

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021 DEPARTMENT OF MATHEMATICS

Subject: Numerical Methods	Subject Code: 15MMU503	LTPC
Class:III B.Sc-B	Semester:V	4 1 0 4

PO : To enable the students to study numerical techniques as powerful tool in scientific computing. **PLO:** This course provides a deep knowledge to the learners to understand the basic concepts of Numerical Methods which utilize computers to solve Engineering Problems that are not easily solved or even impossible to solve by analytical means.

UNIT I

Solution of algebraic and transcendental equations: Bisection method – Iterative method Regula Falsi method – Newton Raphson method – Horners method – Graeffe's root squaring method.

UNIT II

Solution of simultaneous linear algebraic equations: Gauss elimination method – Gauss Jordan method – Method of triangularization – Crout's method – Gauss-Jacobi method – Gauss-seidel method.

UNIT III

Finite Difference: First and higher order differences – Forward and Backward differences –Properties of operator – Difference of a polynomial – Factorial polynomial – Error Propagation in difference table – operator E – Relation between Δ , E and D.

UNIT IV

Interpolation: Gregory Newton Forward and Newton Backward interpolation formula – Equidistant terms with one or more missing values – Interpolation with unequal intervals – Divided differences –Newton's divided difference formula – Lagrange's interpolation formula – Inverse interpolation formula.

UNIT V

Numerical Differentiation and Integration: Newton's Forward and backward differences to compute derivatives – Trapezoidal rule, Simpson's 1/3 &3/8 rule. Solution of ordinary differential equations:R-K method (II order , III order and IV order).

TEXT BOOK

T1:Venkataraman .M.K., Fifth Edition, 2001. Numerical Methods in Science and Engineering National publishing Company ,Madras.

REFERENCES

- **R1:** Jain. M.K., Iyengar S.R.K., and R.K.Jain., 2004. Numerical Methods for Scientific and Engineering Computation, New Age International Publishers, New Delhi .
- **R2:** Vedamurthy V.N., N.Ch.S.N.Iyenger., 1999. Numerical Methods, Vikas Publishing House Pvt Ltd, New Delhi.
- **R3:** Kandaswamy. P., Thilagavathy K., and K.Gunavathy., 2013 .Numerical Methods, S. Chand &Company Ltd., New Delhi.

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021 DEPARTMENT OF MATHEMATICS

Subject: Numerical Methods	Subject Code: 15MMU503	LTPC
Class:III B.Sc-B	Semester:V	4 1 0 4

	DURATION	TOPICS TO BE COVERED	SUPPORT MATERIAL
S.NO	HOURS		
		UNIT-I	
1	1	Solution of Algebraic and	T1:chapter-3,Pg.No:81-83
		Transcendental Equation -	
		Introduction, problems on	
		Bisection Method	
2	1	Continuation of problems on	T1:chapter-3,Pg.No:83-85
		Bisection Method	
3	1	Iterative Method	T1:chapter -3,Pg.No:85-90
4	1	Tutorial 1	
5	1	Regula Falsi Method-Procedure	T1:chapter -3,Pg.No:91-94
		and problems	
6	1	Continuation of problems on	T1:chapter -3,Pg.No:94-97
		Regula Falsi Method	
7	1	Newton- Raphson Method-	T1:chapter -3,Pg.No:97-99,102-
		Procedure & Problems	105
8	1	Continuation of problems on	T1:chapter -3,Pg.No:102-105
		Newton- Raphson Method	
9	1	Tutorial 2	
10	1	Horner's Method-Problems	R2: chapter-3, Pg.No:3.22-3.24
11	1	Continuation of problems on	R2: chapter-3, Pg.No:3.24-3.26
		Horner's Method	
12	1	Graeffe's Root Squaring	R2: chapter-3, Pg.No:3.24-3.26
		Method -Problems	
13	1	Continuation of problems on	R2: chapter-3, Pg.No:3.26-3.29
		Graeffe's Root Squaring	
		Method	
14	1	Tutorial 3	

15	1	Recapitulation and Discussion of possible questions	
Total	15 Hours		

T1: Venkataraman .M.K., Fifth Edition, 2001. Numerical Methods in Science and Engineering National publishing Company ,Madras.

REFERENCES:

R2: Vedamurthy V.N, N.Ch.S.N.Iyenger., 2008.Numerical Methods, Vikas Publishing House Pvt.Ltd.New Delhi.

		UNIT-II	
1	1	Solution of Simultaneous Linear algebraic Equations – Introduction, Gauss Elimination Method: Procedure & problems	T1: chapter - 4,Pg.No:113-115
2		Continuation of problems Gauss Elimination Method	T1: chapter - 4,Pg.No:116-118
3	1	Gauss Jordan Method- problems	R2: chapter - 4,Pg.No:4.8-4.10
4	1	Continuation of problems Gauss Jordan Method	R2: chapter - 4,Pg.No:4.10-4.12
5	1	Tutorial 1	
6	1	Method of Triangularisation	T1: chapter - 4,Pg.No:126-128
7	1	Continuation of Problems on Method of Triangularisation	T1: chapter - 4,Pg.No:128-131
8	1	Crout's Method-Problems	R2: chapter - 4,Pg.No:4.23-4.32
9	1	Tutorial 2	_
10	1	Gauss Jacobi Method-procedure and problems	R3: chapter - 4,Pg.No:146-148
11	1	Continuation of problems on Gauss Jacobi Method	R3: chapter - 4,Pg.No:148-150
12	1	Gauss Seidal Method-procedure and problems	R3: chapter -4, Pg.No:150-154
13	1	Continuation of problems on Gauss Seidal Method	R3: chapter -4, Pg.No:154-158
14	1	Tutorial 3	
15	1	Recapitulation and discussion of possible questions	
Total	15 Hours		
TEXT B	OOK:		<u> </u>

T1: Venkataraman .M.K., Fifth Edition, 2001. Numerical Methods in Science and Engineering National publishing Company ,Madras.

REFERENCES:

R2: Vedamurthy V.N, N.Ch.S.N.Iyenger., 2008.Numerical Methods, Vikas Publishing House Pvt.Ltd.New Delhi.

R3: Kandaswamy.P, Thilagavathy K., and K.Gunavathy. 2013. Numerical Methods, S.Chand & Company Ltd.,New Delhi.

	UNIT-III		
1	1	Finite Difference: First and higher order	R3: chapter -
		differences, Operators	5,Pg.No:170-174
2	1	Newtons Forward and Backward Differences	R3: chapter -
		- Problems	5,Pg.No:174-176
3	1	Continuation of problems on Newtons	R3: chapter -
		Forward and Backward Differences	5,Pg.No:176-178
4	1	Tutorial 1	
5	1	Difference of a polynomial and	R3: chapter -
		Factorial polynomial - problems	5,Pg.No:179-181
6	1	Continuation of problems on Factorial	R3: chapter -
		polynomial	5,Pg.No:181-183
7	1	Error propagation in difference table -	R3: chapter -
		Problems	5,Pg.No:194-196
8	1	Tutorial 2	
9	1	Continuation of problems on error	R3: chapter -
		propagation in difference table	5,Pg.No:196-198
10	1	Operator E , Relation between Δ , E and D	T1: chapter -
			5,Pg.No:177-180
11	1	Problems based on the operator Δ , E and D	T1: chapter -
			5,Pg.No:180-183
12	1	Tutorial 3	
13	1	Recapitulation and Discussion of possible	
		questions	
Total	13 Hours		

TEXT BOOK:

T1: Venkataraman .M.K., Fifth Edition, 2001. Numerical Methods in Science and Engineering National publishing Company ,Madras.

REFERENCES:

R3: Kandaswamy.P, Thilagavathy K., and K.Gunavathy. 2013. Numerical Methods, S.Chand & Company Ltd.,New Delhi.

	UNIT-IV		
1	1	Interpolation: Introduction, Gregory Newton's Forward and Backward	R3: chapter - 6,Pg.No: 209-213
	Interpolation Formulae & Problems		
2	1	Continuation of problems on Gregory	R3: chapter -

Total	15 Hours		
		questions	
15	1	Recapitulation and discussion of possible	
14	1	Tutorial 3	
13	1	Inverse Interpolation Formula	R3: chapter - 8,Pg.No:276-278
12	1	Lagrange's interpolation formula-Problems	R1: chapter -4, 224-225
11	1	Lagrange's interpolation formula	R1: chapter - 4,Pg.No:215
10	1	Problems on Newton's divided difference	T1: chapter - 8,Pg.No: 247-249
9	1	Problems on Newton's divided difference formula & properties of divided difference	T1: chapter - 8,Pg.No: 245-247
8	1	Tutorial 2	
7	1	Interpolation with unequal Intervals: Divided difference -Introduction & Formula	T1: chapter - 8,Pg.No: 244-245
	1	values	6,Pg.No:6.17-6.19
6	1	Equidistant terms with one or more missing	R2: chapter -
5	1	problems on Gregory Newton's Forward & Backward Interpolation	R3: chapter - 6,Pg.No: 222-226
4 5	1	Tutorial 1	Tutorial 1
_		Newton's Forward & Backward Interpolation	6,Pg.No: 217-221
3	1	Newton Forward & Backward Interpolation Continuation of problems on Gregory	6,Pg.No: 213-217 R3: chapter -

T1: Venkataraman .M.K., Fifth Edition, 2001. Numerical Methods in Science and Engineering National publishing Company ,Madras.

REFERENCES:

R1:Jain.M.K., Iyengar.S.R.K.,and R.K.Jain.,Jain.,2000.Numerical Methods Scientific and Engineering Computation, New Age International Publishers, New Delhi.

R2: Vedamurthy V.N, N.Ch.S.N.Iyenger., 2008.Numerical Methods, Vikas Publishing House Pvt.Ltd.New Delhi.

R3: Kandaswamy.P, Thilagavathy K., and K.Gunavathy. 2013. Numerical Methods, S.Chand & Company Ltd.,New Delhi.

	UNIT-V		
1	1	Numerical Differentiation: Newton's Forward & Backward differences to compute derivatives	T1: chapter - 9,Pg.No: 265-268
2	1	Newton's Forward & Backward differences to compute derivatives	T1: chapter - 9,Pg.No: 268-270

Total	17 Hours		
		Papers	
17	1	Discussion on Previous ESE Question	
- •	-	Papers	
16	1	Discussion on Previous ESE Question	
	-	Papers	
15	1	Discussion on Previous ESE Question	
- •	-	questions	
14	1	Recapitulation and discussion of possible	
13	1	Tutorial 2	, 8
12	1	Method(R-K)(II, III, IV order)	11,Pg.No:389-393
12	1	Continuation of problems on Runge Kutta	R3: chapter -
11	1	Continuation of problems on Runge Kutta Method(R-K)(II, III, IV order)	R3: chapter - 11,Pg.No:385-389
11	1	order)-Formulae & problems	D2. abantar
		Runge Kutta Method(R-K) (II, III, IV	11,Pg.No:379-384
10	1	Solution of ordinary differential equations: $P_{V} = P_{V} = P_{V}$	R3: chapter -
9	1	Tutorial 1	D2. sharter
0	1	& 3/8 rule	9,Pg.No:310-314
8	1	Continuation of problems on Simpson's 1/3	R3: chapter -
6		& 3/8 rule	9,Pg.No:306-310
7	1	Continuation of problems on Simpson's $1/3$	R3: chapter -
_		Problems	9,Pg.No:303-306
6	1	Simpson's 1/3 & 3/8 rule: Formulae &	R3: chapter -
		rule	9,Pg.No: 290-291
5	1	Continuation of problems on Trapezoidal	T1: chapter -
4	1	Tutorial 1	
			290-291
		Formula & Problems	9,Pg.No:281-282,
3	1	Numerical Integration: Trapezoidal rule-	T1: chapter -

T1: Venkataraman .M.K., Fifth Edition, 2001. Numerical Methods in Science and Engineering National publishing Company ,Madras.

REFERENCES:

R3: Kandaswamy.P, Thilagavathy K., and K.Gunavathy. 2013. Numerical Methods, S.Chand & Company Ltd.,New Delhi.

Total no.of hours for the course:90 Hours

T1: Venkataraman .M.K., Fifth Edition, 2001. Numerical Methods in Science and Engineering National publishing Company ,Madras.

REFERENCES:

R1:Jain.M.K., Iyengar.S.R.K.,and R.K.Jain.,Jain.,2000.Numerical Methods Scientific and Engineering Computation, New Age International Publishers, New Delhi.

R2: Vedamurthy V.N, N.Ch.S.N.Iyenger., 2008.Numerical Methods, Vikas Publishing House Pvt.Ltd.New Delhi.

R3: Kandaswamy.P, Thilagavathy K., and K.Gunavathy. 2013. Numerical Methods, S.Chand & Company Ltd.,New Delhi.

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021 DEPARTMENT OF MATHEMATICS

Subject: Numerical Methods	Subject Code: 15MMU503	LTPC	
Class:III B.Sc-B	Semester:V	4 1 0 4	

UNIT I

Solution of algebraic and transcendental equations: Bisection method – Iterative method- Regula

Falsi method – Newton Raphson method – Horner's method – Graeffe's root squaring method.

TEXT BOOK:

T1: Venkataraman .M.K., Fifth Edition, 2001. Numerical Methods in Science and Engineering National publishing Company ,Madras.

REFERENCES:

R1:Jain.M.K., Iyengar.S.R.K., and R.K.Jain., Jain., 2000. Numerical Methods Scientific and Engineering Computation, New Age International Publishers, New Delhi.

UNIT-I

SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

Introduction

The solution of the equation of the form f(x) = 0 occurs in the field of science, engineering and other applications. If f(x) is a polynomial of degree two or more ,we have formulae to find solution. But, if f(x) is a transcendental function, we do not have formulae to obtain solutions. When such type of equations are there, we have some methods like Bisection method, Newton-Raphson Method and The method of false position. Those methods are solved by using a theorem in theory of equations, *i.e.*, If f(x) is continuous in the interval (a,b) and if f(a) and f(b) are of opposite signs, then the equation f(x) = 0 will have atleast one real root between a and b.

Bisection Method

Let us suppose we have an equation of the form f(x) = 0 in which solution lies between in the range (a,b). Also f(x) is continuous and it can be algebraic or transcendental. If f(a) and f(b) are opposite signs, then there exist atleast one real root between a and b. Let f(a) be positive and f(b) negative. Which implies atleast one root exits between a and b. We assume that root to be $x_o = (a+b)/2$. Check the sign of $f(x_o)$. If $f(x_o)$ is negative, the root lies between a and x_o . If $f(x_0)$ is positive, the root lies between x_o and b. Subsequently any one of this case occur.

$$X_{0}+a$$
 (or) $x_{0}+b$
 $X_{1}=2$ 2

When $f(x_1)$ is negative, the root lies between xo and x1 and let the root be $x_2=(x_0+x_1)/2$.

Again $f(x_2)$ negative then the root lies between x_0 and x_2 , let $x_3 = (x_0+x_2)/2$ and so on. Repeat the

process x_0, x_1, x_2, \ldots Whose limit of convergence is the exact root.

Steps:

- 1. Find a and b in which f(a) and f(b) are opposite signs for the given equation using trial and error method. 2. Assume initial root as $x_o = (a+b)/2$.
- 3.If $f(x_0)$ is negative, the root lies between a and x_0 and take the root as $x_1 = (x_0+a)/2$.
- 4. If $f(x_0)$ is positive, then the root lies between x_0 and b and take the root as $x_1 = (x_0 + b)/2$.
- 5. If $f(x_1)$ is negative, the root lies between x_0 and x_1 and let the root be $x_2 = (x_0 + x_1)/2$.
- 6. If $f(x_2)$ is negative, the root lies between x_0 and x_1 and let the root be $x_3 = (x_0 + x_2) / 2$.
- 7. Repeat the process until any two consecutive values are equal and hence the root.

Example:

Find the positive root of $x^3 - x = 1$ correct to four decimal places by bisection method.

Solution:

Let $f(x) = x^{3} - x - 1$ $f(0) = 0^{3} - 0 - 1 = -1 = -ve$ $f(1) = 1^{3} - 1 - 1 = -1 = -ve$ $f(2) = 2^{3} - 2 - 1 = 5 = +ve$

So root lies between 1 and 2, we can take (1+2)/2 as initial root and proceed.

i.e., f(1.5) = 0.8750 = +ve

and
$$f(1) = -1 = -ve$$

So root lies between 1 and 1.5,

Let x o = (1+1.5)/2 as initial root and proceed.

f(1.25) = -0.2969

So root lies between x 1 between 1.25 and 1.5

Now $x_1 = (1.25 + 1.5)/2 = 1.3750$

f(1.375) = 0.2246 = +ve

So root lies between x_2 between 1.25 and 1.375

Now $x_2 = (1.25 + 1.375)/2 = 1.3125$ f(1.3125) = -0.051514 = -ve

Therefore, root lies between 1.375and 1.3125

Now $x_3 = (1.375 + 1.3125) / 2 = 1.3438$ f(1.3438) = 0.082832 = +ve

So root lies between 1.3125 and 1.3438

Now
$$x_4 = (1.3125 + 1.3438) / 2 = 1.3282$$

f(1.3282) = 0.014898 = +ve

So root lies between 1.3125 and 1.3282

Now $x_5 = (1.3125 + 1.3282) / 2 = 1.3204$ f(1.3204) = -0.018340 = -ve

So root lies between 1.3204 and 1.3282

Now $x_6 = (1.3204 + 1.3282) / 2 = 1.3243$ f(1.3243) = -ve

So root lies between 1.3243 and 1.3282

Now $x_7 = (1.3243 + 1.3282) / 2 = 1.3263$

f(1.3263) = +ve

So root lies between 1.3243 and 1.3263

Now $x_8 = (1.3243 + 1.3263) / 2 = 1.3253$ f(1.3253) = +ve

So root lies between 1.3243 and 1.3253

Now $x_9 = (1.3243 + 1.3253) / 2 = 1.3248$ f(1.3248) = +ve

So root lies between 1.3243 and 1.3248

Now $x_{10} = (1.3243 + 1.3248) / 2 = 1.3246$

f(1.3246) = -ve

So root lies between 1.3248 and 1.3246

Now $x_{11} = (1.3248 + 1.3246) / 2 = 1.3247$ f(1.3247) = -veSo root lies between 1.3247 and 1.3248 Now $x_{12} = (1.3247 + 1.3247) / 2 = 1.32475$

Therefore, the approximate root is 1.32475

Example

Find the positive root of $x - \cos x = 0$ by bisection method.

Solution :

Let
$$f(x) = x - \cos x$$

 $f(0) = 0 - \cos (0) = 0 - 1 = -1 = -ve$
 $f(0.5) = 0.5 - \cos (0.5) = -0.37758 = -ve$
 $f(1) = 1 - \cos (1) = 0.42970 = +ve$

So root lies between 0.5 and 1

Let x o = (0.5 + 1)/2 as initial root and proceed. f(0.75) = 0.75 - cos(0.75) = 0.018311 = +ve

So root lies between 0.5 and 0.75

$$x_{I} = (0.5 + 0.75) / 2 = 0.625$$

f(0.625) = 0.625 - cos (0.625) = -0.18596

So root lies between 0.625 and 0.750

$$x_2 = (0.625 + 0.750) / 2 = 0.6875$$
$$f(0.6875) = -0.085335$$

So root lies between 0.6875 and 0.750

x3 = (0.6875 + 0.750) / 2 = 0.71875

 $f(0.71875) = 0.71875 - \cos(0.71875) = -0.033879$

So root lies between 0.71875 and 0.750

x4 = (0.71875 + 0.750) / 2 = 0.73438

$$f(0.73438) = -0.0078664 = -ve$$

So root lies between 0.73438 and 0.750

x5 = 0.742190f(0.742190) = 0.0051999 = + ve x6 = (0.73438 + 0.742190)/2 = 0.73829f(0.73829) = -0.0013305

So root lies between 0.73829 and 0.74219

x7 = (0.73829 + 0.74219) = 0.7402f(0.7402) = 0.7402-cos(0.7402) = 0.0018663

So root lies between 0.73829 and 0.7402

x8 = 0.73925f(0.73925) = 0.00027593 x9 = 0.7388

The root is 0.7388.

Newton-Raphson method (or Newton's method)

Let us suppose we have an equation of the form f(x) = 0 in which solution is lies between in the range (a,b). Also f(x) is continuous and it can be algebraic or transcendental. If f(a) and f(b) are opposite signs, then there exist

atleast one real root between a and b.

Let f(a) be positive and f(b) negative. Which implies at least one root exits between a and b. We assume that root to be either a or b, in which the value of f(a) or f(b) is very close to zero. That number is assumed to be initial root. Then we iterate the process by using the following formula until the value is converges.

 $f(X_n)$

 $X_{n+1} = X_{n-1} - \frac{f'(X_n)}{f'(X_n)}$

Steps:

1. Find a and b in which f(a) and f(b) are opposite signs for the given equation using trial and error method.

f'(Xo)

- 2. Assume initial root as $X_o = a$ i.e., if f(a) is very close to zero or Xo = b if f(a) is very close to zero
- 3. Find X1 by using the formula $f(X_o)$ $X_1 = Xo$ -

4. Find X_2 by using the following formula

$$\begin{array}{c} f(X_1) \\ \\ X_2 = X_1 \\ - \\ f'(X_1) \end{array}$$

5. Find X_3, X_4, \dots, X_n until any two successive values are equal.

Example:

Find the positive root of f(x) = 2x3 - 3x-6 = 0 by Newton – Raphson method correct to five decimal places.

Solution:

Let
$$f(x) = 2x^3 - 3x - 6$$
; $f'(x) = 6x^2 - 3$
 $f(1) = 2 - 3 - 6 = -7 = -ve$
 $f(2) = 16 - 6 - 6 = 4 = +ve$

So, a root between 1 and 2. In which 4 is closer to 0 Hence we assume initial root as 2. Consider $x_0 = 2$

So
$$X_1 = X_0 - f(X_0)/f'(X_0)$$

= $X_0 - ((2X_03 - 3X_0 - 6) / 6\alpha_0 - 3) = (4X_03 + 6)/(6X_02 - 3)$
 $X_{i+1} = (4X_i3 + 6)/(6X_i2 - 3)$

$$\begin{split} X_1 &= (4(2)^2 + 6)/(6(2)^2 - 3) = 38/21 = 1.809524 \\ X_2 &= (4(1.809524)^3 + 6)/(6(1.809524)^2 - 3) = 29.700256/16.646263 = 1.784200 \\ X_3 &= (4(1.784200)^3 + 6)/(6(1.784200)^2 - 3) = 28.719072/16.100218 = 1.783769 \\ X_4 &= (4(1.783769)^3 + 6)/(6(1.783769)^2 - 3) = 28.702612/16.090991 = 1.783769 \end{split}$$

Example:

Using Newton's method, find the root between 0 and 1 of $x^3 = 6x - 4$ correct to 5 decimal places.

Solution :

Let
$$f(x) = x^3 - 6x + 4$$
; $f(0) = 4 = +ve$; $f(1) = -1 = -ve$

So a root lies between 0 and 1

f(1) is nearer to 0. Therefore we take initial root as $X_0 = 1$

$$f'(x) = 3x^{2} - 6$$

$$= x - \frac{f(x)}{f'(x)}$$

$$= x - (3x^{3} - 6x + 4)/(3x^{2} - 6)$$

$$= (2x^{3} - 4)/(3x^{2} - 6)$$

$$X_{1} = (2X_{0} - 4)/(3X_{0} - 2 - 6) = (2 - 4)/(3 - 6) = 2/3 = 0.666666$$

$$X_{2} = (2(2/3)^{3} - 4)/(3(2/3)^{2} - 6) = 0.73016$$

$$X_{3} = (2(0.73015873)^{3} - 4)/(3(0.73015873)^{2} - 6)$$

$$= (3.22145837/4.40060469)$$

$$= 0.73205$$

$$X_{4} = (2(0.73204903)^{3} - 4)/(3(0.73204903)^{2} - 6)$$

$$= (3.21539602/4.439231265)$$

$$= 0.73205$$

The root is 0.73205 correct to 5 decimal places.

Method of False Position (or Regula Falsi Method)

Consider the equation f(x) = 0 and f(a) and f(b) are of opposite signs. Also let a < b. The graph y = f(x) will Meet the x-axis at some point between A(a, f(a)) and B (b, f(b)). The equation of the chord joining the two points A(a, f(a)) and B(b,f(b)) is

y-f(a)	f(a) - f(b)
x - a	a - b

The x- Coordinate of the point of intersection of this chord with the x-axis gives an approximate value for the of f(x) = 0. Taking y = 0 in the chord equation, we get

-f(a)	f(a) - f(b)
=	
x - a	a - b
$\mathbf{x}[f(a) - f(b)] - af(a) + a f(b)$	= -a f(a) + b f(b)
$\mathbf{x}[f(a) - f(b)] = b f(a) - a f(b)$	

This *x*₁ gives an approximate value of the root f(x) = 0. (a < x₁ < b)

Now $f(x_1)$ and f(a) are of opposite signs or $f(x_1)$ and f(b) are opposite signs.

If $f(x_1)$, f(a) < 0. then x2 lies between x_1 and a.

Therefore
$$x_2 = \frac{a f(x_1) - x_1 f(b)}{2}$$

 $f(x_1) - f(a)$

This process of calculation of (x_3 , x_4 , x_5 ,) is continued till any two successive values are equal and subsequently we get the solution of the given equation.

Steps:

1. Find a and b in which f(a) and f(b) are opposite signs for the given equation

using trial and error method.

Therefore root lies between *a* and *b* if f(a) is very close to zero select and compute x₁ by using the following formula:

$$a f(b) - b f(a)$$
$$xI = \underbrace{f(b) - f(a)}$$

3. If $f(x_1)$, f(a) < 0. then root lies between x_1 and a. Compute x_2 by using the following formula:

$$x2 = \frac{f(x_1) - x_1 f(b)}{f(x_1) - f(a)}$$

 Calculate the values of (x₃, x₄, x₅,) by using the above formula until any two successive values are equal and subsequently we get the solution of the given equation.

. Example:

Solve for a positive root of $x^3-4x+1=0$ by and Regula Falsi method

Solution :

Let
$$f(x) = x^{3} \cdot 4x + 1 = 0$$

 $f(0) = 0^{3} \cdot 4 (0) + 1 = 1 = +ve$
 $f(1) = 1^{3} \cdot 4(1) + 1 = -2 = -ve$

So a root lies between 0 and 1

We shall find the root that lies between 0 and 1.

$$xI = \frac{a f(b) - b f(a)}{f(b) - f(a)}$$

(0 x f(1) - 1 x f(0))

$$= \frac{1}{(f(1) - f(0))}$$

$$= \frac{-1}{(-2 - 1)}$$

$$= 0.333333$$

$$f(x_1) = f(1/3) = (1/27) - (4/3) + 1 = -0.2963$$

Now f(0) and f(1/3) are opposite in sign.

Hence the root lies between 0 and 1/3.

$$x_{2} = \frac{(0 \times f(1/3) - 1/3 \times f(0))}{(f(1/3) - f(0))}$$
$$x_{2} = (-1/3)/(-1.2963) = 0.25714$$

Now $f(x_2) = f(0.25714) = -0.011558 = -ve$

So the root lies between 0 and 0.25714

$$\begin{aligned} x_3 &= (0 \ x \ f(0.25714) \ - \ 0.25714 \ x \ f(0)) \ / \ (f(0.25714) \ - \ f(0)) \\ &= -0.25714 / -1.011558 \ = 0.25420 \\ f(x_3) &= f(0.25420) = -0.0003742 \end{aligned}$$

So the root lies between 0 and 0.25420

$$x_{4} = (0 \text{ x } f(0.25420) - 0.25420 \text{ x } f(0)) / (f(0.25420) - f(0))$$
$$= -0.25420 / -1.0003742 = 0.25410$$
$$f(x_{4}) = f(0.25410) = -0.000012936$$

The root lies between 0 and 0.25410

$$x_{5} = (0 \ x \ f(0.25410) - 0.25410 \ x \ f(0)) \ / \ (f(0.25410) - f(0))$$

Hence the root is 0.25410.

Example:

Find an approximate root of $x \log_{10} x - 1.2 = 0$ by False position method.

Solution :

Let $f(x) = x \log_{10} x - 1.2$

 $f(1) = -1.2 = -ve; f(2) = 2 \ge 0.30103 - 1.2 = -0.597940$

f(3) = 3x0.47712 - 1.2 = 0.231364 = +ve

So, the root lies between 2 and 3.

2f(3) - 3f(2) 2 x 0.23136 - 3 x (-0.59794)

- = _____

 $x_1 =$

f(3) – f(2)	0.23136 + 0.597
	= 2.721014

 $f(x_1) = f(2.7210) = -0.017104$

The root lies between x_1 and 3.

$$x_{2} = \frac{1 \text{ xf}(3) - 3 \text{ x f}(x_{1})}{f(3) - f(x_{1})} = \frac{2.721014 \text{ x } 0.231364 - 3 \text{ x (-0.017104)}}{0.23136 + 0.017104}$$
$$= 2.740211$$

$$f(x_2) = f(2.7402) = 2.7402 \text{ x} \log(2.7402) - 1.2$$

= - 0.00038905

So the root lies between 2.740211 and 3

$$x_{3=} \frac{2.7402 \text{ x } f(3) - 3 \text{ x } f(2.7402)}{f(3) - f(2.7402)} = \frac{2.7402 \text{ x } 0.231336 + 3 \text{ x } (0.00038905)}{0.23136 + 0.00038905}$$
$$= \frac{0.63514}{0.23175} = 2.740627$$
$$f(2.7406) = 0.00011998$$
So the root lies between 2.740211 and 2.740627
2.7402 x f(2.7406) - 2.7406 x f(2.7402)

X4 =

 $= \frac{f(2.7406) - f(2.7402)}{2.7402 \times 0.00011998 + 2.7406 \times 0.00038905}$ $= \frac{0.00011998 + 0.00038905}{0.00011998 + 0.00038905}$

0.0013950

0.00050903 = 2.7405

= -

Hence the root is 2.7405

Horner's Method

This numerical methods is employed to determine both the commensurable and the incommensurable real roots of a numerical polynomial equation. Firstly, we find the integral part of the root and then by every iteration. We find each decimal place value in succession.

Suppose a positive root of f(x) = 0 lies between a and a+1. Let that root be a,a1a2a3....

First diminish the root of f(x)-0 by the integral part a and let $\phi 1(x) = 0$ possess the root 0.a1a2a3...

Secondly , multiply the roots of $\varphi 1(x)=0$ by 10 and let $\varphi 2(x)=0$ possess the root a1.a2a3...as a root.

Thirdly, find the value od a1 and then diminish the roots by a1 and let $\phi_3(x) = 0$ possess a root 0. a2a3...

Now repeating the process we find a2,a3,a4.... each time.

Example:

Find the positive root of $x^3 + 3x - 1 = 0$, correct to two decimal places by Horner's method.

Solution:

Let $f(x) = x^3 + 3x - 1 = 0$

f(0) = -ve f(1) = *ve.

The positive root lies between 0 and 1.

Let it be 0.a1a2a3....

Since the integral part is zero, diminishing the root by the integral part is not necessary. Therefore multioly the roots by 10.

Therefore $\phi_1(x) = x^3 + 300x - 1000 = 0$ has root a1.a2a3...

 $\phi 1(3) = -ve, \ \phi 1(4) = +ve$

Therefore a1=3
Now, the root is 3.a2a3
Therefore, diminish root of $\phi 1(x) = 0$ by 3
By synthetic division method, we get
$\phi 2(x) = x^3 + 9x^2 + 327x - 73 = 0$ has root 0.a2a3
Multiply the roots of $\phi 2(x) = 0$ by 10.
$\phi_3(x) = x^3 + 90x^2 + 32700x - 73000 = 0$ has root a2.a3a4 Now, $\phi_3(2) = -ve$, $\phi_3(3) = +ve$
Therefore a2=2
Now diminish the roots of $\phi 3(x)$ by 2.

By synthetic division method, we get

 $\phi 4(x) = x^3 + 96x^2 + 33072x - 7232 = 0$ has root 0.a3a4...

Multiply the roots of $\phi 4(x) = 0$ by 10.

 $\phi 5(x) = x^3 + 960x^2 + 3307200x - 7232000 = 0$ has root a3.a4...

Now, $\phi 5(2) = -ve$, $\phi 5(3) = +ve$

Therefore a3=2

Hence the root is 0.322.

Graeffe's Root SquaringMethod

This is a direct method to find the roots of any polynomial equation with real coefficients. The basic idea behind this method is to separate the roots of the equations by squaring the roots. This can be done by separating even and odd powers of \mathbf{x} in

$$P_n(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_{n-1}x + a_n = 0$$

and squaring on both sides. Thus we get,

 $(x^{n} + a_{2} x^{n-2} + a_{4} x^{n-4} + ...)^{2} = (x^{n} + a_{1} x^{n-1} + a_{3} x^{n-3} + ...)^{2}$

 $x^{2n}_{n} - (a_1^2 - 2a_2)x^{2n-2} + (a_2^2 - 2a_1a_3 + 2a_4)x^{2n-4} + \dots + (-1)^n a_n^2 = 0$

Thus all the b_i 's (i = 0, 1, 2, ..., n) are known in terms of a_i 's. The roots of this equation are $-s_1^2$, $-s_2^2$, $..., s_n^2$ where $s_1, s_2, ..., s_n$ are the roots of $P_n(x) = 0$.

A typical coefficient \mathbf{b}_k of \mathbf{b}_i , $\mathbf{i} = 1, 2, \dots \mathbf{n}$ is obtained by following. The terms alternate in sign starting with a +ve sign. The first term is the square of the coefficient \mathbf{a}_k . The second term is twice the product of the nearest neighbouring coefficients \mathbf{a}_{i-1} and \mathbf{a}_{i+1} . The third is twice the product of the next neighbouring coefficients \mathbf{a}_{i-2} and \mathbf{a}_{i+2} . This procedure is continued until there are no available coefficients to form the cross products.

This procedure can be repeated many times so that the final equation

 $x^{n} + B_{1} x^{n-1} + ... + B_{n-1}x + B_{n} = 0$ has the roots $R_{1}, R_{2}, ..., R_{n}$ such that $R_{i} = -s_{i}^{(2^{n}m)}$, i = 1, 2, ..., m

if we repeat the process for **m** times.

If we assume $|s_1| > |s_2| > \ldots |s_n|$ then $|\mathbf{R}_1| >> |\mathbf{R}_2| >> \ldots >> |\mathbf{R}_n|$

that is the roots \mathbf{R}_i are very widely separated for large \mathbf{m} .

which gives	$\mathbf{R}_{\mathbf{i}} = -\mathbf{B}_{\mathbf{i}} / \mathbf{B}_{\mathbf{i}-1} ,$	$i = 1, 2, \ldots n$
where $\mathbf{B}_0 = 1$.		
since	$\mid s_{i}\mid ^{2^{\wedge m}}=\mid R_{i}\mid$	i = 1, 2, n
$\Sigma \mid s_i \mid = \mid \mathbf{R}_i \mid$	i = 1, 2,	n

This determines the absolute values of the roots and substitution in the original equation will give the sign of the roots.

Example :

Find	the roots o	of $x^3 - 7x^2$	+14x - 8 = 0	
a[]	1	-7	14	-8
b[]	1	21	84	64
roots =	4.583	2	0.873	
b[]	1	273	4368	4096
roots =	4.065	2	0.984	
b[]	1	65793	1.68E7	1.68E7
roots =	4.002	2	0.9995	

Thus the absolute values of the roots are 4, 2, 1.

Since f(1) = 0, f(2) = 0 and f(4) = 0, the signs of the roots 1, 2 and 4 are all

positive.

Unit-I

Possible Questions

Part B (5x8=40 Marks)

- 1. Find the positive root of $x \cos x = 0$ by using bisection method.
- 2. Find the positive root of $e^x = 3x$ by using Bisection method.
- 3. Solve the equation $x^3 + x^2 1 = 0$ for the positive root by iteration method.
- 4. Find the real root of the equation $\cos x = 3x 1$ correct to 4 decimal places by iteration method.
- 5. Find an approximate root of $x \log_{10} x = 1.2$ by False position method.
- 6. Find an approximate root of $x^3 4x + 1 = 0$ by False position method.
- 7. Find the real positive root of $3x-\cos x 1 = 0$ by Newton's method correct to 3 decimal places.
- 8. Find the positive root of $x^3 + 3x 1 = 0$, correct to two decimal places, by Horner's method.
- 9. Find all the roots of the equation $2x^3 + x^2 2x 1 = 0$ by Graeffe's method (four squaring).
- 10. Find all the roots of the equation $x^3 9x^2 + 18x 6 = 0$ by Graeffe's method (root squaring, three times).

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021 DEPARTMENT OF MATHEMATICS

Subject: Numerical Methods	Subject Code: 15MMU503	L T P C
Class:III B.Sc-B	Semester:V	4 1 0 4

UNIT II

Solution of simultaneous linear algebraic equations: Gauss elimination method -

Gauss Jordan method - Method of triangularization - Crout's method - Gauss-

Jacobi method – Gauss-seidel method.

TEXT BOOK:

T1: Venkataraman .M.K., Fifth Edition, 2001. Numerical Methods in Science and Engineering National publishing Company ,Madras.

- R2: Vedamurthy V.N., N.Ch.S.N.Iyenger., 1999. Numerical Methods, Vikas Publishing House Pvt Ltd, New Delhi.
- **R3**: Kandaswamy. P., Thilagavathy K., and K.Gunavathy., 2013 .Numerical Methods, S. Chand &Company Ltd., New Delhi.

UNIT-II

SOLUTIONS OF SIMULTANEOUS LINEAR ALGEBRAIC EQUATIONS

INTRODUCTION

We will study here a few methods below deals with the solution of simultaneous Linear Algebraic Equations

GAUSS ELIMINATION METHOD (DIRECT METHOD).

This is a direct method based on the elimination of the unknowns by combining equations such that the n unknowns are reduced to an equation upper triangular system which could be solved by back substitution.

Consider the n linear equations in n unknowns, viz.

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$

.....

 $a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \dots (1)$

Where a_{ij} and b_i are known constants and x_i 's are unknowns.

The system (1) is equivalent to AX=B(2)

Where
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ and $B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$

Now our aim is to reduce the augmented matrix (A,B) to upper triangular matrix.

$$(\mathbf{A},\mathbf{B}) = \begin{pmatrix} a_{11} & a_{12} \dots a_{1n} & b_1 \\ a_{21} & a_{22} \dots a_{2n} & b_2 \\ \dots & \dots & \dots & \vdots \\ a_{n1} & a_{n2} \dots a_{nn} & b_n \end{pmatrix} \dots (3)$$

 a_{i1}

Now, multiply the first row of (3) (if $a_{11} \neq 0$) by - a_{11} and add to the ith row of (A,B), where i=2,3,...,n. By thia, all elements in the first column of (A,B) except a_{11} are made to zero. Now (3) is of the form

Now take the pivot b_{22} . Now, considering b_{22} as the pivot, we will make all elements below b_{22} in the second column of (4) as zeros. That is, multiply second

row of (4) by - $\overline{b_{22}}$ and add to the corresponding elements of the ith row (i=3,4,...,n). Now all elements below b_{22} are reduced to zero. Now (4) reduces to

 $\begin{pmatrix}
a_{11} & a_{12} & a_{13}, \dots, a_{1n} & b_1 \\
0 & b_{22} & b_{23}, \dots, b_{2n} & c_2 \\
0 & 0 & c_{23}, \dots, c_{3n} & d_3 \\
\dots & \dots & \dots & \dots & \dots \\
0 & 0 & c_{n3}, \dots, c_{nn} & d_n & \dots & \dots & (5)
\end{pmatrix}$

 b_{i2}

Now taking c_{33} as the pivot, using elementary operations, we make all elements below c_{33} as zeros. Continuing the process, all elements below the leading diagonal elements of A are made to zero.

Hence, we get (A,B) after all these operations as

 $\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} & b_1 \\ 0 & b_{22} & b_{23} & \dots & b_{2n} & c_2 \\ 0 & 0 & c_{23} & c_{34} \dots & c_{3n} & d_3 \\ \dots & \dots & \dots & \dots & \vdots \\ 0 & 0 & 0 & 0 & \dots & c_{nn} & d_n \end{pmatrix} \dots (6)$

From, (6) the given system of linear equations is equivalent to

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1n}x_{n} = b_{1}$$

$$b_{22}x_{2} + b_{23}x_{3} + \dots + b_{2n}x_{n} = c_{2}$$

$$c_{33}x_{3} + \dots + c_{3n}x_{n} = d_{3}$$

$$\dots$$

$$a_{nn}x_{n} = k_{n}$$

Going from the bottom of these equation, we solve for $x_n = \frac{k_n}{\alpha_{nn}}$. Using this in the penultimate equation, we get x_{n-1} and so. By this back substitution method for we solve x_n , x_{n-1} , x_{n-2} , ..., x_2 , x_1 .

GAUSS – JORDAN ELIMINATION METHOD (DIRECT METHOD)

This method is a modification of the above Gauss elimination method. In this method, the coefficient matrix A of the system AX=B is brought to a diagonal matrix or unit matrix by making the matrix A not only upper triangular but also lower triangular by making the matrix A not above the leading diagonal of A also as zeros. By this way, the system AX=B will reduce to the form.

~

$$\begin{pmatrix} a_{11} & 0 & 0 & 0 & \dots & a_{In} & b_{I} \\ 0 & b_{22} & 0 & 0 & \dots & b_{2n} & c_{2} \\ \dots & \dots & \dots & \dots & \dots & \dots & d_{3} \\ 0 & 0 & 0 & 0 & \dots & \dots & \alpha_{nn} & k_{n} \\ \end{pmatrix} \dots (7)$$

From (7)

$$x_n = \frac{k_n}{\alpha_{nn}}, \dots, x_2 = \frac{c_2}{b_{22}}, x_n = \frac{b_1}{\alpha_{11}}$$

Note: By this method, the values of x_1, x_2, \dots, x_n are got immediately without using the process of back substitution.

Example 1. Solve the system of equations by (i) Gauss elimination method (ii) Gauss – Jordan *method*.

x+2y+z=3, 2x+3y+3z=10, 3x-y+2z=13.

Solution. (By Gauss method)

This given system is equivalent to

Now, we will make the matrix A upper triangluar.

$$(A,B) = \begin{bmatrix} 1 & 2 & 1 & | & 3 \\ 2 & 3 & 3 & | & 10 \\ 3 & -1 & 2 & | & 13 \end{bmatrix}$$
$$\begin{pmatrix} 1 & 2 & 1 & | & 3 \\ 0 & -1 & 1 & | & 4 \\ - & 0 & -7 & -1 & | & 4 \\ 4 & R_2 + (-2)R_1, R_3 + (-3)R_1 \end{bmatrix}$$

/ - \

Now, take b_{22} =-1 as the pivot and make b_{32} as zero.

$$(A,B) \sim \begin{bmatrix} 1 & 2 & 1 & & & \\ 0 & -1 & 1 & & & \\ 0 & 0 & -8 & & -24 \end{bmatrix} R_{32}(-7) \dots (2)$$

From this, we get

$$x+2y+z=3$$
, $-y+z=4$, $-8z=-24$

 \therefore z = 3, y = -1, x = 2 by back substitution.

$$x = 2, y = -1, z = 3$$

Solution. (Gauss – Jordan method)

In stage 2, make the element, in the position (1,2), also zero.

$$(A,B) \sim \begin{bmatrix} 1 & 2 & 1 & & 3 \\ 0 & -1 & 1 & & 4 \\ 0 & 0 & -8 & -24 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & 1 \\ 0 & 0 & -8 \end{bmatrix} \begin{bmatrix} 11 \\ 4 \\ -24 \end{bmatrix}_{R_{12}(2)}$$

$$\sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 11 \\ 4 \\ -3 \end{bmatrix}_{R_{3}} \begin{pmatrix} 1 \\ 8 \end{pmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix}_{R_{13}(3), R_{23}(1)}$$
i.e., $x = 2, y = -1, z = 3$

METHOD OF TRIANGULARIZATION (OR METHOD OF FACTORIZATION) (DIRECT METHOD)

This method is also called as *decomposition* method. In this method, the coefficient matrix A of the system AX = B, decomposed or factorized into the product of a lower triangular matrix L and an upper triangular matrix U. we will explain this method in the case of three equations in three unknowns.

Consider the system of equations

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} = b_{1}$$
$$a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} = b_{2}$$
$$a_{31}x_{1} + a_{32}x_{2} + a_{33}x_{3} = b_{3}$$

This system is equivalent to AX = B

Where
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \quad X = \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix}, \quad B = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Now we will factorize A as the product of lower triangular matrix

$$L = \begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix}$$

And an upper triangular matrix

$$U = \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix} \text{ so that}$$

$$LUX = B \text{ Let} \qquad UX = Y \text{ And hence } LY = B$$

$$\begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$y_1 = b, \ l_{21}y_1 + y_2 = b_2, \ l_{31}y_1 + l_{32}y_2 + y_3 = b_3$$

By forward substitution, y_1 , y_2 , y_3 can be found out if *L* is known.

From (4), $\begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$

$$u_{11}x_1 + u_{12}x_2 + u_{13}x_3 = y_1$$
, $u_{22}x_2 + u_{23}x_3 = y_2$ and $u_{33}x_3 = y_3$

From these, x_1 , x_2 , x_3 can be solved by back substitution, since y_1 , y_2 , y_3 are known if U is known.Now L and U can be found from LU = A

$$\begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ l_{21} & \mathbf{1} & \mathbf{0} \\ l_{31} & l_{32} & \mathbf{1} \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ \mathbf{0} & u_{22} & u_{23} \\ \mathbf{0} & \mathbf{0} & u_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

i.e.,

٨

$$\begin{pmatrix} u_{11} & u_{12} & u_{13} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} \\ l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Equating corresponding coefficients we get nine equations in nine unknowns. From these 9 equations, we can solve for 3 l's and 6 u's.

That is, *L* and *U* re known. Hence *X* is found out. Going into details, we get $u_{11} = a_{11}$, $u_{12} = a_{12}$, $u_{13} = a_{13}$. That is the elements in the first rows of *U* are same as the elements in the first of *A*.

Also, $l_{21}u_{11} = a_{21}$ $l_{21}u_{12} + u_{22} = a_{22}$ $l_{21}u_{13} + u_{23} = a_{23}$

$$u_{21} = \frac{a_{21}}{a_{11}}, u_{22} = a_{22} - \frac{a_{21}}{a_{11}}, a_{12} \text{ and } u_{23} = a_{23} - \frac{a_{21}}{a_{11}}, a_{13}$$

again, $l_{31}u_{11} = a_{31}$, $l_{31}u_{12} + l_{32}u_{22} = a_{32}$ and $l_{31}u_{13} + l_{32}u_{23} + u_{33} = a_{32}$

solving, $l_{31} = \frac{a_{31}}{a_{11}}, l_{32} = \frac{a_{32} - \frac{a_{31}}{a_{11}} \cdot a_{12}}{a_{22} - \frac{a_{21}}{a_{11}} \cdot a_{12}}$

$$u_{33} = \left[a_{32} \cdot \frac{a_{31}}{a_{11}} \cdot a_{13} \left[\frac{a_{32} - \frac{a_{31}}{a_{11}} \cdot a_{12}}{a_{22} - \frac{a_{21}}{a_{11}} \cdot a_{12}} \right] a_{32} \cdot \frac{a_{31}}{a_{11}} \cdot a_{13} \right]$$

Therefore L and U are known.

Example 2 By the method of triangularization, solve the following system.

$$5x - 2y + z = 4$$
, $7x + y - 5z = 8$, $3x + 7y + 4z = 10$.

Solution. The system is equivalent to

$$\begin{pmatrix} 5 & -2 & 1 \\ 7 & 1 & -5 \\ 3 & 7 & 4 \end{pmatrix} \begin{pmatrix} \chi \\ y \\ Z \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \\ 10 \end{pmatrix}$$
$$A \qquad X = B$$

Now, let LU = A

That is,
$$\begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ l_{21} & \mathbf{1} & \mathbf{0} \\ l_{31} & l_{32} & \mathbf{1} \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ \mathbf{0} & u_{22} & u_{23} \\ \mathbf{0} & \mathbf{0} & u_{33} \end{pmatrix} = \begin{pmatrix} \mathbf{5} & -\mathbf{2} & \mathbf{1} \\ \mathbf{7} & \mathbf{1} & -\mathbf{5} \\ \mathbf{3} & \mathbf{7} & \mathbf{4} \end{pmatrix}$$

Multiplying and equating coefficients,

$$u_{11} = 5, \quad u_{12} = -2, \quad u_{13} = 1$$

$$l_{21}u_{11} = 7 \quad l_{21}u_{12} + u_{22} = 1 \qquad l_{21}u_{13} + u_{23} = -5$$

$$l_{21} = \frac{7}{5}, \quad u_{22} = 1 \quad -\frac{7}{5}, \quad (-2) = \frac{19}{5} \text{ and}$$

$$u_{23} = -5 \quad -\frac{7}{5}, \quad (1) = -\frac{32}{5}$$

Again equating elements in the third row,

$$l_{31}u_{11} = 3$$
, $l_{31}u_{12} + l_{32}u_{22} = 7$ and $l_{31}u_{13} + l_{32}u_{23} + u_{33} = 4$

$$\therefore \qquad l_{31} = \frac{3}{5}, \ l_{32} = \frac{7 - \frac{3}{5} \cdot (-2)}{\frac{19}{5}} = \frac{41}{19}$$
$$u_{33} = 4 - \frac{3}{5} \cdot (1) - \frac{41}{19} (-\frac{32}{5}) = 4 - \frac{3}{5} + \frac{1312}{95}$$
$$= \frac{1635}{95} = \frac{327}{19}$$

Now *L* and *U* are known.Since LUX = B, LY = B where UX = Y. From LY = B,

$$\begin{pmatrix} \frac{1}{7} & \mathbf{0} & \mathbf{0} \\ \frac{3}{5} & \frac{41}{19} & \mathbf{1} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} \frac{4}{8} \\ 10 \end{pmatrix}$$

$$y_1 = 4, \quad \frac{7}{5} \quad y_1 + y_2 = \mathbf{8}, \quad \frac{3}{5} \quad \frac{41}{19} \quad y_2 + y_3 = \mathbf{10}$$

$$y_2 = 8 - \frac{2\mathbf{8}}{5} = \frac{\mathbf{12}}{5}$$

$$y_3 = 10 - \frac{\mathbf{12}}{5} - \frac{\mathbf{41}}{\mathbf{19}} \quad \mathbf{X} \quad \frac{\mathbf{12}}{5} = 10 - \frac{\mathbf{12}}{5} - \frac{\mathbf{492}}{\mathbf{95}} = \frac{\mathbf{46}}{\mathbf{19}}$$

$$UX = Y \text{ gives} \begin{pmatrix} \mathbf{5} & -2 & \mathbf{1} \\ \mathbf{0} & \frac{\mathbf{19}}{5} & -\frac{\mathbf{32}}{5} \\ \mathbf{0} & \mathbf{0} & \frac{\mathbf{327}}{\mathbf{19}} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{\mathbf{4}}{\mathbf{12}} \\ \frac{\mathbf{46}}{\mathbf{19}} \\ \frac{\mathbf{5}x - 2y + z = 4}{\mathbf{5}} \\ \frac{\mathbf{19}}{5} \quad y - \frac{\mathbf{32}}{5} \quad z = \frac{\mathbf{12}}{5} \end{bmatrix}$$

$\frac{327}{19} = \frac{46}{19}$
$z = \frac{46}{327}$
$\frac{19}{5}y = \frac{12}{5} + \frac{32}{5} \left(\frac{46}{327}\right)$
$y = \frac{284}{327}$
$5x = 4 + 2y - z = 4 + 2\left(\frac{568}{327}\right) - \frac{46}{327}$
$\therefore \qquad x = \frac{366}{327}$
$\therefore \qquad x = \frac{366}{327}, \ y = \frac{284}{327}, \ z = \frac{46}{327}$

Crout's Method

Crout's Method is a root-finding algorithm used in LU decomposition (see Foundation). Also known as Crout Matrix Decomposition and Crout Factorization, the method decomposes a matrix into a lower triangular matrix (L), an upper triangular matrix (U), and a permutation matrix (P). The last matrix is optional and not always needed.

Crout's Method solves the N²equations

$$\begin{split} i &< j \quad l_i 1 u_1 j + l_i 2 u_2 j + \ldots + l_{ii} u_{ij} = a_{ij} \\ i &= j \quad l_i 1^u 1 j^+ l_i 2^u 2 j^+ \ldots + l_{ii} u_{jj} = a_{ij} \\ i &> j \quad l_i 1 u_1 j + l_i 2 u_2 j + \ldots + l_{ij} u_{jj} = a_{ij} \end{split}$$

for the N^2 + N unknowns l_{ij} and u_{ij} .

ITERATIVE METHODS

This iterative methods is not always successful to all systems of equations. If this method is to succeed, each equation of the system must possess one large coefficient and the large coefficient must be attached to a different unknown in that equation. This condition will be satisfied if the large coefficients are along the leading diagonal of the coefficient matrix. When this condition is satisfied, the system will be solvable by the iterative method. The system,

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} = b_{1}$$
$$a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} = b_{2}$$
$$a_{31}x_{1} + a_{32}x_{2} + a_{33}x_{3} = b_{3}$$

will be solvable by this method if

$$|a_{11}| > |a_{12}| + |a_{13}|$$

 $|a_{22}| > |a_{21}| + |a_{23}|$
 $|a_{33}| > |a_{31}| + |a_{32}|$

In other words, the solution will exist (iteration will converge) if the absolute values of the leading diagonal elements of the coefficient matrix A of the system AX=B are greater than the sum of absolute values of the other coefficients of that row. The condition is *sufficient* but not *necessary*.

JACOBI METHOD OF ITERATION OR GAUSS - JACOBI METHOD

Let us explain this method in the case of three equations in three unknowns.

Consider the system of equations,

$$a_1x+b_1y+c_1z = d_1$$

 $a_2x+b_2y+c_2z = d_2$
 $a_3x+b_3y+c_3z = d_3$ (1)

Let us assume

$$|b_2| > |a_2| + |c_2|$$

 $|c_3| > |a_3| + |b_3|$

 $|a_1| > |b_1| + |c_1|$

Then, iterative method can be used for the system (1). Solve for x, y, z (whose coefficients are the larger values) in terms of the other variables. That is,

$$x = \frac{\mathbf{1}}{\mathbf{a_1}} (d_l - b_l y - c_l z)$$

$$y = \frac{1}{b_2} (d_2 - a_2 x - c_2 z)$$
$$z = \frac{1}{C_2} (d_3 - a_3 x - b_3 y) \dots (2)$$

If x^{o} , y^{o} , z^{o} are the initial values of x, y, z respectively, then

$$x^{(1)} = \frac{1}{a_1} (d_1 - b_1 y^{(0)} - c_1 z^{(0)})$$
$$y^{(1)} = \frac{1}{b_2} (d_2 - a_2 x^{(0)} - c_2 z^{(0)})$$

Again using these values $x^{(2)}$, $y^{(2)}$, $z^{(2)}$ in (2), we get

$$x^{(2)} = \frac{1}{a_1} (d_1 - b_1 y^{(1)} - c_1 z^{(1)})$$

$$y^{(2)} = \frac{1}{b_2} (d_2 - a_2 x^{(1)} - c_2 z^{(1)})$$

$$z^{(2)} = \frac{1}{c_3} (d_3 - a_3 x^{(1)} - b_3 y^{(1)}) \dots (4)$$

Proceeding in the same way, if the rth iterates are $\chi^{(0)}$, $\chi^{(0)}$, $Z^{(0)}$, the iteration scheme reduces to

$$\begin{aligned} x^{(r+1)} &= \frac{1}{a_1} (d_1 - b_1 \mathcal{Y}^{(r)} - c_1 Z^{(r)}) \\ y^{(r+1)} &= \frac{1}{b_2} (d_2 - a_2 x^{(r)} - c_2 Z^{(r)}) \\ z^{(r+1)} &= \frac{1}{C_2} (d_3 - a_3 x^{(r)} - b_3 \mathcal{Y}^{(r)}) \dots (5) \end{aligned}$$

The procedure is continued till the convergence is assured (correct to required decimals).

GAUSS – SEIDEL METHOD OF ITERATION:

This is only a refinement of Guass – Jacobi method. As before,

$$x = \frac{1}{a_1} (d_1 - b_1 y - c_1 z)$$
$$y = \frac{1}{b_2} (d_2 - a_2 x - c_2 z)$$
$$z = \frac{1}{a_2} (d_3 - a_3 x - b_3 y)$$

We start with the initial values \mathcal{Y}° , \mathbf{z}° for y and z and get $\mathbf{x}^{(1)}$ from the first equation. That is,

$$x^{(1)} = \frac{1}{a_1} (d_l - b_l y^{(0)} - c_l z^{(0)})$$

While using the second equation, we use $Z^{(0)}$ for z and $x^{(1)}$ for x instead of x° as in Jacobi's method, we get

$$y^{(1)} = \frac{1}{b_2} (d_2 - a_2 x^{(1)} - c_2 z^{(0)})$$

Now, having known $x^{(1)}$ and $y^{(1)}$, use $x^{(1)}$ for x and $y^{(1)}$ for y in the third equation, we get

$$Z^{(1)} = \frac{1}{C_{a}} (d_{3} - a_{3} \chi^{(1)} - b_{3} \mathcal{Y}^{(1)})$$

In finding the values of the unknowns, we use the latest available values on the right hand side. If $\chi^{(0)}$, $\gamma^{(0)}$, $Z^{(0)}$ are the rth iterates, then the iteration scheme will be

$$\begin{aligned} x^{(r+1)} &= \frac{1}{a_1} (d_1 - b_1 \mathcal{Y}^{(r)} - c_1 \mathcal{Z}^{(r)}) \\ y^{(r+1)} &= \frac{1}{b_2} (d_2 - a_2 \mathcal{X}^{(r+1)} - c_2 \mathcal{Z}^{(r)}) \\ \mathcal{Z}^{(r+1)} &= \frac{1}{C_2} (d_3 - a_3 \mathcal{X}^{(r+1)} - b_3 \mathcal{Y}^{(r+1)}) \end{aligned}$$

This process of iteration is continued until the convergence assured. As the current values of the unknowns at each stage of iteration are used in getting the values of unknowns, the convergence in Gauss – seidel method is very fast when compared to Gauss – Jacobi method. The rate of convergence in Gauss – Seidel method is roughly two times than that of Gauss – Jacobi method. As we saw the sufficient condition already, the sufficient condition for the

convergence of this method is also the same as we stated earlier. That is, *the method of iteration will converge if in each equation of the given system, the absolute value of the largest* coefficient is greater than the sum of the absolute values of all the remaining coefficients. (The largest coefficients must be the coefficients for different unknowns).

Example 3 Solve the following system by Gauss – Jacobi and Gauss – Seidel methods:

10x-5y-2z = 3; 4x-10y+3z = -3; x+6y+10z = -3.

Solution: Here, we see that the diagonal elements are dominant. Hence, the iteration process can be applied.

That is, the coefficient matrix
$$\begin{bmatrix} 10 & -5 & -2 \\ 4 & -10 & 3 \\ 1 & 6 & 10 \end{bmatrix}$$
 is diagonally dominant, since $\begin{bmatrix} 10 \\ 9 \end{bmatrix}$ > $\begin{bmatrix} -5 \\ 1 \end{bmatrix}$ + $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$.

```
|-10| > |4| + |3|,
|10| > |1| + |6|
```

Gauss – Jacobi method, solving for x, y, z we have

First iteration: Let the initial values be (0, 0, 0).

Using these initial values in (1), (2), (3), we get

$$\begin{aligned} x^{(1)} &= \frac{1}{10} (3 + 5(0) + 2(0)) = 0.3 \\ y^{(1)} &= \frac{1}{10} (3 + 4(0) + 3(0)) = 0.3 \\ z^{(1)} &= \frac{1}{10} (-3 - (0) - 6(0)) = -0.3 \end{aligned}$$

Second iteration: using these values in (1), (2), (3), we get

$$x^{(2)} = \frac{1}{10} (3 + 5(0.3) + 2(-0.3)) = 0.39$$

$$y^{(2)} = \frac{1}{10} (3 + 4(0.3) + 3(-0.3)) = 0.33 \qquad z^{(2)} = \frac{1}{10} (-3 - (0.3) - 6(0.3)) = -0.51$$

Third iteration: using these values of $x^{(2)}$, $y^{(2)}$, $z^{(2)}$ in (1), (2), (3), we get,

$$x^{(3)} = \frac{1}{10} (3 + 5(0.33) + 2(-0.51)) = 0.363$$
$$y^{(3)} = \frac{1}{10} (3 + 4(0.39) + 3(-0.51)) = 0.303$$
$$z^{(3)} = \frac{1}{10} (-3 - (0.39) - 6(0.33)) = -0.537$$

Fourth iteration:

$$x^{(4)} = \frac{1}{10} (3 + 5(0.303) + 2(-0.537)) = 0.3441$$
$$y^{(4)} = \frac{1}{10} (3 + 4(0.363) + 3(-0.537)) = 0.2841$$
$$z^{(4)} = \frac{1}{10} (-3 - (0.363) - 6(0.303)) = -0.5181$$

Fifth iteration:

$$x^{(5)} = \frac{1}{10} (3 + 5(0.2841) + 2(-0.5181)) = 0.33843$$
$$y^{(5)} = \frac{1}{10} (3 + 4(0.3441) + 3(-0.5181)) = 0.2822$$
$$z^{(5)} = \frac{1}{10} (-3 - (0.3441) - 6(0.2841)) = -0.50487$$

Sixth iteration:

$$x^{(6)} = \frac{1}{10} (3 + 5(0.2822) + 2(-0.50487)) = 0.340126$$
$$y^{(6)} = \frac{1}{10} (3 + 4(0.33843) + 3(-0.50487)) = 0.283911$$

$$Z^{(6)} = \frac{1}{10} (-3 - (0.33843) - 6(0.2822)) = -0.503163$$

Seventh iteration:

$$x^{(7)} = \frac{1}{10} (3 + 5(0.283911) + 2(-0.503163)) = 0.3413229$$
$$y^{(7)} = \frac{1}{10} (3 + 4(0.340126) + 3(-0.503163)) = 0.2851015$$
$$z^{(7)} = \frac{1}{10} (-3 - (0.340126) - 6(0.283911)) = -0.5043592$$

Eighth iteration:

$$\boldsymbol{x^{(8)}} = \frac{1}{10} (3 + 5(0.2851015) + 2(-0.5043592))$$
$$= 0.34167891$$

$$y^{(8)} = \frac{1}{10} (3 + 4(0.3413229) + 3(-0.5043592))$$

= 0.2852214
$$z^{(8)} = \frac{1}{10} (-3 - (0.3413229) - 6(0.2851015))$$

= - 0.50519319

Ninth iteration:

$$\begin{aligned} x^{(9)} &= \frac{1}{10} (3 + 5(0.2852214) + 2 (-0.50519319)) \\ &= 0.341572062 \\ y^{(9)} &= \frac{1}{10} (3 + 4(0.34167891) + 3(-0.50519319)) \\ &= 0.285113607 \\ z^{(9)} &= \frac{1}{10} (-3 - (0.34167891) - 6(0.2852214)) = -0.505300731 \end{aligned}$$

Hence, correct to 3 decimal places, the values are

x = 0.342, y = 0.285, z = -0.505

Gauss – seidel method: Initial values : y = 0, z = 0.

First iteration:
$$x^{(1)} = \frac{1}{10} (3 + 5(0) + 2(0)) = 0.3$$

 $y^{(1)} = \frac{1}{10} (3 + 4(0.3) + 3(0)) = 0.42$
 $z^{(1)} = \frac{1}{10} (-3 - (0.3) - 6(0.42)) = -0.582$

Second iteration:

$$x^{(2)} = \frac{1}{10} (3 + 5(0.42) + 2(-0.582)) = 0.3936$$
$$y^{(2)} = \frac{1}{10} (3 + 4(0.3936) + 3(-0.582)) = 0.28284$$
$$z^{(2)} = \frac{1}{10} (-3 - (0.3936) - 6(0.28284)) = -0.509064$$

Third iteration:

 $\chi^{(3)} = \frac{1}{10} (3 + 5(0.28284) + 2(-0.509064)) = 0.3396072 \mathcal{Y}^{(3)} = \frac{1}{10} (3 + 4(0.3396072) + 3(-0.509064)) = 0.28312368$

$$Z^{(3)} = \frac{1}{10} (-3 - (0.3396072) - 6(0.28312368))$$

= - 0.503834928

Fourth iteration:

$$x^{(4)} = \frac{1}{10} (3 + 5(0.28312368) + 2(-0.503834928))$$

= 0.34079485
$$y^{(4)} = \frac{1}{10} (3 + 4(0.34079485) + 3(-0.503834928))$$

= 0.285167464
$$z^{(4)} = \frac{1}{10} (-3 - (0.34079485) - 6(0.285167464))$$

= - 0.50517996

Fifth iteration:

$$\begin{aligned} x^{(5)} &= \frac{1}{10} (3 + 5(0.285167464) + 2(-0.50517996))) \\ &= 0.34155477 \\ y^{(5)} &= \frac{1}{10} (3 + 4(0.34155477) + 3(-0.50517996))) \\ &= 0.28506792 \\ z^{(5)} &= \frac{1}{10} (-3 - (0.34155477) - 6(0.28506792)) \\ &= -0.505196229 \end{aligned}$$

Sixth iteration:

$$\begin{aligned} x^{(6)} &= \frac{1}{10} (3 + 5(0.28506792) + 2(-0.505196229)) \\ &= 0.341494714 \\ y^{(6)} &= \frac{1}{10} (3 + 4(0.341494714) + 3(-0.505196229)) \\ &= 0.285039017 \\ z^{(6)} &= \frac{1}{10} (-3 - (0.341494714) - 6(0.28506792)) \\ &= -0.5051728 \end{aligned}$$

Seventh iteration:

$$\begin{aligned} x^{(7)} &= \frac{1}{10} (3 + 5(0.285039017) + 2(-0.5051728)) \\ &= 0.3414849 \\ y^{(7)} &= \frac{1}{10} (3 + 4(0.3414849) + 3(-0.5051728)) \\ &= 0.28504212 \\ z^{(7)} &= \frac{1}{10} (-3 - (0.3414849) - 6(0.28504212)) \\ &= -0.5051737 \end{aligned}$$

Iterat	Gauss - jacobi method			Gauss – seidel method		
ion						
	x	у	Z.	<i>x</i>	у	Z,
	л	y	4.	л	y	2,
1	0.3	0.3	-0.3	0.3	0.42	-0.582
2	0.39	0.33	-0.51	0.3936	0.2828	-0.5090
3	0.363	0.303	-0.537	0.3396	0.2831	-0.5038
4	0.3441	0.2841	-0.5181	0.3407	0.2851	-0.5051
5	0.3384	0.2822	-0.5048	0.3415	0.2850	-0.5051
6	0.3401	0.2839	-0.5031	0.3414	0.2850	-0.5051
7	0.3413	0.2851	-0.5043	0.3414	0.2850	-0.5051
8	0.3416	0.2852	-0.5051			
9	0.3411	0.2851	-0.5053			

The values at each iteration by both methods are tabulated below:

The values correct to 3 decimal places are

x = 0.342, y = 0.285, z = -0.505

Possible Questions

Part -B (5x8=40 Marks)

- 1. Solve the following system by Gauss elimination method.
 - $\begin{array}{rcl} x + 2y + z &=& 3\\ 2x + 3y + 3z &=& 10\\ 3x y + 2z &=& 13 \end{array}$
- 2. Solve the following system by Gauss elimination method

 $\begin{array}{l} x + y + z + w &= 2 \\ 2x - y + 2z - w &= -5 \\ 3x + 2y + 3z + 4w &= 7 \\ x - 2y - 3z + 2w &= 5 \end{array}$

3. Solve the following system by Gauss Jordan method

 $\begin{array}{rll} 10x+y+z & = 12 \\ x+10y+z & = 12 \\ x+y+10z & = 12 \end{array}$

- 4. Solve the following system by Gauss Jordan method
- 5. Solve the following system by triangularisation method.

$$5x - 2y + z = 4 7x + y - 5z = 8 3x + 7y + 4z = 10$$

6. Solve the following system by triangularisation method.

$$\begin{array}{l} 5x-2y+z=4\\ 7x+y-5z=8\\ 3x+7y+4z=10 \end{array}$$

7. Solve the following system of equations by Crout's method.

$$2x + 3y + z = -1$$

 $5x + y + z = 9$
 $3x + 2y + 4z = 11$

8. Solve the following system of equations by Gauss-Jacobi method 10x - 5y - 2z = 3

4x - 10y + 3z = -3x + 6y + 10z = -3 9. Solve the following system of equations by Gauss-seidal method 28x + 4y - z = 32

28x + 4y - 2 = 52x + 3y + 10z = 242x + 17y + 4z = 35

10. Solve the following system of equations by Gauss-Seidel method

8x - 3y + 2z = 20 4x + 11y - z = 336x + 3y + 12z = 35

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021 DEPARTMENT OF MATHEMATICS

Subject: Numerical Methods	Subject Code: 15MMU503	LTPC
Class:III B.Sc-B	Semester:V	4 1 0 4

UNIT III

Finite Difference: First and higher order differences – Forward and Backward differences –Properties of operator – Difference of a polynomial – Factorial polynomial – Error Propagation in difference table – operator E – Relation between Δ , E and D.

TEXT BOOK:

T1: Venkataraman .M.K., Fifth Edition, 2001. Numerical Methods in Science and Engineering National publishing Company ,Madras.

REFERENCES:

R3: Kandaswamy.P, Thilagavathy K., and K.Gunavathy. 2013. Numerical Methods, S.Chand & Company Ltd.,New Delhi.

UNIT-III

FINITE DIFFERENCES

First Differences:

Let y=f(x) be a give function of x and let y0,y1,y2....yn be the values of y corresponding to x0,x1,x2....xn

The values of x. the independent variable x is called the argument and the corresponding dependent value y is called the entyr. In general the difference between any two consecutive values of x need not be same or equal.

Forward, backward, and central differences

Only three forms are commonly considered: forward, backward, and central differences.

A forward difference is an expression of the form

$$\Delta_h[f](x) = f(x+h) - f(x).$$

Depending on the application, the spacing h may be variable or constant.

A **backward difference** uses the function values at *x* and x - h, instead of the values at x + h and *x*:

$$\nabla_h[f](x) = f(x) - f(x - h).$$

Finally, the **central difference** is given by

$$\delta_h[f](x) = f(x + \frac{1}{2}h) - f(x - \frac{1}{2}h).$$

Relation with derivatives

The derivative of a function f at a point x is defined by the limit

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

If h has a fixed (non-zero) value, instead of approaching zero, then the right-hand side is

$$\frac{f(x+h) - f(x)}{h} = \frac{\Delta_h[f](x)}{h}.$$

Hence, the forward difference divided by h approximates the derivative when h is small. The error in this approximation can be derived from Taylor's theorem. Assuming that f is continuously differentiable, the error is

$$\frac{\Delta_h[f](x)}{h} - f'(x) = O(h) \quad (h \to 0).$$

The same formula holds for the backward difference:

$$\frac{\nabla_h[f](x)}{h} - f'(x) = O(h).$$

However, the central difference yields a more accurate approximation. Its error is proportional to square of the spacing (if f is twice continuously differentiable):

$$\frac{\delta_h[f](x)}{h} - f'(x) = O(h^2).$$

The main problem with the central difference method, however, is that oscillating functions can yield zero derivative. If f(nh)=1 for n uneven, and f(nh)=2 for n even, then f'(nh)=0 if it is calculated with the central difference scheme. This is particularly troublesome if the domain of f is discrete.

Higher-order differences

In an analogous way one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f'(x + h / 2) and f(x - h / 2) and applying a central difference formula for the derivative of f' at x, we obtain the central difference approximation of the second derivative of f:

2nd Order Central

$$f''(x) \approx \frac{\delta_h^2[f](x)}{h^2} = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}.$$

Similarly we can apply other differencing formulas in a recursive manner. 2nd Order Forward

$$f''(x) \approx \frac{\Delta_h^2[f](x)}{h^2} = \frac{f(x+2h) - 2f(x+h) + f(x)}{h^2}.$$

More generally, the n^{th} -order forward, backward, and central differences are respectively given by:

$$\begin{aligned} \Delta_h^n[f](x) &= \sum_{i=0}^n (-1)^i \binom{n}{i} f(x+(n-i)h), \\ \nabla_h^n[f](x) &= \sum_{i=0}^n (-1)^i \binom{n}{i} f(x-ih), \\ \delta_h^n[f](x) &= \sum_{i=0}^n (-1)^i \binom{n}{i} f\left(x+\left(\frac{n}{2}-i\right)h\right) \end{aligned}$$

Note that the central difference will, for odd *n*, have *h* multiplied by non-integers. This is often a problem because it amounts to changing the interval of discretization. The problem may be remedied taking the average of $\delta^n[f](x - h/2)$ and $\delta^n[f](x + h/2)$.

The relationship of these higher-order differences with the respective derivatives is very straightforward:

$$\frac{d^n f}{dx^n}(x) = \frac{\Delta_h^n[f](x)}{h^n} + O(h) = \frac{\nabla_h^n[f](x)}{h^n} + O(h) = \frac{\delta_h^n[f](x)}{h^n} + O(h^2).$$

Higher-order differences can also be used to construct better approximations. As mentioned above, the first-order difference approximates the first-order derivative up to a term of order h. However, the combination

$$\frac{\Delta_h[f](x) - \frac{1}{2}\Delta_h^2[f](x)}{h} = -\frac{f(x+2h) - 4f(x+h) + 3f(x)}{2h}$$

approximates f'(x) up to a term of order h^2 . This can be proven by expanding the above expression in Taylor series, or by using the calculus of finite differences, explained below.

If necessary, the finite difference can be centered about any point by mixing forward, backward, and central differences.

Relations between Difference operators

1. We note that

$$Ef(x) = f(x+h) = [f(x+h) - f(x)] + f(x) = \Delta f(x) + f(x) = (\Delta + 1)f(x).$$

Thus,

$$\label{eq:expansion} E \equiv 1 + \Delta \quad \mbox{ or } \quad \Delta \equiv E - 1.$$

2. Further,
$$\nabla(E(f(x)) = \nabla(f(x+h)) = f(x+h) - f(x)$$
. Thus,

$$(1 - \nabla)Ef(x) = E(f(x)) - \nabla(E(f(x))) = f(x + h) - [f(x + h) - f(x)] = f(x).$$

 $E \equiv 1 + \Delta,$ gives us

$$(1 - \nabla)(1 + \Delta)f(x) = f(x)$$
 for all x.

So we write,

$$(1+\Delta)^{-1}=1-\nabla$$
 or $\boxed{\nabla=1-(1+\Delta)^{-1}},$ and
$$(1-\nabla)^{-1}=1+\Delta=E.$$

Similarly,

$$\Delta = (1 - \nabla)^{-1} - 1.$$

 $E^{\frac{1}{2}}f(x) = f(x + \frac{h}{2}).$ Then, we see that

$$\delta f(x) = f(x + \frac{h}{2}) - f(x - \frac{h}{2}) = E^{\frac{1}{2}}f(x) - E^{-\frac{1}{2}}f(x)$$

Thus,

$$\delta = E^{rac{1}{2}} - E^{-rac{1}{2}}.$$

Recall,

$$\delta^2 f(x) = f(x+h) - 2f(x) + f(x-h) = [f(x+h) + 2f(x) + f(x-h)] - 4f(x) = 4(\mu^2 - 1)f(x) - 4f(x) = 4(\mu^2 - 1)f(x) - 4f(x) - 4$$

So, we have,

$$\mu^2 \equiv \frac{\delta^2}{4} + 1 \quad \text{or} \quad \mu \equiv \sqrt{1 + \frac{\delta^2}{4}}$$

$$\sqrt{1 + \frac{\delta^2}{4}} \qquad \mu$$

That is, the action of

is same as that of μ .

4. We further note that,

$$\Delta f(x) = f(x+h) - f(x) = \frac{1}{2} [f(x+h) - 2f(x) + f(x-h)] + \frac{1}{2} [f(x+h) - f(x-h)]$$
$$= \frac{1}{2} \delta^2(f(x)) + \frac{1}{2} [f(x+h) - f(x-h)]$$

5. and

$$\begin{split} \delta \mu f(x) &= \delta \left[\frac{1}{2} \left\{ f(x + \frac{h}{2}) + f(x - \frac{h}{2}) \right\} \right] = \frac{1}{2} \left[\{ f(x + h) - f(x) \} + \{ f(x) - f(x - h) \} \right] \\ &= \frac{1}{2} \left[f(x + h) - f(x - h) \right]. \end{split}$$

6.

$$\Delta f(x) = \left[\frac{1}{2}\delta^2 + \delta\mu\right]f(x),$$

7.

8. In view of the above discussion, we have the following table showing the relations between various difference operators:

	E	Δ	∇	δ
Е	E	$\Delta + 1$	$(1 - \nabla)^{-1}$	$\frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{\delta^2}{4}} + 1$
Δ	E-1	Δ	$(1 - \nabla)^{-1} - 1$	$\frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{1}{4}\delta^2}$
∇	$1 - E^{-1}$	$1 - (1 + \nabla)^{-1}$	∇	$-\tfrac{1}{2}\delta^2 + \delta\sqrt{1+\tfrac{1}{4}\delta^2}$
б	$E^{1/2} - E^{-1/2}$	$\Delta(1+\Delta)^{-1/2}$	$\nabla(1-\nabla)^{-1/2}$	δ

Difference of a polynomial:

Theorem:

The nth difference of a polynomial of nth degree are constants.

Proof

We have a polynomial f(x), where, in fact, the x's are specific values

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-2} x^2 + a_{n-1} x + a_n$$
[2.01]

Suppose the steps along the x axis are h. The next f(x) value at x+h is:

$$f(x+h) = a_0 (x+h)^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-2} (x+h)^2 + a_{n-1} (x+h) + a_n$$
[2.02]

We recall, by definition:

$$\Delta f(x) = f(x+h) - f(x)_{[2.03]}$$

That is, the difference is equation 2.02 minus equation 2.01:

$$\Delta f(x) = \{a_0 (x+h)^n - a_0 x^n\} + \{a_1 (x+h)^{n-1} - a_1 x^{n-1}\} + \{a_2 (x+h)^{n-2} - a_2 x^{n-2}\} + \dots \{a_{n-2} (x+h)^2 - a_{n-2} x^2\} + \{a_{n-1} (x+h) - a_{n-1} x\} \{a_n - a_n\}$$

[2.03]

If we expand the left-hand parts of each term, we find:

$$= a_0 \{x^n + n \cdot x^{n-1} h \dots - x^n\} + a_1 \{x^{n-1} + (n-1) x^{n-2} h - x^{n-1}\} + a_2 \{x^{n-2} + (n-2) x^{n-2} h \dots - x^{n-2}\} + \dots + a_{n-2} \{x^2 + 2 x h + h^2 - x^2\} + a_{n-1} \{(x+h) - x\} + \{a_n - a_n\}$$

[2.04]

The last term, a_n cancels, leaving a new constant, $a_{n-1}h$, (which will cancel out in the 2nd difference):

$$= a_0 \{n \cdot x^{n-1} h \dots\} + a_1 \{(n-1) \cdot x^{n-2} h\} + a_2 \{(n-2) \cdot x^{n-3} h \dots\} + \dots + a_{n-2} (2 \cdot x h + h^2) + a_{n-1} h + a_$$

Therefore for a polynomial of degree n, step h

 $\Delta f(x) = n a_0 x^{n-1} h + \text{terms of degree } n-2 \text{ and lower } [2.06]$

This is reminiscent of:

$$\frac{d}{dx}\left(x^{n}\right) = n x^{n-1}$$
[2.07]

Applying 2.06 again, we get:

$$\Delta^2 f(x) = n(n-1)a_0 x^{n-2} h^2 + \text{terms of degree } n-3 \text{ and lower } [2.07]$$

If we apply the formula 2.06 n times, we have:

$$\Delta^{n} f(x) = a_{0} n(n-1)(n-2)...1.h^{n}$$

Or

$$\Delta^n f(x) = a_0 n! h^n$$

Note:

1. Of course, because this is a constant (it is independent of x), the n+1 difference and further differences will be zero, so:

$$\Delta^{n+1}f(x) = 0$$

2. When h=1, we can write for a polynomial of degree n: $\Delta^{n} f(x) = a_{0} n!$

Factorial Polynomial:

A factorial polynomial looks like this:

 $f(k) \text{ or } k^{(2)} = k(k-1)$ $f(k) \text{ or } k^{(3)} = k(k-1)(k-2)$ In general a factorial polynomial of degree n, $(y_k \text{ or } k^n)$ is:

$$k^{(n)} = k (k - h) (k - 2 h) \dots (k - n h) (k - (n - 1) h) [1.01]$$

We assume that n is an integer greater than zero (A natural number). We can call this k to the n falling (because there is a rising version!) with step h. k to the n+1 falling is:

$$(k+1)^{(n)} = (k+1)k(k-h)(k-2h)...(k-nh)(k-(n-1)h-h)$$

Which, simplifying the last term: $(k + 1)^{(n)} = (k + 1) k (k - h) (k - 2h) ... (k - nh)_{[1.02]}$ $k^{(0)}$ is defined as 1

Finding the First Difference

By definition, the first difference for the factorial polynomial, $k^{(n)}$, is $\Delta k^{(n)} = (k+1)^{(n)} - k^{(n)}_{[1.03]}$

Substituting our values from 1.01 and 1.02 for k^{n+1} and k^n in 1.03:

$$\Delta k^{(n)} = \left[(k+1) \, k \, (k-h) \, (k-2h) \dots (k-nh+h) \, (k-nh) \right] - \left[k \, (k-h) \, (k-2h) \dots (k-2h) \dots (k-nh) \right]$$
[1.04]

Factorising gives us:

$$\Delta k^{(n)} = k (k - h) (k - 2 h) \dots (k - n h) (k - n h) [(k + h) - (k - (n - 1) h)]$$
[1.05]

And further simplifying the final term by cancelling the x's and rounding up the h's:

$$\Delta k^{(n)} = k (k - h) (k - 2h) \dots (k - nh + h) (k - nh) [nh]_{[1.06]}$$

We note that, substituting n-1 for n in 1.06:

$$k^{(n-1)} = k(k-h)(k-2h)...(k-nh)(k-(n-1+1)h)$$

Simplifying the final factor:

$$k^{(n-1)} = k (k-h) (k-2h) \dots (k-nh+h) (k-nh)_{[1.07]}$$

First Difference and General Formula for n>0

From 1.06 substituting 1.07, we have:

$$\Delta k^{(n)} = n \cdot h \cdot k^{(n-1)} [1.08]$$

So we can determine any of the differences using 1.08, for instance:

$$\Delta^{2} k^{(n)} = n \cdot (n-1) \cdot h^{2} \cdot k^{(n-2)}$$

$$\Delta^{3} k^{(n)} = n \cdot (n-1) \cdot (n-2) \cdot h^{3} \cdot k^{(n-3)}$$

In general, the mth difference is:

$$\Delta^{m} k^{(n)} = n \cdot (n-1) \cdot (n-2) \dots (n-m+1) \cdot h^{m} \cdot k^{(n-m)}$$
[1.09]

This is reminiscent of differentiating using the infinitesimal calculus.

$$d_{dx}(x^n) = nx^{n-1}$$
[1.10]

1.08 also reminds us of similar result for regular polynomials, repeated below:

 $\Delta f(x) = na_0 x^{n-1} h + \text{terms of degree n-2 and lower}$ With regular polynomials, the difference isn't so neat as that with factorial polynomials. However, we can convert regular polynomials to factorials and obtain clearer results for differences.

Often, the factorial polynomials we use have a step of 1, or h=1, so:

k⁽ⁿ⁾=**k**(**k-1**)(**k-2**)...(**k-n**)(**k-n+1**) [1.11]

And the mth difference when h=1 is:

$$\Delta^{m} k^{(n)} = n \cdot (n-1) \cdot (n-2) \dots (n-m+1) \cdot k^{(n-m)} [1.12]$$

Possible Questions

Part-B (5x8=40 Marks)

- 1. Find y(-1) if y(0) = 2, y(1) = 9, y(2) = 28, y(3) = 65, y(4) = 126, y(5) = 217.
- 2. Find the 7thterm of the sequence 2,9,28,65,126,217 and also. Find the General term.
- 3. i) Explain the Relation between Δ , E and D
 - ii) Find the first term of the series whose second and subsequent
 - terms are 8, 3, 0, -1, 0, ...
- 4. Find $\Delta^3 f(x)$ if

i)
$$f(x) = (3x+1)(3x+4)\dots(3x+19)$$

ii) $f(x) = x(3x+1)(3x+4)\dots(3x+19)$

5. Evaluate i) $\Delta^{n}(e^{ax+b})$ ii) $\Delta^{n}[sin(ax+b)]$

iii) $\Delta^{n}[\cos(ax+b)]$ iv) $\Delta[\log(ax+b)]$ 6. Express i) $x^{4} + 3x^{3} - 5x + 6x - 7$

ii) $x^3 + x^2 + x + 1$ in factorial polynomials and get their successive differences taking h = 1.

7. Estimate the production for 1964 & 1966 from the following data

Year	:	1961	1962	1963	1964	1965	1966	1967
Production	n :	200	220	260	-	350	-	430

8. Prove that nth difference of a polynomial of the nth degree are constants.

9. The following table gives the values of y which is a polynomial of degree 5. It is known	
that $y = f(3)$ is in error. Correct the error.	

2	< /							
	x : 0	1	2	3	4	5	6	
	y:1	2	33	254	1025	3126	7777	
10. If $y = f(x)$	x) is a po	lynom	ial of de	egree 3 a	nd the fo	ollowing	g table	gives the values of x & y.
Loca	te and c	orrect t	he wroi	ng values	s of y.			
x: 0	1	2	3	4	5	6		
y: 4	10	30	75	160	294	490		

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021 DEPARTMENT OF MATHEMATICS

Subject: Numerical Methods	Subject Code: 15MMU503	LTPC
Class:III B.Sc-B	Semester:V	4 1 0 4

UNIT-IV

Interpolation: Gregory Newton Forward and Newton Backward interpolation formula – Equidistant terms with one or more missing values – Interpolation with unequal intervals – Divided differences –Newton's divided difference formula – Lagrange's interpolation formula – Inverse interpolation formula.

TEXT BOOK:

T1: Venkataraman .M.K., Fifth Edition, 2001. Numerical Methods in Science and Engineering National publishing Company ,Madras.

REFERENCES:

R1:Jain.M.K., Iyengar.S.R.K.,and R.K.Jain.,Jain.,2000.Numerical Methods Scientific and Engineering Computation, New Age International Publishers, New Delhi.

R2: Vedamurthy V.N, N.Ch.S.N.Iyenger., 2008.Numerical Methods, Vikas Publishing House Pvt.Ltd.New Delhi.

R3: Kandaswamy.P, Thilagavathy K., and K.Gunavathy. 2013. Numerical Methods, S.Chand & Company Ltd.,New Delhi.

UNIT-IV INTERPOLATION

Introduction

Interpolation means the process of computing intermediate values of a function a given set of tabular values of a function. Suppose the following table represents a set of values of x and y.

$\mathbf{x}:\mathbf{x}_1$	X2	X3Xn
$\mathbf{y}:\mathbf{y}_1$	y ₂	y3yn

We may require the value of $y = y_i$ for the given $x = x_i$, where x lies between x_0 to x_n Let y = f(x) be a function taking the values $y_0, y_1, y_2, ..., y_n$ corresponding to the *values* $x_0, x_1, x_2, ..., x_n$. Now we are trying to find $y = y_i$ for the given $x = x_i$ under assumption that the function f(x) is not known. In such cases , we replace f(x) by simple fan arbitrary function and let $\Phi(x)$ denotes an arbitrary function which satisfies the set of values given in the table above . The function $\Phi(x)$ is called interpolating function or smoothing function or interpolation formula.

Newton's forward interpolation formula (or) Gregory-Newton forward interpolation formula (for equal intervals)

Let y = f(x) denote a function which takes the values y_0 , y_1 , y_2 ..., y_n corresponding to the values x_0 , x_1 , x_2 ..., x_n .

Let suppose that the values of x i.e., x_0 , x_1 , x_2 , x_n are equidistant .

 $x_1 = x_0 + h$; $x_2 = x_1 + h$; and so on $x_n = x_{n-1} + h$;

Therefore xi = x0 + ih, where $i = 1, 2, \dots, n$

Let $P_n(x)$ be a polynomial of the nth degree in which x is such that

 $y_I = f(x_i) = P_n(x_i), I = 0, 1, 2, \dots, n$

Let us assume Pn(x) in the form given below

$$P_n(\mathbf{x}) = a_0 + a_1 (x - x_0)^{(1)} + a_2 (x - x_0)^{(2)} + \dots + a_r (x - x_0)^{(r)} + \dots + a_$$

+..... + $a_{n}(x-x_0)^{(n)}$ (1)

This polynomial contains the n + 1 constants $a_0, a_1, a_2, \dots, a_n$ can be found as follows :

 $P_n(x_0) = y_0 = a_0$ (setting x = x0, in (1))

Similarly $y_1 = a_0 + a_1 (x_1 - x_0)$

$$y_2 = a_0 + a_1 (x_2 - x_0) + a_2 (x_2 - x_0)$$

From these, we get the values of a_{0} , a_{1} , a_{2} , ..., a_{n}

i.e.,

Therefore, $a_0 = y_0$

 $\Delta y_0 = y_1 - y_0 = a_1 (x_1 - x_0)$ $= a_1 h$

lly

$$=>a_1$$
 $=\Delta y_0 /h$

$$=>a_2 = (\Delta y_1 - \Delta y_0) / 2h^2 = \Delta^2 y_0 / 2! h^2$$

lly

$$=> a_3 = \Delta^3 y_0 / 3! h^3$$

Unit-IV

Putting these values in (1), we get

$$P_{n}(\mathbf{x}) = y_{0} + (x - x_{0})^{(1)} \Delta y_{0} / h + (x - x_{0})^{(2)} \Delta^{2} y_{0} / (2! h^{2}) + \dots + (x - x_{0})^{(r)} \Delta^{r} y_{0} / (r! h^{r}) + \dots + (x - x_{0})^{(n)} \Delta^{r} y_{0} / (n! h^{n})$$

By substituting $_$ = u, the above equation becomes h

$$y(x_0 + uh) = y_u = y_0 + u \Delta y_0 + u (u-1) \Delta^2 y_0 + u (u-1)(u-2) \Delta^3 y_0 + \dots \dots$$

2! 3!

By substituting $u = u^{(1)}$, $u (u-1) = u^{(2)}$, $u(u-1)(u-2) = u^{(3)}$, ... in the above equation, we get

$$P_n(x) = P_n y(x_0 + uh) = y_0 + u^{(1)} \Delta y_0 + u^{(2)} \Delta^2 y_0 + u^{(3)} \Delta^3 y_0 + \dots + u^{(r)} \Delta^r y_0 + \dots + u^{(n)} \Delta^n y_0$$

$$2! \qquad 3! \qquad r! \qquad n!$$

The above equation is known as **Gregory-Newton forward formula or Newton's** forward interpolation formula.

Note: 1. This formula is applicable only when the interval of difference is uniform.

2. This formula apply forward differences of y_0 , hence this is used to interpolate the values of y nearer to beginning value of the table (i.e., x lies between x0 to ^x1 or x1 to x_2)

Example.

Find the values of y at x = 21 from the following data.

0.3420	23	26	
	0.3907		
	0.4384		
	29		
	0.4848		

Solution.

Unit-IV

Step 1.Since x = 21 is nearer to beginning of the table. Hence we apply Newton's forward formula.

Step 2. Construct the difference table

Х	У	Δy_0	$\Delta^2 y_0$	$\Delta^3 y_0$
20	0.3420	(0.3420-0.39	07)	
		0.0487	(0.0477 - 0.0487)	
23	0.3907		-0.001	
		0.0477		-0.0003
26	0.4384		-0.0013	
		0.0464		
29	0.4848			

Step 3. Write down the formula and put the various values :

$$P_{n}(x) = P_{n}y(x_{0} + uh) = y_{0} + u^{(1)}\Delta y_{0} + u^{(2)}\Delta^{2}y_{0} + u^{(3)}\Delta^{3}y_{0} + \dots + u^{(r)}\Delta^{r}y_{0} + \dots + u^{(n)}\Delta^{n}y_{0}$$

$$2! \qquad 3! \qquad r! \qquad n!$$
Where $u^{(1)} = (x - x_{0}) / h = (21 - 20) / 3 = 0.3333$

$$\underline{u}(2) = \underline{u}(u - 1) = (0.3333)(0.66666)$$

$$P_n (x=21) = y(21) = 0.3420 + (0.3333)(0.0487) + (0.3333)(-0.6666)(-0.001) + (0.3333)(-0.6666)(-1.6666)(-0.0003)$$

= **0.3583**

Example: From the following table of half yearly premium for policies maturing at different ages, estimate the premium for policies maturing at age 46.

Age	x:	45	50	55	60	65
Premium	y:	114.84	96.16	83.32	74.48	68.48

Solution.

Step 1.Since x = 46 is nearer to beginning of the table and the values of x is equidistant i.e., h = 5. Hence we apply Newton's forward formula.

Step 2. Construct the difference table

Х	У	Δy_0	$\Delta^2 y_0$	$\Delta^3 y_0$	$\Delta^4 y_0$
45	114.84	10.00			
		-18.68			
50	96.16		5.84		
		-12.84		-1.84	
55	83.12		4.00		0.68
		-8.84		-1.16	0.08
60	74.48		2.84		
		-6.00			
65	68.48				

Step 3. Write down the formula and put the various values :

$$P_n(x) = P_n y(x_0 + uh) = y_0 + u^{(1)} \Delta y_0 + u^{(2)} \Delta^2 y_0 + u^{(3)} \Delta^3 y_0 + \dots + u^{(r)} \Delta^r y_0 + \dots + u^{(n)} \Delta^n y_0$$

2! 3! r! n!

Where
$$u = (x - x_0) / h = (46 - 45) / 5 = 01/5 = 0.2$$

$$P_n (x=46) = y(46) = 114.84 + [0.2 (-18.68)] + [0.2 (-0.8) (5.84)/3] + [0.2 (-0.8) (-1.8)(-1.84)/6] + [0.2 (-0.8) (-1.8)(-2.8)(0.68)] = 114.84 - 3.7360 - 0.4672 - 0.08832 - 0.228$$

= 110.5257

Example. From the following table , find the value of $\tan 45^{\circ} 15$ '

	\mathbf{x}^{0} :	45	46	47	48	49	50
tan	\mathbf{x}^{0} :	1.0	1.03553	1.07237	1.11061	1.15037	1.19175

Solution.

Step 1.Since $x = 45^{\circ} 15$ ' is nearer to beginning of the table and the values of x is equidistant i.e., h = 1. Hence we apply Newton's forward formula.

Step 2. Construct the difference table to find various Δ 's

Х	У	Δy_0	$\Delta^2 y_0$	$\Delta^3 y_0$	$\Delta^4 y_0$	$\Delta^5 y_0$
45^{0}	1.0000	0.03553				
460	1.03553		0.00131	0.00000		
47^{0}	1.07237	0.03684	0.00140	0.00009	0.00003	
48^0	1.11061	0.03824	0.00152	0.00012	-0.00002	-0.00005
49^{0}	1.15037	0.03976	0.00162	0.00010		
50 ⁰	1.19175	0.04138				

Step 3. Write down the formula and substitute the various values : $P_{n}(x) = P_{n}y(x_{0} + uh) = y_{0} + u^{(1)}\Delta y_{0} + u^{(2)}\Delta^{2}y_{0} + u^{(3)}\Delta^{3}y_{0} + \dots + u^{(r)}\Delta^{r}y_{0} + \dots + u^{(n)}\Delta^{n}y_{0}$ $2! \qquad 3! \qquad r! \qquad n!$

Where $u = (45^{\circ} 15' - 45^{\circ}) / 1^{\circ}$ = 15' / 1[°] = 0.25(since 1[°] = 60 ')

 $y (x=45^{\circ} 15') = P_5 (45^{\circ} 15') = 1.00 + (0.25)(0.03553) + (0.25)(-0.75)(0.00131)/2$ + (0.25)(-0.75)(-1.75)(0.00009)/6+ (0.25)(-0.75)(-1.75)(-2.75)(0.0003)/24+ (0.25)(-0.75)(-1.75)(-2.75)(-3.75)(-0.00005)/120= 1.000 + 0.0088825 - 0.0001228 + 0.0000049 = **1.00876**

Newton's backward interpolation formula (or) Gregory-Newton backward interpolation formula (for equal intervals)

Let y = f(x) denote a function which takes the values $y_0, y_1, y_2, \dots, y_n$ corresponding to the values $x_0, x_1, x_2, \ldots, x_n$.

Let suppose that the values of x i.e., x_0 , x_1 , x_2 , x_n are equidistant . $x_1 = x_0 + h$; $x_2 = x_1 + h$; and so on $x_n = x_{n-1} + h$;

Therefore xi = x0 + ih, where $i = 1, 2, \dots, n$

Let $P_n(x)$ be a polynomial of the nth degree in which x is such that $y_I = f(x_i) = P_n(x_i), I = 0, 1, 2, \dots, n$

 $P_n(\mathbf{x}) = a_0 + a_{1}(x - x_n)^{(1)} + a_{2}(x - x_n)(x - x_{n-1})^{(1)} + \dots \dots$ + $a_n(x-x_n)(x-x_{n-1})$ (x-x_1)(1)

Let us assume Pn(x) in the form given below Let us assume Fn(x) in the form given below $P_n(x) = a_0 + a_1(x - x_n)^{(1)} + a_2(x - x_n)^{(2)} + \dots + a_r(x - x_n)^{(r)} + \dots + a_n(x - x_n)^{(n)} \dots \dots (1.1)$

This polynomial contains the n + 1 constants $a_0, a_1, a_2, \dots, a_n$ can be found as follows :

 $P_n(x_n) =$ (setting x = xn, in (1)) $y_n = a_0$ $y_{n-1} = a_0 + a_1 (x_{n-1} - x_n)$ Similarly $y_{n-2} = a_0 + a_1 (x_{n-2} - x_n) + a_2 (x_{n-2} - x_n)$

From these, we get the values of $a_0, a_1, a_2, \dots, a_n$ Therefore, $a_0 = y_n$

$$y_{n} = y_{n} - y_{n} - 1 = a_{1}(x_{n-1} - x_{n})$$

$$= a_{1}h$$

$$= a_{1} = y_{n}/h$$

$$= a_{2} = (y_{1} - y_{n})/2h^{2} = \frac{2}{y_{n}}/2!h^{2}$$

lly
$$=> a_3 = \sqrt[3]{3!} h^3$$

Unit-IV

Putting these values in (1), we get

$$P_{n}(\mathbf{x}) = y_{n} + (x - x_{n})^{(n)} \tilde{y}_{n} / h + (x - x_{n})^{(2)} \tilde{y}_{n} / (2! h^{2}) + (x - x_{n})^{(r)} \tilde{y}_{n} / (r! h^{r}) + \dots + (x - x_{n})^{(n)} \tilde{y}_{n} / (n! h^{n})$$

By substituting $\frac{x - x_n}{h} = v$, the above equation becomes

$$y(x_n + vh) = y_n + v \, y_n + v \, (v+1)^{-2} y_n + v \, (v+1)(v+2)^{-3} y_n + \dots \dots$$

By substituting $v = v^{(1)}$,

$$v(v+1) = v^{(2)},$$

 $v(v+1)(v+2) = v^{(3)}, ... in the above equation, we get$

$$P_{n}(x) = P_{n}y(x_{n} + vh) = y_{n} + v^{(1)} y_{n} + v^{(2)} y_{n} + v^{(3)} y_{n} + \dots + v^{(r)} y_{n} + \dots + v^{(n)}\Delta^{n}y_{n}$$

$$2! \qquad 3! \qquad r! \qquad n!$$

The above equation is known as **Gregory-Newton backward formula or Newton's** backward interpolation formula.

Note: 1. This formula is applicable only when the interval of difference is uniform.

2. This formula apply backward differences of y_n , hence this is used to interpolate the values of y nearer to the end of a set tabular values. (i.e., x lies between xn to xn- 1 and xn-1 to x_{n-2})

Example: Find the values of y at x = 28 from the following data.

x:	20	23	26	29
у	0.3420	0.3907	0.4384	0.4848

Solution.

Step 1.Since x = 28 is nearer to beginning of the table. Hence we apply Newton's backward formula.

Step 2. Construct the difference table

Х	У	Ŭ Yn	y_n	$\int_{y_n}^{y_n}$
20	0.3420	(0.3420-0.39	07)	
		0.0487	(0.0477 - 0.0487)	
23	0.3907		-0.001	
		0.0477		
26	0.4384			-0.0003
			0.0012	
29	0.4848	0.0464	-0.0013	

Step 3. Write down the formula and put the various values :

$$P_{3}(x) = P_{3}y(x_{n} + vh) = y_{n} + v^{(1)} y_{n} + v^{(2)} y_{n} + v^{(3)} y_{n}$$

$$2! \qquad 3!$$
Where $v^{(1)} = (x - x_{n}) / h = (28 - 29) / 3 = -0.3333$
 $v^{(2)} = v(v+1) = (-0.333)(0.6666)$
 $v^{(3)} = v(v+1) (v+2) = (-0.333)(0.6666)(1.6666)$

 $P_n(x=28) = y(28) = 0.4848 + (-0.3333)(0.0464) + (-0.3333)(0.6666)(-0.0013)/2$

$$+(-0.3333) (0.6666)(1.6666) (-0.0003)/6$$

= 0.4848 - 0.015465 +0.0001444 + 0.0000185

= **0.4695**

Prepared by : A.Neerajah, Department of Mathematics, KAHE.

Example: From the following table of half yearly premium for policies maturing at different ages, estimate the premium for policies maturing at age 63.

Age	x:	45	50	55	60	65
Premium	y:	114.84	96.16	83.32	74.48	68.48

Solution.

Step 1.Since x = 63 is nearer to beginning of the table and the values of x is equidistant i.e., h = 5. Hence we apply Newton's backward formula. Step 2. Construct the difference table

х	У	yo	² y0	^З у0	$\mathcal{A}_{\mathcal{Y}0}$
45	114.84	10 60			
50	96.16	-18.68	5.84		
55	83.12	-12.84	4.00	-1.84	
60	74.48	-8.84	2.84	1.16	
65	68.48	-6.00			

Step 3. Write down the formula and put the various values :

$$P_{3}(x) = P_{3}y(x_{n} + vh) = y_{n} + v^{(1)} y_{n} + v^{(2)} y_{n} + v^{(3)} y_{n} + v^{(4)} y_{n}$$

$$2! \quad 3! \quad 4!$$
Where
$$v^{(1)} = (x - x_{n}) / h = (63 - 65) / 5 = -2/5 = -0.4$$

$$v(2) = v(v+1) = (-0.4)(1.6)$$

$$v(3) = v(v+1) (v+2) = (-0.4)(1.6) (2.6)$$

$$v(4) = v(v+1) (v+2) + (v+3) = (-0.4)(1.6) (2.6)(3.6)$$

$$P_4 (x=63) = y(63) = 68.48 + [(-0.4) (-6.0)] + [(-0.4) (1.6) (2.84)/2] + [(-0.4) (1.6) (2.6)(-1.16)/6] + [(-0.4) (1.6) (2.6)(3.6) (0.68)/24]$$

0.68

$$= 68.48 + 2.40 - 0.3408 + 0.07424 - 0.028288$$
$$= 70.5852$$
Example: From the following table, find the value of tan 49⁰ 15'
x⁰: 45 46 47 48 49 50

Solution.

Step 1.Since $x = 49^{\circ} 45$ ' is nearer to beginning of the table and the values of x is equidistant i.e., h = I. Hence we apply Newton's backward formula.

Step 2. Construct the difference table to find various Δ 's

X	У	yo	² y0	³ у0	^А уо	⁵ y ₀
45 ⁰	1.0000	0.03553				
46	1.03553	0.03684	0.00131	0.00009		
47 ⁰	1.07237	0.03824	0.00140	0.00009	0.00003	0 00005
48^{0}	1.11061		0.00152		-0.00002	-0.00005
49^{0}	1.15037	0.03976	0.00162	0.00010		
50^{0}	1.19175	0.04138				

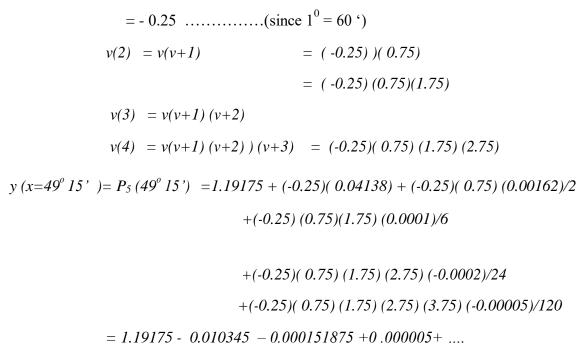
Step 3. Write down the formula and substitute the various values :

$$P_{5}(x) = P_{5}y(x_{n} + vh) = y_{n} + v^{(1)} y_{n} + v^{(2)} y_{n} + v^{(3)} y_{n} + v^{(4)} y_{n} + v^{(5)} y_{n}$$

$$2! \qquad 3! \qquad 4! \qquad 5!$$
Where $v = (49^{o} 45' - 50^{0}) / 1^{0}$

$$= -15' / 1^{0}$$

Prepared by : A.Neerajah, Department of Mathematics, KAHE.



= **1.18126**

Lagrange's Interpolation Formula

Interpolation means the process of computing intermediate values of a function a given set of tabular values of a function. Suppose the following table represents a set of values of x and y.

<i>x</i> :	X_0	x_1	x_2	<i>x3</i>	X_n
<i>y</i> :	уо	<i>y</i> 1	<i>y</i> ₂	y3	Уn

We may require the value of $y = y_i$ for the given $x = x_i$, where x lies between x_0 to x_n Let y = f(x) be a function taking the values $y_0, y_1, y_2, ..., y_n$ corresponding to the *values* $x_0, x_1, x_2, ..., x_n$. Now we are trying to find $y = y_i$ for the given $x = x_i$ under assumption that the function f(x) is not known. In such cases, x_i 's are not equally spaced we use *Lagrange*'s *interpolation formula*.

Newton's Divided Difference Formula:

The divided difference $f[x_0, x_1, x_2, ..., x_n]$, sometimes also denoted $[x_0, x_1, x_2, ..., x_n]$, on n + 1 points

 X_0 , x_1 , ..., x_n of a function f(x) is defined by $f[x_0] \equiv f(x_0)$ and

$$f[x_0, x_1, ..., x_n] = \frac{f[x_0, ..., x_{n-1}] - f[x_1, ..., x_n]}{x_0 - x_n}$$

for $n \ge 1$. The first few differences are

$$f[x_0, x_1] = \frac{f_0 - f_1}{x_0 - x_1}$$

$$f[x_0, x_1, x_2] = \frac{f[x_0, x_1] - f[x_1, x_2]}{x_0 - x_2}$$

$$f[x_0, x_1, ..., x_n] = \frac{f[x_0, ..., x_{n-1}] - f[x_1, ..., x_n]}{x_0 - x_n}.$$

Defining

- $\pi_n(x) \equiv (x x_0)(x x_1) \cdots (x x_n)$ and taking the derivative
- $\pi'_{n}(x_{k}) = (x_{k} x_{0}) \cdots (x_{k} x_{k-1}) (x_{k} x_{k+1}) \cdots (x_{k} x_{n})$ gives the identity

 $f[x_0, x_1, ..., x_n] = \sum_{k=0}^n \frac{f_k}{\pi'_n(x_k)}.$

Lagrange's interpolation formula (for unequal intervals)

Let y = f(x) denote a function which takes the values $y_0, y_1, y_2 \dots, y_n$ corresponding to the values $x_0, x_1, x_2 \dots, x_n$.

Let suppose that the values of x *i.e.*, x_0 , x_1 , x_2 ..., x_n . are not equidistant.

 $y_I = f(x_i) \quad I = 0, 1, 2, \dots N$

Now, there are (n+1) paired values $(x_i, y_i,)$, I = 0, 1, 2, ..., n and hence f(x) can be represented by a polynomial function of degree n in x.

Let us consider f(x) as follows

Substituting $x = x_0$, $y = y_0$, in the above equation

$$y_0 = a_0(x - x_1) (x - x_2) (x - x_3) \dots (x - x_n)$$

Putting these values in (1), we get

$$y = f(x) =$$

$$(x - x_1) (x - x_2) (x - x_3) \dots (x - x_n)$$

$$y_0$$

$$(x_0 - x_1) (x_0 - x_2) (x_0 - x_3) \dots (x_0 - x_n)$$

$$(x - x_0)(x - x_2) (x - x_3) \dots (x - x_n)$$

$$+$$

$$(x - x_0) (x_1 - x_2) (x_1 - x_3) \dots (x_1 - x_n)$$

$$(x - x_0)(x - x_1) (x - x_3) \dots (x - x_n)$$

$$+$$

$$(x_2 - x_0) (x_2 - x_2) (x_1 - x_3) \dots (x_1 - x_n)$$

$$+$$

$$(x - x_0)(x - x_2) (x - x_3) \dots (x - x_{n-1})$$

$$+$$

$$(x_n - x_0)(x_n - x_2) (x_n - x_3) \dots (x_n - x_{n-1})$$

The above equation is called *Lagrange's interpolation formula* for unequal intervals. **Note :** 1. This formula is will be more useful when the interval of difference is not uniform.

Example. Using Lagrange's interpolation formula, find y(10) from the

following table

x : 5 6 9 11

y : 3 13 14 16

Solution:

Step 1. Write down the Lagrange's formula :

$$(x - x_1)_{(x} - x_2)_{(x} - x_3)_{\dots}_{(x} - x_n)$$

 $y = f(x) =$

$$y_{0}$$

$$(x_{0} - x_{1}) (x_{0} - x_{2}) (x_{0} - x_{3}) \dots (x_{0} - x_{n})$$

$$(x - x_{0})(x - x_{2}) (x - x_{3})$$

$$+ \frac{(x_{1} - x_{0}) (x_{1} - x_{2}) (x_{1} - x_{3})}{(x_{1} - x_{0}) (x - x_{1}) (x - x_{3})}$$

$$+ \frac{(x_{2} - x_{0}) (x_{2} - x_{2}) (x_{1} - x_{3}))}{(x - x_{0})(x - x_{2}) (x - x_{2})}$$

$$+ \frac{(x_{3} - x_{0})(x - x_{2}) (x - x_{2})}{(x - 6) (x - 9) (x - 11)}$$

$$= \frac{(12)}{(5 - 6) (5 - 9) (5 - 11)}$$

$$(x - 5) (x - 9) (x - 11)$$

$$+ \frac{(x - 5) (x - 9) (x - 11)}{(x - 5) (x - 6) (x - 11) (14)}$$

$$+ \frac{(9 - 5) (9 - 6) (9 - 11)}{(9 - 5) (9 - 6) (9 - 11)}$$

(13)

(x-5) (x-6) (x-19)

+ ____(16)

(11-5)(11-6)(11-9)

Putting x = 10 in the above equation

$$Y(10) = f(10) = (-1)(-4)(-6) + (5)(1)(-1)(13)$$

$$Y(10) = f(10) = (-1)(-4)(-6) + (1)(-3)(-5)$$

$$(5)(4)(1))(14) + (5)(4)(1)(16)$$

$$(4)(3)(-2) + (6)(5)(2)$$

= **14.6666**

Possible Questions

Part- B (5x8=40 Marks)

1. The population of a town is as follows.

Year	(x)	: 1941	1951	1961	1971	1981	1991
Population in	ı Lakh	as (y) : 20	24	29	36	46	51

Estimate the population increase during the period 1946 to 1976.

2. Using inverse interpolation formula, find the value of x when y=13.5.

x :	93.0	96.2	100.0	104.2	108.7
у:	11.38	12.80	14.70	17.07	19.91

3. Find the polynomial of least degree passing the points (0, -1), (1, 1), (2, 1), (3, -2).

4. Find the values of y at X=21 and X=28 from the following data.

X :	20	23	26	29
Y :	0.3420	0.3907	0.4384	0.4848

5. From the data given below, find the number of students whose weight is between 60 and 70. Weight in Ibs. : 0-40 40-60 60-80 80-100 100-120

No. of students	:	250	120	100	70	50

6. Using Lagrange's interpolation formula find the value corresponding to x = 10 from the following table.

x : 5	6	9	11
y : 12	13	14	16

7. Find the missing value of the table given below. What assumption have you made to find it? Year : 1917 1918 1919 1920 1921 Export(in tons) : 443 384 397 467

-

Unit-IV
Interpolation / 2015 Batch

8. Using Newton's divided difference formula, find the values of f(2), f(8) and f(15) given the following table.

x : 4	5	7	10	11	13
f(x): 48	100	294	900	1210	2028

9. From the following table of half-yearly premium for policies maturing at different ages. Estimate the premium for policies maturing at age 46 & 63.

1	-	-	0	0	
Age	x: 45	50	55	60	65
Premiun	n y : 114.84	96.16	83.32	74.48	68.48

10. Write the procedure for Lagrange's Interpolation Fomula.

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021 DEPARTMENT OF MATHEMATICS

Subject: Numerical Methods	Subject Code: 15MMU503	L T P C
Class:III B.Sc-B	Semester:V	4 1 0 4

UNIT V

Numerical Differentiation and Integration: Newton's Forward and backward differences to compute derivatives – Trapezoidal rule, Simpson's 1/3 &3/8 rule. Solution of ordinary differential equations:R-K method (II order , III order and IV order).

TEXT BOOK

- **T1**:Venkataraman .M.K., Fifth Edition, 2001. Numerical Methods in Science and Engineering National publishing Company ,Madras.
- **R3**: Kandaswamy. P., Thilagavathy K., and K.Gunavathy., 2013 .Numerical Methods, S. Chand &Company Ltd., New Delhi.

UNIT-V

NUMERICAL DIFFERENTIATION AND INTEGRATION

Numerical differentiation

The problem of Interpolation is finding the value of y for the given value of x among (x_i, y_j) for i=1 to n. Now we find the derivatives of the corresponding arguments . If the required value of y lies in the first half of the interval then we call it as Forward interpolation .If the required value of y (derivative value) lies in the second half of the interval we call it as Backward interpolation also if the derivative of y lies in the middle of of class interval then we solve by central difference.

Newton's forward formula for Interpolation :

 $Y = y_0 + u \Delta y_0 + u(u-1)/2! \Delta^2 Y_0 + u(u-1)(u-2) / 3! \Delta^3 Y_0 + \dots$

Where $u = (x-x_0)/h$

Differentiating with respect to x,

dy/dx = (dy/du). (du/dx) = (1/h) (dy / du)

 $(dy / dx) x \neq x_0 = (1 / h) [\Delta y_0 + (2u-1)/2 \Delta^2 y_0 + (3u^2 - 6u+2)/6 \Delta^3 y_0 + \dots]$

 $(dy / dx) x = x_0 = (1 / h) [\Delta y_0 - (1/2) \Delta^2 y_0 + (1/3) \Delta^3 y_0 + \dots]$

 $(d^2y / dx^2) x \neq x_0 = d/dx (dy / dx) = d/dx(dy / du. du / dx)$

 $= (1/h^2) \left[\Delta^2 y_0 + 6(u-1) / 6 \Delta^3 y_0 + (12u^2 - 36 u + 22) / 2 \Delta^4 y_0 + \dots \right]$

$$(d^2y / dx^2) x = x_0 = (1/h^2) [\Delta^2 y_0 - \Delta^3 y_0 + (11/12) \Delta^4 y_0 + \dots]$$

Similarly,

$$(d^{3}y / dx^{3}) x \neq x_{0} = (1/h^{3}) [\Delta^{3}y_{0} + (2u - 3) / 2 \Delta^{4}y_{0} + \dots]$$

$$(d^{2}y / dx^{2}) x = x_{0} = (1/h^{3}) [\Delta^{3}y_{0} - (3/2)\Delta^{4}y_{0} + \dots].$$

In a similar manner the derivatives using backward interpolation an also be found out.

Using backward interpolation .

$$\begin{array}{l} (dy \ / \ dx) \ x \neq x_n \ = (1 \ / \ h) \ [\nabla y_n \ + (2u + 1) / 2 \ \nabla^2 y_n \ + (3u^2 \ + 6u + 2) / \ 6 \ \nabla^3 y_n \ + \ldots \ldots] \\ (dy \ / \ dx) \ x = x_n \ = (1 \ / \ h) \ [\nabla y_n \ - (1/2) \ \nabla^2 y_n \ + (1/3) \ \nabla^3 y_n \ + \ldots \ldots] \\ (d^2y \ / \ dx^2) \ x \neq x_0 = (1/h^2) \ [\nabla^2 \ y_0 \ + \ 6(u - 1) \ / \ 6 \ \nabla^3 y_0 \ + \ (12u^2 \ - \ 36 \ u \ + 22) \ / \ 2 \ \nabla^4 y_0 \ + \ldots \ldots] \\ (d^2y \ / \ dx^2) \ x = x_0 = (1/h^2) \ [\nabla^2 \ y_0 \ - \ \nabla^3 y_0 \ + (11/12) \ \nabla^4 y_0 \ + .] \end{array}$$

Example

Find the first two derivatives of x $^{(1/3)}$ at x= 50 and x= 56, given the table below.

X: 50 51 52 53 54 55 56

Y: 3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 3.8259

Х	Y	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
50	3.6840				
51	3.7084	0.0244			
52	3.7325	0.0241	-0.0003	0	
53	3.7563	0.0238	-0.0003	0	0
54	3.7798	0.0235	-0.0003	0	0
55	3.8030	0.0232	-0.0003	0	0
56	3.8259	0.0229	-0.0003		

At x = 50,

$$(dy/dx)_{x = x0} = (1 /h)[\Delta y_0 - (1/2) \Delta^2 y_0 + (1/3) \Delta^3 y_0 + \dots]$$

= (1/1)[0.024-(1/2)(-0.0003)+0] = 0.02455
$$(d^2y/dx^2)_{x = x0} = (1/h^2) [\Delta^2 y_0 - \Delta^3 y_0 + (11/12) \Delta^4 y_0 + \dots]$$

At x=56,

$$\begin{aligned} (dy/dx)_{x = xn} &= (1/h) [\nabla y_n + (1/2) \nabla^2 y_n + (1/3) \nabla^3 y_n + \dots] \\ &= (1/1) [0.0229 + (1/2)(-0.0003) + 0] = 0.02275. \\ (d^2y/dx^2)_{x = xn} &= (1/h^2) [\nabla^2 y_n + \nabla^3 y_n + (11/12) \nabla^4 y_n + \dots] \\ &= (1/1) [-0.003 - 0] = -0.0003. \end{aligned}$$

For the above ptroblem let us find the first two derivatives of x when x = 52 and x = 55.

When x=52, From Newton's forward formula

 $(dy / dx) x \neq x_0 = (1 / h) [\Delta y_0 + (2u-1)/2 \Delta^2 y_0 + (3u^2 - 1)/2 \Delta^2 y_0 + (3u^2 - 1)$

 $6u+2)/6 \Delta^3 y_0 + \dots$],

$$= (1/1) [0.0244+(3/2)(-0.0003)+0] = 0.02395,$$

Since here $u = (x-x_0) / h = (52-50)/1 = 2$.

 $(d^{2}y \ / \ dx^{2}) \ x \neq x_{0} = (1/h^{2}) \ [\Delta^{2} \ y_{0} + 6(u-1) \ / \ 6 \ \Delta^{3}y_{0} + (\ 12u^{2} - 36 \ u \ + 22) \ / \ 2 \ \Delta^{4}y_{0} \ + \dots]$

= (1/)m [-0.0003+0] = -0.0003.

When x= 55, from backward interpolation

 $\begin{array}{l} (dy \ / \ dx) \ x \neq x_n \ = (1 \ / \ h) \ [\nabla y_n \ + (2v + 1) / 2 \ \nabla^2 y_n \ + (3v^2 \ + 6v + 2) / \ 6 \ \nabla^3 y_n \ + \dots \dots] \\ \\ = (1 / 1) \ [\ 0.0229 \ + (-1 / 2) (-0.0003) \ + 0] \ = 0.02305, \end{array}$ Since here v= (x-x_n) / h = (55-56) / 1 \ = -1.

$$(d^2y / dx^2) x \neq x_n = (1/h^2) [\nabla^2 y_n + 6(v+1) / 6 \nabla^3 y_n + (12v^2 + 36v + 22) / 2 \nabla^4 y_n + \dots]$$

= (1/1) [0.0229+(-1/2)(-0.0003)+0] = 0.02305.

Numerical Integration:

We know that $\int_a^b f(x) dx$ represents the area between y = f(x), x - axis and the ordinates x = a and x = b. This integration is possible only if the f(x) is explicitly given and if it is integrable. The problem of numerical integration can be stated as follows: Given as set of (n+1) paired values (x_i, y_i) , i = 0, 1, 2, ..., n of the function y=f(x), where f(x) is not known explicitly, it is required to compute $\int_{x_n}^{x_n} y \, dx$.

A general quadrature formula for equidistant ordinates (or Newton – cote's formula)

For equally spaced intervals, we have Newton's forward difference formula as

$$y(x) = y(x_0 + uh) = y_0 + u\Delta y_0 + \frac{u(u-1)}{2!}\Delta^2 y_0 + \dots$$
 (1)

Now, instead of f(x), we will replace it by this interpolating formula of Newton.

Here, $u = \frac{x - x_0}{h}$ where *h* is interval of differencing.

Since $x_n = x_0 + nh$, and $u = \frac{x - x_0}{h}$ we have $\frac{x - x_0}{h} = n = u$.

$$\int_{x_0}^{x_n} f(x) dx = \int_{x_0}^{x_n + nh} f(x) dx$$

= $\int_{x_0}^{x_n + nh} P_n(x) dx$ where $P_n(x)$ is interpolating polynomial
= $\int_0^n \left(y_0 + u \,\Delta y_0 + \frac{u(u-1)}{2!} \,\Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \,\Delta^3 y_0 + \dots \right) (hdu)$

Since dx = hdu, and when $x = x_0$, u = 0 and when $x = x_0+nh$, u = n.

$$=h\left[y_0(u)+\frac{u^2}{2}\Delta y_0+\frac{\left(\frac{u^3}{3}-\frac{u^2}{2}\right)}{2}\Delta^2 y_0+\frac{1}{6}\left(\frac{u^4}{4}-u^3+u^2\right)\Delta^3 y_0+\cdots \right]_0^n$$

$$\int_{x_0}^{x_n} f(x) dx = h n y_0 \left(+ \frac{n^2}{2} \Delta y_0 + \frac{1}{2} \frac{n^3}{3} - \frac{n^2}{2} \Delta^2 y_0 + \frac{1}{6} \right) \left(\frac{n^4}{4} - n^3 + n^2 \Delta^3 y_0 + \dots + \frac{1}{6} \right)$$

The equation (2), called Newton-cote's quadrature formula is a general quadrature formula. Giving various values for n, we get a number of special formula.

Trapezoidal rule:

By putting n = 1, in the quadrature formula (i.e there are only two paired values and interpolating polynomial is linear).

1.

$$\int_{x_0}^{x_n+nh} f(x) dx = h \left[1. y_0 + \frac{1}{2} \Delta y_0 \right] \text{ since other differences do not exist if } n = \\ = \int_{x_0}^{x_n} f(x) dx = \int_{x_0}^{x_n+nh} f(x) dx \\ = \int_{x_0}^{x_0+h} f(x) dx + \int_{x_0+h}^{x_n+2h} f(x) dx + \dots + \\ \int_{x_0+(n-1)h}^{x_n+nh} f(x) dx \\ = \frac{h}{2} \left[(y_0 + y_n) + 2(y_1 + y_2 + y_3 + \dots + y_{n-1}) \right]$$

 $=\frac{n}{2}$ [(sum of the first and the last ordinates) + 2(sum of the remaining ordinates)]

This is known as Trapezoidal Rule and the error in the trapezoidal rule is of the order h^2 .

Romberg's method

For an interval of size h, let the error in the trapezoidal rule be kh^2 where k is a constant. Suppose we evaluate $I = \int_{x_0}^{x_n} y \, dx$, taking two different values of h, say h_1 and h_2 , then

$$I = I_1 + E_1 = I_1 + k h_1{}^2 \ I = I_2 + E_2 = I_2 + k h_2{}^2$$

Where I_1 , I_2 are the values of I got by two different values of h, by trapezoidal rule and E_1 , E_2 are the corresponding errors.

$$I_{1} + kh_{1}^{2} = I_{2} + kh_{2}^{2}$$
$$k = \frac{I_{1} - I_{2}}{h_{2}^{2} - h_{1}^{2}}$$

substituting in (1), $I = I_1 + \frac{I_1 - I_2}{h_2^2 - h_1^2} h_1^2$ & $I = \frac{I_1 h_2^2 - I_2 h_1^2}{h_2^2 - h_1^2}$

This I is a better result than either I_1 , I_2 .

If $h_1 = h$ and $h_2 = \frac{1}{2}h$, then we get

$$I = \frac{I_1(\frac{1}{4}h^2) - I_2h^2}{\frac{1}{4}h^2 - h^2} = \frac{4I_2 - I_1}{3} = I_2 + \frac{1}{2}(I_2 - I_1), \quad I = I_2 + \frac{1}{2}(I_2 - I_1)$$

We got this result by applying trapezoidal rule twice. By applying the trapezoidal rule many times, every time halving h, we get a sequence of results A_1 , A_2 , A_3 ,..... we apply the formula given by (3), to each of adjacent pairs and get the resultants B_1 , B_2 , B_3 (which are improved values). Again applying the formula given by (3), to each of pairs B_1 , B_2 , B_3 we get another sequence of better results C_1 , C_2 , C_3 continuing in this way, we proceed until we get two successive values which are very close to each other. This systematic improvement of Richardson's method is called Romberg method or Romberg integration.

Simpson's one-third rule:

Setting n = 2 in Newton- cote's quadrature formula, we have $\int_{x_0}^{x_n} f(x) dx = h$ $2y_0 + \frac{4}{2}\Delta y_0 + \frac{4}{2}\Delta y_0 + \frac{4}{2}\Delta^2 y_0$ (since other terms vanish) = $\frac{h}{3}(y_2 + y_1 + y_0)$

Similarly, $\int_{x_2}^{x_4} f(x) dx = \frac{h}{3} (y_2 + 4y_3 + y_4)$

$$\int_{x_2}^{x_4} f(x) dx = \frac{h}{3} (y_i + 4y_{i+1} + y_{i+2})$$

If n is an even integer, last integral will be

$$\int_{x_{n-2}}^{x_n} f(x) dx = \frac{h}{3} (y_{n-2} + 4y_{n-1} + y_n)$$

Adding all the integrals, if *n* is an even positive integer, that is, the number of ordinates y_0 , y_1 , $y_2...,y_n$ is odd, we have

$$\int_{x_0}^{x_n} f(x) dx = \int_{x_0}^{x_2} f(x) dx + \int_{x_2}^{x_4} f(x) dx + \dots + \int_{x_{n-2}}^{x_n} f(x) dx$$
$$= \frac{h}{3} \left(\int_{y_0+y_n}^{y_0+y_n} + 2(y_2+y_4+\dots) + \dots + 4(y_1+y_3+\dots) \right)$$
$$= \frac{h}{3} \left[(\text{sum of the first and the last ordinates}) + \right]$$

2(sum of remaining odd ordinates) +

2(sum of even ordinates)]

Simpson's three-eighths rule:

Putting n = 3 in Newton – cotes formula

Prepared by : A.Neerajah, Department of Mathematics, KAHE.

 $y_6 + y_9 + \dots + y_n$)(2)

Equation (2) is called *Simpson's three* - *eighths rule* which is applicable only when n is a multiple of 3.Truncation error in simpson's rule is of the order h

Example

Evaluate $\int_{-3}^{3} x^4 dx$ by using (1) trapezoidal rule (2)simpson's rule. Verify your results by actual integration.

Solution.

Here $y(x) = x^4$. Interval length(b - a) = 6. So, we divide 6 equal intervals with $h = \frac{6}{6} = 1$.

We form below the table

x	-3	-2	-1	0	1	2	3
v	81	16	1	0	1	16	81

(i) By trapezoidal rule:

 $\int_{-3}^{3} y \, dx = \frac{h}{2} \left[(\text{sum of the first and the last ordinates}) + \right]$

2(sum of the remaining ordinates)]

$$=\frac{1}{2}$$
 [(81+81)+2(16+1+0+1+16)]

=115

(ii) By simpson's one - third rule (since number of ordinates is odd): $\int_{-3}^{3} y \, dx = \frac{1}{3} [(81+81) + 2(1+1) + 4(16+0+16)]$

(iii) Since n = 6, (multiple of three), we can also use simpson's three - eighths rule. By this rule,

$$\int_{-3}^{3} y \, dx = \frac{1}{3} \left[(81 + 81) + 3(16 + 1 + 1 + 16) + 2(0) \right]$$
$$= 99$$

(iv) By actual integration,

$$\int_{-3}^{3} x^{4} dx = 2 * \left[\frac{x^{5}}{5} \right]_{0}^{3} = \frac{2 * 243}{5} = 97.2$$

From the results obtained by various methods, we see that simpson's rule gives better result than trapezoidal rule.

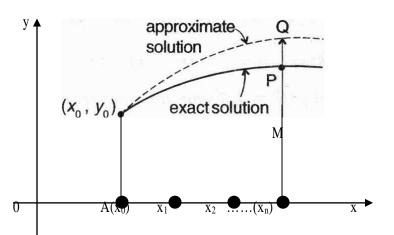
SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

INTRODUCTION

Suppose we require to solve dy/dx=f(x,y) with the initial condition $y(x_0)=y_0$. By numerical solution of y at $x=x_0$, x_1 , x_2 ,... let y=y(x) be the exact solution. If we plot and draw the graph of y=y(x), (exact curve) and also draw the approximate curve by plotting (x_0, y_0) , (x_1,y_1) , (x_2, y_2) ,... we get two curves.

PM= exact value, QM=approximate value at x=x_i. Then

QP=MQ-MP= y_i - $y(x_i) = \varepsilon$ is called the truncation error at $x = x_i$



 $QP=MQ-MP=y_i-y(x_i)=\varepsilon_i$ is called return error at $x=x_i$

RUNGE- KUTTA METHOD

Second order Runge-Kutta method (for first order O.D.E)

AIM : To solve dy / dx = f(x,y) given $y(x_0)=y_0$ (1)

Proof. By Taylor series, we have,

$$y(x+h) = y(x) + hy'(x) + h^2/2! y''(x) + O(h^3)$$
(2)

Differentiating the equation (1) w.r.t.x,

 $\partial f \quad \partial f \quad dy$ $y'' = --+ --- f_x + y' f_y = f_x + f_y$ $\partial x \quad \partial y \quad dx$ Using the values of y' and y" got from (1) and (3), in (2), we get,

$$Y(x + h)-y(x) = hf + \frac{1}{2}h^{2} [f_{x} + ff_{y}] + O(h^{3})$$

$$\Delta y = hf + \frac{1}{2} h^2(f_x + ff_y) + O(h^3)$$

Let $\Delta_1 y = k_1 = f(x,y)$. $\Delta x = hf(x,y)$, $\Delta_2 y = k_2 = hf(x+mh,y+mk_1)$

and $\Delta y=ak_1+bk_2$, Where a, b and m are constants to be determined to get the better accuracy of Δy . Expand k_2 and Δy in powers of h.

Expanding k_2 , by Taylor series for two variables, we have

 $K_2 = hf(x+mh, y+mk_1)$ $= h[f + mhf_x + mhff_v + \{(mh\partial/\partial x + mk_1 \partial/\partial y)^2 f / 2!\} + \dots] \dots (8)$ Substituting k_1, k_2 in (7), $\Delta y = ahf + b[hf + mh^2(f_x + ff_y) + O(h^3)]$ $=(a+b)hf+bmh^2(f_x+ff_y)+O(h^3)$ 10) Equating Δy from (4) and (10), we get =hf+mh²(f_x +ff_y)+..... higher powers of h.....(9) Substituting k_1 , k_2 in (7), $\Delta y = ahf + b[hf + mh^{2}(f_{x} + ff_{y}) + O(h^{3})] = (a+b)hf + bmh^{2}(f_{x} + ff_{y}) + O(h^{3}) \dots (10)$ Equating Δy from (4) and (10), we get(11) a+b=1 and $bm=\frac{1}{2}$ Now we have only two equations given by (1) to solve for three unknowns a,b,m. From a+b=1, a=1-b and also m=1/2b using (7), Where $k_1 = hf(x, y)$ $\Delta y = (1-b)k_1 + bk_2$ $K_2=hf(x+h/2b, y+hf/2b)$ Now $\Delta y=y(x+h)-y(x)$ Y(x+h)=y(x)+(1-b)hf+bhf(x+h/2b,y+hf/2b)i.e., $y_{n+1}=y_n+(1-b)hf(x_n,y_n) +bhf(x_n+h/2b,y_n+h/2bf(x_n,y_n))+O(h^3)$

from this general second order Runge kutta formula, setting a=0, b=1, m=1/2, we get the second order Runge kutta algorithm as

 $k_1=hf(x,y)$ & $k_2=hf(x+\frac{1}{2}h, y+\frac{1}{2}k_1)$ and $\Delta y=k_2$ where $h=\Delta x$

Since the derivation of third and fourth order Runge Kutta algorithm are tedious, we state them below for use.

The third order Runge Kutta method algorithm is given below :

 $K_1 = hf(x,y)$

 $K_2 = hf(x+1/2h, y+1/2k_1)$

 $K_3 = hf(x+h, y+2k_2-k_1)$

and $\Delta y=1/6$ (k₁+4k₂+k₃)

The fourth order Runge Kutta method algorithm is mostly used in problems unless otherwise mentioned. It is

 $K_1 = hf(x,y)$

 $K_2 = hf(x+1/2h, y+1/2k_1)$

 $K_3 = hf(x+1/2h, y+1/2k_2)$

 $K_4=hf(x+h, y+k_3)$

and $\Delta y = 1/6 (k_1 + 2k_2 + 2k_3 + k_4)$

 $y(x+h)=y(x)+\Delta y$

Working Rule :

To solve $dy/dx = f(x,y), y(x_0)=y_0$

Calculate $k_1 = hf(x_0, y_0)$

 $K_2 = hf(x_0 + 1/2h, y_0 + 1/2k_1)$

 $K_3 = hf(x_0+1/2h, y_0+1/2k_2)$

 $K_4 = hf(x_0+h, y_0+k_3)$

and $\Delta y = 1/6$ (k₁+2k₂+2k₃+k₄)

where $\Delta x = h$

Now $y_1 = y_0 + \Delta y$

Now starting from (x_1, y_1) and repeating the process, we get (x_2, y_2) etc.,

Example

Obtain the values of y at x=0.1, 0.2 using R.K method of (i) second order (ii) third order and (iii) fourth order for the differential equation y'=-y, given y(0)=1.

Solution :Here f(x,y)=-y,x₀=0, y₀=1, x₁=0.1, x₂=0.2

(i) Second Order:

 $k_1 = hf(x_0, y_0) = (0.1)(-y_0) = -0.1$ $k_2 = hf(x_0 + \frac{1}{2} h, y_0 + \frac{1}{2} k_1) = (0.1) f(0.05, 0.95)$ $= -0.1(x_0.95) = -0.095 = \Delta y$ $y_1 = y_0 + \Delta y = 1 - 0.095 = 0.905$ $y_1 = y(0.1) = 0.905$

Again starting from (0.1, 0.905) replacing (x_0,y_0) by (x_1,y_1) we get

 $k_1 = (0.1) f(x_1, y_1) = (0.1) (-0.905) = -0.0905$

 $k_2 = hf(x_1 + \frac{1}{2}h, y_1 + \frac{1}{2}k_1)$

=(0.1)[f(0.15, 0.85975)]=(0.1)(-0.85975)=-0.085975)

 $\Delta y = k_2$ $y_2 = y(0.2) = y_1 + \Delta y = 0.819025$

(ii) Third Order:

$$k_{1} = hf(x_{0}, y_{0}) = -0.1$$

$$k_{2} = hf(x_{0} + \frac{1}{2} h, y_{0} + \frac{1}{2} k_{1}) = -0.095$$

$$k_{3} = hf(x_{0} + h, y_{0} + 2k_{2} - k_{1})$$

$$= (0.1)f(0.1, 0.9) = (0.1)(-0.9) = -0.0.9$$

$$\Delta y = 1/6 (k_{1} + 4k_{2} + k_{3})$$

$$y(0.1) = y_{1} = y_{0} + \Delta y = 1 - 0.09 = 0.91$$

Again taking (x_1, y_1) has (x_0, y_0) repeat the process

$$k_1 = hf(x_1, y_1) = (0.1) (-0.91) = -0.091$$

$$k_2 = hf(x_1 + \frac{1}{2} h, y_1 + \frac{1}{2} k_1)$$

$$= (0.1)f(0.15, 0.865) = (0.1) (-0.865) = -0.0865$$

$$k_3 = hf(x_1 + h, y_1 + 2k_2 - k_1)$$

$$= (0.1)f(0.2, 0.828) = -0.0828$$

 $y_2=y_1+\Delta y=0.91+1/6 (k_1+4k_2+k_3)$

= 0.91 + 1/6 (-0.091 - 0.3460 - 0.0828)

y(0.2)=0.823366

(iii) Fourth order:

 $k_1 = hf(x_0, y_0) = (0.1)f(0.1) = -0.1$

 $k_2=hf(x_0+\frac{1}{2}h, y_0+\frac{1}{2}k_1)=(0.1)f(0.05, 0.95) = -0.095$

 $k_3 = hf(x_0 + \frac{1}{2} h, y_0 + \frac{1}{2} k_2) = (0.1) f(0.05, 0.9525) = -0.09525$

 $k_4 = hf(x_0 + h, y_0 + k_3) = (0.1)f(0.1, 0.90475) = -0.090475$

 $\Delta y=1/6 (k_1+2k_2+2k_3+k_4)$

 $y_1 = y_0 + \Delta y = 1 + 1/6 (k_1 + 2k_2 + 2k_3 + k_4)$

y₁=y(0.1)=0.9048375

Again start from this (x_1, y_1) and replace (x_0, y_0) and repeat

 $k_1 = hf(x_1, y_1) = (0.1)(-y_1) = -0.09048375$

 $k_2 = hf(x_1 + 1/2h, y_1 + 1/2k_1)$

= (0.1)f(0.15, 0.8595956) = -0.08595956

 $k_3 = hf(x_1 + \frac{1}{2} h, y_1 + \frac{1}{2} k_2)$

= (0.1)f(0.15, 0.8618577) = -0.08618577

 $k_4 = hf(x_1+h, y_1+k_3)$

= (0.1)f(0.2, 0.8186517) = -0.08186517

 $\Delta y = 1/6(-0.09048375 - 2x\ 0.08595956 - \ 2x\ 0.08618577 - 0.08186517) = -0.0861066067$

 $y_2=y(0.2)=y_1+\Delta y=0.81873089$

Tabular values are:

Х	Second	Third order	Fourth order	Exact value
	order			Y=e-x
0.1	0.905	0.91	0.9048375	0.904837418
0.2	0.819025	0.823366	0.81873089	0.818730753

Part- B (5x8=40 Marks)

Possible Questions

1. The population of a certain town is given below, Find the rate of growth of population in 1931, 1941 1961 and 1971.

year	: 1931	1941	1951	1961	1971
population	n :40.62	60.80	79.95	103.56	132.65

2. Using Romberg's method, evaluate I = $\int_{0}^{1} dx / (1+x)$ correct to 3 decimal places.

3. Find the first two derivatives of $(x)^{1/3}$ at x=50 and x=56 given the table below

X :	50	51	52	53	54	55	56
$Y = ((x)^{1/3})$:	3.6840	3.7084	3.7086	3.7563	3.7798	3.8030	3.8259
4. Evaluate $\int_{0}^{1} dx / ($	$1 + x^2$) u	using Traj	pezoidal ru	le with $h = 0$).2. Hence	obtain the	

approximate value of π .

5. Evaluate I = $\int_{0}^{6} dx / (1+x)$ using both of the Simpson's rule.

- 6. Use Runge kutta method of fourth order find y for x = 0.1 and 0.2, given that dy/dx = x + y, y(0) = 1.
- 7. By dividing the range into the ten equal parts, evaluate π $\int_{0}^{\pi} \sin x \, dx$ by Trapezoidal rule and Simpson's rule.
- 8. Using Runge kutta Method of fourth order , find y(0.8) correct to 4 decimal places if $y^1 = y x^2$, y(0.6)=1.7379.
- 9. Using Romberg's method, evaluate, $I = \int_{0}^{1} dx / (1 + x^{2})$ correct to 3 decimal places.
- 10. Using Runge kutta Method of fourth order ,solve $dy/dx=y^2-x^2/y^2+x^2$ given y(0)=1 at x=0.2,0.4.

KARPAGAM ACA	DEMY OF HIG	HER EDUCATI	ON		
(Deemed to be University E	stablished Under	· Section 3 of UG	C Act 1956)		
Pollachi N	Aain Road, Each	anari (Po),			
С	oimbatore –641 0	21			
	UNIT-I				
SOLUTION OF AL		TRANSCENDENT	AL EQUATION	S	
	t-A(20X1=20 Ma			~	
	s. 1 to 20 Online	,			
		hoice Questions	-	-	-
Question	Opt 1	Opt 2	Opt 3	Opt 4	Answer
application of the intermediate value theorem.	Gauss Seidal	Bisection	Regula Falsi	Newton Raphson	Bisection
	$\mathbf{x}_{n+1} = \mathbf{f}(\mathbf{x}_n) / \mathbf{f}$	$x_{n+1} = xn + f$	$x_{n+1} = xn - f$		$x_{n+1} = x_n - f(x_n) / f$
The formula for Newton Raphson method is	'(xn)	$(\mathbf{x}_n) / \mathbf{f}'(\mathbf{x}n)$	$(\mathbf{x}_n) / \mathbf{f}'(\mathbf{x}n)$	(xn)	'(xn)
The order of convergence of Newton Raphson method is	4	2	1	0	2
Graeffe's root squaring method is useful to find	complex roots	single roots	unequal roots	polynomial roots	polynomial roots
The approximate value of the root of f(x) given by the bisection method is	$\mathbf{x}_0 = \mathbf{a} + \mathbf{b}$	$\mathbf{x}_0 = \mathbf{f}(\mathbf{a}) + \mathbf{f}(\mathbf{b})$	$x_0 = (a + b)/2$	$_{X0} = (f(a) + f(b))/2$	$x_0 = (a + b)/2$
In Newton Raphson method, the error at any stage is proportional to the					
of the error in the previous stage.	cube	square	square root	equal	square
The convergence of bisection method is	linear	quadratic	slow	fast	slow
The order of convergence of Regula falsi method may be assumed to	1	1.618	0	0.5	1.618
Method is also called method of	1	1.018	0	0.3	1.010
tangents.	Gauss Seidal	Secant	Bisection	Newton Raphson	Newton Raphson

тт	• .	т
Un	1t -	· I -
~		

If f (x) contains some functions like exponential, trigonometric, logarithmic etc.,					
then $f(x)$ is called equation.	Algebraic	transcendental	numerical	polynomial	transcendental
A polynomial in x of degree n is called an	8			F J	
algebraic equation of degree n if	f(x) = 0	f(x) = 1	f(x) < 1	f(x) > 1	f(x) = 0
The method of false position is also known as					
method.	Gauss Seidal	Secant	Bisection	Regula falsi	Regula falsi
The Newton Rapson method fails if	f'(x) = 0	f(x) = 0	f(x) = 1	f(x)≠0	f'(x) = 0
The bisection method is simple but	slowly		slowly		
	divergent	fast convergent	convergent	divergent	slowly convergent
Method is also called as Bolzano			Newton		
method or interval having method.	Bisection	false position	raphson	Horner's	Bisection
Graeffe's root squaring method has a great					
advantage over other methods in that it does not		approximate			
require prior information about the	initial value	value	final value	zero	initial value
If we choose the initial approximation x ₀					
- to the root then we get the					
root of the equation very quickly	close	far	average	equal	close
In Newton Rapson method when f '(x) is very					
large and the interval h					
will be then the root can be calculated in even			Average of the		
less time.	small	large	roots	zero	small
The order of convergence in method					
is two.	Bisection	Regula falsi	False position	Newton raphson	Newton raphson
The approximate value $x_0 = (a + b)/2$ of the root			Newton	Graffe's root	
of f (x) is given by the method.	Bisection	Regula falsi	raphson	squaring	Bisection
If $f(x_1)$ and $f(a)$ are of opposite signs, then the				~~~	
actual roots of the equation $f(x)=0$ in False					
position method lie between	'a' and 'b'	'b' and ' x_1 '	'a' and 'x ₁ '	'x ₁ ' and 'x ₂ '	'a' and 'x ₁ '

The iterative procedure is repeated till the		approximate			
is found to the desired degree of accuracy.	initial value	value	root	final value	root
is the method to find the root of					
algebraic or	Graeffe's			Gauss	
transcendental equation.	method	Regula falsi	Root squaring	Elimination	Regula falsi
Method is the method to find the root	Graeffe's				
of polynomial equation.	method	Regula falsi	bisection	Newton Raphson	Graeffe's method
The equation $3x - \cos x - 1 = 0$ is known as					
equation.	Polynomial	transcendental	algebraic	normal	transcendental
$x^4 + 2x - 1 = 0$ is equation.	Polynomial	transcendental	algebraic	normal	algebraic
$x e^{x} - 3x + 1.2 = 0$ is known as equation	Polynomial	transcendental	algebraic	normal	transcendental
If $f(a)$ and $f(b)$ have opposite signs then the root	1 orynolliar	transcendentar	uigeoiuie	normai	transcendentar
of $f(x) = 0$ lies between	0&a	a & b	b & 0	1 & -1	a & b
The error at any stage is proportional to the	error in the	error in the	error in the	error in the first	error in the next
square of the	previous stage	next stage	last stage	stage	stage
The convergence of iteration method is					
	Zero	Polynomial	Quadratic	linear	linear
The method of successive Approximation is also	Bisection	-			
called as	method	Iteration method	Regula falsi	Newton Raphson	Iteration method
The sufficient condition for convergence of					
iterations is	f'(x) = 1	f'(x) > 1	f'(x) < 1	f'(x) = 0	f'(x) < 1
Assuming that a root of $x^3 - 9x + 1 = 0$ lies					
between 2 and 4. Find the initial approximation					
root value of bisection methodis	2	3	4	3.5	3
In Newton Rapson method if, then 'a'					
is taken as the initial approximation to the root.	f(a) + f(b)	f(a) = f(b)	f(a) > f(b)	f(a) < f(b)	f(a) < f(b)
In iteration method the given equation is taken in					
	y = f(x)	$\mathbf{x} = \mathbf{f}(\mathbf{x})$	$\mathbf{x} = \mathbf{f}(\mathbf{y})$	$\mathbf{x'} = \mathbf{f}(\mathbf{y})$	$\mathbf{x} = \mathbf{f}(\mathbf{x})$
The sequence will converge rapidly in Iteration					
method, if $ \mathbf{f}'(\mathbf{x}) $ is	Zero	Very large	Very small	one	Very small

In method, first find the integral part of					
the equation.	Bisection	Iteration	Regula falsi	Horner's	Horner's
If $p = 2$, then the convergence is	Cubic	Quadratic	Linear	Zero	Quadratic
In Iteration method if the convergence is linear					
then the convergence is of order	four	three	two	one	one
If the function $f(x)$ is $e^x - 3x = 0$, then for					
Iteration method the variable x can					
be taken as	e ^x / 3	3 / e ^x	e ^x / 3x	$e^{3x} / 3$	e ^x / 3
By Regula Falsi method, the positive root of first					
approximation of $x^3 - 4x + 1 = 0$ lies between					
	0 & 1	1 & 2	-1 and 2	0 and -1	1 & 2
In Iteration method if the convergence is					
then the convergence is of order one.	cubic	Quadratic	Linear	zero	Linear
The order of convergence of method			Newton	Graffe's root	
may be assumed to 1.618.	Bisection	Regula falsi	raphson	squaring	Regula falsi
In Newton Raphson method the choice of					
is very important for			intermediate	approximate	
the convergence	initial value	final value	value	value	initial value
If f(a) and f(b) are of opposite signs, a root of					
f(x) = 0 lies between 'a' and 'b'.	· · · · · · · · · · · · · · · · · · ·	1	intermediate		
This idea can be used to fix an	approximate root	actual root	root	real root	approximate root
In Graeffe root squaring method, if the roots of					
the given polynomial differ in magnitude, then the of the roots are					
separated widely for higher values of m	mth power	2^{m+1} th power	2^{m} th power	2^{m+2} th power	2 ^m th power
The polynomial equations is given in the form of		2 th power	2 th power		
$a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n = 0,$	7		,	1	
where ai's are	Zero	one	complex	real	real
Newton Rapson method is also called method of -		Decula Falsi	Disastian	tonocuto	4 4 -
	Gauss Seidal	Regula Falsi	Bisection	tangents	tangents

If $f(-1)$ and $f(-2)$ are of opposite signs, then the					
negative roots of the equation $f(x)=0$ in False					
position method lie between	−1 and −2	-1 and 1	1 and -2	1 and 2	−1 and −2
			Newton		
The method fails if $f'(x) = 0$.	Bisection	False Position	Rapson	Iteration	Newton Rapson

			1	I	I
KARPAGAM AC	CADEMY OF HIGH	ER EDUCATION			
(Deemed to be University	Established Under S	Section 3 of UGC A	ct 1956)		
	Main Road, Eachar	< <i>11</i>			
	Coimbatore –641 02				
DEPART	MENT OF MATH	EMATICS			
	UNIT-II				
SOLUTIONS OF SIMULTANEOUS LINEAR A	LGEBRAIC EQUAT	IONS			
Pa	art-A(20X1=20 Mar	ks)			
(Question N	os. 1 to 20 Online Ex	kaminations)			
	Multiple Choice Que	stions			
Question	Opt 1	Opt 2	Opt 3	Opt 4	Answer
What are the types of solving linear system of					Direct and
equations?	Direct and Iterative	differentiation	integration	interpolation	Iterative
Gauss elimination method is a	indirect method	direct method	Iterative method	convergent	direct method
The rate of convergence in Gauss – Seidel					
method is roughly times than that of					
Gauss Jacobi method.	2	3	4	0	2
Example for iterative method	Gauss elimination	Gauss Seidal	Gauss Jordan	Bisection	Gauss Seidal
In the absence of any better estimates, the initial					
approximations are taken as	x = 0, y = 0, z = 0	x = 1, y = 1, z = 1	x = 2, y = 2, z = 2	x = 3, y = 3, z = 3	x = 0, y = 0, z = 0
When Gauss Jordan method is used to solve $AX =$			Upper triangular	lower	
B, A is transformed into	Scalar matrix	diagonal matrix	matrix	triangularmatrix	diagonal matrix
The modification of Gauss – Elimination method					
is called	Gauss Jordan	Gauss Seidal	Gauss Jacobi	Crout's	Gauss Jordan
Method produces the exact solution					
after a finite number of steps.	Gauss Seidal	Gauss Jacobi	Iterative method	Direct	Direct
In the upper triangular coefficient matrix, all the					
elements above the					
diagonal are	Zero	non-zero	unity	negative	non-zero

In the upper triangular coefficient matrix, all the					
elements below the diagonal					
are	Positive	non-zero	zero	negative	zero
Gauss Seidal method always for a special					
type of systems.	converges	diverges	oscillates	equal	Converges
	Coefficient matrix				Coefficient matrix
	is		Coefficient matrix		is
Condition for convergence of Gauss Seidal	diagonally	pivot element is	is not diagonally	pivot element is	diagonally
method is	dominant	Zero	dominant	one	dominant
Modified form of Gauss Jacobi method is					
method.	Gauss Jordan	Gauss Seidal	Regula falsi	Gauss Elimination	Gauss Seidal
In Gauss elimination method by means of					
elementary row operations,					
from which the unknowns are found by	Forward	Backward			Backward
method	substitution	substitution	random	equal to	substitution
In iterative method, the current					
values of the unknowns at each stage of iteration					
are used in proceeding to the next stage of					
iteration.	Gauss Seidal	Gauss Jacobi	Gauss Jordan	Gauss Elimination	Gauss Seidal
The direct method fails if any one of the pivot					
elements become	Zero	one	two	negative	Zero
In Gauss elimination method the given matrix is			Upper triangular	lower triangular	Upper triangular
transformed into	Unit matrix	diagonal matrix	matrix	matrix	matrix
Gauss Jordan method is a	Direct method	Indirect method	iterative method	convergent	Direct method
Gauss Jacobi method is a	Direct method	Indirect method	iterative method	convergent	Indirect method
The modification of Gauss – Jordan method is					
called	Gauss Jordan	Gauss Seidal	Gauss Jacobi	Gauss Seidal	Gauss Seidal
Gauss Seidal method always converges for	Only the special				Only the special
of systems.	type	all types	quadratic types	none	type
In solving the system of linear equations, the					
system can be written as	BX = B	AX = A	AX = B	AB = X	AX = B

In solving the system of linear equations, the					
augment matrix is	(A, A)	(\mathbf{B},\mathbf{B})	(A, X)	(A, B)	(A, B)
In the direct methods of solving a system of					
linear equations, at first the given system					
is written as form.	An augment matrix	a triangular matrix	constant matrix	Coefficient matrix	An augment matrix
The direct method fails if any one of the pivot					
elements become	one	zero	two	negative	zero
		By using back		Without using	without using back
In Gauss Jordan method, we get the solution	without using back	substitution	by using forward	forward	substitution
	substitution method	method	substitution method	substitution method	method
If the coefficient matrix is diagonally dominant,					
then method converges quickly.	Gauss elimination	Gauss jordan	Direct	Gauss Seidal	Gauss Seidal
The condition to apply Jocobi's method to solve a		1st column is		pivot element is	diagonally
system of equations	1st row is dominant	dominant	diagonally dominant zero		dominant
Iterative method is a method	Direct method	InDirect method	both 1st & 2nd	either 1st &2nd	InDirect method
is also a self-correction method.	Iteration method	Direct method	Interpolation	none	Iteration method
The condition for convergence of Gauss Seidal					
method is that the should be diagonally					
dominant	Constant matrix	unknown matrix	Coefficient matrix	Unit matrix	Coefficient matrix
In method, the coefficient matrix is					
transformed into diagonal matrix	Gauss elimination	Gauss jordan	Gauss jacobi	Gauss seidal	Gauss jordan
Method takes less time to solve a					
system of equations comparatively than ' iterative					
method'	Direct method	Indirect method	Regula falsi	Bisection	Direct method
The iterative process continues till is					
secured.	convergency	divergency	oscillation	none	convergency
In Gauss elimination method, the solution is		·	Elementary		
getting by means of from which the	Elementary	Elementary column	-	Elementary row	Elementary row
unknowns are found by back substitution.	operations	operations	operations	operations	operations

The is reduced to an upper triangular					
matrix or a diagonal matrix in					
direct methods.	Coefficient matrix	Constant matrix	unknown matrix	Augment matrix	Augment matrix
				Coefficient	
				matrix,	
		Unknown matrix	Coefficient matrix	constant matrix	Coefficient matrix
The augment matrix is the combination of	Coefficient matrix	and	and	and	and constant
	and constant matrix	constant matrix	Unknown matrix	Unknown matrix	matrix
The given system of equations can be taken as in					
the form of	A = B	BX= A	AX=B	AB = X	AX=B
Which is the condition to apply Gauss Seidal		1st column is			diagonally
method to solve a system of equations?	1st row is dominant	dominant	diagonally dominant	last row dominant	dominant
Crout's method and triangularisation method are					
method.	Direct	Indirect	Iterative	Interpolation	Direct
The solution of simultaneous linear algebraic					
equations are found by using	Direct method	Indirect method	both 1st & 2nd	Bisection	InDirect method

Unit -III

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021

DEPARTMENT OF MATHEMATICS

UNIT-III

FINITE DIFFERENCES

Part-A(20X1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

Multiple Choice Questions

Question	Opt 1	Opt 2	Opt 3	Opt 4	Answer
The forward difference operator is denoted by	D	Е	δ	Δ	Δ
The backward difference operator is denoted by	D	Е	∇	Δ	∇
The difference value $y^2 - y^1$ in a Newton's forward difference table is denoted by	Δy_0	Δy_1	Δy_2	Δy_0	Δy_1
The difference value $\Delta y_1 - \Delta y_0$ in a backward difference table is denoted by	$\Delta^2 y_0$	$\Delta^2 y_1$	Δy_1	Δy_0	$\Delta^2 y_0$
The backward difference operator is defined as	f(x)-f(x-h)	f(x)+f(x-h)	f(x-h)-f(x)	f(x+h)-f(x)	f(x)-f(x- h)
The forward difference operator is defined as	f(x+h)+f(x)	f(x+h)-f(x)	f(x)-f(x-h)	f(x-h)-f(x)	f(x+h)- f(x)
The central difference operator is denoted by	D	Е	δ	Δ	δ
The shifting operator is also known as operator.	forward difference	backward difference	central difference	translation	translatio n
The operator D is operator.	linear	non linear	normal	translation	linear
The operator is distributive over	subtraction	addition	multiplicatio n	division	addition
The relation between Δ and E is Δ =	E-1	E+1	E+2	E-3	E-1
The relation between ∇ and E is ∇ =	E – 1	$1 - E^{-1}$	1 +E ⁻¹	1 * E ⁻¹	$1 - E^{-1}$
The n th differences of a polynomial of the n th degree are	one	Zero	constant	three	constant
The (n+1) th and higher differences of a polynomial of the nth degree are	one	Zero	two	three	Zero
The interval of differencing(h) is defined by	$x_2 - x1$	x ₂ + x1	$x_0 + x_2$	_{X0} - X ₂	$x_2 - x1$
The polynomial $x(x-h)(x-2h)(x-3h)(x-(n-1)h)$ is deined as		factorial polynomial	forward difference	backward difference	factorial polynomi al
The difference operator is denoted by	D	Е	δ	Δ	D
The averaging operator is denoted by	D	Е	δ	μ	μ

What will be the first difference of a polynomial of degree four?	-	Polynomial of degree two	Polynomial of degree three	l of	Polynom ial of degree three
The difference $D^3 f(x)$ is called differences $f(x)$.	first	fourth	second	third	third
The differences Dy are called differences f(x).	first	fourth	second	third	first
$\Delta^2 \mathbf{y}_2 =$	$\Delta y_2 - \Delta y_3$	$\Delta y_1 - \Delta y_2$	$y_{3} - y_{2}$	$\Delta y_3 - \Delta y_2$	$\Delta y_3 - \Delta y_2$
The second difference $\Delta^2 y_0$ is equal to	$\begin{array}{c} y_2 + 2y_1 \\ -y_0 \end{array}$	y ₂ - 2y ₁ -y ₀	$y_2 - 2y_1 + y_0$	$\begin{array}{c} y_2+2y_1+\\ y_0 \end{array}$	$y_2 - 2y_1 + y_0$
The second difference $\Delta^3 y_0$ is equal to		$y_3 + 3y_2 + 3y_1 - y_0$	$y_3 + 3y_2 + 3y_1 + y_0$	$\begin{array}{c} y_2+2y_1+\\ y_0 \end{array}$	$\begin{array}{l}y_3-3y_2\\+3y_1-\\y_0\end{array}$
The differences Δy are called differences f(x).	first	fourth	second	third	first

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021 DEPARTMENT OF MATHEMATICS UNIT-IV INTERPOLATION Part-A(20X1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

Multiple Choice Questions

UNIT-IV							
Question	Opt 1	Opt 2	Opt 3	Opt 4	Answer		
In Newton's forward interpolation formula, the first two terms will give the	extrapolation	linear interpolation	parabolic interpolation	inter extra polation	linear interpolation		
In Newton's forward interpolation formula, the three terms will give the	extrapolation	linear interpolation	parabolic interpolation	inter extra polation	parabolic interpolation		
Formula can be used for unequal intervals.	Newton's forward	Newton's backward	Lagrange	Stirling	Lagrange		
The process of computing the value of a function outside the range is called	interpolation	extrapolation	both	inverse interpolat ion	extrapolatio n		
The process of computing the value of a function inside the range is called	Interpolation	extrapolation	both	inverse interpolat ion	Interpolation		
The difference value $y_2 - y_1$ in a Newton's forward difference table is denoted by -	Δy_0	Δy_1	Δy_2	$\Delta \mathrm{y}_0$	Δy_1		
Formula can be used for interpolating the value of f(x) near the end of the tabular values. The technique of	Newton's forward	Newton's backward	Lagrange	Stirling	Newton's backward		
The technique of estimating the value of a function for any intermediate value is	interpolation	extrapolation	forward method	backward method	interpolation		
The values of the independent variable are not given at equidistance intervals, we use formula.	Newton's forward	Newton's backward	Stirling	Lagrange	Lagrange		
of y for some x which lies at the of the table, we use Newton's Backward formula	beginning	end	center	outside	end		

of y for some x which lies at the of the table, we	beginning	end	center	outside	beginning
To find the unknown value of x for some y, which lies at the unequal intervals we use	Newton's Forward	Newton's Backward	Lagrange	Stirling	Lagrange
If the values of the variable y are given, then the method of finding the unknown variable x is called	Newton's Forward	Newton's Backward	Interpolatio n	Inverse Interpola tion	Inverse Interpolation
The divided difference operator is	non-linear	normal	linear	zero	linear
The Formula can be used for interpolating the value of $f(x)$ near the end of the tabular values	Newton's forward	Newton's backward	Lagrange	Stirling	Newton's backward
The values of the independent variable are not given at equidistance intervals, we use formula	Newton's forward	Newton's backward	Lagrange	Stirling	Lagrange
In Newton's forward interpolation formula, the value of u is calculated by 	$\mathbf{u} = (\mathbf{x} - \mathbf{x}_n) / \mathbf{h}$	$\mathbf{u} = (\mathbf{x}_n - \mathbf{x}) / \mathbf{h}$	u = (x-x ₀) / h	$u = (x_0 - x) / h$	u = (x–x ₀) / h
In Newton's forward interpolation formula, the value x can be written as	x ₀ –nh	x _n –nh	x _n + nh	$x_0 + nh$	$x_0 + nh$
In Newton's backward interpolation formula, the value x can be written as	x ₀ –nh	x _n -nh	$x_n + nh$	$x_0 + nh$	x _n + nh
In Newton's backward interpolation formula, the value of v is calculated by	$\mathbf{v} = (\mathbf{x} - \mathbf{x}_n) / \mathbf{h}$	$\mathbf{v} = (\mathbf{x}_n - \mathbf{x}) / \mathbf{h}$	v = (x-x ₀) / h	$v = (x_0 - x) / h$	$v = (x - x_n) / h$
Thedifferences are symmetrical in all their arguments.	forward	backward	divided	central	divided
The value of any divided differences is of the order of the arguments.	independent	dependent	zero	one	independent

The n th divided differences of a polynomial of the n th degree are	one	Zero	constant	three	constant
--	-----	------	----------	-------	----------

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021 DEPARTMENT OF MATHEMATICS UNIT-V

NUMERICAL DIFFERENTIATION AND INTEGRATION

(Question 105.)	1	· _ · · · · · · · · · · · · · · · · · ·	~)		
Question	Opt 1	Opt 2	Opt 3	Opt 4	Answer
when the function is given in the form of table of values instead of giving analytical expression we	Bisection method	Numerical differentiati on	Newton Rapson method	Numerical integration	Numerical differentiati on
Numerical differentiation can be used only when the difference of some order are	zero	one	costant	two	costant
The numerical forward differentiation of y with respect to x once is		$(1/h)^* (Dy_n + (2r-1)/2 * D^2 y_n + n$	$= (1/h)^{*} ($ $Dy_{n} + $ $(2m+1)/(2)^{*}$	$n Dy_0 + {n(n+1) / 2}$	
The numerical backward differentiation of y w.r.t. x once is -	$= (1/h)^{*} ($ Dy ₀ +	$\tilde{N}y_n + {n(n+1)} /$	$= (1/h)^{*}$ (Dy _n +	$(1/h)^*$ $(Ny_n + (2n+1)/2^*$	$(1/h)^* (\tilde{N}y_n + (2r+1)/2)$
The second derivative of the Newton's forward differentiation is	(2* 1)/2* y"= $(1/h^2)*$ $\{D^2y_0 -$ y"=	$y" = (1/h^2)*$ $\{D^2y_0 + y" = 0$	(2+1)/2 * y"= (1/h)* $(D^2y_0 +$ y"=	$y" = (1/h)* {D^2y_0 - y" = $	y " = (1/h ²)* $\{D^{2}y_{0} - y$ " =
The second derivative of the Newton's backward differentiation is	y " = $(1/h^2)*$ $\{D^2y_0 +$	y " = $(1/h^2)*$ $\{D^2y_0 -$	y " = (1/h)* $\{D^2y_0 +$	y " = (1/h)* $\{D^2y_0 -$	y " = $(1/h^2)*$ $\{D^2y_0 +$
The order of error in Trapezoidal rule is	h	h ³	h^2	h^4	h ²
The order of error in Simpson's rule is	h	h ³	h^2	h^4	h^4
Numerical evaluation of a definite integral is called	Integration	Differentiati on	Interpolati on	Triangulari zation	Integration
Simpson's ³ / ₈ rule can be applied only if the number of sub interval is in	Equal	even	multiple of three	unequal	multiple of three
By putting n = 2 in Newton cote's formula we get rule.	Simpson's 1/3	Simpson's 3/8	Trapezoida 1	Romberg	Simpson's 1/3

(Question Nos. 1 to 20 Online Examinations)

The Newton Cote's formula is also known as formula.	Simpson's 1/3	Simpson's 3/8	Trapezoida 1	quadrature	quadrature
By putting n = 3 in Newton cote's formula we get rule.	Simpson's 1/3	Simpson's 3/8	Trapezoida 1	Romberg	Simpson's 3⁄8
By putting n = 1 in Newton cote's formula we get rule.	Simpson's 1/3	Simpson's 3/8	Trapezoida 1	newton's	Trapezoidal
The systematic improvement of Richardon's method is called method	Simpson's 1/3	Simpson's 3/8	Trapezoida 1	Romberg	Romberg
Simpson's 1/3 rule can be applied only when the number of interval is	Equal	even	multiple of three	unequal	even
Simpson's rule is exact for a even though it was derived for a	cubic	less than cubic	linear	quadratic	linear
The accuracy of the result using the Trapezoidal rule can be improved by	Increasing the interval h	Decreasing the interval h	the number of	attering the given function	the number of
A particular case of Runge Kutta method of second order is	Milne's method	Picard's method	Modified Euler method	Runge's method	Modified Euler method
Runge Kutta of first order is nothing but the	modified Euler method	Euler method	Taylor series	none of these	Euler method
In Runge Kutta second and fourth order methods, the values of k1 and k2 are	same	differ	always positive	always negative	same
The formula of Dy in fourth order Runge Kutta method is given by	$\frac{1}{6} * (k_1 + 2k_2 + 3k_3 + 4k_4)$	$\frac{1}{6} * (k_1 + k_2 + k_3 + k_4)$		$\frac{1}{6} * (k_1 + 2k_2 + 2k_3 + k_4)$	$\frac{1}{6} * (k_1 + 2k_2 + 2k_3 + k_4)$
In second order Runge Kutta method the value of k2 is calculated by	h f(x + h/2 , y + $k_1/2$)	h f(x - h/2 , y-k ₁ /2)	h f(x , y)	h f(0,0)	h f(x + h/2 , y + $k_1/2$)
values are calculated in Runge Kutta fourth order method.	k ₁ , k ₂ , k ₃ , k ₄ and Dy	k ₁ , k ₂ and Dy	k_1, k_2, k_3 and Dy	none of these	k_1, k_2, k_3, k_4 and Dy
The use of Kunge Kutta method gives to the solutions of the differential equation than Taylor's series method	Slow convergenc e	quick convergence	oscillation	divergence	quick convergenc e
In Runge – kutta method the value x is taken as	$\mathbf{x} = \mathbf{x}_0 + \mathbf{h}$	$x_0 = x + h$	$\mathbf{h} = \mathbf{x}_0 + \mathbf{x}$	$\mathbf{h} = \mathbf{x}_0 - \mathbf{x}$	$\mathbf{x} = \mathbf{x}_0 + \mathbf{h}$

	1		1		
In Runge – kutta method the value y is taken as	$y = y_0 + h$	$y_0 = x_0 + h$	$y = y_0 - Dy$	$y = y_0 + Dy$	$y = y_0 + Dy$
In fourth order Runge Kutta method the value of k3 is calculated by	h f(x - h/2 , y - k ₂ /2)	h f(x + h/2 , y + $k_2/2$)	h f(x , y)	h f(x – h/2 , y – k ₁ /2)	h f(x + h/2 , y + k ₂ /2)
In fourth order Runge Kutta method the value of k4 is calculated by	h f(x + h/2 , y + $k_1/2$)	h f(x + h/2 , y + $k_2/2$)	$\begin{array}{l} h f(x+h, \\ y+k_3) \end{array}$	$\begin{array}{l} h f(x - h, \\ y - k_3) \end{array}$	$\begin{array}{l} h f(x+h, \\ y+k_3) \end{array}$
is nothing but the modified Euler method.	kunge kutta method of	Runge kutta method of third order	Kunge kutta method of fourth	Taylor series method	kunge kutta method of
In all the three methods of Rungekutta methods, the values are same.	k ₄ & k ₃	k ₃ & k ₂	k ₂ & k ₁	k ₁ , k ₂ , k ₃ & k ₄	k ₂ & k ₁
The formula of Δy in third order Runge Kutta method is given by	$\frac{1}{6} * (k_1 + 2k_2 + 3k_3 + 4k_4)$	$\frac{1}{6} * (k_1 + 4k_2 + k_3)$	$1/6 * (4k_1 + 4k_2 + 4k_3)$	$1/6 * (k_1 + 2k_2 + 2k_3 + k_4)$	$\frac{1}{6} * (k_1 + 4k_2 + k_3)$
The formula of Δy in second order Runge Kutta method is given by	k 1	k ₂	k ₃	\mathbf{k}_4	k ₂
In second order Runge Kutta method the value of k1 is calculated by	h f(x + h/2 , y + $k_1/2$)	h f(x + h/2 , y + $k_2/2$)	h f(x , y)	h f(x – h/2 , y – $k_1/2$)	h f(x , y)
The Kunge – Kutta methods are designed to give and they posses the advantage of requiring only the function values	greater accuracy	lesser accuracy	average accuracy	equal	greater accuracy
If dy/dx is a function x alone, then fourth order Runge – Kutta method reduces to	Trapezoida l rule	Taylor series	Euler method	Simpson method	Simpson method
derivatives of are not require and we require only the <u>The second converses and ifforent</u>	higher order	lower order	middle order	zero	higher order
gives quick convergence to the solutions of the differential	Taylor series	Euler	Runge – Kutta	Simpson method	Runge – Kutta
If dy/dx is a function x alone, then - Runge – Kutta method reduces to Simpson method	fourth order	third order	second order	first order	fourth order
then fourth order Runge – Kutta method reduces to Simpson	x alone	y alone	both x and y	none	x alone

Reg. No..... [10MCU603]

Maximum : 60 marks

KARPAGAM UNIVERSITY (Under Section 3 of UGC Act 1956) COIMBATORE - 641 021 (For the candidates admitted from 2010 onwards)

B.Sc., DEGREE EXAMINATION, APRIL 2013

Sixth Semester

MATHEMATICS (COMPUTER APPLICATIONS) NUMERICAL METHODS

Time: 3 hours

PART - A (20N % - 10 Marks) Answer ALL the Questions

- a. Slowly convergent d. fast divergent
- 2. The convergence of iteration method is ----b. polynomial c. quadratic d. linear a. zero
- 3. In Newton Raphson method, the error at any stage is proportional to the ----of the error in the previous stage. b. square c. square root d. None of these. a. Cubic
- --- method 4. The method of false position is also known as -d. Regula falsi c. Bisection a. Gauss Seidal b. Secant
- When Gauss Jordan method is used to solve AX = B, A is transformed into -----a. Scalar matrix b. diagonal matrix c. Upper triangular matrix a. Scalar matrix b. dia d. lower triangular matrix
- 6. Condition for convergence of Gauss Seidal method is -----a. Coefficient matrix is not diagonally dominant b. p c. Coefficient matrix is diagonally dominant d. p b. pivot element is Zero d. pivot element is non-zero.

1

- 7. Crout's method is also a ------- method. a. indirect b. direct c. iterative d. root.
- 8. Modified form of Gauss Jacobi method is -- method. c. Gauss Jacobi d. Crout's. a. Gauss Jordan b. Gauss Seidal

- 9. Forward difference operator is denoted by the symbol d. [] a b V 0. 2.
- 10. Shifting operator is also known as ------ operator e. forward d. backward a. translation b, central
- 11. Relation between E and ∇ is V . a. E 1 b. 1 E⁻¹ c. 1 +E d. 1 * E' 0. 1 +E" a. B – 1
- 12. The nth differences (forward, of a polynomial of the nth degree are a. constant b. variable c. zero d. one
- 13. The process of computing the value of a function outside the range is called seems a, interpolation b, extrapolation c, both d, inverse interpolation
- 14. The difference value $\nabla y_1 = \nabla y_0$ in a Newton's forward difference table is denoted by -----b. $\nabla^2 y_1$ c. ∇y_1 d. Δy_0 n. V² Yo
- 16. The divided difference operator is a, non-linear b, normal c, linear d. none
- Simpson's ¼ rule can be applied only if the number of sub interval is in summer, a. Equal b. even c. multiple of three d. unequal. a. Equal b. even
- a. Milne's method d. Taylor Series PART B (5 X 4 = 20 Marks) Answer ALL the Questions

(2) a. Find the positive root of $x^3 - 2x - 5 = 0$ by the Regula Falsi Method correct to two decimal places. Or

b Find the positive root of a' - a = 10 correct to three decimal places using Newton Raphson Method. 29. Explain forward and backward difference operation 29 Using Lag (2) a. Solve the system by Gauss – Elimination method. 2x + 3y - z = 5 4x - 4y - 3z = 3 2x - 3y - 2z = 2 Gris Solve the following context of equation by Gauss age's formula find f(3) X : F(x) : 2 5 12 147 02 13 ula for II order, III order and IV order method. 30 Write R-K method form b. Solve the following system of equation by Gauss Jordan method 5x - 4y = 153x + 7y = 12Time (23) a. Find forward difference table for the following data X: 0 5 10 15 Y: 14 379 1444 3584 Or 1. W 2. Q 3. T b. State any three properties of operator. (2) a. Using Newton's forward interpolation formula evaluate y at x = 5x a. Using previous subvaria interpolation formula evaluate y X : 4 6 8 10 Y : 1 3 8 10 Or b. Form the divided difference table for the following data. x : 1 2 4 7 12 f(x) : 22 30 82 106 206 4. I 5. 3 6. 3 7. 1 8. 3 9. . 10 11 12 13 14 (25) a. Evaluate $\int \frac{dx}{1+x^2}$ using Trapezoidal rule Or b. Write Simpson's 1/3 and 3/8th rule formula. PART C (3 x 10 = 30 Marks) Answer any THREE Questions Given that $x^2 - 3x + 1 = 0$ has a root between 1 and 2. Find it to three decimal places using Horner's method. 1

Reg. No..... [10MCU603]

Maximum : 60 marks

KARPAGAM UNIVERSITY (Under Section 3 of UGC Act 1956) COIMBATORE - 641 021 (For the candidates admitted from 2010 onwards)

B.Sc., DEGREE EXAMINATION, APRIL 2013

Sixth Semester

MATHEMATICS (COMPUTER APPLICATIONS) NUMERICAL METHODS

Time: 3 hours

PART - A (20N % - 10 Marks) Answer ALL the Questions

- a. Slowly convergent d. fast divergent
- 2. The convergence of iteration method is ----b. polynomial c. quadratic d. linear a. zero
- 3. In Newton Raphson method, the error at any stage is proportional to the ----of the error in the previous stage. b. square c. square root d. None of these. a. Cubic
- --- method 4. The method of false position is also known as -d. Regula falsi c. Bisection a. Gauss Seidal b. Secant
- When Gauss Jordan method is used to solve AX = B, A is transformed into -----a. Scalar matrix b. diagonal matrix c. Upper triangular matrix a. Scalar matrix b. dia d. lower triangular matrix
- 6. Condition for convergence of Gauss Seidal method is -----a. Coefficient matrix is not diagonally dominant b. p c. Coefficient matrix is diagonally dominant d. p b. pivot element is Zero d. pivot element is non-zero.

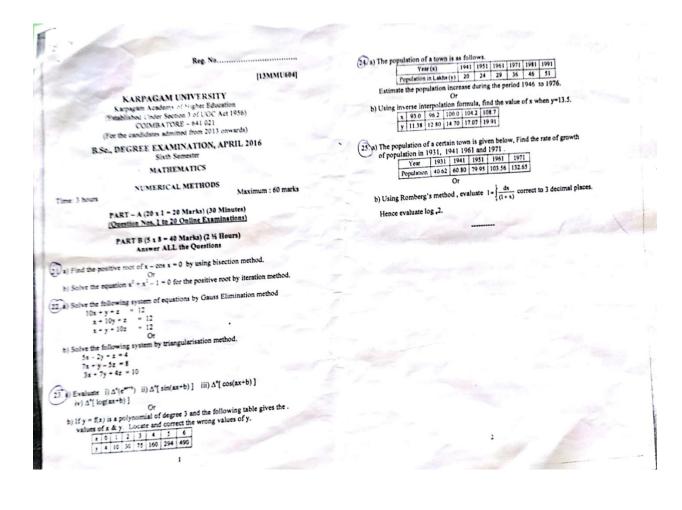
1

- 7. Crout's method is also a ------- method. a. indirect b. direct c. iterative d. root.
- 8. Modified form of Gauss Jacobi method is -- method. c. Gauss Jacobi d. Crout's. a. Gauss Jordan b. Gauss Seidal

- 9. Forward difference operator is denoted by the symbol d. [] a b V 0. 2.
- 10. Shifting operator is also known as ------ operator e. forward d. backward a. translation b, central
- 11. Relation between E and ∇ is V . a. E 1 b. 1 E⁻¹ c. 1 +E d. 1 * E' 0. 1 +E" a. B – 1
- 12. The nth differences (forward, of a polynomial of the nth degree are a. constant b. variable c. zero d. one
- 13. The process of computing the value of a function outside the range is called seems a, interpolation b, extrapolation c, both d, inverse interpolation
- 14. The difference value $\nabla y_1 = \nabla y_0$ in a Newton's forward difference table is denoted by -----b. $\nabla^2 y_1$ c. ∇y_1 d. Δy_0 n. V² Yo
- 16. The divided difference operator is a, non-linear b, normal c, linear d. none
- Simpson's ¼ rule can be applied only if the number of sub interval is in summer, a. Equal b. even c. multiple of three d. unequal. a. Equal b. even
- a. Milne's method d. Taylor Series PART B (5 X 4 = 20 Marks) Answer ALL the Questions

(2) a. Find the positive root of $x^3 - 2x - 5 = 0$ by the Regula Falsi Method correct to two decimal places. Or

b Find the positive root of a' - a = 10 correct to three decimal places using Newton Raphson Method. 29. Explain forward and backward difference operation 29 Using Lag (2) a. Solve the system by Gauss – Elimination method. 2x + 3y - z = 5 4x - 4y - 3z = 3 2x - 3y - 2z = 2 Gris Solve the following context of equation by Gauss age's formula find f(3) X : F(x) : 2 5 12 147 02 13 ula for II order, III order and IV order method. 30 Write R-K method form b. Solve the following system of equation by Gauss Jordan method 5x - 4y = 153x + 7y = 12Time (23) a. Find forward difference table for the following data X: 0 5 10 15 Y: 14 379 1444 3584 Or 1. W 2. Q 3. T b. State any three properties of operator. (2) a. Using Newton's forward interpolation formula evaluate y at x = 5x a. Using previous subvaria interpolation formula evaluate y X : 4 6 8 10 Y : 1 3 8 10 Or b. Form the divided difference table for the following data. x : 1 2 4 7 12 f(x) : 22 30 82 106 206 4. I 5. 3 6. 3 7. 1 8. 3 9. . 10 11 12 13 14 (25) a. Evaluate $\int \frac{dx}{1+x^2}$ using Trapezoidal rule Or b. Write Simpson's 1/3 and 3/8th rule formula. PART C (3 x 10 = 30 Marks) Answer any THREE Questions Given that $x^2 - 3x + 1 = 0$ has a root between 1 and 2. Find it to three decimal places using Horner's method. 1



Reg. No.....

[14MMU604]

KARPAGAM UNIVERSITY

Karpagam Academy of Higher Education (Established Under Section 3 of UGC Act 1956) COIMBATORE – 641 021 (For the candidates admitted from 2014 onwards)

B.Sc., DEGREE EXAMINATION, APRIL 2017 Sixth Semester

MATHEMATICS

MATHEMATICS

NUMERICAL METHODS

Time: 3 hours

Maximum : 60 marks

PART – A (20 x 1 = 20 Marks) (30 Minutes) (Question Nos. 1 to 20 Online Examinations)

PART B (5 x 8 = 40 Marks) (2 ½ Hours) Answer ALL the Questions

21. a) Find the root of the equation lies between 0 and 1 of the equation $x^3-6x+4=0\;$ using Newton Raphson method .

(Or) b) Show that the root of the equation lies between 1 and 2 of the equation $x^3 - 3x + 1 = 0$ using Horner's method .

22. a) Solve by Gauss Jordan method

2x - 3y + z = 1x + 4y + 5z = 25 3x - 4y + z = 2 (Or) b) Solve by Gauss Jacobi method 27x + 6y - z = 85 6x + 15y + 2z = 72 x + y + 54z = 110

23. a) Find the 7th term of the sequence 2,9,28,65,126,217 and also find the general term.

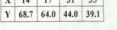
(Or)

b) Prove that nth differences of a polynomial of the nth degree are constants.

24. a) Using Newton's divided difference formula, find the values of f (2), f (8) and f (15) from the following table:

x	4	5	7	10	11	13
					1210	

b) Using Lagrange's interpolation formula, find y(27) from the following table. X 14 17 31 35



25. a) Using fourth order Runge kutta method to find an approximate value of y when x = 0.1, 0.2 given that y ' = x + y, y (0) = 1. (Or)

2

b) Use Romberg method to compute $\int_{0}^{1} \frac{dx}{1+x^2}$ correct to 4 decimal places. Hence find Π .

Reg.No	 4. The order of convergence of Regula falsi method may be assumed to a) 1.618 b) 1 c) 1.234 d) 0.5 5. The method of false position is also known asmethod. a) Gauss Seidal b) Secant c) Bisection d) Regula falsi 6. The order of convergence of Newton Raphson method is a) 4 b) 2 c) 1 d) 0 					
(15MMU503) Karpagam Academy of Higher Education Coimbatore-21 Department of Mathematics Fifth Semester I Internal Test-July'17 Numerical Methods						
Date: 19.07.17(FN)Time: 2 HoursClass:III B.Sc Mathematics A&BMaximum Marks:50	 7. Graeffe's root squaring method is useful to find a) complex roots b) single root c) unequal roots d) polynomial roots 					
PART-A(20X1=20 Marks) Answer all the Questions:	 8method is also called method of tangents. a) Gauss Seidal b) Secant c) Bisection d) Newton Rapson 					
 The equation 3x - cosx - 1 = 0 is known as equation. a) polynomial b) transcedental c) algebraic d) exponential method is also called as Bolzano method or interval basing method 	 9. The sufficient condition for convergence of iterations is a) φ'(x) = 1 b) φ'(x) > 1 c) φ'(x) < 1 d) φ'(x) < 0 10. The Newton Rapson method fails if a) f'(x) = 0 b) f(x) = 0 c) f(x) = 1 d) f'(x) = 1 					
interval having method. a) Bisection b) False position c) Newton Rapsond) Euler	 11. The augment matrix is the combination of a) Coefficient matrix and constant matrix b) Unknown matrix and constant matrix c) Coefficient matrix and unknown matrix d) Coefficient matrix, constant matrix and unknown matrix 					
3. The convergence of iterationa) zerob) polynomialc) quadraticd) linear						

- 12. Gauss elimination method is a -----.a) indirect methodb) direct methodc) iterative methodd) convergent
- 13. When Gauss Jordan method is used to solve AX = B, A is transformed into ----a) Scalar matrix b) Diagonal matrix
 c) Upper triangular matrix d) Lower triangular matrix
- 14. In the upper triangular coefficient matrix, all the elements below the diagonal are -----.a) positive b) non zero

/ 1	/
c) zero	d) negative.

- 15. Method of triangularization is also a ----- method.a) indirectb) directc) iteratived) root.
- 16. The modification of Gauss Elimination method is called -----.
 - a) Gauss Jordan b) Gauss Seidal
 - c) Gauss Jacobi d) Crout's method.
- 17. In Gauss elimination method the given matrix is transformed into -----.
 - a) Unit matrix b) diagonal matrix
 - c) Upper triangular matrix
 - d) Lower triangular matrix
- 18. In ----- method the coefficient matrix is decomposed into upper and lower triangular matrices.
 - a) Gauss Jordan b) Triangularization
 - c) Gauss Jacobi d) Gauss Seidal

19.Crout's method is also a ----- method.
a) indirect b) direct c) iterative d) root.
20. In crout's method, the auxiliary matrix is

also known as ------ matrix. a) square b) diagonal c) upper triangular d) derived

PART-B(3 X 10 = 30 Marks)

Answer all the Questions: 21.a) Find an approximate root of $x \log_{10} x = 1.2$ by False position method.

(**OR**)

- b) Find the positive root of the equation $x^3 + 3x 1 = 0$ correct to 2decimal places by Horner's method.
- 22.a) Find all the roots of the equation $x^3 9x^2 + 18x 6 = 0$ by Graeffe's method (root squaring, three times). (**OR**)
- b) Find the positive root of $f(x) = 2x^3 3x 6 = 0$ by Newton Raphson method correct to four decimal places.
- 23.a) Solve the following system by Gauss Jordan method

 $\begin{array}{rl} 10x + y + z &= 12\\ 2x + 10y + z &= 13\\ x + y + 5z &= 7.\\ (OR) \end{array}$

b) Solve the following system by triangularisation method. 5x - 2y + z = 4

0

$$7x + y - 5z = 8$$

 $3x + 7y + 4z = 1$

Reg.No-----

(15MMU503)

Karpagam Academy of Higher Education Coimbatore-21 Department of Mathematics Fifth Semester II Internal Test-Aug'17 Numerical Methods

Date: 09.08.17(AN) **Class: III B.Sc Mathematics**

Time: 2 Hours Maximum Marks:50

PART-A(20X1=20 Marks) Answer all the Questions:

1. Modified form of Gauss Jacobi method is ------ method.

a) Gauss Jordan b) Gauss Seidal c) Gauss Jacobi d) Crout's

2. ----- is also a self-correction method. a) Direct method b) indirect method d) Gauss Elimination c) interpolation

- 3. Condition for convergence of Gauss Seidal method is -----a) Coefficient matrix is not diagonally dominant b) pivot element is Zero c) Coefficient matrix is diagonally dominant
 - d) pivot element is non-zero.

4. The rate of convergence in Gauss – Seidel method is

roughly times than that of a) 0 b) 3 c) 4 d) 2	Gauss Jacobi method.			
5. Example for iterative methoda) Gauss eliminationc) Gauss Jordon				
6. Backward difference operator is de a) Δ b) ∇	enoted by the symbol c) Σ d) \prod			
7. Shifting operator is also known asa) translation b) central c) for	-			
8. Relation between E and ∇ is $\nabla = a$ a) E - 1 b) 1 - E ⁻¹ c) 1 -				
9. The inverse operator E ⁻¹ is defined a) f(x-h) b) f(x+h) c)				
10. The operator D is operator a) linear b) non linear				
11. In difference, $f(x+h) - f(x) =a) \Delta f(x)$ b) $\nabla f(x)$				
12. The operators are distributive over a) subtractionb) mult c) divisionc) divisiond) addition	iplication			
13. The difference value $y_2 - y_1$ in a difference table is denoted by				
a) Δy_0 b) Δy_1	c) Δy_2 d) Δy_4			

- 14. The central difference operator is denoted by -----a) D b) δ c) ∇ d) Δ
- 15. The polynomial x(x-h)(x-2h)(x-3h).....(x-(n-1)h) is defined as -----a) difference of polynomial
 b) factorial polynomial
 c) forward difference
 d) backward difference
- 16. The difference value $\nabla y_2 \nabla y_1$ in a backward difference table is denoted by ----

a) $\nabla^2 y_2$ b) $\nabla^2 y_0$ c) ∇y_2 d) ∇y_0

- 17. The (n+1)th and higher differences of a polynomial of degree n are ----a) constant
 b) variable
 c) zeros
 d) one
- 18. The averaging operator is denoted by ----a) D b) E c) δ d) μ
- 19. Shifting operator E is defined by Ef(x) = -----aa) f(x-h) b) f(x+h) c) f(x+h/2) d) f(x-h/2)

PART-A(3 X 10 = 30 Marks)

Answer all the Questions:

21.a) Solve the following system of equations by Crout's method.

$$\begin{array}{l} x + y + z &= 3 \\ 2x - y + 3z &= 16 \\ 3x + y - z &= -3 \end{array}$$
 (OR)

b) Solve the following system of equations by Gauss-Jacobi method

- $\begin{array}{l} 10x-5y-2z=3\\ 4x-10y+3z=-3\\ x+6y+10z=-3 \end{array}$
- 22. a) Prove that nth difference of a polynomial of the nth degree are constants.

(**OR**)

b) Evaluate i) $\Delta^{n}(e^{ax+b})$ ii) $\Delta^{n}[sin(ax+b)]$

iii) $\Delta^{n}[\cos(ax+b)]$ iv) $\Delta[\log(ax+b)]$

23.a) i) Write the relation between ∆ and E.
ii) Express x³ + x² + x + 1 in factorial polynomials and get their successive differences taking h = 1.

(**OR**)

b) Estimate the production for 1964 & 1966 from the following data.

x: 1	2	3	4	5	6	7
y: 2	4	8	-	32	64	128

Reg.No---

(15MMU503)

KARPAGAM UNIVERSITY Karpagam Academy of Higher Education Coimbatore-21 **Department of Mathematics Fifth Semester** Model Examination-Sep'17 Numerical Methods

Date: 6.00.17(FN) Time: 3 Hours Class: III B.Sc Mathematics

Maximum Marks: 60

PART-A(20X1=20 Marks)

Answer all the Questions:

- 1. If f(x) contains some functions like exponential, trigonometric, logarithmic etc., then f (x) is called ----- equation.
 - a) Algebraic
- b) transcendental
- c) numerical d) polynomial
- 2. The bisection method is simple but -----. a) slowly convergent b) fast convergent c) slowly divergent
 - d) fast divergent
- 3. In Newton Raphson method, the error at any stage is Proportional to the ----- of the error in the previous stage. a) cube b) square c) square root · d) equal
- 4. In ----- method, first find the integral part of the equation. a) Iteration b) Regula Falsi c) Bisection d) Horner's

5. In the upper triangular coefficient matrix, all the elements above the diagonal are -----. a) Zero b) non – zero c) unity d) negative. 6. The direct method fails if any one of the pivot elements become ----a) zero b) one d) negative c) two 7. Method of Triangularisation is also known as -----. a) factorization b) false position c) Bolzano d) iteration 8. Condition for convergence of Gauss Seidal method is -----a) Coefficient matrix is not diagonally dominant b) pivot element is Zero c) Coefficient matrix is diagonally dominant d) pivot element is non-zero. 9. In difference, f(x+h) - f(x) = -----. b) $\nabla f(x)$ c) $\Delta^2 f(x)$ a) $\Delta f(x)$ d) h(x)10. Shifting operator is also known as ----- operator. a) translation b) central c) forward d) backward. 11. The operators are distributive over ----a) subtraction b) multiplication c) division d) addition 12. Relation between Δ and E is $\Delta =$ ----a) E - 1b) E + 1c) E * 1 d) 1 - E13. The process of computing the value of a function outside the range is called -----. a) interpolation b) extrapolation c) both d) inverse interpolation

- 14. ----- Interpolation formula can be used for equal and un equal intervals.
 - a) Newton's forward b) Newton's forward
 - c) Lagrange d) Romberg
- 15. The divided difference operator is ------a) non-linearb) normalc) lineard) translation
- 16. In Newton's forward interpolation formula, the three terms will give the ----
 - a) extrapolation b) linear interpolation
 - c) parabolic interpolation d) inter extra polation
- 17. The Newton Cote's formula is also known as -----formula.
 - a) Simpson's 1/3 b) Simpson's 3/8
 - c) Trapezoidal d) quadrature
- By putting n = 3 in Newton cote's formula we get ------ rule.
 - a) Simpson's 1/3 rule b) Simpson's ³/₈ rule c) Trapezoidal rule d) Romberg
- 19. The order of error in Trapezoidal rule is -----. a) h b) h^3 c) h^2 d) h^4
- 20. In Runge Kutta second and fourth order methods, the values of k₁ and k₂ are ----.
 - a) same b) differ d) always negative

PART -B(5x8= 40 Marks)

Answer all the questions:

21. a) Find the positive root of $e^x = 3x$ by using Bisection method.

(OR)

b) Solve the equation $x^3 + x^2 - 1 = 0$ for the positive root by iteration method.

22.a) Solve the following system by triangularisation method. 5x-2y+z=4, 7x+y-5z=8, 3x+7y+4z=10(OR)

b) Solve the following system of equations by Gauss-Seidel method. 8x - 3y + 2z = 20, 4x + 11y - z = 33, 6x + 3y + 12z = 35

23. a) Find the 7th term of the sequence 2,9,28,65,126,217 and also. Find the General term.

(OR)

b) If y = f(x) is a polynomial of degree 3 and the following table gives the values of x & y. Locate and correct the wrong values of y.

$\mathbf{x}: 0$	1	2	3	4	5	6
y:4	10	30	75	160	294	490

24. a) From the following table of half-yearly premium for policies maturing at different ages. Estimate the premium for policies maturing at age 46 & 63.

Age (x): 45	50	55	60	65
Premium(y) : 114.84	96.16	83.32	74.48	68.48
	(OR)			

b) Using Newton's divided difference formula, find the values of f(2), f(8) and f(15) given the following table.

	x : 4	5	7	10	11	13	
	f(x): 48	100	294	900	1210	2028	
	•••	6				1 a a	

25. a) Evaluate I= $\int dx / (1+x)$ using both of the Simpson's rule.

(OR)

b) Use Runge kutta method of fourth order find y for x = 0.1and 0.2, given that dy/dx = x + y, y(0) = 1.