
INTRODUCTION TO SOFTWARE ARCHITECTURE 2017-2019 Batch

Department of CS, CA & IT Page 1/2

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

 (For the candidates admitted from 2017 onwards)

 DEPARTMENT OF COMPUTER SCIENCE, CA & IT

SUBJECT : INTRODUCTION TO SOFTWARE ARCHITECTURE

SEMESTER : II

SUBJECT CODE : 17CSP204 CLASS : I M.Sc.CS

__

COURSE OBJECTIVE:

This course introduces basic concepts and principles about software design and software

architecture. It starts with discussion on design issues followed by coverage on design patterns. It

then gives an overview of architectural structures and styles. Practical approaches and methods

for creating and analyzing software architecture are presented. The emphasis is on the interaction

between quality attributes and software architecture. Students will also gain experiences with
examples in design pattern application and case studies in software architecture.

COURSE OUTCOME:

A student who successfully completes this course should at the minimum be able to:

 Design and motivate software architecture for large scale software systems

 Recognize major software architectural styles design patterns and frameworks

 Generate architectural alternatives for a problem and select among them

 Use well-understood paradigms for designing new systems

 Identify and assess the quality attributes of a system at the architectural level

.

UNIT I

Introduction – Software Architecture – Software Design levels – An Engineering Discipline for

Software – The status of Software Architecture – Architectural styles – Pipes and filters – Data

Abstraction and Object-oriented organization – Event based implicit invocation – Layered

systems – Repositories – Interpreters – Process Control – Other Familiar Architecture –

Heterogeneous Architectures.

UNIT II

Case studies - Key word is Context – Instrumentation Software – Mobile Robotics – Cruise

Control – Three Vignettes in Mixed Style

UNIT III

Shared Information Systems – Database Integration – Integration in Software Development

Environments – Integration in the Design of Buildings – Architectural structures for shared

Information Systems

INTRODUCTION TO SOFTWARE ARCHITECTURE 2017-2019 Batch

Department of CS, CA & IT Page 2/2

UNIT IV

Guidance for User-Interface Architectures – The quantified Design Space – The value of

Architectural formalism – Formalizing the Architecture of a specific system – Formalizing an

Architectural Style – Formalizing an Architectural Design Space – Towards a Theory of

Software Architecture – Z Notation

UNIT V

Requirements for Architecture – Description Languages – First class connectors – Adding

Implicit Invocation to Traditional Programming Languages – Tools for Architectural Design –

UniCon – Exploiting Style in Architectural Design Environments – Beyond definition/Use:

Architectural Interconnection

SUGGESTED READINGS

TEXT BOOKS

1. Mary Shaw., & David Garlan. Software Architecture – Perspectives on an Emerging

Discipline. New Delhi: Prentice Hall of India Eastern Economy edition.

2. Taylor Nenad., Medvidovic Eric., Dashofy, V., & Richard, N. (2010). Software

Architecture: Foundations Theory and Practice. New Delhi: Wiley India Pvt. Limited.

REFERENCES

1. Boris Beizer. (1990). Software Testing Techniques (2
nd

 ed.). Van Nostrand Reinhold.

ESE MARKS ALLOCATION

1. Section A

20 x 1 = 20

20

2. Section B

5 x 6 = 40

Either ‘A’ or ‘B’ choice

30

3. Section C

1 x 10 = 10

Compulsory Question

10

 Total 60

Lesson Plan 2017 -2019
Batch

Prepared by N. Manonmani, Department of Computer Science, KAHE 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

LECTURE PLAN

DEPARTMENT OF COMPUTER SCIENCE

STAFF NAME: N. MANONMANI

SUBJECT NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

SUB.CODE: 17CSP204

SEMESTER: II CLASS: I M.Sc (CS)

S.No.

Lecture

Duration

(Hours)

Topics to be Covered Support

Materials/Page

Nos

 UNIT-I

1. 1 Introduction: Software Architecture T1: 1-3

2. 1
Software Design levels

An Engineering Discipline for Software

T1: 4

T1: 5-14

3. 1 The status of Software Architecture T1: 15-17

4. 1 Architectural styles T1: 19-20

5. 1
Pipes and filters, Data Abstraction and Object-

oriented organization
T1: 21-23

6. 1 Event based implicit invocation T1: 23-24

7. 1 Layered systems T1: 25-26

8. 1 Repositories, Interpreters T1: 26, T1: 27

9. 1 Process Control T1: 27-30

10. 1
Other Familiar Architecture,

Heterogeneous Architectures

T1: 31

T1: 32

11. 1
Recapitulation and Discussion of important

questions

Total No. of Hours Planned for Unit-I = 11

Lesson Plan 2017 -2019
Batch

Prepared by N. Manonmani, Department of Computer Science, KAHE 2

 UNIT-II

1. 1 Case studies - Key word is Context T1: 33

2. 1

Solution 1: Main Program/Subroutine with

Shared Data,

Solution 2: Abstract Data Types

T1: 34-35

3. 1
Solution 3: Implicit Invocation,

Solution 4: Pipes and Filters
T1:36-37

4. 1

Instrumentation Software: An Object-Oriented

Model

A Layered Model

T1: 39-40

5. 1
A Pipe-and-Filter Model

A Modified Pipe-and-Filter
T1: 40-42

6. 1 Mobile Robotics - Design Consideration T1: 43

7. 1
Solution 1: Control Loops

Solution 2: Layered Architecture
T1: 44-46

8. 1

Solution 3 : Implicit Invocation

Solution 4: Blackboard Architecture

Comparisons

T1: 47-51

9. 1 Cruise Control T1: 51-58

10. 1 Three Vignettes in Mixed Style T1: 60-66

11. 1
Recapitulation and Discussion of important

questions

 Total No. of Hours Planned for Unit-II = 11

 UNIT-III

1. 1 Shared Information Systems T1: 69

2. 1
Database Integration: Batch Sequential, Simple

Repository
T1 : 70-74

3. 1

Database Integration: Virtual Repository,

Hierarchical Layers,

Evolution of Shared Information Systems in

Business Data Processing

T1: 75-80

4. 1
Integration in Software Development

Environments
T1: 82

5. 1
Batch Sequential, Transition from Batch

Sequential to Repository
T1 : 83-84

Lesson Plan 2017 -2019
Batch

Prepared by N. Manonmani, Department of Computer Science, KAHE 3

6. 1

Repository, Hierarchical Layers,

Evolution of Shared Information Systems in

Business Data Processing

T1: 85-88

7. 1 Integration in the Design of Buildings T1: 88

8. 1 Repository T1: 89

9. 1

Intelligent Controls, Evolution of Shared

Information Systems in Business Data

Processing

T1: 90-91

10. 1
Architectural structures for shared Information

Systems
T1: 93-94

11. 1
Recapitulation and Discussion of important

questions

 Total No. of Hours Planned for Unit-III = 11

UNIT-IV

1. 1
Guidance for User-Interface Architectures:

Design Spaces and Rules
T1: 97-99

2. 1 A design space for User-Interface Architectures T1: 100-109

3. 1

Design Rules for User-Interface Architectures

Applying the Design Space: An Example

A Validation Experiment

How the Design Space was prepared

T1: 110-114

4. 1
The quantified Design Space

Overview, Background
T1: 116-119

5. 1 Quantified Design Space T1: 120-127

6. 1 The value of Architectural formalism T1: 129

7. 1
Formalizing the Architecture of a specific

system
T1: 130-132

8. 1 Formalizing an Architectural Style T1: 133-138

9. 1 Formalizing an Architectural Design Space T1: 139-141

10. 1 Towards a Theory of Software Architecture T1: 142

11. 1 Z Notation
T1: 143-146

Lesson Plan 2017 -2019
Batch

Prepared by N. Manonmani, Department of Computer Science, KAHE 4

12. 1
Recapitulation and Discussion of important

questions

 Total No. of Hours Planned for Unit-IV = 12

 UNIT-V

1. 1
Requirements for Architecture- Description

Languages
T1: 147

2. 1

The Linguistic Character of Architectural

Description

Desiderata for Architecture-Description

Languages

T1: 148-154

3. 1 Problems with Existing Languages T1: 155

4. 1

First class connectors:

Current Practice

Problems with Current Practice

A Fresh View of Software System Composition

T1: 160-165

5. 1
Adding Implicit Invocation to Traditional

Programming Languages
T1: 172-181

6. 1 Tools for Architectural Design: UniCon T1: 183-189

7. 1
Components and Connectors, Abstraction and

Encapsulation
T1: 185-186

8. 1
Types and Type Checking, Accommodating

Analysis Tools
T1: 187-189

9. 1
Exploiting Style in Architectural Design

Environments
T1: 190-203

10. 1

Beyond definition/Use: Architectural

Interconnection

Implementation versus Interaction, Example

T1: 204-207

11. 1

The WRIGHT Model of Architectural

Description

Reasoning about Architectural Descriptions

A Brief Explanation of our Use of CSP

T1: 208-212

12. 1
Recapitulation and Discussion of important

questions

13. 1
Recapitulation and Discussion of previous

semester question papers

Lesson Plan 2017 -2019
Batch

Prepared by N. Manonmani, Department of Computer Science, KAHE 5

14. 1
Recapitulation and Discussion of previous

semester question papers

15. 1
Recapitulation and Discussion of previous

semester question papers

 Total No. of Hours Planned for Unit-V = 15

Total

Planned

Hours

60

TEXT BOOKS

1. Mary Shaw., & David Garlan. Software Architecture – Perspectives on an

Emerging Discipline. New Delhi: Prentice Hall of India Eastern Economy edition.

2. Taylor Nenad., Medvidovic Eric., Dashofy, V., & Richard, N. (2010). Software

Architecture: Foundations Theory and Practice. New Delhi: Wiley India Pvt. Limited.

REFERENCES

1. Boris Beizer. (1990). Software Testing Techniques (2
nd

 ed.). Van Nostrand Reinhold.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 1/41

UNIT-I

SYLLABUS

Introduction – Software Architecture – Software Design levels – An Engineering Discipline for

Software – The status of Software Architecture – Architectural styles – Pipes and filters – Data

Abstraction and Object-oriented organization – Event based implicit invocation – Layered

systems – Repositories – Interpreters – Process Control – Other Familiar Architecture –

Heterogeneous Architectures.

INTRODUCTION TO SOFTWARE ARCHITECTURE

What is Software Architecture?

As the size and complexity of software systems increase, the design and specification of

overall system structure become more significant issues than the choice of algorithms and data

structures of computation.

Software architecture involves the description of elements from which systems are built,

interactions among these elements, patterns that guide their composition, and constraints on these

patterns.

A particular system is defined as a collection of components and interactions among

those components. Such a system may be used as a (composite) element in a larger system.

Architectures are represented abstractly as box-and-line diagrams.

Architectural descriptions serve as a skeleton around which system properties can be

fleshed out. So they play a vital role in exposing the ability of a system to meet its major system

requirements.

The architecture of a software system defines that system in terms of computational

components and interactions among those components.

Components: clients & servers, databases, filters, and layers in a hierarchical system.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 2/41

Interactions at this level of design can be simple and familiar. Ex: procedure calls, shared

variable access.

But they can also be complex and semantically rich. Ex: client-server protocols, database

accessing protocols, synchronous event multicast, and piped streams.

In addition to structure and topology the architecture shows the correspondence between

the system requirements and elements of the constructed system.

Example:

Just as good programmers recognized useful data structures in the late 1960s, good

software system designers now recognize useful system organizations.

One of these is based on the theory of abstract data types. But this is not the only way to organize

a software system. Many other organizations have developed informally over time, and are now

part of the vocabulary of software system designers. For example, typical descriptions of

software architectures include synopses such as (italics ours):

•“Camelot is based on the client-server model and uses remote procedure calls both locally and

remotely to provide communication among applications and servers.”

•“Abstraction layering and system decomposition provide the appearance of system uniformity

to clients, yet allow Helix to accommodate a diversity of autonomous devices.

The architecture encourages a client server model for the structuring of applications.”

•“We have chosen a distributed, object-oriented approach to managing information.”

•“The easiest way to make the canonical sequential compiler into a concurrent compiler is to

pipeline the execution of the compiler phases over a number of processors. . A more effective

way [is to] split the source code into many segments, which are concurrently processed through

the various phases of compilation [by multiple compiler processes] before a final, merging pass

recombines the object code into a single program.”

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 3/41

Other software architectures are carefully documented and often widely disseminated. Examples

include the International Standard Organization's

Open Systems Interconnection Reference Model (a layered network architecture) , the

NIST/ECMA Reference Model (a generic software engineering environment architecture based

on layered communication substrates) , and the X Window System (a distributed windowed user

interface architecture based on event triggering and callbacks) .

We are still far from having a well-accepted taxonomy of such architectural paradigms,

let alone a fully-developed theory of software architecture. But we can now clearly identify a

number of architectural patterns, or styles, that currently form the basic repertoire of a software

architect.

As the size and complexity of software systems increases, the design problem goes

beyond the algorithms and data structures of the computation: designing and specifying the

overall system structure emerges as a new kind of problem. Structural issues include gross

organization and global control structure; protocols for communication, synchronization, and

data access; assignment of functionality to design elements; physical distribution; composition of

design elements; scaling and performance; and selection among design alternatives.

This is the software architecture level of design. There is a considerable body of work on

this topic, including module interconnection languages, templates and frameworks for systems

that serve the needs of specific domains, and formal models of component integration

mechanisms. In addition, an implicit body of work exists in the form of descriptive terms used

informally to describe systems. And while there is not currently a well-defined terminology or

notation to characterize architectural structures, good software engineers make common use of

architectural principles when designing complex software. Many of the principles represent rules

of thumb or idiomatic patterns that have emerged informally over time. Others are more

carefully documented as industry and scientific standards.

It is increasingly clear that effective software engineering requires facility in architectural

software design.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 4/41

 First, it is important to be able to recognize common paradigms so that high-level

relationships among systems can be understood and so that new systems can be built as

variations on old systems.

 Second, getting the right architecture is often crucial to the success of a software system

design; the wrong one can lead to disastrous results.

 Third, detailed understanding of software architectures allows the engineer to make

principled choices among design alternatives.

 Fourth, an architectural system representation is often essential to the analysis and

description of the high-level properties of a complex system.

SOFTWARE DESIGN LEVELS:

System design takes place at many levels. At each level we find

-components, both primitive and composite;

-rules of composition that allow the construction of non-primitive components or

systems;

-rules of behavior that provide semantics for the system

There may be different notations, design problems, analysis techniques at each level.

Software, too, has its design levels.

1. Architecture:

 The design issues involve overall association of system capability with components.

 Components are modules, and inter connections among modules are handled in a variety

of ways.

 Operators guide the composition of systems from subsystems.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 5/41

2. Code:

 The design issues involve algorithms and data structures.

 The components are programming language primitives such as numbers, characters,

pointers, and threads of control.

 Primitive operators are the arithmetic and data manipulation primitives of the language.

 Composition mechanisms include records, arrays, and procedures.

3. Executable:

 The design issues involve memory maps, data layouts, call stacks, and register

allocations.

 The components are bit patterns supported by hardware.

 The operations and compositions are described in machine code.

Our concern here is to improve understanding and precision at the software architecture level. At

this level the components are programs, modules. or systems; a rich collection of interchange

representations and protocols connects the components; and system patterns often guide the

compositions.

AN ENGINEERING DISCIPLINE FOR SOFTWARE:

What is Engineering?

Software engineering is a label applied to a set of current practices for software development.

The more common usage refers to the disciplined application of scientific knowledge to resolve

conflicting constraints and requirements for problems of immediate, practical significance.

Definitions of engineering share some common clauses

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 6/41

Creating cost-effective solutions…..

.... to practical problems

…. by applying scientific knowledge...

…. building things...

…. in the service of mankind

Routine and Innovative Design

Engineering design tasks are of several kinds; one of the most significant distinctions among

them separates routine from innovative design.

Routine Design: involves solving familiar problems, reusing large portions of prior solutions.

Innovative Design: It involves finding novel solutions to unfamiliar problems. One path to

increased productivity is identifying applications that could be routine and developing

appropriate support.

A Model for the Evolution of Engineering Discipline

Engineering has emerged from ad hoc practice in two stages.

1. Management and production techniques enable routine production.

2. The problems of routine production stimulate the development of a supporting science; the

mature science eventually merges with established practice to yield professional engineering

practice.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 7/41

Fig: Evolution of an Engineering Discipline

The lower lines track the technology, and the upper lines show how the entry of

production skills and scientific knowledge contribute new capability to the engineering practice.

The Current State of Software Technology

The engineering problem is creating cost-effective solutions to practical problems... building

things in the service of mankind.

Scientific basis for Engineering practice

Engineering practice emerges from commercial practice by exploiting the results of a companion

science.

One characterization of progress in programming languages and tools has been regular increases

in abstraction level—or the conceptual size of software designers building blocks. To place the

field of Software Architecture into perspective let us begin by looking at the historical

development of abstraction techniques in computer science.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 8/41

High-level Programming Languages

When digital computers emerged in the 1950s, software was written in machine

language; programmers placed instructions and data individually and explicitly in the computer's

memory. Insertion of a new instruction in a program might require hand-checking of the entire

program to update references to data and instructions that moved as a result of the insertion.

Eventually it was recognized that the memory layout and update of references could be

automated, and also that symbolic names could be used for operation codes, and memory

addresses. Symbolic assemblers were the result. They were soon followed by macro processors,

which allowed a single symbol to stand for a commonly-used sequence of instructions. The

substitution of simple symbols for machine operation codes, machine addresses yet to be

defined, and sequences of instructions was perhaps the earliest form of abstraction in software.

In the latter part of the 1950s, it became clear that certain patterns of execution were

commonly useful—indeed, they were so well understood that it was possible to create them

automatically from a notation more like mathematics than machine language. The first of these

patterns were for evaluation of arithmetic expressions, for procedure invocation, and for loops

and conditional statements. These insights were captured in a series of early high-level

languages, of which Fortran was the main survivor.

Higher-level languages allowed more sophisticated programs to be developed, and patterns in the

use of data emerged. Whereas in Fortran data types served primarily as cues for selecting the

proper machine instructions, data types in Algol and it successors serve to state the

programmer’s intentions about how data should be used. The compilers for these languages

could build on experience with Fortran and tackle more sophisticated compilation problems.

Among other things, they checked adherence to these intentions, thereby providing incentives for

the programmers to use the type mechanism.

Progress in language design continued with the introduction of modules to provide

protection for related procedures and data structures, with the separation of a module’s

specification from its implementation, and with the introduction of abstract data types.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 9/41

Maturity of supporting science:

 Each program contains algorithms and data structures.

 Algorithms and data structures began to be abstracted from individual programs.

Research on abstract data types dealt with such issues as the following:

- Specifications (abstract models, algebraic axioms)

- Software structure (bundling representation with algorithms)

- Language issues (modules, scope, user-defined types)

- Information hiding (protecting integrity of information not in specification)

- Integrity constraints (invariants of data structures)

- Rules for composition (declarations)

Abstract Data Types

In the late 1960s, good programmers shared an intuition about software development: If

you get the data structures right, the effort will make development of the rest of the program

much easier. The abstract data type work of the 1970s can be viewed as a development effort that

converted this intuition into a real theory. The conversion from an intuition to a theory involved

understanding

• the software structure (which included a representation packaged with its primitive operators),

• specifications (mathematically expressed as abstract models or algebraic axioms),

• language issues (modules, scope, user-defined types),

• integrity of the result (invariants of data structures and protection from other manipulation),

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 10/41

• rules for combining types (declarations),

• information hiding (protection of properties not explicitly included in specifications).

The effect of this work was to raise the design level of certain elements of software systems,

namely abstract data types, above the level of programming language statements or individual

algorithms. This form of abstraction led to an understanding of a good organization for an entire

module that serves one particular purpose. This involved combining representations, algorithms,

specifications, and functional interfaces in uniform ways. Certain support was required from the

programming language, of course, but the abstract data type paradigm allowed some parts of

systems to be developed from a vocabulary of data types rather than from a vocabulary of

programming-language constructs.

Interaction between Science and Engineering:

The development of good models within the software domain follows the pattern of following

figure.

Fig: Codification Cycle for Science and Engineering

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 11/41

Fig: Evolution of Software Engineering

Codification through Abstraction Mechanisms:

One characteristic of progress in programming languages and tools has been regular

increases in abstraction level—or the conceptual size of the building blocks used by software

designers.

The conversion from an intuition to a theory involved understanding the following:

The software structure, Specifications, Language issues, Integrity of the result, Rules for

combining types, Information hiding.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 12/41

THE STATUS OF SOFTWARE ARCHITECTURE:

Good architectural design has always been a major factor in determining the success of a

software system. Recently, software architecture has begun to emerge as an important field of

study for software engineering practitioners and researchers.

Architectural issues are being addressed by work in areas such as module interface

languages, domain-specific architectures, software reuse, codification of organizational patterns

for software, architectural description languages and architectural design environments.

Two recent workshops brought together researchers and practitioners interested in

software architecture to discuss the current state of the practice and art.

These workshops served to establish a common understanding of the state of the practice, the

kinds of research and development efforts that are in progress, and the important challenges for

this emerging field. Widespread interest in these workshops demonstrates the extent of these

activities, which can be roughly placed into four categories.

 Addressing the problem of architectural characterization by providing new

architectural description languages.

 Addressing the codification of the architectural expertise.

 Addressing frameworks for specific domains.

 Addressing formal underpinnings for architecture.

Software architecture provides benefits for both development and maintenance. For

development, effective software engineers require facility in architectural software design.

 Able to recognize common paradigms

 Getting the right architecture

 Detailed understanding of software architecture

 Architectural system representation

 Fluency in the use of notations

Beyond the development stage, documenting a system’s structure and properties has

various advantages for maintenance. Much of the time spent on maintenance goes to

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 13/41

understanding the existing code. Retaining the designers intentions about system organization

should help maintainers preserve the system’ design integrity

ARCHITECTURAL STYLES:

An architectural pattern is a general, reusable solution to a commonly occurring

problem in software architecture within a given context. The architectural patterns address

various issues in software engineering, such as computer hardware performance limitations, high

availability and minimization of a business risk. Some architectural patterns have been

implemented within software frameworks.

An architectural style defines: a family of systems in terms of a pattern of structural

organization; a vocabulary of components and connectors, with constraints on how they can be

combined.

Some treat architectural patterns and architectural styles as the same, some treat styles as

specializations of patterns.

The main difference is that a pattern can be seen as a solution to a problem, while a style

is more general and does not require a problem to solve for its appearance. List of common

architectural styles:

Dataflow systems:

 Batch sequential

 Pipes and filters

Call-and-return systems:

 Main program and subroutine

 OO systems

Virtual machines:

 Interpreters

 Rule-based systems

Data-centered systems:

 Databases

 Hypertext systems

 Blackboards

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 14/41

Hierarchical layers

Independent components:

 Communicating processes

 Event systems

PIPES AND FILTERS:

 Each components has set of inputs and set of outputs

 A component reads streams of data on its input and produces streams of data on its

output.

 By applying local transformation to the input streams and computing incrementally, so

that output begins before input is consumed. Hence, components are termed as filters.

 Connectors of this style serve as conducts for the streams transmitting outputs of one

filter to inputs of another. Hence, connectors are termed pipes.

Fig : Pipes and Filters

Conditions (invariants) of this style are:

 Filters must be independent entities.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 15/41

 They should not share state with other filter

 Filters do not know the identity of their upstream and downstream filters.

 Specification might restrict what appears on input pipes and the result that appears on the

output pipes.

 Correctness of the output of a pipe-and-filter network should not depend on the order in

which filter perform their processing.

Common specialization of this style includes:

 Pipelines: Restrict the topologies to linear sequences of filters.

 Bounded pipes: Restrict the amount of data that can reside on pipe.

 Typed pipes: Requires that the data passed between two filters have a well-defined type.

Batch sequential system:

A degenerate case of pipeline architecture occurs when each filter processes all of its

input data as a single entity. In these systems pipes no longer serve the function of providing a

stream of data and are largely vestigial.

Example 1: Best known examples of pipe-and-filter architecture are programs written in

UNIXSHELL. Unix supports this style by providing a notation for connecting components [Unix

process] and by providing run-time mechanisms for implementing pipes.

Example 2: Traditionally compilers have been viewed as pipeline systems. Stages in the pipeline

include lexical analysis parsing, semantic analysis and code generation other examples of this

type are.

 Signal processing domains

 Parallel processing

 Functional processing

 Distributed systems.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 16/41

Advantages:

 They allow the designer to understand the overall input/output behavior of a system as a

simple composition of the behavior of the individual filters

 They support reuse: Any two filters can be hooked together if they agree on data.

 Systems are easy to maintain and enhance: New filters can be added to exciting systems.

 They permit certain kinds of specialized analysis eg: deadlock, throughput

 They support concurrent execution.

Disadvantages:

 They lead to a batch organization of processing.

 Filters are independent even though they process data incrementally.

 Not good at handling interactive applications

 When incremental display updates are required.

 They may be hampered by having to maintain correspondences between two

separate but related streams.

 Lowest common denominator on data transmission.

 This can lead to both loss of performance and to increased complexity in writing the

filters.

In a pipe and filter style each component has a set of inputs and a set of outputs. A component

reads streams of data on its inputs and produces streams of data on its outputs, delivering a

complete instance of the result in a standard order. This is usually accomplished by applying a

local transformation to the input streams and computing incrementally so output begins before

input is consumed.

Hence components are termed “filters”. The connectors of this style serve as conduits for the

streams, transmitting outputs of one filter to inputs of another. Hence the connectors are termed

“pipes”. Among the important invariants of the style, filters must be independent entities: in

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 17/41

particular, they should not share state with other filters. Another important invariant is that filters

do not know the identity of their upstream and downstream filters.

Their specifications might restrict what appears on the input pipes or make guarantees about

what appears on the output pipes, but they may not identify the components at the ends of those

pipes.

Furthermore, the correctness of the output of a pipe and filter network should not depend on the

order in which the filters perform their incremental processing—although fair scheduling can be

assumed. (See [5] for an in-depth discussion of this style and its formal properties.) Figure 1

illustrates this style.

Common specializations of this style include pipelines, which restrict the topologies to linear

sequences of filters; bounded pipes, which restrict the amount of data that can reside on a pipe;

and typed pipes, which require that the data passed between two filters have a well-defined type.

A degenerate case of a pipeline architecture occurs when each filter processes all of its input data

as a single entity.1 In this case the architecture becomes a “batch sequential” system. In these

systems pipes no longer serve the function of providing a stream of data, and therefore are

largely vestigial.

Hence such systems are best treated as instances of a separate architectural style.

The best known examples of pipe and filter architectures are programs written in the Unix shell.

Unix supports this style by providing a notation for connecting components (represented as Unix

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 18/41

processes) and by providing run time mechanisms for implementing pipes. As another well-

known example, traditionally compilers have been viewed as a pipeline systems (though the

phases are often not incremental).

The stages in the pipeline include lexical analysis, parsing, semantic analysis, code generation.

(We return to this example in the case studies.) Other examples of pipes and filters occur in

signal processing domains, functional programming , and distributed systems.

Pipe and filter systems have a number of nice properties.

 First, they allow the designer to understand the overall input/output behavior of a system

as a simple composition of the behaviors of the individual filters.

 Second, they support reuse: any two filters can be hooked together r, provided they agree

on the data that is being transmitted between them.

 Third, systems can be easily maintained and enhanced: new filters can be added to

existing systems and old filters can be replaced by improved ones.

 Fourth, they permit certain kinds of specialized analysis, such as throughput and deadlock

analysis.

 Finally, they naturally support concurrent execution.

Each filter can be implemented as a separate task and potentially executed in parallel with other

filters. But these systems also have their disadvantages.2 First, pipe and filter systems often lead

to a batch organization of processing.

Although filters can process data incrementally, since filters are inherently independent, the

designer is forced to think of each filter as providing a complete transformation of input data to

output data. In particular, because of their transformational character, pipe and filter systems are

typically not good at handling interactive applications.

 This problem is most severe when incremental display updates are required, because the

output pattern for incremental updates is radically different from the pattern for filter

output.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 19/41

 Second, they may be hampered by having to maintain correspondences between two

separate, but related streams.

 Third, depending on the implementation, they may force a lowest common denominator

on data transmission, resulting in added work for each filter to parse and unparse its data.

 This, in turn, can lead both to loss of performance and to increased complexity in writing

the filters themselves.

DATA ABSTRACTION AND OBJECT-ORIENTED ORGANIZATION:

In this approach, data representation and their associated primitive operations are

encapsulated in the abstract data type (ADT) or object. The components of this style are

objects/ADT‟s objects interact through function and procedure invocations. Objects are

examples of a type of component we call a manager because it is responsible for preserving the

integrity of a resource.

Two important aspects of this style are:

 Object is responsible for preserving the integrity of its representation.

 Representation is hidden from other objects.

Fig: Abstract Data Types and Objects

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 20/41

Advantages:

 It is possible to change the implementation without affecting the clients because an object

hides its representation from clients.

 The bundling of a set of accessing routines with the data they manipulate allows

designers to decompose problems into collections of interacting agents.

Disadvantages:

 To call a procedure, it must know the identity of the other object.

 Whenever the identity of object changes it is necessary to modify all other objects that

explicitly invoke it.

In this style data representations and their associated primitive operations are encapsulated in an

abstract data type or object. The components of this style are the objects—or, if you will,

instances of the abstract data types. Objects are examples of a sort of component we call a

manager because it is responsible for preserving the integrity of a resource (here the

representation). Objects interact through function and procedure invocations. Two important

aspects of this style are (a) that an object is responsible for preserving the integrity of its

representation (usually by maintaining some invariant over it), and (b) that the representation is

hidden from other objects.

The use of abstract data types, and increasingly the use of object-oriented systems, is, of course,

widespread. There are many variations. For example, some systems allow “objects” to be

concurrent tasks; others allow objects to have multiple interfaces.

Object-oriented systems have many nice properties, most of which are well known. Because an

object hides its representation from its clients, it is possible to change the implementation

without affecting those clients. Additionally, the bundling of a set of accessing routines with the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 21/41

data they manipulate allows designers to decompose problems into collections of interacting

agents.

But object-oriented systems also have some disadvantages. The most significant is that in order

for one object to interact with another (via procedure call) it must know the identity of that other

object. This is in contrast, for example, to pipe and filter systems, where filters do need not know

what other filters are in the system in order to interact with them. The significance of this is that

whenever the identity of an object changes it is necessary to modify all other objects that

explicitly invoke it. In a module oriented language this manifests itself as the need to change the

“import” list of every module that uses the changed module. Further there can be side effect

problems: if A uses object B and C also uses B, then C's effects on B look like unexpected side

effects to A, and vice versa.

EVENT-BASED, IMPLICIT INVOCATION:

 Instead of invoking the procedure directly a component can announce one or more

events.

 Other components in the system can register an interest in an event by associating a

procedure to it.

 When the event is announced, the system itself invokes all of the procedure that have

been registered for the event. Thus an event announcement “implicitly” causes the

invocation of procedures in other modules.

 Architecturally speaking, the components in an implicit invocation style are modules

whose interface provides both a collection of procedures and a set of events.

Advantages:

 It provides strong support for reuse

 Any component can be introduced into the system simply by registering it for the

events of that system.

 Implicit invocation eases system evolution.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 22/41

 Components may be replaced by other components without affecting the

interfaces of other components.

Disadvantages:

 Components relinquish control over the computation performed by the system.

 Concerns change of data

 Global performance and resource management can become artificial issues

Traditionally, in a system in which the component interfaces provide a collection of procedures

and functions, components interact with each other by explicitly invoking those routines.

However, recently there has been considerable interest in an alternative integration technique,

variously referred to as implicit invocation, reactive integration, and selective broadcast. This

style has historical roots in systems based on actors, constraint satisfaction, daemons, and packet-

switched networks.

The idea behind implicit invocation is that instead of invoking a procedure directly, a component

can announce (or broadcast) one or more events. Other components in the system can register an

interest in an event by associating a procedure with the event. When the event is announced the

system itself invokes all of the procedures that have been registered for the event. Thus an event

announcement ``implicitly'' causes the invocation of procedures in other modules.

For example, in the Field system , tools such as editors and variable monitors register for a

debugger’s breakpoint events. When a debugger stops at a breakpoint, it announces an event that

allows the system to automatically invoke methods in those registered tools. These methods

might scroll an editor to the appropriate source line or redisplay the value of monitored variables.

In this scheme, the debugger simply announces an event, but does not know what other tools (if

any) are concerned with that event, or what they will do when that event is announced.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 23/41

Architecturally speaking, the components in an implicit invocation style are modules whose

interfaces provide both a collection of procedures (as with abstract data types) and a set of

events. Procedures may be called in the usual way. But in addition, a component can register

some of its procedures with events of the system. This will cause these procedures to be invoked

when those events are announced at run time. Thus the connectors in an implicit invocation

system include traditional procedure call as well as bindings between event announcements and

procedure calls.

The main invariant of this style is that announcers of events do not know which components will

be affected by those events. Thus components cannot make assumptions about order of

processing, or even about what processing, will occur as a result of their events. For this reason,

most implicit invocation systems also include explicit invocation (i.e., normal procedure call) as

a complementary form of interaction.

Examples of systems with implicit invocation mechanisms abound.

They are used in programming environments to integrate tools, in database management systems

to ensure consistency constraints, in user interfaces to separate presentation of data from

applications that manage the data, and by syntax-directed editors to support incremental semantic

checking.

One important benefit of implicit invocation is that it provides strong support for reuse.

Any component can be introduced into a system simply by registering it for the events of that

system. A second benefit is that implicit invocation eases system evolution. Components may be

replaced by other components without affecting the interfaces of other components in the system.

In contrast, in a system based on explicit invocation, whenever the identity of a that

provides some system function is changed, all other modules that import that module must also

be changed.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 24/41

The primary disadvantage of implicit invocation is that components relinquish control

over the computation performed by the system. When a component announces an event, it has no

idea what other components will respond to it. Worse, even if it does know what other

components are interested in the events it announces, it cannot rely on the order in which they

are invoked. Nor can it know when they are finished.

Another problem concerns exchange of data. Sometimes data can be passed with the

event. But in other situations event systems must rely on a shared repository for interaction. In

these cases global performance and resource management can become a serious issue. Finally,

reasoning about correctness can be problematic, since the meaning of a procedure that announces

events will depend on the context of bindings in which it is invoked. This is in contrast to

traditional reasoning about procedure calls, which need only consider a procedure’s pre- and

post-conditions when reasoning about an invocation of it.

LAYERED SYSTEMS:

 A layered system is organized hierarchically, each layer provides service to the layer

above it and serving as a client to the layer below.

 Inner layers are hidden from all except the adjacent layers.

 Connectors are defined by the protocols that determine how layers interact with each

other.

 Goal is to achieve qualities of modifiability portability.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 25/41

Fig: Layered Systems

Examples:

Database systems

Advantages:

 They support designs based on increasing levels abstraction.

 Allows implementers to partition a complex problem into a sequence of incremental

steps.

 They support enhancement

 They support reuse.

Disadvantages:

 Not easily all systems can be structures in a layered fashion.

 Performance may require closer coupling between logically high-level functions and their

lower-level implementations.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 26/41

 Difficulty to mapping existing protocols into the ISO framework as many of those

 protocols bridge several layers.

Layer bridging: functions in one layer may talk to other than its immediate neighbor.

A layered system is organized hierarchically, each layer providing service to the layer above it

and serving as a client to the layer below. In some layered systems inner layers are hidden from

all except the adjacent outer layer, except for certain functions carefully selected for export. Thus

in these systems the components implement a virtual machine at some layer in the hierarchy. (In

other layered systems the layers may be only partially opaque.) The connectors are defined by

the protocols that determine how the layers will interact. Topological constraints include limiting

interactions to adjacent layers. Figure illustrates this style.

The most widely known examples of this kind of architectural style are layered communication

protocols. In this application area each layer provides a substrate for communication at some

level of abstraction. Lower levels define lower levels of interaction, the lowest typically being

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 27/41

defined by hardware connections. Other application areas for this style include database systems

and operating systems.

Layered systems have several desirable properties.

 First, they support design based on increasing levels of abstraction. This allows

implementers to partition a complex problem into a sequence of incremental steps.

 Second, they support enhancement. Like pipelines, because each layer interacts with at

most the layers below and above, changes to the function of one layer affect at most two

other layers.

 Third, they support reuse. Like abstract data types, different implementations of the same

layer can be used interchangeably, provided they support the same interfaces to their

adjacent layers.

 This leads to the possibility of defining standard layer interfaces to which different

implementers can build. (A good example is the OSI ISO model and some of the X

Window System protocols.)

But layered systems also have disadvantages. Not all systems are easily structured in a layered

fashion. And even if a system can logically be structured as layers, considerations of

performance may require closer coupling between logically high-level functions and their lower-

level implementations. Additionally, it can be quite difficult to find the right levels of

abstraction. This is particularly true for standardized layered models. One notes that the

communications community has had some difficulty mapping existing protocols into the ISO

framework: many of those protocols bridge several layers.

In one sense this is similar to the benefits of implementation hiding found in abstract data types.

However, here there are multiple levels of abstraction and implementation. They are also similar

to pipelines, in that components communicate at most with one other component on either side.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 28/41

But instead of simple pipe read/write protocol of pipes, layered systems can provide much richer

forms of interaction. This makes it difficult to define system independent layers (as with

filters)—since a layer must support the specific protocols at its upper and lower boundaries. But

it also allows much closer interaction between layers, and permits two-way transmission of

information.

REPOSITORIES: [data cantered architecture]

 Goal of achieving the quality of integrity of data.

 In this style, there are two kinds of components.

i. Central data structure- represents current state.

ii. Collection of independent components which operate on central data store.

The choice of a control discipline leads to two major sub categories.

 Type of transactions is an input stream trigger selection of process to execute

 Current state of the central data structure is the main trigger for selecting processes to

execute. The Active repository can be a blackboard.

Blackboard:

Three major parts:

 Knowledge sources: Separate, independent parcels of application dependents

knowledge.

 Blackboard data structure: Problem solving state data, organized into an application

dependent hierarchy

 Control: Driven entirely by the state of blackboard

Invocation of a knowledge source (ks) is triggered by the state of blackboard.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 29/41

Fig: The Blackboard

The actual focus of control can be in

- Knowledge source

- Blackboard

- Separate module or

- Combination of these

Blackboard systems have traditionally been used for application requiring complex interpretation

of signal processing like speech recognition, pattern recognition.

In a repository style there are two quite distinct kinds of components: a central data structure

represents the current state, and a collection of independent components operate on the central

data store. Interactions between the repository and its external components can vary significantly

between systems.

The choice of control discipline leads to major subcategories. If the types of transactions in an

input stream of transactions trigger selection of processes to execute, the repository can be a

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 30/41

traditional database. If the current state of the central data structure is the main trigger of

selecting processes to execute, the repository can be a blackboard.

Figure illustrates a simple view of blackboard architecture. The blackboard model is

usually presented with three major parts:

The knowledge sources: separate, independent parcels of application dependent

knowledge. Interaction among knowledge sources takes place solely through the blackboard.

The blackboard data structure: problem-solving state data, organized into an

application-dependent hierarchy. Knowledge sources make changes to the blackboard that lead

incrementally to a solution to the problem.

Control: driven entirely by state of blackboard. Knowledge sources respond opportunistically

when changes in the blackboard make them applicable.

In the diagram there is no explicit representation of the control component. Invocation of a

knowledge source is triggered by the state of the blackboard. The actual locus of control, and

hence its implementation, can be in the knowledge sources, the blackboard, a separate module, or

some combination of these.

Blackboard systems have traditionally been used for applications requiring complex

interpretations of signal processing, such as speech and pattern recognition. They have also

appeared in other kinds of systems that involve shared access to data with loosely coupled

agents.

There are, of course, many other examples of repository systems. Batch sequential

systems with global databases are a special case. Programming environments are often organized

as a collection of tools together with a shared repository of programs and program fragments.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 31/41

Even applications that have been traditionally viewed as pipeline architectures may be more

accurately interpreted as repository systems.

For example, as we will see later, while compiler architecture has traditionally been

presented as a pipeline, the “phases” of most modern compilers operate on a base of shared

information (symbol tables, abstract syntax tree, etc.).

INTERPRETERS:

 An interpreter includes pseudo program being interpreted and interpretation engine.

 Pseudo program includes the program and activation record.

 Interpretation engine includes both definition of interpreter and current state of its

execution.

Interpreter includes 4 components:

1. Interpretation engine: to do the work

2. Memory: that contains pseudo code to be interpreted.

3. Representation of control state of interpretation engine

4. Representation of control state of the program being simulated.

Ex: JVM or “virtual Pascal machine”

Advantages:

Executing program via interpreters adds flexibility through the ability to interrupt and

query the program.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 32/41

Disadvantages: Performance cost because of additional computational involved.

Fig: Interpreter

Table Driven Interpreters

In an interpreter organization a virtual machine is produced in software. An interpreter

includes the pseudo-program being interpreted and the interpretation engine itself. The pseudo-

program includes the program itself and the interpreter’s analog of its execution state (activation

record). The interpretation engine includes both the definition of the interpreter and the current

state of its execution. Thus an interpreter generally has four components: an interpretation engine

to do the work, a memory that contains the pseudo-code to be interpreted, a representation of the

control state of the interpretation engine, and a representation of the current state of the program

being simulated.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 33/41

Interpreters are commonly used to build virtual machines that close the gap between the

computing engine expected by the semantics of the program and the computing engine available

in hardware. We occasionally speak of a programming language as providing, say, a “virtual

Pascal machine.” We will return to interpreters in more detail in the case studies.

PROCESS CONTROL:

This architectural style is based on control loops.

 Object-oriented and functional designs are characterized by the kinds of components that

appear.

 Control loop designs are characterized by both the kinds of components involved and the

special relations that must hold among them.

Process Control Paradigms:

Continuous processes of many kinds convert input materials to products with specific

properties by performing operations on the inputs and on intermediate products.

Process Control Definitions:

Process variables: properties of the process that can be measured

Controlled variable: process variable whose value of the system is intended to control

Input variable: process variable that measures an input to the process

Manipulated variable: process variable whose value can be changed by the controller.

Set point: the desired value for a controlled variable

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 34/41

Open-loop system: system in which information about process variables is not used to adjust the

system.

Closed-loop system: system in which information about process variables is used to manipulate a

process variable to compensate for variations in process variables and operating conditions.

Feedback control system: the controlled variable is measured and the result is used to manipulate

one or more of the process variables

Feed forward control system: some of the process variables are measured, and anticipated

disturbances are compensated without waiting for changes in the controlled variable to be

visible.

The open-loop assumptions are rarely valid for physical processes in the real world. More

often, properties such as temperature, pressure and flow rates are monitored, and their values are

used to control the process by changing the settings of apparatus such as valve, heaters and

chillers. Such systems are called closed loop systems.

Fig: open-loop temperature control

A home thermostat is a common example; the air temperature at the thermostat is measured, and

the furnace is turned on and off as necessary to maintain the desired temperature. Below figure

shows the addition of a thermostat to convert above figure to a closed loop system.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 35/41

Fig: closed-loop temperature control

Feedback control:

Above figure corresponds to below figure as follows:

 The furnace with burner is the process

 The thermostat is the controller

 The return air temperature is the input variable

 The hot air temperature is the controlled variable

 The thermostat setting is the set point

 Temperature sensor is the sensor

Fig: feedback control

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 36/41

Feedforward control:

It anticipates future effects on the controlled variable by measuring other process

variables and adjusts the process based on these variables. The important components of a feed

forward controller are essentially the same as for a feedback controller except that the sensor(s)

obtain values of input or intermediate variables.

Fig: feed forward control

These are simplified models

 They do not deal with complexities - properties of sensors, transmission delays &

 calibration issues

 They ignore the response characteristics of the system, such as gain, lag and hysteresis.

 They don’t show how combined feed forward and feedback

 They don’t show how to manipulate process variables.

A Software Paradigm for Process Control:

An architectural style for software that controls continuous processes can be based on the

process-control model, incorporating the essential parts of a process-control loop:

Computational elements: separate the process of interest from the controlled policy

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 37/41

 Process definition, including mechanisms for manipulating some process variables

 Control algorithm, for deciding how to manipulate variables

Data element: continuously updated process variables and sensors that collect them

 Process variables, including designed input, controlled and manipulated variables and

knowledge of which can be sensed

 Set point, or reference value for controlled variable

 Sensors to obtain values of process variables pertinent to control

The control loop paradigm: establishes the relation that the control algorithm exercises.

OTHER FAMILIAR ARCHITECTURES:

 Distributed processes: Distributed systems have developed a number of common

organizations for multi-process systems. Some can be characterized primarily by their

topological features, such as ring and star organizations. Others are better characterized in

terms of the kinds of inter-process protocols that are used for communication (e.g.,

heartbeat algorithms).

 Main program/subroutine organizations: The primary organization of many systems

mirrors the programming language in which the system is written. For languages without

support for modularization this often results in a system organized around a main

program and a set of subroutines.

 Domain-specific software architectures: These architectures provide an organizational

structure tailored to a family of applications, such as avionics, command and control, or

vehicle management systems. By specializing the architecture to the domain, it is

possible to increase the descriptive power of structures.

 State transition systems: These systems are defined in terms a set of states and a set of

named transitions that move a system from one state to another.

There are numerous other architectural styles and patterns. Some are widespread and others are

specific to particular domains. While a complete treatment of these is beyond the scope of this

paper, we briefly note a few of the important categories.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 38/41

• Distributed processes: Distributed systems have developed a number of common

organizations for multi-process systems [37]. Some can be characterized primarily by their

topological features, such as ring and star organizations. Others are better characterized in terms

of the kinds of inter-process protocols that are used for communication (e.g., heartbeat

algorithms).

One common form of distributed system architecture is a “client-server” organization [38]. In

these systems a server represents a process that provides services to other processes (the clients).

Usually the server does not know in advance the identities or number of clients that will access it

at run time. On the other hand, clients know the identity of a server (or can find it out through

some other server) and access it by remote procedure call.

• Main program/subroutine organizations: The primary organization of many systems mirrors

the programming language in which the system is written. For languages without support for

modularization this often results in a system organized around a main program and a set of

subroutines. The main program acts as the driver for the subroutines, typically providing a

control loop for sequencing through the subroutines in some order.

• Domain-specific software architectures: Recently there has been considerable interest in

developing “reference” architectures for specific domains. These architectures provide an

organizational structure tailored to a family of applications, such as avionics, command and

control, or vehicle management systems. By specializing the architecture to the domain, it is

possible to increase the descriptive power of structures. Indeed, in many cases the architecture is

sufficiently constrained that an executable system can be generated automatically or semi-

automatically from the architectural description itself.

• State transition systems: A common organization for many reactive systems is the state

transition system [40]. These systems are defined in terms a set of states and a set of named

transitions that move a system from one state to another.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 39/41

• Process control systems: Systems intended to provide dynamic control of a physical

environment are often organized as process control systems. These systems are roughly

characterized as a feedback loop in which inputs from sensors are used by the process control

system to determine a set of outputs that will produce a new state of the environment.

HETEROGENEOUS ARCHITECTURES:

Architectural styles can be combined in several ways:

 One way is through hierarchy. Example: UNIX pipeline

 Second way is to combine styles is to permit a single component to use a mixture of

architectural connectors. Example: “active database”

 Third way is to combine styles is to completely elaborate one level of architectural

description in a completely different architectural style. Example: case studies.

Thus far we have been speaking primarily of “pure” architectural styles.

 While it is important to understand the individual nature of each of these styles, most

systems typically involve some combination of several styles. There are different ways in

which architectural styles can be combined. One way is through hierarchy. A component

of a system organized in one architectural style may have an internal structure that is

developed a completely different style. For example, in a Unix pipeline the individual

components may be represented internally using virtually any style— including, of

course, another pipe and filter, system.

 What is perhaps more surprising is that connectors, too, can often be hierarchically

decomposed. For example, a pipe connector may be implemented internally as a FIFO

queue accessed by insert and remove operations.

 A second way for styles to be combined is to permit a single component to use a mixture

of architectural connectors. For example, a component might access a repository through

part of its interface, but interact through pipes with other components in a system, and

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 40/41

accept control information. (In fact, Unix pipe and filter systems do this, the file system

playing the role of the repository and initialization switches playing the role of control.)

 Another example is an “active database”. This is a repository which activates external

components through implicit invocation. In this organization external components

register interest in portions of the database. The database automatically invokes the

appropriate tools based on this association. (Blackboards are often constructed this way;

knowledge sources are associated with specific kinds of data, and are activated whenever

that kind of data is modified.)

 A third way for styles to be combined is to completely elaborate one level of architectural

description in a completely different architectural style.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: I (Software Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 41/41

POSSIBLE QUESTIONS

PART – B

1. Elucidate about An Engineering Discipline for Software.

2. Explain about Pipes and Filters and Object-oriented organization with example.

3. What is a Software Architecture? Discuss on Software Design Levels.

4. Discuss on Repositories and Interpreter.

5. Elaborate a model for Evolution of an Engineering Discipline with a Diagram.

6. Discuss in detail about Layered Systems and Repository style.

7. Elucidate on the Current state of Software Technology.

8. What are Architecture Styles? Explain.

PART – C

1. Compare and contrast the various types of Architectural Styles

2. Describe An Engineering Discipline for Software

S.NO QUESTION CHOICE 1 CHOICE 2 CHOICE 3 CHOICE 4 ANSWER

1 The KWIC means

Key Word in

Context

Key word in

Constant

Key word as

Context

Key word as

Capital

Key Word in

Context

2

The KWIC index system outputs a listing of all

___________ of all lines in alphabetical order circular shifts

ordered set of

words

ordered set of

characters set of lines circular shifts

3

The ______________ solution decomposes the

problem according to the four basic functions

performed: input, shift, alphabetize, and output.

Main

program/Subr

outine with

shared data

abstract data

type layered event based

Main

program/Subr

outine with

shared data

4

Data is communicated between the components

through ___________. shared storage module algorithm data shared storage

5

Communication between the computational

components and the shared data is an unconstrained

__________ protocol read write network

Communicati

on read read write

6

In Abstract Data Types each module provides an

interface that permits other components to access

data only by invoking ____________ shared storage module

procedures in

that interface data

procedures in

that interface

7

In ____________ solution computations are

invoked implicitly as data is modified.

Implicit

Invocation

abstract data

type layered

process

control

Implicit

Invocation

8

The KWIC index system outputs a listing of all

circular shifts of all lines in ________ order. forward alphabetical backward circle alphabetical

9

In pipe and filter new functions are easily added to

the system by ___________ at the appropriate point

in the processing sequence inserting filter editing filter deleting filter copying filter inserting filter

10

The permuted” [sic] index for the Unix Man pages

is an example of ____________ KWIC

implicit

invocation

instrumentati

on software robotics KWIC

11

The data types used in oscilloscopes is

waveforms,

signals int float char

waveforms,

signals

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I MSC CS SUBJECT NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

SUBJECT CODE: 17CSP204 BATCH-2017-2019

UNIT: II (ONE MARKS) PART A - ONLINE EXAMINATION

12

___________ company work towards the software

to support their Instrumentation products like

oscilloscope

Dell

laboratories

Computer

Research

Laboratory Tektronix Cipla Tektronix

13

An oscilloscope is an instrumentation system that

samples electrical signals and displays

pictures___________ of them on a screen traces pulses waves lines traces

14

In layered model the _____________ represented

the signal manipulation functions that filter signals

as they enter the oscilloscope.

individual

modules core layer outer layer inner layer core layer

15

In ______________ layer signals are digitized and

stored internally for later processing

waveform

acquisition hardware user interface visual

waveform

acquisition

16

The outermost layer in oscilloscope's layered model

is _________ user interface

waveform

acquisition hardware visual user interface

17

__________serve to condition external signals in

pipe filter model of oscilloscope

Signal

transformers

acquisition

transformers

Display

transformers

waveform

transformers

Signal

transformers

18

___________ derive digitized waveforms from

these signals in pipe filter model of oscilloscope

Signal

transformers

acquisition

transformers

Display

transformers

waveform

transformers

acquisition

transformers

19

__________convert these waveforms into visual

data in pipe filter model of oscilloscope

Signal

transformers

acquisition

transformers

Display

transformers

waveform

transformers

Display

transformers

20

The _______ solution accounted for user inputs by

associating with each filter a control interface that

allows an external entity to set parameters of

operation for the filter

A Modified

Pipe and

Filter Model robotics

implicit

invocation

instrumentati

on software

A Modified

Pipe and

Filter Model

21

In _____________ controls manned, partially-

manned, or unmanned vehicle

Mobile

Robotics

System cruise control KWIC oscilloscope

Mobile

Robotics

System

22

Mobile Robotics System provide both deliberative

and ________ behavior. reactive uncertainty active passive reactive

23

System must be __________ with respect to

experimentation and reconfiguration of robot and

modification of tasks feedback uncertain discrete flexible flexible

24

__________ override currently executing task in sub

tree that causes the exception Exceptions

closedloop

feedback wiretapping iteration Exceptions

25

In ____________ tasks can eavesdrop on messages

intended for other tasks Exceptions monitors wiretapping

reaction to

events wiretapping

26

_____________ reads information and execute

action if data meets some criterion Exceptions monitors wiretapping

reaction to

events monitors

27

The _________ design is based on hierarchies of

tasks or task trees Exceptions Wiretapping Monitors TCA TCA

28

In mobile robotics The Level 1 or core layers is used

for ____________

control

routines schedule

supports

concurrency modeling

control

routines

29

In CODGER system blackboard architecture the

Pilot component is used for ______________

overall

supervisor

high-level

path planner

low-level path

planner

monitors

environment

low-level path

planner

30

In CODGER system blackboard architecture the

Map navigator component is used for

overall

supervisor

high-level

path planner

low-level path

planner

monitors

environment

high-level

path planner

31

In CODGER system blackboard architecture the

Lookout component is used for ______________

overall

supervisor

high-level

path planner

low-level path

planner

monitors

environment

monitors

environment

32

A ___________system exists to maintain the speed

of a car, even over varying terrain System on/off cruise control Engine on/off

Increase/Decr

ease Speed cruise control

33 In cruise control Throttle is ___________

constant

speed vehicle load air resistance

Digital value

for engine

Digital value

for engine

34 In cruise control Pulses is ___________

turns the car's

wheel

 throttle

setting

wheel

revolution controlling

wheel

revolution

35

In object view of cruise control each blob represents

____________ wheel pulses

throttle

setting data objects objects

36

For the cruise control, the data element _________

represents the current speed of the vehicle.

Controlled

variable

Manipulated

variable Set point sensors

Controlled

variable

37

For the cruise control, the data element _________

represents the throttle setting.

Controlled

variable

Manipulated

variable Set point sensors

Manipulated

variable

38

In cruise control, the system is ____________

whenever the engine is off

completely

off active inactive resume

completely

off

39

The PROVOX system by Fisher Controls offers

distributed process control for ____________

processes

chemical

production
leather

production oil production food production

chemical

production

40

The system architecture integrates process control

with plant management and information systems in

a _____________

5-level

layered

hierarchy

Process

measurement

Process

supervision

Process

management

5-level

layered

hierarchy

41

_________________ is used for direct adjustment

of final control elements

5-level

layered

hierarchy

Process

measurement

and control

Process

supervision

Process

management

Process

measurement

and control

42

_________________ is used for operations console

for monitoring and controlling

5-level

layered

hierarchy

Process

measurement

and control

Process

supervision

Process

management

Process

supervision

43

______________ is used for computer-based plant

automation, including management reports,

optimization strategies, and guidance to operations

console

5-level

layered

hierarchy

Process

measurement

and control

Process

supervision

Process

management

Process

management

44

___________ manages higher-level functions such

as cost accounting, inventory control, and order

processing/scheduling.

Plant and

corporate

management

Process

measurement

and control

Process

supervision

Process

management

Plant and

corporate

management

45

_______________ are current process value,

setpoint (target value), valve output, and mode control points

Operating

parameters

Tuning

parameters

configuration

parameters

Operating

parameters

46

______________ are gain, reset, derivative, and

alarm trip-points control points

Operating

parameters

Tuning

parameters

configuration

parameters

Tuning

parameters

47 ___________ includes tag name and I/O channels control points

Operating

parameters

Tuning

parameters

configuration

parameters

configuration

parameters

48

Rule-based systems provide a means of codifying

the __________ skills of human experts.

problem-

solving

situation-

action rules analyzing interpretation

problem-

solving

49

_________ surveyed the architecture and operation

of rule-based systems. Hayes-Roth provox pranas mary shaw Hayes-Roth

50

In Hayes Roth Rule based system the pseudo code is

knowledge

base

rule

interpreter

working

memory

rule and data

element

selector

knowledge

base

51

In Hayes Roth Rule based system the interpretation

engine is __________

knowledge

base

rule

interpreter

working

memory

rule and data

element

selector

rule

interpreter

52

In Hayes Roth Rule based system the control state of

the interpretation engine is __________

knowledge

base

rule

interpreter

working

memory

rule and data

element

selector

rule and data

element

selector

53

In Hayes Roth Rule based system the current state of

the program is __________

knowledge

base

rule

interpreter

working

memory

rule and data

element

selector

working

memory

54

Rule-based systems make heavy use of

______________ and context

a rule

executor

Knowledge

base

pattern

matching Data Flow

pattern

matching

55

In basic rule based system _____________ has two

components rule base and fact memory

knowledge

base

rule

interpreter

working

memory

rule and data

element

selector

knowledge

base

56 The first major blackboard system was the HEARSAY-II

HEARSAY-II

speech

recognition

system KWIC

mobile

robotics

HEARSAY-II

speech

recognition

system

57

Each knowledge source is organized as a condition

part that specifies ____________

blackboard

monitor a scheduler process

when it is

applicable

when it is

applicable

58

In Blackboard view of Hearsay -II the __________is

realized as a blackboard monitor and a scheduler Blackboard

knowledge

sources

control

component control flow

control

component

59

The view as an ________ is a different aggregation

of components from the view as blackboard of

Hearsey II program State pseudo code control state interpreter interpreter

60

The ________monitors the blackboard and

calculates priorities for applying the knowledge

sources to various elements on the blackboard.

knowledge

sources scheduler

control

component control flow scheduler

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 1/28

UNIT-II

SYLLABUS

Case studies - Key word is Context – Instrumentation Software – Mobile Robotics – Cruise

Control – Three Vignettes in Mixed Style

A KEYWORD IN CONTEXT (KWIC)

This case study shows how different architectural solutions to the same problem provide

different benefits.

Parnas proposed the following problems:

KWIC index system accepts an ordered set of lines. Each line is an ordered set of words and

each word is an ordered set of characters. Any line may be circularly shifted by repeated

removing the first word and appending it at the end of the line. KWIC index system outputs a

listing of all circular shifts of all lines in alphabetical order.

Parnas used the problem to contrast different criteria for decomposing a system into modules.

He describes 2 solutions:

a) Based on functional decomposition with share access to data representation.

b) Based on decomposition that hides design decision.

From the point of view of Software Architecture, the problem is to illustrate the effect of changes

on software design. He shows that different problem decomposition vary greatly in their ability

to withstand design changes. The changes that are considered by parnas are:

1. The changes in processing algorithm:

Eg: line shifting can be performed on each line as it is read from input device, on all lines after

they are read or an demand when alphabetization requires a new set of shifted lines.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 2/28

2. Changes in data representation:

Eg: Lines, words, characters can be stored in different ways. Circular shifts can be stored

explicitly or implicitly Garlan, Kaiser and Notkin also use KWIC problem to illustrate

modularization schemes based on implicit invocation. They considered the following.

3. Enhancement to system function:

Modify the system to eliminate circular shift that starts with certain noise change the system to

interactive.

4. Performance:

Both space and time

5. Reuse:

Extent to which components serve as reusable entities

Let’s outline 4 architectural designs for KWIC system.

SOLUTION 1: MAIN PROGRAM/SUBROUTINE WITH SHARED DATA

 Decompose the problem according to 4 basic functions performed.

o Input

o Shift

o Alphabetize

o output

 These computational components are coordinated as subroutines by a main program that

sequence through them in turn.

 Data is communicated between components through shared storage.

 Communication between computational component and shared data is constrained by

read-write protocol.

Advantages:

 Allows data to be represented efficiently. Since, computation can share the same storage

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 3/28

Disadvantages:

 Change in data storage format will affect almost all of the modules.

 Changes in the overall processing algorithm and enhancement to system function are not

easily accommodated.

 This decomposition is not particularly support reuse.

SOLUTION 2: ABSTRACT DATA TYPES

 Decomposes The System Into A Similar Set Of Five Modules.

 Data is no longer directly shared by the computational components.

 Each module provides an interface that permits other components to access data only by

invoking procedures in that interface.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 4/28

Advantage:

 Both Algorithms and data representation can be changed in individual modules without

affecting others.

 Reuse is better supported because modules make fewer assumption about the others with

which they interact.

Disadvantage:

 Not well suited for functional enhancements

 To add new functions to the system

 To modify the existing modules.

SOLUTION 3: IMPLICIT INVOCATION

 Uses a form of component integration based on shared data

 Differs from 1st solution by these two factors

o Interface to the data is abstract

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 5/28

o Computations are invoked implicitly as data is modified. Interactions is based on an

active data model.

Advantages:

 Supports functional enhancement to the system

 Supports reuse.

Disadvantages:

 Difficult to control the processing order.

 Because invocations are data driven, implementation of this kind of decomposition uses

more space.

SOLUTION 4: PIPES AND FILTERS:

 Four filters: Input, Output, Shift and alphabetize

 Each filter process the data and sends it to the next filter

 Control is distributed

o Each filter can run whenever it has data on which to compute.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 6/28

 Data sharing between filters are strictly limited.

Advantages:

 It maintains initiative flow of processing

 It supports reuse

 New functions can be easily added to the system by inserting filters at appropriate level.

 It is easy to modify.

Disadvantages:

 Impossible to modify the design to support an interactive system.

 Solution uses space inefficiently.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 7/28

INSTRUMENTATION SOFTWARE:

oscilloscope

pictures of them on screen.

internal storage.

 d other instruments and provide

sophisticated

 user interface, including touch panel screen with menus, built-in help facilities and color

displays.

 ing because the software was not rapidly

configurable

 within the instrument.

next generation of oscilloscopes.

SOLUTION 1: OBJECT ORIENTED MODEL

Different data types used in oscilloscope are:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 8/28

There was no overall model that explained how the types fit together. This led to confusion about

the partitioning of functionality.

Ex: it is not clearly defined that measurements to be associated with types of data being

measured or represented externally.

SOLUTION 2: LAYERED MODEL

 of an oscilloscope.

 -layer: implemented in hardware represents signal manipulation functions that

filter signals as they enter the oscilloscope.

oscilloscope into well defined groups.

the boundaries of abstraction enforced by the layers conflicted with the needs for

interaction among various functions.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 9/28

SOLUTION 3: PIPE-AND-FILTER MODEL:

data.

o Signal transformer: to condition external signal.

o Acquisition transformer: to derive digitized waveforms

o Display transformers: to convert waveforms into visual data.

partition.

o It is not clear how the user should interact with it.

SOLUTION 4: MODIFIED PIPE-AND-FILTER MODEL:

To overcome the above said problem, associate control interface with each filter that allowed

external entity to set parameters of operation for the filter.

Introduction of control interface solves a large part of the user interface problem

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 10/28

 lection of setting that determines what aspect of the oscilloscope can be

modified

 dynamically by the user.

software.

FURTHER SPECIALIZATION

The above described model is greater improvement over the past. But, the main problem with

this is the performance.

a. Because waveform occupy large amount of internal storage

It is not practical for each filter to copy waveforms every time they process them.

b. Different filters run at different speeds

It is unacceptable to slow one filter down because another filter is still processing its data.

To overcome the above discussed problems the model is further specialized.

Instead of using same kind of pipe. We use different “colors” of pipe. To allow data to be

processed without copying, slow filters to ignore incoming data.

These additional pipes increased the stylistic vocabulary and allowed pipe/filter computations to

be tailored more specifically to the performance needs of the product.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 11/28

MOBILE ROBOTICS

Mobile Robotic systems

-manned vehicle

o E.g., car, space vehicle, etc

The system is complex

nsors

Unpredictability of environment

DESIGN CONSIDERATIONS

REQ1: Supports deliberate and reactive behavior. Robot must coordinate the actions to

accomplish its

mission and reactions to unexpected situations

REQ2: Allows uncertainty and unpredictability of environment. The situations are not fully

defined

and/or predicable. The design should handle incomplete and unreliable information

REQ3: System must consider possible dangerous operations by Robot and environment

REQ4: The system must give the designer flexibility (mission’s change/requirement

changes)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 12/28

SOLUTION 1: CONTROL LOOP

Req1:

interaction between the robot and the outside.

Req2: ns

through iteration

Req3: fault tolerance and safety are supported which makes duplication easy and reduces the

chances of errors

Req4: the major components of a robot architecture are separated from each other and can be

replaced independently

SOLUTION 2: LAYERED ARCHITECTURE

Figure shows Alberto Elfes’s definition of the layered architecture.

-3 real world I/P (sensor interpretation and integration

(analysis of combined I/Ps)

maintains the real world model for robot

-7 Schedule & plan robot actions (including exception

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 13/28

handling and re-planning)

Req1: it overcomes the limitations of control loop and it

defines abstraction levels to guide the design

Req2: uncertainty is managed by abstraction layers

Req3: fault tolerance and passive safety are also served

Req4: the interlayer dependencies are an obstacle to easy replacement and addition of

components.

SOLUTION 3: IMPLICIT INVOCATION

The third solution is based on the form of implicit invocation, as embodied in the Task-Control-

Architecture (TCA). The TCA design is based on hierarchies of tasks or task trees

tiate child task

and environment)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 14/28

for these events TCA’s implicit invocation mechanisms support three functions:

Exceptions: Certain conditions cause the execution of an associated exception handling

routines

-tree (e.g., abort or retry) tasks

Wiretapping: Message can be intercepted by tasks superimposed on an existing task tree

-check component utilizes this to validate outgoing motion commands

Monitors: Monitors read information and execute some action if the data satisfy certain

condition

Req1: permits clear cut separation of action and reaction

Req2: a tentative task tree can be built to handle uncertainty

Req3: performance, safety and fault tolerance are served

Req4: makes incremental development and replacement of components straight forward

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 15/28

SOLUTION 4: BLACKBOARD ARCHITECTURE

The components of CODGER are the following:

-level path planner

-level path planner and motor controller

or input and integrate

it into a coherent situation interpretation

The requirements are as follows:

Req1: the components communicate via shared

repository of the blackboard system.

Req2: the blackboard is also the means for resolving

conflicts or uncertainties in the robot’s world view

Req3: speed, safety and reliability is guaranteed

Req4: supports concurrency and decouples senders from

receivers, thus facilitating maintenance. Figure: blackboard solution for mobile robots

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 16/28

COMPARISONS

CRUISE CONTROL

A cruise control (CC) system that exists to maintain the constant vehicle speed even over varying

terrain.

Inputs:

System On/Off: If on, maintain speed

Engine On/Off: If on, engine is on. CC is active only in this state

Wheel Pulses: One pulse from every wheel revolution

Accelerator: Indication of how far accelerator is de-pressed

Brake: If on, temp revert cruise control to manual mode

Inc/Dec Speed: If on, increase/decrease maintained speed

Resume Speed: If on, resume last maintained speed

Clock: Timing pulses every millisecond

Outputs:

Throttle: Digital value for engine throttle setting

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 17/28

Restatement of Cruise-Control Problem

Whenever the system is active, determine the desired speed, and control the engine throttle

setting to maintain that speed.

OBJECT VIEW OF CRUISE CONTROL

The figure corresponds to Booch's object oriented design for cruise control

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 18/28

PROCESS CONTROL VIEW OF CRUISE CONTROL

Computational Elements

Process definition - take throttle setting as I/P & control vehicle speed

Control algorithm - current speed (wheel pulses) compared to desired speed

o Change throttle setting accordingly presents the issue:

o decide how much to change setting for a given discrepancy

Data Elements

Controlled variable: current speed of vehicle

Manipulated variable: throttle setting

Set point: set by accelerator and increase/decrease speed inputs

Controlled variable sensor: modelled on data from wheel pulses and clock

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 19/28

Figure 3.18 control architecture for cruise control

The active/inactive toggle is triggered by a variety of events, so a state transition design is

natural. It's shown in Figure. The system is completely off whenever the engine is off. Otherwise

there are three inactive and one active state.

For simplicity we assume brake application is atomic so other events are blocked when the brake

is on. A more detailed analysis of the system states would relax this Assumption.

The active/inactive toggle is triggered by a variety of events, so a state transition design is

natural. It's shown in Figure 8. The system is completely off whenever the engine is off.

Otherwise there are three inactive and one active states. In the first inactive state no set point has

been established. In the other two, the previous set point must be remembered:

When the driver accelerates to a speed greater than the set point, the manual Accelerator controls

the throttle through a direct linkage (note that this is the only use of the accelerator position in

this design, and it relies on relative effect rather than absolute position); when the driver uses the

brake the control system is inactivated until the resume signal is sent. The active/inactive toggle

input of the control system is set to active exactly when this state machine is in state Active

Determining the desired speed is simpler, since it does not require state other than the current

value of desired speed (the set point). Any time the system is off, the set point is undefined. Any

time the system on signal is given (including when the system is already on) the set point is set to

the current speed as modeled by wheel pulses.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 20/28

The driver also has a control that increases or decreases the set point by a set amount. This, too,

can be invoked at any time (define arithmetic on undefined values to yield undefined values).

Figure 9 summarizes the events involved in determining the set point. Note that this process

requires access to the clock in order to estimate the current speed based on the pulses from the

wheel.

Figure state machine for activation

We can now combine the control architecture, the state machine for activation, and the event

table for determining the set point into an entire system.

We can now compose the control architecture, the state machine for activation, and the event

table for determining the set point into an entire system. Although there is no need for the control

unit and set point determination to use the same clock, we do so to minimize changes to the

original problem statement. Then,

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 21/28

since current speed is used in two components, it would be reasonable for the next elaboration of

the design to encapsulate that model in a reusable object; this would encapsulate the clock. All

of the objects in Booch's design (Figure 6) have clear roles in the resulting system. It is entirely

reasonable to look forward to a design strategy in which the control loop architecture is used for

the system as a whole and a number of other architectures, including objects and state machines,

are used in the elaborations of the elements of the control loop architecture.

The shift from an object-oriented view to a control view of the cruise control architecture raised

a number of design questions that had previously been slighted: The separation of process from

control concerns led to explicit choice of the control discipline. The limitations of the control

model also became clear, including possible inaccuracies in the current speed model and

incomplete control at high speed. The dataflow character of the model showed irregularities in

the way the input was specified, for example mixture of state and event inputs and the

inappropriateness of absolute position of the accelerator

Figure 3.21 complete cruise control system

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 22/28

THREE VIGNETTES IN MIXED STYLE

A LAYERED DESIGN WITH DIFFERENT STYLES FOR THE LAYERS

Each level corresponds to a different process management function with its own decision-support

requirements.

Level 1: Process measurement and control: direct adjustment of final control elements.

Level 2: Process supervision: operations console for monitoring and controlling Level 1.

Level 3: Process management: computer-based plant automation, including management

reports, optimization strategies, and guidance to operations console.

Levels 4 and 5: Plant and corporate management: higher-level functions such as cost

accounting, inventory control, and order processing/scheduling.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 23/28

Figure 20 shows the canonical form of a point definition; seven specialized forms support the

most common kinds of control. Points are, in essence, object-oriented design elements that

encapsulate information about control points of the process. Data associated with a point

includes: Operating parameters, including current process value, set point (target value), valve

output, and mode (automatic or manual); Tuning parameters, such as gain, reset, derivative, and

alarm trip-points; Configuration parameters, including tag (name) and I/O channels.

AN INTERPRETER USING DIFFERENT IDIOMS FOR THE COMPONENTS

Rule-based systems provide a means of codifying the problem-solving knowhow of human

experts. These experts tend to capture problem-solving techniques as sets of situation-action

rules whose execution or activation is sequenced in response to the conditions of the computation

rather than by a predetermined scheme. Since these rules are not directly executable by available

computers, systems for interpreting such rules must be provided. Hayes-Roth surveyed the

architecture and operation of rule-based systems.

The basic features of a rule-based system, shown in Hayes-Roth’s rendering as Figure 21, are

essentially the features of a table-driven interpreter, as outlined earlier.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 24/28

• The pseudo-code to be executed, in this case the knowledge base

• The interpretation engine, in this case the rule interpreter, the heart of the inference engine

• The control state of the interpretation engine, in this case the rule and data element selector

• The current state of the program running on the virtual machine, in this case the working

memory.

Rule-based systems make heavy use of pattern matching and context (currently relevant rules).

Adding special mechanisms for these facilities to the design leads to the more complicated view

shown in Figure 22.

We see that:

• The knowledge base remains a relatively simple memory structure, merely gaining substructure

to distinguish active from inactive contents.

• The rule interpreter is expanded with the interpreter idiom, with control procedures playing the

role of the pseudo-code to be executed and the execution stack the role of the current program

state.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 25/28

• “Rule and data element selection” is implemented primarily as a pipeline that progressively

transforms active rules and facts to prioritized activations.

• Working memory is not further elaborated.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 26/28

A BLACKBOARD GLOBALLY RECAST AS AN INTERPRETER

The blackboard model of problem solving is a highly structured special case of opportunistic

problem solving. In this model, the solution space is organized into several application

dependent hierarchies and the domain knowledge is partitioned into independent modules of

knowledge that operate on knowledge within and between levels.

Figure showed the basic architecture of a blackboard system and outlined its three major parts:

knowledge sources, the blackboard data structure, and control.

The first major blackboard system was the HEARSAY-II speech recognition system. Nii's

schematic of the HEARSAY-II architecture appears as Figure 24. The blackboard structure is a

six- to eight-level hierarchy in which each level abstracts information on its adjacent lower level

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 27/28

and blackboard elements represent hypotheses about the interpretation of an utterance.

HEARSAY-II was implemented between 1971 and 1976; these machines were not directly

capable of condition-triggered control, so it should not be surprising to find that an

implementation provides the mechanisms of a virtual machine that realizes the implicit

invocation semantics required by the blackboard model.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: II (Case Studies) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 28/28

POSSIBLE QUESTIONS

PART – B

1. Discuss about Key Word in Context with a neat diagram.

2. Discuss about the Instrumentation Software with neat diagram.

3. Explain the Mobile Robotics System in detail.

4. What are the key characteristics of Cruise Control? Explain.

5. Elaborate on Oscilloscope i) Pipe and Filter ii) A Modified Pipe and Filter Model with

example.

6. Discuss about mobile Three Vignettes in Mixed Style with neat diagram..

PART – C

1. Discuss about Key Word in Context with a neat diagram

2. Explain the Mobile Robotics System in detail.

3. Explain Cruise Control in detail.

S.NO QUESTION CHOICE 1 CHOICE 2 CHOICE 3 CHOICE 4 ANSWER

1 The KWIC means

Key Word in

Context

Key word in

Constant

Key word as

Context

Key word as

Capital

Key Word in

Context

2

The KWIC index system outputs a listing of all

___________ of all lines in alphabetical order circular shifts

ordered set of

words

ordered set of

characters set of lines circular shifts

3

The ______________ solution decomposes the

problem according to the four basic functions

performed: input, shift, alphabetize, and output.

Main

program/Subr

outine with

shared data

abstract data

type layered event based

Main

program/Subr

outine with

shared data

4

Data is communicated between the components

through ___________. shared storage module algorithm data shared storage

5

Communication between the computational

components and the shared data is an unconstrained

__________ protocol read write network

Communicati

on read read write

6

In Abstract Data Types each module provides an

interface that permits other components to access

data only by invoking ____________ shared storage module

procedures in

that interface data

procedures in

that interface

7

In ____________ solution computations are

invoked implicitly as data is modified.

Implicit

Invocation

abstract data

type layered

process

control

Implicit

Invocation

8

The KWIC index system outputs a listing of all

circular shifts of all lines in ________ order. forward alphabetical backward circle alphabetical

9

In pipe and filter new functions are easily added to

the system by ___________ at the appropriate point

in the processing sequence inserting filter editing filter deleting filter copying filter inserting filter

10

The permuted” [sic] index for the Unix Man pages

is an example of ____________ KWIC

implicit

invocation

instrumentati

on software robotics KWIC

11

The data types used in oscilloscopes is

waveforms,

signals int float char

waveforms,

signals

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I MSC CS SUBJECT NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

SUBJECT CODE: 17CSP204 BATCH-2017-2019

UNIT: II (ONE MARKS) PART A - ONLINE EXAMINATION

12

___________ company work towards the software

to support their Instrumentation products like

oscilloscope

Dell

laboratories

Computer

Research

Laboratory Tektronix Cipla Tektronix

13

An oscilloscope is an instrumentation system that

samples electrical signals and displays

pictures___________ of them on a screen traces pulses waves lines traces

14

In layered model the _____________ represented

the signal manipulation functions that filter signals

as they enter the oscilloscope.

individual

modules core layer outer layer inner layer core layer

15

In ______________ layer signals are digitized and

stored internally for later processing

waveform

acquisition hardware user interface visual

waveform

acquisition

16

The outermost layer in oscilloscope's layered model

is _________ user interface

waveform

acquisition hardware visual user interface

17

__________serve to condition external signals in

pipe filter model of oscilloscope

Signal

transformers

acquisition

transformers

Display

transformers

waveform

transformers

Signal

transformers

18

___________ derive digitized waveforms from

these signals in pipe filter model of oscilloscope

Signal

transformers

acquisition

transformers

Display

transformers

waveform

transformers

acquisition

transformers

19

__________convert these waveforms into visual

data in pipe filter model of oscilloscope

Signal

transformers

acquisition

transformers

Display

transformers

waveform

transformers

Display

transformers

20

The _______ solution accounted for user inputs by

associating with each filter a control interface that

allows an external entity to set parameters of

operation for the filter

A Modified

Pipe and

Filter Model robotics

implicit

invocation

instrumentati

on software

A Modified

Pipe and

Filter Model

21

In _____________ controls manned, partially-

manned, or unmanned vehicle

Mobile

Robotics

System cruise control KWIC oscilloscope

Mobile

Robotics

System

22

Mobile Robotics System provide both deliberative

and ________ behavior. reactive uncertainty active passive reactive

23

System must be __________ with respect to

experimentation and reconfiguration of robot and

modification of tasks feedback uncertain discrete flexible flexible

24

__________ override currently executing task in sub

tree that causes the exception Exceptions

closedloop

feedback wiretapping iteration Exceptions

25

In ____________ tasks can eavesdrop on messages

intended for other tasks Exceptions monitors wiretapping

reaction to

events wiretapping

26

_____________ reads information and execute

action if data meets some criterion Exceptions monitors wiretapping

reaction to

events monitors

27

The _________ design is based on hierarchies of

tasks or task trees Exceptions Wiretapping Monitors TCA TCA

28

In mobile robotics The Level 1 or core layers is used

for ____________

control

routines schedule

supports

concurrency modeling

control

routines

29

In CODGER system blackboard architecture the

Pilot component is used for ______________

overall

supervisor

high-level

path planner

low-level path

planner

monitors

environment

low-level path

planner

30

In CODGER system blackboard architecture the

Map navigator component is used for

overall

supervisor

high-level

path planner

low-level path

planner

monitors

environment

high-level

path planner

31

In CODGER system blackboard architecture the

Lookout component is used for ______________

overall

supervisor

high-level

path planner

low-level path

planner

monitors

environment

monitors

environment

32

A ___________system exists to maintain the speed

of a car, even over varying terrain System on/off cruise control Engine on/off

Increase/Decr

ease Speed cruise control

33 In cruise control Throttle is ___________

constant

speed vehicle load air resistance

Digital value

for engine

Digital value

for engine

34 In cruise control Pulses is ___________

turns the car's

wheel

 throttle

setting

wheel

revolution controlling

wheel

revolution

35

In object view of cruise control each blob represents

____________ wheel pulses

throttle

setting data objects objects

36

For the cruise control, the data element _________

represents the current speed of the vehicle.

Controlled

variable

Manipulated

variable Set point sensors

Controlled

variable

37

For the cruise control, the data element _________

represents the throttle setting.

Controlled

variable

Manipulated

variable Set point sensors

Manipulated

variable

38

In cruise control, the system is ____________

whenever the engine is off

completely

off active inactive resume

completely

off

39

The PROVOX system by Fisher Controls offers

distributed process control for ____________

processes

chemical

production
leather

production oil production food production

chemical

production

40

The system architecture integrates process control

with plant management and information systems in

a _____________

5-level

layered

hierarchy

Process

measurement

Process

supervision

Process

management

5-level

layered

hierarchy

41

_________________ is used for direct adjustment

of final control elements

5-level

layered

hierarchy

Process

measurement

and control

Process

supervision

Process

management

Process

measurement

and control

42

_________________ is used for operations console

for monitoring and controlling

5-level

layered

hierarchy

Process

measurement

and control

Process

supervision

Process

management

Process

supervision

43

______________ is used for computer-based plant

automation, including management reports,

optimization strategies, and guidance to operations

console

5-level

layered

hierarchy

Process

measurement

and control

Process

supervision

Process

management

Process

management

44

___________ manages higher-level functions such

as cost accounting, inventory control, and order

processing/scheduling.

Plant and

corporate

management

Process

measurement

and control

Process

supervision

Process

management

Plant and

corporate

management

45

_______________ are current process value,

setpoint (target value), valve output, and mode control points

Operating

parameters

Tuning

parameters

configuration

parameters

Operating

parameters

46

______________ are gain, reset, derivative, and

alarm trip-points control points

Operating

parameters

Tuning

parameters

configuration

parameters

Tuning

parameters

47 ___________ includes tag name and I/O channels control points

Operating

parameters

Tuning

parameters

configuration

parameters

configuration

parameters

48

Rule-based systems provide a means of codifying

the __________ skills of human experts.

problem-

solving

situation-

action rules analyzing interpretation

problem-

solving

49

_________ surveyed the architecture and operation

of rule-based systems. Hayes-Roth provox pranas mary shaw Hayes-Roth

50

In Hayes Roth Rule based system the pseudo code is

knowledge

base

rule

interpreter

working

memory

rule and data

element

selector

knowledge

base

51

In Hayes Roth Rule based system the interpretation

engine is __________

knowledge

base

rule

interpreter

working

memory

rule and data

element

selector

rule

interpreter

52

In Hayes Roth Rule based system the control state of

the interpretation engine is __________

knowledge

base

rule

interpreter

working

memory

rule and data

element

selector

rule and data

element

selector

53

In Hayes Roth Rule based system the current state of

the program is __________

knowledge

base

rule

interpreter

working

memory

rule and data

element

selector

working

memory

54

Rule-based systems make heavy use of

______________ and context

a rule

executor

Knowledge

base

pattern

matching Data Flow

pattern

matching

55

In basic rule based system _____________ has two

components rule base and fact memory

knowledge

base

rule

interpreter

working

memory

rule and data

element

selector

knowledge

base

56 The first major blackboard system was the HEARSAY-II

HEARSAY-II

speech

recognition

system KWIC

mobile

robotics

HEARSAY-II

speech

recognition

system

57

Each knowledge source is organized as a condition

part that specifies ____________

blackboard

monitor a scheduler process

when it is

applicable

when it is

applicable

58

In Blackboard view of Hearsay -II the __________is

realized as a blackboard monitor and a scheduler Blackboard

knowledge

sources

control

component control flow

control

component

59

The view as an ________ is a different aggregation

of components from the view as blackboard of

Hearsey II program State pseudo code control state interpreter interpreter

60

The ________monitors the blackboard and

calculates priorities for applying the knowledge

sources to various elements on the blackboard.

knowledge

sources scheduler

control

component control flow scheduler

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 1/32

UNIT-III

Shared Information Systems – Database Integration – Integration in Software Development

Environments – Integration in the Design of Buildings – Architectural structures for shared

Information Systems

SHARED INFORMATION SYSTEMS:

One particularly significant class of large systems is responsible for collecting, manipulating, and

preserving large bodies of complex information. These are shared information systems.

Systems of this kind appear in many different domains, mainly

Data Processing: Driven primarily by the need to build business decision systems from

conventional databases.

Software Development Environment: Driven primarily by the need to represent and manipulate

programs and their designs.

Building Design: Driven primarily by the need to couple independent design tools to allow for

the interactions of their results in structural design.

The earliest shared information systems consisted of separate programs for separate subtasks.

Later, multiple independent processing steps were composed into larger tasks by passing data in

a known, fixed format from one step to another.

This organization is

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 2/32

New organizations allowed independent processing subsystems to interact through a shared data

store. While this organization is an improvement, it still encounters integration problems-

especially when multiple data stores with different representations must be shared, when the

system is distributed, when many user tasks must be served, and when the suite of processing

and data subsystems changes regularly.

DATABASE INTEGRATION:

Business data processing has traditionally been dominated by database management, in

particular by database updates. Originally, separate databases served separate purposes, and

implementation issues revolved around efficient ways to do massive coordinated periodic

updates. Interactive demands required individual transactions to complete in real time.

Information began to appear redundantly in multiple databases, and geographic

distribution added communication complexity.

Individual database systems must support transactions of predetermined types and

periodic summary reports. Bad requests require a great deal of special handling. Originally the

updates and summary reports were collected into batches, with database updates and reports

produced during periodic batch runs.

As databases became more common, information about a business became distributed

among multiple databases. Hence data become inconsistent and incomplete. The representations,

or schemas, for different databases were usually different; even the portion of the data shared by

two databases is likely to have representations in each database. The total volume of data to

handle is correspondingly larger, and it is often distributed across multiple machines. Two

general strategies emerged for dealing with data diversity:

-databases.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 3/32

Batch Sequential:

Some of the earliest large computer applications were databases. In these applications individual

database operations-transactions-were collected into large batches. The application consisted of a

small number of large standalone programs that performed sequential updates on flat

(unstructured) files. Atypical organization included:

 a massive edit program: accepts transaction inputs and perform validation without

accessing the database.

 a massive transaction sort: get transactions into the same order as the records on the

sequential master file

 a sequence of update programs: one for each master file; these huge programs actually

executed the transactions by moving sequentially through the master file, matching each

type of transaction to its corresponding account and updating the account records.

 a print program: produce periodic reports

Batch sequential architecture:

The steps were independent of each other; they had to run in a fixed sequence; each ran to

completion, producing an output file in a new format, before the next step began.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 4/32

Fig: Data flow diagram for batch databases

The above figure shows the possibility of on-line queries (but not modifications).In this structure

the files to support the queries are reloaded periodically, so recent transactions (e.g., within the

past few days) are not reflected in the query responses.

Above figure is a Yourdon data flow diagram. Processes are depicted as circles, or

"bubbles"; data flow (here, large files) is depicted with arrows, and data stores such as computer

files are depicted with parallel lines.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 5/32

Fig: Internal structure of batch update process

Above figure shows the internal structure of an update process. There is one of these for each of

the master data files, and each is responsible for handling all possible updates to that data file.

Here, the boxes represent subprograms and the lines represent procedure calls.

A single driver program processes all batch transactions. Each transaction has a standard

set of subprograms that check the transaction request, access the required data, validate the

transaction, and post the result. Thus all the program logic for each transaction is localized in a

single set of subprograms.

The redrawn figure emphasizes the sequence of operations to be performed and the

completion of each step before the start of its successor. It suppresses the on-line query support

and updates to multiple master files, or databases.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 6/32

Fig: Batch sequential database architecture

Simple Repository:

Two trends forced a change away from batch sequential processing.

of on-line updates as well as on-line queries.

Figure 5: Data fow diagram for interactive database

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 7/32

transaction database and extract database are transient buffers; the account/item

database is the central permanent store.

blem created by the addition of interactive processing namely

the loss of synchronization between the updating and reporting cycles.

-specific

operations.

ful to perform multiple operations on a single account all at once.

The system structure is easier to understand if we first isolate the database updates.

Figure 7 focuses narrowly on the database and its transactions. This is an instance of a fairly

common architecture, a repository, in which shared persistent data is manipulated by

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 8/32

independent functions each of which has essentially no permanent state. It is the core of a

database system.

Figure 8 adds two additional structures. The first is a control element that accepts the batch or

interactive stream of transactions, synchronizes them, and selects which update or query

operations to invoke, and in which order. This subsumes the transaction database of Figure 5.

The second is a buffer that serves the periodic reporting function. This subsumes the extract

database of Figure 5.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 9/32

Virtual Repository:

multiple databases.

tabase.

two

problems.

First, the system must reconcile representation differences.

Second, it must communicate results across distributed systems that may have not only

different data representations but also different database schema representations.

federated approach.

ultiple schemas

into a single schema.

databases:

and a matching schema in the schema language of the importer.

problem to communication between matching schemas.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 10/32

Fig: Combining multiple distributed schemas

 shows the integration of multiple databases by unified schemas.

and import schema are distinct are suppressed at this level of abstraction;

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 11/32

Hierarchical Layers:

static.

for recognizing and adapting to changes in the set of available databases.

and import schema are distinct are suppressed at this level of abstraction;

 real world, each database serves multiple users, and indeed the set of users changes

regularly.

changes and because network connectivity changes the set that is accessible.

Problems: inconsistency across a set of databases, dynamic reconfiguration.

Below fig. depicts one research scenario for active mediation between a constantly-changing set

of users and a constantly changing set of databases.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 12/32

d proposes introducing active programs, called experts, to accept queries from

users, recast them as queries to the available databases, and deliver appropriate responses to the

users.

 discover what databases

are available and interact with them, about how to recast user’s queries in useful forms, and

about how to reconcile, integrate, and interpret information from multiple diverse databases.

Fig: Multi-database with mediator

n effect, Wiederhold's architecture uses hierarchical layers to separate the business of the

users, the databases, and the mediators.

-server relation.

ry because there is no enforced coherence of central shared data; it is not

a batch sequential system (or any other form of pipeline) because the interaction with the

data is incremental.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 13/32

Evolution of Shared Information Systems in Business Data Processing:

changing technology and changing needs. The pattern was:

Batch processing: Standalone programs; results are passed from one to another on magtape.

Batch sequential model.

Interactive processing: Concurrent operation and faster updates preclude batching, so

updates are out of synchronization with reports. Repository model with external control.

Unified schemas: Information becomes distributed among many different databases. One

virtual repository defines (passive) consistent conversion mappings to multiple databases.

Multi-database: Databases have many users; passive mappings don't suffice; active agents

mediate interactions. Layered hierarchy with client-server interaction.

-wider assortment of data

resources in a heterogeneous, distributed world.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 14/32

ity to exploit this remains limited by volume, complexity of mappings, the need to

handle data discrepancies, and the need for sophisticated interpretation of requests for

services and of available data.

INTEGRATION IN SOFTWARE DEVELOPMENT ENVIRONMENTS:

software tools whereas data processing has relied on on-

line databases.

included compilers, linkers, and libraries.

 now support analysis, configuration control, debugging, testing, and documentation as

well.

Batch Sequential:

ct code on cards or

paper tape.

conceptual model for other tools to use.

information was encoded in representations.

information became more evident.

sequential architectures.

Transition from Batch Sequential to Repository:

technology.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 15/32

sequential architecture in which each transformation (“pass”) ran to completion before

the next one started.

outside all the passes.

g

attention turned to the intermediate representation of the program during compilation.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 16/32

Figure : Modern canonical compiler

-direct attention from the sequence of

passes to the central shared representation.

operations on the tree.

rather than the textual form of a program; these include syntax-directed editors and various

analysis tools.

incoming transactions, the execution order of the compiler is predetermined, except possibly for

opportunistic optimization.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 17/32

Repository:

--even when organized as repositories do not retain

information from one use to another. As a result, a body of knowledge about the program

is not accumulated.

Tight coupling: Share detailed knowledge of the common, but proprietary, representation

among the tools of a single vendor

Open representation: Publish the representation so that tools can be developed by many

sources. Often these tools can manipulate the data, but they are in a poor position to

change the representation for their own needs.

Conversion boxes: Provide filters that import or export the data in foreign representations.

The tools usually lose the benefits of incremental use of the repository.

No contact: Prevent a tool from using the repository, either explicitly, through excess

complexity, or through frequent changes.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 18/32

Hierarchical Layers:

systems.

more

elaborate because it attempts to integrate communications and user interfaces as well as

representation.

must be used and what situations call for certain responses.

services directly.

provides support for tools to announce or to receive notice of the occurrence of events.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 19/32

Evolution of Shared Information Systems in Software Development Environments:

t involves more different types of data, fewer

instances of each distinct type, and slower query rates.

databases.

ent of on-line computing, which drove the shift from batch to interactive processing for

many functions

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 20/32

shifting from complete processing of systems to processing of modules to incremental

development

driving coverage to increase from compilation to the full life cycle.

conversions are passive, and the ordering of operations remains relatively inflexible.

complex dependencies and selecting which tools to use.

 do not distinguish among different kinds of components at this level.

procedure calls and perhaps shared variables.

-known patterns leads to a kind of reuse of design templates.

Variants on Data Flow Systems:

systems is the batch sequential pattern.

INTEGRATION IN BUILDING DESIGN

The previous two examples come from the information technology fields. For the third example

we turn to an application area, the building construction industry. This industry requires a diverse

variety of expertise. Distinct responsibilities correspond to matching sets of specialized

functions. Indeed, distinct sub industries support these specialties.

A project generally involves a number of independent, geographically dispersed

companies. The diversity of expertise and dispersion of the industry inhibit communication and

limit the scope of responsibilities. Each new project creates a new coalition, so there is little

accumulated shared experience and no special advantage for pair wise compatibility between

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 21/32

companies. However, the subtasks interact in complex, sometimes non-obvious ways, and

coordination among specialties (global process expertise) is itself a specialty (Terk 1992).

The construction community operates on divide-and-conquer problem solving with interactions

among the sub problems. This is naturally a distributed approach; teams independent

subcontractors map naturally to distributed problem-solving systems with coarse-grained

cooperation among specialized agents. However, the separation into sub problems is forced by

the need for specialization and the nature of the industry; the problems are not inherently

decomposable, and the sub problems are often interdependent.

In this setting it was natural for computing to evolve bottom-up. Building designers have

exploited computing for many years for tasks ranging from accounting to computer-aided design.

We are concerned here with the software that performs analysis for various stages of the design

activity. The 1960s and 1970s saw a number of algorithmic systems directed at aiding in the

performance of individual phases of the facility development. However, a large number of tasks

in facility development depend on judgment, experience, and rules of thumb accumulated by

experts in the domain. Such tasks cannot be performed efficiently in an algorithmic manner

(Terk 1992).

The early stages of development, involving standalone programs and batch sequential

compositions, are sufficiently similar to the two previous examples that it is not illuminating to

review them. The first steps toward integration focused on support-supervisory systems, which

provided basic services such as data management and information flow control to individual

independent applications, much as software development environments did. The story picks up

from the point of these early integration efforts.

Integrated environments for building design are frameworks for controlling a collection

of standalone applications that solve part of the building design problem (Terk 1992). They must

be "efficient in managing problem-solving and information exchange "flexible in dealing with

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 22/32

changes to tools "graceful in reacting to changes in information and problem solving strategies

These requirements derive from the lack of standardized problem-solving procedures; they

reflect the separation into specialties and the geographical distribution of the facility

development process.

Repository

Selection of tools and composition of individual results requires judgr, nt, experience, and rules

of thumb. Because of coupling between subproblems it is not algorithmic, so integrated systems

require a planning function. The goal of an integrated environment is integration of data, design

decisions, and knowledge. Two approaches emerged: the closely-coupled Master Builder, or

monolithic system, and the design environment with cooperating tools. These early efforts at

integration added elementary data management and information flow control to a tool-set.

The common responsibilities of a system for distributed problem-solving are:

" Problem partitioning (divide into tasks for individual agents)

" Task distribution (assign tasks to agents for best performance)

" Agent control (strategy that assures tasks are performed in organized fashion)

" Agent communication (exchange of information essential when subtasks interact or conflict)

The construction community operates on divide-and-conquer problem solving with

interactions among the sub-problems. This is naturally a distributed approach; teams independent

subcontractors map naturally to distributed problem-solving systems with coarse-grained

cooperation among specialized agents. However, the nature of the industry--its need for

specialization-forces the separation into sub-problems; the problems are not inherently

decomposable, and the sub-problems are often interdependent. This raises the control component

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 23/32

to a position of special significance. Terk (1992) surveyed and classified many of the integrated

building design environments that were developed in the 1980s. Here's what he found:

"* Data: mostly repositories: shared common representation with conversions to private

representations of the tools

"* Communication: mostly shared data, some messaging

"* Tools: split between closed (tools specifically built for this system) and open (external tools

can be integrated)

"* Control: mostly single-level hierarchy; tools at bottom; coordination at top

"* Planning: mostly fixed partitioning of kind and processing order; scripts sometimes permit

limited flexibility

So the typical system was a repository with a sophisticated control and planning

component. A fairly typical such system, IBDE (Fenves et al 1990) appears in Figure 20.

Although the depiction is not typical, the distinguished position of the global data shows

clearly the repository character. The tools that populate this

IBDE are

" ARCHPLAN develops architectural plan from site, budget, geometric constraints

"* CORE lays out building service core (elevators, stairs, etc.)

"• STRYPES configures the structural system (e.g., suspension, rigid frame, etc.)

" STANLAY performs preliminary structural design and approximate analysis of the structural

system.

"• SPEX performs preliminary design of structural components.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 24/32

"* FOOTER designs the foundation.

"• CONSTRUCTION PLANEX generates construction schedule and

estimates cost.

Intelligent Control

As integration and automation proceed, the complexity of planning and control grows to be a

significant problem. Indeed, as this component grows more complex, its structure starts to

dominate the repository structure of the data. The difficulty of reducing the planning to pure

algorithmic form makes this application a candidate for intelligent control.

The Engineering Design Research Center at CMU is exploring the development of

intelligent agents that can learn to control external software systems, or sys items intended for

use with interactive human intervention. Integrated building design is one of the areas they have

explored. Figure 22 (Newell and Steier 1991) shows their design for an intelligent extension of

the original IBDE system, Soar/IBDE. That figure is easier to understand in two stages, so Figure

21 shows the relation of the intelligent agent to the external software systems before Figure 22

adds the internal structure of the intelligent agent. Figure 21 is clearly derived from Figure 20,

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 25/32

with the global data moved to the status of just another external software system. The emphasis

in Soar/IBDE was control of the interaction with the individual agents of IBDE.

From the standpoint of the designer's general position on intelligent control this

organization seems reasonable, as the agent is portrayed as interacting with whatever software is

provided. However, the global data plays a special role in this system. Each of the seven other

components must interact with the global data (or else it makes no sense to retain the global

data). Also, the intelligent agent may also find that the character of interaction with the global

data is special, since it was designed to serve as a repository, not to interact with humans. Future

enhancements of this system will probably need to address the interactions among components

as well as the components themselves.

Figure 22 adds the fine structure of the intelligent agent. The agent has six major components It

must be able to identify and formulate subtasks for the set of external software systems and

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 26/32

express them in the input formats of those systems. It must receive the output and interpret it in

terms of a global overview of the problem. It must be able to understand the actions of the

components as they work toward solution of the problem, both in terms of general' knowledge of

the task and specific knowledge of the capabilities of the set of external software systems.

The most significant aspect of this design is that the seven external software systems are

interactive. This means that their input and output are incremental,so a component that needs to

understand their operation must retain and update a history of the interaction. The task becomes

vastly more complex when pointer input and graphical output are included, though this is not the

case in this case.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 27/32

Evolution of Shared Information Systems In Building Design

Integration in this area is less mature than in databases and software development environments.

Nevertheless, the early stages of integrated building or facility environments resemble the early

stages of the first two examples. The evolutionary shift to layered hierarchies seems to come

when many users must select from a diverse set of tools and they need extra system structure to

coordinate the effort of selecting and managing a useful subset. These systems have not reached

this stage of development yet, so we don't yet have information on how that will emerge.

In this case, however, the complexity of the task makes it a prime candidate for intelligent

control. This opens the question of whether intelligent control could be of assistance in the other

two examples, and if so what form it will take. The single-agent model developed for Soar/IBDE

is one possibility, but the enrichment of database mediators to make them able of independent

intelligent action (like knowbots) is clearly another.

ARCHITECTURAL STRUCTURES FOR SHARED INFORMATION SYSTEMS

While examining examples of software integration, we have seen a variety of general

architectural patterns, or idioms for software systems. In this section we re-examine the data flow

and repository idioms to see the variety that can occur within a single idiom.

Current software tools do not distinguish among different kinds of components at this

level. These tools treat all modules equally, and they mostly assume that modules interact only

via procedure calls and perhaps shared variables. By providing only a single model of

component, they tend to blind designers to useful distinctions among modules. Moreover, by

supporting only a fixed pair of low-level mechanisms for module interaction, they tend to blind

designers to the rich classes of high-level interactions among components. These tools certainly

provide little support for documenting design intentions in such a way that they become visible

in the resulting software artifacts.

By making the richness of these structures explicit, we focus the attention of designers on the

need for coherence and consistency of the system's design. Incorporating this information

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 28/32

explicitly in a system design should provide a record that simplifies subsequent changes and

increases the likelihood that later modifications will not compromise the integrity of the design.

The architectural descriptions focus on design issues such as the gross structure of the system,

the kinds of parts from which it is composed, and the kinds of interactions that take place.

The use of well-known patterns leads to a kind of reuse of design templates. These

templates capture intuitions that are a common part of our folklore: it is now common practice to

draw box-and-line diagrams that depict the architecture of a system, but no uniform meaning is

yet associated with these diagrams. Many anecdotes suggest that simply providing some

vocabulary to describe parts and patterns is a good first step. By way of recapitulation, we now

examine variations on two of the architectural forms that appear above: data flow and

repositories.

Variants on Data Flow Systems

The data flow architecture that repeatedly occurs in the evolution of shared information systems

is the batch sequential pattern. However, the most familiar example of this genre is probably the

unix pipe-and-filter system. The similarity of these architectures is apparent in the diagrams used

for systems of the respective classes, as indicated in Figure 23. Both decompose a task into a

(fixed) sequence of computations. They interact only through the data passed from one to

another and share no other information. They assume that the components read and write the data

as a whole-that is, the input or output contains one complete instance of the result in some

standard order. There are differences, though. Batch sequential systems are

"* very coarse-grained

"• unable to do feedback in anything resembling real time

"• unable to exploit concurrency

"* unlikely to proceed at an interactive pace

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 29/32

On the other hand, pipe-and-filter systems are

"* fine-grained, beginning to compute as soon as they consume a few input tokens

"• able to start producing output right away (processing is localized in the input stream)

"• able to perform feedback (though most shells can't express it)

"* often interactive

VARIANTS ON REPOSITORIES

The other architectural pattern that figured prominently in our examples was the repository.

Repositories in general are characterized by a central shared data store coupled tightly to a

number of independent computations, each with its own expertise. The independent

computations interact only through the shared data, and they do not retain any significant amount

of private state.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 30/32

The variations differ chiefly in the control apparatus that controls the order in which the

computations are invoked, in the access mechanisms that allow the computations access to the

data, and in the granularity of the operations. Figures 7 and 8 show a database system. Here the

control is driven by the types of transactions in the input stream, the access mechanism is usually

supported by a specialized programming language, and the granularity is that of a database

transaction.

Figure shows a programming language compiler. Here control is fixed (compilation

proceeds in the same order each time), the access mechanism may be full conversion of the

shared data structure into an in-memory representation or direct access (when components are

compiled into the same address space), and the granularity is that of a single pass of a compiler.

Figure shows a repository that supports independent tools. Control may be determined by direct

request of users, or it may in some cases be handled by an event mechanism also shared by the

tools. A variety of access methods are available, and the granularity is that of the tool set.

One prominent repository has not appeared here; it is mentioned now for completeness-to

extend the comparison of repositories. This is the blackboard architecture, most frequently used

for signal-processing applications in artificial intelligence (Nii 1986) and depicted in Figure 24.

Here the independent computations are various knowledge sources that can contribute to

solving the problem-for example, syntactic-semantic connection, phoneme recognition, word

candidate generation, and signal segmentation for speech understanding. The blackboard is a

highly-structured representation especially designed for the representations pertinent to the

application. Control is completely opportunistic, driven by the current state of the data on the

blackboard. The abstract model for access is direct visibility, as of many human experts watching

each other solve a problem at a real blackboard (understandably, implementations support this

abstraction with more feasible mechanisms). The granularity is quite fine, at the level of

interpreting a signal segment as a phoneme.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 31/32

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: III (Shared Information Systems) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 32/32

POSSIBLE QUESTIONS

PART – B

1. Write in detail about Database Integration – Simple and Virtual Repository.

2. Elaborate Architectural Structures for Shared Information Systems

3. Explain Database Integration (i) Batch Sequential (ii) Hierarchical Layers

4. Elaborate the Integration in the Design of Buildings an example.

5. Explain in detail about Integration in Software Development Environments

6. Elucidate on the Integration in Building design - Intelligent Control.

7. Explain about Integration in Software Development

8. Write in detail on Architectural Structures for Shared Information Systems - Variants on

Dataflow Systems

9. Write in detail about Database Integration Virtual Repository.

10. Write in detail about Evolution of Shared Information Systems in Building Design

PART – C

1. Write in detail about Database Integration

2. Explain in detail about Integration in Software Development Environments

3. Elucidate on the Integration in Building design

S.NO QUESTION CHOICE 1 CHOICE 2 CHOICE 3 CHOICE 4 ANSWER

1

______________ is class of large systems

responsible for collecting, manipulating, and

preserving large bodies of complex information.

Shared

Information

Systems

Distributed

Information

Systems

Central

Information

Systems Datastore

Shared

Information

Systems

2

The earliest shared information systems consisted of

separate programs for separate ______ subtasks main task components modules subtasks

3

________________ is driven primarily by the need

to build business decision systems from conventional

databases

Business

design

Data

Processing

Software

development

software

management

Data

Processing

4

When requirements for interaction appear, new

organizations allowed independent processing

subsystems to interact through_______ .

a shared

datastore pipes filters components

a shared

datastore

5

Business data processing has traditionally been

dominated by database management, in particular by

_________ Business data

 database

updates

money

transfer transactions

database

updates

6

___________ driven primarily by the need to

represent and manipulate programs and their designs.

software

development

environments

Database

updates Data updates Database

software

development

environments

7

__________ driven couple independent design tools

to allow for the interactions of their results in

structural design.

Data

Processing

Building

design Data updates Database

Building

design

8

A massive___________ which accepted transaction

inputs and performed such validation as was possible

without access to the database

transaction

sort edit program

update

programs

Data

Processing edit program

9

A massive ________ which got the transactions into

the same order as the records on the sequential

master file

transaction

sort edit program

update

programs

Data

Processing

transaction

sort

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III BSC CS SUBJECT NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

SUBJECT CODE: 17CSP204 BATCH-2017-2019

UNIT: III (ONE MARKS) PART A - ONLINE EXAMINATION

10

A sequence of __________executed the transactions

by moving sequentially through the master file

transaction

sort

update

programs edit program

Data

Processing

update

programs

11 ___________ program produced periodic reports

a print

program

update

programs edit program

Data

Processing

a print

program

12

In Yourdon data flow diagram, processes are

depicted as ____________ Computer

circles or

bubbles Boxes arrows

circles or

bubbles

13 Data flow is depicted with arrows

circles, or

bubbles Boxes Square arrows

14

Data stores such as computer files are depicted with

_________. arrows

circles, or

bubbles parallel lines Square parallel lines

15

Each transaction has a standard __________ that

check the transaction request, access the required

data, validate the transaction, and post the result

set of

subprograms modules layers task tree

set of

subprograms

16

In Simple Repository interactive technology

provided the opportunity and demand for continuous

processing of ________ and __________

on-line

updates and

on-line

Queries

offline

updates and

offline

Queries

on-line

updates and

offline

Queries

on-line

analysis and

offline

Queries

on-line

updates and

on-line

Queries

17

The transaction database serves to synchronize

 multiple

updates

Interactive

Database

on-line

updates

off-line

updates

 multiple

updates

18

Multiple operations on a single account all at once

can be done in

multiple

updates

Interactive

Database

on-line

updates

off-line

updates

Interactive

Database

19

___ in which shared persistent data is manipulated

by independent functions each of which has

essentially no permanent state. a repository

data

warehouse

on-line

updates

off-line

updates a repository

20

The two additional structures of a simple repository

are the ______ and ________

batch and

interactive

transactions

control

element and

buffer

 update and

query

operations

add and delete

operation

control

element and

buffer

21

Corporate reorganizations, mergers, and other

consolidations of data forced the joint use of

multiple

databases

Simple

Repository

single

database

interactive

database

multiple

databases

22

In __________ database mechanisms integrate

multiple schemas into a single schema

Virtual

Repository

Simple

Repository

Database

updates

Database

Queries

Virtual

Repository

23

For each database devise a schema in its native

__________ that exports to the importer.

schema

language

database

Language

Query

Language

Report

Language

schema

language

24

One approach to the unification of multiple schemas

is called the ____________ approach unified federated Database Repository federated

25

_______________ allow for merger of information,

but their mappings are fixed, passive, and static

Unified

schemas native schema the importer

matching

schema

Unified

schemas

26 ____________ simply transform the underlying data. mappings schemas abstraction database mappings

27

The experts or ___________ localize knowledge

about how to discover what databases are available

and interact with them developers analysts

active

mediators administrators

active

mediators

28

___________ are Standalone programs; results are

passed from one to another on magtape

Batch

processing

Interactive

processing

Unified

schemas

Multi-

database

Batch

processing

29

___________ is a Repository model with external

control

Batch

processing

Interactive

processing

Unified

schemas

Multi-

database

Interactive

processing

30

One virtual repository defines (passive) consistent

conversion mappings to multiple databases is called

Batch

processing

Interactive

processing

Unified

schemas

Multi-

database

Unified

schemas

31

_____________ is a databases have many users,

passive mappings don't suffice, active agents mediate

interactions

Batch

processing

Interactive

processing

Unified

schemas

Multi-

database

Multi-

database

32

Larger memories and faster processing enable access

to an ever-wider assortment of data resources in a

heterogeneous

and

distributed

world

heterogeneous

and

centralized

world

homogeneous

and

centralized

world

homogeneous

and

distributed

world

heterogeneous

and

distributed

world

33

These ____________ applications exhibit a pattern

of development driven by changing technology and

changing needs

business data

processing

Batch

processing

Interactive

processing

Multi-

database

business data

processing

34

Software development has relied on software tools

for almost as long as data processing has relied on

on-line

databases

data

processing

Software

development None of these

on-line

databases

35

___________ has relied on software tools for almost

as long as data processing has relied on on-line

databases. software tools

Software

development

data

processing None of these

Software

development

36

Software development has relied on ______ for

almost as long as data processing.

data

processing

Software

development software tools None of these software tools

37

___________ does translation from source code to

object code compiler assembler libraries interpreter compiler

38

__________ support analysis, configuration control,

debugging, testing, and documentation as well. software tools

Software

development

process

configuration

control

software

engineering software tools

39

The earliest software development tools were

______programs. standalone object code Scripts pipeline standalone

40

Most compilers created a separate _____________

during lexical analysis and used or updated it during

subsequent passes. Symbol Table Data Flow Memory Computations Symbol Table

41

The intermediate representation for example,

____________ was the center of attention.

an attributed

parse tree Symbol Table Data Flow Computations

an attributed

parse tree

42

A more appropriate view of ____________ structure

would re-direct attention from the sequence of passes

to the central shared representation.

Traditional

compiler

Repository

view of

compiler

Modern

canonical

compiler

hierarchical

view

Modern

canonical

compiler

43

____________ of Modern Compiler accommodates

various tools that operate on the internal

representation rather than the textual form of a

program.

Repository

View

Traditional

compiler

Modern

canonical

compiler

hierarchical

view

Repository

View

44

___________ Share detailed knowledge of the

common, but proprietary, representation among the

tools of a single vendor

Tight

coupling

Loosely

Coupling Conversion representation

Tight

coupling

45

___________ Publish the representation so that tools

can be developed by many sources

Tight

coupling

Loosely

Coupling

Open

representation

Conversion

boxes

Open

representation

46

_________ Provide filters that import or export the

data in foreign representations

Tight

coupling

Conversion

boxes

Open

representation No contact

Conversion

boxes

47

_________ Prevent a tool from using the repository,

either explicitly, through excess complexity, or

through frequent changes.

Tight

coupling

Conversion

boxes

Open

representation No contact No contact

48

________ model provides for integration of data, it

provides communication and user interface services

directly

Hierarchical

Layers

Repository

Services

Process

Management

Message

services

Hierarchical

Layers

49

One variation on the integrated-environment theme,

the integration system defined a set of ________ and

provides support for tools to announce the

occurrence of events. Modules events connecters Components events

50

The advent of ______________ which drove the

shift from batch to interactive processing for many

functions.

on-line

computing,

incremental

development compilation Integration

on-line

computing,

51

The construction community operates on divide-and-

conquer problem solving with interactions among the

incremental

development subproblems compilation Integration subproblems

52

Integrated environments for building design are

frameworks for controlling a collection of

_________ that solve part of the building design

problem

standalone

applications

application

software

real time

software

system

software

standalone

applications

53

The goal of an ____________ is integration of data,

design decisions, and knowledge.

integrated

environment

hierarchical

view

repository

view

traditional

view

integrated

environment

54 ____________ divide into tasks for individual agents

Problem

partitioning

Task

distribution Agent control

Agent

communicatio

n

Problem

partitioning

55

________ is exchange of information essential when

subtasks interact or conflict

Agent

communicatio

n Data

Communicati

on Control

Agent

communicatio

n

56

___________ assign tasks to agents for best

performance

Problem

partitioning

Task

distribution Agent control

Agent

communicatio

n

Task

distribution

57

__________ is strategy that assures tasks are

performed in organized fashion

Problem

partitioning

Task

distribution Agent control

Agent

communicatio

n Agent control

58

____________ is a split between closed, tools

specifically built for this system and open, external

tools can be integrated Tools Data

Communicati

on

Agent

communicatio

n Tools

59

___________ is mostly single-level hierarchy; tools

at bottom; coordination at top Tools Data Control

Agent

communicatio

n Control

60

________ is mostly fixed partitioning of kind and

processing order; scripts sometimes permit limited

flexibility Tools Planning Control

Agent

communicatio

n Planning

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 1/45

UNIT-IV

Guidance for User-Interface Architectures – The quantified Design Space – The value of

Architectural formalism – Formalizing the Architecture of a specific system – Formalizing an

Architectural Style – Formalizing an Architectural Design Space – Towards a Theory of

Software Architecture – Z Notation

GUIDANCE FOR USER INTERFACE ARCHITECTURES

The architectural alternatives available to a system designer can be described and

classified by constructing a design space. Within a design space, we can formulate design rules

that indicate good and bad combinations of choices. Such rules can be used to select an

appropriate system design based on functional requirements. The design space is useful in its

own right as a shared vocabulary for describing and understanding systems.

This work should be viewed as a means of codifying software design knowledge for use

in day-to-day practice and in the training of new software engineers. For this purpose, a set of

design rules need not produce a "perfect" or "best possible" design. A valuable contribution will

be made if the rules can help a journeyman designer to make choices comparable to those that a

master designer would make—or even just help the journeyman to choose a reasonable design

with no major errors. With sufficient experience, a set of such rules may become complete and

reliable enough to serve as the basis for automated system design, but the rules can be of

practical use long before that stage is reached.

The work described in this report tested these notions by constructing a design space and

rules for the architecture of user interface software systems. These rules were experimentally

tested by comparing their recommendations to actual system designs. The results showed that a

rather simple set of rules could achieve a promising degree of agreement with the choices of

expert designers. These exploratory results suggest that the approach sketched here is a viable

means of creating an organized body of knowledge for software engineering.

This report is a summary of results from the author's thesis [Lane 90a]. A companion

report presents the user interface design space and rules in greater detail

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 2/45

1. The Utility of Codified Knowledge

The underlying goal of this work is to organize and express software design knowledge in a

useful form. One way of doing this is to build up a vocabulary of well-understood, reusable

design concepts and patterns. If widely adopted, a design vocabulary has three major benefits.

First, it aids in creating a system design by providing mental building blocks. Second, it helps in

understanding or predicting the properties of a design by offering a context for the creation and

application of knowledge. Third, it reduces the effort needed to understand another person's

design by reducing the number of new concepts to be learned.

An example of such a vocabulary is the codification of control structures that took place about

two decades ago. Programmers learned to perceive control flow in terms of a few standard

concepts (conditionals, iteration, selection, subroutine calls, etc.) rather than as a complex pattern

of low-level tests and branches. By reducing apparent complexity and providing a shared

understanding of control flow patterns, use of these building blocks made programs both easier

to write and easier to read. Researchers discovered key properties of these structures, for

example, the invariant and termination conditions of loops. Use of the standard structures helped

practitioners to focus on these properties, leading to better-understood, more reliable programs.

Finally, codification made it possible to build tools (programming languages) that supported the

structural concepts directly, providing further productivity gains.

As software engineering matures and research attention shifts to ever-larger problems, we can

expect to see similar codification occurring for larger software entities. The time now seems ripe

to begin codifying structural patterns in medium-size software systems, to witness characteristics

of modules and the interconnections between them.

(We can already anticipate that even higher levels of design abstraction will be needed to design

very large systems, but we are far from having enough experience to be able to discern patterns

at that scale.) A different analogy for this wok is the compilation of engineering design

handbooks, such as [Perry 84]. The established fields of engineering have long distinguished

between innovative and routine design. Innovative design relies upon raw invention or derivation

from abstract principles, while routine design uses standardized methods to solve problems

similar to those that have been solved before. When applicable, routine design methods are

cheaper and more likely to yield an acceptable (though not necessarily optimum) design than are

innovative methods. The primary purpose of such handbooks is to support routine design.

A good handbook arms its user with a number of standard design approaches and with

knowledge of their strengths and limitations. Thus, software engineering handbooks could

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 3/45

combat two opposite evils now widely seen in practice: both the tendency to invent every new

system from scratch and the tendency to reuse a single design for every problem regardless of its

suitability. Handbook-style texts are now widely available for selection of algorithms and data

structures (e.g., [Knuth 73, Sedgewick 88]) but do not yet exist for higher levels of software

design.

The work reported here offers an organizational scheme (namely, design spaces and mles) for

handbooks of software system structure, as well as the beginnings of specific knowledge for one

such handbook (covering user interface systems).

1.1 The Notion of a Design Space

The central concept in this report is that of a multi-dimensional design space that classifies

system architectures.

Each dimension of a design space describes variation in one system characteristic or design

choice. Values along a dimension correspond to alternative requirements or design choices.

 For example, required response time could be a dimension; so could the means of interprocess

synchronization (e.g., messages or semaphores). A specific system design corresponds to a point

in the design space, identified by the dimensional values that correspond to its characteristics and

structure. Figure 1-1 illustrates a tiny design space.

The different dimensions are not necessarily independent; in fact, it is important to discover

correlations between dimensions, in order to create design rules describing appropriate and

inappropriate combinations of choices. One empirical way of discovering such correlations is to

see whether successful system designs cluster in some parts of the space and are absent from

others.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 4/45

A key part of die design фасе approach is to choose some dimensions that reflect requirements

or evaluation criteria (function and/or performance), while other dimensions reflect structure (or

other available design choices).

Then, any correlations found between these dimensions can provide direct design guidance: they

show which design choices are most likely to meet the functional requirements for a new system.

For example, the hypothetical data in Figure 1-1 suggest that a message mechanism is more

likely to provide fast response time than a rendezvous mechanism. (Of course, one would want

more than just two data points before drawing this conclusion.)

The dimensions that describe functional and performance requirements make up the functional

design space, while those that describe structural choices make up the structural design space.

These groupings can be regarded either as independent spaces or as subspaces of a single large

design space. In the context of a stepwise ("waterfall") model of the software design process, the

functional design space represents the results of the requirements analysis and gross functional

design steps, while the structural design space represents the results of initial system

decomposition.

The dimensions of a design space are usually not continuous and need not possess any useful

metric (distance measure). A dimension that represents a structural choice is likely to have a

discrete set of possible values, which may or may not have any meaningful ordering. For

example, methods for specifying user interface behavior include state transition diagrams,

context-free grammars, menu trees, and many others. Each of these techniques has many small

variations, so one of the key problems in constructing a design space is finding the most useful

granularity of classification. Even when a dimension is in principle continuous (e.g., a

performance number), one may choose to aggregate it into a few discrete values (e.g., "low,"

"medium," "high"). This is appropriate when such gross estimates provide as much information

as one needs or can get, as is often true in the early stages of design.

2. A Design Space for User Interface Architectures

The design space reported here, together with its associated rules, describes architectural

alternatives for user interface software: systems whose main focus is on providing an interactive

user interface for some software functions). The system studied need not provide the whole user

interface. Thus the scope of the study included not only complete user interface management

systems (UIMSs), but also graphics packages, user interface toolkits, window managers, and

even standalone applications that have a large user interface component This scope is large

enough to include a wide range of useful system structures, yet not so large as to be intractable.

While another domain could have been chosen, user interfaces are a good choice because the

field is in ferment, with little agreement on the best possible structures. Hence the results may be

useful immediately, in addition to serving to illustrate the larger argument made above.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 5/45

The design space is too large to cover completely in this report Therefore only some

representative dimensions and rules will be described. (For a more complete presentation of the

space, see [Lane 90b].) The complete design space contains 25 functional dimensions, 6 of

which are described here. Three to five alternatives are recognized in each of these dimensions.

There are 19 structural dimensions (5 of which are described here), each offering two to seven

alternatives. Figure 2-2 presents the dimensions discussed in this report

2.1 A Basic Structural Model

To describe structural alternatives, it is necessary to have some terminology that identifies

components of a system. The terminology must be quite general, or it will be inapplicable to

some structures. A useful scheme for user interface systems divides any complete system into

three components, or groups of modules:

1. An application-specific component This consists of code that is specific to one particular

application program and is not intended to be reused in other applications. In particular, this

component includes the functional core of the application. It may also include application-

specific user interface code. (The term "code" should be read as including tables, grammars, and

other non-procedural specifications, as well as conventional programming methods.)

2. A shared user interface component This consists of code that is intended to support the user

interface of multiple application programs. If the software system can accommodate different

types of I/O devices, only code that is applicable to all device types is included here.

3. A device-dependent component This consists of code that is specific to a particular I/O

device class (and is not application-specific).

In a simple system the second or third component might be empty: there might be no shared code

other than device drivers, or the system might have no provision for supporting multiple device

types (and hence no clear demarcation of device-specific code).

The inter module divisions that the design space considers are the division between application-

specific code and shared user interface code on the one hand, and between device-specific code

and shared user interface code on the other. These divisions are called the application interface

and device interface respectively. Figure 2-1 illustrates the structural model

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 6/45

There is some flexibility in dividing a real system into these three components. This apparent

ambiguity is very useful, for one can analyze different levels of the system by adopting different

labelings. For example, in the X Window System [Scheifler 86] one may analyze the window

server's design by regarding everything outside the server as application specific, then dividing

the server into shared user interface and device-dependent levels. To analyze an X toolkit

package, it is more useful to label the toolkit as the shared code, regarding the server as a device-

specific black box.

 Sample Functional Dimensions

The functional dimensions identify the requirements for a user interface system that most affect

its structure.

These dimensions fall into three groups:

• External requirements This group includes requirements of the particular applications, users,

and I/O devices to be supported, as well as constraints imposed by the surrounding computer

system.

• Basic interactive behavior. This group includes the key decisions about user interface

behavior that fundamentally influence internal structure.

• Practical considerations. This group covers development cost considerations; primarily, the

required degree of adaptability of the system.

These dimensions are not intended to correspond to the earliest requirements that one might

write for a system, but rather to identify the specifications that immediately precede the gross

structural design phase. Thus, some design decisions have already been made in arriving at these

choices.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 7/45

External Requirements

External event handling is an example of a dimension reflecting an application-imposed external

requirement.

This dimension indicates whether the application program needs to respond to external events

(defined as events not originating in the user interface), and if so, on what time scale. The design

space recognizes three alternative choices:

• No external events: the application is not influenced by external events, or checks for them

only as part of executing specific user commands. For example, a mail program might check for

new mail, but only when an explicit command to do so is given. In this case no support for

external events is needed in the user interlace.

• Process events while waiting for input: the application must handle external events, but

response time requirements are not so stringent that it must interrupt processing of user

commands. It is sufficient for the user interface to allow response to external events while

waiting for input. Automatic reporting of mail arrival might be handled this way.

• External events preempt user commands: external event servicing has sufficiently high

priority that user command execution must be interrupted when an external event occurs. This

requirement is common in real-time control systems.

User customizability is an example of a user-imposed external requirement. The design space

recognizes three levels of end user customizability of a user interface:

• High: user can add new commands and redefine commands (e.g., via a macro language), as

well as modify user interface details.

• Medium: user can modify details of the user interface that do not affect semantics, for

instance, change menu entry wording, window sizes, colors, etc.

• Low: little or no user customizability is required.

Functional Dimensions

External event handling

• No external events

• Process events while waiting for input

• External events preempt user commands

Structural Dimensions

Application interface abstraction level

• Monolithic program

• Abstract device

• Toolkit
• Interaction manager with fixed data types

• Interaction manager with extensible data types

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 8/45

User customizability
• High

• Medium

• Low

User interface adaptability across devices

• None
• Local behavior changes

• Global behavior changes

• Application semantics changes

Computer system organization

• Uniprocessing

• Multiprocessing
• Distributed processing

Basic interface class
• Menu selection

• Form filling

• Command language

• Natural language
• Direct manipulation

Application portability across user interface styles
• High

• Medium

• Low

• Extensible interaction manager

Abstract device variability

• Ideal device
• Parameterized device

• Device with variable operations

• Ad-hoc device

Notation for user interface definition

• Implicit in shared user interface code

• Implicit in application code
• External declarative notation

• External procedural notation

• Internal declarative notation
• Internal procedural notation

Basis of communication
• Events

• Pure state

• State with hints

• State plus events

Control thread mechanism

• None
• Standard processes

• Lightweight processes

• Non-preemptive processes

• Event handlers
• Interrupt service routines

Figure 2-2: The Sample Design Space Dimensions

User interface adaptability across devices depends on the expected range of I/O devices that the

user interlace system must support This dimension indicates the extent of change in user

interface behavior that may be required when changing to a different set of I/O devices.

• None: all aspects of behavior are the same across all supported devices.

• Local behavior changes: only changes in small details of behavior occur across devices, for

example, in the appearance of menus.

• Global behavior changes: there are major changes in surface user interface behavior across

devices, for example, a change in basic interface class (see below).

• Application semantics changes: there are changes in underlying semantics of commands (e.g.,

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 9/45

continuous display of state versus display on command).

Computer system organization is an example of a dimension describing the surrounding

computer system. This dimension classifies the basic nature of the environment as follows:

• Uniprocessing: only one application executes at a time.

• Multiprocessing: multiple applications execute concurrently.

• Distributed processing: environment is a computer network, with multiple CPUs and non-

negligible communication costs.

Basic Interactive Behavior

Bask interface class identifies the basic kind of interaction supported by the user interface

system. (A general purpose system might support more than one of these classes.) Hie design

space uses a classification :

• Menu selection: based on repeated selection from groups of alternatives; at each step the

alternatives are (or can be) displayed.

• Form filling: based on entry (usually text entry) of values for a given set of variables.

• Command language: based on an artificial, symbolic language; often allows extension

through programming-language-like procedure definitions.

• Natural language: based on (a subset of) a human language such as English. Resolution of

ambiguous input is a key problem.

• Direct manipulation: based on direct graphical representation and incremental manipulation

of the program's data. It turns out that menu selection and form filling can be supported by

similar system structures, but each of the other classes has unique requirements.

Practical Considerations

Application portability across user interface styles is an example of a dimension defining the

required degree of adaptability of a user interface system. This dimension specifies the degree to

which application-specific code is insulated from user interface style changes.

• High: applications should be portable across significantly different styles (e.g., command

language versus menu-driven).

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 10/45

• Medium: applications should be independent of minor stylistic variations (e.g., menu

appearance).

• Low: user interface variability is not a concern, or application changes are acceptable when

modifying the user interface.

Sample Structural Dimensions

The structural dimensions represent the decisions determining the overall structure of a user

interface system.

These dimensions also fall into three major groups:

• Division of functions and knowledge between modules. This group considers how system

functions are divided into modules, the interfaces between modules, and the information

contained within each module.

• Representation issues. This group considers the data representations used within the system.

We must consider both actual data, in the sense of values passing through the user interface, and

meta-data that specifies the appearance and behavior of the user interface. Meta-data may exist

explicitly in the system (for example, as a data structure describing the layout of a dialogue

window), or only implicitly.

• Control flow, communication, and synchronization issues. This group considers the

dynamic behavior of the user interface code.

Division of Functions and Knowledge Between Modules

Application interface abstraction level is in many ways the key structural dimension. The design

space identifies six general classes of application interface, which are most easily distinguished

by the level of abstraction in communication:

• Monolithic program: there is no separation between application-specific and shared code,

hence no such interface (and no device interface, either). This can be an appropriate solution in

small, specialized systems where the application needs considerable control over user interface

details and/or little processing power is available. (Video games are a typical example.)

• Abstract device: the shared code is simply a device driver, presenting an abstract device for

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 11/45

manipulation by the application. The operations provided have specific physical interpretations

(e.g., "draw line," but not "present menu"). Most aspects of interactive behavior are under the

control of the application, although some local interactions may be handled by the shared code

(e.g., character echoing and backspace handling in a keyboard/display driver). In this category

the application interface and device interface are the same.

• Toolkit: the shared code provides a library of interaction techniques (e.g., menu or scroll bar

handlers). The application is responsible for selecting appropriate toolkit elements and

composing them into a complete interface; hence, the shared code can control only local aspects

of user interface style, with global behavior remaining under application control. The interaction

between application and shared code is in terms of specific interactive techniques (e.g., "obtain

menu selection"). The application can bypass the toolkit, reaching down to an underlying

abstract device level, if it requires an interaction technique not provided by the toolkit In

particular, conversions between specialized application data types and their device-oriented

representations are done by the application, accessing the underlying abstract device directly.

• Interaction manager with fixed data types: the shared code controls both local and global

interaction sequences and stylistic decisions. Its interaction with the application is expressed in

terms of abstract information transfers, such as "get command" or "present result" (notice that no

particular external representation is implied). These abstract transfers use a fixed set of standard

data types (e.g., integers, strings); the application must express its input and output in terms of

the standard data types. Hence some aspects of the conversion between application internal data

formats and user-visible representations remain in the application code.

• Interaction manager with extensible data types: similar to the previous category, except that

the set of data types used for abstract communication can be extended. The application does so

by specifying (in some notation) the input and output conversions required for the new data

types. If properly used, this approach allows knowledge of the external representation to be

separated from the main body of the application.

• Extensible interaction manager: again, communication between the application and shared

code is in terms of abstract information transfers. The interaction manager provides extensive

opportunities for application-specific customization. This is accomplished by supplying code that

augments or overrides selected internal operations of the interaction manager. (Most existing

systems of this class are coded in an object-oriented language, and the language's inheritance

mechanism is used to control customization.) Usually there is a significant body of application-

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 12/45

specific code that customizes the interaction manager, this code is much more tightly coupled to

the internal details of the interaction manager than is the case for clients of non extensibie

interaction managers.

This classification turns out to be sufficient to predict most aspects of the application interface,

including the division of user interface functions, the type and extent of application knowledge

made available to the shared user interface code, and the kinds of data types used in

communication. For instance, we have already suggested the division of local versus global

control of interactive behavior that is typically found in each category.

Abstract device variability is the key dimension describing the device interface. We view the

device interface as defining an abstract device for the device-independent code to manipulate.

The design space classifies abstract devices according to the degree of variability perceived by

the device-independent code.

• Ideal device: the provided operations and their results are well specified in terms of an "ideal"

device; the real device is expected to approximate the ideal behavior fairly closely. An example

is the PostScript imaging model, which ignores the limited resolution of real printers and

displays [Adobe 85].

In this approach, all questions of device variability are hidden from software above the device

driver level, so application portability is high. This approach is most useful where the real

devices deviate only slightly from the ideal model, or at least not in ways that require rethinking

of user interface behavior.

• Parameterized device: a class of devices are covered, differing in specified parameters such as

screen size, number of colors, number of mouse buttons, etc. The device-independent code can

inquire about the parameter values for the particular device at hand, and adapt its behavior as

necessary. Operations and their results are well specified, but depend on parameter values. An

example is the X Windows graphics model, which exposes display resolution and color handling

[Scheifler 86]. The advantage of this approach is that higher level code has both more knowledge

of acceptable tradeoffs and more flexibility in changing its behavior than is possible for a device

driver. The drawback is that device independent code may have to perform complex case

analysis in order to handle the full range of supported devices. If this must be done in each

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 13/45

application, the cost is high and there is a great risk that programmers will omit support for some

devices. To reduce this temptation, it is best to design a parameterized model to have just a few

well-defined levels of capability, so as to reduce the number of cases to be considered.

• Device with variable operations: a well-defined set of device operations exists, but the device

dependent code has considerable leeway in choosing how to implement the operations; device

independent code is discouraged from being closely concerned with the exact external behavior.

Results of operations are thus not well specified. Examples are GKS logical input devices and

the Scribe formatting model [Reid 80]. This approach works best when the device operations are

chosen at a level of abstraction high enough to give the device driver considerable freedom of

choice. Hence the device-independent code must be willing to give up much control of user

interface details. This restriction means that direct manipulation (with its heavy dependence on

semantically controlled feedback) is not well supported.

• Ad-hoc device: in many real systems, the abstract device definition has developed in an ad-hoc

fashion, and so it is not tightly specified; behavior varies from device to device. Applications

therefore must confine themselves to a rather small set of device semantics if they wish to

achieve portability, even though any particular implementation of the abstract device may

provide many additional features.

Alphanumeric terminals are an excellent example. While aesthetically displeasing, this approach

has one redeeming benefit applications that do not care about portability are not hindered from

exploiting the full capabilities of a particular real device.

These categories lend themselves to different situations. For example, an abstract device with

variable operations is useful when much of the system's "intelligence" is to be put into the

device-specific layer but it is only appropriate for handling local changes in user interface

behavior across devices.

Representation Issues

Notation for user interface definition is a representation dimension. It classifies the techniques

used for defining user interface appearance and behavior.

• Implicit in shared user interface code: information "wired into" shared code. For example,

the visual appearance of a menu might be implicit in the menu routines supplied by a toolkit In

systems where strong user interface conventions exist, this is a perfectly acceptable approach.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 14/45

• Implicit in application code: information buried in the application and not readily available to

shared user interface code. This is most appropriate where the application is already tightly

involved in the user interface, for example, in handling semantic feedback in direct manipulation

systems.

• External declarative notation: a non-procedural specification separate from the body of the

application program, for example, a grammar or tabular specification. External declarative

notations are particularly well suited for supporting user customization and for use by non-

programming user interface experts. Graphical specification methods are an important special

case.

• External procedural notation: a procedural specification separate from the body of the

application program; often cast in a specialized programming language. Procedural notations are

more flexible than declarative ones, but are harder to use. User-accessible procedural

mechanisms, such as macro definition capability or the programming language of EMACS-like

editors [Borenstein 88], provide very powerful customization possibilities for sophisticated users.

However, an external notation by definition has limited access to the state of the application

program, which may restrict its capability.

• Internal declarative notation: a non-procedural specification within the application program.

This differs from an implicit representation in that it is available for use by the shared user

interface code.

Parameters supplied to shared user interface routines often amount to an internal declarative

notation.

An example is a list of menu entries provided to a toolkit menu routine.

• Internal procedural notation: a procedural specification within the application program. This

differs from an implicit representation in that it is available for use by the shared user interface

code. A typical example is a status-inquiry or data transformation function that is provided for

the user interface code to call. This is the most commonly used notation for customization of

extensible interaction managers. It provides an efficient and flexible notation, but is not

accessible to the end user, and so is useless for user customization. It is particularly useful for

handling application-specific feedback in direct manipulation interfaces, since it has both

adequate flexibility and efficient access to application semantics. Each of these categories offers

a different tradeoff between power, runtime cost, ease of use, and ease of modification. For

example, declarative notation is the easiest to use (especially for non-programming user interface

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 15/45

designers) but it has the least power, since it can only represent a predetermined range of

possibilities. Typically, several notational techniques are used in a system, with different aspects

of the user interface being controlled by different techniques. For example, the position and size

of a screen button might be specified graphically, while its highlighting behavior is specified

implicitly by the code of a toolkit routine.

Design Rules for User Interface Architecture

There are very few hard-and-fast rules at this level of design. Most connections between design

dimensions are better described by saying that a given choice along one dimension favors or

disfavors particular choices along another dimension; the strength of this correlation varies from

case to case. The designer's task is to consider all such correlations and to select the alternative

favored by the preponderance of the evidence.

Therefore, a natural notation for a design rule is a positive or negative weight associated with

particular combinations of alternatives from two (or more) dimensions. A given design can be

evaluated by summing the weights of all applicable rules. The "best" design is then the one with

the highest score. The author prepared a mechanically evaluatable set of design rules of this form

and an evaluation program that would rank the structural alternatives when given a set of values

for the functional dimensions. The rules can also be viewed less formally as guidelines for

human designers.

It is useful to distinguish two categories of rules: those linking functional to structural

dimensions, and those interconnecting structural dimensions. The first group allows system

requirements to drive a structural design, while the second group ensures the internal consistency

of the design.3 This second group complicates the task of finding the design with the highest

scene, since choices in different dimensions affect each other. The author resorted to

combinatorial searching to locate the best designs; better algorithms may be found in the future.

A possible source of better methods is "neural network" techniques, which seem to have some

similarity to this problem.

The mechanical design rule set contains 622 rules; these rules are written in a very primitive

notation and can be reduced to about 170 rules at a more reasonable level of abstraction. The

very abbreviated descriptions below account for about ten percent of the formal rules.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 16/45

Sample Rules

The earlier descriptions of structural alternatives already mentioned some of the conditions under

which one alternative may be preferred to another. This section presents more formally some of

the specific design rules that connect the sample dimensions. Each of the sample rules is given in

prose form, together with a brief justification.

• If external event handling requires preemption of user commands, then a preemptive control

thread mechanism (standard processes, lightweight processes, or interrupt service routines) is

strongly favored. Without such a mechanism, very severe constraints must be placed on all user

interface and application processing in order to guarantee adequate response time.

• High user customizability requirements favor external notations for user interface behavior.

Implicit and internal notations are usually more difficult to access and more closely coupled to

application logic than external notations.

• Stronger requirements for user interface adaptability across devices favor higher levels of

application interface abstraction, so as to decouple the application from user interface details that

may change across devices. If the requirement is for global behavior or application semantics

changes, then parameterized abstract devices are also favored. Such changes generally have to be

implemented in shared user interface code or application code, rather than in the device driver,

so information about the device at hand cannot be hidden from the higher levels, as the other

classes of abstract device try to do.

• A distributed system organization favors event-based communication. State-based

communication requires shared memory or some equivalent, which is often expensive to access

in such an environment

• The basic user interface class affects the best choice of application interface abstraction level.

For example, menu selection and form filling user interfaces are well served by toolkits and

nonextensible interaction managers. But experience has shown that nonextensible interaction

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 17/45

managers are not adequate for direct manipulation, because they don't handle semantic feedback

well. Extensible interaction managers and toolkits are the favored alternatives for direct

manipulation.

• A high requirement for application portability across user interface styles favors the higher

levels of application interface abstraction. Less obviously, it favors event-based or pure state-

based communication over the hybrid forms (state with hints or state plus events). A hybrid

communication protocol is normally tuned to particular communication patterns, which may

change when user interface style changes. The preceding rules all relate functional to structural

dimensions. Following is an example of the rules interconnecting structural dimensions.

• The choice of application interface abstraction level influences the choice of notation for user

interface behavior. In monolithic programs and abstract-device application interfaces, implicit

representation is usually sufficient In toolkit systems, implicit and internal declarative notations

are found (parameters to toolkit routines being of the latter class). Interaction managers of all

types use external and/or internal declarative notations. Extensible interaction managers rely

heavily on procedural notations, particularly internal procedural notation, since customization is

often done by supplying procedures.

Applying the Design Space: An Example

To illustrate these ideas, this section presents a concrete example. The sample system is the cT

programming language and environment [Sherwood 88]. It is designed for the creation of high-

quality, interactive educational applications, for example, physics simulations or instruction in

musical notation. It must be usable by authors who are experts in their particular subject matter,

but who have only limited programming experience. Implementations exist on a variety of

personal computers and workstations, and portability of application programs across these

platforms is an important goal.

Its functional requirements can be described in the terms of the design space. For the sample

dimensions previously cited:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 18/45

• There is no requirement for external event handling; it's not needed in the target class of

applications.

• Little or no end user customizability is needed.

• User interface adaptability across devices may require local behavior changes, for instance to

fill areas with different patterns when color is not available. The range of supported platforms is

not so wide that global behavior changes might be necessary.

• Computer system organization may be uniprocessing or multiprocessing. It does not make

special provisions for distributed systems.

• Basic interface class is usually direct manipulation, but menu selection is also used. Each

application determines its basic interactive behavior.

• Medium portability of applications across user interface styles is required. In such things as

menu appearance, it follows the conventions of the host platform, and the application should be

independent of such details.

To describe it structurally, we classify the it programming system itself as the shared user

interface code, instructional programs written in it as application-specific code, and the

underlying platform (including graphics packages, etc.) as device-specific code. (Notice that this

division is already implicit in the functional classification above.)

The architecture of it can then be classified in the sample structural dimensions as follows:

• The application interface abstraction level falls in the toolkit class. Toolkit elements are

provided for common constructs such as menus or scrolling text boxes. cTs toolbox is

particularly strong in the analysis of text input (recognition of misspelled words, equivalent

forms of algebraic expressions, etc).

For other interactive behavior the application resorts to manipulation of the underlying abstract

device.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 19/45

• The device interface uses a parameterized abstract device. Decisions such as how to scale

displays to fit the available hardware are handled largely by the shared user interface code (but

the application can set policy, such as whether to preserve aspect ratio).

• User interface notation is mostly implicit; some aspects are implicit in the shared code while

others are implicit in the application. Limited use is made of internal procedural notation, and

there are some toolbox parameters that qualify as internal declarative notation.

• Communication is based on events; no shared state variables are used.

• cT uses basically a single thread of execution. An exception occurs in the development

environment:

while editing a cT program, incremental recompilation is done while waiting for user input The

"background" control thread used for this purpose is implemented with an event handler

mechanism.

The mechanical rule set is largely able to replicate these design decisions. For example, the rules

recommend implicit and internal-procedural user interface notations, because the requirements

for user customizability and application portability are not high enough to justify the extra cost

of external or declarative notations. The rules recommend strict single-thread control flow, so

they disagree on the last of the sample dimensions. This is unsurprising since the decision to

provide background recompilation is outside the scope of the present design space

QUANTIFIED DESIGN PROCESS

• The Quantified Design Space

– Overview

– The dilemma: Formal specification languages allow designers to make assertions

about a design but there is still no tool for systematic and

quantitative analysis of designs.”

– “A key part of the design space approach is to choose some dimensions that

reflect requirements or evaluation criteria (function and/or performance), while

other dimensions reflect structure (or other available design choices).

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 20/45

Then, any correlations found between these dimensions can provide direct design guidance: they

show which design choices are most likely to meet the functional requirements for a new

system.”

– Background

• The QFD is based on two concepts, the design space and the quality

function deployment.

• Design Space Dimensions:

 A multi-dimensional design space classifies a system’s

architecture.

 Each dimension of a design space describes variation in one

system characteristic or design choice.

 Values along a dimension correspond to alternative requirements

or design choices.

– I.e. response times,

– means of inter-process synchronization (e.g., messages or

semaphores).

A specific system design corresponds to a point in the design space, identified by the

dimensional values that correspond to its characteristics and structure.

• Design Space Rules :

 Be careful.. Weight assignments are subjective and to assign

subjective measures to subjective rules can have serious

consequences. I have found it better to use some information

theoretical approach to combine the evidence for a given

architecture using the taxonomy of the design space rules using

something like Dempster-Shafer (See Shortliffe Paper).

 This allows us to assemble both positive and negative influences

for an architecture in the same taxonomy.

 We could also use the approach suggested by Wolfgang Spohn in

ranking the plausibility (actually the implausibility) of one

architecture alternative over another.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 21/45

• Rules must be broken down into relationships (define the correlations)

between alternatives of different dimensions.

• QFD: “The voice of the customer must be maintained at each step of the product

development process”

• Use the use case description form and approach I gave you as a start to capture the

design issues, notes, and assumptions.

The description of the operation of the architecture through the use case will be constrained by

the physical configuration of the end-item product.

• QFD Process: (We will compare the book’s approach against recent published papers)

– Establish the scope of the architecture being developed (Rows):

• not as easy as it sounds especially if your system has to interoperate with

another system that requires modification to work with yours.

• Include the Quality Attributes !!!!, not just functionality !!!

– Identify the (Potential) Realization Mechanisms (Columns)

• Create a matrix of customer requirements to realization mechanisms : (See

book example)

– Establish Target Values for each realization mechanism

• Note the need to be Objectively Verifiable!

• Not their location on the Matrix.

• Design Space rules can be captured in these values

– Establish the Relationship (row/column correlation strength) between each

(potential) mechanism and the customer need.

• (Identify) the mechanism which (we believe) are most important to

achieving customer needs. (note the use by the author to use Strong,

Medium, Weak relationship indicators)

Design Space rules can be captured in these relationship and correlations values

• Identify any positive or negative correlation between the realization mechanisms.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 22/45

– Note that by themselves, a realization mechanism my be favored over another, but

when used in conjunction with each other may not provide the best set of

realizations.

– Design Space rules can be captured in these relationship and correlations values

• (See the DBMS vs. ASCII Text File realization comparisons)

• Implementation Difficulty of each realization is also recorded in the matrix.

– Design Space rules can be captured in these values

• Technical Importance rating of each customer need is also recorded in the matrix.

– Design Space rules can be captured in these values

• Matrix Analyzed and the “best” realizations are selected for the next level of

decomposition

– Quantified Design Space

• A way of presenting design trade study and the rationale for selecting a

design.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 23/45

• Organizes the choices available for a particular design into a hierarchy of

dimensions and realization alternatives.

• First correlate Requirements, to Realizations to Functional Dimensions

• Then correlate functional dimension alternatives to structural dimension alternatives:

 We could also break out the results by Requirement (which best combination of functional and

structural dimensions best suits a given requirement)

– Conclusion

• Additional correlation functions can be developed and then use a statistical

analysis method for selecting the best alternatives.

 Spectrum Analysis:

– Measures the overall goodness of a set of design decisions.

– Note the use of both CONFORMING and

DISCONFORMING measures.

 Contribution Analysis:

– Identifies the degree to which a system can be improved if

the design choice in the ith dimension is changes to the best

choice.. Therefore the dimensions with the largest

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 24/45

contribution indices are the best candidates for

improvement.

 Design Selection Analysis:

– Computes the number of dimensions where a particular

system implements the best design choices.

 Direct Comparison Analysis:

Compares two sets of design choices to determine the amount by which one is an improvement

over another.

QFD PROCESS

Quality function deployment (QFD) is a method developed in Japan beginning in 1966 to help

transform the voice of the customer [VOC] into engineering characteristics for a product.[1][2]

Yoji Akao, the original developer, described QFD as a "method to transform qualitative user

demands into quantitative parameters, to deploy the functions forming quality, and to deploy

methods for achieving the design quality into subsystems and component parts, and ultimately to

specific elements of the manufacturing process." The author combined his work in quality

assurance and quality control points with function deployment used in value engineering.

House of quality

A house of quality for enterprise product development processes

The house of quality, a part of QFD, identifies and classifies customer desires, identifies the

importance of those desires, identifies engineering characteristics which may be relevant to those

desires, correlates the two, allows for verification of those correlations, and then assigns

objectives and priorities for the system requirements. This process can be applied at any system

composition level (e.g. system, subsystem, or component) in the design of a product, and can

allow for assessment of different abstractions of a system. The house of quality appeared in 1972

in the design of an oil tanker by Mitsubishi Heavy Industries.

The output of the house of quality is generally a matrix with customer desires on one dimension

and correlated nonfunctional requirements on the other dimension. The cells of matrix table are

filled with the weights assigned to the stakeholder characteristics where those characteristics are

affected by the system parameters across the top of the matrix. At the bottom of the matrix, the

column is summed, which allows for the system characteristics to be weighted according to the

stakeholder characteristics System parameters not correlated to stakeholder characteristics may

be unnecessary to the system design and are identified by empty matrix columns, while

stakeholder characteristics (identified by empty rows) not correlated to system parameters

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 25/45

indicate "characteristics not address by the design parameters". System parameters and

stakeholder characteristics with weak correlations potentially indicate missing information, while

matrices with "too many correlations" indicate that the stakeholder needs may need to be refined.

Areas of application

QFD is applied in a wide variety of services, consumer products, and military needs.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 26/45

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 27/45

THE VALUE OF ARCHITECTURAL FORMALISM

 Formalisms

 Formal models and techniques are cornerstones of a mature engineering

discipline

 Engineering disciplines used models and techniques in different ways

 Provide precise, abstract models

 Provide analytical techniques based on models

 Provide design notations

 Provide basis for simulations …

Architecture of a specific system

 Allow the architect to plan a specific system

 Becomes part of the specification of the system

 Augments the informal characteristics of the SA

 Permits specific analyses of the system

 Architectural style

 Describe architectural abstractions for families of systems

 Purposes:

 Make common idioms, patterns and reference architectures precise

 Show precisely how different architectural representations can be

treated as specializations of some common abstraction

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 28/45

Theory of software architecture

 Clarify the meaning of generic architectural concepts

 Architectural connection, hierarchical architectural representation,

architectural style

 Provide deductive basis for analyzing systems at an architectural level

 Might provide rules for determining when an architectural

description is well formed

 Compositionality
 Formal semantics of ADL:s

 Architectural description is a language issue

 Apply traditional techniques for representing semantics of languages

 FORMALISMS IN USE FOR ARCHITECTURE

Formal foundation for software architecture?

• Architectural paradigms are often understood in an idiomatic way

• And applied in an ad hoc fashion

Formalisms

• Formal models and techniques are cornerstones of a mature engineering discipline

• Engineering disciplines used models and techniques in different ways

• Provide precise, abstract models

• Provide analytical techniques based on models

• Provide design notations

• Provide basis for simulations …

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 29/45

Architectural formalism?

• Architecture of a specific system

• Allow the architect to plan a specific system

• Becomes part of the specification of the system

• Augments the informal characteristics of the SA

• Permits specific analyses of the system

Architectural style

• Describe architectural abstractions for families of systems

• Purposes:

• Make common idioms, patterns and reference architectures

precise

• Show precisely how different architectural representations can be

treated as specializations of some common abstraction

Theory of software architecture

• Clarify the meaning of generic architectural concepts

• Architectural connection, hierarchical architectural representation,

architectural style

• Provide deductive basis for analyzing systems at an architectural level

• Might provide rules for determining when an architectural

description is well formed

• Compositionality

Formal semantics of ADL:s

• Architectural description is a language issue

• Apply traditional techniques for representing semantics of languages

• How to formalize?

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 30/45

• How to compare their relative benefits?

• Today three (3) examples

• Use the specification language Z

Formal SA of specific systems

• Many software systems start informally

• There may be no other ways for this level

• Modularization facilities of programming languages are often

inadequate

• Require designer to translate architectural abstractions to low-level

primitives of programming languages

• E.g. OO architectures appropriate for some architectural decomposition

• Still too low level of abstraction

• Use a formal specification language to describe the architecture of a system

• High level of abstraction

• Purpose:

• Provide a precise characterization of the system-level functions

• The example: Oscilloscope (see lecture on 29.1)

Oscilloscope: SA formalization

• Graph of transformations

• Pipe-and-filter style

• Analog signals enter the system

• Pass through a network of transformations

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 31/45

• Emerge as pictures and measurements displayed front panel of

instrument

• More

• Each transformer has interface

• User can tune transformation by configuring parameters

Oscilloscope: what to specify

• Each of the component transformations

• Filters

• How they are interconnected

• What data is communicated between them

Data streams of oscilloscope

• To formalize the functions of the oscilloscope, begin by characterizing the data

• Signals S, waveforms W, traces T

as functions over time, volts, and screen coordinates

• In Z

• Signal == AbsTime --> Volts

• Waveform == AbsTime -|-> Volts

• Trace == Horiz -|-> Vert

Functions of oscilloscope

• Provide a formal description to each component

• Explains the configuration parameters

• What function is computed by the transformation

• For each configuration

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 32/45

• Treat each component as a higher-order function

• When applied to its configuration parameters it produces a new function

representing the results of the transformation

Oscilloscope function: Couple

• The component Couple

• Used to subtract a DC offset from a signal

• User has three (3) parameters to choose from

• DC, AC, GND (Ground)

• DC leaves the signal unchanged

• AC subtracts the appropriate DC offset

• GND produces a signal whose value is 0 volts at all times

Oscilloscope function: Couple 2

• Coupling will be the type of the first parameter of the higher-order function

Couple

Coupling ::= DC | AC | GND

determines the resulting function, of type

Signal --> Signal:

Couple: Coupling --> Signal --> Signal

Oscilloscope function: Acquire

• A Waveform W is obtained from a Signal S by extracting a time slice

• Waveform identical to the signal except that defined only over a bounded interval

• Interval determined by

• Two time values, delay and duration

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 33/45

• A reference time, trigger event

• Duration determines length of interval

• Delay determines when the interval is sampled relative to trigger event

TriggerEvent == RelTime

Oscilloscope: connectors

• Putting things together by interpreting connectors of the architecture as establishing

input/output relationships between components

• Collect the individual components and compose them into a single subsystem

• Package the parameters of the components

• Subsystem is a functional composition of the individual

transformers

Oscilloscope: putting things together

• Package individual components parameters as single data structure

• ChannelParameters

c:Coupling

delay,duration:RelTime

scaleH:RelTime

scaleV:Volts

posnV:vert

posnH:Horiz

Oscilloscope: putting things together

• Subsystem

ChannelConfiguration : ChannelParameters --> TriggerEvent -->Signal --

>Trace

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 34/45

ChannelConfiguration = (λ trig:TriggerEvent ·

Clip ◦

WaveformToTrace(p.scaleH,p.scaleV,p.posnH,p

.posnV) ◦

Acquire(p.delay,p.duration) trig ◦ Couple p.c)

Oscilloscope results

• What good is this?

• We have a precise characterization of the system

• The architecture has been exposed as a configuration of components (parameterized

data transformers) connected functionally by inputs and outputs

• Without translating into some specific programming language

• Makes precise certain architectural assumptions

• Components share data only via their connections

• External parameters need to be evaluated before the

components can perform their primary function

FORMALIZING AN ARCHITECTURAL STYLE

• Problems with the previous specification:

• The underlying architectural style is not made explicit

• Must be inferred from the description of a particular system

• How to elaborate the design?

• E.g.: absence of cycles: in this example or essential feature?

• Avoids design issues due to high abstraction level

• How is data transmitted?

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 35/45

• Is there a fair scheduling between filters?

• Architectural connection is implicit via functional composition

• Cannot reason about topological properties independently

Formalizing pipe-and-filter style:

components

• Components:

• Filters which transform streams of data

• Each filter has input ports for reading data and output ports for writing results

• A filter performs its computations incrementally and locally

• Filters operate concurrently

Formalizing pipe-and-filter style:

connectors

• Connectors

• Pipes that control the flow of data

• Each pipe links an output port to an input port

• Indicates how data flows

• Carries out the transmission

Formalizing pipe-and -filter style: computational step

• A computational step is either:

• An incremental transformation of data by a filter or

• A communication of data between ports by a pipe

Formalizing pipe-and-filter style

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 36/45

• A tree step approach

• Define components: filters

• Define connectors: pipes

• Show how pipes and filters are combined

• For each aspect characterize its

• Static and dynamic properties

• Here via system state

Formalizing pipe-and-filter style:

data

• Given

FILTER, PORT, FSTATE, DATA

Port_State == PORT -|-> seq DATA

Partial_Port_State == PORT -|-> seq DATA

Formalizing pipe-and-filter style

filter

• Formal filter

• Defined by name, ports and program

• Ports defined as a set of names

• Directional: input ports and output ports

• Typed ports

• The type represents the kind of data the filter is prepared to process

on that port

• The types are subsets of DATA, the alphabet of the port

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 37/45

Formalizing pipe-and-filter style

filter 2

• Filter’s program in three parts

• Set of legal program states

• A starting state

• A mapping from inputs to output

• With a possible state change as a side effect

• Gives a state machine view of a filter

• Invariant includes consistency checks:

• Respecting port types

• No illegal states

Formalizing pipe-and-filter style

filter 3

• State of the filter is composed of

• the current program state: internal_state

• the data in the input ports not yet read

• data written on output ports not yet delivered

Formalizing pipe-and-filter style

filter 4

• A computational step of a filter

• Reading from the inputs and writing to the outputs

• Relation based on inputs, internal state and program

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 38/45

• Filter operates incrementally and locally

• Output depends on what is actually consumed, not on data yet to be consumed

• Is allowed to depend on historical data, not on anything outside the

filter or on previous output

Formalizing pipe-and-filter style

pipe

• Formal pipe

• typed connection between two ports, one output of a filter and the other an input to

a filter

• State divided into two parts:

• Data already delivered to the sink

• Data yet to be delivered

• Pipes are here self-contained entities and

• One can reason about them independently of filters

Formalizing pipe-and-filter style

pipe 2

• A consequence:

• The same data appears in two places, at the ports of the filters and at the ends of the

pipes

• Not a problem in mathematics

• Need to be combined when building a system

Formalizing pipe-and-filter style

pipe 3

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 39/45

• A computational step

• Pipe delivers data from its source to its sink

• Several aspects of pipes made formal:

• Data is not altered during transmission

• The order of transmitted data is not changed

• A pipe connects exactly two ports

• The amount of data is not specified

• Allows several different implementations and data

transmission policies

Formalizing pipe-and-filter style

pipe-and-filter system

• Pipe-and-filter system composed as a collection of filters and a collection of pipes

• Consistency guaranteed by

• Each filter has a unique name

• No “dangling” pipes

• Requirement for defining a system w/o reference to other systems

• Pipes create a context within which filters operate

• Pipe defines and is defined by the ports it connects

• Ports connect to no more than one pipe

• Distinction between filters and pipes

Formalizing pipe-and-filter style

pipe-and-filter system 2

• Not every port of a filter must be connected to some pipe

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 40/45

• Allows us to model systems that are later connected to other systems

• Open pipe-and-filter systems

• Allows hierarchical treatment of pipe-and-filter systems

• Any pipe-and-filter system is equivalent to a high-level filter

38

Formalizing pipe-and-filter style

pipe-and-filter system 3

 The state of a system defined by states of its components

 We identify the states of ports and pipes

Formalizing pipe-and-filter style

pipe-and-filter system 4

 A computational step is either

 A computation of a filter or

 A transmission of a pipe

 Non-deterministic execution of a single filter, leaving the rest of the system

unchanged

 Non-deterministically chosen transmitting pipe leaving everything else unchanged

Formalizing pipe-and-filter style

pipe-and-filter system 5

 System computation is a sequence of steps beginning with a start state and

continuing via legal computation steps

 Every filter is in its start state

 Every pipe is empty

 Every output port contains no data

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 41/45

 Unconnected ports are not required to be empty as treated as system

input/output

Formalizing pipe-and-filter style

pipe-and-filter system final

 Provides a precise, mathematical description of a family of systems

 Expose essential characteristics, hiding unnecessary details

 Allows us to analyze properties of systems designed in this style

 E.g. subnets can be encapsulated as new filters

 Specializations of the style possible

 A pipeline

FORMALIZING AN ARCHITECTURAL DESIGN SPACE

 Problem: different designers may interpret an architectural idiom in different

ways

 Client-server might mean different things to different designers

 Related problem: several systems may be designed with similar architectural structure,

but designers do not recognize this

 Missed opportunities to share experience

• An architectural formalism can make relationships between architectures

precise

• Example:

• Relate systems built around the implicit invocation architectural style

• Implicit invocation: components announce events

• Components register to receive events

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 42/45

• When an event is announced, all the procedures associated with it will be

automatically invoked

Implicit invocation

• What is the vocabulary of events?

• Can events announcements carry data?

• Concurrency in handling events?

• …

• Different answers lead to architectures with different properties

Implicit invocation 2

• How to formalize the above?

• Start with a simple architectural abstraction and show how specific systems refine the

abstraction

• Assume a basic set of events, methods, and component names

[EVENT, METHOD, CNAME]

• An architectural component is an entity that has a name and an interface consisting of a

set of methods and a set of events

Implicit invocation 3

• An event or a method has a component name and the event or method itself

Events == CNAME × EVENT Methods

== CNAME × METHOD

• An event system EventSystem consists of a set of components and an event manager

EM

• EM associates events with methods

• The invariant asserts that

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 43/45

• Components have unique names

• Event manager relates actual events to actual methods

• EM is very general

• Allows one event to be associated with many different methods

• Even within the same component

• Some events might be associated with no methods

• Open issues

• Which components can announce events?

• Any restrictions on methods that can be associated to events?

• The issues above need to be resolved for a more concrete architectural

style

Z NOTATION

The formal specification notation Z (pronounced "zed"), useful for describing computer-

based systems, is based on Zermelo-Fraenkel set theory and first order predicate logic.

• It has been developed by the Programming Research Group (PRG) at the Oxford

University Computing Laboratory (OUCL) and elsewhere since the late 1970s,

inspired by Jean-Raymond Abrial's seminal work.

• Formalizing an Architecture Style

• Problems with “Z”

• (1) The underlying architectural style is NOT expressed explicitly and must be

inferred and therefore opens up questions in the realization of a design.

• (2) The high level abstraction avoids many design issues:

• What are the Functional, Data, and Control Architectures (topologies) !!!

• (3) Architectural Connection is Implicit:

• How are the components to be connected ?

• How do we reason about the above topologies (architectures) independent of the

system specification ?

 Therefore, we need to EXPLICITLY formalize an Architecture Style.

• Notice the combination of “Z” and a MIL to define an Architecture Style in your text.

• Roz:

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Zermelo.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Fraenkel.html
http://web.comlab.ox.ac.uk/oucl/prg.html
http://web.comlab.ox.ac.uk/
http://www.afm.sbu.ac.uk/z/
http://spivey.oriel.ox.ac.uk/~mike/zrm/zrm.pdf
http://spivey.oriel.ox.ac.uk/~mike/zrm/zrm.pdf

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 44/45

– The Production of formal Z specifications from annotated UML diagrams

• “RoZ automatically generates the Z schemas skeletons corresponding to a UML class

diagram. To have a complete Z specification, you must add information like the

definition of the type of the attributes and the constraints on the class diagram.

In the Rational Rose tool, each concept is complemented by a specification form to

express additional information. We use these forms to express constraints, pre and

post-conditions of operations etc. Constraints are written in the Z latex syntax in (the)

"Documentation" fields of forms.”

• Is used to test the results

• Independent of program code

• Mathematical Data model

• Represent both static and dynamic aspects of a system

• Decompose specification into small pieces (Schemas)

• Schemas are used to describe both static and dynamic aspects of a system

• Data Refinement

• Direct Refinement

• You can ignore details in order to focus on the aspects of the problem you are interested

in Schema

Static Aspect

 The state can occupy.

 The invariant relationships that are maintained as the system moves from state to state.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: IV (Interface Architecture) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 45/45

POSSIBLE QUESTIONS

PART – B

1. Elucidate the Design Spaces and Rules with examples.

2. Explain the Design Rules for User Interface Architecture

3. Discuss the Quantified Design Space with examples.

4. Elaborate about Formalizing an Architectural Style with neat sketch.

5. Elucidate in detail about Formalizing an Architectural Design Space.

6. Discuss in detail about Filters in Formalizing an Architectural Style with neat sketch.

7. Write in detail on Pipes and Filters in Formalizing an Architectural Style?

8. Discuss in detail about the Value of Architectural Formalism.

PART – C

1. Explain about the Quantified Design Space with examples.

2. Elucidate in detail about Formalizing an Architectural Design Space.

3. Describe the Design Spaces and Rules with examples

S.NO QUESTION CHOICE 1 CHOICE 2 CHOICE 3 CHOICE 4 ANSWER

1

The complete design space contains ______

functional dimensions 6 25 10 20 25

2

______ consists of code specific to one particular

program, not intended to reused in other applications

Application

Specific

Shared user

Interface

device

dependent None of these

Application

Specific

3

____________ consists of code that specifies

particular I/O devices

Shared user

Interface

device

dependent

Application

Specific

Application

Interface

device

dependent

4

_______ group covers development cost

consideration primarily, the required degree of

adaptability of the system

External

requirement

Basic

interactive

behavior

practical

consideration None of these

practical

consideration

5

___________ mechanisms are popular for dealing

with incrementally updated displays.

Standard

process

Event

handlers state based None of these state based

6

In ____________ there is no separation between

application specific and shared code.

Monolithic

Program Tool Kit

Interaction

Manager

Abstract

device

Monolithic

Program

7

A class of devices covered with screen size, number

of colors, are called_______

Parameterized

device Ideal device

Variable

Operations

Ad hoc

devices

Parameterized

device

8

___________ is the key dimension describing the

device interface.

Standard

process Tool kit

Abstract

device

variability

Device

Specific

Abstract

device

variability

9

The major changes in surface user interface behavior

across devices is ___________

Global

behavior

changes

Application

Semantics

Uni

Processing None of these

Global

behavior

changes

10

A non procedural specification separate from the

body of application program is called______.

External

declarative

notation

External

Procedural

notation

Internal

declarative

notation None of these

External

declarative

notation

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III BSC CS SUBJECT NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

SUBJECT CODE: 17CSP204 BATCH-2017-2019

UNIT: IV (ONE MARKS) PART A - ONLINE EXAMINATION

11

The ________ is useful in its own right as a shared

vocabulary for describing and understanding systems design space Rules Design Designer design space

12

The underlying goal of ________ work is to organize and

express software design knowledge in a useful form

creating a

system design

properties of a

design

reduce the

effort

Utility of

Codified

Knowledge

Utility of

Codified

Knowledge

13

Programmers learned to perceive control flow in

terms of a few standard concepts. conditionals iterations

subroutine

calls All the above All the above

14

Software engineering matures and research for

codification occurring for larger ____________.

Software

entities Problems Modules subproblems

Software

entities

15

Each dimension of a design space describes variation

in one _________

system

characteristic design space Rules Design

system

characteristic

16

The dimensions that describe functional requirements

is ______________

functional

design space

structural

design space

distance

measures performance

functional

design space

17

The dimensions that describe structural choice

requirements is ______________

functional

design space

structural

design space

distance

measures performance

structural

design space

18 UIMS means _________

User Interface

Management

System

User

Information

Management

System

User

Interconnect

Management

System

User Inter

Management

System

User Interface

Management

System

19

_____________ consists of code that is specific to a

particular I/O device class.

Device

Interface

Application

Interface

device-

dependent

component Interface

device-

dependent

component

20

_____________ is an example of a dimension

reflecting an application-imposed external

requirement

External

event

handling

customizabilit

y adaptability Interface

External

event

handling

21

_____________ is the shared code that controls both

local and global interaction sequences and stylistic

decisions components modules

Interaction

manager with

fixed data

types

Interaction

manager with

extensible data

types

Interaction

manager with

fixed data

types

22

____________ is a communication between the

application and shared code is in terms of abstract

information transfers.

Interaction

manager with

fixed data

types

Interaction

manager with

extensible data

types

Transferable

abstraction

Extensible

interaction

manager

Extensible

interaction

manager

23 Aesop is a ________ language

programming

language

Architecture

Description

Language

Software

Language

Requirement

language

Architecture

Description

Language

24

Languages, models, and formalisms can be

__________ in a number of different ways evaluated defined designed described evaluated

25 ADL Means

Architecture

Description

Language

Architecture

Describing

Language

Architecture

Design

Language

Architecture

Designed

Language

Architecture

Description

Language

26

___________ are being developed to make software

designers more effective

Requirement

language

Modeling

language

Architecture

Description

Language

Software

Language

Architecture

Description

Language

27

_________ are complementary to structural or

framework models Abstraction Structures

Analysis

capabilities

Dynamic

models

Dynamic

models

28

____________ is a minority regards architecture as a

set of functional components, organized in layers that

provide services upward

Functional

Models

modeling

distributed

systems

structural

models

Dynamic

models

Functional

Models

29

____________ is changes in small details of behavior

occur across devices

Local

behavior

changes

Global

behavior

changes

Application

semantic

changes None

Local

behavior

changes

30

In ___________ only one application executes at a

time

Local

behavior

changes

Global

behavior

changes

Multiprocessi

ng Uniprocessing Uniprocessing

31

In ____________ there are changes in underlying

semantics of commands

Local

behavior

changes

Global

behavior

changes

Application

semantic

changes None

Application

semantic

changes

32

In ___________ multiple applications execute

concurrently

Local

behavior

changes

Global

behavior

changes

Multiprocessi

ng Uniprocessing

Multiprocessi

ng

33

___________ class identifies the basic kind of

interaction supported by the user interface system.

Basic

interface

application

class

user interface

class none of these

Basic

interface

34

__________ is based on repeated selection from

groups of alternatives, at each step the alternatives are

displayed Menu selection Form filling

Command

language

Natural

language Menu selection

35

________ is based on entry (usually text entry) of

values for a given set of variables Menu selection Form filling

Command

language

Natural

language Form filling

36

__________ is based on an artificial, symbolic

language; often allows extension through

programming-language-like procedure definitions. Menu selection Form filling

Command

language

Natural

language

Command

language

37

___________ is based on (a subset of) a human

language such as English and Resolution of

ambiguous input is a key problem. Menu selection Form filling

Command

language

Natural

language

Natural

language

38

______________ based on direct graphical

representation and incremental manipulation of the

program's data

Direct

manipulation Form filling

Command

language

Natural

language

Direct

manipulation

39

_____________ is an example of a user-imposed

external requirement.

User

customizabilit

y

Local

behavior

changes

Global

behavior

changes

Multiprocessi

ng

User

customizabilit

y

40

___________ group considers the data

representations used within the system

User

customizabilit

y

Direct

manipulation

Representation

issues

Command

language

Representation

issues

41

__________ is the shared code is simply a device

driver, presenting an abstract device for manipulation

by the application

Monolithic

Program Tool Kit

Interaction

Manager

Abstract

device

Abstract

device

42

_________ is the requirement of the particular

applications, users and I/O devices

External

requirements

Internal

Requirements

Software

Requirements

Program

Requirements

External

requirements

43

________ is the Key decisions about user-interface

behavior that influence internal structure

External

requirements

Basic

interactive

behavior

practical

consideration

Program

Requirements

Basic

interactive

behavior

44

__________ is the shared code provides a library of

interaction techniques (e.g., menu or scroll bar

handlers).

Monolithic

Program Tool Kit

Interaction

Manager

Abstract

device Tool Kit

45

External event handling is an example of a dimension

that reflects an application imposed external

requirements.

External

requirements

Basic

interactive

behavior

practical

consideration

Program

Requirements

External

requirements

46

___________ provided operations and their results

are well specified in terms of an "ideal" device Ideal device

parameterized

device i/o device

Abstract

device Ideal device

47

___________ isa well-de fined set of device

operations exists, but the device dependent code has

considerable way in choosing how to implement the

operations.

Device with

variable

operations Ideal device

parameterized

device i/o device

Device with

variable

operations

48

Alphanumeric terminals are example of

____________ Ideal device

parameterized

device Adhoc device

Abstract

device Adhoc device

49 __________ definition is a representation dimension

Representatio

n Issues

Notation for

User Interface Both A and B None of these

Notation for

User Interface

50

Implicit in shared user interface code Information is

 Wired into

shared code

Information

Buried

Application

Specific methods

 Wired into

shared code

51 Implicit in application code Information is ________

 Wired into

shared code

Information

Buried

Application

Specific methods

Information

Buried

52

Formalisms of this kind allow the software architect

to plan a particular system

An

Architecture

style

The

architecture of

a specific

system

A theory of

software

architecture

Formal

semantics

The

architecture of

a specific

system

53

Formalisms of this kind can be used to describe

architectural abstraction for families of systems.

An

Architecture

style

The

architecture of

a specific

system

A theory of

software

architecture

Formal

semantics

An

Architecture

style

54

Formalisms of this kind can clarify the meaning of

generic architectural concepts

An

Architecture

style

The

architecture of

a specific

system

A theory of

software

architecture

Formal

semantics

A theory of

software

architecture

55

This kind of formalism treats architectural description

as a language issues

An

Architecture

style

The

architecture of

a specific

system

A theory of

software

architecture

Formal

semantics

Formal

semantics

56 ________ represents the inputs to the oscilloscope. signals Waveforms traces All the above signals

57

A _________ is defined by its name, ports and its

program. Filters Pipes Patterns Design Space Filters

58

A _________ is simply a typed connection between

two ports. Filters Pipes Patterns Design Space Pipes

59 MVC Means

Model View

Controller

Model

Viewed

Controller

Modeled

View

Controller

Modeled

View Control

Model View

Controller

60

The ___________ is a mathematical language

developed mainly by the Programming Research

Group. schema Z notations

Logical

connectives Proceedings Z notations

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 1/35

UNIT-V

Requirements for Architecture – Description Languages – First class connectors – Adding

Implicit Invocation to Traditional Programming Languages – Tools for Architectural Design –

UniCon – Exploiting Style in Architectural Design Environments – Beyond definition/Use:

Architectural Interconnection

REQUIREMENTS FOR ARCHITECTURE

Introduction

A critical issue in the design and construction of any complex software system is its architecture:

that is, its gross organization as a collection of interacting components. A good architecture can

help ensure that a system will satisfy key requirements in such areas as performance, reliability,

portability, scalability, and interoperability. A bad architecture can be disastrous.

Much has changed in the past decade. Although there is wide variation in the state of the

practice, generally speaking, architecture is much more visible as an important and explicit

design activity in software development. Job titles now routinely reflect the role of software

architect; companies rely on architectural design reviews as critical staging points; and architects

recognize the importance of making explicit tradeoffs within the architectural design space. In

addition, the technological basis for architectural design has improved dramatically.

Three of the important advancements have been the development of architecture description

languages and tools, the emergence of product line engineering and architectural standards, and

the codification and dissemination of architectural design expertise.

LINGUISTIC CHARACTER OF ARCHITECTURAL DESCRIPTION

 Common patterns in different architectures

 common kinds of elements

 common inter-module connection strategies

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 2/35

 Languages describe complex relations among primitive elements and

combinations of these Semantic constructs

=> There is an appropriate linguistic basis in architectural descriptions

Common patterns of SW organization

 SA description often

 Box-and-line diagrams

 boxes major components

 lines communication, control, data relation

 Boxes and lines may mean different things

 For different described systems

 For different people

 Supplemented with prose, no precise meaning

 Informal terms

 Still useful

Usage of common patterns

 Informal terms

 Often refer to common patterns used to organize the system

 Used among SW engineers in high-level descriptions of designs

 More precise definitions of these

 Beneficial for SW developers

 In the forms in which they appear

 In the classes of functionality and interaction they provide

Common component classes

 (pure) Computation

 Simple input/output relations, no retained state

 Exp: Math functions, filters, transforms

 Memory

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 3/35

 Shared collection of persistent structured data

 Exp: Database, file system, symbol table, hypertext

 Manager

 State and closely related operations

 Exp: Abstract data type, servers

 Controller

 Governs time sequences of other’s events

 Exp: Scheduler, synchronizer

 Link

 Transmits information between entities

 Exp: Communication link, user interface

Common interactions among components

 Procedure call

 Single thread of control passes among definitions

 Exp: Ordinary procedure call, remote procedure call

 Dataflow

 Independent processes interact through streams of data

 Exp: Unix pipes

 Implicit invocation

 Computation is invoked by the occurrence of an event; no explicit interactions among

processes

 Exp: Event systems, automatic garbage collection

 Message passing

 Independent processes interact by explicit, discrete hand-off of data; may be synchronous

or asynchronous

 Exp: TCP/IP

 Shared data

 Components operate concurrently (probably with provisions for atomicity) on the same

data space

 Exp: Blackboard systems, multiuser databases

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 4/35

 Instantiation

 Instantiator uses capabilities of instantiated definition by providing space for state

required by instance

 Exp: Blackboard systems, multiuser databases

 Critical elements of a design language

 A (programming) language requires

 Components

 Primitive semantic elements and their values

 Exp: integers, floating-point numbers, strings, records, arrays

 Operators

 Functions that combine components

 Exp: iteration, conditional constructs, +,-,*,/

 Abstraction

 Rules for naming expressions of components and operators

 Exp: definition of macros and procedures

 Closure

 Rules to determine which abstractions can be added to the classes of primitive

components and operators

 Exp: procedures or user-defined types - first class entities

 Specification

 Association of semantics to the syntactic form

 Formal, informal (in reference manual)

 The language problem for SA

 SA deals with

 Allocation of functionality to components

 Data and communication connectivity

 Overall performance, quality attributes and system balance

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 5/35

 Quite different from the (conventional) programming language concerns

 Critical elements of a design language for SA

 Components

 Module-level elements; component classes listed before

 Operators

 Interaction mechanisms as listed before

 Abstraction

 Compositions in which code elements are connected in a particular way; Exp: client-

server relation

 Closure

 Conditions in which composition can serve as a subsystem in development of larger

systems

 Specification

 Not only of functionality, but also of quality attributes

 Implication of the critical elements

 Basis for designing ADLs provided by

 Identification of architectural components

 Identification of architectural techniques, for combining them into subsystems and

systems

 Such a language would support

 Simple expressions of connections among simple modules, plus

 Subsystems

 Configurations of subsystems into systems

 Common paradigms for such combinations

 Expression of quality attributes and functional properties

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 6/35

 Requirements for ADLs

1. To provide models, notations, tools to describe architectural components and their

interactions

 2. To handle large-scale, high-level designs

3. To support the adaptation of designs to specific implementations

4. To support user-defined abstractions

5. To support application-specific abstractions

6. To support the principled selection of architectural paradigms

 ADL and environment

 Close relation between ADL and its environment

 ADL: precise descriptions

 Environment: (re)uses the descriptions

 Ideal ADL should support

 Composition

 Abstraction

 Reusability

 Configuration

 Heterogeneity

 Analysis

 Composition

 Describe a system as composition of independent components and connections

 Aspects

 Divide a complex system (hierarchically) into smaller parts

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 7/35

 Assemble a large system from constituent elements

 Independent elements

 Can be understood in isolation from the system

 Separate issues of implementation-level from those of architectural level

 Abstraction

 Allows to describe the abstract roles of elements and their interaction within SA at a

level well understood by designers

 Clearly

 Explicitly

 Intuition

 Suppress unneeded detail but reveal important properties

 Distinct roles of each element in the high-level structure are clear

 Example: client-server relationship

 Reusability

 Reuse components, connectors, architectural styles in different architectural descriptions

 Reuse generic patterns of components and connectors

 Families of SA as open-ended sets of architectural elements

 Structural and semantic constraints

 Differs with respect to reusing components from libraries

 Those are completely closed / parameterized components, retain identities, are leaves of

“is-composed-of ” system structure

 Reusing generic patterns of components and connectors: further instantiation, indefinite

replication, structured collections of internal nodes

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 8/35

 Configuration

 Architectural descriptions should localize the description of system structure

 Dynamic reconfiguration permissible

 Evolvability

 Create/remove components, interactions

 Permit to understand and change architectural structure

 Without examining individual components

 Reason about composition as a whole

 Separate descriptions of compositions from those of elements

 Heterogeneity

 Combine multiple, heterogeneous architectural descriptions

 Ability to combine different architectural styles in a single system

 Ability to combine components written in different languages

 Analysis

 Possible to perform rich and varied analyses of architectural descriptions

 Each style facilitates a certain type of properties

 Automated and non-automated reasoning about architectural descriptions

 Important for architectural formalisms

 Variety of analyses => no single semantic framework will be enough

 Should be possible to associate specifications with architectures, relevant to particular

components, connectors, styles

FIRST-CLASS CONNECTORS

 SA treats SW systems as composition of components

 Focus on components

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 9/35

 Description of interactions among components is implicit, distributed, hard to identify

=> Info organized around components, significance of interactions, connections is ignored

 Problems with this practice

1. Inability to localize info about interactions

2. Poor abstractions

3. Lack of structure on interface definitions

4. Mixed concerns in programming language specification

5. Poor support for components with incompatible packaging

6. Poor support for multi-language or multi-paradigm systems

7. Poor support for legacy systems

 Fresh view of software system composition

 Systems composed of identifiable components of various distinct types

 These interact in identifiable, distinct ways

 Correspond to compilation units (roughly)

 Connectors mediate interactions among components

 Establish rules that govern component interaction

 Specify any auxiliary mechanisms required

 Do not correspond to compilation units

 Connectors

 Manifest as

 Table entries

 Instructions to a linker

 Dynamic data structures

 System calls

 Initialization parameters

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 10/35

 Servers with multiple independent connections

 Define a set of roles that specific named entities of the components must play

 Place of relations among components

 Mediate interactions

 Have protocol specifications defining their properties

 Rules about types of interfaces they are able to mediate for

 Assurances about properties of interactions

 Rules about order in which things happen

 Commitments about interaction (ordering, performance, etc)

 Are of some type/subtype

 Roles to be satisfied: specific, visible named entities in the protocol of a connector

 Components

 Place of computation and state

 Have interfaces specifying their properties

 Signatures

 Functionality of resources

 Global relations

 Performance properties

 Are of some type/subtype

 Interface points: specific, visible named entities in the interface of a component

 Primitive vs composite: components

 Primitive components coded in the programming language

 Composite components define configurations in independent notation

 Constituent components and connectors identified

 Match connection points of components with roles of connectors

 Check integrity of the above

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 11/35

 Primitive vs composite: connectors

 Of different kinds

 Shared data representations

 Remote procedure calls

 Dataflow

 Document-exchange standards

 Standardized network protocols

 Rich enough set to require taxonomy to show relations among similar connector kinds

 Primitive connectors

 Built-in mechanisms of programming languages

 System functions of the OS

 Shared data

 Entries in task/routing tables

 Interchange formats for static data

 Initialization parameters etc

 ADDING IMPLICIT INVOCATION TO TRADITIONAL PROGRAMMING

LANGUAGES

Implicit invocation based on event broadcast is an increasingly important technique for

integrating systems. However, the use of this technique has largely been confined to tool

integration systems - in which tools exist as independent processes – and special purpose

languages – in which specialized forms of event broadcast are designed into the language from

the start.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 12/35

Adding Implicit Invocation to Ada

While there are many ways to implement an implicit invocation mechanism, all are based on

two fundamental concepts. The first is that in addition to defining procedures that may be

invoked in the usual way, a module is permitted to announce events. The second is that a

module may register to receive announced events. This is done by associating a procedure of

that module with each event of interest. When one of those events is announced the implicit

invocation mechanism is responsible for calling the procedures that have been registered with

the event.

Overview of the Implemental ion

In Ada the basic unit of modularization is the package [Ada83]. Packages have interfaces,

which define (among other things) a set of exported procedures. We developed a small

specification language to augment package interfaces. This language allows users to identify

events they want the system to support, and to specify which Ada procedures (in which

package specifications) should be invoked on announcing the event.

Key Design Questions

This simple implementation provides many characteristics of more complex implicit

invocation systems. However, it embodies a set of design choices whose consequences are

important to understand, both to see how to use an implicit invocation system, and to observe

the limitations of the implementation. The design decisions can be grouped into the following

six categories:

1. Event definition

2. Event structure

3. Event bindings

4. Event announcement 5. Concurrency 6. Delivery policy

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 13/35

Event Definition

 The first design issue concerns how events are to be defined. There are several related issues.

Is the vocabulary of events extensible? If so, are events explicitly declared? If events are

declared, where are they declared? We considered three approaches to event extensibility and

declaration.

Fixed Event Vocabulary A fixed set of events is built into the implicit invocation system: the

user is not be allowed to declare new events.

Static Event Declaration The user can introduce new events, but this set is fixed at compile

time.

Dynamic Event Declaration New events can be declared dynamically at run time, and thus

there is no fixed set of events.

 No Event Declarations Events are not declared at all; any component can announce arbitrary

events.

Event Bindings

Event bindings determine which procedures (in which modules) will be called when an event

is announced. There are two important questions to resolve. First, when are events bound to

the procedures? Second, how are the parameters of the event passed to these procedures? With

respect to the first issue, we considered two approaches to event binding:

Static Event Bindings Events are bound to procedures statically when a program is compiled.

 Dynamic Event Bindings Event bindings can be created dynamically. Components register

for events at run time when they wish to receive them, and reregister for events when they are

no longer interested.

Event Announcement

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 14/35

Although announcing an event is a straightforward concept, there are several ways in which it

can be incorporated.

 Single Announcement Procedure Provide a single procedure that would announce any

event. Pass it a record with a variant part containing the event type and arguments.

 Multiple Announcement Procedures Provide one announcement procedure per event name.

For example, to announce the Changed event a component might call Announce_ Changed.

The procedure accepts exactly the same parameters (in number, type, order, and name) as the

event.

Language Extension Provide an announce statement as a new kind of primitive to Ada and

use a language preprocessor to conceal the actual Ada implementation.

Implicit Announcement Permit events to be announced as a side effect of calling a given

procedure. For example, each time procedure Proc is invoked, announce event Event.

Concurrency

 Thus far our enumeration of design decisions has left open the question of exactly what a

component is. In our design, we considered three options.

Package A component is a package, and an invocation is a call on a procedure in the package

interface.

Packaged Task A component is a task (with an interface in a package specification), and an

invocation is a call on an entry in the task interface.

 Free Task A component is a task. An invocation is a call on an entry in the task interface.

However, rather than providing an enclosing package, the task is built inside the

Event_Hanager package.

Delivery Policy

In most event systems, when an event is announced all procedures bound to it are invoked.

However, in some event systems this is not guaranteed. While delivery policy was not a major

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 15/35

question in our development, there is enough variation in the way this is done in other systems

to explore the design options. The ones we considered are:

 Full Delivery An announced event causes invocation of all procedures bound to it.

Single Delivery An event is handled by only one of a set of event handlers. For example, this

allows such events as “File Ready for Printing” to be announced, with the first free print server

receiving the event. This delivery policy provides a form of “indirect invocation”, as opposed

to “implicit invocation”.

Parameter-Based Selection This approach uses the event announcement’s parameters to

decide whether a specific invocation should be performed. This is similar to the pattern

matching features of Field [Reiss 90] in that a single event can cause differing sets of

subprograms to be invoked depending upon exactly what data is transferred with the event.

State-based Policy Some systems (notably Forest [Garlan & Ilias 91]), associate a “policy”

with each event binding. Given an event of interest, the policy determines the actual effect of

it.

EXPLOITING STYLE IN ARCHITECTURAL DESIGN ENVIRONMENTS

What is Architectural Style?

While there is currently no single well-accepted definition of software architecture it is

generally recognized that an architectural design of a system is concerned with describing its

gross decomposition into computational elements and their interactions [PW92, GS93b,

GP94]. Issues relevant to this level of design include organization of a system as a composition

of components; global control structures; protocols for communication, synchronization, and

data access; assignment of functionality to design elements; physical distribution; scaling and

performance; dimensions of evolution; and selection among design alternatives.

It is possible to describe the architecture of a particular system as an arbitrary composition of

idiosyncratic components. However, good designers tend to reuse a set of established

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 16/35

architectural organizations – or architectural styles. Architectural styles fall into two broad

categories.

Idioms and patterns:

This category includes global organizational structures, such as layered systems, pipe-filter

systems, client server organizations, blackboards, etc. It also includes localized patterns, such

as model-view-controller [KP88] and many other object-oriented patterns [Coa92, GHJV94].

Reference models:

This category includes system organizations that prescribe specific (often parameterized)

configurations of components and interactions for specific application areas. A familiar

example is the standard organization of a compiler into lexer, parser, typer, optimizer, code

generator [PW92]. Other reference architectures include communication reference models

(such as the ISO OSI 7-l layer model.

More specifically, we observe that architectural styles typically determine four kinds of

properties [AAG93]:

1. They provide a vocabulary of design elements – component and connector types such as

pipes, filters, clients, servers, parsers, databases etc.

2. They define a set of configuration rules – or topological constraints – that determine the

permitted compositions of those elements. For example, the rules might prohibit cycles in a

particular pipe-filter style, specify that a client-server organization must be an n-to-one

relationship, or define a specific compositional pattern such as a pipelined decomposition of a

compiler.

3. They define a semantic interpretation, whereby compositions of design elements, suitably

constrained by the configuration rules, have well-defined meanings.

4. They define analyses that can be performed on systems built in that style. Examples include

schedulability analysis for a style oriented toward real-time processing [Ves94] and deadlock

detection for client-server message passing [JC94].

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 17/35

Use of standardized styles supports interoperability. Examples include CORBA object-

oriented architecture [Cor91], the OSI protocol stack [McC91], and event-based tool

integration [Ger89].

Automated Support for Architectural Design

Given these benefits, it is perhaps not surprising that there has been a proliferation of

architectural styles. In many cases styles are simply used as informal conventions. In other

cases – often with more mature styles – tools and environments have been produced to ease the

developer’s task in conforming to a style and in getting the benefits of improved analysis and

code reuse.

Aesop

Aesop is a system for developing style-specific architectural development environments. Each

of these environments supports (1) a palette of design element types (i.e., style-specific

components and connectors) corresponding to the vocabulary of the style; (2) checks that

compositions of design elements satisfy the topological constraints of the style; (3) optional

semantic specifications of the elements; (4) an interface that allows external tools to analyze

and manipulate architectural descriptions; and (5) multiple style specific visualizations of

architectural information together with a graphical editor for manipulating them. Building on

existing software development environment technology, Aesop adopts a “generative”

approach. As illustrated in Figure 1, Aesop combines a description of a style (or set of styles)

with a shared toolkit of common facilities to produce an environment, called a Fable,

specialized to that style (or styles).

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 18/35

The Structure of a Fable

Aesop adopts a conventional structure for its environments: a Fable is organized as a collection

of tools that share data through a persistent object base (Figure 5). The object base runs as a

separate server process and provides typical database facilities: transactions,

concurrency control, persistence, etc. In the initial prototype the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 19/35

database was built by “serverizing” OBST, a public domain, C++- oriented database Tools run

as separate processes and access the object base through an RPC interface called the “Fable

Abstract Machine” (or FAM), which defines operations for creating and manipulating

architectural objects. This interface is defined as a set of C++ object types that are linked with

tools that intend to directly manipulate architectural data. Additionally, tools can register an

interest in specific data objects, and will be notified when they change. Currently we use

Hewlett Packard’s Softbench [Ger89] for event-based tool invocation. This same mechanism

also serves to integrate external tools. For example, in the pipe-filter environment, described

above, code is generated by announcing a message to a suitably “encapsulated” code

generation tool. Tools such as external editors are handled in the same way. The user interface

to aFable is centered around a graphical editor and database browser provided by the Aesop

system.

Representing Architectural Designs

Given a persistent object base for architectural representation, an important question is what are

the types of objects that can be stored in the database. The answer to this question is critical,

since, in effect, it answers the deeper question: what is an architectural design and how is it

represented? Our approach to architectural representation is based on a generic ontology of seven

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 20/35

entities: components, connectors, configurations, ports, roles, representations, and bindings. The

basic elements of architectural description are components, connectors and configurations.

Components represent the loci of computation; connectors represent interactions between

components; and configurations define topologies of components and connectors. Both

components and configurations have interfaces. A component interface is defined by a set of

ports, which determine the component’s points of interaction with its environment. Connector

interfaces are defined as a set of roles, which identify the participants of the interaction

Defining Styles

The generic object model provides the foundation for representing architecture. However, to

obtain a useful environment, that framework must be augmented to support richer notions of

architectural design. In Aesop this is done by specifying a style.

A Pipe-Filter Style

As indicated earlier, a pipe-filter style supports system organization based on asynchronous

computations connected by dataflow.

Vocabulary. Figure 8 illustrates the type hierarchy we used to define a pipe-filter style. Filter

is a subtype of component and pipe a subtype of connector. Further, ports are now

differentiated into input and output ports, while roles are separated into sources and sinks.

Configuration rules. The pipe-filter style constrains the kinds of children and connections

allowed in a system. Besides the constraints on port addition described above, pipes must take

data from ports capable of writing data, and deliver it to ports capable of reading it. Hence,

source roles can only attach to input ports, and sink roles can only attach to output ports.

(Figure 7 shows how this constraint is enforced by a method of the new pf source class. Most

of the configuration rules are equally simple, although some—such as prohibiting cycles—can

be considerably more complex.)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 21/35

 Semantic interpretation. In the prototype pipe-filter the semantics of filters is given by a

simple, style-specific filter language, as was illustrated in Figure 3. The associated tool (based

on Gandalf [HN86]) provides typechecking and other static analyses.

 Analyses. In addition to the static semantic checksjust outlined, we incorporated a tool for

generating code from filter descriptions. Hence, a pipe-filter description can be used to

generate a running program, with the help of some style-specific tool and the external Gandalf

tool.

A Pipeline Style A pipeline style is a simple specialization of the a pipe-filter style. It

incorporates all aspects of the the pipe-filter style except that the filters are connected together

in a linear order, with only one path of data flow. (This corresponds to simple pipelines built in

the Unix shell.) The pipeline style is an example of stylistic subspecialization.

A Real-Time Style

An important class of system organization divides computations into tasks communicating by

synchronous and asynchronous messages. Within this general category are systems that must

satisfy real-time scheduling constraints while processing their data. We created an Aesop

environment for an architectural style, developed at the University of North Carolina, that

supports the design of such systems [Jef93]. Underlying the architectural style is a body of

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 22/35

theory for analyzing real-time systems [Jef92]. This theory allows one to determine the

(scheduling) feasibility of a system from the processing rates of its component tasks, rates of

inputs from external devices, and shared resource loads. The theory also leads to heuristics for

improving the schedulability of a system that is not feasible.

 The style has been applied primarily to real-time, multi-media applications

 An Event-based Style In an event-based style, components register their interest in certain

kinds of events, and then can announce events and receive them according to their interest.

Vocabulary. The event style defines a new “participant” component that registers for,

announces, and receives events. An “event bus” connector is used to propagatethe events

between components.

Configuration Rules. In this style, configuration rules simply state that the event bus connects

only to components that announce or receive events.

Semantic Interpretation. Components are permitted to communicate events between each

other only if they have a common bus to which they are connected, and the receiving

component registered an interest in the type of event announced by the sending component. An

announced event can be received by zero or more other components (unlike in the pipe-filter

style, where written data can only be read by one other component).

Analyses. A number of analyses are possible in event-based styles, such as identifying the

flow of communication between components. As in the pipe-filter style, given a language for

specifying the communication behavior of participant components, a compiler can be built to

generate code for a particular event-based configuration [GS93a]. (We did not do this,

however, in our prototype.)

 User Interface

In addition to providing a representational model for tools to create and manipulate

architectural descriptions, an environment must also provide a way for the user to view, edit,

and use these descriptions. As we outlined earlier, the default interface is a graphical editor,

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 23/35

which is automatically provided by Aesop and which runs as a separate tool in the

environment. To produce a style-specific environment this editor (and potentially other

interface tools) must also be specialized. To accomplish this, each architectural class is

associated with one or more visualization classes. New subclasses introduced by a style inherit

the visualizations of their superclass, but may also define their own visualization classes. This

induces a parallel hierarchy of visualization types, in which the upper portion of that hierarchy

is defined by the default visualizations for the generic architectural types.

The first category concerns the way in which styles are described, and includes:

_ Explicit representation of stylistic constraints.

Control over super type visibility.

Dynamic incorporation of style descriptions.

Type migration.

TOOLS FOR ARCHITECTURAL DESIGN

Architecture Description Languages

 The positives

 ADLs provide a formal way of representing architecture

 ADLs are intended to be both human and machine readable

 ADLs support describing a system at a higher level than previously possible

 ADLs permit analysis of architectures – completeness, consistency, ambiguity, and

performance

 ADLs can support automatic generation of software systems

 The negatives

 There is no universal agreement on what ADLs should represent, particularly as regards

the behavior of the architecture

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 24/35

 Representations currently in use are relatively difficult to parse and are not supported by

commercial tools

Software Architecture: ADL Perspective

 The ADL community generally agrees that Software Architecture is a set of components

and the connections among them.

 components

 connectors

 configurations

 constraints

 ADLs

 Leading candidates

 ACME (CMU/USC)

 Rapide (Stanford)

 Wright (CMU)

 Unicon (CMU)

 Secondary candidates

 Aesop (CMU)

 MetaH (Honeywell)

Our model thus describes software systems in terms of two kinds of distinct, identifiable

elements: components and connectors. Each of the two elements has a type, a specification, and

an implementation. The specification defines the units of association used in system

composition; the implementation can be primitive or composite. Figure 4 suggests the essential

character of the model.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 25/35

Components are the locus of computation and state. Each component has an interface

specification that defines its properties. These properties include the component's type or subtype

(e.g. filter, process, server, data storage), functionality, guarantees about global invariants,

performance characteristics, and so on. The specific named entities visible in a component’s

interface are its players. The interface includes the signature, functionality, and interaction

properties of its players.

Connectors are the locus of definition for relations among components. They mediate

interactions but are not “things” to be “hooked up;” rather, they provide the rules for hooking-up.

Each connector has a protocol specification that defines its properties. These properties include

its type or subtype (e.g. remote procedure call, pipeline, broadcast, shared data representation,

document exchange standard, event), rules about the types of interfaces it works with, assurances

about the interaction, commitments about the interaction such as ordering or performance, and so

on. The specific named entities visible in a connector’s protocol are roles to be satisfied. The

interface includes rules about the players that can match each role, together with other interaction

properties.

 Components may be either primitive or composite.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 26/35

Primitive components may be implemented as code in a conventional programming language,

shell scripts of the operating system, software developed in an application such as a spreadsheet,

or other means external to the architectural description language.

Composite components define configurations in a notation independent of conventional

programming languages. This notation must be able to identify the constituent components and

connectors, match the players of components with roles of connectors, and check that the

resulting compositions satisfy the specifications of both the components’ interfaces and the

connectors’ protocols.

UniCon

UniCon is an architectural description language whose focus is on supporting the variety of

architectural parts and styles found in the real world and on constructing systems from their

architecture descriptions. To give a feel for what describing an architecture is like in UniCon,

here is a short example.

 An architecture description in UniCon consists of a set of components and connectors. A

component is a locus of data or computation, while a connector mediates the interaction among

components. Each component has an interface that exports a set of players. These players

engender the ways in which the component can interact with the outside world. Similarly, a

connector's protocol exports a set of roles that engender the ways in which the connector can

mediate interaction. To illustrate, here's an example diagram produced using UniCon's graphical

editor:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 27/35

The diagram features two components, labelled A and B, which are Unix filters. Each of them

exports three players, drawn as triangles; the player on the left represents the input stream

"standard in", while the players on the right represent the output streams "standard out" and

"standard error." Between the two components is a connector, which represents a Unix pipe. The

connect exports two roles: the one dangling to the left represents the pipe's source; the one

dangling to the right represents the pipe's sink.

 In the picture above, there is no interactive among the components and connectors; nothing is

"hooked up." To specify that there should be a connection, a player must be associated with a

role. In the graphical editor, this is done by dragging the role over the player and dropping it. The

result of dragging the pipe's sink and dropping it on B's input is shown here:

By associating players and roles, a whole configuration of interacting parts can be specified.

 The current version of UniCon supports not only pipe-and-filter systems like those above, but

also modules interacting with procedure calls and shared data, distributed systems with RPC

calls, processes that share processors according to various real-time disciplines, and databases

accessed with SQL commands.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 28/35

To speed the process of gaining experience, some simplifications were made to the model when

implementing UniCon, namely:

• UniCon supports composite components but not composite connectors.

• Abstractions for components and connectors are built in, but new ones cannot yet be defined.

These built-in elements sample a diverse space, but the set is in no sense complete and a unifying

taxonomy is not yet provided.

• The only primitive components at present are compilation units. Although the implementation

is largely language-indifferent, C is the language supported at present.

• The syntax has not been refined for conciseness yet. It can be a bit wordy, especially when

making intermodule connections of procedures and data with no change of name.

Abstraction and Encapsulation

For a composite element, the implementation part consists of

• a parts list (components and connectors)

• composition instructions (association between roles and players)

• abstraction mapping (relation between internal players and players of the composite)

• other related specifications (detailed properties of the parts and compositions).

Types and Type Checking

A problem similar to type checking in a programming language arises at four points in an

architectural

language. Two of these appear in the preceding discussion: the types of components and of

connectors and their use in showing adherence to a style. As with any type system, types for

components

and connectors express the designer’s intent about how to use the element properly and are

most useful when the language checks them. The types for connectors and components are not

merely enumerations of unrelated items; some are closely related to others. Architectural types

describe

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 29/35

expected capabilities and limit both what can appear in the construct’s specification and the

legitimate ways to use the construct. Examination of real systems shows that type hierarchies of

this

sort are useful. For example, there are many kinds of memories (components) and many kinds of

event systems (connectors). Defining type structures for these elements requires the creation of

taxonomies

to catalog and structure the type variations. This is part of establishing a full model for

architectural composition.

Accommodating Analysis Tools

Architectural descriptions should be “open” with respect to analysis tools. We must

accommodate

techniques that are applied at the systems level of design. These analysis tools will often be

developed

independent of the model. They may address such properties as functional correctness,

performance,

and timing (e.g., allowable order of operations, real-time guarantees). The architectural

description language should be able to interact with any analysis technique that works with

information

in the architectural specifications. It should be able to record the system-level specifications

required by external tools as uninterpreted expressions, deliver information to the tools, receive

results

from the tools, and incorporate those results in the architectural description.

BEYOND DEFINITION/USE: ARCHITECTURAL INTERCONNECTION

Large software systems require decompositional mechanisms in order to make them tractable.

By breaking a system into pieces it becomes possible to reason about overall properties by

understanding the properties of each of the parts. Traditionally, Module Interconnection

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 30/35

Languages (MILs) and Interface Definition Languages (IDLs) have played this role by providing

notations for describing (a) computational units with well-defined interfaces, and (b)

compositional mechanisms for gluing the pieces together. A key issue in design of a MIL/IDL is

the nature of that glue. Currently the predominant form of composition is based on definition/use

bindings [13]. In this model each module defines or provides a set of facilities that are available

to other modules, and uses or requires facilities provided by other modules. The purpose of the

glue is to resolve the definition/use relationships by indicating for each use of a facility where its

corresponding definition is provided.

Implementation versus Interaction At the level of system design one important relationship

between modules is that of “implements”: a given module is defined in terms of facilities

provided by other modules. For example, one module might import a string package that it uses

to implement an internal data representation. But this is not the only important kind of

relationship. When people design systems they typically provide an architectural description

consisting of a set of computational components and set of inter-component connections that

indicate the interactions between those components. Often these descriptions are expressed

informally as box and line diagrams, and the interaction relationshipsare described

idiomaticallywith phrases such as “client-server interaction”, “pipe and filter organization”, or

“event-broadcast communication”. In these descriptions the components are treated as

independent entities that may interact with each other in complex ways [5, 11]. The distinction

between a description of a system based on “implements” relationships and one based on

“interacts” relationships is important for three reasons.

 First, the kinds of description involve different ways of reasoning about the system

Second, the two kinds of relationship have different requirements for abstraction.

Third, they involve different requirements for compatibility checking

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 31/35

Example

To illustrate the distinctions outlined above consider a simple system, Capitalize, that transforms

a stream of characters by capitalizing alternate characters while reducing the others to lowercase.

Let us assume that the system is designed as a pipe-filter system that splits the input stream

(using the filter split), manipulates each resulting substream separately (using filters upper and

lower) and then remerges the substreams (using merge). In a typical implementation of this

design we would likely find a decomposition such as the one illustrated in figure 1. It consists of

a set-up routine (main), a configuration module (config), input/output libraries, as well as

modules for accomplishing the desired transformations. The set-up routine depends on all of the

other modules, since it must coordinate the transformations and do the necessary hooking up of

the streams. Each of the filters uses the configuration module to locate its inputs and outputs, and

the i/o library to read and write data.

This second description clearly highlightsthe architectural design and suggests that in order to

understand a system it is important to express not only the definition/use dependency relations

between implementation “modules,” but also to reflect directly the abstract interactions that

result in the effective composition of independent components. In particular, to understand and

reason about Capitalize it is at least as important to know that the output of upper is delivered to

merge as it is to know that it is invoked by main and uses i/o library.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 32/35

TheWRIGHT Model of Architectural Description

Unfortunately, except in very specialized circumstances, the kind of architectural description

given above is usually informal, and programmers must ultimately rely on concrete descriptions

of implementation relationships to find the “truth” of the system.

In order to support more direct specification and analysis of architectural descriptions, we have

developed The WRIGHT architectural specification language. WRIGHT specifications are based

on the idea that interaction relationships between components of a software system should be

directly specifiable as protocols that characterize the nature of the intended interaction.

WRIGHT allows one to define reusable connector classes that can be instantiated as needed to

produce system descriptions. The meaning of a connector is given by a set of protocols, which

state what are the roles of interaction and how these roles interact with each other.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 33/35

Figure 3 illustrates the use of the notation for describing the example system. As shown, a

system description is divided into two parts. First, both component and connector classes are

specified, indicating the interface and computation of components and the protocol that the

connector class represents. Second, the configuration of the system is described using instances

of these classes, and the architectural topology is defined as a list of attachments.

AWRIGHT specification describes a component interface as a collection of ports, or

logical interaction points. These ports factor the expectations and promises of the component into

the points of interaction through which the component will interact with its environment. The

component may optionally further specify how the interactions on its ports are combined into a

computation.

Reasoning About Architectural Descriptions

An important property of any system description language is its ability to support reasoning

about system descriptions. Standard MILs typically support reasoning about certain forms of

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 34/35

consistency (such as typechecking) and (possibly) correctness. In the case of architectural

connection we are interested in richer forms of consistency. Specifically, we would like to be

able to know when it is legal to attach a given connector as a port in some system description.

We refer to this as the “port-role compatibility” problem. (Recall that we use an instance of a

connector by associating its roles with the ports of instances of components—see figure 3.)

The most obvious and constrained form of compatibility checking would be to simply check

that the port and role have identical protocols. But this is too restrictive. For example, we saw

above that the ports of Split did not take advantage of the full flexibility provided by the Pipe

roles. Similarly, we would like to be able to connect either end of a pipe to a file (as is done in

Unix), even though files support both reads and writes while the end of a pipe supports only

one. As another example, it should be possible to use a server port in a role that requires fewer

services than the component provides. On the other hand we would not like the client port to

attempt to use more services than the server provides.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I MSC CS COURSE NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

COURSE CODE: 17CSP204 UNIT: V (Architecture Description Languages) BATCH-2017-2019

Prepared by: N. Manonmani, Asst Prof, Department of CS, CA & IT, KAHE Page 35/35

POSSIBLE QUESTIONS

PART – A

1. List out the Requirements for Architecture Description Languages.

2. Discuss in detail about First Class Connectors

3. Write in detail about UniCon: A Universal Connector Languages.

4. Discuss in detail about Wright Model of Architectural Descriptions.

5. Explain in detail Adding Implicit Invocation to Ada.

6. Explain in detail about Beyond Definition/Use: Architectural Interconnection.

7. What is Architectural Style?

PART – C

1. Explain about Requirements for Architecture Description Languages.

2. Describe about the UniCon: A Universal Connector Languages.

3. Elucidate the Wright Model of Architectural Descriptions

S.NO QUESTION CHOICE 1 CHOICE 2 CHOICE 3 CHOICE 4

1

___________ is a system for developing style-

specific architecture development environment Aesop Fables Style palette

2

_________ category includes global organizations

structures

Reference

Models

Idioms and

Patterns Patterns Idioms

3 Idioms and Patterns include____________.

General

Pattern

Reference

Pattern Idioms Pattern

Localized

Pattern

4

________ category includes system Organization that

prescribe specific configurations of components and

interactions for specific applications areas

Idioms and

Patterns

General

Pattern

Localized

Pattern

Reference

Model

5 Other Reference architecture include ___________.

Communicatio

n Reference

Model

Reference

Model

Communicatio

n Model

User Interface

Model

6

Architectural Style typically determine ______ kinds

property 1 2 3 4

7

Architectural Style provides __________ of design

elements

topological

constraints of

the style

a palette of

design

elements

Optional

semantic

Specification vocabulary

8

Architectural Style define a set of ______ or

topological constraints that determine the permitted

composition of elements

topological

constraints of

the style

a palette of

design

elements

configuration

rules vocabulary

9

An interface that allows external tool to analyze and

manipulate______ description

Multistyle

description

architectural

description

graphical

editor

10

_________ visualization of architectural information

together with a graphical editor for manipulating

them.

topological

constraints of

the style

Optional

semantic

Specification

a palette of

design

elements

multiple Style

Specification

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III BSC CS SUBJECT NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

SUBJECT CODE: 17CSP204 BATCH-2017-2019

UNIT: V (ONE MARKS) PART A - ONLINE EXAMINATION

11

________ is a relation between internal players and

Players of the composite

Abstraction

mapping

Composition

Instructions part List Both A and B

12

The Combination of localized definitions and higher

level elements makes it possible to _____________

for styles

Unformalize

rule formalize rules formula rule None of these

13 Aesop adopts a ________ approach generative structured functional rule based

14 ____________ data type rely on an abstraction. Abstract shared data Procedure call Module

15

Abstraction mapping will be required for

______________.

composite

connectors

implicit

connectors

Explicit

Connectors

Instruction

Connectors

16 A parts list are ___________.

roles and

Players

Players and

internal

Players

Connection

and functions

Components

and

Connectors

17 ____________ association between roles and Players.

Connection

and functions

Composition

Instructions

Abstract

mapping None of these

18 Composition instructions is between __________.

roles and

Players

Players and

internal

Players

Connection

and functions

Components

and

Connectors

19

________ is relation between internal players and

players of composite

Abstraction

mapping composite

Connection

and functions

Composition

Instructions

20

___________supports component and connectors,

style and association of component players UniCon RMA RPC Filters

21

Architectural styles is composed of which of the

following?

A set of

component

A topological

layout

A set of

semantic

constraints All the above

22

Which architectural style’s goal is to achieve

Integrability?

Data Flow

Architecture

Call and

Return

Architecture

Data Centered

Architectures None of these

23

Which architectural style’s goal is to achieve

Modifiability with Scalability?

Data Flow

Architecture

Call and

Return

Architecture

Virtual

Machine

Architecture

None of the

mentioned

24

Which architectural style’s goal is to achieve

Portability?

Data Flow

Architecture

Call and

Return

Architecture

Virtual

Machine

Architecture

None of the

mentioned

25

Which architectural style’s goal is to achieve

Modifiability with Reuse?

Data Flow

Architecture

Call and

Return

Architecture

Virtual

Machine

Architecture

None of the

mentioned

26

Data Centered architecture is subdivided into which

of the following subtypes?

Repository and

Blackboard

Batch

Sequential,

Pipes and

Filters

All of the

mentioned

None of the

mentioned

27

Which of the architectural style is further subdivided

into Batch sequential and Pipes & filters?

Data Flow

Architecture

Call and

Return

Architecture

Data Centered

Architectures

None of the

mentioned

28

Which of the following are types of Call and return

architecture?

Main program

and subroutine

Remote

Procedure Call

Object

Oriented All the above

29

Which of the following type has the main goal to

achieve performance?

Main program

and subroutine

Remote

Procedure Call

Object

Oriented All the above

30 ____________ adds a port to a component editport extendport attachport addport

31

In which of the following style new clients can be

added easily?

Data Flow

Architecture

Call and

Return

Architecture

Data Centered

Architectures

None of the

mentioned

32

___________ are compositions in which code

elements are connected in a particular way components operators patterns closure

33

_________ are conditions in which composition can

serve as a subsystem in development of larger

systems components operators patterns closure

34

________ defines not only functionality but also of

performance, fault tolerance and so on. specification operators patterns closure

35 ___________ are module level elements components operators patterns closure

36 What are the advantage of pipe & filters?

interact with

the

environment

in limited

ways

simplify

systems

maintenance

Interactive

applications All the above

37 What are Virtual Machine Styles?

software on

which it is

implemented

emphasize on

incremental

transformation

Interactive

applications

None of the

mentioned

38

In which of the architectural style the main program

is divided into small pieces to achieve modifiability?

Main program

and subroutine

Architecture

Remote

Procedure Call

system

Object

Oriented or

abstract data

type system

All of the

mentioned

39

In which of the architecture style main program and

subroutine systems are decomposed into parts that

live on computers connected via a network?

Main program

and subroutine

Architecture

Remote

Procedure Call

system

Object

Oriented or

abstract data

type system

All of the

mentioned

40

Architectural descriptions treat software systems as

composition of _________ components elements connectors modules

41

__________ are simple input/output relations, no

retained state. Computation memory Manager Controller

42

_________ are shared collection of persistent

structured data Computation memory Manager Controller

43 ______ are state and closely related operations Computation memory Manager Controller

44 ________ governs time sequences of other events. Computation memory Manager Controller

45 __________ transmits information between entities. Computation link Manager Controller

46

_______ is a single thread of control passes among

definitions Procedure call Dataflow

Implicit

invocation

Message

passing

47

_________ are independent processes interact

through streams of data. Procedure call Dataflow

Implicit

invocation

Message

passing

48

__________ is a computation that is invoked by the

occurrence of an event. Procedure call Dataflow

Implicit

invocation

Message

passing

49

Independent processes interact by explicit

___________ Procedure call Dataflow

Implicit

invocation

Message

passing

50

________ are components that operate concurrently

on the same data space. Instantiation Shared Data Components Operators

51

________ are Instantiators that uses capabilities

instantiated definition by providing space required by

instance. Instantiation Shared Data Components Operators

52

________ are primitive semantic elements and their

values. Instantiation Shared Data Components Operators

53 ________ are functions that combine components Instantiation Shared Data Components Operators

54

__________ are rules for naming expressions of

components and operators Abstraction closure Specification Components

55

________ are rules to determine which abstractions

can be added to the classes of primitive components

and operators. Abstraction closure Specification Components

56

__________ are association of semantics to the

syntactic forms arrays and so on Abstraction closure Specification Components

57

____________ capabilities allow us to combine

independent architecture elements in to larger

systems. Composition Abstraction Reusability Configuration

58

_________ describe the components and their

interactions within software architecture. Composition Abstraction Reusability Configuration

59

It should be possible to reuse components,

connectors, and architectural patterns in different

architectural descriptions. Composition Abstraction Reusability Configuration

60

It should be possible to combine multiple

heterogeneous architectural descriptions. Heterogeneity Analysis Reusability Configuration

ANSWER

Aesop

Idioms and

Patterns

Localized

Pattern

Reference

Model

Communicatio

n Reference

Model

4

vocabulary

configuration

rules

architectural

description

multiple Style

Specification

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III BSC CS SUBJECT NAME: INTRODUCTION TO SOFTWARE ARCHITECTURE

SUBJECT CODE: 17CSP204 BATCH-2017-2019

UNIT: V (ONE MARKS) PART A - ONLINE EXAMINATION

Abstraction

mapping

formalize rules

generative

Abstract

composite

connectors

Components

and

Connectors

Composition

Instructions

roles and

Players

Both A and B

UniCon

A set of

semantic

constraints

Data Centered

Architectures

Call and

Return

Architecture

Virtual

Machine

Architecture

Data Flow

Architecture

Repository and

Blackboard

Data Flow

Architecture

All the above

Remote

Procedure Call

addport

Data Centered

Architectures

patterns

closure

specification

componentsinteract with

the

environment

in limited

ways

software on

which it is

implemented

Main program

and subroutine

Architecture

Remote

Procedure Call

system

components

Computation

memory

Manager

Controller

link

Procedure call

Dataflow

Implicit

invocation

Message

passing

Shared Data

Instantiation

Components

Operators

Abstraction

closure

Specification

Composition

Abstraction

Reusability

Heterogeneity

Register Number____________

 [17CSP204]

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2017 onwards)

M.Sc DEGREE EXAMINATION

COMPUTER SCIENCE

FIRST INTERNAL EXAMINATION

INTRODUCTION TO SOFTWARE ARCHITECTURE

Class : I M.Sc CS Duration : 2 Hours

Date & Session : 01.02.18 & FN Maximum : 50 Marks

PART-A (20 X 1 = 20 Marks)

(Answer ALL the Questions)

1. _____________ is emerging as an important discipline for engineers of software.

 a) Software Architecture b) Software Engineering

 c) Software Design d) Software Development

2. As the size and complexity of software increase ___________ become significant.

 a) Choice of Algorithm b) Data Structures

 c) Specification of overall system structure d) None of these

3. In ___________ style each component has a set of inputs and a set of outputs.

 a) Pipes and filters b) pipes c) filter d) streams

4. __________ restrict the amount of data that can reside on a pipe.

 a) pipelines b) bounded pipes c) typed pipes d) filter

5. ____________ is a separate, independent parcels of application dependent knowledge.

 a) blackboard data structure b) Control c) The knowledge sources d) virtual machine

6. Process variable whose value can be changed by the controller.

 a) input b) Manipulated variable c) controlled d) open loop

7. Detailed understanding of software architectures allows the engineer to make principled

 choices among ___________.

 a) design alternatives b) high-level relationships c) components d) interfaces

8. __________is a repository which activates external components through implicit invocation.

 a) active database b) database c) queue d) style

9. The KWIC means

 a) Key Word in Context b) Key word in Constant

 c) Key word as Context d) Key word as Capital

10. A ___________system exists to maintain the speed of a car, even over varying terrain.

 a) System on/off b) cruise control c) Engine on/off d) Increase/Decrease Speed

11. An ____________ is an instrumentation system that samples electrical signals and displays

 pictures of them on a screen.

 a) traces b) pulses c) KWIC d) oscilloscope

12. A __________system is one that controls a manned or partially manned vehicle.

 a) KWIC b) oscilloscopes c) cruise control d) Mobile Robotics

13. ___________ transformers convert the waveforms into visual data.

 a) Display transformers b) Signal transformers

 c) Acquisition transformers d) Trigger transformers

14. __________ systems provide a means of codifying the problem-solving skills of human

 experts.

 a) knowledge base b) Rule based systems c) cruise control d) oscilloscope

15. The first major blackboard system was the __________

 a) HEARSAY-II speech recognition system b) Rule based systems

 c) Knowledge sources d) cruise control

16. The TCA architecture is based on hierarchy of ________.

 a) Task trees b) exception handlers c) Wiretap d) Message

17. The earliest shared information systems consisted of separate programs for separate ______.

 a) subtasks b) main task c) components d) modules

18. In Yourdon data flow diagram, Processes are depicted as ____________

 a) Computer b) circles, or bubbles c) Boxes d) Square

19. When requirements for interaction appear, new organizations allowed independent

 processing subsystems to interact through_______ .

 a) a shared datastore b) pipes c) filters d) components

20. A massive ________ got the transactions into the same order as the records on the sequential

 master file.

 a) transaction sort b) edit program c) update programs d) Data Processing

PART-B (3 X 2 = 6 Marks)

(Answer ALL the Questions)

21. Define Software Architecture.

Software architecture involves the description of elements from which systems are built,

interactions among these elements, patterns that guide their composition, and constraints on these

patterns.

A particular system is defined as a collection of components and interactions among those

components. Such a system may be used as a (composite) element in a larger system.

Components: clients & servers, databases, filters, and layers in a hierarchical system.

Interactions at this level of design can be simple and familiar. Ex: procedure calls, shared

variable access.

22. Write about Blackboard architectural style.

Blackboard:

Three major parts:

• Knowledge sources: Separate, independent parcels of application dependents

knowledge.

• Blackboard data structure: Problem solving state data, organized into an application

dependent hierarchy

• Control: Driven entirely by the state of blackboard; Invocation of a knowledge source

(ks) is triggered by the state of blackboard.

Fig: The Blackboard

23. Write short notes on KWIC system.

• KWIC index system accepts an ordered set of lines.

• Each line is an ordered set of words and each word is an ordered set of characters.

• Any line may be circularly shifted by repeated removing the first word and appending it

at the end of the line.

• KWIC index system outputs a listing of all circular shifts of all lines in alphabetical

order.

PART-C (3 X 8 = 24 Marks)

(Answer ALL the Questions)

24. a. Elucidate about An Engineering Discipline for Software.

Software engineering is a label applied to a set of current practices for software development.

The more common usage refers to the disciplined application of scientific knowledge to resolve

conflicting constraints and requirements for problems of immediate, practical significance.

Definitions of engineering share some common clauses

Creating cost-effective solutions…..

.... to practical problems

…. by applying scientific knowledge...

…. building things...

…. in the service of mankind

Routine and Innovative Design

Engineering design tasks are of several kinds; one of the most significant distinctions among

them separates routine from innovative design.

Routine Design: involves solving familiar problems, reusing large portions of prior solutions.

Innovative Design: It involves finding novel solutions to unfamiliar problems. One path to

increased productivity is identifying applications that could be routine and developing

appropriate support.

A Model for the Evolution of Engineering Discipline

Engineering has emerged from ad hoc practice in two stages.

1. Management and production techniques enable routine production.

2. The problems of routine production stimulate the development of a supporting science; the

mature science eventually merges with established practice to yield professional engineering

practice.

Fig: Evolution of an Engineering Discipline

The lower lines track the technology, and the upper lines show how the entry of

production skills and scientific knowledge contribute new capability to the engineering practice.

The Current State of Software Technology

The engineering problem is creating cost-effective solutions to practical problems... building

things in the service of mankind.

Scientific basis for Engineering practice

Engineering practice emerges from commercial practice by exploiting the results of a companion

science.

One characterization of progress in programming languages and tools has been regular increases

in abstraction level—or the conceptual size of software designers building blocks. To place the

field of Software Architecture into perspective let us begin by looking at the historical

development of abstraction techniques in computer science.

Maturity of supporting science:

• Each program contains algorithms and data structures.

• Algorithms and data structures began to be abstracted from individual programs.

Research on abstract data types dealt with such issues as the following:

- Specifications (abstract models, algebraic axioms)

- Software structure (bundling representation with algorithms)

- Language issues (modules, scope, user-defined types)

- Information hiding (protecting integrity of information not in specification)

- Integrity constraints (invariants of data structures)

- Rules for composition (declarations)

Abstract Data Types

In the late 1960s, good programmers shared an intuition about software development: If

you get the data structures right, the effort will make development of the rest of the program

much easier. The abstract data type work of the 1970s can be viewed as a development effort that

converted this intuition into a real theory. The conversion from an intuition to a theory involved

understanding

• the software structure (which included a representation packaged with its primitive operators),

• specifications (mathematically expressed as abstract models or algebraic axioms),

• language issues (modules, scope, user-defined types),

• integrity of the result (invariants of data structures and protection from other manipulation),

• rules for combining types (declarations),

• information hiding (protection of properties not explicitly included in specifications).

The effect of this work was to raise the design level of certain elements of software systems,

namely abstract data types, above the level of programming language statements or individual

algorithms. This form of abstraction led to an understanding of a good organization for an entire

module that serves one particular purpose. This involved combining representations, algorithms,

specifications, and functional interfaces in uniform ways. Certain support was required from the

programming language, of course, but the abstract data type paradigm allowed some parts of

systems to be developed from a vocabulary of data types rather than from a vocabulary of

programming-language constructs.

Interaction between Science and Engineering:

The development of good models within the software domain follows the pattern of following

figure.

Fig: Codification Cycle for Science and Engineering

Fig: Evolution of Software Engineering

Codification through Abstraction Mechanisms:

One characteristic of progress in programming languages and tools has been regular

increases in abstraction level—or the conceptual size of the building blocks used by software

designers.

The conversion from an intuition to a theory involved understanding the following:

The software structure, Specifications, Language issues, Integrity of the result, Rules for

combining types, Information hiding.

 (OR)

 b. Describe about the architectural style Pipes and Filters and Layered Systems with

example.

PIPES AND FILTERS:

• Each components has set of inputs and set of outputs

• A component reads streams of data on its input and produces streams of data on its

output.

• By applying local transformation to the input streams and computing incrementally, so

that output begins before input is consumed. Hence, components are termed as filters.

• Connectors of this style serve as conducts for the streams transmitting outputs of one

filter to inputs of another. Hence, connectors are termed pipes.

Fig : Pipes and Filters

Conditions (invariants) of this style are:

• Filters must be independent entities.

• They should not share state with other filter

• Filters do not know the identity of their upstream and downstream filters.

• Specification might restrict what appears on input pipes and the result that appears on the

output pipes.

• Correctness of the output of a pipe-and-filter network should not depend on the order in

which filter perform their processing.

Common specialization of this style includes:

• Pipelines: Restrict the topologies to linear sequences of filters.

• Bounded pipes: Restrict the amount of data that can reside on pipe.

• Typed pipes: Requires that the data passed between two filters have a well-defined type.

Advantages:

• They allow the designer to understand the overall input/output behavior of a system as a

simple composition of the behavior of the individual filters

• They support reuse: Any two filters can be hooked together if they agree on data.

• Systems are easy to maintain and enhance: New filters can be added to exciting systems.

• They permit certain kinds of specialized analysis eg: deadlock, throughput

• They support concurrent execution.

Disadvantages:

• They lead to a batch organization of processing.

• Filters are independent even though they process data incrementally.

• Not good at handling interactive applications

▪ When incremental display updates are required.

▪ They may be hampered by having to maintain correspondences between two

separate but related streams.

▪ Lowest common denominator on data transmission.

• This can lead to both loss of performance and to increased complexity in writing the

filters.

LAYERED SYSTEMS:

• A layered system is organized hierarchically, each layer provides service to the layer

above it and serving as a client to the layer below.

• Inner layers are hidden from all except the adjacent layers.

• Connectors are defined by the protocols that determine how layers interact with each

other.

• Goal is to achieve qualities of modifiability portability.

Fig: Layered Systems

Examples:

 Layered communication protocol

 Operating systems

Database systems

Advantages:

• They support designs based on increasing levels abstraction.

• Allows implementers to partition a complex problem into a sequence of incremental

steps.

• They support enhancement

• They support reuse.

Disadvantages:

• Not easily all systems can be structures in a layered fashion.

• Performance may require closer coupling between logically high-level functions and their

lower-level implementations.

• Difficulty to mapping existing protocols into the ISO framework as many of those

• protocols bridge several layers.

25. a. Discuss about Key Word in Context – (i) Abstract Data Types (ii) Pipe and Filter

model with a neat diagram.

Parnas proposed the following problems:

KWIC index system accepts an ordered set of lines. Each line is an ordered set of words and

each word is an ordered set of characters. Any line may be circularly shifted by repeated

removing the first word and appending it at the end of the line. KWIC index system outputs a

listing of all circular shifts of all lines in alphabetical order.

Parnas used the problem to contrast different criteria for decomposing a system into modules.

He describes 2 solutions:

a) Based on functional decomposition with share access to data representation.

b) Based on decomposition that hides design decision.

From the point of view of Software Architecture, the problem is to illustrate the effect of changes

on software design. He shows that different problem decomposition vary greatly in their ability

to withstand design changes. The changes that are considered by parnas are:

1. The changes in processing algorithm:

Eg: line shifting can be performed on each line as it is read from input device, on all lines after

they are read or an demand when alphabetization requires a new set of shifted lines.

2. Changes in data representation:

Eg: Lines, words, characters can be stored in different ways. Circular shifts can be stored

explicitly or implicitly Garlan, Kaiser and Notkin also use KWIC problem to illustrate

modularization schemes based on implicit invocation. They considered the following.

3. Enhancement to system function:

Modify the system to eliminate circular shift that starts with certain noise change the system to

interactive.

4. Performance:

Both space and time

ABSTRACT DATA TYPES

• Decomposes The System Into A Similar Set Of Five Modules.

• Data is no longer directly shared by the computational components.

• Each module provides an interface that permits other components to access data only by

invoking procedures in that interface.

Advantage:

• Both Algorithms and data representation can be changed in individual modules without

affecting others.

• Reuse is better supported because modules make fewer assumption about the others with

which they interact.

Disadvantage:

• Not well suited for functional enhancements

• To add new functions to the system

• To modify the existing modules.

PIPES AND FILTERS:

• Four filters: Input, Output, Shift and alphabetize

• Each filter process the data and sends it to the next filter

• Control is distributed

o Each filter can run whenever it has data on which to compute.

• Data sharing between filters are strictly limited.

Advantages:

• It maintains initiative flow of processing

• It supports reuse

• New functions can be easily added to the system by inserting filters at appropriate level.

• It is easy to modify.

Disadvantages:

• Impossible to modify the design to support an interactive system.

• Solution uses space inefficiently.

 (OR)

 b. Explain the Cruise Control system in detail.

CRUISE CONTROL

A cruise control (CC) system that exists to maintain the constant vehicle speed even over varying

terrain.

Inputs:

System On/Off: If on, maintain speed

Engine On/Off: If on, engine is on. CC is active only in this state

Wheel Pulses: One pulse from every wheel revolution

Accelerator: Indication of how far accelerator is de-pressed

Brake: If on, temp revert cruise control to manual mode

Inc/Dec Speed: If on, increase/decrease maintained speed

Resume Speed: If on, resume last maintained speed

Clock: Timing pulses every millisecond

Outputs:

Throttle: Digital value for engine throttle setting

Restatement of Cruise-Control Problem

Whenever the system is active, determine the desired speed, and control the engine throttle

setting to maintain that speed.

OBJECT VIEW OF CRUISE CONTROL

Each element corresponds to important quantities and physical entities in the system

Each blob represents objects

Each directed line represents dependencies among the objects

The figure corresponds to Booch's object oriented design for cruise control

PROCESS CONTROL VIEW OF CRUISE CONTROL

Computational Elements

Process definition - take throttle setting as I/P & control vehicle speed

Control algorithm - current speed (wheel pulses) compared to desired speed

o Change throttle setting accordingly presents the issue:

o decide how much to change setting for a given discrepancy

Data Elements

Controlled variable: current speed of vehicle

Manipulated variable: throttle setting

Set point: set by accelerator and increase/decrease speed inputs

system on/off, engine on/off, brake and resume inputs also have a bearing

Controlled variable sensor: modelled on data from wheel pulses and clock

Figure 3.18 control architecture for cruise control

The active/inactive toggle is triggered by a variety of events, so a state transition design is

natural. It's shown in Figure. The system is completely off whenever the engine is off. Otherwise

there are three inactive and one active state.

For simplicity we assume brake application is atomic so other events are blocked when the brake

is on. A more detailed analysis of the system states would relax this Assumption.

The active/inactive toggle is triggered by a variety of events, so a state transition design is

natural.The system is completely off whenever the engine is off. Otherwise there are three

inactive and one active states. In the first inactive state no set point has been established. In the

other two, the previous set point must be remembered:

When the driver accelerates to a speed greater than the set point, the manual Accelerator controls

the throttle through a direct linkage (note that this is the only use of the accelerator position in

this design, and it relies on relative effect rather than absolute position); when the driver uses the

brake the control system is inactivated until the resume signal is sent. The active/inactive toggle

input of the control system is set to active exactly when this state machine is in state Active

Determining the desired speed is simpler, since it does not require state other than the current

value of desired speed (the set point). Any time the system is off, the set point is undefined. Any

time the system on signal is given (including when the system is already on) the set point is set to

the current speed as modeled by wheel pulses.

The driver also has a control that increases or decreases the set point by a set amount. This, too,

can be invoked at any time (define arithmetic on undefined values to yield undefined values).

Figure 9 summarizes the events involved in determining the set point. Note that this process

requires access to the clock in order to estimate the current speed based on the pulses from the

wheel.

Figure state machine for activation

Combine the control architecture, the state machine for activation, and the event table for

determining the set point into an entire system.

Compose the control architecture, the state machine for activation, and the event table for

determining the set point into an entire system. Although there is no need for the control unit and

set point determination to use the same clock, we do so to minimize changes to the original

problem statement. Then, since current speed is used in two components, it would be reasonable

for the next elaboration of the design to encapsulate that model in a reusable object; this would

encapsulate the clock.

All of the objects in Booch's design (Figure 6) have clear roles in the resulting system. It is

entirely reasonable to look forward to a design strategy in which the control loop architecture is

used for the system as a whole and a number of other architectures, including objects and state

machines, are used in the elaborations of the elements of the control loop architecture.

The shift from an object-oriented view to a control view of the cruise control architecture raised

a number of design questions that had previously been slighted: The separation of process from

control concerns led to explicit choice of the control discipline.

The limitations of the control model also became clear, including possible inaccuracies in the

current speed model and incomplete control at high speed. The dataflow character of the model

showed irregularities in the way the input was specified, for example mixture of state and event

inputs and the inappropriateness of absolute position of the accelerator

26. a. Write in detail about Database Integration – (i) Batch Sequential (ii) Simple Repository.

DATABASE INTEGRATION:

Business data processing has traditionally been dominated by database management, in

particular by database updates. Originally, separate databases served separate purposes, and

implementation issues revolved around efficient ways to do massive coordinated periodic

updates. Interactive demands required individual transactions to complete in real time.

Information began to appear redundantly in multiple databases, and geographic

distribution added communication complexity.

Individual database systems must support transactions of predetermined types and

periodic summary reports. Bad requests require a great deal of special handling. Originally the

updates and summary reports were collected into batches, with database updates and reports

produced during periodic batch runs.

As databases became more common, information about a business became distributed

among multiple databases. Hence data become inconsistent and incomplete. The representations,

or schemas, for different databases were usually different; even the portion of the data shared by

two databases is likely to have representations in each database. The total volume of data to

handle is correspondingly larger, and it is often distributed across multiple machines. Two

general strategies emerged for dealing with data diversity:

 unified schemas

 multi-databases.

Batch Sequential:

Some of the earliest large computer applications were databases. In these applications individual

database operations-transactions-were collected into large batches. The application consisted of a

small number of large standalone programs that performed sequential updates on flat

(unstructured) files. A typical organization included:

• a massive edit program: accepts transaction inputs and perform validation without

accessing the database.

• a massive transaction sort: get transactions into the same order as the records on the

sequential master file

• a sequence of update programs: one for each master file; these huge programs actually

executed the transactions by moving sequentially through the master file, matching each

type of transaction to its corresponding account and updating the account records.

• a print program: produce periodic reports

Batch sequential architecture:

The steps were independent of each other; they had to run in a fixed sequence; each ran to

completion, producing an output file in a new format, before the next step began.

Fig: Data flow diagram for batch databases

The above figure shows the possibility of on-line queries (but not modifications).In this structure

the files to support the queries are reloaded periodically, so recent transactions (e.g., within the

past few days) are not reflected in the query responses.

Above figure is a Yourdon data flow diagram. Processes are depicted as circles, or

"bubbles"; data flow (here, large files) is depicted with arrows, and data stores such as computer

files are depicted with parallel lines.

Fig: Internal structure of batch update process

Above figure shows the internal structure of an update process. There is one of these for each of

the master data files, and each is responsible for handling all possible updates to that data file.

Here, the boxes represent subprograms and the lines represent procedure calls.

A single driver program processes all batch transactions. Each transaction has a standard

set of subprograms that check the transaction request, access the required data, validate the

transaction, and post the result. Thus all the program logic for each transaction is localized in a

single set of subprograms.

The redrawn figure emphasizes the sequence of operations to be performed and the

completion of each step before the start of its successor. It suppresses the on-line query support

and updates to multiple master files, or databases.

Fig: Batch sequential database architecture

Simple Repository:

Two trends forced a change away from batch sequential processing.

 First, interactive technology provided the opportunity and demand for continuous processing

of on-line updates as well as on-line queries.

 Second, as organizations grew, the set of transactions and queries grew.

Figure 5: Data fow diagram for interactive database

 Here, the transaction database and extract database are transient buffers; the account/item

database is the central permanent store.

 The transaction database serves to synchronize multiple updates.

 The extract database solves a problem created by the addition of interactive processing namely

the loss of synchronization between the updating and reporting cycles.

 It is useful to separate the general overhead operations from the transaction-specific

operations.

 It may also be useful to perform multiple operations on a single account all at once.

The system structure is easier to understand if we first isolate the database updates.

Figure 7 focuses narrowly on the database and its transactions. This is an instance of a fairly

common architecture, a repository, in which shared persistent data is manipulated by

independent functions each of which has essentially no permanent state. It is the core of a

database system.

Figure 8 adds two additional structures. The first is a control element that accepts the batch or

interactive stream of transactions, synchronizes them, and selects which update or query

operations to invoke, and in which order. This subsumes the transaction database of Figure 5.

The second is a buffer that serves the periodic reporting function. This subsumes the extract

database of Figure 5.

(OR)

 b. Explain in detail about Integration in Software Development Environment – (i)

Repository (ii) Transition from Batch Sequential to Repository.

Repository:

 Batch sequential tools and compilers--even when organized as repositories do not retain

information from one use to another. As a result, a body of knowledge about the program

is not accumulated.

 The repository of the compiler provided a focus for this data collection.

 Some of the ways that tools could interact with a shared repository.

 Tight coupling: Share detailed knowledge of the common, but proprietary, representation

among the tools of a single vendor

 Open representation: Publish the representation so that tools can be developed by many

sources. Often these tools can manipulate the data, but they are in a poor position to

change the representation for their own needs.

 Conversion boxes: Provide filters that import or export the data in foreign representations.

The tools usually lose the benefits of incremental use of the repository.

 No contact: Prevent a tool from using the repository, either explicitly, through excess

complexity, or through frequent changes.

INTEGRATION IN SOFTWARE DEVELOPMENT ENVIRONMENTS:

 Software development has relied on software tools whereas data processing has relied on on-

line databases.

 Initially these tools only supported the translation from source code to object code; they

included compilers, linkers, and libraries.

 Tools now support analysis, configuration control, debugging, testing, and documentation as

well.

Transition from Batch Sequential to Repository:

 Our view of the architecture of a system can change in response to improvements in

technology.

 We often refer to this compilation model as a pipeline, even though it was closer to a batch

sequential architecture in which each transformation (“pass”) ran to completion before

the next one started.

 Symbol Table was not part of the data that flowed from one pass to another but rather existed

outside all the passes.

 The algorithms and representations of compilation grew more complex, and increasing

attention turned to the intermediate representation of the program during compilation.

Figure : Modern canonical compiler

 A more appropriate view of this structure would re-direct attention from the sequence of

passes to the central shared representation.

 When you declare that the tree is the locus of compilation information and the passes define

operations on the tree.

 This new view also accommodates various tools that operate on the internal representation

rather than the textual form of a program; these include syntax-directed editors and various

analysis tools.

 The execution order of the operations in the database was determined by the types of the

incoming transactions, the execution order of the compiler is predetermined, except possibly for

opportunistic optimization.

	1.pdf (p.1-2)
	2.pdf (p.3-7)
	3.pdf (p.8-48)
	4.pdf (p.49-53)
	5.pdf (p.54-81)
	6.pdf (p.82-86)
	7.pdf (p.87-118)
	8.pdf (p.119-124)
	9.pdf (p.125-169)
	10.pdf (p.170-175)
	11.pdf (p.176-210)
	12.pdf (p.211-220)
	13.pdf (p.221-250)

