DEPARTMENT OF COMPUTER SCIENCE, CA & IT

LECTURE PLAN

STAFF NAME: D.SAMPATHKUMAR & S.JOYCE

SUBJECT NAME: SOFTWARE ENGINEERING SUB.CODE: 16CSU402

SEMESTER: IV CLASS: II B.Sc (CS)

S.No.
Lecture

Duration
Topics to be Covered Support Materials

Unit - I

1. 1 Introduction to Software Engineering T1-12

2. 1 The Evolving Role of Software T1-3

3. 1 Software Characteristics T1-4

4. 1 Changing Nature of Software T1-9

5. 1 A Generic View of process T1-31

6. 1 Software Engineering, A Layered Technology T1-33

7. 1 Software Framework T1-33

8. 1 Framework T1- 14

9. 1 Umbrella Activities T1- 16

10. 1 Evolutionary Process, Concurrent Models T1- 43

11. 1 Process Models: Prescriptive Models T1-38

12 1 Capability Maturity Model Integration (CMMI) T1-50

Total No. of Hours Planned for Unit-I 12

Textbook
T1: Roger S. Pressman. 2010. Software Engineering – A Practitioner’s

Approach, 7th Edition, McGraw Hill International Edition, New Delhi.

Unit – II

1. 1 Requirement Analysis; T1-149

2. 1 Initiating Requirement Engineering Process T1-153

3. 1 Requirement Analysis and Modeling Techniques T1-153

4. 1 Flow Oriented Modeling T1 -187

5. 1 Need for SRS T1-190

6. 1 Characteristics and Components of SRS T1-195

7. 1 Components of SRS W1

Lecture Plan 2016-2019 Batch

Prepared by D.SampathKumar, S.Joyce CS,CA&IT 2/3

8. 1 Software Project Management T1-647

9. 1 Software Project Management T1-647

10. 1 Estimation in Project Planning Process T1-693

11. 1 Project Scheduling. T1-721

12. 1 Recapitulation and Discussion of important questions

Total No. of Hours Planned for Unit-I 12

Textbook

T1: Roger S. Pressman. 2010. Software Engineering – A Practitioner’s

Approach, 7th Edition, McGraw Hill International Edition, New Delhi.

Unit – III

1. 1 Risk Management: T1-744

2. 1 Software Risks T1-745

3. 1 Risk Identification T1-747

4. 1 Risk Projection T1-749

5. 1 Risk Refinement T1-749

6. 1 RMMM plan T1-755

7. 1 Quality Management T1-397

8. 1 Quality Concepts T1-398

9. 1 Software Quality Assurance T1-432

10. 1 Software Reviews T1-416

11. 1 Metrics for Process and Projects T1-420

12. 1 Recapitulation and Discussion of important questions

Total No. of Hours Planned for Unit-I 12

Textbook

T1: Roger S. Pressman. 2010. Software Engineering – A Practitioner’s

Approach, 7th Edition, McGraw Hill International Edition, New Delhi.

Unit – IV

1. 1 Design Engineering T1-216

2. 1

Design Concepts: Abstraction Architecture

,Patterns, Separation of Concerns , Modularity ,

Information Hiding

T1-222

3. 1

Design Concepts: Functional Independence

,Refinement

Aspects , Refactoring ,Object-Oriented Design

Concepts ,Design Classes

T1-222

4. 1 Architectural Design Elements T1-222

5. 1 Software Architecture T1-242

6. 1
Data Design at the Architectural Level and

Component Level
T1-234

7. 1 Data Design at Component Level T1-237

Lecture Plan 2016-2019 Batch

Prepared by D.SampathKumar, S.Joyce CS,CA&IT 3/3

8. 1 Mapping of Data Flow into Software Architecture T1-261

9. 1 Modeling Component Level Design T1-276

10. 1
Conducting Component-Level Design,

Component-Level Design for WebApps
T1-277

11. 1
Designing Traditional Components,

Component-Based Development T1-298

12. 1 Recapitulation and Discussion of important questions

Total No. of Hours Planned for Unit-I 12

Textbook

T1: Roger S. Pressman. 2010. Software Engineering – A Practitioner’s

Approach, 7th Edition, McGraw Hill International Edition, New Delhi.

Unit – V

1. 1 Testing Strategies & Tactics T1-449

2. 1 Software Testing Fundamentals T1- 482

3. 1 Strategic Approach to Software Testing T1-450

4. 1 Test Strategies for Conventional Software T1-456

5. 1 Validation Testing T1-467

6. 1 System testing Black-Box Testing T1-470

7. 1 White-Box Testing and their type T1-485

8. 1
Basis Path Testing

T1-485

9. 1 Recapitulation and Discussion of important questions

10. 1
Recapitulation and Discussion of previous semester

question papers

11. 1
Recapitulation and Discussion of previous semester

question papers

12. 1
Recapitulation and Discussion of previous semester

question papers

Total No. of Hours Planned for Unit-5 12

Textbook

T1: Roger S. Pressman. 2010. Software Engineering – A Practitioner’s

Approach, 7th Edition, McGraw Hill International Edition, New Delhi.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 1/26

UNIT-I

SYLLABUS

Introduction: The Evolving Role of Software, Software Characteristics, Changing Nature of

Software, Software Engineering as a Layered Technology, Software Process Framework,

Framework and Umbrella Activities, Process Models, Capability Maturity Model Integration

(CMMI).

Introduction to Software Engineering:

What is software engineering?

Software has become critical to advancement in almost all areas of human Endeavour.

The art of programming only is no longer sufficient to construct large programs. There are

serious problems in the cost, timeliness, maintenance and quality of many software products.

Software engineering has the objective of solving these problems by producing good quality,

maintainable software, on time, within budget. To achieve this objective, we have to focus in a

disciplined manner on both the quality of the product and on the process used to develop the

product.

Definition

At the first conference on software engineering in 1968, Fritz Bauer [FRIT68] defined

software engineering as “The establishment and use of sound engineering principles in order to

obtain economically developed software that is reliable and works efficiently on real machines”.

Stephen Schacht [SCHA90] defined the same as “A discipline whose aim is the production of

quality software, software that is delivered on time, within budget, and that satisfies its

requirements”. Both the definitions are popular and acceptable to majority. However, due to

increase in cost of maintaining software, objective is now shifting to produce quality software

that is maintainable, delivered on time, within budget, and also satisfies its requirements.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 2/26

The Evolving Role of Software

Software takes on a dual role. It is a product and, at the same time, the vehicle for

delivering a product. As a product, it delivers the computing potential embodied by computer

hardware or, more broadly, a network of computers that are accessible by local hardware.

Whether it resides within a cellular phone or operates inside a mainframe computer, software is

information transformer— producing, managing, acquiring, modifying, displaying, or

transmitting information that can be as simple as a single bit or as complex as a multimedia

presentation. As the vehicle used to deliver the product, software acts as the basis for the control

of the computer (operating systems), the communication of information (networks), and the

creation and control of other programs (software tools and environments). Software delivers the

most important product of our time—information.

 Software transforms personal data (e.g., an individual’s financial transactions) so that the

data can be more useful in a local context; it manages business information to enhance

competitiveness; it provides a gateway to worldwide information networks (e.g., Internet) and

provides the means for acquiring information in all of its forms.

 The role of computer software has undergone significant change over a time span of little

more than 50 years. Dramatic improvements in hardware performance, profound changes in

computing architectures, vast increases in memory and storage capacity, and a wide variety of

exotic input and output options have all precipitated more sophisticated and complex computer-

based systems.

The lone programmer of an earlier era has been replaced by a team of software

specialists, each focusing on one part of the technology required to deliver a complex

application.

Software

Computer software, or just software, is a collection of computer programs and related

data that provide the instructions for telling a computer what to do and how to do it. In other

words, software is a conceptual entity which is a set of computer programs, procedures, and

associated documentation concerned with the operation of a data processing system. We can also

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 3/26

say software refers to one or more computer programs and data held in the storage of the

computer for some purposes.

In other words software is a set of programs, procedures, algorithms and its

documentation. Program software performs the function of the program it implements, either by

directly providing instructions to the computer hardware or by serving as input to another piece

of software.

The term was coined to contrast to the old term hardware (meaning physical devices). In

contrast to hardware, software is intangible, meaning it "cannot be touched". Software is also

sometimes used in a more narrow sense, meaning application software only. Sometimes the term

includes data that has not traditionally been associated with computers, such as film, tapes, and

records.

Software Characteristics

1. Software is developed or engineered; it is not manufactured in the classical sense.

 Although some similarities exist between software development and hardware

manufacture, the two activities are fundamentally different. In both activities, high quality is

achieved through good design, but the manufacturing phase for hardware can introduce quality

problems that are nonexistent (or easily corrected) for software.

Both activities are dependent on people, but the relationship between people applied

and work accomplished is entirely different . Both activities require the construction of a

"product" but the approaches are different. Software costs are concentrated in engineering. This

means that software projects cannot be managed as if they were manufacturing projects

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 4/26

2. Software doesn't "wear out."

Fig 1.1 depicts failure rate as a function of time for hardware.

Fig 1.1 Failure curve for hardware

 The relationship, often called the "bathtub curve," indicates that hardware exhibits

relatively high failure rates early in its life (these failures are often attributable to design or

manufacturing defects); defects are corrected and the failure rate drops to a steady-state level

(ideally, quite low) for some period of time. As time passes, however, the failure rate rises

again as hardware components suffer from the cumulative affects of dust, vibration, abuse,

temperature extremes, and many other environmental maladies. Stated simply, the hardware

begins to wear out.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 5/26

Fig 1.2 Failure curves for software

 Software is not susceptible to the environmental maladies that cause hardware to

wear out. In theory, therefore, the failure rate curve for software should take the form of the

“idealized curve” shown in Fig 1.2. Undiscovered defects will cause high failure rates early

in the life of a program. However, these are corrected (ideally, without introducing other

errors) and the curve flattens as shown. The idealized curve is a gross oversimplification of

actual failure models for software. However, the implication is clear—software doesn't wear

out.

 This seeming contradiction can best be explained by considering the “actual

curve” shown in Fig 1.2. During its life, software will undergo change (maintenance). As

changes are made, it is likely that some new defects will be introduced, causing the failure

rate curve to spike as shown in Fig 1.2. Before the curve can return to the original steady-

state failure rate, another change is requested, causing the curve to spike again. Slowly, the

minimum failure rate level begins to rise—the software is deteriorating due to change.

 Another aspect of wear illustrates the difference between hardware and software.

When a hardware component wears out, it is replaced by a spare part. There are no software

spare parts. Every software failure indicates an error in design or in the process through

which design was translated into machine executable code. Therefore, software maintenance

involves considerably more complexity than hardware maintenance.

3. Although the industry is moving toward component-based assembly, most

software continues to be custom built.

 Consider the manner in which the control hardware for a computer-based product

is designed and built. The design engineer draws a simple schematic of the digital circuitry,

does some fundamental analysis to assure that proper function will be achieved, and then

goes to the shelf where catalogs of digital components exist. Each integrated circuit (called

an IC or a chip) has a part number, a defined and validated function, a well-defined interface,

and a standard set of integration guidelines. After each component is selected, it can be

ordered off the shelf.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 6/26

 A software component should be designed and implemented so that it can be

reused in many different programs. Modern reusable components encapsulate both data and the

processing applied to the data, enabling the software engineer to create new applications from

reusable parts. For example, today's graphical user interfaces are built using reusable

components that enable the creation of graphics windows, pull-down menus, and a wide variety

of interaction mechanisms. The data structure and processing detail required to build the

interface are contained with a library of reusable components for interface construction

Changing Nature of software

Four broad categories of software are evolving to dominate the industry.

WebApps

 Web-based systems and applications5 (we refer to these collectively as WebApps) were born.

WebApps have evolved into sophisticated computing tools that not only provide stand-alone

function to the end user, but also have been integrated with corporate databases and business

application.

WebApps “involved a mixture between print publishing and software development, between

marketing and computing, between internal communications and external relations, and between

art and technology.”

Semantic Web technologies (often referred to as Web 3.0) have evolved into sophisticated

corporate and consumer applications that encompass “semantic databases provide new

functionality that requires Web linking, flexible data representation, and external access APIs.”

Mobile Applications

The term app has evolved to software that has been specifically designed to reside on a

mobile platform (e.g., iOS, Android, or Windows Mobile).Mobile applications encompass a

user interface that takes advantage of the unique interaction mechanisms provided by the

mobile platform, interoperability with Web-based resources that provide access to a wide

array of information that is relevant to the app, and local processing capabilities that collect,

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 7/26

analyze, and format information in a manner that is best suited to the mobile platform. In

addition, a mobile app provides persistent storage capabilities within the platform.

Cloud Computing

Cloud computing encompasses an infrastructure or “ecosystem” that enables any user,

anywhere, to use a computing device to share computing resources on a broad scale. The

overall logical architecture of cloud computing is represented in Figure

Computing devices reside outside the cloud and have access to a variety of resources within the

cloud. These resources encompass applications, platforms, and infrastructure. In its simplest

form, an external computing device accesses the cloud via a Web browser or analogous software.

The cloud provides access to data that resides with databases and other data structures. The

implementation of cloud computing requires the development of an architecture that

encompasses front-end and back-end services. The front-end includes the client (user) device and

the application software (e.g., a browser) that allows the back-end to be accessed. The back-end

includes servers and related computing resources, data storage systems (e.g., databases).

Product Line Software

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 8/26

The Software Engineering Institute defines a software product line as “a set of software-intensive

systems that share a common, managed set of features satisfying the specific needs of a

particular market segment or mission. A software product line shares a set of assets that include

requirements, architecture, design patterns, reusable components, test cases, and other software

engineering work products. A software product line results in the development of many products

that are engineered by capitalizing on the commonality among all the products within the product

line.

A Generic View of process

Software Engineering as a Layered Technology

Any engineering approach much rests on organizational approach to quality, e.g. total

quality management and such emphasize continuous process improvement (that is increasingly

more effective approaches to software engineering). The bedrock that supports a software

engineering is a quality focus.

 The foundation for software engineering is the process layer. Software engineering

process is the glue that holds the technology layers together and enables rational and timely

development of computer software. Process defines a framework for a set of key process areas

(KPAs) that must be established for effective delivery of software engineering technology. The

key process areas form the basis for management

control of software projects and establish the context in which technical methods are applied,

work products (models, documents, data, reports, forms, etc.) are produced, milestones are

established, quality is ensured, and change is properly managed.

Fig 1.3 Software Engineering Layers

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 9/26

 Software engineering methods provide the technical how-to's for building software.

Methods encompass a broad array of tasks that include requirements analysis, design, program

construction, testing, and support. Software engineering methods rely on a set of basic principles

that govern each area of the technology and include modeling activities and other descriptive

techniques.

 Software engineering tools provide automated or semi-automated support for the process

and the methods. When tools are integrated so that information created by one tool can be used

by another, a system for the support of software development, called computer-aided software

engineering, is established.

Process Framework

Identifies a small number of framework activities that are applicable to all software

projects. In addition the framework encompasses umbrella activities that are applicable across

the software process.

Generic Process Framework Activities

Each framework activity is populated by a set of software engineering actions. An action,

e.g. design, is a collection of related tasks that produce a major software engineering work

product.

Communication – lots of communication and collaboration with customer and other

stakeholders. Encompasses requirement gathering.

Planning – establishes plan for software engineering work that follows. Describes technical

tasks, likely risks, required resources, works products and a work schedule

Modeling – encompasses creation of models that allow the developer and customer to better

understand software requirements and the design that will achieve those requirements.

Modeling Activity – composed of two software engineering actions

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 10/26

• analysis – composed of work tasks (e.g. requirement gathering, elaboration, specification and

validation) that lead to creation of analysis model and/or requirements specification.

• design – encompasses work tasks such as data design, architectural design, interface design and

component level design leads to creation of design model and/or a design specification.

Construction – code generation and testing.

Deployment – software, partial or complete, is delivered to the customer who evaluates it and

provides feedback. Different projects demand different task sets. Software team chooses task set

based on problem and project characteristics.

THE SOFTWARE PROCESS

A process is a collection of activities, actions, and tasks that are performed when some work

product is to be created. An activity strives to achieve a broad objective (e.g., communication

with stakeholders). An action (e.g., architectural design) encompasses a set of tasks that produce

a major work product (e.g., an architectural model). A task focuses on a small, but well-defined

objective (e.g., conducting a unit test) that produces a tangible outcome.

The Process Framework

A process framework establishes the foundation for a complete software engineering process by

identifying a small number of framework activities that are applicable to all software projects. In

addition, the process framework encompasses a set of umbrella activities that are applicable

across the entire software process. A generic process framework for software engineering

encompasses five activities:

1. Communication. Before any technical work can commence, it is critically important to

communicate and collaborate with the customer (and other stakeholders). The intent is to

understand stakeholders’ objectives for the project and to gather requirements that help

define software features and functions.

2. Planning. A software project is a complicated journey, and the planning activity creates a

“map” that helps guide the team as it makes the journey. The map—called a software

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 11/26

project plan—defines the software engineering work by describing the technical tasks to

be conducted, the risks that are likely, the resources that will be required, the work

products to be produced, and a work schedule.

3. Modeling. Whether you’re a landscaper, a bridge builder, an aeronautical engineer, a

carpenter, or an architect, you work with models. You create a “sketch” of the thing so

that you’ll understand the big picture—what it will look like architecturally, how the

constituent parts fit together, and many other characteristics. A software engineer does

the same thing by creating models to better understand software requirements and the

design that will achieve those requirements.

4. Construction. What you design must be built. This activity combines code generation

(either manual or automated) and the testing that is required to uncover errors in the code.

5. Deployment. The software (as a complete entity or as a partially completed increment) is

delivered to the customer who evaluates the delivered product and provides feedback

based on the evaluation.

Umbrella Activities

Software engineering process framework activities are complemented by a number of umbrella

activities. In general, umbrella activities are applied throughout a software project and help a

software team manage and control progress, quality, change, and risk. Typical umbrella activities

include:

Software project tracking and control —allows the software team to assess progress against

the project plan and take any necessary action to maintain the schedule.

Risk management —assesses risks that may affect the outcome of the projector the quality of

the product.

Software quality assurance —defines and conducts the activities required to ensure software

quality.

Technical reviews —assess software engineering work products in an effort to uncover and

remove errors before they are propagated to the next activity.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 12/26

Measurement —defines and collects process, project, and product measures that assist the team

in delivering software that meets stakeholders’ needs; can be used in conjunction with all other

framework and umbrella activities.

Software configuration management —manages the effects of change throughout the software

process.

Reusability management —defines criteria for work product reuse (including software

components) and establishes mechanisms to achieve reusable components.

Work product preparation and production —encompass the activities required to create work

products such as models, documents, logs, forms, and lists.

PROCESS MODELS

A process model provides a specific roadmap for software engineering work. It defines the flow

of all activities, actions and tasks, the degree of iteration, the work products, and the organization

of the work that must be done. Software engineers and their managers adapt a process model to

their needs and then follow it. In addition, the people who have requested the software have a

role to play in the process of defining, building, and testing it. The process model provides you

with the “steps” you’ll need to perform disciplined software engineering work. From the point of

view of a software engineer, the work product is a customized description of the activities and

tasks defined by the process.

PRESCRIPTIVE PROCESS MODELS

A prescriptive process model strives for structure and order in software development. Activities

and tasks occur sequentially with defined guidelines for progress. The prescriptive process

approach in which order and project consistency are dominant issues. We call them

“prescriptive” because they prescribe a set of process elements—framework activities, software

engineering actions, tasks, work products, quality assurance, and change control mechanisms for

each project. Each process model also prescribes a process flow (also called a work flow)—that

is, the manner in which the process elements are interrelated to one another.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 13/26

The following framework activities are carried out irrespective of the process model chosen by

the organization.

1. Communication

2. Planning

3. Modeling

4. Construction

5. Deployment

The name 'prescriptive' is given because the model prescribes a set of activities, actions, tasks,

quality assurance and change the mechanism for every project.

There are three types of prescriptive process models. They are:

1. The Waterfall Model

2. Incremental Process model

3. RAD model

1. The Waterfall Model

 The waterfall model is also called as 'Linear sequential model' or 'Classic life cycle

model'.

 In this model, each phase is fully completed before the beginning of the next phase.

 This model is used for the small projects.

 In this model, feedback is taken after each phase to ensure that the project is on the right

path.

 Testing part starts only after the development is complete.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 14/26

The description of the phases of the waterfall model is same as that of the process model.

Advantages of waterfall model

 The waterfall model is simple and easy to understand, implement, and use.

 All the requirements are known at the beginning of the project, hence it is easy to

manage.

 It avoids overlapping of phases because each phase is completed at once.

 This model works for small projects because the requirements are understood very well.

 This model is preferred for those projects where the quality is more important as

compared to the cost of the project.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 15/26

Disadvantages of the waterfall model

 This model is not good for complex and object oriented projects.

 It is a poor model for long projects.

 The problems with this model are uncovered, until the software testing.

 The amount of risk is high.

2. Incremental Process model

 The incremental model combines the elements of waterfall model and they are applied in

an iterative fashion.

 The first increment in this model is generally a core product.

 Each increment builds the product and submits it to the customer for any suggested

modifications.

 The next increment implements on the customer's suggestions and add additional

requirements in the previous increment.

 This process is repeated until the product is finished.

For example, the word-processing software is developed using the incremental model.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 16/26

Advantages of incremental model

 This model is flexible because the cost of development is low and initial product delivery

is faster.

 It is easier to test and debug during the smaller iteration.

 The working software generates quickly and early during the software life cycle.

 The customers can respond to its functionalities after every increment.

Disadvantages of the incremental model

 The cost of the final product may cross the cost estimated initially.

 This model requires a very clear and complete planning.

 The planning of design is required before the whole system is broken into small

increments.

 The demands of customer for the additional functionalities after every increment causes

problem during the system architecture.

3. RAD model

 RAD is a Rapid Application Development model.

 Using the RAD model, software product is developed in a short period of time.

 The initial activity starts with the communication between customer and developer.

 Planning depends upon the initial requirements and then the requirements are divided

into groups.

 Planning is more important to work together on different modules.

The RAD model consist of following phases:

1. Business Modeling

 Business modeling consist of the flow of information between various functions in the

project.

 For example what type of information is produced by every function and which are the

functions to handle that information.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 17/26

 A complete business analysis should be performed to get the essential business

information.

2. Data modeling

 The information in the business modeling phase is refined into the set of objects and it is

essential for the business.

 The attributes of each object are identified and define the relationship between objects.

3. Process modeling

 The data objects defined in the data modeling phase are changed to fulfil the information

flow to implement the business model.

 The process description is created for adding, modifying, deleting or retrieving a data

object.

4. Application generation

 In the application generation phase, the actual system is built.

 To construct the software the automated tools are used.

5. Testing and turnover

 The prototypes are independently tested after each iteration so that the overall testing

time is reduced.

 The data flow and the interfaces between all the components are fully tested. Hence,

most of the programming components are already tested.

Evolutionary Process Models

 Evolutionary models are iterative type models.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 18/26

 They allow to develop more complete versions of the software.

Following are the evolutionary process models.

1. The prototyping model

2. The spiral model

3. Concurrent development model

1. The Prototyping model

 Prototype is defined as first or preliminary form using which other forms are copied or

derived.

 Prototype model is a set of general objectives for software.

 It does not identify the requirements like detailed input, output.

 It is software working model of limited functionality.

 In this model, working programs are quickly produced.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 19/26

The different phases of Prototyping model are:

1. Communication

In this phase, developer and customer meet and discuss the overall objectives of the software.

2. Quick design

 Quick design is implemented when requirements are known.

 It includes only the important aspects like input and output format of the software.

 It focuses on those aspects which are visible to the user rather than the detailed plan.

 It helps to construct a prototype.

3. Modeling quick design

 This phase gives the clear idea about the development of software because the software

is now built.

 It allows the developer to better understand the exact requirements.

4. Construction of prototype

The prototype is evaluated by the customer itself.

5. Deployment, delivery, feedback

 If the user is not satisfied with current prototype then it refines according to the

requirements of the user.

 The process of refining the prototype is repeated until all the requirements of users are

met.

 When the users are satisfied with the developed prototype then the system is developed

on the basis of final prototype.

Advantages of Prototyping Model

 Prototype model need not know the detailed input, output, processes, adaptability of

operating system and full machine interaction.

 In the development process of this model users are actively involved.

 The development process is the best platform to understand the system by the user.

 Errors are detected much earlier.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 20/26

 Gives quick user feedback for better solutions.

 It identifies the missing functionality easily. It also identifies the confusing or difficult

functions.

Disadvantages of Prototyping Model:

 The client involvement is more and it is not always considered by the developer.

 It is a slow process because it takes more time for development.

 Many changes can disturb the rhythm of the development team.

 It is a thrown away prototype when the users are confused with it.

2. The Spiral model

 Spiral model is a risk driven process model.

 It is used for generating the software projects.

 In spiral model, an alternate solution is provided if the risk is found in the risk analysis,

then alternate solutions are suggested and implemented.

 It is a combination of prototype and sequential model or waterfall model.

 In one iteration all activities are done, for large project's the output is small.

The framework activities of the spiral model are as shown in the following figure.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 21/26

The description of the phases of the spiral model is same as that of the process model.

Advantages of Spiral Model

 It reduces high amount of risk.

 It is good for large and critical projects.

 It gives strong approval and documentation control.

 In spiral model, the software is produced early in the life cycle process.

Disadvantages of Spiral Model

 It can be costly to develop a software model.

 It is not used for small projects.

3. The concurrent development model

 The concurrent development model is called as concurrent model.

 The communication activity has completed in the first iteration and exits in the awaiting

changes state.

 The modeling activity completed its initial communication and then go to the

underdevelopment state.

 If the customer specifies the change in the requirement, then the modeling activity moves

from the under development state into the awaiting change state.

 The concurrent process model activities moving from one state to another state.



KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 22/26

Advantages of the concurrent development model

 This model is applicable to all types of software development processes.

 It is easy for understanding and use.

 It gives immediate feedback from testing.

 It provides an accurate picture of the current state of a project.

Disadvantages of the concurrent development model

 It needs better communication between the team members. This may not be achieved all

the time.

 It requires to remember the status of the different activities.

SPECIALIZED PROCESS MODELS

1. Component Based Development

Commercial off-the-shelf (COTS) Software components, developed by vendors who offer them

as products, can be used when Software is to be built. These components provide targeted

functionality with well-defined interfaces that enable the component to be integrated into the

Software.

The component-based development model incorporates many of the characteristics of the spiral

model.

The component-based development model incorporates the following steps:

• Available component-based products are researched and evaluated for the application

domain in question.

• Component integration issues are considered.

• Software architecture is designed to accommodate the components.

• Components are integrated into the architecture.

• Comprehensive testing is conducted to ensure proper functionality.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 23/26

The component-based development model leads to Software reuse, and reusability provides

Software engineers with a number of measurable benefits.

2. The Formal Methods Model

The Formal Methods Model encompasses a set of activities that leads to formal mathematical

specifications of Software.

Formal methods enable a Software engineer to specify, develop, and verify a computer-based

system by applying a rigorous, mathematical notation.

A variation of this approach, called clean-room Software engineering is currently applied by

some software development organizations.

 Although not a mainstream approach, the formal methods model offers the promise of defect-

free Software. Yet, concern about its applicability in a business environment has been voiced:

• The development of formal models is currently quite time-consuming and expensive.

• B/C few software developers have the necessary background to apply formal methods,

extensive training is required.

• It is difficult to use the methods as a communication mechanism for technically

unsophisticated customers.

3. Aspect-Oriented Software Development

Regardless of the software process that is chosen, the builders of complex software invariably

implement a set of localized features, functions, and information content.

CAPABILITY MATURITY MODEL INTEGRATION (CMMI)

The Capability Maturity Model Integration (CMMI) is a capability maturity model

developed by the Software Engineering Institute, part of Carnegie Mellon University in

Pittsburgh, USA. The CMMI principal is that “the quality of a system or product is highly

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 24/26

influenced by the process used to develop and maintain it”. CMMI can be used to guide process

improvement across a project, a division, or an entire organization

CMMI provides:

Guidelines for processes improvement

An integrated approach to process improvement

Embedding process improvements into a state of business as usual

A phased approach to introducing improvements

CMMI Models

CMMI consists of three overlapping disciplines (constellations) providing specific focus into the

Development, Acquisition and Service Management domains respectively:

CMMI for Development (CMMI-DEV) – Product and service development

CMMI for Services (CMMI-SVC) – Service establishment, management, and delivery

CMMI for Acquisition (CMMI-ACQ) – Product and service acquisition

CMMI Maturity Levels

There are five CMMI maturity levels. However, maturity level ratings are only awarded for

levels 2 through 5.

CMMI Maturity Level 2 – Managed

CM – Configuration Management

MA – Measurement and Analysis

PMC – Project Monitoring and Control

PP – Project Planning

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 25/26

PPQA – Process and Product Quality Assurance

REQM – Requirements Management

SAM – Supplier Agreement Management

CMMI Maturity Level 3 – Defined

DAR – Decision Analysis and Resolution

IPM – Integrated Project Management +IPPD

OPD – Organizational Process Definition +IPPD

OPF – Organizational Process Focus

OT – Organizational Training

PI – Product Integration

RD – Requirements Development

RSKM – Risk Management

TS – Technical Solution

VAL – Validation

VER – Verification

CMMI Maturity Level 4 – Quantitatively Managed

QPM – Quantitative Project Management

OPP – Organizational Process Performance

CMMI Maturity Level 5 – Optimizing

CAR – Causal Analysis and Resolution

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: I(Introduction to Software enginnering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE Asst Prof, Department of CS, CA & IT, KAHE Page 26/26

OID – Organizational Innovation and Deployment

CMMI Appraisals

Certification does not exist as a concept in CMMI, rather an organisation is appraised. and can be

awarded a maturity level rating (1-5) or a capability level achievement profile.

Many organizations find value in measuring their progress by conducting an appraisal in order

to:

Determine how well the organization’s processes compare to CMMI best practices, and to

identify areas where improvement can be made Inform external customers and suppliers of how

well the organization’s processes compare to CMMI best practices

Meet the contractual requirements of one or more customers

Possible Questions

Part – B (2 Mark)

1. Define software engineering.

2. Differentiate between software and hardware characteristics

3. What are the major process framework activities for software engineering?

4. List the major disadvantages of Waterfall model.

5. What is CMMI? List the five maturity levels of CMMI.

Part – C (6 Mark)

1. Explain in detail about Concurrent Development model.

2. Discuss in detail about Spiral Model.

3. Discuss in detail about the umbrella activities in the software process framework.

4. Illustrate Prototyping model with its phases.

5. Explain in detail about Waterfall Model with a neat sketch.

6. Discuss in detail about the Layered perspective of software engineering.

7. Describe in detail the changes acquired in the nature of software.

8. Discuss in detail about the Rapid Application Development Model with a neat sketch.

9. Explain in detail about Incremental Process Model.

10. Explain in detail about Prescriptive model.

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF COMPUTER SCIENCE

II BSc cs BATCH(2016 - 2019)

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

UNIT-1

S.NO Questions opt1 opt2 opt3 opt4 Answer

1 Software takes on a ______________ role. single dual triple tetra dual

2 Software is a _______________. virtual system modifier framework modifier

3 Instructions that when executed provide desired function and
performance is called software hardware firmware humanware software

4 High quality of software is achieved through
________________. testing good design construction manufacture good design

5 Software doesn’t ________________. tearout wearout degrade deteriorate wearout

6 Software is not susceptible to ______________. hardware defects environmental
melodies deterioration environmental

melodies

7 Software will undergo __________. database testing enhancement manufacture enhancement

8 _________ refers to the meaning and form of incoming
and outgoing information. content software hardware data content

9 _____________ refers to the predictability of the order and
timing of information.

system
software

network
software

information
determinacy database information

determinacy

10 ____________ is not a system software. MS Office compiler editor
file
management
utility

MS Office

11 Collection of programs written to service other programs are
called __________.

system
software

business
software

embedded
software pc software system

software

12 Which one is not coming under software myths Management
myths

customer
myths product myths practitioners

myths product myths

13 _________ is a PC Software. MS word LISP CAD C MS word

14 Software that monitors, analyses, controls real world events is
called _________.

Business
software

real time
software

web based
software

 embedded
software

real time
software

15 The bedrock that supports software engineering is a______ tools methods process
models quality focus quality focus

16 A complete software process by identifying a small number
of _____

framework
activities

umbrella
activities

process
framework

software
process

framework
activities

17 The process framework encompassess a set of ________ framework
activities

umbrella
activities

process
framework

software
process

umbrella
activities

18 software engineering action is________________ design chronic decision crisis design

19 Which one is effect the outcome of the project? Risk
management Measurement technical

reviews Reusability Risk
management

20 Continuing indefinitely is called ___________. crisis decision affliction chronic chronic

21 Component based development uses ____________. functions subroutines procedures objects objects

22 UML stands for ____________.
Universal
Modelling
Language

User Modified
Language

Unified
Modelling
Language

User Model
Language

Unified
Modelling
Language

23 A model which uses formal mathematical specification is
called ________. 4 GT model Unified

method model

formal
methods
model

component
based
development

formal
methods
model

24 A variation of formal methods model is called
_____________.

component
based
development

4 GT model unified
method model

cleanroom
software
engineering

cleanroom
software
engineering

25 The development of formal methods is ___________. less time
consuming

quite time
consuming

does not
consume time

very less time
consuming

quite time
consuming

26 The first step to develop software is ______________. analysis design requirements
gathering coding requirements

gathering

27 The waterfall model sometimes called as classic model classic life
cycle model

life cycle
model cycle model classic life

cycle model

28 Software engineering activities include ____________ decision affliction hardware maintenance maintenance

29 all process model prescribes a ______________. circular elliptical spiral workflow workflow

30
Component based development incorporates the
characteristics of the ___________ model circular elliptical spiral hierarchical spiral

31 Prototype is a ______________. software hardware computer model model

32 For small applications it is possible to move from
requirement gathering step to____________. analysis implementatio

n design modeling implementatio
n

33 Software project management begins with a set of activities
that are collectively called ________________

project
planning software scope software

estimation decomposition project
planning

34 Breaking up of a complex problem into small steps is called
____________.

project
planning software scope software

estimation decomposition decomposition

35
The ease with which software can be transferred from one
computer to another. This quality attribute is called
______________.

portability reliability efficiency accuracy portability

36
The ability of a program to perform a required function under
stated condition for a stated period of time. This quality
attribute is called ____________.

portability reliability efficiency accuracy reliability

37 The event to which software performs its intended function.
This quality attribute is called _________________. portability reliability efficiency accuracy efficiency

38 A qualitative assessments of freedom from errors. This
quality attribute is called ____________. portability reliability efficiency accuracy accuracy

39 The extent to which software can continue to operate
correctly. This quality attribute is called ______________. robustness correctness efficiency reliability robustness

40
The extent to which the software is free from design and
coding defects ie fault free. This quality attribute is called
_____________.

robustness correctness efficiency reliability correctness

41 System shall reside in 50KB of memory is an example of
_____________.

quantified
requirement

qualified
requirement

functional
requirement

performance
requirement

quantified
requirement

42 Accuracy shall be sufficient to support mission is an example
of ___________.

quantified
requirement

qualified
requirement

functional
requirement

performance
requirement

qualified
requirement

43 System shall make efficient use of memory is an example of
______________.

quantified
requirement

qualified
requirement

functional
requirement

performance
requirement

qualified
requirement

44
Which level of CMM is for process control? Initial Repeatable Defined Optimizing Optimizing

45
Product is Deliverables

User
expectations

Organization's
effort in
development

none of the
above Deliverables

46
To produce a good quality product, process should be Complex Efficient Rigorous

 none of the
above Efficient

47
Which is not a product metric? Size Reliability Productivity Functionality Productivity

48
Which is NOT a process metric? Productivity Functionality Quality Efficiency Functionality

49
Effort is measured in terms of:

Person-
months Rupees Persons Months Person-months

50 An independently deliverable piece of functionality providing
access to its services through interface is called

Software
measurement

Software
composition

Software
measure

Software
component

Software
component

51
Management of software development is dependent on People product Process all of the above

all of the
above

52
During software development, which factor is most crucial? People Product Process Project People

53
Program is

Subset of
software

super set of
software Software

none of the
above

Subset of
software

54
Milestones are used to

Know the cost
of the project

know the
status of the
project

Know user
expectations

none of the
above

know the
status of the
project

55
Software engineering approach is used to achieve:

Better
performance
of hardware

Error free
software

Reusable
software

Quality
software
product

Quality
software
product

56
Software consists of

instructions +
operating
system

documentation
+ operating
procedures

Programs +
hardware
manuals

Set of
programs

documentation
+ operating
procedures

57
CASE Tool is

Aided
Software
Engineering

Aided
Software
Engineering

Aided
Software
Engineering

Analysis
Software
Engineering

Aided
Software
Engineering

58
SDLC stands for

Software
design life
cycle

Software
development
life cycle

System
development
life cycle

System design
life cycle

Software
development
life cycle

59
RAD stands for

Rapid
application
development

Relative
application
development

Ready
application
development

Repeated
application
development

Rapid
application
development

60
Which phase is not available in software life cycle? Coding Testing Maintenance Abstraction Abstraction

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 1/22

UNIT-II

SYLLABUS

Requirement Analysis; Initiating Requirement EngineeringProcess- Requirement Analysis and

Modeling Techniques- FlowOriented Modeling- Need for SRS- Characteristics and

Components of SRS- Software Project Management: Estimation in Project Planning Process,

Project Scheduling.

REQUIREMENT ANALYSIS

Introduction to requirement engineering

 The process of collecting the software requirement from the client then understand,

evaluate and document it is called as requirement engineering.

 Requirement engineering constructs a bridge for design and construction.

Requirement engineering consists of seven different tasks as follow:

1. Inception

 Inception is a task where the requirement engineering asks a set of questions to establish

a software process.

 In this task, it understands the problem and evaluates with the proper solution.

 It collaborates with the relationship between the customer and the developer.

 The developer and customer decide the overall scope and the nature of the question.

2. Elicitation

Elicitation means to find the requirements from anybody.

The requirements are difficult because the following problems occur in elicitation.

Problem of scope: The customer give the unnecessary technical detail rather than clarity of the

overall system objective.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 2/22

Problem of understanding: Poor understanding between the customer and the developer

regarding various aspect of the project like capability, limitation of the computing environment.

Problem of volatility: In this problem, the requirements change from time to time and it is

difficult while developing the project.

3. Elaboration

 In this task, the information taken from user during inception and elaboration and are

expanded and refined in elaboration.

 Its main task is developing pure model of software using functions, feature and

constraints of a software.

4. Negotiation

In negotiation task, a software engineer decides the how will the project be achieved with

limited business resources.

 To create rough guesses of development and access the impact of the requirement on the

project cost and delivery time.

5. Specification

 In this task, the requirement engineer constructs a final work product.

 The work product is in the form of software requirement specification.

 In this task, formalize the requirement of the proposed software such as informative,

functional and behavioral.

 The requirement are formalize in both graphical and textual formats.

6. Validation

 The work product is built as an output of the requirement engineering and that is

accessed for the quality through a validation step.

 The formal technical reviews from the software engineer, customer and other

stakeholders helps for the primary requirements validation mechanism.

7. Requirement management

 It is a set of activities that help the project team to identify, control and track the

requirements and changes can be made to the requirements at any time of the ongoing project.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 3/22

 These tasks start with the identification and assign a unique identifier to each of the

requirement.

 After finalizing the requirement traceability table is developed.

 The examples of traceability table are the features, sources, dependencies, subsystems

and interface of the requirement

Initiating requirement engineering process

Eliciting Requirements

Eliciting requirement helps the user for collecting the requirement

Eliciting requirement steps are as follows:

1. Collaborative requirements gathering

 Gathering the requirements by conducting the meetings between developer and

customer.

 Fix the rules for preparation and participation.

 The main motive is to identify the problem, give the solutions for the elements,

negotiate the different approaches and specify the primary set of solution requirements in an

environment which is valuable for achieving goal.

2. Quality Function Deployment (QFD)

 In this technique, translate the customer need into the technical requirement for the

software.

 QFD system designs a software according to the demands of the customer.

QFD consist of three types of requirement:

Normal requirements

 The objective and goal are stated for the system through the meetings with the customer.

 For the customer satisfaction these requirements should be there.

Expected requirement

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 4/22

 These requirements are implicit.

 These are the basic requirement that not be clearly told by the customer, but also the

customer expect that requirement.

Exciting requirement

 These features are beyond the expectation of the customer.

 The developer adds some additional features or unexpected feature into the software to

make the customer more satisfied.

For example, the mobile phone with standard features, but the developer adds few additional

functionalities like voice searching, multi-touch screen etc. then the customer more exited about

that feature.

3. Usage scenarios

 Till the software team does not understand how the features and function are used by the

end users it is difficult to move technical activities.

 To achieve above problem the software team produces a set of structure that identify the

usage for the software.

 This structure is called as 'Use Cases'.

4. Elicitation work product

 The work product created as a result of requirement elicitation that is depending on the

size of the system or product to be built.

 The work product consists of a statement need, feasibility, and statement scope for the

system.

 It also consists of a list of users participate in the requirement elicitation.

 Analysis model operates as a link between the 'system description' and the 'design

model'.

 In the analysis model, information, functions and the behavior of the system is defined

and these are translated into the architecture, interface and component level design in the 'design

modeling'.

Building the Analysis model

Requirement Analysis

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 5/22

 Requirement Analysis results in the specification of software’s operational characteristics

indicates software interface with other system elements and establishes constraints that software

must meet

 Requirement analysis allow the software engineer to elaborate on basic requirements

established during earlier requirement engineering tasks and build models that depict user

scenario, functional activities, problem classes and their relationships, system and class behavior,

and the flow of data as it is transformed.

 Requirement analysis provides the software designer with a representation of

information, function and behavior that can be translated to architectural, interface and

component-level designs

 Finally, the analysis model and the requirement specification provide the developer and

customer with the means to assess quality once software is built. Throughout analysis modeling,

the software engineer’s primary focus is on what and not how

1. Overall Objectives and Philosophy

 The analysis model must have three primary objectives

 To describe what the customer requires

 To establish a basis for the creation of software design

 To define a set of requirements that can be validated once the software is built

 The analysis model bridges the gap between a system level description that describes

overall system functionality as it is achieved by applying software, hardware, data, human and

other system elements and a software design that describes the software’s application

architecture, user interface and component level structure

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 6/22

2. Analysis rules of Thumb

 The model should focus on requirements that are visible within the problem or business

domain. The level of abstraction should be relatively high

 Each element of the analysis model should add to an overall understanding of software

requirements and provide insight into the information domain, function and behavior of

the system

 Delay consideration of infrastructure and non functional models until design

 Minimize coupling throughout the system

 Be certain that the analysis model provides value to all stakeholders

 Keep the model as simple as it can be

3. Domain Analysis

 The analysis patterns often reoccur across many applications within a specific business

domain. If these patterns are defined and categorized in a manner that allows a software engineer

or analyst to recognize and reuse them, the creation of the analysis model is expedited.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 7/22

Input and output of Domain Analysis

Software domain analysis is the identification, analysis, and specification of common

requirements from a specific application domain, typically for reuse on multiple projects within

the application domain.

Analysis modeling approaches

One view of analysis modeling, called structured analysis, considers Data and the

processes that transform the dada as separate entities. Data objects are modeled in a way that

defines their attributes and relationships. Processes that manipulate data objects are modeled in a

manner that shows how they transform data as a data flow through the system.

 A second approach to analysis modeling, called objects oriented analysis, focuses on

the definition of classes and the manner in which they collaborate with one another to effect

customer requirements.

Data modeling concepts

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 8/22

Data Modeling Concepts

 Analysis modeling often begins with data modeling. The software engineer or analyst

defines all data objects that are processed within the system, the relationships between the data

objects, and other information that is pertinent to the relationships.

1. Data object

A data object is a representation of almost any composite information that must be

understood by software. By composite information, we mean something that has a number of

different properties or attributes. Therefore, width (a single value) would not be a valid data

object, but dimensions (incorporating height, width, and depth) could be defined as an object.

A data object can be an external entity (e.g., anything that produces or consumes

information), a thing (e.g., a report or a display), an occurrence (e.g., a telephone call)

or event (e.g., an alarm), a role (e.g., salesperson), an organizational unit (e.g., accounting

department), a place (e.g., a warehouse), or a structure (e.g., a file). For example,

a person or a car (Figure 12.2) can be viewed as a data object in the sense that either can be

defined in terms of a set of attributes. The data object description incorporates the data object

and all of its attributes.

2. Data Attributes

 Attributes define the properties of a data object and take on one of three

different characteristics. They can be used to

 (1) name an instance of the data object,

(2) describe the instance, or

(3) make reference to another instance in another table.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 9/22

3. Relationships

 Data objects are connected to one another in different ways. Consider two data objects,

person and car. These objects can be represented using the simple notation illustrated in below

Figure. A connection is established between person and carbecause the two objects are related.

4. Cardinality and Modality

 The elements of data modeling—data objects, attributes, and relationships— provide the

basis for understanding the information domain of a problem. However, additional information

related to these basic elements must also be understood.

 We have defined a set of objects and represented the object/relationship pairs that

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 10/22

bind them. But a simple pair that states: object X relates to object Y does not provide

enough information for software engineering purposes. We must understand how many

occurrences of object X are related to how many occurrences of object Y. This leads to a data

modeling concept called cardinality.

 Cardinality is the specification of the number of occurrences of one [object] that can be

related to the number of occurrences of another [object].

Cardinality defines “the maximum number of objects that can participate in a

relationship”

Modality

 The modality of a relationship is 0 if there is no explicit need for the relationship to occur

or the relationship is optional. The modality is 1 if an occurrence of the relationship is

mandatory.

Flow-Oriented Modeling

The DFD takes an input-process-output view of a system. That is, data objects flow into

the software, are transformed by processing elements, and resultant data objects flow out of the

software. Data objects are represented by labeled arrows and the transformations are represented

by circles (also called bubbles). The DFD is presented in hierarchical fashion. That is, the first

data flow model sometimes called a level 0 DFD or context diagram represent the system as a

whole.

1. Creating a data flow model

 The data flow diagram enables the software engineer to develop models of the

information domain and functional domain at the same time. As the DFD is refined into greater

levels of detail, the analyst performs an implicit functional decomposition of the system.

Guidelines

1. The level 0 data flow diagram should depict the software/system as a single bubble

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 11/22

2. Primary input and output should be carefully noted

3. Refinement should begin by isolating candidate processes, data objects, and data stores to be

represented at the next level

4. All arrows and bubbles should be labeled with meaningful names

5. Information flow continuity must be maintained from level to level

6. One bubble at a time should be refined.

Context level DFD for the safe home security function

 The safe home security function enables the homeowner to configure the security system.

When it is installed, monitors all sensors connected to the security system, and interacts with the

homeowner through the internet, a PC, or a control panel

During installation, the safe home PC is used to program and configure the system. Each

sensor is assigned a number and type, a master password is programmed for arming and

disarming the system, and telephone number(s) are input for dialing when a sensor event occurs.

 When a sensor event is recognized, the software involves an audible alarm attached to the

system. After a delay time that is specified by the homeowner during system configuration

activities, the software dials a telephone number of a monitoring service, provides information

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 12/22

about the location, reporting the nature of the event that has been detected. The telephone

number will be redialed every 20 seconds until a telephone connection is obtained

 The level 0 DFD is now expanded into a level 1 data flow model

Level 1 DFD for the safe home security function

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 13/22

The homeowner receives security information via a control panel, the PC, or a browser,

collectively called an interface. The interface displays prompting messages and system status

information on the control panel, the PC, or the browser window

 The process represented at DFD level 1 can be further refined into lower levels.

For example, the process monitor sensors can be refined into a level 2 DFD.

Level 2 DFD that refines the monitor sensors process

The refinement of DFDs continues until each bubble performs a single function. That is,

until the process represented by the bubble performs a function that would be easily implemented

as a program component

2. Creating a control flow model

 For many types of applications, the data model and the data flow diagram are all that is

necessary to obtain meaningful insight into software requirements. As we have already noted,

however, a large class of applications are driven by events rather than data, produce control

information rather than reports or displays, and process information with heavy concern for time

and performance. Such applications require the use of control flow modeling in addition to data

flow modeling

To select potential candidate events, the following guidelines are suggested:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 14/22

 List all sensors that are read by the software

 List all interrupt conditions

 List all switches that are actuated by an operator

 List all data conditions

 Describe the behavior of a system by identifying its states, identify how each state is

reached and define the transitions between states.

 Focus on possible omissions

Software Requirement Specification (SRS)

 The requirements are specified in specific format known as SRS.

 This document is created before starting the development work.

 The software requirement specification is an official document.

 It shows the detail about the performance of expected system.

 SRS indicates to a developer and a customer what is implemented in the software.

 SRS is useful if the software system is developed by the outside contractor.

 SRS must include an interface, functional capabilities, quality, reliability, privacy etc.

Characteristics of SRS

 The SRS should be complete and consistence.

 The modification like logical and hierarchical must be allowed in SRS.

 The requirement should be easy to implement.

 Each requirement should be uniquely identified.

 The statement in SRS must be unambiguous means it should have only one meaning.

 All the requirement must be valid for the specified project.

Software Project Management

Software Project

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 15/22

A Software Project is the complete procedure of software development from requirement

gathering to testing and maintenance, carried out according to the execution methodologies, in a

specified period of time to achieve intended software product.

Need of software project management

Software is said to be an intangible product. Software development is a kind of all new stream

in world business and there’s very little experience in building software products. Most

software products are tailor made to fit client’s requirements. The most important is that the

underlying technology changes and advances so frequently and rapidly that experience of one

product may not be applied to the other one. All such business and environmental constraints

bring risk in software development hence it is essential to manage software projects efficiently.

The image above shows triple constraints for software projects. It is an essential part of software

organization to deliver quality product, keeping the cost within client’s budget constrain and

deliver the project as per scheduled. There are several factors, both internal and external, which

may impact this triple constrain triangle. Any of three factor can severely impact the other two.

Therefore, software project management is essential to incorporate user requirements along with

budget and time constraints.

Software Project Manager

A software project manager is a person who undertakes the responsibility of executing the

software project. Software project manager is thoroughly aware of all the phases of SDLC that

the software would go through. Project manager may never directly involve in producing the

end product but he controls and manages the activities involved in production.

A project manager closely monitors the development process, prepares and executes various

plans, arranges necessary and adequate resources, maintains communication among all team

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 16/22

members in order to address issues of cost, budget, resources, time, quality and customer

satisfaction.

Let us see few responsibilities that a project manager shoulders -

Managing People

 Act as project leader

 Liaison with stakeholders

 Managing human resources

 Setting up reporting hierarchy etc.

Managing Project

 Defining and setting up project scope

 Managing project management activities

 Monitoring progress and performance

 Risk analysis at every phase

 Take necessary step to avoid or come out of problems

 Act as project spokesperson

Software Management Activities

Software project management comprises of a number of activities, which contains planning of

project, deciding scope of software product, estimation of cost in various terms, scheduling of

tasks and events, and resource management. Project management activities may include:

 Project Planning

 Scope Management

 Project Estimation

Project Planning

Software project planning is task, which is performed before the production of software actually

starts. It is there for the software production but involves no concrete activity that has any

direction connection with software production; rather it is a set of multiple processes, which

facilitates software production. Project planning may include the following:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 17/22

Scope Management

It defines the scope of project; this includes all the activities, process need to be done in order to

make a deliverable software product. Scope management is essential because it creates

boundaries of the project by clearly defining what would be done in the project and what would

not be done. This makes project to contain limited and quantifiable tasks, which can easily be

documented and in turn avoids cost and time overrun.

During Project Scope management, it is necessary to -

 Define the scope

 Decide its verification and control

 Divide the project into various smaller parts for ease of management.

 Verify the scope

 Control the scope by incorporating changes to the scope

Estimation in project planning process

Project Estimation

For an effective management accurate estimation of various measures is a must. With correct

estimation managers can manage and control the project more efficiently and effectively.

Project estimation may involve the following:

 Software size estimation

Software size may be estimated either in terms of KLOC (Kilo Line of Code) or by

calculating number of function points in the software. Lines of code depend upon coding

practices and Function points vary according to the user or software requirement.

Effort estimation

The managers estimate efforts in terms of personnel requirement and man-hour required

to produce the software. For effort estimation software size should be known. This can

either be derived by managers’ experience, organization’s historical data or software

size can be converted into efforts by using some standard formulae.

 Time estimation

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 18/22

Once size and efforts are estimated, the time required to produce the software can be

estimated. Efforts required is segregated into sub categories as per the requirement

specifications and interdependency of various components of software. Software tasks

are divided into smaller tasks, activities or events by Work Breakthrough Structure

(WBS). The tasks are scheduled on day-to-day basis or in calendar months.

The sum of time required to complete all tasks in hours or days is the total time invested

to complete the project.

 Cost estimation

This might be considered as the most difficult of all because it depends on more

elements than any of the previous ones. For estimating project cost, it is required to

consider -

o Size of software

o Software quality

o Hardware

o Additional software or tools, licenses etc.

o Skilled personnel with task-specific skills

o Travel involved

o Communication

o Training and support

 Project Estimation Techniques

We discussed various parameters involving project estimation such as size, effort, time and

cost.Project manager can estimate the listed factors using two broadly recognized techniques –

 Decomposition Technique

Software project estimation is a form of problem solving, and in most cases, the problem

to be solved (i.e., developing a cost and effort estimate for a software project) is too

complex to be considered in one piece.

 Software Sizing

The accuracy of a software project estimate is predicated on a number of things:

(1) the degree to which you have properly estimated the size of the product to be built;

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 19/22

(2) the ability to translate the size estimate into human effort, calendar time, and dollars

(a function of the availability of reliable software metrics from past projects);

 (3) the degree to which the project plan reflects the abilities of the software team;

(4) the stability of product requirements and the environmentthat supports the software

engineering effort.

In the context of project planning, size refers to a quantifiable outcome of the software

project. If a direct approach is taken, size can be measured in lines of code (LOC). If an

indirect approach is chosen, size is represented as function points (FP). Size can be

estimated by considering the type of project and its application domain, the functionality

delivered (i.e., the number of function points), the number of components to be delivered,

the degree to which a set of existing components must be modified for the new system.

 Problem-Based Estimation

Lines of code and function points were described as measures from which productivity

metrics can be computed. LOC and FP data are used in two ways during software project

estimation:

 (1) as estimation variables to “size” each element of the software.

(2) as baseline metrics collected from past projects and used in conjunction with

estimation variables to develop cost and effort projections.

LOC and FP estimation are distinct estimation techniques. LOC or FP (the estimation

variable) is then estimated for each function. Baseline productivity metrics (e.g., LOC/pm

or FP/pm)6 are then applied to the appropriate estimation variable, and cost or effort for

the function is derived. Function estimates are combined to produce an overall estimate

for the entire project.

 Process-Based Estimation

The most common technique for estimating a project is to base the estimate on the

process that will be used. That is, the process is decomposed into a relatively small set of

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 20/22

activities, actions, and tasks and the effort required to accomplish each is estimated. Like

the problem-based techniques, process-based estimation begins with a delineation of

software functions obtained from the project scope. A series of framework activities must

be performed for each function.

 Empirical Estimation Technique

This technique uses empirically derived formulae to make estimation.These formulae are based

on LOC or FPs.

 Putnam Model

This model is made by Lawrence H. Putnam, which is based on Norden’s frequency

distribution (Rayleigh curve). Putnam model maps time and efforts required with

software size.

 COCOMO

 COCOMO stands for COnstructive COst MOdel, developed by Barry W. Boehm. It

divides the software product into three categories of software: organic, semi-detached

and embedded.

Project Scheduling

Project Scheduling in a project refers to roadmap of all activities to be done with specified order

and within time slot allotted to each activity. Project managers tend to define various tasks, and

project milestones and them arrange them keeping various factors in mind. They look for tasks

lie in critical path in the schedule, which are necessary to complete in specific manner (because

of task interdependency) and strictly within the time allocated. Arrangement of tasks which lies

out of critical path are less likely to impact over all schedule of the project.

Basic Principles

Compartmentalization.The project must be compartmentalized into a number of manageable

activities and tasks. To accomplish compartmentalization, both the product and the process are

decomposed.

Interdependency.The interdependency of each compartmentalized activity or task must be

determined. Some tasks must occur in sequence, while others can occur in parallel. Some

activities cannot commence until the work product produced by another is available. Other

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 21/22

activities can occur independently.

Time allocation.Each task to be scheduled must be allocated some number of work units (e.g.,

person-days of effort). In addition, each task must be assigned a start date and a completion date

that are a function of the interdependencies and whether work will be conducted on a full-time

or part-time basis.

Effort validation: Every project has a defined number of people on the software team. As time

allocation occurs, no more than the allocated number of people has been scheduled at any given

time.

Defined responsibilities: Every task that is scheduled should be assigned to a specific team

member.

Defined outcomes: Every task that is scheduled should have a defined outcome. For software

projects, the outcome is normally a work product (e.g., the design of a component) or a part of a

work product. Work products are often combined in deliverables.

Defined milestones: Every task or group of tasks should be associated with a project milestone.

A milestone is accomplished when one or more work products has been reviewed for quality

and has been approved.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: II(Requirement Analysis) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 22/22

Possible Questions

Part – B (2 Mark)

1. What is requirement engineering process?

2. List the analysis rules of thumb.

3. Draw the context level DFD of Safe Home Alarm System.

4. What are the four major approaches used in analysis modeling

5. Differentiate between cardinality and modality

Part – C (6 Mark)

1. Illustrate the Guidelines for drawing a DFD and explain it with an example.

2. Describe Sequence diagram with an example.

3. Compare and contrast Process Specification and Control Specification.

4. Illustrate the identification of Events with Use-Case while creating a Behavioral Model.

5. Write Short notes on Attributes and Relationships.

6. Give a detailed note on active state and passive state.

7. Discuss the Control Specification in Flow Oriented Modeling.

8. Narrate the steps involved in creating a behavioral model.

9. Describe in detail about analysis modeling concepts.

10. Elucidate Requirement Analysis process in analysis model.

11. Explain State diagram with an example.

12. Compare Cardinality and Modality.

13. Describe the Analysis Modeling Approaches and explain the Rules of Thumb.

14. Elucidate Creation of Flow Oriented Modeling in software engineering.

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF COMPUTER SCIENCE

II BSc CS BATCH(2016 - 2019)

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

UNIT-2

S.NO Questions Opt1 Opt2 Opt3 Opt4 Answer

1 _____________ is a process of discovery, refinement,
modeling, and specification

software
engineering

software
requirement
engineering

software
analysis software design software

engineering

2 ____________ is the systematic use of proven principles,
techniques, languages, and tools.

software
engineering

software
analysis

software
design

requirements
engineering

requirements
engineering

3 Requirement engineering is conducted in a _______________. sporadic way random way haphazard
way

systematic use
of proven
approaches

systematic use
of proven
approaches

4 Software requirements analysis work products must be
reviewed for _________. modeling completeness information

processing
functional
requirement completeness

5 . __________ bridges the gap between system level
requirement engineering and software design.

system
engineering modeling requirements

analysis
software
engineering

software
engineering

6 Software requirements analysis is divided into __________
areas of effort. 2 3 4 5 4

7 Throughout evaluation and solution synthesis, the analyst’s
primary focus is on ___________. when where what how what

8 Software applications can be collectively called as
______________. data gathering information

gathering
data
processing

 information
processing data processing

9
__________ represents the individual data and control objects
that constitute some larger collection of information
transformed by the software.

information
content data content data model information

model
information
content

10 __________ represents the manner in which data and control
change as each moves through a system.

information
content

information
flow

information
structure data structure information

flow

11 ____________ represents the internal organization of various
data and control items.

information
content

information
flow

information
structure data structure information

structure

12 Entity is a __________. data information model physical thing physical thing

13
The first operational analysis principle requires an examination
of the information domain and the creation of a
_____________.

data model information
model data structure information

structure data model

14 To transform software into information, the system performs
_____________. input processing output

input,
processing and
output

input,
processing and
output

15 . To transform software into information, the system must
perform _________ generic functions. 2 3 4 5 3

16 There are ___________ types of models. 5 4 3 2 2

17 The horizontal partitioning of SafeHome function has
_____________ major functions on the first level of hierarchy. 2 3 4 5 3

18 The vertical partitioning of SafeHome function has
_____________ major functions on the first level of hierarchy. 2 3 4 5 3

19 A model of the software to be built is called ______________. data model prototype information
model software model prototype

20
The ___________ of software requirements presents the real
world manifestation of processing functions and information
structures

implementati
on view essential view partitioning

view
evolutionary
view

implementation
 view

21
. The essential view of the SafeHome function
_______________ does not concern itself with the physical
form of the data that is used.

identify event read sensor
status

activate
sensor

deactivate
sensor

read sensor
status

22 A prototype is the ____________. data model information
model

software
model

evolution
model software model

23 Data objects are represented by ________ labeled
arrows bubbles entity label labeled arrows

24 Transformations are represented by ____ labeled
arrows bubbles entity label bubbles

25 __________ enables the software engineer to generate
executable code quickly, they are ideal for rapid prototyping. 2 GT 3 GT 4 GT 5 GT 4 GT

26 The ___________ provides a detailed description of the
problem that the software must solve.

information
description

software
scope

function
description

software
description

information
description

27
______________ is probably the most important and,
ironically, the most often neglected section of software
requirements specification.

behavioural
description

processing
narrative

overall
structure

validation
criteria

validation
criteria

28 The software requirements specification includes
_____________. bibliography appendix Bibliography

and appendix review Bibliography
and appendix

29
The __________ section of the specification examines the
operation of the software as a consequence of external events
and internally generated control characteristics.

behavioural
description

representation
 format

specification
principles

prototyping
environment

behavioural
description

30 The software requirements specification is developed as a
consequence of __________. review analysis prototyping functional

description analysis

31 The preliminary user’s manual presents the software as a
_____________. white box black box machine

interface prototype black box

32 _____________ is the first technical step in the software
process.

requirements
analysis

requirements
specification

information
description

information
domain

requirements
analysis

33 The close ended approach of the prototyping paradigm is called
________.

evolutionary
prototyping

simply
prototyping

open ended
prototyping

throwaway
prototyping

throwaway
prototyping

34
The information domain contains ___________ different views
of the data and control as each is processed by a computer
program.

2 3 4 5 3

35 The content of ___________ is defined by the attributes that
are needed to create it. system status functional

model paycheck behavioural
model paycheck

36 Building data, functional and behavioural models provide the
software engineer with ________ different views 5 4 3 2 3

37 The description of each function required to solve the problem
is presented in the _____________.

functional
description

behavioural
description

data
description

program
description

functional
description

38 Software requirements analysis work products must be
reviewed for ___________. clarity completeness consistency all of the above all of the above

39 The overall role of software in a larger system is identified
during the _________.

system
engineering

software
planning

software
estimation documentation system

engineering

40 The analyst finds that problems with the current manual system
include _________.

inability to
obtain the
status of a

two-or-three
day turn
around to

multiple
reorders to
the same

all of the above all of the above

41 The expansion of FAST is _______________.
Facilitated
Application
Specification

Fast
Application
Specification

Facilitated
Application
Software

Facilitated
Application
System

Facilitated
Application
Specification

42 The following come under the lists of constraints. cost size business rules all of the above all of the above

43 All analysis methods are related by a set of operational
_____________. system software principles analysis principles

44 The functions that the software is to perform must be
______________. defined described discussed listed defined

45 The first step in establishing traceability back to the customer is
__________.

use multiple
views of
requirement

rank
requirement

record the
origin of and
the reason for

work to
eliminate
ambiguity

record the
origin of and
the reason for

46 ___________ are used so that the characteristics of function
and behaviour can be communicated in a compact fashion. softwares models programs none of the

above models

47
The perception of the quality software is often based on the
perception of the “friendliness” of the ____________,
prototyping are highly recommended.

system software interface prototype interface

48 All software applications collectively called __________. packages programs software data processing data processing

49 The information domain contains __________ different views
of data and control as each is processed by a computer program. 2 3 4 5 3

50
The fourth operational analysis principle suggests that the
informational, functional and behavioural domains of software
can be __________.

decomposed partitioned listed described partitioned

51
The _____________ aids the analyst in understanding the
information, function and behaviour of a system, thereby
making the requirements analysis task easier and more

prototype software model interface model

52
The __________ becomes the focal point for review and,
therefore the key to a determination of completeness,
consistency, and accuracy of the specifications.

prototype interface software model model

53
The __________ becomes the foundation for design, providing
the designer with an essential representation of software that
can be mapped in to an implementation context.

prototype model interface software model

54 the __________ is one method for representing the behavior of
a system by depicting its state and evevts state diagram use case

diagram ER diagram DFD state diagram

55 When an sensor event is recognized, the ___________ invokes
an audible alarm attached to the system. model software delay prototype software

56 A _________ is always a model – an abstraction of some real
situation that is normally quite complex. software prototype specification function specification

57 The _____________ presents the software as a black box. preliminary
user’s manual prototype system software preliminary

user’s manual

58 ___________ may be accompanied by an executable prototype,
a paper prototype or a preliminary user’s manual. system

software
requirements
specification

software user manual
software
requirements
specification

59
What are the types of requirements ? Availability Reliability Usability

All of the
mentioned

All of the
mentioned

60
Select the developer specific requirement ? Potability

Maintainabilit
y Availability

Both Potability
and
Maintainability

Both Potability
and
Maintainability

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II B.Sc. CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: III (Risk Management) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 1/17

UNIT-III

SYLLABUS

Risk Management: Software Risks, Risk Identification Risk Projection and Risk Refinement,

RMMM plan, Quality Management- Quality Concepts, Software Quality Assurance,

Software Reviews, Metrics for Process and Projects.

Software Risks

Although there has been considerable debate about the proper definition for software risk,

there is general agreement that risk always involves two characteristics: uncertainty—the risk

may or may not happen; that is, there are no 100 percent probable risks1—and loss—if the risk

becomes a reality, unwanted consequences or losses will occur. When risks are analyzed, it is

important to quantify the level of uncertainty and the degree of loss associated with each risk.

To accomplish this, different categories of risks are considered.

Project risks threaten the project plan. That is, if project risks become real, it is likely that the

project schedule will slip and that costs will increase. Project risks identify potential budgetary,

schedule, personnel (staffing and organization), resource, stakeholder, and requirements

problems and their impact on a software project. Project complexity, size, and the degree of

structural uncertainty were also defined as project (and estimation) risk factors.

Technical risks threaten the quality and timeliness of the software to be produced. If a technical

risk becomes a reality, implementation may become difficult or impossible. Technical risks

identify potential design, implementation, interface, verification, and maintenance problems. In

addition, specification ambiguity, technical uncertainty, technical obsolescence, and “leading-

edge” technology are also risk factors. Technical risks occur because the problem is harder to

solve than you thought it would be.

Business risks threaten the viability of the software to be built and often jeopardize the project

or the product. Candidates for the top five business risks are (1) building an excellent product

or system that no one really wants (market risk), (2) building a product that no longer fits into

the overall business strategy for the company (strategic risk), (3) building a product that the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II B.Sc. CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: III (Risk Management) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 2/17

sales force doesn’t understand how to sell (sales risk), (4) losing the support of senior

management due to a change in focus or a change in people (management risk), and (5) losing

budgetary or personnel commitment (budget risks).

Known risks are those that can be uncovered after careful evaluation of the project plan, the

business and technical environment in which the project is being developed, and other reliable

information sources (e.g., unrealistic delivery date, lack of documented requirements or

software scope, poor development environment).

Predictable risks are extrapolated from past project experience (e.g., staff turnover, poor

communication with the customer, dilution of staff effort as ongoing maintenance requests are

serviced). Unpredictable risks are the joker in the deck. They can and do occur, but they are

extremely difficult to identify in advance.

Risk Identification

Risk identification is a systematic attempt to specify threats to the project plan (estimates,

schedule, resource loading, etc.). By identifying known and predictable risks, the project

manager takes a first step toward avoiding them when possible and controlling them when

necessary.

There are two distinct types of risks for each of the categories

Generic risks are a potential threat to every software project.

Product-specific risks can be identified only by those with a clear understanding of the

technology, the people, and the environment that is specific to the software that is to be built.

One method for identifying risks is to create a risk item checklist. The checklist can be used for

risk identification and focuses on some subset of known and predictable risks in the following

generic subcategories:

Product size—Risks associated with the overall size of the software to be built or modified.

Business impact—Risks associated with constraints imposed by management or the

marketplace.

Stakeholder characteristics—Risks associated with the sophistication of the stakeholders and

the developer’s ability to communicate with stakeholders in a timely manner.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II B.Sc. CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: III (Risk Management) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 3/17

Process definition—Risks associated with the degree to which the software process has been

defined and is followed by the development organization.

Development environment—Risks associated with the availability and

quality of the tools to be used to build the product.

Technology to be built—Risks associated with the complexity of the system to

be built and the “newness” of the technology that is packaged by the system.

Staff size and experience—Risks associated with the overall technical and

project experience of the software engineers who will do the work.

Assessing Overall Project Risk

The following questions have been derived from risk data obtained by surveying experienced

Software project managers in different parts of the world

The questions are ordered by their relative importance to the success of a project.

1. Have top software and customer managers formally committed to support the project?

2. Are end users enthusiastically committed to the project and the system/product to be built?

3. Are requirements fully understood by the software engineering team and its customers?

4. Have customers been involved fully in the definition of requirements?

5. Do end users have realistic expectations?

6. Is the project scope stable?

7. Does the software engineering team have the right mix of skills?

8. Are project requirements stable?

9. Does the project team have experience with the technology to be implemented?

10. Is the number of people on the project team adequate to do the job?

11. Do all customer/user constituencies agree on the importance of the project and on the

requirements for the system/product to be built?

Risk Components and Drivers

The risk components are defined in the following manner:

• Performance risk—The degree of uncertainty that the product will meet its requirements and

be fit for its intended use.

• Cost risk—The degree of uncertainty that the project budget will be maintained.

• Support risk—The degree of uncertainty that the resultant software will be easy to correct,

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II B.Sc. CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: III (Risk Management) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 4/17

 adapt, and enhance.

• Schedule risk—The degree of uncertainty that the project schedule will be maintained and

that the product will be delivered on time.

Risk Projection

Risk projection, also called risk estimation, attempts to rate each risks in two ways—(1) the

likelihood or probability that the risk is real and will occur and (2) the consequences of the

problems associated with the risk, should it occur. You work along with other managers and

technical staff to perform four risk projection steps:

1. Establish a scale that reflects the perceived likelihood of a risk.

2. Delineate the consequences of the risk.

3. Estimate the impact of the risk on the project and the product.

4. Assess the overall accuracy of the risk projection so that there will be no misunderstandings.

The intent of these steps is to consider risks in a manner that leads to prioritization. No

software team has the resources to address every possible risk with the same degree of rigor.

By prioritizing risks, you can allocate resources where they will have the most impact.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II B.Sc. CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: III (Risk Management) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 5/17

Developing a Risk Table

A risk table provides you with a simple technique for risk projection. A sample risk table is

illustrated in below figure.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II B.Sc. CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: III (Risk Management) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 6/17

 Begin by listing all risks (no matter how remote) in the first column of the table.

 Each risk is categorized in the second column (e.g., PS implies a project size risk, BU

implies a business risk).

 The probability of occurrence of each risk is entered in the next column of the table.

 The probability value for each risk can be estimated by team members individually.

 Each risk component is assessed and an impact category is determined.

 The categories for each of the four risk components—performance, support, cost, and

schedule—are averaged to determine an overall impact value.

 Once the first four columns of the risk table have been completed, the table is sorted by

probability and by impact.

 High-probability, high-impact risks percolate to the top of the table, and low-

probability risks drop to the bottom.

 This accomplishes first-order risk prioritization.

Assessing Risk Impact

Three factors affect the consequences that are likely if a risk does occur: its nature, its scope,

and its timing.

 The nature of the risk indicates the problems that are likely if it occurs.

 The scope of a risk combines the severity with its overall distribution

Finally, the timing of a risk considers when and for how long the impact will be felt.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II B.Sc. CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: III (Risk Management) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 7/17

Risk Refinement

During early stages of project planning, a risk may be stated quite generally. As time passes

and more is learned about the project and the risk, it may be possible to refine the risk into a set

of more detailed risks, each somewhat easier to mitigate, monitor, and manage.

This general condition can be refined in the following manner:

Sub condition 1. Certain reusable components were developed by a third party with no

knowledge of internal design standards.

Sub condition 2. The design standard for component interfaces has not been solidified and

may

not conform to certain existing reusable components.

Sub condition 3. Certain reusable components have been implemented in a language that is

not

supported on the target environment.

The consequences associated with these refined sub conditions remain the same (i.e., 30

percent of software components must be custom engineered), but the refinement helps to

isolate the underlying risks and might lead to easier analysis and response.

The RMMM Plan

A risk management strategy can be included in the software project plan, or the risk

management steps can be organized into a separate risk mitigation, monitoring and

management plan. The RMMM plan documents all work performed as part of risk analysis and

are used by the project manager as part of the overall project plan.

Some software teams do not develop a formal RMMM document. Rather, each risk is

documented individually using a risk information sheet (RIS). In most cases, the RIS is

maintained using a database system so that creation and information entry, priority ordering,

searches, and other analysis may be accomplished easily. Once RMMM has been documented

and the project has begun, risk mitigation and monitoring steps commence. As we have already

discussed, risk mitigation is a problem avoidance activity. Risk monitoring is a project tracking

activity with three primary objectives: (1) to assess whether predicted risks do, in fact, occur;

(2) to ensure that risk aversion steps defined for the risk are being properly applied; and (3) to

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II B.Sc. CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: III (Risk Management) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 8/17

collect information that can be used for future risk analysis. In many cases, the problems that

occur during a project can be traced to more than one risk. Another job of risk monitoring is to

attempt to allocate origin

Quality Management

Quality Concepts

The drumbeat for improved software quality began in earnest as software became increasingly

integrated in every facet of our lives. By the 1990s, major corporations recognized that billions

of dollars each year were being wasted on software that didn’t deliver the features and

functionality that were promised. Worse, both government and industry became increasingly

concerned that a major software fault might cripple important infrastructure, costing tens of

billions more. By the turn of the century, CIO Magazine trumpeted the headline, “Let’s Stop

Wasting $78 Billion a Year,” lamenting the fact that “American businesses spend billions for

software that doesn’t do what it’s supposed to do”. InformationWeek echoed the same concern:

Despite good intentions, defective code remains the hobgoblin of the software industry,

accounting for as much as 45% of computer-system downtime and costing U.S. companies

about $100 billion last year in lost productivity and repairs, says the Standish Group, a market

research firm. That doesn’t include the cost of losing angry customers. Because IT shops write

applications that rely on packaged infrastructure software, bad code can wreak havoc on

custom apps as well . . . Just how bad is bad software? Definitions vary, but experts say it takes

only three or four defects per 1,000 lines of code to make a program perform poorly. Factor in

that most programmers inject about one error for every 10 lines of code they write, multiply

that by the millions of lines of code in many commercial products,

then figure it costs software vendors at least half their development budgets to fix

errors while testing. Get the picture? In 2005, Computer World lamented that “bad software

plagues nearly every organization that uses computers, causing lost work hours during

computer downtime, lost or corrupted data, missed sales opportunities, high IT support and

maintenance costs, and low customer satisfaction. A year later, InfoWorld wrote about the “the

sorry state of software quality” reporting that the quality problem had not gotten any better. As

the emphasis on software quality grew, a survey of 100,000 white-collar professionals

indicated that software quality engineers were “the happiest workers in America”! Today,

software quality remains an issue, but who is to blame? Customers blame

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II B.Sc. CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: III (Risk Management) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 9/17

developers, arguing that sloppy practices lead to low-quality software. Developers blame

customers (and other stakeholders), arguing that irrational delivery dates and a continuing

stream of changes force them to deliver software before it has been fully validated. Who’s

right? Both—and that’s the problem.

Software Quality Assurance

The software engineering approach works toward a single goal: to produce on-time, high-

quality software. Yet many readers will be challenged by the question: “What is software

quality?”

The problem of quality management is not what people don't know about it. The problem is

what they think they do know

Everybody is for it. (Under certain conditions, of course.) Everyone feels they understand it.

(Even though they wouldn’t want to explain it.) Everyone thinks execution is only a matter of

following natural inclinations. (After all, we do get along somehow.) And, of course, most

people feel that problems in these areas are caused by other people. (If only they would take

the time to do things right.) Indeed, quality is a challenging concept. Some software developers

continue to believe that software quality is something you begin to worry about after code has

been generated. Nothing could be further from the truth! Software quality assurance (often

called quality management) is an umbrella activity that is applied throughout the software

process.

Software quality assurance (SQA) encompasses: (1) an SQA process, (2) specific quality

assurance and quality control tasks (including technical reviews and a multi-tiered testing

strategy), (3) effective software engineering practice (methods and tools), (4) control of all

software work products and the changes made to them, (5) a procedure to ensure compliance

with software development standards (when applicable), and (6) measurement and reporting

mechanisms.

Elements of Software Quality Assurance

Software quality assurance encompasses a broad range of concerns and activities that focus on

the management of software quality. These can be summarized in the following manner:

Standards. The IEEE, ISO, and other standards organizations have produced a broad array of

software engineering standards and related documents. Standards may be adopted voluntarily

by a software engineering organization or imposed by the customer or other stakeholders. The

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II B.Sc. CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: III (Risk Management) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 10/17

job of SQA is to ensure that standards that have been adopted are followed and that all work

products conform to them.

Reviews and audits. Technical reviews are a quality control activity performed by software

engineers for software engineers. Their intent is to uncover errors. Audits are a type of review

performed by SQA personnel with the intent of ensuring that quality guidelines are being

followed for software engineering work. For example, an audit of the review process might be

conducted to ensure that reviews are being performed in a manner that will lead to the highest

likelihood of uncovering errors.

Testing. Software testing is a quality control function that has one primary goal—to find

errors. The job of SQA is to ensure that testing is properly planned and efficiently conducted so

that it has the highest likelihood of achieving its primary goal.

Error/defect collection and analysis. The only way to improve is to measure how you’re

doing. SQA collects and analyzes error and defect data to WebRef.

Software Quality Assurance

Better understand how errors are introduced and what software engineering activities are best

suited to eliminating them.

Change management. Change is one of the most disruptive aspects of any software project. If

it is not properly managed, change can lead to confusion, and confusion almost always leads to

poor quality. SQA ensures that adequate change management practices have been

instituted.

Education. Every software organization wants to improve its software engineering practices.

A key contributor to improvement is education of software engineers, their managers, and

other stakeholders. The SQA organization takes the lead in software process improvement and

is a key proponent and sponsor of educational programs.

Vendor management. Three categories of software are acquired from external software

vendors—shrink-wrapped packages (e.g., Microsoft Office), a tailored shell that provides a

basic skeletal structure that is custom tailored to the needs of a purchaser, and contracted

software that is custom designed and constructed from specifications provided by the customer

organization. The job of the SQA organization is to ensure that high-quality software results by

suggesting specific quality practices that the vendor should follow (when possible), and

incorporating quality mandates as part of any contract with an external vendor.

Security management. With the increase in cyber crime and new government regulations

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II B.Sc. CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: III (Risk Management) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 11/17

regarding privacy, every software organization should institute policies that protect data at all

levels, establish firewall protection for WebApps, and ensure that software has not been

tampered with internally. SQA ensures that appropriate process and technology are used

to achieve software security.

Safety. Because software is almost always a pivotal component of human-rated systems (e.g.,

automotive or aircraft applications), the impact of hidden defects can be catastrophic. SQA

may be responsible for assessing the impact of software failure and for initiating those steps

required to reduce risk.

Risk management. Although the analysis and mitigation of risk is the concern of software

engineers, the SQA organization ensures that risk management activities are properly

conducted and that risk-related contingency plans have been established. In addition to each of

these concerns and activities, SQA works to ensure that software support activities (e.g.,

maintenance, help lines, documentation, and manuals) are conducted or produced with quality

as a dominant concern.

Software Reviews

Metrics for Process and Projects

Measurement enables us to gain insight into the process and the project by providing a

mechanism for objective evaluation. Lord Kelvin once said: When you can measure what you

are speaking about and express it in numbers, you know something about it; but when you

cannot measure, when you cannot express it in numbers, your knowledge is of a meager and

unsatisfactory kind: it may be the beginning of knowledge, but you have scarcely, in your

thoughts, advanced to the stage of a science. The software engineering community has taken

Lord Kelvin’s words to heart. But not without frustration and more than a little controversy!

Measurement can be applied to the software process with the intent of improving it on a

continuous basis. Measurement can be used throughout a software project to assist in

estimation, quality control, productivity assessment, and project control. Finally, measurement

can be used by software engineers to help assess the quality of work products and to assist in

tactical decision making as a project proceeds. Within the context of the software process and

the projects that are conducted using the process, a software team is concerned primarily with

productivity and quality metrics—measures of software development “output” as a function of

effort and time applied and measures of the “fitness for use” of the work products that are

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II B.Sc. CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: III (Risk Management) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 12/17

produced. For planning and estimating purposes, our interest is historical. What was software

development productivity on past projects? What was the quality of the software that was

produced? How can past productivity and quality data are extrapolated to the present? How can

it help us plan and estimate more accurately?

The reasons that we measure: (1) to characterize in an effort to gain an understanding “of

processes, products, resources, and environments, and to establish baselines for comparisons

with future assessments”; (2) to evaluate “to determine status with respect to plans”; (3) to

predict by “gaining understandings of relationships among processes and products and building

models of these relationships”; and (4) to improve by “identifying roadblocks, root causes,

inefficiencies, and other opportunities for improving product quality and process

performance.”

Measurement is a management tool. If conducted properly, it provides a project manager with

insight. And as a result, it assists the project manager and the

software team in making decisions that will lead to a successful project.

Metrics in the Process and Project Domains

Process metrics are collected across all projects and over long periods of time.

Their intent is to provide a set of process indicators that lead to long-term software process

improvement. Project metrics enable a software project manager to (1) assess the status of an

ongoing project, (2) track potential risks, (3) uncover problem areas before they go “critical,”

(4) adjust work flow or tasks, and (5) evaluate the project team’s ability to control quality of

software work products.

Measures that are collected by a project team and converted into metrics for use during a

project can also be transmitted to those with responsibility for software process improvement.

For this reason, many of the same metrics are used in both the process and project domains.

Process Metrics and Software Process Improvement

The only rational way to improve any process is to measure specific attributes of the process,

develop a set of meaningful metrics based on these attributes, and then use the metrics to

provide indicators that will lead to a strategy for improvement (Chapter 37). But before we

discuss software metrics and their impact on software process improvement, it is important to

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II B.Sc. CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: III (Risk Management) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 13/17

note that process is only one of a number of “controllable factors in improving software quality

and organizational performance”.

Process sits at the center of a triangle connecting three factors that have a profound influence

on software quality and organizational performance. The skill and motivation of people have

been shown to be the most influential factors in quality and performance. The complexity of

the product can have a substantial impact on quality and team performance. The technology

(i.e., the software engineering methods and tools) that populates the process also has an impact.

In addition, the process triangle exists within a circle of environmental conditions that include

the development environment (e.g., integrated software tools), business conditions (e.g.,

deadlines, business rules), and customer characteristics (e.g., ease of communication and

collaboration). You can only measure the efficacy of a software process indirectly. That is, you

derive a set of metrics based on the outcomes that can be derived from the process. Outcomes

include measures of errors uncovered before release of the software, defects delivered to and

reported by end users, work products delivered (productivity), human effort expended,

calendar time used, schedule conformance, and other measures. You can also derive process

metrics by measuring the characteristics of specific software engineering tasks. For example,

you might measure the effort and time spent performing the umbrella activities and the generic

software engineering activities described in

The skill and motivation of the software people doing the work are the most important factors

that influence software quality.

“Software metrics let you know when to laugh and when to cry.”

Process Product People Technology

Development

environment

Customer

characteristics

Business

conditions

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II B.Sc. CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: III (Risk Management) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 14/17

Managing Software Projects

Grady argues that there are “private and public” uses for different types of process data.

Because it is natural that individual software engineers might be sensitive to the use of metrics

collected on an individual basis, these data should be private to the individual and serve as an

indicator for the individual only. Examples of private metrics include defect rates (by

individual), defect rates (by component), and errors found during development. The “private

process data” philosophy conforms well with the Personal Software Process approach proposed

by Humphrey. Humphrey recognized that software process improvement can and should begin

at the individual level. Private process data can serve as an important driver as you work to

improve your software engineering approach. Some process metrics are private to the software

project team but public to all team members. Examples include defects reported for major

software functions (that have been developed by a number of practitioners), errors found

during technical reviews and lines of code or function points per component or function.1 The

team reviews these data to uncover indicators that can improve team performance.

Public metrics generally assimilate information that originally was private to individuals and

teams. Project-level defect rates (absolutely not attributed to an individual), effort, calendar

times, and related data are collected and evaluated in an attempt to uncover indicators that can

improve organizational process performance.

Software process metrics can provide significant benefits as an organization works to improve

its overall level of process maturity. However, like all metrics, these can be misused, creating

more problems than they solve. Grady suggests a “software metrics etiquette” that is

appropriate for both managers and practitioners as they institute a process metrics program:

• Use common sense and organizational sensitivity when interpreting metrics data.

• Provide regular feedback to the individuals and teams who collect measures and metrics.

• Don’t use metrics to appraise individuals.

• Work with practitioners and teams to set clear goals and metrics that will

be used to achieve them.

• Never use metrics to threaten individuals or teams.

• Metrics data that indicate a problem area should not be considered “negative.” These data are

merely an indicator for process improvement.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II B.Sc. CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: III (Risk Management) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 15/17

What is the difference between private and public uses for software metrics?

What guidelines should be applied when we collect software metrics?

Process and Project Metrics

• Don’t obsess on a single metric to the exclusion of other important metrics.

As an organization becomes more comfortable with the collection and use of process metrics,

the derivation of simple indicators gives way to a more rigorous approach called statistical

software process improvement (SSPI). In essence, SSPI uses software failure analysis to

collect information about all errors and defects2 encountered as an application, system, or

product is developed and used.

Project Metrics

Unlike software process metrics that are used for strategic purposes, software project measures

are tactical. That is, project metrics and the indicators derived from them are used by a project

manager and a software team to adapt project work flow and technical activities. The first

application of project metrics on most software projects occurs during estimation. Metrics

collected from past projects are used as a basis from which effort and time estimates are made

for current software work. As a project proceeds, measures of effort and calendar time

expended are compared to original estimates (and the project schedule). The project manager

uses these data to monitor and control progress.

As technical work commences, other project metrics begin to have significance. Production

rates represented in terms of models created, review hours, function points, and delivered

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II B.Sc. CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: III (Risk Management) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 16/17

source lines are measured. In addition, errors uncovered during each software engineering task

are tracked. As the software evolves from requirements into design, technical metrics (Chapter

30) are collected to assess design quality and to provide indicators that will influence the

approach taken to code generation and testing. The intent of project metrics is twofold. First,

these metrics are used to minimize the development schedule by making the adjustments

necessary to avoid delays and mitigate potential problems and risks. Second, project metrics

are used to assess product quality on an ongoing basis and, when necessary, modify the

technical approach to improve quality. As quality improves, defects are minimized, and as the

defect count goes down, the amount of rework required during the project is also reduced. This

leads to a reduction in overall project cost.

An error is defined as some flaw in a software engineering work product that is uncovered

before the software is delivered to the end user. A defect is a flaw that is uncovered after

delivery to the end user. It should be noted that others do not make this distinction.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II B.Sc. CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: III (Risk Management) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 17/17

Possible Questions

Part – B (2 Mark)

1. Write about generic risk and product risk.

2. What is risk projection?

3. Define RMMM plan and its use.

4. What are the elements of software quality assurance

5. What are project metrics?

Part – C (6 Mark)

1. Explain in detail about Software risks that are faced by developers.

2. What is the use of software reviews? Explain in detail.

3. Describe in detail how are risks identified.

4. What is risk refinement? Explain in detail the steps to refine a risk if it occurs.

5. Illustrate risk projection mechanism in software engineering

6. What are Formal technical reviews? How are they conducted in software engineering?

7. Describe in detail about RMMM plan

8. Explain in detail about project matrices

9. Enumerate in detail the quality concepts that must be considered in developing a

software

10. Explain the software quality assurance standards in detail.

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF COMPUTER SCIENCE
II BSc CS BATCH(2016 - 2019)
PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

UNIT-3 - SOFTWARE ENGINEERING (16CSU402)

s.no Questions Opt1 Opt2 Opt3 Opt4 Answer

1 Which factors affect the probable consequences if a risk
occur? Risk avoidance Risk monitoring Risk timing Contingency planning Risk timing

2
Staff turnover, poor communication with the customer are
risks that are extrapolated from past experience are called
_____ . Business risks Predictable risks Project risks Technical risks Predictable risks

3
Which risk gives the degree of uncertainty and the project
schedule will be maintained so that the product will be
delivered in time? Business risk Technical risk Schedule risk Project risk Schedule risk

4
Project risk factor is considered in which model? Spiral model Waterfall model Prototyping model None of the above Spiral model

5 _________is a systematic attempt to specify threats to the
project plan. Generic risks Product-specific risks

Risk identification
None of the above

Risk identification

6 _________risks associated with the overall size of the
software to be built or modified.

Product size
Business impact risks Process definition risks

Product Risk Product size

7 ________risks associated with constraints imposed by
management or the marketplace.

Business
impact risks Product size

Process definition risks
customer Risk Business impact risks

8 _________risks associated with the availability and quality
of the tools to be used to build the product. Technical risk Project risk

Development environment Risk identification Development
environment

9
Project Risk is directly proportional to ________

project size product size Estimated size size of project product size

10 The __________ environment supports the project team, the
process, and the product.

 software
engineering Software plan software engineer All the above software engineering

11
_______ Associated with Staff Size and Experience

Size Product Risks Project risk Risks

12 The degree of _________ uncertainty that the product will
meet its requirements Cost risk Support risk Performance risk

support risk
Performance risk

13 The degree of uncertainty that the ___________ will be
maintained. project budget Cost risk

Schedule risk
Performance risk project budget

14
Risk projection, also called _________.

Estimation plan Estimation Cost Risk Cost risk estimation risk estimation

15 A _____ provides a project manager with a simple technique
for risk projection

projection table cost table risk table Project table risk table

16 The ______implies that only risks that lie above the line
will be given further attention.

offline cost cost line cut-off line offline cut-off line

17
A risk referent level has a single point, called the ________

break point referent point risk point project point referent point

18 The ________ should monitor the effectiveness of risk
mitigation steps.

 project
manager engineer manager cost manager project manager

19 ________assesses risks that may affect the outcome of the
project or the quality of the product.

Time
management Risk management quality management cost management Risk management

20 ______ management is one of the key attributes of a
successful software project. Risk Project cost product Risk

21
The SQA organization ensures that risk management
activities are properly conducted and that risk-
related________ have been established.

novices cut-off line contingency plans plans contingency plans

22
Risk analysis and management are actions that help a
_______ to understand and
manage uncertainty

project size project team team members software team software team

23 A risk mitigation,monitoring, and management ______ plan RMMM RMMI RMRM RMMR RMMM

24 _________ strategies have been laughingly called the
“Indiana Jones school of risk management” Reactive risk risk Reactive Reactive plan Reactive risk

25 _________ are identified, their probability and impact are
assessed, and they are ranked by importance. Project risks Potential risks project plan None of the above Potential risks

26 __________ threaten the project plan project plan Project risks Potential risks None of the above Project risks

27 _________ threaten the quality and timeliness of the
software to be produced. Technical risks Potential risks Project risks None of the above Technical risks

28 _________ threaten the viability of the software to be built
and often jeopardize the project or the product. Business risks knowledgeable,

intermittent users
knowledgeable, frequent
users Testers Business risks

29 _________ are extrapolated from past project experience user’s model Predictable risks design model system image Predictable risks

30 A risk that is_____ percent probable is a constraint on the
software project. 9 20 90 10 100

31 ___________ can be identified only by those with a clear
understanding of the technology. specification design Product-specific risks prototype Product-specific risks

32 ___________ characteristics risks associated with the
sophistication of the stakeholders manager Stakeholder engineer team members Stakeholder

33 Risk projection, also called _________. risk estimation Estimation Cost Estimated size estimation risk estimation

34 In Risk impact, Sixty reusable _________ were planned. object oriented
approach top down approach software components all of the above software components

35
_________ and contingency planning assumes that
mitigation efforts have failed and that the risk has become a
reality.

Risk
management management Risk None of the above Risk management

36
Software safety and hazard analysis are _________
assurance activities. software

quality software quality estimation software quality

37 Some software teams do not develop a formal ________
document.

system
response time variability RMMM all of the above RMMM

38
Once RMMM has been documented and the project has
begun, ________and
monitoring steps commence.

 risk mitigation mitigation cost mitigation plan mitigation risk mitigation

39 A “plan-do-check-act” cycle that is applied to the quality
management elements of a ___________.

integrated help
facility system response time software project. all of the above software project.

40 Everyone involved in the software engineering process is
responsible for ________

procedural
abstraction quality stepwise refinement decomposition quality

41 The amount of computing________ and code required by a
program to perform its function.

resources architectural interface design all of the above resources

42
________required to couple one system to another.

Effort top level management software engineer middle level
management Effort

43 The _________ in software development parallels the
history of quality in hardware manufacturing.

quality
assurance Effort data design code design quality assurance

44 The ______ serves as the customer’s in-house representative procedural
design component level design SQA group code design SQA group

45 __________are a quality control activity performed by
software engineers for software engineers graphical Technical reviews text-based all of the above Technical reviews

46 _________ is a quality control function that has one primary
goal is to find errors.

Software
testing testing planning communication Software testing

47 _________ is one of the most disruptive aspects of any
software project. processing step Change flow of control start Change

48 Every software organization wants to improve its
___________ practices processing step software engineering flow of control start software engineering

49 Software engineers address ______ by applying solid
technical methods and measures. quality logical condition flow of control start quality

50 The plan is developed as part of _________ and is reviewed
by all stakeholders. 100 project planning planning plans project planning

51
The ______ identifies, documents, and tracks deviations
from the process and verifies that corrections have been
made.

SQA group condition repetition all of the above SQA group

52 A ________ should apply limited resources in a way that
has the highest likelihood of achieving a high-quality result. sequence condition software team selection software team

53 Statistical ______ reflects a growing trend throughout
industry to become more quantitative about quality. sequence condition quality assurance selection quality assurance

54
Six Sigma is the most widely used strategy for statistical
________ in industry
today.

quality
assurance condition repetition selection quality assurance

55 Data complexity provides an indication of the _______ in
the internal interface box diagram complexity transition diagram decision table complexity

56
The _____ to which two or more classes are similar in terms
of their structure, function, behavior, or purpose is indicated
by this measure.

Process Design
Language degree Program Document

Language
Program Document
Language degree

57 Depth of the _____ is “the maximum length from the node
to the root of the tree” inheritance tree tree cost tree plans inheritance tree

58 The total number of operations that are encapsulated within
the _________ class simplicity ease of editing maintainability class

59 _________are the variables defined for a module can be
defined as data tokens for the module. modularity simplicity Data tokens maintainability Data tokens

60 A variety of_____________ can be computed to determine
the complexity of program control flow. modularity simplicity software metrics maintainability software metrics

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 1/31

UNIT-IV

SYLLABUS

Design Engineering-Design Concepts, Architectural Design Elements, Software

Architecture,Data Design at the Architectural Level and Component Level, Mapping of Data

Flow into Software Architecture, Modeling Component Level Design

Design Engineering

4.1 Design within the Context of Software Engineering

Software design is the last software engineering action within the modeling activity and sets the

stage for construction (code generation and testing).

The flow of information during software design is illustrated in Figure below. The analysis

model, manifested by scenario-based, class-based, flow-oriented and behavioral elements, feed

the design task.

The architectural design defines the relationship between more structural elements of the

software, the architectural styles and design patterns that can be used to achieve the requirements

defined for the system, and the constraints that affect the way in which the architectural design

can be implemented.

The architectural design can be derived from the System Specs, the analysis model, and

interaction of subsystems defined within the analysis model.

The interface design describes how the software communicates with systems that interpolate

with it, and with humans who use it. An interface implies a flow of information (data, and or

control) and a specific type of behavior.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 2/31

.

The component-level design transforms structural elements of the software architecture into a

procedural description of software components

The importance of software design can be stated with a single word – quality. Design is the

place where quality is fostered in software engineering. Design provides us with representations

of software that can be assessed for quality. Design is the only way that we can accurately

translate a customer’s requirements into a finished software product or system.

4.2 Design Process and Design Quality

Software design is an iterative process through which requirements are translated into a

“blueprint” for constructing the software.

Initially, the blueprint depicts a holistic view of software, i.e. the design is represented at a high-

level of abstraction.

Throughout the design process, the quality of the evolving design is assessed with a series of

formal technique reviews or design walkthroughs.

Three characteristics serve as a guide for the evaluation of a good design:

 The design must implement all of the explicit requirements contained in the analysis model,

and it must accommodate all of the implicit requirements desired by the customer.

Analysis Model

use-cases - text

use-case diagrams
activity diagrams

swim lane diagrams

data flow diagrams

control-flow diagrams
processing narratives

f l ow- or i e nt e d

e l e me nt s

be ha v i or a l
e l e me nt s

c l a ss- ba se d

e l e me nt s

sc e na r i o- ba se d

e l e me nt s

class diagrams
analysis packages

CRC models
collaboration diagrams

state diagrams

sequence diagrams
D a t a / Cla ss D e sign

A rc h it e c t u ra l D e sign

In t e rf a c e D e sign

Com pone nt -

Le v e l D e sign

Design Model

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 3/31

 The design must be a readable, understandable guide for those who generate code and for

those who test and subsequently support the software.

 The design should provide a complete picture of the software, addressing the data, functional,

and behavioral domains from an implementation perspective.

Quality Guidelines

In order to evaluate the quality of a design representation, we must establish technical criteria for

good design.

1. A design should exhibit an architecture that:

(1) Has been created using recognizable architectural styles or patterns,

(2) Is composed of components that exhibit good design characteristics, and

(3) Can be implemented in an evolutionary fashion

a. For smaller systems, design can sometimes be developed linearly.

2. A design should be modular; that is, the software should be logically partitioned into

elements or subsystems

3. A design should contain distinct representations of data, architecture, interfaces, and

components.

4. A design should lead to data structures that are appropriate for the classes to be implemented

and are drawn from recognizable data patterns.

5. A design should lead to components that exhibit independent functional characteristics.

6. A design should lead to interfaces that reduce the complexity of connections between

components and with the external environment.

7. A design should be derived using a repeatable method that is driven by information obtained

during software requirements analysis.

8. A design should be represented using a notation that effectively communicates its meaning.

Quality Attributes

Hewlett-Packard developed a set of software quality attributes that has been given the acronym

FURPS. The FURPS quality attributes represent a target for all software design:

 Functionality: is assessed by evaluating the features set and capabilities of the program, the

generality of the functions that are delivered, and the security of the overall system.

 Usability: is assessed by considering human factors, overall aesthetics, consistency, and

documentation.

 Reliability: is evaluated by measuring the frequency and severity of failure, the accuracy of

output results, the mean-time-to-failure, the ability to recover from failure, and the

predictability of the program.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 4/31

 Performance: is measured by processing speed, response time, resource consumption,

throughput, and efficiency.

 Supportability: combines the ability to extend the program extensibility, adaptability,

serviceability  maintainability. In addition, testability, compatibility, configurability, etc.

4.3 Design Concepts

This section discusses many significant design concepts (abstraction, refinement, modularity,

architecture, patterns, refactoring, functional independence, information hiding, and OO design

concepts).

4.3.1 Abstraction

At the highest level of abstraction, a solution is stated in broad terms using the language of the

problem environment. At lower levels of abstraction, a more detailed description of the solution

is provided.

As we move through different levels of abstraction, we work to create procedural and data

abstractions. A procedural abstraction refers to a sequence of instructions that have a specific

and limited function. An example of a procedural abstraction would be the word open for a

door.

A data abstraction is a named collection of data that describes a data object. In the context of

the procedural abstraction open, we can define a data abstraction called door. Like any data

object, the data abstraction for door would encompass a set of attributes that describe the door

(e.g. door type, swing direction, weight).

4.3.2 Architecture

Software architecture alludes to the “overall structure of the software and the ways in which the

structure provides conceptual integrity for a system.”

In its simplest from, architecture is the structure of organization of program components

(modules), the manner in which these components interact, and the structure of data that are used

by the components.

Te goal of software design is to derive an architectural rendering of a system. This rendering

serves as a framework from which detailed design activities are constructed.

A set of architectural patterns enable a software engineer to reuse design-level concepts.

The architectural design can be represented using one or more of a number of different models.

Structural models represent architecture as an organized collection of program components.

Framework models increase the level of design abstraction by attempting to identify repeatable

architectural design frameworks that are encountered in similar types of applications.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 5/31

Dynamic models address the behavioral aspects of the program architecture, indicating how the

structure or system configuration may change as a function of external events.

Process models focus on the design of business or technical process that the system must

accommodate.

Functional models can be used to represent the functional hierarchy of a system.

Architectural design will be discussed in Chapter 10.

4.3.3 Patterns

A design pattern “conveys the essence of a proven design solution to a recurring problem within

a certain context amidst computing concerns.”

A design pattern describes a design structure that solves a particular design problem within a

specific context and amid “forces” that may have an impact on the manner in which the pattern is

applied and used.

The intent of each design pattern is to provide a description that enables a designer to determine:

1. whether the pattern is applicable to the current work,

2. whether the pattern can be reused, and

3. whether the pattern can serve as a guide for developing a similar, but functionally or

structurally different pattern.

4.3.4 Modularity

Software architecture and design patterns embody modularity; that is, software is divided into

separately named and addressable components, sometimes called modules that are integrated to

satisfy problem requirements.

Monolithic software (large program composed of a single module) cannot be easily grasped by a

software engineer. The number of control paths, span of reference, number of variables, and

overall complexity would make understanding close to impossible.

It is the compartmentalization of data and function. It is easier to solve a complex problem when

you break it into manageable pieces. “Divide-and-conquer”

Don’t over-modularize. The simplicity of each small module will be overshadowed by the

complexity of integration “Cost”.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 6/31

4.3.5 Information Hiding

It is about controlled interfaces. Modules should be specified and design so that information

(algorithm and data) contained within a module is inaccessible to other modules that have no

need for such information.

Hiding implies that effective modularity can be achieved by defining by a set of independent

modules that communicate with one another only that information necessary to achieve software

function.

The use of Information Hiding as a design criterion for modular systems provides the greatest

benefits when modifications are required during testing and later, during software maintenance.

Because most data and procedures are hidden from other parts of the software, inadvertent errors

introduced during modifications are less likely to propagate to other location within the software.

4.3.6 Functional Independence

The concept of functional Independence is a direct outgrowth of modularity and the concepts of

abstraction and information hiding.

Design software so that each module addresses a specific sub-function of requirements and has a

simple interface when viewed from other parts of the program structure.

Functional independence is a key to good design, and design is the key to software quality.

Independence is assessed using two qualitative criteria: cohesion and coupling.

Cohesion is an indication of the relative functional strength of a module.

Coupling is an indication of the relative interdependence among modules.

A cohesive module should do just one thing.

Coupling is a qualitative indication of the degree to which a module is connected to other

modules and to the outside world “lowest possible”.

4.3.7 Refinement

It is the elaboration of detail for all abstractions. It is a top down strategy.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 7/31

A program is developed by successfully refining levels of procedural detail.

A hierarchy is developed by decomposing a macroscopic statement of function (a procedural

abstraction) in a stepwise fashion until programming language statements are reached.

We begin with a statement of function or data that is defined at a high level of abstraction.

The statement describes function or information conceptually but provides no information about

the internal workings of the function or the internal structure of the data.

Refinement causes the designer to elaborate on the original statement, providing more and more

detail as each successive refinement (elaboration) occurs.

Abstraction enables a designer to specify procedure and data and yet suppress low-level details.

Refinement helps the designer to reveal low-level details as design progresses.

Refinement causes the designer to elaborate on the original statement, providing more and more

detail as each successive refinement “elaboration” occurs.

4.3.8 Refactoring

It is a reorganization technique that simplifies the design of a component without changing its

function or behavior. When software is re-factored, the existing design is examined for

redundancy, unused design elements, inefficient or unnecessary algorithms, poorly constructed

data structures, or any other design failures that can be corrected to yield a better design.

Data Abstraction

implemented as a data structure

mmaannuuffaaccttuurreerr

ttyyppee

sswwiinngg ddiirreeccttiioonn

ttyyppee

nnuummbbeerr

wweeiigghhtt

ooppeenniinngg mmeecchhaanniissmm

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 8/31

Procedural Abstraction

“The overall structure of the software and the ways in which that structure provides

conceptual integrity for a system.”

 Structural properties. This aspect of the architectural design representation defines the

components of a system (e.g., modules, objects, filters) and the manner in which those

components are packaged and interact with one another. For example, objects are packaged

to encapsulate both data and the processing that manipulates the data and interact via the

invocation of methods

 Extra-functional properties. The architectural design description should address how the

design architecture achieves requirements for performance, capacity, reliability, security,

adaptability, and other system characteristics.

 Families of related systems. The architectural design should draw upon repeatable patterns

that are commonly encountered in the design of families of similar systems. In essence, the

design should have the ability to reuse architectural building blocks.

Patterns

Design Pattern Template

Pattern name—describes the essence of the pattern in a short but expressive name

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 9/31

Intent—describes the pattern and what it does

Also-known-as—lists any synonyms for the pattern

Motivation—provides an example of the problem

Applicability—notes specific design situations in which the pattern is applicable

Structure—describes the classes that are required to implement the pattern

Participants—describes the responsibilities of the classes that are required to implement the

pattern

Collaborations—describes how the participants collaborate to carry out their responsibilities

Consequences—describes the “design forces” that affect the pattern and the potential trade-offs

that must be considered when the pattern is implemented

Related patterns—cross-references related design patterns

Modular Design

Modularity: Trade-offs

What is the "right" number of modules for a specific software design?

easier to build, easier to change, easier to fix ...

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 10/31

Information Hiding

Why Information Hiding?

 Reduces the likelihood of “side effects”

 Limits the global impact of local design decisions

 Emphasizes communication through controlled interfaces

 Discourages the use of global data

 Leads to encapsulation—an attribute of high quality design

 Results in higher quality software

Stepwise Refinement

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 11/31

Functional Independence

Sizing Modules: Two Views

COHESION - the degree to which a
module performs one and only one
function.

COUPLING - the degree to which a
module is "connected" to other
modules in the system.

MODULE

What's
inside??

How big
is it??

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 12/31

Refactoring

 Fowler [FOW99] defines refactoring in the following manner:

 "Refactoring is the process of changing a software system in such a

way that it does not alter the external behavior of the code [design] yet improves its

internal structure.”

 When software is re-factored, the existing design is examined for

 redundancy

 unused design elements

 inefficient or unnecessary algorithms

 poorly constructed or inappropriate data structures,

 or any other design failure that can be corrected to yield a better

design.

Design Concepts

 Entity classes

 Boundary classes

 Controller classes

 Inheritance—all responsibilities of a super-class is immediately inherited by all subclasses

 Messages—stimulate some behavior to occur in the receiving object

 Polymorphism—a characteristic that greatly reduces the effort required to extend the design

4.3.9 Design classes

As the design model evolves, the software team must define a set of design classes that refines

the analysis classes and creates a new set of design classes.

Five different classes’ types are shown below:

1. User Interface classes: define all abstractions that are necessary for HCI.

2. Business domain classes: are often refinements of the analysis classes defined earlier.

The classes identify the attributes and services that are required to implement some

element of the business domain.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 13/31

3. Process classes: implement lower-level business abstractions required to fully manage

the business domain classes.

4. Persistent classes: represent data stores that will persist beyond the execution of the

software.

5. System classes: implement software management and control functions that enable the

system to operate and communicate within its computing environment and with the

outside world.

Inheritance (Example)

 Design options:

 The class can be designed and built from scratch. That is, inheritance is not used.

 The class hierarchy can be searched to determine if a class higher in the hierarchy

(a super-class) contains most of the required attributes and operations. The new

class inherits from the super-class and additions may then be added, as required.

 The class hierarchy can be restructured so that the required attributes and

operations can be inherited by the new class.

 Characteristics of an existing class can be overridden and different versions of

attributes or operations are implemented for the new class.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 14/31

Messages

Polymorphism

Conventional approach …

case of graphtype:

 ifgraphtype = linegraph then DrawLineGraph (data);

 ifgraphtype = piechart then DrawPieChart (data);

 ifgraphtype = histogram then DrawHisto (data);

 ifgraphtype = kiviat then DrawKiviat (data);

end case;

All of the graphs become subclasses of a general class called graph. Using a concept called

overloading [TAY90], each subclass defines an operation called draw. An object can send a

draw message to any one of the objects instantiated from any one of the subclasses. The object

receiving the message will invoke its own draw operation to create the appropriate graph.

:SenderObject

:ReceiverObject

message (<parameters>)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 15/31

Architectural design elements

 The architecture design elements provides us overall view of the system.

 The architectural design element is generally represented as a set of interconnected

subsystem that are derived from analysis packages in the requirement model.

The architecture model is derived from following sources:

 The information about the application domain to built the software.

 Requirement model elements like data flow diagram or analysis classes, relationship and

collaboration between them.

 The architectural style and pattern as per availability.

3. Interface design elements

 The interface design elements for software represents the information flow within it and

out of the system.

 They communicate between the components defined as part of architecture.

Following are the important elements of the interface design:

1. The user interface

2. The external interface to the other systems, networks etc.

3. The internal interface between various components.

4. Component level diagram elements

 The component level design for software is similar to the set of detailed specification of

each room in a house.

 The component level design for the software completely describes the internal details of

the each software component.

 The processing of data structure occurs in a component and an interface which allows all

the component operations.

 In a context of object-oriented software engineering, a component shown in a UML

diagram.

 The UML diagram is used to represent the processing logic.

5. Deployment level design elements

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 16/31

 The deployment level design element shows the software functionality and subsystem

that allocated in the physical computing environment which support the software.

 Following figure shows three computing environment as shown. These are the personal

computer, the CPI server and the Control panel.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 17/31

Software Architecture Introduction

 The concept of software architecture is similar to the architecture of building.

 The architecture is not an operational software.

 The software architecture focuses on the role of software components.

 Software components consist of a simple program module or an object oriented class in

an architectural design.

 The architecture design extended and it consists of the database and the middleware that

allows the configuration of a network of clients and servers.

Importance of software architecture

Following are the reasons for the importance of software architecture.

1. The representation of software architecture allows the communication between all stakeholder

and the developer.

2. The architecture focuses on the early design decisions that impact on all software engineering

work and it is the ultimate success of the system.

3. The software architecture composes a small and intellectually graspable model.

4. This model helps the system for integrating the components using which the components are

work together.

The architectural style

 The architectural style is a transformation and it is applied to the design of an entire

system.

 The main aim of architectural style is to build a structure for all components of the

system.

 An architecture of the system is redefined by using the architectural style.

 An architectural pattern such as architectural style introduces a transformation on the

design of an architecture.

 The software is constructed for computer based system and it shows one of the

architectural style from many of style.

The design categories of architectural styles includes:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 18/31

1. A set of components such as database, computational modules which perform the function

required by the system.

2. A set of connectors that allows the communication, coordination and cooperation between the

components.

3. The constraints which define the integration of components to form the system.

4. Semantic model allows a designer to understand the overall properties of a system by using

analysis of elements.

Architectural design

 The architectural design starts then the developed software is put into the context.

 The information is obtained from the requirement model and other information collect

during the requirement engineering.

Representing the system in context

All the following entities communicates with the target system through the interface that is small

rectangles shown in above figure.

Superordinate system

These system use the target system like a part of some higher-level processing scheme.

Subordinate system
This systems is used by the target system and provide the data mandatory to complete target

system functionality.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 19/31

Peer-level system
These system interact on peer-to-peer basis means the information is consumed by the target

system and the peers.

Actors
These are the entities like people, device which interact with the target system by consuming

information that is mandatory for requisite processing.

Defining Archetype

 An archetype is a class or pattern which represents a core abstraction i.e critical to

implement or design for the target system.

 A small set of archetype is needed to design even the systems are relatively complex.

 The target system consists of archetype that represent the stable elements of the

architecture.

 Archetype is instantiated in many different forms based on the behavior of the system.

 In many cases, the archetype is obtained by examining the analysis of classes defined as

a part of the requirement model.

An Architecture Trade-off Analysis Method (ATAM)

ATAM was developed by the Software Engineering Institute (SEI) which started an iterative

evaluation process for software architecture.

The design analysis activities which are executed iteratively that are as follows:

1. Collect framework

Collect framework developed a set of use cases that represent the system according to user point

of view.

2. Obtained requirement, Constraints, description of the environment.

These types of information are found as a part of requirement engineering and is used to verify

all the stakeholders are addressed properly.

3. Describe the architectural pattern

The architectural patterns are described using an architectural views which are as follows:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 20/31

Module view: This view is for the analysis of assignment work with the components and the

degree in which abstraction or information hiding is achieved

Process view: This view is for the analysis of the software or system performance.

Data flow view: This view analyzes the level and check whether functional requirements are met

to the architecture.

4. Consider the quality attribute in segregation

The quality attributes for architectural design consist of reliability, performance, security,

maintainability, flexibility, testability, portability, re-usability etc.

5. Identify the quality attributes sensitivity

 The sensitivity of quality attributes achieved by making the small changes in the

architecture and find the sensitivity of the quality attribute which affects the performance.

 The attributes affected by the variation in the architecture are known as sensitivity

points.

Data Design at the Architectural Level and Component Level

The data design action translates data defined as part of the analysis model into data

structures at the software component level and. When necessary into a database

architecture at the application level.

a) Data Design at the Architectural Level

The challenge in data design is to extract useful information from this data

environment, particularly when the information desired is cross-functional.

To solve this challenge, the business IT community has developed data mining

techniques, also called knowledge discovery in database (KDD) , that navigate

through existing databases in an attempt to extract appropriate business-level

information. An alternative solution, called a data warehouse, adds an additional

layer to the data architecture.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 21/31

A data warehouse is a separate data environment that is not directly integrated with

day –to-day application but encompasses all data used by a business.

b) Data Design at the Component Level

Data design at the component level focuses on the representation of the data

structures that are directly accessed by one or more software components. We

consider the following set of principles (adapted from for data specification):

1. The systematic analysis principles applied to function and behavior should also be

applied to data.

2. All data structure and the operations to be performed on each should be

identified.

3. A mechanism for defining the content of each data object should be established

and used to define both data and the operation applied it.

4. Low-level design decision should be known only to those modules that must make

direct use of the data contained within the structure.

5. The representation of a data structure should be known only to those modules

that must make direct use of the data contained within the structure.

6. A library of useful data structures and the operations that may be applied to them

should be developed.

7. A software design and programming language should support the specification

and realization of abstract data types.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 22/31

Mapping Data Flow into Software Architecture

This section describes the general process of mapping requirements into software architectures

during the structured design process. The technique described in this chapter is based on
analysis of the data flow diagram discussed in Chapter 8.

An Architectural Design Method

customer requirements

four bedrooms, three baths, lots of glass…

Deriving Program Architecture

Partitioning the Architecture

horizontal” and “vertical” partitioning are required

Horizontal Partitioning

 define separate branches of the module hierarchy for each major function

 use control modules to coordinate communication between functions

function

1

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 23/31

Vertical Partitioning:

Factoring

 design so that decision making and work are stratified
 decision making modules should reside at the top of the architecture

Why Partitioned Architecture?

 results in software that is easier to test

 leads to software that is easier to maintain
 results in propagation of fewer side effects
 results in software that is easier to extend

 objective: to derive a program architecture that is partitioned
 approach:

 the DFD is mapped into a program architecture

 the PSPEC and STD are used to indicate the content of each module

 notation: structure chart

Flow Characteristics

General Mapping Approach

Isolate incoming and outgoing flow boundaries; for transaction flows, isolate the transaction

center.

Working from the boundary outward, mapDFD transforms into corresponding modules.

Add control modules as required.

functio

n 3

function 2

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 24/31

Refine the resultant program structureusing effective modularity concepts.

Factoring

First Level Factoring

data flow model

"Transform" mapping

a
b

c

d e f
g h

i
j

x1

x2 x3 x4

b c

a

d e f g i

h j

typical "worker" modules

typical "decision
making" modules

direction of increasing
decision making

wor

kers decision-

makers main

progr

am controller
input
controller

proce

ssing controller

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 25/31

Second Level Mapping

Transaction Flow

output

c

o

n

tr

o

ll

e

r

Transa

ction

Flow

T

D

C

B
A

A

C

B

Dmapping from the
flow boundary outward

main

control

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 26/31

Refining the Analysis Model

1. Write an English language processing narrative for the level 01 flow model

2. Apply noun/verb parse to isolate processes, data items, store and entities
3. Develop level 02 and 03 flow models
4. Create corresponding data dictionary entries

5. Refine flow models as appropriate

Modeling Component Level Design

Overview

The purpose of component-level design is to define data structures, algorithms, interface

characteristics, and communication mechanisms for each software component identified in the

architectural design. Component-level design occurs after the data and architectural designs are

established. The component-level design represents the software in a way that allows the

designer to review it for correctness and consistency, before it is built. The work product

produced is a design for each software component, represented using graphical, tabular, or text-

based notation. Design walkthroughs are conducted to determine correctness of the data

transformation or control transformation allocated to each component during earlier design steps.

Component Definitions

 Component is a modular, deployable, replaceable part of a system that encapsulates

implementation and exposes a set of interfaces

 Object-oriented view is that component contains a set of collaborating classes

o Each elaborated class includes all attributes and operations relevant to its

implementation

o All interfaces communication and collaboration with other design classes are also

defined

o Analysis classes and infrastructure classes serve as the basis for object-oriented

elaboration

 Traditional view is that a component (or module) reside in the software and serves one of

three roles

o Control components coordinate invocation of all other problem domain components

o Problem domain components implement a function required by the customer

o Infrastructure components are responsible for functions needed to support the

processing required in a domain application

o The analysis model data flow diagram is mapped into a module hierarchy as the

starting point for the component derivation

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 27/31

 Process-Related view emphasizes building systems out of existing components chosen from

a catalog of reusable components as a means of populating the architecture

Class-based Component Design

 Focuses on the elaboration of domain specific analysis classes and the definition of

infrastructure classes

 Detailed description of class attributes, operations, and interfaces is required prior to

beginning construction activities

Class-based Component Design Principles

 Open-Closed Principle (OCP) – class should be open for extension but closed for

modification

 Liskov Substitution Principle (LSP) – subclasses should be substitutable for their base classes

 Dependency Inversion Principle (DIP) – depend on abstractions, do not depend on

concretions

 Interface Segregation Principle (ISP) – many client specific interfaces are better than one

general purpose interface

 Release Reuse Equivalency Principle (REP) – the granule of reuse is the granule of release

 Common Closure Principle (CCP) – classes that change together belong together

 Common Reuse Principle (CRP) – Classes that can’t be used together should not be grouped

together

Component-Level Design Guidelines

 Components

o Establish naming conventions in during architectural modeling

o Architectural component names should have meaning to stakeholders

o Infrastructure component names should reflect implementation specific meanings

o Use of stereotypes may help identify the nature of components

 Interfaces

o Use lollipop representation rather than formal UML box and arrow notation

o For consistency interfaces should flow from the left-hand side of the component box

o Show only the interfaces relevant to the component under construction

 Dependencies and Inheritance

o For improved readability model dependencies from left to right and inheritance from

bottom (derived classes) to top (base classes)

o Component interdependencies should be represented by interfaces rather that

component to component dependencies

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 28/31

Cohesion (lowest to highest)

 Utility cohesion – components grouped within the same category but are otherwise unrelated

 Temporal cohesion – operations are performed to reflect a specific behavior or state

 Procedural cohesion – components grouped to allow one be invoked immediately after the

preceding one was invoked with or without passing data

 Communicational cohesion –operations required same data are grouped in same class

 Sequential cohesion – components grouped to allow input to be passed from first to second

and so on

 Layer cohesion – exhibited by package components when a higher level layer accesses the

services of a lower layer, but lower level layers do not access higher level layer services

 Functional cohesion – module performs one and only one function

Coupling

 Content coupling – occurs when one component surreptitiously modifies internal data in

another component

 Common coupling – occurs when several components make use of a global variable

 Control coupling – occurs when one component passes control flags as arguments to another

 Stamp coupling – occurs when parts of larger data structures are passed between components

 Data coupling – occurs when long strings of arguments are passed between components

 Routine call coupling – occurs when one operator invokes another

 Type use coupling – occurs when one component uses a data type defined in another

 Inclusion or import coupling – occurs when one component imports a package or uses the

content of another

 External coupling – occurs when a components communications or collaborates with

infrastructure components (e.g. database)

Conducting Component-Level Design

1. Identify all design classes that correspond to the problem domain.

2. Identify all design classes that correspond to the infrastructure domain.

3. Elaborate all design classes that are not acquired as reusable components.

a. Specify message details when classes or components collaborate.

b. Identify appropriate interfaces for each component.

c. Elaborate attributes and define data types and data structures required to implement

them.

d. Describe processing flow within each operation in detail.

4. Identify persistent data sources (databases and files) and identify the classes required to

manage them.

5. Develop and elaborate behavioral representations for each class or component.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 29/31

6. Elaborate deployment diagrams to provide additional implementation detail.

7. Refactor every component-level diagram representation and consider alternatives.

WebApp Component-Level Design

 Boundary between content and function often blurred

 WebApp component is defined is either a:

o well-defined cohesive function manipulates content or provides computational or data

processing for an end- user or

o cohesive package of content and functionality that provides the end-user with some

required capability

WebApp Component-Level Content Design

 Focuses on content objects and the manner in which they may be packaged for presentation

to the end-user

 As the WebApp size increases so does the need for formal representations and easy content

reference and manipulation

 For highly dynamic content a clear structural model incorporating content components

should be established

WepApp Component-Level Functional Design

 WebApps provide sophisticated processing functions

o perform dynamic processing to create content and navigational capability

o provide business domain appropriate computation or data processing

o provide database query and access

o establish interfaces with external corporate systems

 WebApp functionality is delivered as a series of components developed in parallel

 During architectural design WebApp content and functionality are combined to create a

functional architecture

 The functional architecture is a representation of the functional domain of the WebApp and

describes how the components interact with each other

Traditional Component-Level Design

 Each block of code has a single entry at the top

 Each block of code has a single exit at the bottom

 Only three control structures are required: sequence, condition (if-then-else), and repetition

(looping)

 Reduces program complexity by enhancing readability, testability, and maintainability

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 30/31

Design Notation

 Graphical

o UML activity diagrams

o Flowcharts – arrows for flow of control, diamonds for decisions, rectangles for processes

 Tabular

o Decision table – subsets of system conditions and actions are associated with each other

to define the rules for processing inputs and events

 Program Design Language (PDL)

o Structured English or pseudocode used to describe processing details

o Fixed syntax with keywords providing for representation of all structured constructs, data

declarations, and module definitions

o Free syntax of natural language for describing processing features

o Data declaration facilities for simple and complex data structures

o Subprogram definition and invocation facilities

Component-Based Development

 CBSE is a process that emphasizes the design and construction of computer-based systems

from a catalog of reusable software components

 CBSE is a time and cost effective

 Requires software engineers to reuse rather than reinvent

 Management can be convinced to incur the additional expense required to create reusable

components by amortizing the cost over multiple projects

 Libraries can be created to make reusable components easy to locate and easy to incorporate

them in new systems

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: IV(Design Engineering) BATCH-2016-2019

Prepared by D.SAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 31/31

Possible Questions

Part – B (2 Mark)

1. Define abstraction.

2. Differentiate between refinement and refactoring

3. Write the difference between transform flow and transaction flow

4. What is transform mapping?

5. Define transaction mapping.

Part – C (6 Mark)

1. Explain in detail the process of data design at

a. Architectural level ii) Component level

2. Write in detail the approach used to design class based components

3. Discuss in detail about the Architectural components of software.

4. Write short notes on

a. Transform mapping ii) Transaction mapping

5. Write short notes on the following design concepts

a. Information hiding ii) Refinement iii) Refactoring

6. Describe in detail the procedure to refine an architecture into components.

7. Write short notes on the following design concepts

a. Abstraction ii) Architecture iii) Modularity

8. Write in detail the approach used to design conventional components

9. Explain in detail about design process and design quality

10. Write short notes on

a. Transform flow ii) Transaction flow

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF COMPUTER SCIENCE

II BSc CS BATCH(2016 - 2019)

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

UNIT-4

S.N
O Questions Opt1 Opt2 Opt3 Opt4 Answer

1 There are __________ major
phases to any design process 2 3 4 5 2

2
Diversification is the
____________ of a repertoire of
alternatives.

component solution acquisition knowledge acquisition

3
During ____________, the
designer chooses and combines
appropriate elements from the

diversification convergence elimination creation convergence

4
________ and __________
combine intuition and judgement
based on experience in building

elimination,
convergence

creation,
convergence acquisition, creation diversification and

convergence
diversification and
convergence

5
__________ can be traced to a
customer’s requirements and at
the same time assessed for quality

design analysis principles testing design

6
The __________ must implement
all of the explicit requirements
contained in the analysis model

principles testing design component design

7
A ___________ should exhibit an
architectural structure that has
been created using recognizable

principles testing component design design

8
A ___________ is composed of
components that exhibit good
design characteristics.

principles testing component design design

9
A ___________ can be
implemented in an evolutionary
fashion thereby facilitating

principles testing component design design

10
A ___________ should be
modular that is the software
should be logically partitioned into

design principles component testing design

11
A ___________ should contain
distinct representations of data,
architecture, interfaces, and

design principles component testing design

12
A ___________ should lead to
data structures that are appropriate
for the objects to be implemented

design principles component testing design

13
. A _____________ should lead
to interfaces that reduce the
complexity of connections

design principles component testing design

14
A ___________ should be
derived using a repeatable method
that is driven by information

principles component design testing design

15
The software __________ process
encourages good design through
the application of fundamental

principles component design testing design

16
The __________ must be a
readable, understandable guide for
those who generate code and for

principles component design testing design

17
The __________ should provide a
complete picture of the software
addressing the data, functional and

principles component design testing design

18
The evolution of software
__________ is a continuing
process that has spanned the past

principles component design testing design

19
Procedural aspects of design
definition evolved into a
philosophy called ____________.

top down
programming

bottom up
programming

structured
programming

object oriented
programming

structured
programming

20 The design process should not
suffer from ___________. analysis tunnel vision conceptual errors integrity tunnel vision

21 The design should be __________
to the analysis model. consistent related traceable relevant traceable

22 The design should not
___________ the wheel. minimize maximize integrate reinvent reinvent

23 The design should ___________
the intellectual distance maximize minimize integrate analyse minimize

24 . The ___________ is represented
at a high level of abstraction specification analysis quality design specification design

specification

25 The design should exhibit
___________ and integration. uniformity analysis quality review uniformity

26
The design should be
____________ to accommodate
change.

reviewed analysed assessed structured structured

27
The design should be
___________ to degrade gently,
even when aberrant data, events,

reviewed analysed assessed structured structured

28 Design is not ___________,
coding is not design coding analysis review event coding

29 Design is not coding, __________
is not design. coding analysis review event coding

30
The design should be __________
for quality as it is being created
not after the fact.

reviewed assessed structured integrated assessed

31
The design should be
___________ to minimize
conceptual errors.

reviewed assessed structured integrated reviewed

32 Software design is both a
_________ and a model. model process data function process

33
__________ is the only way that
we can accurately translate a
customer’s requirements into a

specification design data prototype design

34
The design ___________ is the
equivalent of an architect’s plan
for a house.

analysis process model function model

35
At the highest level of _________,
a solution is stated in broad terms,
using the language of the problem

refinement modularity abstraction continuity abstraction

36
. A __________ is a named
sequence of instructions that has a
specific and limited function.

procedural
abstraction data abstraction control abstraction Process abstraction procedural

abstraction

37
A __________ is a named
collection of data that describes a
data object.

procedural
abstraction data abstraction control abstraction Process abstraction data abstraction

38
_________ implies a program
control mechanism without
specifying internal detail.

procedural
abstraction data abstraction control abstraction Process abstraction control abstraction

39
___________ is used to
coordinate activities in an
operating system.

synchronization
semaphore

control
abstraction data abstraction procedural

abstraction
synchronization
semaphore

40
_________ is a top down design
strategy originally proposed by
Niklaus Wirth.

stepwise
refinement

control
abstraction data abstraction procedural

abstraction
stepwise
refinement

41
The designer’s goal is to produce a
model or representation of a
__________ that will later be built

component entity data raw material component

42
The second phase of any design
process is the gradual
___________ of all but one

acquisition addition elimination creation elimination

43 Design begins with the
__________ model. data requirements specification code requirements

44
Software design methodologies
lack the __________ that are
normally associated with more

depth flexibility quantitative nature all of the above all of the above

45
Software requirements, manifested
by the ___________ models, feed
the design task.

data functional behavioral all of the above all of the above

46
___________ is the place where
quality is fostered in software
engineering

model data design specification design

47
________ provides us with
representations of software that
can be assessed for quality.

design specification data prototype design

48
Procedural aspects of design
definition evolved into a
philosophy called __________.

procedural
programming

object oriented
programming

structured
programming all of the above structured

programming

49
Meyer defines __________
criteria that enable us to evaluate a
design method with respect to its

2 3 4 5 5

50
. If a design method provides a
systematic mechanism for
decomposing the problem into sub

modular
decomposability

modular
composability

modular
understandability modular continuity modular

decomposability

51
If a design method enables
existing (reusable) design
components to be assembled into a

modular
decomposability

modular
composability

modular
understandability modular continuity modular

composability

52
If a module can be understood as a
stand alone unit (without reference
to other modules), it will be easier

modular
decomposability

modular
composability

modular
understandability modular continuity modular

understandability

53
If small changes to the system
requirements result in changes to
individual modules, rather than

modular
decomposability

modular
composability

modular
understandability modular continuity modular continuity

54
If an aberrant condition occurs
within a module and its effects are
constrained within that module,

modular
protection

modular
composability

modular
understandability modular continuity modular protection

55
The aspect of the architectural
design representation defines the
components of a system and the

extra functional
property

structural
property

families of related
systems none of the above structural property

56
____________ represent
architecture as an organized
collection of program components.

dynamic models functional
models framework models structural models structural models

57
____________ increases the level
of design abstraction by
attempting to identity repeatable

framework
models dynamic models process models functional models framework models

58
_________ address the
behavioural aspects of the
program architecture, indicating

framework
models dynamic models process models functional models dynamic models

59
___________ focus on the design
of the business or technical
process that the system must

framework
models dynamic models process models functional models process models

60
_____________ can be used to
represent the functional hierarchy
of a system.

framework
models dynamic models process models functional models functional models

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 1/30

UNIT-V

SYLLABUS

Testing Strategies & Tactics: Software Testing Fundamentals, Strategic Approach to Software

Testing, Test Strategies for Conventional Software, Validation Testing, System testing Black-

Box Testing, White-Box Testing and their type, Basis Path Testing

SOFTWARE TESTING FUNDAMENTALS:

 Testing presents an interesting anomaly for the software engineer. During earlier software

engineering activities, the engineer attempts to build software from an abstract concept to a

tangible product.

 The engineer creates a series of test cases that are intended to "demolish" the software that

has been built.

 In fact, testing is the one step in the software process that could be viewed (psychologically,

at least) as destructive rather than constructive.

 Software engineers are by their nature constructive people.

 Testing requires that the developer discard preconceived notions of the "correctness" of

software just developed and overcome a conflict of interest that occurs when errors are

uncovered.

 Beizer describes this situation effectively when he states: There's a myth that if we were

really good at programming, there would be no bugs to catch. If only we could really

concentrate, if only everyone used structured programming, top down design, decision tables,

if programs were written in SQUISH, if we had the right silver bullets, then there would be

no bugs. So goes the myth. There are bugs, the myth says, because we are bad at what we do;

and if we are bad at it, we should feel guilty about it. Therefore, testing and test case design

is an admission of failure, which instills a goodly dose of guilt.

Testing Objectives

Glen Myers states a number of rules that can serve well as testing objectives:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 2/30

1. Testing is a process of executing a program with the intent of finding an error.

2. A good test case is one that has a high probability of finding an as-yet undiscovered error.

3. A successful test is one that uncovers an as-yet-undiscovered error.

If testing is conducted successfully (according to the objectives stated previously), it will

uncover errors in the software.

Also testing demonstrates that software functions appear to be working according to

specification, that behavioral and performance requirements appear to have been met.

In addition, data collected as testing is conducted provide a good indication of software

reliability and some indication of software quality as a whole.

But testing cannot show the absence of errors and defects, it can show only that software errors

and defects are present.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 3/30

Testing Principles

Before applying methods to design effective test cases, a software engineer must understand the

basic principles that guide software testing. Davis [DAV95] suggests a set of testing principles.

All tests should be traceable to customer requirements.

The objective of software testing is to uncover errors. It follows that the most severe defects

(from the customer’s point of view) are those that cause the program to fail to meet its

requirements.

Tests should be planned long before testing begins.

Test planning can begin as soon as the requirements model is complete.

Detailed definition of test cases can begin as soon as the design model has been solidified.

Therefore, all tests can be planned and designed before any code has been generated.

The Pareto principle applies to software testing.

Pareto principle implies that 80 percent of all errors uncovered during testing will likely be

traceable to 20 percent of all program components. The problem, of course, is to isolate these

suspect components and to thoroughly test them.

Testing should begin “in the small” and progress toward testing “in the large.”

The first tests planned and executed generally focus on individual components. As testing

progresses, focus shifts in an attempt to find errors in integrated clusters of components and

ultimately in the entire system.

Exhaustive testing is not possible.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 4/30

The number of path permutations for even a moderately sized program is exceptionally large.

For this reason, it is impossible to execute every combination of paths during testing. It is

possible, however, to adequately cover program logic and to ensure that all conditions in the

component-level design have been exercised.

To be most effective, testing should be conducted by an independent third party.

Testability

 Software testability is simply how easily a computer program can be tested.

 Since testing is so profoundly difficult, it pays to know what can be done to streamline it.

 Sometimes programmers are willing to do things that will help the testing process and a

checklist of possible design points, features, etc., can be useful in negotiating with them.

 “Testability” occurs as a result of good design. Data design, architecture, interfaces, and

component-level detail can either facilitate testing or make it difficult.

The checklist that follows provides a set of characteristics that lead to testable software.

Operability. "The better it works, the more efficiently it can be tested."

• The system has few bugs (bugs add analysis and reporting overhead to the test process).

• No bugs block the execution of tests.

• The product evolves in functional stages (allows simultaneous development and testing).

Observability. "What you see is what you test."

• Distinct output is generated for each input.

• System states and variables are visible or queriable during execution.

• Past system states and variables are visible or queriable (e.g., transaction logs).

• All factors affecting the output are visible.

• Incorrect output is easily identified.

• Internal errors are automatically detected through self-testing mechanisms.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 5/30

• Internal errors are automatically reported.

• Source code is accessible.

Controllability. "The better we can control the software, the more the testing can be automated

and optimized."

• All possible outputs can be generated through some combination of input.

• All code is executable through some combination of input.

• Software and hardware states and variables can be controlled directly by the test engineer.

• Input and output formats are consistent and structured.

• Tests can be conveniently specified, automated, and reproduced.

Decomposability. "By controlling the scope of testing, we can more quickly isolate problems

and perform smarter retesting."

• The software system is built from independent modules.

• Software modules can be tested independently.

Simplicity. "The less there is to test, the more quickly we can test it."

• Functional simplicity (e.g., the feature set is the minimum necessary to meet requirements).

• Structural simplicity (e.g., architecture is modularized to limit the propagation of faults).

• Code simplicity (e.g., a coding standard is adopted for ease of inspection and maintenance).

Stability. "The fewer the changes, the fewer the disruptions to testing."

• Changes to the software are infrequent.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 6/30

• Changes to the software are controlled.

• Changes to the software do not invalidate existing tests.

• The software recovers well from failures.

Understandability. "The more information we have, the smarter we will test."

• The design is well understood.

• Dependencies between internal, external, and shared components are well understood.

• Changes to the design are communicated.

• Technical documentation is instantly accessible.

• Technical documentation is well organized.

• Technical documentation is specific and detailed.

• Technical documentation is accurate.

Kaner, Falk, and Nguyen suggest the following attributes of a “good” test:

1. A good test has a high probability of finding an error.

 To achieve this goal, the tester must understand the software and attempt to develop a

mental picture of how the software might fail.

 Ideally, the classes of failure are probed. For example, one class of potential failure in

a GUI (graphical user interface) is a failure to recognize proper mouse position.

 A set of tests would be designed to exercise the mouse in an attempt to demonstrate

an error in mouse position recognition.

2. A good test is not redundant.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 7/30

 Testing time and resources are limited. There is no point in conducting a test that has

the same purpose as another test. Every test should have a different purpose.

3. A good test should be “best of breed”.

 In a group of tests that have a similar intent, time and resource limitations may

mitigate toward the execution of only a subset of these tests.

 In such cases, the test that has the highest likelihood of uncovering a whole class of

errors should be used.

4. A good test should be neither too simple nor too complex.

 Although it is sometimes possible to combine a series of tests into one test case, the

possible side effects associated with this approach may mask errors.

 In general, each test should be executed separately.

A STRATEGIC APPROACH TO SOFTWARE TESTING

Testing is a set of activities that can be planned in advance and conducted systematically. For

this reason a template for software testing—a set of steps into which we can place specific test-

case design techniques and testing methods—should be defined for the software process.

A strategy for software testing must accommodate low-level tests that are necessary to verify that

a small source code segment has been correctly implemented as well as high-level tests that

validate major system functions against customer requirements. A strategy should provide

guidance for the practitioner and a set of milestones for the manager. Because the steps of the

test strategy

occur at a time when deadline pressure begins to rise, progress must be measurable and problems

should surface as early as possible.

Characteristics:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 8/30

 To perform effective testing, you should conduct effective technical reviews. By doing this,

many errors will be eliminated before testing commences.

 Testing begins at the component level and works “outward” toward the integration of the entire

computer-based system.

 Different testing techniques are appropriate for different software engineering approaches and at

different points in time.

 Testing is conducted by the developer of the software and (for large projects) an independent test

group.

 Testing and debugging are different activities, but debugging must be accommodated in any

testing strategy.

TEST STRATEGIES FOR CONVENTIONAL SOFTWARE

VALIDATION TESTING

Validation testing begins at the culmination of integration testing, when individual components

have been exercised, the software is completely assembled as a package, and interfacing errors

have been uncovered and corrected. At the validation or system level, the distinction between

different software categories disappears. Testing focuses on user-visible actions and user-

recognizable output from the system.

Validation can be defined in many ways, but a simple (albeit harsh) definition is that validation

succeeds when software functions in a manner that can be reasonably expected by the customer.

At this point a battle-hardened software developer might protest: “Who or what is the arbiter of

reasonable expectations?” If a Software Requirements Specification has been developed, it

describes all user-visible attributes of the software and contains a Validation Criteria section that

forms the basis for a validation-testing approach.

i) Validation-Test Criteria

Software validation is achieved through a series of tests that demonstrate conformity with

requirements. A test plan outlines the classes of tests to be conducted, and a test procedure

defines specific test cases that are designed to ensure that all functional requirements are

satisfied, all behavioral characteristics are achieved, all content is accurate and properly

presented, all performance requirements are attained, documentation is correct, and usability and

other requirements are met (e.g., transportability, compatibility, error recovery, maintainability).

If a deviation from specification is uncovered, a deficiency list is created. A method for resolving

deficiencies (acceptable to stakeholders) must be established.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 9/30

ii) Configuration Review

An important element of the validation process is a configuration review. The intent of the

review is to ensure that all elements of the software configuration have been properly developed,

are cataloged, and have the necessary detail to bolster the support activities. The configuration

review, sometimes called an audit.

ii) Alpha and Beta Testing

It is virtually impossible for a software developer to foresee how the customerwill really use a

program. Instructions for use may be misinterpreted; strange combinations of data may be used;

output that seemed clear to the tester may be unintelligible to a user in the field. When custom

software is built for one customer, a series of acceptance tests are conducted to enable the

customer to validate all requirements. Conducted by the end user rather than software engineers,

an acceptance test can range from an informal “test drive” to a planned and systematically

executed series of tests. In fact, acceptance testing can be conducted over a period of weeks or

months, thereby uncovering cumulative errors that might degrade the system over time. If

software is developed as a product to be used by many customers, it is impractical to perform

formal acceptance tests with each one. Most softwareLike all other testing steps, validation tries

to uncover errors, but the focus is at the requirements level—on things that will be immediately

apparent to the end user. product builders use a process called alpha and beta testing to uncover

errors that only the end user seems able to find.

The alpha test is conducted at the developer’s site by a representative group of end users. The

software is used in a natural setting with the developer “looking over the shoulder” of the users

and recording errors and usage problems. Alpha tests are conducted in a controlled environment.

The beta test is conducted at one or more end-user sites. Unlike alpha testing, the developer

generally is not present. Therefore, the beta test is a “live” application of the software in an

environment that cannot be controlled by the developer. The customer records all problems (real

or imagined) that are encountered during beta testing and reports these to the developer at regular

intervals. As a result of problems reported during beta tests, you make modifications and then

prepare for release of the software product to the entire customer base. A variation on beta

testing, called customer acceptance testing, is sometimes performed when custom software is

delivered to a customer under contract.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 10/30

The customer performs a series of specific tests in an attempt to uncover errors before accepting

the software from the developer. In some cases (e.g., a major corporate or governmental system)

acceptance testing can be very formal and encompass many days or even weeks of testing.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 11/30

SYSTEM TESTING

At the beginning of this book, we stressed the fact that software is only one element of a larger

computer-based system. Ultimately, software is incorporated with other system elements (e.g.,

hardware, people, information), and a series of system integration and validation tests are

conducted. These tests fall outside the scope of the software process and are not conducted solely

by software engineers. However, steps taken during software design and testing can greatly

improve the probability of successful software integration in the larger system.

A classic system-testing problem is “finger pointing.” This occurs when an error is uncovered,

and the developers of different system elements blame each other for the problem. Rather than

indulging in such nonsense, you should anticipate potential interfacing problems and (1) design

error-handling paths that test all information coming from other elements of the system, (2)

conduct a series of tests that simulate bad data or other potential errors at the software interface,

(3) record the results of tests to use as “evidence” if finger pointing does occur, and (4)

participate

in planning and design of system tests to ensure that software is adequately tested.

i) Recovery Testing

Many computer-based systems must recover from faults and resume processing with little or no

downtime. In some cases, a system must be fault tolerant; that is, processing faults must not

cause overall system function to cease. In other cases, a system failure must be corrected within a

specified period of time or severe economic damage will occur. Recovery testing is a system test

that forces the software to fail in a variety of ways and verifies that recovery is properly

performed. If recovery is automatic (performed by the system itself), reinitialization, check

pointing mechanisms, data recovery, and restart are evaluated for correctness. If recovery

requires human intervention, the mean-time-to-repair (MTTR) is evaluated to determine whether

it is within acceptable limits.

ii) Security Testing

Any computer-based system that manages sensitive information or causes actions that can

improperly harm (or benefit) individuals is a target for improper or illegal penetration.

Penetration spans a broad range of activities: hackers who attempt to penetrate systems for sport,

disgruntled employees who attempt to penetrate for revenge, dishonest individuals who attempt

to penetrate for illicit personal gain. Security testing attempts to verify that protection

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 12/30

mechanisms built into a system will, in fact, protect it from improper penetration. “The system’s

security must, of course, be tested for invulnerability from frontal attack—but must also be tested

for invulnerability from flank or rear attack.” Given enough time and resources, good security

testing will ultimately penetrate a system. The role of the system designer is to make penetration

cost more

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 13/30

WHITE-BOX TESTING

White-box testing, called glass-box testing is a test case design method that uses the control

structure of the procedural design to derive test cases.

Using white-box testing methods, the software engineer can derive test cases that

1. guarantee that all independent paths within a module have been exercised at least once,

2. exercise all logical decisions on their true and false sides,

3. execute all loops at their boundaries and within their operational bounds, and

4. exercise internal data structures to ensure their validity.

"Why spend time and energy worrying about (and testing) logical minutiae when we might better

expend effort ensuring that program requirements have been met?" or “Why don't we spend all

of our energy on black-box tests?”

The answer is :

Logic errors and incorrect assumptions are inversely proportional to the probability that a

program path will be executed. Errors tend to creep into our work when we design and

implement function, conditions, or controls that are out of the mainstream. Everyday processing

tends to be well understood (and well scrutinized), while "special case" processing tends to fall

into the cracks.

We often believe that a logical path is not likely to be executed when, in fact, it may be

executed on a regular basis. The logical flow of a program is sometimes counterintuitive,

meaning that our unconscious assumptions about flow of control and data may lead us to make

design errors that are uncovered only once path testing commences.

Typographical errors are random. When a program is translated into programming language

source code, it is likely that some typing errors will occur. Many will be uncovered by syntax

and type checking mechanisms, but others may go undetected until testing begins. It is as likely

that a typo will exist on an obscure logical path as on a mainstream path.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 14/30

Each of these reasons provides an argument for conducting white-box tests. Black-box testing,

no matter how thorough, may miss the kinds of errors noted here. White-box testing is far more

likely to uncover them.

BASIS PATH TESTING

Basis path testing is a white-box testing technique first proposed by Tom McCabe in 1976.

The basis path method enables the test case designer to derive a logical complexity measure of a

procedural design and use this measure as a guide for defining a basis set of execution paths.

Test cases derived to exercise the basis set are guaranteed to execute every statement in the

program at least one time during testing.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 15/30

Flow Graph Notation

The flow graph depicts logical control flow using the notation illustrated in Fig 5.1.

Flow graph notation

Each structured construct has a corresponding flow graph symbol. To illustrate the use of a flow

graph, we consider the procedural design representation in Fig 5.2A. Here, a flowchart is used to

depict program control structure.

Flowchart, (A) and flow graph (B)

 Fig maps the flowchart into a corresponding flow graph (assuming that no compound

conditions are contained in the decision diamonds of the flowchart).

 Referring to Fig, each circle, called a flow graph node, represents one or more procedural

statements.

 A sequence of process boxes and a decision diamond can map into a single node.

 The arrows on the flow graph, called edges or links, represent flow of control and are

analogous to flowchart arrows.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 16/30

 An edge must terminate at a node, even if the node does not represent any procedural

statements (e.g., see the symbol for the if-then-else construct).

 Areas bounded by edges and nodes are called regions. When counting regions, we include

the area outside the graph as a region.4

 When compound conditions are encountered in a procedural design, the generation of a flow

graph becomes slightly more complicated.

 A compound condition occurs when one or more Boolean operators (logical OR, AND,

NAND, NOR) is present in a conditional statement.

 Referring to Fig 5.3, the PDL segment translates into the flow graph shown.

 Note: A separate node is created for each of the conditions a and b in the statement IF a OR

b. Each node that contains a condition is called a predicate node and is characterized by two or

more edges emanating from it.

Fig 5.3 Compound logic

Cyclomatic Complexity

Cyclomatic complexity is software metric that provides a quantitative measure of the

logical complexity of a program.

Cyclomatic complexity has a foundation in graph theory and provides us with extremely useful

software metric.

Cyclomatic complexity is defined by the number of independent paths in the basis set of a

program and provides us with an upper bound for the number of tests that must be conducted to

ensure that all statements have been executed at least once.

An independent path is any path through the program that introduces at least one new set of

processing statements or a new condition. When stated in terms of a flow graph, an independent

path must move along at least one edge that has not been traversed before the path is defined.

For example, a set of independent paths for the flow graph illustrated in Fig 5.2B is

path 1: 1-11

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 17/30

path 2: 1-2-3-4-5-10-1-11

path 3: 1-2-3-6-8-9-10-1-11

path 4: 1-2-3-6-7-9-10-1-11

Note:Each new path introduces a new edge.

The path 1-2-3-4-5-10-1-2-3-6-8-9-10-1-11 is not considered to be an independent path because

it is simply a combination of already specified paths and does not traverse any new edges.

Paths 1, 2, 3, and 4 constitute a basis set for the flow graph in Fig 5.2B. That is, if tests can be

designed to force execution of these paths (a basis set), every statement in the program will have

been guaranteed to be executed at least one time and every condition will have been executed on

its true and false sides.

Note: The basis set is not unique. In fact, a number of different basis sets can be derived for a

given procedural design.

How do we know how many paths to look for? The computation of cyclomatic complexity

provides the answer.

Complexity is computed in one of three ways:

1. The number of regions of the flow graph corresponds to the cyclomatic complexity.

2. Cyclomatic complexity, V(G), for a flow graph, G, is defined as V(G) = E - N + 2

where E is the number of flow graph edges, N is the number of flow graph nodes.

3. Cyclomatic complexity, V(G), for a flow graph, G, is also defined as V(G) = P +1 where

P is the number of predicate nodes contained in the flow graph G.

The Cyclomatic complexity of the flow graph in Fig 5.2B, can be computed using each of the

algorithms just noted:

1. The flow graph has four regions.

2. V(G) = 11 edges - 9 nodes + 2 = 4.

3. V(G) = 3 predicate nodes + 1 = 4.

Therefore, the cyclomatic complexity of the flow graph in Figure 17.2B is 4.

Important: the value for V(G) provides us with an upper bound for the number of independent

paths that form the basis set and, by implication, an upper bound on the number of tests that must

be designed and executed to guarantee coverage of all program statements.

CONTROL STRUCTURE TESTING

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 18/30

The basis path testing technique is one of a number of techniques for control structure testing.

Other variations on control structure testing are discussed. These broaden testing coverage and

improve quality of white-box testing.

Condition Testing

Condition testing is a test case design method that exercises the logical conditions contained in

a program module.

 A simple condition is a Boolean variable or a relational expression, possibly preceded with one

NOT (¬) operator.

A relational expression takes the form E1 <relational-operator> E2 where E1 and E2 are

arithmetic expressions and <relational-operator> is one of the following: <, ≤, =, ≠ (nonequality),

>, or ≥.

A compound condition is composed of two or more simple conditions, Boolean operators, and

parentheses. We assume that Boolean operators allowed in a compound condition include OR (|),

AND (&) and NOT (¬).

A condition without relational expressions is referred to as a Boolean expression. Therefore, the

possible types of elements in a condition include a Boolean operator, a Boolean variable, a pair

of Boolean parentheses (surrounding a simple or compound condition), a relational operator, or

an arithmetic expression.

If a condition is incorrect, then at least one component of the condition is incorrect. Therefore,

types of errors in a condition include the following:

o Boolean operator error (incorrect/missing/extra Boolean operators).

o Boolean variable error.

o Boolean parenthesis error.

o Relational operator error.

o Arithmetic expression error.

The condition testing method focuses on testing each condition in the program.

Condition testing strategies have two advantages.

1. Measurement of test coverage of a condition is simple.

2. Test coverage of conditions in a program provides guidance for the generation of

additional tests for the program.

The purpose of condition testing is to detect not only errors in the conditions of a program but

also other errors in the program.

A number of condition testing strategies have been proposed.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 19/30

Branch testing is probably the simplest condition testing strategy. For a compound condition C,

the true and false branches of C and every simple condition in C need to be executed at least

once.

Domain testing requires three or four tests to be derived for a relational expression. For a

relational expression of the form E1 <relational-operator> E2 three tests are required to make

the value of E1 greater than, equal to, or less than that of E2. If <relational-operator> is incorrect

and E1 and E2 are correct, then these three tests guarantee the detection of the relational operator

error. To detect errors in E1 and E2, a test that makes the value of E1 greater or less than that of

E2 should make the difference between these two values as small as possible.

Data Flow Testing

The data flow testing method selects test paths of a program according to the locations of

definitions and uses of variables in the program.

To illustrate the data flow testing approach, assume that each statement in a program is assigned

a unique statement number and that each function does not modify its parameters or global

variables.

For a statement with S as its statement number,

DEF(S) = {X | statement S contains a definition of X}

USE(S) = {X | statement S contains a use of X}

If statement S is an if or loop statement, its DEF set is empty and its USE set is based on the

condition of statement S. The definition of variable X at statement S is said to be live at

statement S' if there exists a path from statement S to statement S' that contains no other

definition of X.

A definition-use (DU) chain of variable X is of the form [X, S, S'], where S and S' are statement

numbers, X is in DEF(S) and USE(S'), and the definition of X in statement S is live at statement

S'.

Data flow testing strategies are useful for selecting test paths of a program containing nested if

and loop statements. To illustrate this, consider the application of DU testing to select test paths

for the PDL that follows:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 20/30

proc x

B1;

do while C1

if C2

then

if C4

then B4;

else B5;

endif;

else

if C3

then B2;

else B3;

endif;

endif;

enddo;

B6;

end proc;

To apply the DU testing strategy to select test paths of the control flow diagram, we need to

know the definitions and uses of variables in each condition or block in the PDL.

Assume that variable X is defined in the last statement of blocks B1, B2, B3, B4, and B5 and is

used in the first statement of blocks B2, B3, B4, B5, and B6. The DU testing strategy requires an

execution of the shortest path from each of Bi, 0 < i ≤ 5, to each of Bj, 1 < j ≤ 6. Although there

are 25 DU chains of variable X, we need only five paths to cover these DU chains. The reason is

that five paths are needed to cover the DU chain of X from Bi, 0 < i ≤ 5, to B6 and other DU

chains can be covered by making these five paths contain iterations of the loop.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 21/30

Since the statements in a program are related to each other according to the definitions and uses

of variables, the data flow testing approach is effective for error detection.

However, the problems of measuring test coverage and selecting test paths for data flow testing

are more difficult than the corresponding problems for condition testing.

Loop Testing

Loops are the cornerstone for the vast majority of all algorithms implemented in software.

Loop testing is a white-box testing technique that focuses exclusively on the validity of loop

constructs.

Four different classes of loops can be defined: simple loops, concatenated loops, nested loops,

and unstructured loops (Fig).

Simple loops.

The following set of tests can be applied to simple loops, where n is the maximum number of

allowable passes through the loop.

1. Skip the loop entirely.

2. Only one pass through the loop.

3. Two passes through the loop.

4. m passes through the loop where m < n.

5. n -1, n, n + 1 passes through the loop.

Nested loops.

If we were to extend the test approach for simple loops to nested loops, the number of possible

tests would grow geometrically as the level of nesting increases.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 22/30

Beizer suggests an approach that will help to reduce the number of tests:

1. Start at the innermost loop. Set all other loops to minimum values.

2. Conduct simple loop tests for the innermost loop while holding the outer loops at their

minimum iteration parameter (e.g., loop counter) values. Add other tests for out-of-range or

excluded values.

3. Work outward, conducting tests for the next loop, but keeping all other outer loops at

minimum values and other nested loops to "typical" values.

4. Continue until all loops have been tested.

Concatenated loops.

Concatenated loops can be tested using the approach defined for simple loops, if each of the

loops is independent of the other. However, if two loops are concatenated and the loop counter

for loop 1 is used as the initial value for loop 2, then the loops are not independent. When the

loops are not independent, the approach applied to nested loops is recommended.

Unstructured loops.

Whenever possible, this class of loops should be redesigned to reflect the use of the structured

programming constructs.

Fig Classes of loops

BLACK-BOX TESTING

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 23/30

Black-box testing, also called behavioral testing, focuses on the functional requirements of the

software.

That is, black-box testing enables the software engineer to derive sets of input conditions that

will fully exercise all functional requirements for a program. Black-box testing is not an

alternative to white-box techniques.

Rather, it is a complementary approach that is likely to uncover a different class of errors than

white-box methods.

Black-box testing attempts to find errors in the following categories:

1. Incorrect or missing functions

2. Interface errors

3. Errors in data structures or external data base access,

4. Behavior or performance errors, and

5. Initialization and termination errors.

Unlike white-box testing, which is performed early in the testing process, black-box testing tends

to be applied during later stages of testing.

Black-box testing purposely disregards control structure, attention is focused on the information

domain.

Tests are designed to answer the following questions:

• How is functional validity tested?

• How is system behavior and performance tested?

• What classes of input will make good test cases?

• Is the system particularly sensitive to certain input values?

• How are the boundaries of a data class isolated?

• What data rates and data volume can the system tolerate?

• What effect will specific combinations of data have on system operation?

Black-box techniques, we derive a set of test cases that satisfy the following criteria:

1. test cases that reduce, by a count that is greater than one, the number of additional test

cases that must be designed to achieve reasonable testing and

2. test cases that tell us something about the presence or absence of classes of errors, rather

than an error associated only with the specific test at hand.

Graph-Based Testing Methods

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 24/30

The first step in black-box testing is to understand the objects that are modeled in software and

the relationships that connect these objects.

Next step is to define a series of tests that verify “all objects have the expected relationship to

one another”.

To accomplish these steps, the software engineer begins by creating a graph—a collection of

nodes that represent objects; links that represent the relationships between objects; node weights

that describe the properties of a node (e.g., a specific data value or state behavior); and link

weights that describe some characteristic of a link.

Fig (A) Graph notation (B) Simple example

The symbolic representation of a graph is shown in Fig A.

Nodes are represented as circles connected by links that take a number of different forms. A

directed link (represented by an arrow) indicates that a relationship moves in only one direction.

A bidirectional link, called a symmetric link, implies that the relationship applies in both

directions. Parallel links are used when a number of different relationships are established

between graph nodes.

Eg. consider a portion of a graph for a word-processing application (Fig B) where

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 25/30

Object #1 = new file menu select

Object #2 = document window

Object #3 = document text

Referring to the figure, a menu select on new file generates a document window.

The node weight of document window provides a list of the window attributes that are to be

expected when the window is generated.

The link weight indicates that the window must be generated in less than 1.0 second.

An undirected link establishes a symmetric relationship between the new file menu select and

document text, and parallel links indicate relationships between document window and document

text.

In reality, a far more detailed graph would have to be generated as a precursor to test case design.

The software engineer then derives test cases by traversing the graph and covering each of the

relationships shown. These test cases are designed in an attempt to find errors in any of the

relationships.

Beizer describes a number of behavioral testing methods that can make use of graphs:

Transaction flow modeling. The nodes represent steps in some transaction (e.g., the steps

required to make an airline reservation using an on-line service), and the links represent the

logical connection between steps (e.g., flight. information. input is followed by

validation/availability. processing).

Finite state modeling. The nodes represent different user observable states of the software (e.g.,

each of the “screens” that appear as an order entry clerk takes a phone order), and the links

represent the transitions that occur to move from state to state (e.g., order-information is verified

during inventory-availability look-up and is followed by customer-billing-information input).

The state transition diagram can be used to assist in creating graphs of this type.

Data flow modeling. The nodes are data objects and the links are the transformations that occur

to translate one data object into another. For example, the node FICA.tax.withheld (FTW) is

computed from gross.wages (GW) using the relationship, FTW = 0.62 - GW.

Timing modeling. The nodes are program objects and the links are the sequential connections

between those objects. Link weights are used to specify the required execution times as the

program executes.

Graph-based testing begins with the definition of all nodes and node weights. That is, objects and

attributes are identified. The data model can be used as a starting point, but it is important to note

that many nodes may be program objects (not explicitly represented in the data model). To

provide an indication of the start and stop points for the graph, it is useful to define entry and exit

nodes.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 26/30

Once nodes have been identified, links and link weights should be established.

In general, links should be named, although links that represent control flow between program

objects need not be named.

Each relationship is studied separately so that test cases can be derived.

The transitivity of sequential relationships is studied to determine how the impact of

relationships propagates across objects defined in a graph. Transitivity can be illustrated by

considering three objects, X, Y, and Z. Consider the following relationships:

X is required to compute Y

Y is required to compute Z

Therefore, a transitive relationship has been established between X and Z:

X is required to compute Z

Based on this transitive relationship, tests to find errors in the calculation of Z must consider a

variety of values for both X and Y.

The symmetry of a relationship (graph link) is also an important guide to the design of test cases.

As test case design begins, the first objective is to achieve node coverage. By this we mean that

tests should be designed to demonstrate that no nodes have been inadvertently omitted and that

node weights (object attributes) are correct.

Next, link coverage is addressed. Each relationship is tested based on its properties. For example,

a symmetric relationship is tested to demonstrate that it is, in fact, bidirectional. A transitive

relationship is tested to demonstrate that transitivity is present.

A reflexive relationship is tested to ensure that a null loop is present. When link weights have

been specified, tests are devised to demonstrate that these weights are valid. Finally, loop testing

is invoked

Equivalence Partitioning

Equivalence partitioning is a black-box testing method that divides the input domain of a

program into classes of data from which test cases can be derived.

An ideal test case single-handedly uncovers a class of errors (e.g., incorrect processing of all

character data) that might otherwise require many cases to be executed before the general error is

observed.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 27/30

Equivalence partitioning strives to define a test case that uncovers classes of errors, thereby

reducing the total number of test cases that must be developed.

Test case design for equivalence partitioning is based on an evaluation of equivalence classes for

an input condition.

An equivalence class represents a set of valid or invalid states for input conditions. Typically, an

input condition is either a specific numeric value, a range of values, a set of related values, or a

Boolean condition.

Equivalence classes may be defined according to the following guidelines:

1. If an input condition specifies a range, one valid and two invalid equivalence classes are

defined.

2. If an input condition requires a specific value, one valid and two invalid equivalence classes

are defined.

3. If an input condition specifies a member of a set, one valid and one invalid equivalence class

are defined.

4. If an input condition is Boolean, one valid and one invalid class are defined.

Example, consider data maintained as part of an automated banking application.

The user can access the bank using a personal computer, provide a six-digit password, and

follow with a series of typed commands that trigger various banking functions. During the log-on

sequence, the software supplied for the banking application accepts data in the form

area code—blank or three-digit number

prefix—three-digit number not beginning with 0 or 1

suffix—four-digit number

password—six digit alphanumeric string

commands—check, deposit, bill pay, and the like

The input conditions associated with each data element for the banking application can be

specified as

area code: Input condition, Boolean—the area code may or may not be present.

Input condition, range—values defined between 200 and 999, with specific exceptions.

prefix: Input condition, range—specified value >200

Input condition, value—four-digit length

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 28/30

password: Input condition, Boolean—a password may or may not be present.

Input condition, value—six-character string.

command: Input condition, set—containing commands noted previously.

Applying the guidelines for the derivation of equivalence classes, test cases for each input

domain data item can be developed and executed. Test cases are selected so that the largest

number of attributes of an equivalence class are exercised at once.

Boundary Value Analysis

Boundary value analysis leads to a selection of test cases that exercise bounding values.

Boundary value analysis is a test case design technique that complements equivalence

partitioning.

Rather than selecting any element of an equivalence class, BVA leads to the selection of test

cases at the "edges" of the class. Rather than focusing solely on input conditions, BVA derives

test cases from the output domain as well.

Guidelines for BVA are similar in many respects to those provided for equivalence partitioning:

1. If an input condition specifies a range bounded by values a and b, test cases should be

designed with values a and b and just above and just below a and b.

2. If an input condition specifies a number of values, test cases should be developed that

exercise the minimum and maximum numbers.

3. Apply guidelines 1 and 2 to output conditions.

4. If internal program data structures have prescribed boundaries (e.g., an array has a

defined limit of 100 entries), be certain to design a test case to exercise the data structure at its

boundary.

By applying these guidelines, boundary testing will be more complete, thereby having a higher

likelihood for error detection.

Comparison Testing

There are some situations (e.g., aircraft avionics, automobile braking systems) in which the

reliability of software is absolutely critical.

 In such applications redundant hardware and software are often used to minimize the possibility

of error.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 29/30

When redundant software is developed, separate software engineering teams develop

independent versions of an application using the same specification.

In such situations, each version can be tested with the same test data to ensure that all provide

identical output. Then all versions are executed in parallel with real-time comparison of results to

ensure consistency.

Researchers have suggested that independent versions of software be developed for critical

applications, even when only a single version will be used in the delivered computer-based

system.

 These independent versions form the basis of a black-box testing technique called comparison

testing or back-to-back testing.

When multiple implementations of the same specification have been produced, test cases

designed using other black-box techniques (e.g., equivalence partitioning) are provided as input

to each version of the software.

If the output from each version is the same, it is assumed that all implementations are correct. If

the output is different, each of the applications is investigated to determine if a defect in one or

more versions is responsible for the difference. In most cases, the comparison of outputs can be

performed by an automated tool.

Comparison testing is not foolproof. If the specification from which all versions have been

developed is in error, all versions will likely reflect the error. In addition, if each of the

independent versions produces identical but incorrect results, condition testing will fail to detect

the error.

A geometric view of test cases

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 30/30

Orthogonal Array Testing

There are many applications in which the input domain is relatively limited. That is, the number

of input parameters is small and the values that each of the parameters may take are clearly

bounded. When these numbers are very small, it is possible to consider every input permutation

and exhaustively test processing of the input domain.

However, as the number of input values grows and the number of discrete values for each data

item increases, exhaustive testing become impractical or impossible.

Orthogonal array testing can be applied to problems in which the input domain is relatively small

but too large to accommodate exhaustive testing.

The orthogonal array testing method is particularly useful in finding errors associated with

region faults—an error category associated with faulty logic within a software component.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC CS COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 16CSU402 UNIT: V(Testing Strategies & Tactics) BATCH-2016-2019

Prepared by : DSAMPATHKUMAR, S.JOYCE, Asst Prof, Department of CS, CA & IT, KAHE Page 31/30

PART A(Online)

PART B (2 Marks)
1. Define abstraction.
2. What do you mean by an error?
3. Differentiate between refinement and refactoring
4. Compare black box and white box testing
5. Write the difference between transform flow and transaction flow
6. List the different types of loops in testing
7. What is transform mapping?
8. What is validation testing?
9. Define transaction mapping.
10. What is the use of system testing?

PART C (6 Marks)
1. Explain Graph based testing methods in Black Box testing.
2. Demonstrate Flow graph notation and Independent program path in Basis path
testing.
3. Demonstrate in detail about Validation testing
4. Explain in detail about Equivalence Partitioning
5. Discuss about Boundary value analysis.
6. Write in detail about Software Testing Fundamentals.
7.Illustrate in detail about System testing.
8. Write short notes on condition testing.
9. Illustrate the use of dataflow testing in software engineering process.
10. Discuss in detail about orthogonal array testing.
11. Illustrate loop testing and its types.

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF COMPUTER SCIENCE

II BSc CS BATCH(2016 - 2019)

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

UNIT-5

Questions Opt1 Opt2 Opt3 Opt4 Answer

SNO Validation focuses on ______________.

the ability of the
interface to
implement every user
task correctly

the degree to which the
interface is easy to use
and easy to learn.

the user’s
acceptance of
the interface as
a useful tool in
their work.

all of the above. all of the above.

1
__________ is a critical element of software quality
assurance and represents the ultimate review of
specification, design, and code generation.

software specification software generation software coding software testing software testing

2 Software is tested from ___________ different
perspectives. 2 3 4 5 2

3 Software engineers are by their nature ___________
people. pessimistic optimistic constructive destructive constructive

4 __________ is a process of executing a program
with the intent of finding an error. coding testing debugging designing testing

5 All tests should be _________ to customer
requirements. traceable designed tested coded traceable

6 Tests should be planned long before _____________
begins. testing coding specification requirements testing

7 Testing should begin in the _________ and progress
toward testing in the large. design beginning small big small

8 The less there is to test, the more _________ we can
test it. quickly shortly automatically hardly quickly

9 ________ is a process of executing a program with
the intend of finding an error. testing coding planning designing testing

10 A good _________ is one that has a high probability
of finding an as-yet-undiscovered error planning test case objective goal test case

11 All _________ should be traceable to customer-
requirements. analysis designs tests plans tests

12 __________ is simple how easily a computer
program can be tested. software operability software simplicity software

decomposability software testability software
testability

13 The better it works, the more efficiently it can be
testing. This characteristic is called ___________. operability observability controllability decomposability operability

14 There are _________ characteristics in testability 5 6 7 8 7

15 What you see is what you test. This characteristic is
called __________. controllability observability decomposability stability observability

16
The better we can control the software, the more the
testing can be automated and optimized. This
characteristic is called __________.

operability stability understandabilit
y controllability controllability

17
By controlling the scope of testing, we can more
quickly isolate problems and perform smarter
retesting. This characteristic is called _________.

decomposability simplicity stability understandability decomposability

18 . The less there is to test, the more quickly we can
test it. This characteristic is called _________. controllability simplicity operability observability simplicity

19 The fewer the changes, the fewer the disruptions to
testing. This characteristic is called __________. controllability decomposability stability understandability stability

20 . The more information we have, the smarter we will
test. This characteristic is called _________. controllability decomposability stability understandability understandability

21 A good test has a high ___________ of finding an
error. probability simplicity understandabilit

y stability probability

22 A good test is not _________. stable redundant simple complex redundant

23 White-box testing sometimes called _________. control structure
testing condition testing glass-box

testing black-box testing glass-box testing

24
Logic errors and incorrect assumptions are inversely
proportional to the ___________ that a program path
will be executed

simplicity probability understandabilit
y stability probability

25 Typographical errors are _________. redundant simple random complex random

26
One often believes that a _________ path is not
likely to be executed when, in fact, it may be
executed on a regular basis.

control structural physical logical logical

27 Basic path testing is a __________. black-box testing white-box testing control
structure testing control path testing white-box testing

28
__________ is a software metric that provides a
quantitative measure of the logical complexity of a
program.

cyclomatic complexity flow graph deriving test
cases graph matrices cyclomatic

complexity

29
An __________ is any path through the program
that introduces atleast one new set of processing
statements or a new condition.

dependent path independent path basic path control path independent path

30 There are _________ steps to be applied to derive
the basis set. 2 3 4 5 4

31 There are _________ test cases that satisfy the basis
set. 3 4 5 6 6

32 . A ________ is a square matrix whose size is equal
to the number of nodes on the flow graph. graph matrix matrix flow graph cyclomatic

complexity graph matrix

33
To develop a software tool that assists in basis path
testing, a data structure called a ___________ is
useful.

matrix flow graph graph matrix cyclomatic
omplexity graph matrix

34 ____________ requires three or four tests to be
derived for a relational expression. branch testing data flow testing data control

testing domain testing domain testing

35 __________ is probably the simplest condition
testing strategy. branch testing data flow testing condition

testing domain testing branch testing

36
The __________ method selects test paths of a
program according to the locations of definitions and
uses of variables in the program

data flow testing condition testing loop testing black box testing data flow testing

37
__________ is a white box testing technique that
focuses exclusively on the validity of loop
constructions

data flow testing loop testing condition testing control path testing loop testing

38
___________ is a test case design method that
exercises the logical conditions contained in a
program module

black box testing loop testing data flow testing condition testing condition testing

39 _____________ is called behavioral testing. black box testing loop testing data flow testing condition testing black box testing

40
The first step in __________ is to understand the
objects that are modeled in software and the
relationships that connect these objects

black box testing loop testing data flow testing condition testing black box testing

41
Equivalence partitioning is a ___________ method
that divides the input domain of a program into
classes of data.

black box testing loop testing data flow testing condition testing black box testing

42 Comparison testing is also called ____________. black box testing loop testing behavioral
testing

back-to-back
testing

back-to-back
testing

43
__________ testing can be applied to problems in
which the input domain is relatively small but too
large to accommodate exhaustive testing.

orthogonal array loop behavioral back-to-back orthogonal array

44
__________ focuses verification effort on the
smallest unit of software design – the software
component or module.

module testing unit testing structure testing system testing unit testing

45 A driver is nothing more than a __________. subprogram main program stub subroutine main program

46 _____________ serve to replace modules that are
subordinate called by the component to be tested. subprograms main programs stubs subroutines stubs

47 Drivers and _________ represent overhead. subprograms main programs stubs subroutines stubs

48 ___________ of execution paths is an essential task
during the unit test. unit testing module testing selective testing white box testing selective testing

49
Good _________ dictates that error conditions be
anticipated and error-handling paths set up to reroute
or cleanly terminate processing when an error does

design testing code module design

50 _________ is completely assembled as a package,
interfacing errors have been uncovered and corrected. software program code all of the above software

51
Thread testing is used for testing Real time systems Object oriented systems

Event driven
systems All of the above

Object oriented
systems

52 Testing of software with actual data and in the actual
environment is called Alpha testing Beta testing

Regression
testing None of the above Beta testing

53
Functionality of software is tested by White box testing Black box testing

Regression
testing None of the above Black box testing

54
Integration testing techniques are Top down Bottom up Sandwich All of the above All of the above

55
Testing the software is basically Verification Validation

Verification and
validation None of the above

Verification and
validation

56
Which one is not the verification activity Reviews Path testing Walkthrough Acceptance testing

Acceptance
testing

57
Alpha and Beta testing techniques are related to System testing Unit testing

Acceptance
testing Integration testing

Acceptance
testing

58
A break in the working of a system is called Defect Failure Fault Error Failure

59
Which is not a debugging techniques Core dumps Traces Print statements Regression testing

Regression
testing

60
Data flow testing is related to Data flow diagrams E-R diagrams

Data
dictionaries none of the above

none of the
above

	1.pdf (p.1-3)
	2.pdf (p.4-6)
	3.pdf (p.7-32)
	Software
	Computer software, or just software, is a collection of computer programs and related data that provide the instructions for telling a computer what to do and how to do it. In other words, software is a conceptual entity which is a set of computer pro...
	In other words software is a set of programs, procedures, algorithms and its documentation. Program software performs the function of the program it implements, either by directly providing instructions to the computer hardware or by serving as input ...
	The term was coined to contrast to the old term hardware (meaning physical devices). In contrast to hardware, software is intangible, meaning it "cannot be touched". Software is also sometimes used in a more narrow sense, meaning application software ...
	Software Characteristics
	1. Software is developed or engineered; it is not manufactured in the classical sense.
	Although some similarities exist between software development and hardware manufacture, the two activities are fundamentally different. In both activities, high quality is achieved through good design, but the manufacturing phase for hardware can in...
	Both activities are dependent on people, but the relationship between people applied
	and work accomplished is entirely different . Both activities require the construction of a "product" but the approaches are different. Software costs are concentrated in engineering. This means that software projects cannot be managed as if they were...
	2. Software doesn't "wear out."
	Fig 1.1 depicts failure rate as a function of time for hardware.
	Fig 1.1 Failure curve for hardware
	The relationship, often called the "bathtub curve," indicates that hardware exhibits relatively high failure rates early in its life (these failures are often attributable to design or manufacturing defects); defects are corrected and the failure r...
	Fig 1.2 Failure curves for software
	Software is not susceptible to the environmental maladies that cause hardware to wear out. In theory, therefore, the failure rate curve for software should take the form of the “idealized curve” shown in Fig 1.2. Undiscovered defects will cause high...
	This seeming contradiction can best be explained by considering the “actual curve” shown in Fig 1.2. During its life, software will undergo change (maintenance). As changes are made, it is likely that some new defects will be introduced, causing the...
	Another aspect of wear illustrates the difference between hardware and software. When a hardware component wears out, it is replaced by a spare part. There are no software spare parts. Every software failure indicates an error in design or in the pr...
	3. Although the industry is moving toward component-based assembly, most
	software continues to be custom built.
	Consider the manner in which the control hardware for a computer-based product is designed and built. The design engineer draws a simple schematic of the digital circuitry, does some fundamental analysis to assure that proper function will be achiev...
	A Generic View of process
	1. The Waterfall Model
	2. Incremental Process model
	3. RAD model
	Evolutionary Process Models
	1. The Prototyping model
	2. The Spiral model

	4.pdf (p.33-36)
	Sheet1

	5.pdf (p.37-58)
	Introduction to requirement engineering
	 After finalizing the requirement traceability table is developed.
	 The examples of traceability table are the features, sources, dependencies, subsystems and interface of the requirement
	Eliciting Requirements
	Eliciting requirement helps the user for collecting the requirement Eliciting requirement steps are as follows: 1. Collaborative requirements gathering
	Building the Analysis model
	Software Requirement Specification (SRS)
	Characteristics of SRS
	Software Project
	Need of software project management
	Software Project Manager
	Managing People
	Managing Project

	Software Management Activities
	Project Planning
	Scope Management
	Project Estimation
	 Project Estimation Techniques
	 Decomposition Technique
	 Empirical Estimation Technique

	Project Scheduling

	6.pdf (p.59-61)
	Sheet1

	7.pdf (p.62-78)
	8.pdf (p.79-81)
	Sheet1

	9.pdf (p.82-112)
	Software Architecture Introduction
	Importance of software architecture
	The architectural style
	Architectural design
	Defining Archetype
	An Architecture Trade-off Analysis Method (ATAM)
	Cohesion (lowest to highest)

	10.pdf (p.113-115)
	Sheet1

	11.pdf (p.116-146)
	12.pdf (p.147-148)
	Sheet1

