
Grid Computing 2017-2019

batch

Department Of CS, CA & IT, KAHE Page 1/2

 KARPAGAM ACADEMY OF HIGHER EDUCATION

Coimbatore-641021.

 (For the candidates admitted from 2017 onwards)

Department of CS,CA & IT

SUBJECT : GRID COMPUTING

SEMESTER : II

SUBJECT CODE : 17CSP205B CLASS : I M.Sc.CS

SCOPE

The main objective of the course is to portray the recent trends in the field of Grid

computing and creation and management of Internet-based utility computing

infrastructure.

OBJECTIVES

 Provide a good understanding of the concepts standards and protocols in Grid

computing

 To perform analysis design and implementation of ARC grid computing model.

UNIT- I

Introduction: Cluster to Grid Computing – Cluster Computing Models – Grid Models –

Mobile Grid Models – Applications. Parset: System-independent Parallel Programming

on Distributed Systems –introduction – Semantics of the Parset Construct – Expressing

Parallelism through Parsets – Implementing Parsets on a Loosely Coupled Distributed

System

UNIT- II

Anonymous Remote Computing Model: Issues in Parallel Computing on Interconnected

Workstations – Existing Distributed Programming Approaches – The ARC Model of

Computation – The Two-tired ARC Language Constructs – Implementation. Integrating

Task Parallelism with Data Parallelism: A Model for Integrating Task Parallelism into

Data Parallel Programming Platforms – Integration of the Model into ARC – Design and

Implementation – Applications - Performance Analysis

UNIT- III

Anonymous Remote Computing and Communication Model: Location – Independent

Inter-task Communication with DP – DP Model of Iterative Grid Computations – Design

and Implementation of Distributed Pipes. Parallel Programming Model on CORBA:

Notion of Concurrency – System Support –Implementation and Performance

Grid Computing 2017-2019

batch

Department Of CS, CA & IT, KAHE Page 2/2

UNIT- IV

Sneha-Samuham Grid Computing Model: A Parallel Computing Model over Grids –

Design and Implementation – Performance studies. Introducing Mobility into

Anonymous Remote Computing and Communication Model – Issues in Mobile clusters

and Parallel Computing on Mobile Clusters – Moset Overview – Computation Model –

Implementation and Performance

UNIT- V

Distributed Simulated Annealing Algorithms for Job Shop Scheduling - Implementation.

Parallel Simulated Annealing Algorithms - Simulated Annealing (SA) Technique –

Clustering Algorithm for Simulated Annealing (SA) – Combination of Genetic Algorithm

and Simulated Annealing (SA) Algorithm - Implementation. Epilogue : DOS Grid:

Vision of Mobile Grids - Mobile Grid Monitoring System – Healthcare Application

Scenario.

SUGGESTED READINGS

TEXT BOOK

1. Janakiram, D. (2009). Grid Computing – A Research Monograph. New Delhi:

TataMcGraw Hill Publishing Company Limited.

REFERENCES

1. Frederic Magoules.(2009). Fundamentals of Grid Computing. Taylor and Francis.

2. Prabhu, C.S.R. (2008). Grid and Cluster Computing New Delhi:Prentice Hall of

India

3. Jie Pan. 2009. Introduction to Grid Computing. Taylor and Francis. CRC Press.

WEB SITES

1. http://cseweb.ucsd.edu/classes/sp00/cse225/notes/fran/introweb.html

2. http://www.wisegeek.com/what-is-grid-computing.htm

3. http://www.cs.kent.edu/~farrell/grid06/lectures/index.html

ESE MARKS ALLOCATION

1 Section A

20 x 1 = 20

20

2 Section B

5 x 6 = 30

30

3 Section A

1 x 10 = 10

10

 TOTAL 60

Grid Computing 2017-2019

batch

Department Of CS, CA & IT, KAHE Page 3/2

Lesson Plan 2017 -2019
Batch

Prepared by S.Veni, Department of CS, CA & IT ,KAHE 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Coimbatore – 641 021.

LECTURE PLAN

DEPARTMENT OF COMPUTER SCIENCE

STAFF NAME: Dr.S.VENI

SUBJECT NAME: GRID COMPUTING SUB.CODE:17CSP205B

SEMESTER: II CLASS: I M.Sc (CS)

S.No Lecture

Duration

Period

Topics to be Covered Support

Material/Page Nos

UNIT-I

1 1 Introduction - Cluster to Grid

Computing T1:1

2 1
Cluster Computing Models T1:2

3 1
Grid Models T1:3

4 1
Mobile Grid Models T1:3

5 1
Applications T1:5

6 1
Parset T1:7

7 1 System Independent Parallel

Programming on Distributed

Systems-Introduction T1:8

8 1 (Contd..)System Independent

Parallel Programming on

Distributed Systems-Introduction T1:8

9 1
Semantics of the Parset Construct T1:10, w1

10 1 Expressing Parallelisim through

Parsets T1:17

11 1 Implementing Parset on a loosely

Coupled Distributed system T1:33

12 1 Recapitulation and Discussion of

Important Questions

 Total No of Hours Planned For Unit 1=12

Lesson Plan 2017 -2019
Batch

Prepared by S.Veni, Department of CS, CA & IT ,KAHE 2

UNIT-II

1 1 Anonymous Remote Computing

Model - Issues in Parallel

Computing on Interconnected

workstations T1:34

2 1 Existing Distributed

Programming Approaches T1:40

3 1
The ARC Model of Computation T1:43,w1

4 1 The Two-Tiered ARC Language

Constructs T1:52

5 1
Implementation T1:65

6 1 Integrating Task Parallelism with

Data Parallelism T1:80

7 1 A Model for Integrating Task

Parallelism into Data Parallel

Programming Platforms T1:85

8 1 Integration of the Model into

ARC T1:87

9 1
Design and Implementation R2:109

10 1
Application T1:101

11 1 Performance Analysis T1:113

12 1 Recapitulation and Discussion of

Important Questions

Total No of Hours Planned For Unit II=12

UNIT-III

1 1 Anonymous Remote Computing

and Communication Model T1:119,w2

2 1 Location - Independent Inter

Task Communication with DP T1:121

3 1 DP Model of Interactive Grid

Computation T1:124

4 1 Design and Implementation of

Distributed Pipes T1:129

5 1 (Contd..)Design and

Implementation of Distributed

Pipes T1:129

6 1 Parallel Programming Model on

CORBA T1:155, R1:143

7 1 (Contd..) Parallel Programming

model on CORBA T1:155,

Lesson Plan 2017 -2019
Batch

Prepared by S.Veni, Department of CS, CA & IT ,KAHE 3

8 1
Notion of Concurrency T1:160

9 1

System Support T1:163

10 1 Implementation T1:191

11 1 Performance T1:194

12 1 Recapitulation and Discussion of

Important Questions

 Total No of Hours Planned For Unit III=12

 UNIT-IV

1 1 Sneha-Samuham Grid Computing

Model T1:210

2 1 A Parallel Computing Model

over Grids T1:212,w2

3 1
Design and Implementation T1:218

4 1
Performance Studies T1:221

5 1 Introduction Mobility into

Anonymous Remote Computing

and Communication Model T1:230

6 1 (Contd..) Introduction Mobility

into Anonymous Remote

Computing and Communication

Model T1:232

7 1 Issues in Mobile Cluster and

Parallel Computing on Mobile

Clusters T1:233

8 1 (Contd..) Issues in Mobile Cluster

and Parallel Computing on

Mobile Clusters T1:235

9 1
Moset Overview T1:237, R2 : 202

10 1
Computational Model T1:240

11 1 Sneha-Samuham Grid Computing

Model T1:245

12 1 Recapitulation And Discussion

Of Important Questions

 Total No of Hours Planned For Unit IV=12

 UNIT-V

1 1 Distributed Simulated Analyzing

Algorithms For Scheduling T1:255

Lesson Plan 2017 -2019
Batch

Prepared by S.Veni, Department of CS, CA & IT ,KAHE 4

2 1 Distributed Algorithm For Job

Shop Scheduling T1:260,R2:231

3 1 Implementation Results And A

Observation

4 1 Parallel Simulated Amealing

Algorithms T1:278

5 1 Simulated Annealing (SA)

Technique, Clustering Algorithm

For Simulated Annealing T1:279,W2

6 1 Combination Of Genetic

Algorithm And Simulated

Annealing Algorithm

Implementation Of Algorithms T1:281

7 1 Epilogue: Dos Grid - Vision Of

Mobile Grid T1:292

8 1 Dos Grid, Mobile Grid

Monitoring System, Healthcare

Applications Scenario T1:294

9 1 Recapitulation and Discussion of

important Questions

10 1 Discussion of Previous ESE

Question Papers.

11 1 Discussion of Previous ESE

Question Papers.

12 1 Discussion of Previous ESE

Question Papers.

 Total No of Hours Planned for Unit V=12

Total

Planned

Hours

60

TEXT BOOK

1. Janakiram, D. 2009. Grid Computing – A Research Monograph. New Delhi:

TataMcGraw Hill Publishing Company Limited.

REFERENCES

1. Frederic Magoules.(2009). Fundamentals of Grid Computing. Taylor and Francis.

2. Prabhu, C.S.R. (2008). Grid and Cluster Computing New Delhi:Prentice Hall of India

3. Jie Pan. 2009. Introduction to Grid Computing. Taylor and Francis. CRC Press.

WEBSITES

1. http://cseweb.ucsd.edu/classes/sp00/cse225/notes/fran/introweb.html

2. http://www.wisegeek.com/what-is-grid-computing.htm

3. http://www.cs.kent.edu/~farrell/grid06/lectures/index.html

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 1/32

UNIT-I

SYLLABUS

Introduction: Cluster to Grid Computing – Cluster Computing Models – Grid Models –

Mobile Grid Models – Applications. Parset: System-independent Parallel Programming

on Distributed Systems –introduction – Semantics of the Parset Construct – Expressing

Parallelism through Parsets – Implementing Parsets on a Loosely Coupled Distributed

System

INTRODUCTION

 Grid computing is a term referring to the combination of computer resources

from multiple administrative domains to reach a common goal. The grid can be thought

of as a distributed system with non-interactive workloads that involve a large number of

files. What distinguishes grid computing from conventional high performance computing

systems such as cluster computing is that grids tend to be more loosely coupled,

heterogeneous, and geographically dispersed. Although a grid can be dedicated to a

specialized application, it is more common that a single grid will be used for a variety of

different purposes. Grids are often constructed with the aid of general-purpose grid

software libraries known as middleware.

Grid size can vary by a considerable amount. Grids are a form of distributed

computing whereby a “super virtual computer” is composed of many networked loosely

coupled computers acting together to perform very large tasks. Furthermore, “distributed”

or “grid” computing, in general, is a special type of parallel computing that relies on

complete computers (with onboard CPUs, storage, power supplies, network interfaces,

etc.) connected to a network (private, public or the Internet) by a conventional network

http://en.wikipedia.org/wiki/Distributed_system
http://en.wikipedia.org/wiki/Middleware
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Loose_coupling
http://en.wikipedia.org/wiki/Loose_coupling
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Network_interface_controller

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 2/32

interface, such as Ethernet. This is in contrast to the traditional notion of a

supercomputer, which has many processors connected by a local high-speed computer

bus.

CLUSTER COMPUTING MODELS

The Anonymous remote computing (ARC) paradigm is proposed to address the

issues specific to parallel programming on workstation systems. Arc differs from the

conventional communicating process model as its treats a program as one single entity

consisting of several loosely coupled remote instruction blocks instead of treating it as a

collection of process. The Arc approach results in transparency in both distribution and

heterogeneity. At the same time, it provides fault tolerance and load adaptability to

parallel programs on workstations. Arc is developed in a two-tiered architecture

consisting of high level language constructs and low level Arc primitives.

 Arc is pure data parallel approach and assumes that there is no inter-task

communication. Programs which are tied up with specific machines will not be resilient

to the changing conditions of a netwok of workstations(NOW).The distributed pipes(DP)

models enables location independent inter-communication among process across

machines. This approach enables the migration of communicating parallel tasks

according to runtime conditions. A transparent programming model for a parallel solution

to iterative grid computations (IGC) using DP is also proposed.

 An engineering problem, namely, the steady state Equilibrium problem is studied

over the model. the performance analysis shows the speedup due to parallel execution

and scaled down memory requirements .Both Arc and ARCC(Anonymous remote

computing and communication) use low level network programming for implementation

.In order to raise the abstraction level the use of middleware for cluster computing was

explored and we built P-COBRA .Existing models for parallel programming over

http://en.wikipedia.org/wiki/Network_interface_controller
http://en.wikipedia.org/wiki/Ethernet
http://en.wikipedia.org/wiki/Supercomputer
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Computer_bus

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 3/32

common object request broker architecture(COBRA) do not address issues specific to

parallel programming over NOWs. . P- CORBA, a model for parallel programming over

CORBA addresses these issues. The transmission and distribution of computing power of

a NOW are facilitated by P-CORBA. The main contribution of the work is to bring a

notion of concurrency into CORBA. . A detailed performance comparison of the model is

made with a widely used parallel programming tool, namely Message-Passing Interface

(MPI).

GRID MODELS

 The Sneha-Samuham grid computing model is an attempt to provide an

adaptive parallel computing support over computational grids for solving computation-

intensive applications. Unlike other grid computing models, Sneha-Samuham provides

task-splitting capabilities, wherein the given task is split according to the

computational capabilities of the nodes participating in the computation. Aggregating

resources in Sneha-Samuham is as

simple as making friends by using an instant messenger. The

runtime environment of Sneha-Samuham executes a task

efficiently by sharing the task among the participating machines,

depending on their computation capability, which is measured by

using a Grid Computation Capacity Factor (GCCF). The Sneha-

Samuham grid computing model has been implemented over a

nationwide grid. The model has been evaluated by using neutron

shielding simulation application. The results show that it achieves

almost linear speed-up. A comparison with MPI shows that Sneha-

Samuham outperforms MPI, especially when machines with

varying GCCFs comprise the grid. Currently, scientific applications

that are purely data parallel and coarse-grained can benefit from

Sneha-Samuham.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 4/32

MOBILE GRID MODELS

 Advances of technology in terms of cellular communications and the increasing

computing power of the mobile systems have made

it convenient for people to use mobile systems more than static systems. This has seen the

greater use of mobile devices in personal and distributed computing, thus making the

computing power ubiquitous.

The combination of wireless communication and cluster computing in many

applications has led to the integration of

these two technologies to emerge as a Mobile Cluster Computing (MCC) paradigm. This

has made parallel computing feasible on mobile clusters, by making use of the idle

processing power of

the static and mobile nodes that form the cluster. In order to realize such a system for

parallel computing, various issues such as connectivity, architecture and operating system

heterogeneities, timeliness issues, load fluctuations in machines, machine availability

variations, and failures in workstations and network connectivities need to be handled.

Moset, an Anonymous Remote Mobile Cluster Computing (ARMCC) paradigm is

being proposed to handle these issues. Moset provides transparency to the mobility of

nodes, distribution of computing resources, and to heterogeneity of wired

and wireless networks. The model has been verified and validated by implementing a

distributed image rendering algorithm over a

simulated mobile cluster model.

Advancement in technology has enabled mobile devices to become information

and service providers by complementing or replacing static hosts. Such mobile resources

are highly essential

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 5/32

for on-field applications that require advanced collaboration and computing. This creates

a need for the merging of mobile and grid technologies, leading to a mobile grid

paradigm. The key

idea in building the mobile grid is to integrate the computational, data and service grids.

Thus a mobile device from anywhere and at any time, can harness computing power, and

the required

resources and services seamlessly. Simultaneously, the device could also be providing

location-sensitive data to the grid. We have designed and prototyped a middleware for a

mobile grid that

transparently manages and bridges the requirement of the mobile users and the actual

providers.

APPLICATIONS

Simulated Annealing (SA) has been considered a good tool for complex non-linear

optimization problems. The technique has been widely applied to a variety of problems.

However, a major disadvantage of the technique is that it is extremely slow and hence

unsuitable for complex optimization problems such as

scheduling. There are many attempts to develop parallel versions of the algorithm. Many

of these algorithms are problem-dependent in nature. We present two general algorithms

for SA. The algorithms have been applied to the Job Shop Scheduling Problem (JSS) and

the Traveling Salesman Problem (TSP), and it has been observed that it is possible to

achieve super-linear speed-ups

using the algorithm.

Job Shop Scheduling USS) belongs to the class of NP-hard problems. There are a number

of algorithms in the literature for finding near optimal solution for the JSS problem.

Many of these algorithms exploit problem specific information and hence, are

less general. However, simulated annealing algorithm for JSS is general and produces

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 6/32

better results when compared to other algorithms. But one of the main drawbacks is that

the execution time is high. This makes the algorithm inapplicable to large scale

problems. One possible approach is to develop distributed algorithms for JSS using

simulated annealing. Three different algorithms have been developed, namely

Temperature Modifier, Locking

Edges and Modified Locking Edges algorithms.

DOS Grid: Vision of Mobile Grids

 We finally present our grand vision of building a mobile grid as an integration

of computation, data and service grids. The mobile

grid enables any device to access or provide the required computing power, information

or other services from or to the grid. The data considered also includes lower-level data

collected aggregated from the sensor devices. The mobile grid requires monitoring data

for a variety of tasks such as fault detection performance analysis, performance tuning,

performance prediction, and scheduling. The requirements and essential services are

outlined that must be provided by a mobile grid monitoring system. We also present its

realization as a peer-to-peer overlay over

a distributed shared object space. The proposed mobile grid model visualizes the

architecture as a distributed shared object space, wherein all the participating mobile

devices are modelled as surrogate objects which reside on the wired network. We

illustrate the mobile grid through a mobile health care application.

 PARSET: SYSTEM-INDEPENDENT PARALLEL PROGRAMMING ON

DISTRIBUTED SYSTEMS

 During the last decade, a significant amount of interest has been shown in the

development of parallel programs on loosely coupled distributed systems. An example of

such a system is a set of

powerful multi-programmed workstations connected through a

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 7/32

local area network. Several mechanisms for performing inter-pro-

cess communication, synchronization, mutual exclusion and remote

accession have been proposed to cope up with the challenges

arising out of the distributed nature of these systems. Some

examples of these mechanisms are client-server communication,

message-passing multiple programs, and Remote Procedure Calls

(RPC).

A programmer can start his processes on heavily loaded nodes, thereby causing severe

load imbalances, resulting in

underutilization of the network. This can also adversely affect the performance of other

programs running in the network. A key

property of distributed systems is that they are open-ended. Various system parameters

like node configuration and node availability keep changing over a period of time. In

such cases, the programs need to adapt themselves dynamically to the changing system

configurations.

Thus, there is no clear separation between the programmer's concerns and the system's

concerns in the present approaches to distributed programming. It has become necessary

to provide

high-level language constructs which can do this task. These constructs should be

provided with adequate Iow-level runtime support which can achieve the separation

between the system's

concerns and the programmer's concerns. These language constructs can be provided as

extensions to existing programming

languages. The programmer can specify his coarse parallel blocks within his program by

making use of these high-level language constructs. These language constructs are

suitably translated and

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 8/32

handled by the low-level system mechanisms. The various advantages of using such

constructs are listed below.

Advantages from the System's Point of View

If the selection of nodes for performing computation is made at the programming level,

the programmer can write programs which

can generate heavy load imbalances in the system. For example, P4 gives the choice of

node selection to the user. At the time of node selection, the user may not be in a position

to predict the actual load on the selected nodes at the time of execution.

Also, the programs may not make use of dynamically changing loads on the machines

due to its rigid process configuration. For example, a program in PVM may create a fixed

number of processes. In such a case, the program will not be able to utilize

the additional capacity in the system if some nodes become lightly loaded when the

program actually starts executing.

With appropriate high-level language constructs, the programmer can only express the

willingness of parallel execution. With this, the programs need not be modeled as a pre-

configured collection of processes. This provides maximum flexibility to the

system to make effective use of the available resources.

Advantages from the Programmer's Point of View

(i) The user can be relieved of the burden of creating processes and performing explicit

communication and synchronization among them.

(ii) The number of available nodes and their interconnection pattern vary from one

distributed system to the other, and

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 9/32

also from time to time in a single distributed system. The load on the machines frequently

keeps changing. In such a case, if a program is written as a collection of a fixed number

of processes, it cannot make use of the dynamically changing loads in the system. By

using the high-level language constructs, the programs can be written in a system-

independent fashion.

(iii) Several programming errors, which occur during programming inter-process

communication, synchronization, termination etc., can be avoided by programming with

such language constructs.

In this chapter, we present a language construct called parset and the low-level runtime

support for implementing it. Parsets can be used for expressing coarse grain parallelism

on distributed systems. The parset construct consists of a data structure and a set of

functions which operate on this data structure. The construct has been specially designed

for capturing several kinds of coarse grain parallelism occurring in distributed systems.

The use of parsets relieves the programmer of the burden of handling the

remote processes, inter-process communication, remote procedure calls, etc. A low-level

distributed parset kernel creates sub-tasks,

locates suitable remote nodes, and gets the code executed on the remote nodes. This

makes the programs that are written using parsets, scalable over varying system

parameters.· Thus, parsets

draw a clear distinction between the system's concerns and the programmer's concerns.

SEMANTICS OF THE PARSET CONSTRUCT

 In this section, we first describe the parset data structure with the basic operations

which manipulate the data structure. When functions receive parsets as their arguments,

they derive special meanings. The function semantics on parsets are explained

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 10/32

subsequently. Finally in this section, a special case of parset called

indexparset is described.

The Parset Data Structure

 Parset is a set type of data structure. The elements of a parset can be:

 Basic data types,

 Untyped,

 Functions.

When the elements of a parset belong to a basic data type, it is called a simple parset.

When the elements are untyped, it is an untyped parset. A function parset has functions as

its elements. Simple parsets can be used to express the SPMD kind of parallelism. This is

discussed in detail in Section 2.3.1. Untyped parsets find applications in expressing

MPMD kind of parallelism using polymorphic functions [4]. Function parsets are the

most general ones, and by using them, it is possible to express the MPMD parallelism in

a general way.

A parset is kept logically ordered on the basis of the entry of its elements on a first-come-

first-served basis. Cardinality is an attribute associated with a parset. The cardinality of

an empty parset is zero. A typed parset declares the type of the elements held by the

parset. For example,

 parset P of int;

declares a parset P of elements of type integer.

 The operations that can be performed on parsets are insert(), flush(), get(), delete(),

getcard() and setcard(), The functions that can be executed on parsets have their

arguments tagged as RO (read-only), RW (read-write) or WO (write-only). This scheme

is very similar to the Ada language approach which places the reserved keywords IN,

OUT, and INOUT before the arguments.

The semantics of these tags are as follows:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 11/32

WO: The argument is only modified inside 'the function but not read.

RO The argument is passed to the function only for reading.

RW : The argument is read as well as written to inside the function ..

When functions taking parsets as arguments are executed, the arguments are locked in a

proper mode. For example, if an argument is tagged as RO, it is locked in read mode.

This tagging scheme allows the exploitation of parallelism in control flow. When two

functions are sequenced one after the other in a program they can be run in parallel if the

earlier function does not lock the arguments needed for execution of the second function.

For example, if two functions take the same argument tagged as RO,

they can be executed in parallel. On the other hand, if the argument is tagged as RW,

unless one function releases the locks on the argument, the other function cannot start

execution. The

The operations which manipulate the parsets are as follows:

 insert (WO P, RO i, WO order)

Inserts an element i in the parset P as its last element. The cardinality of P increases by 1

after the insertion operation. The argument order returns the order of the inserted

element. P is

tagged as WO here as the function writes an element into the parset but does not read any

element from it.

 flush (WO ~)

Flushes the parset P. After flushing, the cardinality of P becomes zero.

 delete (WO P, RO, n)

Deletes the nth element from the parset P. The delete operation

leaves the order of the parset intact.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 12/32

 get (RO P, RO n, WO element)

The argument element returns the nth element of the parset P.

 getcard (RO P, WO c)

The argument c returns the cardinality of the parset P.

The above operations provide the means for manipulating the

elements of a parset. When functions are called on parsets, they

acquire special meanings.

Function Semantics on Parsets

 When a parset is passed as an argument to a function, three possibilities exist for the

execution of the function. The function can execute in parallel on each element of the

parset. This is the first type of execution. The function can also execute sequentially on

each element of the parset one after the other. This is the second type of execution. In the

third type of execution, the

function takes the parset as a simple argument for further processing within the function.

In order to differentiate between these three function types, the two keywords par and seq

are used. We now illustrate the three types of function calls with

simple examples.

par function call:

Example: par process (RO P);

The function processl) is applied to each element of P in parallel. Each activation

proceeds asynchronously. If a function has more than one parset as its arguments, then

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 13/32

the cardinalities of all of them must be the same. This will enable a particular function

activation to pick up the corresponding element from each parset. The par function call

exploits the data parallelism expressed in a parset.

seq function call:

Example: seq print (RO P);

The function printO is applied to each element of P sequentially in the order of the

elements.

Ordinary function call:

Example: myprint (RO P);

Here no keyword is prefixed to the function call. Hence this is treated as an ordinary

function call, and the parset P is passed just as a plain argument to it.

As an example, the following can be the description of myprinto:

Function myprint (RO P) {

 seq print (P);

 }

A special function called 'myid' is provided to identify the element of the parset on which

the present function activation is operating. This function returns the order of the element

of the parset on which a par or a seq function call is operating.

 Defining the Functions which Execute on a Parset

 When a par or a seq function is called with a parset as its argument, each activation

of that function receives one element of the parset, Hence, the function is defined for one

element of the parset. On the other hand, a function, which takes a parset as a plain

argument as in the case of an ordinary function call, declares its argument type the same

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 14/32

as the parset type itself. The following example illustrates the difference. In this example,

addl) concatenates strings and howMany tells the cardinality of a collection of strings.

Function MassConcat () {

parset P of string "Work" , "Think" ,

"Speak" ;

parset Q of string "hard" I "deep" I

"truth" ;

parset R <f string;

int n;

par add (P,' Q, R);

hownany (R, n);

Function add (string RO x, string RO y,

string WO z)

{

concat (x, y, z);

}

Function howMany (parset RO WO n)

{

getcard (strset, n);

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 15/32

 Each activation of function addt) binds an element of parset P

to argument x, and the corresponding element of parset Q to y.

The returned argument z is bound to the corresponding element

of R. The cardinality of the parset P and Q must be the same in

this case.

Concurrent Execution of Multiple Function Calls on Parsets

 There can be situations wherein a parset, which is an output

parameter of one function call, becomes an input, parameter in a

subsequent parset function call. This offers additional possibilities

of concurrent execution. This is explained in the following

example:

Function Encourage () {

parset E of employee, A of assessment, R

of reward;

par assess (RO B,.WO .A)';

par encourage (RO A, wo R);

}

 In the function Encourage 0 as given above, the employee

records are assessed so as to encourage the employees by offering

them suitable rewards. The output of assess 0, which is parset A,

is an input to Encourage (). As soon as the function assess ()

finishes with anyone of its multiple activations, the WO lock on

the corresponding element of the parset is released. After the

release of the lock, the next function Encourage 0 acquires the

RO lock for that particular element of the parset. Once the lock is

acquired, the function can start its execution. Thus, multiple

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 16/32

functions can execute concurrently providing additional parallelism

in control flow.

Indexparset

The indexparset is a special case of parset. It holds no elements

but carries an index. The index can be seen as cardinality of the

indexparset. A function call on an indexparset is activated index

number times. Hence the indexparsets can be used when multiple

activations of the same function are required. An indexparset can

be declared as:

indexparset I;

Only three operations, namely setcard(), getcard(), and flush

(), are performed on an indexparset. The last two are the same as

described in Section 2.2.1 on parsets. Operation setcard sets the

cardinality of the indexparset I to a given value c and is defined

as:

 setcard (WO 1, RO c);

When an indexparset becomes an argument to a par or a seq

function call, each function activation receives an integer which

represents the order of that particular activation. The following

example demonstrates the use of an indexparset. It collects the

status of distributed resources in a parset called StatusSet.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 17/32

Function CollectStatus {

indexparset I;

parset StatusSet of int;

setcard (I, 10);

par myread (I, StatusSet);

/ * The activations of myread collect the status of 10 resources */

}

Function myread (int RO ResourceId, int WO s)

/ * ResourceId = current function activatior number * /

ReadStatus (ResourceId, status);

S = Status;

}

EXPRESSING PARALLELISM THROUGH PARSETS

 Parsets can be employed for expressing both SPMD and MPMD

kinds of parallelism. This is discussed in the following sections.

Expressing the SPMD Parallelism through Simple Parsets

 The SPMD parallelism can be expressed by using simple parsets with par function

calls. When a par function is called on a simple parset, the function executes in parallel

on different elements of the parset. The simple parsets can be created in two ways. An

empty parset can be declared initially and the elements can be

inserted into the parset explicitly by insert calls. The other method

of creating simple parsets is to convert an array of elements into a

parset with a grain control mechanism. These two methods of

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 18/32

creating simple parsets are explained in Sections 2.3.1.1 and 2.3.1.2,

respectively.

Creation of Simple Parsets using Explicit Insert () Calls

 First a simple parset of the desired data type is declared. Multiple data belonging

to the same data type can now be added to the parset using the insert 0 function. Then a

function can be executed on this parset by a par function call. In order to express the

SPMD parallelism in the processing of arrays, one may create a

parset and explicitly insert the array elements into the parset with

this method. An easy way to convert an array into a parset is

through the grain control mechanism, which is specially designed

for this purpose.

Conversion of Arrays into Simple Parsets by the Grain

Control Mechanism

 Through this mechanism, one can indicate the granularity that is desired to build

such a parset out of an array. The mechanism

consists of two constructs, namely granularity, which is a metatype,

and a function CrackArrayO. The granularity works as a metatype

in the sense that its value is a data type.

 As an example, we may specify a granularity of int[100} to

convert an array of type int[1000} into a parset. The parset will

have ten elements, each of type int[100} as specified by granularity.

It is possible to covert a multi-dimensional array into a parset by

cracking the array in any dimension. For example, we may specify

a granularity of int[25}[100} to convert a row major array of type

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 19/32

int[100}[100} into a parset. In this case, the parset will have four

elements, each of type int[25}[100].

 We take the following image transformation example to

demonstrate the use of this mechanism. In this example, the array

named A is converted into a parset. The array A consists of 1000

elements. Each element of the parset is constructed by combining

100 elements of the array. Thus the parset will have ten elements

in it.

Function ProcessArray ()

intA [1000];

granularity 9 = int [100];

parset P, Q of g;

CrackArray (A, P, g);

par transform (P, Q);

par plot (Q) ;

flush (P);

}

 Converting a data structure like an array into a group of several grains of specific

granularity becomes possible with the metatype 'granularity: The target parset is declared

as a simple parset of the same data type as that of the granularity. The array is converted

into a parset by using the function CrackArray (). The function takes three arguments: the

source array, the target parset .handle and the granularity. When the function returns, the

parset handle corresponds to the new parset that is built out of this array.

After the conversion, there are two ways to access the array.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 20/32

 One is by manipulating the new parset handle, and the other is

by directly using the array name. The array name refers to the

copy of the array which is local. The parset handle refers to the

copy of the array which may be scattered in the network. Now if

both the handles are allowed to manipulate the array, it will

create inconsistencies between these two copies. Hence till the

parset handle is active, the array must be accessed only through

the parset handle. However, a flush 0 call on the parset handle

has the special function of deactivating the handle and storing

back the new values of the array into its local copy. After the

flush, the array can be referenced in the normal way.

By setting the granularity, the user can set an upper bound on

the number of processors that can be utilized by the underlying

parset kernel for an execution. For example, for a single-

dimensional array of size 1000, the granularity may be set to 100

or 250, thereby creating parsets of size 10 or 4. Thus a varying

degree of parallel execution on a parset can be obtained by using

granularity.

The grain control mechanism thus achieves two goals. First, it

allows an array to be treated directly as a parset without the need

for multiple insert () calls. Secondly, it can control the degree of

parallel execution of a function on an array

Dynamic Specification of Granularity

 When a granularity variable is declared as an array, the dimensions of the array can

be specified during runtime. The following example demonstrates this:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 21/32

Function ProcessArray () {

int A [1000];

granularity g = int [];

parset P, Q of g;

int dim;

dim = 100;

CrackArray (A, P, g [dim]);

par transf0rm (P, Q);

par plot (Q);

flush (P);

}

It can be noted that the value of the granularity variable has

been declared as an integer array of single dimension without

mentioning its dimension value. The dimension of 100 has been

specified during runtime in this example.

Expressing MPMD Parallelism through Parsets

The MPMD parallelism can be expressed with parsets by using

two mechanisms. The first is to use polymorphic functions with

untyped parsets. It offers a limited way of expressing MPMD

parallelism, and can be readily implemented in a language which

provides function polymorphism. The other mechanism is a

general one and uses function parsets. These mechanisms are

described in the following sub-sections.

MPMD Parallelism through Polymorphic Functions

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 22/32

Untyped parsets can be used for expressing MPMD parallelism.

In a typed parset, only the elements of the specified type can be

inserted, whereas in untyped parsets, elements of any type can be

inserted. An untyped parser declaration does not mention the

type of its elements. As an example, an untyped parset Q can be

declared as:

 parset Q;

In this case, a parset is created as a collection of data belonging

to different types. A polymorphic function identifies the type of

each element and executes the required code on it. For example,

with a function call such as par process (Q), various activations of

the function processt) may receive arguments of different types.

In this way, we can obtain the concurrent execution of different

codes on different data.

But this mechanism cannot fully capture the MPMD parallelism

for the following reason. Always the same piece of code is executed

on two different elements of a parset if they are of the same type.

So we cannot execute different codes on the elements of the same

type by this mechanism. By using the function parsets, this

limitation can be overcome.

MPMD Parallelism with Function Parsets

A function parset can hold a collection of functions. Another

parset is used to hold the corresponding argument set. The

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 23/32

cardinalities of these two parsets must be the same. The function

parset can now be invoked on the corresponding argument parset

to achieve the general MPMD parallelism. The following example

shows the structure of such a program:

Function MPMD-Prog-Structure () {

int d11, d12, d3;

char d2;

parset F of func = {f1 (int, int), f2 (char), f3 (in t) } ;

parset Dl = {dll, d2, d3};

parset D2 = {d12, NIL, NIL};

par (F) (Dl, D2);

Function fl (int RO dll, int RO d12) {

}

Function f2 (char RO d2) {

}

Function f3 (int RO d3) {

}

In the above example, function f1 0 will take its first argument

from the first element of parset D 1, and the second argument

from the first element of parset D2. Similarly, the functions f20

and f30 pick up their arguments from D1 and D2.

IMPLEMENTING PARSETS ON A LOOSELY COUPLED DISTRIBUTED

SYSTEM

We discuss an implementation of the parset constructs on a network

of workstations consisting of Sun 3/50 and Sun 3/60s, running

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 24/32

SunOS version 4.0.3. The environment supports the Network File

System (NFS). TCP/IP has been used for inter-process

communication. The parset constructs are provided as extensions

to the C language. A parset pre-processor translates the parset

constructs into C code. An overview of the implementation is

now given followed by the description of various components.

We studied the performance of an application using the

implementation.

Overview of the Implementation

The heart of the implementation consists in a distributed parset

kernel. The kernel is divided into resident and volatile parts.

Each parset has an associated process called P-Process to maintain

and manipulate the elements of the parset. A par function call on

a parset is executed with the help of separate processes called

E-Processes. P-Processes and E-Processes form the volatile kerneL

P-Processes reside on the same node where the user program resides.

E-Processes reside on different nodes to exploit the parallelism.

The resident kernel consists of daemon processes which are

started during the boot-up time on the machines that are willing

to participate in the execution of programs that use parsets. The

copy of the resident kernel is obtained by nodes from a designated

node using the NFS. In this way, both diskless as well as diskful

machines can obtain the resident kerneL The resident kernel

manages the P-Processes and the E-Processes. It provides an interface to user programs to

create the parset processes and to execute various functions on it.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 25/32

The Parset Preprocessor

Figure 2.1 shows the functionality of the parset preprocessor. The

high-level user program is provided with clean parset constructs,

as described in the earlier sections, which hide the underlying

distributed implementation. The parset preprocessor then translates

the user program into a low-level C code, which makes calls to

the resident kernel and the parset processes.

C Program

C Program Parset with calls to

with Parset --Preprocessor - Resident

Constructs Kernel & Parset

 Processes

 Par functions

 compiled

 separately

 as ribs

 FIG. 2.1 The Parset Preprocessor`

The parset preprocessor identifies the par function calls separately

as Remote Instruction Blocks (RIBS). An RIB contains a code

which can be migrated at runtime to a remote node. The migration

of the RIB code is the migration of the passive RIBs and not

active processes or tasks. The RIB is given control for actual

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 26/32

execution at the remote node. RIBs are named and compiled

separately by the preprocessor.

Remote Instruction Blocks (RIB)

The RIB facility was developed during the course of this

implementation. The facility is similar to Remote Evaluation (REV)

[7] developed by Stamos and Gifford. With the RIB primitives, as

opposed to the RPC primitives [6], we can migrate a code to be

executed to a remote site at runtime and get it executed there.

The parset preprocessor names and compiles .the RIBs separately. Whenever a block has

to be executed on a remote node, its name and address is made known to the remote

node. The remote node can access the RIBs by using the NFS, and can execute it as and

when required.

The Distributed Parset Kernel

The parset kernel is distributed over the network. It consists of a

resident and a volatile part. The resident part of the kernel is always present on all the

nodes that participate in distributed execution. The volatile part is dynamically created on

selective nodes depending upon the requirements. Figure 2.2 shows the organization of

various components in the implementation. The functionalities of each are described in

the following sections:

The Resident Kernel

The resident kernel performs the low-level system-dependent tasks

which deal with the primitives for RIBs, creation and termination

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 27/32

of P-Processes and E-Processes, etc. It is responsible for selecting the lightly loaded

nodes for execution and managing the distributed

execution. Each local resident kernel contacts other resident kernels

and fmds about the lightly loaded nodes. Achieving the program

scalability is also a function of the kernel.

The resident kernel provides an interface to low-level user

programs. The interface consists of the calls for registration and

de-registration of a user process, creation and destruction of parset

processes, and notifications of function execution on parsets. When

an executing user program declares a parset variable, the resident

kernel spawns a parset process called P-Process. This P-Process

manages the parset on the node where the user program runs.

Any further manipulations performed by the user program on

this parset with Insert(), get(), delete(), getcar() and flush()

calls, are directed to the corresponding P-Process bypassing the

resident kernel.

During the remote execution of a function in a par call, the

resident kernel creates new E- Processes, or locates free executor

processes depending on their availability on the nodes suitable

for the execution. For a particular function execution, the resident

kernel helps P-Processes and the corresponding E-Processes to

synchronize. After the synchronization, P-Processes send the required parset elements to

E-Processes.

In order to improve the execution efficiency, the kernel can

combine several elements in a parset together to form a super-

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 28/32

grain. It can be noted that the super-grain formation is different

from the grain control mechanism. The latter is a mechanism

meant for the user whereas the former is used by the kernel,

making it transparent to the user. The resident kernel guides the

volatile kernel for the super-grain formation.

The Volatile Kernel

The volatile part of the kernel consists of P-Processes and E-Processes, as mentioned

earlier. For a function execution, the P-Processes which correspond to parsets involved in

the execution, perform the required inter-process communication with the allotted E-

Processes. In this fashion, all P-Processes and E-Processes proceed concurrently. An E-

Process can be allocated for other incoming execution requests after the current request is

completely processed. Similarly, a P-Process is derailed by the resident kernel when it

receives a destroy () call.

As discussed earlier, a P-Process manages one single parset

variable. A parset variable is a collection of multiple grains

(elements). When a par or a seq function takes a parset variable as

its argument, it specifies the parset variable as an RO, WO, or

RW variable depending on its usage inside the function. At the

time of actual execution, the elements of the parset have to be

locked according to these specifications in order to exploit the

concurrency as discussed in Section 2.2. In case of multiple parallel

activations of a function, each activation operates on a different

grain. Hence each activation can proceed independently as long

as it can obtain the required locks.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 29/32

At first sight, it appears that in the place of WO locks, one may

use RW locks, thereby eliminating the need for additional WO

locks. This is based on the fact that along with a write permission,

there is no harm in granting a read permission also. But this is not

so in reality because when an argument gets a read lock, it has to

be moved to the remote site where the function is executing. But

a WO argument need not be moved to the site of the remote

function, since the function does not read the value of this

argument. Thus these three distinct locks help in minimizing the

communication overhead.

With an execution request of a par or a seq function, a parset

process first establishes contact with the remote E-Process through

the resident kernel. Then it continues to set the locks on the

grains. As and when a lock is set, S the following action is taken

corresponding to each lock:

RO: 1. Send a copy of the grain to the remote E-Process.

 2. Release the lock on the grain.

WO: 1. Receive the grain value from the remote E-Process.

 2.Update the grain value in the parset.

 3.Release the lock.

RW: 1. Send a copy of the grain to the remote E-Process.

 2.Receive the grain value from the remote E-Process.

 3.Update the grain value in the parset.

 4.Release the lock.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 30/32

A Case Study

In this section, we discuss a simple case study of the image

transformation problem encountered in computer graphics.

Two examples of such transformations are rotation and dragging.

Figure 2.3 shows the test program for image transformation using

parsets. The program was run on a network of Sun workstations.

Since the transformation problem was an SPMD type of problem,

we used the techniques presented in Section 2.3.1.2.

The following observations can be made with respect to the

case study program:

The program only expresses the parallelism present in solving

the graphics rotation problem without any explicit use of

system-dependent primitives.

define TotalPoints 20000

#define GrainSize 400

typedef struct {int x, y;} point;

typedef point grain [GrainSize);

Main:

point image [TotalPoints);

granularity G = grain;

parset P of G;

read-image (image);

CrackArray (image, P, G);

par transform (P);

flush (P);

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 31/32

EndMain

Function: transform (grain RW image-

grain) {

int i;

for (i = 0; i <. GrainSize; i++)

image-grain = rotate (image-grain);

}

 The Image Transformation Problem

 The user can control the size of the grain by specifying the

grain size in the program.

 The function transforml) will be compiled separately as an

RIB so that it can be migrated to a remote node for execution.

The system will make appropriate choice of nodes and the

mechanism is completely transparent to the user program.

 The program is easy to understand and to debug.

 The program can be executed on a distributed system

supporting the parset construct and hence can be ported

easily to other systems.

 In the case of node failures, the kernel can reassign the sub-

tasks which remain unevaluated to other nodes without the

involvement of the user.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: I(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 32/32

POSSIBLE QUESTIONS(2 Marks)

1. What is Parset Data Structure?

2. Define Index Parset.

3. Define SPMD Parallelisim.

4. What is RIB?

5. Distinguish between Resident Kernel and Volatile Kernel.

6. What is Parset Preprocessor?

7. Write a note on Distributed Parset Kernel.

8. What are the advantages from System’s Point of View?

9. Define Mobile Grid Model.

10. List the applications of Grid Model.

POSSIBLE QUESTIONS(6 Marks)

1. Brief about Cluster Computing Models and Grid Models.

2. Write a note on expressing SPMD parallelism through simple parsets.

3. What are the advantages in System’s and Programmer’s Point of view in parallel

programming on distributed Systems.

4. Write a note on expressing MPMD parallelism through simple parsets.

5. Explain Function semantics on Parsets.

6. Write a note on Parset Preprocessor and Remote Instruction Block.

7. Write about Parset Data structure.

8. Explain the functionalities of Distributed Parset Kernel.

9. Write short notes on Parset Data Structure and Indexparset.

10. Discuss about Implementing Parsets on a Loosely Coupled Distributed System.

S.
N

QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4 KEY

1

The ARC approach
results in transparancy in
both

Distribution
and
programming

Distribution
and
heterogencity

Programming
 and
computing

Programmin
g and
processing

Distributio
n and
heterogenc
ity

2

The performance analysis
shows the speed-up due
to……. and scaled down

Parallel
execution

Parallel
transmission

Predefined
execution

Network
selection

Parallel
execution

3

ARCC stands for Anonymous
remote
computing &
communicatio

Anonymous
remote
computation
&

Anonymous
remote
comparing &
communicati

Anonymous
retrieve
computing
&

Anonymou
s remote
comparing
&

4

The sneha samuham grid
computing model has
been implemented over

Local wide
grid

World wide
grid

Inter wide
grid

Nation wide
grid

Nation
wide grid

5

The combination of
wireless communication
and cluster computing is

Mobile cluster
computing

Mobile
cluster
combination

Mobile
communicati
on cluster

Mobile
computing
cluster

Mobile
cluster
computing

6

The key idea in building
the mobile grid is to
integrate the

Data and
device

Data and
service

Mobile and
service

Test and
service

Data and
service

7
………….. belongs to the
class of NP-hard
problems.

Job shop
scheduling

Job scale
scheduling

Job shop
sharing

Job share
scheduling

Job shop
scheduling

8

The mobile grid requires
monitoring data for a
variety of tasks such as

Fault
protection

Fault
precumption

Fault
detection

Fault
reduction

Fault
detection

9

A key property of
distributed systems is that
they are

Open-closed System-ended open-
property

open-ended open-
ended

10

The parset constinct
consists of a data
structure and a set of
function which operates
on this

Data structure Data blocker Block
structure

Data set Data
structure

11

When the elements of a
parset belongs to a basic
datatype.it is called a

Function
parset

Simple parset Sample
parset

Basic parset Simple
parset

UNIT I
Objective Type Questions

Karpagam Academy of Higher Education
Department of CS, CA & IT

Subject: Grid Computing (17CSP205B)
Batch : 2017-2019 Class: I M.Sc CS

12

A parset is kept logically
ordered on the basic of the
enty of its element on a….
basics.

Second-come-
first-served

First-come-
second-served

First-come-
first-served

Second-
come-
second-
served

First-
come-first-
served

13

The function can execute
in parallel on each
element of the

Keywords Parset Element Process Parset

14

The ……….function call
exploits the data
parallelism expressed in a
parset.

Par Print Seq My print Par

15

The cardinality of the
parset ……..must be the
same in this case.

P and R Q and K R and Q P and Q P and Q

16

The……..parallelism can
be expressed by using
simple parsets with par
function calls.

SPMD SMPD SMDP SMTP SPMD

17

The mechanism consists
of two constructors,
namely

Glarity Graduality Granularity Granulity Granularit
y

18

The array is converted
into a parset by using the
function

Crack array() Target array() Copy array() Sparse
array()

Crack
array()

19

NFS stands for Network
frame system

Nework
function
system

Network file
selection

Network file
system

Network
file system

20
The parset kernel is
distributed over the

Connection Network Function Places Network

21

A Parset is created as a
collection of ______
belonging to different

Process Data Function code Data

22

A_______Function
identifies the type of each
element and executes the
required code on it.

polymorphic par seq Parset seq

23
A______ can hold a
collection of functions.

Untyped
Parsets

Parset Function
Parset

Typed
Parsets

Function
Parset

24
The _____ of these Two
Parsets must be same.

Cardinalities Granularity Graincontrol Datastructur
e

Cardinaliti
es

25
Expansion of NFS______ Network File

station
Network
Function
System

Nested File
System

Network
File System

Network
File station

26

________ has been used
for inter-Process
communication.

SMTP TCP/IP TCP FTP TCP/IP

27
The______is divided into
resident and Volatille
Parts.

Parset Kernel Program Parfunction Kernel

28

_________ reside on
different nodes where the
user program resides.

P-Process E-Process Inter-Process Outer_Proce
ss.

P-Process

29

_________reside on
different nodes to exploit
the Parallelism.

P-Process E-Process Inter-Process Outer-
Process

E-Process

30
The ________Kernel
consist of dameon Process.

Parset Distributed Resident Volatile Resident

31

The Parset
_________then translstes
the user Program into a

Process Processor processing Preprocessor Preprocess
or

32

Expansion of RIB

Remote
Instruction
Blocks

Remote
Information
Blocks

Remote
Instruction
Based

Remote
Instruction
Based

Remote
Instruction
 Blocks

33

Expansion of REV

Remote
Evaluate

Remote
Evaluation

Remote
Evaluate
version

Remote
Evaluation
version

Remote
Evaluation

34

The _______Parset is
dynamically created on
selective nodes depending
upon the requirements.

Volatile Resident Local
Volatile

Local
Resident

Local
Volatile

35

The _______Provides an
interface to low level user
Programs.

Volatile Resident
Kernel

Kernel Parset Resident
Kernel

36

P-Process is Detailed by
the resident Kernal when
it recievs a_____call.

insert() get() getchar() destroy(). destroy().

37
The ________Problem
was an SPMD type of

Transforms Rotation transformatio
n

Dragging transforma
tion

38
Expansion of
PVM________

Parallel
Virtual
Machine

Process
Virtual
Machine

Private
Virtual
Machine

Public
Virtual
Machine

Parallel
Virtual
Machine

39

The function _______will
be compiled separately as
an RIB.

Insert() flush() transform() get(). transform(
)

40

With an execution request
of a _______function,a
Parset Process first
establishes contact with
the remote E-Process.

 par a seq a Par or a seq a par and a
seq

a Par or a
seq

41

_____is a net by
interconnected several
networks on resources.

Cluster Grid Parallel
computing

ARC Grid

42

_____ is a interconnected
workstations and
attractive propostion due
to the rapid growth in
speeds of interconnection

Grid ARC Clusters Parallel
computing.

Parallel
computing.

43

The application of several
computer to a single
problem at a same time is
called_____

Parallel
computing

Grid model Grid
computing

Cluster Grid
computing

44

AEC stands for______ Anonymous
Remote
computing

Automatic
Remote
computing

Anonymous
Remote
control

Anonymous
Remote
client

Anonymou
s Remote
computing

45
_____ is a cluster
computing model.

CORBA NOW ARC DP ARC

46

CORBA stands for
a.______

Common
object request
broker
architecture

common
object request
broker access

control
object
request
broker

common
object
required
broker access

Common
object
request
broker

47

NOW stands for ______ Network of
workstations

Network of
work

Node of
workstations

Network
object
workstations

Network
of
workstatio

48

DP stands for______ Distributed
process

Distributed
pipes

Distance
pipes

Documented
pipes

Distributed
 pipes

49

IGC stands for______ Interactive
Grid
Computation

Interface Grid
Computing

Interactive
Grid Control

Interactive
Grid
Communicati

Interactive
Grid
Computati

50

______treats several
loosely coupied resources
as a single entity

DP COBRA ARC CORBA ARC

51

The transparent
programmability of
communications parallel
task in a ______

Network of
workstation

Distributed
pipes

Grid model CORBA Network
of
workstatio
n

52

_____do not address
issues specific to parallel
programming.

ARC ARCC P-CORBA CORBA CORBA

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 1/21

UNIT-II

SYLLABUS

 Anonymous Remote Computing Model: Issues in Parallel Computing on Interconnected

Workstations – Existing Distributed Programming Approaches – The ARC Model of

Computation – The Two-tired ARC Language Constructs – Implementation. Integrating

Task Parallelism with Data Parallelism: A Model for Integrating Task Parallelism into Data

Parallel Programming Platforms – Integration of the Model into ARC – Design and

Implementation – Applications – Performance Analysis

ANONYMOUS REMOTE COMPUTING MODEL

 It basically two-tiered architecture. At the lower layer, the primitives which are built

over a kernel provide the basic support for anonymous remote computing while at the upper

layer; various easy to use high-level programming language constructs are supported.

Workstation cluster and scientific computing in academic are becoming increasingly popular

The processing power of the workstation has witnessed tremendous growth resulting in

clusters of workstations. Parallel programming on workstation systems is a relatively new

field and has been an attractive proposition ever since it was used . Start the process on those

nodes.

ISSUES IN PARALLEL COMPUTING ON INTERCONNECTED WORKSTATIONS

Parallel computing on tightly-coupled distributed systems has so far been widely

popular. several key issues distinguish parallel computing on work station clusters. resent

advantages in communication technology and processor technology and processor technology

make parallel programming on loosely coupled distributed systems of tightly-coupled

massively parallel architecture .Several key is distributed work station cluster from that

network

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 2/21

It follows four categories:

i) Changing loads on the nodes of the network

A distributed system consisting of inter connected workstation massively parallel

experiences a wide fluctuation of loads on individual nodes. a considerable amount of unused

computing capacity is always present in the network. A program is said to be load adaptive if

adapts to the changing load in the system. A programmer may not able to use the knowledge

of load fluctuation in the program unless an adequate language support is provided. It can

challenge tasks. A program can be load adaptive it changing load in the system. Using

parallel virtual machine. A load on a particular machine increases during execution process

on that node would suffer.

ii) Changing node availability on the network

Distributed systems are characterized by nodes that keep going down and coming up

over a period of time. it only three nodes available. A program at a given instance of

execution may have made use of five nodes while in another instance. A sub-task ,a node or a

link might crash and may again come up before the completion of the execution of the

program.

iii) Difference in processor speeds and network speeds

It consists of inter connected workstations are processor speeds and network speeds.

The communication overhead in class of distributed systems is fairly high. It only for grain

parallelism. Selecting appropriate grain sizes during runtimes becomes important as a

consequence of this variation. Communication overheads play a role of speed ups of parallel

tasks on these systems. Heterogeneous cluster processors have different speeds.

iv) Heterogeneity in architecture and operating systems

It basically interconnected workstations with distributed file system and

standardization of software.NFS are common uses. The binary executables files are not

compatibles between architectures, using several difficulties in parallel programming on

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 3/21

workstations clusters in messages passing or shared memory abstractions. The architectural

differences between workstations are more difficult to handle than operating system

differences. the binary executable files are not compatibles between architectures.

EXISTING DISTRIBUTED PROGRAMMING APPROACHES

COP approaches to programming on workstation systems can be grouped with some

amount of overlap between the various categories. That are intended for providing distributed

services. Some of them have been proposed for parallel programming other are intended for

providing distributed services. we analysis the suitability of these approaches from the

parallel programming point of view. This model is many rise to many difficulties while

programming on this system.

i) Bare Socket Programming

The most primitive constructs for inter-process communication between workstations

are sockets. Communication is at the level of un typed bytes streams. The selection of nodes,

tacking of failures, load adaptability and heterogeneity at the level of the executable code.

Such as the selection of nodes tacking of failures load adaptability and heterogeneity at the

level of the executable code have to be handled explicitly by the program. XRD is provided

in order to handle.

ii) Remote Procedure Calls (RPCs)

Parallel programs are written with RPC in combination with lightweight threads. it

based on RPC mechanism to heterogeneous environments. These attempts largely focus on

the issue of design of the stub generator for RPC systems. it is most appropriate for providing

distributed services rather than writing parallel programs on workstation clusters. The

programming on loosely coupled distributed systems. It is more than appropriate for

providing clusters.

iii) Remote Execution

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 4/21

A remote execution facility for migrating code fragments to remote servers for

execution. The REV has been developed for providing migration of executable code to

servers. it only access on client-server communication. it workstations due to its lack of

adequate support for heterogeneity, load adaptability and faculty tolerance. The executable

code is clint nodes.

iv) Message Passing Abstractions

These are the higher level abstractions to are the concept of typed data

communications is introduced and un typed byte can be retained .It provides support for

process migration. process migration-based solutions are useful for adapting to load

variations on homogeneous systems only based on massage parallel virtual machine ,its

provides support for process migration.

v) Distributed Shared Memory Abstractions

They range from bare distributed shared memory support such as the ether system.

shared memory abstractions appear to provides a much easier programming. once the number

of processes is fixed by a program, it utilized the additional computing power that becomes

available during runtimes.

vi) Object-Oriented Abstractions

 Several object-based and object-oriented paradigms such as emerald, processes are

replaced by objects. the communication in this case is inter object rather than inter-

process.the COP model is still preserved but at the level of objects .the various drew backs of

these abstractions in the context of workstation systems have been discussed. The nodes in

the network remain anonymous and a run time system starts the required processes on remote

nodes

THE ARC MODEL OF COMPUTATION

It basically model of computation is designed to meet two goals as clear separation

between programmers concerns and systems concerns and account for heterogeneity fault

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 5/21

tolerance, load adaptability and processor availability. the original of the conventional COP

model of parallel programming on workstation systems can be traced to the process based

multi-programmed machine with various inter-process communication mechanisms. To

execute remain anonymous to the program. At the time multiple programs can be generating

RIBs and multiple anonymous emote participants can be joining or leaving the ARC system.

An RIB can future generates new RIBs.

Comparing ARC and COP models

i)Task Synchronous Systems

A task synchronous system provides synchronization between computing entities at

the level. Two computing entities are synchronized at initiation time or the completion

entities. Task can be deposited in a tuple space and decoupled processes pick up the deposited

tasks.

ii) Call Synchronous Systems

Two computing entities communicate by calling methods defined by each other, that entity

calls a methods action to be blocks for result to return RPC.

The Distributed processes models are call synchronous COP systems. mechanism is used

either a future mechanism is used or a call back mechanism is implemented to obtain the

return value of a call. The latency tolerance mechanism of CHARM++ ,future-based call

asynchronous system

iii) Call Asynchronous Systems

 It based on object oriented programming systems are call asynchronous systems. It

based on non-blocking fashion. Using the latency tolerance mechanism. Method calls return

immediately in a non-blocking fashion. Either a future mechanism is used or a call back

mechanism is implemented to obtain the return value of a call.

iv) Message Synchronous Systems

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 6/21

 Two computing entities exchange messages such as arbitrary data values. message

communication is blocking. Communicating sequential processes CSP is based on

synchronous COP system.

v) Message asynchronous systems

 Two computing entities exchange messages such as arbitrary data of time .message

passing mechanisms such as PVM and MPI are COP system. this type of synchronization can

be achieved by shared memory as well as message passing techniques. A message can arrive

at any time, message is usually typed and the receiving process knows the type of the

incoming message.

vi)The ARC approaches

ARC extends the computing entities in the horizontal domain to RIBs, ARC can be

classified as a task synchronous system. The vertical domain ARC can be classified as a task

synchronous system. The synchronization is provided with the help of synchronizers.

RIBs and Synchronizers

RIP are the code segments that can be executed at anonymous nodes.RIP is achieved

through synchronizers .RIBs are the code segments that can be executed at anonymous nodes.

synchronization between independently executing RIBs is achieved through synchronizers

i) Remote Instruction Blocks

Open - tenderness: the target machine for execution is unspecified. the source code

of the RIB needs to be migrated. As a consequence of this prosperity ,heterogeneity and local

adaptability are supported. the target machine is unspecified .as a consequence of this

property.

Fault tolerance: it basically two-tired architecture using high level program used. C

or C ++ The failure of an anonymous node, the RIB may be executed on a different node or

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 7/21

in the worst case execution on the host node can be guaranteed. The choice of a scheme of

fault tolerance depends upon the semantics of the high-level ARC constructs.

ii) Synchronizers

Synchronizers are mechanisms that are needed to achieve synchronization between

independently executing RIBs. it based sync variables and lock specifications are provided.

The first type of synchronizer, the SYNC variable to assure that the execution sequence of the

associated RIB is completed. Functional languages have used similar variables. A function

begins arguments.

iii) Dynamically Growing and Shrinking Trees

 It is represented as dynamic growing and shrinking trees .It is not supported by RIBs.

It is a very challenging task and needs further research. as RIBs complete execution the tree

shrinks. RIBs are generated during execution a shrinking tree may again start growing.

Achieving different types of RIB communication rather than task synchronization is a very

challenging task and needs further research.

iv) Benefits of the ARC Model

The ARC model based on RIBs contained in a program instead of a COP that

communicates explicitly. This approach grand’s distribution transparency to parallel

programs. ARC also provides heterogeneity transparency.

Abstracting load and speed will be available for a parallel program to execute on un

evenly loaded heterogeneous machines.

 THE TWO TIERED ARC LANGUAGE CONSTRUCT

 The two tiered ARC language constructs the two-tiered ARC language constructs.

The lower layer provides primitives to support system such as the creation of fault tolerance

,load sensing and source code migration. It based on fault tolerance, load sensing and source

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 8/21

code migration. The upper layer consists of higher level language extensions that advocate

ARC programming methodology

i) The Evolution of RIB

This is operating system for load balancing ,this motivation is parallel programming it

is basic building blocks of an APC program. An RIB can be submitted, executed and

manipulated with help of the ARC kernel interface calls. RPC is perhaps the most popular

remote execution paradigm used to build distribution applications. Many specific RPC

protocols have been developed. The client makes calls simultaneously to multiple servers for

loading files.

 ii) The Design Of The Lower Layer Arc Interface

Obtain a lock on an anonymous computing unit, pack the arguments to the RIB, pack

the arguments to the RIB, post the RIB on the lock obtained ,the results of the RIB execution

start-up and close-down primitives, primitive support for RIBs, primitives for packaging

primitives for RIB posting ,primitives for parameter setting, horse power factor and

asynchronous intimations, the horse power factor(HPF)primitive, the asynchronous

intimation primitive

The upper layer ARC constructs

 The primitives explained above are built over the ARC kernel. the ARC function call

models .a high level ARC language paradigm may use these primitives in various ways to

provide easy-to-easy ARC language constructs.ARC paradigms for object-oriented

programming respectively.

Blocking and Non-blocking ARC Calls

 The user can tag the functions as belonging to one of the blocking or the non-blocking

call classes. The non-blocking version of the ARC function call needs a synchronizer

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 9/21

It may be executing on a remote anonymous node .at a later point of time ,the result of the

non-blocking call can be obtained by waiting on the corresponding synchronizer. It is

possible to provide appropriate higher level ARC language semantics to suit the higher level

requirements.

IMPLEMENTATION

 The anonymous remote computing mechanism is provided as an extension to C

language. It is implemented on a heterogeneous as an extension to C language. A distributed

ARC kernel is spread over the workstations that participate in anonymous remote computing.

It is local activity and global activity It consists of these primitive calls.

A distributed ARC kernel is spread over the workstations that particular in

anonymous remote computing. The entire domain is partitioned into three logical clusters of

multiple local variables.

The System Coordinator

 There is only a single system coordinator in a given domain of logically grouped

clusters. The system coordinator’s functions are to manage locks, route RIBs and maintain

migration history. It only functions as a policeman controlling and routing the traffic of ARC

calls

Lock management

 A machine wants to improve its utilization ,it registers with the system coordinator

through local coordinator. A lock request arrives, a statistic-daemon is contacted to access the

current load information and the normalized speed of the machine, the HPF is computed and

returned. A lock request improve its utilization or to share its work with an anonymous

remote node.

Routing RIBs

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 10/21

 An RIP posting is routed to the corresponding free local coordinator for execution. An

RIP posting consists of the arguments data- packet, the source code or compiled code, it is

appropriate and the make directives for various architecture.RIP binaries are prepared for the

target machine. The results of the RIPs are sent back to the corresponding local coordinators.

Maintaining Migration History

 A history of resent migrations is maintained .A machine may received an RIB task

belonging to an earlier posted source code. The binaries available in the file system that of

the cluster repetitive migration and recompilation are avoid by using the history of resent

migrations across clusters

The Local Coordinator

 The local coordinator runs on a machine that participates in the ARC system either to

improve its utilization or to share its work with an anonymous remote node. Any ARC

communication to or form the local processes is achieved through the local coordinator are

described in the sub-sections. Any ARC communication from the local variable.

Improve Local Utilizations

 An online command can be executed that directs the local coordinator to obtain a

particular amount of work from the ARC system .this generates an asynchronous intimation

that travels to the remote programs. the results are forwarded to the local coordinator. A task

executor may also generate new RIBs.

Accept RIBs From Local Processes

 RIBs are initially generated by user processes. later the RIPs themselves may generate

new RIPs .A new RIB may be generated upon the receipt of an asynchronous intimation. The

local coordinator provides the intimation to a program by using a signal. The results of

remotes RIBs arrive, they are queued up in a result queue. A synchronizer in the program

requires a particular result, it is queue is searches.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 11/21

The RIBs

 RIBs are extracted from the program by using an ARC compiler .An RIB code is

generated b using a generic RIB process that accepts arbitrary arguments and posts a result

.Dynamic RIBs do not die immediately and can further accept a new set of arguments. A

specialized RIB is prepared from the generic RIB by integrating the required code fragments

into it. The processing power of the workstation has witnessed tremendous growth resulting

in clusters of workstations. Parallel programming on workstation systems is a relatively new

field and has been an attractive proposition ever since it was used.

Time-Outs and Fault Tolerance

 The code that maintains the time-outs is integrated with the code that generates RIBs.

A timer signal ticks at regular intervals. . It based on fault tolerance, load sensing and source

code migration. The upper layer consists of nodes. The time-out parameter in the lower layer

ARC primitives is specified in terms of this interval. . A program is said to be load adaptive if

adapts to the changing load in the system. A programmer may not able to use the knowledge

of load fluctuation in the program unless an adequate language support is provided. the value

is time-out and retries parameters permit a re-execution ,the RIB may be resent to another

suitable remote node.

Security and Portability

Security in ARC implementation is built over the security provided by operating

systems over ARC is implemented. The system coordinator accepts connections only from

local coordinators on trusted clients. the original of the conventional COP model of parallel

programming on workstation systems can be traced to the process based multi-programmed

machine with various inter-process communication mechanisms. A remote local coordinator

accepting RIPs arriving from anonymous runs with specific user permissions especially

created for the purpose of ARC computations. portability to ARC programs nodes primitives

are made portables.

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 12/21

Data parallelism refers to the simultaneous execution of the same instruction stream

on different data elements. Several programming platforms target the exploitation of data

parallelism. Control parallelism refers to the simultaneous execution of different instruction

streams. This is also referred to as task parallelism or functional parallelism. Some of the

tasks that constitute the problem may have to honor precedence relationships amongst

themselves. The Control parallelism with precedence’s. It is the parallel execution of distinct

computational phases that exploit a problem control parallelism. This kind of parallelism is

important for various reasons.

In Multi disciplinary applications there is an increased interest in parallel multi-

disciplinary applications it different scientific disciplines and may be implemented for

parallel computation. The air shed model is a grand challenge application that characterizes

the formation of air pollution as the interaction between wind and reactions among various

chemical species

Complex simulations: Most of the complex simulations developed by scientists and

engineers have potential task and data parallelism. a data parallel platform would be able to

exploit the control parallelism.

Real time requirements : it is characterized by their strict latency time throughput

requirement. Task parallelism lets the programmer explicitly partition resources among the

application modules to meet such requirements.

Performance Task parallelism allows the programmer to enhance locality and

performance by executing different components of a problem concurrently on disjoint sets of

nodes. It also allows the programmer to specify computation schedules that compiler

Problem characteristics many problems can benefit from a mixed approach with

parallel coordination layer integrating multiple data parallel co ordinations. Some problems

admit both data and task parallel solutions

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 13/21

Task and data parallelism are complementary than competing programming models.

Many problems exhibit a certain amount of both data parallelism and control parallelism. It is

desirable for a parallel program to exploit both data and task parallelism inherent.

A MODEL FOR INTEGRATING TASK PARALLELISM INTO DATA PARALLEL

PROGRAMMING PLATFORM

 Expectations from an integrated platform a high level parallel programming platform

stem from the nature of applications utilized the platform. The requirements come from the

desired expressivity of the application, possible transparency in programming, exploitation of

parallelism

Impressibility in order to exploit parallelism in an application the program must

express potential parallelism execution units. An elegant impressibility scheme should reflect

the parallel units, data parallel units and precedence among the tasks in the program.

Transparency it is desirable to relieve the programmer from details relating to

underlying network programming. This results in the programmer concentrating on his

application domain itself. Network programming information coded in the application, a

major portion of the program.

Performance system level optimizations by the parallel programming platform can

improve the performance of applications. The system can achieve load balancing for the

application, further enhancing performance. The run-time scheduling decisions by the

system.

Other desirable Properties of the system include fault resilience, facult resilience, fault

tolerance, accounting for heterogeneity in machine architecture and operating system and

portability of application.

The expressible that can be provided is influenced by the nature and organization into

converted

Programming model

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 14/21

The model aims at a parallel programming platform that permits expressibility for

task and data parallelism so that both can be exploited. A large number of existing data

parallel programming platforms for NOWs, it would be useful to formulate the problem as

integrating task platforms. A block could be a high level characterization of a data parallel

module in accordance with the principles of the underlying data parallel platform.

Events of interest signify the completion of one or more tasks meets the pre

conditions for another task that is writing to be executed. This takes care of the probility

factor in the order of completion of tasks that constitute the program.

 Other crops up during the integration parallel sub division of divisible tasks. The

underlying data parallel model could not be sub-dividing a data parallel platform could be a

significant event in the proposed integrated model the system has to initiate the user process

an event of its interest occurs.

 It because necessary to integrate to the existing system the notion of the notion of a

task as a collection of sub tasks. The program expressibility of the model reflects the task

parallel blocks and precedence relationships in the task graph.

 Task begin and task end are introduced to demarcate the blocks in the block structured

code. Another construct is provided to specify the pre conditions of the tasks.

Program Structure and Translation Of A Task Graph

 A sample task graph and its block-structured code are illustrate the expressibility by

model .the translation of a given task graph into program structure favored by the model.

Also it illustrates the translate of a given task graph into the program structure favored by the

model.

 The outline program expressibility of a task graph in the model. At the level Task1

and Task 2 could be executed in a control parallel fashion at the beginning of the run itself.

This is evident from their task begin constructs it is not followed by the construct on finish

Separation of System’s and Programmers Concerns

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 15/21

 Task and data parallelism are complementary than competing programming models.

Many problems exhibit a certain amount of both data parallelism and control parallelism. It is

desirable for a parallel program to exploit both data and task parallelism inherent.

 In Multi disciplinary applications there is an increased interest in parallel

multi-disciplinary applications it different scientific disciplines and may be implemented for

parallel computation. The air shed model is a grand challenge application that characterizes

the formation of air pollution as the interaction between wind and reactions among various

chemical species

INTEGRATION OF THE MODEL INTO ARC

ARC model of computation

 Is a code fragment that can be migrated into a convenient anonymous remote node at

runtime node at any mechanism of process creation or inter-task communication at the

programming language level. The nodes at RIBs need to be executed remain anonymous .The

lower layer provides primitives to support system such as the creation of fault tolerance ,load

sensing and source code migration. It based on fault tolerance, load sensing and source code

migration. The upper layer consists of higher level language extensions that advocate ARC

programming methodology.

 The local coordinator runs on a machine that participates in the ARC system either to

improve its utilization or to share its work with an anonymous remote node. Any ARC

communication to or form the local processes is achieved through the local coordinator are

described in the sub-sections.

An online command can be executed that directs the local coordinator to obtain a

particular amount of work from the ARC system .this generates an asynchronous intimation

that travels to the remote programs. The results are forwarded to the local coordinator. A task

executor may also generate new RIBs.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 16/21

It is implemented on a heterogeneous as an extension to C language. A distributed

ARC kernel is spread over the workstations that participate in anonymous remote computing.

It is local activity and global activity it consists of these primitive calls.

ARC implementation is built over the security provided by operating systems over

ARC is implemented. The system coordinator accepts connections only from local

coordinators on trusted clients. The original of the conventional COP model of parallel

programming on workstation systems can be traced to the process based multi-programmed

machine with various inter-process communication mechanisms. A remote local coordinator

accepting RIPs arriving from anonymous runs with specific user permissions especially

created for the purpose of ARC computations. Portability to ARC programs nodes primitives

are made portables.

Outline of ARC Runtime Support

A distributed ARC kernel is spread over the workstations that particular in

anonymous remote computing. The entire domain is partitioned into three logical clusters of

multiple local variables.

 One of the machines in the pool is selected to run daemon co-ordinates the all of the

machines participate in the pool. This is termed system co-coordinator .An RIB is a code

fragment that can be migrated into a convenient anonymous remote node at runtimes for

execution.

 This call is used to obtain information about various machines available in the system

and their loads. The parameter to this system the number of machines required by the

program. The return value is a structure the values to identify the system . The parameter that

calls supported.

Outlines of ARC runtime support Performance system level optimizations by the

parallel programming platform can improve the performance of applications. The system can

achieve load balancing for the application, further enhancing performance. The run-time

scheduling decisions by the system.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 17/21

The integrated platform A program is said to be load adaptive if adapts to the

changing load in the system. A programmer may not able to use the knowledge of load

fluctuation in the program unless an adequate language support is provided. the value is time-

out and retries parameters permit a re-execution ,the RIB may be resent to another suitable

remote node.

A sample block in the integrated platform programmers concerns and systems

concerns and account for heterogeneity fault tolerance, load adaptability and processor

availability. The original of the conventional COP model of parallel programming on

workstation systems can be traced to the process based multi-programmed machine with

various inter-process communication mechanisms. To execute remain anonymous to the

program. At the time multiple programs can be generating RIBs and multiple anonymous

emote participants

DESIGN AND IMPLEMENTATION

The parser for by the user into the coordination of the pool of workstation and

functional library support to avail system services are the elements of the system

Parser

The Parser for program submitted by the user into the final coordination. The original

of the conventional model of parallel programming on workstation systems can be traced to

the process based multi-programmed machine with various inter-process communication

mechanisms. To execute remain anonymous to the program. At the time multiple programs

can be generating RIBs and multiple anonymous emote participants can be joining or leaving

the system

Local coordinator

 It basically inter connected workstations with distributed file system and

standardization of software are common uses. The binary executables files are not

compatibles between architectures, using several difficulties in parallel programming on

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 18/21

workstations clusters in messages passing or shared memory abstractions. The architectural

differences between workstations are more difficult to handle than operating system

differences. The binary executable files are not compatibles between architectures. Using

common NFS network.

System coordinator

These are intended for providing distributed services. Some of them have been

proposed for parallel programming other are intended for providing distributed services. we

analysis the suitability of these approaches from the parallel programming point of view. This

model is many rises to many difficulties while programming on this system.

 The original of the conventional COP model of parallel programming on workstation

systems can be traced to the process based multi-programmed machine with various inter-

process communication mechanisms. .this generates an asynchronous intimation that travels

to the remote programs. The results are forwarded to the local coordinator. . A program is

said to be load adaptive if adapts to the changing load in the system. A programmer may not

able to use the knowledge of load fluctuation in the program unless an adequate language

support is provided

APPLICATIONS

 Applications with coarse grain control parallelism or coarse grain data parallelism or

both are the target of our platform. to use high-level programming language constructs are

supported. workstation cluster and scientific computing in academic are becoming

increasingly popular The processing power of the workstation has witnessed tremendous

growth resulting in clusters of workstations. parallel programming on workstation systems is

a relatively new field and has been an attractive proposition ever since it was used.

 Several key issues distinguish parallel computing on work station clusters. Resent

advantages in communication technology and processor technology and processor technology

make parallel programming on loosely coupled distributed systems of tightly-coupled

massively parallel architecture.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 19/21

A considerable amount of unused computing capacity is always present in the

network. A program is said to be load adaptive if adapts to the changing load in the system. A

programmer may not able to use the knowledge of load fluctuation in the program unless an

adequate language support is provided. It can challenge tasks. A program can be load

adaptive it changing load in the system.

 It based on object oriented programming systems are call asynchronous systems. It

based on non-blocking fashion. Method calls return immediately in a non-blocking fashion.

Either a future mechanism is used or a call back mechanism is implemented to obtain the

return value of a call.

 Two computing entities exchange messages such as arbitrary data values. Message

communication is blocking. Communicating sequential processes is based on synchronous

system.

The lower layer provides primitives to support system such as the creation of fault

tolerance, load sensing and source code migration. It based on fault tolerance, load sensing

and source code migration.

The requirements come from the desired expressibilty of the application, possible

transparency in programming, exploitation of parallelism.

PERFORMANCE ANALYSIS

 This presents performance related aspects of the work. The test bed for the

experiments consists of a immediately and can further accept a new set of arguments. A

specialized RIB is prepared from the generic RIB by integrating the required code fragments

into it. The processing power of the workstation has witnessed tremendous growth resulting

in clusters of workstations. Parallel programming on workstation systems is a relatively new

field and has been an attractive proposition.

A spite of a task division policy based on run time load conditions the completion

time of the tasks the original of the conventional COP model of parallel programming on

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 20/21

workstation systems can be traced to the process based multi-programmed machine with

various inter-process communication mechanisms. A remote local coordinator accepting RIPs

arriving from anonymous runs with specific user permissions especially created for the

purpose of ARC computations.

The problem is a case the task and data parallelism is complementary. The control A

programmer may not able to use the knowledge of load fluctuation in the program unless an

adequate language support is provided. It can challenge tasks. A program can be load

adaptive it changing load in the system. A load on a particular machine in the analysis.

The Data parallelism refers to the simultaneous execution of the same instruction

stream on different data elements. post the RIB on the lock obtained ,the results of the RIB

execution start-up and close-down primitives, primitive support for RIBs, primitives for

packaging primitives for RIB posting ,primitives for parameter setting, horse power factor

and asynchronous intimations.

It can be seen that exploitation of both task and data parallelism, six nodes are

utilized for parallel execution before request arrives, a statistic-daemon is contacted to access

the current load information and the normalized speed of the machine, the HPF is computed

and returned. A lock request improve its utilization size of four minutes is reached.

POSSIBLE QUESTIONS(2 Marks)

1. List the issues in Parallel Computing on Interconnected Workstations.

2. Define ARC.

3. What are the two properties of RIB?

4. What is Fault Tolerance?

5. Write two benefits of ARC Model.

6. Define HPF.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

 COURSE CODE: 17CSP205B UNIT: II(ARC) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 21/21

7. Write the difference between Blocking and Non Blocking ARC Calls.

8. What is System Coordinator?

9. What is Local Coordinator?

10. Write a note on Lock Management.

POSSIBLE QUESTIONS(6 Marks)

1. Discuss the issues in Parallel Computing on Interconnected Workstations.

2. Explain the design of Upper Layer ARC Constructs.

3. Describe the existing Distributed Programming Approaches.

4. Discuss the implementation of Two Tired ARC Language Constructs.

5. Differentiate between ARC and COP models.

6. Discuss the model for integrating Task Parallelism into Data Parallel Programming

Platforms.

7. Brief about RIBs and Synchronizers.

8. Describe ARC Model of Computation and ARC Runtime Support.

9. Explain the design of Lower Layer ARC Interface.

10. Discuss the performance analysis of Control Parallelism and Data Parallelism in

ARC.

S.NO QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4 KEY

1
 PVM stands

for____________

 Parallel virtual

machine

 Program
virtual
machine

 Primitive
virtual
machine

 Process virtual

machine

 Parallel
virtual
machine

2
 RPC stands

for____________

 Remote program

call

 Remote

procedure call

 Root process

call

 Remote
procedure
computing

 Remote

procedure call

3
 COP stands

for____________

 Computing of

process

 Collection of

program

 Collection of

processes

 Computing of

processes

 Collection of

processes

4

 A _______ facility
allows for migrating
code fragments to
remote servers for
execution

 Remote

execution

 Program

process

 Remote

function

evaluation

 Parallel

computing

 Remote

execution

5
 MPA stands

for______________

Message passing

assembly

 Message
passing
abstraction

 Message
program
absolute

 Message
program
abstraction

 Message
passing
abstraction

6
 MPVM stands

for____________

 Message
program virtual
machine

 Machine
parallel virtual
mode

 Message
parallel
virtual
machine

 Message
process virtual
machine

 Message
parallel virtual
machine

7
 _______are provided
for handling variation
in loads & speeds
dynamically

 Primitives
 Parallel

computing

 Remote
instruction
block

 Grid

computing
 Primitives

8

The runtime system
known as the
_______ system
decides the nods on
which RIB’s are to be

MPA ARC RIB RPC ARC

9
RIB stands

for_____________

Remote

instruction block

Remote

institute block

Remote index

block

Remote identify

block

Remote
instruction
block

10
 ______ extends the
computing entities in
the horizontal domain
to RIB’s

 RFE RIB ARC HPF ARC

11
DSMS stands

for____________

Distributed

shared memories

Distribution

state memories

Domain
system
memories

Domain shared

memories

Distributed
shared
memories

UNIT II
Objective Type Questions

Karpagam Academy of Higher Education
Department of CS, CA & IT

Subject: Grid Computing(17CSP205B)
Batch : 2017-2019 Class: I M.Sc CS

12

 __________ are
mechanisms that are
needed to achieve
synchronization
between

Parallel

computing

Procedure call Primitive Synchronizers Synchronizers

13
REF stands

for____________

Remote free

evaluation

Remote
function
express

Remote
function
evaluation

Remote factor

evaluation

Remote
function
evaluation

14
ARC provides an
abstraction
called____________

Horse power

factor

Remote

function call

Collection of

process
Parallel process

Horse power

factor

15

If the anonymous
node is heterogeneous
the source code of the
____ needed to be
migrated

RFE HPF RIB ARC RIB

16
The distributed object
oriented programming
systems are

Call
asynchronous
system

Producer call
Remote

execution

Noise power

factor

Call
asynchronous
system

17
 __________ is
implemented to obtain
the return value of a
call

Primitive Synchronizers
Call back

mechanism

Parallel virtual

machine

Call back

mechanism

18
FDDI stands

for_______________

Function
distributed
domain interface

Free
distributed
data
integration

Fiber
distributed
data interface

Function
divided data
interface

Fiber
distributed
data interface

19
 _____ types of COP
are available in
distribution
programming

9 7 6 4 6

20
The …….primitive is
used to set the control
parameters for a
particular RIB posting

 SETPARAM ()
 obtain result

()
 post RIB ()

 open data

pack()

 SETPARAM

()

21

The primitive …….is
used to obtain the
results of an earlier
Rib posted for

post Rid() set param ()

OBTAIN

RESULT ()

open data

pack()

OBTAIN

RESULT ()

22
the time out value
may be incremented
with the help the help

SETPARAM() obtain result() post Rib()
open data

pack()

SETPARAM(

)

23

if an anonyms node
cannot be contacted
due to its
unavailability or due
to the time-

REM-FAILURE failure-rem post Rib()

insert data

pack()

REM-

FAILURE

24

the……….primitive
is used to post on RIB
to yhe ARC kernel
which can allocate the
RIB to an earlier

obtain result () POST RIB() set param()

open data

pack()

POST RIB()

25

the……….primitive
returns a new data-
pack handler in which
an artitary number of
arguments can be

OPEN DATA

PACK()

 set param() (post Rib() obtain result()

OPEN DATA

PACK()

26

a continuous packet is
prepared for all the
inserted arguments by
calling the

obtain lock()

 open data

pack()

close-down()

CLOCK

DATA PACK()

CLOCK

DATA

PACK()

27
the ARC
………..primitive
unlinks the program

CLASS

DOWN()

close data

pack()

open data

pack()
obtain lock()

CLASS

DOWN()

28

the stacks
values…………is
returned if the time
out is reached but the

WORM-IN-

PROGRESS

rem-failure work progress infinity

WORM-IN-

PROGRESS

29
the abbservation for

HDF is………….
rem-failure

HORSE
POWER
FACTOR

work progress infinity
HORSE
POWER
FACTOR

30

the ……………
primitive is used to
secure a lock on an
anonyms node &
obtain the HPF for the

close data pack() close-down ()

OBTAIN

LOCK

set param()

OBTAIN

LOCK

31

a call to the …………
primitive returns a
value TRUE if an
synchronyms
intimation is received

INTIMATION

RECEIVED()

obtain lock()

load

adaptability

post RIB()

INTIMATIO

N

RECEIVED()

32
………….is a major

concern for ARC
post Rib

intimate

received

work-in-

progress

LOAD
ADAPTABILI
TY

LOAD
ADAPTABIL
ITY

33
The……..function
call is an example of
an low level non-

POST RIB() obtain lock()
 intimation

received
 close-down POST RIB()

34
The…….. mechanism
is provided as an
extension to c

Arc set param() obtain lock() post Rib Arc

35
RIB are extracted
from the programs by
using an…..compiler

obtain lock() set param() ARC post Rib ARC

36
The abbservation for

HPU is………

HORSE
POWER
UTILIZATION

horse power

utilize

horses power

utilization

home power

utilization

HORSE
POWER
UTILIZATIO

37
the default value for
time out & retries can
be chosen

zero&one
INFINITY&Z

ERO
null null&infinity

INFINITY&Z

ERO

38
the………figure is
used for deciding on
execution in case of a

infinity close down TIME OUT ARC TIME OUT

39
ARC model was
implemented on a
network of………..

HETEROGENO
US
WORKSTATIO
N

homogenous

workstation

hetro

workstation

homo

workstation

HETEROGE
NOUS
WORKSTAT
ION

40 XDR stands
for_______

External data
Representation

External
database

External Data
request

External
distributed

External data
Representatio41 MPMD stands

for______
Multiple
program multiple

multiple
process

Message
Passing

Message
program

Multiple
program 42 ______is a set type of

data structure
Collection of
process

NOW DP Parset Parset
43 When the Elements of

a Parset Belong to a
Simple Parset Function

Parset
Cluster untyped Parset. Simple Parset

44 ______consist of a
data structure and a

procedure call Parset
construct

ARC Server Parset
construct

45
____refers to the
simulataneous
execution of same
instruction stream on

Data parallelisim
Control

parallelisim
 parallelisim

Control

parallelisim

Data

parallelisim

46
Data Parallelisim
refers to the
simulataneous
execution of same

data stream

instruction

stream

Control

parallelisim
ARC

instruction

stream
47 MPI stands for_____ Message Passing

Interface
Message
Passing

Mobile
Passing

Mobile Passing
Interface

Message
Passing 48 Sharing the task

among the
GCI MPI CORBA Grid

Computing
Grid
Computing 49 The Combination of

wireless
Mobile Cluster
Computing

Cluster
Computing

GridComputi
ng

ARC Mobile
Cluster 50 MCC stands for

Mobile cluster
communication

Message
Control

Mobile
Cluster

Mobile
common

Mobile
Cluster 51 _____is a good tool

for complex non-
Simulated
Annealing

Mobile
Cluster

Distributed
Pipes

JSS Simulated
Annealing52 _____Belongs to the

class of NP-Hard
Travelling
Salesman

Simulated
Annealing

Job Shop
Scheduling

ARC. Job Shop
Scheduling

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 1 of 37

UNIT-III

SYLLABUS

Anonymous Remote Computing and Communication Model: Location – Independent

Inter-task Communication with DP – DP Model of Iterative Grid Computations – Design

and Implementation of Distributed Pipes. Parallel Programming Model on CORBA:

Notion of Concurrency – System Support – Implementation and Performance

INTRODUCTION

 The effective parallel solution of problems on NOWs requires the runtime

selection of nodes. The granularity of individual subtasks may have to be deferred until

runtime for load balancing. Dynamic schemes may be needed to make the programs

resilient to changing conditions. Support for inter-task communication high-level parallel

programming platforms which support runtime and dynamic policies, leads to several

issues. Some of these issues are as follows:

In ARC, the node to which a sub-task is migrated is decided

at runtime. The nodes remain anonymous to the user program

which initiates the migration. Thus, a sub-task would be

unaware of the location of other sub-tasks in order to

communicate with them.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 2 of 37

Another issue pertains to the dynamic schemes employed

by the platforms. The system support may migrate an already

running task, reshuffle the load allotted to individual sub-

tasks, etc. Such dynamic policies detach processes from

specific nodes. Hence, communication primitives which

assume the location of processes are unsuitable.

Transparent inter-task communication will facilitate a number

of application domains to exploit the parallel computing power of clusters of

workstations. Some of these application domains are as follows:

Iterative grid computations comprise a large class of

engineering applications. When the domain of computation

of an iterative grid computation problem is divided, the sub-

domains will need to exchange their boundary values. Grid

computations are used to solve problems, such as elliptical

partial differential equations by finite differences [8].

Parallel solutions of the class of sub-optimal algorithms like

simulated annealing are discussed in [9]. The problem

partitioning adopted requires the sub-tasks to exchange their

intermediate results.

Some problems can be partitioned for parallel solution as a

network of filters. Networks of filters can be used to solve a

variety of programming problems. Reference [10] describes

a prime number sieve and a matrix multiplication network

using this pattern. Such problems would also require the

communication of intermediate results.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 3 of 37

The current work explores the transparent programmability of

communicating parallel tasks on loaded heterogeneous workstations

LOCATION INDEPENDENT INTER TASK COMMUNICATION WITH DP

Distributed Pipes (DP) is a model for transparent programming of communicating

parallel tasks. It addresses issues specific to parallel programming on NOWs. DP

provides a set of high-level location- transparent communication primitives, which

support data flow between processes that are independent of their location. This enables

the model to accommodate anonymous migration of communicating parallel tasks.

In the model, the communication channels between the nodes

of a network are considered as global entities. The information

pertaining to them is maintained globally on a designated node.

A communication channel is created or deleted at runtime.

Communicating parallel tasks created at runtime can be connected by using DP. The

high-level abstractions of DP provide an elegant set of programming interfaces that are

free from low-level network details. This contributes to the readability and

maintainability of the code. Programs in the model are not tied up to specific nodes.

Hence, it accommodates a changing pool of workstations, and relieves the programmer

from the task of programming for specific machines, thereby rendering the resultant code

portable to a different network. The DP provides a uniform set of interfaces for

communication across heterogeneous nodes. This addresses heterogeneity among the

nodes in both architecture and the operating system. DP uses the external data

representation to handle heterogeneity. The programming level abstractions of DP wrap

TCP abstractions. Message sizes exceeding the size limit imposed by TCP are handled

transparently by splitting and coalescing the message appropriately.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 4 of 37

 DP MODEL OF ITERATIVE GRID COMPUTATIONS

Figure 5.1 shows the nature of a typical iterative grid computation. The iterative

marching in space and time dimensions are shown in the illustration on the left in Fig.

5.1. The expanded grid on the

 Grid Computation Problem

right of Fig. 5.1 shows the boundary value exchanges. The typical program structure of

the problem for sequential execution is as follows:

Pseudo Code 1: Program Structure of typical iterative grid

computations

FOR Time = StartTime TO EndTime

FOR XAxis = StartX TO EndX

FOR YAxis = StartY TO EndY

UserDefinedFunction()

END FOR

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 5 of 37

ENDFOR

END FOR

The outer loop of the pseudo code marches in time and the

inner loops march in each dimension of space.

5.3.1 The Model

The model employs a master-worker model of computation. The

program for the model consists of a master process and several

worker processes. The master process is the process which initiates the computation.

Worker processes are spawned on the nodes which participate in parallel computation.

Worker processes are called Iterative Grid Modules (IGMs).

The model accomplishes parallel execution of the problem by Domain decomposition.

Each IGM is allotted a sub-domain of Computation. The boundary value exchange of

values between IGMs is effected through DPs. IGMs return the results of their

Computation to the master process. The model permits communication between

anonymously migrated IGMs.

In the model, the system handles domain decomposition, selection of least loaded nodes,

load balanced division of tasks, anonymous migration of IGMs, transparent laying of

communication primitives between IGMs, result collection, and aspects related to fault

tolerance.

The model offers various advantages. The programs in the model are not tied up to

specific machines. Such programs can accommodate a changing pool of workstations. It

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 6 of 37

also makes the programs portable to a different network. The number of IGMs is not

decided a priori. Hence, the system can utilize the optimum number of nodes according to

the runtime conditions. The programs written for the model can tolerate a heterogeneous

Collection of unevenly loaded workstations. The programs in the Model are devoid of

any underlying network code. This results in greater readability of the program and,

hence, in greater Maintainability.

Figure 5.2 illustrates the parallel solution of a grid computation Problem using the

model. In Fig. 5.2, thick circles represent IGMs, the thin circle represents the master

process, ellipses represent runtime daemons, thick lines represent TCP connections, thin

lines represent Unix Domain socket connections, and dashed lines depict DPs between

IGMs. Grid Computation Tasks, (GCTs) represent IGMs and GCP (Grid Computation

Problem) represents the Master Process.

Initialization

The master process and IGMs need to register with the system in Order to avail of system

services. The master process registers with the system by using the call Initialize Work().

Upon completion, a complementary call Close Work() is used. IGMs register with the

system by using the call InitializeIGM() Upon completion, a complementary call

closeIGM() is used.

Domain Decomposition

In the model, the master process sends the grid information to

the system. The system decides the optimum number of IGMs to

be employed, the granularity of computation to be allotted to

individual IGMs, and the nodes to be assigned for each IGM. The master process gathers

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 7 of 37

this information from the system and

packs initial data for individual IGMs to migrate the IGMs and to create channels that

collect results from each IGM.

The master process provides the grid information to the system by using the call

SendGridlnfo(). Similarly, it obtains the number of IGMs employed by using the call

Obtain NumberOfSplits(). The granularity of each IGM is obtained by using the call

ObtainSplitlnfo()

A brief description of the calls is given below.

 Int SendGridlnfo (int Work/d, int SpaceInX, int SpacelnY, int SpacelnZ, int

History, int SplitDirection).

SendGridlnfo () sends the grid information of a grid computation work to the system.

Workld is the index by which the system identifies a grid computation work.

SpaceInX, SpaceInY, and SpacelnZ are the number of grids in

X, Y, and Z dimensions of space.

History specifies the number of previous time slices to be

stored.

SplitDirection specifies the direction of the split.

 int ObtainNumberOfSplits(int WorkId).

ObtainNumberOfSplits() collects the number of IGMs for the

grid computation work denoted by the WorkId .

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 8 of 37

 int ObtainSplitInfo(int Work/d, int SplitId, int" Start, int" Total).

ObtainSplitlnfo () gathers information related to a split of the

work. The starting grid of the sub-domain and the number

of grids in the sub-domain are stored at the addresses pointed

to by Start and Total; respectively.

Load Balancing

The system gathers availability and load information of the nodes in the network in order

to decide the optimum number of IGMs to be employed and their individual granularities.

Machines with load indices higher than a designated value are ignored. The domain of

computation is sub-divided among the other machines. The granularity of individual sub-

domains depends upon the load ratio of the machine.

Our approach to load balancing offers several advantages. The

actual means of gathering and interpreting load information on

the participating machines are hidden from the programmer. In a

heterogeneous collection of workstations, the processing power of individual nodes is

also used for load balancing. In our approach, the programmer is relieved of the task of

specifying the ratio of the processing power in a collection of heterogeneous nodes. The

load balancing scheme may have to be altered to accommodate different types of nodes

or to prune the load interpretation mechanism. In such cases, the user programs need not

be modified in order to change the load balancing scheme.

Anonymous Migration of Sub~tasks

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 9 of 37

The anonymous migration of an IGM is initiated when the master process invokes the

Migrate() call. However, the master process does not furnish any machine specific

arguments to the Migrate() call. The information required for an IGM to initialize its data

structures as well as the initial data for the IGM are the parameters to the call. These are

retained with the local lc of an IGM until the IGM claims them. The syntax and

semantics of the call are given below.

 int Migrate(int Work/d, int Splitld, char;' MigrateFile, int DataType, ooid" Data,

int SpacelnX, int SpacelnY, int SpaceJnZ, int History. char'!' ResultPipe}.

Migrate() migrates the code for an IGM and provides it with initial data. The data

consists of the number of grid points in X,

Y, and Z dimensions of space. ResultPipe is the name of the DP to which the IGM writes

its results.

Information Gathering by IGMs

The lc which collects anonymously migrated IGMs, compiles the IGM code and spawns

the IGM process. An IGM process has to initialize its data structures to hold the initial

data, and collect the initial data with which to begin computation, the position of the

IGM, and the name of the Result Pipe to write its result. The size of the initial data is

required to initialize the data structures. This is facilitated by the call ObtainTask-

Gridlnfo(). After initializing the data structures, the IGM collects the initial data by

invoking the call ObtainTaskData (), The call ObtainTaskMachinelnfo() provides the

position of the IGM process and the name of the Result Pipe to be opened.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 10 of 37

In our approach, the information pertaining to an IGM is not

tied up with the code of the IGM. At runtime, the system provides information relevant to

individual IGMs. The syntax and semantics of the calls are given below.

 int Obtain'Tasktlridlnfotint" SpacelnX, int" SpaceInY, int"

SpaceInZ, int" History).

ObtainTaskGridlnfoO provides the number of grid points in

X, Y, and Z dimensions of space.

 int ObtainTaskData(void* Data, int SpaceInX, int SpacelnY, int

SpaceInZ, int History).

ObtainTaskDataO stores the initial data matrix at the address

pointed to by Data.

 int Obtain TaskMachinelnfo (int" WhichMachine, char"

ResultPipeName).

ObtainTaskMachineInfoO stores the location of the IGM in the grid computation work at

the address pointed to by WhichMachine.

Transparent Communication

Each IGM has to communicate with its neighbouring IGMs to

exchange boundary values. Support for communication between

IGMs brings with it two issues. Since the IGMs are migrated to

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 11 of 37

anonymous nodes, an IGM will not know the location of its

neighbouring IGMs. The second issue pertains to the position of

an IGM. The number of neighbours of an IGM depends upon

the position of the IGM. Hence, the number of DPs to be opened

by the IGM cannot be known until runtime.

In the model, an IGM collects information about its neighbours

and the number of DPs to be opened at runtime.

This is facilitated by the calls

ObtainTaskOpenPipeNames ..

and

ObtainT askNoOfPipes ToBeOpened

Following is a description of the call:

 int ObtainTask OpenPipeNames (char "'"' PipeNames, int" AeeessMode, int

NoOfOpenPipes).

ObtainTaskOpenPipeNamesO provides the number, names

and access modes of the Distributed Pipes to be opened.

 int ObtainTaskNoOfPipesToBeOpened(int* NoOfOpen-

Pipes).

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 12 of 37

ObtainTaskNoOfPipesToBeOpenedO stores the number of

Distributed Pipes to be opened at the address pointed to by

N oOfOpenPipes.

DESIGN AND IMPLEMENTATION OF DISTRIBUTED PIPES

Runtime Support

The runtime support consists of an Ie daemon running on each

node participating in parallel computation and a se daemon on a

designated node.

Figure 5.4 illustrates the overall structure of the system. Circles

represent the user processes, ellipses represent runtime daemons,

thick lines represent TCP sockets, thin lines represent Unix

Domain sockets, and dashed lines represent Distributed Pipes.

Local Coordinator (lc)

The lc runs on each node that participates in parallel computation. The lc services

requests generated by user processes on its node. Also, it maintains information required

to coordinate the user processes.

The lc maintains two tables to support bare DP services, namely,

the User Process Information Table (UPT) and the User Processes Blocked for Write

Table (UPBWT). The UPT maintains information pertaining to user processes which

have registered with the lc on its node. UPBWT keeps track of processes which

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 13 of 37

 Node 3

have opened a DP in write mode and have not been opened by

any other process for reading. The writing process is blocked

until the DP is opened by some other process in read mode. The

lc maintains the table in order to inform the blocked processes

when another process opens the DP in read mode.

In order to support grid computations, the lc maintains a Grid

Computation Task Submitted Table (GCTST). The ic uses the

GCTST to service the requests of a task. The table is indexed by

the process id of the task. The GCTST is updated either when a

new task is submitted or when an already submitted task

terminates. If the service needs additional parameters, the lc

forwards the information to the sc.

The FSM of lc is given in Fig. 5.5. In the INIT state, the tc

initializes its data structures and cleans the auxiliary system files. The lc establishes a

TCP connection with the sc and registers with the sc. In the LISTEN state, the lc waits

for messages from the sc or any user process. When it receives a message from the sc, it

changes its state to SC Msg RECVD and services the message

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 14 of 37

When it receives a message from a user process, it changes its

state to UP Msg RECVD and services the request.

The initial communication between a process and the lc is

through a known common channel. This is required for a user

process to register with the lc. User processes which register with the lc are given

exclusive communication channels for subsequent communication.

System Coordinator (sc)

The sc coordinates the lcs in the pool. Also, the sc keeps track of

individual lcs and facilitates communication between them. The sc is connected to lcs

through TCP sockets. The sc maintains TCP socket descriptors which connect it to

individual les.

The sc maintains two tables, namely, the Distributed Pipes Table

(DPT) and the Local Coordinators Table (LCT). The DPT keeps

track of the DP channels. The table is updated when a DP is

created, opened, closed, or deleted. When a process opens a DP

to write to, before the pipe is opened for reading, the corresponding lc information is also

stored in the DPT. Thus, the process can be intimated when some other process opens the

DP in read mode.

The LCT keeps track of the les in the system. The table is updated when a new lc joins

the pool or when an existing lc leaves the pool.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 15 of 37

The sc maintains two additional tables in order to support grid

computations, namely, the Grid Computation Work Table

(GCWT) and the Grid Computation Task Table (GCTT). The

GCWT maintains information pertaining to grid computation work that is submitted to

the se. It is updated either when a work is submitted to the se or when a work is

completed. The GCTT

maintains information pertaining to individual tasks that constitute the grid computation

work. The table is updated when the work is sub-divided into tasks, when a task begins

execution, or when a task terminates. The GCTT is a part of the GCWT. I

The FSM of se is given in Fig. 5.6. In the INIT state, the sc

initializes its data structures and cleans the auxiliary system files. In the LISTEN state,

the sc polls for connection requests from the les. When a connection request from an lc is

received, it registers the lc with the system and establishes a TCP socket connection

between them. It then listens for messages from the registered les on exclusive channels,

and continues to listen for new connection requests. When a message from an lc is

received, it changes its state to LC Msg RECVD and processes the message. Once the

message is processed, it returns to the LISTEN state.

 LC Msg Procesed

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 16 of 37

 Initialized

Functional Library Support

The functional library support consists of services to support location-transparent

communication with DPs and services to support the DP model of iterative grid

computations. Variants of the calls are provided to support communication across

heterogeneous architectures, by utilizing the external data representation. The library is

built over TCP and Unix domain stream protocol.

Basic Distributed Pipe (DP) Services

The following are the basic DP services:

 int CreateDistPipe(char* PipeName).

CreateDistPipe() initiates a message to the sc through the lc

running on its machine. The sc creates the DP if another

channel with the same name does not exist and makes an

entry in the DPT.

 int OpenDistPipe(char>:' PipeName, int AccessMode).

OpenDistPipe() initiates a message to the sc through the lc

running on its machine with the name of a DP as a param-

eter. The sc completes the message sequence by informing

the user process if the DP is created or not.

Corresponding to an open request in Write Mode, a TCP

socket is created and another message sequence is initiated

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 17 of 37

by sending a message to sc through lc: The message contains

the TCP socket descriptor, access mode, and process id of

the requesting process. The sc updates DPT with this infor-

mation. If the DP is already opened by another process in

Read Mode, the information of the read process is returned

to the caller. The open call uses this information to connect

to the read process. If the DP is not opened for reading, it

causes the update of DPT at se and tJPBWT at lc. Subse-

quently, the call blocks until it receives a message from the lc

intimating the information of read process.

Corresponding to an open request in Read Mode, a TCP

socket is created and bound to a local port. A message is

generated to the sc to update the DPT with the TCP socket

descriptor, port number, access mode, and the process id.

Further, the sc intimates the user processes which have

requested to open the channel in Write Mode with the details

of the read process. The call listens on the TCP socket for

connection requests.

 int ReadDistPipe(int PipeDescriptor, char;' Buffer, int BufferSize).

A ReadDistPipeO call translates to the read system call. It

reads from the socket descriptor for the DP descriptor. The

PipeDescriptor returned is the actual socket descriptor in

order to make it a direct translation. Hence, the read call

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 18 of 37

does not cause any overheads. The call handles message

sizes exceeding the limits of TCP messages.

 int WriteDistPipe(int PipeDescriptor, char':' Buffer, int BufferSize).

A WriteDistPipeO call translates to the write system call. It

writes to the socket descriptor for the DP descriptor. The

PipeDescriptor returned is the actual socket descriptor in

order to make it a direct translation. Hence, the write call

does not cause any overheads. The call also handles message

sizes exceeding the limits of TCP messages.

 int CloseDistPipe(int PipeDescriptor)

CloseDistPipe() call translates to the close system call. It closes

the socket descriptor for the DP descriptor. Further, the call

initiates a message to the sc through the lc with the name of

the DP and process id as parameters. This causes the DPT

table at the sc to be updated.

 int DeletellistlPipetchar* PipeName).

DeleteDistPipe() initiates a message to the sc through lc with

the name of the DP as an argument. In response to the

message, the sc deletes the corresponding entry in DPT and

returns the deletion status to the call.

Overhead of Interfaces

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 19 of 37

The overhead of each call is caused by the message sequences

initiated by the call. The calls CreateDistPipe, CloseDistPipe, and DeleteDistPipe result

in a message to the le on the node, a message from the lc to the sc over the network, a

reply from the sc to the lc over the network, and a message from the le back to the user

process. The call OpenDistPipe constitutes two such message sequences and, hence,

twice the overhead. The typical size of data-packets exchanged is around 100 bytes. The

round trip time of communication over network could range from 0.4 milliseconds (ms)

to a few milliseconds. Typically, the average round trip time is less than two

milliseconds. However, these calls are used only once during the lifetime of a DP. Hence,

these over heads become insignificant. The calls ReadDistPipe and WriteDistPipe are

directly translated to the underlying system call. Hence, they do not incur

any overheads. These calls are used many times during the lifetime of a DP.

PARALLEL PRORAMMING MODEL ON CORBA

Extended Services for IOC

The extended sevices for IGC are as follows:

 int InitializeGridComputation Work()·

InitializeGridComputation Work initiates a message to the sc

through lc. The sc creates an entry for the work in GCWT

and returns the WorkJd .

 int SendGridlnfo(int WorkJd, int SpacelnX, int SPacelnY, int History, int

SplitDirection).

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 20 of 37

SendGridlnfo initiates a message to the sc through lc.

The message carries the arguments to the call. The se updates

the information in GCWT and returns the updated status.

 int ObtainNumberOfSplits(int WorkId).

ObtainNumberOfSplits initiates a message to the sc through lc.

The sc, in response to the message, collects the load

information of all machines from the corresponding lcs. This

information is used by the sc to split the work. Further, the sc

creates a new entry in GCTT to store the information about

the split and returns the number of splits.

 int ObtainSplitlnfo(int WorkId, int SplitId, int *Start, int *Total).

ObtainSplitInf() initiates a message to the sc through the lc. The sc gathers the

information from GCTT and returns the

starting and total number of grids for the split.

 int Migrate(int WorkId, int SplitId, char *MigrateFile, int DataType, void *Data,

int SpacelnX, int SpacelnY, int History, char *ResultlPipe).

Migrate initiates a message to the sc through lc with its WorkId and SplitId. The sc

gathers the information of lcs from GCWT

and GCTT and sends messages to them. In response to the message, each lc creates a

TCP socket, binds the TCP socket to a local port, and listens on it. Also, the port numbers

are returned to the sc. The sc passes the collected information to

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 21 of 37

the lc which initiated the migration. The lc which initiated the migration makes a TCP

connection and transfers the code, data, and result DP name to the other lc. The GCTST

of the migrated lc is updated by using this information. Once the migration is over, the

TCP connection is closed and the sc is informed.

 int CloseGridComputation Work(int WorkId).

CloseGridComputation Work initiates a message to the sc through lc with WorkId. In

response to the message, the sc purges the corresponding entry from GCWT.

 int InitializeGridComputationTask.

InitializeGridComputationTask initiates a message to the sc

through the lc. In response to the message, the sc updates

GCTT with the new task entry and returns TaskId.

 int ObtainTaskGridInfo(int *SpaceInX, int *SpaceInY, int *History).

ObtainTaskGridInfo initiates a message to the sc through the

lc. The message contains the process id of the task. The lc

collects the relevant information from the GCTST.

 int ObtainTaskMachineInfo(int *WhichMachine, char *ResultPipe Name).

ObtainTaskMachineInfo initiates a message to the sc through

the lC. The sc returns the position of the subdomain for

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 22 of 37

which the task is responsible to the lC. The lc returns this

information and the ResultPipeName to the task.

 int ObtainTaskData(void *Data, int SpaceInX, int SpaceInY, int History).

ObtainTaskData initiates a message to the lc. The lc gathers

the information from GCTST and returns it to the task.

 int ObtainTaskNoOfPipesToBeOpened(int *NoOf OpenPipes).

ObtainTaskNoOfPipesToBeOpened initiates a message to the sc

through the lc. The process id of the task is passed along the

message. The sc gathers information from the GCWT and

returns the number of DPs to be opened by the task.

 int ObtainTaskOpenPipeNames(char **PipeNames, int *Accessidode, int

NumberOfOpenPipes).

ObtainTaskOpenPipeNames initiates a message to the sc through the lc. The process id is

passed along with the message. In response to the message, the sc returns the names of

DPs to

be opened and their Access Modes.

 int CloseGridComputationTask(int TaskId).

CloseGridComputationTask initiates a message to the lc. The lc

deletes the corresponding entry from the GCTST and

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 23 of 37

forwards the message to the sc. In response to the message,

the sc updates GCWT.

NOTION OF CONCURRENCY

This section explains the notion of concurrency that is used in P-

CORBA. It also gives the application developer's view of the

model. The basis of this notion of concurrency is given in the

OBS model [19].

The notion of concurrency is based on the subcontract mech-

anism which models concurrency at the method level. A method

can be invoked concurrently on multiple objects through the subcontract. The key idea in

achieving the sub-contract is the metaobject. The meta-object is an entity which can

aggregate objects of the same class. Meta-objects can be created by instantiating a meta-

class called Parclass. The application developer can insert objects into the meta-object

and then invoke the sub-contract on the meta-object. This ensures that the method is

invoked on all these objects simultaneously.

User Interface

The sample code in Fig. 6.1 is for solving a simple parallel matrix multiplication problem

to illustrate the user's view of the model. It shows the syntax of the user program in the

model. The matrix class has methods to initialize the matrix, to compute the partial

product, and to print the results of the partial computation. Each matrix class computes a

portion of the product. In this program, results are not returned to the meta-object for the

sake of simplicity. In the main body of the program, the meta-class and objects of the

class matrix are instantiated. As shown in the code, the objects can be inserted into the

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 24 of 37

meta-object through the insert (symbol < <) operator. After this step, the sub-contract call

on the meta

class matrix {

public :

voild Initialize (..); // Initializes

the matrix

void Inverse (..); // Matrix Inversion

void PrintMatrix(..); // Prints the

matrix

} ;

main () {

Parclass ParMatrix holds matrix;

// metaclass Parmatrix can hold objects

of class matrix

instantiating

metaclass

Parmatrix

matrix ml,

P; II

m2;

ml. Initialize(..);

m2. Initialize (..) ;

P « ml;

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 25 of 37

// Insert operator, insert matrix ml

into metaobject

P « m2;

P .. Inverse (U) ; // subcontract operator,

call for parallel execution of Inverse on

all objects of the metaobject P (U lS

unordered)

P .. PrintMatrix(O);

// print matrices in order, no concurrency

here (0 is ordered)

Object is made through the subcontract (symbol..) operator. This

ensures that all the objects do the partial computation in parallel.

A runtime system ensures that the objects that are part of a

sub-contract can be migrated to the best available machines ' based on the load conditions

(Fig. 6.2). The notable point is that the application developer partitions the data by

creating the different objects of the same class and inserting them into the meta-object.

The runtime system decides on which machines these objects are to execute at runtime.

This concept illustrates how cleanly the functions of the system and the programmer are

separated in the model. The meta-object also abstracts the concept of fault tolerance in

the sense that if any of the method call fails, it is re-executed on a different node

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 26 of 37

C=::J

Load Factor

% of fill indicates the load

In the OBS model, support for inter-object communication is

not provided. So computations involving communicating tasks

cannot be modelled. The authors have introduced a new operator

called 'message sender' (symbol 0 ~ 0) on the meta-object through which a message can

be sent from one object to another object in the meta-object's collection. The sample code

in Fig. 6.3 illustrates how grid computations like the ones discussed in [10] which involve

communicating tasks, can be modelled in the program. Each grid object can be initialized

with a part of a grid on which it performs the computation. During the computation, it

also exchanges boundary values with other objects, say after every iteration. This is done

by invoking the message sender operator on the metaobject.

The point to be noted in this context is that in the proposed

model, CORBA is transparent to the application developer. From the viewpoint of the

application developer, the meta-object and sub-contracting are the key points. The system

programmer is the only one who is aware of CORBA. It is the responsibility of the

system programmer to ensure that the code written by the

application developer is translated into calls on CORBA.4 This is a fundamental

difference between P-CORBA and the other two models, PARDIS and Cobra. In both

these models, the application developer is aware of CORBA and the programs on top of

an extended CORBA model.

SYSTEM SUPPORT

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 27 of 37

This section presents the system programmer's view of the model. The key components

of the system include the translator and the runtime system or what the authors refer to as

the 'kernel'. The translator converts the application developer's program into calls on the

kernel and calls on CORBA's ORB. The kernel is responsible for executing the sub-

contract, load balancing and fault tolerance

class grid {

public:

void Initialize(..); //Initializes the

grid

void Computation(..);//The actual

computation to be performed

void PassBoundaryValue(..);//To pass

boundary value to another object

void ReceiveBoundaryValue(..) ;//Receives

values from another object

} ;

main()

grid gl, g2, g3;

Parclass ParGrid holds grid;

ParGrid Pg;// grid meta object

gl. Initialize(..);//similarly for the other

two grids

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 28 of 37

Pg « gl; / / similarly for the other two

grids

Pg .. Computation(U);

Pg 0 -> 0 gl to g2;

//message sender operator on the meta object,

message sent from gl to g2

Pg 0 -> 0 g2 to g3;

Pg .. Computation(..);

//next iteration

}

 Sample Code to Explain Inter-object Communication

Translator

The translator parses the program written by the application

developer. It converts the meta-object into a CORBA object that

aggregates the object references of the objects in its collection.

Each object in the collection is converted into a server object in

CORBA while the meta-object becomes the client object in

CORBA. If the application developer makes the objects in the

collection communicate with each other, then these calls are

converted into CO RBA method invocations by the translator.

Hence, the translator is also responsible for ensuring inter-object

communication.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 29 of 37

This concept illustrates another difference between P-CORBA

and the two other models, viz. PARDIS and Cobra. The

communication between the objects in the collection is through a

mechanism outside CORBA in both the models. But it is not

explained clearly how a process-based communication mechanism such as MPI integrates

into the object-based communication paradigm of CORBA in these models, whereas in

P-CORBA this communication is also through the ORB. However, this may result in a

higher overhead for the inter-object communication in the proposed model. But this

simplifies the handling of heterogeneity whereas in the other models, the heterogeneity

handled by the system is restricted by the mechanism used for inter-object

communication

The translator converts the code of Fig. 6.1 into the form shown

in Fig. 6.4. This figure shows the IDL file Matrix.idl. It shows

some additional methods such as Update, SaveState, etc. These

methods are required for the filtering mechanism used during

object migration, as will be detailed in Section 6.4.3. The Fig. 6.4 also shows the

implementation file Matrix_impl.cc. The

Matrix_server.cc file is the code for actually deploying the server objects. The client code

is the meta-object, which makes method invocations on all server objects concurrently.

The code shown is specific to mico, the CORBA ORB used in the implementation of P-

CORBA

The Kernel

The kernel is designed as a distributed kernel that is resident on

all the nodes of the system. Each of the kernel entities monitors

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 30 of 37

the load conditions on the respective nodes of the system. When

the application developer starts the program on a particular node

of the system, the kernel entity on that node is called. This entity

interacts with the other kernel entities and gets to know the least

loaded machines that are available. It migrates the objects in the

program to these nodes and the sub-contract is then executed.

The kernel also takes care of the sub-contract directives and

the locking specifications. The kernel uses the concurrency service specification [29] of

CORBA for handling locking problems. The concurrency specification provides a

mechanism for ensuring the consistency of the state of an object that is accessed by

concurrently executing computations. It provides an interface called LockSet interface

that has methods for acquiring and releasing locks. In the context of the model, the base

class is made to inherit from the LockSet interface. The kernel acquires the necessary

locks before making the method invocation. The concurrency specification provides

many locking modes that can be used by the kernel to ensure consistency in the state of

the object. But in reality, the authors had to implement the required parts of the

concurrency service as most CORBA vendors do not provide an implementation of this

service.

Load Balancing Strategy

The most important issue in any load balancing strategy is the

load index. Several load indices for measuring the load have

been proposed and used. The list includes CPU queue length,

time-averaged CPU queue length, available memory and the CPU utilization among

others. In the proposed model, the CPU queue length is used as the load index as it has

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 31 of 37

been found to be simple and effective [23]. A threshold policy is used to classify the

nodes of the system into three categories. If the load on a node is greater

than a threshold, T 1, then the node is called a sender. A node is

termed as a receiver if its load is less than a threshold, T2, with

T2 <Tl. Other nodes are grouped into the third category. Nodes

in this category do not take part in task transfer. If a user program is initiated at a

particular node, then that node automatically becomes a sender.

In sender initiated load balancing algorithms, the task migration

is initiated by the heavily loaded node. These algorithms perform well when the load on

the system is low, i.e. when it is easier to find a lightly loaded node. When we say that

the load on the system is low, it means that the load on a majority of the nodes is low. In

contrast, in receiver initiated load balancing algorithms, the task migration is initiated by

the lightly loaded node. These algorithms perform well when the load on the system is

high, in which case it is easier to find a heavily loaded node. The adaptive algorithm that

is used in the proposed model combines the advantages of both the sender-initiated and

the receiver-initiated algorithms [33].

There are two major components in the algorithm. One is a

sender-initiated component which is triggered on a node when it

becomes a sender. The other is a receiver-initiated component

which is triggered on a node when it becomes a receiver. It can

be observed that a node can become a sender or a receiver at

different points of time depending on how the load changes in

that node. Each node maintains its view of the load on the system in the form of three

lists containing the nodes which fall into each of the categories mentioned above. The

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 32 of 37

information about other nodes is collected when nodes poll each other to initiate the

transfer of tasks. The task transfer is equivalent to object migration in the proposed

model.

If a node is a sender at a particular time, then it tries to migrate

the objects residing in that node to the nodes in its receiver list. If a node is a receiver,

then it tries to migrate objects to itself from the nodes in its senders list. Hence, this

algorithm performs well when the load on the system is low (or the sender-initiated part

dominates) and even when the load on the system is high (or the receiver-initiated

component dominates).

Load Balancing Service

The interface of the kernel object is shown in Fig. 6.5. The load

balancing service consists of the collection of kernel objects. The important guidelines

that were observed when building the load balancing service are

 Built on CORBA concepts: The object model of CORBA is strictly adhered to.

Thus, concepts like the separation of interface and implementation, and clients

depending only on interfaces and not on the implementation are used.

 Allows for local and remote implementations: This could be important, if for

instance, the performance requirement of an application is such that the service

must be executed in the same process as the client.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 33 of 37

 Flexible: Since services are designed as objects, they could be combined in

interesting ways. For instance, as shown in this chapter, the load balancing service

and object migration service are combined to balance the load on a NOW.

 Finding a service is orthogonal to using it: This means that since services are

designed as a collection of CORBA objects, there need not be any special ways of

finding them. It is left to the ORB vendor to make the service available to clients.

But, this chapter goes a step further and gives general guidelines to the ORE

vendor for deployment of the services (refer to Section 6.5.1).

The load balancing service depends on the object migration

service for balancing the load on a NOW. This is similar to the

dependencies between services as given in the CORBA services

specification. For instance, the lifecycle service depends on the

naming service and the transaction service depends on the

concurrency service.

IMPLEMENTATION

The mechanism for locating a migrated object by using message

filters has been implemented over a 10 Base T ethernet network,

with all the nodes running the LINUX operating system. The

CORBA implementation that was used is a public domain ORB

called mico. It is a fully CORBA-compliant ORB with a C++

language mapping. This section describes the implementation of

the location mechanism using message filters. Another approach

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 34 of 37

for locating migrated objects by using a servant manager is also

explained.

The method call

made by the client is intercepted by the server side filter. This

filter makes a bind call to the current location of the object. This

returns the new object reference to the filter. The filter subsequently makes the method

invocation on this reference. As per the semantics of message filters, the filter bounces

the request with the return values of this method invocation. The code for the filter

implementation is illustrated in Fig. 6.10.

This exception is caught by the

class FilterAsClient :Public..

private:

….

public:

ReturnType ml (..){

// filtering method ml () in the

object.

Address = LookUp();

//lookup for current object address,

may be from a persistent store (this

may be required if object is

persistent) .

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 35 of 37

ref = orbbind(Address,ObjectName);

// bind to new location and get

reference

 Objref =InterfaceName ::

_narrow (ref) ;

// narrow to appropriate type

ReturnValue = Ob jRefml (..);

// actual method call.

return ReturnValue;

// return to client.

}

} ;

client side filter. The client side filter makes the bind call to the

new location. It gets the new object reference and makes the

method invocation. Finally, it returns the results to the original

Performance Studies

Two experiments have been conducted on the basis of the three

implementations described above. The goal of the first experiment is to show that the

home-based model (the filter approach) performs better than the servant manager-based

chain model. If an object moves from its home location to another machine, it is said to

have migrated by one hop. The experiment was conducted with the object moving an

increasing number of hops.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 36 of 37

The performance of the servant manager approach degrades as

the number of hops increases. The filter approach (for this

experiment, the model used was the filter acting as client), however, performs well

irrespective of the number of times the object moved. This is because the filter always

acts as a home agent and connects directly to the new location of the object. The result of

this experiment is shown in Table 6.2.

Table 6.2 Comparison of Filter and Servant Manager Approach

Number of hops Filter as client Servant manager

Time in milliseconds

1 18.45 13.78

2 21.75 21.70

3 21.75 32.30

4 21.75 36.89

5 21.75 44.25

6 21.75 51.05

 --- -- .~--. - --

The other experiment that was conducted in entailed comparisons of the two variants of

the filter-based approach. The performance of the two approaches was measured with

increasing message sizes. As the message size increased, the filter as client approach

started performing poorly, as compared to the filter as forwarder approach. The reason

for this is that in the filter as client approach, the filter has to marshal the parameters

again. If the message size is large, the time for marshalling the parameters increases.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: III (DP Model) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 37 of 37

POSSIBLE QUESTIONS(2 Marks)

1. What is DP Model?

2. Define IGM.

3. What is the use of P-CORBA?

4. What are the basic DP services?

5. List the Extended Services for IGC?

6. Define User interface in PCORBA.

7. What is translator?

8. Write a note on Load Balancing Services.

9. What is Message Filter?

10. What is the need of Kernel?

POSSIBLE QUESTIONS(6 Marks)

1. Describe the DP model and Initialization in Iterative Grid Computation.

2. Write short notes on Existing works of CORBA.

3. Brief about Load Balancing and Domain Decomposition in DP model of Iterative

Grid Computation.

4. Explain the notion of Concurrency in CORBA.

5. Differentiate between Local Coordinator and System Coordinator in Distributed

Pipes.

6. Describe the implementation of CORBA with an example.

7. Discuss the Basic Distributed Pipe Services and Extended Services for IGC.

8. Give a detail description about the performance studies of CORBA with MPI.

9. Describe the design and implementation of Distributed Pipes.

10. Brief about the kernel of CORBA.

S.N

O
QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4 KEY

1

The library is built
over________domain
stream protocol

TCP and unix TCP and lunix unix and lunix TCP and HTTP
TCP and

unix

2 DP stands for____________ distance pipe
distributed

pipe

distributed

program
distance program

distributed

pipe

3

__________initials a

message to the sc through

the lc running on its machine

open dist

pipe()

a read dist

pipe()

create dist pipe() delete dist pipe()

create dist

pipe()

4

__________initials a
message to the sc through lc
with the name of the dp as
an argument

delete dist

pipe()

close dist

pipe()
write dist pipe() read dist pipe()

delete dist

pipe()

5
The mainentities of the
implementation are
the________

kernal and

translator

shell and

translator
unix and lunix kernal and nuix

kernal and

translator

6

ORB stands

for___________

object request

broker

object

required

broker

object request

based

obtain task-Grid

info()

object

request

broker

7

The translator finally adds a

method called__________to

the client object

resolve_initial

references

sub contract TCP

shell and

translator

sub

contract

8
The __________method
also needs to be modified if
it is implemented by the

list_initial_ser

vices

resolve_initial

_reference()
both (a) and (b) cpu hog

list_initial_

services

9

There are __________ways

of deploying the service
two three four five two

10 GCA stands for
genetic
computer
algorithm

genetic
clustering
algorithm

genetic
computing
algorithm

genetic annealing
genetic
clustering
algorithm

Objective Type Questions
UNIT III

Karpagam Academy of Higher Education
Department of CS, CA & IT

Subject: Grid Computing (17CSP205B)
Batch : 2017-2019 Class: I M.Sc CS

11 TSP stands for_________
travelling
salesman
problem

travelling
salesman
program

travelling solve

program
none of these

travelling
salesman
problem

12 SA stands for________
similar

algorithm

simulated

annealing

standard

algorithm
general algorithm

simulated

annealing

13
The load was measured by
using a linux specific system
call__________

sysinfo cpu hog load process id sysinfo

14 GA stands for_________
genetic

algorithm

general

algorithm
genetic annealing

genetic
computing
algorithm

genetic

algorithm

15 IGC stands for________
international
grid
computing

interval grid

computing

iterative grid

computing
none of these

iterative
grid
computing

16 MPI stands for_________
message
passing
interface

message
passing
interval

monitor passing

interface
local coordination

message
passing
interface

17
___________socket is
created and bound to a local
port

TCP HTTP both (a) and (b)
TCP socket

dexriptor
TCP

18

The message

contains________

TCP socket

dexriptor
access node process id

monitor passing

interface

monitor
passing
interface

19
GCTST stands

for_________

grid
computation
task
submitted

grid computer
task
submitted
table

general
computer task
submitted task

none of these
grid
computatio
n task
submitted

20

The calls________are

directly translated to the

underlying systen call

read dist pipe write dist pipe both (a) and (b) distance pipe

both (a)

and (b)

21

______________is a model
for transparent
programming of
communicating parallel tasks

 ARC TCP

Distributed

pipes(DP)Grid

computing

 COP

Distributed
pipes(DP)Gr
id
computing

22
The DP provides a -----------
of interfaces for
communicate across

 Random set Uniform set Same set Different set Uniform set

23
Worker processes are called

as----------------

Iterative grid

modules

Interactive grid

modules

Iterative grid

models

Interactive grid

models

Iterative
grid
modules

24 IGMs return the results of
their computation to the------

Parallel process Multiple process Worker process Master process
Master
process

25 GCT is reffered as-----------
Grid
computation

tasks

Grid
computational

tasks

Grid
communication

tasks

Grid component

tasks

Grid
computation

 tasks

26

The master process provides

the grid information to the

systemby using the call

Initialize work() Close work () Close GM() Send grid info()

Send grid

info()

27

The anonymous migration of
an IGM is initiated when the
master process invokes the---
------ call

Migrate() migration mig() migrated() Migrate()

28
After initializing the data
structure,the IGM collects
the initial data by invoking

Migrate()
obtain task-

Grid info()
obtain task-Data()

obtain task

machine Info()

obtain task-

Data()

29
The lc is reffered as-----------

--

Local

coordinator

local

communication
loop coordinator local coordination

Local

coordinator

30
The lc maintains-----------
tables to support bare DP
services

three one two four two

31 UPT is reffered as
user program

information table

user process
information
table

user program

interface table

user process

interface table

user
process
information
table

32 GCTST is reffered as

Grid

computation

task submitt

table

grid

computational

task supported

table

grid computation

task submitted

table

none of these

grid
computation
 task
submitted
table

33 The initial communication
between a process and the lc

single multiple common none common

34 What is mean by SC--------
system

controller

system

coordinator

servive coordinator

system

communication

system

coordinator

35
The SC is connected to LCs

through the-----------sockets
IP SMTP PPP TCP TCP

36
What is mean by DPT--------

distributed pipe

task

distributed

pipes table

distributed pipeline

task

distributed pipeline

table

distributed

pipes table

37
LCT is reffered as-------------

--

Local
coordinators
table

local
coordinator
tasks

loop coordinator

table

loop coordinator

tasks

Local
coordinators
 table

38 GCWT means---------
grid computing
work table

grid
computationwor
k table

grid computing
work task

grid computation
work task

grid
computation
work table

39 GCTT means---------

Grid

computational

task table

grid computing

task table

grid computation

task table

none of these

grid

computation

 task table

40
Thus the process can be
intimated when some other
process opens the DP in------

write read delete update read

41
The notion of concurrency

that is used in
P-CORBA D-CORBA A-CORBA M-CORBA P-CORBA

42

The meta-object is an entity
which can aggregate objects
of the______class

same different two one same

43
Meta -object can be created
by instantiating a meta-class
called

sur class par class var class con class par class

44
The application developer
can _______objects into the
meta-object

delete update insert exit insert

45
The sub-contract call on the
meta-object is made through
the_______operator

parallel addition greater than subcontract subcontract

46 OBS stands for
object-based

sub-contracting

object-based

sub-system

object-based sub-

coordinate

object-based sub-

cordation

object-

based sub-

contracting

47
A message can be sent from
one object to another object
using

message

receiver

message

sender
e-mail mobile

message

sender

48 CORBA stands for
common object
request broker
architecture

computer
oriented
request broker

common object
receiver broker
architecture

computer object
receiver broker
architecture

common
object
request

49
CORBA is_______for the

application developer
transparent sequence parallel metadata parallel

50
Each object in the collection
is converted into
a_______object

client services customer server server

51
The matrix-server.cc file is
the code for actually
______the server objects

deploying destroying developing deleting deploying

52
The kernel is designed as

a_______kernel
distributed joined linked unlinked joined

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 1/ 33

UNIT-IV

SYLLABUS

Sneha-Samuham Grid Computing Model: A Parallel Computing Model over Grids –

Design and Implementation – Performance studies. Introducing Mobility into

Anonymous Remote Computing and Communication Model – Issues in Mobile clusters

and Parallel Computing on Mobile Clusters – Moset Overview – Computation Model –

Implementation and Performance

Introduction

 The Sneha-Samuham model provides adaptive parallel execu-

tion of tasks over a computational grid. Its strength lies in trans-

parent splitting of a parallel task into sub-tasks of appropriate

granularity, depending on the computation capability of partici-

pating nodes. Moreover, its user interface for sharing the comput-

ing resources across the Internet, makes the model user-friendly.

Users can harness the computing power of 'friendly' computers

over the Internet for parallel processing.

A good parallel computing mechanism can boost the perform-

ance of a computational grid to execute applications. None of the

existing grid computing models supports automatic task splitting,

even though it is possible for many classes of applications. These

systems expect the user to submit a batch of jobs to the system

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 2/ 33

and the scheduler schedules these jobs on the participating nodes.

In the proposed model, automatic task splitting support has been

provided for certain classes of applications. This relieves the user

from the burden of task splitting related issues. Also, the user

does not need to know the computation capabilities of individual

nodes participating in the grid. Currently, Sneha-Samuham

supports only purely data parallel scientific applications that are

coarse-grained.

SNEHA SAMUHAM:A PARALLEL COMPUTING MODEL OVER GRIDS

 In the Sneha-Samuham model, a computer, over the Internet,

can donate its computing power to other computers as well as use

the computing power of other computers. The computer which

donates its computing power is called a 'donor' and the computer

which makes use of another computer's computing power is called

an 'acceptor'. A node2 can act either as a 'donor' or as an 'acceptor'

or both as an 'acceptor' and a 'donor'. Ideally, the number of

donors should be much higher as compared to the number of

acceptors. An acceptor can use the computing power of its donors

for executing parallel applications. The topology, architecture,

various components and the computation model of Sneha-

Samuham are explained in the following sub-sections.

System Topology

The collection of nodes. within an

individual LAN is referred to as a 'cluster'. A designated node in

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 3/ 33

each cluster acts as a mediator between the nodes inside its cluster

and the outside world.

The mediator is called a Cluster Coordinator (CC). If a cluster

contains a single node, then that node itself acts as the CC for that

cluster. Any node inside a cluster (including the CC) can act

either as a 'donor' or as an 'acceptor' or both as an 'acceptor' and

as a 'donor' or may not participate in the grid computing at all.

There are several advantages with this kind of topology. Since

there is no global coordinator, the model is scalable and there

won't be any single point failures. The next advantage is that

every node of a cluster participating in the grid computation need

not be accessible from outside, over the Internet. Since every

cluster that participates in the computation, contains a CC, it is

sufficient if that CC is accessible over the Internet. The machines

inside a remote cluster can be accessed through the CC of that

cluster. Private addressing and source Network Address Translation

(NAT) of a LAN need not be disturbed while the machines of the

LAN are used for grid computing. Its other advantage is that

providing authentication, security and fault tolerance for grid

computing becomes easy. For example, there is no need to secure

a machine from other machines inside its cluster. It is enough to

have a good security system in the CC to secure the machines of

a cluster from outside machines .

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 4/ 33

a: Acceptor aid: Acceptor as well as donor

d: Donor cc: Cluster Coordinator

A PARALLEL PROGRAMMING MODEL OVER GRIDS

Layered Architecture of Sneha-Samuham

The Sneha-Samuham model is viewed as a five-tiered architecture,

with the middle three layers constituting the core. The functionality

of each layer is explained in this section.

 • Computing Resources

This layer contains various computing resources, with varying

processor speeds, memory, architecture and operating system

running on them. In this model, a computing resource implies,

the combination of both the hardware resource and the local

management software (operating system) running on it.

• Runtime Environment

Runtime environment interacts with local operating systems exist-

ing in the computing resources layer. It is responsible for collecting

the sub-tasks from the user interface, migration and execution of

these sub-tasks on the remote machines over the Internet, and

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 5/ 33

getting the results back to the node, where the computation was

initiated. The runtime environment of the system contains three

components that run as daemons on the respective nodes: acceptor,

donor and ccdaemon. A node which acts as both a donor as well

as an acceptor runs both the daemons. Every CC runs a daemon

called ccdaemon to coordinate between the acceptors and the

donors. The node to which a parallel task is submitted should

have the acceptor daemon running. Also, the nodes where the

donor daemon is running can participate in the parallel

computation by sharing work from acceptors. The interactions

among these three daemons is governed by a well-defmed protocol.

The core grid computing services provided by the runtime

environment can be accessed by using the APIs provided in the

layer above it.

Whenever a cluster wants to participate in the parallel compu-

tation, it initially starts the ccdaemon on its Cc. After a donor or

an acceptor starts at a node, it registers with its local CC through

the ccdaemon running on that CC.

• Application Programming Interfaces (APIs)

This layer contains various APIs to access the services provided

by the runtime environment for grid computing. This layer is

introduced to make the runtime environment application-

independent. These APIs provide a standard way for the above

layer (user interface), to request the runtime environment for

various kinds of grid computing services, such as collecting friend

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 6/ 33

CCs information, migration of a sub-task to a remote node, getting

back the results of a sub-task, etc. This layer, including the runtime

environment layer, provides core grid computing services and the

interface to access them. Any new service provided in the runtime

environment can be accessed by including the corresponding APIs

in this layer. This makes the user interface transparent from the

updates made at runtime environment.

• User Interface

This layer provides user level tools for collecting the computing

resources and submitting tasks to the grid. It contains two sub-

components. One is the Friend Machines Interface (FMI) to collect

the resources and the other is a set of user level commands to

submit applications to the grid. The FMI is an instant messenger

kind of Graphical User Interface (GUI) tool, which interacts with

the local cluster coordinator using the appropriate APIs in the

lower layer. It provides various services to the user to aggregate

the resources over the Internet for grid computing as explained

below:

 The owner of a cluster can request owners of other clusters

over the Internet to become a friend cluster to his/her cluster.

If he/she accepts, then both the clusters become friends to

each other. Each CC includes the name of the other CC in

its Friend Clusters Table (FCT).

 One can accept or reject the request made by others over

the Internet to make his cluster a friend to them. Protocol

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 7/ 33

similar to that of 'yahoo messenger' for discovering chat

friends is used.

 It displays all friend CCs of a CC and highlights the live

friend CCs. Along with the friend CCs, other information

such as number of donors available in each friend cluster,

their GCCFs and communication latencies can also be

displayed on the basis of the user's preference.

 The user or the application can select any number of donors

from friend clusters for parallel computing.

If two clusters are friends to each other, any node can use the

computing power of any other node in the two clusters. A cluster

can have any number of friend clusters. A CC maintains a list of

all its friend CCs. Whenever a parallel application is started on a

node, it can make use of the machines (which are running donor

daemon) that belong to all of its friend clusters for parallel

processing.

In Sneha-Samuham, it is assumed that each cluster is owned

by a user or a group of users. It is a realistic assumption as each

LAN is owned by a research group or an organization. They

decide whether their cluster will participate in the grid computing

or not. They can designate any node as a CC, an acceptor or a

donor by running the corresponding daemon on it. The owner(s)

can make his cluster a friend to any other cluster by using the

FMI described above. A cluster including all of its friend clusters

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 8/ 33

forms a 'computational grid'. A number of such grids can exist

over the Internet.

Apart from FMI, the user interface also contains a set of

application level commands to submit parallel applications to the

grid. The set contains one command for each class of parallel

applications. The functionality of these commands includes the

splitting logic for that particular class of applications and makes

use of the lower level APIs for accessing generic grid computing

services. As the splitting logic varies for different classes of

applications, each class should contain one command in this layer.

A new class of applications can be supported by adding the

corresponding command to the existing set of commands. The

user can see the supported commands and, their description and

can use the appropriate command to submit his application to the

grid. However, implementing these kinds of commands is not

possible for all applications as some class of applications are

inherently not parallelizable.

• Grid Computing Applications

This layer contains the applications, which can benefit from grid

computing. A grid computing application is CPU-intensive and

there should be algorithms to partition the application into

independently running parts. The parts must be executable

remotely without much overhead, and the remote machine must

meet any special hardware, software and/or other resource

requirements imposed by the application. The application is more

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 9/ 33

scalable, if these sub-tasks (or jobs) do not need to communicate

with each other.

Computation Model

The computation model follows the Master-Worker [13] process

model. Upon receiving the task, the user level command executes as a master process and

contacts the acceptor running on. that

node. Then the acceptor contacts its local ccdaemon and gets the

addresses and GCCFs of requested number (or available number,

if requested number of machines are not available) of friend

machines. The master process splits the task into sub-tasks of

appropriate granularity depending upon the number of available

friend machines and their current computing capabilities. Once

the splitting gets over, it migrates each sub-task to the

corresponding node. The donor daemon that receives the sub-

task to be computed, spawns a worker process for that sub-task

and returns the results after the execution is completed. The

division of tasks among the available nodes is done as described

in the following sub-section.

Task Splitting

The computational capability of a node over the grid can be

measured from the factor called GCCF,

 F=sm / lt

where s, m and I are processor speed, memory and average load

on a node, respectively and t is the communication latency from

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 10/ 33

a node, from where it received the job to be executed. The division

of task among the available lightly loaded nodes is done as follows:

If there are n nodes with GCCFs, f1,f2,f3…fn ...

Let, F = f1 + f2 + f3 + ... fn

And if the total task size is G, then

Grain size assigned to the first node,g1=(f1/ F)G

Grain size assigned to the second node,g2=(f2/ F)G

Grain size assigned to the nth node,gn=(fn/ F)G

The above task distribution is applicable only to data parallel

applications. Normally in data parallel applications, a functionality

will be executed on a large chunk of data. This data can be

divided into several parts and can execute the same functionality

on individual chunks. Each chunk could be of different size. This

technique may have to be extended to apply for task parallel

applications

DESIGN AND IMPLEMENTATION OF THE MODEL

The middle three layers, viz. the runtime environment, APIs and

user interface, form the core of the Sneha-Samuham model. The

following sub-sections explain the designs of these three layers

and implementation details of the model. In the following

discussion, local machine with respect to some machine, means

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 11/ 33

the one which resides in the same cluster. For example local CC

means the CC of that cluster.

Runtime Environment

The collection of acceptors, ccdaemons, donors and their

interactions form the runtime environment of the system. The

interactions among these three daemons as well as their commu-

nication with the upper layer are governed by a well-defined

protocol. The following sub-sections dtscribe the design of each

of these daemons and their interactions with other components of

the system.

Cluster Coordinator (CC)

The CC in the Sneha-Samuham model acts as a resource collector.

A cluster can be a friend to other clusters over the Internet. The

CC of each cluster maintains a table called FCT. Each entry in

the FCT contains the address of a friend CC. The FCT of every

cluster is updated whenever a new CC is added to the list or an

existing CC relinquishes the friendship with that cluster! The

interaction between a ccdaemon and FMI will do this.' It also

maintains a pending requests list, whose entries are the requests

that came from other ees for friendship with this cluster and

which are not responded by the user (or owner) of this cluster.

 Apart from the friend clusters' information, a CC also maintains

lists of its local donors and of its local acceptors. Whenever an

acceptor from a friend cluster asks for donors, it returns the

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 12/ 33

addresses of the nodes stored in the donors' list along with their

current computational capabilities. The GCCF defined in the

previous section represents a node's current computational

capability. '

A CC interacts with its FMI, local acceptors, local donors, and

with other CCs., In the INIT' state, ccdaemon initializes its data

structures. In the LISTEN state, it waits for messages from the

other daemons with which it is allowed to interact. If it receives

any message from the FMI, friend CC, local acceptor or local

donor, then it changes its state to FMI Msg RECVD, Other CC

Msg RECVD, Acceptor Msg RECVD or Donor Msg RECVD,

respectively and services the message. Any error message in these

states causes the state to be changed to ERROR and the appropriate

action will be taken/ Various kinds of messages could come from

each of the above-mentioned daemons. For example, from FMI,

the message could be to request a specific CC to become a friend

to it or a response to the request from another CC, forwarded by

it. For each message, the ccdaemon executes a different service

routine to service the request.

Acceptor

The acceptor receives tasks submitted by the user interface and

executes them on its friend machines. It gets the global computing

resources from its local ccdaemon. Since users can submit more

than one parallel task to an acceptor, it maintains a table of all

submitted tasks. This table is called a Task Table (TT). Each entry

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 13/ 33

in the TT contains a task-ID and the corresponding sub-task IDs

after the task is split into sub-tasks. Each entry is updated with the

target CC and donor addresses after the sub-tasks are migrated

The acceptor interacts with its local ee, local donors (in case it

submitted jobs to them) and with the user interface. In the INIT

state, the acceptor daemon initializes its data structures and registers

with its local ee. In the LISTEN state, it waits for messages from

the other processes. If it receives a message from any of the user

processes, its local ee, or its local donor, then it changes its state

to UP Msg RECVD, CC Msg RECVD or Donor Msg RECVD,

respectively and services the message. If any error occurs in this

process, the state is changed to ERROR and the appropriate action

is taken.

Donor

A donor daemon registers with its local ccdaemon and gives replies

to the requests made by its ccdaemon such as current GCCF of

the machine, etc. If the current GCCF is above some threshold, it

receives sub-tasks from the acceptors of its friend machines,

executes them locally, and sends results back to the acceptor if it

is local or through its ee if it is from an outside cluster. In order

to store information of all the sub-tasks that are running on this

node, it maintains a table called Sub-Task Table (STT). Each

entry in the STT contains a sub-taskID, taskID generated by its

parent noder' source CC and acceptor addresses from where the

sub-task has been migrated. This information is required to send

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 14/ 33

the results back after the execution of a sub-task is finished. If the

sub-task is from a local acceptor, then its source CC address is

zero and the result of the sub-task can be directly sent to the

acceptor.

A donor daemon interacts with its local CC, local acceptors

and the Worker Processes (WPs) spawned by it for executing sub-

tasks. In the INIT state, it initializes its data structures and registers

with its local ccdaemon.

In the LISTEN state, it waits for the messages from the other

processes with which it could interact. If the donor daemon receives

a message from its ccdaemon, local acceptor or from its worker

process, then it changes its state to CC Msg RECVD, Acceptor Msg

RECVD or WP Msg RECVD, respectively and services the message.

If any error occurs in this process, the state is changed to ERROR

and the appropriate action is taken

PERFORMANCE STUDIES

The neutron shielding simulation [14] application has been chosen

for studying the performance of the Sneha-Samuham grid

computing model. It is a nuclear physics application, in which a

beam of neutrons is delivered in the experiment. When this

neutron beam strikes a lead sheet of certain thickness perpendi-

cularly, it is important to predict the number of neutrons that can

penetrate from the other side of the lead sheet. This application

predicts that number by using the Monte-Carlo simulation. More

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 15/ 33

details about this application can be found at [14]. For all simulation

experiments, a lead sheet of 5 units thickness is assumed. The

number of neutrons will be a power of 10 in each experiment. In

practical situations, the number of neutrons depends upon the

type of experiment and the- amount of time for which that

experiment has to be conducted. The amount of computing power

required is directly proportional to the number of neutrons. In

the following discussion, homogeneous and heterogeneous

machines (or clusters) are categorized with respect to processor

speed only, that is, in a cluster of homogeneous machines, all the

machines will have the same processor speed.

Power of Sneha-Samuham:Institute-wide Grid

The first column of the table shows the number of neutrons

(problem size) for each experiment. The time taken for this

application by a single machine and the time taken on the grid of

three clusters using Sneha-Samuham has been measured. The

values in the second column are the execution times for the

corresponding problem size given in the first column, using a

single machine of processor speed 367.5 MHz. The values in the

third column are achieved by a grid of 14 machines, distributed

across three clusters with varying processor speeds ranging from

267 MHz to 2400 MHz. The fourth column shows the speed-up

achieved by the grid when compared to the single machine.

ISSUES IN MOBILE CLUSTERS AND PARALLEL COMPUTING ON MOBILE

CLUSTERS

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 16/ 33

 There has been an increasing interest in the use of clusters of

workstations connected together by high speed networks for solving

large computation-intensive problems. The trend is mainly driven

by the cost-effectiveness of such systems as compared to large

multiprocessor systems with tightly-coupled processors and

memories. However, the recent proliferation of mobile devices

and advancement in wireless connectivity has made parallel

computing on mobile clusters a feasible proposal. Mobile devices

can be part of the cluster by playing several unique roles. They

can be used as a front-end to the cluster functionality, such as

submitting a job, managing processes, or viewing statistics. In case

of an MH which has very poor computing power, the device

must be able to utilize the cluster seamlessly to access the

computational power. However, the MH can also be a contributor

of computing power to the cluster, in the case of devices such as

laptops which have a substantial amount of computing power

equal to their static counterparts. Distributing computing power

in a cluster consisting of a network of heterogeneous computing

devices represents a very complex task. However, it becomes

complicated when mobile devices are also a part of it

There are several key issues that distinguish parallel computing on mobile clusters from

that of the traditional workstation clusters, namely. These are:

 Asymmetry in connectivity,

 Mobility of nodes,

 Disconnectivity of mobile nodes,

 Timeliness,

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 17/ 33

 Changing loads on the participating nodes,

 Changing node availability on the network,

 Differences in computing capabilities and memory availability, and

 Heterogeneity in architecture and operating systems.

Asymmetry in Connectivity

The traditional cluster computing models do not face the problem

of heterogeneity in the network connection as the entire set of

workstations that are participating in the clusters are connected

only by the wired network. Wireless networks deliver much lower

bandwidth than wired networks and have higher error rates. Mobile

devices are characterized by high variation in the network

bandwidth, which can shift from one to four orders of magnitude,

depending on whether it is a static host or a mobile host, and on

the type of connection used at its current cell. Thus the program-

ming model must be able to distinguish among the types of

connectivity and provide flexibility for easy variation of the grain

size of the task to account for the variations in bandwidth.

However, these systems are suitable only for coarse grain level

parallelism due to the- communication overhead.

PARALEL COMPUTING IN MOBILE CLUSTERS

Mobility of Nodes

Due to mobility of nodes, the notion of locality becomes important

as users move from one cell to another. The locality becomes

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 18/ 33

important as the change in the mobile node's location means a

change in the route to that node and in the consequent

Communication overhead. The ability to change locations while

being connected to the network increases the volatility of some of

the information. Static data could become mobile in the context

of mobile computing. As a node moves, nearby information servers

get farther away and should be replaced by closer ones offering

the same or more relevant contextual information. Traditional

computers do not move, as a result of which information that is

reliant on location can be configured statically, such as the local

DNS (Domain Name Service) server or gateway, the available

printers, and the time zone. A challenge for mobile computing is

to define this information intelligently and to supply the means to

locate configuration data appropriate to the present location.

Mobile computing devices need to access more location-related

information than stationary computers if they are to serve as

ubiquitous guides to a user's environment. As the mobile device

moves and as the speed of motion changes, the quality of the

network link and of other available resources might change

significantly. Thus, the system should be able to adjust according

to the changing conditions. For example, when an MH which has

taken the task moves from one cell to another, then the system

still needs to track these MHs.

Disconnectivity of Mobile Nodes

The periods of disconnectivity of nodes in static networks are

usually treated as faults. However, in the context of mobile nodes,

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 19/ 33

the disconnectivity may be due to roaming and hence enter an

out-of-coverage area or voluntary disconnection (doze mode) to

save battery power.

Timeliness Issue

Timeliness refers to the delay that is taken for the mobile device

to regain its full state when it moves from one cell to the other or

after reentering a coverage area after disconnection. Timeliness

issue is an important issue especially in real-time systems.

Whenever a mobile host moves from one cell to the other, it is

associated with a hand-off, to ensure that data structures related to

the mobile host are also moved to the new connecting point, the

Mobile Support Station (MSS). This involves an exchange of

several registration messages. This may cause some delay and it

should be fast enough to avoid loss of message delivery. In addition

to this, there is a possibility that the mobile host could move out

of coverage after accepting the task for execution. These issues

need to be addressed with respect to the mobile cluster model.

Changing Loads on the Participating Nodes

When using workstations for executing parallel applications, the

concept of ownership is frequently present. Workstation owners

do not want their machines to be overloaded by the execution of

parallel applications, or they may want exclusive access to their

machines when they are working. Reconfiguration mechanisms

are thus required to balance the load among the nodes, and to

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 20/ 33

allow parallel computations to co-exist with other applications. In

order to overcome these problems, some dynamic .load balancing

mechanisms are needed. There are differences in loads among

the nodes due to the multi-user environment, and when an

application is run on a heterogeneous cluster. In these cases, it is

important to balance loads among the nodes to achieve sufficient

performance. As static load balancing techniques would be

insufficient, dynamic load balancing techniques based on runtime

load information would be essential. It would be difficult for a

programmer to perform load balancing explicitly for each environ-

ment application, and automatic adaptation by the underlying

runtime is indispensable. This gets aggravated when mobile devices

are part of the cluster.

Changing Node Availability on the Network

In traditional distributed systems, nodes keep leaving and joining

the system dynamically. The joining and leaving of nodes may be

due to either node failure or link failure. However, the system

must be smart enough to continue with the computation. The

availability of node becomes more fuzzy in a distributed mobile

computing scenario as the availability is also affected by the

movement of the nodes. It is possible that the node may enter an

area which is not under the coverage area of any MSS. It is also

possible that node availability is transient with respect to the

execution of the program. While a mobile node is computing a

sub-task, it can go out of coverage and enter back into the coverage

area before the completion of the execution of the program.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 21/ 33

Difference in Computing Capability and Memory Availability

As each host may have different capabilities (such as memory) and different processing

powers, it is essential to allocate tasks to the nodes on the basis of their capabilities and

processing power. MHs may especially have lower computing power and memory

in contrast to their static counterparts.

Heterogeneity in Architecture and Operating Systems

Although it is reasonable to assume that a new and stand-alone

cluster system may be configured with a set of homogeneous

nodes, there is a strong likelihood of upgraded clusters or

networked clusters having nodes with heterogeneous operating

systems and architectures. However, it will be non-trivial to handle architectural

heterogeneity, since the executable files are not compatible among

architectures.

The issues discussed in this section make parallel programming

on mobile clusters difficult. With the issue of mobility and other

constraints associated with mobile devices, the management of

distribution at the programming level further hardens the task.

The existing cluster computing models solve only a subset of

these issues. None of the earlier work in mobile clusters discusses

these except for the timeliness issue which was discussed in

Reference [7] .

MOSET OVERVIEW

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 22/ 33

The basic principle with which the Moset model was designed

was to abstract out the heterogeneity of the constituting devices from the user. The user is

made transparent to the hardware,

bandwidth, operating system and other heterogeneity existing

below the kernel. The user is given freedom to avail of any

computing power required for his application, without being

concerned about whether he is working with a constrained device

or not. Moset is designed with clear separation between the

administration functionality and the user functionality. It is the

function of the administration to install and maintain the system.

Once the system is deployed, the user needs only to use the APIs

to interact with the system for performing parallel computing.

The MSS which is a static node covers a geographical region,

namely the cell. Mobile nodes which are within that cell will be

under the control of that MSS, and all communications from or to

the mobile nodes in the cell can be made only through the

associated MSS. In our model, the MSS aggregates the computing

resources which are within its cell and presents them to the

distributed system as a set of its own resources. The nodes which

are participating in the cluster computing are grouped on the

basis of the memory capability of the nodes. The nodes which are

participating in the Moset kernel spawn their computing entity to

the coordinator of the system, on the basis of their capability. The

entire data which needs to be processed is multi-cast to all the

participating nodes in the particular group o~ the basis of the size

of the data. The runtime system of the kkrnel decides on the

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 23/ 33

anonymous node on which the task is to be executed on the basis

of its capability. The details of the architecture are described in

Section 8.5.

Unlike the nodes in a traditional distributed system, the mobile

nodes cannot maintain high levels of availability or reliability due

to wireless connectivity. Hence, in order to achieve reliable delivery

of the data, considering the constraints of the mobile devices,

Moset is built over an exactly-once reliable multi-cast protocol.

MOSET COMPUTATION MODEL

The Moset computational model is designed in such a way that it

can handle the heterogeneity, fault tolerance, dynamic load

balancing and computing power availability ..» The dynamic load

on the participating systems and the nodes and link failures make

the traditional cluster computing model unsuitable for parallel

programming on MCC. These issues were effectively handled in

[4]. However, the model does not address the mobile device

participation in computation and the issues related to it. The Moset

model is aimed at integrating the mobile devices with the static

nodes to form a mobile cluster, and at harnessing the idle

computing power of static and mobile nodes to utilize them for

parallel computing.

Cluster Sub-groups

In our model, we use a notion of cluster sub-groups (or sub-

groups), based on the memory capability of the nodes. A cluster

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 24/ 33

sub-group refers to the characteristics of the task submitted to that

sub-group. Each host (static and mobile) based on its capabilities,

joins the respective sub-groups. For example, sub-group LOW

may refer to those tasks having memory requirements <10 MB.

A MODERATE sub-group may have tasks having memory

requirements <50 MB. A HIGH cluster sub-group may have tasks

having memory requirements <100 ME. Tasks with memory

requirements >100 MB may be in sub-group VERY HIGH.

Horse Power Factor and Dynamic Load Balancing

As each host may have different capabilities (such as memory)

and different processing power, it is essential to allocate tasks to

the static hosts and MHs on the basis of their capabilities and

processing power. In order to incorporate this, each host is allocated

an integer called HPF [4:], which is a measure of the computing

power of a machine, the load on the machine and the network

bandwidth of the communication channel. Machines in the

network are normalized by a benchmark program to obtain a

relative index of the machine, which is a static factor. The dynamic

HPF of a machine is obtained by using this static relative index,

the load on the machine and the communication bandwidth with

which the machine _ is. connected to the network. This dynamic

factor is normalized as a factor that represents the. number 'of

entities that it could compute. When a host has HPF h, then h

computing entities are allocated to the host. For example, if hosts

A and B have hI and 10, as their respective HPFs, then the time

taken by A to compute hI amount of a task is approximately equal

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 25/ 33

to the time taken by B to compute 10, amount of the same task.

Abstracting the heterogeneity in this way makes parallel processing

viable on unevenly loaded heterogeneous machines.

The dynamic communication bandwidth is not taken into

consideration in HPF, as measuring dynamic bandwidth may lead

to overhead. Also, to the best of our knowledge no technique has

come out with a solution which could measure the dynamic

bandwidth exactly without introducing significant overheads. This

is clear from the fact that schemes like PathMon (which is a

relatively better scheme as compared to the other techniques like

pathchirp, pathload, etc.) requires about 0.25 seconds to report

the available bandwidth in a wired network, and it could be even

longer in a wireless channel. This also does not guarantee the

exact measurement and is likely to have a relative error of 12 per

cent. During hand-off, when the MH is in the process of receiving

data, the HPF variations matter. But as with current technology

relating to channel allocation such as the dynamic channel-

allocation techniques this has become a matter of negligence.

Dynamic load balancing is done by maintaining two

thresholds, viz. Upper Threshold (UT) and Lower Threshold (LT)

at the MH. These thresholds are shared by all the computing

entities within an MH. This can be achieved by creating the

computing entities as threads of the MH. When the load on the

MH is greater than UT, a computing entity on that MH leaves

the group and increments UT and LT on that MH. Both UT and

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 26/ 33

LT are incremented so that all entities do not leave the groups at

the same time. Similarly, when the load on the MH becomes

lesser than LT, a computing entity on that MH joins the group

and decrements both UT and LT. Two thresholds, UT and LT,

are used to avoid oscillations of frequent join and leave.

Further, the load balancing mechanism used is non-pre-emptive

and hence migration of an already executing task is not done.

This is due to the additional communication overhead involved

in process migration.

Parallelism in the Model

The data set which is very large, is multi-cast to the sub-group, on

the basis of the size of the file. Multi-cast provides an' efficient

mechanism for transferring the data to the computing entities for

processing. Each computing entity independently splits the task

on the basis of its ID and N For example, in the case of distributed

image rendering application, frames having frame number 'f' such

that mod (f, N) = ID are rendered by the computing entity with

identifier ID. When an entity completes its share, it sends the

result back to the destination host.

A host is assigned as a coordinator to the cluster and it keeps

track of the total number of computing entities (called N) under

each cluster sub-group. Further, each computing entity has a unique

membership identifier (called!D, ranging from 0 to N-l) associated

with each group subscribed by it.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 27/ 33

Whenever an MH wants to participate in distributed processing,

the daemon at the MH spawns a set of computing entities, on the

basis of its capabilities.

IMPLEMENTATION

The system structure of Moset is shown in Fig. 8.2. A distributed

Moset kernel is spread over the nodes that participate in Moset.

A Moset kernel consists of multiple local coordinators (lcs) to

coordinate local activities, multiple co-coordinators (ccs) to

coordinate the global activities within their cell, and one system

coordinator (Sc) to coordinate the overall global activity of the

entire cluster. Each node, either static or mobile, that intends to

participate in the Moset kernel runs a local coordinator. MH has

a client process and a daemon. The client process and daemon

run over a reliable multi-cast protocol. The client processes are

used to submit tasks to the MHs (via multi-cast protocol) for

distributed processing. The daemons are the computing entities at

the MHs that execute a part of the submitted task concurrently

with other daemons.

Local Coordinator

The lc runs on mobile and static hosts that participate in the

Moset system, either to improve utilization or to share its work

with an anonymous remote node. Any Moset communication to

or from the local processes is achieved through the lc. In case of

image rendering application, the huge data set which is to be

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 28/ 33

rendered, is multi-cast by the sc to the sub-group lcs, on the basis

of the size of the file. Each lc independently splits the task on the

basis of its ID and N. For example, frames having frame number

'1'such that mod if, N) = ID are rendered by the computing entity

with identifier !D. When an entity completes its share, the lc

sends the result back directly to the sc if it is executed on a static

host or through the cc if it is executed on a mobile host.

System Coordinator (sc)

The Moset kernel has one se in the logically grouped mobile

cluster. The functions of the se are to manage all the nodes that

take part in the cluster process and the spawned computing entities,

to coordinate all the functions related to task distribution and

execution, and to maintain the migration history of the tasks.

Whenever a static machine wants to participate in distributed

processing, thus enhancing the machine utilization, it spawns

computing entities based on its capabilities through its lc: The

static machine also includes the MSS which spawns a set of

computing entities representing the MHs which are within its cell

and which are interested in participating in the computation. As

discussed in the previous section, the se groups these computing

entities into cluster sub-groups on the basis of the memory capacity

of the machine which has spawned the entities. The se keeps track

of the total number of computing entities (called N) under each

cluster sub-group. Further, the se assigns each computing entity a

unique membership identifier (called ID, ranging from 0 to N-l)

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 29/ 33

associated with each group subscribed by it. The exact number of

computing entities spawned by each daemon will depend upon

the HPF of the node.

The data set which is very large is multi-cast to the sub-groups'

les by the se directly to the static host's lc; and through the ees to

the mobile host's lc, based on the size of the file. Multi-cast provides

an efficient mechanism for transferring the data to the computing

entities for processing. A history of recent migrations is maintained.

The single point failure of the se is handled by replicating the

state of the se in another nearby static node so that in case of

failure, the states are not lost and the system can still survive.

When an lc learns that the se has failed, it initiates the process of

identifying the next se by using an election algorithm [14].

Co-coordinator (cc)

The Moset has multiple ees running on MSS which has at least

one MH participating in the Moset kernel. The ee acts as an se

with respect to the MHs which are within its cell. Any MH within

the coverage area of the ~SS, which wants to participate in the

sharing of resources, will spawn a set of computing entities to the

cc running on that MSS. The cc collects the set of computing

entities spawned and registers with the sc. The cc takes care of

multi-casting the data set to be rendered to the participating MHs

and also maintains the history of the execution that takes place in

the MH within its cell.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 30/ 33

The cc also takes care of the mobility of the MHs. When an

MH takes the frames for rendering and moves out of the cell and

enters another cell, then the new MSS, through hand-off, will be

able to inform the cc of the old MSS. If the new MSS already has

the cc daemon running, then it continues with the process by

exchanging the information among the ccs. In case the new MSS

does not run the cc daemon, then it gets registered with the sc and

runs the cc.

Time-outs, Mobility and Fault Tolerance

The timeliness issue is an important issue, especially in real-time

systems. However, in cluster computing systems, the system is

mainly meant for computation-intensive problems like environ-

mental modelling wherein the factor of time can be relaxed. But

still the workstation cannot take an infinite amount of time for

executing the sub-task which it has accepted to execute. In order

to handle this, time-out mechanisms are used. The time-outs are

maintained by the sc and the ccs. A timer is a data counter that

ticks at regular intervals. If the workstation does not return within

the stipulated time set in the timer, then the sub-task is re-submitted

to some other idle workstation for getting executed or in the

worst case, it gets executed in the coordinator. In case of sub-

tasks executing in MHs, the cc takes care of the timer. When a

sub-task assigned to an MH does not return before the time-out

then the cc tries to reassign the sub-task to some other MH within

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 31/ 33

the sub-group, within the cell or as a worst case, it executes the

task itself.

The failure of a remote node is detected by the sc when the lc

fails. However, this will work only with static nodes. Mobile nodes

may move out of the cell after taking the task for execution and

return before the timer time-outs. In this scenario, as the MH was

out of coverage for a while, the cc will be able to detect this and

cannot decide that the MH has failed. Thus the cc needs to wait

until the timer time-outs. This ensures the fault tolerance of the

system.

PERFORMANCE

The Moset approach provides parallel programming on a mobile

cluster thus improving the utilization of the computing resources

of the participating nodes. Moset provides for heterogeneity, fault

tolerance and dynamic load balancing to parallel computing. The

performance study of the model was done by implementing the

distributed image rendering application over the FTEORMP [10].

The FTEORMP is an exactly-once reliable multi-cast protocol.

The simulation of FTEORMP was carried out on an object-oriented

discrete event simulator in C++ similar to the that used in [15].

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 32/ 33

POSSIBLE QUESTIONS(2 Marks)

1. Define Cluster Coordinator.

2. What is donor or acceptor.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT: IV(Grid Computing) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 33/ 33

3. What is FMI?

4. List Grid Computing Applications.

5. What is task splitting?

6. What are the issues in Mobile Clusters?

7. What is the use of Moset?

8. What is Dynamic Load Balancing?

9. What is Fault Tolerance?

10. What is Local Cordinator?

POSSIBLE QUESTIONS(6 Marks)

1. Describe the system topology of Sneha- Samuham Grid Computing Model.

2. Discuss about the issues in Mobile Clusters and Parallel Computing on

Mobile Clusters.

3. Describe the Layered Architecture of Sneha- Samuham Grid Compuitng

Model.

4. Discuss about the overview of Moset.

5. Write about the Computational Model of Sneha- Samuham Grid Computing

Model.

6. Discuss about the implementation of Moset.

7. Describe the design and implementation of Sneha- Samuham Grid Computing

Model.

8. Discuss about the Moset Computational Model.

9. Discuss the performance of Sneha-Samuham over MPI and Wide Area Grid.

10. Explain any four issues in Mobile Clusters and Parallel Computing on Mobile

Clusters.

S.NO QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4 KEY

1
Parallel programming on
workstation cluster mustly
follows the _____model

ARC ARCC COP ACRC COP

2

____are formed by
exploiting the existing
computing resource on the
network to Work together as
a single system

Networks Computer Node Clusters Clusters

3

In order to address there
issues, two models,
namely_______ were
recently proposed

ARC[1] and

DP[2]

ARC[5] and

DP[4]

ARC[4] and

DP[5]

ARC[1] and

DP[5]

ARC[4]

and DP[5]

4
MCC stands

for______________

Model cluster

computing

Model
cluster
constraints

Mobile
cluster
computer

Mobile
cluster
computing

Mobile
cluster
computing

5
Which one is an extension of
ARC mode[4] over
distributed mobile

Moset ARMCC MHS MCC[7] Moset

UNIT IV
Objective Type Questions

Karpagam Academy of Higher Education
Department of CS, CA & IT

Subject: Grid Computing (17CSP205B)
Batch : 2017-2019 Class: I M.Sc CS

6

_______refers to the delay
that is taken for the mobile
device to regain in full state
When it moves from one
will us the other

TImeliness Timeout Error Out of time TImeliness

7
Timeliner issue is an
important issue especially in
________ system

Computing
Real-time

systems
Time delay Real-time

Real-time

systems

8
MSS stands

for_____________

Mobile
system
support

Mobile
station
system

Mobile
support
system

Mobile
support
station

Mobile
support
station

9
Heterogeneity can be
handled by_____
computation model

Moset Mobile Cluster ARC Moset

10
_____coven a geographical

region
Moset ARMCC MSS MCC MSS

11 HPF stands for___________
Home power

factor

Horse power

factor

Horse
process
function

Horse power

function

Horse

power factor

12
__________kernal is spread
over the node that
participating in moset

Computer System Moset Computing Moset

13

______model based on the
integrahon of mobile and
static node as clinters inter
onnected by wireless and
wired network

Moset ARMCC ACC ARC ARMCC

14
The moset kernel has
one____ in the logically
grouped mobile cluster

System cluster
System

coordinator

Co

coordinator

System

computing

System

coordinator

15

The moset has multiple
_________ running on MSS
which has at least one
MHParticipating in the
moset kernal

Co

coordinator

System

coordinator

Co

computing

System

computing

Co

coordinator

16
Moblity of the MHS is

maintained by

System

coordinator
Computer

Co

coordinator

Cluster

coordinator

Co

coordinator

17
LC stands

for_______________

Local

computing

Local

computer
Local cluster

Local

coordinator

Local

coordinator

18 SC stands for______ System cluster
System
computing

System
computer

System
coordinator

System
coordinator

19
A part from loading the
processor ____ also log the
memory resource

CPU log Hard disk CPU UPS CPU log

20

_______model provides
adaptive parallel execution
of tasks over a
computational grid.

server model client model

sneha-

samuham

model

client-server

model

sneha-

samuham

model

21

The sneha-samuham model
the computer donates its
computing power is called
a_________

accepter donor client node donor

22

The sneha-samuham model
the computer which makes
use of another computers
computing power is
called________

acceptor donor node client acceptor

23
The number of donors
should be much higher as
compared to the number
of_________

LAN cluster acceptor client acceptor

24

________can act either as a
'donor' or as an 'accepter' or
both as an accepter and a
donor

client server LAN node node

25
The collection of nodes with
in an individual LAN is
referred to as a_________

accepter cluster client donor cluster

26 'cc' stands for_________
cluster

computing

cluster co-

ordinator

client co-

ordinator

cluster

constraint

cluster co-

ordinator

27 NAT stands for_________
network
address
translation

network
asynchronou
s

network
address
tranmission

node address

translation

network
address
translation

28
Sneha-samuham model is
viewed___________ tired
architecture

three five four two five

29

The runtime environment of
the system contains
________components that
run as daemons on the nodes

three five one six three

30
Every 'cc' runs a daemon

called________

cluster co-

ordinator
cc daemon

cluster

computer

cluster

daemon
cc daemon

31 API stands for___________
accessing
programming
interface

application
programmin
g interface

accessing
program
interface

application
processor
interface

application
programmin
g interface

32 FMI stands for___________
friend

machine index

free machine

interface

friend
machine
interface

free machine

index

friend
machine
interface

33 FCI stands for___________
friend
computing
table

friend

cluster table

free cluster

table

free
computing
table

friend

cluster table

34
The computation table
model follows
the______________model

master
worker
process model

sneha
samuham
model

client server

model
ARC model

master
worker
process
model

35
The cc of each cluster
maintains a table
called___________

friend
computing
table

free cluster

table
FCT

free
computing
table

FCT

36

The computational
capability of a node over the
grid can be measured from
the factor called

GCCF SSGF SSF GCF GCCF

37

__________recieves tasks
submitted by the user
interface and execute them
on its friend machine'

donor acceptor node client acceptor

38 'STT' stands for__________
system tasks
table

system
target table

sub task
table

sub target
table

sub task
table

39

A donor daemon interaets
with its local cc,local
accepters
and_________spawned by
it for executing sub tasks

worker

processes

worker

processor

window

processes

window

processor

worker

processes
40 A threshold policy is used

toclassify the nodes of the
eight one three five three

41 The load balancing service
depends on the object

THEN ALL AND NOW NOW

42 The life cycle service
implements an operation

MOVE() START() CALL() MALLOC() MOVE()

43 By filtering the method on
the object the filter can

add() delete() rename() update() update()

44 MNO uses object wrappers
called

proxies plugs pumbs pide proxies

45 Message filters can be
plugged at the time

error save run debug run

46 The filters makes
a_______call to the new

bind() wind() sind() mind() bind()

47 The CORBA
implementation that was

micro macro minicro mico mico

48 The mediator is called
System
Coordinator

Cluster
Coordinator

Coordinator
Process
Coordinator

Cluster
Coordinator

49 Sneha Samuham Model is
____ tired architecture

two three four five five

50 _______Model is Five tired
architecture

Sneha

Samuham
ARC

Mobile cluster

computer
ARCC

Sneha

Samuham

51 Each CC includes name of
other CC in its ________table.

Friends Cluster GUI API User Interface Friends
Cluster

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 1/32

UNIT-V

SYLLABUS

.

Distributed Simulated Annealing Algorithms for Job Shop Scheduling - Implementation.

Parallel Simulated Annealing Algorithms - Simulated Annealing (SA) Technique –

Clustering Algorithm for Simulated Annealing (SA) – Combination of Genetic Algorithm

and Simulated Annealing (SA) Algorithm - Implementation. Epilogue : DOS Grid:

Vision of Mobile Grids - Mobile Grid Monitoring System – Healthcare Application

Scenario.

Introduction

Distributed algorithms represent the algorithmic formulation of

Distributed Problem Solving (DPS) [6]-[9]. DPS can be termed as

co-operative problem solving by a loosely coupled network of

problem solvers. The main purpose of distributed algorithms is to

exploit the processing power of a number of nodes on a network.

Since the SA technique for JSS is inherently sequential and -highly

compute-intensive, distributed algorithms for the SA technique

for JSS can make the technique applicable for large-scale problems.

Two different approaches to the development of distributed

algorithms for SA technique for JSS have been contemplated.

One approach is to divide the problem space into independent

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 2/32

sub-tasks. The algorithm based on this approach is termed as the

Locking Edge algorithm. This algorithm is modified for large

problem sizes. The other approach involves distributing the

reduction rate of the temperature among various nodes of the

network. The algorithm based on this approach is called the

Temperature Modifier algorithm. These algorithms have been

explained in the subsequent sections

DISTRIBUTED ALGORITHMS FOR JOB SHOP SCHEDULING

This section describes the development of distributed algorithms

for JSS, using the SA technique. Initially a sequential algorithm

[1], [5] is presented which will be modified subsequently to develop

distributed algorithms

Sequential Algorithm

The sequential algorithm involves the following major steps:

1. Finding all initial schedules,

2. Evaluating cost of the schedule,

3. Finding the critical path,

4. Generating a neighbour.

These are discussed in detail below.

Initial Schedule

Given a disjunctive graph G = (V, A, E) for solving the problem,

an initial schedule is generated. The Giffler and Thompson

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 3/32

algorithm [2] is employed for this purpose. The algorithm attempts

to construct the schedule by considering all the operations (n) on

all the machine (m), with the criteria employed being the earliest

starting time and the processing time of each of the operations. At

each stage an operation not yet included in the schedule and

requiring a minimum time is chosen and included in the partial

schedule. The partial schedule becomes a complete schedule when

all the operations of the jobs are included in the schedule. The

generated schedule can be represented as a digraph.

Cost Function

After obtaining the digraph representing all initial schedules, the

earliest and the latest start times of each of the operations in the

graph are calculated. The Critical Path Method (CPM) is used for

this purpose. The makespan is the earliest start time or the latest

start time of the last operation. This forms the cost of the schedule.

Critical Path

After evaluating the cost function, the critical path in the digraph is identified. The

critical path can be defined as a set of edges from the first vertex to the last vertex which

satisfy the following properties:

(a) The latest start time and the earliest start time of each vertex on the edge must be the

same.

(b) For the same edge U -7 v, the sum of the start time and the

operation time of u must be equal to the start time of v.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 4/32

An edge in the critical path is reversed to generate a neighbour

and this is discussed in the next section.

Generating a Neighbour

The neighbourhood of a schedule can be defined as a set of

schedules that can be obtained by applying the transition function

on the given schedule. Neighbourhoods are usually considered

by first choosing a simple transition function. A transition in the

case of a JSS problem is generated by choosing the vertices v and

w (as given in [1]). The following facts need to be considered.

(a) v and ware any two successive operations performed on the

same machine k;

(b) (v, w) E Ej is a critical edge, i.e. (v, w) is on the longest path

of the digraph.

A neighbour is generated by reversing the order in which v and

ware processed on the machine k. It has been shown that by

using this transition function, it will be possible to eliminate

infeasible solutions and also keep non-decreasing paths out of the

search space [1].

Thus, in the digraph such a transition results in reversing the

edge connecting v and wand replacing the edges (u, v) and (w, x)

by (u, w) and (v, x) respectively, wherein u is the previous operation

to '» on the same machine, and x is the next operation to w on the

same machine.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 5/32

Distributed Algorithms

They can be termed as:

1. Temperature Modifier Algorithm,

2. Locking Edges Algorithm, and

3. Modified Locking Edges Algorithm

They are explained in detail below.

Temperature Modifier Algorithm (TMA)

The choice of the temperature modifier in the sequential algorithm affects the probability

of the algorithm getting struck at a local minimum. A low value for the modifier makes

the algorithm fast but the probability of the algorithm getting struck at a local minimum

is high. In order to reduce this probability, the sequential algorithm can be simultaneously

executed on different nodes.

Locking Edges Algorithm (LEA)

It can be observed that the TMA does not result in much improvement with respect to the

execution time on the computer. The LEA has been developed to improve this. This

algorithm generates sub-tasks by 'locking' edges in the digraph. The term

'locking' can be defined as marking an edge of the digraph such that its orientation cannot

be changed. If the number of edges locked in the digraph is m then we can generate 3 m

equal sub-

tasks. This is equivalent to dividing the entire search space into 3m divisions. For

example, if the number of locked edges in the digraph is one, then we can generate three

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 6/32

subtasks. These sub-

tasks can be obtained as follows:

(a) In the first sub-task, the search space consists of all possible orientations of the edge

except that of the locked edge. The

orientation of the locked edge remains intact.

(b) In the second sub-task, the orientation of the locked edge is reversed.

(c) In the third sub-task, the locked edge is removed.

The generation of three sub-tasks is illustrated by taking example 1 (please refer to Table

9.1). The initial schedule generated for the

example problem is represented in Fig. 9.1(a). In this schedule, the edge 15-5 is locked to

generate the sub-tasks. Hence the initial schedule in Fig. 9.1(a) with edge 15-5 locked

forms the starting schedule for sub-task 1. The starting schedule for the

Select appropriate temperature modifiers for different nodes.

Run the following sequential algorithm with the chosen temperature modifier on each

node.

(a) Generate the initial schedule, given the processing times or all operations and the

machine order for each job.

(b) Repeat

Counter =0.

Compute the cost of the initial schedule [t[i]];

Repeat

Calculate the critical path;

Generate the neighbourhood;

Compute the cost of the Generated schedule [t[j]];

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 7/32

Accept or reject the generated schedule with the probability

min(l.exp (-{t[j] - t[i]}/T));

Until (counter=number_of_rune_at_a_temperature);

T = T + t_modifier;

until (T = 0 V Minimum schedule not changed for a long time);

3. Send the result back to the central node

second sub-task is generated by reversing the locked edge 15-5 in

the initial schedule and the schedule thus obtained is given in

Fig. 9.1(b). The starting schedule for the sub-task 3 is generated

by removing the locked edge 15-5 from the initial schedule and

this is shown in Fig. 9.1(c).

The above concept can be further extended to a case in which

there can be m locked edges. Figure 9.2(a)-(c) explains the method

of generation of the sub-tasks. The generated sub-tasks are assigned

to the cooperating nodes in the Distributed Problem Solving (DPS)

network. The detailed algorithm is presented in Table 9.3.

The edges to be selected for locking are chosen at random. The

edge chosen affects the division of the search space and influences

the quality of the solution in some cases. This is discussed in the

next section.

1. Generate the initial schedule with the input given.

2. Choose the number of edges to be locked, say m.

3. Generate the sub-tasks depending upon the number of locked

edges i.e. for m locked edges 3 power m sub-tasks are generated.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 8/32

4. Assign each of the sub-tasks to the cooperating nodes, pass

information about the locked edges.

5. Wait for the results from the cooperating nodes.

6. Choose the optimal cost solution.

Modified Locking Edges Algorithm (MLEA)

It is observed that as more and more edges are locked, it results in a decrease in the

performance with respect to the optimal

scheduling cost in some cases. This is explained theoretically in the subsequent

paragraphs.

A new term called 'collision' is defined in the case of the locking

edges version of the distributed algorithm. In the locking edges

version, the search space is divided equally among all the co-

operating nodes. For a three-node distribution, the search space

can be represented as in Fig. 9.3(a) and for a nine-node version, it

can be represented as in Fig. 9.3(b). One of the edges on the

critical path is chosen at random for generating a neighbour. If

this selected edge (say el) affects the locked edge (say e2), then

such a situation is termed as 'collision of edge el with locked edge

e2'. In such cases, the edge el is rejected and a new edge is

selected at random to generate a neighbour. It can be interpreted

as a node trying to 'penetrate' into the search space belonging to

another node. It can be observed from the figures that these

collisions will be more in the nine-node case compared to that in

the three-node case. This results in a marginal increase in the

schedule cost as compared to the previous case. In cases where

the solution corresponding to the minimum exists on the boundary

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 9/32

or in the search spaces of two nodes, there is less likelihood of it

being reached in the nine-node case

because of collisions

Search Space Division:

(a) Three- node Distribution (b) Nine-node

Distributlon

In order to minimize the affect of collisions, a modification to

the 'locking edges' version is attempted. This can be explained as

follows. Consider a case wherein a single edge is locked. Here

there are two sets of nodes. The first set of nodes consists of three

nodes and will be assigned the same tasks as in the 'locking edges'

case. The second set of nodes, also consisting of three nodes, are

assigned tasks in such a way that the boundary points of the

previous set of search spaces become the active search spaces for

these nodes. As pointed out previously, this is done mainly to

reduce the effect of collisions. This can be extended to any number

of locked edges. The detailed algorithm is given in Table 9.4.

Table 9.4 Modified Locking Edges Algorithm

1. Generate the initial schedule with the input given.

2. Choose the number of edges to be locked, say m.

3. Generate the first set of sub-tasks (3 power m).

4. Assign the sub-tasks to the cooperating nodes. Pass information about the locked

edges also.

5. Generate the second set of sub-tasks (3 power m).

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 10/32

6. Assign the sub-tasks to the cooperating nodes. Pass information about the locked

edges also.

 7 . Wait for the results from the cooperating nodes.

 8. Choose the optimal cost solution.

The edges to be locked are selected at random and the selected

edges may be the cause for collisions. However, it is not easy to

predict beforehand this effect of a particular edge on collisions.

Hence, in the absence of such knowledge, the modified locking

edge version guarantees that the search space is divided to avoid

excessive collisions at least in one set of the search space division

Implementation

These algorithms have been implemented on the Distributed Task Sharing System

(DTSS) [7] running on a network of Sun Workstations having three servers of Sun 3/60

and 15 clients or

Sun 3/50 connected together by a thin Ethernet. The DTSS has been developed around a

message kernel. The message kernel is implemented by using datagram sockets.

Messages across nodes

are transferred by these datagram’s. The message kernel provides support for

reconfiguring the nodes on the network, and for sending and receiving the task award and

the result messages. The nodes on the network are initially configured such that one of

the nodes is identified as a central node. During the initial configuration, many other

required client nodes are also identified. The central node has the responsibility of

dividing the search space and of communicating the tasks to the client nodes through task

award messages. After receiving the task award messages, the client nodes execute the

required task and send back the results through the result messages. The network is

highly flexible and can be reconfigured with any number of client nodes.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 11/32

The messages are retransmitted in the case of loss of message packets in transmission.

This is detected by the non-receipt of an acknowledgement for the packets sent within a

specified time-out period. The node failures are also detected in a similar fashion. In case

of node failures, the corresponding sub-tasks are assigned to other client nodes available

on the network.

Before proceeding further on the implementation details, two terms are defined:

 Central Node: This node holds the responsibility of task

division, task award to client nodes, receiving result messages

and synthesis of the final solution from the results obtained

from the client

 Client Node: This node solves the sub-task assigned to it

and returns the result

Temperature Modifier Algorithm (TMA)

The implementation of the algorithms has been carried out by a

central node and a set of client nodes. The central node generates

the initial schedule, given the processing times of all the operations

and the machine order for each job. This node then sends the

initial schedule and also different temperature modifier parameters

to each of the client nodes on the network. The client nodes

execute the sequential algorithm (Table 9.2) with their correspon-

ding temperature modifiers and send back the result to the central

node.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 12/32

After receiving the results from the client nodes, the central

node chooses the solution that has the minimal cost.

The quality of the solution generated is influenced by the cooling

rate. We employ a three parameter cooling schedule, as seen in

[1]. The parameter delta controls the rate of cooling. A lower

value of delta reflects a slower cooling rate and consequently the

algorithm takes more time. The value of delta employed is in the

range of 10-1-10-4. Hence, it is important to choose an appropriate

value of delta for each node in the network. A marginally high

value for delta than that employed in the sequential algorithm

can be chosen for TMA. For example, if a delta value of 10-2 is

employed for a sequential algorithm, for a TMA case, a delta of

0.5 x 10-1 may be chosen. As a higher cooling rate affects the

quality of the solution, it may be appropriate to employ TMA

only in small size problems, where LEA or MLEA doesn't give

better results.

Locking Edges Algorithm (LEA)

As in the above implemeritation, here too a central node and a

set of client nodes participate in the execution of the problem. In

this case, the number of client nodes is equal to the number of

generated sub-tasks. The generated sub-tasks are based on the

number of locked edges.

Initially, the central node generates the initial schedule and

depending upon the number of locked edges, it generates the sub-

tasks and assigns each of the latter to one of the client nodes. The

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 13/32

client nodes execute the sub-task and return the result to the

central node. The central node synthesizes all the results and

chooses the minimum cost solution as the best one.

Modified Locking Edges Algorithm (MLEA)

In order to implement this algorithm, a central node and sets of

client nodes are identified. The central node divides the search

space into sub-tasks and assigns them to one set of client node.

This process is same as the one described in Locking Edges

algorithm. However, in the case of the MLEA, the search space is

again divided by the central node such that the boundaries of the

search space in the earlier set become the active search spaces in

this case. The sub-tasks generated in this process are assigned by

the central node to the next set of client nodes. Thus many sets of

client nodes participate in problem solving in this case.

PARALLEL SIMULATED ANNEALING ALGORITHMS

SIMULATED ANNEALING (SA) TECHNIQUE

Often the solution space of an optimization problem has many

local minima. A simple local search algorithm proceeds by

choosing a random initial solution and generating a neighbour

from that solution. The neighbouring solution is accepted if it is a

cost-decreasing transition. Such a simple algorithm has the draw-

back of often converging to a local minimum. The SA algorithm,

though by itself a local search algorithm, avoids getting trapped

in a local minimum by also accepting cost-increasing neighbours

with some probability. In SA, first an initial solution is randomly

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 14/32

generated, and a neighbour is found and accepted with a

probability of min (1, exp (2d/T)), where d is the cost difference

and T is the control parameter corresponding to the temperature

of the physical analogy and will be called temperature. On slow

reduction of temperature, the algorithm converges to the global

minimum, but the time taken increases drastically ..

SA is inherently sequential and hence very slow for problems

with large search spaces. Several attempts have been made to

speed up this process, such as development of parallel SA

techniques and special purpose computer architectures

Parallel Versions of SA

Parallelism in SA can be broadly classified into two approaches-

single-trial parallelism and multiple-trial parallelism [5]. But these

methods are highly problem-dependent and the speed-up achieved

depends wholly on the problem at hand. Another taxonomy

divides parallel annealing techniques into the following three major

classes:

1. serial-like algorithms,

2. altered generated algorithms, and

3. Asynchronous algorithms [1].

Each class of the algorithm makes some trade-off among cost

function accuracy, state generation, parallelism, and communi-

cation overhead. High-performance special purpose architectures

show the promise of solving computationally expensive appli-

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 15/32

cations without expensive supercomputers and include specially

designed computer architectures to suit the annealing algorithm [11].

CLUSTERING ALGORITHM FOR SIMULATED ANNEALING (SA)

Experiments on the SA technique have shown that a good initial

solution results in faster convergence. Similar observations have

been made in [13]. The proposed distributed algorithms take

advantage of this observation. Initially, the n nodes of the network

run the SA algorithm by using different initial solutions. After a

fixed number of iterations, they exchange their partial results to

get the best one. All the nodes accept the best partial solution and

start applying the SA technique for that best partial result. They

again exchange their partial results after some fixed number of

iterations. After repeating this process for a pre-defined number

of times, each node works independently on its partial result. The

complete algorithm is given in Table 10.1.

Input to the algorithm:

n = Number of the nodes in the network.

p = Exchange parameter for partial results.

r = Reduction parameter for the number of iterations before exchange of partial results.

i = Input graph for scheduling.

Coordinator node algorithm:

1. Distribute the n random initial solutions to the n nodes and wait.

2. Upon receiving the first converged result from any of the nodes, stop SA on other

nodes.

Worker node algorithm:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 16/32

 Accept initial solutions from the coordinator.

 repeat

 2.1. Execute SA for p iterations. Exchange partial results among the worker

nodes. Accept the best partial result.

 2.2. p = P - fA' (loop iteration number).

until (p = 0).

3. Execute SA by using the best solution found as the initial solution.

4. Send the converged value to the coordinator.

COMBINATION OF GENETIC ALGORITHM AND SIMULATED ANNEALING

(SA) ALGORITHM

Experiments have shown that a good initial solution for SA

improves both the quality of the solution as also the execution

time. Genetic algorithms try to improve a set of 208 Ram,

Sreenivas, and Subramaniam solutions rather than a single solution.

Since we require n initial solutions for distributing among n nodes,

we choose to combine SA with GA.

Genetic Algorithm

In GA [11], an initial population consisting of a set of solutions is

chosen and then the solutions are evaluated. Relatively more

effective solutions are selected to have more offsprings, which are

in some way, related to the original solutions. If the genetic operator

is chosen properly, the final population will have better solutions.

GA improves the whole population. SA aims at producing one

best solution. For the distributed SA implementation, we require

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 17/32

several good initial solutions to ensure the fast convergence of

SA. We chose GA for obtaining the required number of good

initial solutions. The operator used for generating offsprings in

JSS is related to the processing order of jobs on the different

machines of the two parent solutions. Let PO1l, PO12, ... , POlm

be the processing orders of jobs on machines 1,2, ... , m in parentI

and P021, P022, ... , P02m be the processing order on machines

1,2, ... , m in parent2. If random (1, m) = i, then processing orders

in childl and child2 are POll, ... , P01~ P02i 1 1, ... , P02m and

P02I, ... , P02,POli11, ... , POlm respectively. After getting the

offspring, a check is made to see if there are any cycles in the

offsprings and if there is one, the operation is performed once

again by generating another random number. A cycle in a state

indicates an invalid schedule. The pseudo-code for the GCA is

given in Table 10.2.

Table 10.2 Genetic Clustering Algorithm (GCA)

1. Central node generates n initial solutions using GA. It runs GA

for fixed number of iterations, t.

1.1 Choose initial population of fixed size and set i = 1.

1.2 while (i <= t)

begin

1.2.1 Apply the operator on the two parent schedules chosen randomly to produce two

offspring and replace the parents by the best two out of the four schedules.

1.2.2 i = i + 1

end

2. Central node sends n best solutions chosen to the n remote

worker nodes.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 18/32

3. Each worker node runs the SA algorithm by using the initial

state received.

4. Upon receiving a converged result from one of the worker nodes, the central node

stops execution.

IMPLEMENTATION OF THE ALGORITHMS

Both the above algorithms have been implemented by using a

platform called DiPS (Distributed Problem Solver) [3] running on

a network of 18 Sun workstations. It is built on a communication

kernel. Using the kernel, it is possible to send task award messages,

task result messages, configure messages, and partial result

messages, among the various nodes of the DiPS network. The full

implementation details of both algorithms are given in the

subsequent sections.

Implementation of the Clustering Algorithm (CA)

In the CA, the central node executes the code in Table 10.3 and

the worker nodes the code in Table 10.4. The algorithm for SA is

given in Table 10.5.

Table 10.3 Clustering Algorithm for the Central Node

1. Initialize ().

2. Generate n random initial states and assign to the n nodes of the

network.

3. Wait for results.

4. Output_Results.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 19/32

Table 10.4 Clustering Algorithm (CA) for the Worker Node

1. Get the sub-task from the central node and p, the exchange

parameter.

2. while (p> 0)

begin

 2.1 Simulated_annealing (n).

 2.2 Send the best solution obtained to the central node.

 2.3 p = P - (loop_iteration_ value)8 r.

 end

3. Run SA.

4. Send the converged value to the central node

Simulated annealing (n)

begin

1. Set t = Initial_temperature

2. repeat

2.1 Counter = O.

2.2 repeat

2.2.1 Compute the cost of the schedule (f[i)).

2.2.2 Find the critical path schedule.

2.2.3 Generate a neighbour and compute the cost of the

neigbour (f [j)).

2.2.4 Accept or reject the neighbour with a probability

of min(1, [(f[i] - [(1)/1).

2.2.5 Increment counter.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 20/32

until (Counter = Number of iterations at t).

3. t= t* temp_modifier.

4. After every n iterations exchnage results and accept the best

schedule found.

until (shopping criteria)

end.

IMPLEMENTATION OF GENETIC CLUSTERING ALGORITHM (GCA)

In the case of GCA, first the genetic algorithm is run on the

central node to get the required n initial solutions. These initial

solutions are used by the n client nodes of the distributed systems

as a starting solution for the SA algorithm. (The code that is

executed on the central node! is the same as the code in Table

10.3 except that in step :;p the n schedules are the best n solutions

chosen from the population after applying GA. The genetic

algorithm starts with an initial population. It then performs the

crossover operation and the population is updated. This is repeated

a number of times.

EPILOGUE DOS GRID: VISION OF MOBILE GRIDS*

DOS Grid

Overview of the Mobile Grid

The mobile grid is visualized as a cluster of clusters. In the proposed

model, the nodes are encapsulated as objects called 'Surrogate

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 21/32

Object' (SO). The SO encapsulates all the characteristics and

properties of a device fully, such as the computing power, memory

availability, bandwidth, and all other resources and services

associated with the device. The representation of the characteristics

of the devices in the SO is made as attributes, methods and sub-

objects. The attributes of the SO include the computing capability

of the node, the memory capability and the bandwidth of the

medium by which the node is connected. The methods and the

sub-objects of the SO represent the services and other resources

that are offered by the node. In addition, each SO encapsulates

the security policy and agreement for each of the services that is

associated with that node, which will specify how and by whom

the service may be used. By encapsulating the participating nodes,

in distributed objects, the grid is transformed from a collection of

nodes, offering and consuming services, into Distributed Shared

Object (DSO) space.

Each cluster is coordinated with a designated node acting as a

Cluster Head (CH). The CH maintains all the repositories related

to the trading and naming services of the DSO, and handles the

service discovery [3]. The CHs coordinate among the other

neighbouring CHs in a peer-to-peer fashion. The mobile grid as

DSO space is shown in Fig. 11.1. In order to have a unified

design, the static nodes are also represented as objects in the

DSO. As the MSS are already loaded with maintaining the

information related to the MH which are within its cell, the

neighbouring static node is designated as the CH of the cluster. In

some cases the MSS and CH may be the same.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 22/32

The proposed SO model of the grid enhances the availability

and helps in providing the current location of the mobile devices.

When the mobile device acts as an information service provider,

depending upon the nature of the service requested, the monitoring

system of the mobile grid decides whether to contact the SO of

the corresponding device or the device itself. Contacting the device

directly will lead to consumption of the constrained resources like

battery and bandwidth. In the case of the services offered by the

SO, it would suffice if the corresponding SO is contacted to get

the information. In addition, the SO can be replicated to prevent

congestion in the network and to improve scalability of the system.

The major advantage of the paradigm is that the network

connectivity need not be continuous because connections are

required only to inject SO from mobile nodes into the wired

network. With the SO being fully autonomous, users can access

services even if the node disconnects because the SO delivers the

results upon re-connection. The proposed model virtualizes all

the resources and services offered by the participating nodes as

services

The proposed approach significantly helps in realizing a

distributed and decentralized infrastructure of SOs that work on

behalf of the participating devices and are hosted by the wired

network. With the SO, the MH movements do not affect service

provisioning as the entire state of the device is stored and

maintained. The model helps in achieving the properties of

dynamicity, asynchronicity, autonomy and security.

Some memory-constrained devices such as mobile phones could

also be participating in the mobile grid. In such a case, the user of

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 23/32

the mobile device should be able to store the data in some other

databases located elsewhere in addition to the data stored locally.

Thus, the proposed mobile grid can also efficiently handle storage

and data access from federated databases. The meta-data contains

information about file instances, the contents of file instances, and

the various storage systems contained in the data grid. These

meta-data usually refer to application meta-data. These meta-data

are wrapped with wrappers and made as objects in the DSO. The

meta-data objects are registered by using trading services

Scalability and Consistency Issues

Middleware services such as naming and trading as well as replica

object management in the grid are handled through a wide-area

shared object space that we have built named as Virat [2]. Virat

uses an independent checkpointing and lazy reconstruction

mechanism to handle failures of object repositories. The object

repositories (one per cluster) are responsible for the cluster level

management of replicas. Communication between the object

repositories themselves is through a peer-to-peer protocol. This is

useful for locating objects or services across clusters. Virat also

uses a data-centric concurrency control mechanism to realize

various consistency schemes such as serializability and causal

consistency. Virat has been extended to a shared event space

wherein events can be created, published and subscribed. Events

can be delivered in causal or serializable orderings on the basis of

application requirements.

Scalability is a key issue in distributed systems, especially in

mobile grids as the number of devices can be quite high. One of

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 24/32

our key observations is that scalability, consistency and availability

need to addressed together, not in isolation from each other. It is

well-known that in the presence of network partitions, both

consistency and availability cannot be completely attained in purely

asynchronous systems [4]. Availability has been quantified in [5]

and its trade-off with consistency has been studied. However,

both [4] and [5] do not address the scalability issue.

One dimension of consistency is the 8 value, the number of

updates that can be buffered by a replica before updating other

replicas. This has been related to availability in [6]. However,

another dimension of consistency, namely update ordering, has

not been considered. Various consistency criteria can be realized

on the basis of update ordering. These include serializability, causal

consistency and Pipelined Random Access Memory (PRAM)

consistency. The idea is that given these two dimensions of

consistency, there is a trade-off between scalability and availability.

We have come up with an upper bound on scalability (in terms of

productivity) for a given availability and the two dimensions of

consistency, for specific workload and faultload combination. This

theoretical upper bound is difficult, if not impossible, to achieve

in practice. We are currently conducting performance

measurements to evaluate the practical scalability of Vir at. We

are also optimizing Virat to make the scalability closer to the

theoretical upper bound.

MOBILE GRID MONITORING SYSTEM

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 25/32

Monitoring is the act of collecting information concerning the

characteristics and status of resources of interest. Grid resources

may dynamically join and leave, resulting in varying membership

over timJ Even in fairly static conditions, resource availability is

subject to failures. Due to such a transient nature of the grid, the

system must support the finding and keeping track of the required

resources dynamically/This is the main purpose of Grid Inform-

ation Services (GIS). This requires a process called monitoring,

which systematically collects the information regarding the current

and past status of the grid resources to satisfy the users' need.

Several groups are developing grid monitoring systems [7]. In

most of these monitoring systems, the monitoring system is a part

of the discovery system However, in our proposed approach, the

publishing, discovery and handling of resources are done by the

DSO structure which is considered as a platform to build the

mobile w,id infrastructure. The monitoring system resides over

the shared space in the peer-to-peer layer.

In order to incorporate intelligence into the mobile grid, we

~a monitoring system that manages the vast heterogeneous

resources including those offered by the mobile devices across

administrative domains. The mobile grid monitoring system

essentially helps in scheduling and task allocation for parallel

computing, in enforcing Quality of Service (QoS) and Service

Level Agreements (SLA), in identifying the cause of performance

problems, optimized resource usage and fault detection, in addition

to building prediction models of mobile device movement

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 26/32

Different kinds of data are collected from the different components

that make up the mobile grid.

The monitoring information traffic can be huge and with only

one monitoring manager, it becomes a bottleneck for the entire

system. Hence, the hierarchical monitoring structure was consi-

dered by most of the existing monitoring systems. However it is

proved in [8] that the scalability of peer-to-peer structure is better

than a hierarchical structure. Hence the eHs associated with each

cluster, which forms the peer-to-peer overlay, share the monitoring

activities among themselves.

The proposed Mobile Grid Monitoring System provides the

following features:

 Mobile Host (MH) monitoring: Data regarding the location of the device,

connectivity, mobility, signal strength, etc. at

different times of the day can be monitored and used for

predicting the future values of these parameters. This could

help in characterizing the movement pattern of the devices.

This information can be used in scheduling to provide

guaranteed QoS and SLA. In addition, information regarding

load, battery life, available memory, etc. is also collected.

When these parameters cross the threshold value, the MH

sends the associated information asynchronously to the

monitoring system. The mobile node parameters are also

sent on the basis of the request from the monitoring system.

Mobile device monitoring can be done by monitoring the

SO associated with the mobile device.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 27/32

 Providing dynamic space allocation and file management on shared storage

components on the grid: They provide storage reservation and dynamic

information on storage availability for data movement, and for the planning and

execution of grid jobs. This is designed to facilitate the effective sharing of files,

by monitoring the activity of shared files, and making dynamic decisions on

which files to replace when space is needed.

 Data store monitoring: The access patterns of the data can be

observed to assist in replica management. Data regarding

data movement overhead and data lifetime can also be collected. This can be used

to decide whether the task must

be scheduled near the data store or data moved near the

task. It is also possible to maintain the meta-data of the

different data stores and their elements in order to assist in

storage management, handling requests, etc. The meta-data

could also contain information about the locks on the different data elements

 Static Host (SH) monitoring: We collect the CPU load, available memory,

bandwidth details, etc. from the host. The hosts can either be monitored

continuously or on being triggered by detecting network activity on a particular

port. This information can be used by the scheduler to choose the

donor.

 Process monitoring: Changes in the process state can be

monitored.

 Application monitoring: Checkpoints can be inserted into the

application to capture the intermediate state of the application

and the data required for performance analysis.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 28/32

Any query to a mobile device is routed through its associated

SO. The object reference of the SO is obtained from the naming

service of the DSO by querying for the IP of device as name [3].

The query is forwarded to the MH, with the help of the current

location information available at the SO. In case the MH is not

reachable due to reasons like out-of-coverage, the query is handled

at the SO level. The monitoring system stores the historical data

related to the MH movement pattern in the repository for

characterizing the movement pattern. This helps in scheduling

tasks and storing data.

In our proposed model, the monitoring system will observe the

requests and try to find out from which place and for which file

the requests have come. Based on the observations, the lifetime of

the file, data transfer time and the available space in the data

store, the system chooses the optimal location. This is done by

maintaining the history in the monitoring system about the

requested queries and the lifetime of the data which they are

accessing to predict the location as well as to initiate the replica

dynamically. Although the probability of prediction is high, still

even if it fails, it affects only the performance of the system, not

its correctness.

The monitoring daemon, which collects the monitoring data,

runs on the static nodes of the mobile grid. Mobile nodes run the

exporter daemon, which exports the monitoring data of the mobile

nodes to the mobile support station. The monitoring system resides

on the CR of the cluster and maintains a monitoring data

repository to store the data observed within the cluster. As the

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 29/32

CRs interact among themselves over a peer-to-peer overlay, the

monitoring system is scalable, fault-tolerant and ensures automatic

reconfiguration.

HEALTH CARE APPLICATION SCENARIO

One of the possible scenarios wherein we can envision the

integration of sensors, mobile nodes and data grids is the following

health monitoring and treatment example. Patients could have

sensors embedded inside their bodies to keep checking for specific

data such as blood pressure, cholesterol level, etc. When local

sensor data exceeds certain pre-defined thresholds, the sensor

passes the data to a nearby mobile device, possibly the patient's

hand-held device. The device is part of our mobile grid and can

utilize and provide services. It uses the grid to aggregate data

from multiple sensors from the same patient, uses historical

information and some computation to decide if this pattern

(combination of data values from various sensors on a patient) is

abnormal and requires emergency handling. If this is the case, the

details of the patient are collected from the grid and forwarded to

a health care centre. Based on the location of the mobile device

which sent the data to the grid, the location of the patient is

tracked.

A computer system at the health care centre (it is also part of

the grid) locates a nearby ambulance by querying the grid. The

ambulance carries some mobile devices and can be directed to

the patient's location as soon as possible. This computer system

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 30/32

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 31/32

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.SC CS COURSE NAME: GRID COMPUTING

COURSE CODE: 17CSP205B UNIT V(Distrubuted Algorithms) BATCH-2017-2019

Prepared by Dr.S.Veni, Associate Prof, Department of CS, CA & IT, KAHE Page 32/32

POSSIBLE QUESTIONS(2 Marks)

1. What is mobile Grid

2. Define Simulated Annealing Technique.

3. What is DOS Grid?

4. Write the use of Genetic algorithm.

5. Write the need of Clustering algorithm.

6. What is Genetic Clustering Algorithm?

7. List any two application of Mobile Grid.

8. Define JSS.

9. What is scalability issue?

10. What is consistency issue?

POSSIBLE QUESTIONS(6 Marks)

1. Explain the implementation of Distributed Simulated Annealing Algorithms for

Job Shop Scheduling.

2. Give an overview of Mobile Grid.

3. Explain Simulated Annealing Technique.

4. Give an overview of DOS Grid.

5. Brief about the Clustering Algorithm for Simulated Annealing.

6. Write about Mobile Grid.

7. Brief about the combination of Genetic Algorithm and Simulated Annealing

Algorithm.

8. Describe a sample health care application scenario for Mobile grid.

9. Discuss about the implementation of Clustering Algorithm and Genetic Clustering

Algorithm.

10. Discuss how scalability and consistency are ensured in Mobile Grid.

S.
N
O

QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4 KEY

1
JSS belongs (job shop
scheduling) to which class
of problem

NPP hard

optimisation

NP_soft

optimization

NP_hard

optimization

NPP_soft

optimization

NP_hard

optimization

2
 What is the expanded

form of SA
simulated analysis sorted algoritm sorting algoritm

simulated

annealing

simulated

annealing

3
 can be defined as a set
of the edges from the first
vertex to the last vertex

long path short path critical path vertical path critical path

4 TMA means
temperature

method algorithm

time modify

algorithm

time method

algorithm

temperature

modify algorithm

temperature
modify
algorithm

5 LEA can be expanded as Lock edge
algorithm

Locking Edges
Algorithm

Locking End
algorithm

Lock End
algorithm

Locking
Edges

6 In ----------monitoring
changes in the process

applications static host static
applications

process process

7 NASA's IPG,is in the
expand IPG

Information
power grid

Inform power grid Inform poor
grid

Information
power ground

Information
power grid

8 The mobile grid is
visualized as a cluster of

clusters mobile grid computing clusters

9 TSP is expanded as Travelling
Salesman Problem

Travel sale Problem Traveling sales
problem

tools in sales
problem

Travelling
Salesman

10 CPM stands for critical path and
methodology

critical path method critical path
modification

critical path
method

critical path
method

UNIT V

Objective Type Questions

Karpagam Academy of Higher Education
Department of CS, CA & IT

Subject: Grid Computing (17CSP205B)
Batch : 2017-2019 Class: I M.Sc CS

11
 the nodes holds the
responsibility of task
divisions,task awards,to
client node is

central node client node server node task node central node

12 Which node solves the sub
task assigned to it

central node client node server node vertical node client node

13 Expand MLEA Modified lock end
algorithm

mode lock edges
algorithm

modified lock
end applications

Modified
locking edges

Modified
locking

14
 is the act of collectint
informations concerning
the characteristics and
status of resources of

concerning
monitoring and

concern
monitoring both a and b monitoring

15 MH monitoring stands for mobile host mobile home moving host move host mobile host

16
The messages are
retransmitted in case of
loss of message------- in
transmission

data delivery report package cluster package

17 Expanded form of GCA Genetic clustring
algorithm

Generic cluster
Algorithm

Generic
clustering

General cluster
algorithm

Genetic
clustring

18
The messages are ---------
in case of loss of message
package in transmission

retransmitted banned stopping forever transmitted retransmitted

19
 monitoring access
patterns of data and assist
in replica management

data stored mobile host mobile data process data stored

20 is key issue in
distributed systems

consistency availability both a and b scalability scalability

21 JSS stands for Job shop
scheduling

jop somu schedulig job system
scheduling

jop system somu Job shop
scheduling

22
A set of jobs whose
operators are to be
provided on a set of

MCC JSS ARC ARCC JSS

23 ___________ belongs to
the type of local starts

SA ARC JSS MCC SA

24 DPS stands for Digital protocol
system

Digital processing
system

Digital
program system

Digital process
system

Digital
protocol

25
The node holds the
responsibilty of task down
task award to client node is

Control nodes client node sewer node server node
Control

nodes

26 TMA stands for
Temperature

modifier algorithm

Temperature

modifier assembly

Temperature

mode assemble

Temperature
measuring
algorithm

Temperature
modifier
algorithm

27 LEA stands for Locking edges
algorithms

Locking edges
assembly

Locking
algorithms

Locking easier
assembly

Locking
edges

28 Cpm stands for Critical parallel
method

critical path method critical parset
method

critical program
method

critical path
method

29
The node wholes the
responsibilty of task
decision is called

Central node Central path central client central data Central node

30 MLEA stands for Mode language
edge assembler

Modified language
edges algorithms

Modified
locking edges

Modified lock
end assembly

Modified
locking

31 GIS system stands for Grid information
server

Grid information
service techonogly

Grid
information

Grid
information

Grid
information

32 _______________ is a
interconnected

Parallel computing Parset Cluster several groups Cluster

33
__________ is the act of
collection information
concering the characterstic
and state of resuming of

several groups Grid resources cluster Monitoring Monitoring

34

________ data regarding
the block of device
connectivity ,mobility
strength etc at the

Mobile host

modulation

Mobile host

monitoring

Mobile

handling

monitoring

Mobile grids

Mobile host

monitoring

35
________ changes in the
presented can be
monitored

System services Monitoring client Monitoring

36 ______is possible to
achieve super-linear speed

JBS SA Travelling
Salesman

Simpleprogram,
multipledata

Travelling
Salesman 37 The client-server

communication message-
Simulate
Annealing

Remote Execution Remote
procedure calls

Collection of
process

Remote
procedure

38 SA belongs to the type of
______algorithms global search breadth first depth first local search local search

39 ________ belongs to the
type of ______algorithms

ARC ARCC Simulated
Annealing

JSS Simulated
Annealing

40 ______ algorithms
represent the algorithmic ARC ARCC Simulated

Annealing
Distrubuted Distrubuted

41
Distrubuted algorithms
represent the algorithmic
formulatin of _____

Remote Distrubuted local global Distrubuted

42 Critical Path can be
defined as a set of _____

points edges nodes paths edges
43 Critical Path can be defined

as a set of edges from ____
first second zero start first

44 ______ has been
considered a good tool for

ARC ARCC Simulated
Annealing

JSS Simulated
Annealing

	1.pdf (p.1-3)
	OBJECTIVES
	UNIT- I
	UNIT- II
	UNIT- III
	UNIT- IV
	UNIT- V

	2.pdf (p.4-7)
	REFERENCES

	3.pdf (p.8-39)
	4.pdf (p.40-56)
	5.pdf (p.57-77)
	6.pdf (p.78-85)
	7.pdf (p.86-122)
	8.pdf (p.123-126)
	9.pdf (p.127-159)
	10.pdf (p.160-165)
	11.pdf (p.166-197)
	12.pdf (p.198-201)

