
Open Source Software 2015-2018

Batch

Department of CS,CA & IT, KAHE Page 1/3

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Coimbatore-641021

 (For the candidates admitted from 2015 onwards)

Department of CS,CA & IT

SUBJECT : OPEN SOURCE SOFTWARE

SEMESTER : VI

SUBJECT CODE : 15CSU603A CLASS : III B.Sc.CS

COURSE OBJECTIVE:

This course teaches the student the concepts and principles that underlie modern operating

systems, and a practice component to relate theoretical principles with operating system

implementation. Learn about processes and processor management, concurrency and

synchronization, memory management schemes, file system and secondary storage management,

security and protection, etc.

COURSE OUTCOME:

 Understand fundamental operating system abstractions such as processes, threads, files,

semaphores, IPC abstractions, shared memory regions, etc.

 Understand how the operating system abstractions can be used in the development of

application programs, or to build higher level abstractions

 Understand how the operating system abstractions can be implemented

 Understand the principles of concurrency and synchronization, and apply them to write

correct concurrent programs/software

 Understand basic resource management techniques (scheduling or time management,

space management) and principles and how they can be implemented. These also include

issues of performance and fairness objectives, avoiding deadlocks, as well as security and

protection.

UNIT I

Overview of Free/ Open Source Software: The Open Source Definition - Examples of OSD

Compliant Licenses - Examples of Open Source Software Product – The Open Source Software

Development Process – A History of Open Source software: The Berkeley Software Distribution

– The Free Software Foundation – Linux – Apache – Mozilla – Open Source Software.

UNIT II
Qualification: Defining Open Source Software – Categorizing Defining Open Source Software

– Specific Characteristics of Open Source Software Transformation: The OSS Development

Process – Taboos and Norms in OSS Development – The OSS Development Life Cycle –

Open Source Software 2015-2018

Batch

Department of CS,CA & IT, KAHE Page 2/3

Deriving a Framework for Analyzing OSS – Zachman‟s Framework for IS Architecture –

CATWOE and Soft System Method – Deriving the Analytical Framework for OSS.

UNIT III
Environment: The “where” of OSS – the “when” of OSS – World View: A Framework for

classifying OSS Motivations – Technological Micro-level (individual) motivation – Economic

Micro-level and Macro-level (individual) Motivation – Socio-political Micro-level and Macro-

level (individual) Motivation.

Open Source Server Applications: Infrastructure Services – Web Services – Database Servers

– Mail Servers – Systems Management – Open Source Desktop Applications: Introduction –

Graphical Desktops – Web Browsers – The Office Suite – Mail and Calendar Clients – Personal

Software – Cost of OSS: Total Cost of Ownership – Types of Costs- Licensing: Types of

Licenses – Licenses in Use – Mixing Open and Close Code – Dual Licensing.

UNIT IV

Perl Programming

Perl - Introduction, Perl Basics: - Syntax, Variables, Strings, Numbers, Operators, Arrays: -

Using Arrays, Manipulating Arrays, Associative Arrays, Chop, Length, and Sub string. Hashes,

Arguments, Logic, Looping, Files, Pattern Matching, Environment Variables, Using cgilib for

Forms.

UNIT V
File Management PERL: - File Handling, Reading From Files, Appending Files, Writing to

Files, File Checking, Reading Directories.

Databases PERL: - DBI Module, DBI Connect, DBI Query, MySQL Module, MySQL Connect,

MySQL SelectDB, MySQL Query.

TEXT BOOK

1. Kailash vadera, Bhavyesh gandhi, Open Source Technology, 2009, Laxmi Publications.

2. Tom Christinasen& Nathan Torkington ,O‟Relliy , Perl CookBook ,SPD Pvt ltd,2006 Edition.

3. S.Narmadha, V.Raajkumar, Open source systems, 2010, Eswar Press.

4. Paul Kavanagh,Open Source Software: Implementation and Management, 2004, Digital Press.

.

WEBSITES

1. https://en.wikipedia.org/wiki/Free_Software_Foundation

 2. https://en.wikipedia.org/wiki/Open-source_software_development

 3. https://timreview.ca/article/146

 4. http://www.ijettcs.org/Volume1Issue3/IJETTCS-2012-09-06-008.pdf

 5. https://flosshub.org/system/files/p58-feller.pdf

 6. https://en.wikipedia.org/wiki/Zachman_Framework

 7. https://en.wikipedia.org/wiki/Soft_systems_methodology

 8. https://en.wikipedia.org/wiki/Taboo

Open Source Software 2015-2018

Batch

Department of CS,CA & IT, KAHE Page 3/3

ESE MARK ALLOCATION

1 Section A
20 x 1 = 20

20

2 Section B

5 x 8 = 40

Either ‘A’ or ‘B’ choice

40

3 TOTAL 60

Lecture Plan 2015-2018

Batch

Prepared By Manjula.D, Department of Computer Science, KAHE Page 1/4

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Coimbatore-641021

LECTURE PLAN

DEPARTMENT OF COMPUTER SCIENCE

STAFF NAME: D.MANJULA

SUBJECT NAME: OPEN SOURCE SOFTWARE SUB.CODE : 15CSU603A

SEMESTER: VI CLASS : III B.SC CS

S. No Lecture

Duration

Period

Topics to be Covered Support

Materials/Page

Nos

UNIT I

1 1 Overview of Free/ Open Source Software T3: 1-2

2 1 The Open Source Definition T3: 3

3 1 Examples of OSD Compliant Licenses T1: 12

4 1 Examples of Open Source Software Product T1:11

5 1
The Open Source Software Development

Process

T1:36-38

6 1
The Open Source Software Development

Process[Cont..]

T1:39-42

7 1 A History of Open Source software T1:16-19

8 1 The Berkeley Software Distribution T1:75-77

9 1 The Berkeley Software Distribution[Cont..] T1:78-80

10 1 The Free Software Foundation W1

11 1 Linux T1:81-96

12 1 Apache T1:71-74

13 1 Mozilla T1: 97-100

14 1 Open Source Software T3: 3

15 1
Recapitulation and Discussion of Important

Questions

Total Number of Hours planned for Unit I: 15

UNIT II

1 1 Qualification: Defining Open Source Software W3

2 1 Categorizing Defining Open Source Software W3

3 1
Specific Characteristics of Open Source

Software Transformation

W4

Lecture Plan 2015-2018

Batch

Prepared By Manjula.D, Department of Computer Science, KAHE Page 2/4

4 1 The OSS Development Process T1:36-38

5 1 The OSS Development Process[Cont..] T1:39-42

6 1 Taboos and Norms in OSS Development W8

7 1 The OSS Development Life Cycle W2

8 1 The OSS Development Life Cycle[Cont..] W2

9 1 Deriving a Framework for Analyzing OSS W5

10 1
Deriving a Framework for Analyzing

OSS[Cont..]

W5

11 1 Zachman‟s Framework for IS Architecture W6

12 1
Zachman‟s Framework for IS
Architecture[Cont..]

W6

13 1 CATWOE and Soft System Method W7

14 1 Deriving the Analytical Framework for OSS W5

15 1
Recapitulation and Discussion of Important

Questions

Total Number of Hours planned for Unit II: 15

UNIT III

1 1
Environment: The “where” of OSS, the “when”

of OSS

W5

2 1 World View W5

3 1 A Framework for classifying OSS Motivations W5

4 1
Technological Micro-level (individual)

motivation

W5

5 1
Economic Micro-level and Macro-level

(individual) Motivation

W5

6 1
Socio-political Micro-level and Macro-level

(individual) Motivation

W5

7 1 Open Source Server Applications T4: 145

8 1 Infrastructure Services T4: 146-147

9 1 Web Services, Database Servers, Mail Servers T4: 148-167

10 1 Systems Management T4: 168

11 1 Open Source Desktop Applications: Introduction T4: 173-174

12 1
Graphical Desktops, Web Browsers, The Office

Suite

T4: 175-194

13 1 Mail and Calendar Clients, Personal Software T4: 195-200

14 1 Cost of OSS: Total Cost of Ownership T4: 276-284

15 1

Types of Costs Licensing: Types of Licenses,

Licenses in Use

T4: 285-

287,297-

298,298-

300,W9

16 1
Mixing Open and Close Code, Dual Licensing.

T4: 300-302

17 1
Recapitulation and Discussion of Important

Questions

Total Number of Hours planned for Unit III: 17

Lecture Plan 2015-2018

Batch

Prepared By Manjula.D, Department of Computer Science, KAHE Page 3/4

UNIT IV

1 1
Perl Programming

Perl - Introduction

W9

2 1 Perl Basics- Syntax, Variables W9

3 1 Strings, Numbers T2:20 ,79

4 1 Operators W9

5 1 Arrays: - Using Arrays T2:146

6 1 Manipulating Arrays T2: 148-151

7 1 Associative Arrays T2: 152-160

8 1 Chop, Length W10

9 1 Sub string T2: 72

10 1 Hashes, Arguments T2: 201

11 1 Logic, Looping W9

12 1 Files, Pattern Matching T2: 321, 244

13 1 Environment Variables W9

14 1
Using cgilib for Forms.

T2: 913

15 1
Recapitulation and Discussion of Important

Questions

Total Number of Hours planned for Unit IV: 15

UNIT V

1 1 File Management PERL W9

2 1 File Handling W9

3 1 ReadingFrom Files, Appending Files W9

4 1 Writing to Files W9

5 1 File Checking W9

6 1
Reading Directories T2: 215-217,

W9

7 1
Databases PERL, DBI Module, DBI Connect,

DBI Query

T2:

8 1 MySQL Module, MySQL Connect W9

9 1 MySQL SelectDB, MySQL Query. W9

10 1
Recapitulation and Discussion of Important

Questions

11 1 End semester previous question paper

12 1 End semester previous question paper

13 1 End semester previous question paper

 Total Number of Hours planned for Unit V: 13

TOTAL NO.OF HOURS PLANNED : 75

Lecture Plan 2015-2018

Batch

Prepared By Manjula.D, Department of Computer Science, KAHE Page 4/4

TEXT BOOK

1. Kailash vadera, Bhavyesh gandhi, Open Source Technology, 2009, Laxmi

Publications.

2. Tom Christinasen& Nathan Torkington ,O‟Relliy , Perl CookBook ,SPD Pvt ltd,2006

Edition.

3. S.Narmadha, V.Raajkumar, Open source systems, 2010, Eswar Press.

4. Paul Kavanagh,Open Source Software: Implementation and Management, 2004,

Digital Press.

WEBSITES

1. https://en.wikipedia.org/wiki/Free_Software_Foundation

 2. https://en.wikipedia.org/wiki/Open-source_software_development

 3. https://timreview.ca/article/146

 4. http://www.ijettcs.org/Volume1Issue3/IJETTCS-2012-09-06-008.pdf

 5. https://flosshub.org/system/files/p58-feller.pdf

 6. https://en.wikipedia.org/wiki/Zachman_Framework

 7. https://en.wikipedia.org/wiki/Soft_systems_methodology

 8. https://en.wikipedia.org/wiki/Taboo

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 1/28

UNIT I

SYLLABUS

Overview of Free/ Open Source Software: The Open Source Definition - Examples of OSD

Compliant Licenses - Examples of Open Source Software Product – The Open Source Software

Development Process – A History of Open Source software: The Berkeley Software Distribution

– The Free Software Foundation – Linux – Apache – Mozilla – Open Source Software.

OVERVIEW OF FREE OPEN SOURCE SOFTWARE

 Free and open-source software (FOSS) is software that can be classified as

both free software and open-source software.

 That is, anyone is freely licensed to use, copy, study, and change the software in

any way, and the source code is openly shared so that people are encouraged to

voluntarily improve the design of the software.

 This is in contrast to proprietary software, where the software is under

restrictive copyright and the source code is usually hidden from the users.

BENEFITS:

 The benefits of using FOSS can include decreased software costs,

increased security and stability (especially in regard to malware),

protecting privacy, and giving users more control over their own hardware.

 Free, open-source operating systems such as Linux and descendents of BSD are

widely utilized today, powering millions of servers, desktops, smartphones

(e.g. Android), and other devices.

 Free software licenses and open-source licenses are used by many software

packages. The open-source software movement is an online social

movement behind widespread production and adoption of FOSS.

OPEN SOURCE DEFINITION

Open source software is computer software that has a source code available to the general

public for use as is or with modifications. This software typically does not require a license fee.

There are open source software applications for a variety of different uses such as office

automation, web design, content management, operating systems, and communications. The key

fact that makes open source software (OSS) different from proprietary software is its license. As

copyright material, software is almost always licensed. The license indicates how the software

may be used. OSS is unique in that it is always released under a license that has been certified to

meet the criteria of the Open Source Definition. These criteria include the right to:

https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Free_software_license
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Copyright
https://en.wikipedia.org/wiki/Security_(computing)
https://en.wikipedia.org/wiki/Malware
https://en.wikipedia.org/wiki/Privacy
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/BSD
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Desktop_computer
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Free_software_license
https://en.wikipedia.org/wiki/Open-source_license
https://en.wikipedia.org/wiki/List_of_open-source_software_packages
https://en.wikipedia.org/wiki/List_of_open-source_software_packages
https://en.wikipedia.org/wiki/Open-source_software_movement
https://en.wikipedia.org/wiki/Online_social_movement
https://en.wikipedia.org/wiki/Social_movement
https://en.wikipedia.org/wiki/Social_movement

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 2/28

 • Redistribute the software without restriction;

• Access the source code;

• Modify the source code; and

• Distribute the modified version of the software.

In contrast, creators of proprietary software usually do not make their source code

available to others to modify. When considering the advantages of open source software you

should consider the open source product itself. Open source products vary in quality. OSS

software does not come with phone support or personalized e-mail support. However, there are

commercial service providers who will provide support. If you need a lot of support, consider

whether the overall costs of using an open source product will be higher than that of a

proprietary product.

Nobody owns or controls the term ―Open Source‖, as it was deemed too broad and

descriptive to be a trademark under US Law. However, in general use, open source software is

software distributed under terms that comply with the Open Source Definition (OSD). The OSD

is a document maintained by the Open Source Initiative(OSI).

Furthermore, it is eligible to bear the OSI Certified certification mark (Perens, 1999;

Open Source Initiative, 2001a). According to the OSI, the OSI certified certification mark

―applies to software, not to licenses‖ (Open Source Initiative, 2001a). However, in practice, the

OSD has been used mainly as a licensing standard, and the OSI maintains a list of OSD-

compliant licenses. The majority of OSS products in circulation are self-certified (they are

distributed under the terms of a previously approved license, and are thus implicitly trusted to

implement it properly) and are not evaluated by the OSI on a product-byproduct basis.

Developers may also, of course, submit a new license for OSI approval.

Either way, the OSI Certified mark is used by attaching one of two notices to the

software product, namely, ―This software is OSI Certified Open Source Software. OSI Certified

is a certification mark of the Open Source Initiative‖ or, simply, ―OSI Certified Open Source

Software‖ (Open Source Initiative, 2001a).

According to the Open Source Definition (Open Source Initiative, 2001b): Open Source

doesn’t just mean access to the source code. The distribution terms of open source software must

comply with the following criteria:

1. Free Redistribution: The license shall not restrict any party from selling or giving away the

software as a component of an aggregate software distribution containing programs from several

sources. The license shall not require a royalty or other fee for such sale.

2. Source Code: The program must include source code, and must follow distribution in source

code as well as compiled form. Where some form of a product is not distributed with source

code, there must be a well-publicized means of obtaining the source code for no more than a

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 3/28

reasonable reproduction cost- preferably, downloading via the internet without charge. The

source code must be the preferred form in which a programmer would modify the program.

3. Derived Works: The license must allow modifications and derived works, and must allow

them to be distributed under the same terms as the license of the original software.

4. Integrity of the Author’s Source Code: The license may restrict source-code from being

distributed in modified form only if the license allows the distribution of ―patch files‖ with the

source code for the purpose of modifying the program at build time. The license must explicitly

permit distribution of software built from modified source code. The license may require derived

works to carry a different name or version number from the original software.

5. No Discrimination against Persons or Groups: The license must not discriminate against

any person or group of persons.

6. No Discrimination against Fields of Endeavor: The license must not restrict anyone from

making use of the program in a specific field of endeavor. For example, it may not restrict the

program from being used in a business, or from being used for genetic research.

7. Distribution of License: The rights attached to the program must apply to all to whom the

program is redistributed without the need for execution of an additional license by those parties.

8. License must not be specific to a product: The rights attached to the program must not

depend on the program’s being part of a particular software distribution. If the program is

extracted from that distribution and used or distributed within the terms of the program’s license,

all parties to whom the program is redistributed should have the same rights as those that are

granted in conjunction with the original software distribution.

9. License must not contaminate other software: The license must not place restrictions on

other software that is distributed along with the licensed software.

For example, the license must not insist that all other programs distributed on the same medium

must be open-source software.

EXAMPLES OF OSD-COMPLIANT LICENSES

The Open Source Initiative (2001c) provides a list of licenses that have been reviewed

and found to be compliant with the OSD. There are 21 licenses on the list, namely

The GNU General Public License (GPL)

The GNU Lesser Public License (LGPL)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 4/28

The Berkeley Software Distribution (BSD) License

The MIT License

The Artistic License

The Mozilla Public License (MPL)

The Qt Public License (QPL)

The IBM Public License

The MITRE Collaborative Virtual Workspace License (CVW License)

The Ricoh Source Code Public License

The Python License

The zlib/libpng license

The Apache Software License

The Vovida Software License

The Sun Internet Standards Source License (SISSL)

The Intel Open Source License

The Jabber Open Source License

The Nokia Open Source License

The Sleepycat License

The Nethack General Public License

Since all of these licenses conform to the OSD, we will limit our comments to the more

distinctive qualities of the most widely used licenses. The GPL and LGPL were created by

Richard Stallman’s Free Software Foundation (FSF) and, in fact, predate the coining of the term

Open Source. There is an enormous amount of GPL-licenses software in circulation- 11723

independent projects hosted at the SourceForge website alone and the FSF itself has produced

over 170 mature products, collectively referred to as the GNU Project.

SOME EXAMPLES OF OPEN SOURCE SOFTWARE

https://www.neteasy.us/technology/open-source/examples-of-open-source-software#some-examples-of-open

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 5/28

Accounting:

 SQL-Ledger (accounting system)

Anti-virus:

 ClamAV

Databases:

 LDAP

 MySQL (database)

 PostgreSQL (relational database with ability to do stored procedures)

Knowledge Management:

 Plone (open source content management system)

 Knowledge Tree

Domain Name Servers:

 Bind

 PowerDNS

Telephony:

 Asterisk (A Phone system [PBX] that also supports Voice Over IP technology)

 Elastix

 FreePBX

 Trixbox CE

E-mail Servers:

 PostFix

 QMail

 Sendmail

File Servers:

 FreeNAS

 OpenFiler

 Samba

http://sql-ledger.org/
http://www.clamav.net/
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
http://www.mysql.org/
http://www.postgresql.org/
http://plone.org/
http://www.knowledgetree.com/opensource
https://www.isc.org/software/bind
http://www.powerdns.com/
http://asterisk.org/
http://www.elastix.org/
http://www.freepbx.org/
http://www.trixbox.org/
http://www.postfix.org/
http://www.qmail.org/
http://www.sendmail.org/
http://www.freenas.org/
http://www.openfiler.com/
http://www.samba.org/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 6/28

Medical Software:

 http://www.oemr.org

 http://en.wikipedia.org/wiki/List_of_open_source_healthcare_software

Other Valuable Systems (servers & desktops):

 Apache (web server)

 CentOS (Linux distribution from Red Hat's development efforts)

 Fedora (Linux destop system)

 JBoss (J2EE server for Enterprise Java Development)

 Slackware (Linux distribution)

 Tomcat (Java servlet container)

 Ubuntu (a Linux desktop operating system)

 Zope (Content management system and portal)

 Productivity Software:

 Evolution (calendar, contact manager and e-mail client)

 Firefox (web browser)

 Gimp (image manipulation program)

 Open Office (word processor, spreadsheet, etc.)

 Thunderbird (e-mail client, news aggregator, etc.)

Programming Languages:

C, C++, Mono, PHP, Python, Perl, Ruby, TcL

Spam Filtering:

 AmavisD

 PostGrey

 SpamAssign

Routing/Networking:

 DHCPD

 IPTables

 PF Sense

http://www.oemr.org/
http://en.wikipedia.org/wiki/List_of_open_source_healthcare_software
http://httpd.apache.org/
http://www.centos.org/
http://fedoraproject.org/
http://www.jboss.org/
http://www.slackware.com/
http://tomcat.apache.org/
http://www.ubuntu.com/
http://www.zope.org/
http://www.novell.com/products/desktop/features/evolution.html
http://www.mozilla.com/firefox/
http://www.gimp.org/
http://www.openoffice.org/
http://www.mozilla.com/thunderbird/
http://www.ijs.si/software/amavisd/
http://postgrey.schweikert.ch/
http://spamassassin.apache.org/
https://www.isc.org/software/dhcp
http://www.netfilter.org/
http://www.pfsense.org/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 7/28

Virtualization:

 KVM

 Xen

OPEN SOURCE SOFTWARE DEVELOPMENT PROCESS

Open-source software development is the process by which open-source software, or

similar software whose source code is publicly available, is developed. These are software

products available with its source code under an open-source license to study, change, and

improve its design. Examples of some popular open-source software products are Mozilla

Firefox, Google Chromium, Android, LibreOffice and the VLC media player. Open-source

software development has been a large part of the creation of the World Wide Web as we know

it, with Tim Berners-Lee contributing his HTML code development as the original platform upon

which the internet is now built.

In his 1997 essay The Cathedral and the Bazaar, open-source evangelist Eric S.

Raymond suggests a model for developing OSS known as the bazaar model. Raymond likens the

development of software by traditional methodologies to building a cathedral, "carefully crafted

by individual wizards or small bands of mages working in splendid isolation". He suggests that

all software should be developed using the bazaar style, which he described as "a great babbling

bazaar of differing agendas and approaches

In the traditional model of development, which he called the cathedral model,

development takes place in a centralized way. Roles are clearly defined. Roles include people

dedicated to designing (the architects), people responsible for managing the project, and people

responsible for implementation. Traditional software engineering follows the cathedral model.

The bazaar model, however, is different. In this model, roles are not clearly defined.

Gregorio Robles

 suggests that software developed using the bazaar model should exhibit the

following patterns:

Users should be treated as co-developers

The users are treated like co-developers and so they should have access to the source code of

the software. Furthermore, users are encouraged to submit additions to the software, code fixes

for the software, bug reports, documentation etc. Having more co-developers increases the rate

at which the software evolves. Linus's law states, "Given enough eyeballs all bugs are shallow."

This means that if many users view the source code, they will eventually find all bugs and

suggest how to fix them. Note that some users have advanced programming skills, and

furthermore, each user's machine provides an additional testing environment. This new testing

environment offers that ability to find and fix a new bug.

http://www.linux-kvm.org/
http://xen.org/
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Source_Code_Management
https://en.wikipedia.org/wiki/Open-source_license
https://en.wikipedia.org/wiki/Mozilla_Firefox
https://en.wikipedia.org/wiki/Mozilla_Firefox
https://en.wikipedia.org/wiki/Chromium_(web_browser)
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/LibreOffice
https://en.wikipedia.org/wiki/VLC_media_player
https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://en.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar
https://en.wikipedia.org/wiki/Open-source_evangelist
https://en.wikipedia.org/wiki/Eric_S._Raymond
https://en.wikipedia.org/wiki/Eric_S._Raymond

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 8/28

Early releases

The first version of the software should be released as early as possible so as to increase

one's chances of finding co-developers early.

Frequent integration

Code changes should be integrated (merged into a shared code base) as often as possible

so as to avoid the overhead of fixing a large number of bugs at the end of the project life cycle.

Some open source projects have nightly builds where integration is done automatically on a

daily basis.

Several versions

There should be at least two versions of the software. There should be a buggier version

with more features and a more stable version with fewer features. The buggy version (also called

the development version) is for users who want the immediate use of the latest features, and are

willing to accept the risk of using code that is not yet thoroughly tested. The users can then act as

co-developers, reporting bugs and providing bug fixes.

High modularization

The general structure of the software should be modular allowing for parallel

development on independent components.

Dynamic decision making structure

There is a need for a decision making structure, whether formal or informal, that makes

strategic decisions depending on changing user requirements and other factors. Cf. Extreme

programming.

Data suggests, however, that OSS is not quite as democratic as the bazaar model

suggests. An analysis of five billion bytes of free/open source code by 31,999 developers shows

that 74% of the code was written by the most active 10% of authors. The average number of

authors involved in a project was 5.1, with the median at 2.

Open source software is usually easier to obtain than proprietary software, often resulting

in increased use. Additionally, the availability of an open source implementation of a standard

can increase adoption of that standard. It has also helped to build developer loyalty as developers

feel empowered and have a sense of ownership of the end product.

Moreover, lower costs of marketing and logistical services are needed for OSS. OSS also

helps companies keep abreast of technology developments. It is a good tool to promote a

company's image, including its commercial products. The OSS development approach has

helped produce reliable, high quality software quickly and inexpensively.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 9/28

Open source development offers the potential for a more flexible technology and quicker

innovation. It is said to be more reliable since it typically has thousands of independent

programmers testing and fixing bugs of the software. Open source is not dependent on the

company or author that originally created it. Even if the company fails, the code continues to

exist and be developed by its users. Also, it uses open standards accessible to everyone; thus, it

does not have the problem of incompatible formats that exist in proprietary software.

It is flexible because modular systems allow programmers to build custom interfaces, or

add new abilities to it and it is innovative since open source programs are the product of

collaboration among a large number of different programmers. The mix of divergent

perspectives, corporate objectives, and personal goals speeds up innovation.

Moreover, free software can be developed in accord with purely technical requirements.

It does not require thinking about commercial pressure that often degrades the quality of the

software. Commercial pressures make traditional software developers pay more attention to

customers' requirements than to security requirements, since such features are somewhat

invisible to the customer.

It is sometimes said that the open source development process may not be well defined

and the stages in the development process, such as system testing and documentation may be

ignored. However this is only true for small (mostly single programmer) projects. Larger,

successful projects do define and enforce at least some rules as they need them to make the

teamwork possible. In the most complex projects these rules may be as strict as reviewing even

minor change by two independent developers.

 In terms of security, open source may allow hackers to know about the weaknesses or

loopholes of the software more easily than closed-source software. It depends on control

mechanisms in order to create effective performance of autonomous agents who participate in

virtual organizations.

Development tools

In OSS development, tools are used to support the development of the product and the

development process itself.

Revision control systems such as Concurrent Versions System (CVS) and

later Subversion (SVN) and Git are examples of tools, often themselves open source, help

manage the source code files and the changes to those files for a software project. The projects

are frequently hosted and published on sites like Launchpad, Bitbucket, and GitHub.

https://en.wikipedia.org/wiki/Revision_control
https://en.wikipedia.org/wiki/Subversion_(software)
https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Launchpad_(website)
https://en.wikipedia.org/wiki/Bitbucket
https://en.wikipedia.org/wiki/GitHub

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 10/28

Open source projects are often loosely organized with "little formalized process modeling

or support", but utilities such as issue trackers are often used to organize open source software

development. Commonly used bug trackers include Bugzilla and Redmine.

Tools such as mailing lists and IRC provide means of coordination among

developers. Centralized code hosting sites also have social features that allow developers to

communicate.

A HISTORY OF OPEN SOURCE SOFTWARE

In the 1950s and 1960s, computer operating software and compilers were delivered as a

part of hardware purchases without separate fees. At the time, source code, the human-readable

form of software, was generally distributed with the software providing the ability to fix bugs or

add new functions. Universities were early adopters of computing technology. Many of the

modifications developed by universities were openly shared, in keeping with the academic

principles of sharing knowledge, and organizations sprung up to facilitate sharing. As large-scale

operating systems matured, fewer organizations allowed modifications to the operating software,

and eventually such operating systems were closed to modification. However, utilities and other

added-function applications are still shared and new organizations have been formed to promote

the sharing of software.

In 1969 the Advanced Research Projects Agency Network (ARPANET) was build, a

transcontinental, high-speed computer network. The network (later succeeded by the Internet)

simplified this exchange of software code and did further spread shared code and the hacking

culture.

Some free software which was developed in the 1970s continues to be developed and

used, such as TeX (developed by Donald Knuth) and SPICE.

Free software before the 1980s

In the 1950s and into the 1960s almost all software was produced by academics and

corporate researchers working in collaboration, often shared as public domain software. As such,

it was generally distributed under the principles of openness and co-operation long established in

the fields of academia, and was not seen as a commodity in itself. Such communal behavior

became later a central element of the so-called hacking culture (a term with a positive

connotation among open source programmers). At this time, source code, the human-readable

form of software, was generally distributed with the software machine code because users

frequently modified the software themselves, because it would not run on different hardware or

OS without modification, and also to fix bugs or add new functions.

In 1969 the Advanced Research Projects Agency Network (ARPANET) was build, a

transcontinental, high-speed computer network. The network (later succeeded by the Internet)

https://en.wikipedia.org/wiki/Bugtracker
https://en.wikipedia.org/wiki/Bugzilla
https://en.wikipedia.org/wiki/Redmine
https://en.wikipedia.org/wiki/Advanced_Research_Projects_Agency_Network
https://en.wikipedia.org/wiki/TeX
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/SPICE
https://en.wikipedia.org/wiki/Public_domain_software
https://en.wikipedia.org/wiki/Scientific_method#Communication_and_community
https://en.wikipedia.org/wiki/Academia
https://en.wikipedia.org/wiki/Hacking_culture
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Advanced_Research_Projects_Agency_Network

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 11/28

simplified this exchange of software code and did further spread shared code and the hacking

culture.

Some free software which was developed in the 1970s continues to be developed and

used, such as TeX (developed by Donald Knuth) and SPICE.

Initial decline of free software

Software was not considered copyrightable before 1974 the US Commission on New

Technological Uses of Copyrighted Works (CONTU) decided that "computer programs, to the

extent that they embody an author's original creation, are proper subject matter of copyright",

Therefore, software had no licenses attached and was shared as public domain software, typically

with source code.

By the late 1960s change was coming: as operating systems and programming

language compilers evolved, software production costs were dramatically increasing relative to

hardware. In the United States vs. IBM antitrust suit, filed 17 January 1969, the U.S. government

charged that bundled software was anticompetitive.
[12]

 While some software continued to come

at no cost, there was a growing amount of software that was for sale only under restrictive

licences.

In the early 1970s AT&T distributed early versions of Unix at no cost to government and

academic researchers, but these versions did not come with permission to redistribute or to

distribute modified versions, and were thus not free software in the modern meaning of the

phrase.

After Unix became more widespread in the early 1980s, AT&T stopped the free

distribution and charged for system patches. As it is quite difficult to switch to another

architecture, most researchers paid for a commercial licence.

In 1976 Bill Gates wrote an essay entitled Open Letter to Hobbyists, in which he

expressed dismay at the widespread sharing of Microsoft's product Altair BASIC by hobbyists

without paying its licensing fee.

 In 1979, AT&T began to enforce its licences when the company decided it might profit

by selling the Unix system.

In an announcement letter dated 8 February 1983 IBM inaugurated a policy of no longer

distributing sources with purchased software.

SHARE program library

The SHARE users group, founded in 1955, began collecting and distributing free

software. The first documented distribution from SHARE was dated 17 October 1955.

https://en.wikipedia.org/wiki/TeX
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/SPICE
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/History_of_free_and_open-source_software#cite_note-12
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Bill_Gates
https://en.wikipedia.org/wiki/Open_Letter_to_Hobbyists
https://en.wikipedia.org/wiki/Altair_BASIC

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 12/28

 The "SHARE Program Library Agency" (SPLA) distributed information and software,

notably on magnetic tape.

DECUS tapes

In the early 1980s, the so-called DECUS tapes were a worldwide system for transmission

of free software for users of DEC equipment. Operating systems were usually proprietary

software, but many tools like the TECO editor, Runoff text formatter, or List file listing utility,

etc. were developed to make users' lives easier, and distributed on the DECUS tapes. The 1981

Decus tape was probably the most innovative by bringing the Lawrence Berkeley

Laboratory Software Tools Virtual Operating System which permitted users to use a Unix-like

system on DEC 16-bit PDP-11s and 32-bit VAXes running under the VMS operating system

Launch of the free software movement

In 1983, Richard Stallman launched the GNU Project to write a complete operating

system free from constraints on use of its source code. Particular incidents that motivated this

include a case where an annoying printer couldn't be fixed because the source code was withheld

from users. In 1989, the first version of the GNU General Public License was published. A

slightly updated version 2 was published in 1991. In 1989, some GNU developers formed the

company Cygnus Solutions.

Linux (1991–)

The Linux kernel, started by Linus Torvalds, was released as freely modifiable source

code in 1991. The license wasn't a free software license, but with version 0.12 in February 1992.

Among Linux distributions, Debian GNU/Linux, begun by Ian Murdock in 1993, is noteworthy

for being explicitly committed to the GNU and FSF principles of free software.

The Debian developers' principles are expressed in the Debian Social Contract. Since its

inception, the Debian project has been closely linked with the FSF, and in fact was sponsored by

the FSF for a year in 1994–1995.

In 1997, former Debian project leader Bruce Perens also helped found Software in the

Public Interest, a non-profit funding and support organization for various free software projects.

Since 1996, the Linux kernel has included proprietary licensed components, so that it was

no longer entirely free software. Therefore, the Free Software Foundation Latin America

released in 2008 a modified version of the Linux-kernel called Linux-libre, where all proprietary

and non-free components were removed.

https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/TECO_(text_editor)
https://en.wikipedia.org/wiki/Runoff_(program)
https://en.wikipedia.org/wiki/PDP-11
https://en.wikipedia.org/wiki/VAX
https://en.wikipedia.org/wiki/OpenVMS
https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/GNU_Project
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/Cygnus_Solutions
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Linus_Torvalds
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Linux_distribution
https://en.wikipedia.org/wiki/Debian_GNU/Linux
https://en.wikipedia.org/wiki/Ian_Murdock
https://en.wikipedia.org/wiki/Debian_Social_Contract
https://en.wikipedia.org/wiki/Bruce_Perens
https://en.wikipedia.org/wiki/Software_in_the_Public_Interest
https://en.wikipedia.org/wiki/Software_in_the_Public_Interest
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Free_Software_Foundation_Latin_America
https://en.wikipedia.org/wiki/Linux-libre

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 13/28

The free BSDs (1993)

When the USL v. BSDi lawsuit was settled out of court in

1993, FreeBSD and NetBSD (both derived from 386BSD) were released as free software. In

1995, OpenBSD forked from NetBSD. In 2004, Dragonfly BSD forked from FreeBSD.

The X Window System was created in 1984, and became the de facto standard window

system in desktop free software operating systems by the mid-1990s. In 2003, a proprietary Unix

vendor and former Linux distribution vendor called SCO alleged that Unix intellectual property

had been inappropriately copied into the Linux kernel, and sued IBM, claiming that it bore

responsibility for this.

 In 2004 the European Commission found Microsoft guilty of anti-competitive behavior

with respect to interoperability in the workgroup software market. Microsoft had formerly

settled United States v. Microsoft in 2001, in a case which charged that it illegally abused its

monopoly power to force computer manufacturers to preinstall Internet Explorer.

 In 2008 the International Organization for Standardization published Microsoft's Office

Open XML as an international standard, which crucially meant that it, and therefore Microsoft

Office, could be used in projects where the use of open standards were mandated by law or by

policy. As of 2012, no fully correct open source implementation of OOXML exists, which

validates the critics' remarks about OOXML being difficult to implement and underspecified. In

September 2008, Google released the first version of Android, a new smartphone operating

system, as open source (some Google applications that are sometimes but not always bundled

with Android are not open source).

Chromium OS (2009–)

Until recently, Linux was still a relatively uncommon choice of operating system for

desktops and laptops. However, Google's Chrome books, running Chrome OS which is

essentially a web thin client, have captured 20-25% of the sub-$300 US laptop market. Chrome

OS is built from the open source Chromium OS, which is based on Linux, in much the same way

that versions of Android shipped on commercially available phones are built from the open

source version of Android.

https://en.wikipedia.org/wiki/USL_v._BSDi
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/NetBSD
https://en.wikipedia.org/wiki/386BSD
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/Fork_(software_development)
https://en.wikipedia.org/wiki/Dragonfly_BSD
https://en.wikipedia.org/wiki/X_Window_System
https://en.wikipedia.org/wiki/SCO_Group
https://en.wikipedia.org/wiki/European_Commission
https://en.wikipedia.org/wiki/United_States_v._Microsoft
https://en.wikipedia.org/wiki/Internet_Explorer
https://en.wikipedia.org/wiki/International_Organisation_for_Standardisation
https://en.wikipedia.org/wiki/Office_Open_XML
https://en.wikipedia.org/wiki/Office_Open_XML
https://en.wikipedia.org/wiki/International_standard
https://en.wikipedia.org/wiki/Microsoft_Office
https://en.wikipedia.org/wiki/Microsoft_Office
https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Chromebook
https://en.wikipedia.org/wiki/Chrome_OS
https://en.wikipedia.org/wiki/Web_thin_client
https://en.wikipedia.org/wiki/Chromium_OS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 14/28

BERKELEY SOFTWARE DISTRIBUTION

Berkeley Software Distribution (BSD) was a Unix operating system derivative developed

and distributed by the Computer Systems Research Group (CSRG) of the University of

California, Berkeley, from 1977 to 1995. Today the term "BSD" is often used non-specifically to

refer to any of the BSD descendants which together form a branch of the family of Unix-

like operating systems. Operating systems derived from the original BSD code remain actively

developed and widely used.

Short for Berkeley Software Distribution, BSD is a Unix-like operating system first

introduced in late 1977. Originally titled 1BSD, it was developed at the Computer System

Research Group (CSRG) of the University of California at Berkeley. Today, BSD comes in

various flavors such as BSDi Internet Server (BSD/OS), FreeBSD, NetBSD, and OpenBSD

below is a brief introduction to each of these flavors of BSD.

BSDi Internet Server (BSD/OS)

BSDi or BSD Inc. was founded in 1991 by some of the leading CSRG computer

scientists. BSD/OS is a full-function, POSIX-compatible, Unix-like operating system for the

386, 486, and Pentium architectures. BSDI believes in one-stop shopping, high levels of

integration and a product that requires payment of no external licensing fees.

FreeBSD

Developed and maintained by a large team of individuals. FreeBSD is a full function,

POSIX-compatible, Unix-like operating system for Intel compatible (x86), DEC Alpha and PC-

98 architectures.

NetBSD

Developed and maintained by a large team of individuals. NetBSD is another free version

of BSD compatible with a very large variety of platforms, from 64-bit Alpha servers to handheld

devices.

OpenBSD

Developed and maintained by a large team of individuals. OpenBSD is multi-platform

4.4BSD-based Unix-like operating system. macOS X.Apple operating system based on BSD.

Relationship to Research Unix

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Computer_Systems_Research_Group
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Source_code
https://www.computerhope.com/jargon/u/unix.htm
https://www.computerhope.com/history/1977.htm
https://www.computerhope.com/history/1991.htm
https://www.computerhope.com/jargon/p/posix.htm
https://www.computerhope.com/comp/apple.htm

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 15/28

Starting with the 8th Edition, versions of Research Unix at Bell Labs had a close

relationship to BSD. This began when 4.1cBSD for the VAX was used as the basis for Research

Unix 8th Edition. This continued in subsequent versions, such as the 9th Edition, which

incorporated source code and improvements from 4.3BSD. The result was that these later

versions of Research Unix were closer to BSD than they were to System V. In a Usenet posting

from 2000, Dennis Ritchie described this relationship between BSD and Research Unix.

Relationship to System V

Eric S. Raymond summarizes the longstanding relationship between System V and BSD,

stating, "The divide was roughly between longhairs and shorthairs; programmers and technical

people tended to line up with Berkeley and BSD, more business-oriented types with AT&T and

System V.

In 1989, David A. Curry wrote about the differences between BSD and System V. He

characterized System V as being often regarded as the "standard Unix." However, he described

BSD as more popular among university and government computer centers, due to its advanced

features and performance.

Berkeley sockets

Berkeley's Unix was the first Unix to include libraries supporting the Internet Protocol

stacks: Berkeley sockets. A Unix implementation of IP's predecessor, the ARPAnet's NCP, with

FTP and Telnet clients, had been produced at U. Illinois in 1975, and was available at Berkeley.

However, the memory scarcity on the PDP-11 forced a complicated design and performance

problems.

Binary compatibility

BSD operating systems can run much native software of several other operating systems

on the same architecture, using a binary compatibility layer. Much simpler and faster than

emulation, this allows, for instance, applications intended for Linux to be run at effectively full

speed. This makes BSDs not only suitable for server environments, but also for workstation

ones, given the increasing availability of commercial or closed-source software for Linux only.

This also allows administrators to migrate legacy commercial applications, which may have only

supported commercial Unix variants, to a more modern operating system, retaining the

functionality of such applications until they can be replaced by a better alternative.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 16/28

Standards adherence

Current BSD operating system variants support many of the common IEEE, ANSI, ISO,

and POSIX standards, while retaining most of the traditional BSD behavior. Like AT&T Unix,

the BSD kernel is monolithic, meaning that device drivers in the kernel run in privileged mode,

as part of the core of the operating system.

THE FREE SOFTWARE FOUNDATION

• “Free software is a matter of liberty, not price.

• To understand the concept, you should think of free as in free speech (right), not as

in free beer (gift).

• Free software is a matter of the users' freedom to run, copy, distribute, study, change and

improve the software.

– The freedom to run the program, for any purpose (freedom 0).

– The freedom to study how the program works, and adapt it to your needs

(freedom 1). Access to the source code is a precondition for this.

– The freedom to redistribute copies so you can help your neighbor (freedom 2).

The freedom to improve the program, and release your improvements (and modified

versions in general) to the public, so that the whole community benefits (freedom 3). Access to

the source code is a precondition for this.‖

―A program is free software if users have all of these freedoms. Thus, you should be free

to redistribute copies, either with or without modifications, either gratis or charging a fee for

distribution, to anyone anywhere. Being free to do these things means (among other things) that

you do not have to ask or pay for permission.

You should also have the freedom to make modifications and use them privately in your

own work or play, without even mentioning that they exist. If you do publish your changes, you

should not be required to notify anyone in particular, or in any particular way.‖

Very counter-culture

Hacker is considered a ―good-guy‖

―Hacker (computer security) someone involved in computer security/insecurity

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 17/28

Hacker (programmer subculture), a programmer subculture originating in the US academia in the

1960s, which is nowadays mainly notable for the free software/open source movement

Hacker (hobbyist), an enthusiastic home computer hobbyist‖ http://en.wikipedia.org/wiki/Hacker

Cracker is a ―bad-guy‖

A cracker is someone who cracks software or digital media

―Software cracking is the modification of software to remove protection methods: copy

protections, trial/demo version, serial number, hardware key, date checks, CD check or software

annoyances like nag screens and adware‖.

 General Public License - GPL in 1991

 The community rather than the company

 Copyleft

 No limits on software released under this license

 Opposite of proprietary software

LINUX

Linux is the best-known and most-used open source operating system. As an operating

system, Linux is software that sits underneath all of the other software on a computer, receiving

requests from those programs and relaying these requests to the computer’s hardware.

https://opensource.com/resources/what-open-source

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 18/28

For the purposes of this page, we use the term ―Linux‖ to refer to the Linux kernel, but also the

set of programs, tools, and services that are typically bundled together with the Linux kernel to

provide all of the necessary components of a fully functional operating system. Some people,

particularly members of the Free Software Foundation, refer to this collection as GNU/Linux,

because many of the tools included are GNU components. However, not all Linux installations

use GNU components as a part of their operating system. Android, for example, uses a Linux

kernel but relies very little on GNU tools.

How does Linux differ from other operating systems?

In many ways, Linux is similar to other operating systems you may have used before,

such as Windows, OS X, or iOS. Like other operating systems, Linux has a graphical interface,

and types of software you are accustomed to using on other operating systems, such as word

processing applications, have Linux equivalents. In many cases, the software’s creator may have

made a Linux version of the same program you use on other systems. If you can use a computer

or other electronic device, you can use Linux.

But Linux also is different from other operating systems in many important ways. First,

and perhaps most importantly, Linux is open source software. The code used to create Linux is

free and available to the public to view, edit, and—for users with the appropriate skills—to

contribute to.

Linux is also different in that, although the core pieces of the Linux operating system are

generally common, there are many distributions of Linux, which include different software

options. This means that Linux is incredibly customizable, because not just applications, such as

word processors and web browsers, can be swapped out. Linux users also can choose core

components, such as which system displays graphics, and other user-interface components.

https://opensource.com/tags/android

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 19/28

What is the difference between Unix and Linux?

We may have heard of Unix, which is an operating system developed in the 1970s at Bell

Labs by Ken Thompson, Dennis Ritchie, and others. Unix and Linux are similar in many ways,

and in fact, Linux was originally created to be similar to Unix. Both have similar tools for

interfacing with the systems, programming tools, filesystem layouts, and other key components.

However, Unix is not free. Over the years, a number of different operating systems have been

created that attempted to be ―unix-like‖ or ―unix-compatible,‖ but Linux has been the most

successful, far surpassing its predecessors in popularity.

Who uses Linux?

We are probably already using Linux, whether you know it or not. Depending on which

user survey you look at, between one- and two-thirds of the webpages on the Internet are

generated by servers running Linux.

Companies and individuals choose Linux for their servers because it is secure, and you

can receive excellent support from a large community of users, in addition to companies like

Canonical, SUSE, and Red Hat, which offer commercial support.

Many of the devices you own probably, such as Android phones, digital storage devices,

personal video recorders, cameras, wearables, and more, also run Linux. Even your car has

Linux running under the hood.

Who “owns” Linux?

By virtue of its open source licensing, Linux is freely available to anyone. However, the

trademark on the name ―Linux‖ rests with its creator, Linus Torvalds. The source code for Linux

is under copyright by its many individual authors, and licensed under the GPLv2 license.

Because Linux has such a large number of contributors from across multiple decades of

development, contacting each individual author and getting them to agree to a new license is

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 20/28

virtually impossible, so that Linux remaining licensed under the GPLv2 in perpetuity is all but

assured.

How was Linux created?

Linux was created in 1991 by Linus Torvalds, a then-student at the University of

Helsinki. Torvalds built Linux as a free and open source alternative to Minix, another Unix clone

that was predominantly used in academic settings. He originally intended to name it ―Freax,‖ but

the administrator of the server Torvalds used to distribute the original code named his directory

―Linux‖ after a combination of Torvalds’ first name and the word Unix, and the name stuck.

Most of the Linux kernel is written in the C programming language, with a little bit of

assembly and other languages sprinkled in. If you’re interested in writing code for the Linux

kernel itself, a good place to get started is in the Kernel Newbies FAQ, which will explain some

of the concepts and processes you’ll want to be familiar with.

But the Linux community is much more than the kernel, and needs contributions from

lots of other people besides programmers. Every distribution contains hundreds or thousands of

programs that can be distributed along with it, and each of these programs, as well as the

distribution itself, need a variety of people and skill sets to make them successful, including:

 Testers to make sure everything works on different configurations of hardware and

software, and to report the bugs when it does not.

 Designers to create user interfaces and graphics distributed with various programs.

 Writers who can create documentation, how-tos, and other important text distributed with

software.

 Translators to take programs and documentation from their native languages and make

them accessible to people around the world.

 Packagers to take software programs and put all the parts together to make sure they run

flawlessly in different distributions.

http://kernelnewbies.org/FAQ/WhereDoIBegin

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 21/28

 Evangelists to spread the word about Linux and open source in general.

 And of course developers to write the software itself.

The GNU/Linux distributions that are entirely free as in freedom. All of the distributions

that follow are installable to a computer's hard drive; most can be run live.

The Free Software Foundation recommends and endorses these GNU/Linux distros,

although we do not try to judge or compare them based on any criterion other than freedom;

therefore, we list them in alphabetical order. We encourage you to read these brief descriptions

and to consult their respective web sites and other information to choose the one best for you.

These distros are ready-to-use full systems whose developers have made a commitment

to follow the Guidelines for Free System Distributions. This means these distros will include,

and propose, exclusively free software. They will reject nonfree applications, nonfree

programming platforms, nonfree drivers, nonfree firmware ―blobs‖, nonfree games, and any

other nonfree software, as well as nonfree manuals or documentation.

If one of these distros ever does include or propose anything nonfree, that must have

happened by mistake, and the developers are committed to removing it. If you find nonfree

software or documentation in one of these distributions, you can report the problem, and earn

GNU Bucks, while we inform the developers so they can fix the problem.

Fixing freedom bugs is an ethical requirement for listing a distro here; therefore, we list

only distros with a development team that has told us it will remove any nonfree software that

might be found in them. Usually the team consists of volunteers, and they don't make legally

binding commitments to users; but if we find out a distro is not properly maintained, we will de-

list it.

We hope the other existing GNU/Linux distributions will become entirely free software

so that we can list them here. If you wish to improve the state of free distros, helping to develop

an existing free distro contributes more than starting a new one.

All of the distributions that follow are installable to a computer's hard drive; most can be

run live. Not all hardware works in the free world; each distro's site should say which hardware it

supports.

https://www.gnu.org/gnu/linux-and-gnu.html
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/distros/free-system-distribution-guidelines.html
https://www.gnu.org/help/gnu-bucks.html
https://www.gnu.org/help/gnu-bucks.html

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 22/28

APACHE

The Apache Software Foundation (ASF) is an American non-profit

corporation (classified as 501(c)(3) in the United States) to support Apache software projects,

including the Apache HTTP Server. The ASF was formed from the Apache Group and

incorporated in Delaware, U.S., in June 1999.

The Apache Software Foundation is a decentralized open source community of

developers. The software they produce is distributed under the terms of theApache License and

is free and open-source software (FOSS). The Apache projects are characterized by a

collaborative, consensus-based development process and an open and pragmatic software

license.

Each project is managed by a self-selected team of technical experts who are active

contributors to the project. The ASF is a meritocracy, implying that membership of the

foundation is granted only to volunteers who have actively contributed to Apache projects. The

ASF is considered a second generation

 open-source organization, in that commercial support is

provided without the risk of platform lock-in.

Among the ASF's objectives are: to provide legal protection
[4]

 to volunteers working on

Apache projects; to prevent the Apache brand name from being used by other organizations

without permission.

The ASF also holds several ApacheCon

conferences each year, highlighting Apache

projects and related technology.

The history of the Apache Software Foundation is linked to the Apache HTTP Server,

development beginning in February 1993. A group of eight developers started working on

enhancing the NCSA HTTPd daemon. They came to be known as the Apache Group. On March

25, 1999, the Apache Software Foundation was formed.The first official meeting of the Apache

 Software Foundation was held on April 13, 1999, and by general consent that the initial

membership list of the Apache Software Foundation, would be: Brian Behlendorf, Ken Coar,

Miguel Gonzales, Mark Cox, Lars Eilebrecht, Ralf S. Engelschall, Roy T. Fielding, Dean

Gaudet, Ben Hyde, Jim Jagielski, Alexei Kosut, Martin Kraemer, Ben Laurie, Doug

MacEachern, Aram Mirzadeh, Sameer Parekh, Cliff Skolnick, Marc Slemko, William (Bill)

Stoddard, Paul Sutton, Randy Terbush and Dirk-Willem van Gulik.

After a series of additional

meetings to elect board members and resolve other legal matters regarding incorporation, the

effective incorporation date of the Apache Software Foundation was set to June 1, 1999.

https://en.wikipedia.org/wiki/Non-profit_corporation
https://en.wikipedia.org/wiki/Non-profit_corporation
https://en.wikipedia.org/wiki/501(c)#501(c)(3)
https://en.wikipedia.org/wiki/Apache_HTTP_Server
https://en.wikipedia.org/wiki/Delaware_corporation
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Meritocracy
https://en.wikipedia.org/wiki/Platform_lock-in
https://en.wikipedia.org/wiki/Apache_Software_Foundation#cite_note-4
https://en.wikipedia.org/wiki/NCSA_HTTPd
https://en.wikipedia.org/wiki/Daemon_(computing)
https://en.wikipedia.org/wiki/Brian_Behlendorf
https://en.wikipedia.org/wiki/Ken_Coar
https://en.wikipedia.org/wiki/Lars_Eilebrecht
https://en.wikipedia.org/wiki/Roy_Fielding
https://en.wikipedia.org/wiki/Jim_Jagielski
https://en.wikipedia.org/wiki/Ben_Laurie
https://en.wikipedia.org/wiki/Sameer_Parekh
https://en.wikipedia.org/wiki/Randy_Terbush
https://en.wikipedia.org/wiki/Dirk-Willem_van_Gulik

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 23/28

The name 'Apache' was chosen from respect for the Native American Apache Nation,

well known for their superior skills in warfare strategy and their inexhaustible endurance. It also

makes a pun on "a patchy web server"—a server made from a series of patches—but this was not

its origin. The group of developers who released this new software soon started to call

themselves the "Apache Group".

Oracle, IBM, and the Apache Software Foundation jointly announced last week that

OpenOffice.org would become an official Apache project. OpenOffice.org is an important piece

of free software, and many of its supporters suggest that this change will give them more control

over the project's future direction. However, users and contributors should be aware that, as part

of this transition, it will become easier for proprietary software developers to distribute

OpenOffice.org as nonfree software.

All Apache projects are distributed under the terms of the Apache License. This is a non-

copyleft free software license; anybody who receives the software can distribute it to others

under nonfree terms. Such a licensing strategy represents a significant policy change for

OpenOffice.org. Previously, the software was distributed under the terms of the GNU Lesser

General Public License (LGPL). The LGPL is a weak copyleft license, so programs that merely

link to the software can be released under nonfree terms, but the software covered by the LGPL

must always be released, along with its source code, under the LGPL's terms. Free software

developers are clearly comfortable with a partial copyleft when it's appropriate; in numerous

surveys of free software projects, the LGPL is commonly listed as the second-most popular

license (after the GNU General Public License), or else follows close behind.

While we do recommend the Apache License in specific situations, we do not believe it is

the best choice for software like OpenOffice.org. This situation calls for copyleft, because the

gains free software stands to make from a non-copyleft license don't justify giving a handout to

proprietary software developers.

Fortunately, there's a ready alternative for people who want to work with a productivity

suite that does more to protect their freedom: LibreOffice. Anybody who's comfortable with

OpenOffice.org will find a familiar interface and feature set in LibreOffice, because it was

originally based on the same source code. Since September 2010, numerous contributors have

been working to improve the software, and the project's legal steward, The Document

Foundation, is committed to keeping it licensed under the LGPL.

https://en.wikipedia.org/wiki/Apache_HTTP_Server#Name
https://en.wikipedia.org/wiki/Apache
http://www.gnu.org/licenses/license-recommendations.html

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 24/28

LibreOffice's commitment to user freedom does not end at the license of its source code.

Like OpenOffice.org, the software's built-in extension manager makes it easy to add new

features, but unlike OpenOffice.org, its extension database only lists add-ons that are under a

free license. OpenOffice.org points to a database that includes proprietary extensions, and doesn't

always provide clear licensing information. This approach to extensions risks turning free

software into a platform for the development and promotion of proprietary extras.

Anybody who plans to use or contribute to one of these productivity suites should

understand how these policies affect them, and consider which better complement their own

goals. While both pass the most important test of being free software, we recommend

LibreOffice because its policies do significantly more to promote the cause of free software.

MOZILLA

Mozilla is a free-software community created in 1998 by members of Netscape. The

Mozilla community uses, develops, spreads and supports Mozilla products, thereby promoting

exclusively free software and open standards, with only minor exceptions.The community is

supported institutionally by the Mozilla Foundation and its tax-paying subsidiary, the Mozilla

Corporation.

Mozilla's products include the Firefox web browser, Thunderbird e-mail client, Firefox

OS mobile operating system, Bugzilla bug tracking system,Gecko layout engine and others.

During 2017, Mozilla acquired Pocket, a "read-it-later-online" service.

Firefox is a web browser, and is Mozilla's flagship software product. It is available in

both desktop and mobile versions. Firefox uses the Gecko layout engine to render web pages,

which implements current and anticipated web standards. As of late 2015, Firefox had

approximately 10-11% of worldwide usage share of web browsers, making it the 4th most-used

web browser.

Firefox began as an experimental branch of the Mozilla codebase by Dave Hyatt, Joe

Hewitt and Blake Ross. They believed the commercial requirements of Netscape's sponsorship

and developer-driven feature creep compromised the utility of the Mozilla browser.
[48]

 To

combat what they saw as the Mozilla Suite's software bloat, they created a stand-alone browser,

with which they intended to replace the Mozilla Suite.

Firefox was originally named Phoenix but the name was changed so as to avoid

trademark conflicts with Phoenix Technologies. The initially-announced replacement, Firebird,

http://libreplanet.org/wiki/Group:OpenOfficeExtensions/List
https://www.fsf.org/news/fsf-launches-free-software-extension-listing-for-openoffice.org
https://www.fsf.org/news/fsf-launches-free-software-extension-listing-for-openoffice.org
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Netscape
https://en.wikipedia.org/wiki/Mozilla_Foundation
https://en.wikipedia.org/wiki/Mozilla_Corporation
https://en.wikipedia.org/wiki/Mozilla_Corporation
https://en.wikipedia.org/wiki/List_of_Mozilla_products
https://en.wikipedia.org/wiki/Firefox
https://en.wikipedia.org/wiki/Mozilla_Thunderbird
https://en.wikipedia.org/wiki/Firefox_OS
https://en.wikipedia.org/wiki/Firefox_OS
https://en.wikipedia.org/wiki/Bugzilla
https://en.wikipedia.org/wiki/Gecko_(software)
https://en.wikipedia.org/wiki/Pocket_(service)
https://en.wikipedia.org/wiki/Firefox
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Flagship_product
https://en.wikipedia.org/wiki/Gecko_(software)
https://en.wikipedia.org/wiki/Layout_engine
https://en.wikipedia.org/wiki/Web_standards
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers#Summary
https://en.wikipedia.org/wiki/Mozilla#Mozilla_Project
https://en.wikipedia.org/wiki/Dave_Hyatt
https://en.wikipedia.org/wiki/Joe_Hewitt_(programmer)
https://en.wikipedia.org/wiki/Joe_Hewitt_(programmer)
https://en.wikipedia.org/wiki/Blake_Ross
https://en.wikipedia.org/wiki/Netscape
https://en.wikipedia.org/wiki/Feature_creep
https://en.wikipedia.org/wiki/Mozilla#cite_note-48
https://en.wikipedia.org/wiki/Mozilla_Application_Suite
https://en.wikipedia.org/wiki/Software_bloat
https://en.wikipedia.org/wiki/Phoenix_Technologies

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 25/28

provoked objections from the Firebird project community. The current name, Firefox, was

chosen on February 9, 2004.

Firefox OS

Firefox OS was an open source operating system in development by Mozilla that aims to

support HTML5 apps written using "open Web" technologies rather than platform-specific

native APIs. The concept behind Firefox OS is that all user-accessible software will be HTML5

applications, that use Open Web APIs to access the phone's hardware directly via JavaScript.

Some devices using this OS include

Alcatel One Touch Fire, ZTE Open, and LG Fireweb.

Thunderbird

Thunderbird is a free, open source, cross-platform email and news client developed by the

volunteers of the Mozilla Community.

On July 16, 2012, Mitchell Baker announced that Mozilla's leadership had come to the

conclusion that on-going stability was the most important thing for Thunderbird and that

innovation in Thunderbird was no longer a priority for Mozilla. In that update Baker also

suggested that Mozilla had provided a pathway for community to innovate around Thunderbird if

the community chooses.

SeaMonkey

SeaMonkey (formerly the Mozilla Application Suite) is a free and open source cross platform

suite of Internet software components including a web browser component, a client for sending

and receiving email and Usenet newsgroup messages, an HTML editor (Mozilla Composer) and

the ChatZilla IRC client.

On March 10, 2005, the Mozilla Foundation announced that it would not release any official

versions of Mozilla Application Suite beyond 1.7.x, since it had now focused on the standalone

applications Firefox and Thunderbird. SeaMonkey is now maintained by the SeaMonkey

Council, which has trademarked the SeaMonkey name with help from the Mozilla

Foundation.The Mozilla Foundation provides project hosting for the SeaMonkey developers.

Bugzilla

Bugzilla is a web-based general-purpose bug tracking system, which was released

as open source software by Netscape Communications in 1998 along with the rest of the Mozilla

codebase, and is currently stewarded by Mozilla. It has been adopted by a variety of

organizations for use as a bug tracking system for both free and open source

https://en.wikipedia.org/wiki/Firebird_(database_server)
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/HTML5
https://en.wikipedia.org/wiki/Open_Web
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Mozilla_Thunderbird
https://en.wikipedia.org/wiki/SeaMonkey
https://en.wikipedia.org/wiki/Usenet
https://en.wikipedia.org/wiki/Mozilla_Composer
https://en.wikipedia.org/wiki/ChatZilla
https://en.wikipedia.org/wiki/Mozilla_Foundation
https://en.wikipedia.org/wiki/Mozilla_Firefox
https://en.wikipedia.org/wiki/Mozilla_Thunderbird
https://en.wikipedia.org/wiki/Trademark
https://en.wikipedia.org/wiki/Bugzilla
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Bug_tracking_system
https://en.wikipedia.org/wiki/Open_source_software
https://en.wikipedia.org/wiki/Netscape_Communications
https://en.wikipedia.org/wiki/Bug_tracking_system
https://en.wikipedia.org/wiki/Free_and_open_source_software

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 26/28

software and proprietary projects and products, including the Mozilla Foundation, the Linux

kernel, GNOME, KDE, Red Hat, Novell, Eclipse andLibreOffice.

Mozilla is open source and free software – any person or company is free to:

 run the program, for any purpose;

 study how the program works, and adapt it to their needs;

 redistribute copies at will;

 improve the program, and distribute the altered version.

All the source code for Mozilla is available under the Mozilla and Netscape Public Licenses,

which are accepted as free software licenses by the Free Software Foundation.

The spirit of the MPL is that you are free to use Mozilla code in your applications and

products – including proprietary products – provided that you make available any modifications

you make to the actual Mozilla code base itself.

With free software, your business is not locked into the products of one company. You

are free to control your own future.

OPEN SOURCE SOFTWARE

• In the beginning, all software was free

– in the 1960s ,when IBM and others sold the first large-scale computers, these

machines came with software which was free.

– This software could be freely shared among users,

• The software came written in a programming language, and it could be

improved and modified.

• Then proprietary software dominated the software landscape

– IBM and others realized that most users couldn’t or didn’t want to ―fix‖ their own

software and

– There was money to be made in leasing software

• In mid-1970s it software was proprietary

– users were not allowed to redistribute it,

– that source code was not available

– users could not modify the programs.

• In late 1970s and early 1980s, two different groups started what became known as the

open source software movement:

• East coast, Richard Stallman, formerly a programmer at the MIT AI Lab, launched the

GNU Project and the Free Software Foundation.

– ultimate goal of the GNU Project was to build a free operating system

https://en.wikipedia.org/wiki/Free_and_open_source_software
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/The_Mozilla_Foundation
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/GNOME
https://en.wikipedia.org/wiki/KDE
https://en.wikipedia.org/wiki/Red_Hat
https://en.wikipedia.org/wiki/Novell
https://en.wikipedia.org/wiki/Eclipse_(software)
https://en.wikipedia.org/wiki/LibreOffice
http://www.opensource.org/
http://www.gnu.org/philosophy/free-sw.html
http://www.mozilla.org/MPL/
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/
http://www.mozilla.org/MPL/MPL-1.1.html
https://www-archive.mozilla.org/start/1.0/support.html
https://www-archive.mozilla.org/start/1.0/support.html
http://www.opensource.org/advocacy/case_for_customers.html

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 27/28

– the GNU General Public License (GPL) was designed to ensure that the software

produced by GNU will remain free, and to promote the production of more and

more free software.

• West coast, the Computer Science Research Group (CSRG) of the University of

California at Berkeley was improving the Unix system, and building applications which

quickly become ``BSD Unix''.

– efforts were funded mainly by DARPA contracts

– a network of Unix programmers around the world helped to debug, maintain and

improve the system.

– in late 1980s, distributed under the ``BSD license'' (one of the first open source

licenses).

– Unfortunately, still contained some components that were proprietary requiring a

license from AT&T

• During the 1980s and early 1990s, open source software continued its development,

initially in several relatively isolated groups.

• Slowly, much of the software was integrated

• The various groups merged

• As a result of this i, complete operating environments could be built on top of Unix using

open source software.

• Many Internet ISPs use UNIX as their operating system of choice.

• 1991-1992, the open source world improved

• In California, Bill Jolitz implementing a version of BSD Unix free of AT & T’s

copyright.

– The work was covered by the BSD license making it completely free.

– It included other free software GNU licenses

• Also during 1991-1992

• In Finland, Linus Torvalds, a Finnish computer science student, was implementing the

first versions of Linux.

• Other people joined to collaboration to create the GNU/Linux operating system.

• By 1993, both GNU/Linux and BSD Unix were free stable operating environments.

– Both continue to evolve

• ―Open source is a development method for software that harnesses the power of

distributed peer review and transparency of process.

• The promise of open source is better quality, higher reliability, more flexibility, lower

cost, and an end to predatory vendor lock-in.

• The Open Source Initiative (OSI) is a non-profit corporation formed to educate about and

advocate for the benefits of open source.‖

• OSI includes a standards body, maintaining the Open Source Definition for the good of

the community.

• Today there are many who believe proprietary software is the only possible model

– Microsoft.

• Recently the software industry has begun to considered free software as an option again.

– Apple’s OS X and Leopard are based on Unix

– Google’s Chrome

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT I: OPEN SOURCE SOFTWARE BATCH: 2015-2018

Prepared By Manjula.D, Asst.Prof, Department of CS, CA & IT, KAHE Page 28/28

– Mozilla Firefox

Revolution OS

• ―Revolution OS is a 2001 documentary which traces the history of GNU, Linux, and the

open source and free software movements. ―

UNIT I

POSSIBLE QUESTIONS

(8 MARKS)

1. List out the examples of OSD complaint licenses

2. List out the examples of open source software.

3. Describe about Free Software Foundation

4. Describe about Berkeley Software Distribution

5. Write a short note on

i. i)Linux

ii. ii)Apache

iii. iii)Mozilla

6. Describe OSS with its criteria and list out the examples of open source software.

7. Describe the history of open source software.

S.No Question Option1 Option2 Option3 Option4 Answer

1

OSS stands for _____

Open

Source

Software

Open

Standard

Software

Open

Standard

Service

Open

Source

Service

Open

Source

Software

2

In ______ the source

code used in the

software is available to

anyone to examine,

evaluate and adapt.

close

source

open

source

 shared

source

proprietary

source
open source

3

Which of the following

is not an example of

open source software?

 Linux Mozilla Windowss Apache Windows

4

 The human readable

code of the program is

known as _____

source

code

byte

code

machine

code
object code source code

5

In ______ the source

code used in the

software is available to

anyone to examine,

evaluate and adapt.

close

source

shared

source

open

source

 proprietary

source
open source

6

The human readable

code of the program is

known as _____

 source

code

byte

code

machine

code
object code

 source

code

7

_______ is a proprietary

software made available

free of charge

Free

software

Open

source
 Freeware Malware Freeware

8

BSD stands for _____

Berkeley

Software

Distributi

on

Berkeley

Source

Distribut

ion

Berkeley

Software

Destructio

n

Berkeley

Source

Destruction

Berkeley

Software

Distribution

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Coimbatore-641021

Department of Computer Science

III B.Sc(CS) (BATCH 2015-2018)

Open Source Software

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS ONE MARK QUESTIONS

9

Wikipedia is an example

of_______ software freeware
open

source
proprietary free open source

10

Free software is also

known as________ open libre software li
 free libre source libre

software libre

11

______ is a matter of

liberty, not price

free

software
freeware

close

software
open source

free

software

12

MySQL is a ______

software

 close

source

 open

source

proprietary
 free

 open

source

13
GDB stands for _____

 GNU DatabGNU Data bGNU Docum

 GNU

Debugger

 GNU

Debugger

14

BSD licenses also

referred as_______ BSD styleBSD uniquBSD source
BSD type BSD style

15

Proprietary software is

also known as ______ close sourceopen sourceshared source
free source

 close source

16

In open source software

the licensor distributes

the ______

 byte code

 source codmachine cod

object code
 source

code

17

In _______ licensor

distributes the object

code. close sourceopen sourceshared source

free source

 close source

18

OSI stands for ______

 Open

Standard

Initiative

 Open

Source

Initiative

 Open

Standard

Instruction

 Open

Source

Instruction

 Open

Source

Initiative

19

Sublicensing is

prohibited in

_______software.

freeware

 open

source
 free

proprietary

proprietary

20

FSF stands for_____

Free

Software

Foundatio

n

 Free

System

Foundati

on

 Free

Service

Foundatio

n

 Free

Source

Foundation

Free

Software

Foundation

21

Which of the following

license the software

cannot be mixed with

non-free software

 MIT LGPL GPL BSD GPL

22

 ______ is a form of

intellectual property ,

applicable to certain

forms creative works

 License

patent
 copyleft copyright copyright

23

 The term free in free

software represents

 empty

freedom
 freeware free cost freedom

24

Berkeley Software

Distribution is

sometimes called

Berkeley

Unix

Berkeley

Linux

 Berkeley

Kernel

 Berkeley

Domain

Berkeley

Unix

25

 Life cycle paradigm of

software engineering is

called the _________

model.

 waterfall spiral agile spiral waterfall

26

 The term ______ also

refers to the document

that specifically

describes these

permissions and rights.

 License

patent
 copyleft copyright License

27

Which of the following

license that can be

relicensed by anyone? BSD MI

 public

domain
 LGPL

 public

domain

28

The reversed c in a full

circle is the _____

symbol

copyright
 license patent copyleft copyleft

29

______ license does not

allow you to take

modifications private.

 MPL LGPL NPL MIT LGPL

30

______ who participate

frequently in

newsgroups and

discussions, but do not

do any coding.

 Project

leaders

Maintain

ers

 Posters
 Occasional

developers
 Posters

31

Eric. Raymond wrote

the Cathedral and the

Bazaar model in

1998 1995 1994 1997 1997

32

_______ is the free

software project funded

by Netscape to build a

WWW browser.

 Mozilla
 Internet

Explorer
 Chrome Opera Mozilla

33

_______ model adds an

element of risk analysis

to the software

development process.

 Scrum
 Water

fall
 Spiral Prototype Spiral

34

______ activity is the

transition of the design

specification into a

software program.

 Analysis Coding Testing

Maintenanc

e

 Coding

35

 The principle of

maintaining well

defined boundaries

between components is

called ______

availabilit

y

modulari

ty

c)

Extension
 subset modularity

36

 ______ is an

interpreted language

with lots of libraries

 Java Perl C C++ Perl

37

 GCC stands for ______

 GNU

Complete

Collection

 GNU

Complex

Collectio

n

 GNU

Compound

Collection

GNU

Compiler

Collection

GNU

Compiler

Collection

38

 The GNU project is

free software, mass

collaboration project,

announced in 1983

by_____

 Richard

Stallman

 Ken

Thompso

n

 Linus

Torvalds
 Bill Jolitz

 Richard

Stallman

39

 Which of the following

is widely used as a

WWW server?

 BIND

name

server

 Send

mail

transport

Apache

Web

server

 Samba file

server

Apache

Web server

40

 L in the LGPL

represents____
 Local Lesser

 Legal

Limit
 Lesser

41 TCL stands for _____

 Tools

Computer

Language

 Tools

Comman

d Loader

Tools

Command

Language

 Tools

Command

Linker

Tools

Command

Language

42

 The c in a full circle is

the _____ symbol copyright license patent copyleft
copyright

43

In ________ fees are for

the software license,

maintenance and

upgrades.

 free

source

 open

source

shared

source close source

close

source

44

 In proprietary source,

all upgrades, support

and development are

done by a ______ licensee licensor User third parties

 licensor

45

 In _____ the licensee

may do its own

development and

support or hire any third

party to do it.

 free

source

open

source

shared

source

 proprietary

source

 proprietary

source

46

SDLC stands for

 Software

Developm

ent Life

Cycle

 Source

Develop

ment

Life

Cycle

 Software

Deployme

nt Life

Cycle

 Source

Deployment

Life Cycle

 Software

Developme

nt Life

Cycle

47

 Openoffice.org was

established by

________ IBM

Microsof

t

Sun

Microsyste

ms Corel

Sun

Microsyste

ms

48

 _____ is a non-profit

corporation dedicated to

managing and

promoting the open

source. FSF OSI DARPA ASF

OSI

49

 ______ license contains

special privileges for

original copyright

holder over your

modifications

 Public

Domain LGPL NPL GPL

 NPL

50

_____ is a non-profit

corporation to support

Apache software project FSF OSI DARPA ASF

 ASF

51

Who have the overall

responsibility for the

open source software

development?

 project

leader

Voluntee

r

develope

rs

 everyday

users posters

 project

leader

52

 ______ is a bug tracker

written in PERL

language. Bugzilla

 Request

tracker Mantis Trac

 Request

tracker

53

 ______ is a web-based

PHP/MySQL bug

tracker. Trac Bugzilla

 Request

tracker Mantis

 Mantis

54

Which of the following

is sophisticated bug

tracker from the Mozilla

house? Bugzilla Mantis GNATS

LibreSource

 Bugzilla

55 XP stands for_______

 External

Program

ming

 Extreme

Program

ming

Extensible

Programmi

ng

 Executable

Programmin

g

 Extreme

Programmi

ng

56

 Which phase of the

Spiral model determine

objectives and

constraints of the

project and define the

alternatives?

 Risk

analysis

Planning

Engineerin

g

 Customer

Evolution

 Planning

57

 _______ helps to

manage the files and

codes of a project when

several people are

working on the project

at the same time. CVS RPM APT SVN

CVS

58

 _____ is a computer

program that is used to

debug other programs.

Compiler

Interpret

er Debugger Loader

Debugger

59

 LibreSource is a type of

debugger

compiler interpreter bugtracker
 bugtracker

libre

source

source

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 1/28

UNIT II

SYLLABUS

Qualification: Defining Open Source Software – Categorizing Defining Open Source Software –

Specific Characteristics of Open Source Software Transformation: The OSS Development

Process – Taboos and Norms in OSS Development – The OSS Development Life Cycle –

Deriving a Framework for Analyzing OSS – Zachman‟s Framework for IS Architecture –

CATWOE and Soft System Method – Deriving the Analytical Framework for OSS.

QUALIFICATION AND CATEGORIZING: DEFINING OPEN SOURCE SOFTWARE

The Qualification and Selection of Open Source software (QSOS) is a methodology for

assessing Free/Libre Open Source Software. This methodology is released under

the GFDL license. Several methods have been created to define an assessment process for

free/open-source software. Some focus on some aspects like the maturity, the durability and the

strategy of the organization around the open-source project itself. Other methodologies add

functional aspects to the assessment process.

Existing methodologies

There are more than 20 different OSS evaluation methods.

 Open Source Maturity Model (OSMM) from Capgemini

 Open Source Maturity Model (OSMM) from Navica

 Open Source Maturity Model (OSSMM) by Woods and Guliani

 Methodology of Qualification and Selection of Open Source software (QSOS)

 Open Business Readiness Rating (OpenBRR)

 Open Business Quality Rating (OpenBQR)

 QualiPSo

 QualiPSo Model for Open Source Software Trustworthiness (MOSST)

 Towards A Trustworthiness Model For Open Source Software: How to evaluate Open

Source Software

 QualOSS – Quality of Open Source

 Evaluation Framework for Open Source Software

 A Quality Model for OSS Selection

 Atos Origin Method for Qualification and Selection of Open Source Software (QSOS)

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/GFDL
https://en.wikipedia.org/wiki/Open_Source_Maturity_Model
https://en.wikipedia.org/wiki/QSOS
https://en.wikipedia.org/wiki/OpenBRR

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 2/28

 Observatory for Innovation and Technological transfer on Open Source software

(OITOS)

 Framework for OS Critical Systems Evaluation (FOCSE)

General approach

QSOS defines 4 steps that are part of an iterative process:

 1 - Define and organise what will be assessed (common Open Source criteria and risks

and technical domain specific functionalities),

 2 - Assess the competing software against the criteria defined above and score these

criteria individually,

 3 - Qualify your evaluation by organising criteria into evaluation axes, and defining

filtering (weightings, etc.) related to your context,

 4 - Select the appropriate OSS by scoring all competing software using the filtering

system designed in step 3.

Output documents

This process generates software assessing sheets as well as comparison grids. These comparison

grids eventually assist the user to choose the right software depending on the context. These

documents are also released under the free GNU FDL License. This allows them to be reused

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 3/28

and improved as well as to remain more objective. Assessment sheets are stored using an XML-

based format.

Tools

Several tools distributed under the GPL license are provided to help users manipulate QSOS

documents:

 Template editor: QSOS XUL Template Editor

 Assessment sheets editors:

 QSOS XUL Editor

 QSOS Qt Editor

 QSOS Java Editor (under development)

SPECIFIC CHARACTERISTICS OF OPEN SOURCE SOFTWARE

TRANSFORMATION

The development of open source software consists of planning, analysis, design, and

implementation phases as in any other software model. However, there are unique characteristics

of FOSS. In this section, we describe the main characteristic of Free and Open Source Software.

In a typical FOSS, initially an individual or few volunteers involve in the project. Once the

project is debut and successful then a community of project is established. Later other members

from the community contribute to the project.

The Concurrent Versions System (CVS) helps is distributed development of FOSS. CVS

is a client-server software revision control system. CVS keeps track of all changes in a set of

files, and allows several developers to collaborate. CVS itself is a Free and Open Source

Software. Globally distributed software development by virtual teams promises the flexibility,

responsiveness, lower costs, and improved resource utilization. Modular Design In modular

design software architecture is divided into components called modules.

Modular design supports abstraction, increased understanding of the system and

concurrent development. Due to distributed nature of FOSS, its design must be modular that can

easily incorporate into the main system. Modularity is favorable characteristics for open source

production. Modular design with well-defined interfaces helps in effective collaborative

development of FOSS. Figure 1 shows the modular design approach of FOSS.

Reusability

Reusability means segment of source code that can be used again to add new functionalities with

little or no modification. This fits very well the characteristics of the Open Source production

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 4/28

process.FOSS licenses grants the rights to the developer to obtain the source code, inspect it,

modify it, and distribute it. This mean FOSS licenses inherently encourages a developer to reuse

code. The reuse of code can be either within the project or outside the project, i.e., in other

projects. A more details study with statistics of code reuse in open source software is conducted.

FOSS repositories such as SourceForge offer huge amounts of reusable code.

Distribution and Licensing

Internet is the medium of distribution of Free and Open Source Software. Download websites,

mailing-lists, blogs, forums, etc., all contribute to the wide spread publicity and distribution of

Free and Open Source Software. Wide ranges of licensing options, such as GPL, LGPL, BSD,

ISC, Artistic License, etc., are available for FOSS distribution.

Reward Mechanisms

At the beginning of Free Software movement, seemingly it was difficult to perceive the business

opportunities of Free and Open Source Software. But now business model of FOSS is getting

success. Sources of income range from donations to providing services such as consulting,

integration, support and training. It also worth to mention that reward other than money, such as

reputation and serving community is also important for many developers.

THE OSS DEVELOPMENT PROCESS

Open-source software development is the process by which open-source software, or

similar software whose source code is publicly available, is developed. These are software

products available with its source code under an open-source license to study, change, and

improve its design. Examples of some popular open-source software products are Mozilla

Firefox, Google Chromium, Android, LibreOffice and the VLC media player. Open-source

software development has been a large part of the creation of the World Wide Web as we know

it, with Tim Berners-Lee contributing his HTML code development as the original platform upon

which the internet is now built.

In his 1997 essay The Cathedral and the Bazaar, open-source evangelist Eric S.

Raymond suggests a model for developing OSS known as the bazaar model. Raymond likens the

development of software by traditional methodologies to building a cathedral, "carefully crafted

by individual wizards or small bands of mages working in splendid isolation". He suggests that

all software should be developed using the bazaar style, which he described as "a great babbling

bazaar of differing agendas and approaches."

In the traditional model of development, which he called the cathedral model,

development takes place in a centralized way. Roles are clearly defined. Roles include people

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Source_Code_Management
https://en.wikipedia.org/wiki/Open-source_license
https://en.wikipedia.org/wiki/Mozilla_Firefox
https://en.wikipedia.org/wiki/Mozilla_Firefox
https://en.wikipedia.org/wiki/Chromium_(web_browser)
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/LibreOffice
https://en.wikipedia.org/wiki/VLC_media_player
https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://en.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar
https://en.wikipedia.org/wiki/Open-source_evangelist
https://en.wikipedia.org/wiki/Eric_S._Raymond
https://en.wikipedia.org/wiki/Eric_S._Raymond

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 5/28

dedicated to designing (the architects), people responsible for managing the project, and people

responsible for implementation. Traditional software engineering follows the cathedral model.

The bazaar model, however, is different. In this model, roles are not clearly defined. Gregorio

Robles

 suggests that software developed using the bazaar model should exhibit the following

patterns:

Users should be treated as co-developers

The users are treated like co-developers and so they should have access to the source code of

the software. Furthermore, users are encouraged to submit additions to the software, code fixes

for the software, bug reports, documentation etc. Having more co-developers increases the rate at

which the software evolves. Linus's law states, "Given enough eyeballs all bugs are shallow."

This means that if many users view the source code, they will eventually find all bugs and

suggest how to fix them. Note that some users have advanced programming skills, and

furthermore, each user's machine provides an additional testing environment. This new testing

environment offers that ability to find and fix a new bug.

Early releases

The first version of the software should be released as early as possible so as to increase

one's chances of finding co-developers early.

Frequent integration

Code changes should be integrated (merged into a shared code base) as often as possible

so as to avoid the overhead of fixing a large number of bugs at the end of the project life cycle.

Some open source projects have nightly builds where integration is done automatically on a daily

basis.

Several versions

There should be at least two versions of the software. There should be a buggier version

with more features and a more stable version with fewer features. The buggy version (also called

the development version) is for users who want the immediate use of the latest features, and are

willing to accept the risk of using code that is not yet thoroughly tested. The users can then act as

co-developers, reporting bugs and providing bug fixes.

High modularization

The general structure of the software should be modular allowing for parallel

development on independent components.

Dynamic decision making structure

There is a need for a decision making structure, whether formal or informal, that makes

strategic decisions depending on changing user requirements and other factors. Cf. Extreme

programming.

https://en.wikipedia.org/w/index.php?title=Bug_reports&action=edit&redlink=1
https://en.wikipedia.org/wiki/Linus%27s_law
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Extreme_programming

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 6/28

Data suggests, however, that OSS is not quite as democratic as the bazaar model

suggests. An analysis of five billion bytes of free/open source code by 31,999 developers shows

that 74% of the code was written by the most active 10% of authors. The average number of

authors involved in a project was 5.1, with the median at 2.

Open source software is usually easier to obtain than proprietary software, often resulting

in increased use. Additionally, the availability of an open source implementation of a standard

can increase adoption of that standard. It has also helped to build developer loyalty as developers

feel empowered and have a sense of ownership of the end product.

Moreover, lower costs of marketing and logistical services are needed for OSS. OSS also

helps companies keep abreast of technology developments. It is a good tool to promote a

company's image, including its commercial products. The OSS development approach has

helped produce reliable, high quality software quickly and inexpensively.

Open source development offers the potential for a more flexible technology and quicker

innovation. It is said to be more reliable since it typically has thousands of independent

programmers testing and fixing bugs of the software. Open source is not dependent on the

company or author that originally created it. Even if the company fails, the code continues to

exist and be developed by its users. Also, it uses open standards accessible to everyone; thus, it

does not have the problem of incompatible formats that exist in proprietary software.

It is flexible because modular systems allow programmers to build custom interfaces, or

add new abilities to it and it is innovative since open source programs are the product of

collaboration among a large number of different programmers. The mix of divergent

perspectives, corporate objectives, and personal goals speeds up innovation.

Moreover, free software can be developed in accord with purely technical requirements.

It does not require thinking about commercial pressure that often degrades the quality of the

software. Commercial pressures make traditional software developers pay more attention to

customers' requirements than to security requirements, since such features are somewhat

invisible to the customer.

It is sometimes said that the open source development process may not be well defined

and the stages in the development process, such as system testing and documentation may be

ignored. However this is only true for small (mostly single programmer) projects. Larger,

successful projects do define and enforce at least some rules as they need them to make the

teamwork possible. In the most complex projects these rules may be as strict as reviewing even

minor change by two independent developers.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 7/28

Not all OSS initiatives have been successful, for example SourceXchange

and Eazel. Software experts and researchers who are not convinced by open source's ability to

produce quality systems identify the unclear process, the late defect discovery and the lack of

any empirical evidence as the most important problems (collected data concerning productivity

and quality). It is also difficult to design a commercially sound business model around the open

source paradigm. Consequently, only technical requirements may be satisfied and not the ones of

the market. In terms of security, open source may allow hackers to know about the weaknesses

or loopholes of the software more easily than closed-source software. It depends on control

mechanisms in order to create effective performance of autonomous agents who participate in

virtual organizations.

Development tools

In OSS development, tools are used to support the development of the product and the

development process itself.

Revision control systems such as Concurrent Versions System (CVS) and

later Subversion (SVN) and Git are examples of tools, often themselves open source, help

manage the source code files and the changes to those files for a software project. The projects

are frequently hosted and published on sites like Launchpad, Bitbucket, and GitHub.

Open source projects are often loosely organized with "little formalised process

modelling or support", but utilities such as issue trackers are often used to organize open source

software development. Commonly used bugtrackers includeBugzilla and Redmine.

Tools such as mailing lists and IRC provide means of coordination among

developers. Centralized code hosting sites also have social features that allow developers to

communicate.

TABOOS AND NORMS IN OSS DEVELOPMENT

Formalized project management, in the conventional software engineering sense, does

not typically apply in OSS development. Because the development pool spans great geographic

and cultural space, face-to-face "meetings" are rare. Furthermore, in noncommercial OSS

development (the majority) there's no organizational bottom-line to consider; nor are there any

sanctions in terms of the possibility of firing developers.

However, to avoid chaos, there are some cultural norms that govern how OSS projects

are managed. Some of these are in the form of taboos. Chief among these is probably the desire

to avoid projects splitting into rival and competing development streams, termed forking in the

OSS community (Raymond, 2001HtN).

https://en.wikipedia.org/wiki/Eazel
https://en.wikipedia.org/wiki/Revision_control
https://en.wikipedia.org/wiki/Concurrent_Versions_System
https://en.wikipedia.org/wiki/Subversion_(software)
https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Launchpad_(website)
https://en.wikipedia.org/wiki/Bitbucket
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/Bugtracker
https://en.wikipedia.org/wiki/Bugzilla
https://en.wikipedia.org/wiki/Redmine
https://en.wikipedia.org/wiki/Mailing_lists
https://en.wikipedia.org/wiki/Internet_Relay_Chat

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 8/28

The rationale for the desire to avoid forking is clear, as contributors cannot realistically

contribute to multiple forks of the same product simultaneously. Also, even with a large

development pool, this is extremely wasteful. (Note: Forking is different to the parallel

development phenomenon of competition among solutions as described above.) Since the OSS

culture is driven by a reputation model, the temptation for forking must always be high. For

example, you get the most attention from being the project leader, and thus contributing to a

project someone else leads is always contributing more to someone else's reputation than your

own. This is not altogether palatable in an ego-based economy.

Another OSS taboo relates to plagiarizing work as your own by removing the credit to

the rightful contributors. This recognition of developer contribution at the micro level of

individual modules is vital to ensure that developers are motivated to continue contributing - it

represents rapid feedback that your contribution is valued, and this type of rapid recognition

generally does not occur in a traditional software development environment.

Likewise, at a macro level, the whole OSS concept is premised on the assumption that

pirate developers or organizations will not simply steal the source code that has been made

available to them, and convert it to a proprietary closed source product. Thus, hijacking the

work of others is a very serious taboo in OSS. Jorgensen (2001) discusses the importance of

this in the FreeBSD Project where maintenance responsibility for modules is typically the

responsibility of a single individual listed in the log file. The FreeBSD community have

enshrined this principle as a rule, "Respect existing maintainers if listed" (FreeBSD, 2001).

Another norm that appears to be very important in the OSS community is modesty and

self-deprecation on the part of developers. This is vital if contributions from others are to be

solicited. If the original developer conveys the impression that no help is needed, then

contributions are not likely to be very forthcoming. There are many examples of this

phenomenon in OSS.

THE OSS DEVELOPMENT LIFE CYCLE

Open-source software development can be divided into several phases. The phases

specified here are derived from Sharma et al. A diagram displaying the process-data structure of

open-source software development is shown on the right. In this picture, the phases of open-

source software development are displayed, along with the corresponding data elements. This

diagram is made using the meta-modeling and meta-process modeling techniques.

Starting an open-source project

There are several ways in which work on an open-source project can start:

1. An individual who senses the need for a project announces the intent to develop a project

in public.

2. A developer working on a limited but working codebase, releases it to the public as the

first version of an open-source program.

https://en.wikipedia.org/wiki/Meta-modeling
https://en.wikipedia.org/wiki/Meta-process_modeling

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 9/28

3. The source code of a mature project is released to the public.

4. A well-established open-source project can be forked by an interested outside party.

Eric Raymond observed in his essay The Cathedral and the Bazaar that announcing the intent

for a project is usually inferior to releasing a working project to the public.

It's a common mistake to start a project when contributing to an existing similar project would be

more effective (NIH syndrome). To start a successful project it is very important to investigate

what's already there. The process starts with a choice between the adopting of an existing project,

or the starting of a new project. If a new project is started, the process goes to the Initiation

phase. If an existing project is adopted, the process goes directly to the Execution phase.

Types of open-source projects

Several types of open-source projects exist. First, there is the garden variety of software

programs and libraries, which consist of standalone pieces of code. Some might even be

dependent on other open-source projects. These projects serve a specified purpose and fill a

definite need. Examples of this type of project include the Linux kernel, the Firefox web browser

and the LibreOffice office suite of tools.

Distributions are another type of open-source project. Distributions are collections of

software that are published from the same source with a common purpose. The most prominent

example of a "distribution" is an operating system. There are many Linux distributions (such

as Debian, Fedora Core, Mandriva, Slackware, Ubuntu etc.) which ship the Linux kernel along

with many user-land components. There are other distributions, like ActivePerl, the Perl

programming language for various operating systems, and Cygwin distributions of open-source

programs for Microsoft Windows.

Other open-source projects, like the BSD derivatives, maintain the source code of an

entire operating system, the kernel and all of its core components, in one revision controlsystem;

developing the entire system together as a single team. These operating system development

projects closely integrate their tools, more so than in the other distribution-based systems.

Finally, there is the book or standalone document project. These items usually do not ship

as part of an open-source software package. The Linux Documentation Project hosts many such

projects that document various aspects of the GNU/Linux operating system. There are many

other examples of this type of open-source project.

https://en.wikipedia.org/wiki/Fork_(software_development)
http://catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s10.html
https://en.wikipedia.org/wiki/Not_Invented_Here#In_the_free_software_community
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/Fedora_(operating_system)
https://en.wikipedia.org/wiki/Mandriva
https://en.wikipedia.org/wiki/Slackware
https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
http://www.activestate.com/activeperl
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Cygwin
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Revision_control
http://www.tldp.org/

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 10/28

Methods

It is hard to run an open-source project following a more traditional software

development method like the waterfall model, because in these traditional methods it is not

allowed to go back to a previous phase. In open-source software development, requirements are

rarely gathered before the start of the project; instead they are based on early releases of the

software product, as Robbins describes. Besides requirements, often volunteer staff is attracted to

help develop the software product based on the early releases of the software. The community is

very harsh, much like the business world of closed-source software: ―if you find the customers

you survive, but without customers you die‖.

More generally, all Agile programming methods are applicable to open-source software

development, because of their iterative and incremental character. Other Agile method are

equally useful for both open and closed source software development :Internet-Speed

Development, for example is suitable for open-source software development because of the

distributed development principle it adopts. Internet-Speed Development uses geographically

distributed teams to ‗work around the clock‘. This method, mostly adopted by large closed-

source firms, (because they're the only ones which afford development centers in different time

zones), works equally well in open source projects because a software developed by a large

group of volunteers shall naturally tend to have developers spread across all time zones.

https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Agile_programming
https://en.wikipedia.org/wiki/Internet-Speed_Development
https://en.wikipedia.org/wiki/Internet-Speed_Development

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 11/28

Communication channels

Developers and users of an open-source project are not all necessarily working on the

project in proximity. They require some electronic means of communications. E-mail is one of

the most common forms of communication among open-source developers and users.

Often, electronic mailing lists are used to make sure e-mail messages are delivered to all

interested parties at once.

This ensures that at least one of the members can reply to it. In order to communicate in

real time, many projects use an instant messaging method such as IRC. Web forums have

recently become a common way for users to get help with problems they encounter when using

an open-source product. Wikis have become common as a communication medium for

developers and users.

Version control systems

In OSS development the participants, who are mostly volunteers, are distributed amongst

different geographic regions so there is need for tools to aid participants to collaborate in the

development of source code.

During early 2000s, Concurrent Versions System (CVS) was a prominent example of a

source code collaboration tool being used in OSS projects. CVS helps manage the files and codes

of a project when several people are working on the project at the same time. CVS allows several

people to work on the same file at the same time. This is done by moving the file into the users‘

directories and then merging the files when the users are done. CVS also enables one to easily

retrieve a previous version of a file. During mid 2000s, The Subversion revision control

system (SVN) was created to replace CVS. It is quickly gaining ground as an OSS project

version control system.

Many open-source projects are now using distributed revision control systems, which

scale better than centralized repositories such as SVN and CVS. Popular examples are git, used

by the Linux kernel, and Mercurial, used by the Python programming language.

Bug trackers and task lists

Most large-scale projects require a bug tracking system to keep track of the status of various

issues in the development of the project. Some bug trackers include:

 Bugzilla – a sophisticated web-based bug tracker from Mozilla.

 Mantis Bug Tracker – a web-based PHP/MySQL bug tracker.

 Trac – integrating a bug tracker with a wiki, and an interface to the Subversion version

control system.

 Redmine – written in Ruby, integrates issue tracking, wiki, forum, news, roadmap, gantt

project planning and interfaces with LDAP user directory.

 Request tracker – written in Perl. Given as a default to CPAN modules – see rt.cpan.org.

 SourceForge and its forks provide a bug tracker as part of its services. As a result, many

projects hosted at SourceForge.net and similar services default to using it.

 JIRA – Atlassian's project management and issue tracking tool.

https://en.wikipedia.org/wiki/E-mail
https://en.wikipedia.org/wiki/Electronic_mailing_list
https://en.wikipedia.org/wiki/Instant_messaging
https://en.wikipedia.org/wiki/Internet_Relay_Chat
https://en.wikipedia.org/wiki/Wiki
https://en.wikipedia.org/wiki/Concurrent_Versions_System
https://en.wikipedia.org/wiki/Subversion_(software)
https://en.wikipedia.org/wiki/Subversion_(software)
https://en.wikipedia.org/wiki/Distributed_revision_control
https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Mercurial
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Bugzilla
https://en.wikipedia.org/wiki/Mozilla
https://en.wikipedia.org/wiki/Mantis_Bug_Tracker
https://en.wikipedia.org/wiki/Trac
https://en.wikipedia.org/wiki/Redmine
https://en.wikipedia.org/wiki/Request_tracker
https://en.wikipedia.org/wiki/CPAN
http://rt.cpan.org/
https://en.wikipedia.org/wiki/SourceForge
https://en.wikipedia.org/wiki/Jira_(software)

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 12/28

Testing and debugging tools

Since OSS projects undergo frequent integration, tools that help automate testing during

system integration are used. An example of such tool is Tinderbox. Tinderbox enables

participants in an OSS project to detect errors during system integration. Tinderbox runs a

continuous build process and informs users about the parts of source code that have issues and on

which platform(s) these issues arise.

A debugger is a computer program that is used to debug (and sometimes test or optimize)

other programs. GNU Debugger (GDB) is an example of a debugger used in open-source

software development. This debugger offers remote debugging, what makes it especially

applicable to open-source software development.

A memory leak tool or memory debugger is a programming tool for finding memory

leaks and buffer overflows. A memory leak is a particular kind of unnecessary memory

consumption by a computer program, where the program fails to release memory that is no

longer needed. Examples of memory leak detection tools used by Mozilla are the XPCOM

Memory Leak tools. Validation tools are used to check if pieces of code conform to the specified

syntax. An example of a validation tool is Splint.

DERIVING A FRAMEWORK FOR ANALYZING OSS

Zachman has drawn on the disciplines of architecture and engineering to derive a framework for

IS architecture which basically contains the categories what, how, where, who, when, and why (a

set of descriptors which appear to have been borrowed from Kipling). Zachman discusses in

some detail the descriptors what, how, and where to categorize different IS architectures and

suggests that these are independent but ―inextricably linked,‖ and suggests that, for the sake of

logical completeness, these should be complemented by who, when and why (Zachman 1987;

Sowa and Zachman 1992). Interestingly, Zachman concluded the 1987 paper by suggesting that

the framework could be used in a number of areas, including to rethink the nature of software

development.

A Framework for Analyzing the OSS Approach

What (Transformation)

• What defines a software project as OSS?

• What types of projects tend to be OSS?

Why (Weltanshauung, or World View)

• What are the technological motivations for OSS development?

• What are the economic motivations for OSS development?

https://en.wikipedia.org/w/index.php?title=Tinderbox_(software)&action=edit&redlink=1
https://en.wikipedia.org/wiki/Debugger
https://en.wikipedia.org/wiki/GNU_Debugger
https://en.wikipedia.org/wiki/Memory_debugger
https://en.wikipedia.org/wiki/Memory_leaks
https://en.wikipedia.org/wiki/Memory_leaks
https://en.wikipedia.org/wiki/Buffer_overflows
https://en.wikipedia.org/wiki/XPCOM
https://en.wikipedia.org/wiki/Splint_(programming_tool)

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 13/28

• What are the socio-political motivations for OSS development?

When and Where (Environment)

• What are the temporal dimensions of OSS development?

• What are the spatial/geographic dimensions of OSS development?

How

• How is the OSS development process organized?

• What tools are used to support the OSS model?

Who (Client, Actor, Owner)

• What are the characteristics of the individual developers contributing to OSS projects?

• What are the characteristics of the companies distributing OSS products?

• What are the characteristics of the users of OSS products?

ANALYSIS OF THE OSS APPROACH

In this section, the OSS approach is analyzed in detail using each of the categories of the derived

framework.

What (Transformation)

What defines a software product/project as OSS?

Open Source Software is strictly defined by the license under which it is distributed

(i.e., compliance with the OSI Open Source Definition). However, as with any emerging

concept, there is some fluidity. Thus, OSS is further characterized by the dynamics described

subsequently in this framework analysis.

What types of products/projects tend to be OSS?

OSS has in the past been dominated by operating and networking systems software, utilities,

development tools, and infrastructural components. Currently, an increasing number of

productivity and entertainment applications are being developed.

Why (Weltanschauung, or World View)

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 14/28

What are the technological motivations for OSS development?

The primary technological drivers for OSS include the need for more robust code, faster

development cycles, higher standards of quality, reliability and stability, and more open

standards/platforms.

What are the economic motivations for OSS development?

Business drivers for OSS include the corporate need for shared cost and shared risk, and the

redefinition of software industry as a commodity and service industry.

What are the socio-political motivations for OSS development?

―Human‖ motivations for OSS include scratching a developer‘s ―personal itch,‖ the desire for

advancement through mentorship, peer reputation, the desire for ―meaningful‖ work, and

community oriented idealism.

When and Where (Environment)

What are the temporal dimensions of OSS development?

OSS is characterised by the rapid development and rapid evolution of software, by frequent,

incremental release, and by interaction in ―Internet time.‖

What are the spatial/geographic dimensions of OSS development?

OSS is characterised by distributed developer teams, bounded by ―cyberspace‖ rather than

physical geography.

How is the OSS development process organized?

The core methodology of OSS is massive parallel development and debugging. This has

traditionally involved loosely-centralized, cooperative, and gratis contribution from individual

developers (although there is a recent increase in paid, coordinated development).

What tools are used to support the OSS model? Massive parallel development methods are

supported by the Internet as a communication, collaboration, and distribution platform, and by

concurrent versioning software. Other support tools include academic, non-profit, and

commercial patrons of OSS projects, ―reverse auctions‖ and online agency services.

Who (Client, Actor, Owner)

What are the characteristics of the individual developers contributing to OSS projects?

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 15/28

OSS developers have traditionally been self-identified hackers (not ―crackers‖), professional

developers (not amateurs), self-selected, and highly-motivated. Also, paradoxically, given the

reputation-based culture, developers tend to be (publicly) modest and self-deprecating. This has

important implications for stimulating cooperative development.

What are the characteristics of the companies distributing OSS products?

OSS companies have had a fantastic IPO stock market history. Generally, these companies

provide patronage for OSS developers akin to a Renaissance model. Profitability hinges on a

paradigm shift in software development. Customer service, brand management, and peer

reputation are critical. Parallels exist with the automobile and legal industries and with academe.

What are the characteristics of the users of OSS products?

To date, OSS users have primarily been expert users and early adopters. Traditionally there has

been considerable overlap between the developer and user pool. As more

OSS projects focus on usability and interface issues, this profile will change.

Examples of OSS Products

Product Description

• Linux • Operating System

• Apache • Web server

• Sendmail • Internet mail utility

• BIND • Berkeley Internet Name Daemon, the software that runs the Domain

Name Server (DNS) for the Web

• PERL, Python • Programming languages

• GNU Software • A variety of compilers, utilities, and notably, the EMACS Editor

• GNOME, KDE • GUI interfaces for Linux

• Mozilla • OSS version of Netscape Navigator

• Jikes • Java compiler from IBM

• GIMP • Image workshop

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 16/28

• Darwin • Mac OSX server system

• SAMBA • Allows integration with Microsoft‘s SMB protocol

• Ghostcript • Aladdin enterprises PDF utility

• Doom • First-person shooter game

OSS products are typically development tools, back-office services/applications, and

infrastructural and networking utilities. Performance and reliability are critical factors and

these products score very highly on these criteria. They have been chosen by technically-

aware IT personnel who are not as susceptible to a glossy marketing campaign as the wider

market.

This reflects the OSS-like nature of the evolution of the Internet, e.g., the TCP/IP protocol,

DNS, and electronic mail utilities. Also, the initial implementation of the Web was

characterized by an OSS style; thus, it is appropriate that utilities such as BIND and the

Apache web server should be OSS. It should be noted that as OSS-related companies seek to

push the movement into the commercial mainstream, entertainment and end-user productivity

tools are becoming more popular.

ZACHMAN’S FRAMEWORK FOR IS ARCHITECTURE

The title "Zachman Framework" refers to The Zachman Framework for Enterprise Architecture

with version 3.0 being the most current. The Zachman Framework has evolved in its thirty-year

history to include:

 The initial framework, named A Framework for Information Systems Architecture, by

John Zachman published in an 1987 article in the IBM Systems journal.

 The Zachman Framework for Enterprise Architecture, an update of the 1987 original in

the 1990s extended and renamed .

 One of the later versions of the Zachman Framework, offered by Zachman International

as industry standard.

Collage of Zachman Frameworks as presented in several books on Enterprise Architecture

from 1997 to 2005.

In other sources the Zachman Framework is introduced as a framework, originated by and

named after John Zachman, represented in numerous ways, see image. This framework is

explained as, for example:

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 17/28

 a framework to organize and analyze data

 a framework for enterprise architecture.

 a classification system, or classification scheme

 a matrix, often in a 6x6 matrix format

 a two-dimensional model
[10]

 or an analytic model.

 a two-dimensional schema, used to organize the detailed representations of the enterprise.

Beside the frameworks developed by John Zachman, numerous extensions and/or

applications have been developed, which are also sometimes called Zachman Frameworks,

however they generally tend to be graphical overlays of the actual framework itself.

The Zachman Framework summarizes a collection of perspectives involved in enterprise

architecture. These perspectives are represented in a two-dimensional matrix that defines along

the rows the type of stakeholders and with the columns the aspects of the architecture. The

framework does not define a methodology for an architecture. Rather, the matrix is a template

that must be filled in by the goals/rules, processes, material, roles, locations, and events

specifically required by the organization. Further modeling by mapping between columns in the

framework identifies gaps in the documented state of the organization.

The framework is a logical structure for classifying and organizing the

descriptive representations of an enterprise. It is significant to both the management of the

enterprise, and the actors involved in the development of enterprise systems.
[13]

While there is no

order of priority for the columns of the Framework, the top-down order of the rows is significant

to the alignment of business concepts and the actual physical enterprise. The level of detail in the

Framework is a function of each cell (and not the rows). When done by IT the lower level of

focus is on information technology, however it can apply equally to physical material (ball

valves, piping, transformers, fuse boxes for example) and the associated physical processes,

roles, locations etc. related to those items.

Concept

The basic idea behind the Zachman Framework is that the same complex thing or item

can be described for different purposes in different ways using different types of descriptions

(e.g., textual, graphical). The Zachman Framework provides the thirty-six necessary categories

for completely describing anything; especially complex things like manufactured goods (e.g.,

appliances), constructed structures (e.g., buildings), and enterprises (e.g., the organization and all

of its goals, people, and technologies). The framework provides six different transformations of

an abstract idea (not increasing in detail, but transforming) from six different perspectives.

https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Classification_(machine_learning)
https://en.wikipedia.org/wiki/Scientific_modelling
https://en.wikipedia.org/wiki/Scientific_modelling
https://en.wikipedia.org/wiki/Perspective_(cognitive)
https://en.wikipedia.org/wiki/Stakeholder_(corporate)
https://en.wikipedia.org/wiki/Representations
https://en.wikipedia.org/wiki/Management
https://en.wikipedia.org/wiki/Zachman_Framework#cite_note-Lank05-13
https://en.wikipedia.org/wiki/Information_technology

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 18/28

It allows different people to look at the same thing from different perspectives. This

creates a holistic view of the environment, an important capability illustrated in the figure.

Views of rows

Each row represents a total view of the solution from a particular perspective. An upper

row or perspective does not necessarily have a more comprehensive understanding of the whole

than a lower perspective. Each row represents a distinct, unique perspective; however, the

deliverables from each perspective must provide sufficient detail to define the solution at the

level of perspective and must translate to the next lower row explicitly.

Each perspective must take into account the requirements of the other perspectives and the

restraint those perspectives impose. The constraints of each perspective are additive. For

example, the constraints of higher rows affect the rows below. The constraints of lower rows can,

but do not necessarily affect the higher rows. Understanding the requirements and constraints

necessitates communication of knowledge and understanding from perspective to perspective.

The Framework points the vertical direction for that communication between perspectives.

 Executive Perspective (Scope Contents) - The first architectural sketch is a "bubble chart"

orVenn diagram, which depicts in gross terms the size, shape, partial relationships, and basic

purpose of the final structure. It corresponds to an executive summary for a planner or

investor who wants an overview or estimate of the scope of the system, what it would cost,

and how it would relate to the general environment in which it will operate.

 Business Management Perspective (Business Concepts) - Next are the architect's

drawings that depict the final building from the perspective of the owner, who will have to

live with it in the daily routines of business. They correspond to the enterprise (business)

models, which constitute the designs of the business and show the business entities and

processes and how they relate.

 Architect Perspective (System Logic) - The architect's plans are the translation of the

drawings into detail requirements representations from the designer's perspective. They

correspond to the system model designed by a systems analyst who must determine the data

elements, logical process flows, and functions that represent business entities and processes.

 Engineer Perspective (Technology Physics) - The contractor must redraw the architect's

plans to represent the builder's perspective, with sufficient detail to understand the

constraints of tools, technology, and materials. The builder's plans correspond to the

technology models, which must adapt the information systems model to the details of the

programming languages, input/output (I/O) devices, or other required supporting technology.

https://en.wikipedia.org/wiki/Bubble_chart
https://en.wikipedia.org/wiki/Venn_diagram

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 19/28

 Technician Perspective (Tool Components) - Subcontractors work from shop plans that

specify the details of parts or subsections. These correspond to the detailed specifications

that are given to programmers who code individual modules without being concerned with

the overall context or structure of the system. Alternatively, they could represent the detailed

requirements for various commercial-off-the-shelf (COTS), government off-the-shelf

(GOTS), or components of modular systems software being procured and implemented

rather than built.

 Enterprise Perspective or (Operations Instances)

Focus of columns

In summary, each perspective focuses attention on the same fundamental questions, then answers

those questions from that viewpoint, creating different descriptive representations (i.e., models),

which translate from higher to lower perspectives. The basic model for the focus (or product

abstraction) remains constant. The basic model of each column is uniquely defined, yet related

across and down the matrix. In addition, the six categories of enterprise architecture components,

and the underlying interrogatives that they answer, form the columns of the Zachman Framework

and these are:

1. Inventory Sets — What

2. Process Flows — How

3. Distribution Networks — Where

4. Responsibility Assignments — Who

5. Timing Cycles — When

6. Motivation Intentions — Why

In Zachman‘s opinion, the single factor that makes his framework unique is that each

element on either axis of the matrix is explicitly distinguishable from all the other elements on

that axis. The representations in each cell of the matrix are not merely successive levels of

increasing detail, but actually are different representations — different in context, meaning,

motivation, and use. Because each of the elements on either axis is explicitly different from the

others, it is possible to define precisely what belongs in each cell.

Models of cells

The Zachman Framework typically is depicted as a bounded 6 x 6 "matrix" with the

Communication Interrogatives as Columns and the Reification Transformations as Rows. The

framework classifications are repressed by the Cells, that is, the intersection between the

Interrogatives and the Transformations.

https://en.wikipedia.org/wiki/Commercial_off-the-shelf
https://en.wikipedia.org/wiki/Government_off-the-shelf
https://en.wikipedia.org/wiki/Government_off-the-shelf

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 20/28

The cell descriptions are taken directly from version 3.0 of the Zachman Framework.

Executive Perspective

1. (What) Inventory Identification

2. (How) Process Identification

3. (Where) Distribution Identification

4. (Who) Responsibility Identification

5. (When) Timing Identification

6. (Why) Motivation Identification

Business Management Perspective

1. (What) Inventory Definition

2. (How) Process Definition

3. (Where) Distribution Definition

4. (Who) Responsibility Definition

5. (When) Timing Definition

6. (Why) Motivation Definition

Architect Perspective

1. (What) Inventory Representation

2. (How) Process Representation

3. (Where) Distribution Representation

4. (Who) Responsibility Representation

5. (When) Timing Representation

6. (Why) Motivation Representation

Engineer Perspective

1. (What) Inventory Specification

2. (How) Process Specification

3. (Where) Distribution Specification

4. (Who) Responsibility Specification

5. (When) Timing Specification

6. (Why) Motivation Specification

Technician Perspective

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 21/28

1. (What) Inventory Configuration

2. (How) Process Configuration

3. (Where) Distribution Configuration

4. (Who) Responsibility Configuration

5. (When) Timing Configuration

6. (Why) Motivation Configuration

Enterprise Perspective

1. (What) Inventory Instantiations

2. (How) Process Instantiations

3. (Where) Distribution Instantiations

4. (Who) Responsibility Instantiations

5. (When) Timing Instantiations

6. (Why) Motivation Instantiations

Since the product development (i.e., architectural artifact) in each cell or the problem

solution embodied by the cell is the answer to a question from a perspective, typically, the

models or descriptions are higher-level depictions or the surface answers of the cell. The refined

models or designs supporting that answer are the detailed descriptions within the cell.

Decomposition (i.e., drill down to greater levels of detail) takes place within each cell. If a cell is

not made explicit (defined), it is implicit (undefined). If it is implicit, the risk of making

assumptions about these cells exists. If the assumptions are valid, then time and money are

saved. If, however, the assumptions are invalid, it is likely to increase costs and exceed the

schedule for implementation.

Framework set of rules

Example of Zachman Framework Rules.

The framework comes with a set of rules:

 Rule 1 The columns have no order : The columns are interchangeable but cannot be

reduced or created

 Rule 2 Each column has a simple generic model : Every column can have its own meta-

model

 Rule 3 The basic model of each column must be unique : The basic model of each

column, the relationship objects and the structure of it is unique. Each relationship object is

interdependent but the representation objective is unique.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 22/28

 Rule 4 Each row describes a distinct, unique perspective : Each row describes the view of

a particular business group and is unique to it. All rows are usually present in most

hierarchical organizations.

 Rule 5 Each cell is unique : The combination of 2,3 & 4 must produce unique cells where

each cell represents a particular case. Example: A2 represents business outputs as they

represent what are to be eventually constructed.

 Rule 6 The composite or integration of all cell models in one row constitutes a complete

model from the perspective of that row : For the same reason as for not adding rows and

columns, changing the names may change the fundamental logical structure of the

Framework.

 Rule 7 The logic is recursive : The logic is relational between two instances of the same

entity.

The framework is generic in that it can be used to classify the descriptive representations of

any physical object as well asconceptual objects such as enterprises. It is also recursive in that it

can be used to analyze the architectural composition of itself. Although the framework will carry

the relation from one column to the other, it is still a fundamentally structural representation of

the enterprise and not a flow representation.

Flexibility in level of detail

One of the strengths of the Zachman Framework is that it explicitly shows a

comprehensive set of views that can be addressed by enterprise architecture.
[12]

 Some feel that

following this model completely can lead to too much emphasis on documentation, as art efacts

would be needed for every one of the thirty cells in the framework. Zachman, however, indicates

that only the facts needed to solve the problem under analysis need be populated.

John Zachman clearly states in his documentation, presentations, and seminars that, as

framework, there is flexibility in what depth and breadth of detail is required for each cell of the

matrix based upon the importance to a given organization. An automaker whose business goals

may necessitate an inventory and process-driven focus, could find it beneficial to focus their

documentation efforts on What and How columns. By contrast, a travel agent company, whose

business is more concerned with people and event-timing, could find it beneficial to focus their

documentation efforts on Who, When, andWhere columns. However, there is no escaping

the Why column's importance as it provides the business drivers for all the other columns.

Applications and influences

Since the 1990s the Zachman Framework has been widely used as a means of providing

structure for Information Engineering-style enterprise modeling. The Zachman Framework can

https://en.wikipedia.org/wiki/Conceptual_object
https://en.wikipedia.org/wiki/View_model
https://en.wikipedia.org/wiki/Zachman_Framework#cite_note-GASLSJ03-12
https://en.wikipedia.org/wiki/Information_Engineering
https://en.wikipedia.org/wiki/Enterprise_modeling

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 23/28

be applied both in commercial companies and in government agencies. Within a government

organization the framework can be applied to an entire agency at an abstract level, or it can be

applied to various departments, offices, programs, subunits and even to basic operational entities.

Standards based on the Zachman Framework

Zachman Framework is also used as a framework to describe standards, for example

standards for healthcare and healthcare information system. Each cell of the framework contains

such a series of standards for healthcare and healthcare information system.

While the Zachman Framework is widely discussed, its practical value has been questioned:

 The framework is purely speculative, non-empirical and based only on the conceptual

argument that the "equivalency [between the architectural representations of the

manufacturing and construction industries] would strengthen the argument that an analogous

set of architectural representations is likely to be produced during the process of building any

complex engineering product, including an information system"

 Practical feedback shows that the general idea of creating comprehensive descriptions of

enterprises as suggested by the Zachman Framework is unrealistic

 In 2004 John Zachman admitted that the framework is theoretical and has never been

fully implemented: "If you ask who is successfully implementing the whole framework, the

answer is nobody that we know of yet"

 There are no detailed examples demonstrating the successful practical application of the

framework

 EA practitioner Stanley Gaver argues that "the analogy to classical architecture first made

by John Zachman is faulty and incomplete"

 Jason Bloomberg argues that "enterprise isn‘t an ordinary system like a machine or a

building, and can‘t be architected or engineered as such"

This criticism suggests that the Zachman Framework can hardly reflect actual best practice in

EA.

CATWOE AND SOFT SYSTEM METHOD

The methodology was developed from earlier systems engineering approaches, primarily

by Peter Checkland and colleagues such as Brian Wilson. The primary use of SSM is in the

analysis of complex situations where there are divergent views about the definition of the

problem. These situations are "soft problems" such as: How to improve health services delivery?

How to manage disaster planning? When should mentally disordered offenders be diverted from

custody? What to do about homelessness amongst young people?

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 24/28

In such situations even the actual problem to be addressed may not be easy to agree upon.

To intervene in such situations the soft systems approach uses the notion of a "system" as an

interrogative device that will enable debate amongst concerned parties. In its 'classic' form the

methodology consists of seven steps, with initial appreciation of the problem situation leading to

the modelling of several human activity systems that might be thought relevant to the problem

situation.

There are several hundred documented examples of the successful use of SSM in many

different fields, ranging from ecology, to business and military logistics. It has been adopted by

many organizations and incorporated into other approaches: in the 1990s for example it was the

recommended planning tool for the UK government's SSADM system development

methodology.

The general applicability of the approach has led to some criticisms that it is

functionalist, non-emancipator or supports the status quo and existing power structures; this is a

claim that users would deny, arguing that the methodology itself can be none of these, it is the

user of the methodology that may choose to employ it in such a way.

The methodology has been described in several books and many academic articles.

SSM remains the most widely used and practical application of systems thinking, and other

systems approaches such as critical systems thinking have incorporated many of its ideas.

The 7-stage description

7-stage representation of SSM:

1. Enter situation considered problematical

2. Express the problem situation

3. Formulate root definitions of relevant systems of purposeful activity

4. Build conceptual models of the systems named in the root definitions

5. Compare models with real world situations

6. Define possible changes which are both possible and feasible

7. Take action to improve the problem situation

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 25/28

CATWOE

In 1975, David Smyth, a researcher in Checkland's department, observed that SSM was

most successful when the Root Definition included certain elements. These elements, captured in

the mnemonic CATWOE, identified the people, processes and environment that contribute to a

situation, issue or problem that required analyzing.

This is used to prompt thinking about what the business is trying to achieve. Business

Perspectives help the Business Analyst to consider the impact of any proposed solution on the

people involved. There are six elements of CATWOE

Customers - Who are the beneficiaries of the highest level business process and how does the

issue affect them?

Actors - Who is involved in the situation, who will be involved in implementing solutions and

what will impact their success?

Transformation Process - What is the transformation that lies at the heart of the system -

transforming grapes into wine, transforming unsold goods into sold goods, transforming a

societal need into a societal need met?

Weltanschuung (or Worldview) - What is the big picture and what are the wider impacts of the

issue?

Owner - Who owns the process or situation being investigated and what role will they play in the

solution?

Environmental Constraints - What are the constraints and limitations that will impact the solution

and its success?

DERIVING THE ANALYTICAL FRAMEWORK FOR OSS

A Framework for Analyzing the OSS Approach

What (Transformation)

• What defines a software project as OSS?

• What types of projects tend to be OSS?

Why (Weltanshauung, or World View)

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 26/28

• What are the technological motivations for OSS development?

• What are the economic motivations for OSS development?

• What are the socio-political motivations for OSS development?

When and Where (Environment)

• What are the temporal dimensions of OSS development?

• What are the spatial/geographic dimensions of OSS development?

How

• How is the OSS development process organized?

• What tools are used to support the OSS model?

Who (Client, Actor, Owner)

• What are the characteristics of the individual developers contributing to OSS projects?

• What are the characteristics of the companies distributing OSS products?

• What are the characteristics of the users of OSS products?

ANALYSIS OF THE OSS APPROACH

In this section, the OSS approach is analyzed in detail using each of the categories of the derived

framework.

What (Transformation)

What defines a software product/project as OSS?

Open Source Software is strictly defined by the license under which it is distributed

(i.e., compliance with the OSI Open Source Definition). However, as with any emerging

concept, there is some fluidity. Thus, OSS is further characterized by the dynamics described

subsequently in this framework analysis.

What types of products/projects tend to be OSS?

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 27/28

OSS has in the past been dominated by operating and networking systems software, utilities,

development tools, and infrastructural components. Currently, an increasing number of

productivity and entertainment applications are being developed.

Why (Weltanschauung, or World View)

What are the technological motivations for OSS development?

The primary technological drivers for OSS include the need for more robust code, faster

development cycles, higher standards of quality, reliability and stability, and more open

standards/platforms.

What are the economic motivations for OSS development?

Business drivers for OSS include the corporate need for shared cost and shared risk, and the

redefinition of software industry as a commodity and service industry.

What are the socio-political motivations for OSS development?

―Human‖ motivations for OSS include scratching a developer‘s ―personal itch,‖ the desire for

advancement through mentorship, peer reputation, the desire for ―meaningful‖ work, and

community oriented idealism.

When and Where (Environment)

What are the temporal dimensions of OSS development?

OSS is characterised by the rapid development and rapid evolution of software, by frequent,

incremental release, and by interaction in ―Internet time.‖

What are the spatial/geographic dimensions of OSS development?

OSS is characterised by distributed developer teams, bounded by ―cyberspace‖ rather than

physical geography.

How is the OSS development process organized?

The core methodology of OSS is massive parallel development and debugging. This has

traditionally involved loosely-centralized, cooperative, and gratis contribution from individual

developers (although there is a recent increase in paid, coordinated development).

What tools are used to support the OSS model? Massive parallel development methods are

supported by the Internet as a communication, collaboration, and distribution platform, and by

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT II:QUALIFICATION BATCH: 2015-2018

Prepared by Manjula.D, Department of CS, CA & IT, KAHE Page 28/28

concurrent versioning software. Other support tools include academic, non-profit, and

commercial patrons of OSS projects, ―reverse auctions‖ and online agency services.

Who (Client, Actor, Owner)

What are the characteristics of the individual developers contributing to OSS projects?

OSS developers have traditionally been self-identified hackers (not ―crackers‖), professional

developers (not amateurs), self-selected, and highly-motivated. Also, paradoxically, given the

reputation-based culture, developers tend to be (publicly) modest and self-deprecating. This has

important implications for stimulating cooperative development.

POSSIBLE QUESTIONS

(8 MARKS)

1. Briefly describe about OSS development life cycle.

2. Explain the characteristics of Open Source Software Transformation

3. Describe about Deriving a framework for analyzing OSS.

4. Describe Zachman‟s Framework for IS Architecture.

5. Briefly describe about qualification and categorizing open source software in detail.

S.No Question Option1 Option2 Option3 Option4
Answe

r

1

________ is a software that

is floated to see if there is

an interest

Vaporwar

e
Freeware

Free

Software

Open

Source

Software

Vapor

ware

2

The software in wide

distribution that has a

version number less than

3.0 2.0 1.0 0.5 1.0

3 OSH stands for ______

Open

Source

Host

Open

Source

Hardware

Open

Source

Hub

Open

Source

Hierarchy

Open

Source

Hardwa

re

4

The development of open

source hardware was

initiated in ______

2004 2000 2002 2001 2002

5
F in FOSS stands for

feasible full free field free

6

FOSS projects break their

version number into_____

pieces

4 3 2 1 3

7

The second piece of a

version number of FOSS

project is______

major

version

minor

update

point

release

minor

version

minor

update

8

Minor update is the ______

piece of version number of

FOSS project.

first second third fourth second

9

______ indicates a small

update to fix a bug or

security problem

point

release

minor

update

major

version

minor

version

point

release

10 HDL stands for _______

High

Definitio

n

Language

Hardware

Definition

Language

High

Descriptio

n

Language

Hardware

Descripti

on

Language

Hardwa

re

Descrip

tion

Langua

ge

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Department of Computer Science

III B.Sc(CS) (BATCH 2015-2018)

Open Source Software

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS ONE MARK QUESTIONS

UNIT II

COIMBATORE-641021

11
Pajamas media briefly

known as_____

free

software

media

open

hardware

media

open

source

media

close

source

media

open

source

media

12

Open Source Media is a

start up company founded

in the year_______

2001 2002 2003 2004 2004

13 OST stands for_____

Open

Source

Teaching

Open

software

Teaching

Open

Service

Teaching

Open

Server

Teaching

Open

Source

Teachi

ng

14
______ is collection of just

about any type of files
Object

Learning

Object

Class

Object

Source

Object

Learnin

g

Object

15
Each file in a learning

object is referred as ____
document group atom record atom

16

Each learning object must

have_____ as a starting or

entry point

prototype

atom
sub atom

model

atom

main

atom

main

atom

17

In_______ model, source

code must be hidden from

the public competitors.

open

source

close

source
free source

shared

source

close

source

18

Free software movement

demands _____ types of

freedoms

4 5 6 7 4

19

_______ is microsoft's

framework for sharing

computer source code with

individuals and

organizations

open

source

shared

source

close

source

free

source

shared

source

20

Richard's Stallman

organization is called

Free

Software

Foundati

on

Open

Source

Software

Foundatio

n

Close

Source

Software

Foundatio

n

Apache

Software

Foundatio

n

Free

Softwar

e

Founda

tion

21

Most of the open sourc

software licensed

under_____

copyright copyleft patent
legal

license

copylef

t

22

______ denotes the theory

of right action and the

greater good.

Ethics Moral Immoral
legal

license
Ethics

23

______ ethics signifies a

moral code applicable to

individuals

social personal financial logical
persona

l

24

______ ethics can be

synonymous with social,

political philosophy in as

much as it is the foundation

of a good society or state

Personal Financial Logical Social Social

25
The Wix toolset is licensed

under the ______
CPL GPL LGPL MPL CPL

26
The ASP.Net AJAX control

toolkit licensed under_____
MPL MS-PL CPL NPL MS-PL

27

______ toolkit is a set of

controls and extenders use

AJAX technologies to

enable the developers to

improve the client

experience on their website

ASP.Net

AJAX
ASP.Net

Wix

Toolset
AJAX

ASP.N

et

AJAX

28
Open politics is also known

as_____

open

software

politics

open

source

politics

open

source

software

politics

free

software

politics

open

source

politics

29

In Linux kernel version 2,

the design use _____

numbers for Development

kernels

odd even binary decimal odd

30

In Linux kernel version 2,

the design use _____

numbers for stable kernels

Random odd even binary even

31

______ is the application of

open source methods to the

creation of products,

machines and system

Open

design

Software

design

Hardware

design

System

Design

Open

design

32

EDA stands for______

Electronic

Design

Automatio

n

Electrical

Display

Architectur

e

Electronic

Device

Automation

Electrical

Device

Architectu

re Electronic D

33

Programmers often prefer

to ______ from other's

code.

Copy Reuse steal learn learn

34 What is CVS?

Open

source

license

Editing

software

Version

control

system

Developm

ent

Environme

nt

Version

control

system

35

Which of the following is

not true for open source

software?

It is

owned by

a person

It supports

distributed

developme

nt

It supports

collaborativ

e

developme

nt

Its code is

available

for all

It is

owned

by a

person

36
The acronym of CVS is

__________.

Consisten

t Version

System

Common

Validation

System

Consistent

Version

System

Concurre

nt

Versions

System

Concur

rent

Version

s

System

37
_______ has advanced data

store than CVS.
RCS SCCS SVN IMS CVS

38
The acronym of SVN is

______________.

Single

Version

Subversio

n

Stimuli

Verificatio

n

Simple

Verified

Node

Subver

sion

39
Subversion is a project of

____________.
IBM Oracle Apple Apache Apache

40
SourceSafe is a

________________.

version

control
backup website

search

engine

version

control

41 What is Bugzilla?

A bug-

tracking

mechanis

m

A version

control

A bug-

correcting

software

It involves

both

version

control

and bug-

tracking

mechanis

m

A bug-

tracking

mechan

ism

42
Which of the following is

proprietary?

OpenOffi

ce
Oracle MySQL Postgres Oracle

43
Bugs persist longer in

__________.

open

codebases

proprietar

y

codebases

free

codebases

closed

codebases

closed

codeba

ses

nic Design Automation

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 1/42

UNIT III

SYLLABUS

ENVIRONMENT: THE “WHERE” OF OSS AND THE “WHEN” OF OSS

The developmental environment of OSS is one that is shaped by “Internet time” and virtual
geography. As noted above, OSS projects are often characterized by rapid development.
Perhaps more importantly, the platform-building ethos of OSS allows for rapid evolution of
software, addressing what Young and Rohm (2000) identify as a sharp disparity between
hardware and software innovation, in that hardware advances run at a rate of more than twice
that of software.

OSS, as its history to date has shown, offers some promise that this can be redressed. Again,
the huge expansion in the pool of potential co-developers has parallels with what took place
in the automobile and telephone industries in the past. Fogel (1999) also discusses the
parallels between OSS and biological evolution and identifies features such as natural
selection and survival of the fittest from actual examples of OSS projects. The modus
operandi of frequent, incremental releases encourages adaptation and mutation, and the
asynchronous collaboration of developers means that OSS projects achieve an agility of
which corporations often only dream. Geographically OSS is characterized by massive
distribution, with teams, community, and peer groups defined by virtual, rather than physical,
boundaries.

When and Where (Environment)

• What are the temporal dimensions of OSS development?

 OSS is characterized by the rapid development and rapid evolution of software, by

frequent, incremental release, and by interaction in “Internet time.”

• What are the spatial/geographic dimensions of OSS development?

OSS is characterized by distributed developer teams, bounded by “cyberspace” rather

than physical geography.

Proprietary software development projects are often characterized by the development of

software products through sequential and incremental releases. A product is designed, developed,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 2/42

tested, and then released to the public with upgrades usually available for download or

subsequently released as new versions of the application. The software product is developed

through the interaction and cooperation between software developers who can be physically

close or geographically dispersed. While these projects release software sequentially and

incrementally, they differ from open source projects as these are characterized by the rapid

development and evolution of software marked by a fluid design state (Raymond 2001) through

which continuous improvements are made to the end product and then distributed to end users. In

essence, the fluid design state characterizes the ever-changing aspect of open source products as

these applications are constantly being modified, improved, and released. In addition, OSS

development projects are characterized by distributed software development efforts.

Development teams in open source contexts are held together by the Web rather than physical

geography. The Internet, as a free public communication infrastructure, has made the movement

possible.

WORLD VIEW: A FRAMEWORK FOR CLASSIFYING OSS MOTIVATIONS

There are three “world views” important to understanding why, on a macro level, industry might

choose to develop software according to the OSS paradigm, and, on a micro level, why

individual developers would choose to participate. These are discussed in turn.

TECHNOLOGICAL MICRO-LEVEL (INDIVIDUAL) MOTIVATION

The primary technological drivers for OSS include the need for more robust code, faster

development cycles, higher standards of quality, reliability and stability, and more open

standards/platforms.

The technological motivation for OSS development directly relates to the software crisis, which

clearly illustrates that traditional modes of development do not work very well, specifically in

the areas of speed, quality, and cost of development. The OSS approach counters these tripartite

aspects. The Linux operating system and other OSS products mentioned above are characterized

by a very rapid development time-scale. For example, new releases of Linux were produced

more than once per day in the early days of its development (Raymond 1998a). Part of the

conventional wisdom of software development is captured in Brooks’ fundamental law, viz.,

“adding manpower to a late software project makes it later” (Brooks 1975). Based on this, it was

thought that complex software, which all software pretty much is (Brooks 1987), required a

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 3/42

disciplined and orderly approach, and that Feller and Fitzgerald 64 the communication overhead

of adding extra developers negated their potential contribution to development productivity.

However, the OSS community has recast this law as “given enough eye-balls, every bug looks

shallow” (Raymond 1998a) to reflect the manner in which the literally global community of OSS

co-developers, operating in a decentralized cooperative manner according to the principle of

prompt feedback, are able to solve the various problems that arise. Linux has had more than

1,000 developers working on the kernel alone, while Fetchmail has had more than 600 globally-

distributed co-developers working asynchronously in different time-zones (Raymond 1998a).

The second aspect of the software crisis, software quality, is also addressed by the OSS

approach, in that OSS developers are reckoned to be the most-talented and highly motivated 5%

of software developers (Raymond 1998a). Also, peer review of any development product is truly

independent, in that the global community of co-developers have no vested interest, consciously

or subconsciously, in turning a blind eye to deficiencies in the product. Evidence of this quality

and inherent reliability of OSS output is amply demonstrated by the fact that these products have

achieved such a significant market share without any conventional marketing or advertising

campaigns—there has not been any $100 million Start me up campaign for any OSS products!

Raymond (1999a) has considered the specific issue of when OSS development is appropriate in

some detail and suggests the following (mainly technological criteria) as predisposing toward

OSS development:

• When reliability and stability of the software are critical,

• When correctness is only established through independent peer review,

• When software is critical to the business,

• When the software establishes a communications infrastructure,

• When the key algorithms are part of common software engineering knowledge

ECONOMIC MICRO-LEVEL AND MACRO-LEVEL (INDIVIDUAL) MOTIVATION

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 4/42

Business drivers for OSS include the corporate need for shared cost and shared risk, and the

redefinition of software industry as a commodity and service industry.

The final aspect of the software crisis, cost, is also addressed by OSS, and sets the stage for an

understanding of the economic motivations of OSS development. Under the OSS model,

software may be downloaded freely by ftp, or more typically, can be purchased in CD-ROM

format for a very nominal fee, an anathema to traditional vendors of proprietary software. For

example, Red Hat, one of the leading OSS product distributors, package 435 fully-tested OSS

products into their distribution for a fee of about $50.

Competitors can (and do) download free copies of the same products and offer them at a

lower price. However, the rules of competition are not fully determined by price (which is

nominal anyway); rather, companies compete on the basis of the service provided to the

consumer, which can only be good news for the latter. More important than sticker-price, OSS

allows companies developing and implementing systems to share both the risks and longterm

costs associated with a system. By shifting the locus of value from protecting “bits” of code to

maximizing the gain from software use and platform development, OSS redefines software as an

industry.

Raymond (1999a) identifies the mistaken business and financial models underpinning

conventional software development, terming it a service industry operating under the delusion of

being a manufacturing one. Certainly, it is a well established fact that the vast proportion of the

total cost of software development is incurred in the maintenance phase—with reliable estimates

varying from 70% (Boehm 1976) to 80% (Flaatten et al. 1989). This suggests that the model for

proprietary software, which operates a high purchase price with a low support fee, does not

reflect the reality of the cost distribution in practice. This is recognized in the OSS model where

the software is distributed for a nominal fee and companies then compete on service to the

consumer. The model views software as a commodity product where the ingredients are free

(Young 1999). Brand management becomes critical and customers learn to value a brand they

can trust in terms of quality, reliability, and consistency. In these business conditions, OSS

companies can learn from the experiences of companies such as Perrier, Ballygowan, and Heinz,

where brand image has been successfully exploited in a highly-competitive consumer-driven

market.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 5/42

SOCIO-POLITICAL MICRO-LEVEL AND MACRO-LEVEL (INDIVIDUAL) MOTIVATION.
“Human” motivations for OSS include scratching a developer’s “personal itch,” the desire for

advancement through mentorship, peer reputation, the desire for “meaningful” work, and

community oriented idealism.

While technological and economic factors may be sufficient to understand industrial support for

OSS, the motivations of individual developers are often socio-political. The nature of the

software development craft and those who practice it needs to be considered. These issues will

be discussed in detail in the analysis of the who category of the framework below. OSS

developers tend to be self-selected and highly-motivated professionals. They may be working on

typically long, drawn-out development projects in their own organizations; thus, any of their

software output is not usually subject to the prompt feedback of positive reinforcement. When

they contribute to OSS development, however, they get a very real “rush” from seeing their code

being used and tested immediately (DiBona et al. 1999). Also, the OSS community norms ensure

a strict meritocracy where quality speaks for itself. Contributors cannot confer expert status on

themselves; rather, it arises through peer recognition. Although now viewed somewhat

controversially (Wahba and Bridwell 1976), Maslow’s hierarchy of needs, which posits a

category of self-actualisation needs (Maslow 1970), has been drawn upon to help explain the

motivation behind the committed contribution of OSS developers (Raymond 1998b).

Furthermore, the possibility of learning and skill advancement and overt social and political

agenda serve as powerful motivators.

OPEN SOURCE SERVER APPLICATIONS

The important open source server applications, which will be discussed in

the following sections include:

 Infrastructure services

 Web servers

 Database servers

 Mail servers

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 6/42

 Systems management services

1 INFRASTRUCTURE SERVICES

Infrastructure services consist of basic network services, security services, and file, print, and

directory services.

Basic network services include DHCP, DNS, and WINS plus caching services, and routing

where that is not done by an appliance. It is typically very inexpensive to provide these services,

on the order of $100 per user per year, and this is a commodity activity that any server should be

able to perform.

Security services include firewalls, virtual private networking, intrusion detection, antivirus

services, authentication, and authorization. These services are difficult to distinguish at times

from basic network services and directory services, which support them, or even mail services,

such as the case of antivirus and antispam services. Active Directory, for example, provides

directory and security services through the same product and the same interface. Sometimes,

indeed increasingly often, these are provided by appliances.

Infrastructure Services

A major difference between open source and Windows in this area is that Linux is usually the

operating system of dedicated appliances. Security is actually the most common single use of

Linux in the enterprise, and this is mostly in appliances. Appliance vendors prefer Linux (or

FreeBSD) for two reasons:

They pay no licensing fees.

They can tune the system precisely for their needs.

As a result, these appliances are inexpensive because of the custom footprintand low license fee.

Linux networking appliances are also generally very fast. Linux (along with FreeBSD) is

generally recognized to have the fastest networking stack, and the code can be further tuned for

particular dedicated purposes. Microsoft offers support for appliances also but usually prefers a

more integrated approach, where Windows systems run a mix of services on a larger server.

1.1 File and Print Services

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 7/42

In a mixed environment, we will generally use Samba for file and print services. Linux systems

also support file sharing very efficiently and easily using NFS and FTP, and this is a good choice

in existing UNIX environments.

Another choice is the Novell iFolders technology, which was recently open sourced. Given the

current distribution of servers and clients, most organizations are currently using Windows

networking, and adopting Samba will be the simplest choice.

Samba allows non-Windows systems to share file and print services with Windows systems.

Samba clients function like Windows clients, but for Linux, Mac, or other operating systems, so

they see file shares and printers published by Windows or Samba servers. Samba servers

function like Windows servers, but on Linux or other systems, so they can publish file and

printer shares and also authenticate users in a way similar to a Windows server.

The current version of Samba can authenticate by acting as a Windows NT primary or backup

domain controller, by accessing Windows NT domain controllers, or by accessing the Windows

2000 Active Directory.

Samba is an efficient program and scales well. Companies such as Bank of America and

Hewlett-Packard use Samba to support many thousands of clients. The program, written by

Andrew Trumbull while at SGI, is an implementation of the Windows Networking facility called

Server Message Block (SMB). The name Samba is a play on SMB. The protocol traces back to

the period when IBM, 3Com, and Microsoft were working together; is also used in OS/2; and is

also known as the Common Internet.

File System (CIFS)

We may be able to arrange file sharing within an organization (inside a firewall) by

implementing one of a few simple approaches. If information is usually either private or

enterprise wide (public), then we don’t need a directory system. We can create and share public

shares on file sharing systems and teach users to move information for sharing to those shares.

On Novell systems, these were usually set up as virtual drives. Once we get beyond

public/private into allowing groups or individuals access to specific information, we will

probably need a directory of some sort, although not necessarily LDAP. Using Samba, at least

since version 3, the choices are:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 8/42

Use Samba to manage users. Samba can act as a client to an NT server for authentication

or work like an NT primary domain server for NT4 replacement, in which case users are

migrated from the NT4 server to Samba.

Use Active Directory. Samba can act as a client for authentication to a Windows

2000/2003 Server running Active Directory (but not as a server).

Set up OpenLDAP or another LDAP server and use that as the directory for managing

file sharing.

There are several dependent components for Samba. Samba shares printers by using the local

printing facility (generally CUPS today on Linux). It also relies on WINS for naming services by

default. Originally,

SMB was based on NetBIOS, later on NetBIOS over TCP/IP (with the NetBEUI stack

removed). It can now run without NetBIOS, which many organizations require. To see and work

with Samba files—for instance, to create file shares or access them—you will need a GUI tool

such as Nautilus or Konqueror that supports SMB.

1.2 Directory Services

OpenLDAP is based on the original LDAP server, written at the University of Michigan.

It takes a little more work to set up than the commercial alter- 148 7.2 Web Servers natives, but

it is open source, solid, scalable, and provides authentication that is configurable for many of the

services we will want to use:

 Samba file and print sharing

 Apache Web server

 Courier and Postfix mail servers

The Mozilla browser and other client programs can read user information from OpenLDAP. In

addition, we can program access to OpenLDAP from the command line or from our own

applications.

2. WEB SERVERS

There are really no other general-purpose open source Web servers to consider than

Apache. It has a high share and is the reference standard for a Web server. It is easy to

administer and has low overhead, so it works for small sites and systems. The largest Web sites

in the world use it. It can be tuned to perform extremely well, and for specific needs. Support for

Apache is the gold standard for open source support. The Apache organization is so successful

that it has spawned a family of related projects.

2.1 Apache

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 9/42

Apache is by most measures the most successful single open source software

project. It is the most commonly used Web server in the world, constituting about two-

thirds of all Web servers. A recent Netcraft survey (November 2003) shows Apache with

67 percent of top Web servers and 69 percent of active, against Microsoft’s 21 percent

and 24 percent, respectively. Active Web servers are usually regarded as the most useful

measure of Web server activity, since names reserved but not used are eliminated.

Apache has similar shares worldwide across large and small servers including those used

for ecommerce. Apache is based on the original Web server written at the National

Center for Supercomputing Applications (NCSA) at the University of Illinois in 1993.

The first Apache beta was released in 1995.

The name originally stood for “a patchy Web server.” Apache runs on many

operating systems, including Linux, most versions of UNIX, Windows, and Novell

NetWare. Apache is currently available in two series: 2.0.x, which has been available as a

production release for two years since early 2002, and 1.3.x. At the time of writing, the

1.3 series is still significantly more used than 2.0, reflecting apparently a conservatism

among Apache users. The Apache license allows its inclusion in commercial products,

and it is included in IBM WebSphere among others. Apache is structured into a kernel

and a number of modules, which includes both statically and dynamically loaded

modules supporting extension tools such as Front Page and WebDAV; languages such as

PHP, Perl, Python, and Java servlets; and authentication against Samba/NT, LDAP, and

various databases. If you are migrating from the Microsoft Web server Internet Information Server

(IIS), CGI programs can be migrated without change because Apache and IIS support the

same CGI standard. If your Windows programs were developed with ISAPI, ASP, or

Cold Fusion, your simplest option is to run Apache on Windows. Programs that use

ISAPI require Windows to function, but if you have Cold Fusion or ASP programs and

you really want to migrate off IIS, you can purchase modules, from Allaire and Sun,

respectively, that allow these products to run on Apache on Linux. For ASP, you can also

consider a product called ASP-to-PHP, which does the one-time conversion implied by

its name.

Web servers are inexpensive to buy and maintain. Another option is to let

Windows and Linux Web servers work side by side for a period. Apache sites install

modules to communicate with development languages, typically called mod_X for

language X. Over half of Apache sites run mod_php, a little under 20 percent run

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 10/42

mod_perl, and a little over 1 percent run mod_python. Further sites may run programs with CGI.

Plainly, PHP is the most common development tool for Apache Web sites. In fact, PHP is the

most commonly used language on the Web (Microsoft ASP is second) and its use is growing.

2.2 Other Web Servers

Alternative general Web servers are the commercial products iPlanet (formerly Netscape)

server on various operating systems and, of course, Microsoft IIS, on Windows only. There are

some niche products in special markets, such as the Red Hat Stronghold Secure Web Server.

Some tools or applications—for instance, Plone and Tomcat—come bundled with a Web server,

but this is usually as a convenience. They generally allow you to use Apache.

Tux is a kernel-based Web server developed by Red Hat. It is combined with Apache to

improve the performance for straight HTTP display. It can improve performance of such pages a

lot; in the right circumstances by an order of magnitude or more. This is similar to the caching

products offered by IBM and Microsoft. Other Web servers include Zeus and servers included

with development products such as Jetty, which is included with Tomcat, but the share of these

products is not over 1 percent.

As far as which operating system the Web server runs on, approximately 50 percent of

sites run on Windows, 30 percent on Linux, 6 percent on BSD, and 9 percent on UNIX, mostly

Solaris, with other or unknown 5 percent, according to Netscape data in 2001. Quite a lot of

Apache servers run on Windows

3. DATABASE SERVERS

Most major databases are available on Linux, and have been for years— Oracle since

1998, for instance. The only major modern database that is not sold to run on Linux is SQL

Server. The benchmarks and references are there, and the vendors are quite enthusiastic. Running

Oracle, DB2, Sybase, CA-Ingres, or Informix on Linux is clearly a safe conservative choice, and

any issues or limitations specific to the platform can be discussed with the vendors. This is

essentially migration from UNIX to Linux in almost all cases, since the version of DB2 on Linux

is the UNIX version. As with any UNIX to Linux migration, switching costs are reasonably low,

as access to these databases from other systems is the same.

 You can choose to run an open source database, such as MySQL. The open source

choice is more likely to deliver significant savings. It is a more adventurous choice than closed

code on open source, but there are many organizations already doing this.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 11/42

3.1 Classes of Database Servers

We will treat desktop servers as a small class of database server, and some

elements of desktop systems as client tools. For example, Microsoft Access can be

regarded as a desktop application that administers and updates a database server. The

server for Access can be an Access database, which can be local or remote, or it can be a

SQL Server, upgraded using the wizard provided by Microsoft, built directly using

Access tools, or another database accessed with ODBC.

 So these types of database products need to be looked at separately:

Online transaction processing (OLTP) servers

 Data warehouse servers

Embedded databases

Client access tools including decision support systems

There are open source choices in all of these areas, but some are stronger than others.

3.2 Analysis of Database System Sizes

Research into large transaction processing systems published by Microsoft in

1999 found that, at that time, the following were numbers of transactions per day at the

largest commercial organizations processing transactions (not necessarily automated in

all cases):

NYSE: 1M

All card and check processing: 20M

Citibank, Bank of America, Wal-Mart: 10–40M

All airline reservations: 220M

AT&T calls worldwide: 200M

Visa did 30M transactions for 400M customers at 250,000 automated teller

machines worldwide. That is about as big as it gets. There are a few new technology and

ecommerce applications on the Amazon and Google scale that may run higher volumes

than these, but most business systems are orders of magnitude smaller.

The TPC Benchmark

TPC stems from a debit-credit benchmark for banking transactions that originated

at Bank of America in 1972. The Transaction Processing Council (TPC) was set up to

manage an evolving series of benchmarks starting from TP1 in an independent manner.

TPC-C, which was introduced in 1992, is the major published transactional benchmark

and has evolved to respond to limitations discovered in earlier such benchmarks. The

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 12/42

benchmark supports a mix of five transaction types and requires all elements of the database,

such as numbers of customers, to scale along with transaction measurements.

TPC numbers are published with the relevant cost data so price/performance can be

considered, and there are clear rules on how cost is calculated. The benchmark is only for

hardware and software that can be ordered by customers and is shipping now or will be available

within a few months. In reviewing the actions of various competitors, the TPC has learned many

methods of enhancing the results by bending the rules. It has met this continual challenge by

developing methods to control and eventually prevent this. The TPC is as good an organization

for publishing benchmarks measuring business database transaction performance as we have or

are likely to have.

Limitations of the TPC-C Benchmark

The TPC-C benchmark is expensive to run. Because of the way it scales, and the

precision needed to meet the standards correctly, it takes signifi- cant time and money to run a

benchmark (some say $1M). So only a limited number of these are run, depending on the

vendors that choose to spend this money. We can only use the data to approximate a solution we

are considering, usually by interpolation. Our chosen hardware and software are not likely to

have been specifically tested, and we will look for something similar.

The cost also means that running our own TPC-C benchmark is almost certainly

prohibitive, but it is generally desirable to do this. Another method is needed to allow us to get

really specific in addressing our needs. TPC cannot enforce that the methods used for the

benchmark are the methods actually used in the real world. One reason the benchmark is

expensive is that the skills to set it up are unusual, because it is now usually run on quite

specialized software that ordinary organizations would not use, as follows:

Most vendors use custom C++ code and the Tuxedo application server, while

recommending Java application servers.

 Big database measurements use tricks such as distributed partitioned views, which

customers don’t like to maintain, and materialized views, which customers do not benefit from.

 TPC-C prohibits methods such as queuing that allow smaller databases to manage high-

peak workloads.

The Winter Top Ten Lists

Winter Corporation publishes Top Ten lists of large production databases, both OLTP

and DSS. The statistics are self-reported by customers, sponsored by database vendors, so it is a

little bit of a “bragging contest.” There may be larger systems that choose to remain anonymous.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 13/42

However, the data reported appears to be accurate and includes some of the largest

systems, so it is very useful for my purposes here, which is to get a sense of how big

databases really are and what platforms people really use.

In particular, the real-world Winter measurements, like the real-world research

numbers, are much lower transaction rates than the TPC-C high performers. So this

confirms that the best (and most expensive) systems being measured today are

substantially outperforming the requirement. So we have a theoretical measurement and

some practical measurements. In the largest production systems, we actually see only three platform

combinations: IBM mainframes, SQL Server on Windows 2000, and Oracle on UNIX. In

the TPC data, we see Oracle on Linux with a couple of very high numbers. This is an

important breakthrough for Linux, which is in the TPC measurement for the first time,

and on top. 3.3 Open Source Databases choice

There are three open source databases to consider seriously for general use,

in my view. These are Berkeley DB, PostgreSQL, and MySQL. They are all

widely used.

Two more systems play in niches. MaxDB was formerly known as SAP

DB and before that Adabas-G or Supra. It has some major clients, mostly in

Europe, but has never caught on in the United States even with the pull of

its integration with SAP. Its role will probably be to bring technologies for

incorporation into future large-scale versions of MySQL.

Berkeley DB

Berkeley DB is a core tool under several important open source products,

and apparently has 200 million deployments. Berkeley DB (BDB) is a highperformance derivative of the

old “DBM” databases, which have been part

of UNIX and UNIX-like operating systems from the beginning.

As an embedded, or application-specific, database, BDB is included

with products, often without the user being aware. This is like Btrieve or

Microsoft Jet and MSDE engines. It is a flat-file database, not SQL.

BDB has a dual licensing model. It is open source (GPL license) when

used in open source products or at a single site. When distributed with a

commercial product, there is a commercial license.

Berkeley DB is used by Sendmail, Apache, and OpenLDAP servers, the

Netscape and Mozilla browsers, and the Python and Perl programming languages. Commercial customers

include Sun, Google, Veritas, TIBCO,

Cisco,Amazon,and HP.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 14/42

PostgreSQL

PostgreSQL is an open source database, available under the BSD license/

copyright regime. It is based on the Postgres product designed at Berkeley

in the 1980s, and before that on work performed on the Ingres database by

Michael Stonebraker since 1974. It was not a SQL-based product until

1995. Ingres and Postgres were developed on BSD UNIX. It is available

now on Linux and UNIX, including the Mac, but is not native on Windows, running in the Cygwin

emulation.

Postgres has historically offered better support than MySQL for standard SQL behavior, although

MySQL seems to be catching up. Currently,

MySQL

 The MySQL database server is robust, fast, and a very good cross-platform

product on clients, including Windows and the Mac and a variety of UNIX

servers. It has a small footprint and good management tools. The product is

distributed by the Swedish company, MySQL AB. MySQL is used much

more than PostgreSQL; the company estimates about 4M users worldwide.

The product has momentum, with considerable enhancement happening,

and last year’s acquisition of MaxDB will likely lead to more enterprisescale features later.

 MySQL is dual-licensed, meaning it is available under a commercial

license or the GPL. Because linking with the GPL-based libraries requires

your code to go GPL, commercial developers who are not open source will

want to pay for the commercial license. Also, the MySQL company asks

commercial users to buy an unlimited commercial license. That commercial

license is $500 for the product, including InnoDB, which is transactional—that is, unlimited processors

and users. With this licensing model,

MySQL is powerful and inexpensive for commercial users and it is open

source for government, education, and personal users.

Historically, MySQL has missed some SQL standard features that

many users regard as essential. This was originally a set of design decisions,

as the product was intended to be fast above all. There is now a published

plan to catch up on these, which is in progress. Transactions (ACID) were

released in Version 4.0, when the previously distinct InnoDB engine was

incorporated in the main product. Subqueries are in Version 4.1, which is

close to production as I write. Stored procedures will be in Version 5.0 and

triggers in 5.1.

 MySQL is powerful enough for most purposes and easy to install and

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 15/42

use. It is widely used in business organizations, including large systems such

as Sabre. It powers the OSDN sites, including Slashdot, Freshmeat, and

SourceForge, and is used by Google and Yahoo!.

3.4 Database performance is good enough

In mid-1999, an eight-way Microsoft SQL Server 7.0 reached 40,000

tpmC on one server with a then five-year cost of $.75 million. Because of

the way the TPC-C benchmark is scaled, the 40,000 transactions in August

1999 represent 90M customers, 300M stock items, 120M transactions per

day, 32,000 simultaneous users, and 5 terabytes of storage. At that time,

SQL Server was good enough by transactional measures for almost all

actual business database uses.

Improvement has continued at this pace. By 2002, the fastest SQL

Server benchmark was ten times quicker than that. Price/performance on

many typical systems is now below $2/tpmC, which is ten times better. Put

another way, the tenfold improvement of the last two and a half years can

be taken as better performance or lower price.

Databases are used as a component in a complex system. Most databases

in organizations sit behind Web sites. Others are behind client/server applications or distributed.

Their performance is constrained by the front-end

systems and the end-user needs. Most are in the medium or large categories,

but not very large like the TPC-C record breakers.

During these years, Oracle has usually held the highest performance

benchmark, with SQL Server catching up periodically.

3.5 Competing with Closed Code Databases

You cannot install a large database in any organization without having to

compete with sales pitches from Oracle, Microsoft, and IBM. Salespeople

from any of these companies will try to treat open source databases as toys.

If they are forced to admit that the open source database could do the job

under discussion, they know they will lose on price, so they will move the

debate elsewhere. They will talk about theoretical large databases and grid

computing, their results at the TPC-C racetrack, or the idea of consolidating all your databases

into one big system.

4. MAIL SERVERS:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 16/42

 In the UNIX and open source world, mail servers are split between message

transfer agents (MTA), which are senders, and receivers/message stores.

Mail is usually sent with the SMTP protocol and accessed with the

POP3 or IMAP protocol. This works about the same with closed code mail

servers such as Exchange, but both sending and receiving programs are

called Exchange (or Groupwise or Notes).

We have already mentioned Sendmail, the venerable program that may

be the oldest open source program in widespread use. After paying it due

respect, it is time to admit that Sendmail is an old program and may not be

the best mail server to choose today. It has a reputation for being difficult to

configure and a history of security problems. The consensus these days is

that you should choose Postfix instead to avoid these issues. There are other

alternatives, such as Exim and Qmail, but we will look at Postfix here.

Postfix is fast, scales well, and is reasonably self-evident to configure. It

can use different formats for the message store (Maildir or Mbox). We usually prefer the Maildir format,

which stores each message in a single file.

This makes message processing with external tools much simpler.

The alternatives for message receivers and stores are POP3 and IMAP.

IMAP is richer and generally preferable. Exchange supports either protocol.

The native Exchange store appears to be IMAP-like but differs slightly, so

that Outlook IMAP support can be quirky. Sometimes we may choose to

use POP3 with Outlook for that reason. Choices for IMAP servers include

Courier-IMAP and Cyrus IMAPD.

For a directory server, we prefer OpenLDAP for this. Postfix and CourierIMAP or Cyrus IMAPD can

access OpenLDAP for authentication.

Many organizations like to have a browser-based mail client option.

Horde is an example of a server that supports browser-based email. Horde

looks similar to Outlook Web Access and provides similar functions. It can

access OpenLDAP for authentication, address lookups, and contacts.

5. SYSTEM MANAGEMENT

 The basic choice for open source systems management, as in other areas such as

database, is whether to adopt open source tools and methods completely, which will involve

getting or developing administrators with UNIX administration skill sets, or whether to adopt

closed code system management tools, which are generally cross-platform and may already be in

place in the organization. Both approaches will probably be needed. However attractive the

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 17/42

graphical tools, system administrators usually need a thorough understanding of the platforms

they are using.

 The next level, if needed, of systems administration is programming using a cross-platform

scripting language. This will allow us to develop more flexible and automated approaches to, for

instance, backing up or managing the size of user files. The good news is that there is a long

tradition of scripting in UNIX, and the work to do this is well understood and available. The bad

news is that although it is compatible with Windows systems, it is not compatible with the

approaches that have generally been used in Windows.

The closed code tools are comprehensive and graphical, so they look wonderful in use. The open source

tools are generally targeted to a more experienced administrator, and lean more to the UNIX philosophy

of “doing one thing well.” There is no reason not to use tools of both types.

Many organizations that use Tivoli or Unicenter also employ open source tools such as Snort for intrusion

detection and write shell or Perl scripts to manage their own applications.

 The leading integrated graphical open source system monitoring tool is

Nagios. This is being used in production by organizations with up to 5,000

hosts.

Open source administration tools include a huge selection of specific

tools for particular purposes. Most existing larger organizations will have a

multiplatform administration solution in place and will simply extend it to

include the open source systems. Systems need to be monitored at all levels. Open source applications are

easier to instrument to support event logging into system management tools.

Other great open source tools include TCPdump, Snort, and Ethereal.

OPEN SOURCE DESKTOP APPLICATIONS:

1. INTRODRUCTION

1.1 THE OPEN SOURCE DESKTOP

 A complete open source desktop with applications can be easily installed and

demonstrated on a typical personal computer using Linux. Most people would agree that such

desktops are attractive, powerful, and as easy to learn from scratch as Windows. Such desktops

can be significantly less expensive than closed code systems, since they can save the operating

system cost plus the cost of applications such as Microsoft Office.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 18/42

 It is also possible to build a desktop on Windows, where all the applications are open

source. Again, this can be attractive, powerful, and easy to learn. In many situations where the

operating system is already installed, such as on home computers, there is no savings to replace it

with Linux, but there are huge cost savings from replacing applications such as Office with

open source.

The important open source desktop applications, which will be discussed in turn, are:

Graphical desktops

Web browsers

Office programs (word processing, spreadsheet, presentation software)

Professional applications (graphics, database front ends, Web designers)

Personal applications (media players, games)

1.2 LINUX DESKTOP SHARE

 Linux has come a long way in power and ease of use, but it is still not

widely used on the desktop. Linux has now overtaken since 1994 the Mac

in sales to become the #2 operating system on the desktop. IDC reports

that Linux grew from 2.8 percent in 2002 to 3.2 percent in 2003, while the

Mac remained at 3 percent.

 This is significant, but is still has only a small

share. Windows has a 94 percent share. IDC forecasts growth to 6 percent

for Linux in 2007, but Windows would still be over 90 percent by then.

These figures probably undercount Linux presence on desktops now and

in the future. Linux is underreported, because it is very often not purchased.

Windows ships on essentially every new PC, and where users are replacing

Windows with Linux they are probably not getting measured effectively. It is

also used in concentrated niches, some of which are very high growth, such

as some new Asian installations involving millions of desktops. The major

computer companies—IBM, HP, and Sun—all have programs to encourage

Linux desktop adoption now, and some major corporate announcements

have been made. Linux has exceeded expectations in the past, and may grow

on the desktop much faster than currently predicted.

1.3 LIMITATIONS TO DESKTOP LINUX ADOPTION

 Whatever Linux growth may be, in the next three or four years we know

that there will continue to be an order of magnitude more Windows users

than Linux users. This has an effect on the availability of hardware, applications, and support

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 19/42

services. Each of these limits the possibilities of Linux

desktop deployment significantly.

Hardware

Approximately half of corporate personal computers are now notebooks

rather than desktops. It is this group that is least likely to adopt Linux

quickly. Setting up Linux on a notebook system is still likely to need some

custom work, and there are hardware limitations, including wireless support, such as Intel

Centrino wireless and most 802.11g cards; some graphics

cards; and advanced power management. Notebook users may have to

accept some loss of functionality to run Linux. Notebook users are typically

professional users, and are not likely to accept compromises like this unless

they are developers or are committed to open source for some other reason.

Applications

Given the disparity in installation share, it is perhaps surprising that there

are many applications available for Linux desktops, and there are generally

several good choices in the major categories. Smaller niche applications are

more of a problem. There are many thousands of applications in the Windows “ecosystem,”

usually written to the Windows tools and interfaces,

often addressing specific vertical industries.

In a migration situation, any specific application may be a “must-have”

for a group of users Microsoft Office is just the biggest, best-known example of this. Section

8.6.1 has some tactics for this situation, such as emulation, but often this will necessitate

Windows on some systems.

SupportServices

There are thousands of corporate employees, and many more people in outsourced services,

working with users of Windows desktops in support and

training roles. Some of these have qualifications such as MCSEs, others do

not; but most have a significant investment in the skills needed to support

Windows systems and the common applications deployed on them. There is

little incentive for these people to relearn their jobs using a new technology,

and in some areas the skills to support activities such as solving issues with

Linux systems that won’t boot or training users in OpenOffice may not be

available yet. It will be several years until this situation is resolved entirely.

2.GRAPHICAL DESKTOPS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 20/42

It is possible to start and run Linux in a character mode, but this is reserved

for installation and debugging situations nowadays. Linux is usually

installed to start in a graphical mode, running a windowing system, and a

desktop system will usually run a desktop manager with a set of integrated

utilities. If you want to work in the shell using a command line and typing

commands, as you probably did sometimes in Windows, you can open a

terminal. Linux users tend to use the command line more than Windows

users, partly because it is more powerful.

Essentially all Linux systems use the X Windows system (X11) as the

graphical user interface (GUI)—generally XFree86, which is the most used

port of X11 on Intel. This is the underlying code of Linux graphical user

interface systems. Exceptions include some servers that may not need a

GUI and run in character mode, and some embedded systems that use

other GUI systems not based on X11 to get better performance, such as

Qtopia, which is used on the Sharp Zaurus.

3.WEB BROWSERS

When developing applications, we do not usually want to require a particular Web

browser and operating system. In many cases, we cannot know

which browser an application user will be using. Even if we can determine

this, as in a customer or business partner situation, it is probably an unreasonable

restriction to impose. So when developing, we will usually plan to

support a choice of browsers.

3.1 Deploying Browsers

Although we may want to support several browsers when developing, when

deploying desktops we will probably want to use a single standard to lower the

support and training burden. Most Windows shops use Internet

Explorer (IE) for obvious reasons: It is good enough and is already installed.

The limitations of IE, such as its lack of control over pop-ups, can be

addressed with third-party add-ins or managed from the firewall.

Organizations that would like a single browser across multiple platforms

can select the open source Mozilla, either Firefox or the older integrated

versions, Netscape or Opera. The other browsers are specific to their platforms: Safari on

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 21/42

the Mac, Konqueror on KDE, and Epiphany and Galeon

on Gnome.

4 .The OFFICE SUITE

In considering the office suite, we will consider the word processing,

spreadsheet, and presentation programs, although the open source suites,

such as Microsoft, include other programs, such as drawing and image

management. In terms of Microsoft Office, then, we are looking at replacements for Word, Excel, and

PowerPoint. We will discuss database front-end

programs and mail front-end programs such as Access and Outlook elsewhere under separate headings.

There are excellent open source equivalents

of these and of other Office programs, such as drawing, organizational

charts, spell checking, and so on, but the core components are usually seen

as these three.

There are several alternative open source office suites:

 OpenOffice

 KOffice

 Gnome Office

KOffice and Gnome Office contain some good products, and many

individuals may find them to be exactly what they need, particularly when

working with other programs from those desktops (KDE and Gnome). But

OpenOffice is clearly the strongest. It has three very powerful constituent

programs, and is the best office suite for working with Microsoft formats.

OpenOffice has a great deal of momentum, with millions of users, far more

than the others. OpenOffice has been adopted as part of the standard desktops of Red Hat, SuSE, Ximian,

Sun, and UserLinux. OpenOffice works

well on Windows and Linux. Anyone recommending an office suite as a

standard to an organization really has to recommend OpenOffice. An alternative might be not using a

suite, but allowing individual programs to be

selected.

4.1 OpenOffice.org

 OpenOffice.org (abbreviated here to OpenOffice) is the leading open

source office suite. Sun purchased StarDivision, the German developers of

StarOffice, in 1999, then established OpenOffice.org to manage the open

source process and distribution while continuing to offer StarOffice on a

commercial basis. StarOffice and OpenOffice share the same code base and

file formats; OpenOffice is open source while StarOffice is sold commercially and contains additional

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 22/42

features.

At the time of writing, OpenOffice is at Version 1.1 and StarOffice is at

7.0. The main programs are identical, but StarOffice includes additional

products in the distribution, including TrueType fonts, spell checking and

thesaurus utilities, additional templates and pictures, and a desktop version

of the Adabas database, called Base. Sun also offers commercial support for

StarOffice. In this book, we will from now on refer to OpenOffice to

include StarOffice as a possible choice.

Fonts and spell checking are weak in OpenOffice as shipped. An organization adopting OpenOffice

should look at options for these functions.

Another example of OpenOffice integration is Ximian. The Ximian edition

of OpenOffice makes changes to ease Office migration, using Microsoft file

formats by default and shipping Microsoft-compatible fonts. It also makes

changes to improve integration with the Gnome programs Galeon and Evolution and to recognize Gnome

desktop theme and font settings.

File formats are identical between OpenOffice and StarOffice and with

the previous versions (1.0 and 6.0). OpenOffice 1.1 is available for Linux

and Windows. These versions are essentially identical. The Mac OS X version of OpenOffice is 1.0 as I

write. File sharing is still possible, but some

functions of the program are a level back. The Mac version is not native but

based on X11. Between the back level and the nonnative issues, I have

found the Mac version of OpenOffice to be too slow and with a poor onscreen format. This will be fixed

in a few months. At the moment, there is a

version called NeoOffice/J, using a Java front end, that is fast and presents

very well.

4.2 Competition in the Office Suite Market

Microsoft Office appears absolutely dominant in its market, with market

share over 90 percent among office suite customers. This may seem impossible to tackle, but there are

other ways to look at this.

Since there is over a 40 percent piracy rate claimed for Microsoft Office,

for every three licensed users there are two more who did not buy it. There

are also millions of people who got free copies of the Lotus suite with their

IBM systems, a few million OpenOffice users, and the 10 percent who

bought some other suite.

Finally, there are also many people who do not use an office suite, but

use individual programs or simpler packages such as Microsoft Works, or

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 23/42

use text editors and Acrobat. Many of these might like to use an office suite

but cannot afford Microsoft Office.

Problems with Licensing

Concurrent licensing is a scheme where use is tracked and the organization

pays for use, generally for the “high-water mark” of use. The idea is theoretically attractive to a customer

organization; after all, of a few thousand

Excel users, how many are actually using it at any one time, particularly if

you make readers available? It is very unattractive to the selling company. As

the cost of a concurrent license is pushed higher, some users balk at purchases, since the price seems

excessive, although even at 10 or 50 times, it

still brings less revenue to the vendor than licensing everyone. The information on use that is essential to

a concurrent scheme provides feedback that

can be used to lower use further—for instance, by spreading out a period of

peak use. But that issue cuts through to the problem at the heart of

Microsoft Office. Most people don’t use most of it.

4.3 Comparison of Microsoft Office to OpenOffice

Bundling

OpenOffice does not include an email client like Outlook, but most people will use Evolution, which is

powerful, similar to Outlook, integrates

well with OpenOffice, and is open source. Similarly, OpenOffice does not

include a database program, but most people will consider MySQL if they

need a SQL database program. MySQL is more powerful and scalable as a

database than Access, but has no equivalent integrated front end. Possible

front ends include Mergeant, the Gnome database front end, OpenOffice,

and database tools such as MySQL administrator and Quest.

Integration

OpenOffice can connect to databases using the access methods ADO,

JDBC, or ODBC. It can for instance connect to Access using ADO,

MySQL using JDBC, and SQL Server using ODBC.

OpenOffice formats are XML based and published, so integration with

other systems is simpler than for Microsoft Office. It is not necessary with

OpenOffice to buy more expensive editions to manage XML formatting.

There is a software development kit for extending OpenOffice using Java.

Formats

There are some serious problems with using the Microsoft office formats.

They are proprietary, subject to change, and not documented. It is quite

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 24/42

difficult for third parties to access them, although some good programs are

available. Using these formats in correspondence, for instance, is implicitly

requiring others to acquire the Office programs when they may not own

them or need them.

OpenOffice uses a zipped set of XML files. In practical use, the OpenOffice format is generally no more

than half the size of the MS Office files

(unless bit maps or other uncompressible attachments dominate the size).

The OpenOffice format is also simple to read using standard tools, because

the XML format is published.

4.4 Migration from Microsoft Office to OpenOffice

The Microsoft installed base is Office 97 and Office 2000. There is very

little Office XP or Office 2003 yet. This immediately highlights the main

problem with Office migration today, which is that nobody wants to do it.

Importing/Exporting between MS Office and OpenOffice

First off, Microsoft Office cannot read OpenOffice files at all. Any OpenOffice files must be converted to

Microsoft formats in OpenOffice.

OpenOffice-specific features will be lost in these formats.

OpenOffice is very good at reading Microsoft Office formats, but not

perfect. There are several formats to consider, such as Office 95, 97, XP

(2002), or 2003. Microsoft Office since Office 97 uses an OLE format of

structured storage, typically containing several “streams” of information.

Office 97, 2000, and XP use the same formats (for these three programs).

The earlier Office versions, 4.2 and 95, used different incompatible formats, but are unlikely to be met in

corporate environments today, partly for

that reason. Every version has a different macro language—for example,

WordBASIC, VBA 5, VBA 6, and VBA 6.3.

4.5 Lock-in and Complexity

Not all organizations will be able to migrate away from Office now. It

depends on the way they use it. Users will be slower to change if they are

locked in, because they use Microsoft Office features that do not migrate.

How seriously your organization is locked in needs to be evaluated for each

group of users in the organization. It is a function of:

Advanced or professional users authoring documents

Use of technical features (macros, shared components, etc.)

The overall pattern of collaboration over documents

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 25/42

One-Time Migration

If you plan a one-time migration versus continuing interoperability, you

can handle most of the problems in a reasonable way. If your intention is to

stop using Office and migrate all documents to OpenOffice, you will find

that most documents will transfer with minor format changes that will not

bother users on a one-time basis. Hundreds of documents may be transferred with a few hours clean-up

work. For example, page numbering may

be slightly off, some fonts may be replaced in a way you don’t like, and

some complex references to external files may need to be checked. In this

situation you can test as many documents as you need, and also arrange for

some expertise to be available to support the migration.

Two-Way Interoperability

If you intend to continue transferring documents back and forth on a daily

basis, the hours spent “fixing up” documents will add up indefinitely and

become an impossible burden. That is why patterns of use need to be analyzed. Any plan that involves a

regular exchange of complex documents

back and forth between the different office products will need to be

reviewed carefully, and preferably altered to eliminate this.

The Effect of Switching Costs

OpenOffice is a good product that meets the needs of most poeple in most

organizations for an office suite. It is good enough. Most people can install

OpenOffice and gain a system that does everything they need. However,

most organizations already have Microsoft Office in place, and that changes

everything. Unlike server products where switching is easy or even undetectable, changing the desktop is

a big deal.

4.6 When You Don’t Need an Office Suite

Individuals and organizations that don’t need to pick a suite can look at

individual products such as the AbiWord word processor and the Gnumeric

spreadsheet as possible “best of breed” choices. The idea of an office suite

for everyone is a relatively new idea and not particularly natural. Originally,

PowerPoint was used by marketing and sales departments, and spreadsheets

were used by accounting. Many corporate writers only need an email program. In a company that licenses

thousands of copies of Office, it could be

that there are only a few hundred (or a few dozen) who create original

Word, Excel, or PowerPoint documents. Many of these use only a fraction

of the available functions.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 26/42

A real-world example of a successful system that is generally used effectively without an office suite is

the Apple Mac. The Mac as sold includes

TextEdit (which can read/write Word documents), AppleWorks (which can

read/write Excel documents), and Mail/iCal/Address Book, which work

together, similar to Outlook or Evolution, and serve as a client to Microsoft

Exchange. Keynote, which can read and write PowerPoint documents, is

sold separately. Apple applications are well integrated and consistent without being a “suite.” Apple users

can choose to buy Microsoft Office, or can

install OpenOffice, but most do neither.

5. MAIL AND CALENDAR CLIENTS
There are several good email open source clients available. This includes

browsers that also do mail, such as Mozilla and Opera, and dedicated email

clients, such as Eudora.

A big question with mail programs is the extent to which you want to

replicate Outlook. If you want the Outlook features, including the bundling of calendar, email, and small-

scale personal databases, you will probably want to use Evolution, which matches the look of Outlook

very well.

Evolution includes mail, calendar, task list, and contacts and offers screens

that combine all these. You can use Evolution as a front end to Microsoft

Exchange, using a connector available (for a fee) from Novell/Ximian, or

use Evolution with other mail servers that support POP, IMAP, or MAPI.

5.1 Professional Applications

This includes applications for project management, drawing and image

management, and other professional work. In some ways the situation is

similar to that with Office. There are good open source programs available, but they may not match

feature for feature, and migration raises

problems of data formats and user training. An application inventory is

going to be necessary.

5.2 Drawing and Image Management

The open source programs GIMP, Dia, and Sodipodi compare favorably for

general users with PhotoShop, Visio, and Illustrator. As with Office, the

most demanding professional users will not switch because of their time

invested and high-end neeeds. Most people will find these programs more

than sufficient. GIMP is available on Windows also and is a very good

image program for professional and home use on that platform as well as

Linux. Dia is similar to Microsoft Visio. It does not have a comparable array

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 27/42

of stencils available, but it is good enough immediately for simple work, and

for custom work the format for creating shapes is open and reasonably easy

to use. Most of the diagrams in this book are created with Dia.

6. PERSONAL SOFTWARE

This area is one where Linux is catching up quickly. I still think that today

if you simply want to choose the best machine for performing multimedia

functions or games, no other considerations, you should look at the Macintosh or Windows XP. Mac OS

X is the leader in graphical user interface and

multimedia tools, particularly tools that are integrated and easy to use,

while Windows XP is the leader in PC gaming, with far more games available and specialized hardware,

which is easy to install and support. The

Sony Playstation is another good gaming choice. Linux cannot match the

PC or Playstation for variety and currency of games.

6.1 Running Windows Applications

Sometimes we have to run an application that is not available on Linux.

Most needs can be met in a general way, but there are quite often particular

programs that are not available. If it is necessary to run a particular program

that is not available on Linux, this can be met with a variety of techniques.

First, we can check against a Web site such as the table of Windows equivalents at

http://linuxshop.ru/linuxbegin/win-lin-soft-en/table.shtml to see if there is a Linux equivalent. If there is

not, and we cannot match it or

migrate it, we can host Windows programs on Linux using the emulation

program Wine. This program is also packaged with additional material as

CrossoverOffice to run Microsoft Office. Using Conexant drivers, we can

access hardware that requires Windows drivers. With VMware, we can even

run a complete Windows operating system on Linux. Of course, these

options are not inexpensive, since they involve the emulator and the

licensed Windows programs.

COST OF OPEN SOURCE SOFTWARE

There are not always similar products and

where there are, we may have a preference for one feature set over another.

we will only compare costs.

Then we will examine the total cost of ownership of open source and

closed code products and compare those. To do this, we will take some scenarios for businesses of

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 28/42

different sizes. The estimates for hardware and staffing are kept very simple, and you are invited to

substitute your own

numbers.

Because so many factors differ, this is only a framework, which will need

to be adjusted for a particular organization. The tables here are available at

the Web site www.kavana.org/opensource for download if you would like to

adjust them for your own situation.

We will review these costs by category, and then put the per unit prices

into simple tables. We can use these tables as the cost basis for some typical

scenarios. In all cases, we should substitute our local information into this

table, since our prices may vary.

1.Total Cost of Ownership
There is a simple answer to the question of open source software costs,

where open source solutions are comparable to closed code alternatives.

When compared with similar closed code systems, open source systems as a

general rule cost:

 Much less for software

 No more and often less for hardware

 If other things are equal, no more for anything else

 As far as software costs are concerned, we will review tables with the

prices for common open source and closed code products, and see that

open source software costs much less.

 As far as hardware is concerned, open source products are available for

effectively all current hardware platforms, including the systems with the

best price/performance. Open source performance on a platform is usually

similar to closed code competitors, as already discussed throughout this

book. So hardware for open source software generally costs the same as for

the least expensive system for closed code. In most cases, we are comparing the same hardware running

Windows or UNIX on the one hand versus

Linux on the other.

 Other things may not be equal and total cost of ownership (TCO) studies offer an

opportunity to show that. There are many forms of these, and

there is a small industry that compares and contrasts TCO versus ROI versus various other terms. Here,

we will keep this simple and use TCO to

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 29/42

include the other costs involved over a reasonable period of time when

making a software decision.

 The issue usually comes down to staffing costs. There are some published TCO studies

that attempt to show that open source software costs

more than you think, or that hardware costs more for Linux in some specific situation, but they are from

obviously biased sources and are not really

credible. The three big cost elements of TCO are staffing, hardware, and

software. Of these, staffing dwarfs the others in all the scenarios we will

look at. Because of the dominance of staffing costs, even where open source

software saves millions, this will not represent a particularly large percentage difference in TCO.

However, software may be the only controllable

cost. In these cases, TCO can obscure the real savings by adding large costs,

which are effectively fixed, such as system administration and support, to

both sides of a comparison.

1.1STAFFING COSTS

 Personnel costs dominate software costs for infrastructure. Because of this, the

savings from open source software such as Linux and MySQL will be small

compared with the costs of personnel for development and management.

 An IDC report on Windows and Linux infrastructure costs estimates

the TCO cost breakdown for infrastructure.

 This may understate software costs, but it is broadly consistent with

work by Gartner on IT costs, which again shows staffing and downtime as

the major costs for infrastructure. So for IT infrastructure systems, the

impact of a system on system administration and end users can be ten times

more important than its purchase cost. This indicates how inexpensive IT

infrastructure is today measured at the server.

Application solutions can be much more expensive. Large applications

can incur millions of dollars in costs for software acquisition or development, as well as large server

hardware costs, particularly for database systems. Even for simple Web applications, hardware and

software are higher

than for infrastructure.

 The costs are loaded, including salary, vacation,

management overhead, general training, taxes, and benefits. They are averaged, with no effort to

distinguish between skill levels. There is also an

entry representing a week of training. Many projects require training of a

week or two for developers and administrators.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 30/42

Support costs are difficult to calculate, because there are so many different options. For mission-

critical systems, an organization will want to contract with the system developers to ensure coverage

whenever there is a

system problem. For desktop systems and infrastructure, it is usually

enough to maintain competent staff and solve the issues in house. A support contract with a software

vendor such as Microsoft Product Support

Services, providing a full-time equivalent, costs upward of $250,000. Contracts involving a named

contact and some number of incidents might start at around $50,000 annually. Similar contracts can

be struck for open source

software products. They are likely to cost much less (a third or a quarter as

much) and will be structured less formally.

Staffing Costs

Item Cost Per Details/Comments

Developer $95,000 Year Loaded cost

Sysadmin $75,000 Year Loaded cost

Training $10,000 Week Including class, travel, and expenses

Item Cost Per Details/Comments

Big 4-processor box $25,000 Server HP DL745 4-processor 2gig RAM

Medium box $12,000 Server Dell 2650 2-processor

Small box $4,000 Server Dell 1750 2-processor

SAN, shared disks $80,000 Project Dell/EMC

1.2 HARDWARE COSTS

 Hardware costs

include servers, clients, networking equipment, and other

appliances such as firewalls. Hardware costs are generally about the same between

Windows and Linux, unless there is some unusual performance

issue causing a difference. Usually, the same hardware can be used at all levels. Before the

recent releases of the Linux 2.6 kernel or some specialized

late 2.4 kernels, such as Red Hat Enterprise Linux 3, Linux threading was

slower than the hardware allowed, and this had a negative effect on database

and application server measures.

Table 12.2 includes estimates for hardware. Most organizations will use

a few standard boxes so that service parts can be stockpiled and one set of

trained users can maintain all the systems. I have used commodity systems

of the type commonly used for Windows and Linux. Most systems can be

put together with these components. There are, of course, much more

expensive servers available for specialized purposes.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 31/42

1.3 SOFTWARE COSTS

The closed code comparative software prices that follow are given for

Microsoft. The major vendors track each other’s pricing and Microsoft’s

pricing is more transparent than other larger vendors. In my experience,

Microsoft is very rarely more expensive for the same class of product than

IBM or Oracle, and its pricing is relatively stable, easy to get, and easy to

work with.

1.3.1Infrastructure Software

 we will include the operating system and any essential tools for

networking and system management. There is a variety of good open source

administration tools available. Windows includes directory, file, and print services;

simple routing; and a Web server, so we will count them in also. In Windows

environments, firewall and proxy services (ISA) and mail (Exchange) are

additional products, and we will factor that into the costs since organizations

generally need those services. There is a simple mail server included with

Windows Server, but this is not usually used for enterprise mail.

The majority of Windows customers do not use the more expensive server products

such as BizTalk Server, Content Management Server, Sharepoint Portal Server, or

Commerce Server. These products cost from $10,000 to $40,000 per processor.

Competitors such as WebTrends, Vignette, Plumtree Portal, or Blue Martini are

even more expensive. We will do one comparison using these types of products for

completeness.

Open source software will generally be less expensive. In addition, license tracking

is wholly or partially eliminated. For Windows, client access licenses (CALs) must

be counted for all these, including directory access. Client access licenses are

generally the largest software cost element.

1.3.2 Database and Development Software

In a Windows environment, this usually includes SQL Server and Visual,Studio as items of

additional cost. Other development tools, such as the IIS Web server, the .Net development

framework, application server components, and Active Server Pages, are included with Windows

Server. In an open source environment, we will take this to include MySQL, Apache, and PHP,

and in some cases JBoss and Tomcat. These products generally ship with and always install on

popular enterprise Linux choices, such as Red Hat and SuSE. MySQL has a small license fee in a

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 32/42

commercial environment, and JBoss has a support charge; we will include those where

appropriate.

Many organizations will use Oracle or DB2 as the database. These typically cost as much or

more than SQL Server.

1.4 USING THIRD-PARTY APPLICATION AND DATABASE SERVERS

In both the open source and Windows environments, there are many alternative choices of third-

party tools and database servers. Popular choices include:

Oracle or IBM DB2 database servers IBM WebSphere, BEA WebLogic, or Oracle application

servers Tools for modeling, debugging, code management, and so on, such as Rational and

ClearCase

These products have the same performance and functionality and are about the same price in

either environment. People who choose these products generally choose them at least partly for

this ability to offer the same experience across the Windows and Linux platforms; they do not

see the Windows-only tools as equivalents.

These products are very expensive in comparison with open source software or Windows

development software. In 2003, for example, IBM was

listing the following prices:

WebSphere Advanced Server $11,400 per processor

WebSphere MQ $5,000 per processor

WebSphere Interchange Server $123,000 per processor

 Counting the necessary maintenance and support contract, the threeyear price is twice that

quoted. So the list price to put WebSphere on a couple of four-processor servers to perform a

typical complex Web application 8, which is

$262,400, not including any database. There are several warnings to consider with this price;

there are lighter, less expensive versions of WebSphere that will work for many situations, these

prices are subject to discount, and may have changed since the time of writing.

The effect on cost calculations of including these products is to add a fixed (large) element to

each side of the comparison, damping the overall difference. Of course, if you add these products

to one side of the comparison only, their cost will determine the outcome, but your comparison

will be of very limited value.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 33/42

1.5 PRICING OPEN SOURCE SOFTWARE

Table lists the prices of commonly used open source software products. Note that you can

always distribute an open source software product, so you only need to buy a single copy to get

documentation and CDs. The two exceptions here are MySQL, which is sold under a commercial

license priced per server, and Red Hat Enterprise Linux, which is only sold including support, so

that is also priced per server.

All prices for open source software are per system. Note that the RedHat Linux product prices

include support. The MySQL database is duallicensed, with a commercial license price of $500

per server, or is availableas free software under the GPL; we included it as $500.

Open Source Software Prices

Product Price Function

Server Software

Fedora Core $0 Server OS

Debian GNU/Linux $0 Server OS

Red Hat WS Standard $300 Server OS

SuSE Standard Server $450 Server OS

Red Hat Enterprise Linux AS $1,500 Server OS

SuSE Enterprise Server $1,000 Server OS

Squid and iptables $0 Proxy and caching

OpenLDAP $0 Directory

Samba $0 File and print sharing

MySQL Commercial $500 Database

1.6 PRICING CLOSED CODE SOFTWARE

It is difficult to fully determine closed code software costs for several reasons. Not all systems

have a published price list, and the lists that exist are incomplete. Products are often offered with

very different prices to different customers, and even different pricing models. Most companies

offer substantial discounts, which are not published, to large customers. Some products are only

available through personal contact and quotation from a salesperson. Prices can change

substantially overnight, such as Oracle database prices, which went down with the release of

10g. Complex products such as WebSphere have many components and several different pricing

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 34/42

models. Deals can be made, particularly if vendors know they are in competition with lower-

priced products.

 Although it is not possible to predict the precise number that a vendor will

quote to a particular customer, we can get a good estimate of the selling price

for that class of customer. For example, I have quotes received in recent consulting engagements,

or shared with me by customers, and all companies provide pricing examples for their published

benchmarks and comparisons.

 When we calculate prices in detail, many things can raise prices above the initial

expectation. Two examples are add-on products and software maintenance. These costs are

usually higher for closed code. Software maintenance is commonly 25 percent of the purchase

price annually.

1.7 PRICING WINDOWS SOFTWARE

Microsoft has a published price list, so we can work with those numbers.

Table lists prices of Windows software. It is often a good practice to compare list prices, since

discounts are unpublished and can vary considerably. Although list price comparison usually

tends to be roughly fair, it is not fair when comparing open source with closed code. Closed code

software has higher prices and is often discounted considerably, so ignoring discounts will tend

to overcount the price of the closed code. I have used list prices in Table 12.4, because that is

what is available publicly. Large organizations should often be able to get substantial

discounts—for instance, 25 percent less than these prices.

TYPES OF COSTS:

We must take into account several cost factors that weigh heavily, including fixed, off-budget,

sunk, and switching costs. In a direct comparison of two new systems, where things are equal,

open source software will be less expensive in almost every case. But often the comparison is in

some sense a migration, where there will be a big advantage to the incumbent, most likely

Windows today. This is what most TCO studies comparing proprietary software against open

source actually do. In a migration, assumptions favoring the incumbent product will increase

staffing costs and probably dominate the software savings. There are even some incumbent

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 35/42

advantages to Windows in a new installation situation, at least perceived. Decision makers may

be unfamiliar with open source and inclined to assign higher risks or expect to pay more for

services.

1.FixedCosts

IT and higher management costs above the level of project management are

a given and will not vary based on project activities.

Network and desktop infrastructure, including firewalls, storage area

networks, and personal computers, can be treated as a fixed cost when looking at applications in

most contemporary organizations. If we are funding a

project that brings technology to a new population, we will have to consider these costs in the

project, but they will in any case be the same for

open source or closed code.

2.Off-BudgetCosts

End-user costs, including training, possible downtime or dissatisfaction,

and self-supporting (“messing around”), can be important, and some cost

models show these costs as the highest single cost component. However,

they are not usually reported as costs by IT organizations, because they are

not on the budget.

The effect on users may sometimes be reflected in penalties related to a

service-level agreement, but more commonly as a constraint on the IT

organization, which must maintain a particular level of service. The effect

of off-budget costs, when included, is to make estimates of user downtime

and dissatisfaction the largest elements of the cost models, although these

are very difficult to measure objectively.

These elements are not included in the models here. Instead it is

assumed that the systems being compared will offer equivalent availability

and ease of use. This is very likely to be true for server systems, which run

on the same hardware and are not directly visible to the end user. It is less

easy to demonstrate for desktop systems, and may be a factor to consider.

Presumably, organizations that do not find desktop systems equivalent in

this regard will not deploy them regardless of cost savings.

3.SunkCosts

Sunk costs are the costs already spent on existing systems and are not recoverable. It is difficult

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 36/42

to get money for old systems, particularly after the dotcom bubble; many systems that are a

couple of years old are only worth

about ten cents on the dollar on the hardware, as a quick search on eBay

will reveal. Software and support costs and other soft costs, such as training,

can add up to much more than hardware and they will never be recovered.

The effect of sunk costs is to make it much more difficult to move to

new technology, because the acquisition cost of the new system is compared with the residual

value of the existing system, which is much less

than it cost.

4. Switching Costs

 Switching costs are the additional costs it will take to move from an existing

system to a proposed new one, as opposed to keeping the existing one. The effect of switching

costs is to make new technology harder to adopt. The first application with a new technology

will cost more than subsequentones, because of training of developers and administrators, who

presumably know the old technology, and because of first purchase of servers, development

tools, and other infrastructure that will be reused for future applications. If there were a single

standard before, then adding the new technology also leads to having to support two

technologies, which may

lead to additional cost.

LICENSE:

Software licensing has always been a part of the process of managing systems. The issues around

open source licensing are not really different from licensing in general, but they do seem to

receive more attention at the moment.

 Many professionals find legal issues and, in particular, licensing, one of their least favorite

parts of the job. However, it is essential for all of us to know the basics of licensing. We will

cover the basics in a simple way here.

 If your needs are more complex, you will require a lawyer. If open source licensing

documents seem long and difficult to read, you are probably just not used to reading legal

documents. Typical closed code licensing agreements such as those from Microsoft or Oracle are

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 37/42

no better.

They are usually longer and more difficult, and very often more restrictive.

TYPES OF LICENSES

1.LICENSE

Open source licenses can be divided into two groups: the reciprocal or “free” licenses, of which

the GNU General Public License (GPL) is best known, and the nonreciprocal or “open” licenses,

such as the BSD and Apache licenses.

 Reciprocal licenses contain a provision that requires that on relicensing the code must be

open source. This is reciprocal in the sense that if a distributor receives the source code, then it

passes it on to others. For example, Linux uses the GPL. If you choose to distribute an operating

system based on Linux with some changes you have contributed, you must distribute the source

code to that system.

Nonreciprocal licenses do not contain a relicensing provision, so they allow derivative works

from open source code to revert to closed. This is nonreciprocal in the sense that a distributor can

receive source code but may not necessarily pass it on. So, for example, Apple uses FreeBSD

code as part of Mac OS X without needing to distribute the Mac OS X source code.

1.1 Relicensing Only Matters If You Distribute

Some people use the term viral for reciprocal. The implication is that handling viral licenses is

dangerous, as Microsoft sometimes suggests. It is true that Microsoft needs to be careful using

products licensed with the GPL.

Microsoft is a distributor of products, such as compilers and operating systems, which could

appear to be derivatives. This is a risk it can handle:

Microsoft actually distributes a product (Microsoft Services for UNIX) that includes components

licensed under the GPL. This risk only applies to organizations that are distributing software that

extends the GPL-licensed product. Software companies that distribute code based partly on

GPLlicensed products need to establish guidelines on their use.

1.2 Reciprocal Licenses Are Similar to Commercial Licenses

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 38/42

Reciprocal licenses are quite similar to commercial (closed source) licenses, which commonly

contain terms that restrict relicensing and distribution of information. A common commercial

restriction prevents you from relicensing the software or derivative works. The GPL has

provisions that affect your subsequent licensing of derivative works, which is less restrictive than

preventing relicensing. Commercial licenses normally require you to agree not to disclose

proprietary information that you acquired under the license to others. This may include elements

of source code (such as

APIs) and other information such as performance data. The GPL requires that you agree to

disclose the source code you acquired, and any you have added, to others.

2. LICENSES IN USE

There are many licenses in use today, but only a few that need to be considered by most

organizations. The Freshmeat site lists about 50 categories of licenses, some of which are groups

of licenses, but only about 20 are used by at least 100 projects. Figure 13.1 shows the distribution

of licenses as reported on Freshmeat. Over two-thirds use the GPL, and about one-sixth use one

of the LGPL, BSD, Apache, Mozilla, or MIT licenses. One of these five licenses should suffice

for most purposes.

2.1ReciprocalLicenses

The GPL is the original “free software” license. It is used by Linux and many other core tools

and will be used by everyone at some time. The GPL is also an important piece of work in its

own right, and a source of controversy in some quarters, so everyone should read it.

The Mozilla Public License is similar to the GPL but with clearer terms in requiring future free

use.

2.2NonreciprocalLicenses

 The other licenses (LGPL, BSD, Apache, and MIT) are nonreciprocal. The Lesser

General Public License (LGPL) is a nonreciprocal version of the GPL intended for certain

libraries. There are two forms of the BSD license. The new form omits an advertising clause in

the license that was officially rescinded when the Director of the Office of Technology Licensing

of the University of California stated on July 22, 1999 that clause 3 was “hereby deleted in its

entirety.” The new BSD license is thus equivalent to the MIT license, except for a no-

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 39/42

endorsement final clause. The MIT license is best known for its use in the X Windows System.

The Apache license is very similar.

 The nonreciprocal licenses are less restrictive than the GPL on distributors. Subsequent

users can use, modify, and redistribute the code without distributing their source code. This lack

of restriction for the distributor removes the rights of users downstream from them to see that

code. The restriction that the GPL places on distributors has the effect of later users retaining

their rights to view and modify code.

Some companies take open source software, add little or nothing, and resell the result as a closed

code solution, possibly for substantial prices. Reciprocal licenses address this by ensuring that

companies cannot extend code without giving it back for others to offer also. Of course, these

companies may add value by improving support, documentation, bundling the product for a

particular market, or developing a complementary product. They just cannot gain a proprietary

advantage from changes to the code,

since those enhancements must go back to the community.

2.3Which License to Use

It is strongly recommended that if you are distributing your own open source product you adopt

one of these licenses without alteration:

SD, Apache, or MIT license

The alternative is to hire an attorney who specializes in these issues to develop a custom license,

as large companies such as IBM do.

3.MIXING OPEN AND CLOSED CODE
It is quite possible to use closed code and some open source software together. This is common

today and is likely to be the way most systems are built in the future.

The majority of open source developers spend most of their time on closed code development.

Most open source developers work primarily on internal or closed code development within

companies, so they are quite familiar with closed code.

Most open source products above the operating system are offered on one or more closed

platforms, generally Windows and UNIX. Products that use databases often support some closed

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 40/42

code databases, most often Oracle.

Open source products are often sold as part of a bundled sale, which includes closed code

products. Large organizations often purchase the top level of the software and service stack from

a major closed code vendor.

Their primary purchase might be outsourcing or other services from IBM Global Services,

Accenture, or CSC; software from IBM, BEA, Oracle, or SAP; hardware from IBM, HP, or Dell,

with Linux and other open source products included in the overall sale.

Table shows examples of open source and closed code deployed together.

The most common hybrid case is simply organizations that obtain a variety of open source and

closed code products, and then deploy them to meet Using Open Source and Closed Code

Together

Product Example

Compiere An open source ERP system built on Java (closed code) and Oracle(closed

code).

SAP Closed code ERP system available on Linux and other operating systems.

SAP converted its internal database, SAP DB, to open source

 and gave it to MySQL to manage (as Max DB).

Apple OS X Closed code operating system (charging license fees) based in large

 part on the open source FreeBSD. Apple distributes an open source

 operating system called Darwin without the Apple GUI, as well as

 its own distribution of Xfree86.

Oracle Closed code database (charging license fees) available on Linux

 (open source), as well as Windows, UNIX, and other systems.

DB2 Closed code database available on Linux, Windows, Solaris, and

IBM operating systems.

WebSphere IBM brand for a variety of middleware products. Includes many

components, some of which are open source, such as Linux and Apache.

Their own internal needs or their customers’ needs. Google, for example, employs a great

deal of open source software in systems development. Its

own software is not open source, and there are license restrictions on access

to most Google services to prevent others from getting a free ride—for

instance, by republishing a Google search as their own.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 41/42

As this example shows, a company can develop closed code software

using open source tools and distribute it on open source systems, as long as

it follows a few simple rules. Enhancements that an organization makes to

the open source software it uses, however, MUST be contributed back.

It is common for companies to take open source projects, add a layer of

additional functionality in closed code, offer support for both their

enhancements and the open source base, and charge a fee. This describes

IBM WebSphere, Red Hat, and some other distribution companies. It is a

healthy part of the process, because customers have a choice of whether to

choose the enhanced bundle or the open source system.

1.4 DUAL LICENSING

Some products are dual licensed. They are available with either an open source license or a

commercial license. Examples of such products are:

 Qt, from TrollTech, the GUI toolkit used by KDE

MySQL, from MySQL AB, the database server

Berkeley DB, from SleepyCat Software, the embedded database

program

The dual license allows these companies to offer open source products to those who are

developing open source software, or to individual end users. Depending on their

intentions or organization, others may be required to pay for a commercial license.

 There are probably many ways to do this, but the path taken by these

three companies is to license under the GPL, and then offer a commercial

license to companies that would prefer not to meet the GPL terms. This

exact strategy requires a development tool, such as a toolkit or database; it

leverages the property of the GPL so that if you link to it you fall under its

terms. Vendors of a pure application might need to write different licensing

terms, but of course they could.

 A dual license strategy relies on code ownership. It will be difficult in practice to

get a large group of contributors to assign ownership to a commercial

organization. In fact, the cases of dual licensing listed, and others I know of,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT III: ENVIRONMENT BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 42/42

have the look of a commercial company, where development is done in house

and external contributions are signed over and compensated for.

UNIT III

POSSIBLE QUESTIONS

(8 MARKS)

1. Explain about open source server applications in detail.

2. Explain about “where” of OSS and “ when” of OSS in detail.

3. Briefly describe about open source desktop applications.

4. Write a note on

a. (i)Economic micro level and macro level(individual) motivation

b. (ii) Socio political micro level and macro level(individual) motivation

 5.Explain the types of costs licensing and Dual Licensing

S.No Question Option1 Option2 Option3
Option

4
Answer

1

_______ has a BSD-type

open source license,

making it alternative for

both commercial and non-

commercial applications

TCL Apache Perl PHP Apache

2

Apache is a _____
Web

browser

Web

server

Applicati

on server

Databas

e server

Web

server

3

______ receives the request

from the client
Host Sever Node browser Server

4

_______ tells the client

how to interpret the

information that is to

follow.

Header Footer Content
Comma

nd
Header

5

The header is separated

from the content by a

single

white

space

tab space

double

white

space

blank

line

blank

line

6

To check whether Apache

is running, when starting

the machine by load _____

Url in the browser

http://local

host

http://ww

w.localho

st/

http:\\loc

alhost

http:\\w

ww.loca

lhost\

http://lo

calhost

7

URL stands for _____

Uniform

Resource

Loader

Unified

Resource

Locator

Uniform

Resource

Locator

Unified

Resourc

e

Loader

Uniform

Resourc

e

Locator

8

Apache can process ______

request at a time.
one two

Less than

one

more

than

one

more

than one

9

The Apache log file does

not contain_____

Client IP

address
date

the

author

name

the

referer

the

author

name

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Department of Computer Science

COIMBATORE-641021

III B.Sc(CS) (BATCH 2015-2018)

Open Source Software

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS ONE MARK QUESTIONS

UNIT III

10

The _______ module

allows users to serve web

content without having

access to the main web

directory.

user_mod mod_user
mod#use

r

user#m

od

mod_us

er

11

The Apache logs are

located at______

/var/log/htt

pd/access_

log

/var/httpd

/access_lo

g

/var/acce

ss_log

/var/log

/access_

log

/var/log/

httpd/ac

cess_log

12

______ keeps detailed logs

of accesses to the web site,

errors and more.

CGI HTML Apache HTTP Apache

13

CGI stands for______

Common

Graphics

Informatio

n

Common

Graphics

Interface

Common

Gateway

Interconn

ect

Commo

n

Gatewa

y

Interfac

e

Commo

n

Gateway

Interface

14

The locations of Apache

logs are configurable in

httpd.confi

g

httpd.conf

i

httpd.con

f

httpd.co

n

httpd.co

nf

15

_______ is a log monitor

program monitors the log

files for security violations

problems

log watch logwatch
watchin

g

logwatc

h

16

Create a new user with

_______,with a locked

account to run Apache

adduser useradd
createuse

r

usercrea

te
useradd

17

CLF stands for_____

Common

Log

Format

Computer

Log

Format

Common

Logical

Format

Comput

er

Logical

Format

Commo

n Log

Format

18

Which of the following is

not a part of the common

log format?

Requesting

host

Data of

request

Time to

serve

request

http

status

code

Time to

serve

request

19

A software that has both

proprietary license and

open source license is

called ______.

multiple

licensed

software

uncontroll

ed

software

dual

licensed

software

mixed

licensed

softwar

e

dual

licensed

software

20

Software with academic

license ____________.

does not

provide

the source

code to the

user

requires

just an

acknowle

dgement

can be

used by

the

compani

es

can be

used by

anyone

requires

just an

acknowl

edgeme

nt

21

Dual licensing business

rely on open source as

_________.

production

strategy

developm

ent

strategy

distributi

on

strategy

producti

on and

distribut

ion

strategy

distribut

ion

strategy

22

Open source software are

distributed mainly through

___________.

CDs Internet
Memory

cards.
HDDs. Internet

23

Dual licensing works for

__________.

work

having

many

contributor

s

collaborat

ively

developed

softwares

single,

well

defined

owner of

a work

open

source

softwar

e

followi

ng

strategy

collabor

atively

develop

ed

software

s

24

______ is a reciprocal

license.
GPL

BSD

License
Ms-RSL Ms-LPL GPL

25

Why software licensing

revenue is considered as a

good revenue?

Licensed

software

can be sold

for more

value

Licensing

a

software

is very

easy

Licensin

g a

second

copy of

the

software

is

possible

without

any

additiona

l cost

License

d

softwar

e are

accepte

d good

than

others

in the

market

Licensin

g a

second

copy of

the

software

is

possible

without

any

addition

al cost

26

Ownership applies to

________.

tangible

properties

only

both

tangible

and

intangible

properties

intangibl

e

propertie

s only

softwar

e only

both

tangible

and

intangib

le

properti

es

27

Which clarifies the issues

and resolves disputes

among author and reader?

License
Trademar

k
Warranty

Copyrig

ht law

Copyrig

ht law

28

Which license enforce

sharing?

reciprocal

license

Academic

license

Berkley

Software

Distributi

on

Propriet

ary

license

reciproc

al

license

29

Which of the following is

an academic license?
PUL GPL SPL BSD BSD

30

Proprietary licenses

________ for that

consideration.

have some

rights and

pay a fee

have no

rights and

pay little

fee

have

some

rights

and pay

no fee

have no

rights

and pay

no fee

have

some

rights

and pay

a fee

31

Making a software

available on open source

terms, creates it with a

_______.

small and

expensive

distributio

n channel

large and

inexpensi

ve

distributi

on

channel

large and

expensiv

e

distributi

on

channel

small

and

inexpen

sive

distribut

ion

channel

large

and

inexpen

sive

distribut

ion

channel

32

Reciprocity encourages

___________.
isolation

distributi

on

collabora

tion

Installe

d base

collabor

ation

33 What is warranty? Rules Promise Rights Offers Promise

34

Which of the following

provides clear warranties?

Proprietary

software

Open

source

software.

Free

software

As is'

softwar

e

Propriet

ary

software

35

Which one of the following

can be patented?
Hardware Software Things Names

Softwar

e

36 Tomcat is a

Applicatio

n server

Web

Server

Desktop

Server

Commu

nity

Server

Applicat

ion

server

37

Tomcat can best be

described as a ?

Java

Compiler

.Net

Container

.Net

Compiler

Servlet

Contain

er

Servlet

Contain

er

38

Apache is best described as

a ?

Web

Browser

Web

Server

Applicati

on

Server

Operati

ng

System

Web

Server

39 Linux OS is?

Proprietary

OS

Open

Source

OS

Spread

Sheet

Docum

ent

Viewer

Open

Source

OS

40 ISCII is __________? 4 bit 8 bit 16 bit 32 bit 8 bit

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 1/56

UNIT IV

SYLLABUS

Perl Programming

Perl - Introduction, Perl Basics: - Syntax, Variables, Strings, Numbers, Operators, Arrays: -

Using Arrays, Manipulating Arrays, Associative Arrays, Chop, Length, and Sub string. Hashes,

Arguments, Logic, Looping, Files, Pattern Matching, Environment Variables, Using cgilib for

Forms.

PERL INTRODUCTION:

Perl is a general-purpose programming language originally developed for text manipulation and

now used for a wide range of tasks including system administration, web development, network

programming, GUI development, and more.

What is Perl?

 Perl is a stable, cross platform programming language.

 Though Perl is not officially an acronym but few people used it as Practical Extraction

and Report Language.

 It is used for mission critical projects in the public and private sectors.

 Perl is an Open Source software, licensed under its Artistic License, or the GNU General

Public License (GPL).

 Perl was created by Larry Wall.

 Perl 1.0 was released to usenet's alt.comp.sources in 1987.

 At the time of writing this tutorial, the latest version of perl was 5.16.2.

 Perl is listed in the Oxford English Dictionary.

PC Magazine announced Perl as the finalist for its 1998 Technical Excellence Award in the

Development Tool category.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 2/56

Perl Features

 Perl takes the best features from other languages, such as C, awk, sed, sh, and BASIC,

among others.

 Perls database integration interface DBI supports third-party databases including Oracle,

Sybase, Postgres, MySQL and others.

 Perl works with HTML, XML, and other mark-up languages.

 Perl supports Unicode.

 Perl is Y2K compliant.

 Perl supports both procedural and object-oriented programming.

 Perl interfaces with external C/C++ libraries through XS or SWIG.

 Perl is extensible. There are over 20,000 third party modules available from the

Comprehensive Perl Archive Network (CPAN).

 The Perl interpreter can be embedded into other systems.

Perl and the Web

 Perl used to be the most popular web programming language due to its text manipulation

capabilities and rapid development cycle.

 Perl is widely known as "the duct-tape of the Internet".

 Perl can handle encrypted Web data, including e-commerce transactions.

 Perl can be embedded into web servers to speed up processing by as much as 2000%.

 Perl's mod_perl allows the Apache web server to embed a Perl interpreter.

 Perl's DBI package makes web-database integration easy.

Perl is Interpreted

Perl is an interpreted language, which means that your code can be run as is, without a

compilation stage that creates a non portable executable program.

https://cpan.perl.org/
https://www.google.com/search?q=the%20duct-tape%20of%20the%20Internet
https://perl.apache.org/
https://dbi.perl.org/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 3/56

Traditional compilers convert programs into machine language. When you run a Perl program,

it's first compiled into a byte code, which is then converted (as the program runs) into machine

instructions. So it is not quite the same as shells, or Tcl, which are strictly interpreted without

an intermediate representation.

It is also not like most versions of C or C++, which are compiled directly into a machine

dependent format. It is somewhere in between, along with Python and awk and Emacs .elc files.

PERL BASICS

SYNTAX

Perl borrows syntax and concepts from many languages: awk, sed, C, Bourne Shell, Smalltalk,

Lisp and even English. However, there are some definite differences between the languages

A Perl program consists of a sequence of declarations and statements, which run from the top to

the bottom. Loops, subroutines, and other control structures allow you to jump around within

the code. Every simple statement must end with a semicolon (;).

Perl is a free-form language: you can format and indent it however you like. Whitespace serves

mostly to separate tokens, unlike languages like Python where it is an important part of the

syntax, or Fortran where it is immaterial.

perl - syntax

PERL follows a very specific syntax not unlike other programming languages. It is important

to develop good syntax habits as it will save you from having to debug things later, not to

mention save yourself from eye strain and mind numbing headaches.

perl - case sensitivity

File names, variables, and arrays are all case sensitive. If you capitalize a variable name

when you define it, you must capitalize it to call it.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 4/56

A great tip for large scripts containing a vast number of variable names it is best to be

consistent with your case sensitivity and maybe even develop a system for naming variables that

makes sense to you. For the majority of us programmers, capitals are simply not an option.

casesensitivity.pl:

$VAriaBLE_NAmES = "string";

$LIKe_tHESE = "Another String";

$ARe_HArd_to_Type = "A Third String";

perl - comments

As with any programming language, PERL offers an escape from your code via the '#' sign.

Any words, spaces, or marks after a pound symbol will be ignored by the program interpreter,

offering you the coder, a chance to place reminders to yourself about your code. It's a great way

to note specifics of your code to yourself or others viewing your code/script. Comments are

necessary for any script you wish to publish to others or make readily available.

PERL Comment:

#!/usr/bin/perl

print "Content-type: text/html \n\n"; # the header

#Comments start with a #

This comment is extreme and overdone, you might see more comments like this in scripts

that are offered free on the internet. Often programmers will include a large commented section

as an installation or set-up guide included right there in the script itself.

perl - escaping characters

In PERL we use the backslash (\) character to escape any type of character that might

interfere with our code. For example there may become a time when you would like to print a

dollar sign rather than use one to define a variable. To do this you must "escape" the character

using a backslash (\).

escapecharacters.pl:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 5/56

#!/usr/bin/perl

print "Content-type: text/html \n\n"; #HTTP HEADER

#CREATE STRINGS WITH ESCAPING CHARACTERS

$string = "David paid \$4.34 for Larry\'s shirt.";

$email = "youremail\@youremail.com";

#PRINT THE STRINGS

print "$string
";

print "$email
";

print '$string and $email';

escapecharacters.pl:

David paid $4.34 for Larry's shirt.

youremail@youremail.com

$string and $email

VARIABLES:

perl - define some variables

A variable is defined by the ($) symbol (scalar), the (@) symbol (arrays), or the (%) symbol

(hashes).

Here is what each type of variable should look like inside of a script.

definevariables.pl:

#!/usr/bin/perl

print "Content-type: text/html \n\n"; #HTTP HEADER

$somenumber = 4;

$myname = "some string";

@array = ("value00","value01","value02");

%hash = ("Quarter", 25, "Dime", 10, "Nickle", 5);

OR ##

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 6/56

my $somenumber = 4;

my $myname = "some string";

my @array = ("value00", "value01", "value02");

my %hash = ("Quarter", 25, "Dime", 10, "Nickle", 5);

The latter example using the my parameter is another means to define a variable that you

might run across as you gain more experience. It is not necessary to use the my parameter.

Variables can be defined either way.

perl - scalar variables

Scalar variables are simple variables containing only one element--a string, a number, or a

reference. Strings may contain any symbol, letter, or number. Numbers may contain exponents,

integers, or decimal values. The bottom line here with scalar variables is that they contain only

one single piece of data. What you see is what you get with scalar variables.

definescalars.pl:

#!/usr/bin/perl

print "Content-type: text/html \n\n"; #HTTP HEADER

DEFINE SOME SCALAR VARIABLES

$number = 5;

$exponent = "2 ** 8";

$string = "Hello, Perl!";

$stringpart_1 = "Hello, ";

$stringpart_2 = "Perl!";

$linebreak = "
"; #HTML LINEBREAK TAG

PRINT THEM TO THE BROWSER

print $number;

print $linebreak;

print $exponent;

print $linebreak;

print $string.$linebreak;

print $stringpart_1.$stringpart_2;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 7/56

Display:

5

2 ** 8

Hello, Perl!

Hello, Perl!

Scalars are very straight forward. Notice that we used a period (.) between each of our

variables. This is a special kind of operator that concatenates two or more variables.

perl - array variables

Arrays contain a list of scalar data (single elements). A list can hold an unlimited number of

elements. In Perl, arrays are defined with the at (@) symbol.

definearrays.pl:

#!/usr/bin/perl

print "Content-type: text/html \n\n"; #HTTP HEADER

#DEFINE SOME ARRAYS

@days = ("Monday", "Tuesday", "Wednesday");

@months = ("April", "May", "June");

#PRINT MY ARRAYS TO THE BROWSER

print @days;

print "
";

print @months;

Display:

MondayTuesdayWednesday

AprilMayJune

perl - define a hash

Hashes are complex lists with both a key and a value part for each element of the list. We

define a hash using the percent symbol (%).

definehashes.pl:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 8/56

print "Content-type: text/html \n\n"; #HTTP HEADER

#DEFINE SOME HASHES

%coins = ("Quarter", 25, "Dime", 10, "Nickle", 5);

%ages = ("Jerry", 45, "Tom", 22, "Vickie", 38);

#PRINT MY HASHES TO THE BROWSER

print %coins;

print "
";

print %ages;

Display:

Dime10Nickle5Quarter25

Jerry45Vickie38Tom22

Hashes are very complex data types, for now just understand the syntax of how to define one.

Later we will take a closer look at these complex variables.

STRINGS:

perl - strings

Strings are scalar as we mentioned previously. There is no limit to the size of the string, any

amount of characters, symbols, or words can make up your strings.

When defining a string you may use single or double quotations, you may also define them

with the q subfunction.

definestrings.pl:

#!/usr/bin/perl

print "content-type: text/html \n\n"; #HTTP HEADER

DEFINE SOME STRINGS

$single = 'This string is single quoted';

$double = "This string is double quoted";

$userdefined = q^Carrot is now our quote^;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 9/56

PRINT THEM TO THE BROWSER

print $single."
";

print $double."
";

print $userdefined."
";

perl - formatting strings w/ formatting characters

Strings can be formatted to your liking using formatting characters. Some of these characters

also work to format files created in PERL. Think of these characters as miniature functions.

Character Description

\L Transform all letters to lowercase

\l Transform the next letter to lowercase

\U Transform all letters to uppercase

\u Transform the next letter to uppercase

\n Begin on a new line

\r Applys a carriage return

\t Applys a tab to the string

\f Applys a formfedd to the string

\b Backspace

\a Bell

\e Escapes the next character

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 10/56

\0nn Creates Octal formatted numbers

\xnn Creates Hexideciamal formatted numbers

\cX Control characters, x may be any character

\Q Do not match the pattern

\E Ends \U, \L, or \Q functions

formattingcharacters.pl:

#!/usr/bin/perl

print "content-type: text/html \n\n"; #HTTP HEADER

STRINGS TO BE FORMATTED

$mystring = "welcome to tizag.com!"; #String to be formatted

$newline = "welcome to \ntizag.com!";

$capital = "\uwelcome to tizag.com!";

$ALLCAPS = "\Uwelcome to tizag.com!";

PRINT THE NEWLY FORMATTED STRINGS

print $mystring."
";

print $newline."
";

print $capital."
";

print $ALLCAPS;

Any combination of these special characters can be used at any time to properly punctuate

your strings. They also come in handy when printing out HTML with your PERL functions.

perl - substr() and string indexing

The substr() function is a rather complicated function. It can be used to do many things and

we'll start with the most basic, grabbing a substring and move onto more advanced ideas further

on.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 11/56

To use substr() to grab a substring, you need to give it both a string variable to pick

something out of and an offset (which starts at 0). A string can be thought of as an array of

characters, starting with element 0 at the beginning and +1 for each additional character. The

string "hey" has 3 characters. The 0th element is "h", the 1st element is "e" and the 2nd and last

element is "y".

The first argument of substr() is the string we want to take something from and the second

argument is the offset, or where we want to start at.

stringreplace.pl:

#!/usr/bin/perl

print "content-type: text/html \n\n"; #HTTP HEADER

DEFINE A STRING TO REPLACE

$mystring = "Hello, am I about to be manipulated?!";

PRINT THE ORIGINAL STRING

print "Original String: $mystring
";

STORE A SUB STRING OF $mystring, OFFSET OF 7

$substringoffset = substr($mystring, 7);

print "Offset of 7: $substringoffset
";

Display:

Original String: Hello, am I about to be manipulated?!

Offset of 7: am I about to be manipulated?!

substr() started at the 7th element (remember we count from 0) which was the "a" in "am"

and returned the rest of the string and we stored it into $substringoffset. Play around with this

function a little and get a feel for how offset works!

Below we have gone on to the more advanced options of substr(), taking advantage of the

last two arguments of the function: length and replace value. Rather than grabbing the whole

string from the offset, we can just grab a chunk of it by specifying the length we want this

substring to be.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 12/56

The final argument, replace value, replaces the substring specified by the first three

arguments with whatever we want. Let's change the original string to say something different by

grabbing a part of the string and replacing it with "I want".

stringreplace.pl:

#!/usr/bin/perl

print "content-type: text/html \n\n"; #HTTP HEADER

DEFINE A STRING TO REPLACE

$mystring = "Hello, am I about to be manipulated?!";

PRINT THE ORIGINAL STRING

print "Original String: $mystring
";

STORE A SUB STRING OF $mystring, OFFSET OF 7 AND LENGTH 10

$suboffsetANDlength = substr($mystring, 7, 10);

print "Offset of 7 and length of 10: $suboffsetANDlength
";

CHANGE $mystring, OFFSET OF 7 AND LENGTH 10 AND

REPLACE SUB STR WITH "I want"

$suboffsetANDlength = substr($mystring, 7, 10, "I want");

print "mystring is now: $mystring
";

Display:

Original String: Hello, am I about to be manipulated?!

Offset of 7 and length of 10: am I about

mystring is now: Hello, I want to be manipulated?!

The original string was changed, so be careful when using the replace value argument of

substr(). However, it's a great tool to have in your arsenal, as changing strings in this manner is

pretty common. Please play around with substr() for a while and make sure you understand it!

NUMBERS:

perl - numbers

Numbers are scalar data. They exist in PERL as real numbers, float, integers, exponents,

octal, and hexidecimal numbers.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 13/56

perlnumbers.pl:

$real = 27;

$float = 3.14159;

$integer = -4;

$exponent = 10e12;

perl - mathematical functions

With numbers comes math. Simple arithmetic operations are discussed in the PERL

Operators lesson.

Some mathematical functions require some additional PERL Modules. Here's a few

trigonomic functions that will only function if your build of PERL has the Math::Trig module

installed.

perltrig.pl:

#!/usr/bin/perl

use Math::Trig; #USE THIS MODULE

print "content-type: text/html \n\n"; #HTTP HEADER

$real = 27;

$float = 3.14159;

$integer = -4;

$exponent = 10e12;

print tan($real); #TANGENT FUNCTION

print "
";

print sin($float); #SINE FUNCTION

print "
";

print acos($integer); #COSINE FUNCTION

perltrig.pl:

-3.27370380042812

2.65358979335273e-06

3.14159265358979-2.06343706889556i

http://www.tizag.com/perlT/perloperators.php
http://www.tizag.com/perlT/perloperators.php

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 14/56

perl - numbers with operators

Numbers aren't much without arithmetic operations. This next example is a sneak peak of the

next lesson, PERL Operators.

arithmeticoperations.pl:

#!/usr/bin/perl

print "content-type: text/html \n\n"; #HTTP HEADER

#PICK TWO NUMBERS

$x = 14;

$y = 10;

#MULTIPLICATION OPERATOR

$area = ($x * $y);

print $area;

print "
";

arithmeticoperations.pl:

140

perl - formatting numbers

Computers are capable of calculating numbers that you and I probably never knew existed.

This is especially true with calculations involving decimals, floating-point numbers, or

percentages.

You may find that one of the best solutions is to first convert your numbers when possible to

integers (get rid of the decimal). You may then go ahead and perform the required operations

such as multiplication, division, addition, or whatever and finally reintroduce the decimal using

division.

peskydecimals.pl:

#!/usr/bin/perl

print "content-type: text/html \n\n"; #HTTP HEADER

$hourlyrate = 7.50; #DECIMAL TO BE RID OF

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 15/56

$hoursworked = 35;

$no_decimal_rate = ($hourlyrate * 100);

$netpay = ($no_decimal_rate * $hoursworked);

$paycheck = ($netpay / 100);

print "Hourly Wage: $hourlyrate
";

print "Hours: $hoursworked
";

print "No Decimal: $no_decimal_rate
";

print "Net Pay: $netpay
";

print "Pay Check: $paycheck
";

peskydecimals.pl:

Hourly Wage: 7.5 Hours: 35

No Decimal: 750

Net Pay: 26250

Pay Check: 262.5

In this example we followed the steps stated above, first we removed the decimal from each

number involved in the calculation, ($hourlyrate and $hoursworked). Then we performed the

operation ($netpay), and finally introduced the decimal again by dividing our $netpay by the

same number we used to get rid of the decimal in the first place (100).

 Convert to real numbers.

 Perform the operation(s).

 Convert back to a decimal.

NUMBERS:

perl - arithmetic operators

Arithmetic operators are symbols used to execute general arithmetic procedures including:

addition (+), subtraction (-), multiplication (*), and division (/).

Arithmetic Operators:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 16/56

Operator Example Result Definition

+ 7 + 7 = 14 Addition

- 7 - 7 = 0 Subtraction

* 7 * 7 = 49 Multiplication

/ 7 / 7 = 1 Division

** 7 ** 7 = 823543 Exponents

% 7 % 7 = 0 Modulus

With these operators we can take a number and perform some simple math operations.

PERL Arithmetic:

#!/usr/bin/perl

print "content-type: text/html \n\n"; #HTTP Header

#PICK A NUMBER

$x = 81;

$add = $x + 9;

$sub = $x - 9;

$mul = $x * 10;

$div = $x / 9;

$exp = $x ** 5;

$mod = $x % 79;

print "$x plus 9 is $add
";

print "$x minus 9 is $sub
";

print "$x times 10 is $mul
";

print "$x divided by 9 is $div
";

print "$x to the 5th is $exp
";

print "$x modulus 79 is $mod
";

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 17/56

Your browser should read:

arithmetic.pl:

81 plus 9 is 90

81 minus 9 is 72

81 times 10 is 810

81 divided by 9 is 9

81 to the 5th is 3486784401

81 modulus 79 is 2

perl - assignment operators

Assignment operators perform an arithmetic operation and then assign the value to the

existing variable. In this example, we set a variable ($x) equal to 5. Using assignment operators

we will replace that value with a new number after performing some type of mathematical

operation.

Assignment Operators:

Operator Definition Example

+= Addition ($x += 10)

-= Subtraction ($x -= 10)

*= Multiplication ($x *= 10)

/= Division ($x /= 10)

%= Modulus ($x %= 10)

**= Exponent ($x **= 10)

PERL Assignment:

#!/usr/bin/perl

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 18/56

print "content-type: text/html \n\n"; #HTTP HEADER

#START WITH A NUMBER

$x = 5;

print '$x plus 10 is '.($x += 10);

print "
x is now ".$x; #ADD 10

print '
$x minus 3 is '.($x -= 3);

print "
x is now ".$x; #SUBTRACT 3

print '
$x times 10 is '.($x *= 10);

print "
x is now ".$x. #MULTIPLY BY 10

print '
$x divided by 10 is '.($x /= 10);

print "
x is now ".$x; #DIVIDE BY 10

print '
Modulus of $x mod 10 is '.($x %= 10);

print "
x is now ".$x; #MODULUS

print '
$x to the tenth power is '.($x **= 10);

print "
x is now ".$x; #2 to the 10th

Display:

$x plus 10 is 15

x is now 15

$x minus 3 is 12

x is now 12

$x times 10 is 120

$x is now 120

$x divided by 10 is 12

x is now 12

Modulus of $x mod 10 is 2

x is now 2

$x to the tenth power is 1024

x is now 1024

Each time an operation is performed our variable ($x) is permanently changed to a new value

of $x.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 19/56

perl - logical & relational operators

Relationship operators compare one variable to another. (5 < 12) They are used to compare

equality or inequality of two or more variables, be it a string or numeric data.

Logical operators state and/or relationships. Meaning, you can take two variables and test an

either or conditional. Logical operators are used later on in conditionals and loops. For now, just

be able to recognize them in the upcoming examples.

Logical/Relational Operators:

Relational

Operator Example Defined Result

==,eq
5 == 5

5 eq 5
Test: Is 5 equal to 5? True

!=,ne
7 != 2

7 ne 2
Test: Is 7 not equal to 2? True

<,lt
7 < 4

7 lt 4
Test: Is 7 less than 4? False

>,gt
7 > 4

7 gt 4
Test: Is 7 greater than 4? True

<=,le
7 <= 11

7 le 11
Test: Is 7 less than or equal to 11? True

>=,ge
7 >= 11

7 ge 11
Test: Is 7 greater than or equal to 11? False

Logical

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 20/56

Operator Defined Example

&&,and Associates two variables using AND if (($x && $y) == 5)...

||,or Associates two variables using OR if (($x || $y) == 5)...

Please note that you must use each different operator depending of whether or not you are

comparing strings or numbers. In the table above, the black operators are for numbers and the red

ones are for strings.

perl - variables + operators

Variables can be used with mathematical formulas using PERL Operatorsdiscussed in a

previous lesson. Also, note that variables are case sensitive. "$myvariable," "$MYvariable," and

"$Myvariable" can all be assigned different values due to case sensitivity. Numbers of course can

be added, subtracted, or multiplied using operators. Strings as shown in the example below can

also be used with operators.

PERL Code:

#!/usr/bin/perl

print "Content-type: text/html \n\n"; #HTTP HEADER

#TWO STRINGS TO BE ADDED

$myvariable = "Hello,";

$Myvariable = " World";

#ADD TWO STRINGS TOGETHER

$string3 = "$myvariable $Myvariable";

print $string3;

Display:

Hello, World

http://www.tizag.com/perlT/perloperators.php

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 21/56

ARRAYS:

perl - array variables

Arrays are a special type of variable that store list style data types. Each object of the list is

termed an element and elements can either be a string, a number, or any type of scalar data

including another variable.

Place an array into a PERL script, using the at symbol (@).

perlarrays.pl:

#!/usr/bin/perl

print "content-type: text/html \n\n"; #HTTP HEADER

DEFINE AN ARRAY

@coins = ("Quarter","Dime","Nickel");

PRINT THE ARRAY

print "@coins";

print "
";

print @coins;

Check the syntax here. We printed the same array twice using quotes around the first line.

Notice how the line with quotes around it prints nicely to the browser leaving spaces between

each word. PERL does this automatically as it assumes the quotations are meant for a string and

strings are usually comprised of words that require spacing between each word.

perl - array indexing

Each element of the array can be indexed using a scalar version of the same array. When an

array is defined, PERL automatically numbers each element in the array beginning with zero.

This phenomenon is termed array indexing.

arrayindexing.pl:

#!/usr/bin/perl

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 22/56

print "content-type: text/html \n\n"; #HTTP HEADER

DEFINE AN ARRAY

@coins = ("Quarter","Dime","Nickel");

PRINT THE WHOLE ARRAY

print "@coins";

PRINT EACH SCALAR ELEMENT

print "
";

print $coins[0]; #Prints the first element

print "
";

print $coins[1]; #Prints the 2nd element

print "
";

print $coins[2]; #Prints the 3rd element

arrayindexing.pl:

Quarter Dime Nickel

Quarter

Dime

Nickel

Elements can also be indexed backwards using negative integers instead of positive numbers.

MANIPULATING ARRAYS:

pop

The pop function will remove and return the last element of an array.

In this first example you can see how, given an array of 3 elements, the pop function removes the

last element (the one with the highest index) and returns it.

1. my @names = ('Foo', 'Bar', 'Baz');

2. my $last_one = pop @names;

3.

4. print "$last_one\n"; # Baz

5. print "@names\n"; # Foo Bar

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 23/56

In the special case of the original array being empty, the pop function will return undef.

push

The push function can add one or more values to the end of an array. (Well, it can also add 0

values, but that's not very useful, is it?)

1. my @names = ('Foo', 'Bar');

2. push @names, 'Moo';

3. print "@names\n"; # Foo Bar Moo

4.

5. my @others = ('Darth', 'Vader');

6. push @names, @others;

7. print "@names\n"; # Foo Bar Moo Darth Vader

n this example we originally had an array with two elements. Then we pushed a single scalar

value to the end and our array got extended to a 3-element array.

In the second call to push, we pushed the content of the @others array to the end of

the @names array, extending it to a 5-element array.

shift

If you imagine the array starting on the left hand side, the shift function will move the whole

array one unit to the left. The first element will "fall off" the array and become the function's

return value. (If the array was empty, shift will return undef.)

After the operation, the array will be one element shorter.

1. my @names = ('Foo', 'Bar', 'Moo');

2. my $first = shift @names;

3. print "$first\n"; # Foo

4. print "@names\n"; # Bar Moo

This is quite similar to pop, but it works on the lower end of the array.

unshift

https://perlmaven.com/undef-and-defined-in-perl
https://perlmaven.com/undef-and-defined-in-perl

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 24/56

This is the opposite operation of shift. unshift will take one or more values (or even 0 if that's

what you like) and place it at the beginning of the array, moving all the other elements to the

right.

You can pass it a single scalar value, which will become the first element of the array. Or, as in

the second example, you can pass a second array and then the elements of this second array

(@others in our case) will be copied to the beginning of the main array (@names in our case)

moving the other elements to higher indexes.

1. my @names = ('Foo', 'Bar');

2. unshift @names, 'Moo';

3. print "@names\n"; # Moo Foo Bar

4.

5. my @others = ('Darth', 'Vader');

6. unshift @names, @others;

7. print "@names\n"; # Darth Vader Moo Foo Bar

ASSOCIATIVE ARRAYS

Associative arrays are a very useful and commonly used feature of Perl.

Associative arrays basically store tables of information where the lookup is the right

hand key (usually a string) to an associated scalar value. Again scalar values can be mixed

``types''.

We have already been using Associative arrays for name/value pair input to CGI scripts.

Associative arrays are denoted by a verb| When you declare an associative array the key and

associated values are listed in consecutive pairs.

So if we had the following secret code lookup:

name code

dave 1234

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 25/56

peter 3456

andrew 6789

We would declare a Perl associative array to perform this lookup as follows:

%lookup = ("dave", 1234,

 "peter", 3456,

 "andrew", 6789);

The reference a particular value you do:

$lookup{"dave"}

You can create new elements by assignments to new keys. E.g.

$lookup{"adam"} = 3845;

You do new assignments to old keys also:

change dave's code

$lookup{"dave"} = 7634;

Array Functions:

Function Definition

push(@array, Element) Adds to the end of an array

pop(@array) Removes the last element of the array

unshift(@array, Element) Adds to the beginning of an array

shift(@array) Removes the first element of an array

delete $array[index] Removes an element by index number

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 26/56

It is also possible to remove any element by its indexed number. Just remember to use the

scalar form of the array when doing so.($)

CHOP:

Description

This function removes the last character from EXPR, each element of LIST, or $_ if no value is

specified.

Syntax

Following is the simple syntax for this function −

chop VARIABLE

chop(LIST)

chop

Return Value

This function returns the character removed from EXPR and in list context, the character is

removed from the last element of LIST.

Example

Following is the example code showing its basic usage −

 Live Demo

#!/usr/bin/perl

$string1 = "This is test";

$retval = chop($string1);

print " Choped String is : $string1\n";

http://tpcg.io/KEAc0o

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 27/56

print " Character removed : $retval\n";

When above code is executed, it produces the following result −

Choped String is : This is tes

Number of characters removed : t

LENGTH:

Description

This function returns the length, in characters, of the value of EXPR, or $_ if not specified. Use

scalar context on an array or hash if you want to determine the corresponding size.

Syntax

Following is the simple syntax for this function −

length EXPR

length

Return Value

This function returns the size of string.

Example

Following is the example code showing its basic usage −

 Live Demo

#!/usr/bin/perl

$orig_string = "This is Test and CAPITAL";

$string_len = length(orig_string);

http://tpcg.io/VTZD2m

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 28/56

print "Length of String is : $string_len\n";

When above code is executed, it produces the following result −

Length of String is : 11

SUBSTRING:

Description

This function returns a substring of EXPR, starting at OFFSET within the string. If

OFFSET is negative, starts that many characters from the end of the string. If LEN is specified,

returns that number of bytes, or all bytes up until end-of-string if not specified. If LEN is

negative, leaves that many characters off the end of the string.

If REPLACEMENT is specified, replaces the substring with the REPLACEMENT string.

If you specify a substring that passes beyond the end of the string, it returns only the valid

element of the original string.

Syntax

Following is the simple syntax for this function −

substr EXPR, OFFSET, LEN, REPLACEMENT

substr EXPR, OFFSET, LEN

substr EXPR, OFFSET

Return Value

This function returns string.

Example

Following is the example code showing its basic usage −

#!/usr/bin/perl -w

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 29/56

$temp = substr("okay", 2);

print "Substring valuye is $temp\n";

$temp = substr("okay", 1,2);

print "Substring valuye is $temp\n";

When above code is executed, it produces the following result −

Substring valuye is ay

Substring valuye is ka

HASHES:

perl - hashes

Hashes are complex list data, like arrays except they link a key to a value. To define a hash,

we use the percent (%) symbol before the name.

defineahash.pl:

#!/usr/bin/perl

print "content-type: text/html \n\n";

DEFINE A HASH

%coins = ("Quarter", 25, "Dime", 10, "Nickel", 5);

PRINT THE HASH

print %coins;

Display:

Nickel5Dime10Quarter25

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 30/56

perl - hash indexing

Hashes can be indexed using two scalar variables. The variables $key and $value can be used

to call on each key or value of the hash. We can use these variables to print out our hash again

but this time let's make it a little more legible using a while loop.

legiblehash.pl:

#!/usr/bin/perl

print "content-type: text/html \n\n";

DEFINE A HASH

%coins = ("Quarter" , 25,

 "Dime" , 10,

 "Nickel", 5);

LOOP THROUGH IT

while (($key, $value) = each(%coins)){

 print $key.", ".$value."
";

}

legiblehash.pl:

Nickel, 5

Dime, 10

Quarter, 25

The each() function takes a hash. It then removes the topmost "Key and Value" pair. We

store this into the variables $key and $value. Each time this loop iterates, the statement ($key,

$value) = each(%thing) executes and the hash pops off the top key value pair and will continue

doing so until it has gone through every pair in the hash. When it is done, each() returns false

and the loop stops running.

Hashes work really well with HTML Tables.

tablehashes.pl:

#!/usr/bin/perl

http://www.tizag.com/htmlT/tables.php

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 31/56

print "content-type: text/html \n\n";

DEFINE A HASH

%coins = ("Quarter" , 25,

 "Dime" , 10,

 "Nickel", 5);

SET UP THE TABLE

print "<table border='1'>";

print "<th>Keys</th><th>Values</th>";

EXECUTE THE WHILE LOOP

while (($key, $value) = each(%coins)){

 print "<tr><td>".$key."</td>";

 print "<td>".$value."</td></tr>";

}

print "</table>";

tablehashes.pl:

Keys Values

Nickel 5

Dime 10

Quarter 25

We have yet to sort our hash so you may experience different arrangements of your keys than

shown in the display box.

ARGUMENTS:

Perl command line arguments stored in the special array called @ARGV. The

array @ARGV contains the command-line arguments intended for the script. $#ARGV is

generally the number of arguments minus one, because $ARGV[0] is the first argument, not the

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 32/56

program’s command name itself. Please note that $ARGV contains the name of the current file

when reading from <>.

To read arguments from a PERL script you use the environment variable ARGV.

Arguments are stored in the array @ARGV

First Argument: $ARGV[0]

Second Argument: $ARGV[1]

Third Argument: $ARGV[2]

etc.

Example

./script.pl arg1 num2 bob

$ARGV[0] == "arg1"

$ARGV[1] == "num2"

$ARGV[2] == "bob"

To get the total number of arguments

$numberOfArguments = $#ARGV + 1;

To read all arguments as one string

$arg_string=join(' ',@ARGV);

LOGIC

There are following logical operators supported by Perl language. Assume variable $a holds

true and variable $b holds false then −

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 33/56

Sr.No. Operator & Description

1 and

Called Logical AND operator. If both the operands are true then then condition

becomes true.

Example − ($a and $b) is false.

2 &&

C-style Logical AND operator copies a bit to the result if it exists in both

operands.

Example − ($a && $b) is false.

3 or

Called Logical OR Operator. If any of the two operands are non zero then then

condition becomes true.

Example − ($a or $b) is true.

4 ||

C-style Logical OR operator copies a bit if it exists in eather operand.

Example − ($a || $b) is true.

5 not

Called Logical NOT Operator. Use to reverses the logical state of its operand. If

a condition is true then Logical NOT operator will make false.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 34/56

Example − not($a and $b) is true.

Example

Try the following example to understand all the logical operators available in Perl. Copy and

paste the following Perl program in test.pl file and execute this program.

#!/usr/local/bin/perl

$a = true;

$b = false;

print "Value of \$a = $a and value of \$b = $b\n";

$c = ($a and $b);

print "Value of \$a and \$b = $c\n";

$c = ($a && $b);

print "Value of \$a && \$b = $c\n";

$c = ($a or $b);

print "Value of \$a or \$b = $c\n";

$c = ($a || $b);

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 35/56

print "Value of \$a || \$b = $c\n";

$a = 0;

$c = not($a);

print "Value of not(\$a)= $c\n";

When the above code is executed, it produces the following result −

Value of $a = true and value of $b = false

Value of $a and $b = false

Value of $a && $b = false

Value of $a or $b = true

Value of $a || $b = true

Value of not($a)= 1

LOOP

There may be a situation when you need to execute a block of code several number of times. In

general, statements are executed sequentially: The first statement in a function is executed first,

followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and

following is the general form of a loop statement in most of the programming languages −

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 36/56

Perl programming language provides the following types of loop to handle the looping

requirements.

Sr.No. Loop Type & Description

1 while loop

Repeats a statement or group of statements while a given condition is true. It

tests the condition before executing the loop body.

2 until loop

Repeats a statement or group of statements until a given condition becomes

true. It tests the condition before executing the loop body.

3 for loop

Executes a sequence of statements multiple times and abbreviates the code that

https://www.tutorialspoint.com/perl/perl_while_loop.htm
https://www.tutorialspoint.com/perl/perl_until_loop.htm
https://www.tutorialspoint.com/perl/perl_for_loop.htm

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 37/56

manages the loop variable.

4 foreach loop

The foreach loop iterates over a normal list value and sets the variable VAR to

be each element of the list in turn.

5 do...while loop

Like a while statement, except that it tests the condition at the end of the loop

body

6 nested loops

You can use one or more loop inside any another while, for or do..while loop.

Loop Control Statements

Loop control statements change the execution from its normal sequence. When execution leaves

a scope, all automatic objects that were created in that scope are destroyed.

C supports the following control statements. Click the following links to check their detail.

Sr.No. Control Statement & Description

1 next statement

Causes the loop to skip the remainder of its body and immediately retest its

condition prior to reiterating.

2 last statement

Terminates the loop statement and transfers execution to the statement

immediately following the loop.

3 continue statement

https://www.tutorialspoint.com/perl/perl_foreach_loop.htm
https://www.tutorialspoint.com/perl/perl_do_while_loop.htm
https://www.tutorialspoint.com/perl/perl_nested_loops.htm
https://www.tutorialspoint.com/perl/perl_next_statement.htm
https://www.tutorialspoint.com/perl/perl_last_statement.htm
https://www.tutorialspoint.com/perl/perl_continue_statement.htm

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 38/56

A continue BLOCK, it is always executed just before the conditional is about to

be evaluated again.

4 redo statement

The redo command restarts the loop block without evaluating the conditional

again. The continue block, if any, is not executed.

5 goto statement

Perl supports a goto command with three forms: goto label, goto expr, and goto

&name.

The Infinite Loop

A loop becomes infinite loop if a condition never becomes false. The for loop is traditionally

used for this purpose. Since none of the three expressions that form the for loop are required,

you can make an endless loop by leaving the conditional expression empty.

#!/usr/local/bin/perl

for(; ;) {

 printf "This loop will run forever.\n";

}

You can terminate the above infinite loop by pressing the Ctrl + C keys.

When the conditional expression is absent, it is assumed to be true. You may have an

initialization and increment expression, but as a programmer more commonly use the for (;;)

construct to signify an infinite loop.

https://www.tutorialspoint.com/perl/perl_redo_statement.htm
https://www.tutorialspoint.com/perl/perl_goto_statement.htm

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 39/56

perl - for loops

A for loop counts through a range of numbers, running a block of code each time it iterates

through the loop. The syntax is for($start_num, Range, $increment) { code to execute }. A for

loop needs 3 items placed inside of the conditional statement to be successful. First a starting

point, then a range operator, and finally the incrementing value. Below is the example.

forloop.pl:

#!/usr/bin/perl

print "content-type: text/html \n\n";

SET UP THE HTML TABLE

print "<table border='1'>";

START THE LOOP, $i is the most common counter name for a loop!

for($i = 1; $i < 5; $i++) {

 # PRINT A NEW ROW EACH TIME THROUGH W/ INCREMENT

 print "<tr><td>$i</td><td>This is row $i</td></tr>";

}

FINISH THE TABLE

print "</table>";

forloop.pl:

1 This is row 1

2 This is row 2

3 This is row 3

4 This is row 4

5 This is row 5

We looped through one variable and incremented it. Using HTML, we were able to make a

nice table to demonstrate our results.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 40/56

perl - foreach loops

Foreach is designed to work with arrays. Say you want to execute some

code foreach element within an array. Here's how you might go about it.

foreachloop.pl:

#!/usr/bin/perl

print "content-type: text/html \n\n"; #The header

SET UP THE HTML TABLE

print "<table border='1'>";

CREATE AN ARRAY

@names = qw(Steve Bill Connor Bradley);

SET A COUNT VARIABLE

$count = 1;

BEGIN THE LOOP

foreach $names(@names) {

 print "<tr><td>$count</td><td>$names</td></tr>";

 $count++;

}

print "</table>";

foreachloop.pl:

1 Steve

2 Bill

3 Connor

4 Bradley

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 41/56

We placed a table row counter for you to see each line more clearly. We use the variable

$names to pull single elements from our array, PERL does the rest for us by looping through

each element in our array. Use the sorting functions outlined in the PERL Arrays lesson.

perl - while

While loops continually iterate as long as the conditional statement remains true. It is very

easy to write a conditional statement that will run forever especially at the beginner level of

coding. On a more positive note, while loops are probably the easiest to understand. The syntax

is while (conditional statement) { execute code; }.

whilecounter.pl:

#!/usr/bin/perl

print "content-type: text/html \n\n";

SET A VARIABLE

$count = 0;

RUN A WHILE LOOP

while ($count <= 7) {

 # PRINT THE VARIABLE AND AN HTML LINE BREAK

 print "$count
";

 # INCREMENT THE VARIABLE EACH TIME

 $count ++;

}

print "Finished Counting!";

whilecounter.pl:

0

1

2

3

4

5

6

http://www.tizag.com/perlT/perlarrays.php

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 42/56

7

Finished Counting!

perl - next, last, and redo

Outlined below are several interrupts that can be used to redo or even skip iterations of code.

These functions allow you to control the flow of your while loops.

Next

Place it inside your loop and it will stop the current iteration and go on to the next one.

Continue

Executed after each loop iteration and before the conditional statement is evaluated. A good

place to increment counters.

Last

Last stops the looping immediately (like break)

Redo

Redo will execute the same iteration over again.

flowcontrol.pl:

#!/usr/bin/perl

print "content-type: text/html \n\n";

SET A VARIABLE

$count = 0;

while ($count <= 7) {

 # SET A CONDITIONAL STATEMENT TO INTERRUPT @ 4

 if ($count == 4) {

 print "Skip Four!
";

 next;

 }

 # PRINT THE COUNTER

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 43/56

 print $count."
";

}

 continue {

 $count++;

 };

print "Loop Finished!";

flowcontrol.pl:

0

1

2

3

Skip Four!

5

6

7

Finished Counting!

Above, we skip the fourth iteration by incrementing the variable again. In the example we

also print a line, "Skip Four!" just to make things easier to follow.

perl - while array loop

Here we are just showing a method of looping through an array using a while loop. We use

three variables to do this including: the array, a counter, and an index number so that each time

the while loop iterates we also loop through each index of the array.

whilearrayloop.pl:

#!/usr/bin/perl

print "content-type: text/html \n\n";

SET UP AN HTML TABLE

print "<table border='1'>";

DEFINE AN ARRAY

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 44/56

@names = qw(Steve Bill Connor Bradley);

COUNTER - COUNTS EACH ROW

$count = 1;

COUNTS EACH ELEMENT OF THE ARRAY

$n = 0;

USE THE SCALAR FORM OF ARRAY

while ($names[$n]) {

 print "<tr><td>$count</td><td>$names[$n]</td></tr>";

 $n++;

 $count++;

}

print "</table>";

while.pl:

1 Steve

2 Bill

3 Connor

4 Bradley

FILES

The basics of handling files are simple: you associate a filehandle with an external entity

(usually a file) and then use a variety of operators and functions within Perl to read and update

the data stored within the data stream associated with the filehandle.

A filehandle is a named internal Perl structure that associates a physical file with a name. All

filehandles are capable of read/write access, so you can read from and update any file or device

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 45/56

associated with a filehandle. However, when you associate a filehandle, you can specify the

mode in which the filehandle is opened.

Three basic file handles are - STDIN, STDOUT, and STDERR, which represent standard

input, standard output and standard error devices respectively.

Opening and Closing Files

There are following two functions with multiple forms, which can be used to open any new or

existing file in Perl.

open FILEHANDLE, EXPR

open FILEHANDLE

sysopen FILEHANDLE, FILENAME, MODE, PERMS

sysopen FILEHANDLE, FILENAME, MODE

Here FILEHANDLE is the file handle returned by the open function and EXPR is the

expression having file name and mode of opening the file.

PATTERN MATCHING:

Patterns

Patterns are subject to an additional level of interpretation as a regular expression. This is done

as a second pass, after variables are interpolated, so that regular expressions may be incorporated

into the pattern from the variables. If this is not what you want, use \Q to interpolate a variable

literally.

?PATTERN?

This is just like the /pattern/ search, except that it matches only once between calls to the reset()

operator. This is a useful optimization when you only want to see the first occurrence of

something in each file of a set of files, for instance. Only ?? patterns local to the current package

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 46/56

are reset.

m/PATTERN/gimosx

Searches a string for a pattern match, and in a scalar context returns true (1) or false (''). If no

string is specified via the =~ or !~ operator, the $_ string is searched. The string specified with

=~ can be a variable or the result of an expression evaluation. The initial 'm' can be omitted if '/'

is used for the delimiters, otherwise any non-alphanumeric character can be used (apart from

whitespace).

The modifier options are:

g Match globally, i.e. find all occurrences.

i Do case-insensitive pattern matching.

m Treat string as multiple lines - default is to assume just a single line in the string

(no embedded newlines). See $*.

o Only compile pattern once, even if variables within it change.

s Treat string as single line.

x Use extended regular expressions. Whitespace that is not backslashed or within a

haracter class is ignored, allowing the regular expression to be broken into more

readable parts with embedded comments.

In a list context, the pattern match returns the portions of the target string that match the

expressions within the pattern in brackets. In a scalar context, each iteration identifies the next

match (pos() holding the position of the previous match on the variable).

q/STRING/, 'STRING'

A single-quoted, literal string, default delimiters are single quotes ('...'). Backslashes are ignored,

unless followed by the delimiter or another backslash, in which case the delimiter or backslash is

interpolated.

http://www.sarand.com/td/ref_perl_reserve.html#$_
http://www.sarand.com/td/ref_perl_reserve.html#$*
http://www.sarand.com/td/ref_perl_funct.html#pos

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 47/56

qq/STRING/, "STRING"

A double-quoted, interpolated string, default delimiters are double quotes ("...").

qx/STRING/, `STRING`

A string which is interpolated and then executed as a system command. The collected standard

output of the command is returned. In scalar context, it comes back as a single (potentially multi-

line) string. In list context, returns a list of lines (depending on how the $/ delimiter is specified).

 $today = qx{ date };

qw/STRING/

Returns a list of the words extracted out of STRING, using embedded whitespace as the word

delimiters. It is exactly equivalent to:

 split(' ', q/STRING/);

Some frequently seen examples:

 use POSIX qw(setlocale localeconv)

 @EXPORT = qw(foo bar baz);

s/PATTERN/REPLACEMENT/egimosx

Searches a string for a pattern, and if found, replaces that pattern with the replacement text and

returns the number of substitutions made. Otherwise it returns false (0).

If no string is specified via the =~ or !~ operator, the $_ variable is searched and modified. (The

string specified with =~ must be a scalar variable, an array element, a hash element, or an

assignment to one of those, i.e. an lvalue.)

If the delimiter chosen is single quote, no variable interpolation is done on either the PATTERN

or the REPLACEMENT. Otherwise, if the PATTERN contains a $ that looks like a variable

rather than an end-of-string test, the variable will be interpolated into the pattern at run-time. If

you only want the pattern compiled once the first time the variable is interpolated, use the /o

option. If the pattern evaluates to a null string, the most recently executed (and successfully

http://www.sarand.com/td/ref_perl_reserve.html#$/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 48/56

compiled) regular expression is used instead.

The modifier options are (see m/PATTERN/ above for more detailed descriptions of common

modifiers):

e Evaluate the right side as an expression.

g Match globally, i.e. all occurrences.

i Case-insensitive pattern matching.

m Treat string as multiple lines.

o Only compile pattern once, even if variables within it change.

s Treat string as single line.

x Use extended regular expressions

Regular Expressions

The patterns used in pattern matching are regular expressions that follow the rules laid out

below.

Any single character (or series of characters) matches directly, unless it is a metacharacter with

a special meaning. You can cause characters which normally function as metacharacters to be

interpreted literally by prefixing them with a "\" (e.g. "\." matches a ".", not any character; "\\"

matches a "\"). A series of characters matches that series of characters in the target string, so the

pattern zyxwv would match "zyxwv" in the target string.

The following metacharacters are as supported:

\ Quote the next metacharacter, including escape sequences (\n, \t etc. apart from \b

- see below), ASCII characters ('\nnn' for octal and '\xnn' for hex), and ASCII

character controls ('\cx'). '\ n' repeats the part of the 'n'th subpattern that was used

to perform the match (not its complete set of rules).

http://www.sarand.com/td/ref_perl_pattern.html#m/.../
http://www.sarand.com/td/ref_perl_oper.html#Quote

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 49/56

^
Match just the beginning of the string, or with the /m modifier the beginning of

any embedded line

. Match any character (except newline unless the /s modifier is used)

$
Match just the end of the string, or with the /m modifier the end of any embedded

line

| Alternation - to match any one of a set of patterns, usually grouped in brackets.

() Grouping of subpatterns, numbered automatically left to right by the sequence of

their opening parenthesis.

[] Character class, matching any of the characters in the enclosed list. '^' as the first

character in the list negates the expressions - any character not in the list.

The following quantifiers are suppported:

* Match 0 or more times (equivalent to {0,})

+ Match 1 or more times (equivalent to {1,})

? Match 0 or 1 times (equivalent to {0,1})

{n} Match exactly n times

{n,} Match at least n times

{n,m} Match at least n but not more than m times

Regular expressions also support the following constructs:

Single character matches Zero width matches

\w
a "word" character (alphanumeric plus

"_")
\b a word boundary

\W a non-word character \B a non-(word boundary)

\s a whitespace character \A
beginning of the string (not embedded

newlines)

\S a non-whitespace character \Z
end of the string (not embedded

newlines)

\d a digit character \G where previous m//g left off

http://www.sarand.com/td/ref_perl_pattern.html#m/.../

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 50/56

ENVIRONMENT VARIABLES:

The variable ENV is actually a special associative array within Perl that holds the contents of

your shell environment variables. You can access any shell environment variable in the same

way we accessed the username in Listing 1. For instance, the following commands retrieve the

desired PATHand PWD information from a user's environment:

$path = $ENV{'PATH'};

$pwd = $ENV{'PWD'};

As a final introductory note regarding associative arrays, notice that the array subscript is

enclosed in curly braces. Normal integer-based arrays in Perl are enclosed in square brackets,

such as:

$current_item = $item_array[100];

It's said that associative arrays use fancier brackets than normal arrays because associative arrays

are fancier than normal arrays. While I don't know if this statement is 100% accurate, I do find it

to be an effective way of remembering the proper subscripting syntax when using Perl arrays.

Printing all of your environment variables in Perl

If you're interested in seeing the contents of all of your environment variables, you can easily

print them all out with a foreach command:

\D
a non-digit character

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 51/56

foreach (sort keys %ENV) {

 print "$_ = $ENV{$_}\n";

}

This example illustrates a fairly common occurrence with associative arrays - how to process

each element of an associative array.

The keys function gets all of the keys, or subscripts, out of the specified associative array. In this

example, the keys of the associative array %ENVwill be the name of your environment

variables. In Listing 1, the key (or subscript) was 'LOGNAME', and the value of the array

element $ENV{'LOGNAME'} was fred:

$ENV{'LOGNAME'} = "fred";

A listing of a few of the keys of the special associative array %ENV are shown in Listing 2.

PERL STATEMENT Key Value

------------------------------- ---------- --------------

$ENV{'LOGNAME'} = "fred"; LOGNAME fred

$ENV{'HOME'} = "/home/fred"; HOME /home/fred

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 52/56

$ENV{'SHELL'} = "/bin/ksh"; SHELL /bin/ksh

$ENV{'EDITOR'} = "vi"; EDITOR vi

Listing 2: This listing shows typical values of several environment variables that would be stored

in the associative array %ENV on a Solaris 2.4 system.

When the keys function is run within the foreach loop, it returns only the subscript

names LOGNAME, HOME, SHELL, and EDITOR - it does not return the values of each

element.

The sort function, which precedes the keys function, sorts the output of the keys command

before that output is used by the foreach statement. Given the keys shown in Listing 2, the sorted

output would leave the keys in the following order: EDITOR, HOME, LOGNAME, and SHELL.

The foreach statement creates a loop that can be read like this:

"For each element in the list 'EDITOR, HOME, LOGNAME, and

SHELL', do everything enclosed in the following curly braces."

This results in the print statement being run for each key in the %ENV environment variables

array.

The $_ variable contains the default pattern space when working with Perl.

Therefore, within the foreach loop, the variable $_ will be assigned the contents of the list of

sorted keys, one element at a time. The first time through the loop, the print command

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 53/56

print "$_ = $ENV{$_}\n";

substitutes for the value of $_, and essentially runs this command:

print "EDITOR = $ENV{EDITOR}\n";

which results in this output:

EDITOR = vi

The foreach loop then continues it's processing until every key from the array %ENV has been

processed.

USING CGILIB FOR FORMS:

Perl is an excellent language for a variety of tasks, especially those which require text

management and data-parsing. Thus, it is well suited for writing code to manage the common

gateway interface (CGI) forms which have become the mainstay of world wide web interactive

communication via HTML+

cgi-lib.pl is a simple Perl library which is designed to make writing CGI scripts in Perl easy.

Some sample forms and scripts are provided here

A form, such as the one here, is just a normal html file. (You can use the "view source" option on

your browser to see what the html of that file looks like.) After the user makes selections, the

data is processed by a script.

http://pubweb.nexor.co.uk/public/perl/perl.html
http://hoohoo.ncsa.uiuc.edu/cgi/
http://hoohoo.ncsa.uiuc.edu/cgi/
http://cgi-lib.berkeley.edu/
http://cgi-lib.berkeley.edu/ex/simple-form.html

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 54/56

This is a simple form using cgi-lib.pl

This is a sample form which demonstrates the use of the cgi-lib.pl library of routines for

managing form input.

Pop Quiz:

What is thy name:

What is thy quest:

What is thy favorite color:
chartreuse

What is the weight of a swallow: African Swallow or Continental Swallow

What do you have to say for yourself

Press
here

 to submit your query.

Ex:

cgi-lib.pl demo form output

You, , whose favorite color is are on a quest which is , and are looking for the weight of an

swallow. And this is what you have to say for yourself:

http://cgi-lib.berkeley.edu/ex/cgi-lib.pl

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 55/56

And here is a list of the variables you entered...

It is often convenient to conflate the form and the script. This can done by having one script file

which acts differently depending upon whether it is given parameters or not. (Sophisticated

scripts may actually output new forms on the basis of previous forms.) The simple-form.html and

simple-form.cgi have been combined into a single combined-form.cgi. The source to this script is

A simple combined form example

This is a sample form which demonstrates the use of the cgi-lib.pl library of routines for both

generating a form & processing its input.

Pop Quiz:

What is thy name:

What is thy quest:

What is thy favorite color:
chartreuse

What is the weight of a swallow: African Swallow or Continental Swallow

What do you have to say for yourself

Press
here

 to submit your query.

A minimalist form and script of only 7 lines can be made this way.

Submit
Data:

http://cgi-lib.berkeley.edu/ex/combined-form.cgi
http://cgi-lib.berkeley.edu/ex/cgi-lib.pl
http://cgi-lib.berkeley.edu/ex/minimal.cgi

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT IV: PERL PROGRAMMING BATCH: 2015-2018

Prepared by Manjula.D, Asst.prof, Dept of CS, CA & IT, KAHE Page 56/56

UNIT IV

POSSIBLE QUESTIONS

(8 MARKS)

1. Explain Arrays concept in PERL with suitable program.

2. Explain looping concept in PERL with suitable program.

3. Describe the concept of perl syntax, variables and strings in detail with suitable program.

4. Explain Pattern Matching in perl with example program

5. Explain Hashes and arguments in perl detail with example program.

6. Describe the following with a sample program in PERL Programming

Chop

Length

Substring

7. Describe about Numbers and Operators in Perl with example program.

8. Briefly describe the concept of cgilib for forms.

ONLINE EXAMINATIONS ONE MARK QUESTIONS

S.No Question Option1 Option2 Option3 Option4 Answer

1

Perl is a ______
System

Program

Program

ming

language

Application

Program

Relationa

l

Database

Program

ming

language

2

The fourth letter in

the LAMP represents

PERL Prototype Procedure Program PERL

3

PERL stands

for______

Practical

Extraction

and Report

Language

Procedura

l

Extraction

and

Report

Language

Practical

Extension

and Report

Language

Procedura

l

Extension

and

Report

Language

Practical

Extractio

n and

Report

Language

4

Perl orginated as a

______ processing

language.

text file database content text

5

CPAN stands for

Comprehensi

ve Procedural

Archive

Network

Comprehe

nsive Perl

Archive

Network

Common

Perl

Archive

Network

Common

Procedura

l Archive

Network

Compreh

ensive

Perl

Archive

Network

6

Perl program stored

with an _____

extension

.perl .pl .per .prl .pl

7

____ tells the shell to

execute the file
./ .# .\ .$./

8

_______ function

writes text to

standard output

write() show() print() display() print()

9

Perl scripts are stored

as______
text files batch files binary files

executabl

e files
text files

10

In Perl, all statements

must end in a ____
: . , ; ;

11

The Perl source code

file is first compiled

into _____

machine code ascii code byte code
object

code
byte code

UNIT IV

COIMBATORE-641021

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Department of Computer Science

III B.Sc(CS) (BATCH 2015-2018)

Open Source Software

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

12

A ______ scalar

variable that holds a

single value

array scalar hash
associativ

e
scalar

13

String literals can be

created with _____
single quotes

double

quotes

single

quotes and

double

quotes

without

quotes

single

quotes

and

double

quotes

14

The _____ can be

used to chunk

numbers for easy of

reading

dollar
underscor

e
comma hyphen

underscor

e

15

What is the base

value for octal

numerical literal?

10 2 8 16 8

16

Which of the

following is not a

string literal?

"Hello" Good' "Good" Hello Hello

17

______ is an ordered

collection of scalars
array group list file array

18

______ function adds

elements to the right

of an array.

add() push() insert() enter() push()

19

The push() function

adds elements to the

______ of an array

specified

location

specified

value
right left right

20

Variables can be

declared using _____

function

declare() decl() my() dec() my()

21

______ function

removes the

rightmost element

from an array.

pop() del() delete() remove() pop()

22

______ are arrays

that are indexed not

by a number but by a

string

Unions Hashes Structures Classes Hashes

23

Hashes are also

known as ______

arrays

descriptive
associativ

e
functioal

Procedura

l

Extension

and

Report

Language

associativ

e

24

Which operator is

used in sring

concatenation?

. + @ & .

25

Which operator is

used in sring

replication?

+ - x * x

26

Which of the

following ia a

compare operator in

Perl?

== <=> >= <= <=>

27

$i=10;$j=$i++; What

is the value of i and

j?

i=11,j=10 i=10,j=10 i=11,j=11 i=10,j=11 i=11,j=10

28

$a=5;$b=$a--; What

is the value of a and

b?

a=5,b=4 a=5,b=5 a=4,b=4 a=4,b=5 a=4,b=5

29

$i=10;$j=$++i; What

is the value of i and

j?

i=11,j=10 i=10,j=10 i=11,j=11 i=10,j=11 i=11,j=11

30

$a=5;$b=$--a; What

is the value of a and

b?

a=5,b=4 a=5,b=5 a=4,b=4 a=4,b=5 a=4,b=4

31

Regular expressions

are otherwise called

as____

relational

expressions
regexes

logical

expressions

assignme

nt

expressio

ns

regexes

32

_____ is the new line

character in Perl
\n \t \r \f \n

33

The character class is

created using _____
() " " [] { } []

34

In Perl, the term

function is also

referred as ______

method procedure class
subroutin

e

subroutin

e

35

Arguments are passed

into functions

through the spcial

array____

#_ @_ $_ &_ @_

36

The ______ character

is the end-of-file

character for the

standard input

^D ^E ^S ^F ^E

37

What is the keyboard

shortcut for ^D?
Ctrl+D Ctrl+E Ctrl+F Ctrl+S Ctrl+D

38

_____ function is

used to open a file
start() begin() open() create() open()

39

Which of the

following datatypes

are preceded by a

dollar sign in Perl?

Array Scalar Local Hash Scalar

40

How to delete a

key/value pair to a

hash?

using end

function

using

truncate

function

using

delete

function

using

remove

function

using

delete

function

41

Which of the

following statement

jump to the statement

labeled with LABEL?

goto EXPR
goto

LABEL

goto

NAME

goto

ADDRES

S

goto

LABEL

42

Which of the

following operator

returns true if the left

assignment is

stringwise less than

or equal to the right

assignment?

lt gt le ge lt

43

Which of the

following operator

returns a list of

values counting from

the left value to the

right value?

. x .. ++ ..

44

Which of the

following function

returns epoch time?

local time gmt time time strf time time

45

Which of the

following code create

a reference for a

variable?

$ref=\$FOO
$ref=\@A

RGV

$ref=\%EN

V

$ref=\&P

rintHash

$ref=\$F

OO

46

______ operator is

used to create

sequential arrays

arithmetic relational logical range range

47

What is the range

operator?
- .. -- to ..

48

Which of the

following operator

returns true if the left

assignment is string

wise not equal to the

right assignment?

lt ne le ge ne

49
FH stands for______ File Handles

Field

Handle

Folder

Handle

Format

Handle

File

Handle

50

The statement

open(FH ,<`abc.txt`)

opens the file

abc.txt for

overwritting

opens the

file

abc.txt for

reading

opens the

file abc.txt

for

rwritting

opens the

file

abc.txt

for

appendin

g

opens the

file

abc.txt

for

reading

51

Which of the

following is used in

Perl?

elseif elsif elife eleif elsif

52

All file handles are

named with ______

uppercase

letters

lowercase

letters

Titlecase

letters

upper and

lowerccas

e letters

uppercase

letters

53

The > symbol in the

open() function tells

Perl that the file is to

be opened in ______

mode

read write overwrite append write

54

Which operator can

be used, when

comparing numbers

for equivalence?

= ==
both = and

==
<=> ==

55

______ function sorts

the given list
sort() sortlist() sorting() tosort() sort()

56

unshift() function is

similar to ______

function

create() push() pop() my() push()

57

Which feature of Perl

provides code

reusability?

function
abstractio

n
inheritance

encapsula

tion

inheritanc

e

58

Which of the

following shows the

warnings in torder t

oreduce or avoid

errors

- warn -w - warnings - we -w

59

"The method defines

in the parent class

will always override

the methods defined

in the child class" ,

which is referred as

inheritence
polymorp

hism

encapsultio

n

abstractio

n

polymorp

hism

60

unshift() and shift()

functions are oerate

_______ of an array

specified

location

specified

value
rightside leftside leftside

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 1/28

UNIT V

SYLLABUS

File Management PERL: - File Handling, ReadingFrom Files, Appending Files, Writing to Files,
File Checking, Reading Directories.
Databases PERL: - DBI Module, DBI Connect, DBI Query, MySQL Module, MySQL Connect,

MySQL SelectDB, MySQL Query.

FILE MANAGEMENT PERL:

perl - file handling

Now we shift gears as we introduce file handling. In PERL files are given a name, a handle,
basically another way of saying alias. All input and output with files is achieved through
filehandling. Filehandles are also a means by one program may communicate with another
program.

perl - assigning handles

A filehandle is nothing more than a nickname for the files you intend to use in your PERL
scripts and programs. A handle is a temporary name assigned to a file. A great filehandle is an
abreviated version of the filename. The example below illustrates how you will use a file handle
in your PERL code.

PERL Code:

#!/usr/bin/perl

print "content-type: text/html \n\n"; #The header
$FilePath = "home/html/myhtml.html"
sysopen(HANDLE, $FilePath, O_RDWR);
printf HANDLE "Welcome to Tizag!";
close (HANDLE);

perl - files and the die function

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 2/28

The die function exists in several programming languages. It is used to kill your scripts and
helps pinpoint where/if your code is failing. We use this function as follows.

PERL Code:

#!/usr/bin/perl

print "content-type: text/html \n\n"; #The header

$filepath = "myhtml.html";

sysopen (HTML, '$filepath', O_RDWR|O_EXCL|O_CREAT, 0755) or die "$filepath cannot be
opened.";
printf HTML "<html>\n";
printf HTML "<head>\n";
printf HTML "<title>My Home Page</title>";
printf HTML "</head>\n";
printf HTML "<body>\n";
printf HTML "<p align='center'>Here we have an HTML
page with a paragraph.</p>";
printf HTML "</body>\n";
printf HTML "</html>\n";
close (HTML);

Now if for some reason PERL is unable to open or create our file, we will be told. It is good
practice to use the die function and we will be using it more as we dive deeper into file handling.

OPENING A FILE

perl - file open

Files are opened using the open and sysopen function. Nothing fancy here at all. Either
function may be passed up to 4 arguments, the first is always the file handle discussed earlier,
then our file name also known as a URL or filepath, flags, and finally any permissions to be
granted to this file.

When opening files as a programmer, there will generally be one of three goals in mind, file
creation, appending files, or truncating files.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 3/28

Create:
Checks to see if the file exists, if not, perl creates a new file.
Append:
Sets the pointer to the end of the file, all output following will be added onto the tail end of the
file.
Truncate:
Overwrites your existing file with a new one, this means all data in the old file will be lost.

perl - open a file

The following example will open a previously saved HTML document.

PERL Code:

#!/usr/bin/perl

print "content-type: text/html \n\n"; #The header

$FH = "filehandle";
$FilePath = "myhtml.html";

open(FH, $FilePath, permissions);
or
sysopen(FH, $FileName, permission);

Files with special characters or unusual names are best opened by first declaring the URL as
a variable. This method removes any confusion that might occur as PERL tries to interpret the
code. Tildas in filenames however require a brief character substitution step before they can be
placed into your open statements.

perl - file permissions

File permissions are crucial to file security and function. For instance, in order to function, a
PERL file (.pl) must have executable file permissions in order to function on your web server.
Also, you may not want all of your HTML files to be set to allow others to write to them or over
them. Here's a listing of what to pass to the open function when working with file handles.

Shorthand Flags:

Entities Definition

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 4/28

< or r Read Only Access

> or w Creates, Writes, and Truncates

>> or a Writes, Appends, and Creates

+< or r+ Reads and Writes

+> or w+ Reads, Writes, Creates, and Truncates

+>> or a+ Reads, Writes, Appends, and Creates

O_ Flags:

Value Definition

O_RDWR Read and Write

O_RDONLY Read Only

O_WRONLY Write Only

O_CREAT Create the file

O_APPEND Append the file

O_TRUNC Truncate the file

O_EXCL Stops if file already exists

O_NONBLOCK Non-Blocking usability

PERL Code:

#!/usr/bin/perl

print "content-type: text/html \n\n"; #The header
use Fcntl; #The Module

sysopen (HTML, '/home/html/myhtml.html', O_RDWR|O_EXCL|O_CREAT, 0755);
sysopen (HTML, '>myhtml.html');

READING A FILE

Reading files

If you want to read a text file line-by-line then you can do it as such: my @lines =

<FILE>; The <FILE> operator - where FILE is a previously opened filehandle - returns all the

unread lines of the text file in list context or a single line in scalar context. Hence, if you had a

particularly large file and you wanted to conserve memory you could process it line by line: while

(<FILE>) {

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 5/28

 print $_;

} The $_ variable is automatically set for you to the contents of the current line. If you wish you may

name your line variable instead: while (my $line = <FILE>) { ... will set the $line variable to

the contents of the current line. The newline character at the end of the line is not removed

automatically. If you wish to remove it you can use the chomp command. After all lines have been

read the <FILE> operator will return a false value hence causing the loop to terminate.

There may cases where you need to read a file only a few characters at a time instead of line-by-

line. This may be the case for binary data. To do just that you can use the read command. open

FILE, "picture.jpg" or die $!;

binmode FILE;

my ($buf, $data, $n);

while (($n = read FILE, $data, 4) != 0) {

 print "$n bytes read\n";

 $buf .= $data;

}

close(FILE);

APPENDING FILES:

Opening a file for writing using the > sign will delete the content of the file if it had any.

If we would like to append to the end of the file we use two greater-than signs >> as in
this example:

1. open(my $fh, '>>', 'report.txt') or die ...

Calling this function will open the file for appending. that means the file will remain intact
and anything your print() or say() to it will be added to the end.

The full example is this:

1. use strict;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 6/28

2. use warnings;

3. use 5.010;

4.

5. my $filename = 'report.txt';

6. open(my $fh, '>>', $filename) or die "Could not open file

'$filename' $!";

7. say $fh "My first report generated by perl";

8. close $fh;

9. say 'done';

WRITING A FILE:

In order to write to a file, first you need to open the file for writing as follows:

open(FH, '>', $filename) or die $!;

If the file with filename $filename does not exist, the new file will be created.

Next, you use the print() function to write data into file as follows:

print FH $str;

You must put space between print(), filehandle FH and $str variable. The $str variable holds
data that is written to the file. Notice that if you write to a file that contains content, Perl will
truncate its content.
As always, you should close the filehandle when you are no longer use it.

close(FH);

Putting it all together.

#!/usr/bin/perl

use warnings;

use strict;

my $str = <<END;

This is the sample text

http://www.perltutorial.org/perl-open-file/
http://www.perltutorial.org/perl-variables/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 7/28

that is used to write to file

END

my $filename = 'c:\temp\test3.txt';

open(FH, '>', $filename) or die $!;

print FH $str;

close(FH);

print "Writing to file successfully!\n";

FILE CHECKING:

Before reading from a file or writing to a file, it is important to check if the file exists and
readable. In order to perform those tasks, you use Perl file test operators.

The Perl file test operators are logical operators which return true or false value. For

example, to check if a file exists you use -e operator as following:

#!/usr/bin/perl
use warnings;
use strict;

my $filename = 'c:\temp\test.txt';
if(-e $filename){
 print("File $filename exists\n");
}else{
 print("File $filename does not exists\n");
}
The file test operator -e accepts a filename or filehandle as an argument.

The following list illustrates the most important Perl file test operators:

 -r: check if the file is readable

 -w: check if the file is writable

 -x: check if the file is executable

 -o: check if the file is owned by effective uid.

http://www.perltutorial.org/perl-read-file/
http://www.perltutorial.org/perl-write-to-file/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 8/28

 -R: check if file is readable

 -W: check if file is writable

 -X: check if file is executable

 -O: check if the file is owned by real uid.

 -e: check if the file exists.

 -z: check if the file is empty.

 -s: check if the file has nonzero size (returns size in bytes).

 -f: check if the file is a plain file.

 -d: check if the file is a directory.

 -l: check if the file is a symbolic link.

 -p: check if the file is a named pipe (FIFO): or Filehandle is a pipe.

 -S: check if the file is a socket.

 -b: check if the file is a block special file.

 -c: check if the file is a character special file.

 -t: check if the file handle is opened to a tty.

 -u: check if the file has setuid bit set.

 -g: check if the file has setgid bit set.

 -k: check if the file has sticky bit set.

 -T: check if the file is an ASCII text file (heuristic guess).

 -B: check if the file is a “binary” file (opposite of -T).

Using multiple Perl file test operators

If you want to check:

 If a file is a plain file, not directory

 And the file exists

 And the file is readable

You can use the AND logical operator in conjunction with file test operators as follows:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 9/28

#!/usr/bin/perl

use warnings;

use strict;

my $filename = 'c:\temp\test.txt';

if(-e $filename && -f _ && -r _){

 print("File $filename exists and readable\n");

}

Whenever you use the file test operator, Perl will make a new call of stat(), which can be

expensive. However, Perl stores the result from the last stat() call to a special filehandle

named _, so the subsequent file test operators can use the result that stores in the _ filehandle.
Since Perl version 5.9.1 you can stack file test operators as follows:

#!/usr/bin/perl

use warnings;

use strict;

my $filename = 'c:\temp\test.txt';

if(-e -f -r $filename){

 print("File $filename exists and readable\n");

}

READING DIRECTORIES

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 10/28

Once we have the directory opened we can use the readdir function to read the content of the
directory. It can be used either in list or scalar context, just as we were reading from a file in
scalar and list context.

In scalar context readdir will always item one, (the 'next') item from the directory. Once we read
everything in, it will return undef.

A common way to write it is in a while loop:

1. while (my $thing = readdir $dh) {
2. say $thing;
3. }

readdir in LIST context

The alternative would be to use readdir in LIST context. For example, to assign it to an array. In
that case we might want to iterate over it using a for loop:

1. my @things = readdir $dh;
2. foreach my $thing (@things) {
3. say $thing;
4. }

The big difference is that in the second example, all the content of the directory is read in the
memory in one statement so it uses more memory. This is much less of an issue here than when
we reading the content of a file, as the returned list only contains the names of the things in the
directory, which is unlikely to be really big.

Even if we have 100,000 files in a directory, and each one of them has a 10 character long name,
it still fits in 1Mb memory.

closedir

Once we are done reading all the things from the directory we can call closedir to officially shut
down the connection between the directory handle and the directory on the disk. We don't have
to do this though as perl will do it for us when the variable holding the directory handle goes out
of scope.

DATABASE PERL

DBI MODULE

https://perlmaven.com/scalar-and-list-context-in-perl
https://perlmaven.com/reading-from-a-file-in-scalar-and-list-context
https://perlmaven.com/reading-from-a-file-in-scalar-and-list-context
https://perlmaven.com/undef-and-defined-in-perl
https://perlmaven.com/scope-of-variables-in-perl
https://perlmaven.com/scope-of-variables-in-perl

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 11/28

perl - dbi module(s)

PERL is capable of running SQL and MySQL queries including: inserts, selects, updates,
deletes, etc through a module termed DBI. Often your web host will already have this module as
well as DBD::mysql already installed. DBI stands for database interface. Any functions
associated with DBI should work with all the available SQL platform including: SQL Server,
Oracle, DB2, and MySQL.

Before continuing, be sure the following modules are installed:

 DBI
 DBD::mysql

Once they are installed, we can build the introduction to our script by telling PERL
to use these modules as follows:

dbimodules.pl:

#!/usr/bin/perl

PERL MODULES WE WILL BE USING
use DBI;
use DBD::mysql;

Again, these modules allow for us to call upon functions specific to working with a any
database platform including MySQL. These modules must be in "use" to ensure proper
functionality of our scripts.

perl - dbi config

We will be calling on our database, table, and host machine from time to time. We
recommend setting up a some variables for your database and table name, so that you can call
upon them as you wish throughout this brief tutorial. You may also set up some variables for
your user name and password as we will also be needing to connect to your MySQL web host.

dbiconfig.pl:

#!/usr/bin/perl

PERL MODULES WE WILL BE USING

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 12/28

use DBI;
use DBD::mysql;

DBI CONFIG VARIABLES
$host = "localhost";
$database = "store";
$tablename = "inventory";
$user = "username";
$pw = "password";

DBI CONNECT

perl - data source name (dsn)

In order to connect to our database platform we first need to know our web server's data

source name. This information should be readily accessible in your server's documentation.
There are four pieces that actively make up a DSN.

 Name of SQL Platform (SQL Server, Oracle, DB2, MySQL, etc).
 Database Name
 Host Name (www.myhost.com)
 Port Number

This information is available from your web host provider and can be defined in PERL as
follows:

datasourcename.pl:

$dsn = "dbi:SQL Platform:database_name:host_name:port";

Since we plan on executing our scripts from our web server through our browser, we can
alternatively substitute our host's name with the term localhost.

localhost.pl:

$dsn = "dbi:SQL_Platform:database_name:localhost:port";

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 13/28

perl - dbi connect

Previously, we had set up a config script with some information about our web host and SQL
platform including a user name and password. We can now plug all those variables into the
connection string and connect to our database.

We can establish a connection with a script like the following.

DBIconnect.pl:

#!/usr/bin/perl

PERL MODULES WE WILL BE USING
use DBI;
use DBD::mysql;

HTTP HEADER
print "Content-type: text/html \n\n";

CONFIG VARIABLES
$platform = "mysql";
$database = "store";
$host = "localhost";
$port = "3306";
$tablename = "inventory";
$user = "username";
$pw = "password";

#DATA SOURCE NAME
$dsn = "dbi:mysql:$database:localhost:3306";

PERL DBI CONNECT
$DBIconnect = DBI->connect($dsn, $user, $pw);

perl - database handle

On a side note, we have also created what is known as a database handle. Our variable,
$DBIconnect, is now the handle which we will have to use each time we wish to execute a query.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 14/28

We should probably go ahead and shorten up that handle since we will be using it in every query
script.

databasehandle.pl:

#!/usr/bin/perl

PERL MODULES WE WILL BE USING
use DBI;
use DBD::mysql;

HTTP HEADER
print "Content-type: text/html \n\n";

CONFIG VARIABLES
$platform = "mysql";
$database = "store";
$host = "localhost";
$port = "3306";
$tablename = "inventory";
$user = "username";
$pw = "password";

#DATA SOURCE NAME
$dsn = "dbi:mysql:$database:localhost:3306";

PERL DBI CONNECT (RENAMED HANDLE)
$dbstore = DBI->connect($dsn, $user, $pw);

The handle has been changed from $DBIconnect, to a more descriptive name.

perl - connection error(s)

An error string variable exists for this module. We can further modify our script with
the die() function to terminate the script upon connection failure. The error message is usually
printed in your web server's error log(s).

databasehandle.pl:

#!/usr/bin/perl

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 15/28

PERL MODULES WE WILL BE USING
use DBI;
use DBD::mysql;

HTTP HEADER
print "Content-type: text/html \n\n";

CONFIG VARIABLES
$platform = "mysql";
$database = "store";
$host = "localhost";
$port = "3306";
$tablename = "inventory";
$user = "username";
$pw = "password";

#DATA SOURCE NAME
$dsn = "dbi:mysql:$database:localhost:3306";

PERL DBI CONNECT (RENAMED HANDLE)
$dbstore = DBI->connect($dsn, $user, $pw) or die "Unable to connect: $DBI::errstr\

DBI QUERY

perl - dbi query

Queries must be prepared and then executed. Two lines of code are required for this, first
the prepare() function and then the execute() function.

perl - dbi prepare()

Inside the prepare() function lies the actual SQL query. Essentially the prepare function acts
precisely like the console of an SQL platform. If you've been following along, all we need to do
is define a variable with a(n) SQL statement. Then create a query handle and run our $connect
statement along with the prepare function as outlined below.

The only main difference is that we have to use PERL's escaping characters and we probably
have to use them more often.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 16/28

dbipreparequery.pl:

#!/usr/bin/perl

PERL MODULES WE WILL BE USING
use DBI;
use DBD::mysql;

HTTP HEADER
print "Content-type: text/html \n\n";

CONFIG VARIABLES
$platform = "mysql";
$database = "store";
$host = "localhost";
$port = "3306";
$tablename = "inventory";
$user = "username";
$pw = "password";

DATA SOURCE NAME
$dsn = "dbi:mysql:$database:localhost:3306";

PERL DBI CONNECT
$connect = DBI->connect($dsn, $user, $pw);

PREPARE THE QUERY
$query = "INSERT INTO inventory (id, product, quantity) VALUES (DEFAULT, tomatoes, 4)";
$query_handle = $connect->prepare($query);

perl - dbi execute

Once the query has been prepared, we must execute the command with the execute function.
This is accomplished in one final line appended to the code above.

dbiexecutequery.pl:

#!/usr/bin/perl

PERL MODULES WE WILL BE USING

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 17/28

use DBI;
use DBD::mysql;

HTTP HEADER
print "Content-type: text/html \n\n";

CONFIG VARIABLES
$platform = "mysql";
$database = "store";
$host = "localhost";
$port = "3306";
$tablename = "inventory";
$user = "username";
$pw = "password";

DATA SOURCE NAME
$dsn = "dbi:$platform:$database:$host:$port";

PERL DBI CONNECT
$connect = DBI->connect($dsn, $user, $pw);

PREPARE THE QUERY
$query = "INSERT INTO inventory (id, product, quantity) VALUES (DEFAULT, 'tomatoes',
'4')";
$query_handle = $connect->prepare($query);

EXECUTE THE QUERY
$query_handle->execute();

perl - dbi select queries

Select queries fetch results and then return those results in the form of an array. Accessing
the results of the array requires first that we bind the columns to variable names. Then we just
need to set up a loop to loop through each row and print back the results to our browser.

dbiselectquery.pl:

#!/usr/bin/perl

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 18/28

PERL MODULES WE WILL BE USING
use DBI;
use DBD::mysql;

HTTP HEADER
print "Content-type: text/html \n\n";

CONFIG VARIABLES
$platform = "mysql";
$database = "store";
$host = "localhost";
$port = "3306";
$tablename = "inventory";
$user = "username";
$pw = "password";

DATA SOURCE NAME
$dsn = "dbi:mysql:$database:localhost:3306";

PERL DBI CONNECT
$connect = DBI->connect($dsn, $user, $pw);

PREPARE THE QUERY
$query = "SELECT * FROM inventory ORDER BY id";
$query_handle = $connect->prepare($query);

EXECUTE THE QUERY
$query_handle->execute();

BIND TABLE COLUMNS TO VARIABLES
$query_handle->bind_columns(undef, \$id, \$product, \$quantity);

LOOP THROUGH RESULTS
while($query_handle->fetch()) {
 print "$id, $product, $quantity
";
}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 19/28

Two new functions were introduced in that last example, the bind_columns and
the fetch() functions. Both are fairly self explanatory. Variable names are assigned to our column
values via the bind_column function and the fetch() function goes out and fetches the rows
matching the query.

MYSQL MODULE

perl - mysql module

MySQL queries and the like can be executed with PERL via the MySQLModule. This
module should already be installed with your web server if not contact your web host.

As a quick overview, this module installs the necessary functions required to execute
MySQL queries using a PERL script. Please take note that this module onlyworks with the
MySQL platform. Other SQL platforms will require the use of the DBImodule discussed in
our PERL DBI Module lesson.

perl - mysql config

Before we dive head first into the functions, we may want to set up some config variables
that we will be calling upon in each script to first connect to our database. Have the following
information easily accessible.

 Our Web Host's data source name (DSN)
 User Name for the MySQL Database
 Password for the MySQL Database
 Name of Database
 Name of Table(s)

perlmysqlconfig.pl:

#!/usr/bin/perl

PERL MODULE WE WILL BE USING
use Mysql;

MySQL CONFIG VARIABLES
$host = "localhost";
$database = "store";
$tablename = "inventory";

http://www.tizag.com/perlT/perldbimodule.php

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 20/28

$user = "username";
$pw = "password";

A config set-up like this simplifies our connection script and the queries that will be executed
later.

MYSQL CONNECT

perl - mysql connect

The MySQL module works only with the MySQL platform. We can maintain the same
variables from the previous example to connect to MySQL.

perlmysqlconnect.pl:

#!/usr/bin/perl

PERL MODULE
use Mysql;

HTTP HEADER
print "Content-type: text/html \n\n";

CONFIG VARIABLES
$host = "localhost";
$database = "store";
$tablename = "inventory";
$user = "username";
$pw = "password";

PERL MYSQL CONNECT
$connect = Mysql->connect($host, $database, $user, $pw);

If this script was run on your web server through a web browser, you should be starring at a
blank white screen and all is well.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 21/28

perl - mysql listdbs()

Once PERL has established a connection we can execute any of the built in module
functions. A great introductory function is the listdbs function. This function reads from the
MySQL platform and places the name of each database into an array.

listdbs.pl:

@databases = $connect->listdbs;

We can then loop through this array and print out our results to the browser.

listdbs2.pl:

#!/usr/bin/perl

PERL MODULES
use Mysql;

MYSQL CONFIG VARIABLES
$host = "localhost";
$database = "store";
$tablename = "inventory";
$user = "username";
$pw = "password";

PERL CONNECT()
$connect = Mysql->connect($host, $database, $user, $pw);

LISTDBS()
@databases = $connect->listdbs;
foreach $database (@databases) {
 print "$database
";
}

MYSQL SELECTDB

perl - select database

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 22/28

In order to perform even the simplest of queries we must first select a database to be working
with. Since we have our database name already listed with our config variables, things will be
quite simple.

perlmysqlselectdb.pl:

#!/usr/bin/perl

PERL MODULE
use Mysql;

MYSQL CONFIG VARIABLES
$host = "localhost";
$database = "store";
$tablename = "inventory";
$user = "username";
$pw = "password";

PERL CONNECT()
$connect = Mysql->connect($host, $database, $user, $pw);

SELECT DB
$connect->selectdb($database);

Notice how the syntax requires that we connect to our host each time we perform a function.
You will see this with nearly every script we execute. Once we are connected, the sky is the limit
as to what queries we can execute.

perl - list tables function

A function exists to list the tables in a database just like the listdbs() function. Use
the listtables() function to list each table in a database.

listtables.pl:

#!/usr/bin/perl

use Mysql;

HTTP HEADER

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 23/28

print "Content-type: text/html \n\n";

MYSQL CONFIG VARIABLES
$host = "localhost";
$database = "store";
$tablename = "inventory";
$user = "username";
$pw = "password";

PERL MYSQL CONNECT()
$connect = Mysql->connect($host, $database, $user, $pw);

SELECT DB
$connect->selectdb($database);

LISTTABLES()
@tables = $connect->listtables;

PRINT EACH TABLE NAME
@tables = $connect->listtables;
foreach $table (@tables) {
 print "$table
";
}

The database is defined when we run the $connect variable. To change the script to a
different database simply run a new selectdb() function or change the $database variable.

MYSQL QUERY

perl - mysql query

Executing a query using the MySQL module is a two step process - very straight forward.
We define a query in the form of a scalar variable then call upon that variable using our
connection script and the query function.

perlmysqlquery.pl:

DEFINE A MySQL QUERY
$myquery = "INSERT INTO $tablename

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 24/28

(id, product, quantity)
VALUES (DEFAULT,'pineapples','15')";

EXECUTE THE QUERY FUNCTION
$execute = $connect->query($myquery);

perl - mysql insert query

Here we introduce the affectedrow() function along with the insertid() function. You can
probably guess what the affected rows function does but insertid is unique. Inserid() returns the
'id' of the last inserted row, that is it will return an id if you have an id field set up to auto-
increment in your MySQL table.

perlinsertquery.pl:

#!/usr/bin/perl

use Mysql;

print "Content-type: text/html \n\n";

MYSQL CONFIG VARIABLES
$host = "localhost";
$database = "store";
$tablename = "inventory";
$user = "username";
$pw = "password";

PERL MYSQL CONNECT()
$connect = Mysql->connect($host, $database, $user, $pw);

SELECT DB
$connect->selectdb($database);

DEFINE A MySQL QUERY
$myquery = "INSERT INTO
$tablename (id, product, quantity)
VALUES (DEFAULT,'pineapples','15')";

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 25/28

EXECUTE THE QUERY FUNCTION
$execute = $connect->query($myquery);

AFFECTED ROWS
$affectedrows = $execute->affectedrows($myquery);

ID OF LAST INSERT
$lastid = $execute->insertid($myquery);

print $affectedrows."
";
print $lastid."
";

These functions could be run without defining them as scalar variables as well.

perl - mysql select query

Queries that use the SELECT clause are a little more exciting. Here we introduce two new
functions, the numrows() function and the numbfields() function. Both of these do exactly as they
say, one fetches the number of rows returned with as the query executes while the other fetches
the number of fields returned.

easyselectfunctions.pl:

#!/usr/bin/perl

use Mysql;

HTTP HEADER
print "Content-type: text/html \n\n";

MYSQL CONFIG VARIABLES
$host = "localhost";
$database = "store";
$tablename = "inventory";
$user = "username";
$pw = "password";

PERL MYSQL CONNECT()
$connect = Mysql->connect($host, $database, $user, $pw);

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 26/28

SELECT DB
$connect->selectdb($database);

DEFINE A MySQL QUERY
$myquery = "SELECT * FROM $tablename";

EXECUTE THE QUERY
$execute = $connect->query($myquery);

$rownumber = $execute->numrows();
$fieldnumber = $execute->numfields();

PRINT THE RESULTS
print $rownumber."
";
print $fieldnumber."
";

Two numbers should be printed to your web browser.

perl - mysql fetchrow()

The fetchrow() function does exactly as it says it does, it goes out and fetches a row that
matches your MySQL Query. An array is returned and each element represents a column value
for the fetched row. If the query is intended to return multiple rows, fetchrow() must be called
again and again. This is easily accomplished with a while loop.

fetchrow.pl:

#!/usr/bin/perl

use Mysql;

print "Content-type: text/html \n\n";

MYSQL CONFIG VARIABLES
$host = "localhost";
$database = "store";
$tablename = "inventory";
$user = "username";

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 27/28

$pw = "password";

PERL MYSQL CONNECT()
$connect = Mysql->connect($host, $database, $user, $pw);

SELECT DB
$connect->selectdb($database);

DEFINE A MySQL QUERY
$myquery = "SELECT * FROM $tablename";

EXECUTE THE QUERY FUNCTION
$execute = $connect->query($myquery);

HTML TABLE
print "<table border='1'><tr>
<th>id</th>
<th>product</th>
<th>quantity</th></tr>";

FETCHROW ARRAY

while (@results = $execute->fetchrow()) {
 print "<tr><td>"
 .$results[0]."</td><td>"
 .$results[1]."</td><td>"
 .$results[2]."</td></tr>";
}

print "</table>";

UNIT V

POSSIBLE QUESTIONS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC CS COURSE NAME: OPEN SOURCE SOFTWARE

COURSE CODE: 15CSU603A UNIT V: FILE MANAGEMENT PERL BATCH: 2015-2018

Prepared by Manjula.D, Asst.Prof, Dept Of CS,CA & IT, KAHE Page 28/28

(8 MARKS)

1. Describe file management in detail with suitable example.

2. Describe about DBI Module, DBI Connect and DBI Query in detail.

3. Explain the following in Perl Programming

i. i)Reading from file

ii. ii)Appending a file

4. Describe MySQL module, MySQL Connect and MySQl SelectDB.

5. Explain about the concept of writing to files, file checking and reading directories in

detail.

ONLINE EXAMINATIONS ONE MARK QUESTIONS

S.No Question Option1
Option

2
Option3 Option4 Answer

1

The father of MySQL

is_______

Micheal

Widenious

Bill

Joy

Bill

Gates

Stephanie

Wall

Micheal

Wideni

ous

2

MySQL development

Project has made its source

code available under the

terms of ______

LGPL GPL MPL BSD GPL

3

The letter M in the LAMP

represents ______
method

memor

y
machine MySQL MySQL

4

MySQL comes with as

standard with client

libraries for _______

Java only C
Java and

C only

Perl, PHP

and C
C

5

______ is an open source

standard query language

database that is fast,

reliable for applications of

any size.

MySQL
SQL

Server

Oracle

10g

Oracle

11g
MySQL

6

SQL stands for ________

Standard

Query

Language

System

Query

Langua

ge

Structur

ed

Query

Languag

e

Service

Query

Language

Structur

ed

Query

Langua

ge

7

DBI stands for_________

DataBase

Independen

t Interface

DataBa

se

Inform

ation

Interfa

ce

Design

Indepen

dent

Interface

Design

Informatio

n Interface

DataBas

e

Indepen

dent

Interfac

e

8

API stands for________

Application

Procedural

Informatio

n

Applic

ation

Proced

ural

Interfa

ce

Applicat

ion

Program

ming

Interface

Applicatio

n

Programm

ing

Informatio

n

Applica

tion

Progra

mming

Interfac

e

UNIT V

COIMBATORE-641021

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Department of Computer Science

III B.Sc(CS) (BATCH 2015-2018)

Open Source Software

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

9

________ is a container for

related tables.
database

datawa

rehous

e

datacent

re
datamart

databas

e

10

A table is a collection

of________
database fields rows column rows

11

Each row holding data for

_____ record
one two three four one

12

Each record containing

chunks of information

called_____

rows fields cells values fields

13

BLOB stands for _______

Binary

Large

Object

Basic

Logical

Object

Binary

Logical

Object

Basic

Large

Object

Binary

Large

Object

14

Which of the following

command is used to display

the currently available

databases?

SHOW

DATABAS

ES

DISPL

AY

DATA

BASE

S

PRINT

DATAB

ASES

VIEW

DATABA

SES

SHOW

DATA

BASES

15

_______ command is used

to connect the database to

MySQL

CREATE USE
CONNE

CT

CONNEC

TDB
USE

16

The _____ command gives

the information about the

fields in a table

DESCRIB

E
SHOW

DISPLA

Y
VIEW

DESCR

IBE

17

DESCRIBE Command can

be abbreviated as______

DESCRIB

E
DESC DEBE DCBE DESC

18

_______ command used to

change the value in an

existing record.

INSERT
ALTE

R

DESCRI

BE
UPDATE

UPDAT

E

19

The keyword SET is used

with the command______
UPDATE

SELEC

T

DELET

E
ALTER

UPDAT

E

20

_______ method causes the

Perl script to connect to the

MySQL database.

combine()
connec

t()
allow() redirect()

connect

()

21

______ method allowing

the perl script and database

to properly shutdown the

connection

disallow()
shutdo

wn()

disconne

ct()

terminate(

)

disconn

ect()

22

Which symbol in SELECT

command shows values for

all fields in the table?

* + @ # *

23

DESCRIBE Command is

equvalant to ______

SHOW

DATABAS

ES

SHOW

TABL

ES

SHOW

ROWS

SHOW

COLUMN

S

SHOW

COLU

MNS

24

DBH stands for______
DataBase

Handler

DataBa

se

Holder

DataBas

e Hoster

DataBase

Handle

DataBas

e

Handle

25

If connect() return false, the

script dies printing the error

string returned by the

_____ method

error()
errorm

sg()
errstr()

errorstring

()
errstr()

26

The ______ method returns

alist of data for the next

row of data that is returned

by the SELECT query

fetchdata()
fetchre

ord()

fetchlist(

)
fetchrow()

fetchro

w()

27

MySQL runs on which OS?

Linux and

Mac

Operating

System-X

only

Any

Operati

ng

System

at all

Unix,

Linux,

Window

s and

other

Unix and

Linux

only

Unix,

Linux,

Windo

ws and

other

28

To remove duplicate rows

from the result of a

SELECT use the _____

keyword.

NO

DUPLICA

TE

UNIQ

UE

DISTIN

CT

REMOVE

DUPLICA

TE

DISTIN

CT

29

Which of the following can

add a row to a table?
ADD

INSER

T

UPDAT

E
ALTER

INSER

T

30

To use MySQL on your

computer, it need _______

FTP and

Telnet

Some

sort of

client

progra

m to

access

the

databas

es

a

browser

Perl, PHP

or Java

Some

sort of

client

program

to

access

the

databas

es

31

In a LIKE clause you could

ask for any value ending in

"ter" by writing________

LIKE %ter
LIKE

&ter

LIKE

*ter
LIKE ^ter

LIKE

%ter

32

A NULL Value is treated

as______
balnk zero

NULL

value
No value

NULL

value

33

MySQl is a _________

programmi

ng

language

web

design

ng

langua

ge

techniqu

e for

writing

reliable

program

Relational

Database

Managem

ent

System

Relatio

nal

Databas

e

Manage

ment

System

34

which function used to get

the current time in

MySQL?

getTime() Time() Now()
showTime

()
Now()

35

Which of the following is

not a valid aggregate

function?

COUNT MIN MAX
COMPUT

E

COMP

UTE

36

WhatSQL clause is used to

restrict the rows returned by

a query?

AND
WHER

E

HAVIN

G
FROM

WHER

E

37

How much character are

allowed to create database

name?

55 72 64 40 64

38

Which of the following

command is used creates a

database?

CREATE

DB student

CREA

TE

DATA

BASE

student

CREAT

E

DBASE

student

CREATE

student

DATABA

SE

CREAT

E

DATA

BASE

student

39

Which one will delete the

table data as well as table

stucture?

TRUNCAT

E
DROP

REMO

VE
DELETE DROP

40

The main MySQL program

that does all the data

handling is called______

mysql.exe mysql mysqld httpd mysqld

41

A SELECT command

without a WHERE clause

returns ____

all records

from a

table

no

records

SELEC

T is

invalid

without

a

WHERE

clause

all records

from a

table that

match the

previous

WHERE

clause

all

records

from a

table

42

Which statement is used to

access an existing

database?

USE

database.na

me

USE

databas

ename

USE
USE

DBASE
USE

43

The MySQL command line

tool format the results in

which of the following

format?

Rectangle Square Sphere Circle
Rectang

le

44

The "MySQL command

line tool" formats are

bounded by _______

 +-* +-| +-/ +-} +-|

45

What kind of replication is

supported by the MySQL

server?

multiple

master

replication

master

to

slave

replicat

ion

single

file

based

clusterin

g

MySQL

doesn't

support

replication

master

to slave

replicati

on

46

Commands passed to the

MySQL daemon are written

in_______

programmi

ng

language

web

design

ng

langua

ge

structure

d suery

Languag

e

machine

language

structur

ed suery

Langua

ge

47

Which of the following is

not a valid name for a

column?

insert name age gender insert

48

Which of these commands

will delete a table called

"xxx"?

DROP xxx

DROP

TABL

E xxx

DELET

E xxx

DELETE

TABLE

xxx

DROP

TABLE

xxx

49

Which of the following is

not supported by MySQL?

temporary

tables

table

joining

stored

procedur

es

regular

expression

stored

procedu

res

50

________ command is used

to undo a GRANT privilege
REVOKE UNDO

UNGRA

NT

ROLLBA

CK

REVO

KE

51

How many distinct,

different values can hold in

an enum field?

255 7 65535 2 65535

52

Which of the following

command is not availble?
REVOKE

FETC

H

UPDAT

E
SELECT FETCH

53

Which of these field

datatyppes would be best to

hold a film title?

longblob tinytext
mediumt

ext
longtext tinytext

54

Which of these field

datatyppes would be best to

hold a .jpg file?

char nchar text blob blob

55

On executing DELETE

command, if you get an

error "foreign key

constraint"- What does it

imply?

Foreign

key is not

defined

Table

is

empty

Connect

ivity

issue

Data is

present in

other table

Data is

present

in other

table

56

How much storage space

does DATETIME require?
4 Bytes 2 Bytes 8 Bytes 1 Byte 8 Bytes

57

User() function returns the

current user's username and

password
hostna

me

both

passwor

d and

hostnam

e

database

name

associated

with that

user

hostna

me

58

What is a primary

Key_______

used to

uniquely

identify a

row

alias

for

candid

ate key

used to

identify

a

column

alias for

foreign

key

used to

uniquel

y

identify

a row

59

A view is nothing but a

______ view or a stored

query.

static
dynami

c
virtual real virtual

60

_______ aggregate function

is used to get the number of

records or rows in a table.

COUNTR

OWS()

COUN

T()
SUM()

NUMBER

()

COUN

T()

Register Number____________

 [15CSU603A]

KARPAGAM ACADEMY FOR HIGHER EDUCATION

Coimbatore - 641021.

(For the candidates admitted from 2015 onwards)

FIRST INTERNAL EXAMINATION, JANUARY 2018

Sixth Semester

COMPUTER SCIENCE

OPEN SOURCE SOFTWARE

Date & Session : .01.2018 Class: III B.Sc CS

Maximum : 50 Marks Duration: 2 Hours

PART-A (20 X 1 = 20 Marks)

(Answer ALL the Questions)

1. OSS stands for _____

a) Open Source Software

b) Open Standard Software

c) Open Standard Service

d) Open Source Service

2. Which of the following is not an example of open source software?

a) Linux

b) Mozilla

c) Windows

d) Apache

3. The human readable code of the program is known as _____

a) source code

b) byte code

c) machine code

d) object code

4. _______ is a proprietary software made available free of charge

a) Free software

b) Open source

c) Freeware

d) Malware

5. BSD stands for _____

a) Berkeley Software Distribution

b) Berkeley Source Distribution

c) Berkeley Software Destruction

d) Berkeley Source Destruction

6. "Wikipedia is an example of_______ software

a) freeware

b) open source

c) proprietary

d) free

7. BSD licenses also referred as_______

a) BSD style

b) BSD unique

c) BSD source

d) BSD type

8. FSF stands for_____

a) Free Software Foundation

b) Free System Foundation

c) Free Service Foundation

d) Free Source Foundation

9. Which of the following license the software cannot be mixed with non-free software

 a)MIT b)LGPL c)GPL d)BSD

10. ______ is a form of intellectual property , applicable to certain forms creative works

a) License

b) patent

c) copyleft

d) copyright

11.The development of open source hardware was initiated in ______

a) 2004 b)2000 c)2002 d)2001

12.________ is a software that is floated to see if there is an interest

a) Vaporware

b) Freeware

c) Free Software

d) Open Source Software

13.Richard's Stallman organization is called _______

a) Free Software Foundation

b) Open Source Software

Foundation

c) Close Source Software

Foundation

d) Apache Software Foundation

14.Which of the following is not true for open source software?

a) It is owned by a person

b) It supports distributed

development

c) It supports collaborative

development

d) Its code is available for all

15.A software that has both proprietary license and open source license is called ______.

a) multiple licensed software

b) uncontrolled software

c) dual licensed software

d) mixed licensed software

16.Dual licensing works for __________.

a) work having many contributors

b) collaboratively developed software

c) single, well defined owner of a work

d) open source software following development strategy

17.Proprietary licenses ________ for that consideration.

a) have some rights and pay a fee

b) have no rights and pay little fee

c) have some rights and pay no fee

 d) have no rights and pay no fee

18.Ownership applies to ________.

a) tangible properties only

b) both tangible and intangible

properties

c) intangible properties only

d) software only

19.The software in wide distribution that has a version number less than _______

a) 3.0 b)2.0 c)1.0 d)0.5

20.Which of the following is proprietary?

a) OpenOffice b)Oracle c)MySQL d)Postgres

PART-B (3 X 10 = 10 Marks)

(Answer ALL the Questions)

21. a) Explain about open source software and list out the examples of OSD complaint

licenses.

Open source software is computer software that has a source code available to the

general public for use as is or with modifications. This software typically does not require

a license fee. There are open source software applications for a variety of different uses

such as office automation, web design, content management, operating systems, and

communications. The key fact that makes open source software (OSS) different from

proprietary software is its license. As copyright material, software is almost always

licensed. The license indicates how the software may be used. OSS is unique in that it is

always released under a license that has been certified to meet the criteria of the Open

Source Definition. These criteria include the right to:

 • Redistribute the software without restriction;

• Access the source code;

• Modify the source code; and

• Distribute the modified version of the software.

In contrast, creators of proprietary software usually do not make their source code

available to others to modify. When considering the advantages of open source software

you should consider the open source product itself. Open source products vary in quality.

OSS software does not come with phone support or personalized e-mail support.

However, there are commercial service providers who will provide support. If you need a

lot of support, consider whether the overall costs of using an open source product will be

higher than that of a proprietary product.

Nobody owns or controls the term “Open Source”, as it was deemed too broad

and descriptive to be a trademark under US Law. However, in general use, open source

software is software distributed under terms that comply with the Open Source Definition

(OSD). The OSD is a document maintained by the Open Source Initiative(OSI).

Furthermore, it is eligible to bear the OSI Certified certification mark (Perens,

1999; Open Source Initiative, 2001a). According to the OSI, the OSI certified

certification mark “applies to software, not to licenses” (Open Source Initiative, 2001a).

However, in practice, the OSD has been used mainly as a licensing standard, and the OSI

maintains a list of OSD-compliant licenses. The majority of OSS products in circulation

are self-certified (they are distributed under the terms of a previously approved license,

and are thus implicitly trusted to implement it properly) and are not evaluated by the OSI

on a product-byproduct basis. Developers may also, of course, submit a new license for

OSI approval.

Either way, the OSI Certified mark is used by attaching one of two notices to the

software product, namely, “This software is OSI Certified Open Source Software. OSI

Certified is a certification mark of the Open Source Initiative” or, simply, “OSI Certified

Open Source Software” (Open Source Initiative, 2001a).

According to the Open Source Definition (Open Source Initiative, 2001b): Open

Source doesn’t just mean access to the source code. The distribution terms of open source

software must comply with the following criteria:

1. Free Redistribution: The license shall not restrict any party from selling or giving

away the software as a component of an aggregate software distribution containing

programs from several sources. The license shall not require a royalty or other fee for

such sale.

2. Source Code: The program must include source code, and must follow distribution in

source code as well as compiled form. Where some form of a product is not distributed

with source code, there must be a well-publicized means of obtaining the source code for

no more than a reasonable reproduction cost- preferably, downloading via the internet

without charge. The source code must be the preferred form in which a programmer

would modify the program.

3. Derived Works: The license must allow modifications and derived works, and must

allow them to be distributed under the same terms as the license of the original software.

4. Integrity of the Author’s Source Code: The license may restrict source-code from

being distributed in modified form only if the license allows the distribution of “patch

files” with the source code for the purpose of modifying the program at build time. The

license must explicitly permit distribution of software built from modified source code.

The license may require derived works to carry a different name or version number from

the original software.

5. No Discrimination against Persons or Groups: The license must not discriminate

against any person or group of persons.

6. No Discrimination against Fields of Endeavor: The license must not restrict anyone

from making use of the program in a specific field of endeavor. For example, it may not

restrict the program from being used in a business, or from being used for genetic

research.

7. Distribution of License: The rights attached to the program must apply to all to whom

the program is redistributed without the need for execution of an additional license by

those parties.

8. License must not be specific to a product: The rights attached to the program must

not depend on the program’s being part of a particular software distribution. If the

program is extracted from that distribution and used or distributed within the terms of the

program’s license, all parties to whom the program is redistributed should have the same

rights as those that are granted in conjunction with the original software distribution.

9. License must not contaminate other software: The license must not place

restrictions on other software that is distributed along with the licensed software.

For example, the license must not insist that all other programs distributed on the same

medium must be open-source software.

EXAMPLES OF OSD-COMPLIANT LICENSES

The Open Source Initiative (2001c) provides a list of licenses that have been reviewed

and found to be compliant with the OSD. There are 21 licenses on the list, namely

The GNU General Public License (GPL)

The GNU Lesser Public License (LGPL)

The Berkeley Software Distribution (BSD) License

The MIT License

The Artistic License

The Mozilla Public License (MPL)

The Qt Public License (QPL)

The IBM Public License

The MITRE Collaborative Virtual Workspace License (CVW License)

The Ricoh Source Code Public License

The Python License

The zlib/libpng license

The Apache Software License

The Vovida Software License

The Sun Internet Standards Source License (SISSL)

The Intel Open Source License

The Jabber Open Source License

The Nokia Open Source License

The Sleepycat License

The Nethack General Public License

Since all of these licenses conform to the OSD, we will limit our comments to the more

distinctive qualities of the most widely used licenses. The GPL and LGPL were created

by Richard Stallman’s Free Software Foundation (FSF) and, in fact, predate the coining

of the term Open Source. There is an enormous amount of GPL-licenses software in

circulation- 11723 independent projects hosted at the SourceForge website alone and the

FSF itself has produced over 170 mature products, collectively referred to as the GNU

Project.

[OR]

 b) Write a short note on

(i) Linux (ii)Apache (iii)Mozilla

LINUX

Linux is the best-known and most-used open source operating system. As an

operating system, Linux is software that sits underneath all of the other software on a

computer, receiving requests from those programs and relaying these requests to the

computer’s hardware.

For the purposes of this page, we use the term “Linux” to refer to the Linux kernel, but

also the set of programs, tools, and services that are typically bundled together with the

Linux kernel to provide all of the necessary components of a fully functional operating

system. Some people, particularly members of the Free Software Foundation, refer to this

collection as GNU/Linux, because many of the tools included are GNU components.

However, not all Linux installations use GNU components as a part of their operating

system. Android, for example, uses a Linux kernel but relies very little on GNU tools.

How does Linux differ from other operating systems?

In many ways, Linux is similar to other operating systems you may have used

before, such as Windows, OS X, or iOS. Like other operating systems, Linux has a

graphical interface, and types of software you are accustomed to using on other operating

systems, such as word processing applications, have Linux equivalents. In many cases,

https://opensource.com/resources/what-open-source
https://opensource.com/tags/android

the software’s creator may have made a Linux version of the same program you use on

other systems. If you can use a computer or other electronic device, you can use Linux.

But Linux also is different from other operating systems in many important ways.

First, and perhaps most importantly, Linux is open source software. The code used to

create Linux is free and available to the public to view, edit, and—for users with the

appropriate skills—to contribute to.

Linux is also different in that, although the core pieces of the Linux operating

system are generally common, there are many distributions of Linux, which include

different software options. This means that Linux is incredibly customizable, because not

just applications, such as word processors and web browsers, can be swapped out. Linux

users also can choose core components, such as which system displays graphics, and

other user-interface components.

What is the difference between Unix and Linux?

We may have heard of Unix, which is an operating system developed in the 1970s

at Bell Labs by Ken Thompson, Dennis Ritchie, and others. Unix and Linux are similar in

many ways, and in fact, Linux was originally created to be similar to Unix. Both have

similar tools for interfacing with the systems, programming tools, filesystem layouts, and

other key components. However, Unix is not free. Over the years, a number of different

operating systems have been created that attempted to be “unix-like” or “unix-

compatible,” but Linux has been the most successful, far surpassing its predecessors in

popularity.

Who uses Linux?

We are probably already using Linux, whether you know it or not. Depending on

which user survey you look at, between one- and two-thirds of the webpages on the

Internet are generated by servers running Linux.

Companies and individuals choose Linux for their servers because it is secure,

and you can receive excellent support from a large community of users, in addition to

companies like Canonical, SUSE, and Red Hat, which offer commercial support.

Many of the devices you own probably, such as Android phones, digital storage

devices, personal video recorders, cameras, wearables, and more, also run Linux. Even

your car has Linux running under the hood.

Who “owns” Linux?

By virtue of its open source licensing, Linux is freely available to anyone.

However, the trademark on the name “Linux” rests with its creator, Linus Torvalds. The

source code for Linux is under copyright by its many individual authors, and licensed

under the GPLv2 license. Because Linux has such a large number of contributors from

across multiple decades of development, contacting each individual author and getting

them to agree to a new license is virtually impossible, so that Linux remaining licensed

under the GPLv2 in perpetuity is all but assured.

How was Linux created?

Linux was created in 1991 by Linus Torvalds, a then-student at the University of

Helsinki. Torvalds built Linux as a free and open source alternative to Minix, another

Unix clone that was predominantly used in academic settings. He originally intended to

name it “Freax,” but the administrator of the server Torvalds used to distribute the

original code named his directory “Linux” after a combination of Torvalds’ first name

and the word Unix, and the name stuck.

Most of the Linux kernel is written in the C programming language, with a little

bit of assembly and other languages sprinkled in. If you’re interested in writing code for

the Linux kernel itself, a good place to get started is in the Kernel Newbies FAQ, which

will explain some of the concepts and processes you’ll want to be familiar with.

But the Linux community is much more than the kernel, and needs contributions

from lots of other people besides programmers. Every distribution contains hundreds or

http://kernelnewbies.org/FAQ/WhereDoIBegin

thousands of programs that can be distributed along with it, and each of these programs,

as well as the distribution itself, need a variety of people and skill sets to make them

successful, including:

 Testers to make sure everything works on different configurations of hardware

and software, and to report the bugs when it does not.

 Designers to create user interfaces and graphics distributed with various

programs.

 Writers who can create documentation, how-tos, and other important text

distributed with software.

 Translators to take programs and documentation from their native languages and

make them accessible to people around the world.

 Packagers to take software programs and put all the parts together to make sure

they run flawlessly in different distributions.

 Evangelists to spread the word about Linux and open source in general.

 And of course developers to write the software itself.

The GNU/Linux distributions that are entirely free as in freedom. All of the

distributions that follow are installable to a computer's hard drive; most can be run live.

The Free Software Foundation recommends and endorses these GNU/Linux

distros, although we do not try to judge or compare them based on any criterion other

than freedom; therefore, we list them in alphabetical order. We encourage you to read

these brief descriptions and to consult their respective web sites and other information to

choose the one best for you.

These distros are ready-to-use full systems whose developers have made a

commitment to follow the Guidelines for Free System Distributions. This means these

distros will include, and propose, exclusively free software. They will reject nonfree

applications, nonfree programming platforms, nonfree drivers, nonfree firmware “blobs”,

nonfree games, and any other nonfree software, as well as nonfree manuals or

documentation.

If one of these distros ever does include or propose anything nonfree, that must

have happened by mistake, and the developers are committed to removing it. If you find

https://www.gnu.org/gnu/linux-and-gnu.html
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/distros/free-system-distribution-guidelines.html

nonfree software or documentation in one of these distributions, you can report the

problem, and earn GNU Bucks, while we inform the developers so they can fix the

problem.

Fixing freedom bugs is an ethical requirement for listing a distro here; therefore,

we list only distros with a development team that has told us it will remove any nonfree

software that might be found in them. Usually the team consists of volunteers, and they

don't make legally binding commitments to users; but if we find out a distro is not

properly maintained, we will de-list it.

We hope the other existing GNU/Linux distributions will become entirely free

software so that we can list them here. If you wish to improve the state of free distros,

helping to develop an existing free distro contributes more than starting a new one.

All of the distributions that follow are installable to a computer's hard drive; most

can be run live. Not all hardware works in the free world; each distro's site should say

which hardware it supports.

APACHE

The Apache Software Foundation (ASF) is an American non-profit

corporation (classified as 501(c)(3) in the United States) to support Apache software

projects, including the Apache HTTP Server. The ASF was formed from the Apache

Group and incorporated in Delaware, U.S., in June 1999.

The Apache Software Foundation is a decentralized open source community of

developers. The software they produce is distributed under the terms of theApache

License and is free and open-source software (FOSS). The Apache projects are

characterized by a collaborative, consensus-based development process and an open and

pragmatic software license.

Each project is managed by a self-selected team of technical experts who are

active contributors to the project. The ASF is a meritocracy, implying that membership of

the foundation is granted only to volunteers who have actively contributed to Apache

projects. The ASF is considered a second generation

 open-source organization, in that

commercial support is provided without the risk of platform lock-in.

Among the ASF's objectives are: to provide legal protection
[4]

 to volunteers

working on Apache projects; to prevent the Apache brand name from being used by other

organizations without permission.

https://www.gnu.org/help/gnu-bucks.html
https://www.gnu.org/help/gnu-bucks.html
https://en.wikipedia.org/wiki/Non-profit_corporation
https://en.wikipedia.org/wiki/Non-profit_corporation
https://en.wikipedia.org/wiki/501(c)#501(c)(3)
https://en.wikipedia.org/wiki/Apache_HTTP_Server
https://en.wikipedia.org/wiki/Delaware_corporation
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Meritocracy
https://en.wikipedia.org/wiki/Platform_lock-in
https://en.wikipedia.org/wiki/Apache_Software_Foundation#cite_note-4

The ASF also holds several ApacheCon

conferences each year, highlighting

Apache projects and related technology.

The history of the Apache Software Foundation is linked to the Apache HTTP

Server, development beginning in February 1993. A group of eight developers started

working on enhancing the NCSA HTTPd daemon. They came to be known as the Apache

Group. On March 25, 1999, the Apache Software Foundation was formed.The first

official meeting of the Apache Software Foundation was held on April 13, 1999,

and by general consent that the initial membership list of the Apache Software

Foundation, would be: Brian Behlendorf, Ken Coar, Miguel Gonzales, Mark Cox, Lars

Eilebrecht, Ralf S. Engelschall, Roy T. Fielding, Dean Gaudet, Ben Hyde, Jim Jagielski,

Alexei Kosut, Martin Kraemer, Ben Laurie, Doug MacEachern, Aram Mirzadeh, Sameer

Parekh, Cliff Skolnick, Marc Slemko, William (Bill) Stoddard, Paul Sutton, Randy

Terbush and Dirk-Willem van Gulik.

After a series of additional meetings to elect board

members and resolve other legal matters regarding incorporation, the effective

incorporation date of the Apache Software Foundation was set to June 1, 1999.

The name 'Apache' was chosen from respect for the Native

American Apache Nation, well known for their superior skills in warfare strategy and

their inexhaustible endurance. It also makes a pun on "a patchy web server"—a server

made from a series of patches—but this was not its origin. The group of developers who

released this new software soon started to call themselves the "Apache Group".

Oracle, IBM, and the Apache Software Foundation jointly announced last week

that OpenOffice.org would become an official Apache project. OpenOffice.org is an

important piece of free software, and many of its supporters suggest that this change will

give them more control over the project's future direction. However, users and

contributors should be aware that, as part of this transition, it will become easier for

proprietary software developers to distribute OpenOffice.org as nonfree software.

All Apache projects are distributed under the terms of the Apache License. This is

a non-copyleft free software license; anybody who receives the software can distribute it

to others under nonfree terms. Such a licensing strategy represents a significant policy

change for OpenOffice.org. Previously, the software was distributed under the terms of

the GNU Lesser General Public License (LGPL). The LGPL is a weak copyleft license,

so programs that merely link to the software can be released under nonfree terms, but the

software covered by the LGPL must always be released, along with its source code, under

the LGPL's terms. Free software developers are clearly comfortable with a partial

copyleft when it's appropriate; in numerous surveys of free software projects, the LGPL

is commonly listed as the second-most popular license (after the GNU General Public

License), or else follows close behind.

https://en.wikipedia.org/wiki/NCSA_HTTPd
https://en.wikipedia.org/wiki/Daemon_(computing)
https://en.wikipedia.org/wiki/Brian_Behlendorf
https://en.wikipedia.org/wiki/Ken_Coar
https://en.wikipedia.org/wiki/Lars_Eilebrecht
https://en.wikipedia.org/wiki/Lars_Eilebrecht
https://en.wikipedia.org/wiki/Roy_Fielding
https://en.wikipedia.org/wiki/Jim_Jagielski
https://en.wikipedia.org/wiki/Ben_Laurie
https://en.wikipedia.org/wiki/Sameer_Parekh
https://en.wikipedia.org/wiki/Sameer_Parekh
https://en.wikipedia.org/wiki/Randy_Terbush
https://en.wikipedia.org/wiki/Randy_Terbush
https://en.wikipedia.org/wiki/Dirk-Willem_van_Gulik
https://en.wikipedia.org/wiki/Apache_HTTP_Server#Name
https://en.wikipedia.org/wiki/Apache

While we do recommend the Apache License in specific situations, we do not

believe it is the best choice for software like OpenOffice.org. This situation calls for

copyleft, because the gains free software stands to make from a non-copyleft license don't

justify giving a handout to proprietary software developers.

Fortunately, there's a ready alternative for people who want to work with a

productivity suite that does more to protect their freedom: LibreOffice. Anybody who's

comfortable with OpenOffice.org will find a familiar interface and feature set in

LibreOffice, because it was originally based on the same source code. Since September

2010, numerous contributors have been working to improve the software, and the

project's legal steward, The Document Foundation, is committed to keeping it licensed

under the LGPL.

LibreOffice's commitment to user freedom does not end at the license of its

source code. Like OpenOffice.org, the software's built-in extension manager makes it

easy to add new features, but unlike OpenOffice.org, its extension database only

lists add-ons that are under a free license. OpenOffice.org points to a database that

includes proprietary extensions, and doesn't always provide clear licensing information.

This approach to extensions risks turning free software into a platform for the

development and promotion of proprietary extras.

Anybody who plans to use or contribute to one of these productivity suites should

understand how these policies affect them, and consider which better complement their

own goals. While both pass the most important test of being free software, we

recommend LibreOffice because its policies do significantly more to promote the cause

of free software.

MOZILLA

Mozilla is a free-software community created in 1998 by members of Netscape.

The Mozilla community uses, develops, spreads and supports Mozilla products, thereby

promoting exclusively free software and open standards, with only minor exceptions.The

community is supported institutionally by the Mozilla Foundation and its tax-paying

subsidiary, the Mozilla Corporation.

Mozilla's products include the Firefox web browser, Thunderbird e-mail

client, Firefox OS mobile operating system, Bugzilla bug tracking system,Gecko layout

engine and others. During 2017, Mozilla acquired Pocket, a "read-it-later-online" service.

Firefox is a web browser, and is Mozilla's flagship software product. It is

available in both desktop and mobile versions. Firefox uses the Gecko layout engine to

http://www.gnu.org/licenses/license-recommendations.html
http://libreplanet.org/wiki/Group:OpenOfficeExtensions/List
https://www.fsf.org/news/fsf-launches-free-software-extension-listing-for-openoffice.org
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Netscape
https://en.wikipedia.org/wiki/Mozilla_Foundation
https://en.wikipedia.org/wiki/Mozilla_Corporation
https://en.wikipedia.org/wiki/List_of_Mozilla_products
https://en.wikipedia.org/wiki/Firefox
https://en.wikipedia.org/wiki/Mozilla_Thunderbird
https://en.wikipedia.org/wiki/Firefox_OS
https://en.wikipedia.org/wiki/Bugzilla
https://en.wikipedia.org/wiki/Gecko_(software)
https://en.wikipedia.org/wiki/Pocket_(service)
https://en.wikipedia.org/wiki/Firefox
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Flagship_product
https://en.wikipedia.org/wiki/Gecko_(software)
https://en.wikipedia.org/wiki/Layout_engine

render web pages, which implements current and anticipated web standards. As of late

2015, Firefox had approximately 10-11% of worldwide usage share of web browsers,

making it the 4th most-used web browser.

Firefox began as an experimental branch of the Mozilla codebase by Dave

Hyatt, Joe Hewitt and Blake Ross. They believed the commercial requirements

of Netscape's sponsorship and developer-driven feature creep compromised the utility of

the Mozilla browser.
[48]

 To combat what they saw as the Mozilla Suite's software bloat,

they created a stand-alone browser, with which they intended to replace the Mozilla

Suite.

Firefox was originally named Phoenix but the name was changed so as to avoid

trademark conflicts with Phoenix Technologies. The initially-announced

replacement, Firebird, provoked objections from the Firebird project community. The

current name, Firefox, was chosen on February 9, 2004.

Firefox OS

Firefox OS was an open source operating system in development by Mozilla that

aims to support HTML5 apps written using "open Web" technologies rather than

platform-specific native APIs. The concept behind Firefox OS is that all user-accessible

software will be HTML5 applications, that use Open Web APIs to access the phone's

hardware directly via JavaScript.

Some devices using this OS include

Alcatel One Touch Fire, ZTE Open, and LG

Fireweb.

Thunderbird

Thunderbird is a free, open source, cross-platform email and news client developed by

the volunteers of the Mozilla Community.

On July 16, 2012, Mitchell Baker announced that Mozilla's leadership had come to the

conclusion that on-going stability was the most important thing for Thunderbird and that

innovation in Thunderbird was no longer a priority for Mozilla. In that update Baker also

suggested that Mozilla had provided a pathway for community to innovate around

Thunderbird if the community chooses.

SeaMonkey

SeaMonkey (formerly the Mozilla Application Suite) is a free and open source cross

platform suite of Internet software components including a web browser component, a

client for sending and receiving email and Usenet newsgroup messages, an HTML editor

(Mozilla Composer) and the ChatZilla IRC client.

https://en.wikipedia.org/wiki/Web_standards
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers#Summary
https://en.wikipedia.org/wiki/Mozilla#Mozilla_Project
https://en.wikipedia.org/wiki/Dave_Hyatt
https://en.wikipedia.org/wiki/Dave_Hyatt
https://en.wikipedia.org/wiki/Joe_Hewitt_(programmer)
https://en.wikipedia.org/wiki/Blake_Ross
https://en.wikipedia.org/wiki/Netscape
https://en.wikipedia.org/wiki/Feature_creep
https://en.wikipedia.org/wiki/Mozilla#cite_note-48
https://en.wikipedia.org/wiki/Mozilla_Application_Suite
https://en.wikipedia.org/wiki/Software_bloat
https://en.wikipedia.org/wiki/Phoenix_Technologies
https://en.wikipedia.org/wiki/Firebird_(database_server)
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/HTML5
https://en.wikipedia.org/wiki/Open_Web
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Mozilla_Thunderbird
https://en.wikipedia.org/wiki/SeaMonkey
https://en.wikipedia.org/wiki/Usenet
https://en.wikipedia.org/wiki/Mozilla_Composer
https://en.wikipedia.org/wiki/ChatZilla

On March 10, 2005, the Mozilla Foundation announced that it would not release any

official versions of Mozilla Application Suite beyond 1.7.x, since it had now focused on

the standalone applications Firefox and Thunderbird. SeaMonkey is now maintained by

the SeaMonkey Council, which has trademarked the SeaMonkey name with help from

the Mozilla Foundation.The Mozilla Foundation provides project hosting for the

SeaMonkey developers.

Bugzilla

Bugzilla is a web-based general-purpose bug tracking system, which was released

as open source software by Netscape Communications in 1998 along with the rest of the

Mozilla codebase, and is currently stewarded by Mozilla. It has been adopted by a variety

of organizations for use as a bug tracking system for both free and open source

software and proprietary projects and products, including the Mozilla Foundation,

the Linux kernel, GNOME, KDE, Red Hat, Novell, Eclipse andLibreOffice.

Mozilla is open source and free software – any person or company is free to:

 run the program, for any purpose;

 study how the program works, and adapt it to their needs;

 redistribute copies at will;

 improve the program, and distribute the altered version.

All the source code for Mozilla is available under the Mozilla and Netscape Public

Licenses, which are accepted as free software licenses by the Free Software Foundation.

The spirit of the MPL is that you are free to use Mozilla code in your applications

and products – including proprietary products – provided that you make available any

modifications you make to the actual Mozilla code base itself.

With free software, your business is not locked into the products of one company.

You are free to control your own future.

https://en.wikipedia.org/wiki/Mozilla_Foundation
https://en.wikipedia.org/wiki/Mozilla_Firefox
https://en.wikipedia.org/wiki/Mozilla_Thunderbird
https://en.wikipedia.org/wiki/Trademark
https://en.wikipedia.org/wiki/Bugzilla
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Bug_tracking_system
https://en.wikipedia.org/wiki/Open_source_software
https://en.wikipedia.org/wiki/Netscape_Communications
https://en.wikipedia.org/wiki/Bug_tracking_system
https://en.wikipedia.org/wiki/Free_and_open_source_software
https://en.wikipedia.org/wiki/Free_and_open_source_software
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/The_Mozilla_Foundation
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/GNOME
https://en.wikipedia.org/wiki/KDE
https://en.wikipedia.org/wiki/Red_Hat
https://en.wikipedia.org/wiki/Novell
https://en.wikipedia.org/wiki/Eclipse_(software)
https://en.wikipedia.org/wiki/LibreOffice
http://www.opensource.org/
http://www.gnu.org/philosophy/free-sw.html
http://www.mozilla.org/MPL/
http://www.mozilla.org/MPL/
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/
http://www.mozilla.org/MPL/MPL-1.1.html
https://www-archive.mozilla.org/start/1.0/support.html
https://www-archive.mozilla.org/start/1.0/support.html
http://www.opensource.org/advocacy/case_for_customers.html

22. a) Describe the concept of Berkeley software distribution in detail.

 Berkeley Software Distribution (BSD) was a Unix operating

system derivative developed and distributed by the Computer Systems Research

Group (CSRG) of the University of California, Berkeley, from 1977 to 1995. Today the

term "BSD" is often used non-specifically to refer to any of the BSD descendants which

together form a branch of the family of Unix-like operating systems. Operating systems

derived from the original BSD code remain actively developed and widely used.

Short for Berkeley Software Distribution, BSD is a Unix-like operating system

first introduced in late 1977. Originally titled 1BSD, it was developed at the Computer

System Research Group (CSRG) of the University of California at Berkeley. Today, BSD

comes in various flavors such as BSDi Internet Server (BSD/OS), FreeBSD, NetBSD,

and OpenBSD below is a brief introduction to each of these flavors of BSD.

BSDi Internet Server (BSD/OS)

BSDi or BSD Inc. was founded in 1991 by some of the leading CSRG computer

scientists. BSD/OS is a full-function, POSIX-compatible, Unix-like operating system for

the 386, 486, and Pentium architectures. BSDI believes in one-stop shopping, high levels

of integration and a product that requires payment of no external licensing fees.

FreeBSD

Developed and maintained by a large team of individuals. FreeBSD is a full

function, POSIX-compatible, Unix-like operating system for Intel compatible (x86), DEC

Alpha and PC-98 architectures.

NetBSD

Developed and maintained by a large team of individuals. NetBSD is another free

version of BSD compatible with a very large variety of platforms, from 64-bit Alpha

servers to handheld devices.

OpenBSD

Developed and maintained by a large team of individuals. OpenBSD is multi-

platform 4.4BSD-based Unix-like operating system.

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Computer_Systems_Research_Group
https://en.wikipedia.org/wiki/Computer_Systems_Research_Group
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Source_code
https://www.computerhope.com/jargon/u/unix.htm
https://www.computerhope.com/history/1977.htm
https://www.computerhope.com/history/1991.htm
https://www.computerhope.com/jargon/p/posix.htm

Relationship to Research Unix

Starting with the 8th Edition, versions of Research Unix at Bell Labs had a close

relationship to BSD. This began when 4.1cBSD for the VAX was used as the basis for

Research Unix 8th Edition. This continued in subsequent versions, such as the 9th

Edition, which incorporated source code and improvements from 4.3BSD. The result was

that these later versions of Research Unix were closer to BSD than they were to System

V. In a Usenet posting from 2000, Dennis Ritchie described this relationship between

BSD and Research Unix.

Relationship to System V

Eric S. Raymond summarizes the longstanding relationship between System V

and BSD, stating, "The divide was roughly between longhairs and shorthairs;

programmers and technical people tended to line up with Berkeley and BSD, more

business-oriented types with AT&T and System V.

In 1989, David A. Curry wrote about the differences between BSD and System V.

He characterized System V as being often regarded as the "standard Unix." However, he

described BSD as more popular among university and government computer centers, due

to its advanced features and performance.

Berkeley sockets

Berkeley's Unix was the first Unix to include libraries supporting the Internet

Protocol stacks: Berkeley sockets. A Unix implementation of IP's predecessor, the

ARPAnet's NCP, with FTP and Telnet clients, had been produced at U. Illinois in 1975,

and was available at Berkeley. However, the memory scarcity on the PDP-11 forced a

complicated design and performance problems.

Binary compatibility

BSD operating systems can run much native software of several other operating

systems on the same architecture, using a binary compatibility layer. Much simpler and

faster than emulation, this allows, for instance, applications intended for Linux to be run

at effectively full speed. This makes BSDs not only suitable for server environments, but

also for workstation ones, given the increasing availability of commercial or closed-

source software for Linux only. This also allows administrators to migrate legacy

commercial applications, which may have only supported commercial Unix variants, to a

more modern operating system, retaining the functionality of such applications until they

can be replaced by a better alternative.

Standards adherence

Current BSD operating system variants support many of the common IEEE,

ANSI, ISO, and POSIX standards, while retaining most of the traditional BSD behavior.

Like AT&T Unix, the BSD kernel is monolithic, meaning that device drivers in the

kernel run in privileged mode, as part of the core of the operating system.

Significant BSD descendants Colored bar chart of BSD distributions usage

[OR]

 b) Explain Free Software foundation and Specific Characteristics of Open Source

Software Transformation

THE FREE SOFTWARE FOUNDATION

• “Free software is a matter of liberty, not price.

• To understand the concept, you should think of free as in free speech (right), not

as in free beer (gift).

• Free software is a matter of the users' freedom to run, copy, distribute, study,

change and improve the software.

– The freedom to run the program, for any purpose (freedom 0).

– The freedom to study how the program works, and adapt it to your needs

(freedom 1). Access to the source code is a precondition for this.

– The freedom to redistribute copies so you can help your neighbor

(freedom 2).

The freedom to improve the program, and release your improvements (and

modified versions in general) to the public, so that the whole community benefits

(freedom 3). Access to the source code is a precondition for this.”

“A program is free software if users have all of these freedoms. Thus, you should

be free to redistribute copies, either with or without modifications, either gratis or

charging a fee for distribution, to anyone anywhere. Being free to do these things means

(among other things) that you do not have to ask or pay for permission.

You should also have the freedom to make modifications and use them privately

in your own work or play, without even mentioning that they exist. If you do publish your

changes, you should not be required to notify anyone in particular, or in any particular

way.”

Very counter-culture

Hacker is considered a “good-guy”

“Hacker (computer security) someone involved in computer security/insecurity

Hacker (programmer subculture), a programmer subculture originating in the US

academia in the 1960s, which is nowadays mainly notable for the free software/open

source movement

Hacker (hobbyist), an enthusiastic home computer hobbyist”

http://en.wikipedia.org/wiki/Hacker

Cracker is a “bad-guy”

A cracker is someone who cracks software or digital media

“Software cracking is the modification of software to remove protection methods: copy

protections, trial/demo version, serial number, hardware key, date checks, CD check or

software annoyances like nag screens and adware”.

 General Public License - GPL in 1991

 The community rather than the company

 Copyleft

 No limits on software released under this license

 Opposite of proprietary software

SPECIFIC CHARACTERISTICS OF OPEN SOURCE SOFTWARE

TRANSFORMATION

The development of open source software consists of planning, analysis, design,

and implementation phases as in any other software model. However, there are unique

characteristics of FOSS. In this section, we describe the main characteristic of Free and

Open Source Software. In a typical FOSS, initially an individual or few volunteers

involve in the project. Once the project is debut and successful then a community of

project is established. Later other members from the community contribute to the project.

The Concurrent Versions System (CVS) helps is distributed development of

FOSS. CVS is a client-server software revision control system. CVS keeps track of all

changes in a set of files, and allows several developers to collaborate. CVS itself is a Free

and Open Source Software. Globally distributed software development by virtual teams

promises the flexibility, responsiveness, lower costs, and improved resource utilization.

Modular Design In modular design software architecture is divided into components

called modules.

Modular design supports abstraction, increased understanding of the system and

concurrent development. Due to distributed nature of FOSS, its design must be modular

that can easily incorporate into the main system. Modularity is favorable characteristics

for open source production. Modular design with well-defined interfaces helps in

effective collaborative development of FOSS. Figure 1 shows the modular design

approach of FOSS.

Reusability

Reusability means segment of source code that can be used again to add new

functionalities with little or no modification. This fits very well the characteristics of the

Open Source production process.FOSS licenses grants the rights to the developer to

obtain the source code, inspect it, modify it, and distribute it. This mean FOSS licenses

inherently encourages a developer to reuse

code. The reuse of code can be either within the project or outside the project, i.e., in

other projects. A more details study with statistics of code reuse in open source software

is conducted. FOSS repositories such as SourceForge offer huge amounts of reusable

code.

Distribution and Licensing

Internet is the medium of distribution of Free and Open Source Software. Download

websites, mailing-lists, blogs, forums, etc., all contribute to the wide spread publicity and

distribution of Free and Open Source Software. Wide ranges of licensing options, such as

GPL, LGPL, BSD,

ISC, Artistic License, etc., are available for FOSS distribution.

Reward Mechanisms

At the beginning of Free Software movement, seemingly it was difficult to perceive the

business opportunities of Free and Open Source Software. But now business model of

FOSS is getting success. Sources of income range from donations to providing services

such as consulting, integration, support and training. It also worth to mention that reward

other than money, such as reputation and serving community is also important for many

developers.

 23. a)Describe about Open Source Software Development Process.

THE OSS DEVELOPMENT PROCESS

Open-source software development is the process by which open-source

software, or similar software whose source code is publicly available, is developed.

These are software products available with its source code under an open-source

license to study, change, and improve its design. Examples of some popular open-source

software products are Mozilla Firefox, Google Chromium, Android, LibreOffice and

the VLC media player. Open-source software development has been a large part of the

creation of the World Wide Web as we know it, with Tim Berners-Lee contributing his

HTML code development as the original platform upon which the internet is now built.

In his 1997 essay The Cathedral and the Bazaar, open-source evangelist Eric S.

Raymond suggests a model for developing OSS known as the bazaar model. Raymond

likens the development of software by traditional methodologies to building a cathedral,

"carefully crafted by individual wizards or small bands of mages working in splendid

isolation". He suggests that all software should be developed using the bazaar style,

which he described as "a great babbling bazaar of differing agendas and approaches."

In the traditional model of development, which he called the cathedral model,

development takes place in a centralized way. Roles are clearly defined. Roles include

people dedicated to designing (the architects), people responsible for managing the

project, and people responsible for implementation. Traditional software engineering

follows the cathedral model.

The bazaar model, however, is different. In this model, roles are not clearly defined.

Gregorio Robles

 suggests that software developed using the bazaar model should exhibit

the following patterns:

Users should be treated as co-developers

The users are treated like co-developers and so they should have access to the source

code of the software. Furthermore, users are encouraged to submit additions to the

software, code fixes for the software, bug reports, documentation etc. Having more co-

developers increases the rate at which the software evolves. Linus's law states, "Given

enough eyeballs all bugs are shallow." This means that if many users view the source

code, they will eventually find all bugs and suggest how to fix them. Note that some users

have advanced programming skills, and furthermore, each user's machine provides an

additional testing environment. This new testing environment offers that ability to find

and fix a new bug.

Early releases

The first version of the software should be released as early as possible so as to

increase one's chances of finding co-developers early.

Frequent integration

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Source_Code_Management
https://en.wikipedia.org/wiki/Open-source_license
https://en.wikipedia.org/wiki/Open-source_license
https://en.wikipedia.org/wiki/Mozilla_Firefox
https://en.wikipedia.org/wiki/Chromium_(web_browser)
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/LibreOffice
https://en.wikipedia.org/wiki/VLC_media_player
https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://en.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar
https://en.wikipedia.org/wiki/Open-source_evangelist
https://en.wikipedia.org/wiki/Eric_S._Raymond
https://en.wikipedia.org/wiki/Eric_S._Raymond
https://en.wikipedia.org/w/index.php?title=Bug_reports&action=edit&redlink=1
https://en.wikipedia.org/wiki/Linus%27s_law

Code changes should be integrated (merged into a shared code base) as often as

possible so as to avoid the overhead of fixing a large number of bugs at the end of the

project life cycle. Some open source projects have nightly builds where integration is

done automatically on a daily basis.

Several versions

There should be at least two versions of the software. There should be a buggier

version with more features and a more stable version with fewer features. The buggy

version (also called the development version) is for users who want the immediate use of

the latest features, and are willing to accept the risk of using code that is not yet

thoroughly tested. The users can then act as co-developers, reporting bugs and providing

bug fixes.

High modularization

The general structure of the software should be modular allowing for parallel

development on independent components.

Dynamic decision making structure

There is a need for a decision making structure, whether formal or informal, that

makes strategic decisions depending on changing user requirements and other factors.

Cf. Extreme programming.

Data suggests, however, that OSS is not quite as democratic as the bazaar model

suggests. An analysis of five billion bytes of free/open source code by 31,999 developers

shows that 74% of the code was written by the most active 10% of authors. The average

number of authors involved in a project was 5.1, with the median at 2.

Open source software is usually easier to obtain than proprietary software, often

resulting in increased use. Additionally, the availability of an open source

implementation of a standard can increase adoption of that standard. It has also helped to

build developer loyalty as developers feel empowered and have a sense of ownership of

the end product.

Moreover, lower costs of marketing and logistical services are needed for OSS.

OSS also helps companies keep abreast of technology developments. It is a good tool to

promote a company's image, including its commercial products. The OSS development

approach has helped produce reliable, high quality software quickly and inexpensively.

Open source development offers the potential for a more flexible technology and

quicker innovation. It is said to be more reliable since it typically has thousands of

independent programmers testing and fixing bugs of the software. Open source is not

dependent on the company or author that originally created it. Even if the company fails,

the code continues to exist and be developed by its users. Also, it uses open standards

accessible to everyone; thus, it does not have the problem of incompatible formats that

exist in proprietary software.

https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Extreme_programming

It is flexible because modular systems allow programmers to build custom

interfaces, or add new abilities to it and it is innovative since open source programs are

the product of collaboration among a large number of different programmers. The mix of

divergent perspectives, corporate objectives, and personal goals speeds up innovation.

Moreover, free software can be developed in accord with purely technical

requirements. It does not require thinking about commercial pressure that often degrades

the quality of the software. Commercial pressures make traditional software developers

pay more attention to customers' requirements than to security requirements, since such

features are somewhat invisible to the customer.

It is sometimes said that the open source development process may not be well

defined and the stages in the development process, such as system testing and

documentation may be ignored. However this is only true for small (mostly single

programmer) projects. Larger, successful projects do define and enforce at least some

rules as they need them to make the teamwork possible. In the most complex projects

these rules may be as strict as reviewing even minor change by two independent

developers.

Not all OSS initiatives have been successful, for example SourceXchange

and Eazel. Software experts and researchers who are not convinced by open source's

ability to produce quality systems identify the unclear process, the late defect discovery

and the lack of any empirical evidence as the most important problems (collected data

concerning productivity and quality). It is also difficult to design a commercially sound

business model around the open source paradigm. Consequently, only technical

requirements may be satisfied and not the ones of the market. In terms of security, open

source may allow hackers to know about the weaknesses or loopholes of the software

more easily than closed-source software. It depends on control mechanisms in order to

create effective performance of autonomous agents who participate in virtual

organizations.

Development tools

In OSS development, tools are used to support the development of the product and the

development process itself.

Revision control systems such as Concurrent Versions System (CVS) and

later Subversion (SVN) and Git are examples of tools, often themselves open source, help

manage the source code files and the changes to those files for a software project. The

projects are frequently hosted and published on sites like Launchpad, Bitbucket,

and GitHub.

Open source projects are often loosely organized with "little formalised process

modelling or support", but utilities such as issue trackers are often used to organize open

https://en.wikipedia.org/wiki/Eazel
https://en.wikipedia.org/wiki/Revision_control
https://en.wikipedia.org/wiki/Concurrent_Versions_System
https://en.wikipedia.org/wiki/Subversion_(software)
https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Launchpad_(website)
https://en.wikipedia.org/wiki/Bitbucket
https://en.wikipedia.org/wiki/GitHub

source software development. Commonly

used bugtrackers includeBugzilla and Redmine.

Tools such as mailing lists and IRC provide means of coordination among

developers. Centralized code hosting sites also have social features that allow developers

to communicate.

[OR]

b)Briefly describe about qualification and categorizing open source software.

QUALIFICATION AND CATEGORIZING: DEFINING OPEN SOURCE SOFTWARE

The Qualification and Selection of Open Source software (QSOS) is a

methodology for assessing Free/Libre Open Source Software. This methodology is

released under the GFDL license. Several methods have been created to define an

assessment process for free/open-source software. Some focus on some aspects like the

maturity, the durability and the strategy of the organization around the open-source

project itself. Other methodologies add functional aspects to the assessment process.

Existing methodologies

There are more than 20 different OSS evaluation methods.

 Open Source Maturity Model (OSMM) from Capgemini

 Open Source Maturity Model (OSMM) from Navica

 Open Source Maturity Model (OSSMM) by Woods and Guliani

 Methodology of Qualification and Selection of Open Source software (QSOS)

 Open Business Readiness Rating (OpenBRR)

 Open Business Quality Rating (OpenBQR)

 QualiPSo

 QualiPSo Model for Open Source Software Trustworthiness (MOSST)

 Towards A Trustworthiness Model For Open Source Software: How to evaluate

Open Source Software

 QualOSS – Quality of Open Source

 Evaluation Framework for Open Source Software

 A Quality Model for OSS Selection

 Atos Origin Method for Qualification and Selection of Open Source Software

(QSOS)

 Observatory for Innovation and Technological transfer on Open Source software

(OITOS)

 Framework for OS Critical Systems Evaluation (FOCSE)

General approach

QSOS defines 4 steps that are part of an iterative process:

https://en.wikipedia.org/wiki/Bugtracker
https://en.wikipedia.org/wiki/Bugzilla
https://en.wikipedia.org/wiki/Redmine
https://en.wikipedia.org/wiki/Mailing_lists
https://en.wikipedia.org/wiki/Internet_Relay_Chat
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/GFDL
https://en.wikipedia.org/wiki/Open_Source_Maturity_Model
https://en.wikipedia.org/wiki/QSOS
https://en.wikipedia.org/wiki/OpenBRR

 1 - Define and organise what will be assessed (common Open Source criteria and

risks and technical domain specific functionalities),

 2 - Assess the competing software against the criteria defined above and score

these criteria individually,

 3 - Qualify your evaluation by organising criteria into evaluation axes, and

defining filtering (weightings, etc.) related to your context,

 4 - Select the appropriate OSS by scoring all competing software using the

filtering system designed in step 3.

Output documents

This process generates software assessing sheets as well as comparison grids. These

comparison grids eventually assist the user to choose the right software depending on the

context. These documents are also released under the free GNU FDL License. This

allows them to be reused and improved as well as to remain more objective. Assessment

sheets are stored using an XML-based format.

Tools

Several tools distributed under the GPL license are provided to help users manipulate

QSOS documents:

 Template editor: QSOS XUL Template Editor

 Assessment sheets editors:

 QSOS XUL Editor

 QSOS Qt Editor

 QSOS Java Editor (under development)

	1.pdf (p.1-3)
	2.pdf (p.4-7)
	3.pdf (p.8-35)
	4.pdf (p.36-43)
	5.pdf (p.44-71)
	6.pdf (p.72-78)
	7.pdf (p.79-120)
	8.pdf (p.121-124)
	9.pdf (p.125-180)
	10.pdf (p.181-185)
	11.pdf (p.186-213)
	12.pdf (p.214-219)
	13.pdf (p.220-244)

