
SOFTWARE ENGINEERING 2015-2017 Batch

Department of CS, CA & IT Page 1/3

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

 (For the candidates admitted from 2015 onwards)

 DEPARTMENT OF COMPUTER SCIENCE, CA & IT

SUBJECT : SOFTWARE ENGINEERING

SEMESTER : VI

 SUBJECT CODE : 15CSU601 CLASS : III B.Sc.CS

__

COURSE OBJECTIVE:

The graduates of the software engineering program shall be able to apply proper theoretical,

technical, and practical knowledge of software requirements, analysis, design, implementation,

verification and validation, and documentation. This course enables the students to resolve

conflicting project objectives considering viable tradeoffs within limitations of cost, time,

knowledge, existing systems, and organizations.

COURSE OUTCOME:

 Apply their knowledge of mathematics, sciences, and computer science to the modeling,

analysis, and measurement of software artifacts.

 Work effectively as leader/member of a development team to deliver quality software

artifacts.

 Analyze, specify and document software requirements for a software system.

 Implement a given software design using sound development practices.

 Verify, validate, assess and assure the quality of software artifacts.

 Design, select and apply the most appropriate software engineering process for a given

project, plan for a software project, identify its scope and risks, and estimate its cost and

time.

 Express and understand the importance of negotiation, effective work habits, leadership,

and good communication with stakeholders, in written and oral forms, in a typical

software development environment.

.

UNIT-I

Introduction to Software Engineering: The Evolving Role of Software-Software-Software

Myths- A Generic View of process: Software Engineering –A Layered Technology- Process

Models: Prescriptive Models- Waterfall Model- Incremental process Models. Evolutionary

Process Models: Prototyping, The Spiral Model. Specialized process Models

SOFTWARE ENGINEERING 2015-2017 Batch

Department of CS, CA & IT Page 2/3

UNIT-II

Building the Analysis Model: Requirements Analysis-Analysis Modeling Approaches-Data

Modeling Concepts: Data Objects-Date attributes-Relationships Cardinality and Modality-Flow

Oriented Modeling: Creating Data Flow Model-Creating a Control Flow Model-The Control

Specification-The Process Specification- Creating a Behavioral Model.

UNIT-III

Design Engineering: Design with the Context of Software Engineering-Design Process and

Design Quality-Design Concepts-Creating An Architectural Design: Software Architecture-Data

Design-Architectural Design- Assessing Alternative Architectural Designs-Mapping Data Flow

into Software Architecture.

UNIT-IV

Performing User Interface Design: The Golden Rules: Place the User in Control-Reduce the

User’s Memory Load-Make the Interface Consistent- User Interface Analysis and Design:

Interface Analysis and Design Models- The Process- Interface Analysis: User Analysis - Task

analysis and Modeling. Interface Design Concepts-Applying Interface Design Steps-User

Interface Design Patterns-Design Issues –Design Evolution.

UNIT-V

Testing Tactics: Software Testing Fundamentals- Black -Box and White-Box Testing- White

Box Testing-Basis Path Testing- Control Structure Testing: Condition Testing- Data Flow

Testing-Loop Testing- Black Box Testing- Quality Concepts: Quality- Quality Control –Quality

Assurance –Cost Of Quality.

TEXT BOOKS

1. Roger S. Pressman. 2010. Software Engineering – A Practitioner’s Approach, 7
th
 Edition,

McGraw Hill International Edition, New Delhi.

(Page Nos .: 34-93, 208-215, 226-232, 248-250, 259-271, 287-298, 304-306, 356-381, 420-

439, 462-464)

REFERENCES

1. Ian Summerville. 2005. Software Engineering 6
th

 Edition, Pearson Education Publication,

New Delhi.

2. Daniel Hoffman and Paul Strooner. 2006. Software Design Automated Testing and

Maintenance, Thomson Publications, Asia.

3. Kalkar S.A. 2007. Software Engineering a Concise Study, 1
st
 edition, Prentice Hall of India,

New Delhi.

4. Richard Fairley. 1998. Software Engineering Concepts, 1
st
 Edition, Tata McGraw Hill

Publishing, New Delhi.

5. Stephen Schach. 2007. Software Engineering, 7
th
 Edition, Tata McGraw Hill, New Delhi.

SOFTWARE ENGINEERING 2015-2017 Batch

Department of CS, CA & IT Page 3/3

WEB SITES

1. http://en.wikipedia.org/wiki/Software_engineering

2. http://www.onesmartclick.com/engineering/software-engineering.html

3. http://www.cc.gatech.edu/classes/AY2000/cs3802_fall/

ESE MARKS ALLOCATION

1. Section A

20 x 1 = 20

20

2. Section B

5 x 8 = 40

Either ‘A’ or ‘B’ choice

40

 Total 60

Lesson Plan 2015 -2018
Batch

Prepared by N. Manonmani, Department of Computer Science, KAHE 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

LECTURE PLAN

DEPARTMENT OF COMPUTER SCIENCE

STAFF NAME: N. MANONMANI

SUBJECT NAME: SOFTWARE ENGINEERING SUB.CODE: 15CSU601

SEMESTER: VI CLASS: III B.Sc (CS)

S.No.
Lecture

Duration

Topics to be Covered Support

Materials/Page Nos

 UNIT-I

1. 1 Introduction to Software Engineering T1: 12, W1, W2

2. 1 The Evolving Role of Software T1: 3-4

3. 1 Software T1: 4-10

4. 1 Software Myths T1: 21-23

5. 1 A Generic View of process T1: 31-33

6. 1

A Generic View of process: Defining a

Framework Activity, Identifying a Task Set,

Process Patterns

T1: 33-36

7. 1 Software Engineering, A Layered Technology T1: 12-13

8. 1 Process Models: Prescriptive Models T1: 38-39

9. 1 Waterfall Model T1: 39-40

10. 1 Incremental process Models. T1: 41-42

11. 1 Evolutionary Process Models: Prototyping T1: 42-44

12. 1 The Spiral Model T1: 45-47

13. 1 Specialized process Models T1: 50-52

14. 1
Recapitulation and Discussion of important

questions

Lesson Plan 2015 -2018
Batch

Prepared by N. Manonmani, Department of Computer Science, KAHE 2

 Total No. of Hours Planned for Unit-I = 14

 UNIT-II

1. 1
Building the Analysis Model: Requirements

Analysis:
T1: 149-150

2. 1
Requirements Analysis : Overall Objectives and

Philosophy, Analysis Rules of Thumb
T1: 150-151

3. 1
Requirements Analysis: Domain Analysis,

Requirements Modeling Approaches
T1: 151-153

4. 1 Analysis Modeling Approaches T1: 153-154, W2

5. 1 Data Modeling Concepts: Data Objects T1: 164

6. 1 Data Modeling Concepts: Data attributes T1: 164-165

7. 1 Relationships Cardinality and Modality T1: 165-166

8. 1
Flow Oriented Modeling: Creating Data Flow

Model
T1: 187-190

9. 1 Creating a Control Flow Model T1: 191

10. 1 The Control Specification T1: 191-192

11. 1 The Process Specification T1: 192-194

12. 1
Creating a Behavioral Model: Identifying Events

with the Use Case
T1: 195-196

13. 1
Creating a Behavioral Model: State

Representations
T1: 196-199

14. 1
Recapitulation and Discussion of important

questions

 Total No. of Hours Planned for Unit-II = 14

 UNIT-III

1. 1
Design Engineering: Design with the Context of

Software Engineering
T1: 215-218

2. 1 Design Process and Design Quality T1: 219-221

3. 1
Design Concepts: Abstraction, Architecture,

Patterns,
T1: 222-224

Lesson Plan 2015 -2018
Batch

Prepared by N. Manonmani, Department of Computer Science, KAHE 3

4. 1
Design Concepts: Separation of Concerns,

Modularity, Information Hiding
T1: 225-226

5. 1

Design Concepts: Functional Independence,

Refinement, Aspects, Refactoring, Object-

Oriented Design Concepts, Design Classes

T1: 227-230

6. 1
Creating An Architectural Design: Software

Architecture
T1: 243-244

7. 1
Software Architecture: Architectural

Descriptions, Architectural Decisions
T1: 245-246

8. 1 Data Design T1: 234

9. 1
Architectural Design: Representing the System

in Context, Defining Archetypes
T1: 255-257

10. 1

Architectural Design: Refining the Architecture

into Components, Describing Instantiations of

the System

T1: 258-260

11. 1 Assessing Alternative Architectural Designs T1: 261-264

12. 1
Mapping Data Flow into Software Architecture:

Transform Mapping
T1: 265-268

13. 1
Mapping Data Flow into Software Architecture:

Refining the Architectural Design
T1: 269-272

14. 1
Recapitulation and Discussion of important

questions

 Total No. of Hours Planned for Unit-III = 14

 UNIT-IV

1. 1
Performing User Interface Design: The Golden

Rules: Place the User in Control
T1: 312-313

2. 1 Reduce the User’s Memory Load T1: 314-315

3. 1 Make the Interface Consistent T1: 316-317

4. 1
User Interface Analysis and Design: Interface

Analysis and Design Models
T1: 317-318

Lesson Plan 2015 -2018
Batch

Prepared by N. Manonmani, Department of Computer Science, KAHE 4

5. 1 The Process T1: 319

6. 1 Interface Analysis: User Analysis T1: 320-321

7. 1
Task analysis and Modeling: Use case, Task

elaboration, Object elaboration
T1: 322-324

8. 1
Task analysis and Modeling: Workflow analysis,

Hierarchical representation
T1: 325-327

9. 1
Interface Design Concepts: Applying Interface

Design Steps
T1: 328-329

10. 1 User Interface Design Patterns T1: 330

11. 1 Design Issues: Response time, Help facilities T1: 331-332

12. 1

Design Issues: Error Handling, Menu and

command labeling, Application accessibility,

Internalization

T1: 333-334

13. 1 Design Evaluation T1: 342-343

14. 1
Recapitulation and Discussion of important

questions

 Total No. of Hours Planned for Unit-IV=14

 UNIT-V

1. 1 Testing Tactics: Software Testing Fundamentals T1: 482-483

2. 1 Black Box and White Box Testing T1: 485, 495

3. 1 White Box Testing T1: 485

4. 1
Basis Path Testing: Flow Graph Notation,

Independent Program Paths
T1: 485-488

5. 1
Basis Path Testing: Deriving Test Cases, Graph

Matrices
T1: 489-491

6. 1 Control Structure Testing T1: 492

7. 1 Data Flow Testing T1: 493

8. 1 Loop Testing T1: 493

9. 1
Black Box Testing: Graph-Based Testing

Methods, Equivalence Partitioning
T1: 495-497

Lesson Plan 2015 -2018
Batch

Prepared by N. Manonmani, Department of Computer Science, KAHE 5

10. 1
Black Box Testing: Boundary Value Analysis,

Orthogonal Array Testing
T1: 498-501

11. 1 Quality Concepts T1: 398-399

12. 1 Quality T1: 400-405

13. 1 Quality Control T1: 412

14. 1 Quality Assurance T1: 413

15. 1 Cost Of Quality T1: 407-408

16. 1
Recapitulation and Discussion of important

questions

17. 1
Recapitulation and Discussion of previous

semester question papers

18. 1
Recapitulation and Discussion of previous

semester question papers

19. 1
Recapitulation and Discussion of previous

semester question papers

 Total No. of Hours Planned for Unit-V = 19

Total

Planned

Hours

75

TEXT BOOKS

1. Roger S. Pressman. 2010. Software Engineering – A Practitioner’s Approach, 7
th

Edition, McGraw Hill International Edition, New Delhi.

(Page Nos .: 34-93, 208-215, 226-232, 248-250, 259-271, 287-298, 304-306, 356-

381, 420-439, 462-464)

Lesson Plan 2015 -2018
Batch

Prepared by N. Manonmani, Department of Computer Science, KAHE 6

REFERENCES

1. Ian Summerville. 2005. Software Engineering 6
th

 Edition, Pearson Education

Publication, New Delhi.Daniel Hoffman and Paul Strooner. 2006. Software Design

Automated Testing and Maintenance, Thomson Publications, Asia.

2. Kalkar S.A. 2007. Software Engineering a Concise Study, 1
st
 edition, Prentice Hall of

India, New Delhi.

3. Richard Fairley. 1998. Software Engineering Concepts, 1
st
 Edition, Tata McGraw Hill

Publishing, New Delhi.

4. Stephen Schach. 2007. Software Engineering, 7
th

 Edition, Tata McGraw Hill, New

Delhi.

WEB SITES

W1: http://en.wikipedia.org/wiki/Software_engineering

W2: http://www.onesmartclick.com/engineering/software-engineering.html

W3: http://www.cc.gatech.edu/classes/AY2000/cs3802_fall/

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 1/31

UNIT-I

SYLLABUS

Introduction to Software Engineering: The Evolving Role of Software-Software-Software

Myths- A Generic View of process: Software Engineering –A Layered Technology- Process

Models: Prescriptive Models- Waterfall Model- Incremental process Models. Evolutionary

Process Models: Prototyping, The Spiral Model. Specialized process Models

INTRODUCTION TO SOFTWARE ENGINEERING

Computer software is the product that software professionals build and then support over

the long term. It encompasses programs that execute within a computer of any size and

architecture, content that is presented as the computer programs execute, and descriptive

information in both hard copy and virtual forms that encompass virtually any electronic media.

Software engineering encompasses a process, a collection of methods (practice) and an

array of tools that allow professionals to build high quality computer software. Software

engineering is important because it enables us to build complex systems in a timely manner and

with high quality.

Software Engineering

Software engineering is an engineering branch associated with development of software

product using well-defined scientific principles, methods and procedures. The outcome of

software engineering is an efficient and reliable software product.

Software project management has wider scope than software engineering process as it

involves communication, pre and post delivery support etc

Software is more than just a program code. A program is an executable code, which serves some

computational purpose. Software is considered to be collection of executable programming code,

associated libraries and documentations. Software, when made for a specific requirement is

called software product.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 2/31

Engineering on the other hand, is all about developing products, using well-defined, scientific

principles and methods.

Software engineering is an engineering branch associated with development of software

product using well-defined scientific principles, methods and procedures.

The outcome of software engineering is an efficient and reliable software product.

Definitions

IEEE defines software engineering as:

 The application of a systematic, disciplined, quantifiable approach to the development,

operation and maintenance of software; that is, the application of engineering to software.

The study of approaches as in the above statement, Fritz Bauer, a German computer scientist,

defines software engineering as:

 Software engineering is the establishment and use of sound engineering principles in

order to obtain economically software that is reliable and work efficiently on real

machines.

Software engineering is about teams. The problems to solve are so complex or large, that a

single developer cannot solve them anymore. Software engineering is also about communication.

Teams do not consist only of developers, but also of testers, architects, system engineers,

customer, project managers, etc.

Software projects can be so large that needs careful planning. Implementation is no longer

just writing code, but it is also following guidelines, writing documentation and also writing unit

tests. But unit tests alone are not enough.

The different pieces have to fit together. Problematic areas have to be spotted using metrics.

They tell us if our code follows certain standards. Once coding is finished, that does not mean

that the project is finished: for large projects maintaining software can keep many people busy

for a long time.

Since there are so many factors influencing the success or failure of a project, there is a need

to learn a little about project management and its pitfalls, but especially what makes projects

successful. And last but not least, a good software engineer, like any engineer, needs tools, and

to know about them is important.

Developers Work in Teams

In beginning coding was done by individuals. The problems solved earlier were small

enough so one person could master them. In the real world this is different:- the problem sizes

and time constraints are such that only teams can solve those problems.

For teams to work effectively they need a language to communicate (UML). Also teams

do not consist only of developers, but also of testers, architects, system engineers and most

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 3/31

importantly the customer. There is a need to learn about what makes good teams, how to

communicate with the customer, and how to document not only the source code, but everything

related to the software project.

New Language

Programming languages, such as Java or C++, was used earlier and turn ideas into code.

But these ideas are independent of the language. Unified Modeling Language (UML) is a way to

describe code independently of language, and more importantly, it helps to think in one higher

level of abstraction. UML can be an invaluable communication and documentation tool.

Pattern gives one higher level of abstraction. Again this increases our vocabulary to

communicate more effectively with our peers. Also, it is a fantastic way to learn from our

seniors. This is essential for designing large software systems.

Measurement

Also just being able to write software, doesn‘t mean that the software is any good.

Discovering what makes good software, and how to measure software quality is necessary.

Analysis of existing source code through static analysis and measuring metrics is needed.

It is needed to ensure that the code meets certain quality standards. Testing is also

important in this context, it guarantees high quality products.

New Tools

Apart from an IDE, a compiler and a debugger, there are many more tools at the disposal

of a software engineer. There are tools that allow us to work in teams, to document our software,

to assist and monitor the whole development effort. There are tools for software architects, tools

for testing and profiling, automation and re-engineering.

EVOLVING ROLE OF SOFTWARE

The industry originated with the entrepreneurial computer software and services

companies of the 1950s and 1960s, grew dramatically through the 1970s and 1980s to become a

market force rivaling that of the computer hardware companies, and by the 1990s had become

the supplier of technical know-how that transformed the way people worked, played and

communicated every day of their lives. The following are the different eras‘ of software

engineering:

The Pioneering Era (1955-1965)

The most important development was that new computers were coming out almost every

year or two, rendering existing ones obsolete. Software people had to rewrite all their programs

to run on these new machines.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 4/31

Jobs were run by signing up for machine time or by operational staff by putting punched

cards for input into the machine's card reader and waiting for results to come back on the printer.

The field was so new that the idea of management by schedule was non-existent. Making

predictions of a project's completion date was almost impossible.

Computer hardware was application-specific. Scientific and business tasks needed

different machines.

Hardware vendors gave away systems software for free as hardware could not be sold

without software. A few companies sold the service of building custom software but no software

companies were selling packaged software.

The Stabilizing Era (1965-1980)

The whole job-queue system had been institutionalized and so programmers no longer

ran their jobs except for peculiar applications like on-board computers. To handle the jobs, an

enormous bureaucracy had grown up around the central computer center.

The major problem as a result of this bureaucracy was turnaround time, the time between

job submission and completion. At worst it was measured in days.

Then came IBM 360. It signaled the beginning of the stabilizing era. This was the largest

software project to date. The 360 also combined scientific and business applications onto one

machine.

The job control language (JCL) raised a whole new class of problems. The programmer

had to write the program in a whole new language to tell the computer and OS what to do. JCL

was the least popular feature of the 360.

"Structured Programming" burst on the scene in the middle of this era. PL/I, introduced

by IBM to merge all programming languages into one, failed. Most customized applications

continued to be done in-house.

The Micro Era (1980-Present)

The price of computing has dropped dramatically making ubiquitous computing possible.

Now every programmer can have a computer on his desk. The old JCL has been replaced by the

user friendly GUI.

The software part of the hardware architecture that the programmer must know about,

such as the instruction set, has not changed much since the advent of the IBM mainframe and the

first Intel chip.

The most-used programming languages today are between 15 and 40 years old. The

Fourth Generation Languages never achieved the dream of "programming without programmers"

and the idea is pretty much limited to report generation from databases. There is an increasing

clamor though for more and better software research.

Computer software continues to be the single most important technology on the world

stage. And it‘s also a prime example of the law of unintended consequences.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 5/31

Evolution of software on Different Industries:

 Fifty years ago no one could have predicted that software would become an indispensable

technology for business, science, and engineering; that software would enable the

creation of new technologies (e.g., genetic engineering and nanotechnology), the

extension of existing technologies (e.g., telecommunications), and the radical change in

older technologies (e.g., the printing industry).

 Software would be the driving force behind the personal computer revolution; that

shrink-wrapped software products would be purchased by consumers in neighborhood

malls; that software would slowly evolve from a product to a service as ―on-demand‖

software companies deliver just-in-time functionality via a Web browser;

 A software company would become larger and more influential than almost all industrial-

era companies; that a vast software-driven network called the Internet would evolve and

change everything from library research to consumer shopping to political discourse to

the dating habits of young (and not so young) adults.

 As software‘s importance has grown, the software community has continually attempted

to develop technologies that will make it easier, faster, and less expensive to build and

maintain high-quality computer programs. Some of these technologies are targeted at a

specific application domain (e.g., website design and implementation); others focus on a

technology domain (e.g., object-oriented systems or aspect oriented programming); and

still others are broad-based (e.g., operating systems such as Linux).

 However, we have yet to develop a software technology that does it all, and the

likelihood of one arising in the future is small. And yet, people bet their jobs, their

comforts, their safety, their entertainment, their decisions, and their very lives on

computer software. It better be right.

SOFTWARE

Software is: (1) instructions (computer programs) that when executed provide desired

features, function, and performance; (2) data structures that enable the programs to adequately

manipulate information, and (3) descriptive information in both hard copy and virtual forms that

describes the operation and use of the programs.

Software is a logical rather than a physical system element. Therefore, software has

characteristics that are considerably different than those of hardware:

SOFTWARE CHARACTERISTICS

Software is developed or engineered; it is not manufactured in the classical sense.

Although some similarities exist between software development and hardware manufacturing,

the two activities are fundamentally different. In both activities, high quality is achieved through

good design, but the manufacturing phase for hardware can introduce quality problems that are

nonexistent (or easily corrected) for software.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 6/31

Fig 1.1. Failure curve for hardware

Both activities are dependent on people, but the relationship between people applied and work

accomplished is entirely different. Both activities require the construction of a ―product,‖ but the

approaches are different. Software costs are concentrated in engineering. This means that

software projects cannot be managed as if they were manufacturing projects.

Software doesn’t “wear out.” Figure 1.1 depicts failure rate as a function of time for hardware.

The relationship, often called the ―bathtub curve,‖ indicates that hardware exhibits relatively

high failure rates early in its life (these failures are often attributable to design or manufacturing

defects); defects are corrected and the failure rate drops to a steady-state level (hopefully, quite

low) for some period of time. As time passes, however, the failure rate rises again as hardware

components suffer from the cumulative effects of dust, vibration, abuse, temperature extremes,

and many other environmental maladies. Stated simply, the hardware begins to wear out.

Software is not susceptible to the environmental problems that cause hardware to wear out. In

theory, therefore, the failure rate curve for software should take the form of the ―idealized curve‖

shown in Figure 1.2. Undiscovered defects will cause high failure rates early in the life of a

program. However, these are corrected and the curve flattens as shown. The idealized curve is a

gross oversimplification of actual failure models for software. However, the implication is

clear—software doesn‘t wear out. But it does deteriorate.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 7/31

Fig 1.2. Failure curves for software

This seeming contradiction can best be explained by considering the actual curve in Figure 1.2.

During its life, software will undergo change. As changes are made, it is likely that errors will be

introduced, causing the failure rate curve to spike as shown in the ―actual curve‖ (Figure 1.2).

Before the curve can return to the original steady-state failure rate, another change is requested,

causing the curve to spike again. Slowly, the minimum failure rate level begins to rise—the

software is deteriorating due to change.

Another aspect of wear illustrates the difference between hardware and software. When a

hardware component wears out, it is replaced by a spare part. There are no software spare parts.

 Every software failure indicates an error in design or in the process through which design

was translated into machine executable code. Therefore, the software maintenance tasks

that accommodate requests for change involve considerably more complexity than

hardware maintenance.

Although the industry is moving toward component-based construction, most software

continues to be custom built. As an engineering discipline evolves, a collection of standard

design components is created. Standard screws and off-the-shelf integrated circuits are only two

of thousands of standard components that are used by mechanical and electrical engineers as they

design new systems. The reusable components have been created so that the engineer can

concentrate on the truly innovative elements of a design, that is, the parts of the design that

represent something new. In the hardware world, component reuse is a natural part of the

engineering process. In the software world, it is something that has only begun to be achieved on

a broad scale.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 8/31

 A software component should be designed and implemented so that it can be reused in

many different programs.

 Modern reusable components encapsulate both data and the processing that is applied to

the data, enabling the software engineer to create new applications from reusable parts.

 For example, today‘s interactive user interfaces are built with reusable components that

enable the creation of graphics windows, pull-down menus, and a wide variety of

interaction mechanisms. The data structures and processing detail required to build the

interface are contained within a library of reusable components for interface construction.

Software Application Domains

Today, seven broad categories of computer software present continuing challenges for software

engineers:

System software—a collection of programs written to service other programs. Some system

software (e.g., compilers, editors, and file management utilities) processes complex, but

determinate,4 information structures. Other systems applications (e.g., operating system

components, drivers, networking software, telecommunications processors) process largely

indeterminate data. In either case, the systems software area is characterized by heavy interaction

with computer hardware; heavy usage by multiple users; concurrent operation that requires

scheduling, resource sharing, and sophisticated process management; complex data structures;

and multiple external interfaces.

Application software—stand-alone programs that solve a specific business need. Applications

in this area process business or technical data in a way that facilitates business operations or

management/technical decision making. In addition to conventional data processing applications,

application software is used to control business functions in real time (e.g., point-of-sale

transaction processing, real-time manufacturing process control).

Engineering/scientific software—has been characterized by ―number crunching‖ algorithms.

Applications range from astronomy to volcanology, from automotive stress analysis to space

shuttle orbital dynamics, and from molecular biology to automated manufacturing. However,

modern applications within the engineering/scientific area are moving away from conventional

numerical algorithms. Computer-aided design, system simulation, and other interactive

applications have begun to take on real-time and even system software characteristics.

Embedded software—resides within a product or system and is used to implement and control

features and functions for the end user and for the system itself. Embedded software can perform

limited and esoteric functions (e.g., key pad control for a microwave oven) or provide significant

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 9/31

function and control capability (e.g., digital functions in an automobile such as fuel control,

dashboard displays, and braking systems).

Product-line software—designed to provide a specific capability for use by many different

customers. Product-line software can focus on a limited and esoteric marketplace (e.g., inventory

control products) or address mass consumer markets (e.g., word processing, spreadsheets,

computer graphics, multimedia, entertainment, database management, and personal and business

financial applications).

Web applications—called ―WebApps,‖ this network-centric software category spans a wide

array of applications. In their simplest form, WebApps can be little more than a set of linked

hypertext files that present information using text and limited graphics. However, as Web 2.0

emerges, WebApps are evolving into sophisticated computing environments that not only

provide stand-alone features, computing functions, and content to the end user, but also are

integrated with corporate databases and business applications.

Artificial intelligence software—makes use of non-numerical algorithms to solve complex

problems that are not amenable to computation or straightforward analysis. Applications within

this area include robotics, expert systems, pattern recognition (image and voice), artificial neural

networks, theorem proving, and game playing.

Millions of software engineers worldwide are hard at work on software projects in one or more

of these categories. In some cases, new systems are being built, but in many others, existing

applications are being corrected, adapted, and enhanced. It is not uncommon for a young

software engineer to work a program that is older than she is! Past generations of software

people have left a legacy in each of the categories I have discussed. Hopefully, the legacy to be

left behind by this generation will ease the burden of future software engineers. And yet, new

challenges (Chapter 31) have appeared on the horizon:

Open-world computing—the rapid growth of wireless networking may soon lead to true

pervasive, distributed computing. The challenge for software engineers will be to develop

systems and application software that will allow mobile devices, personal computers, and

enterprise systems to communicate across vast networks

Netsourcing—the World Wide Web is rapidly becoming a computing engine as well as a

content provider. The challenge for software engineers is to architect simple (e.g., personal

financial planning) and sophisticated applications that provide a benefit to targeted end-user

markets worldwide.

Open source—a growing trend that results in distribution of source code for systems

applications (e.g., operating systems, database, and development environments) so that many

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 10/31

people can contribute to its development. The challenge for software engineers is to build source

code that is self-descriptive, but more importantly, to develop techniques that will enable both

customers and developers to know what changes have been made and how those changes

manifest themselves within the software.

Each of these new challenges will undoubtedly obey the law of unintended consequences and

have effects (for businesspeople, software engineers, and end users) that cannot be predicted

today. However, software engineers can prepare by instantiating a process that is agile and

adaptable enough to accommodate dramatic changes in technology and to business rules that are

sure to come over the next decade.

Legacy Software

Hundreds of thousands of computer programs fall into one of the seven broad application

domains discussed in the preceding subsection. Some of these are state of-the-art software—just

released to individuals, industry, and government. But other programs are older, in some cases

much older.

These older programs—often referred to as legacy software—have been the focus of

continuous attention and concern since the 1960s.

Unfortunately, there is sometimes one additional characteristic that is present in legacy

software—poor quality.

However, as time passes, legacy systems often evolve for one or more of the following

reasons:

The software must be adapted to meet the needs of new computing environments or

technology.

The software must be enhanced to implement new business requirements.

The software must be extended to make it interoperable with other more modern systems

or databases.

The software must be re-architected to make it viable within a network environment.

When these modes of evolution occur, a legacy system must be reengineered so that it

remains viable into the future. The goal of modern software engineering is to ―devise

methodologies that are founded on the notion of evolution‖; that is, the notion that software

systems continually change, new software systems are built from the old ones, and . . . all must

interoperate and cooperate with each other.

SOFTWARE MYTHS

Software myths—erroneous beliefs about software and the process that is used to build

it—can be traced to the earliest days of computing.

Myths have a number of attributes that make them insidious. For instance, they appear to

be reasonable statements of fact (sometimes containing elements of truth), they have an intuitive

feel, and they are often promulgated by experienced practitioners who ―know the score.‖

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 11/31

Today, most knowledgeable software engineering professionals recognize myths for what

they are—misleading attitudes that have caused serious problems for managers and practitioners

alike. However, old attitudes and habits are difficult to modify, and remnants of software myths

remain.

Management myths.

Managers with software responsibility, like managers in most disciplines, are often under

pressure to maintain budgets, keep schedules from slipping, and improve quality. Like a

drowning person who grasps at a straw, a software manager often grasps at belief in a software

myth, if that belief will lessen the pressure (even temporarily).

Myth: We already have a book that’s full of standards and procedures for building

software. Won’t that provide my people with everything they need to know?

Reality: The book of standards may very well exist, but is it used? Are software

practitioners aware of its existence? Does it reflect modern software engineering practice? Is it

complete? Is it adaptable? Is it streamlined to improve time-to-delivery while still maintaining a

focus on quality? In many cases, the answer to all of these questions is ―no.‖

Myth: If we get behind schedule, we can add more programmers and catch up

(sometimes called the “Mongolian horde” concept).

Reality: Software development is not a mechanistic process like manufacturing. In the

words of Brooks [Bro95]: ―adding people to a late software project makes it later.‖ At first, this

statement may seem counterintuitive. However, as new people are added, people who were

working must spend time educating the newcomers, thereby reducing the amount of time spent

on productive development effort. People can be added but only in a planned and well

coordinated manner.

Myth: If I decide to outsource the software project to a third party, I can just relax and

let that firm build it.

Reality: If an organization does not understand how to manage and control software

projects internally, it will invariably struggle when it outsources software projects.

Customer myths.

A customer who requests computer software may be a person at the next desk, a technical

group down the hall, the marketing/sales department, or an outside company that has requested

software under contract. In many cases, the customer believes myths about software because

software managers and practitioners do little to correct misinformation. Myths lead to false

expectations (by the customer) and, ultimately, dissatisfaction with the developer.

Myth: A general statement of objectives is sufficient to begin writing programs—we can

fill in the details later.

Reality: Although a comprehensive and stable statement of requirements is not always

possible, an ambiguous ―statement of objectives‖ is a recipe for disaster. Unambiguous

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 12/31

requirements (usually derive iteratively) are developed only through effective and continuous

communication between customer and developer.

Myth: Software requirements continually change, but change can be easily

accommodated because software is flexible.

Reality: It is true that software requirements change, but the impact of change varies

with the time at which it is introduced. When requirements changes are requested early (before

design or code has been started), the cost impact is relatively small.16 However, as time passes,

the cost impact grows rapidly—resources have been committed, a design framework has been

established, and change can cause upheaval that requires additional resources and major design

modification.

Practitioner’s myths.

Myths that are still believed by software practitioners have been fostered by over 50 years

of programming culture. During the early days, programming was viewed as an art form. Old

ways and attitudes die hard.

Myth: Once we write the program and get it to work, our job is done.

Reality: Someone once said that ―the sooner you begin ‗writing code,‘ the longer it‘ll

take you to get done.‖ Industry data indicate that between 60 and 80 percent of all effort

expended on software will be expended after it is delivered to the customer for the first time.

Myth: Until I get the program “running” I have no way of assessing its quality.

Reality: One of the most effective software quality assurance mechanisms can be applied

from the inception of a project—the technical review. Software reviews (described in Chapter

15) are a ―quality filter‖ that have been found to be more effective than testing for finding certain

classes of software defects.

Myth: The only deliverable work product for a successful project is the working

program.

Reality: A working program is only one part of a software configuration that includes

many elements. A variety of work products (e.g., models, documents, plans) provide a

foundation for successful engineering and, more important, guidance for software support.

Myth: Software engineering will make us create voluminous and unnecessary

documentation and will invariably slow us down.

Reality: Software engineering is not about creating documents. It is about creating a

quality product. Better quality leads to reduced rework. And reduced rework results in faster

delivery times

Many software professionals recognize the fallacy of the myths just described.

Regrettably, habitual attitudes and methods foster poor management and technical practices,

even when reality dictates a better approach. Recognition of software realities is the first step

toward formulation of practical solutions for software engineering.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 13/31

A GENERIC VIEW OF PROCESS

A process is defined as a collection of work activities, actions, and tasks that are

performed when some work product is to be created. Each of these activities, actions, and tasks

reside within a framework or model that defines their relationship with the process and with one

another.

The software process is represented schematically in Figure 1.3. Referring to the figure,

each framework activity is populated by a set of software engineering actions.

Each software engineering action is defined by a task set that identifies the work tasks

that are to be completed, the work products that will be produced, the quality assurance points

that will be required, and the milestones that will be used to indicate progress.

Fig 1.3. A software process framework

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 14/31

A generic process framework for software engineering defines five framework

activities—communication, planning, modeling, construction, and deployment. In addition, a

set of umbrella activities—project tracking and control, risk management, quality assurance,

configuration management, technical reviews, and others—are applied throughout the process.

One important aspect of the software process is called process flow—describes how the

framework activities and the actions and tasks that occur within each framework activity are

organized with respect to sequence and time and is illustrated in Figure 1.4.

Fig 1.4. Process flow

 A linear process flow executes each of the five framework activities in sequence,

beginning with communication and culminating with deployment (Figure 1.4a).

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 15/31

 An iterative process flow repeats one or more of the activities before proceeding

to the next (Figure 1.4.b).

 An evolutionary process flow executes the activities in a ―circular‖ manner. Each

circuit through the five activities leads to a more complete version of the software

(Figure 1.4c).

 A parallel process flow (Figure 1.4d) executes one or more activities in parallel

with other activities (e.g., modeling for one aspect of the software might be

executed in parallel with construction of another aspect of the software)

Defining a Framework Activity

A software team would need significantly more information before it could properly

execute any one of these activities as part of the software process.

A key question is: What actions are appropriate for a framework activity, given the

nature of the problem to be solved, the characteristics of the people doing the work, and the

stakeholders who are sponsoring the project

For a small software project requested by one person (at a remote location) with simple,

straightforward requirements, the communication activity might encompass little more than a

phone call with the appropriate stakeholder. Therefore, the only necessary action is phone

conversation, and the work tasks (the task set) that this action encompasses are:

1. Make contact with stakeholder via telephone.

2. Discuss requirements and take notes.

3. Organize notes into a brief written statement of requirements.

4. E-mail to stakeholder for review and approval.

If the project was considerably more complex with many stakeholders, each with a

different set of (sometime conflicting) requirements, the communication activity might have six

distinct actions inception, elicitation, elaboration, negotiation, specification, and validation.

Each of these software engineering actions would have many work tasks and a number of

distinct work products.

Identifying a Task Set

Referring again to Figure 1.3 each software engineering action (e.g., elicitation, an action

associated with the communication activity) can be represented by a

 Number of different task sets—each a collection of software engineering work

tasks,

 Related work products,

 Quality assurance points,

 Project milestones.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 16/31

Choose a task set that best accommodates the needs of the project and the characteristics of your

team. This implies that a software engineering action can be adapted to the specific needs of the

software project and the characteristics of the project team.

Task Set

A task set defines the actual work to be done to accomplish the objectives of a software

engineering action. For example, elicitation (more commonly called ―requirements gathering‖) is

an important software engineering action that occurs during the communication activity. The

goal of requirements gathering is to understand what various stakeholders want from the

software that is to be built. For a small, relatively simple project, the task set for requirements

gathering might look like this:

1. Make a list of stakeholders for the project.

2. Invite all stakeholders to an informal meeting.

3. Ask each stakeholder to make a list of features and functions required.

4. Discuss requirements and build a final list.

5. Prioritize requirements.

6. Note areas of uncertainty.

Process Patterns

Every software team encounters problems as it moves through the software process. It

would be useful if proven solutions to these problems were readily available to the team so that

the problems could be addressed and resolved quickly.

A process pattern describes a process-related problem that is encountered during

software engineering work, identifies the environment in which the problem has been

encountered, and suggests one or more proven solutions to the problem.

Stated in more general terms, a process pattern provides you with a template—a

consistent method for describing problem solutions within the context of the software process.

By combining patterns, a software team can solve problems and construct a process that best

meets the needs of a project.

Patterns can be defined at any level of abstraction. In some cases, a pattern might be used

to describe a problem (and solution) associated with a complete process model (e.g.,

prototyping). In other situations, patterns can be used to describe a problem (and solution)

associated with a framework activity (e.g., planning) or an action within a framework activity

(e.g., project estimating). Ambler has proposed a template for describing a process pattern:

Pattern Name. The pattern is given a meaningful name describing it within the context

of the software process (e.g., TechnicalReviews).

Forces. The environment in which the pattern is encountered and the issues that make the

problem visible and may affect its solution.

Type. The pattern type is specified. Ambler [Amb98] suggests three types:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 17/31

1. Stage pattern—defines a problem associated with a framework activity for the process.

Since a framework activity encompasses multiple actions and work tasks, a stage pattern

incorporates multiple task patterns (see the following) that are relevant to the stage (framework

activity). An example of a stage pattern might be EstablishingCommunication. This pattern

would incorporate the task pattern RequirementsGathering and others.

2. Task pattern—defines a problem associated with a software engineering action or

work task and relevant to successful software engineering practice (e.g.,

RequirementsGathering is a task pattern).

3. Phase pattern—define the sequence of framework activities that occurs within the

process, even when the overall flow of activities is iterative in nature. An example of a phase

pattern might be SpiralModel or Prototyping.

Initial context. Describes the conditions under which the pattern applies. Prior to the

initiation of the pattern: (1) What organizational or team-related activities have already occurred?

(2) What is the entry state for the process? (3) What software engineering information or project

information already exists? For example, the Planning pattern (a stage pattern) requires that (1)

customers and software engineers have established a collaborative communication; (2)

successful completion of a number of task patterns [specified] for the

Communication pattern has occurred; and (3) the project scope, basic business

requirements, and project constraints are known.

Problem. The specific problem to be solved by the pattern.

Solution. Describes how to implement the pattern successfully. This section describes

how the initial state of the process (that exists before the pattern is implemented) is modified as a

consequence of the initiation of the pattern. It also describes how software engineering

information or project information that is available before the initiation of the pattern is

transformed as a consequence of the successful execution of the pattern.

Resulting Context. Describes the conditions that will result once the pattern has been

successfully implemented. Upon completion of the pattern: (1) What organizational or team-

related activities must have occurred? (2) What is the exit state for the process? (3) What

software engineering information or project information has been developed?

Related Patterns. Provide a list of all process patterns that are directly related to this

one. This may be represented as a hierarchy or in some other diagrammatic form. For example,

the stage pattern Communication encompasses the task patterns: ProjectTeam,

CollaborativeGuidelines, ScopeIsolation, RequirementsGathering, ConstraintDescription, and

ScenarioCreation.

Known Uses and Examples. Indicate the specific instances in which the pattern is

applicable. For example, Communication is mandatory at the beginning of every software

project, is recommended throughout the software project, and is mandatory once the deployment

activity is under way.

Process patterns provide an effective mechanism for addressing problems associated with

any software process. The patterns enable you to develop a hierarchical process description that

begins at a high level of abstraction (a phase pattern).

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 18/31

The description is then refined into a set of stage patterns that describe framework

activities and are further refined in a hierarchical fashion into more detailed task patterns for

each stage pattern. Once process patterns have been developed, they can be reused for the

definition of process variants—that is, a customized process model can be defined by a software

team using the patterns as building blocks for the process model.

SOFTWARE ENGINEERING

In order to build software that is ready to meet the challenges of the twenty-first century,

you must recognize a few simple realities:

 It follows that a concerted effort should be made to understand the problem

before a software solution is developed.

 • Software has become deeply embedded in virtually every aspect of our lives, and as a

consequence, the number of people who have an interest in the features and functions provided

by a specific application has grown dramatically. When a new application or embedded system is

to be built, many voices must be heard. And it sometimes seems that each of them has a slightly

different idea of what software features and functions should be delivered.

 It follows that design becomes a pivotal activity.

• The information technology requirements demanded by individuals, businesses, and

governments grow increasing complex with each passing year. Large teams of people now create

computer programs that were once built by a single individual. Sophisticated software that was

once implemented in a predictable, self-contained, computing environment is now embedded

inside everything from consumer electronics to medical devices to weapons systems. The

complexity of these new computer-based systems and products demands careful attention to the

interactions of all system elements.

 It follows that software should exhibit high quality.

• Individuals, businesses, and governments increasingly rely on software for strategic and

tactical decision making as well as day-to-day operations and control. If the software fails,

people and major enterprises can experience anything from minor inconvenience to catastrophic

failures.

 It follows that software should be maintainable.

• As the perceived value of a specific application grows, the likelihood is that its user

base and longevity will also grow. As its user base and time-in-use increase, demands for

adaptation and enhancement will also grow.

These simple realities lead to one conclusion: software in all of its forms and across all of

its application domains should be engineered. And that leads us to the topic of this book—

software engineering.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 19/31

Although hundreds of authors have developed personal definitions of software

engineering, a definition proposed by Fritz Bauer [Nau69] at the seminal conference on the

subject still serves as a basis for discussion:

 [Software engineering is] the establishment and use of sound engineering

principles in order to obtain economically software that is reliable and works

efficiently on real machines.

 Software Engineering: (1) The application of a systematic, disciplined,

quantifiable approach to the development, operation, and maintenance of

software; that is, the application of engineering to software. (2) The study of

approaches as in (1). And yet, a ―systematic, disciplined, and quantifiable‖

approach applied by one software team may be burdensome to another. We need

discipline, but we also need adaptability and agility.

A LAYERED TECHNOLOGY

Software engineering is a layered technology. Referring to Figure 1.5, any engineering

approach (including software engineering) must rest on an organizational commitment to quality.

Total quality management, Six Sigma, and similar philosophies10 foster a continuous

process improvement culture, and it is this culture that ultimately leads to the development of

increasingly more effective approaches to software engineering.

The bedrock that supports software engineering is a quality focus. The foundation for

software engineering is the process layer.

The software engineering process is the glue that holds the technology layers together

and enables rational and timely development of computer software.

Fig 1.5 Software engineering layers

Process defines a framework that must be established for effective delivery of software

engineering technology.

The software process forms the basis for

 Management control of software projects and establishes the context in which

technical methods are applied

 Work products (models, documents, data, reports, forms, etc.) are produced

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 20/31

 Milestones are established

 Quality is ensured

 Change is properly managed.

Software engineering methods provide the technical how-to‘s for building software.

Methods encompass a broad array of tasks that include communication, requirements analysis,

design modeling, program construction, testing, and support. Software engineering methods rely

on a set of basic principles that govern each area of the technology and include modeling

activities and other descriptive techniques.

Software engineering tools provide automated or semi-automated support for the process

and the methods. When tools are integrated so that information created by one tool can be used

by another, a system for the support of software development, called computer-aided software

engineering, is established.

PROCESS MODELS:

PRESCRIPTIVE MODELS

 Prescriptive process models were originally proposed to bring order to the chaos of

software development. History has indicated that these traditional models have brought a certain

amount of useful structure to software engineering work and have provided a reasonably

effective road map for software teams. However, software engineering work and the product that

it produces remain on ―the edge of chaos.‖

Change occurs when there is some structure so that the change can be organized, but not

so rigid that it cannot occur. Too much chaos, on the other hand, can make coordination and

coherence impossible. Lack of structure does not always mean disorder. The philosophical

implications of this argument are significant for software engineering.

If prescriptive process models strive for structure and order, are they inappropriate for a

software world that thrives on change? Yet, if we reject traditional process models (and the order

they imply) and replace them with something less structured, do we make it impossible to

achieve coordination and coherence in software work?

There are no easy answers to these questions, but there are alternatives available to

software engineers. In the sections that follow, I examine the prescriptive process approach in

which order and project consistency are dominant issues. I call them ―prescriptive‖ because they

prescribe a set of process elements—framework activities, software engineering actions, tasks,

work products, quality assurance, and change control mechanisms for each project. Each process

model also prescribes a process flow (also called a work flow)—that is, the manner in which the

process elements are interrelated to one another.

WATERFALL MODEL

There are times when the requirements for a problem are well understood—when work

flows from communication through deployment in a reasonably linear fashion. This situation is

sometimes encountered when well-defined adaptations or enhancements to an existing system

must be made (e.g., an adaptation to accounting software that has been mandated because of

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 21/31

changes to government regulations). It may also occur in a limited number of new development

efforts, but only when requirements are well defined and reasonably stable.

The waterfall model, sometimes called the classic life cycle, suggests a systematic,

sequential approach6 to software development that begins with customer specification of

requirements and progresses through planning, modeling, construction, and deployment,

culminating in ongoing support of the completed software (Figure 1.6).

Fig 1.6.The waterfall model

The waterfall model is the oldest paradigm for software engineering. However, over the

past three decades, criticism of this process model has caused even passionate supporters to

question its efficacy. Among the problems that are sometimes encountered when the waterfall

model is applied are:

1. Real projects rarely follow the sequential flow that the model proposes. Although the

linear model can accommodate iteration, it does so indirectly. As a result, changes can cause

confusion as the project team proceeds.

2. It is often difficult for the customer to state all requirements explicitly. The waterfall

model requires this and has difficulty accommodating the natural uncertainty that exists at the

beginning of many projects.

3. The customer must have patience. A working version of the program(s) will not be

available until late in the project time span. A major blunder, if undetected until the working

program is reviewed, can be disastrous.

In an interesting analysis of actual projects, Bradac found that the linear nature of the

classic life cycle leads to ―blocking states‖ in which some project team members must wait for

other members of the team to complete dependent tasks. In fact, the time spent waiting can

exceed the time spent on productive work! The blocking states tend to be more prevalent at the

beginning and end of a linear sequential process.

Today, software work is fast-paced and subject to a never-ending stream of changes (to

features, functions, and information content). The waterfall model is often inappropriate for such

work. However, it can serve as a useful process model in situations where requirements are fixed

and work is to proceed to completion in a linear manner.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 22/31

INCREMENTAL PROCESS MODELS

There are many situations in which initial software requirements are reasonably well

defined, but the overall scope of the development effort precludes a purely linear process. In

addition, there may be a compelling need to provide a limited set of software functionality to

users quickly and then refine and expand on that functionality in later software releases. In such

cases, you can choose a process model that is designed to produce the software in increments.

The incremental model combines elements of linear and parallel process. Referring to

Figure 1.7, the incremental model applies linear sequences in a staggered fashion as calendar

time progresses. Each linear sequence produces deliverable ―increments‖ of the software in a

manner that is similar to the increments produced by an evolutionary process flow.

For example, word-processing software developed using the incremental paradigm might

deliver basic file management, editing, and document production functions in the first increment;

more sophisticated editing and document production capabilities in the second increment;

spelling and grammar checking in the third increment; and advanced page layout capability in

the fourth increment. It should be noted that the process flow for any increment can incorporate

the prototyping paradigm.

When an incremental model is used, the first increment is often a core product. That is,

basic requirements are addressed but many supplementary features (some known, others

unknown) remain undelivered. The core product is used by the customer (or undergoes detailed

evaluation).

As a result of use and/or evaluation, a plan is developed for the next increment.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 23/31

Fig 1.7. The incremental model

The plan addresses the modification of the core product to better meet the needs of the

customer and the delivery of additional features and functionality. This process is repeated

following the delivery of each increment, until the complete product is produced.

The incremental process model focuses on the delivery of an operational product with

each increment. Early increments are stripped-down versions of the final product, but they do

provide capability that serves the user and also provide a platform for evaluation by the user.

Incremental development is particularly useful when staffing is unavailable for a

complete implementation by the business deadline that has been established for the project. Early

increments can be implemented with fewer people. If the core product is well received, then

additional staff (if required) can be added to implement the next increment.

In addition, increments can be planned to manage technical risks. For example, a major

system might require the availability of new hardware that is under development and whose

delivery date is uncertain. It might be possible to plan early increments in a way that avoids the

use of this hardware, thereby enabling partial functionality to be delivered to end users without

inordinate delay.

EVOLUTIONARY PROCESS MODELS

 Software, like all complex systems, evolves over a period of time. Business and product

requirements often change as development proceeds, making a straight line path to an end

product unrealistic; tight market deadlines make completion of a comprehensive software

product impossible, but a limited version must be introduced to meet competitive or business

pressure; a set of core product or system requirements is well understood, but the details of

product or system extensions have yet to be defined.

In these and similar situations, a process model that has been explicitly designed to

accommodate a product that evolves over time is needed. Evolutionary models are iterative.

They are characterized in a manner that enables you to develop increasingly more complete

versions of the software.

PROTOTYPING

 Prototyping. Often, a customer defines a set of general objectives for software, but does

not identify detailed requirements for functions and features. In other cases, the developer may

be unsure of the efficiency of an algorithm, the adaptability of an operating system, or the form

that human-machine interaction should take. In these, and many other situations, a prototyping

paradigm may offer the best approach.

Although prototyping can be used as a stand-alone process model, it is more commonly

used as a technique that can be implemented within the context of any one of the process models.

Regardless of the manner in which it is applied, the prototyping paradigm assists you and other

stakeholders to better understand what is to be built when requirements are fuzzy.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 24/31

The prototyping paradigm (Figure 2.6) begins with communication. You meet with other

stakeholders to define the overall objectives for the software, identify whatever requirements are

known, and outline areas where further definition is mandatory. A prototyping iteration is

planned quickly, and modeling (in the form of a ―quick design‖) occurs. A quick design focuses

on a representation of those aspects of the software that will be visible to end users (e.g., human

interface layout or output display formats).

Fig 1.8. The prototyping paradigm

The quick design leads to the construction of a prototype. The prototype is deployed and

evaluated by stakeholders, who provide feedback that is used to further refine requirements.

Iteration occurs as the prototype is tuned to satisfy the needs of various stakeholders, while at the

same time enabling you to better understand what needs to be done.

Ideally, the prototype serves as a mechanism for identifying software requirements. If a

working prototype is to be built, you can make use of existing program fragments or apply tools

(e.g., report generators and window managers) that enable working programs to be generated

quickly.

In most projects, the first system built is barely usable. It may be too slow, too big,

awkward in use or all three. There is no alternative but to start again, smarting but smarter, and

build a redesigned version in which these problems are solved.

The prototype can serve as ―the first system.‖ Although some prototypes are built as

―throwaways,‖ others are evolutionary in the sense that the prototype slowly evolves into the

actual system.

Both stakeholders and software engineers like the prototyping paradigm. Users get a feel

for the actual system, and developers get to build something immediately. Yet, prototyping can

be problematic for the following reasons:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 25/31

1. Stakeholders see what appears to be a working version of the software, unaware that

the prototype is held together haphazardly, unaware that in the rush to get it working you haven‘t

considered overall software quality or long-term maintainability. When informed that the product

must be rebuilt so that high levels of quality can be maintained, stakeholders cry foul and

demand that ―a few fixes‖ be applied to make the prototype a working product. Too often,

software development management relents.

2. As a software engineer, you often make implementation compromises in order to get a

prototype working quickly. An inappropriate operating system or programming language may be

used simply because it is available and known; an inefficient algorithm may be implemented

simply to demonstrate capability. After a time, you may become comfortable with these choices

and forget all the reasons why they were inappropriate. The less-than-ideal choice has now

become an integral part of the system.

Although problems can occur, prototyping can be an effective paradigm for software

engineering. The key is to define the rules of the game at the beginning; that is, all stakeholders

should agree that the prototype is built to serve as a mechanism for defining requirements. It is

then discarded (at least in part), and the actual software is engineered with an eye toward quality.

THE SPIRAL MODEL

The Spiral Model. Originally proposed by Barry Boehm, the spiral model is an

evolutionary software process model that couples the iterative nature of prototyping with the

controlled and systematic aspects of the waterfall model. It provides the potential for rapid

development of increasingly more complete versions of the software. Boehm describes the

model in the following manner:

The spiral development model is a risk-driven process model generator that is used to

guide multi-stakeholder concurrent engineering of software intensive systems. It has two main

distinguishing features. One is a cyclic approach for incrementally growing a system‘s degree of

definition and implementation while decreasing its degree of risk. The other is a set of anchor

point milestones for ensuring stakeholder commitment to feasible and mutually satisfactory

system solutions.

Using the spiral model, software is developed in a series of evolutionary releases. During

early iterations, the release might be a model or prototype. During later iterations, increasingly

more complete versions of the engineered system are produced.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 26/31

Fig 1.9. A typical spiral model

 A spiral model is divided into a set of framework activities defined by the software

engineering team. For illustrative purposes, I use the generic framework activities discussed

earlier. Each of the framework activities represent one segment of the spiral path illustrated in

Figure 1.9. As this evolutionary process begins, the software team performs activities that are

implied by a circuit around the spiral in a clockwise direction, beginning at the center. Risk is

considered as each revolution is made. Anchor point milestones—a combination of work

products and conditions that are attained along the path of the spiral—are noted for each

evolutionary pass.

The first circuit around the spiral might result in the development of a product

specification; subsequent passes around the spiral might be used to develop a prototype and then

progressively more sophisticated versions of the software. Each pass through the planning region

results in adjustments to the project plan. Cost and schedule are adjusted based on feedback

derived from the customer after delivery. In addition, the project manager adjusts the planned

number of iterations required to complete the software.

Unlike other process models that end when software is delivered, the spiral model can be

adapted to apply throughout the life of the computer software. Therefore, the first circuit around

the spiral might represent a ―concept development project‖ that starts at the core of the spiral and

continues for multiple iterations until concept development is complete.

If the concept is to be developed into an actual product, the process proceeds outward on

the spiral and a ―new product development project‖ commences. The new product will evolve

through a number of iterations around the spiral. Later, a circuit around the spiral might be used

to represent a ―product enhancement project.‖ In essence, the spiral, when characterized in this

way, remains operative until the software is retired. There are times when the process is dormant,

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 27/31

but whenever a change is initiated, the process starts at the appropriate entry point (e.g., product

enhancement).

The spiral model is a realistic approach to the development of large-scale systems and

software. Because software evolves as the process progresses, the developer and customer better

understand and react to risks at each evolutionary level.

The spiral model uses prototyping as a risk reduction mechanism but, more important,

enables you to apply the prototyping approach at any stage in the evolution of the product. It

maintains the systematic stepwise approach suggested by the classic life cycle but incorporates it

into an iterative framework that more realistically reflects the real world. The spiral model

demands a direct consideration of technical risks at all stages of the project and, if properly

applied, should reduce risks before they become problematic.

But like other paradigms, the spiral model is not a panacea. It may be difficult to

convince customers (particularly in contract situations) that the evolutionary approach is

controllable. It demands considerable risk assessment expertise and relies on this expertise for

success. If a major risk is not uncovered and managed, problems will undoubtedly occur.

A Final Word on Evolutionary Processes

Modern computer software is characterized by continual change, by very tight time lines,

and by an emphatic need for customer–user satisfaction. In many cases, time-to-market is the

most important management requirement. If a market window is missed, the software project

itself may be meaningless.

Evolutionary process models were conceived to address these issues, and yet, as a general

class of process models, they too have weaknesses. Despite the unquestionable benefits of

evolutionary software processes, we have some concerns. The first concern is that prototyping

[and other more sophisticated evolutionary processes] poses a problem to project planning

because of the uncertain number of cycles required to construct the product. Most project

management and estimation techniques are based on linear layouts of activities, so they do not fit

completely.

Second, evolutionary software processes do not establish the maximum speed of the

evolution. If the evolutions occur too fast, without a period of relaxation, it is certain that the

process will fall into chaos. On the other hand if the speed is too slow then productivity could be

affected.

Third, software processes should be focused on flexibility and extensibility rather than on

high quality. This assertion sounds scary. However, we should prioritize the speed of the

development over zero defects. Extending the development in order to reach high quality could

result in a late delivery of the product, when the opportunity niche has disappeared. This

paradigm shift is imposed by the competition on the edge of chaos.

Indeed, a software process that focuses on flexibility, extensibility, and speed of

development over high quality does sound scary. And yet, this idea has been proposed by a

number of well-respected software engineering experts.

The intent of evolutionary models is to develop high-quality software14 in an iterative or

incremental manner. However, it is possible to use an evolutionary process to emphasize

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 28/31

flexibility, extensibility, and speed of development. The challenge for software teams and their

managers is to establish a proper balance between these critical project and product parameters

and customer satisfaction (the ultimate arbiter of software quality).

SPECIALIZED PROCESS MODELS

 Specialized process models take on many of the characteristics of one or more of the

traditional models presented in the preceding sections. However, these models tend to be applied

when a specialized or narrowly defined software engineering approach is chosen.

Component-Based Development

 Commercial off-the-shelf (COTS) software components, developed by vendors who

offer them as products, provide targeted functionality with well-defined interfaces that enable the

component to be integrated into the software that is to be built. The component-based

development model incorporates many of the characteristics of the spiral model. It is

evolutionary in nature, demanding an iterative approach to the creation of software. However,

the component-based development model constructs applications from prepackaged software

components.

Modeling and construction activities begin with the identification of candidate

components. These components can be designed as either conventional software modules or

object-oriented classes or packages of classes. Regardless of the technology that is used to create

the components, the component-based development model incorporates the following steps

(implemented using an evolutionary approach):

1. Available component-based products are researched and evaluated for the application

domain in question.

2. Component integration issues are considered.

3. A software architecture is designed to accommodate the components.

4. Components are integrated into the architecture.

5. Comprehensive testing is conducted to ensure proper functionality.

The component-based development model leads to software reuse, and reusability

provides software engineers with a number of measurable benefits. Your software engineering

team can achieve a reduction in development cycle time as well as a reduction in project cost if

component reuse becomes part of your culture

The Formal Methods Model

The formal methods model encompasses a set of activities that leads to formal

mathematical specification of computer software. Formal methods enable you to specify,

develop, and verify a computer-based system by applying a rigorous, mathematical notation. A

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 29/31

variation on this approach, called cleanroom software engineering, is currently applied by some

software development organizations.

When formal methods are used during development, they provide a mechanism for

eliminating many of the problems that are difficult to overcome using other software engineering

paradigms. Ambiguity, incompleteness, and inconsistency can be discovered and corrected more

easily—not through ad hoc review, but through the application of mathematical analysis. When

formal methods are used during design, they serve as a basis for program verification and

therefore enable you to discover and correct errors that might otherwise go undetected.

Although not a mainstream approach, the formal methods model offers the promise of

defect-free software. Yet, concern about its applicability in a business environment has been

voiced:

• The development of formal models is currently quite time consuming and expensive.

• Because few software developers have the necessary background to apply formal

methods, extensive training is required.

• It is difficult to use the models as a communication mechanism for technically

unsophisticated customers.

These concerns notwithstanding, the formal methods approach has gained adherents

among software developers who must build safety-critical software (e.g., developers of aircraft

avionics and medical devices) and among developers that would suffer severe economic hardship

should software errors occur.

Aspect-Oriented Software Development

Regardless of the software process that is chosen, the builders of complex software

invariably implement a set of localized features, functions, and information content. These

localized software characteristics are modeled as components (e.g., objectoriented classes) and

then constructed within the context of a system architecture.

As modern computer-based systems become more sophisticated (and complex), certain

concerns—customer required properties or areas of technical interest—span the entire

architecture. Some concerns are high-level properties of a system (e.g., security, fault tolerance).

Other concerns affect functions (e.g., the application of business rules), while others are systemic

(e.g., task synchronization or memory management).

When concerns cut across multiple system functions, features, and information, they are

often referred to as crosscutting concerns. Aspectual requirements define those crosscutting

concerns that have an impact across the software architecture.

Aspect-oriented software development (AOSD), often referred to as aspect-oriented

programming (AOP), is a relatively new software engineering paradigm that provides a process

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 30/31

and methodological approach for defining, specifying, designing, and constructing aspects—

―mechanisms beyond subroutines and inheritance for localizing the expression of a crosscutting

concern‖.

Aspect-oriented component engineering (AOCE):

AOCE uses a concept of horizontal slices through vertically-decomposed software

components, called ―aspects,‖ to characterize cross-cutting functional and non-functional

properties of components. Common, systemic aspects include user interfaces, collaborative

work, distribution, persistency, memory management, transaction processing, security, integrity

and so on.

Components may provide or require one or more ―aspect details‖ relating to a particular

aspect, such as a viewing mechanism, extensible affordance and interface kind (user interface

aspects); event generation, transport and receiving (distribution aspects); data store/retrieve and

indexing (persistency aspects); authentication, encoding and access rights (security aspects);

transaction atomicity, concurrency control and logging strategy (transaction aspects); and so on.

Each aspect detail has a number of properties, relating to functional and/or non-functional

characteristics of the aspect detail.

A distinct aspect-oriented process has not yet matured. However, it is likely that such a

process will adopt characteristics of both evolutionary and concurrent process models. The

evolutionary model is appropriate as aspects are identified and then constructed. The parallel

nature of concurrent development is essential because aspects are engineered independently of

localized software components and yet, aspects have a direct impact on these components.

Hence, it is essential to instantiate asynchronous communication between the software process

activities applied to the engineering and construction of aspects and components.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 31/31

POSSIBLE QUESTIONS

PART – B

1. Explain the different phases involved in waterfall life cycle. Give the reasons for the Failure

of Water Fall Model.

2. Discuss on various types of software myths and the true aspects of the myths.

3. Explain about the Generic view of process in detail.

4. Elucidate the process model that combines the elements of waterfall and iterative fashion.

5. Explain the process model which is useful when staffing is unavailable to complete

implementation.

6. Explain about the Evolutionary Process Model

7. Describe the Prescriptive process model in detail.

8. Explain with diagram the layered technology of software process along with its

characteristics.

9. Explicate how the specialized models applied for software engineering approaches.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 1/31

UNIT-I

SYLLABUS

Introduction to Software Engineering: The Evolving Role of Software-Software-Software

Myths- A Generic View of process: Software Engineering –A Layered Technology- Process

Models: Prescriptive Models- Waterfall Model- Incremental process Models. Evolutionary

Process Models: Prototyping, The Spiral Model. Specialized process Models

INTRODUCTION TO SOFTWARE ENGINEERING

Computer software is the product that software professionals build and then support over

the long term. It encompasses programs that execute within a computer of any size and

architecture, content that is presented as the computer programs execute, and descriptive

information in both hard copy and virtual forms that encompass virtually any electronic media.

Software engineering encompasses a process, a collection of methods (practice) and an

array of tools that allow professionals to build high quality computer software. Software

engineering is important because it enables us to build complex systems in a timely manner and

with high quality.

Software Engineering

Software engineering is an engineering branch associated with development of software

product using well-defined scientific principles, methods and procedures. The outcome of

software engineering is an efficient and reliable software product.

Software project management has wider scope than software engineering process as it

involves communication, pre and post delivery support etc

Software is more than just a program code. A program is an executable code, which serves some

computational purpose. Software is considered to be collection of executable programming code,

associated libraries and documentations. Software, when made for a specific requirement is

called software product.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 2/31

Engineering on the other hand, is all about developing products, using well-defined, scientific

principles and methods.

Software engineering is an engineering branch associated with development of software

product using well-defined scientific principles, methods and procedures.

The outcome of software engineering is an efficient and reliable software product.

Definitions

IEEE defines software engineering as:

 The application of a systematic, disciplined, quantifiable approach to the development,

operation and maintenance of software; that is, the application of engineering to software.

The study of approaches as in the above statement, Fritz Bauer, a German computer scientist,

defines software engineering as:

 Software engineering is the establishment and use of sound engineering principles in

order to obtain economically software that is reliable and work efficiently on real

machines.

Software engineering is about teams. The problems to solve are so complex or large, that a

single developer cannot solve them anymore. Software engineering is also about communication.

Teams do not consist only of developers, but also of testers, architects, system engineers,

customer, project managers, etc.

Software projects can be so large that needs careful planning. Implementation is no longer

just writing code, but it is also following guidelines, writing documentation and also writing unit

tests. But unit tests alone are not enough.

The different pieces have to fit together. Problematic areas have to be spotted using metrics.

They tell us if our code follows certain standards. Once coding is finished, that does not mean

that the project is finished: for large projects maintaining software can keep many people busy

for a long time.

Since there are so many factors influencing the success or failure of a project, there is a need

to learn a little about project management and its pitfalls, but especially what makes projects

successful. And last but not least, a good software engineer, like any engineer, needs tools, and

to know about them is important.

Developers Work in Teams

In beginning coding was done by individuals. The problems solved earlier were small

enough so one person could master them. In the real world this is different:- the problem sizes

and time constraints are such that only teams can solve those problems.

For teams to work effectively they need a language to communicate (UML). Also teams

do not consist only of developers, but also of testers, architects, system engineers and most

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 3/31

importantly the customer. There is a need to learn about what makes good teams, how to

communicate with the customer, and how to document not only the source code, but everything

related to the software project.

New Language

Programming languages, such as Java or C++, was used earlier and turn ideas into code.

But these ideas are independent of the language. Unified Modeling Language (UML) is a way to

describe code independently of language, and more importantly, it helps to think in one higher

level of abstraction. UML can be an invaluable communication and documentation tool.

Pattern gives one higher level of abstraction. Again this increases our vocabulary to

communicate more effectively with our peers. Also, it is a fantastic way to learn from our

seniors. This is essential for designing large software systems.

Measurement

Also just being able to write software, doesn‘t mean that the software is any good.

Discovering what makes good software, and how to measure software quality is necessary.

Analysis of existing source code through static analysis and measuring metrics is needed.

It is needed to ensure that the code meets certain quality standards. Testing is also

important in this context, it guarantees high quality products.

New Tools

Apart from an IDE, a compiler and a debugger, there are many more tools at the disposal

of a software engineer. There are tools that allow us to work in teams, to document our software,

to assist and monitor the whole development effort. There are tools for software architects, tools

for testing and profiling, automation and re-engineering.

EVOLVING ROLE OF SOFTWARE

The industry originated with the entrepreneurial computer software and services

companies of the 1950s and 1960s, grew dramatically through the 1970s and 1980s to become a

market force rivaling that of the computer hardware companies, and by the 1990s had become

the supplier of technical know-how that transformed the way people worked, played and

communicated every day of their lives. The following are the different eras‘ of software

engineering:

The Pioneering Era (1955-1965)

The most important development was that new computers were coming out almost every

year or two, rendering existing ones obsolete. Software people had to rewrite all their programs

to run on these new machines.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 4/31

Jobs were run by signing up for machine time or by operational staff by putting punched

cards for input into the machine's card reader and waiting for results to come back on the printer.

The field was so new that the idea of management by schedule was non-existent. Making

predictions of a project's completion date was almost impossible.

Computer hardware was application-specific. Scientific and business tasks needed

different machines.

Hardware vendors gave away systems software for free as hardware could not be sold

without software. A few companies sold the service of building custom software but no software

companies were selling packaged software.

The Stabilizing Era (1965-1980)

The whole job-queue system had been institutionalized and so programmers no longer

ran their jobs except for peculiar applications like on-board computers. To handle the jobs, an

enormous bureaucracy had grown up around the central computer center.

The major problem as a result of this bureaucracy was turnaround time, the time between

job submission and completion. At worst it was measured in days.

Then came IBM 360. It signaled the beginning of the stabilizing era. This was the largest

software project to date. The 360 also combined scientific and business applications onto one

machine.

The job control language (JCL) raised a whole new class of problems. The programmer

had to write the program in a whole new language to tell the computer and OS what to do. JCL

was the least popular feature of the 360.

"Structured Programming" burst on the scene in the middle of this era. PL/I, introduced

by IBM to merge all programming languages into one, failed. Most customized applications

continued to be done in-house.

The Micro Era (1980-Present)

The price of computing has dropped dramatically making ubiquitous computing possible.

Now every programmer can have a computer on his desk. The old JCL has been replaced by the

user friendly GUI.

The software part of the hardware architecture that the programmer must know about,

such as the instruction set, has not changed much since the advent of the IBM mainframe and the

first Intel chip.

The most-used programming languages today are between 15 and 40 years old. The

Fourth Generation Languages never achieved the dream of "programming without programmers"

and the idea is pretty much limited to report generation from databases. There is an increasing

clamor though for more and better software research.

Computer software continues to be the single most important technology on the world

stage. And it‘s also a prime example of the law of unintended consequences.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 5/31

Evolution of software on Different Industries:

 Fifty years ago no one could have predicted that software would become an indispensable

technology for business, science, and engineering; that software would enable the

creation of new technologies (e.g., genetic engineering and nanotechnology), the

extension of existing technologies (e.g., telecommunications), and the radical change in

older technologies (e.g., the printing industry).

 Software would be the driving force behind the personal computer revolution; that

shrink-wrapped software products would be purchased by consumers in neighborhood

malls; that software would slowly evolve from a product to a service as ―on-demand‖

software companies deliver just-in-time functionality via a Web browser;

 A software company would become larger and more influential than almost all industrial-

era companies; that a vast software-driven network called the Internet would evolve and

change everything from library research to consumer shopping to political discourse to

the dating habits of young (and not so young) adults.

 As software‘s importance has grown, the software community has continually attempted

to develop technologies that will make it easier, faster, and less expensive to build and

maintain high-quality computer programs. Some of these technologies are targeted at a

specific application domain (e.g., website design and implementation); others focus on a

technology domain (e.g., object-oriented systems or aspect oriented programming); and

still others are broad-based (e.g., operating systems such as Linux).

 However, we have yet to develop a software technology that does it all, and the

likelihood of one arising in the future is small. And yet, people bet their jobs, their

comforts, their safety, their entertainment, their decisions, and their very lives on

computer software. It better be right.

SOFTWARE

Software is: (1) instructions (computer programs) that when executed provide desired

features, function, and performance; (2) data structures that enable the programs to adequately

manipulate information, and (3) descriptive information in both hard copy and virtual forms that

describes the operation and use of the programs.

Software is a logical rather than a physical system element. Therefore, software has

characteristics that are considerably different than those of hardware:

SOFTWARE CHARACTERISTICS

Software is developed or engineered; it is not manufactured in the classical sense.

Although some similarities exist between software development and hardware manufacturing,

the two activities are fundamentally different. In both activities, high quality is achieved through

good design, but the manufacturing phase for hardware can introduce quality problems that are

nonexistent (or easily corrected) for software.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 6/31

Fig 1.1. Failure curve for hardware

Both activities are dependent on people, but the relationship between people applied and work

accomplished is entirely different. Both activities require the construction of a ―product,‖ but the

approaches are different. Software costs are concentrated in engineering. This means that

software projects cannot be managed as if they were manufacturing projects.

Software doesn’t “wear out.” Figure 1.1 depicts failure rate as a function of time for hardware.

The relationship, often called the ―bathtub curve,‖ indicates that hardware exhibits relatively

high failure rates early in its life (these failures are often attributable to design or manufacturing

defects); defects are corrected and the failure rate drops to a steady-state level (hopefully, quite

low) for some period of time. As time passes, however, the failure rate rises again as hardware

components suffer from the cumulative effects of dust, vibration, abuse, temperature extremes,

and many other environmental maladies. Stated simply, the hardware begins to wear out.

Software is not susceptible to the environmental problems that cause hardware to wear out. In

theory, therefore, the failure rate curve for software should take the form of the ―idealized curve‖

shown in Figure 1.2. Undiscovered defects will cause high failure rates early in the life of a

program. However, these are corrected and the curve flattens as shown. The idealized curve is a

gross oversimplification of actual failure models for software. However, the implication is

clear—software doesn‘t wear out. But it does deteriorate.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 7/31

Fig 1.2. Failure curves for software

This seeming contradiction can best be explained by considering the actual curve in Figure 1.2.

During its life, software will undergo change. As changes are made, it is likely that errors will be

introduced, causing the failure rate curve to spike as shown in the ―actual curve‖ (Figure 1.2).

Before the curve can return to the original steady-state failure rate, another change is requested,

causing the curve to spike again. Slowly, the minimum failure rate level begins to rise—the

software is deteriorating due to change.

Another aspect of wear illustrates the difference between hardware and software. When a

hardware component wears out, it is replaced by a spare part. There are no software spare parts.

 Every software failure indicates an error in design or in the process through which design

was translated into machine executable code. Therefore, the software maintenance tasks

that accommodate requests for change involve considerably more complexity than

hardware maintenance.

Although the industry is moving toward component-based construction, most software

continues to be custom built. As an engineering discipline evolves, a collection of standard

design components is created. Standard screws and off-the-shelf integrated circuits are only two

of thousands of standard components that are used by mechanical and electrical engineers as they

design new systems. The reusable components have been created so that the engineer can

concentrate on the truly innovative elements of a design, that is, the parts of the design that

represent something new. In the hardware world, component reuse is a natural part of the

engineering process. In the software world, it is something that has only begun to be achieved on

a broad scale.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 8/31

 A software component should be designed and implemented so that it can be reused in

many different programs.

 Modern reusable components encapsulate both data and the processing that is applied to

the data, enabling the software engineer to create new applications from reusable parts.

 For example, today‘s interactive user interfaces are built with reusable components that

enable the creation of graphics windows, pull-down menus, and a wide variety of

interaction mechanisms. The data structures and processing detail required to build the

interface are contained within a library of reusable components for interface construction.

Software Application Domains

Today, seven broad categories of computer software present continuing challenges for software

engineers:

System software—a collection of programs written to service other programs. Some system

software (e.g., compilers, editors, and file management utilities) processes complex, but

determinate,4 information structures. Other systems applications (e.g., operating system

components, drivers, networking software, telecommunications processors) process largely

indeterminate data. In either case, the systems software area is characterized by heavy interaction

with computer hardware; heavy usage by multiple users; concurrent operation that requires

scheduling, resource sharing, and sophisticated process management; complex data structures;

and multiple external interfaces.

Application software—stand-alone programs that solve a specific business need. Applications

in this area process business or technical data in a way that facilitates business operations or

management/technical decision making. In addition to conventional data processing applications,

application software is used to control business functions in real time (e.g., point-of-sale

transaction processing, real-time manufacturing process control).

Engineering/scientific software—has been characterized by ―number crunching‖ algorithms.

Applications range from astronomy to volcanology, from automotive stress analysis to space

shuttle orbital dynamics, and from molecular biology to automated manufacturing. However,

modern applications within the engineering/scientific area are moving away from conventional

numerical algorithms. Computer-aided design, system simulation, and other interactive

applications have begun to take on real-time and even system software characteristics.

Embedded software—resides within a product or system and is used to implement and control

features and functions for the end user and for the system itself. Embedded software can perform

limited and esoteric functions (e.g., key pad control for a microwave oven) or provide significant

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 9/31

function and control capability (e.g., digital functions in an automobile such as fuel control,

dashboard displays, and braking systems).

Product-line software—designed to provide a specific capability for use by many different

customers. Product-line software can focus on a limited and esoteric marketplace (e.g., inventory

control products) or address mass consumer markets (e.g., word processing, spreadsheets,

computer graphics, multimedia, entertainment, database management, and personal and business

financial applications).

Web applications—called ―WebApps,‖ this network-centric software category spans a wide

array of applications. In their simplest form, WebApps can be little more than a set of linked

hypertext files that present information using text and limited graphics. However, as Web 2.0

emerges, WebApps are evolving into sophisticated computing environments that not only

provide stand-alone features, computing functions, and content to the end user, but also are

integrated with corporate databases and business applications.

Artificial intelligence software—makes use of non-numerical algorithms to solve complex

problems that are not amenable to computation or straightforward analysis. Applications within

this area include robotics, expert systems, pattern recognition (image and voice), artificial neural

networks, theorem proving, and game playing.

Millions of software engineers worldwide are hard at work on software projects in one or more

of these categories. In some cases, new systems are being built, but in many others, existing

applications are being corrected, adapted, and enhanced. It is not uncommon for a young

software engineer to work a program that is older than she is! Past generations of software

people have left a legacy in each of the categories I have discussed. Hopefully, the legacy to be

left behind by this generation will ease the burden of future software engineers. And yet, new

challenges (Chapter 31) have appeared on the horizon:

Open-world computing—the rapid growth of wireless networking may soon lead to true

pervasive, distributed computing. The challenge for software engineers will be to develop

systems and application software that will allow mobile devices, personal computers, and

enterprise systems to communicate across vast networks

Netsourcing—the World Wide Web is rapidly becoming a computing engine as well as a

content provider. The challenge for software engineers is to architect simple (e.g., personal

financial planning) and sophisticated applications that provide a benefit to targeted end-user

markets worldwide.

Open source—a growing trend that results in distribution of source code for systems

applications (e.g., operating systems, database, and development environments) so that many

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 10/31

people can contribute to its development. The challenge for software engineers is to build source

code that is self-descriptive, but more importantly, to develop techniques that will enable both

customers and developers to know what changes have been made and how those changes

manifest themselves within the software.

Each of these new challenges will undoubtedly obey the law of unintended consequences and

have effects (for businesspeople, software engineers, and end users) that cannot be predicted

today. However, software engineers can prepare by instantiating a process that is agile and

adaptable enough to accommodate dramatic changes in technology and to business rules that are

sure to come over the next decade.

Legacy Software

Hundreds of thousands of computer programs fall into one of the seven broad application

domains discussed in the preceding subsection. Some of these are state of-the-art software—just

released to individuals, industry, and government. But other programs are older, in some cases

much older.

These older programs—often referred to as legacy software—have been the focus of

continuous attention and concern since the 1960s.

Unfortunately, there is sometimes one additional characteristic that is present in legacy

software—poor quality.

However, as time passes, legacy systems often evolve for one or more of the following

reasons:

The software must be adapted to meet the needs of new computing environments or

technology.

The software must be enhanced to implement new business requirements.

The software must be extended to make it interoperable with other more modern systems

or databases.

The software must be re-architected to make it viable within a network environment.

When these modes of evolution occur, a legacy system must be reengineered so that it

remains viable into the future. The goal of modern software engineering is to ―devise

methodologies that are founded on the notion of evolution‖; that is, the notion that software

systems continually change, new software systems are built from the old ones, and . . . all must

interoperate and cooperate with each other.

SOFTWARE MYTHS

Software myths—erroneous beliefs about software and the process that is used to build

it—can be traced to the earliest days of computing.

Myths have a number of attributes that make them insidious. For instance, they appear to

be reasonable statements of fact (sometimes containing elements of truth), they have an intuitive

feel, and they are often promulgated by experienced practitioners who ―know the score.‖

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 11/31

Today, most knowledgeable software engineering professionals recognize myths for what

they are—misleading attitudes that have caused serious problems for managers and practitioners

alike. However, old attitudes and habits are difficult to modify, and remnants of software myths

remain.

Management myths.

Managers with software responsibility, like managers in most disciplines, are often under

pressure to maintain budgets, keep schedules from slipping, and improve quality. Like a

drowning person who grasps at a straw, a software manager often grasps at belief in a software

myth, if that belief will lessen the pressure (even temporarily).

Myth: We already have a book that’s full of standards and procedures for building

software. Won’t that provide my people with everything they need to know?

Reality: The book of standards may very well exist, but is it used? Are software

practitioners aware of its existence? Does it reflect modern software engineering practice? Is it

complete? Is it adaptable? Is it streamlined to improve time-to-delivery while still maintaining a

focus on quality? In many cases, the answer to all of these questions is ―no.‖

Myth: If we get behind schedule, we can add more programmers and catch up

(sometimes called the “Mongolian horde” concept).

Reality: Software development is not a mechanistic process like manufacturing. In the

words of Brooks [Bro95]: ―adding people to a late software project makes it later.‖ At first, this

statement may seem counterintuitive. However, as new people are added, people who were

working must spend time educating the newcomers, thereby reducing the amount of time spent

on productive development effort. People can be added but only in a planned and well

coordinated manner.

Myth: If I decide to outsource the software project to a third party, I can just relax and

let that firm build it.

Reality: If an organization does not understand how to manage and control software

projects internally, it will invariably struggle when it outsources software projects.

Customer myths.

A customer who requests computer software may be a person at the next desk, a technical

group down the hall, the marketing/sales department, or an outside company that has requested

software under contract. In many cases, the customer believes myths about software because

software managers and practitioners do little to correct misinformation. Myths lead to false

expectations (by the customer) and, ultimately, dissatisfaction with the developer.

Myth: A general statement of objectives is sufficient to begin writing programs—we can

fill in the details later.

Reality: Although a comprehensive and stable statement of requirements is not always

possible, an ambiguous ―statement of objectives‖ is a recipe for disaster. Unambiguous

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 12/31

requirements (usually derive iteratively) are developed only through effective and continuous

communication between customer and developer.

Myth: Software requirements continually change, but change can be easily

accommodated because software is flexible.

Reality: It is true that software requirements change, but the impact of change varies

with the time at which it is introduced. When requirements changes are requested early (before

design or code has been started), the cost impact is relatively small.16 However, as time passes,

the cost impact grows rapidly—resources have been committed, a design framework has been

established, and change can cause upheaval that requires additional resources and major design

modification.

Practitioner’s myths.

Myths that are still believed by software practitioners have been fostered by over 50 years

of programming culture. During the early days, programming was viewed as an art form. Old

ways and attitudes die hard.

Myth: Once we write the program and get it to work, our job is done.

Reality: Someone once said that ―the sooner you begin ‗writing code,‘ the longer it‘ll

take you to get done.‖ Industry data indicate that between 60 and 80 percent of all effort

expended on software will be expended after it is delivered to the customer for the first time.

Myth: Until I get the program “running” I have no way of assessing its quality.

Reality: One of the most effective software quality assurance mechanisms can be applied

from the inception of a project—the technical review. Software reviews (described in Chapter

15) are a ―quality filter‖ that have been found to be more effective than testing for finding certain

classes of software defects.

Myth: The only deliverable work product for a successful project is the working

program.

Reality: A working program is only one part of a software configuration that includes

many elements. A variety of work products (e.g., models, documents, plans) provide a

foundation for successful engineering and, more important, guidance for software support.

Myth: Software engineering will make us create voluminous and unnecessary

documentation and will invariably slow us down.

Reality: Software engineering is not about creating documents. It is about creating a

quality product. Better quality leads to reduced rework. And reduced rework results in faster

delivery times

Many software professionals recognize the fallacy of the myths just described.

Regrettably, habitual attitudes and methods foster poor management and technical practices,

even when reality dictates a better approach. Recognition of software realities is the first step

toward formulation of practical solutions for software engineering.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 13/31

A GENERIC VIEW OF PROCESS

A process is defined as a collection of work activities, actions, and tasks that are

performed when some work product is to be created. Each of these activities, actions, and tasks

reside within a framework or model that defines their relationship with the process and with one

another.

The software process is represented schematically in Figure 1.3. Referring to the figure,

each framework activity is populated by a set of software engineering actions.

Each software engineering action is defined by a task set that identifies the work tasks

that are to be completed, the work products that will be produced, the quality assurance points

that will be required, and the milestones that will be used to indicate progress.

Fig 1.3. A software process framework

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 14/31

A generic process framework for software engineering defines five framework

activities—communication, planning, modeling, construction, and deployment. In addition, a

set of umbrella activities—project tracking and control, risk management, quality assurance,

configuration management, technical reviews, and others—are applied throughout the process.

One important aspect of the software process is called process flow—describes how the

framework activities and the actions and tasks that occur within each framework activity are

organized with respect to sequence and time and is illustrated in Figure 1.4.

Fig 1.4. Process flow

 A linear process flow executes each of the five framework activities in sequence,

beginning with communication and culminating with deployment (Figure 1.4a).

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 15/31

 An iterative process flow repeats one or more of the activities before proceeding

to the next (Figure 1.4.b).

 An evolutionary process flow executes the activities in a ―circular‖ manner. Each

circuit through the five activities leads to a more complete version of the software

(Figure 1.4c).

 A parallel process flow (Figure 1.4d) executes one or more activities in parallel

with other activities (e.g., modeling for one aspect of the software might be

executed in parallel with construction of another aspect of the software)

Defining a Framework Activity

A software team would need significantly more information before it could properly

execute any one of these activities as part of the software process.

A key question is: What actions are appropriate for a framework activity, given the

nature of the problem to be solved, the characteristics of the people doing the work, and the

stakeholders who are sponsoring the project

For a small software project requested by one person (at a remote location) with simple,

straightforward requirements, the communication activity might encompass little more than a

phone call with the appropriate stakeholder. Therefore, the only necessary action is phone

conversation, and the work tasks (the task set) that this action encompasses are:

1. Make contact with stakeholder via telephone.

2. Discuss requirements and take notes.

3. Organize notes into a brief written statement of requirements.

4. E-mail to stakeholder for review and approval.

If the project was considerably more complex with many stakeholders, each with a

different set of (sometime conflicting) requirements, the communication activity might have six

distinct actions inception, elicitation, elaboration, negotiation, specification, and validation.

Each of these software engineering actions would have many work tasks and a number of

distinct work products.

Identifying a Task Set

Referring again to Figure 1.3 each software engineering action (e.g., elicitation, an action

associated with the communication activity) can be represented by a

 Number of different task sets—each a collection of software engineering work

tasks,

 Related work products,

 Quality assurance points,

 Project milestones.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 16/31

Choose a task set that best accommodates the needs of the project and the characteristics of your

team. This implies that a software engineering action can be adapted to the specific needs of the

software project and the characteristics of the project team.

Task Set

A task set defines the actual work to be done to accomplish the objectives of a software

engineering action. For example, elicitation (more commonly called ―requirements gathering‖) is

an important software engineering action that occurs during the communication activity. The

goal of requirements gathering is to understand what various stakeholders want from the

software that is to be built. For a small, relatively simple project, the task set for requirements

gathering might look like this:

1. Make a list of stakeholders for the project.

2. Invite all stakeholders to an informal meeting.

3. Ask each stakeholder to make a list of features and functions required.

4. Discuss requirements and build a final list.

5. Prioritize requirements.

6. Note areas of uncertainty.

Process Patterns

Every software team encounters problems as it moves through the software process. It

would be useful if proven solutions to these problems were readily available to the team so that

the problems could be addressed and resolved quickly.

A process pattern describes a process-related problem that is encountered during

software engineering work, identifies the environment in which the problem has been

encountered, and suggests one or more proven solutions to the problem.

Stated in more general terms, a process pattern provides you with a template—a

consistent method for describing problem solutions within the context of the software process.

By combining patterns, a software team can solve problems and construct a process that best

meets the needs of a project.

Patterns can be defined at any level of abstraction. In some cases, a pattern might be used

to describe a problem (and solution) associated with a complete process model (e.g.,

prototyping). In other situations, patterns can be used to describe a problem (and solution)

associated with a framework activity (e.g., planning) or an action within a framework activity

(e.g., project estimating). Ambler has proposed a template for describing a process pattern:

Pattern Name. The pattern is given a meaningful name describing it within the context

of the software process (e.g., TechnicalReviews).

Forces. The environment in which the pattern is encountered and the issues that make the

problem visible and may affect its solution.

Type. The pattern type is specified. Ambler [Amb98] suggests three types:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 17/31

1. Stage pattern—defines a problem associated with a framework activity for the process.

Since a framework activity encompasses multiple actions and work tasks, a stage pattern

incorporates multiple task patterns (see the following) that are relevant to the stage (framework

activity). An example of a stage pattern might be EstablishingCommunication. This pattern

would incorporate the task pattern RequirementsGathering and others.

2. Task pattern—defines a problem associated with a software engineering action or

work task and relevant to successful software engineering practice (e.g.,

RequirementsGathering is a task pattern).

3. Phase pattern—define the sequence of framework activities that occurs within the

process, even when the overall flow of activities is iterative in nature. An example of a phase

pattern might be SpiralModel or Prototyping.

Initial context. Describes the conditions under which the pattern applies. Prior to the

initiation of the pattern: (1) What organizational or team-related activities have already occurred?

(2) What is the entry state for the process? (3) What software engineering information or project

information already exists? For example, the Planning pattern (a stage pattern) requires that (1)

customers and software engineers have established a collaborative communication; (2)

successful completion of a number of task patterns [specified] for the

Communication pattern has occurred; and (3) the project scope, basic business

requirements, and project constraints are known.

Problem. The specific problem to be solved by the pattern.

Solution. Describes how to implement the pattern successfully. This section describes

how the initial state of the process (that exists before the pattern is implemented) is modified as a

consequence of the initiation of the pattern. It also describes how software engineering

information or project information that is available before the initiation of the pattern is

transformed as a consequence of the successful execution of the pattern.

Resulting Context. Describes the conditions that will result once the pattern has been

successfully implemented. Upon completion of the pattern: (1) What organizational or team-

related activities must have occurred? (2) What is the exit state for the process? (3) What

software engineering information or project information has been developed?

Related Patterns. Provide a list of all process patterns that are directly related to this

one. This may be represented as a hierarchy or in some other diagrammatic form. For example,

the stage pattern Communication encompasses the task patterns: ProjectTeam,

CollaborativeGuidelines, ScopeIsolation, RequirementsGathering, ConstraintDescription, and

ScenarioCreation.

Known Uses and Examples. Indicate the specific instances in which the pattern is

applicable. For example, Communication is mandatory at the beginning of every software

project, is recommended throughout the software project, and is mandatory once the deployment

activity is under way.

Process patterns provide an effective mechanism for addressing problems associated with

any software process. The patterns enable you to develop a hierarchical process description that

begins at a high level of abstraction (a phase pattern).

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 18/31

The description is then refined into a set of stage patterns that describe framework

activities and are further refined in a hierarchical fashion into more detailed task patterns for

each stage pattern. Once process patterns have been developed, they can be reused for the

definition of process variants—that is, a customized process model can be defined by a software

team using the patterns as building blocks for the process model.

SOFTWARE ENGINEERING

In order to build software that is ready to meet the challenges of the twenty-first century,

you must recognize a few simple realities:

 It follows that a concerted effort should be made to understand the problem

before a software solution is developed.

 • Software has become deeply embedded in virtually every aspect of our lives, and as a

consequence, the number of people who have an interest in the features and functions provided

by a specific application has grown dramatically. When a new application or embedded system is

to be built, many voices must be heard. And it sometimes seems that each of them has a slightly

different idea of what software features and functions should be delivered.

 It follows that design becomes a pivotal activity.

• The information technology requirements demanded by individuals, businesses, and

governments grow increasing complex with each passing year. Large teams of people now create

computer programs that were once built by a single individual. Sophisticated software that was

once implemented in a predictable, self-contained, computing environment is now embedded

inside everything from consumer electronics to medical devices to weapons systems. The

complexity of these new computer-based systems and products demands careful attention to the

interactions of all system elements.

 It follows that software should exhibit high quality.

• Individuals, businesses, and governments increasingly rely on software for strategic and

tactical decision making as well as day-to-day operations and control. If the software fails,

people and major enterprises can experience anything from minor inconvenience to catastrophic

failures.

 It follows that software should be maintainable.

• As the perceived value of a specific application grows, the likelihood is that its user

base and longevity will also grow. As its user base and time-in-use increase, demands for

adaptation and enhancement will also grow.

These simple realities lead to one conclusion: software in all of its forms and across all of

its application domains should be engineered. And that leads us to the topic of this book—

software engineering.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 19/31

Although hundreds of authors have developed personal definitions of software

engineering, a definition proposed by Fritz Bauer [Nau69] at the seminal conference on the

subject still serves as a basis for discussion:

 [Software engineering is] the establishment and use of sound engineering

principles in order to obtain economically software that is reliable and works

efficiently on real machines.

 Software Engineering: (1) The application of a systematic, disciplined,

quantifiable approach to the development, operation, and maintenance of

software; that is, the application of engineering to software. (2) The study of

approaches as in (1). And yet, a ―systematic, disciplined, and quantifiable‖

approach applied by one software team may be burdensome to another. We need

discipline, but we also need adaptability and agility.

A LAYERED TECHNOLOGY

Software engineering is a layered technology. Referring to Figure 1.5, any engineering

approach (including software engineering) must rest on an organizational commitment to quality.

Total quality management, Six Sigma, and similar philosophies10 foster a continuous

process improvement culture, and it is this culture that ultimately leads to the development of

increasingly more effective approaches to software engineering.

The bedrock that supports software engineering is a quality focus. The foundation for

software engineering is the process layer.

The software engineering process is the glue that holds the technology layers together

and enables rational and timely development of computer software.

Fig 1.5 Software engineering layers

Process defines a framework that must be established for effective delivery of software

engineering technology.

The software process forms the basis for

 Management control of software projects and establishes the context in which

technical methods are applied

 Work products (models, documents, data, reports, forms, etc.) are produced

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 20/31

 Milestones are established

 Quality is ensured

 Change is properly managed.

Software engineering methods provide the technical how-to‘s for building software.

Methods encompass a broad array of tasks that include communication, requirements analysis,

design modeling, program construction, testing, and support. Software engineering methods rely

on a set of basic principles that govern each area of the technology and include modeling

activities and other descriptive techniques.

Software engineering tools provide automated or semi-automated support for the process

and the methods. When tools are integrated so that information created by one tool can be used

by another, a system for the support of software development, called computer-aided software

engineering, is established.

PROCESS MODELS:

PRESCRIPTIVE MODELS

 Prescriptive process models were originally proposed to bring order to the chaos of

software development. History has indicated that these traditional models have brought a certain

amount of useful structure to software engineering work and have provided a reasonably

effective road map for software teams. However, software engineering work and the product that

it produces remain on ―the edge of chaos.‖

Change occurs when there is some structure so that the change can be organized, but not

so rigid that it cannot occur. Too much chaos, on the other hand, can make coordination and

coherence impossible. Lack of structure does not always mean disorder. The philosophical

implications of this argument are significant for software engineering.

If prescriptive process models strive for structure and order, are they inappropriate for a

software world that thrives on change? Yet, if we reject traditional process models (and the order

they imply) and replace them with something less structured, do we make it impossible to

achieve coordination and coherence in software work?

There are no easy answers to these questions, but there are alternatives available to

software engineers. In the sections that follow, I examine the prescriptive process approach in

which order and project consistency are dominant issues. I call them ―prescriptive‖ because they

prescribe a set of process elements—framework activities, software engineering actions, tasks,

work products, quality assurance, and change control mechanisms for each project. Each process

model also prescribes a process flow (also called a work flow)—that is, the manner in which the

process elements are interrelated to one another.

WATERFALL MODEL

There are times when the requirements for a problem are well understood—when work

flows from communication through deployment in a reasonably linear fashion. This situation is

sometimes encountered when well-defined adaptations or enhancements to an existing system

must be made (e.g., an adaptation to accounting software that has been mandated because of

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 21/31

changes to government regulations). It may also occur in a limited number of new development

efforts, but only when requirements are well defined and reasonably stable.

The waterfall model, sometimes called the classic life cycle, suggests a systematic,

sequential approach6 to software development that begins with customer specification of

requirements and progresses through planning, modeling, construction, and deployment,

culminating in ongoing support of the completed software (Figure 1.6).

Fig 1.6.The waterfall model

The waterfall model is the oldest paradigm for software engineering. However, over the

past three decades, criticism of this process model has caused even passionate supporters to

question its efficacy. Among the problems that are sometimes encountered when the waterfall

model is applied are:

1. Real projects rarely follow the sequential flow that the model proposes. Although the

linear model can accommodate iteration, it does so indirectly. As a result, changes can cause

confusion as the project team proceeds.

2. It is often difficult for the customer to state all requirements explicitly. The waterfall

model requires this and has difficulty accommodating the natural uncertainty that exists at the

beginning of many projects.

3. The customer must have patience. A working version of the program(s) will not be

available until late in the project time span. A major blunder, if undetected until the working

program is reviewed, can be disastrous.

In an interesting analysis of actual projects, Bradac found that the linear nature of the

classic life cycle leads to ―blocking states‖ in which some project team members must wait for

other members of the team to complete dependent tasks. In fact, the time spent waiting can

exceed the time spent on productive work! The blocking states tend to be more prevalent at the

beginning and end of a linear sequential process.

Today, software work is fast-paced and subject to a never-ending stream of changes (to

features, functions, and information content). The waterfall model is often inappropriate for such

work. However, it can serve as a useful process model in situations where requirements are fixed

and work is to proceed to completion in a linear manner.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 22/31

INCREMENTAL PROCESS MODELS

There are many situations in which initial software requirements are reasonably well

defined, but the overall scope of the development effort precludes a purely linear process. In

addition, there may be a compelling need to provide a limited set of software functionality to

users quickly and then refine and expand on that functionality in later software releases. In such

cases, you can choose a process model that is designed to produce the software in increments.

The incremental model combines elements of linear and parallel process. Referring to

Figure 1.7, the incremental model applies linear sequences in a staggered fashion as calendar

time progresses. Each linear sequence produces deliverable ―increments‖ of the software in a

manner that is similar to the increments produced by an evolutionary process flow.

For example, word-processing software developed using the incremental paradigm might

deliver basic file management, editing, and document production functions in the first increment;

more sophisticated editing and document production capabilities in the second increment;

spelling and grammar checking in the third increment; and advanced page layout capability in

the fourth increment. It should be noted that the process flow for any increment can incorporate

the prototyping paradigm.

When an incremental model is used, the first increment is often a core product. That is,

basic requirements are addressed but many supplementary features (some known, others

unknown) remain undelivered. The core product is used by the customer (or undergoes detailed

evaluation).

As a result of use and/or evaluation, a plan is developed for the next increment.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 23/31

Fig 1.7. The incremental model

The plan addresses the modification of the core product to better meet the needs of the

customer and the delivery of additional features and functionality. This process is repeated

following the delivery of each increment, until the complete product is produced.

The incremental process model focuses on the delivery of an operational product with

each increment. Early increments are stripped-down versions of the final product, but they do

provide capability that serves the user and also provide a platform for evaluation by the user.

Incremental development is particularly useful when staffing is unavailable for a

complete implementation by the business deadline that has been established for the project. Early

increments can be implemented with fewer people. If the core product is well received, then

additional staff (if required) can be added to implement the next increment.

In addition, increments can be planned to manage technical risks. For example, a major

system might require the availability of new hardware that is under development and whose

delivery date is uncertain. It might be possible to plan early increments in a way that avoids the

use of this hardware, thereby enabling partial functionality to be delivered to end users without

inordinate delay.

EVOLUTIONARY PROCESS MODELS

 Software, like all complex systems, evolves over a period of time. Business and product

requirements often change as development proceeds, making a straight line path to an end

product unrealistic; tight market deadlines make completion of a comprehensive software

product impossible, but a limited version must be introduced to meet competitive or business

pressure; a set of core product or system requirements is well understood, but the details of

product or system extensions have yet to be defined.

In these and similar situations, a process model that has been explicitly designed to

accommodate a product that evolves over time is needed. Evolutionary models are iterative.

They are characterized in a manner that enables you to develop increasingly more complete

versions of the software.

PROTOTYPING

 Prototyping. Often, a customer defines a set of general objectives for software, but does

not identify detailed requirements for functions and features. In other cases, the developer may

be unsure of the efficiency of an algorithm, the adaptability of an operating system, or the form

that human-machine interaction should take. In these, and many other situations, a prototyping

paradigm may offer the best approach.

Although prototyping can be used as a stand-alone process model, it is more commonly

used as a technique that can be implemented within the context of any one of the process models.

Regardless of the manner in which it is applied, the prototyping paradigm assists you and other

stakeholders to better understand what is to be built when requirements are fuzzy.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 24/31

The prototyping paradigm (Figure 2.6) begins with communication. You meet with other

stakeholders to define the overall objectives for the software, identify whatever requirements are

known, and outline areas where further definition is mandatory. A prototyping iteration is

planned quickly, and modeling (in the form of a ―quick design‖) occurs. A quick design focuses

on a representation of those aspects of the software that will be visible to end users (e.g., human

interface layout or output display formats).

Fig 1.8. The prototyping paradigm

The quick design leads to the construction of a prototype. The prototype is deployed and

evaluated by stakeholders, who provide feedback that is used to further refine requirements.

Iteration occurs as the prototype is tuned to satisfy the needs of various stakeholders, while at the

same time enabling you to better understand what needs to be done.

Ideally, the prototype serves as a mechanism for identifying software requirements. If a

working prototype is to be built, you can make use of existing program fragments or apply tools

(e.g., report generators and window managers) that enable working programs to be generated

quickly.

In most projects, the first system built is barely usable. It may be too slow, too big,

awkward in use or all three. There is no alternative but to start again, smarting but smarter, and

build a redesigned version in which these problems are solved.

The prototype can serve as ―the first system.‖ Although some prototypes are built as

―throwaways,‖ others are evolutionary in the sense that the prototype slowly evolves into the

actual system.

Both stakeholders and software engineers like the prototyping paradigm. Users get a feel

for the actual system, and developers get to build something immediately. Yet, prototyping can

be problematic for the following reasons:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 25/31

1. Stakeholders see what appears to be a working version of the software, unaware that

the prototype is held together haphazardly, unaware that in the rush to get it working you haven‘t

considered overall software quality or long-term maintainability. When informed that the product

must be rebuilt so that high levels of quality can be maintained, stakeholders cry foul and

demand that ―a few fixes‖ be applied to make the prototype a working product. Too often,

software development management relents.

2. As a software engineer, you often make implementation compromises in order to get a

prototype working quickly. An inappropriate operating system or programming language may be

used simply because it is available and known; an inefficient algorithm may be implemented

simply to demonstrate capability. After a time, you may become comfortable with these choices

and forget all the reasons why they were inappropriate. The less-than-ideal choice has now

become an integral part of the system.

Although problems can occur, prototyping can be an effective paradigm for software

engineering. The key is to define the rules of the game at the beginning; that is, all stakeholders

should agree that the prototype is built to serve as a mechanism for defining requirements. It is

then discarded (at least in part), and the actual software is engineered with an eye toward quality.

THE SPIRAL MODEL

The Spiral Model. Originally proposed by Barry Boehm, the spiral model is an

evolutionary software process model that couples the iterative nature of prototyping with the

controlled and systematic aspects of the waterfall model. It provides the potential for rapid

development of increasingly more complete versions of the software. Boehm describes the

model in the following manner:

The spiral development model is a risk-driven process model generator that is used to

guide multi-stakeholder concurrent engineering of software intensive systems. It has two main

distinguishing features. One is a cyclic approach for incrementally growing a system‘s degree of

definition and implementation while decreasing its degree of risk. The other is a set of anchor

point milestones for ensuring stakeholder commitment to feasible and mutually satisfactory

system solutions.

Using the spiral model, software is developed in a series of evolutionary releases. During

early iterations, the release might be a model or prototype. During later iterations, increasingly

more complete versions of the engineered system are produced.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 26/31

Fig 1.9. A typical spiral model

 A spiral model is divided into a set of framework activities defined by the software

engineering team. For illustrative purposes, I use the generic framework activities discussed

earlier. Each of the framework activities represent one segment of the spiral path illustrated in

Figure 1.9. As this evolutionary process begins, the software team performs activities that are

implied by a circuit around the spiral in a clockwise direction, beginning at the center. Risk is

considered as each revolution is made. Anchor point milestones—a combination of work

products and conditions that are attained along the path of the spiral—are noted for each

evolutionary pass.

The first circuit around the spiral might result in the development of a product

specification; subsequent passes around the spiral might be used to develop a prototype and then

progressively more sophisticated versions of the software. Each pass through the planning region

results in adjustments to the project plan. Cost and schedule are adjusted based on feedback

derived from the customer after delivery. In addition, the project manager adjusts the planned

number of iterations required to complete the software.

Unlike other process models that end when software is delivered, the spiral model can be

adapted to apply throughout the life of the computer software. Therefore, the first circuit around

the spiral might represent a ―concept development project‖ that starts at the core of the spiral and

continues for multiple iterations until concept development is complete.

If the concept is to be developed into an actual product, the process proceeds outward on

the spiral and a ―new product development project‖ commences. The new product will evolve

through a number of iterations around the spiral. Later, a circuit around the spiral might be used

to represent a ―product enhancement project.‖ In essence, the spiral, when characterized in this

way, remains operative until the software is retired. There are times when the process is dormant,

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 27/31

but whenever a change is initiated, the process starts at the appropriate entry point (e.g., product

enhancement).

The spiral model is a realistic approach to the development of large-scale systems and

software. Because software evolves as the process progresses, the developer and customer better

understand and react to risks at each evolutionary level.

The spiral model uses prototyping as a risk reduction mechanism but, more important,

enables you to apply the prototyping approach at any stage in the evolution of the product. It

maintains the systematic stepwise approach suggested by the classic life cycle but incorporates it

into an iterative framework that more realistically reflects the real world. The spiral model

demands a direct consideration of technical risks at all stages of the project and, if properly

applied, should reduce risks before they become problematic.

But like other paradigms, the spiral model is not a panacea. It may be difficult to

convince customers (particularly in contract situations) that the evolutionary approach is

controllable. It demands considerable risk assessment expertise and relies on this expertise for

success. If a major risk is not uncovered and managed, problems will undoubtedly occur.

A Final Word on Evolutionary Processes

Modern computer software is characterized by continual change, by very tight time lines,

and by an emphatic need for customer–user satisfaction. In many cases, time-to-market is the

most important management requirement. If a market window is missed, the software project

itself may be meaningless.

Evolutionary process models were conceived to address these issues, and yet, as a general

class of process models, they too have weaknesses. Despite the unquestionable benefits of

evolutionary software processes, we have some concerns. The first concern is that prototyping

[and other more sophisticated evolutionary processes] poses a problem to project planning

because of the uncertain number of cycles required to construct the product. Most project

management and estimation techniques are based on linear layouts of activities, so they do not fit

completely.

Second, evolutionary software processes do not establish the maximum speed of the

evolution. If the evolutions occur too fast, without a period of relaxation, it is certain that the

process will fall into chaos. On the other hand if the speed is too slow then productivity could be

affected.

Third, software processes should be focused on flexibility and extensibility rather than on

high quality. This assertion sounds scary. However, we should prioritize the speed of the

development over zero defects. Extending the development in order to reach high quality could

result in a late delivery of the product, when the opportunity niche has disappeared. This

paradigm shift is imposed by the competition on the edge of chaos.

Indeed, a software process that focuses on flexibility, extensibility, and speed of

development over high quality does sound scary. And yet, this idea has been proposed by a

number of well-respected software engineering experts.

The intent of evolutionary models is to develop high-quality software14 in an iterative or

incremental manner. However, it is possible to use an evolutionary process to emphasize

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 28/31

flexibility, extensibility, and speed of development. The challenge for software teams and their

managers is to establish a proper balance between these critical project and product parameters

and customer satisfaction (the ultimate arbiter of software quality).

SPECIALIZED PROCESS MODELS

 Specialized process models take on many of the characteristics of one or more of the

traditional models presented in the preceding sections. However, these models tend to be applied

when a specialized or narrowly defined software engineering approach is chosen.

Component-Based Development

 Commercial off-the-shelf (COTS) software components, developed by vendors who

offer them as products, provide targeted functionality with well-defined interfaces that enable the

component to be integrated into the software that is to be built. The component-based

development model incorporates many of the characteristics of the spiral model. It is

evolutionary in nature, demanding an iterative approach to the creation of software. However,

the component-based development model constructs applications from prepackaged software

components.

Modeling and construction activities begin with the identification of candidate

components. These components can be designed as either conventional software modules or

object-oriented classes or packages of classes. Regardless of the technology that is used to create

the components, the component-based development model incorporates the following steps

(implemented using an evolutionary approach):

1. Available component-based products are researched and evaluated for the application

domain in question.

2. Component integration issues are considered.

3. A software architecture is designed to accommodate the components.

4. Components are integrated into the architecture.

5. Comprehensive testing is conducted to ensure proper functionality.

The component-based development model leads to software reuse, and reusability

provides software engineers with a number of measurable benefits. Your software engineering

team can achieve a reduction in development cycle time as well as a reduction in project cost if

component reuse becomes part of your culture

The Formal Methods Model

The formal methods model encompasses a set of activities that leads to formal

mathematical specification of computer software. Formal methods enable you to specify,

develop, and verify a computer-based system by applying a rigorous, mathematical notation. A

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 29/31

variation on this approach, called cleanroom software engineering, is currently applied by some

software development organizations.

When formal methods are used during development, they provide a mechanism for

eliminating many of the problems that are difficult to overcome using other software engineering

paradigms. Ambiguity, incompleteness, and inconsistency can be discovered and corrected more

easily—not through ad hoc review, but through the application of mathematical analysis. When

formal methods are used during design, they serve as a basis for program verification and

therefore enable you to discover and correct errors that might otherwise go undetected.

Although not a mainstream approach, the formal methods model offers the promise of

defect-free software. Yet, concern about its applicability in a business environment has been

voiced:

• The development of formal models is currently quite time consuming and expensive.

• Because few software developers have the necessary background to apply formal

methods, extensive training is required.

• It is difficult to use the models as a communication mechanism for technically

unsophisticated customers.

These concerns notwithstanding, the formal methods approach has gained adherents

among software developers who must build safety-critical software (e.g., developers of aircraft

avionics and medical devices) and among developers that would suffer severe economic hardship

should software errors occur.

Aspect-Oriented Software Development

Regardless of the software process that is chosen, the builders of complex software

invariably implement a set of localized features, functions, and information content. These

localized software characteristics are modeled as components (e.g., objectoriented classes) and

then constructed within the context of a system architecture.

As modern computer-based systems become more sophisticated (and complex), certain

concerns—customer required properties or areas of technical interest—span the entire

architecture. Some concerns are high-level properties of a system (e.g., security, fault tolerance).

Other concerns affect functions (e.g., the application of business rules), while others are systemic

(e.g., task synchronization or memory management).

When concerns cut across multiple system functions, features, and information, they are

often referred to as crosscutting concerns. Aspectual requirements define those crosscutting

concerns that have an impact across the software architecture.

Aspect-oriented software development (AOSD), often referred to as aspect-oriented

programming (AOP), is a relatively new software engineering paradigm that provides a process

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 30/31

and methodological approach for defining, specifying, designing, and constructing aspects—

―mechanisms beyond subroutines and inheritance for localizing the expression of a crosscutting

concern‖.

Aspect-oriented component engineering (AOCE):

AOCE uses a concept of horizontal slices through vertically-decomposed software

components, called ―aspects,‖ to characterize cross-cutting functional and non-functional

properties of components. Common, systemic aspects include user interfaces, collaborative

work, distribution, persistency, memory management, transaction processing, security, integrity

and so on.

Components may provide or require one or more ―aspect details‖ relating to a particular

aspect, such as a viewing mechanism, extensible affordance and interface kind (user interface

aspects); event generation, transport and receiving (distribution aspects); data store/retrieve and

indexing (persistency aspects); authentication, encoding and access rights (security aspects);

transaction atomicity, concurrency control and logging strategy (transaction aspects); and so on.

Each aspect detail has a number of properties, relating to functional and/or non-functional

characteristics of the aspect detail.

A distinct aspect-oriented process has not yet matured. However, it is likely that such a

process will adopt characteristics of both evolutionary and concurrent process models. The

evolutionary model is appropriate as aspects are identified and then constructed. The parallel

nature of concurrent development is essential because aspects are engineered independently of

localized software components and yet, aspects have a direct impact on these components.

Hence, it is essential to instantiate asynchronous communication between the software process

activities applied to the engineering and construction of aspects and components.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: I (Introduction to Software Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 31/31

POSSIBLE QUESTIONS

PART – B

1. Explain the different phases involved in waterfall life cycle. Give the reasons for the Failure

of Water Fall Model.

2. Discuss on various types of software myths and the true aspects of the myths.

3. Explain about the Generic view of process in detail.

4. Elucidate the process model that combines the elements of waterfall and iterative fashion.

5. Explain the process model which is useful when staffing is unavailable to complete

implementation.

6. Explain about the Evolutionary Process Model

7. Describe the Prescriptive process model in detail.

8. Explain with diagram the layered technology of software process along with its

characteristics.

9. Explicate how the specialized models applied for software engineering approaches.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 1/27

UNIT-II

SYLLABUS

Building the Analysis Model: Requirements Analysis-Analysis Modeling Approaches-Data

Modeling Concepts: Data Objects-Date attributes-Relationships Cardinality and Modality-Flow

Oriented Modeling: Creating Data Flow Model-Creating a Control Flow Model-The Control

Specification-The Process Specification- Creating a Behavioral Model.

BUILDING THE ANALYSIS MODEL:

 At a technical level, software engineering begins with a series of modeling tasks that lead

to a specification of requirements and a design representation for the software to be built. The

requirements model— actually a set of models—is the first technical representation of a system.

REQUIREMENTS ANALYSIS

Requirements analysis results in the specification of software’s operational

characteristics, indicates software’s interface with other system elements, and establishes

constraints that software must meet. Requirements analysis allows you (regardless of whether

you’re called a software engineer, an analyst, or a modeler) to elaborate on basic requirements

established during the inception, elicitation, and negotiation tasks that are part of requirements

engineering.

The requirements modeling action results in one or more of the following types of models:

• Scenario-based models of requirements from the point of view of various system “actors”

• Data models that depict the information domain for the problem

• Class-oriented models that represent object-oriented classes (attributes and operations) and the

manner in which classes collaborate to achieve system requirements

• Flow-oriented models that represent the functional elements of the system and how they

transform data as it moves through the system

• Behavioral models that depict how the software behaves as a consequence of external “events”

 These models provide a software designer with information that can be translated to

architectural, interface, and component-level designs. Finally, the requirements model (and the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 2/27

software requirements specification) provides the developer and the customer with the means to

assess quality once software is built.

Scenario-based modeling—a technique that is growing increasingly popular throughout the

software engineering community; data modeling—a more specialized technique that is

particularly appropriate when an application must create or manipulate a complex information

space; and class modeling—a representation of the object-oriented classes and the resultant

collaborations that allow a system to function.

Fig 2.1. The requirements model as a bridge between the system description and the design

model

 Overall Objectives and Philosophy

 Throughout requirements modeling, your primary focus is on what, not how. What user

interaction occurs in a particular circumstance, what objects does the system manipulate, what

functions must the system perform, what behaviors does the system exhibit, what interfaces are

defined, and what constraints apply?

The customer may be unsure of precisely what is required for certain aspects of the

system. The developer may be unsure that a specific approach will properly accomplish function

and performance. These realities mitigate in favor of an iterative approach to requirements

analysis and modeling. The analyst should model what is known and use that model as the basis

for design of the software increment.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 3/27

 The requirements model must achieve three primary objectives:

(1) to describe what the customer requires,

(2) to establish a basis for the creation of a software design, and

(3) to define a set of requirements that can be validated once the software is built.

The analysis model bridges the gap between a system-level description that describes

overall system or business functionality as it is achieved by applying software, hardware, data,

human, and other system elements and a software design that describes the software’s

application architecture, user interface, and component-level structure. This relationship is

illustrated in Figure 2.1.

 It is important to note that all elements of the requirements model will be directly

traceable to parts of the design model. A clear division of analysis and design tasks between

these two important modeling activities is not always possible. Some design invariably occurs as

part of analysis, and some analysis will be conducted during design.

Analysis Rules of Thumb

Arlow and Neustadt suggest a number of worthwhile rules of thumb that should be followed

when creating the analysis model:

• The model should focus on requirements that are visible within the problem or business

domain. The level of abstraction should be relatively high. “Don’t get bogged down in

details” that try to explain how the system will work.

• Each element of the requirements model should add to an overall understanding of software

requirements and provide insight into the information domain, function, and behavior of the

system.

• Delay consideration of infrastructure and other nonfunctional models until design. That is, a

database may be required, but the classes necessary to implement it, the functions required to

access it, and the behavior that will be exhibited as it is used should be considered only after

problem domain analysis has been completed.

• Minimize coupling throughout the system. It is important to represent relationships between

classes and functions. However, if the level of “interconnectedness” is extremely high, effort

should be made to reduce it.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 4/27

• Be certain that the requirements model provides value to all stakeholders. Each constituency

has its own use for the model. For example, business stakeholders should use the model to

validate requirements; designers should use the model as a basis for design; QA people should

use the model to help plan acceptance tests.

• Keep the model as simple as it can be. Don’t create additional diagrams when they add no new

information. Don’t use complex notational forms, when a simple list will do.

Domain Analysis

 In the discussion of requirements engineering, I noted that analysis patterns often reoccur

across many applications within a specific business domain. If these patterns are defined and

categorized in a manner that allows you to recognize and apply them to solve common problems,

the creation of the analysis model is expedited. More important, the likelihood of applying

design patterns and executable software components grows dramatically. This improves time-to-

market and reduces development costs.

Fig 2.2. Input and output for domain analysis

 But how are analysis patterns and classes recognized in the first place? Who defines

them, categorizes them, and readies them for use on subsequent projects? The answers to these

questions lie in domain analysis. Firesmith describes domain analysis in the following way:

Software domain analysis is the identification, analysis, and specification of common

requirements from a specific application domain, typically for reuse on multiple projects within

that application domain. . . . [Object-oriented domain analysis is] the identification, analysis, and

specification of common, reusable capabilities within a specific application domain, in terms of

common objects, classes, subassemblies, and frameworks.

The “specific application domain” can range from avionics to banking, from multimedia

video games to software embedded within medical devices. The goal of domain analysis is

straightforward: to find or create those analysis classes and/or analysis patterns that are broadly

applicable so that they may be reused.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 5/27

Using terminology that was introduced earlier in this book, domain analysis may be viewed as an

umbrella activity for the software process. By this I mean that domain analysis is an ongoing

software engineering activity that is not connected to any one software project. In a way, the role

of a domain analyst is similar to the role of a master toolsmith in a heavy manufacturing

environment. The job of the toolsmith is to design and build tools that may be used by many

people doing similar but not necessarily the same jobs.

 The role of the domain analyst5 is to discover and define analysis patterns, analysis classes, and

related information that may be used by many people working on similar but not necessarily the

same applications. Figure 6.2 [Ara89] illustrates key inputs and outputs for the domain analysis

process. Sources of domain knowledge are surveyed in an attempt to identify objects that can be

reused across the domain.

ANALYSIS MODELING APPROACHES

 Requirements Modeling Approaches

 One view of requirements modeling, called structured analysis, considers data and the processes

that transform the data as separate entities. Data objects are modeled in a way that defines their

attributes and relationships. Processes that manipulate data objects are modeled in a manner that

shows how they transform data as data objects flow through the system.

A second approach to analysis modeling, called object-oriented analysis, focuses on the

definition of classes and the manner in which they collaborate with one another to effect

customer requirements. UML and the Unified Process are predominantly object oriented.

Although the requirements model proposed in this book combines features of both approaches,

software teams often choose one approach and exclude all representations from the other.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 6/27

Fig 2.3. Elements of the analysis model

The question is not which is best, but rather, what combination of representations will provide

stakeholders with the best model of software requirements and the most effective bridge to

software design. Each element of the requirements model (Figure 2.3) presents the problem from

a different point of view. Scenario-based elements depict how the user interacts with the system

and the specific sequence of activities that occur as the software is used.

Class-based elements model the objects that the system will manipulate, the operations

that will be applied to the objects to effect the manipulation, relationships (some hierarchical)

between the objects, and the collaborations that occur between the classes that are defined.

Behavioral elements depict how external events change the state of the system or the classes that

reside within it. Finally, flow-oriented elements represent the system as an information

transform, depicting how data objects are transformed as they flow through various system

functions.

Analysis modeling leads to the derivation of each of these modeling elements. However,

the specific content of each element (i.e., the diagrams that are used to construct the element and

the model) may differ from project to project. As we have noted a number of times in this book,

the software team must work to keep it simple. Only those modeling elements that add value to

the model should be used.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 7/27

DATA MODELING CONCEPTS:

If software requirements include the need to create, extend, or interface with a database

or if complex data structures must be constructed and manipulated, the software team may

choose to create a data model as part of overall requirements modeling. A software engineer or

analyst defines all data objects that are processed within the system, the relationships between

the data objects, and other information that is pertinent to the relationships. The entity-

relationship diagram (ERD) addresses these issues and represents all data objects that are

entered, stored, transformed, and produced within an application.

Data Objects

A data object is a representation of composite information that must be understood by software.

By composite information, I mean something that has a number of different properties or

attributes. Therefore, width (a single value) would not be a valid data object, but dimensions

(incorporating height, width, and depth) could be defined as an object.

A data object can be an external entity (e.g., anything that produces or consumes

information), a thing (e.g., a report or a display), an occurrence (e.g., a telephone call) or event

(e.g., an alarm), a role (e.g., salesperson), an organizational unit (e.g., accounting department), a

place (e.g., a warehouse), or a structure (e.g., a file). For example, a person or a car can be

viewed as a data object in the sense that either can be defined in terms of a set of attributes. The

description of the data object incorporates the data object and all of its attributes.

A data object encapsulates data only—there is no reference within a data object to

operations that act on the data. Therefore, the data object can be represented as

a table as shown in Figure 6.7. The headings in the table reflect attributes of the object. In this

case, a car is defined in terms of make, model, ID number, body type, color,

and owner. The body of the table represents specific instances of the data object. For

example, a Chevy Corvette is an instance of the data object car.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 8/27

DATA ATTRIBUTES

Data attributes define the properties of a data object and take on one of three different

characteristics. They can be used to

 (1) name an instance of the data object,

(2) describe the instance, or

(3) make reference to another instance in another table. In addition, one or more of the

attributes must be defined as an identifier—that is, the identifier

Fig 6.7 Tabular representation of data objects

 attribute becomes a “key” when we want to find an instance of the data object. In some cases,

values for the identifier(s) are unique, although this is not a requirement. Referring to the data

object car, a reasonable identifier might be the ID number.

The set of attributes that is appropriate for a given data object is determined through an

understanding of the problem context. The attributes for car might serve well for an application

that would be used by a department of motor vehicles, but these attributes would be useless for

an automobile company that needs manufacturing control software. In the latter case, the

attributes for car might also include ID number, body type, and color, but many additional

attributes (e.g., interior code, drive train type, trim package designator, transmission type) would

have to be added to make car a meaningful object in the manufacturing control context.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 9/27

Data Objects, Attributes, and Relationships

The data model consists of three interrelated pieces of information: the data object, the attributes

that describe the data object, and the relationships that connect data objects to one another.

FIGURE 12.2 Data objects, attributes and relationships

Relationships. Data objects are connected to one another in different ways. Consider two data

objects, book and bookstore. These objects can be represented using the simple notation

illustrated in Figure 12.4a. A connection is established between book and bookstore because the

two objects are related. But what are the relationships? To determine the answer, we must

understand the role of books and bookstores within the context of the software to be built. We

can define a set of object/relationship pairs that define the relevant relationships. For example,

A bookstore orders books.

• A bookstore displays books.

• A bookstore stocks books.

• A bookstore sells books.

• A bookstore returns books.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 10/27

The relationships orders, displays, stocks, sells, and returns define the relevant connections

between book and bookstore. Figure 12.4b illustrates these object/relationship pairs graphically.

It is important to note that object/relationship pairs are bidirectional. That is, they can be read in

either direction. A bookstore orders books or books are ordered by a bookstore.

Cardinality and Modality

• Cardinality is the specification of the number of occurrences of one [object] that can be related

to the number of occurrences of another [object].

• Cardinality is usually expressed as simply 'one' or 'many.‘

• Cardinality defines “the maximum number of objects that can participate in a relationship”.

• It does not, however, provide an indication of whether or not a particular data object must

participate in the relationship. To specify this information, the data model adds modality to the

object/relationship pair

Modality

• The modality of a relationship is 0 if there is no explicit need for the relationship to occur or the

relationship is optional.

• The modality is 1 if an occurrence of the relationship is mandatory.

Example

• Consider software that is used by a local telephone company to process requests for field

service. A customer indicates that there is a problem. If the problem is diagnosed as relatively

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 11/27

simple, a single repair action occurs. However, if the problem is complex, multiple repair actions

may be required.

• Following figure illustrates the relationship, cardinality, and modality between the data objects

customer and repair action.

 Entity/Relationship Diagrams

The object/relationship pair is the cornerstone of the data model. These pairs can be represented

graphically using the entity/relationship diagram. The ERD was originally proposed by Peter

Chen for the design of relational database systems and has been extended by others. A set of

primary components are identified for the ERD: data objects, attributes, relationships, and

various type indicators. The primary purpose of the ERD is to represent data objects and their

relationships.

Data objects are represented by a labeled rectangle. Relationships are indicated with a labeled

line connecting objects. In some variations of the ERD, the connecting line contains a diamond

that is labeled with the relationship. Connections between data objects and relationships are

established using a variety of special symbols that indicate cardinality and modality. The

relationship between the data objects car and manufacturer would be represented as shown in

Figure 12.6. One manufacturer builds one or many cars. Given the context implied by the ERD,

the specification of the data object car (data object table in Figure 12.6) would be radically

different from the earlier specification (Figure 12.3). By examining the symbols at the end of the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 12/27

connection line between objects, it can be seen that the modality of both occurrences is

mandatory (the vertical lines).

Expanding the model, we represent a grossly oversimplified ERD (Figure 12.7) of the

distribution element of the automobile business. New data objects, shipper and dealership, are

introduced. In addition, new relationships—transports, contracts, licenses, and stocks—indicate

how the data objects shown in the figure associate with one another

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 13/27

Relationships

 Data objects are connected to one another in different ways. Consider the two data objects,

person and car. These objects can be represented using the simple notation

Fig 6.8. Relationships between data objects

 illustrated in Figure 6.8a. A connection is established between person and car because the two

objects are related. But what are the relationships? To determine the answer, you should

understand the role of people (owners, in this case) and cars within the context of the software to

be built. You can establish a set of object/ relationship pairs that define the relevant relationships.

For example,

 • A person owns a car.

 • A person is insured to drive a car.

 The relationships owns and insured to drive define the relevant connections between person and

car. Figure 6.8b illustrates these object-relationship pairs graphically. The arrows noted in

Figure 6.8b provide important information about the directionality of the relationship and often

reduce ambiguity or misinterpretations.

FLOW ORIENTED MODELING

 Although data flow-oriented modeling is perceived as an outdated technique by some software

engineers, it continues to be one of the most widely used requirements analysis notations in use

today.1 Although the data flow diagram (DFD) and related diagrams and information are not a

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 14/27

formal part of UML, they can be used to complement UML diagrams and provide additional

insight into system requirements and flow.

 The DFD takes an input-process-output view of a system. That is, data objects flow into the

software, are transformed by processing elements, and resultant data objects flow out of the

software. Data objects are represented by labeled arrows, and transformations are represented by

circles (also called bubbles). The DFD is presented in a hierarchical fashion. That is, the first

data flow model (sometimes called a level 0 DFD or context diagram) represents the system as a

whole. Subsequent data flow diagrams refine the context diagram, providing increasing detail

with each subsequent level.

Fig 7.1.Context-level DFD for the SafeHome security function.

CREATING A DATA FLOW MODEL

 The data flow diagram enables you to develop models of the information domain and functional

domain. As the DFD is refined into greater levels of detail, you perform an implicit functional

decomposition of the system. At the same time, the DFD refinement results in a corresponding

refinement of data as it moves through the processes that embody the application.

 A few simple guidelines can aid immeasurably during the derivation of a data flow diagram: (1)

the level 0 data flow diagram should depict the software/system as a single bubble; (2) primary

input and output should be carefully noted; (3) refinement should begin by isolating candidate

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 15/27

processes, data objects, and data stores to be represented at the next level; (4) all arrows and

bubbles should be labeled with meaningful names; (5) information flow continuity must be

maintained from level to level,2 and (6) one bubble at a time should be refined. There is a natural

tendency to overcomplicate the data flow diagram. This occurs when you attempt to show too

much detail too early or represent procedural aspects of the software in lieu of information flow.

 To illustrate the use of the DFD and related notation, we again consider the SafeHome security

function. A level 0 DFD for the security function is shown in Figure 7.1. The primary external

entities (boxes) produce information for use by the system and consume information generated

by the system. The labeled arrows represent data objects or data object hierarchies. For example,

user commands and data encompasses all configuration commands, all activation/deactivation

commands, all miscellaneous interactions, and all data that are entered to qualify or expand a

command.

 The level 0 DFD must now be expanded into a level 1 data flow model. But how do we

proceed? Following an approach suggested in Chapter 6, you should apply a “grammatical

parse” to the use case narrative that describes the context-level bubble. That is, we isolate all

nouns (and noun phrases) and verbs (and verb phrases) in a SafeHome processing narrative

derived during the first requirements gathering meeting. The SafeHome security function enables

the homeowner to configure the security system when it is installed, monitors all sensors

connected to the security system, and interacts with the homeowner through the Internet, a PC,

or a control panel.

 During installation, the SafeHome PC is used to program and configure the system. Each sensor

is assigned a number and type, a master password is programmed for arming and disarming the

system, and telephone number(s) are input for dialing when a sensor event occurs.

 When a sensor event is recognized, the software invokes an audible alarm attached to the

system. After a delay time that is specified by the homeowner during system configuration

activities, the software dials a telephone number of a monitoring service, provides information

about the location, reporting the nature of the event that has been detected. The telephone

number will be redialed every 20 seconds until telephone connection is obtained. The

homeowner receives security information via a control panel, the PC, or a browser, collectively

called an interface. The interface displays prompting messages and system status information on

the control panel, the PC, or the browser window. Homeowner interaction takes the following

form . . .

 Referring to the grammatical parse, verbs are SafeHome processes and can be represented as

bubbles in a subsequent DFD. Nouns are either external entities (boxes), data or control objects

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 16/27

(arrows), or data stores (double lines). Nouns and verbs can be associated with one another (e.g.,

each sensor is assigned a number and type; therefore number and type are attributes of the data

object sensor).

Therefore, by performing a grammatical parse on the processing narrative for a bubble at any

DFD level, you can generate much useful information about how to proceed with the refinement

to the next level. Using this information, a level 1 DFD is shown in Figure 7.2. The context level

process shown in Figure 7.1 has been expanded into six processes derived from an examination

of the grammatical parse. Similarly, the information flow between processes at level 1 has been

derived from the parse. In addition, information flow continuity is maintained between levels 0

and 1.

 The processes represented at DFD level 1 can be further refined into lower levels. For example,

the process monitor sensors can be refined into a level 2 DFD as shown in Figure 7.3. Note once

again that information flow continuity has been maintained between levels.

 The refinement of DFDs continues until each bubble performs a simple function. That is, until

the process represented by the bubble performs a function that would be easily implemented as a

program component. In Chapter 8, I discuss a concept, called cohesion, that can be used to assess

the processing focus of a given function. For now, we strive to refine DFDs until each bubble is

“single-minded.”

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 17/27

Fig 2.2. Level 1 DFD for SafeHome security function.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 18/27

Fig 2.3. Level 2 DFD that refines the monitor sensors process

 Creating a Control Flow Model

 For some types of applications, the data model and the data flow diagram are all that is

necessary to obtain meaningful insight into software requirements. As I have already noted,

however, a large class of applications are “driven” by events rather than data, produce control

information rather than reports or displays, and process information with heavy concern for time

and performance. Such applications require the use of control flow modeling in addition to data

flow modeling.

I have already noted that an event or control item is implemented as a Boolean value (e.g., true

or false, on or off, 1 or 0) or a discrete list of conditions (e.g., empty, jammed, full). To select

potential candidate events, the following guidelines are suggested:

 • List all sensors that are “read” by the software.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 19/27

 • List all interrupt conditions.

 • List all “switches” that are actuated by an operator.

 • List all data conditions.

 • Recalling the noun/verb parse that was applied to the processing narrative, review all “control

items” as possible control specification inputs/outputs.

 • Describe the behavior of a system by identifying its states, identify how each state is reached,

and define the transitions between states. • Focus on possible omissions—a very common error

in specifying control; for example, ask: “Is there any other way I can get to this state or exit from

it?”

Among the many events and control items that are part of SafeHome software are sensor event

(i.e., a sensor has been tripped), blink flag (a signal to blink the display), and start/stop switch

(a signal to turn the system on or off).

THE CONTROL SPECIFICATION

 A control specification (CSPEC) represents the behavior of the system (at the level from which

it has been referenced) in two different ways.3 The CSPEC contains a state diagram that is a

sequential specification of behavior. It can also contain a program activation table—a

combinatorial specification of behavior.

Figure 2.4 depicts a preliminary state diagram4 for the level 1 control flow model for SafeHome.

The diagram indicates how the system responds to events as it traverses the four states defined at

this level. By reviewing the state diagram, you can determine the behavior of the system and,

more important, ascertain whether there are “holes” in the specified behavior.

For example, the state diagram (Figure 7.4) indicates that the transitions from the Idle state can

occur if the system is reset, activated, or powered off. If the system is

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 20/27

Fig 2.4. State diagram for SafeHome security function

 activated (i.e., alarm system is turned on), a transition to the Monitoring- SystemStatus state

occurs, display messages are changed as shown, and the process monitorAndControlSystem is

invoked. Two transitions occur out of the MonitoringSystemStatus state—(1) when the system

is deactivated, a transition occurs back to the Idle state; (2) when a sensor is triggered into the

ActingOnAlarm state. All transitions and the content of all states are considered during the

review.

A somewhat different mode of behavioral representation is the process activation table. The PAT

represents information contained in the state diagram in the context of processes, not states. That

is, the table indicates which processes (bubbles) in the flow model will be invoked when an

event occurs. The PAT can be used as a guide for a designer who must build an executive that

controls the processes represented at this level. A PAT for the level 1 flow model of SafeHome

software is shown in Figure 2.5.

The CSPEC describes the behavior of the system, but it gives us no information about the inner

working of the processes that are activated as a result of this behavior.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 21/27

THE PROCESS SPECIFICATION

 The process specification (PSPEC) is used to describe all flow model processes that appear at

the final level of refinement. The content of the process specification can

Fig 2.5. Process activation table for SafeHome security function

 include narrative text, a program design language (PDL) description5 of the process algorithm,

mathematical equations, tables, or UML activity diagrams. By providing a PSPEC to accompany

each bubble in the flow model, you can create a “mini-spec” that serves as a guide for design of

the software component that will implement the bubble. To illustrate the use of the PSPEC,

consider the process password transform represented in the flow model for SafeHome (Figure

7.2). The PSPEC for this function might take the form:

 PSPEC: process password (at control panel). The process password transform performs

password validation at the control panel for the SafeHome security function. Process password

receives a four-digit password from the interact with user function. The password is first

compared to the master password stored within the system. If the master password matches,

<valid id message = true> is passed to the message and status display function. If the master

password does not match, the four digits are compared to a table of secondary passwords (these

may be assigned to house guests and/or workers who require entry to the home when the owner

is not present). If the password matches an entry within the table, <valid id message = true> is

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 22/27

passed to the message and status display function. If there is no match, <valid id message =

false> is passed to the message and status display function. If additional algorithmic detail is

desired at this stage, a program design language representation may also be included as part of

the PSPEC. However, many believe that the PDL version should be postponed until component

design commences.

CREATING A BEHAVIORAL MODEL.

The modeling notation represents static elements of the requirements model. It is now time to

make a transition to the dynamic behavior of the system or product. To accomplish this, you can

represent the behavior of the system as a function of specific events and time.

The behavioral model indicates how software will respond to external events or stimuli. To

create the model, you should perform the following steps:

 1. Evaluate all use cases to fully understand the sequence of interaction within the system.

 2. Identify events that drive the interaction sequence and understand how these events relate to

specific objects.

 3. Create a sequence for each use case.

 4. Build a state diagram for the system.

 5. Review the behavioral model to verify accuracy and consistency.

 Each of these steps is discussed in the sections that follow.

 Identifying Events with the Use Case

 In Chapter 6 you learned that the use case represents a sequence of activities that involves actors

and the system. In general, an event occurs whenever the system and an actor exchange

information. In Section 7.2.3, I indicated that an event is not the information that has been

exchanged, but rather the fact that information has been exchanged.

 A use case is examined for points of information exchange. To illustrate, we reconsider the use

case for a portion of the SafeHome security function.

The homeowner uses the keypad to key in a four-digit password. The password is compared with

the valid password stored in the system. If the password is incorrect, the control panel will beep

once and reset itself for additional input. If the password is correct, the control panel awaits

further action.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 23/27

The underlined portions of the use case scenario indicate events. An actor should be identified

for each event; the information that is exchanged should be noted, and any conditions or

constraints should be listed.

As an example of a typical event, consider the underlined use case phrase “homeowner uses the

keypad to key in a four-digit password.” In the context of the requirements model, the object,

Homeowner,7 transmits an event to the object ControlPanel. The event might be called

password entered.

The information transferred is the four digits that constitute the password, but this is not an

essential part of the behavioral model. It is important to note that some events have an explicit

impact on the flow of control of the use case, while others have no direct impact on the flow of

control. For example, the event password entered does not explicitly change the flow of control

of the use case, but the results of the event password compared (derived from the interaction

“password is compared with the valid password stored in the system”) will have an explicit

impact on the information and control flow of the SafeHome software.

Once all events have been identified, they are allocated to the objects involved. Objects can be

responsible for generating events (e.g., Homeowner generates the password entered event) or

recognizing events that have occurred elsewhere (e.g., ControlPanel recognizes the binary result

of the password compared event).

State Representations

 In the context of behavioral modeling, two different characterizations of states must be

considered: (1) the state of each class as the system performs its function and (2) the state of the

system as observed from the outside as the system performs its function.8

The state of a class takes on both passive and active characteristics [Cha93]. A passive state is

simply the current status of all of an object’s attributes. For example, the passive state of the

class Player (in the video game application discussed in Chapter 6) would include the current

position and orientation attributes of Player as well as other features of Player that are relevant

to the game (e.g., an attribute that indicates magic wishes remaining).

The active state of an object indicates the current status of the object as it undergoes a continuing

transformation or processing. The class Player might have the following active states: moving, at

rest, injured, being cured; trapped, lost, and so forth. An event (sometimes called a trigger) must

occur to force an object to make a transition from one active state to another.

Two different behavioral representations are discussed in the paragraphs that follow. The first

indicates how an individual class changes state based on external events and the second shows

the behavior of the software as a function of time. State diagrams for analysis classes.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 24/27

One component of a behavioral model is a UML state diagram9 that represents active states for

each class and the events (triggers) that cause changes between these active states. Figure 7.6

illustrates a state diagram for the ControlPanel object in the SafeHome security function.

Each arrow shown in Figure 7.6 represents a transition from one active state of an object to

another. The labels shown for each arrow represent the event that

State diagram for the ControlPanel Class

 triggers the transition. Although the active state model provides useful insight into the “life

history” of an object, it is possible to specify additional information to provide more depth in

understanding the behavior of an object. In addition to specifying the event that causes the

transition to occur, you can specify a guard and an action [Cha93]. A guard is a Boolean

condition that must be satisfied in order for the transition to occur. For example, the guard for the

transition from the “reading” state to the “comparing” state in Figure 7.6 can be determined by

examining the use case: if (password input _ 4 digits) then compare to stored password

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 25/27

In general, the guard for a transition usually depends upon the value of one or more attributes of

an object. In other words, the guard depends on the passive state of the object.

An action occurs concurrently with the state transition or as a consequence of it and generally

involves one or more operations (responsibilities) of the object. For example, the action

connected to the password entered event (Figure 7.6) is an operation named validatePassword()

that accesses a password object and performs a digit-by-digit comparison to validate the entered

password.

Sequence diagrams.

The second type of behavioral representation, called a sequence diagram in UML, indicates how

events cause transitions from object to object. Once events have been identified by examining a

use case, the modeler

 Sequence diagram (partial) for the SafeHome security function creates a sequence diagram—a

representation of how events cause flow from one object to another as a function of time. In

essence, the sequence diagram is a shorthand version of the use case. It represents key classes

and the events that cause behavior to flow from class to class.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 26/27

Figure 7.7 illustrates a partial sequence diagram for the SafeHome security function. Each of the

arrows represents an event (derived from a use case) and indicates how the event channels

behavior between SafeHome objects. Time is measured vertically (downward), and the narrow

vertical rectangles represent time spent in processing an activity. States may be shown along a

vertical time line.

The first event, system ready, is derived from the external environment and channels behavior to

the Homeowner object. The homeowner enters a password. A request lookup event is passed to

System, which looks up the password in a simple database and returns a result (found or not

found) to ControlPanel (now in the comparing state). A valid password results in a

password=correct event to System, which activates Sensors with a request activation event.

Ultimately, control is passed back to the homeowner with the activation successful event.

Once a complete sequence diagram has been developed, all of the events that cause transitions

between system objects can be collated into a set of input events and output events (from an

object). This information is useful in the creation of an effective design for the system to be built.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 27/27

POSSIBLE QUESTIONS

PART – B

1. Explain Structure Analysis Model?

2. Describe about the Requirement Analysis.

3. Explain in detail about data modeling concepts with examples.

4. Describe flow-oriented modeling with examples.

5. Describe about Process Specification and Control Specification.

6. Develop state diagram and sequence diagram that could serve as a basis for understanding

the requirements for a SafeHome Security function.

7. Elucidate the steps to create a behavioral model.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 1/27

UNIT-II

SYLLABUS

Building the Analysis Model: Requirements Analysis-Analysis Modeling Approaches-Data

Modeling Concepts: Data Objects-Date attributes-Relationships Cardinality and Modality-Flow

Oriented Modeling: Creating Data Flow Model-Creating a Control Flow Model-The Control

Specification-The Process Specification- Creating a Behavioral Model.

BUILDING THE ANALYSIS MODEL:

 At a technical level, software engineering begins with a series of modeling tasks that lead

to a specification of requirements and a design representation for the software to be built. The

requirements model— actually a set of models—is the first technical representation of a system.

REQUIREMENTS ANALYSIS

Requirements analysis results in the specification of software’s operational

characteristics, indicates software’s interface with other system elements, and establishes

constraints that software must meet. Requirements analysis allows you (regardless of whether

you’re called a software engineer, an analyst, or a modeler) to elaborate on basic requirements

established during the inception, elicitation, and negotiation tasks that are part of requirements

engineering.

The requirements modeling action results in one or more of the following types of models:

• Scenario-based models of requirements from the point of view of various system “actors”

• Data models that depict the information domain for the problem

• Class-oriented models that represent object-oriented classes (attributes and operations) and the

manner in which classes collaborate to achieve system requirements

• Flow-oriented models that represent the functional elements of the system and how they

transform data as it moves through the system

• Behavioral models that depict how the software behaves as a consequence of external “events”

 These models provide a software designer with information that can be translated to

architectural, interface, and component-level designs. Finally, the requirements model (and the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 2/27

software requirements specification) provides the developer and the customer with the means to

assess quality once software is built.

Scenario-based modeling—a technique that is growing increasingly popular throughout the

software engineering community; data modeling—a more specialized technique that is

particularly appropriate when an application must create or manipulate a complex information

space; and class modeling—a representation of the object-oriented classes and the resultant

collaborations that allow a system to function.

Fig 2.1. The requirements model as a bridge between the system description and the design

model

 Overall Objectives and Philosophy

 Throughout requirements modeling, your primary focus is on what, not how. What user

interaction occurs in a particular circumstance, what objects does the system manipulate, what

functions must the system perform, what behaviors does the system exhibit, what interfaces are

defined, and what constraints apply?

The customer may be unsure of precisely what is required for certain aspects of the

system. The developer may be unsure that a specific approach will properly accomplish function

and performance. These realities mitigate in favor of an iterative approach to requirements

analysis and modeling. The analyst should model what is known and use that model as the basis

for design of the software increment.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 3/27

 The requirements model must achieve three primary objectives:

(1) to describe what the customer requires,

(2) to establish a basis for the creation of a software design, and

(3) to define a set of requirements that can be validated once the software is built.

The analysis model bridges the gap between a system-level description that describes

overall system or business functionality as it is achieved by applying software, hardware, data,

human, and other system elements and a software design that describes the software’s

application architecture, user interface, and component-level structure. This relationship is

illustrated in Figure 2.1.

 It is important to note that all elements of the requirements model will be directly

traceable to parts of the design model. A clear division of analysis and design tasks between

these two important modeling activities is not always possible. Some design invariably occurs as

part of analysis, and some analysis will be conducted during design.

Analysis Rules of Thumb

Arlow and Neustadt suggest a number of worthwhile rules of thumb that should be followed

when creating the analysis model:

• The model should focus on requirements that are visible within the problem or business

domain. The level of abstraction should be relatively high. “Don’t get bogged down in

details” that try to explain how the system will work.

• Each element of the requirements model should add to an overall understanding of software

requirements and provide insight into the information domain, function, and behavior of the

system.

• Delay consideration of infrastructure and other nonfunctional models until design. That is, a

database may be required, but the classes necessary to implement it, the functions required to

access it, and the behavior that will be exhibited as it is used should be considered only after

problem domain analysis has been completed.

• Minimize coupling throughout the system. It is important to represent relationships between

classes and functions. However, if the level of “interconnectedness” is extremely high, effort

should be made to reduce it.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 4/27

• Be certain that the requirements model provides value to all stakeholders. Each constituency

has its own use for the model. For example, business stakeholders should use the model to

validate requirements; designers should use the model as a basis for design; QA people should

use the model to help plan acceptance tests.

• Keep the model as simple as it can be. Don’t create additional diagrams when they add no new

information. Don’t use complex notational forms, when a simple list will do.

Domain Analysis

 In the discussion of requirements engineering, I noted that analysis patterns often reoccur

across many applications within a specific business domain. If these patterns are defined and

categorized in a manner that allows you to recognize and apply them to solve common problems,

the creation of the analysis model is expedited. More important, the likelihood of applying

design patterns and executable software components grows dramatically. This improves time-to-

market and reduces development costs.

Fig 2.2. Input and output for domain analysis

 But how are analysis patterns and classes recognized in the first place? Who defines

them, categorizes them, and readies them for use on subsequent projects? The answers to these

questions lie in domain analysis. Firesmith describes domain analysis in the following way:

Software domain analysis is the identification, analysis, and specification of common

requirements from a specific application domain, typically for reuse on multiple projects within

that application domain. . . . [Object-oriented domain analysis is] the identification, analysis, and

specification of common, reusable capabilities within a specific application domain, in terms of

common objects, classes, subassemblies, and frameworks.

The “specific application domain” can range from avionics to banking, from multimedia

video games to software embedded within medical devices. The goal of domain analysis is

straightforward: to find or create those analysis classes and/or analysis patterns that are broadly

applicable so that they may be reused.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 5/27

Using terminology that was introduced earlier in this book, domain analysis may be viewed as an

umbrella activity for the software process. By this I mean that domain analysis is an ongoing

software engineering activity that is not connected to any one software project. In a way, the role

of a domain analyst is similar to the role of a master toolsmith in a heavy manufacturing

environment. The job of the toolsmith is to design and build tools that may be used by many

people doing similar but not necessarily the same jobs.

 The role of the domain analyst5 is to discover and define analysis patterns, analysis classes, and

related information that may be used by many people working on similar but not necessarily the

same applications. Figure 6.2 [Ara89] illustrates key inputs and outputs for the domain analysis

process. Sources of domain knowledge are surveyed in an attempt to identify objects that can be

reused across the domain.

ANALYSIS MODELING APPROACHES

 Requirements Modeling Approaches

 One view of requirements modeling, called structured analysis, considers data and the processes

that transform the data as separate entities. Data objects are modeled in a way that defines their

attributes and relationships. Processes that manipulate data objects are modeled in a manner that

shows how they transform data as data objects flow through the system.

A second approach to analysis modeling, called object-oriented analysis, focuses on the

definition of classes and the manner in which they collaborate with one another to effect

customer requirements. UML and the Unified Process are predominantly object oriented.

Although the requirements model proposed in this book combines features of both approaches,

software teams often choose one approach and exclude all representations from the other.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 6/27

Fig 2.3. Elements of the analysis model

The question is not which is best, but rather, what combination of representations will provide

stakeholders with the best model of software requirements and the most effective bridge to

software design. Each element of the requirements model (Figure 2.3) presents the problem from

a different point of view. Scenario-based elements depict how the user interacts with the system

and the specific sequence of activities that occur as the software is used.

Class-based elements model the objects that the system will manipulate, the operations

that will be applied to the objects to effect the manipulation, relationships (some hierarchical)

between the objects, and the collaborations that occur between the classes that are defined.

Behavioral elements depict how external events change the state of the system or the classes that

reside within it. Finally, flow-oriented elements represent the system as an information

transform, depicting how data objects are transformed as they flow through various system

functions.

Analysis modeling leads to the derivation of each of these modeling elements. However,

the specific content of each element (i.e., the diagrams that are used to construct the element and

the model) may differ from project to project. As we have noted a number of times in this book,

the software team must work to keep it simple. Only those modeling elements that add value to

the model should be used.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 7/27

DATA MODELING CONCEPTS:

If software requirements include the need to create, extend, or interface with a database

or if complex data structures must be constructed and manipulated, the software team may

choose to create a data model as part of overall requirements modeling. A software engineer or

analyst defines all data objects that are processed within the system, the relationships between

the data objects, and other information that is pertinent to the relationships. The entity-

relationship diagram (ERD) addresses these issues and represents all data objects that are

entered, stored, transformed, and produced within an application.

Data Objects

A data object is a representation of composite information that must be understood by software.

By composite information, I mean something that has a number of different properties or

attributes. Therefore, width (a single value) would not be a valid data object, but dimensions

(incorporating height, width, and depth) could be defined as an object.

A data object can be an external entity (e.g., anything that produces or consumes

information), a thing (e.g., a report or a display), an occurrence (e.g., a telephone call) or event

(e.g., an alarm), a role (e.g., salesperson), an organizational unit (e.g., accounting department), a

place (e.g., a warehouse), or a structure (e.g., a file). For example, a person or a car can be

viewed as a data object in the sense that either can be defined in terms of a set of attributes. The

description of the data object incorporates the data object and all of its attributes.

A data object encapsulates data only—there is no reference within a data object to

operations that act on the data. Therefore, the data object can be represented as

a table as shown in Figure 6.7. The headings in the table reflect attributes of the object. In this

case, a car is defined in terms of make, model, ID number, body type, color,

and owner. The body of the table represents specific instances of the data object. For

example, a Chevy Corvette is an instance of the data object car.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 8/27

DATA ATTRIBUTES

Data attributes define the properties of a data object and take on one of three different

characteristics. They can be used to

 (1) name an instance of the data object,

(2) describe the instance, or

(3) make reference to another instance in another table. In addition, one or more of the

attributes must be defined as an identifier—that is, the identifier

Fig 6.7 Tabular representation of data objects

 attribute becomes a “key” when we want to find an instance of the data object. In some cases,

values for the identifier(s) are unique, although this is not a requirement. Referring to the data

object car, a reasonable identifier might be the ID number.

The set of attributes that is appropriate for a given data object is determined through an

understanding of the problem context. The attributes for car might serve well for an application

that would be used by a department of motor vehicles, but these attributes would be useless for

an automobile company that needs manufacturing control software. In the latter case, the

attributes for car might also include ID number, body type, and color, but many additional

attributes (e.g., interior code, drive train type, trim package designator, transmission type) would

have to be added to make car a meaningful object in the manufacturing control context.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 9/27

Data Objects, Attributes, and Relationships

The data model consists of three interrelated pieces of information: the data object, the attributes

that describe the data object, and the relationships that connect data objects to one another.

FIGURE 12.2 Data objects, attributes and relationships

Relationships. Data objects are connected to one another in different ways. Consider two data

objects, book and bookstore. These objects can be represented using the simple notation

illustrated in Figure 12.4a. A connection is established between book and bookstore because the

two objects are related. But what are the relationships? To determine the answer, we must

understand the role of books and bookstores within the context of the software to be built. We

can define a set of object/relationship pairs that define the relevant relationships. For example,

A bookstore orders books.

• A bookstore displays books.

• A bookstore stocks books.

• A bookstore sells books.

• A bookstore returns books.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 10/27

The relationships orders, displays, stocks, sells, and returns define the relevant connections

between book and bookstore. Figure 12.4b illustrates these object/relationship pairs graphically.

It is important to note that object/relationship pairs are bidirectional. That is, they can be read in

either direction. A bookstore orders books or books are ordered by a bookstore.

Cardinality and Modality

• Cardinality is the specification of the number of occurrences of one [object] that can be related

to the number of occurrences of another [object].

• Cardinality is usually expressed as simply 'one' or 'many.‘

• Cardinality defines “the maximum number of objects that can participate in a relationship”.

• It does not, however, provide an indication of whether or not a particular data object must

participate in the relationship. To specify this information, the data model adds modality to the

object/relationship pair

Modality

• The modality of a relationship is 0 if there is no explicit need for the relationship to occur or the

relationship is optional.

• The modality is 1 if an occurrence of the relationship is mandatory.

Example

• Consider software that is used by a local telephone company to process requests for field

service. A customer indicates that there is a problem. If the problem is diagnosed as relatively

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 11/27

simple, a single repair action occurs. However, if the problem is complex, multiple repair actions

may be required.

• Following figure illustrates the relationship, cardinality, and modality between the data objects

customer and repair action.

 Entity/Relationship Diagrams

The object/relationship pair is the cornerstone of the data model. These pairs can be represented

graphically using the entity/relationship diagram. The ERD was originally proposed by Peter

Chen for the design of relational database systems and has been extended by others. A set of

primary components are identified for the ERD: data objects, attributes, relationships, and

various type indicators. The primary purpose of the ERD is to represent data objects and their

relationships.

Data objects are represented by a labeled rectangle. Relationships are indicated with a labeled

line connecting objects. In some variations of the ERD, the connecting line contains a diamond

that is labeled with the relationship. Connections between data objects and relationships are

established using a variety of special symbols that indicate cardinality and modality. The

relationship between the data objects car and manufacturer would be represented as shown in

Figure 12.6. One manufacturer builds one or many cars. Given the context implied by the ERD,

the specification of the data object car (data object table in Figure 12.6) would be radically

different from the earlier specification (Figure 12.3). By examining the symbols at the end of the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 12/27

connection line between objects, it can be seen that the modality of both occurrences is

mandatory (the vertical lines).

Expanding the model, we represent a grossly oversimplified ERD (Figure 12.7) of the

distribution element of the automobile business. New data objects, shipper and dealership, are

introduced. In addition, new relationships—transports, contracts, licenses, and stocks—indicate

how the data objects shown in the figure associate with one another

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 13/27

Relationships

 Data objects are connected to one another in different ways. Consider the two data objects,

person and car. These objects can be represented using the simple notation

Fig 6.8. Relationships between data objects

 illustrated in Figure 6.8a. A connection is established between person and car because the two

objects are related. But what are the relationships? To determine the answer, you should

understand the role of people (owners, in this case) and cars within the context of the software to

be built. You can establish a set of object/ relationship pairs that define the relevant relationships.

For example,

 • A person owns a car.

 • A person is insured to drive a car.

 The relationships owns and insured to drive define the relevant connections between person and

car. Figure 6.8b illustrates these object-relationship pairs graphically. The arrows noted in

Figure 6.8b provide important information about the directionality of the relationship and often

reduce ambiguity or misinterpretations.

FLOW ORIENTED MODELING

 Although data flow-oriented modeling is perceived as an outdated technique by some software

engineers, it continues to be one of the most widely used requirements analysis notations in use

today.1 Although the data flow diagram (DFD) and related diagrams and information are not a

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 14/27

formal part of UML, they can be used to complement UML diagrams and provide additional

insight into system requirements and flow.

 The DFD takes an input-process-output view of a system. That is, data objects flow into the

software, are transformed by processing elements, and resultant data objects flow out of the

software. Data objects are represented by labeled arrows, and transformations are represented by

circles (also called bubbles). The DFD is presented in a hierarchical fashion. That is, the first

data flow model (sometimes called a level 0 DFD or context diagram) represents the system as a

whole. Subsequent data flow diagrams refine the context diagram, providing increasing detail

with each subsequent level.

Fig 7.1.Context-level DFD for the SafeHome security function.

CREATING A DATA FLOW MODEL

 The data flow diagram enables you to develop models of the information domain and functional

domain. As the DFD is refined into greater levels of detail, you perform an implicit functional

decomposition of the system. At the same time, the DFD refinement results in a corresponding

refinement of data as it moves through the processes that embody the application.

 A few simple guidelines can aid immeasurably during the derivation of a data flow diagram: (1)

the level 0 data flow diagram should depict the software/system as a single bubble; (2) primary

input and output should be carefully noted; (3) refinement should begin by isolating candidate

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 15/27

processes, data objects, and data stores to be represented at the next level; (4) all arrows and

bubbles should be labeled with meaningful names; (5) information flow continuity must be

maintained from level to level,2 and (6) one bubble at a time should be refined. There is a natural

tendency to overcomplicate the data flow diagram. This occurs when you attempt to show too

much detail too early or represent procedural aspects of the software in lieu of information flow.

 To illustrate the use of the DFD and related notation, we again consider the SafeHome security

function. A level 0 DFD for the security function is shown in Figure 7.1. The primary external

entities (boxes) produce information for use by the system and consume information generated

by the system. The labeled arrows represent data objects or data object hierarchies. For example,

user commands and data encompasses all configuration commands, all activation/deactivation

commands, all miscellaneous interactions, and all data that are entered to qualify or expand a

command.

 The level 0 DFD must now be expanded into a level 1 data flow model. But how do we

proceed? Following an approach suggested in Chapter 6, you should apply a “grammatical

parse” to the use case narrative that describes the context-level bubble. That is, we isolate all

nouns (and noun phrases) and verbs (and verb phrases) in a SafeHome processing narrative

derived during the first requirements gathering meeting. The SafeHome security function enables

the homeowner to configure the security system when it is installed, monitors all sensors

connected to the security system, and interacts with the homeowner through the Internet, a PC,

or a control panel.

 During installation, the SafeHome PC is used to program and configure the system. Each sensor

is assigned a number and type, a master password is programmed for arming and disarming the

system, and telephone number(s) are input for dialing when a sensor event occurs.

 When a sensor event is recognized, the software invokes an audible alarm attached to the

system. After a delay time that is specified by the homeowner during system configuration

activities, the software dials a telephone number of a monitoring service, provides information

about the location, reporting the nature of the event that has been detected. The telephone

number will be redialed every 20 seconds until telephone connection is obtained. The

homeowner receives security information via a control panel, the PC, or a browser, collectively

called an interface. The interface displays prompting messages and system status information on

the control panel, the PC, or the browser window. Homeowner interaction takes the following

form . . .

 Referring to the grammatical parse, verbs are SafeHome processes and can be represented as

bubbles in a subsequent DFD. Nouns are either external entities (boxes), data or control objects

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 16/27

(arrows), or data stores (double lines). Nouns and verbs can be associated with one another (e.g.,

each sensor is assigned a number and type; therefore number and type are attributes of the data

object sensor).

Therefore, by performing a grammatical parse on the processing narrative for a bubble at any

DFD level, you can generate much useful information about how to proceed with the refinement

to the next level. Using this information, a level 1 DFD is shown in Figure 7.2. The context level

process shown in Figure 7.1 has been expanded into six processes derived from an examination

of the grammatical parse. Similarly, the information flow between processes at level 1 has been

derived from the parse. In addition, information flow continuity is maintained between levels 0

and 1.

 The processes represented at DFD level 1 can be further refined into lower levels. For example,

the process monitor sensors can be refined into a level 2 DFD as shown in Figure 7.3. Note once

again that information flow continuity has been maintained between levels.

 The refinement of DFDs continues until each bubble performs a simple function. That is, until

the process represented by the bubble performs a function that would be easily implemented as a

program component. In Chapter 8, I discuss a concept, called cohesion, that can be used to assess

the processing focus of a given function. For now, we strive to refine DFDs until each bubble is

“single-minded.”

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 17/27

Fig 2.2. Level 1 DFD for SafeHome security function.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 18/27

Fig 2.3. Level 2 DFD that refines the monitor sensors process

 Creating a Control Flow Model

 For some types of applications, the data model and the data flow diagram are all that is

necessary to obtain meaningful insight into software requirements. As I have already noted,

however, a large class of applications are “driven” by events rather than data, produce control

information rather than reports or displays, and process information with heavy concern for time

and performance. Such applications require the use of control flow modeling in addition to data

flow modeling.

I have already noted that an event or control item is implemented as a Boolean value (e.g., true

or false, on or off, 1 or 0) or a discrete list of conditions (e.g., empty, jammed, full). To select

potential candidate events, the following guidelines are suggested:

 • List all sensors that are “read” by the software.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 19/27

 • List all interrupt conditions.

 • List all “switches” that are actuated by an operator.

 • List all data conditions.

 • Recalling the noun/verb parse that was applied to the processing narrative, review all “control

items” as possible control specification inputs/outputs.

 • Describe the behavior of a system by identifying its states, identify how each state is reached,

and define the transitions between states. • Focus on possible omissions—a very common error

in specifying control; for example, ask: “Is there any other way I can get to this state or exit from

it?”

Among the many events and control items that are part of SafeHome software are sensor event

(i.e., a sensor has been tripped), blink flag (a signal to blink the display), and start/stop switch

(a signal to turn the system on or off).

THE CONTROL SPECIFICATION

 A control specification (CSPEC) represents the behavior of the system (at the level from which

it has been referenced) in two different ways.3 The CSPEC contains a state diagram that is a

sequential specification of behavior. It can also contain a program activation table—a

combinatorial specification of behavior.

Figure 2.4 depicts a preliminary state diagram4 for the level 1 control flow model for SafeHome.

The diagram indicates how the system responds to events as it traverses the four states defined at

this level. By reviewing the state diagram, you can determine the behavior of the system and,

more important, ascertain whether there are “holes” in the specified behavior.

For example, the state diagram (Figure 7.4) indicates that the transitions from the Idle state can

occur if the system is reset, activated, or powered off. If the system is

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 20/27

Fig 2.4. State diagram for SafeHome security function

 activated (i.e., alarm system is turned on), a transition to the Monitoring- SystemStatus state

occurs, display messages are changed as shown, and the process monitorAndControlSystem is

invoked. Two transitions occur out of the MonitoringSystemStatus state—(1) when the system

is deactivated, a transition occurs back to the Idle state; (2) when a sensor is triggered into the

ActingOnAlarm state. All transitions and the content of all states are considered during the

review.

A somewhat different mode of behavioral representation is the process activation table. The PAT

represents information contained in the state diagram in the context of processes, not states. That

is, the table indicates which processes (bubbles) in the flow model will be invoked when an

event occurs. The PAT can be used as a guide for a designer who must build an executive that

controls the processes represented at this level. A PAT for the level 1 flow model of SafeHome

software is shown in Figure 2.5.

The CSPEC describes the behavior of the system, but it gives us no information about the inner

working of the processes that are activated as a result of this behavior.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 21/27

THE PROCESS SPECIFICATION

 The process specification (PSPEC) is used to describe all flow model processes that appear at

the final level of refinement. The content of the process specification can

Fig 2.5. Process activation table for SafeHome security function

 include narrative text, a program design language (PDL) description5 of the process algorithm,

mathematical equations, tables, or UML activity diagrams. By providing a PSPEC to accompany

each bubble in the flow model, you can create a “mini-spec” that serves as a guide for design of

the software component that will implement the bubble. To illustrate the use of the PSPEC,

consider the process password transform represented in the flow model for SafeHome (Figure

7.2). The PSPEC for this function might take the form:

 PSPEC: process password (at control panel). The process password transform performs

password validation at the control panel for the SafeHome security function. Process password

receives a four-digit password from the interact with user function. The password is first

compared to the master password stored within the system. If the master password matches,

<valid id message = true> is passed to the message and status display function. If the master

password does not match, the four digits are compared to a table of secondary passwords (these

may be assigned to house guests and/or workers who require entry to the home when the owner

is not present). If the password matches an entry within the table, <valid id message = true> is

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 22/27

passed to the message and status display function. If there is no match, <valid id message =

false> is passed to the message and status display function. If additional algorithmic detail is

desired at this stage, a program design language representation may also be included as part of

the PSPEC. However, many believe that the PDL version should be postponed until component

design commences.

CREATING A BEHAVIORAL MODEL.

The modeling notation represents static elements of the requirements model. It is now time to

make a transition to the dynamic behavior of the system or product. To accomplish this, you can

represent the behavior of the system as a function of specific events and time.

The behavioral model indicates how software will respond to external events or stimuli. To

create the model, you should perform the following steps:

 1. Evaluate all use cases to fully understand the sequence of interaction within the system.

 2. Identify events that drive the interaction sequence and understand how these events relate to

specific objects.

 3. Create a sequence for each use case.

 4. Build a state diagram for the system.

 5. Review the behavioral model to verify accuracy and consistency.

 Each of these steps is discussed in the sections that follow.

 Identifying Events with the Use Case

 In Chapter 6 you learned that the use case represents a sequence of activities that involves actors

and the system. In general, an event occurs whenever the system and an actor exchange

information. In Section 7.2.3, I indicated that an event is not the information that has been

exchanged, but rather the fact that information has been exchanged.

 A use case is examined for points of information exchange. To illustrate, we reconsider the use

case for a portion of the SafeHome security function.

The homeowner uses the keypad to key in a four-digit password. The password is compared with

the valid password stored in the system. If the password is incorrect, the control panel will beep

once and reset itself for additional input. If the password is correct, the control panel awaits

further action.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 23/27

The underlined portions of the use case scenario indicate events. An actor should be identified

for each event; the information that is exchanged should be noted, and any conditions or

constraints should be listed.

As an example of a typical event, consider the underlined use case phrase “homeowner uses the

keypad to key in a four-digit password.” In the context of the requirements model, the object,

Homeowner,7 transmits an event to the object ControlPanel. The event might be called

password entered.

The information transferred is the four digits that constitute the password, but this is not an

essential part of the behavioral model. It is important to note that some events have an explicit

impact on the flow of control of the use case, while others have no direct impact on the flow of

control. For example, the event password entered does not explicitly change the flow of control

of the use case, but the results of the event password compared (derived from the interaction

“password is compared with the valid password stored in the system”) will have an explicit

impact on the information and control flow of the SafeHome software.

Once all events have been identified, they are allocated to the objects involved. Objects can be

responsible for generating events (e.g., Homeowner generates the password entered event) or

recognizing events that have occurred elsewhere (e.g., ControlPanel recognizes the binary result

of the password compared event).

State Representations

 In the context of behavioral modeling, two different characterizations of states must be

considered: (1) the state of each class as the system performs its function and (2) the state of the

system as observed from the outside as the system performs its function.8

The state of a class takes on both passive and active characteristics [Cha93]. A passive state is

simply the current status of all of an object’s attributes. For example, the passive state of the

class Player (in the video game application discussed in Chapter 6) would include the current

position and orientation attributes of Player as well as other features of Player that are relevant

to the game (e.g., an attribute that indicates magic wishes remaining).

The active state of an object indicates the current status of the object as it undergoes a continuing

transformation or processing. The class Player might have the following active states: moving, at

rest, injured, being cured; trapped, lost, and so forth. An event (sometimes called a trigger) must

occur to force an object to make a transition from one active state to another.

Two different behavioral representations are discussed in the paragraphs that follow. The first

indicates how an individual class changes state based on external events and the second shows

the behavior of the software as a function of time. State diagrams for analysis classes.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 24/27

One component of a behavioral model is a UML state diagram9 that represents active states for

each class and the events (triggers) that cause changes between these active states. Figure 7.6

illustrates a state diagram for the ControlPanel object in the SafeHome security function.

Each arrow shown in Figure 7.6 represents a transition from one active state of an object to

another. The labels shown for each arrow represent the event that

State diagram for the ControlPanel Class

 triggers the transition. Although the active state model provides useful insight into the “life

history” of an object, it is possible to specify additional information to provide more depth in

understanding the behavior of an object. In addition to specifying the event that causes the

transition to occur, you can specify a guard and an action [Cha93]. A guard is a Boolean

condition that must be satisfied in order for the transition to occur. For example, the guard for the

transition from the “reading” state to the “comparing” state in Figure 7.6 can be determined by

examining the use case: if (password input _ 4 digits) then compare to stored password

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 25/27

In general, the guard for a transition usually depends upon the value of one or more attributes of

an object. In other words, the guard depends on the passive state of the object.

An action occurs concurrently with the state transition or as a consequence of it and generally

involves one or more operations (responsibilities) of the object. For example, the action

connected to the password entered event (Figure 7.6) is an operation named validatePassword()

that accesses a password object and performs a digit-by-digit comparison to validate the entered

password.

Sequence diagrams.

The second type of behavioral representation, called a sequence diagram in UML, indicates how

events cause transitions from object to object. Once events have been identified by examining a

use case, the modeler

 Sequence diagram (partial) for the SafeHome security function creates a sequence diagram—a

representation of how events cause flow from one object to another as a function of time. In

essence, the sequence diagram is a shorthand version of the use case. It represents key classes

and the events that cause behavior to flow from class to class.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 26/27

Figure 7.7 illustrates a partial sequence diagram for the SafeHome security function. Each of the

arrows represents an event (derived from a use case) and indicates how the event channels

behavior between SafeHome objects. Time is measured vertically (downward), and the narrow

vertical rectangles represent time spent in processing an activity. States may be shown along a

vertical time line.

The first event, system ready, is derived from the external environment and channels behavior to

the Homeowner object. The homeowner enters a password. A request lookup event is passed to

System, which looks up the password in a simple database and returns a result (found or not

found) to ControlPanel (now in the comparing state). A valid password results in a

password=correct event to System, which activates Sensors with a request activation event.

Ultimately, control is passed back to the homeowner with the activation successful event.

Once a complete sequence diagram has been developed, all of the events that cause transitions

between system objects can be collated into a set of input events and output events (from an

object). This information is useful in the creation of an effective design for the system to be built.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: II (Building the Analysis Model) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 27/27

POSSIBLE QUESTIONS

PART – B

1. Explain Structure Analysis Model?

2. Describe about the Requirement Analysis.

3. Explain in detail about data modeling concepts with examples.

4. Describe flow-oriented modeling with examples.

5. Describe about Process Specification and Control Specification.

6. Develop state diagram and sequence diagram that could serve as a basis for understanding

the requirements for a SafeHome Security function.

7. Elucidate the steps to create a behavioral model.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 1/42

UNIT-III

SYLLABUS

Design Engineering: Design with the Context of Software Engineering-Design Process and

Design Quality-Design Concepts-Creating An Architectural Design: Software Architecture-Data

Design-Architectural Design- Assessing Alternative Architectural Designs-Mapping Data Flow

into Software Architecture.

DESIGN ENGINEERING:

Software design encompasses the set of principles, concepts, and practices that lead to the

development of a high-quality system or product. Design principles establish an overriding

philosophy that guides you in the design work you must perform. Design concepts must be

understood before the mechanics of design practice are applied, and design practice itself leads

to the creation of various representations of the software that serve as a guide for the construction

activity that follows.

Design is pivotal to successful software engineering. In the early 1990s Mitch Kapor, the

creator of Lotus 1-2-3, presented a “software design manifesto” in Dr. Dobbs Journal. He said:

What is design? It’s where you stand with a foot in two worlds—the world of technology

and the world of people and human purposes—and you try to bring the two together. . . .

The Roman architecture critic Vitruvius advanced the notion that well-designed buildings

were those which exhibited firmness, commodity, and delight. The same might be said of good

software.

Firmness: A program should not have any bugs that inhibit its function.

Commodity: A program should be suitable for the purposes for which it was intended.

Delight: The experience of using the program should be a pleasurable one. Here we have the

beginnings of a theory of design for software.

The goal of design is to produce a model or representation that exhibits firmness, commodity,

and delight.

To accomplish this, you must practice diversification and then convergence. Belady

states that “diversification is the acquisition of a repertoire of alternatives, the raw material of

design: components, component solutions, and knowledge, all contained in catalogs, textbooks,

and the mind.” Once this diverse set of information is assembled, you must pick and choose

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 2/42

elements from the repertoire that meet the requirements defined by requirements engineering and

the analysis model. As this occurs, alternatives are considered and rejected and you converge on

“one particular configuration of components, and thus the creation of the final product”.

Diversification and convergence combine intuition and judgment based on experience in

building similar entities, a set of principles and/or heuristics that guide the way in which the

model evolves, a set of criteria that enables quality to be judged, and a process of iteration that

ultimately leads to a final design representation.

Software design changes continually as new methods, better analysis, and broader understanding

evolve. Even today, most software design methodologies lack the depth, flexibility, and

quantitative nature that are normally associated with more classical engineering design

disciplines. However, methods for software design do exist, criteria for design quality are

available, and design notation can be applied.

DESIGN WITH THE CONTEXT OF SOFTWARE ENGINEERING-

 Software design sits at the technical kernel of software engineering and is applied regardless of

the software process model that is used. Beginning once software requirements have been

analyzed and modeled, software design is the last software engineering action within the

modeling activity and sets the stage for construction (code generation and testing).

Fig. Translating the requirements model into the design model

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 3/42

 Each of the elements of the requirements model provides information that is necessary to create

the four design models required for a complete specification of design. The flow of information

during software design is illustrated in Figure. The requirements model, manifested by scenario-

based, class-based, flow-oriented, and behavioral elements, feed the design task. Using design

notation and design methods discussed in later chapters, design produces a data/class design, an

architectural design, an interface design, and a component design.

Data/class design

The data/class design transforms class models into design class realizations and the requisite data

structures required to implement the software. The objects and relationships defined in the CRC

diagram and the detailed data content depicted by class attributes and other notation provide the

basis for the data design action. Part of class design may occur in conjunction with the design of

software architecture. More detailed class design occurs as each software component is designed.

Architectural design

The architectural design defines the relationship between major structural elements of the

software, the architectural styles and design patterns that can be used to achieve the requirements

defined for the system, and the constraints that affect the way in which architecture can be

implemented. The architectural design representation—the framework of a computer-based

system—is derived from the requirements model.

Interface design

The interface design describes how the software communicates with systems that interoperate

with it, and with humans who use it. An interface implies a flow of information (e.g., data and/or

control) and a specific type of behavior. Therefore, usage scenarios and behavioral models

provide much of the information required for interface design.

Component-level design

The component-level design transforms structural elements of the software architecture into a

procedural description of software components. Information obtained from the class-based

models, flow models, and behavioral models serve as the basis for component design.

During design you make decisions that will ultimately affect the success of software construction

and, as important, the ease with which software can be maintained. But why is design so

important?

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 4/42

The importance of software design can be stated with a single word—quality.

Design is the place where quality is fostered in software engineering. Design provides you with

representations of software that can be assessed for quality. Design is the only way that you can

accurately translate stakeholder’s requirements into a finished software product or system.

Software design serves as the foundation for all the software engineering and software support

activities that follow. Without design, you risk building an unstable system—one that will fail

when small changes are made; one that may be difficult to test; one whose quality cannot be

assessed until late in the software process, when time is short and many dollars have already

been spent.

DESIGN PROCESS

 Software design is an iterative process through which requirements are translated into a

“blueprint” for constructing the software. Initially, the blueprint depicts a holistic view of

software. That is, the design is represented at a high level of abstraction— a level that can be

directly traced to the specific system objective and more detailed data, functional, and behavioral

requirements. As design iterations occur, subsequent refinement leads to design representations

at much lower levels of abstraction. These can still be traced to requirements, but the connection

is more subtle.

DESIGN QUALITY

Software Quality Guidelines and Attributes

Throughout the design process, the quality of the evolving design is assessed with a series of

technical reviews discussed. McGlaughlin suggests three characteristics that serve as a guide for

the evaluation of a good design:

• The design must implement all of the explicit requirements contained in the requirements

model, and it must accommodate all of the implicit requirements desired by stakeholders.

• The design must be a readable, understandable guide for those who generate code and for those

who test and subsequently support the software.

• The design should provide a complete picture of the software, addressing the data, functional,

and behavioral domains from an implementation perspective.

Each of these characteristics is actually a goal of the design process. But how is each of these

goals achieved?

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 5/42

Quality Guidelines.

 In order to evaluate the quality of a design representation, you and other members of the

software team must establish technical criteria for good design. In Section 8.3, I discuss design

concepts that also serve as software quality criteria. For the time being, consider the following

guidelines:

1. A design should exhibit an architecture that (1) has been created using recognizable

architectural styles or patterns, (2) is composed of components that exhibit good design

characteristics (these are discussed later in this chapter), and (3) can be implemented in an

evolutionary fashion,2 thereby facilitating implementation and testing.

2. A design should be modular; that is, the software should be logically partitioned into elements

or subsystems.

3. A design should contain distinct representations of data, architecture, interfaces, and

components.

4. A design should lead to data structures that are appropriate for the classes to be implemented

and are drawn from recognizable data patterns.

5. A design should lead to components that exhibit independent functional characteristics.

6. A design should lead to interfaces that reduce the complexity of connections between

components and with the external environment.

7. A design should be derived using a repeatable method that is driven by information obtained

during software requirements analysis.

8. A design should be represented using a notation that effectively communicates its meaning.

These design guidelines are not achieved by chance. They are achieved through the application

of fundamental design principles, systematic methodology, and thorough review.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 6/42

Quality Attributes.

Hewlett-Packard developed a set of software quality attributes that has been given the acronym

FURPS—functionality, usability, reliability, performance, and supportability. The FURPS

quality attributes represent a target for all software design:

 • Functionality is assessed by evaluating the feature set and capabilities of the program, the

generality of the functions that are delivered, and the security of the overall system.

• Usability is assessed by considering human factors, overall aesthetics, consistency, and

documentation.

• Reliability is evaluated by measuring the frequency and severity of failure, the accuracy of

output results, the mean-time-to-failure (MTTF), the ability to recover from failure, and the

predictability of the program.

• Performance is measured by considering processing speed, response time, resource

consumption, throughput, and efficiency.

• Supportability combines the ability to extend the program (extensibility), adaptability,

serviceability—these three attributes represent a more common term, maintainability—and in

addition, testability, compatibility, configurability, the ease with which a system can be installed,

and the ease with which problems can be localized.

Not every software quality attribute is weighted equally as the software design is developed. One

application may stress functionality with a special emphasis on security.

Another may demand performance with particular emphasis on processing speed. A third might

focus on reliability. Regardless of the weighting, it is important to note that these quality

attributes must be considered as design commences, not after the design is complete and

construction has begun.

The Evolution of Software Design

The evolution of software design is a continuing process that has now spanned almost six

decades.

Early design work concentrated on criteria for the development of modular programs and

methods for refining software structures in a topdown manner.

Procedural aspects of design definition evolved into a philosophy called structured

programming.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 7/42

Later work proposed methods for the translation of data flow or data structure into a design

definition.

Newer design approaches proposed an object-oriented approach to design derivation.

More recent emphasis in software design has been on software architecture and the design

patterns that can be used to implement software architectures and lower levels of design

abstractions.

Growing emphasis on aspect-oriented methods model-driven development, and test-driven

development emphasize techniques for achieving more effective modularity and architectural

structure in the designs that are created.

A number of design methods, growing out of the work just noted, are being applied throughout

the industry. Like the analysis methods, each software design method introduces unique

heuristics and notation, as well as a somewhat parochial view of what characterizes design

quality. Yet, all of these methods have a number of common characteristics:

(1) a mechanism for the translation of the requirements model into a design representation,

(2) a notation for representing functional components and their interfaces,

(3) heuristics for refinement and partitioning, and

(4) guidelines for quality assessment.

Regardless of the design method that is used, you should apply a set of basic concepts to data,

architectural, interface, and component-level design. These concepts are considered in the

sections that follow.

DESIGN CONCEPTS

 A set of fundamental software design concepts has evolved over the history of software

engineering. Although the degree of interest in each concept has varied over the years, each has

stood the test of time. Each provides the software designer with a foundation from which more

sophisticated design methods can be applied. Each helps you answer the following questions:

• What criteria can be used to partition software into individual components?

• How is function or data structure detail separated from a conceptual representation of the

software?

• What uniform criteria define the technical quality of a software design?

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 8/42

 M. A. Jackson once said: “The beginning of wisdom for a [software engineer] is to recognize

the difference between getting a program to work, and getting it right.” Fundamental software

design concepts provide the necessary framework for “getting it right.”

 In the sections that follow, I present a brief overview of important software design concepts that

span both traditional and object-oriented software development.

1. Abstraction

 When you consider a modular solution to any problem, many levels of abstraction can be

posed. At the highest level of abstraction, a solution is stated in broad terms using the language

of the problem environment. At lower levels of abstraction, a more detailed description of the

solution is provided. Problem-oriented terminology is coupled with implementation-oriented

terminology in an effort to state a solution. Finally, at the lowest level of abstraction, the solution

is stated in a manner that can be directly implemented.

 As different levels of abstraction are developed, you work to create both procedural and

data abstractions. A procedural abstraction refers to a sequence of instructions that have a

specific and limited function. The name of a procedural abstraction implies these functions, but

specific details are suppressed. An example of a procedural abstraction would be the word open

for a door. Open implies a long sequence of procedural steps (e.g., walk to the door, reach out

and grasp knob, turn knob and pull door, step away from moving door, etc.).5

A data abstraction is a named collection of data that describes a data object. In the

context of the procedural abstraction open, we can define a data abstraction called door. Like

any data object, the data abstraction for door would encompass a set of attributes that describe

the door (e.g., door type, swing direction, opening mechanism, weight, dimensions). It follows

that the procedural abstraction open would make use of information contained in the attributes of

the data abstraction door.

2. Architecture

 Software architecture alludes to “the overall structure of the software and the ways in

which that structure provides conceptual integrity for a system” [Sha95a]. In its simplest form,

architecture is the structure or organization of program components (modules), the manner in

which these components interact, and the structure of data that are used by the components. In a

broader sense, however, components can be generalized to represent major system elements and

their interactions. One goal of software design is to derive an architectural rendering of a system.

This rendering serves as a framework from which more detailed design activities are conducted.

A set of architectural patterns enables a software engineer to solve common design problems.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 9/42

 Shaw and Garlan describe a set of properties that should be specified as part of an architectural

design:

 Structural properties. This aspect of the architectural design representation defines the

components of a system (e.g., modules, objects, filters) and the manner in which those

components are packaged and interact with one another. For example, objects are packaged to

encapsulate both data and the processing that manipulates the data and interact via the invocation

of methods.

 Extra-functional properties. The architectural design description should address how the

design architecture achieves requirements for performance, capacity, reliability, security,

adaptability, and other system characteristics.

 Families of related systems. The architectural design should draw upon repeatable patterns that

are commonly encountered in the design of families of similar systems. In essence, the design

should have the ability to reuse architectural building blocks.

Given the specification of these properties, the architectural design can be represented using one

or more of a number of different models. Structural models represent architecture as an

organized collection of program components.

Framework models increase the level of design abstraction by attempting to identify repeatable

architectural design frameworks that are encountered in similar types of applications. Dynamic

models address the behavioral aspects of the program architecture, indicating how the structure

or system configuration may change as a function of external events. Process models focus on

the design of the business or technical process that the system must accommodate. Finally,

functional models can be used to represent the functional hierarchy of a system.

A number of different architectural description languages (ADLs) have been developed to

represent these models. Although many different ADLs have been proposed, the majority

provide mechanisms for describing system components and the manner in which they are

connected to one another.

Some researchers argue that the derivation of software architecture should be separated from

design and occurs between requirements engineering actions and more conventional design

actions. Others believe that the derivation of architecture is an integral part of the design process.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 10/42

3. Patterns

 Brad Appleton defines a design pattern in the following manner: “A pattern is a named

nugget of insight which conveys the essence of a proven solution to a recurring problem within a

certain context amidst competing concerns” [App00]. Stated in another way, a design pattern

describes a design structure that solves a particular design problem within a specific context and

amid “forces” that may have an impact on the manner in which the pattern is applied and used.

The intent of each design pattern is to provide a description that enables a designer to

determine

(1) whether the pattern is applicable to the current work,

(2) whether the pattern can be reused (hence, saving design time), and

(3) whether the pattern can serve as a guide for developing a similar, but functionally or

structurally different pattern.

 4. Separation of Concerns

 Separation of concerns is a design concept that suggests that any complex problem can be more

easily handled if it is subdivided into pieces that can each be solved and/or optimized

independently. A concern is a feature or behavior that is specified as part of the requirements

model for the software. By separating concerns into smaller, and therefore more manageable

pieces, a problem takes less effort and time to solve.

 For two problems, p1 and p2, if the perceived complexity of p1 is greater than the perceived

complexity of p2, it follows that the effort required to solve p1 is greater than the effort required

to solve p2. As a general case, this result is intuitively obvious. It does take more time to solve a

difficult problem.

 It also follows that the perceived complexity of two problems when they are combined is often

greater than the sum of the perceived complexity when each is taken separately. This leads to a

divide-and-conquer strategy—it’s easier to solve a complex problem when you break it into

manageable pieces. This has important implications with regard to software modularity.

 Separation of concerns is manifested in other related design concepts: modularity, aspects,

functional independence, and refinement. Each will be discussed in the subsections that follow.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 11/42

5. Modularity

 Modularity is the most common manifestation of separation of concerns. Software is divided

into separately named and addressable components, sometimes called modules, that are

integrated to satisfy problem requirements.

It has been stated that “modularity is the single attribute of software that allows a program to be

intellectually manageable”. Monolithic software (i.e., a large program composed of a single

module) cannot be easily grasped by a software engineer.

The number of control paths, span of reference, number of variables, and overall complexity

would make understanding close to impossible. In almost all instances, you should break the

design into many modules, hoping to make understanding easier and, as a consequence, reduce

the cost required to build the software.

Recalling my discussion of separation of concerns, it is possible to conclude that if you subdivide

software indefinitely the effort required to develop it will become negligibly small!

Unfortunately, other forces come into play, causing this conclusion to be (sadly) invalid.

Referring to Figure, the effort (cost) to develop an individual software module does decrease as

the total number of modules increases. Given the

Fig .Modularity and software cost

 same set of requirements, more modules means smaller individual size. However, as the number

of modules grows, the effort (cost) associated with integrating the modules also grows. These

characteristics lead to a total cost or effort curve shown in the figure. There is a number, M, of

modules that would result in minimum development cost, but we do not have the necessary

sophistication to predict M with assurance.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 12/42

The curves shown in Figure do provide useful qualitative guidance when modularity is

considered. You should modularize, but care should be taken to stay in the vicinity of M.

Undermodularity or overmodularity should be avoided. But how do you know the vicinity of M?

How modular should you make software? The answers to these questions require an

understanding of other design concepts considered later in this chapter.

 You modularize a design (and the resulting program) so that development can be more easily

planned; software increments can be defined and delivered; changes can be more easily

accommodated; testing and debugging can be conducted more efficiently, and long-term

maintenance can be conducted without serious side effects.

6. Information Hiding

 The concept of modularity leads you to a fundamental question: “How do I decompose a

software solution to obtain the best set of modules?” The principle of information hiding

suggests that modules be “characterized by design decisions that (each) hides from all others.” In

other words, modules should be specified and designed so that information (algorithms and data)

contained within a module is inaccessible to other modules that have no need for such

information.

 Hiding implies that effective modularity can be achieved by defining a set of independent

modules that communicate with one another only that information necessary to achieve software

function. Abstraction helps to define the procedural (or informational) entities that make up the

software. Hiding defines and enforces access constraints to both procedural detail within a

module and any local data structure used by the module.

 The use of information hiding as a design criterion for modular systems provides the greatest

benefits when modifications are required during testing and later during software maintenance.

Because most data and procedural detail are hidden from other parts of the software, inadvertent

errors introduced during modification are less likely to propagate to other locations within the

software.

7. Functional Independence

 The concept of functional independence is a direct outgrowth of separation of concerns,

modularity, and the concepts of abstraction and information hiding. In landmark papers on

software design, refinement techniques that enhance module independence.

Functional independence is achieved by developing modules with “singleminded” function and

an “aversion” to excessive interaction with other modules. Stated another way, you should

design software so that each module addresses a specific subset of requirements and has a simple

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 13/42

interface when viewed from other parts of the program structure. It is fair to ask why

independence is important.

Software with effective modularity, that is, independent modules, is easier to develop because

function can be compartmentalized and interfaces are simplified (consider the ramifications

when development is conducted by a team). Independent modules are easier to maintain (and

test) because secondary effects caused by design or code modification are limited, error

propagation is reduced, and reusable modules are possible. To summarize, functional

independence is a key to good design, and design is the key to software quality.

Independence is assessed using two qualitative criteria: cohesion and coupling.

Cohesion is an indication of the relative functional strength of a module. Coupling is an

indication of the relative interdependence among modules.

Cohesion is a natural extension of the information-hiding concept. A cohesive module performs

a single task, requiring little interaction with other components in other parts of a program.

Stated simply, a cohesive module should (ideally) do just one thing. Although you should always

strive for high cohesion (i.e., single-mindedness), it is often necessary and advisable to have a

software component perform multiple functions. However, “schizophrenic” components

(modules that perform many unrelated functions) are to be avoided if a good design is to be

achieved.

Coupling is an indication of interconnection among modules in a software structure. Coupling

depends on the interface complexity between modules, the point at which entry or reference is

made to a module, and what data pass across the interface. In software design, you should strive

for the lowest possible coupling. Simple connectivity among modules results in software that is

easier to understand and less prone to a “ripple effect”, caused when errors occur at one location

and propagate throughout a system.

8. Refinement

 Stepwise refinement is a top-down design strategy originally proposed by Niklaus Wirth

[Wir71]. A program is developed by successively refining levels of procedural detail. A

hierarchy is developed by decomposing a macroscopic statement of function (a procedural

abstraction) in a stepwise fashion until programming language statements are reached.

Refinement is actually a process of elaboration. You begin with a statement of function (or

description of information) that is defined at a high level of abstraction. That is, the statement

describes function or information conceptually but provides no information about the internal

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 14/42

workings of the function or the internal structure of the information. You then elaborate on the

original statement, providing more and more detail as each successive refinement (elaboration)

occurs.

Abstraction and refinement are complementary concepts. Abstraction enables you to specify

procedure and data internally but suppress the need for “outsiders” to have knowledge of low-

level details. Refinement helps you to reveal low-level details as design progresses. Both

concepts allow you to create a complete design model as the design evolves.

9. Aspects

 As requirements analysis occurs, a set of “concerns” is uncovered. These concerns “include

requirements, use cases, features, data structures, quality-of-service issues, variants, intellectual

property boundaries, collaborations, patterns and contracts” [AOS07]. Ideally, a requirements

model can be organized in a way that allows you to isolate each concern (requirement) so that it

can be considered independently. In practice, however, some of these concerns span the entire

system and cannot be easily compartmentalized.

As design begins, requirements are refined into a modular design representation. Consider two

requirements, A and B. Requirement A crosscuts requirement B “if a software decomposition

[refinement] has been chosen in which B cannot be satisfied without taking A into account”

[Ros04].

 For example, consider two requirements for the SafeHomeAssured.com WebApp. Requirement

A is described via the ACS-DCV use case discussed. A design refinement would focus on those

modules that would enable a registered user to access video from cameras placed throughout a

space. Requirement B is a generic security requirement that states that a registered user must be

validated prior to using

SafeHomeAssured.com. This requirement is applicable for all functions that are available to

registered SafeHome users. As design refinement occurs, A* is a design representation for

requirement A and B* is a design representation for requirement B. Therefore, A* and B* are

representations of concerns, and B* crosscuts A*. An aspect is a representation of a crosscutting

concern. Therefore, the design representation, B*, of the requirement a registered user must be

validated prior to using SafeHomeAssured.com, is an aspect of the SafeHome WebApp. It is

important to identify aspects so that the design can properly accommodate them as refinement

and modularization occur. In an ideal context, an aspect is implemented as a separate module

(component) rather than as software fragments that are “scattered” or “tangled” throughout many

components [Ban06]. To accomplish this, the design architecture should support a mechanism

for defining an aspect—a module that enables the concern to be implemented across all other

concerns that it crosscuts.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 15/42

10. Refactoring

 An important design activity suggested for many agile methods, refactoring is a reorganization

technique that simplifies the design (or code) of a component without changing its function or

behavior. Fowler [Fow00] defines refactoring in the following manner: “Refactoring is the

process of changing a software system in such a way that it does not alter the external behavior

of the code [design] yet improves its internal structure.”

 When software is refactored, the existing design is examined for redundancy, unused design

elements, inefficient or unnecessary algorithms, poorly constructed or inappropriate data

structures, or any other design failure that can be corrected to yield a better design. For example,

a first design iteration might yield a component that exhibits low cohesion (i.e., it performs three

functions that have only limited relationship to one another). After careful consideration, you

may decide that the component should be refactored into three separate components, each

exhibiting high cohesion. The result will be software that is easier to integrate, easier to test, and

easier to maintain.

11. Object-Oriented Design Concepts

 The object-oriented (OO) paradigm is widely used in modern software engineering. Appendix 2

has been provided for those readers who may be unfamiliar with OO design concepts such as

classes and objects, inheritance, messages, and polymorphism, among others.

12. Design Classes

 The requirements model defines a set of analysis classes (Chapter 6). Each describes some

element of the problem domain, focusing on aspects of the problem that are user visible. The

level of abstraction of an analysis class is relatively high.

As the design model evolves, you will define a set of design classes that refine the analysis

classes by providing design detail that will enable the classes to be implemented, and implement

a software infrastructure that supports the business solution. Five different types of design

classes, each representing a different layer of the design architecture, can be developed [Amb01]:

• User interface classes define all abstractions that are necessary for humancomputer interaction

(HCI). In many cases, HCI occurs within the context of a metaphor (e.g., a checkbook, an order

form, a fax machine), and the design classes for the interface may be visual representations of the

elements of the metaphor.

• Business domain classes are often refinements of the analysis classes defined earlier. The

classes identify the attributes and services (methods) that are required to implement some

element of the business domain.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 16/42

• Process classes implement lower-level business abstractions required to fully manage the

business domain classes.

• Persistent classes represent data stores (e.g., a database) that will persist beyond the execution

of the software.

• System classes implement software management and control functions that enable the system to

operate and communicate within its computing environment and with the outside world.

 As the architecture forms, the level of abstraction is reduced as each analysis class is

transformed into a design representation. That is, analysis classes represent data objects (and

associated services that are applied to them) using the jargon of the business domain. Design

classes present significantly more technical detail as a guide for implementation.

Arlow and Neustadt [Arl02] suggest that each design class be reviewed to ensure that it is “well-

formed.” They define four characteristics of a well-formed design class:

 Complete and sufficient. A design class should be the complete encapsulation of all attributes

and methods that can reasonably be expected (based on a knowledgeable interpretation of the

class name) to exist for the class.

For example, the class Scene defined for video-editing software is complete only if it contains all

attributes and methods that can reasonably be associated with the creation of a video scene.

Sufficiency ensures that the design class contains only those methods that are sufficient to

achieve the intent of the class, no more and no less.

 Primitiveness. Methods associated with a design class should be focused on accomplishing one

service for the class. Once the service has been implemented with a method, the class should not

provide another way to accomplish the same thing. For example, the class VideoClip for video-

editing software might have attributes start-point and end-point to indicate the start and end

points of the clip (note that the raw video loaded into the system may be longer than the clip that

is used). The methods, setStartPoint() and setEndPoint(), provide the only means for establishing

start and end points for the clip.

 High cohesion. A cohesive design class has a small, focused set of responsibilities and single-

mindedly applies attributes and methods to implement those responsibilities. For example, the

class VideoClip might contain a set of methods for editing the video clip. As long as each

method focuses solely on attributes associated with the video clip, cohesion is maintained.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 17/42

 Low coupling. Within the design model, it is necessary for design classes to collaborate with

one another. However, collaboration should be kept to an acceptable minimum. If a design

model is highly coupled (all design classes collaborate with all other design classes), the system

is difficult to implement, to test, and to maintain over time. In general, design classes within a

subsystem should have only limited knowledge of other classes. This restriction, called the Law

of Demeter [Lie03], suggests that a method should only send messages to methods in

neighboring classes.6

Fig. Design class for FloorPlan and composite aggregation for the class (see sidebar discussion)

CREATING AN ARCHITECTURAL DESIGN:

 Software Architecture

 In their landmark book on the subject, Shaw and Garlan [Sha96] discuss software architecture in

the following manner:

 Ever since the first program was divided into modules, software systems have had architectures,

and programmers have been responsible for the interactions among the modules and the global

properties of the assemblage. Historically, architectures have been implicit—accidents of

implementation, or legacy systems of the past. Good software developers have often adopted one

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 18/42

or several architectural patterns as strategies for system organization, but they use these patterns

informally and have no means to make them explicit in the resulting system.

 Today, effective software architecture and its explicit representation and design have become

dominant themes in software engineering.

What Is Architecture?

When you consider the architecture of a building, many different attributes come to mind. At the

most simplistic level, you think about the overall shape of the physical structure. But in reality,

architecture is much more. It is the manner in which the various components of the building are

integrated to form a cohesive whole. It is the way in which the building fits into its environment

and meshes with other buildings in its vicinity. It is the degree to which the building meets its

stated purpose and satisfies the needs of its owner. It is the aesthetic feel of the structure—the

visual impact of the building—and the way textures, colors, and materials are combined to create

the external facade and the internal “living environment.” It is small details— the design of

lighting fixtures, the type of flooring, the placement of wall hangings, the list is almost endless.

And finally, it is art.

 But architecture is also something else. It is “thousands of decisions, both big and small”

[Tyr05]. Some of these decisions are made early in design and can have a profound impact on all

other design actions. Others are delayed until later, thereby eliminating overly restrictive

constraints that would lead to a poor implementation of the architectural style.

 But what about software architecture? Bass, Clements, and Kazman [Bas03] define this elusive

term in the following way:

 The software architecture of a program or computing system is the structure or structures of the

system, which comprise software components, the externally visible properties of those

components, and the relationships among them.

 The architecture is not the operational software. Rather, it is a representation that enables you to

(1) analyze the effectiveness of the design in meeting its stated requirements,

(2) consider architectural alternatives at a stage when making design changes is still relatively

easy, and

(3) reduce the risks associated with the construction of the software.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 19/42

 This definition emphasizes the role of “software components” in any architectural

representation. In the context of architectural design, a software component can be something as

simple as a program module or an object-oriented class, but it can also be extended to include

databases and “middleware” that enable the configuration of a network of clients and servers.

The properties of components are those characteristics that are necessary for an understanding of

how the components interact with other components. At the architectural level, internal

properties (e.g., details of an algorithm) are not specified. The relationships between components

can be as simple as a procedure call from one module to another or as complex as a database

access protocol.

 Some members of the software engineering community (e.g., [Kaz03]) make a distinction

between the actions associated with the derivation of a software architecture (what I call

“architectural design”) and the actions that are applied to derive the software design. As one

reviewer of this edition noted:

There is a distinct difference between the terms architecture and design. A design is an instance

of an architecture similar to an object being an instance of a class. For example, consider the

client-server architecture. I can design a network-centric software system in many different ways

from this architecture using either the Java platform (Java EE) or Microsoft platform (.NET

framework). So, there is one architecture, but many designs can be created based on that

architecture. Therefore, you cannot mix “architecture” and “design” with each other.

 Although I agree that a software design is an instance of a specific software architecture, the

elements and structures that are defined as part of an architecture are the root of every design that

evolves from them. Design begins with a consideration of architecture.

 In this book the design of software architecture considers two levels of the design pyramid

(Figure 8.1)—data design and architectural design. In the context of the preceding discussion,

data design enables you to represent the data component of the architecture in conventional

systems and class definitions (encompassing attributes and operations) in object-oriented

systems. Architectural design focuses on the representation of the structure of software

components, their properties, and interactions.

 Why Is Architecture Important?

In a book dedicated to software architecture, Bass and his colleagues [Bas03] identify three key

reasons that software architecture is important:

• Representations of software architecture are an enabler for communication between all parties

(stakeholders) interested in the development of a computer-based system.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 20/42

• The architecture highlights early design decisions that will have a profound impact on all

software engineering work that follows and, as important, on the ultimate success of the system

as an operational entity.

• Architecture “constitutes a relatively small, intellectually graspable model of how the system is

structured and how its components work together” [Bas03]. The architectural design model and

the architectural patterns contained within it are transferable. That is, architecture genres, styles,

and patterns (Sections 9.2 through 9.4) can be applied to the design of other systems and

represent a set of abstractions that enable software engineers to describe architecture in

predictable ways.

 Architectural Descriptions

 Each of us has a mental image of what the word architecture means. In reality, however, it

means different things to different people. The implication is that different stakeholders will see

an architecture from different viewpoints that are driven by different sets of concerns. This

implies that an architectural description is actually a set of work products that reflect different

views of the system. For example, the architect of a major office building must work with a

variety of different stakeholders.

The primary concern of the owner of the building (one stakeholder) is to ensure that it is

aesthetically pleasing and that it provides sufficient office space and infrastructure to ensure its

profitability. Therefore, the architect must develop a description using views of the building that

address the owner’s concerns. The viewpoints used are a three-dimensional drawings of the

building (to illustrate the aesthetic view) and a set of two-dimensional floor plans to address this

stakeholder’s concern for office space and infrastructure.

 But the office building has many other stakeholders, including the structural steel fabricator who

will provide steel for the building skeleton. The structural steel fabricator needs detailed

architectural information about the structural steel that will support the building, including types

of I-beams, their dimensions, connectivity, materials, and many other details. These concerns are

addressed by different work products that represent different views of the architecture.

Specialized drawings (another viewpoint) of the structural steel skeleton of the building focus on

only one of many of the fabricator’s concerns.

 An architectural description of a software-based system must exhibit characteristics that are

analogous to those noted for the office building. Tyree and Akerman [Tyr05] note this when they

write: “Developers want clear, decisive guidance on how to proceed with design. Customers

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 21/42

want a clear understanding on the environmental changes that must occur and assurances that the

architecture will meet their business needs. Other architects want a clear, salient understanding

of the architecture’s key aspects.” Each of these “wants” is reflected in a different view

represented using a different viewpoint.

 The IEEE Computer Society has proposed IEEE-Std-1471-2000, Recommended Practice for

Architectural Description of Software-Intensive Systems, [IEE00], with the following objectives:

(1) to establish a conceptual framework and vocabulary for use during the design of software

architecture, (2) to provide detailed guidelines for representing an architectural description, and

(3) to encourage sound architectural design practices.

 The IEEE standard defines an architectural description (AD) as “a collection of products to

document an architecture.” The description itself is represented using multiple views, where each

view is “a representation of a whole system from the perpective of a related set of [stakeholder]

concerns.” A view is created according to rules and conventions defined in a viewpoint—“a

specification of the conventions for constructing and using a view” [IEE00]. A number of

different work products that are used to develop different views of the software architecture are

discussed later in this chapter.

 Architectural Decisions

 Each view developed as part of an architectural description addresses a specific stakeholder

concern. To develop each view (and the architectural description as a whole) the system architect

considers a variety of alternatives and ultimately decides on the specific architectural features

that best meet the concern. Therefore, architectural decisions themselves can be considered to be

one view of the architecture.

The reasons that decisions were made provide insight into the structure of a system and its

conformance to stakeholder concerns.

As a system architect, you can use the template suggested in the sidebar to document each major

decision. By doing this, you provide a rationale for your work and establish an historical record

that can be useful when design modifications must be made.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 22/42

DATA DESIGN

DATA DESIGN ELEMENTS

 Like other software engineering activities, data design (sometimes referred to as data

architecting) creates a model of data and/or information that is represented at a high level of

abstraction (the customer/user’s view of data). This data model is then refined into progressively

more implementation-specific representations that can be processed by the computer-based

system. In many software applications, the architecture of the data will have a profound

influence on the architecture of the software that must process it.

The structure of data has always been an important part of software design. At the program

component level, the design of data structures and the associated algorithms required to

manipulate them is essential to the creation of high-quality applications. At the application level,

the translation of a data model (derived as part of requirements engineering) into a database is

pivotal to achieving the business objectives of a system. At the business level, the collection of

information stored in disparate databases and reorganized into a “data warehouse” enables data

mining or knowledge discovery that can have an impact on the success of the business itself. In

every case, data design plays an important role.

ARCHITECTURAL DESIGN

 As architectural design begins, the software to be developed must be put into context—that is,

the design should define the external entities (other systems, devices, people) that the software

interacts with and the nature of the interaction. This information can generally be acquired from

the requirements model and all other information gathered during requirements engineering.

Once context is modeled and all external software interfaces have been described, you can

identify a set of architectural archetypes.

An archetype is an abstraction (similar to a class) that represents one element of system

behavior. The set of archetypes provides a collection of abstractions that must be modeled

architecturally if the system is to be constructed, but the archetypes themselves do not provide

enough implementation detail. Therefore, the designer specifies the structure of the system by

defining and refining software components that implement each archetype. This process

continues iteratively until a complete architectural structure has been derived. In the sections that

follow we examine each of these architectural design tasks in a bit more detail.

Representing the System in Context

 At the architectural design level, a software architect uses an architectural context diagram

(ACD) to model the manner in which software interacts with entities external to its boundaries.

The generic structure of the architectural context diagram is illustrated in Figure 3.5.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 23/42

 Referring to the figure, systems that interoperate with the target system (the system for which an

architectural design is to be developed) are represented as

 • Superordinate systems—those systems that use the target system as part of some higher-level

processing scheme.

• Subordinate systems—those systems that are used by the target system and provide data or

processing that are necessary to complete target system functionality.

• Peer-level systems—those systems that interact on a peer-to-peer basis (i.e., information is

either produced or consumed by the peers and the target system.

• Actors—entities (people, devices) that interact with the target system by producing or

consuming information that is necessary for requisite processing.

Each of these external entities communicates with the target system through an interface (the

small shaded rectangles).

To illustrate the use of the ACD, consider the home security function of the SafeHome product.

The overall SafeHome product controller and the Internet-based system are both superordinate to

the security function and are shown above the

3.5.Architectural context diagram

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 24/42

 Architectural context diagram for the SafeHome security function

 function in Figure. The surveillance function is a peer system and uses (is used by) the home

security function in later versions of the product. The homeowner and control panels are actors

that are both producers and consumers of information used/produced by the security software.

Finally, sensors are used by the security software and are shown as subordinate to it.

As part of the architectural design, the details of each interface shown in Figure would have to be

specified. All data that flow into and out of the target system must be identified at this stage.

Defining Archetypes

 An archetype is a class or pattern that represents a core abstraction that is critical to the design

of an architecture for the target system. In general, a relatively small set of archetypes is required

to design even relatively complex systems. The target system architecture is composed of these

archetypes, which represent stable elements of the architecture but may be instantiated many

different ways based on the behavior of the system.

In many cases, archetypes can be derived by examining the analysis classes defined as part of the

requirements model. Continuing the discussion of the SafeHome home security function, you

might define the following archetypes:

 • Node. Represents a cohesive collection of input and output elements of the home security

function. For example a node might be comprised of (1) various sensors and (2) a variety of

alarm (output) indicators.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 25/42

 • Detector. An abstraction that encompasses all sensing equipment that feeds information into

the target system.

UML relationships for SafeHome security function archetypes

 • Indicator. An abstraction that represents all mechanisms (e.g., alarm siren, flashing lights,

bell) for indicating that an alarm condition is occurring.

• Controller. An abstraction that depicts the mechanism that allows the arming or disarming of a

node. If controllers reside on a network, they have the ability to communicate with one another.

Each of these archetypes is depicted using UML notation as shown in Figure 9.7. Recall that the

archetypes form the basis for the architecture but are abstractions that must be further refined as

architectural design proceeds. For example, Detector might be refined into a class hierarchy of

sensors.

Refining the Architecture into Components

 As the software architecture is refined into components, the structure of the system begins to

emerge. But how are these components chosen? In order to answer this question, you begin with

the classes that were described as part of the requirements model.

 These analysis classes represent entities within the application (business) domain that must be

addressed within the software architecture. Hence, the application domain is one source for the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 26/42

derivation and refinement of components. Another source is the infrastructure domain. The

architecture must accommodate many infrastructure components that enable application

components but have no business connection to the application domain. For example, memory

management components, communication components, database components, and task

management components are often integrated into the software architecture.

The interfaces depicted in the architecture context diagram (Section 9.4.1) imply one or more

specialized components that process the data that flows across the interface. In some cases (e.g.,

a graphical user interface), a complete subsystem architecture with many components must be

designed.

Continuing the SafeHome home security function example, you might define the set of top-level

components that address the following functionality:

• External communication management—coordinates communication of the security function

with external entities such as other Internet-based systems and external alarm notification.

• Control panel processing—manages all control panel functionality.

• Detector management—coordinates access to all detectors attached to the system.

• Alarm processing—verifies and acts on all alarm conditions.

 Each of these top-level components would have to be elaborated iteratively and then positioned

within the overall SafeHome architecture. Design classes (with appropriate attributes and

operations) would be defined for each. It is important to note, however, that the design details of

all attributes and operations would not be specified until component-level design.

The overall architectural structure (represented as a UML component diagram) is illustrated in

Figure. Transactions are acquired by external communication management as they move in from

components that process the SafeHome GUI and the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 27/42

Overall architectural structure for SafeHome with top-level components

 Internet interface. This information is managed by a SafeHome executive component that selects

the appropriate product function (in this case security). The control panel processing component

interacts with the homeowner to arm/disarm the security function. The detector management

component polls sensors to detect an alarm condition, and the alarm processing component

produces output when an alarm is detected.

 Describing Instantiations of the System

 The architectural design that has been modeled to this point is still relatively high level. The

context of the system has been represented, archetypes that indicate the important abstractions

within the problem domain have been defined, the overall structure of the system is apparent,

and the major software components have been identified. However, further refinement (recall

that all design is iterative) is still necessary.

 To accomplish this, an actual instantiation of the architecture is developed. By this I mean that

the architecture is applied to a specific problem with the intent of demonstrating that the

structure and components are appropriate.

 Figure illustrates an instantiation of the SafeHome architecture for the security system.

Components shown in Figure 9.8 are elaborated to show additional detail. For example, the

detector management component interacts with a scheduler infrastructure component that

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 28/42

implements polling of each sensor object used by the security system. Similar elaboration is

performed for each of the components represented in Figure 9.8.

An instantiation of the security function with component elaboration

ASSESSING ALTERNATIVE ARCHITECTURAL DESIGNS

 In their book on the evaluation of software architectures, Clements and his colleagues [Cle03]

state:

 To put it bluntly, an architecture is a bet, a wager on the success of a system. Wouldn’t it be nice

to know in advance if you’ve placed your bet on a winner, as opposed to waiting until the system

is mostly completed before knowing whether it will meet its requirements or not? If you’re

buying a system or paying for its development, wouldn’t you like to have some assurance that

it’s started off down the right path? If you’re the architect yourself, wouldn’t you like to have a

good way to validate your intuitions and experience, so that you can sleep at night knowing that

the trust placed in your design is well founded?

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 29/42

 Indeed, answers to these questions would have value. Design results in a number of architectural

alternatives that are each assessed to determine which is the most appropriate for the problem to

be solved. In the sections that follow, I present two different approaches for the assessment of

alternative architectural designs. The first method uses an iterative method to assess design trade-

offs. The second approach applies a pseudo-quantitative technique for assessing design quality.

An Architecture Trade-Off Analysis Method

 The Software Engineering Institute (SEI) has developed an architecture trade-off analysis

method (ATAM) [Kaz98] that establishes an iterative evaluation process for software

architectures. The design analysis activities that follow are performed iteratively:

 1. Collect scenarios. A set of use cases (Chapters 5 and 6) is developed to represent the system

from the user’s point of view.

2. Elicit requirements, constraints, and environment description. This information is determined

as part of requirements engineering and is used to be certain that all stakeholder concerns have

been addressed.

3. Describe the architectural styles/patterns that have been chosen to address the scenarios and

requirements. The architectural style(s) should be described using one of the following

architectural views:

• Module view for analysis of work assignments with components and the degree to which

information hiding has been achieved.

• Process view for analysis of system performance.

• Data flow view for analysis of the degree to which the architecture meets functional

requirements.

4. Evaluate quality attributes by considering each attribute in isolation. The number of quality

attributes chosen for analysis is a function of the time available for review and the degree to

which quality attributes are relevant to the system at hand. Quality attributes for architectural

design assessment include reliability, performance, security, maintainability, flexibility,

testability, portability, reusability, and interoperability.

5. Identify the sensitivity of quality attributes to various architectural attributes for a specific

architectural style. This can be accomplished by making small changes in the architecture and

determining how sensitive a quality attribute, say performance, is to the change. Any attributes

that are significantly affected by variation in the architecture are termed sensitivity points.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 30/42

6. Critique candidate architectures (developed in step 3) using the sensitivity analysis conducted

in step 5. The SEI describes this approach in the following manner [Kaz98]:

Once the architectural sensitivity points have been determined, finding trade-off points is simply

the identification of architectural elements to which multiple attributes are sensitive. For

example, the performance of a client-server architecture might be highly sensitive to the number

of servers (performance increases, within some range, by increasing the number of servers). . . .

The number of servers, then, is a trade-off point with respect to this architecture.

These six steps represent the first ATAM iteration. Based on the results of steps 5 and 6, some

architecture alternatives may be eliminated, one or more of the remaining architectures may be

modified and represented in more detail, and then the ATAM steps are reapplied.6

 Architectural Complexity

 A useful technique for assessing the overall complexity of a proposed architecture is to consider

dependencies between components within the architecture. These dependencies are driven by

information/control flow within the system. Zhao [Zha98] suggests three types of dependencies:

 Sharing dependencies represent dependence relationships among consumers who use the same

resource or producers who produce for the same consumers. For example, for two components u

and v, if u and v refer to the same global data, then there exists a shared dependence relationship

between u and v.

 Flow dependencies represent dependence relationships between producers and consumers of

resources. For example, for two components u and v, if u must complete before control flows

into v (prerequisite), or if u communicates with v by parameters, then there exists a flow

dependence relationship between u and v.

 Constrained dependencies represent constraints on the relative flow of control among a set of

activities. For example, for two components u and v, u and v cannot execute at the same time

(mutual exclusion), then there exists a constrained dependence relationship between u and v.

 The sharing and flow dependencies noted by Zhao are similar to the concept of coupling

discussed in Chapter 8. Coupling is an important design concept that is applicable at the

architectural level and at the component level. Simple metrics for evaluating coupling are

discussed in Chapter 23.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 31/42

 9.5.3 Architectural Description Languages

 The architect of a house has a set of standardized tools and notation that allow the design to be

represented in an unambiguous, understandable fashion. Although the software architect can

draw on UML notation, other diagrammatic forms, and a few related tools, there is a need for a

more formal approach to the specification of an architectural design.

 Architectural description language (ADL) provides a semantics and syntax for describing a

software architecture. Hofmann and his colleagues [Hof01] suggest that an ADL should provide

the designer with the ability to decompose architectural components, compose individual

components into larger architectural blocks, and represent interfaces (connection mechanisms)

between components. Once descriptive, languagebased techniques for architectural design have

been established, it is more likely that effective assessment methods for architectures will be

established as the design evolves.

MAPPING DATA FLOW INTO SOFTWARE ARCHITECTURE

 The architectural styles discussed in Section 9.3.1 represent radically different architectures. So

it should come as no surprise that a comprehensive mapping that accomplishes the transition

from the requirements model to a variety of architectural styles does not exist. In fact, there is no

practical mapping for some architectural styles, and the designer must approach the translation of

requirements to design for these styles in using the techniques discussed in Section 9.4.

To illustrate one approach to architectural mapping, consider the call and return

architecture—an extremely common structure for many types of systems. The call and return

architecture can reside within other more sophisticated architectures discussed earlier in this

chapter. For example, the architecture of one or more components of a client-server architecture

might be call and return.

A mapping technique, called structured design is often characterized as a data flow-

oriented design method because it provides a convenient transition from a data flow diagram to

software architecture. The transition from information flow (represented as a DFD) to program

structure is accomplished as part of a sixstep process:

(1) the type of information flow is established,

(2) flow boundaries are indicated,

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 32/42

(3) the DFD is mapped into the program structure,

(4) control hierarchy is defined,

(5) the resultant structure is refined using design measures and heuristics, and

(6) the architectural description is refined and elaborated.

As a brief example of data flow mapping, I present a step-by-step “transform” mapping for a

small part of the SafeHome security function. In order to perform the mapping, the type of

information flow must be determined. One type of information flow is called transform flow and

exhibits a linear quality. Data flows into the system along an incoming flow path where it is

transformed from an external world representation into internalized form. Once it has been

internalized, it is processed at a transform center. Finally, it flows out of the system along an

outgoing flow path that transforms the data into external world form.9

Transform Mapping

 Transform mapping is a set of design steps that allows a DFD with transform flow

characteristics to be mapped into a specific architectural style. To illustrate this approach, we

again consider the SafeHome security function.10 One element of the analysis model is a set of

data flow diagrams that describe information flow within the security function. To map these

data flow diagrams into a software architecture, you would initiate the following design steps:

Step 1. Review the fundamental system model. The fundamental system model or context

diagram depicts the security function as a single transformation, representing the external

producers and consumers of data that flow into and out of the function. Figure 9.10 depicts a

level 0 context model, and Figure 9.11 shows refined data flow for the security function.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 33/42

Context-level DFD for the SafeHome security function

Level 1 DFD for the SafeHome security function

 Step 2. Review and refine data flow diagrams for the software. Information obtained from

the requirements model is refined to produce greater detail. For example, the level 2 DFD for

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 34/42

monitor sensors is examined, and a level 3 data flow diagram is derived as shown in Figure. At

level 3, each transform in

Level 2 DFD that refines the monitor sensors transform

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 35/42

Level 3 DFD for monitor sensors with flow boundaries

the data flow diagram exhibits relatively high cohesion. That is, the process implied by a

transform performs a single, distinct function that can be implemented as a component in the

SafeHome software. Therefore, the DFD in Figure contains sufficient detail for a “first cut” at the

design of architecture for the monitor sensors subsystem, and we proceed without further

refinement.

Step 3. Determine whether the DFD has transform or transaction flow11 characteristics.

Evaluating the DFD we see data entering the software along one incoming path and exiting along

three outgoing paths. Therefore, an overall transform characteristic will be assumed for

information flow.

Step 4. Isolate the transform center by specifying incoming and outgoing flow boundaries.

Incoming data flows along a path in which information is converted from external to internal

form; outgoing flow converts internalized data to external form. Incoming and outgoing flow

boundaries are open to interpretation.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 36/42

That is, different designers may select slightly different points in the flow as boundary locations.

In fact, alternative design solutions can be derived by varying the placement of flow boundaries.

Although care should be taken when boundaries are selected, a variance of one bubble along a

flow path will generally have little impact on the final program structure.

Flow boundaries for the example are illustrated as shaded curves running vertically through the

flow in Figure 9.13. The transforms (bubbles) that constitute the transform center lie within the

two shaded boundaries that run from top to bottom in the figure. An argument can be made to

readjust a boundary (e.g., an incoming flow boundary separating read sensors and acquire

response info could be proposed).

The emphasis in this design step should be on selecting reasonable boundaries, rather than

lengthy iteration on placement of divisions.

Step 5. Perform “first-level factoring.” The program architecture derived using this mapping

results in a top-down distribution of control. Factoring leads to a program structure in which top-

level components perform decision making and lowlevel components perform most input,

computation, and output work. Middle-level components perform some control and do moderate

amounts of work.

When transform flow is encountered, a DFD is mapped to a specific structure (a call and return

architecture) that provides control for incoming, transform, and outgoing information processing.

This first-level factoring for the monitor sensors subsystem is illustrated in Figure 9.14. A main

controller (called monitor sensors executive) resides at the top of the program structure and

coordinates the following subordinate control functions:

• An incoming information processing controller, called sensor input controller, coordinates

receipt of all incoming data.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 37/42

First-level factoring for monitor sensors

 • A transform flow controller, called alarm conditions controller, supervises all operations on

data in internalized form (e.g., a module that invokes various data transformation procedures).

 • An outgoing information processing controller, called alarm output controller, coordinates

production of output information.

Although a three-pronged structure is implied by Figure 9.14, complex flows in large systems

may dictate two or more control modules for each of the generic control functions described

previously. The number of modules at the first level should be limited to the minimum that can

accomplish control functions and still maintain good functional independence characteristics.

Step 6. Perform “second-level factoring.” Second-level factoring is accomplished by mapping

individual transforms (bubbles) of a DFD into appropriate modules within the architecture.

Beginning at the transform center boundary and moving outward along incoming and then

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 38/42

outgoing paths, transforms are mapped into subordinate levels of the software structure. The

general approach to secondlevel factoring is illustrated in Figure.

Although Figure illustrates a one-to-one mapping between DFD transforms and software

modules, different mappings frequently occur. Two or even three bubbles can be combined and

represented as one component, or a single bubble may be expanded to two or more components.

Practical considerations and measures

Second-level factoring for monitor sensors

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 39/42

 of design quality dictate the outcome of second-level factoring. Review and refinement may

lead to changes in this structure, but it can serve as a “first-iteration” design.

Second-level factoring for incoming flow follows in the same manner. Factoring is again

accomplished by moving outward from the transform center boundary on the incoming flow

side. The transform center of monitor sensors subsystem software is mapped somewhat

differently. Each of the data conversion or calculation transforms of the transform portion of the

DFD is mapped into a module subordinate to the transform controller. A completed first-iteration

architecture is shown in Figure.

The components mapped in the preceding manner and shown in Figure 9.16 represent an initial

design of software architecture. Although components are named in a manner that implies

function, a brief processing narrative (adapted from the process specification developed for a

data transformation created during requirements modeling) should be written for each. The

narrative describes the

First-iteration structure for monitor sensors

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 40/42

 component interface, internal data structures, a functional narrative, and a brief discussion of

restrictions and special features (e.g., file input-output, hardwaredependent characteristics,

special timing requirements).

 Step 7. Refine the first-iteration architecture using design heuristics for improved software

quality. A first-iteration architecture can always be refined by applying concepts of functional

independence (Chapter 8). Components are exploded or imploded to produce sensible factoring,

separation of concerns, good cohesion, minimal coupling, and most important, a structure that

can be implemented without difficulty, tested without confusion, and maintained without grief.

Refinements are dictated by the analysis and assessment methods described, as well as practical

considerations and common sense. There are times, for example, when the controller for

incoming data flow is totally unnecessary, when some input processing is required in a

component that is subordinate to the transform controller, when high coupling due to global data

cannot be avoided, or when optimal structural characteristics cannot be achieved. Software

requirements coupled with human judgment is the final arbiter.

The objective of the preceding seven steps is to develop an architectural representation of

software. That is, once structure is defined, we can evaluate and refine software architecture by

viewing it as a whole. Modifications made at this time require little additional work, yet can have

a profound impact on software quality.

You should pause for a moment and consider the difference between the design approach

described and the process of “writing programs.” If code is the only representation of software,

you and your colleagues will have great difficulty evaluating or refining at a global or holistic

level and will, in fact, have difficulty “seeing the forest for the trees.”

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 41/42

Refined program structure for monitor sensors

 Refining the Architectural Design

 Any discussion of design refinement should be prefaced with the following comment:

“Remember that an ‘optimal design’ that doesn’t work has questionable merit.” You should be

concerned with developing a representation of software that will meet all functional and

performance requirements and merit acceptance based on design measures and heuristics.

 Refinement of software architecture during early stages of design is to be encouraged. As I

discussed earlier in this chapter, alternative architectural styles may be derived, refined, and

evaluated for the “best” approach. This approach to optimization is one of the true benefits

derived by developing a representation of software architecture.

 It is important to note that structural simplicity often reflects both elegance and efficiency.

Design refinement should strive for the smallest number of components that is consistent with

effective modularity and the least complex data structure that adequately serves information

requirements.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: III (Design Engineering) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 42/42

POSSIBLE QUESTIONS

PART B

1. Discuss about Design process with the Context of Software Engineering.

2. Discuss about quality guidelines and attributes in detail.

3. Explain the different levels of design pyramid in software architecture.

4. Explain in detail about Design Concepts.

5. Explain architectural design with appropriate pictorial representations.

6. Elucidate the principles to assessing alternative architectural design

7. Discuss about quality guidelines and attributes to evaluate the good design.

8. Illustrate the transform mapping steps to map data flow diagram into architecture.

Questions Opt1 Opt2 Opt3 Opt4 Answer

1 There are __________ major phases to any
design process 2 3 4 5 2

2 Diversification is the ____________ of a
repertoire of alternatives. component solution acquisition knowledge acquisition

3
During ____________, the designer chooses and
combines appropriate elements from the
repertoire to meet the design objectives.

diversification convergence elimination creation convergence

4
________ and __________ combine intuition
and judgement based on experience in building
similar entities.

elimination,
convergence

creation,
convergence

acquisition,
creation

diversification
and convergence

diversification and
convergence

5
__________ can be traced to a customer’s
requirements and at the same time assessed for
quality against a set of predefined criteria.

design analysis principles testing design

6
The __________ must implement all of the
explicit requirements contained in the analysis
model

principles testing design component design

7
A ___________ should exhibit an architectural
structure that has been created using
recognizable design patterns.

principles testing component design design

8 A ___________ is composed of components that
exhibit good design characteristics. principles testing component design design

9
A ___________ can be implemented in an
evolutionary fashion thereby facilitating
implementation and testing.

principles testing component design design

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING
COURSE CODE: 15CSU601 UNIT: III BATCH-2015-2018

ONE MARKS

10

A ___________ should be modular that is the
software should be logically partitioned into
elements that perform specific functions and sub
functions.

design principles component testing design

11
A ___________ should contain distinct
representations of data, architecture, interfaces,
and components.

design principles component testing design

12

A ___________ should lead to data structures
that are appropriate for the objects to be
implemented and are drawn from recognizable
data patterns.

design principles component testing design

13
A _____________ should lead to interfaces that
reduce the complexity of connections between
modules and with the external environment.

design principles component testing design

14
A ___________ should be derived using a
repeatable method that is driven by information
obtained during software requirements analysis

principles component design testing design

15

The software __________ process encourages
good design through the application of
fundamental design principles, systematic
methodology and thorough review.

principles component design testing design

16

The __________ must be a readable,
understandable guide for those who generate
code and for those who test and subsequently
support the software.

principles component design testing design

17

The __________ should provide a complete
picture of the software addressing the data,
functional and behavioral domains from an
implementation perspective.

principles component design testing design

18
The evolution of software __________ is a
continuing process that has spanned the past
four decades.

principles component design testing design

19 Procedural aspects of design definition evolved
into a philosophy called ____________.

top down
programming

bottom up
programming

structured
programming

object oriented
programming

structured
programming

20 The design process should not suffer from
___________. analysis tunnel vision conceptual

errors integrity tunnel vision

21 The design should be __________ to the
analysis model. consistent related traceable relevant traceable

22 The design should not ___________ the wheel. minimize maximize integrate reinvent reinvent

23 The design should ___________ the intellectual
distance maximize minimize integrate analyse minimize

24 . The ___________ is represented at a high
level of abstraction specification analysis quality design

specification
design
specification

25 The design should exhibit ___________ and
integration. uniformity analysis quality review uniformity

26 The design should be ____________ to
accommodate change. reviewed analysed assessed structured structured

27
The design should be ___________ to degrade
gently, even when aberrant data, events, or
operating conditions are encountered.

reviewed analysed assessed structured structured

28 Design is not ___________, coding is not design coding analysis review event coding

29 Design is not coding, __________ is not design. coding analysis review event coding

30 The design should be __________ for quality as
it is being created not after the fact. reviewed assessed structured integrated assessed

31 The design should be ___________ to minimize
conceptual errors. reviewed assessed structured integrated reviewed

32 Software design is both a _________ and a
model. model process data function process

33
__________ is the only way that we can
accurately translate a customer’s requirements
into a finished software product or system.

specification design data prototype design

34 The design ___________ is the equivalent of an
architect’s plan for a house. analysis process model function model

35
At the highest level of _________, a solution is
stated in broad terms, using the language of the
problem environment.

refinement modularity abstraction continuity abstraction

36
A __________ is a named sequence of
instructions that has a specific and limited
function.

procedural
abstraction data abstraction control

abstraction
Process
abstraction

procedural
abstraction

37 A __________ is a named collection of data
that describes a data object.

procedural
abstraction data abstraction control

abstraction
Process
abstraction data abstraction

38 _________ implies a program control
mechanism without specifying internal detail.

procedural
abstraction data abstraction control

abstraction
Process
abstraction control abstraction

39 ___________ is used to coordinate activities in
an operating system.

synchronization
semaphore

control
abstraction data abstraction procedural

abstraction
synchronization
semaphore

40 _________ is a top down design strategy
originally proposed by Niklaus Wirth.

stepwise
refinement

control
abstraction data abstraction procedural

abstraction
stepwise
refinement

41
The designer’s goal is to produce a model or
representation of a __________ that will later be
built

component entity data raw material component

42

The second phase of any design process is the
gradual ___________ of all but one particular
configuration of components, and thus the
creation of the final product.

acquisition addition elimination creation elimination

43 Design begins with the __________ model. data requirements specification code requirements

44
Software design methodologies lack the
__________ that are normally associated with
more classical engineering design disciplines.

depth flexibility quantitative
nature all of the above all of the above

45 Software requirements, manifested by the
___________ models, feed the design task. data functional behavioral all of the above all of the above

46 ___________ is the place where quality is
fostered in software engineering model data design specification design

47 ________ provides us with representations of
software that can be assessed for quality. design specification data prototype design

48 Procedural aspects of design definition evolved
into a philosophy called __________.

procedural
programming

object oriented
programming

structured
programming all of the above structured

programming

49
Meyer defines __________ criteria that enable
us to evaluate a design method with respect to
its ability to define an effective modular system.

2 3 4 5 5

50

If a design method provides a systematic
mechanism for decomposing the problem into
sub problems, it will reduce the complexity of
the overall problem, thereby achieving an
effective modular solution. This is called
____________.

modular
decomposability

modular
composability

modular
understandabilit
y

modular
continuity

modular
decomposability

51

If a design method enables existing (reusable)
design components to be assembled into a new
system, it will yield a modular solution that does
not reinvent the wheel. This is called
__________.

modular
decomposability

modular
composability

modular
understandabilit
y

modular
continuity

modular
composability

52

If a module can be understood as a stand alone
unit (without reference to other modules), it will
be easier to build and easier to change. This is
called __________.

modular
decomposability

modular
composability

modular
understandabilit
y

modular
continuity

modular
understandability

53

If small changes to the system requirements
result in changes to individual modules, rather
than system wide changes, the impact of change-
induced side effects will be minimized. This is
called __________.

modular
decomposability

modular
composability

modular
understandabilit
y

modular
continuity modular continuity

54

If an aberrant condition occurs within a module
and its effects are constrained within that
module, the impact of error-induced side effects
will be minimized. This is called __________.

modular
protection

modular
composability

modular
understandabilit
y

modular
continuity modular protection

55

The aspect of the architectural design
representation defines the components of a
system and the manner in which those
components are packaged and interact with one
another. This property is called _____________.

extra functional
property structural property families of

related systems none of the above structural property

56 ____________ represent architecture as an
organized collection of program components. dynamic models functional models framework

models structural models structural models

57

____________ increases the level of design
abstraction by attempting to identity repeatable
architectural design frameworks that are
encountered in similar types of applications.

framework
models dynamic models process models functional models framework models

58

_________ address the behavioural aspects of
the program architecture, indicating how the
structure or system configuration may change as
a function of external events.

framework
models dynamic models process models functional models dynamic models

59
___________ focus on the design of the
business or technical process that the system
must accommodate.

framework
models dynamic models process models functional models process models

60 _____________ can be used to represent the
functional hierarchy of a system.

framework
models dynamic models process models functional models functional models

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 1/27

UNIT-IV

SYLLABUS

Performing User Interface Design: The Golden Rules: Place the User in Control-Reduce the

User’s Memory Load-Make the Interface Consistent- User Interface Analysis and Design:

Interface Analysis and Design Models- The Process- Interface Analysis: User Analysis - Task

analysis and Modeling. Interface Design Concepts-Applying Interface Design Steps-User

Interface Design Patterns-Design Issues –Design Evolution.

PERFORMING USER INTERFACE DESIGN

We live in a world of high-technology products, and virtually all of them—consumer

electronics, industrial equipment, corporate systems, military systems, personal computer

software, and WebApps—require human interaction. If a product is to be successful, it must

exhibit good usability— a qualitative measure of the ease and efficiency with which a human can

employ the functions and features offered by the high-technology product.

Whether an interface has been designed for a digital music player or the weapons control

system for a fighter aircraft, usability matters. If interface mechanisms have been well designed,

the user glides through the interaction using a smooth rhythm that allows work to be

accomplished effortlessly. But if the interface is poorly conceived, the user moves in fits and

starts, and the end result is frustration and poor work efficiency.

For the first three decades of the computing era, usability was not a dominant concern

among those who built software. In his classic book on design, Donald Norman argued that it

was time for a change in attitude:

To make technology that fits human beings, it is necessary to study human beings. But

now we tend to study only the technology. As a result, people are required to conform to

technology. It is time to reverse this trend, time to make technology that conforms to people.

As technologists studied human interaction, two dominant issues arose. First, a set of

golden rules were identified. These applied to all human interaction with technology products.

Second, a set of interaction mechanisms were defined to enable software designers to build

systems that properly implemented the golden rules. These interaction mechanisms, collectively

called the graphical user interface (GUI), have eliminated some of the most egregious problems

associated with human interfaces.

But even in a “Windows world,” we all have encountered user interfaces that are difficult

to learn, difficult to use, confusing, counterintuitive, unforgiving, and in many cases, totally

frustrating. Yet, someone spent time and energy building each of these interfaces, and it is not

likely that the builder created these problems purposely.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 2/27

THE GOLDEN RULES

In his book on interface design, Theo Mandel [Man97] coins three golden rules:

1. Place the user in control.

2. Reduce the user’s memory load.

3. Make the interface consistent.

These golden rules actually form the basis for a set of user interface design principles that

guide this important aspect of software design.

PLACE THE USER IN CONTROL

During a requirements-gathering session for a major new information system, a key user

was asked about the attributes of the window-oriented graphical interface. “What I really would

like,” said the user solemnly, “is a system that reads my mind. It knows what I want to do before

I need to do it and makes it very easy for me to get it done. That’s all, just that.” My first reaction

was to shake my head and smile, but I paused for a moment.

There was absolutely nothing wrong with the user’s request. She wanted a system that

reacted to her needs and helped her get things done. She wanted to control the computer, not

have the computer control her.

Most interface constraints and restrictions that are imposed by a designer are intended to

simplify the mode of interaction. But for whom?

As a designer, you may be tempted to introduce constraints and limitations to simplify

the implementation of the interface. The result may be an interface that is easy to build, but

frustrating to use. Mandel defines a number of design principles that allow the user to maintain

control:

Define interaction modes in a way that does not force a user into unnecessary or undesired

actions.

An interaction mode is the current state of the interface. For example, if spell check is

selected in a word-processor menu, the software moves to a spell-checking mode. There is no

reason to force the user to remain in spell-checking mode if the user desires to make a small text

edit along the way. The user should be able to enter and exit the mode with little or no effort.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 3/27

Provide for flexible interaction.

Because different users have different interaction preferences, choices should be

provided. For example, software might allow a user to interact via keyboard commands, mouse

movement, a digitizer pen, a multitouch screen, or voice recognition commands. But every

action is not amenable to every interaction mechanism. Consider, for example, the difficulty of

using keyboard command (or voice input) to draw a complex shape.

Allow user interaction to be interruptible and undoable.

Even when involved in a sequence of actions, the user should be able to interrupt the

sequence to do something else (without losing the work that had been done). The user should

also be able to “undo” any action.

Streamline interaction as skill levels advance and allow the interaction to be customized.

Users often find that they perform the same sequence of interactions repeatedly. It is

worthwhile to design a “macro” mechanism that enables an advanced user to customize the

interface to facilitate interaction.

Hide technical internals from the casual user.

The user interface should move the user into the virtual world of the application. The user

should not be aware of the operating system, file management functions, or other arcane

computing technology. In essence, the interface should never require that the user interact at a

level that is “inside” the machine (e.g., a user should never be required to type operating system

commands from within application software).

Design for direct interaction with objects that appear on the screen.

The user feels a sense of control when able to manipulate the objects that are necessary to

perform a task in a manner similar to what would occur if the object were a physical thing. For

example, an application interface that allows a user to “stretch” an object (scale it in size) is an

implementation of direct manipulation.

REDUCE THE USER’S MEMORY LOAD

The more a user has to remember, the more error-prone the interaction with the system

will be. It is for this reason that a well-designed user interface does not tax the user’s memory.

Whenever possible, the system should “remember” pertinent information and assist the user with

an interaction scenario that assists recall. Mandel [Man97] defines design principles that enable

an interface to reduce the user’s memory load:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 4/27

Reduce demand on short-term memory.

When users are involved in complex tasks, the demand on short-term memory can be

significant. The interface should be designed to reduce the requirement to remember past actions,

inputs, and results.

This can be accomplished by providing visual cues that enable a user to recognize past

actions, rather than having to recall them.

Establish meaningful defaults.

The initial set of defaults should make sense for the average user, but a user should be

able to specify individual preferences. However, a “reset” option should be available, enabling

the redefinition of original default values.

Define shortcuts that are intuitive.

When mnemonics are used to accomplish a system function (e.g., alt-P to invoke the print

function), the mnemonic should be tied to the action in a way that is easy to remember (e.g., first

letter of the task to be invoked).

The visual layout of the interface should be based on a real-world metaphor.

For example, a bill payment system should use a checkbook and check register metaphor

to guide the user through the bill paying process. This enables the user to rely on well-

understood visual cues, rather than memorizing an arcane interaction sequence.

Disclose information in a progressive fashion.

The interface should be organized hierarchically. That is, information about a task, an

object, or some behavior should be presented first at a high level of abstraction. More detail

should be presented after the user indicates interest with a mouse pick. An example, common to

many word-processing applications, is the underlining function.

The function itself is one of a number of functions under a text style menu. However,

every underlining capability is not listed. The user must pick underlining; then all underlining

options (e.g., single underline, double underline, dashed underline) are presented.

MAKE THE INTERFACE CONSISTENT

 The interface should present and acquire information in a consistent fashion. This

implies that (1) all visual information is organized according to design rules that are maintained

throughout all screen displays, (2) input mechanisms are constrained to a limited set that is used

consistently throughout the application, and (3) mechanisms for navigating from task to task are

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 5/27

consistently defined and implemented. Mandel [Man97] defines a set of design principles that

help make the interface consistent:

Allow the user to put the current task into a meaningful context.

Many interfaces implement complex layers of interactions with dozens of screen images.

It is important to provide indicators (e.g., window titles, graphical icons, consistent color coding)

that enable the user to know the context of the work at hand. In addition, the user should be able

to determine where he has come from and what alternatives exist for a transition to a new task.

Maintain consistency across a family of applications.

A set of applications (or products) should all implement the same design rules so that

consistency is maintained for all interaction.

 If past interactive models have created user expectations, do not make changes

unless there is a compelling reason to do so.

 Once a particular interactive sequence has become a de facto standard (e.g., the use of

alt-S to save a file), the user expects this in every application he encounters. A change (e.g.,

using alt-S to invoke scaling) will cause confusion. The interface design principles discussed in

this and the preceding sections provide you with basic guidance. In the sections that follow,

you’ll learn about the interface design process itself.

USER INTERFACE ANALYSIS AND DESIGN

The overall process for analyzing and designing a user interface begins with the creation

of different models of system function (as perceived from the outside). You begin by delineating

the human- and computer-oriented tasks that are required to achieve system function and then

considering the design issues that apply to all interface designs. Tools are used to prototype and

ultimately implement the design model, and the result is evaluated by end users for quality.

INTERFACE ANALYSIS AND DESIGN MODELS

 Four different models come into play when a user interface is to be analyzed and

designed. A human engineer (or the software engineer) establishes a user model, the software

engineer creates a design model, the end user develops a mental image that is often called the

user’s mental model or the system perception, and the implementers

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 6/27

of the system create an implementation model. Unfortunately, each of these models may

differ significantly. Your role, as an interface designer, is to reconcile these differences and

derive a consistent representation of the interface.

 The user model establishes the profile of end users of the system. In his introductory

column on “user-centric design,” Jeff Patton [Pat07] notes:

 The truth is, designers and developers—myself included—often think about users.

However, in the absence of a strong mental model of specific users, we self-substitute.

Selfsubstitution isn’t user centric—it’s self-centric.

 To build an effective user interface, “all design should begin with an understanding of

the intended users, including profiles of their age, gender, physical abilities, education, cultural

or ethnic background, motivation, goals and personality” [Shn04]. In addition, users can be

categorized as:

 Novices. No syntactic knowledge1 of the system and little semantic knowledge2 of the

application or computer usage in general.

 Knowledgeable, intermittent users. Reasonable semantic knowledge of the application

but relatively low recall of syntactic information necessary to use the interface.

Knowledgeable, frequent users. Good semantic and syntactic knowledge that often leads

to the “power-user syndrome”; that is, individuals who look for shortcuts and abbreviated modes

of interaction.

The user’s mental model (system perception) is the image of the system that end users

carry in their heads. For example, if the user of a particular word processor were asked to

describe its operation, the system perception would guide the response. The accuracy of the

description will depend upon the user’s profile (e.g., novices would provide a sketchy response

at best) and overall familiarity with software in the application domain. A user who understands

word processors fully but has worked with the specific word processor only once might actually

be able to provide a more complete description of its function than the novice who has spent

weeks trying to learn the system.

The implementation model combines the outward manifestation of the computerbased

system (the look and feel of the interface), coupled with all supporting information (books,

manuals, videotapes, help files) that describes interface syntax and semantics. When the

implementation model and the user’s mental model are coincident, users generally feel

comfortable with the software and use it effectively. To accomplish this “melding” of the

models, the design model must have been

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 7/27

THE PROCESS

 The analysis and design process for user interfaces is iterative and can be represented

using a spiral model similar to the one discussed in Chapter 2. Referring to Figure 11.1, the user

interface analysis and design process begins at the interior of the spiral and encompasses four

distinct framework activities [Man97]: (1) interface analysis and modeling, (2) interface design,

(3) interface construction, and (4) interface validation. The spiral shown in Figure 11.1 implies

that each of these tasks will occur more than once, with each pass around the spiral representing

additional elaboration of requirements and the resultant design. In most cases, the construction

activity involves prototyping—the only practical way to validate what has been designed.

 Interface analysis focuses on the profile of the users who will interact with the system.

Skill level, business understanding, and general receptiveness to the new system are recorded;

and different user categories are defined. For each user category, requirements are elicited. In

essence, you work to understand the system perception (Section 11.2.1) for each class of users.

 Once general requirements have been defined, a more detailed task analysis is

conducted. Those tasks that the user performs to accomplish the goals of the system.

The user interface design process

are identified, described, and elaborated (over a number of iterative passes through the spiral).

Task analysis is discussed in more detail in Section 11.3. Finally, analysis of the user

environment focuses on the physical work environment. Among the questions to be asked are

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 8/27

 • Where will the interface be located physically?

• Will the user be sitting, standing, or performing other tasks unrelated to the interface?

• Does the interface hardware accommodate space, light, or noise constraints?

• Are there special human factors considerations driven by environmental factors?

 The information gathered as part of the analysis action is used to create an analysis

model for the interface. Using this model as a basis, the design action commences. The goal of

interface design is to define a set of interface objects and actions (and their screen

representations) that enable a user to perform all defined tasks in a manner that meets every

usability goal defined for the system.

Interface construction normally begins with the creation of a prototype that enables usage

scenarios to be evaluated. As the iterative design process continues, a user interface tool kit may

be used to complete the construction of the interface.

Interface validation focuses on (1) the ability of the interface to implement every user

task correctly, to accommodate all task variations, and to achieve all general user requirements;

(2) the degree to which the interface is easy to use and easy to learn, and (3) the users’

acceptance of the interface as a useful tool in their work.

As I have already noted, the activities described in this section occur iteratively.

Therefore, there is no need to attempt to specify every detail (for the analysis or design model)

on the first pass. Subsequent passes through the process elaborate task detail, design information,

and the operational features of the interface.

INTERFACE ANALYSIS

A key tenet of all software engineering process models is this: understand the problem

before you attempt to design a solution. In the case of user interface design, understanding the

problem means understanding (1) the people (end users) who will interact with the system

through the interface, (2) the tasks that end users must

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 9/27

USER ANALYSIS

 The phrase “user interface” is probably all the justification needed to spend some time

understanding the user before worrying about technical matters. Earlier I noted that each user has

a mental image of the software that may be different from the mental image developed by other

users. In addition, the user’s mental image may be vastly different from the software engineer’s

design model. The only way that you can get the mental image and the design model to converge

is to work to understand the users themselves as well as how these people will use the system.

Information from a broad array of sources can be used to accomplish this:

User Interviews. The most direct approach, members of the software team meet with end

users to better understand their needs, motivations, work culture, and a myriad of other issues.

This can be accomplished in one-on-one meetings or through focus groups.

Sales input. Sales people meet with users on a regular basis and can gather information

that will help the software team to categorize users and better understand their requirements.

Marketing input. Market analysis can be invaluable in the definition of market segments

and an understanding of how each segment might use the software in subtly different ways.

Support input. Support staff talks with users on a daily basis. They are the most likely

source of information on what works and what doesn’t, what users like and what they dislike,

what features generate questions and what features are easy to use.

The following set of questions (adapted from [Hac98]) will help you to better understand

the users of a system:

• Are users trained professionals, technicians, clerical, or manufacturing workers?

• What level of formal education does the average user have?

• Are the users capable of learning from written materials or have they expressed a desire

for classroom training?

• Are users expert typists or keyboard phobic?

• What is the age range of the user community?

• Will the users be represented predominately by one gender?

• How are users compensated for the work they perform?

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 10/27

• Do users work normal office hours or do they work until the job is done?

• Is the software to be an integral part of the work users do or will it be used only

occasionally?

• What is the primary spoken language among users?

• What are the consequences if a user makes a mistake using the system?

• Are users experts in the subject matter that is addressed by the system?

• Do users want to know about the technology that sits behind the interface? Once these

questions are answered, you’ll know who the end users are, what is likely to motivate and please

them, how they can be grouped into different user classes or profiles, what their mental models

of the system are, and how the user interface must be characterized to meet their needs.

TASK ANALYSIS AND MODELING

 The goal of task analysis is to answer the following questions:

• What work will the user perform in specific circumstances?

• What tasks and subtasks will be performed as the user does the work?

• What specific problem domain objects will the user manipulate as work is performed?

• What is the sequence of work tasks—the workflow?

• What is the hierarchy of tasks?

To answer these questions, you must draw upon techniques that I have discussed earlier

in this book, but in this instance, these techniques are applied to the user interface.

Use cases.

The use case describes the manner in which an actor (in the context of user interface

design, an actor is always a person) interacts with a system. When used as part of task analysis,

the use case is developed to show how an end user performs some specific work-related task. In

most instances, the use case is written in an informal style (a simple paragraph) in the first-

person. For example, assume that a small software company wants to build a computer-aided

design system explicitly for interior designers. To get a better understanding of how they do their

work, actual interior designers are asked to describe a specific design function. When asked:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 11/27

“How do you decide where to put furniture in a room?” an interior designer writes the following

informal use case:

Begin by sketching the floor plan of the room, the dimensions and the location of

windows and doors. I’m very concerned about light as it enters the room, about the view out of

the windows (if it’s beautiful, I want to draw attention to it), about the running length of an

unobstructed wall, about the flow of movement through the room. I then look at the list of

furniture my customer and I have chosen—tables, chairs, sofa, cabinets, the list of accents—

lamps, rugs, paintings, sculpture, plants, smaller pieces, and my notes on any desires my

customer has for placement. I then draw each item from my lists using a template that is scaled

to the floor plan. I label each item I draw and use pencil because I always move things.

Consider a number of alternative placements and decide on the one I like best. Draw a

rendering (a 3-D picture) of the room to give my customer a feel for what it’ll look like.

This use case provides a basic description of one important work task for the computer-

aided design system. From it, you can extract tasks, objects, and the overall flow of the

interaction. In addition, other features of the system that would please the interior designer might

also be conceived. For example, a digital photo could be taken looking out each window in a

room. When the room is rendered, the actual outside view could be represented through each

window.

Task elaboration.

Here stepwise elaboration is done (also called functional decomposition or stepwise

refinement) as a mechanism for refining the processing tasks that are required for software to

accomplish some desired function.

Task analysis for interface design uses an elaborative approach to assist in understanding

the human activities the user interface must accommodate.

Task analysis can be applied in two ways. An interactive, computer-based system is often

used to replace a manual or semimanual activity. To understand the tasks that must be performed

to accomplish the goal of the activity, you must understand the tasks that people currently

perform (when using a manual approach) and then map these into a similar (but not necessarily

identical) set of tasks that are implemented in the context of the user interface. Alternatively, you

can study an existing specification for a computer-based solution and derive a set of user tasks

that will accommodate the user model, the design model, and the system perception.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 12/27

Regardless of the overall approach to task analysis, you must first define and classify

tasks. I have already noted that one approach is stepwise elaboration. For example, let’s

reconsider the computer-aided design system for interior designers discussed earlier. By

observing an interior designer at work, you notice that interior design comprises a number of

major activities: furniture layout (note the use case discussed earlier), fabric and material

selection, wall and window coverings selection, presentation (to the customer), costing, and

shopping. Each of these major tasks can be elaborated into subtasks.

For example, using information contained in the use case, furniture layout can be refined

into the following tasks:

(1) draw a floor plan based on room dimensions,

(2) place windows and doors at appropriate locations,

 (3a) use furniture templates to draw scaled furniture outlines on the floor plan,

(3b) use accents templates to draw scaled accents on the floor plan,

(4) move furniture outlines and accent outlines to get the best placement,

(5) label all furniture and accent outlines,

(6) draw dimensions to show location, and

(7) draw a perspective-rendering view for the customer.

A similar approach could be used for each of the other major tasks. Subtasks 1 to 7 can

each be refined further. Subtasks 1 to 6 will be performed by manipulating information and

performing actions within the user interface. On the other hand, subtask 7 can be performed

automatically in software and will result in little direct user interaction.4 The design model of the

interface should accommodate each of these tasks in a way that is consistent with the user model

(the profile of a “typical” interior designer) and system perception (what the interior designer

expects from an automated system).

Object elaboration.

Rather than focusing on the tasks that a user must perform, you can examine the use case

and other information obtained from the user and extract the physical objects that are used by the

interior designer. These objects can

be categorized into classes. Attributes of each class are defined, and an evaluation of the

actions applied to each object provide a list of operations. For example, the furniture template

might translate into a class called Furniture with attributes that might include size, shape,

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 13/27

location, and others. The interior designer would select the object from the Furniture class,

move it to a position on the floor plan (another object in this context), draw the furniture outline,

and so forth. The tasks select, move, and draw are operations. The user interface analysis model

would not provide a literal implementation for each of these operations. However, as the design

is elaborated, the details of each operation are defined.

Workflow analysis.

When a number of different users, each playing different roles, makes use of a user

interface, it is sometimes necessary to go beyond task analysis and object elaboration and apply

workflow analysis. This technique allows you to understand how a work process is completed

when several people (and roles) are involved. Consider a company that intends to fully automate

the process of prescribing and delivering prescription drugs. The entire process5 will revolve

around a

Web-based application that is accessible by physicians (or their assistants), pharmacists,

and patients. Workflow can be represented effectively with a UML swimlane diagram (a

variation on the activity diagram).

We consider only a small part of the work process: the situation that occurs when a

patient asks for a refill. Figure 11.2 presents a swimlane diagram that indicates the tasks and

decisions for each of the three roles noted earlier. This information may have been elicited via

interview or from use cases written by each actor. Regardless, the flow of events (shown in the

figure) enables you to recognize a number of key interface characteristics:

1. Each user implements different tasks via the interface; therefore, the look and feel of

the interface designed for the patient will be different than the one defined for pharmacists or

physicians.

2. The interface design for pharmacists and physicians must accommodate access to and

display of information from secondary information sources (e.g., access to inventory for the

pharmacist and access to information about alternative medications for the physician).

3. Many of the activities noted in the swimlane diagram can be further elaborated using

task analysis and/or object elaboration (e.g., Fills prescription could imply a mail-order delivery,

a visit to a pharmacy, or a visit to a special drug distribution center).

 Hierarchical representation. A process of elaboration occurs as you begin to analyze

the interface. Once workflow has been established, a task hierarchy can be defined for each user

type. The hierarchy is derived by a stepwise elaboration of

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 14/27

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 15/27

Swimlane diagram for prescription refill function each task identified for the user. For

example, consider the following user task and subtask hierarchy.

 User task: Requests that a prescription be refilled

 • Provide identifying information.

 • Specify name.

 • Specify userid.

 • Specify PIN and password.

 • Specify prescription number.

 • Specify date refill is required.

 To complete the task, three subtasks are defined. One of these subtasks, provide

identifying information, is further elaborated in three additional sub-subtasks.

Analysis of Display Content

 The user tasks identified lead to the presentation of a variety of different types of

content. For modern applications, display content can range from character-based reports (e.g., a

spreadsheet), graphical displays (e.g., a histogram, a 3-D model, a picture of a person), or

specialized information (e.g., audio or video files). The analysis modeling techniques identify the

output data objects that are produced by an application. These data objects may be

(1) generated by components (unrelated to the interface) in other parts of an application,

(2) acquired from data stored in a database that is accessible from the application, or

 (3) transmitted from systems external to the application in question.

During this interface analysis step, the format and aesthetics of the content (as it is

displayed by the interface) are considered. Among the questions that are asked and answered are:

• Are different types of data assigned to consistent geographic locations on the screen

(e.g., photos always appear in the upper right-hand corner)?

 • Can the user customize the screen location for content?

 • Is proper on-screen identification assigned to all content?

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 16/27

 • If a large report is to be presented, how should it be partitioned for ease of

understanding?

 • Will mechanisms be available for moving directly to summary information for large

collections of data?

 • Will graphical output be scaled to fit within the bounds of the display device that is

used?

 • How will color be used to enhance understanding?

 • How will error messages and warnings be presented to the user?

 The answers to these (and other) questions will help you to establish requirements for

content presentation.

Analysis of the Work Environment

 Hackos and Redish [Hac98] discuss the importance of work environment analysis when

they state:

 People do not perform their work in isolation. They are influenced by the activity around

them, the physical characteristics of the workplace, the type of equipment they are using, and the

work relationships they have with other people. If the products you design do not fit into the

environment, they may be difficult or frustrating to use. In some applications the user interface

for a computer-based system is placed in a “user-friendly location” (e.g., proper lighting, good

display height, easy keyboard access), but in others (e.g., a factory floor or an airplane cockpit),

lighting may be suboptimal, noise may be a factor, a keyboard or mouse may not be an option,

display placement may be less than ideal. The interface designer may be constrained by factors

that mitigate against ease of use.

In addition to physical environmental factors, the workplace culture also comes into play.

Will system interaction be measured in some manner (e.g., time per transaction or accuracy of a

transaction)? Will two or more people have to share information before an input can be

provided? How will support be provided to users of the system? These and many related

questions should be answered before the interface design commences.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 17/27

INTERFACE DESIGN CONCEPTS:

APPLYING INTERFACE DESIGN STEPS

Once interface analysis has been completed, all tasks (or objects and actions) required by

the end user have been identified in detail and the interface design activity commences. Interface

design, like all software engineering design, is an iterative process. Each user interface design

step occurs a number of times, elaborating and refining information developed in the preceding

step.

Although many different user interface design models (e.g., [Nor86], [Nie00]) have been

proposed, all suggest some combination of the following steps:

1. Using information developed during interface analysis (Section 11.3), define interface

objects and actions (operations).

2. Define events (user actions) that will cause the state of the user interface to change.

Model this behavior.

3. Depict each interface state as it will actually look to the end user.

4. Indicate how the user interprets the state of the system from information provided

through the interface.

 In some cases, you can begin with sketches of each interface state (i.e., what the user

interface looks like under various circumstances) and then work backward to define objects,

actions, and other important design information. Regardless of the sequence of design tasks, you

should (1) always follow the golden rules discussed in Section 11.1, (2) model how the interface

will be implemented, and (3) consider the environment (e.g., display technology, operating

system, development tools) that will be used.

APPLYING INTERFACE DESIGN STEPS

 The definition of interface objects and the actions that are applied to them is an

important step in interface design. To accomplish this, user scenarios are parsed in much the

same way as described in Chapter 6. That is, a use case is written. Nouns (objects) and verbs

(actions) are isolated to create a list of objects and actions.

Once the objects and actions have been defined and elaborated iteratively, they are

categorized by type. Target, source, and application objects are identified. A source object (e.g.,

a report icon) is dragged and dropped onto a target object (e.g., a printer icon). The implication

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 18/27

of this action is to create a hard-copy report. An application object represents application-

specific data that are not directly manipulated as part of screen interaction. For example, a

mailing list is used to store names for a mailing. The list itself might be sorted, merged, or

purged (menu-based actions), but it is not dragged and dropped via user interaction.

When you are satisfied that all important objects and actions have been defined (for one

design iteration), screen layout is performed. Like other interface design activities, screen layout

is an interactive process in which graphical design and placement of icons, definition of

descriptive screen text, specification and titling for windows, and definition of major and minor

menu items are conducted. If a real-world metaphor is appropriate for the application, it is

specified at this time, and the layout is organized in a manner that complements the metaphor.

To provide a brief illustration of the design steps noted previously, consider a user

scenario for the SafeHome system (discussed in earlier chapters). A preliminary use case (written

by the homeowner) for the interface follows:

Preliminary use case:

I want to gain access to my SafeHome system from any remote location via the Internet.

Using browser software operating on my notebook computer (while I’m at work or traveling), I

can determine the status of the alarm system, arm or disarm the system, reconfigure security

zones, and view different rooms within the house via preinstalled video cameras.

 To access SafeHome from a remote location, I provide an identifier and a password.

These define levels of access (e.g., all users may not be able to reconfigure the system) and

provide security. Once validated, I can check the status of the system and change the status by

arming or disarming SafeHome. I can reconfigure the system by displaying a floor plan of the

house, viewing each of the security sensors, displaying each currently configured zone, and

modifying zones as required. I can view the interior of the house via strategically placed video

cameras. I can pan and zoom each camera to provide different views of the interior.

Based on this use case, the following homeowner tasks, objects, and data items are

identified: • accesses the SafeHome system

• enters an ID and password to allow remote access

• checks system status

• arms or disarms SafeHome system

• displays floor plan and sensor locations

• displays zones on floor plan

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 19/27

• changes zones on floor plan

• displays video camera locations on floor plan

• selects video camera for viewing

• views video images (four frames per second)

• pans or zooms the video camera

Objects (boldface) and actions (italics) are extracted from this list of homeowner tasks.

The majority of objects noted are application objects. However, video camera location (a source

object) is dragged and dropped onto video camera (a target object) to create a video image (a

window with video display).

A preliminary sketch of the screen layout for video monitoring is created (Figure 11.3).6

To invoke the video image, a video camera location icon, C, located in the floor plan displayed

in the monitoring window is selected. In this case a camera location in the living room (LR) is

then dragged and dropped onto the video camera icon in the upper left-hand portion of the

screen. The video image window appears, displaying streaming video from the camera located in

the LR. The zoom and pan control slides are used to control the magnification and direction of

the video image.

To select a view from another camera, the user simply drags and drops a different camera

location icon into the camera icon in the upper left-hand corner of the screen.

The layout sketch shown would have to be supplemented with an expansion of each

menu item within the menu bar, indicating what actions are available for the video monitoring

mode (state). A complete set of sketches for each homeowner task noted in the user scenario

would be created during the interface design.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 20/27

USER INTERFACE DESIGN PATTERNS

 Graphical user interfaces have become so common that a wide variety of user interface

design patterns has emerged. As I noted earlier in this book, a design pattern is

Fig. Preliminary screen layout

an abstraction that prescribes a design solution to a specific, well-bounded design

problem.

 As an example of a commonly encountered interface design problem, consider a

situation in which a user must enter one or more calendar dates, sometimes months in advance.

There are many possible solutions to this simple problem, and a number of different patterns that

might be proposed. Laakso [Laa00] suggests a pattern called CalendarStrip that produces a

continuous, scrollable calendar in which the current date is highlighted and future dates may be

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 21/27

selected by picking them from the calendar. The calendar metaphor is well known to every user

and provides an effective mechanism for placing a future date in context.

A vast array of interface design patterns has been proposed over the past decade. A more

detailed discussion of user interface design patterns is presented in Chapter 12. In addition,

Erickson [Eri08] provides pointers to many Web-based collections.

DESIGN ISSUES

 As the design of a user interface evolves, four common design issues almost always

surface: system response time, user help facilities, error information handling, and command

labeling. Unfortunately, many designers do not address these issues until relatively late in the

design process (sometimes the first inkling of a problem doesn’t occur until an operational

prototype is available). Unnecessary iteration, project delays, and end-user frustration often

result. It is far better to establish each as a design issue to be considered at the beginning of

software design, when changes are easy and costs are low.

 Response time. System response time is the primary complaint for many interactive

applications. In general, system response time is measured from the point at which the user

performs some control action (e.g., hits the return key or clicks a mouse) until the software

responds with desired output or action. System response time has two important characteristics:

length and variability. If system response is too long, user frustration and stress are inevitable.

 Variability refers to the deviation from average response time, and in many ways, it is

the most important response time characteristic. Low variability enables the user to establish an

interaction rhythm, even if response time is relatively long. For example, a 1-second response to

a command will often be preferable to a response that varies from 0.1 to 2.5 seconds. When

variability is significant, the user is always off balance, always wondering whether something

“different” has occurred behind the scenes.

Help facilities. Almost every user of an interactive, computer-based system requires help

now and then. In some cases, a simple question addressed to a knowledgeable colleague can do

the trick. In others, detailed research in a multivolume set of “user manuals” may be the only

option. In most cases, however, modern software provides online help facilities that enable a user

to get a question answered or resolve a problem without leaving the interface.

A number of design issues [Rub88] must be addressed when a help facility is considered:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 22/27

• Will help be available for all system functions and at all times during system

interaction? Options include help for only a subset of all functions and actions or help for all

functions.

• How will the user request help? Options include a help menu, a special function key, or

a HELP command.

• How will help be represented? Options include a separate window, a reference to a

printed document (less than ideal), or a one- or two-line suggestion produced in a fixed screen

location.

• How will the user return to normal interaction? Options include a return button

displayed on the screen, a function key, or control sequence.

How will help information be structured? Options include a “flat” structure in which all

information is accessed through a keyword, a layered hierarchy of information that provides

increasing detail as the user proceeds into the structure, or the use of hypertext.

Error handling.

Error messages and warnings are “bad news” delivered to users of interactive systems

when something has gone awry. At their worst, error messages and warnings impart useless or

misleading information and serve only to increase user frustration. There are few computer users

who have not encountered an error of the form: “Application XXX has been forced to quit

because an error of type 1023 has been encountered.” Somewhere, an explanation for error 1023

must exist; otherwise, why would the designers have added the identification? Yet, the error

message provides no real indication of what went wrong or where to look to get additional

information. An error message presented in this manner does nothing to assuage user anxiety or

to help correct the problem.

In general, every error message or warning produced by an interactive system should

have the following characteristics:

• The message should describe the problem in jargon that the user can understand.

• The message should provide constructive advice for recovering from the error.

• The message should indicate any negative consequences of the error (e.g., potentially

corrupted data files) so that the user can check to ensure that they have not occurred (or correct

them if they have).

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 23/27

• The message should be accompanied by an audible or visual cue. That is, a beep might

be generated to accompany the display of the message, or the message might flash momentarily

or be displayed in a color that is easily recognizable as the “error color.”

• The message should be “nonjudgmental.” That is, the wording should never place

blame on the user.

Because no one really likes bad news, few users will like an error message no matter how

well designed. But an effective error message philosophy can do much to improve the quality of

an interactive system and will significantly reduce user frustration when problems do occur.

Menu and command labeling.

 The typed command was once the most common mode of interaction between user and

system software and was commonly used for applications of every type. Today, the use of

window-oriented, point-andpick interfaces has reduced reliance on typed commands, but some

power-users continue to prefer a command-oriented mode of interaction. A number of design

issues arise when typed commands or menu labels are provided as a mode of interaction:

• Will every menu option have a corresponding command?

• What form will commands take? Options include a control sequence (e.g., alt-P),

function keys, or a typed word.

• How difficult will it be to learn and remember the commands? What can be done if a

command is forgotten?

• Can commands be customized or abbreviated by the user?

• Are menu labels self-explanatory within the context of the interface?

• Are submenus consistent with the function implied by a master menu item? As I noted

earlier in this chapter, conventions for command usage should be established across all

applications. It is confusing and often error-prone for a user to type alt-D when a graphics object

is to be duplicated in one application and alt-D when a graphics object is to be deleted in another.

The potential for error is obvious.

Application accessibility.

As computing applications become ubiquitous, software engineers must ensure that

interface design encompasses mechanisms that enable easy access for those with special needs.

Accessibility for users (and software engineers) who may be physically challenged is an

imperative for ethical, legal, and business reasons. A variety of accessibility guidelines (e.g.,

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 24/27

[W3C03])—many designed for Web applications but often applicable to all types of software—

provide detailed suggestions for designing interfaces that achieve varying levels of accessibility.

Others (e.g., [App08], [Mic08]) provide specific guidelines for “assistive technology” that

addresses the needs of those with visual, hearing, mobility, speech, and learning impairments.

Internationalization. Software engineers and their managers invariably underestimate

the effort and skills required to create user interfaces that accommodate the needs of different

locales and languages. Too often, interfaces are designed for one locale and language and then

jury-rigged to work in other countries. The challenge for interface designers is to create

“globalized” software. That is, user interfaces should be designed to accommodate a generic core

of functionality that can be delivered to all who use the software. Localization features enable the

interface to be customized for a specific market.

A variety of internationalization guidelines (e.g., [IBM03]) are available to software

engineers. These guidelines address broad design issues (e.g., screen layouts may differ in

various markets) and discrete implementation issues (e.g., different alphabets may create

specialized labeling and spacing requirements). The Unicode standard [Uni03] has been

developed to address the daunting challenge of managing dozens of natural languages with

hundreds of characters and symbols.

Design Evaluation. Once you create an operational user interface prototype, it must be

evaluated to determine whether it meets the needs of the user. Evaluation can span a formality

spectrum that ranges from an informal “test drive,” in which a user provides impromptu

feedback to a formally designed study that uses statistical methods for the evaluation of

questionnaires completed by a population of end users.

The user interface evaluation cycle takes the form shown in Figure 11.5. After the design

model has been completed, a first-level prototype is created. The prototype is evaluated by the

user, who provides you with direct comments about the efficacy of the interface. In addition, if

formal evaluation techniques are used (e.g., questionnaires, rating sheets), you can extract

information from these data (e.g., 80 percent of all users did not like the mechanism for saving

data files). Design modifications are made based on user input, and the next level prototype is

created. The evaluation cycle continues until no further modifications to the interface design are

necessary.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 25/27

The interface design evaluation cycle

The prototyping approach is effective, but is it possible to evaluate the quality of a user

interface before a prototype is built? If you identify and correct potential problems early, the

number of loops through the evaluation cycle will be reduced and development time will shorten.

If a design model of the interface has been created, a number of evaluation criteria [Mor81] can

be applied during early design reviews:

1. The length and complexity of the requirements model or written specification of the

system and its interface provide an indication of the amount of learning required by users of the

system.

2. The number of user tasks specified and the average number of actions per task provide

an indication of interaction time and the overall efficiency of the system.

3. The number of actions, tasks, and system states indicated by the design model imply

the memory load on users of the system.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 26/27

 4. Interface style, help facilities, and error handling protocol provide a general indication

of the complexity of the interface and the degree to which it will be accepted by the user.

 Once the first prototype is built, you can collect a variety of qualitative and quantitative

data that will assist in evaluating the interface. To collect qualitative data, questionnaires can be

distributed to users of the prototype. Questions can be: (1) simple yes/no response, (2) numeric

response, (3) scaled (subjective) response, (4) Likert scales (e.g., strongly agree, somewhat

agree), (5) percentage (subjective) response, or (6) open-ended.

If quantitative data are desired, a form of time-study analysis can be conducted. Users are

observed during interaction, and data—such as number of tasks correctly completed over a

standard time period, frequency of actions, sequence of actions, time spent “looking” at the

display, number and types of errors, error recovery time, time spent using help, and number of

help references per standard time period—are collected and used as a guide for interface

modification.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV (Performing User Interface Design) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 27/27

POSSIBLE QUESTIONS

PART - B

1. Explain the golden rules that guide the design user interface.

2. Illustrate the Interface analysis and design models and user interface design process in

detail.

3. Explain the Task analysis and modeling approach in detail.

4. Explicate the various design models and framework activities in user interface design

5. Illustrate the important principles that guide for effective user interface design

6. Describe the interface design concepts in applying interface design steps.

7. Design the User Interfaces for the Student Information System.

8. Elucidate the User Interface Design Patterns and Design issues in detail.

Questions opt1 opt2 opt3 opt4 Answer

Interface design focuses on __________

areas of concern.
2 3 4 5 3

Frustration and ___________ are part of

daily life for many users of computerized

information system

sadness happiness enjoyment anxiety anxiety

___________ creates effective

communication medium between a human

and a computer.

user

interface

design

architectur

al design

code

design

procedure

design

user

interface

design

__________ identifies interface objects and

actions and then creates a screen layout that

form the basis for a user interface

prototype.

design coding testing analysis design

___________ begins with the identification

of user, task and environmental

requirements.

user

interface

design

architectur

al design

code

design

procedure

design

user

interface

design

There are _________ golden rules. 2 3 4 5 3

We should define interaction modes in a

way that does not force a user into

unnecessary or undesired actions.

interaction

modes

interface

constraints

design

principles

design

analysis

interaction

modes

We should provide ___________

interaction.
rigid flexible

encouragi

ng

enthusiasti

c
flexible

We should design for direct interaction

with ________ that appear on the screen
code class objects user objects

We should hide technical ___________

from the casual user
reactions actions internals

interaction

s
internals

We should streamline ___________ as skill

levels advance and allow the interaction to

be customized.

internals interaction actions reactions interaction

We should allow user interaction to be

__________ and undoable

interruptib

le
flexible rigid

encouragi

ng

interruptib

le

We should allow user interaction to

interruptible and __________.
undoable flexible rigid

encouragi

ng
undoable

We should define shortcuts that are

_____________.

encouragi

ng
intuitive default

past

actions
intuitive

We should define __________ that are

intuitive.
shortcuts broad area

interruptib

le actions

interaction

s
shortcuts

ONE MARKS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: IV BATCH-2015-2018

We should disclose information in a

___________ fashion.
open

progressiv

e
streamline flexible

progressiv

e

The visual layout of the __________

should be based on a real world metaphor.

interaction

modes
interface design structure interface

The interface should present and acquire

_____________ in a consistent fashion.

informatio

n
task knowledge idea

informatio

n

The interface should present and acquire

information in a ___________ fashion.
consistent

inconsiste

nt
rigid flexible consistent

A ____________ of the entire system

incorporates data, architectural interface,

and procedural representations of the

software

data model
design

model
user model

system

image

design

model

The software engineer creates a

________________.

design

model
data model

interface

model

system

image

design

model

The end user develops a mental image that

is often called the ____________.

design

model
user model data model

system

image
user model

The implementers of the system create a

_____________.

design

model

system

image
data model user model

system

image

Users are categorized into __________

types.
2 3 4 5 3

Users with no syntactic knowledge of the

system and little semantic knowledge of the

application or computer usage are called

___________.

knowledge

able

intermitten

t users

knowledge

able

frequent

users

novices
all of the

above
novices

Users with reasonable semantic knowledge

of the application but relatively low recall

of syntactic information necessary to use

the interface are called ___________.

novices

knowledge

able,

intermitten

t users

knowledge

able,

frequent

users

all of the

above

knowledge

able,

intermitten

t users

Users with good semantic and syntactic

knowledge that often leads to the “power-

user syndrome” are called _________.

novices

knowledge

able,

intermitten

t users

knowledge

able,

frequent

users

all of the

above

knowledge

able,

frequent

users

Individuals who look for shortcuts and

abbreviated modes of interaction are called

___________.

novices

knowledge

able,

intermitten

t users

knowledge

able,

frequent

users

Testers

knowledge

able,

frequent

users

The __________ is the image of the system

that end-users carry in their heads.

user’s

model
data model

design

model

system

image

user’s

model

Stepwise elaboration is called __________.

functional

decomposi

tion

data

abstraction
modularity

modular

protection

functional

decomposi

tion

___________ is the only way that we can

accurately translate a customer’s

requirements into a finished software

product or system.

specificati

on
design data prototype design

Validation focuses on ___________

criteria.
2 3 4 5 2

Task analysis can be applied in ________

ways.
2 3 4 5 3

Task analysis for interface design used

___________ approach.

object

oriented

approach

top down

approach

bottom up

approach

all of the

above

object

oriented

approach

The overall approach to task analysis, a

human engineer must first ________ and

classify tasks.

discuss define describe list define

There are ___________ steps in interface

design activities.
4 5 6 7 7

__________ refers to the deviation from

average time.

system

response

time

variability
system

mean time

all of the

above
variability

System response time has _________

important characteristics.
3 4 5 2

A ___________ is designed into the

software from the beginning.

integrated

help

facility

system

response

time

variability
all of the

above

integrated

help

facility

Component level design also called

__________.

procedural

abstraction

procedural

design

stepwise

refinement

decomposi

tion

procedural

design

___________ must be translated into

operational software
data

architectur

al

interface

design

all of the

above

all of the

above

A _________ performs component level

design.
user

top level

manageme

nt

software

engineer

middle

level

manageme

nt

software

engineer

The ___________ represents the software

in a way that allows one to review the

details of the design for correctness and

consistency with earlier design

representations.

componen

t level

design

procedural

design

data

design

data

design

componen

t level

design

Design, representations of data,

architecture, and interfaces form the

foundation for _____________.

procedural

design

componen

t level

design

data

design

code

design

componen

t level

design

__________ notation is used to represent

the design.
graphical tabular text-based

all of the

above
graphical

Any program, regardless of application area

or technical complexity, can be designed

and implemented using only the

__________ structured constructs.

2 3 4 5 3

A box in a flowchart is used to indicate a

___________.

processing

step

logical

condition

flow of

control
start

processing

step

A diamond in a flowchart is used to

indicate a _________.

processing

step

logical

condition

flow of

control
start

logical

condition

The arrows in a flowchart is used to

indicate a __________.

processing

step

logical

condition

flow of

control
start

flow of

control

A picture is worth a __________ words. 100 1000 10000 100000 1000

The following construct is fundamental to

structured programming.
sequence condition repetition

all of the

above

all of the

above

___________ implements processing steps

that are essential in the specification of any

algorithm.

sequence condition repetition selection sequence

__________ provides the facility for

selected processing steps that are essential

in the specification of any algorithm

sequence condition repetition selection condition

_________ allows for looping. sequence condition repetition selection repetition

Another graphical design tool, the

________ evolved from a desire to develop

a procedural design representation that

would not allow violation of the structured

constructs.

box

diagram
flowchart

transition

diagram

decision

table

box

diagram

PDL is the abbreviation of

_____________.

Process

Design

Language

Program

Design

Language

Program

Document

Language

Program

Document

Language

Program

Design

Language

A design language should have the

___________ characters.
2 3 4 5 4

Design notation should support the

development of modular software and

provide a means for interface specification.

This attribute of design notation is called

___________.

modularity simplicity
ease of

editing

maintaina

bility
modularity

Design notation should be relatively simple

to learn, relatively easy to use, and

generally easy to read. This attribute of

the design notation is called __________.

modularity simplicity
ease of

editing

maintaina

bility
simplicity

The procedural design may require

modification as the software process

proceeds. The ease with which a design

representation can be edited can help

facilitate each software engineering task is

called ___________.

modularity simplicity
ease of

editing

maintaina

bility

ease of

editing

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 1/28

UNIT-V

SYLLABUS

Testing Tactics: Software Testing Fundamentals- Black -Box and White-Box Testing- White

Box Testing-Basis Path Testing- Control Structure Testing: Condition Testing- Data Flow

Testing-Loop Testing- Black Box Testing- Quality Concepts: Quality- Quality Control –Quality

Assurance –Cost Of Quality.

TESTING TACTICS

Testing presents an interesting anomaly for software engineers, who by their nature are

constructive people. Testing requires that the developer discard preconceived notions of the

“correctness” of software just developed and then work hard to design test cases to “break” the

software. Beizer describes this situation effectively when he states:

There’s a myth that if we were really good at programming, there would be no bugs to

catch. If only we could really concentrate, if only everyone used structured programming, top-

down design, . . . then there would be no bugs. So goes the myth.

There are bugs, the myth says, because we are bad at what we do; and if we are bad at it,

we should feel guilty about it. Therefore, testing and test case design is an admission of failure,

which instills a goodly dose of guilt.

And the tedium of testing is just punishment for our errors. Punishment for what? For

being human? Guilt for what? For failing to achieve inhuman perfection? For not distinguishing

between what another programmer thinks and what he says? For failing to be telepathic? For not

solving human communications problems that have been kicked around . . . for forty centuries?

Should testing instill guilt? Is testing really destructive? The answer to these questions is “No!”

SOFTWARE TESTING FUNDAMENTALS

The goal of testing is to find errors, and a good test is one that has a high probability of

finding an error. Therefore, you should design and implement a computerbased system or a

product with “testability” in mind. At the same time, the tests themselves must exhibit a set of

characteristics that achieve the goal of finding the most errors with a minimum of effort.

Testability. James Bach provides the following definition for testability: “Software

testability is simply how easily [a computer program] can be tested.” The following

characteristics lead to testable software.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 2/28

Operability. “The better it works, the more efficiently it can be tested.” If a system is

designed and implemented with quality in mind, relatively few bugs will block the execution of

tests, allowing testing to progress without fits and starts.

Observability. “What you see is what you test.” Inputs provided as part of testing produce

distinct outputs. System states and variables are visible or queriable during execution. Incorrect

output is easily identified. Internal errors are automatically detected and reported. Source code is

accessible.

Controllability. “The better we can control the software, the more the testing can be

automated and optimized.” All possible outputs can be generated through some combination of

input, and I/O formats are consistent and structured. All code is executable through some

combination of input. Software and hardware states and variables can be controlled directly by

the test engineer. Tests can be conveniently specified, automated, and reproduced.

Decomposability. “By controlling the scope of testing, we can more quickly isolate

problems and perform smarter retesting.” The software system is built from independent

modules that can be tested independently.

Simplicity. “The less there is to test, the more quickly we can test it.” The program should

exhibit functional simplicity (e.g., the feature set is the minimum necessary to meet

requirements); structural simplicity (e.g., architecture is modularized to limit the propagation of

faults), and code simplicity (e.g., a coding standard is adopted for ease of inspection and

maintenance).

Stability. “The fewer the changes, the fewer the disruptions to testing.” Changes to the

software are infrequent, controlled when they do occur, and do not invalidate existing tests. The

software recovers well from failures.

Understandability. “The more information we have, the smarter we will test.” The

architectural design and the dependencies between internal, external, and shared components are

well understood. Technical documentation is instantly accessible, well organized, specific and

detailed, and accurate. Changes to the design are communicated to testers.

You can use the attributes suggested by Bach to develop a software configuration (i.e.,

programs, data, and documents) that is amenable to testing.

Test Characteristics.

And what about the tests themselves? Kaner, Falk, and Nguyen [Kan93] suggest the

following attributes of a “good” test:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 3/28

A good test has a high probability of finding an error. To achieve this goal, the tester

must understand the software and attempt to develop a mental picture of how the software might

fail. Ideally, the classes of failure are probed. For example, one class of potential failure in a

graphical user interface is the failure to recognize proper mouse position. A set of tests would be

designed to exercise the mouse in an attempt to demonstrate an error in mouse position

recognition.

A good test is not redundant. Testing time and resources are limited. There is no point in

conducting a test that has the same purpose as another test. Every test should have a different

purpose (even if it is subtly different).

A good test should be “best of breed” [Kan93]. In a group of tests that have a similar

intent, time and resource limitations may mitigate toward the execution of only a subset of these

tests. In such cases, the test that has the highest likelihood of uncovering a whole class of errors

should be used.

A good test should be neither too simple nor too complex. Although it is sometimes

possible to combine a series of tests into one test case, the possible side effects associated with

this approach may mask errors. In general, each test should be executed separately.

BLACK -BOX AND WHITE-BOX TESTING

Any engineered product (and most other things) can be tested in one of two ways:

 (1) Knowing the specified function that a product has been designed to perform, tests can

be conducted that demonstrate each function is fully operational while at the same time searching

for errors in each function.

(2) Knowing the internal workings of a product, tests can be conducted to ensure that “all

gears mesh,” that is, internal operations are performed according to specifications and all internal

components have been adequately exercised. The first test approach takes an external view and is

called black-box testing. The second requires an internal view and is termed white-box testing.

Black-box testing alludes to tests that are conducted at the software interface. A black-

box test examines some fundamental aspect of a system with little regard for the internal logical

structure of the software. White-box testing of software is predicated on close examination of

procedural detail. Logical paths through the software and collaborations between components are

tested by exercising specific sets of conditions and/or loops.

At first glance it would seem that very thorough white-box testing would lead to “100

percent correct programs.” All we need do is define all logical paths, develop test cases to

exercise them, and evaluate results, that is, generate test cases to exercise program logic

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 4/28

exhaustively. Unfortunately, exhaustive testing presents certain logistical problems. For even

small programs, the number of possible logical paths can be very large. White-box testing should

not, however, be dismissed as impractical. A limited number of important logical paths can be

selected and exercised. Important data structures can be probed for validity.

White-box testing, sometimes called glass-box testing, is a test-case design philosophy

that uses the control structure described as part of component-level design to derive test cases.

Using white-box testing methods, you can derive test cases that (1) guarantee that all

independent paths within a module have been exercised at least once, (2) exercise all logical

decisions on their true and false sides, (3) execute all loops at their boundaries and within their

operational bounds, and (4) exercise internal data structures to ensure their validity.

WHITE BOX TESTING

White-box testing, sometimes called glass-box testing, is a test-case design philosophy

that uses the control structure described as part of component-level design to derive test cases.

Using white-box testing methods, you can derive test cases that

(1) guarantee that all independent paths within a module have been exercised at least

once,

(2) exercise all logical decisions on their true and false sides,

(3) execute all loops at their boundaries and within their operational bounds, and

(4) exercise internal data structures to ensure their validity.

BASIS PATH TESTING

Basis path testing is a white-box testing technique first proposed by Tom McCabe

[McC76]. The basis path method enables the test-case designer to derive a logical complexity

measure of a procedural design and use this measure as a guide for defining a basis set of

execution paths. Test cases derived to exercise the basis set are guaranteed to execute every

statement in the program at least one time during testing.

Flow Graph Notation

 Before we consider the basis path method, a simple notation for the representation of

control flow, called a flow graph (or program graph) must be introduced. The flow graph depicts

logical control flow using the notation illustrated in Figure. Each structured construct has a

corresponding flow graph symbol.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 5/28

Flow graph notation

To illustrate the use of a flow graph, consider the procedural design representation in

Figure. Here, a flowchart is used to depict program control structure. Figure 18.2b maps the

flowchart into a corresponding flow graph (assuming that no compound conditions are contained

in the decision diamonds of the flowchart). Referring to

Figure, each circle, called a flow graph node, represents one or more procedural

statements. A sequence of process boxes and a decision diamond can map into a single node. The

arrows on the flow graph, called edges or links, represent flow of control and are analogous to

flowchart arrows. An edge must terminate at a node, even if the node does not represent any

procedural statements (e.g., see the flow graph symbol for the if-then-else construct). Areas

bounded by edges and nodes are called regions. When counting regions, we include the area

outside the graph as a region.4

(a) Flowchart and (b) flow graph

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 6/28

Compound logic

When compound conditions are encountered in a procedural design, the generation of a

flow graph becomes slightly more complicated. A compound condition occurs when one or more

Boolean operators (logical OR, AND, NAND, NOR) is present in a conditional statement.

Referring to Figure 18.3, the program design language (PDL) segment translates into the flow

graph shown. Note that a separate node is created for each of the conditions a and b in the

statement IF a OR b. Each node that contains a condition is called a predicate node and is

characterized by two or more edges emanating from it.

Independent Program Paths

 An independent path is any path through the program that introduces at least one new set

of processing statements or a new condition. When stated in terms of a flow graph, an

independent path must move along at least one edge that has not been traversed before the path is

defined. For example, a set of independent paths for the flow graph illustrated in Figure 18.2b is

Path 1: 1-11 Path 2: 1-2-3-4-5-10-1-11 Path 3: 1-2-3-6-8-9-10-1-11 Path 4: 1-2-3-6-7-9-10-1-11

Note that each new path introduces a new edge. The path 1-2-3-4-5-10-1-2-3-6-8-9-10-1-

11 is not considered to be an independent path because it is simply a combination of already

specified paths and does not traverse any new edges.

Paths 1 through 4 constitute a basis set for the flow graph in Figure 18.2b. That is, if you

can design tests to force execution of these paths (a basis set), every statement in the program

will have been guaranteed to be executed at least one time and every condition will have been

executed on its true and false sides. It should be noted that the basis set is not unique. In fact, a

number of different basis sets can be derived for a given procedural design.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 7/28

 How do you know how many paths to look for? The computation of cyclomatic

complexity provides the answer. Cyclomatic complexity is a software metric that provides a

quantitative measure of the logical complexity of a program. When used in the context of the

basis path testing method, the value computed for cyclomatic complexity defines the number of

independent paths in the basis set of a program and provides you with an upper bound for the

number of tests that must be conducted to ensure that all statements have been executed at least

once.

Cyclomatic complexity has a foundation in graph theory and provides you with an

extremely useful software metric. Complexity is computed in one of three ways:

 1. The number of regions of the flow graph corresponds to the cyclomatic complexity.

 2. Cyclomatic complexity V(G) for a flow graph G is defined as V(G) E N 2 where E is

the number of flow graph edges and N is the number of flow graph nodes.

 3. Cyclomatic complexity V(G) for a flow graph G is also defined as V(G) P 1 where P

is the number of predicate nodes contained in the flow graph G. Referring once more to the flow

graph in Figure 18.2b, the cyclomatic complexity can be computed using each of the algorithms

just noted:

 1. The flow graph has four regions. 2. V(G) 11 edges 9 nodes 2 4. 3. V(G) 3 predicate

nodes 1 4.

 Therefore, the cyclomatic complexity of the flow graph in Figure 18.2b is 4. More

important, the value for V(G) provides you with an upper bound for the number of independent

paths that form the basis set and, by implication, an upper bound on the number of tests that must

be designed and executed to guarantee coverage of all program statements.

Deriving Test Cases The basis path testing method can be applied to a procedural design

or to source code. In this section, I present basis path testing as a series of steps. The procedure

average, depicted in PDL in Figure 18.4, will be used as an example to illustrate each step in the

test-case design method. Note that average, although an extremely simple algorithm, contains

compound conditions and loops. The following steps can be applied to derive the basis set:

 1. Using the design or code as a foundation, draw a corresponding flow graph. A

flow graph is created using the symbols and construction rules presented in Section 18.4.1.

Referring to the PDL for average in Figure 18.4, a flow graph is created by numbering those

PDL statements that will be mapped into corresponding flow graph nodes. The corresponding

flow graph is shown in Figure 18.5.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 8/28

 2. Determine the cyclomatic complexity of the resultant flow graph.

 The cyclomatic complexity V(G) is determined by applying the algorithms described in

Section 18.4.2. It should be noted that V(G) can be determined without developing a flow graph

by counting all conditional statements in the PDL (for the procedure average, compound

conditions count as two) and adding 1. Referring to Figure 18.5, V(G) 6 regions V(G) 17 edges

13 nodes 2 6 V(G) 5 predicate nodes 1 6

PDL with nodes identified

3. Determine a basis set of linearly independent paths. The value of V(G) provides the

upper bound on the number of linearly independent paths through the program control structure.

In the case of procedure average, we expect to specify six paths: Path 1: 1-2-10-11-13 Path 2: 1-

2-10-12-13

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 9/28

Flow graph for the procedure average

Path 3: 1-2-3-10-11-13 Path 4: 1-2-3-4-5-8-9-2-. . . Path 5: 1-2-3-4-5-6-8-9-2-. . . Path 6:

1-2-3-4-5-6-7-8-9-2-. . . The ellipsis (. . .) following paths 4, 5, and 6 indicates that any path

through the remainder of the control structure is acceptable. It is often worthwhile to identify

predicate nodes as an aid in the derivation of test cases. In this case, nodes 2, 3, 5, 6, and 10 are

predicate nodes.

 4. Prepare test cases that will force execution of each path in the basis set.

Data should be chosen so that conditions at the predicate nodes are appropriately set as

each path is tested. Each test case is executed and compared to expected results. Once all test

cases have been completed, the tester can be sure that all statements in the program have been

executed at least once.

 It is important to note that some independent paths (e.g., path 1 in our example) cannot

be tested in stand-alone fashion. That is, the combination of data required to traverse the path

cannot be achieved in the normal flow of the program. In such cases, these paths are tested as

part of another path test.

Graph Matrices

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 10/28

 The procedure for deriving the flow graph and even determining a set of basis paths is

amenable to mechanization. A data structure, called a graph matrix, can be quite useful for

developing a software tool that assists in basis path testing. A graph matrix is a square matrix

whose size (i.e., number of rows and columns) is equal to the number of nodes on the flow

graph. Each row and column corresponds to an identified node, and matrix entries correspond to

connections (an edge) between nodes. A simple example of a flow graph and its corresponding

graph matrix [Bei90] is shown in Figure 18.6.

Fig Graph matrix

Referring to the figure, each node on the flow graph is identified by numbers, while each

edge is identified by letters. A letter entry is made in the matrix to correspond to a connection

between two nodes. For example, node 3 is connected to node 4 by edge b.

To this point, the graph matrix is nothing more than a tabular representation of a flow

graph. However, by adding a link weight to each matrix entry, the graph matrix can become a

powerful tool for evaluating program control structure during testing.

The link weight provides additional information about control flow. In its simplest form,

the link weight is 1 (a connection exists) or 0 (a connection does not exist). But link weights can

be assigned other, more interesting properties:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 11/28

• The probability that a link (edge) will be execute. • The processing time expended

during traversal of a link • The memory required during traversal of a link • The resources

required during traversal of a link.

 Beizer [Bei90] provides a thorough treatment of additional mathematical algorithms that

can be applied to graph matrices. Using these techniques, the analysis required to design test

cases can be partially or fully automated.

CONTROL STRUCTURE TESTING

The basis path testing technique described in Section 18.4 is one of a number of

techniques for control structure testing. Although basis path testing is simple and highly

effective, it is not sufficient in itself. In this section, other variations on control structure testing

are discussed. These broaden testing coverage and improve the quality of white-box testing.

CONDITION TESTING

 Condition testing [Tai89] is a test-case design method that exercises the logical

conditions contained in a program module. A simple condition is a Boolean variable or a

relational expression, possibly preceded with one NOT (¬) operator. A relational expression

takes the form E 1 <relational-operator> E2 where E1 and E2 are arithmetic expressions and

<relational-operator> is one of the following: , , , (nonequality), , or . A compound condition is

composed of two or more simple conditions, Boolean operators, and parentheses. We assume

that Boolean operators allowed in a compound condition include OR (), AND (&), and NOT (¬).

A condition without relational expressions is referred to as a Boolean expression.

 If a condition is incorrect, then at least one component of the condition is incorrect.

Therefore, types of errors in a condition include Boolean operator errors (incorrect/missing/extra

Boolean operators), Boolean variable errors, Boolean parenthesis errors, relational operator

errors, and arithmetic expression errors. The condition testing method focuses on testing each

condition in the program to ensure that it does not contain errors.

DATA FLOW TESTING

 The data flow testing method [Fra93] selects test paths of a program according to the

locations of definitions and uses of variables in the program. To illustrate the data flow testing

approach, assume that each statement in a program is assigned a unique statement number and

that each function does not modify its parameters or global variables. For a statement with S as

its statement number,

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 12/28

 DEF(S) {X | statement S contains a definition of X} USE(S) {X | statement S contains a

use of X}

 If statement S is an if or loop statement, its DEF set is empty and its USE set is based on

the condition of statement S. The definition of variable X at statement S is said to be live at

statement S’ if there exists a path from statement S to statement S’ that contains no other

definition of X.

 A definition-use (DU) chain of variable X is of the form [X, S, S’], where S and S’ are

statement numbers, X is in DEF(S) and USE(S’), and the definition of X in statement S is live at

statement S’.

 One simple data flow testing strategy is to require that every DU chain be covered at

least once. We refer to this strategy as the DU testing strategy. It has been shown that DU testing

does not guarantee the coverage of all branches of a program. However, a branch is not

guaranteed to be covered by DU testing only in rare situations such as if-then-else constructs in

which the then part has no definition of any variable and the else part does not exist. In this

situation, the else branch of the if statement is not necessarily covered by DU testing.

LOOP TESTING

 Loops are the cornerstone for the vast majority of all algorithms implemented in

software. And yet, we often pay them little heed while conducting software tests. Loop testing is

a white-box testing technique that focuses exclusively on the validity of loop constructs. Four

different classes of loops [Bei90] can be defined: simple loops, concatenated loops, nested loops,

and unstructured loops (Figure 18.7).

Simple loops. The following set of tests can be applied to simple loops, where n is the

maximum number of allowable passes through the loop.

 1. Skip the loop entirely.

2. Only one pass through the loop.

3. Two passes through the loop.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 13/28

Classes of Loops

4. m passes through the loop where m n.

5. n 1, n, n 1 passes through the loop.

Nested loops. If we were to extend the test approach for simple loops to nested loops, the

number of possible tests would grow geometrically as the level of nesting increases. This would

result in an impractical number of tests. Beizer [Bei90] suggests an approach that will help to

reduce the number of tests:

1. Start at the innermost loop. Set all other loops to minimum values.

2. Conduct simple loop tests for the innermost loop while holding the outer loops at their

minimum iteration parameter (e.g., loop counter) values. Add other tests for out-of-range or

excluded values.

3. Work outward, conducting tests for the next loop, but keeping all other outer loops at

minimum values and other nested loops to “typical” values.

4. Continue until all loops have been tested.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 14/28

Concatenated loops. Concatenated loops can be tested using the approach defined for

simple loops, if each of the loops is independent of the other. However, if two loops are

concatenated and the loop counter for loop 1 is used as the initial value for loop 2, then the loops

are not independent. When the loops are not independent, the approach applied to nested loops is

recommended.

Unstructured loops. Whenever possible, this class of loops should be redesigned to

reflect the use of the structured programming constructs (Chapter 10).

BLACK BOX TESTING

Black-box testing, also called behavioral testing, focuses on the functional requirements

of the software. That is, black-box testing techniques enable you to derive sets of input

conditions that will fully exercise all functional requirements for a program.

Black-box testing is not an alternative to white-box techniques. Rather, it is a

complementary approach that is likely to uncover a different class of errors than whitebox

methods. Black-box testing attempts to find errors in the following categories: (1) incorrect or

missing functions, (2) interface errors, (3) errors in data structures or external database access,

(4) behavior or performance errors, and (5) initialization and termination errors.

Unlike white-box testing, which is performed early in the testing process, blackbox

testing tends to be applied during later stages of testing (see Chapter 17). Because black-box

testing purposely disregards control structure, attention is focused on the information domain.

Tests are designed to answer the following questions:

• How is functional validity tested?

• How are system behavior and performance tested?

• What classes of input will make good test cases?

• Is the system particularly sensitive to certain input values?

• How are the boundaries of a data class isolated?

• What data rates and data volume can the system tolerate?

• What effect will specific combinations of data have on system operation? By applying

black-box techniques, you derive a set of test cases that satisfy the following criteria [Mye79]:

(1) test cases that reduce, by a count that is greater than one, the number of additional test cases

that must be designed to achieve reasonable testing, and (2) test cases that tell you something

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 15/28

about the presence or absence of classes of errors, rather than an error associated only with the

specific test at hand.

Graph-Based Testing Methods The first step in black-box testing is to understand the

objects5 that are modeled in software and the relationships that connect these objects. Once this

has been accomplished, the next step is to define a series of tests that verify “all objects have the

expected relationship to one another” [Bei95]. Stated in another way, software testing begins by

creating a graph of important objects and their relationships and

Fig (a) Graph notation; (b) simple example

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 16/28

then devising a series of tests that will cover the graph so that each object and

relationship is exercised and errors are uncovered.

 To accomplish these steps, you begin by creating a graph—a collection of nodes that

represent objects, links that represent the relationships between objects, node weights that

describe the properties of a node (e.g., a specific data value or state behavior), and link weights

that describe some characteristic of a link. The symbolic representation of a graph is shown in

Figure 18.8a. Nodes are represented as circles connected by links that take a number of different

forms.

A directed link (represented by an arrow) indicates that a relationship moves in only one

direction. A bidirectional link, also called a symmetric link, implies that the relationship applies

in both directions. Parallel links are used when a number of different relationships are

established between graph nodes.

As a simple example, consider a portion of a graph for a word-processing application

where Object #1 newFile (menu selection) Object #2 documentWindow Object #3

documentText

Referring to the figure, a menu select on newFile generates a document window. The

node weight of documentWindow provides a list of the window attributes that are to be

expected when the window is generated. The link weight indicates that the window must be

generated in less than 1.0 second. An undirected link establishes a symmetric relationship

between the newFile menu selection and documentText, and parallel links indicate relationships

between documentWindow and documentText. In reality, a far more detailed graph would

have to be generated as a precursor to test-case design. You can then derive test cases by

traversing the graph and covering each of the relationships shown. These test cases are designed

in an attempt to find errors in any of the relationships. Beizer [Bei95] describes a number of

behavioral testing methods that can make use of graphs:

Transaction flow modeling. The nodes represent steps in some transaction (e.g., the

steps required to make an airline reservation using an online service), and the links represent the

logical connection between steps (e.g., flightInformationInput is followed by

validationAvailabilityProcessing). The data flow diagram (Chapter 7) can be used to assist in

creating graphs of this type.

Finite state modeling. The nodes represent different user-observable states of the

software (e.g., each of the “screens” that appear as an order entry clerk takes a phone order), and

the links represent the transitions that occur to move from state to state (e.g., orderInformation

is verified during inventoryAvailabilityLook-up and is followed by customerBillingInformation

input). The state diagram (Chapter 7) can be used to assist in creating graphs of this type.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 17/28

Data flow modeling. The nodes are data objects, and the links are the transformations

that occur to translate one data object into another. For example, the node FICA tax withheld

(FTW) is computed from gross wages (GW) using the relationship, FTW 0.62 GW.

Timing modeling. The nodes are program objects, and the links are the sequential

connections between those objects. Link weights are used to specify the required execution times

as the program executes. A detailed discussion of each of these graph-based testing methods is

beyond the scope of this book. If you have further interest, see [Bei95] for a comprehensive

coverage.

Equivalence Partitioning Equivalence partitioning is a black-box testing method that

divides the input domain of a program into classes of data from which test cases can be derived.

An ideal test case single-handedly uncovers a class of errors (e.g., incorrect processing of all

character data) that might otherwise require many test cases to be executed before the general

error is observed. Test-case design for equivalence partitioning is based on an evaluation of

equivalence classes for an input condition. Using concepts introduced in the preceding section, if

a set of objects can be linked by relationships that are symmetric, transitive, and reflexive, an

equivalence class is present [Bei95]. An equivalence class represents a set of valid or invalid

states for input conditions. Typically, an input condition is either a specific numeric value, a

range of values, a set of related values, or a Boolean condition. Equivalence classes may be

defined according to the following guidelines:

1. If an input condition specifies a range, one valid and two invalid equivalence classes

are defined.

2. If an input condition requires a specific value, one valid and two invalid equivalence

classes are defined.

3. If an input condition specifies a member of a set, one valid and one invalid equivalence

class are defined.

4. If an input condition is Boolean, one valid and one invalid class are defined. By

applying the guidelines for the derivation of equivalence classes, test cases for each input domain

data item can be developed and executed. Test cases are selected so that the largest number of

attributes of an equivalence class are exercised at once.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 18/28

Boundary Value Analysis A greater number of errors occurs at the boundaries of the

input domain rather than in the “center.” It is for this reason that boundary value analysis (BVA)

has been developed as a testing technique. Boundary value analysis leads to a selection of test

cases that exercise bounding values.

Boundary value analysis is a test-case design technique that complements equivalence

partitioning. Rather than selecting any element of an equivalence class, BVA leads to the

selection of test cases at the “edges” of the class. Rather than focusing solely on input conditions,

BVA derives test cases from the output domain as well [Mye79].

Guidelines for BVA are similar in many respects to those provided for equivalence

partitioning:

1. If an input condition specifies a range bounded by values a and b, test cases should be

designed with values a and b and just above and just below a and b.

2. If an input condition specifies a number of values, test cases should be developed that

exercise the minimum and maximum numbers. Values just above and below minimum and

maximum are also tested.

3. Apply guidelines 1 and 2 to output conditions. For example, assume that a temperature

versus pressure table is required as output from an engineering analysis program. Test cases

should be designed to create an output report that produces the maximum (and minimum)

allowable number of table entries.

4. If internal program data structures have prescribed boundaries (e.g., a table has a

defined limit of 100 entries), be certain to design a test case to exercise the data structure at its

boundary.

Most software engineers intuitively perform BVA to some degree. By applying these

guidelines, boundary testing will be more complete, thereby having a higher likelihood for error

detection.

Orthogonal Array Testing

There are many applications in which the input domain is relatively limited. That is, the

number of input parameters is small and the values that each of the parameters may take are

clearly bounded. When these numbers are very small (e.g., three input parameters taking on three

discrete values each), it is possible to consider every input permutation and exhaustively test the

input domain. However, as the number of input values grows and the number of discrete values

for each data item increases, exhaustive testing becomes impractical or impossible.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 19/28

Orthogonal array testing can be applied to problems in which the input domain is

relatively small but too large to accommodate exhaustive testing. The orthogonal array testing

method is particularly useful in finding region faults—an error category associated with faulty

logic within a software component. To illustrate the difference between orthogonal array testing

and more conventional “one input item at a time” approaches, consider a system that has three

input items, X, Y, and Z. Each of these input items has three discrete values associated with it.

There are 33 27 possible test cases. Phadke [Pha97] suggests a geometric view of the possible

test cases associated with X, Y, and Z illustrated in Figure 18.9.

Referring to the figure, one input item at a time may be varied in sequence along each

input axis. This results in relatively limited coverage of the input domain (represented by the left-

hand cube in the figure).

When orthogonal array testing occurs, an L9 orthogonal array of test cases is created.

The L9 orthogonal array has a “balancing property” [Pha97]. That is, test cases (represented by

dark dots in the figure) are “dispersed uniformly throughout the test domain,” as illustrated in the

right-hand cube in Figure 18.9. Test coverage across the input domain is more complete.

Fig A geometric view of test cases

To illustrate the use of the L9 orthogonal array, consider the send function for a fax

application. Four parameters, P1, P2, P3, and P4, are passed to the send function. Each takes on

three discrete values. For example, P1 takes on values:

P1 1, send it now

P1 2, send it one hour later

P1 3, send it after midnight

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 20/28

P2, P3, and P4 would also take on values of 1, 2, and 3, signifying other send functions.

 If a “one input item at a time” testing strategy were chosen, the following sequence of

tests (P1, P2, P3, P4) would be specified: (1, 1, 1, 1), (2, 1, 1, 1), (3, 1, 1, 1), (1, 2, 1, 1), (1, 3, 1,

1), (1, 1, 2, 1), (1, 1, 3, 1), (1, 1, 1, 2), and (1, 1, 1, 3). Phadke [Pha97] assesses these test cases

by stating:

Such test cases are useful only when one is certain that these test parameters do not

interact. They can detect logic faults where a single parameter value makes the software

malfunction. These faults are called single mode faults. This method cannot detect logic faults

that cause malfunction when two or more parameters simultaneously take certain values; that is,

it cannot detect any interactions. Thus its ability to detect faults is limited.

Given the relatively small number of input parameters and discrete values, exhaustive

testing is possible. The number of tests required is 34 81, large but manageable. All faults

associated with data item permutation would be found, but the effort required is relatively high.

The orthogonal array testing approach enables you to provide good test coverage with far

fewer test cases than the exhaustive strategy. An L9 orthogonal array for the fax send function is

illustrated in Figure 18.10.

Fig 18.10. An L9 orthogonal array

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 21/28

Phadke [Pha97] assesses the result of tests using the L9 orthogonal array in the following

manner:

 Detect and isolate all single mode faults. A single mode fault is a consistent problem

with any level of any single parameter. For example, if all test cases of factor P1 1 cause an

error condition, it is a single mode failure. In this example tests 1, 2 and 3 [Figure 18.10] will

show errors. By analyzing the information about which tests show errors, one can identify which

parameter values cause the fault. In this example, by noting that tests 1, 2, and 3 cause an error,

one can isolate [logical processing associated with “send it now” (P1 1)] as the source of the

error. Such an isolation of fault is important to fix the fault.

Detect all double mode faults. If there exists a consistent problem when specific levels

of two parameters occur together, it is called a double mode fault. Indeed, a double mode fault is

an indication of pairwise incompatibility or harmful interactions between two test parameters.

Multimode faults. Orthogonal arrays [of the type shown] can assure the detection of

only single and double mode faults. However, many multimode faults are also detected by these

tests. You can find a detailed discussion of orthogonal array testing in [Pha89].

QUALITY CONCEPTS:

The drumbeat for improved software quality began in earnest as software became

increasingly integrated in every facet of our lives. By the 1990s, major corporations recognized

that billions of dollars each year were being wasted on software that didn’t deliver the features

and functionality that were promised.

Worse, both government and industry became increasingly concerned that a major

software fault might cripple important infrastructure, costing tens of billions more. By the turn of

the century, CIO Magazine [Lev01] trumpeted the headline, “Let’s Stop Wasting $78 Billion a

Year,” lamenting the fact that “American businesses spend billions for software that doesn’t do

what it’s supposed to do.” InformationWeek [Ric01] echoed the same concern:

Despite good intentions, defective code remains the hobgoblin of the software industry,

accounting for as much as 45% of computer-system downtime and costing U.S. companies about

$100 billion last year in lost productivity and repairs, says the Standish Group, a market research

firm. That doesn’t include the cost of losing angry customers. Because IT shops write

applications that rely on packaged infrastructure software, bad code can wreak havoc on custom

apps as well. . . .

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 22/28

Just how bad is bad software? Definitions vary, but experts say it takes only three or four

defects per 1,000 lines of code to make a program perform poorly. Factor in that most

programmers inject about one error for every 10 lines of code they write, multiply that by the

millions of lines of code in many commercial products, then figure it costs software vendors at

least half their development budgets to fix errors while testing. Get the picture?

In 2005, ComputerWorld [Hil05] lamented that “bad software plagues nearly every

organization that uses computers, causing lost work hours during computer downtime, lost or

corrupted data, missed sales opportunities, high IT support and maintenance costs, and low

customer satisfaction. A year later, InfoWorld [Fos06] wrote about the “the sorry state of

software quality” reporting that the quality problem had not gotten any better.

Today, software quality remains an issue, but who is to blame? Customers blame

developers, arguing that sloppy practices lead to low-quality software. Developers blame

customers (and other stakeholders), arguing that irrational delivery dates and a continuing stream

of changes force them to deliver software before it has been fully validated. Who’s right? Both—

and that’s the problem. In this chapter, I consider software quality as a concept and examine why

it’s worthy of serious consideration whenever software engineering practices are applied.

QUALITY

In his mystical book, Zen and the Art of Motorcycle Maintenance, Robert Persig [Per74]

commented on the thing we call quality:

Quality . . . you know what it is, yet you don’t know what it is. But that’s self-

contradictory. But some things are better than others; that is, they have more quality. But when

you try to say what the quality is, apart from the things that have it, it all goes poof! There’s

nothing to talk about. But if you can’t say what Quality is, how do you know what it is, or how

do you know that it even exists? If no one knows what it is, then for all practical purposes it

doesn’t exist at all. But for all practical purposes it really does exist. What else are the grades

based on? Why else would people pay fortunes for some things and throw others in the trash

pile? Obviously some things are better than others . . . but what’s the betterness? . . .

So round and round you go, spinning mental wheels and nowhere finding anyplace to get

traction. What the hell is Quality? What is it?

Indeed—what is it?

 At a somewhat more pragmatic level, David Garvin [Gar84] of the Harvard Business

School suggests that “quality is a complex and multifaceted concept” that can be described from

five different points of view. The transcendental view argues (like Persig) that quality is

something that you immediately recognize, but cannot explicitly define. The user view sees

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 23/28

quality in terms of an end user’s specific goals. If a product meets those goals, it exhibits quality.

The manufacturer’s view defines quality in terms of the original specification of the product. If

the product conforms to the spec, it exhibits quality. The product view suggests that quality can

be tied to inherent characteristics (e.g., functions and features) of a product. Finally, the value-

based view measures quality based on how much a customer is willing to pay for a product. In

reality, quality encompasses all of these views and more.

Quality of design refers to the characteristics that designers specify for a product. The

grade of materials, tolerances, and performance specifications all contribute to the quality of

design. As higher-grade materials are used, tighter tolerances and greater levels of performance

are specified, the design quality of a product increases, if the product is manufactured according

to specifications. In software development, quality of design encompasses the degree to which

the design meets the functions and features specified in the requirements model. Quality of

conformance focuses on the degree to which the implementation follows the design and the

resulting system meets its requirements and performance goals.

But are quality of design and quality of conformance the only issues that software

engineers must consider? Robert Glass [Gla98] argues that a more “intuitive” relationship is in

order: user satisfaction compliant product good quality delivery within budget and schedule

At the bottom line, Glass contends that quality is important, but if the user isn’t satisfied,

nothing else really matters. DeMarco [DeM98] reinforces this view when he states: “A product’s

quality is a function of how much it changes the world for the better.” This view of quality

contends that if a software product provides substantial benefit to its end users, they may be

willing to tolerate occasional reliability or performance problems.

SOFTWARE QUALITY

 Even the most jaded software developers will agree that high-quality software is an

important goal. But how do we define software quality? In the most general sense, software

quality can be defined1 as: An effective software process applied in a manner that creates a

useful product that provides measurable value for those who produce it and those who use it.

 There is little question that the preceding definition could be modified or extended and

debated endlessly. For the purposes of this book, the definition serves to emphasize three

important points:

 1. An effective software process establishes the infrastructure that supports any effort at

building a high-quality software product. The management aspects of process create the checks

and balances that help avoid project chaos—a key contributor to poor quality. Software

engineering practices allow the developer to analyze the problem and design a solid solution—

both critical to building high-quality software. Finally, umbrella activities such as change

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 24/28

management and technical reviews have as much to do with quality as any other part of software

engineering practice.

2. A useful product delivers the content, functions, and features that the end user desires,

but as important, it delivers these assets in a reliable, error-free

way. A useful product always satisfies those requirements that have been explicitly stated

by stakeholders. In addition, it satisfies a set of implicit requirements (e.g., ease of use) that are

expected of all high-quality software.

3. By adding value for both the producer and user of a software product, high quality

software provides benefits for the software organization and the end user community. The

software organization gains added value because high-quality software requires less maintenance

effort, fewer bug fixes, and reduced customer support. This enables software engineers to spend

more time creating new applications and less on rework. The user community gains added value

because the application provides a useful capability in a way that expedites some business

process. The end result is (1) greater software product revenue, (2) better profitability when an

application supports a business process, and/or (3) improved availability of information that is

crucial for the business.

QUALITY CONTROL

Quality control encompasses a set of software engineering actions that help to ensure that

each work product meets its quality goals. Models are reviewed to ensure that they are complete

and consistent. Code may be inspected in order to uncover and correct errors before testing

commences. A series of testing steps is applied to uncover errors in processing logic, data

manipulation, and interface communication. A combination of measurement and feedback allows

a software team to tune the process when any of these work products fail to meet quality goals.

QUALITY ASSURANCE

Quality assurance establishes the infrastructure that supports solid software engineering

methods, rational project management, and quality control actions—all pivotal if you intend to

build high-quality software. In addition, quality assurance consists of a set of auditing and

reporting functions that assess the effectiveness and completeness of quality control actions. The

goal of quality assurance is to provide management and technical staff with the data necessary to

be informed about product quality, thereby gaining insight and confidence that actions to achieve

product quality are working. Of course, if the data provided through quality assurance identifies

problems, it is management’s responsibility to address the problems and apply the necessary

resources to resolve quality issues.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 25/28

COST OF QUALITY

The argument goes something like this—we know that quality is important, but it costs us

time and money—too much time and money to get the level of software quality we really want.

On its face, this argument seems reasonable (see Meyer’s comments earlier in this section).

There is no question that quality has a cost, but lack of quality also has a cost—not only to end

users who must live with buggy software, but also to the software organization that has built and

must maintain it. The real question is this: which cost should we be worried about? To answer

this question, you must understand both the cost of achieving quality and the cost of low-quality

software. The cost of quality includes all costs incurred in the pursuit of quality or in performing

quality-related activities and the downstream costs of lack of quality. To understand these costs,

an organization must collect metrics to provide a baseline for the current cost of quality, identify

opportunities for reducing these costs, and provide a normalized basis of comparison. The cost of

quality can be divided into costs associated with prevention, appraisal, and failure.

Prevention costs include (1) the cost of management activities required to plan and

coordinate all quality control and quality assurance activities, (2) the cost of added technical

activities to develop complete requirements and design models, (3) test planning costs, and (4)

the cost of all training associated with these activities. Appraisal costs include activities to gain

insight into product condition the “first time through” each process. Examples of appraisal costs

include:

• Cost of conducting technical reviews (Chapter 15) for software engineering work

products

• Cost of data collection and metrics evaluation (Chapter 23)

• Cost of testing and debugging (Chapters 18 through 21) Failure costs are those that

would disappear if no errors appeared before or after shipping a product to customers. Failure

costs may be subdivided into internal failure costs and external failure costs. Internal failure

costs are incurred when you detect an error in a product prior to shipment. Internal failure costs

include

• Cost required to perform rework (repair) to correct an error

• Cost that occurs when rework inadvertently generates side effects that must be

mitigated

• Costs associated with the collection of quality metrics that allow an organization to

assess the modes of failure

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 26/28

External failure costs are associated with defects found after the product has been

shipped to the customer. Examples of external failure costs are complaint resolution, product

return and replacement, help line support, and labor costs associated with warranty work. A poor

reputation and the resulting loss of business is another external failure cost that is difficult to

quantify but nonetheless very real. Bad things happen when low-quality software is produced.

In an indictment of software developers who refuse to consider external failure costs,

Cem Kaner [Kan95] states:

Many of the external failure costs, such as goodwill, are difficult to quantify, and many

companies therefore ignore them when calculating their cost-benefit tradeoffs. Other external

failure costs can be reduced (e.g. by providing cheaper, lower-quality, post-sale support, or by

charging customers for support) without increasing customer satisfaction. By ignoring the costs

to our customers of bad products, quality engineers encourage quality-related decision-making

that victimizes our customers, rather than delighting them.

As expected, the relative costs to find and repair an error or defect increase dramatically

as we go from prevention to detection to internal failure to external failure costs. Figure 14.2,

based on data collected by Boehm and Basili [Boe01b] and illustrated by Cigital Inc. [Cig07],

illustrates this phenomenon. The industry average cost to correct a defect during code generation

is approximately $977 per error. The industry average cost to correct the same error if it is

Relative cost of correcting errors and defects

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 27/28

discovered during system testing is $7,136 per error. Cigital Inc. [Cig07] considers a large

application that has 200 errors introduced during coding.

 According to industry average data, the cost of finding and correcting defects during the

coding phase is $977 per defect. Thus, the total cost for correcting the 200 “critical” defects

during this phase (200 $977) is approximately $195,400.

Industry average data shows that the cost of finding and correcting defects during the

system testing phase is $7,136 per defect. In this case, assuming that the system testing phase

revealed approximately 50 critical defects (or only 25% of those found by Cigital in the coding

phase), the cost of finding and fixing those defects (50 $7,136) would have been approximately

$356,800. This would also have resulted in 150 critical errors going undetected and uncorrected.

The cost of finding and fixing these remaining 150 defects in the maintenance phase (150

$14,102) would have been $2,115,300. Thus, the total cost of finding and fixing the 200 defects

after the coding phase would have been $2,472,100 ($2,115,300 $356,800).

Even if your software organization has costs that are half of the industry average (most

have no idea what their costs are!), the cost savings associated with early quality control and

assurance activities (conducted during requirements analysis and design) are compelling.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

 COURSE CODE: 15CSU601 UNIT:V (Testing Tactics) BATCH-2015-2018

Prepared by N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 28/28

POSSIBLE QUESTIONS

PART – B

1. Describe in detail about black box testing.

2. Elucidate basis path testing and write the steps to derive the test cases.

3. List and explain different types of testing done during the testing phase.

4. Discuss about software testing fundamentals to find the most errors with a minimum

of effort.

5. Explain the white box testing in detail.

6. Discuss about control structure test case design with example.

7. Explain the software quality concepts in details.

8. How the quality of the software is ensured? Explain.

9. How to perform the quality control and assurance activity in software project?

10. Write minimum 5 test cases to validate user Login Screen.

Questions opt1 opt2 opt3 opt4 Answer

Validation focuses on ______________.

the ability

of the

interface to

implement

every user

task

correctly

the degree

to which

the

interface is

easy to use

and easy to

learn.

the user’s

acceptance

of the

interface as

a useful tool

in their

work.

all of the

above

all of the

above

__________ is a critical element of

software quality assurance and

represents the ultimate review of

specification, design, and code

generation.

software

specificati

on

software

generation

software

coding

software

testing

software

testing

Software is tested from ___________

different perspectives.
2 3 4 5 2

Software engineers are by their nature

___________ people.
pessimistic optimistic constructive destructive

constructiv

e
__________ is a process of executing a

program with the intent of finding an

error.

coding testing debugging designing testing

All tests should be _________ to

customer requirements.
traceable designed tested coded traceable

Tests should be planned long before

_____________ begins.
testing coding

specificatio

n

requiremen

ts
testing

Testing should begin in the _________

and progress toward testing in the large.
design beginning small big small

The less there is to test, the more

_________ we can test it.
quickly shortly

automaticall

y
hardly quickly

________ is a process of executing a

program with the intend of finding an

error.

testing coding planning designing testing

A good _________ is one that has a high

probability of finding an as-yet-

undiscovered error

planning test case objective goal test case

All _________ should be traceable to

customer-requirements.
analysis designs tests plans tests

__________ is simple how easily a

computer program can be tested.

software

operability

software

simplicity

software

decomposa

bility

software

testability

software

testability

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III BSC CS COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 15CSU601 UNIT: V BATCH-2015-2018

ONE MARKS

The better it works, the more efficiently

it can be testing. This characteristic is

called ___________.

operability
observabili

ty

controllabili

ty

decomposa

bility
operability

There are _________ characteristics in

testability
5 6 7 8 7

What you see is what you test. This

characteristic is called __________.

controllabi

lity

observabili

ty

decomposa

bility
stability

observabilit

y

The better we can control the software,

the more the testing can be automated

and optimized. This characteristic is

called __________.

operability stability
understanda

bility

controllabi

lity

controllabil

ity

By controlling the scope of testing, we

can more quickly isolate problems and

perform smarter retesting. This

characteristic is called _________.

decomposa

bility
simplicity stability

understand

ability

decomposa

bility

The less there is to test, the more quickly

we can test it. This characteristic is

called _________.

controllabi

lity
simplicity operability

observabili

ty
simplicity

The fewer the changes, the fewer the

disruptions to testing. This characteristic

is called __________.

controllabi

lity

decomposa

bility
stability

understand

ability
stability

The more information we have, the

smarter we will test. This characteristic

is called _________.

controllabi

lity

decomposa

bility
stability

understand

ability

understand

ability

A good test has a high ___________ of

finding an error.
probability simplicity

understanda

bility
stability probability

A good test is not _________. stable redundant simple complex redundant

White-box testing sometimes called

_________.

control

structure

testing

condition

testing

glass-box

testing

black-box

testing

glass-box

testing

Logic errors and incorrect assumptions

are inversely proportional to the

___________ that a program path will

be executed

simplicity probability
understanda

bility
stability probability

Typographical errors are _________. redundant simple random complex random

One often believes that a _________

path is not likely to be executed when, in

fact, it may be executed on a regular

basis.

control structural physical logical logical

Basic path testing is a __________.
black-box

testing

white-box

testing

control

structure

testing

control

path

testing

white-box

testing

__________ is a software metric that

provides a quantitative measure of the

logical complexity of a program.

cyclomatic

complexity
flow graph

deriving

test cases

graph

matrices

cyclomatic

complexity

An __________ is any path through the

program that introduces atleast one new

set of processing statements or a new

condition.

dependent

path

independe

nt path
basic path

control

path

independen

t path

There are _________ steps to be applied

to derive the basis set.
2 3 4 5 4

There are _________ test cases that

satisfy the basis set.
3 4 5 6 6

. A ________ is a square matrix whose

size is equal to the number of nodes on

the flow graph.

graph

matrix
matrix flow graph

cyclomatic

complexity

graph

matrix

To develop a software tool that assists in

basis path testing, a data structure called

a ___________ is useful.

matrix flow graph
graph

matrix

cyclomatic

omplexity

graph

matrix

____________ requires three or four

tests to be derived for a relational

expression.

branch

testing

data flow

testing

data control

testing

domain

testing

domain

testing

__________ is probably the simplest

condition testing strategy.

branch

testing

data flow

testing

condition

testing

domain

testing

branch

testing

The __________ method selects test

paths of a program according to the

locations of definitions and uses of

variables in the program

data flow

testing

condition

testing
loop testing

black box

testing

data flow

testing

__________ is a white box testing

technique that focuses exclusively on the

validity of loop constructions

data flow

testing

loop

testing

condition

testing

control

path

testing

loop testing

___________ is a test case design

method that exercises the logical

conditions contained in a program

module

black box

testing

loop

testing

data flow

testing

condition

testing

condition

testing

_____________ is called behavioral

testing.

black box

testing

loop

testing

data flow

testing

condition

testing

black box

testing

The first step in __________ is to

understand the objects that are modeled

in software and the relationships that

connect these objects

black box

testing

loop

testing

data flow

testing

condition

testing

black box

testing

Equivalence partitioning is a

___________ method that divides the

input domain of a program into classes

of data.

black box

testing

loop

testing

data flow

testing

condition

testing

black box

testing

Comparison testing is also called

____________.

black box

testing

loop

testing

behavioral

testing

back-to-

back

testing

back-to-

back

testing

__________ testing can be applied to

problems in which the input domain is

relatively small but too large to

accommodate exhaustive testing.

orthogonal

array
loop behavioral

back-to-

back

orthogonal

array

__________ focuses verification effort

on the smallest unit of software design –

the software component or module.

module

testing
unit testing

structure

testing

system

testing
unit testing

A driver is nothing more than a

__________.

subprogra

m

main

program
stub subroutine

main

program

_____________ serve to replace

modules that are subordinate called by

the component to be tested.

subprogra

ms

main

programs
stubs

subroutine

s
stubs

Drivers and _________ represent

overhead.

subprogra

ms

main

programs
stubs

subroutine

s
stubs

___________ of execution paths is an

essential task during the unit test.
unit testing

module

testing

selective

testing

white box

testing

selective

testing

Good _________ dictates that error

conditions be anticipated and error-

handling paths set up to reroute or

cleanly terminate processing when an

error does occur

design testing code module design

_________ is completely assembled as a

package, interfacing errors have been

uncovered and corrected.

software program code
all of the

above
software

All tests should be _________ to

customer requirements. traceable designed tested coded traceable

	1.pdf (p.1-3)
	2.pdf (p.4-9)
	3.pdf (p.10-40)
	4.pdf (p.41-71)
	5.pdf (p.72-98)
	6.pdf (p.99-125)
	7.pdf (p.126-167)
	8.pdf (p.168-173)
	Sheet1

	9.pdf (p.174-200)
	10.pdf (p.201-205)
	11.pdf (p.206-233)
	12.pdf (p.234-237)
	14 (1).pdf (p.238)
	14 (2).pdf (p.239)
	14 (3).pdf (p.240)
	14 (4).pdf (p.241)

